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ABSTRACT 

 

 

SPECTRAL INVESITGATION OF THE CONFORMATION OF PRIMARY AND 

SECONDARY MICELLES OF SODIUM CHOLATE AND THE IMPACT OF pH AND 

SALT CONCENTRATION 

 

Sarah Elizabeth Milliner 

 

April 26, 2013 

 

Bile salts are biosurfactants that aid in the digestion and absorption of lipids. 

Unlike most classical surfactants, they are facial amphiphiles with a rigid steroid 

backbone whose hydrophobic and hydrophilic faces are on opposite sides. As the 

concentration of bile salts increases, primary micelles are formed. Despite decades of 

studies of the molecular organization of these micelles, there is no agreement on their 

arrangement. To bridge this gap, one- and two-dimensional NMR studies of sodium 

cholate (NaCho) monomers and primary micelles were carried out. The experimental 

changes in chemical shift were interpreted with the aid of theoretical predictions. The 

observed trends and the presence of new through-space interactions observed upon 

micellization indicate that four (or six) monomers are arranged in an anti-parallel fashion. 

The top and bottom of the barrel-like micelles are held by ionic interactions and water-

mediated hydrogen bonds. A cooperative hydrogen-bond ‘belt’ is formed with the 

hydroxyl groups in the central region of NaCho and surrounds the micelle. Our results 

point to the importance of both hydrophobic interactions and hydrogen bonding in the 

formation of micelles.  



viii 

 

Larger aggregates (secondary micelles) form at higher concentrations (> 50 mM). 

Little is known about their molecular arrangement. Our NMR studies enabled the 

postulation and partial validation of a model for these aggregates in which primary 

micelles are stacked together via ion-dipole and H-bonding interactions. The stacks 

interact with each other in a staggered fashion where the top/bottom of a primary micelle 

is in the vicinity of the central H-bond belt of its neighboring micelle.  

Both pH and salt concentration affect primary and secondary micelles of bile 

salts. We investigated the effect of increasing concentrations of NaCl, NH4Cl, CaCl2 and 

MgCl2 on both primary and secondary NaCho micelles. Due to its smaller charge density, 

NH4
+
 had the least impact because of its interactions with hydroxyl and carboxylate 

groups are weaker relative to those of the other cations. On the other hand, the higher 

charge density of Ca
2+

 and Mg
2+

 caused the greatest tightening (Mg
2+

) and even 

aggregation (Ca
2+

) as these cations interact with the electronegative moieties of NaCho 

more effectively.     
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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

 

 This chapter provides background information on the classification of bile salts 

and our current knowledge of the molecular conformation/structure of their micelles. In 

addition, the effects of salt concentration, pH and temperature on micelle formation will 

be addressed. The various bile salt micellar arrangements that have been proposed in the 

past will be discussed. Since there is no agreement on the structures of bile salt micelles, 

the main goal in this dissertation is to understand the forces and interactions that lead to 

the formation of these nanostructures and to propose models for both primary and 

secondary micelles of sodium cholate, one of the most abundant primary bile salts. These 

studies mainly focus on the use of one- and two-dimensional nuclear magnetic resonance 

(NMR) spectroscopy to elucidate molecular structures.  

 

BILE SALTS: CLASSIFICATION AND CHEMICAL STRUCTURE 

Surfactant molecules self-aggregate spontaneously into micelles when dissolved in 

aqueous media at concentrations above their critical micelle concentration (cmc).
1-4

 

According to their chemical make-up, surfactants can be classified as ionic, non-ionic, or 

zwitterionic detergents.
5
 A classical ionic surfactant such as sodium dodecyl sulfate 

(SDS), consists of a polar head group and a non-polar hydrocarbon tail. SDS self-

associates in organized spherical structures where the polar head groups interact with the 

aqueous phase and the hydrocarbon chain form the core of the micelle.
6
 Triton X-100 is a 



2 

non-ionic surfactant with a hydrophilic polyethylene oxide chain and a hydrophobic 

aromatic hydrocarbon group.
7
 Zwitterionic detergents contain both positively and 

negatively charged groups with an overall net charge of zero. CHAPS, 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate, a derivative of cholic acid, is 

an example of this class of detergents with a zwitterionic head group and a steroidal tail.
8
 

Above the concentration where surfactant molecules associate to form micelles (critical 

micelle concentration, cmc), surfactants act as emulsifiers, dissolving compounds that are 

normally insoluble in the solvent being used. For example, CHAPS is used as a detergent 

to solubilize membrane proteins.
9
   

Bile salts are considered detergents but are significantly different from classical 

amphiphiles.
10

 In classical amphiphiles, the polar and non-polar regions are clearly 

separated; there is a polar head group and a hydrophobic tail comprised of hydrocarbon 

chains. The separation of hydrophobic and hydrophilic regions in bile salts is quite 

different. Bile salts have a rigid steroid framework and exhibit facial polarity.
11, 12

 The 

hydrophilic face, also considered the concave side of the molecule, is polar due to the 

presence of two or three hydroxyl groups.
10, 13-15

 Conversely, the hydrophobic face is the 

convex side of the steroid backbone where methyl groups are located. Bile salts have an 

acidic moiety in their tails. At pH values above their pKa, these sites become 

deprotonated and these anionic amphiphiles form anionic micelles that are 

thermodynamically stable. Figure 1-1 shows the structure of different bile salts that are 

produced in our body. Naturally occurring bile salts are conjugated with glycine or 

taurine.
10, 16

 This dissertation focuses on sodium cholate (NaCho) which is a trihydroxy 

bile salt with alpha hydroxyl groups at positions C3, C7 and C12. The tail is composed of  
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Figure 1-1: General structure of bile salts and their conjugates.  
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a carboxylate group which is at the opposite end from OH-3 (head) of the monomer. 

Methyl groups are located on the hydrophobic face at positions C18, C19 and C21.  

 

BILE SALT FUNCTIONS 

 Bile salts are synthesized in the liver and are byproducts of the catabolic pathway 

of cholesterol in mammals.
17

 Through modification and hydroxylation of cholesterol, the 

bile salt end products have a rigid steroid backbone with a hydrophobic and hydrophilic  

face.
17

 They are present in the bile along with cholesterol, derivatives of 

cholesterol and lipids. Bile salts are stored in the gall bladder and emptied into the 

intestine by passive diffusion during the digestion of a meal.
18

 Bile salts are then 

reabsorbed from the ileum and returned to the liver by the portal blood. The enterohepatic 

circulation of bile salts occurs 4 – 12 times a day. The concentration of bile salts varies 

depending on the different body compartment. In the gall bladder, the concentration is 

between 10 and 50 mM, in the liver it is lower, between 4 and 20 mM and in the liver 

Cancliculi it is around 5 mM. The concentration decreases in the portal vein blood (0.1 

mM) and in the peripheral blood (5 – 20 μM).
18

  

Bile salts aid in the excretion of insoluble lipids including lecithin and cholesterol 

and promote absorption of insoluble dietary lipids in the intestine.
19, 20

 Bile salts form 

mixed micelles with cholesterol, lecithin, monoglycerides and fatty acids so that they can 

be transported in aqueous biological fluids.
17, 19, 21

 About 80 % of the bile salts in the bile 

are primary bile salts synthesized from cholesterol and include cholate and 

chenodeoxycholate. Secondary bile salts such as deoxycholate are derived from primary 

ones. These are produced in the colon by bacterial 7α-dehydroxylation (removal of the 
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hydroxyl group at C-7) and make up the remainder (about 20 %) of bile salts present in 

the bile.
21

 

MICELLE FORMATION  

 At low concentrations, bile salts are present in their monomeric form. As the 

concentration increases, a transition occurs where monomers begin to associate forming 

micelles.
22-24

 The concentration at which this transition takes place is called the critical 

micelle concentration (cmc); this value varies for individual bile salts due to differences 

in their chemical makeup.
25

  At the cmc, half of the bile salts are in their monomeric form 

and half associate to form primary micelles. As the bile salt concentration continues to 

increase past the cmc, a second micellization step is reached
26, 27

 and primary micelles 

begin to associate to form larger aggregates. The first cmc’s of dihydroxy bile salts are 

below 5 mM and trihydroxy bile salts have higher cmc’s ranging between 10-20 mM. 

The increase in cmc values is attributed to their increased solubility in water.
16

  

 The cmc values for the various bile salts have been determined using techniques 

such as light scattering
28

, isothermal titration calorimetry
29

 and fluorescence 

spectroscopy
30

. Solution parameters such as ionic strength, pH and temperature can alter 

the cmc values for bile salts. A lower cmc can be achieved by increasing the ionic 

strength of the solution. This reduces electrostatic repulsions between the charged groups 

and allows for the formation of micelles at lower bile salt concentrations.
11, 25, 27, 29

 

Altering the pH can also affect the cmc of bile salts. Bile salt molecules are ionized well 

above their pKa values. At pH values around the pKa, bile salt molecules become 

partially protonated and anionic repulsions that keep the micelles from aggregating are 

reduced.
21, 25

 This leads to micelle precipitation. Temperature-dependent studies of cmc 

values for bile salts showed the minimum cmc to be around room temperature and these 
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values increase with increasing temperature.
23, 24

 However, the temperature dependence 

of cmc is not as pronounced as that observed with salt concentration.    

The number of bile salt monomers that associate to form primary micelles 

(aggregation number, n) has been evaluated by ultracentrifugation and quasielastic light 

scattering.
28

 The aggregation number of bile salts ranges from 2 to 10 for primary 

micelles, an order of magnitude smaller than for classical amphiphiles. Similar to the 

cmc, the aggregation number is also dependent on the structure of the bile salt and 

solution parameters. Increased bile salt concentration and ionic strength lead to an 

increase in aggregation number.
21, 28, 29

 On the other hand, decreasing pH causes an 

increase in aggregation number. For dihydroxy bile salts, a decrease in pH leads to a 

thickened and more gel-like aqueous solution.
31

  

In addition to determining the aggregation numbers of bile salts, quasielastic light 

scattering was used by Mazer et al. to determine the size of bile salt micelles.
28

 In this 

study, aqueous bile salt solutions in the presence of 0.15 and 0.6 M NaCl were examined. 

Results showed that trihydroxyl taurocholate (TC) forms much smaller micelles with a 

mean hydrodynamic radius (R  h) between 10-15 Å and dihydroxy bile salts have R  h values 

of 15 – 60 Å.
28

 The sizes of the three trihydroxy bile salts examined varied in size with 

the following order: taurodeoxycholate (TDC) > taurochenodeoxycholate (TCDC) > 

tauroursodeoxycholate (TUDC). The difference in hydrodynamic radii for the bile salts 

examined is due to the number and positioning of hydroxyl groups on their hydrophilic 

surface.
28

 Increases in NaCl concentration resulted in micellar growth. For example, TC 

micelles hydrodynamic radius increased to 38.5 Å at high NaCl concentrations.
28

 This 

group also carried out concentration-dependent studies on NaTDC at a higher salt 

concentration (0.8 M NaCl).
32

 The hydrodynamic radius was found to be between 11 to 
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16 Å, in good agreement with previous results. Bile salt aggregates form small globular 

primary micelles with aggregation numbers around 10 or less. At the second 

micellization step, as the concentration of the bile salt increases, primary micelles 

polymerize to form rodlike secondary micelles with quasielastic light scattering the 

hydrodynamic radii were found to be greater than 90 Å.
32

  

Postulated Models on the Formation of Bile Salt Micelles  

Several models have been proposed for the formation of primary micelles of bile 

salts. The first bile salt micelle model was reported by Small et al. who proposed a two-

step process for the formation of primary and secondary micelles.
10

 As mentioned 

previously, the formation of primary micelles is the first step and occurs around the 

cmc.
14

 Bile salt monomers associate due to the hydrophobic effect where the hydrophobic 

faces of the monomers orient themselves toward each other and away from the solvent; 

this creates the non-polar interior of the primary micelle. This leaves the hydrophilic face 

with the hydroxyl and the deprotonated acidic groups in contact with the solvent.
10

 

Depending on the type of bile salt, the number of monomers and the structure of the 

primary micelles varies. However, Small et al. suggested that up to ten bile salt 

monomers can associate to form primary micelles.
10

 Aggregation numbers above ten 

would leave space in the center of the primary micelles thus exposing the hydrophobic 

faces to water. The second step in this process is the formation of secondary micelles and 

occurs at higher bile salt concentrations. Although there was no experimental evidence, 

hydrogen bonding between the hydroxyl groups of neighboring primary micelles was 

proposed to result in elongated secondary micelles. (see Figure 1-2).
10, 14

     

A second model was proposed by Kawamura et al., who investigated the structure 

of di- and tri-hydroxy bile salt micelles using spin-labeled probes and Electron Spin  
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Figure 1-2: Primary model proposed by Small et al. a) Proposed primary micelle model 

for bile salt dimer and tetramer and b) Proposed secondary micelles of bile salts 

(hydrogen bonding interactions are shown with blue arrows Adapted from Small et al.
10
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Resonance (ESR) techniques.
33

 Stearic acid labeled with a methyl ester nitroxide probe at 

various sites within the fatty acid were solubilized by the bile salt and used to examine  

the interior of bile salt micelles. The rotational correlation time (τ1) of the spin probes 

was examined above and below the cmc to determine if the spin probes had been  

solubilized by the bile salt micelles. τ1 was also used to measure the degree of 

immobilization of the spin probe as the position of the nitroxide group was changed along  

the stearic acid for all bile salts examined.
33

 These results suggest that bile salts have 

similar shape regardless of the differences in molecular structure. In this study, bile salt  

concentrations were well beyond the cmc (100 mM) and a fixed spin probe concentration 

of 0.1 mM was used. Based on the conditions used in this study, a disklike model was  

proposed as a common model for micellar structures (See Figure 1-3). In this model, 

hydrophobic faces are oriented toward the interior of the micelle and hydrophilic faces 

are oriented toward the solvent. This model can be applied to bile salts with low 

aggregation numbers and loose structures (trihydroxy) and to dihydroxy bile salts that 

form larger micelles.
33

 The solubilized spin probes experienced similar environments 

when placed on carbon-5 (head) or carbon-16 (tail) suggesting monomers in the micelles 

orient in an anti-parallel arrangement (See Figure 1-3).
33

 If the monomers associated in a 

parallel fashion, the top of the micelles will be composed of all the deprotonated acidic 

groups and the bottom would only have hydroxyl groups at the C3 position. Therefore, 

the environment that the spin probe (measured by rotational correlation time τ1) sensed at 

the top and bottom of the primary micelles would be different. 

 An alternative arrangement was proposed by Giglio et al. based on the crystal 

structure of sodium glycodeoxycholate obtained by X-ray diffraction.
34, 35

 The structure 

of the crystalline state suggests a helical arrangement for bile salt micelles. Association of  
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Figure 1-3: Disklike model proposed by Kawamura et al.  a) Representation of the 

disklike bile salt micelle model (deprotonated acidic group and hydroxyl groups are 

shown in blue arrows. b) Representation of bile salt micelle with solubilized spin probe 

(shown with blue arrow). In this model, the head and tail of the bile salt are also labeled 

to show the anti-parallel arrangement. Adapted from Kawamura et al. 
33
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monomers into micelles is driven by polar interactions. Similar to reversed micelles, the 

interior of the helix is filled with cations and surrounded by water and the hydrophobic  

surfaces are oriented outward. X-ray diffraction offers detailed structural information, 

However, for optimal results this method is restricted to molecules in crystalline form.  

The ability to examine molecules in the aqueous phase is advantageous since the 

environment mimics physiological conditions more closely. In addition, experimental  

variables such as temperature, salt content and pH can be manipulated quite easily.
36

 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the elucidation of  

the molecular structure and conformation of organic and inorganic species. The greatest 

advantage of the application of NMR to the study of biomolecules is that they can be 

investigated in solution and the effects of solution parameters (temperature, pH and salt 

concentration) can be explored. In addition, interactions with other biomolecules can also 

be examined.
36-38

 NMR spectroscopy has already been used in our laboratory to explore 

the molecular arrangements of NaCho micelles. The details of those previous studies will 

be presented later in the section on NMR studies of bile salts.   

 

NMR SPECTROSCOPY 

1D-NMR: Principles  

 NMR is based on the absorption of electromagnetic radiation in the radio-

frequency (rf) region. This occurs in nuclei with a non-zero quantum spin number (I ≠ 0). 

Proton (
1
H), carbon (

13
C) and phosphorus (

31
P) nuclei have a spin quantum number of I = 

1/2. Nuclei with spin quantum number I can adopt 2I + 1 orientations.
38

 For the nuclei 

mentioned above, two spin states exist, m = +1/2 and m = -1/2. In the absence of a 

magnetic field, the energies of these quantum states are identical. When a magnetic field 
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is applied, the spin states are no longer degenerate and they separate into two energy 

levels. The more stable, lower energy state, m = +1/2 (α) is aligned with the magnetic 

field and m = -1/2 (β) is the higher energy state and opposes the magnetic field 

direction.
37

 For any system at thermal equilibrium, the nuclei population will be in slight 

excess for the α state. When the nuclei are irradiated with rf radiation, a photon is 

absorbed by the nucleus in the lower spin state (α) and is flipped into the higher energy 

state (β). For resonance to occur, the energy gap between the two spin states must exactly 

match the energy of the absorbed photon.
36-38

 

ΔE = 
    

  
 

Where γ is the gyromagnetic ratio, a proportionally constant characteristic of the isotope 

being examined, h is Plank’s constant and B0 is the magnetic field strength.  

After irradiation ceases, the excited spins return to their equilibrium state (excess 

α spins) through relaxation processes. The rate of this relaxation process is governed by 

spin-lattice or longitudinal relaxation time constant, T1. The larger the T1 value, the 

longer it takes for the nuclei to return to equilibrium (Boltzmann distribution). The 

second type of relaxation process is called spin-spin or transverse relaxation, T2.
36

 After 

the nuclei are irradiated, individual magnetic moments begin to lose phase coherence. 

Typically, T2 is much shorter than T1. The values of T1 and T2 depend on the type of 

nucleus, the size of the molecule, the temperature and the tumbling or correlation time, 

(τc).
37

 Correlation time is defined as the time it takes for a spin to rotate one radian.
37

 

(Figure 1-4). Larger molecules have longer τc (tumble more slowly) and thus have small 

T2 values (fast spin-spin relaxation). Spin-spin relaxation time can also provide 

information on molecular motion; this can be inferred by the resonance linewidths at 

half-height (Δv1/2) defined as: 
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Figure 1-4: Relationship between the correlation time (τ
c
), and both spin-lattice (T

1
) and 

spin-spin (T
2
) relaxation times. (Source: http://www.chem.wisc.edu/areas/reich/nmr/08-

tech-01-relax.htm) 
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Δv1/2 = 
 

   
 

The linewidths of flexible and rigid molecules do show differences. When resonances are 

narrow this suggests a long T2 and molecules are considered flexible. Line broadening is 

indicative of lower T2 values and can be attributed to more rigid molecules. T2 also 

depends on the size of the molecule, small organic molecules have small correlation 

times and long T2 values; this is reflected in narrow linewidths.
37

 However, larger 

molecules and molecules that form aggregates have longer correlations times and small 

T2.
37

 This causes the individual nuclear magnetic moments to lose phase coherence faster 

and leads to line broadening.   

Chemical Information Obtained: 

The return of the magnetization to equilibrium conditions is monitored and the 

time-dependent signal acquired is referred to as free induction decay (FID) signal. With 

the use of Fourier transform (FT), the FID is converted to a frequency-dependent signal 

or spectrum. Information on the molecular structure can be inferred from the chemical 

shift, number and area of NMR signals, and splitting patterns. The nuclei being examined 

in an NMR experiment precess at different frequencies due to differences in their 

molecular environment; this gives rise to separate NMR signals. Factors that influence 

chemical shift include electron density and the electronegativity of the neighboring 

groups. A nucleus in a molecule experiences a magnetic field (B) different from the 

applied magnetic field (B0) due to additional magnetic fields caused by the motion of 

electrons.  This is described as B = B0 (1-σ) where σ is the shielding constant. There are 

two components to the shielding constant (diamagnetic and paramagnetic).
37

 The 

diamagnetic component is due to circulation of electrons that generates a magnetic field 

that opposes the applied magnetic field, B0. The paramagnetic component is due to the 
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circulation of electrons moving between their ground state and excited state orbitals. This 

generates an induced magnetic field parallel to B0 and enhances the magnetic field 

experienced by the nucleus (deshields the nucleus).
37

 Typically, the greater the electron 

density around the nucleus the more it is shielded from the effects of the applied 

magnetic field and the signal will appear in the lower chemical shift region. A nucleus in 

the proximity of an electronegative group experiences a decrease in electron density and 

becomes deshielded. This nucleus senses more of the external magnetic field and this is 

reflected in higher precession frequencies (higher chemical shift values). Therefore, the 

chemical shift provides information of the electronic and magnetic environment in a 

molecule. The number of NMR signals allows one to determine how many nonequivalent 

nuclei (protons, carbons or phosphorus) are present in the molecule.  

    Structural information also can be obtained from the splitting patterns or coupling 

constants J (measured in Hertz). When two nuclei in a molecule are nonequivalent and 

are within one to three bonds from each other, multiplicity (number of lines) in a given 

NMR signal can be observed. If a nucleus is coupled to n other I = ½ nuclei the signal for 

the nucleus will be split into n + 1 lines.
37, 38

 The spacing between the lines within each 

multiplet is referred to as the coupling constant, J. Depending on how strongly the 

nuclear spins influence each other will affect the distance between two peaks in the 

resonance. The mechanism in which two nuclei can couple occurs when spin information 

is transferred through bond. It is dependent on the nuclear properties and independent of 

the magnetic field strength.
38

 Coupling constants provide information on bond distance 

and angles.
38
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2D-NMR: Principles   

In addition to the power of 1D-NMR analysis, 2D-NMR techniques can provide 

valuable information on through-bonds or through space interactions between two or 

more nuclei. In 2D-NMR, there are two frequency scales; Fourier transformation of the 

FID on the horizontal scale is the direct measurement. The second frequency on the 

vertical scale is the indirect measurement. There are four steps to any 2D NMR 

experiment: preparation (excite nucleus A), evolution (indirectly measure the chemical 

shift of nucleus A), mixing (transfer magnetization from nucleus A to B through bond or 

through space) and detection (measure the chemical shift of nucleus B).
36

 The resulting 

2D NMR data can be plotted as a contour plot. Correlations between two nuclei will be 

observed by the presence of off-diagonal cross-peaks. 2D NMR experiments provide 

information on the connectivity and proximity of the nuclei of interest for structural 

elucidation.
36

  

Chemical Information Obtained: 

Conventional 2D-NMR experiments that provide information about through-bond 

connections include 
1
H-

1
H Correlation SpectroscopY (COSY), 

1
H-

1
H TOtal Correlation 

SpectroscopY (TOCSY) and HETeronuclear CORrelation Spectroscopy (HETCOR).  

COSY can be used to determine 
1
H-

1
H that are coupled through one (geminal) or two 

(geminal) bonds. Longer-range couplings (three to four bonds) can be observed using 

TOCSY.
36

 HETCOR provides correlations between 
1
H and 

13
C resonances when nuclei 

are directly bonded to each other. In this experiment, the chemical shift of the 
1
H is 

measured indirectly, as its magnetization is transferred to the 
13

C and its chemical shift is 

measured directly.
37, 39

 However, it should be noted that the sensitivity of this type of 

experiment is not very high due the low abundance of 
13

C (1.1 %) and its nearly four 
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times smaller gyromagnetic ratio γ relative to γH.
36

 To improve the sensitivity on 2D 

experiments, new techniques have been developed and will be presented in more detail 

below.    

The second type of interactions that can be detected using 2D NMR is through 

space interactions. Interactions between protons separated by < 5 Å can be observed 

through Nuclear Overhauser Effect SpectroscopY (NOESY) and Rotating frame 

Overhauser Effect SpectroscopY (ROESY) (see Figure 1-5).
36, 39

 The volumes of the 

observed NOESY and ROESY cross-peaks reveal the internuclear distances between  

protons in a molecule. Spatial relations between protons and other heteroatoms can be 

observed with hetero-nuclear NOESY.
36

 Analysis of the data acquired in these 2D  

experiments can be used to obtain structural and conformational details on the molecular 

structure.  

 Inverse 2D- NMR experiments such as Heteronuclear Single Quantum 

Correlation (HSQC) and Heteronuclear Multiple Quantum Correlation (HMBC) provide 

enhanced sensitivity compared to conventional experiments such as HETCOR. In these 

experiments, the 
1
H nuclei is detected directly and heteroatoms (

13
C or 

15
N) are indirectly 

detected.
36

 The signal intensity of the NMR increases proportionally with γ
2
 of the 

detected nuclei. By directly detecting 
1
H in inverse 2D experiments (γH is four times 

larger than γC) results in a 16-fold increase in the NMR signal. In addition, the intensity 

of the noise is proportional to the square root of the frequency being detected and this 

reduces the signal-to-noise by a factor of √   .
36

 For 
1
H-

13
C 2D NMR inverse detection, 

the signal-to-noise ratio increases by a factor of eight. Another advantage of directly 

detecting 
1
H is that a proton can only be attached to one 

13
C. This eliminates the 

complexities of refocusing 
13

C antiphase coherence. Different optimal times are required  



18 

 

 
 

 

 

Figure 1-5: Schematic diagram explaining ROESY NMR. a) Schematic diagram of a 

biomolecule illustrating through-space interactions between HY and HX (less than 5Å 

away from each other) and b) Representation of a 
1
H-

1
H ROESY (or NOESY) spectrum 

obtained from this type of NMR experiment.  
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to refocus CH, CH2 and CH3 groups. Since protons are attached to only one 
13

C, the 

protons will always be a doublet and will refocus in the same time.
36

    

The one disadvantage of detecting directly 
1
H in heteronuclear 2D-NMR 

experiments is the low abundance of 
13

C. In addition, if one is trying to observe protons 

associated with 
13

C in the presence of 98.9% of protons that are associated with 
12

C, both  

associations give rise to the 
1
H signal.

36
 The signals corresponding to 

12
C-

1
H are 100 

times larger than 
13

C-
1
H (appear as tiny satellite peaks) and will have much smaller J-

values (
1
JCH for 

13
C-

1
H is around 150 Hz).

36
 Special techniques (isotope filtering) are 

used to eliminate 
12

C-
1
H artifacts and, therefore, only 

13
C-

1
H correlations are observed.

36
 

Despite this limitation, the signal-to-noise advantages mentioned above make indirect 

2D-NMR methods more effective than direct ones. 

HSQC experiments correlate two different types of nuclei (
1
H and 

13
C) through 

evolution and transfer of single-quantum coherence. In the presence of a magnetic field, a 

nucleus with spin ½ has two energy levels, α and β. Single quantum transitions occur 

when a spin is promoted from the lower energy level to the higher energy and vice versa 

(α β or β α).
36, 39

  In HSQC, the sign of the cross-peak provides information on the 

number of protons attached to the carbon. This technique also allows for differentiation 

between CH/CH3 (positive) and CH2 (negative) peaks (see Figure 1-6) Heteronuclear 

multiple quantum correlation (HMQC) is similar to HSQC but uses double-quantum and 

zero-quantum coherence during the evolution period. When two spins are J-coupled they 

have four energy levels available, double-quantum transitions (αα   ββ or ββ  αα) and 

zero-quantum transitions (αβ  βα or βα  αβ).
36

 These transitions cannot be observed 

directly but are allowed to evolve and are converted back to observable single-quantum 

coherence for detection.
36
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Figure 1-6: Schematic diagram explaining HSQC NMR. a) Diagram representing the 

transfer of magnetization from 
1
H to 

13
C and back to 

1
H in indirect HSQC NMR 

experiments and b) schematic diagram of the HSQC spectrum obtained correlating 
1
H to 

13
C. This diagram also shows how differentiation between CH/CH3 and CH2 can be 

observed.    
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In addition to the enhanced sensitivity provided by inverse experiments, the 

ability to see long-range 
13

C and 
1
H (two to three bonds) interactions is extremely helpful  

for molecular characterization.
36

 HMBC is similar to HMQC in that they both use 

multiple quantum transitions. However, HMBC detects connections up to three bonds by 

selecting J-values around 10 Hz (
2,3

JCH) for coherence transfer and rejecting one-bond  

relationships ~ 150 Hz (
1
JCH) (used in HMQC).

36
 Both HSQC and HMBC are powerful 

methods with means of providing valuable information on 
13

C-
1
H connectives that lead to 

tracing out the carbon skeleton of molecules.      

 

NMR STUDIES OF BILE SALTS 

1
H and 

13
C NMR studies have been used to elucidate the correct proton and 

carbon assignments for bile salts. Barnes and Geckle used a 400 MHz NMR to resolve  

the proton assignments of sodium cholate.
40

 Before this study, resolution was an issue for 

the complex region of the spectrum. Therefore, the assignments reported corresponded 

only to the methyl protons and protons attached to carbons with adjacent hydroxyl groups 

whose resonances can be easily identified. 
1
H NMR studies have also been used to 

quantify taurine-conjugated and other bile acids present in bile.
41

 In addition, 

concentration dependence studies were completed to examine effects of aggregation by 

altering the side chain and taurine moiety on taurine-conjugated bile salts.
42

 The results 

showed micelle aggregation to be most affected by the steroid side-chain due to their 

involvement in the hydrophobic interactions bringing monomers together to form 

micelles. However, this study did not address the intermolecular interactions involved in 

the micellization process.
42
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2D-NMR spectroscopy was used to elucidate proton resonance assignments for 

common bile acids. The first of these studies used homonuclear-decoupled-heternuclear-

correlated two-dimensional NMR (HETCOR) experiments to assign proton resonances. 

This 2D-NMR experiment gave the advantage of identifying the protons connected to the 

same carbon.
43

 Additional 2D- COSY (COrrelated SpectroscopY) NMR studies were 

completed for sodium cholate and deoxycholate to complete proton and carbon resonance 

assignments.
44

 
13
C assignments for NaCho’s C3-C7 and C19-C21 and NaDC’s C3-C12 

that were inverted in previous studies were corrected.
44

  

Funasaki et al. has reported multiple studies on bile salt aggregation numbers and 

critical micelle concentrations for sodium taurocholate (TC) and taurodeoxycholate 

(TDC).
45, 46

 With the use of frontal derivative chromatography and a step-wise 

aggregation model, results support the formation of TC and TDC dimers at low bile salt 

concentrations and larger multimers as the bile salt concentration increases.
46

      

In addition, Funasaki et al. studied the NaTC micelle formation and structure 

using two-dimensional NMR techniques.
47

 
1
H and 

13
C resonances were assigned based on 

the literature and carbon-hydrogen correlation spectroscopy (C, H COSY) experiments. 

Critical micelle concentrations were determined by monitoring the changes in chemical 

shift for H12. Results showed a large range for the transition from monomers to primary 

micelles to take place suggestive of a stepwise self-association. ROESY and NOESY 

experiments were used to examine the micelle structure for 1 mM (monomer), 8 mM and 

30 mM NaTC (micelles). The volumes of these cross-peaks were evaluated by integration 

and used to determine the effective distance between protons. 2D spectra for 1 mM and 8 

mM naTC were compared and additional cross-peaks were observed suggesting the 

dimerization of TC.
47

 Increasing the concentration to 30 mM showed new cross-peaks 
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that were not observed at 8 mM, at this higher concentration these new contacts were due 

to the presence of primary micelles.
47

  

Similar studies were conducted for sodium taurodeoxycholate (NaTDC) using 

one- and two-dimensional NMR.
8
 NaTDC and NaTC are bile salts that differ only in the 

number of hydroxyl groups. NaTDC contains two hydroxyl groups at positions 3 and 12 

and NaTC has three hydroxyl groups at positions 3, 7 and 12. The loss of the hydroxyl 

group at position 7 makes NaTDC more hydrophobic compared to NaTC. The cmc values 

for NaTDC were found to be 3.5 and 4.0 mM and form micelles at lower concentrations 

than NaTC.
8
 ROESY spectra were collected for 0.5, 3, 8 and 15 mM NaTDC and the 

volume of the cross-peaks were determined as discussed above for NaTC. At 

concentrations below 3 mM, NaTDC does not self-associate, however; at 8 mM 

additional cross-peaks were observed suggestive of the formation of dimers. Six possible 

dimeric fragments of NaTC and NaTDC micelles were considered for dimerization 

shown in Figure 1-7.
8, 47

 There are three types of interactions that stabilize these dimers. 

The first is the hydrophobic interactions between the non-polar steroid nucleus, this type 

of interaction is shown in ABB (antiparallel back-to-back) and PBB (parallel back-to-

back). Secondly, stabilization due to the reduction of electrostatic repulsion between 

sulfonate ions is seen in ABB, AFF (antiparallel face-to-face) and ABF (antiparallel 

back-to-face). However, strong repulsions due to sulfonate ions are present in PBB, PFF 

(parallel face-to-face) and PBF (parallel back-to-face). Another interaction that promotes 

stable dimers through hydrogen bonding between hydroxyl groups; this is present in AFF 

and PFF.  Of these six dimer structures, ABF and PBF are considered unstable due to the 

hydrophobic back of one monomer being in contact with the hydrophilic face of the 

neighbor. 
8
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Figure 1-7: Dimeric fragments of NaTC and NaTDC micelles. Antiparallel back-to-back 

(ABB), antiparallel face-to-face (AFF), antiparallel back-to-face (ABF), parallel back-to-

back (PBB), parallel face-to-face (PFF) and parallel back-to-face (PBF). Types of 

interactions present in each dimer are shown with blue arrows. Adapted from Funasaki et 

al.
8, 47
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Based on the ROESY results from this study, at 8 mM NaTC, monomers form a 

dimer and these micelles are composed of the ABB and PBB fragments. The major dimer  

fragments of NaTDC are AFF and PFF due to the missing hydroxyl at position 7, this 

face of the molecule has more hydrophobic character. This leads to hydrophobic 

interactions between the less hydrophilic face and the hydrophobic face of the monomers. 

Stabilization of these structures comes from the close contact between the concave 

(hydrophilic) and convex (hydrophobic) planes of the molecules involved in the dimer.
8
  

It is the shape of these micelles that leads NaTDC to have smaller cmc values and 

the ability to form larger micelles compared to NaTC.
8
 The structures of dimers and 

small micelles have been resolved. However; the structures of larger micelles (above 30 

mM TC) formed by dihydroxy bile salts have not been elucidated. 

Previous studies from our laboratory investigated the molecular arrangement of 

primary and secondary micelles of NaCho using a 500 MHz NMR spectrometer. Changes 

in chemical shifts were examined for the protons on NaCho as the bile salt concentration 

increased. From these results it was postulated that primary micelles are composed of 

four (or six) monomers arranged in an antiparallel fashion and the hydrophobic faces are 

oriented toward the core of the micelle. The primary micelles were proposed to be held 

together at the top and bottom by water-mediated interactions between the COO
-
 group of 

the tail and the hydroxyl groups at position C3. It was also postulated that a hydrogen-

bond network surrounding the hydroxyl groups at position C7 and C12 is formed as 

monomers associate to form primary micelles.
48

  This proposed model is shown in Figure 

1-8. This study was also extended to the micellar organization of secondary micelles. It 

was postulated that the secondary micelles formation involves the stacking of primary 

micelles through ion-dipole and H-bonding interactions connecting the ends of the  
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Figure 1-8. Primary micelle model proposed by our group. In this ‘barrel’ model four (or 

six) monomers arranged in an antiparallel fashion. A hydrogen-bond network 

surrounding the hydroxyl groups at position C7 and C12 is formed as monomers 

associate to form primary micelles (shown in red).
48
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primary micelles together. In addition, an extended H-bonding network surrounds the 

secondary micelles (see Figure 1-9). Chapter 2 of this dissertation will focus on the 

validation of the molecular arrangements for primary micelles using one- and two-

dimensional NMR experiments that were carried out in the 700 MHz NMR spectrometer. 

Chapter 3 will examine the molecular arrangements of secondary micelles.  

  Additional studies in our laboratory examined the interactions between NaCho 

primary micelles and adenosine triphosphate (ATP) using 1D- 
1
H and 

31
P NMR on a 500 

MHz NMR spectrometer. In that work, changes in chemical shifts were monitored for 

both NaCho and ATP. From these results, key interactions between NaCho primary 

micelles and ATP involved hydrogen bonding with the hydroxyl groups of NaCho (OH-7 

and OH-12) and the adenosyl group of ATP.
49

 From the chemical shifts for H5ʹA and 

H5ʹB in the presence of NaCho primary micelles indicates that ATP is in a self-stacked 

arrangement. Figure 1-10 shows the proposed interaction of ATP with the hydrophilic 

surface of the NaCho monomers.
49

 

 

GOALS OF THIS WORK 

 The studies in this dissertation will focus on micelles of sodium cholate, a 

naturally occurring primary bile salt present in the body. In the past, there have been  

various studies on bile salts, their critical micelles concentrations and aggregation 

numbers. There have been few studies on the molecular arrangement of these bile salt 

micelles and models have been proposed. Since there are contradicting models, the first 

goal in this dissertation is to revisit and test the models for NaCho primary and secondary 

micelles proposed by our group.  
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Figure 1-9. Secondary micelle model proposed by our group. In this model primary 

micelles stack together to form secondary ones. The tops and bottoms are held together 

by ion-dipole and water mediated interactions (shown in a dotted red line).
48
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Figure 1-10. Proposed interactions between NaCho primary micelles and ATP. The 

adenosyl group of ATP is involved in hydrogen bonding with the hydroxyl groups of 

NaCho (OH-7 and OH-12).
49
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In addition, it is important to determine how salt concentration and pH affect 

micelle formation. Understanding the interactions and forces involved in bile salt micelle 

formation can then be used to make modifications (using different bile salts or altering 

solution parameters) to apply these nanostructures for other applications such as 

understanding the structure of mixed micelles, transportation of hydrophobic molecules 

and for drug delivery.   
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CHAPTER 2 

NMR CHARACTERIZATION OF PRIMARY MICELLES 

OF SODIUM CHOLATE 

  

INTRODUCTION 

Bile acids (BA) and salts (BS) are important biosurfactants for digestion and 

absorption of fats in the small intestine of mammals.
11, 12, 17

 These biosurfactants are able 

to solubilize and transport lipids by forming mixed-micelles aggregates of lipids such as 

fatty acids, PLs, cholesterol and monoglycerides.
50

 Bile acids are facial amphiphiles, as 

they have a hydrophobic (non-polar) and a hydrophilic (polar) face. In the presence of 

water, very small micelles are formed in which the nonpolar sides are believed to face 

each other toward the interior of the micelle and the polar faces with the hydroxyl groups 

interact with the aqueous surroundings.
10, 19

 

Several techniques such as potentiometry
25

, light scattering
28

, fluorescence
30

, 

small neutron scattering
4, 51

, chromatography, micro-calorimetric titration
22

 and 

isothermal titration calorimetry (ITC)
3, 52, 53

 measurements have been used to determine 

the aggregation number, critical micellar concentration (cmc) and in some cases the 

apparent pKa values of sodium cholate (NaCho) and other bile salts.
54

 These reports 

showed that the cmc value for NaCho at normal conditions is about 16 mM. In addition, 

the aggregation number was determined to be 4 to 5 at low temperatures but showed a 

pronounced increase (from 5 to 13) when the temperature was increased. Depending on 

the concentration of the bile salts, the formation of micelles occurs in two different 

stages. The first stage leads to primary micelle formation and occurs when the 
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concentration of the bile salts solution reaches its cmc (NaCho ~16 mM). The second 

stage is the formation of secondary micelles that result from the aggregation of the 

primary micelles.  

One- and two dimensional NMR spectroscopy has been applied in the 

characterization of natural and synthetic bile acids. The assignments of 
1
H and 

13
C NMR 

resonances have been previously reported for NaCho and other conjugated bile salts.
40, 44, 

55
 2D-NMR studies have also been used to study the structure of the micelles formed, 

their influence and binding with aromatic molecules, phospholipids and other 

compounds.
56, 57

 With the use of Nuclear Overhauser Effect Spectroscopy (NOESY), 

Rotating frame Overhauser Effect Spectroscopy (ROESY) and Coherent Overhauser 

Spectroscopy (COSY) possible intra- and inter-molecular interactions between these 

macromolecules and bile salts micelles were investigated. These studies were useful to 

determine the intensities of intermolecular cross-peaks in the nuclear spectra of sodium 

taurodeoxycholate (NaTDC) in D2O and the possible structures of the micelles were 

postulated.
8
 In addition, the inter-proton distance was estimated based on the intensity of 

cross-peaks observed in NOE and ROE spectra.
47, 58

 From these results, several models of 

possible dimer arrangements between bile salts monomers were proposed.
8, 47

 However, 

these proposed arrangements are limited to dimer fragments (see Chapter 1). As 

discussed in Chapter 1, previous studies from our laboratory investigated the molecular 

arrangement of NaCho primary micelles by monitoring the changes in chemical shifts for 

NaCho protons as the bile salt concentration increased. From the results of those studies, 

the ‘barrel’ model was proposed. However, the resonances in the complex region of the 

spectrum (1.0 – 2.3 ppm) could not be followed accurately using the 500 MHz NMR 

spectrometer. In this chapter, the micellar organization of NaCho will be revisited using 
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one- and two-dimensional NMR techniques on a 700 MHz NMR spectrometer to test the 

accuracy of the ‘barrel’ model. This information could then be used to understand how 

lipids and/or drug molecules may be incorporated within the micellar arrangement.  

 

MATERIALS AND METHODS 

Chemicals. D2O, NaOD, NaCho and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) 

were purchased from Sigma Chemical Co, St. Louis, MO.  

Preparation of NaCho micelles The concentrations used were 0.2, 2, 4, 10, 15, 20, 30 

mM in D2O. The solutions were sonicated in a bath sonicator (Cole-Parmer 8890) for 

about 15 minutes and the pH was adjusted with 1 M NaOD at physiological pH (7.4).  No 

buffers were used in the initial studies to reduce possible spectral interferences and 

prevent buffer-related effects on the formation of the micelles.  

Spectral Acquisition.
1
H and 

13
C and 2D-NMR spectra were acquired with a Varian 

INOVA 500 and 700 MHz NMR spectrometers, Palo Alto, CA. A coaxial insert 

containing 1.0 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) dissolved in D2O 

was inserted in the NMR tube and used for signal locking and referencing of NMR 

spectra. The following acquisition parameters were used for 
1
H: a minimum of 16 scans, 

relaxation delay of 1.000 second, 45º pulse width, and 25 ºC. For gHSQC spectra, 4 scans 

per increment and 128 increments were used.  For ROESY experiments, relaxation delay 

of 1.000 sec, mixing time of 300 ms, 8 scans acquired per FID and 2 x 256 increments, 

the spectral width was between -1 and 9.5 ppm.  

Data Analysis.All spectra were analyzed using MestReC software, version 4.7.0 or the 

newer MestReNova, version 7.1.2 (Santiago de Compostela, Spain). The resonance 
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associated with the methyl groups in 4,4-dimethyl-4-silapentane-1-sulfonate, sodium salt 

(DSS) was used as for referencing of NMR spectra. 

Theoretical Calculations. The integral equation formalism (IEF) method of the 

polarizable continuum solvation model (PCM) of Tomasi and coworkers was used to 

investigate the simulation of the environmental effects on the NMR properties of the 

cholate molecule.
59

 The single point wave function for these models was calculated at the 

HF/6-31+G(d,p) level of theory using Gaussion03.
60

 NMR shielding tensors and 

chemical shifts were then obtained with the gauge including atomic orbital (GIAO) 

method at the same level of theory. To coordinates of the cholate atoms were obtained 

from published X-ray work.
61

 The electronically unperturbed molecule and three solvents 

which varied in dielectric constants were considered. These solvents included 

chloroform, methanol and water which have dielectric constants (ε) of 4.9, 32.63, and 

78.39, respectively.  

 

RESULTS AND DISCUSSION 

Confirmation of previous assignments of 
1
H and 

13
C NMR resonances 

Initial studies were conducted to confirm the assignments of 
1
H and 

13
C 

resonances. Figure 2-1 shows the HSQC NMR spectrum for 20 mM NaCho. HMQC data 

were acquired to corroborate/correct assignments of proton resonances in NaCho, 

especially those between 0.6 and 2.2 ppm, where there is significant spectral overlap. The 

observed correlations enabled the confirmation of all proton resonance assignments 

reported earlier.
62

 In addition, the 
13

C resonance assignments reported by Muccio were 

also confirmed and indicated that earlier assignments for C19 and C21 were reversed.
43
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Figure 2-1: HSQC spectrum for 20 mM NaCho. 
1
H and 

13
C assignments for H4

a 
and H4

e
 

are shown in blue and H6
a 
and H6

e 
are shown in red. 
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Table 1 in the Supplementary information lists the assignments for all resonances for the 

monomer (2 mM) and the primary micelles (20 and 30 mM). These chemical shift values  

were obtained from two-dimensional HSQC experiments acquired for all NaCho 

concentrations in this study.  

Concentration-dependent changes in chemical shifts 

At a 2 mM concentration, only NaCho monomers are present. At 20 mM, 

comparable numbers of primary micelles and monomers co-exist. At 30 mM, there are 

more micelles than monomers. As shown in Figure 2-2, one-dimensional 
1
H NMR 

spectra showed changes in chemical shifts upon formation of micelles (cmc ~ 16 mM). 

For example, H15a showed slight shielding with increasing concentration, as highlighted 

by the black arrow. Other resonances, such as 6e and 16e, showed the opposite trend 

(deshielded). There were slight changes (increase) in linewidth as primary micelles 

formed. However, changes in splitting patterns for some resonances and spectral overlap 

made it difficult to evaluate the degree of broadening. 

For the interpretation of the trends observed in chemical shifts, we divided the 

protons of NaCho into two categories: hydrophobic and hydrophilic. Figure 2-3 shows 

the changes in 
1
H chemical shifts for the resonances that revealed critical information for 

the postulation of the arrangement of the monomers in primary micelles. These changes 

are relative to the chemical shifts measured for the monomers (2 mM). The relative 

changes in other 
1
H resonances are graphed in the Supplemental Information.  

Among the protons in the hydrophobic region, those corresponding to the methyl 

groups at C18 and C19 become more shielded, as evidenced by the decrease in their 

chemical shifts with increasing concentrations (see Figure 2-3A). The resonances for the  
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Figure 2-2: Labeled NaCho monomer and 
1
H NMR spectra for 2, 20 and 30 mM NaCho. 

Protons on the hydrophilic and hydrophobic face are shown in blue and red respectively. 

The chemical shifts of protons with an asterisk did not follow the expected trends. 
1
H 

NMR spectra for a) 2 mM b) 20 mM and c) 30 mM NaCho. Concentration-dependent 

changes in chemical shift are highlighted for H6
e
, H16

e
 (deshielded) and H15

e
 (shielded). 
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Figure 2-3: Changes in chemical shift for A) hydrophobic protons, B) hydrophilic 

protons and C) protons that did not follow the expected trends. 
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methyl group at C21 and for H6a and H6e, on the other hand, increased their chemical 

shift with concentration. 

Although little change was expected for the resonances corresponding to protons 

in the hydrophilic face of NaCho, both increases and decreases in  were observed (see 

Figures 2-3b and c). The interpretation of these changes is presented later in this report. 

Theoretical Calculations 

To interpret the experimental trends, theoretical calculations were performed 

using the polarizable continuum medium (PCM). Chemical shift calculations were 

obtained as the dielectric constant was changed from that of a non-polar solvent, 

chloroform ( = 4.9), to that of a polar one, water ( = 78.39). The theoretical analysis is 

presented in Table 2-2. As the polarity of the solvent increased most of the protons 

became deshielded. However, there were some notable exceptions: resonances for 

protons 2a ( = -0.13 ppm), 4a ( = -0.14 ppm), and 9 ( = -0.08 ppm) decreased their 

chemical shifts (or these protons became significantly more shielded) as the polarity 

increased. Protons whose chemical shifts also decreased but to a lesser extent include 1e 

( = -0.02 ppm), 6a ( = -0.02 ppm), 16e ( = -0.02 ppm) and the smallest decrease 

was observed for 11e ( = -0.014 ppm). This is a consequence of the greater deshielding 

effect of the oxygen lone pairs in the hydroxyl groups on neighboring protons when the 

solvent is non-polar (chloroform). In the presence of methanol and water, this deshielding 

is reduced and leads to a decrease in chemical shift (greater shielding). Indeed, protons 2a 

and 4a are in close proximity to OH-3, and the oxygen lone pairs cause the deshielding of 

its neighboring protons. As the dielectric constant of the solvent increases to  = 78.39 

(water), the lone pairs interact with the surrounding water molecules and their  
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Table 2-1: Theoretical calculations of chemical shifts (δ) for the NaCho molecule using 

the polarizable continuum medium (PCM)  
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deshielding effect on 2a and 4a diminishes (these proton resonances become shielded). A 

similar effect takes place with proton 9 which is located close to OH-7 and OH-12.  

Another proton whose average chemical shift decreased by  = -0.09 ppm 

correspond to the methyl group at C21. It is proposed that the deshielding effect exerted 

on these protons by the nearby COO
-
 group diminishes in the presence of water.  

These predicted changes in chemical shifts were used as a guideline to estimate if 

a given proton entered a more or less polar environment as the transition from monomer 

to primary micelle took place.  

Interpretation of Experimental Trends 

We have calculated the difference between chemical shifts for each proton at 

different concentrations with respect to those at 2 mM to extract trends that could aid us 

to understand the organization of NaCho micelles at the molecular level (see Figure 2-3). 

Figure 2-2 shows the NaCho monomer protons that are located on the hydrophobic face  

in red and hydrophilic face in blue. Protons in the tail were not colored because due to the 

flexibility of this region of NaCho, it can adopt many orientations. Therefore, it is more 

difficult to classify the hydrophobic/hydrophilic protons.  

We expected the protons on the hydrophobic face of the monomer to sense a more 

hydrophobic environment as the micelles formed, and the protons in the hydrophilic face 

would not be affected significantly. However, several resonances did not follow the 

expected trends and they are denoted with an asterisk (see Fig. 2-2). The following 

discussion focuses on the significant changes in chemical shift that were observed.  

Hydrophobic Face 

Protons in the hydrophobic face of the monomer (shown in red in Fig. 2-2) are 

expected to enter a less polar environment as the micellization process occurs. At a 2 mM 
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NaCho concentration, monomers are present in solution and both the hydrophobic and 

hydrophilic faces are exposed to water. As primary micelles are formed, the hydrophobic 

faces of the monomers are expected to be near each other and away from the aqueous 

solvent. For example, methyl protons on C18 and C19 enter a less polar environment as 

the concentration of NaCho is increased, and this effect leads to a decrease in  for their 

resonances. However, the theoretical trends were not observed in protons 6e, 16a and 21.  

H6e increased its chemical shift by 0.02 ppm, suggesting that it is in a more polar 

environment in the micelle. H16a is located at the interface between the hydrophobic and 

hydrophilic side. H16a increased its  by only 0.005 ppm (not statistically significant). 

H21 decreased its  by 0.008 ppm and, according to theoretical predictions, this indicates 

a more polar environment. This change can be attributed to H21 being in closer proximity 

to COO
-
 in the primary micelles than in the monomer.   

Hydrophilic Face      

Protons on the hydrophilic face of NaCho are highlighted in blue in Figure 2-2. 

Logically, one would not expect the hydrophilic face to experience a more polar 

environment as micellization occurs because it is already exposed to water in the 

monomeric form. However, changes in chemicals shifts for protons around the hydroxyl 

groups (OH-3, OH-7 and OH-12) suggest that they experience a more polar environment 

upon micellization. A noteworthy change in chemical shift was observed with proton 1e 

( = -0.02 ppm) (see Fig. 2-3B) that is located near the hydroxyl group (OH-3). 

Interestingly, and according to the theoretical predictions of chemical shifts, proton 1e 

appears to sense a more polar environment as micelles begin to form. To explain this 

trend, H1e would need to be in the proximity of a moiety more polar than water when the 

micelle is formed. It is proposed that in the micelle, H1e is near the carboxylate group of 
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the neighboring monomer. This suggests that monomers adopt an anti-parallel 

arrangement as micellization occurs. As a result, the tail of one monomer is in the 

vicinity of the head of the neighboring monomer. Other protons that experience a more 

polar environment upon micellization include H6a ( = -0.07 ppm), H11e ( = -0.04 

ppm), H14 ( = 0.03 ppm), H15e ( = 0.03 ppm), H16e ( = -0.04 ppm), and H17 ( 

= 0.02 ppm) (see Fig. 2-3B); these protons are in the vicinity of OH-7 and OH-12. The 

greatest change in δ for H6a and could be attributed to its proximity to OH-7 and the 

COO
-
 group in the neighboring monomer. Hydrophilic proton H16e also had a 

considerable decrease in chemical shift. It is possible that the NaCho tail in the primary 

micelle may place the COO
-
 group closer to 16e causing a more polar surrounding when 

compared to the monomer.    

Protons 11e, 14, 15e and 17 are not expected to be in the vicinity of COO
-
 groups 

in the monomer or primary micelles. However, it is possible that a network of hydrogen 

bonding involving these hydroxyl groups (OH-7 and OH-12) with surrounding water 

molecules may be formed. This hydrogen-bond belt network could affect the orientation 

of the hydroxyl groups so that a set of lone pairs on both OH-7 and OH-12 become closer 

to neighboring protons. This in turn could create a more polar environment surrounding 

these protons.  

Interestingly, some protons on the hydrophilic face of the monomer sensed a less 

polar environment upon micellization. These exceptions to the expected trend include 

protons H2a, H4a, and H9a (see Fig. 2-3C) for which an increase in chemical shift was 

observed. Based on the theoretical predictions, this trend indicates that these protons 

enter into a less polar environment as primary micelles are formed. Protons H2a and H4a 

are in the vicinity of the OH-3 group. If the monomers are oriented in a head-to-tail 
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arrangement, primary micelles could be stabilized through ion-dipole and hydrogen 

bonding interactions around the top and bottom of the micelle. The interactions between 

OH-3 and neighboring COO
-
 groups could diminish the deshielding effect of the lone 

pairs in OH-3 on neighboring protons and lead to the shielding of protons 2a and 4a. 

Proton H9, located in the vicinity of OH-7 and OH-12, increases its chemical shift (see 

Fig. 2-3C). In the monomer, this proton is proposed to be more deshielded by the lone 

electron pairs OH-7 and OH-12 due to a change in the orientation of hydroxyl groups as 

they form a hydrogen-bond belt network. This may cause the delocalization of electron 

density around this network resulting in a decrease of polarity around H9. 

Proposed Primary Micelle Model  

From the analysis of the experimental 
1
H NMR data with the aid of chemical shift 

predictions, the model presented in Figure 2-4 is proposed. The first model (Fig. 2-4a) 

represents four monomers associating to form a primary micelle where monomers are 

arranged in an anti-parallel arrangement. Hydroxyl groups around the central hydrogen-

bond belt network (OH-7 and OH-12) are highlighted with red circles. The network of 

hydrogen bonds is shown as a red line connecting hydroxyl groups. In this model the top 

and bottom of the ‘barrel’ micelle is held together by water-mediated hydrogen bonds 

between the hydroxyl (OH-3) and carboxylate groups (water molecules are not shown). 

Figure 2-4b shows a simpler model demonstrating the anti-parallel arrangement, 

hydroxyl and carboxylate groups are shown to be involved in hydrogen-bonding. Figure 

2-4c shows an illustration of the barrel-shaped model proposed for NaCho primary 

micelles.   
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Figure 2-4: a) Proposed ‘barrel’ model for NaCho primary micelles. Four monomers 

associate in an anti-parallel arrangement forming a hydrophobic core. A central 

hydrogen-bond ‘belt’ (shown in red) involving OH-7 and OH-12 surrounds the barrel. b) 

Simplified model showing the anti-parallel arrangement. c) Cartoon representation of the 

barrel-shaped model.   
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Confirmation of Anti-Parallel Arrangement by Two-dimensional NMR studies 

ROESY or NOESY experiments (
1
H –

1
H correlation data) can be used to probe 

internuclear distances of less than 5 Å. Figure 2-5 shows ROESY spectra obtained for 

NaCho at two concentrations, 2 mM and 30 mM, respectively. At 2 mM, cross peaks are 

observed between the resonances corresponding to H23 and H23’ with H21 (methyl 

protons) as well as the resonances due to the H19 (methyl protons) and H6a. These cross 

peaks are expected due to the spatial proximity of these protons in the monomer. At 30 

mM, four new off-diagonal peaks were observed in this region (see dotted lines). One of 

the new peaks connects H6a (second steroidal ring) with H21 (methyl protons); such a 

contact would not be possible in the monomer. The other cross peaks indicate that H19  

(methyl protons) are within 5 Å of H23, H23’ and H9 (Figure 2-5B). The presence of 

these new correlations confirms that monomers orient in an anti-parallel arrangement. 

Figure 2-5 shows NaCho monomers in anti-parallel arrangement and the new contacts 

observed at 30 mM NaCho are shown with grey arrows.    

Therefore, the carboxylate group of one monomer is in close proximity to the 

hydroxyl (OH-3) group of its neighboring monomer. This arrangement also places the 

carboxylate groups in opposite sides, thus reducing electrostatic repulsion. Other new off-

diagonal peaks that were observed in 30 mM NaCho include H19-H15e, H19-H15a, H21-

H2a, H21-H11a,e, H22-H5. These new contacts also validate the anti-parallel arrangement.  

The volume of the off-diagonal peaks were determined by integration and used to 

qualitatively examine the changes in the relative distance between protons as the 

concentration of NaCho was increased. The volume of the off-diagonal peak for geminal 

protons H16a-H16e was referenced to 100.00 in 2, 20 and 30 mM and the integrations for 

other correlations are shown in Table 2-2. The integrations observed in 2 mM for protons  
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Figure 2-5: ROESY spectra obtained for a) 2 mM and b) 30 mM. New contacts observed 

for primary micelles are shown with dashed arrows. Below ROESY spectra is a 

schematic diagram of new contacts observed in 30 mM ROESY spectrum. NaCho 

monomers arranged in an anti-parallel fashion. New contacts are shown in grey.  
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Table 2-2: Cross peak volumes observed in ROESY spectra for 2, 10, 20 and 30 mM 

NaCho. 
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within 5 Å of each other on the monomer decreased as primary micelles were formed. 

With a few exceptions, the volume of most of the cross peaks diminished or did not 

change significantly as micelles formed. This trend is expected as some of the protons on 

the NaCho monomer come in closer proximity to protons in neighboring monomers and 

their magnetization is transferred to other protons. For example, cross peaks involving 

H19 that were present in both the monomer and primary micelles (H6a and H11a,e) 

decreased in volume as new contacts were observed at 20 and 30 mM.  

 

CONCLUSIONS 

This study demonstrates the remarkable enhancement in sensitivity and spectral 

resolution achieved by the new 700 MHz NMR spectrometer equipped with the 

cryogenic probe. Because of this significant improvement, we were able to monitor  

changes in each and every resonance corresponding to protons in NaCho monomers and 

micelles. In the previous studies by our group on these micelles, only those resonances 

that were well resolved could be followed with certainty. Our interpretation was greatly 

facilitated by the theoretical predictions that take into account the presence of 

paramagnetic fields generated by lone electron pairs.  This analysis indicated the 

plausibility of the proposed barrel-like model that places the monomers (four or six) in an 

antiparallel arrangement so that the ‘head’ and ‘tail’ of neighboring monomers interact to 

form the top and bottom of the barrel. In addition, a H-bond belt that includes OH-7 and 

OH-12 was proposed to surround the middle region of the micelle. This model was 

confirmed by the new through-space interactions revealed by ROESY experiments as the 

monomers associated to form primary micelles. This validated model supports previous 

models proposed in our group as well as the disklike model proposed by Kawamura et al. 
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Finally, it is clear that while hydrophobic forces play a significant role in the 

micellization of NaCho, H-bonding interactions do have just as significant of a 

contribution to this process.  
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CHAPTER 3 

NMR CHARACTERIZATION OF SECONDARY MICELLES OF  

SODIUM CHOLATE 

 

INTRODUCTION 

 Bile salts are amphipathic compounds derived from cholesterol.
63

 Bile salts are a 

major component in bile and aid in the adsorption and digestion of lipids.
64

 Bile salts 

have a different structure from classical surfactants; they are facial amphiphiles due to 

their rigid steroid backbone and the presence of methyl groups on the hydrophobic face 

and hydroxyl groups on the opposite face.
65, 66

 Above the critical micelle concentration 

(cmc) for bile salts, monomer associate to form primary micelles. Sodium cholate 

(NaCho) has a cmc value around 16 mM and between 4-6 monomers associate to form 

micelles (aggregation number).
25

 Above 50 mM, a second micellization takes place 

where primary micelles aggregate to form secondary ones.
10

  

 As discussed in the previous chapter of this dissertation, several models have been 

proposed on the molecular structure of bile salt primary micelles.
10, 33

 Our own work 

validates the anti-parallel arrangement of four (or six) monomers in a barrel-like micelle. 

Although bile salt primary micelle formation, size and shape have been extensively 

studied, there is less information of the formation and structure of secondary micelles. 

Previous studies in our laboratory using a 500 MHz NMR spectrometer led to the 

postulation of a model for secondary micelles in which the barrel-like primary micelles 

stack on top of each other. Because of the broadening of the NMR resonances upon 

association of the primary micelles, it was not possible to follow all the changes in the 25 
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resonances in the complex region of the spectrum (see Chapter 1, NMR Studies of Bile 

Salts). This chapter revisits the characterization of secondary micelles with a 700 MHz 

NMR instrument that provides high spectral resolution. The previously proposed model is 

refined and its accuracy is tested. 

MATERIALS AND METHODS 

Chemicals. D2O, NaOD, NaCho and DSS (4,4-dimethyl-4-silapentane-1-sulfonate, Na 

salt) were purchased from Sigma-Aldrich Chemical Co, St. Louis, MO.  

Preparation of NaC micelles. The concentrations used were 20, 30, 50, 100 and 200 

mM in D2O. The solutions were sonicated in a bath sonicator (Cole- Parmer 8890) for 

about 15 minutes and the pH was adjusted with NaOD at physiological pH (7.4).  

Spectral Acquisition.
1
H and 

13
C and 2D-NMR spectra were acquired with a Varian 

INOVA 500 and 700 MHz NMR spectrometers, Palo Alto, CA. The following 

acquisition parameters were used for 1H: a minimum of 16 scans, relaxation delay of 

1.000 second, 45º pulse width, and 25 ºC. For gHSQC spectra, 4 scans per increment and 

128 increments were used. For ROESY experiments, the relaxation delay was 1.000 sec, 

the mixing time was 300 ms, 8 scans were acquired per FID and 256 increments, the 

spectral width extended from -1 to 9.5 ppm.  

Data Analysis. All spectra were analyzed using MestReC software, version 4.7.0 or the 

newer MestReNova, version 7.1.2 (Santiago de Compostela, Spain). A coaxial insert 

containing 1.0 mM 4,4-dimethyl-4-silapentane-1-sulfonate, sodium salt (DSS) dissolved 

in D2O was inserted in the NMR tube and used for signal locking and referencing of 

NMR spectra. 
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RESULTS AND DISCUSSION 

1D NMR analysis and results 

Previous studies on NaCho primary micelles (see Chapter 2) resulted in the proper 

assignments of all 
1
H resonances in NaCho at lower concentrations (20 and 30 mM). For 

the current study HSQC experiments were performed to track the chemical shifts for all 

NaCho resonances as the concentration increased (50 mM, 100 mM and 200 mM) (data 

not shown). Figure 3-1 shows the labeled NaCho monomer protons, the hydrophilic 

protons are highlighted in blue and hydrophobic protons in red. Because the tail of the 

monomer is flexible and can adopt many orientations, the tail protons were not 

differentiated as being hydrophilic or hydrophobic.  Figure 3-1 also shows 
1
H NMR 

spectra collected for 30, 50 and 100 mM NaCho for the complex spectral region (1.00 – 

2.30 ppm). As the concentration increased and primary micelles began to aggregate into 

secondary micelles (at ~ 50 mM), changes in chemical shift and significant line 

broadening were observed. As seen by the changes in chemical shifts shown with arrows, 

some protons became deshielded while other became shielded during the secondary 

micellization step. To aid in the interpretation of the changes in chemical shift, these 

trends were compared to theoretical calculations performed using the polarizable 

continuum medium (PCM) in which the NaCho monomer was placed in media of 

different dielectric constants, chloroform (ε = 4.9), methanol (ε = 32.63) and water (ε = 

78.39). The results of these predictions are included in Chapter 2. As discussed in 

Chapter 2, most protons become more deshielded (higher ) as the polarity of the solvent 

increases. However, a few protons follow the opposite trend due to the presence of  
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Figure 3-1: Labeled NaCho monomer and 
1
H NMR spectral collected for 30, 50 and 100 

mM NaCho. Protons on the hydrophilic and hydrophobic face are shown in blue and red 

respectively. 
1
H NMR spectra collected for a) 30 mM, b) 50 mM and c) 100 mM NaCho 

showing the complex spectral region between 1.00 and 2.30 ppm. Concentration-

dependent changes in chemical shift are highlighted for H16e, H6e and H15a with black 

arrows.   
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oxygen lone pairs in their vicinity. In the non-polar solvent (chloroform) these lone pairs 

deshield the neighbor protons whereas in water, they interact with the solvent and their  

deshielding effect is reduced. These trends were used in the studies presented in Chapter 

2 and in this chapter for the analysis of experimental results.   

Interpretation of Experimental Trends 

We have calculated the difference between chemical shifts for each proton at 

different concentrations with respect to those at 20 mM to extract trends that could aid us 

to understand the organization of NaCho secondary micelles at the molecular level 

(Figures 3-2 and 3-3).  

Hydrophobic Face 

As primary micelles aggregate to form secondary ones, one would not expect any 

changes to occur in the hydrophobic core. Therefore, the protons in the hydrophobic core 

are not expected to change in chemical shift /molecular environment. However, changes 

in chemical shift were observed for the methyl groups (H18 and H19), H7, H8, H11a, 

H12 and H15a. The protons in the methyl groups (H18 and H19) as well as H8 are 

located in the central core of the micelles. H7 and H12 are protons attached to carbons 

with adjacent hydroxyl groups; these protons are orientated toward the core of the 

micelle. Similarly, H11a and H15a are located at the interface between the 

hydrophobic/hydrophilic faces. Compared to the theoretical trends all of these protons 

sense a more hydrophobic environment as secondary micelles are formed. The changes in 

chemical shift for these protons are shown in Figure 3-2A. In addition, protons on the 

first ring that are also on the hydrophobic face of the NaCho monomer include: H1a, H2e, 

H3, H4e and 5a. Protons H3 and H5a are located in the core of the micelle and H1a, H2e 

and H4e are oriented toward the core of the micelle. As secondary micelles are formed,  
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Figure 3-2: Changes in chemical shift for protons on the hydrophobic face. Changes in 

chemical shifts observed for NaCho as primary micelles (20 mM) aggregate to form 

second micelles. Graphs A and B show the changes for protons located on the 

hydrophobic face of NaCho. 
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these protons also sense a more hydrophobic environment. The changes in chemical shift 

for these protons are shown in Figure 3-2B. These trends suggest that the primary  

micelles become more tightened and as a result, their cores are more hydrophobic as the 

second micellization occurs. It is also proposed that the aggregation of primary micelles 

enables the extension of the hydrogen-bond belts surrounding each primary micelle so 

that they become longer and tighter belts that hold together the secondary micelles. In 

addition, the tightening of the micelles would cause H2e, H4e, H7, H11a, H12, and H15a 

to be positioned more toward the core of the micelle and away from the aqueous solvent. 

The only exception on the hydrophobic face that sensed a more polar environment 

was H16a. This proton is located at the interface between the hydrophobic and 

hydrophilic face. As the secondary micellization takes place and the hydrophobic core 

becomes more compact, this proton may be pushed away slightly from the core and 

experience a less hydrophobic environment.  

Hydrophilic Face  

Depending on the 3D molecular arrangement of secondary micelles, the 

tops/bottoms (COO
-
 and OH-3 groups) of the primary micelles within the secondary 

micelle structure should be in closer proximity to protons on neighboring primary 

micelles. This could cause a more polar environment in the vicinity of some of the 

protons on the hydrophilic face. Notable changes in chemical shift were observed for 

protons H14, H15e, H16e and H17 (Figure 3-3A) that are located around the central 

hydrogen-bond belt. As the concentration of NaCho increased above 50 mM, these 

protons sensed a more polar environment. To explain this trend, these protons have to be 

in the vicinity of a polar moiety, more polar than water. They are likely to be near the  
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Figure 3-3: Changes in chemical shift for protons on the hydrophilic face. Graphs A and 

B show changes in chemical shifts for protons located on the hydrophilic face of NaCho. 
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COO
-
 or OH groups of the neighboring primary micelles. Therefore, as aggregation 

occurs, the tops/bottoms of primary micelles are proposed to be in the vicinity of the 

central hydrogen-bond belt of its neighboring primary micelle. However, another possible  

arrangement of primary micelles within the secondary ones could place the central 

hydrogen-bond belt of one micelle next to its neighbor’s central region. Because these 

protons are already in the proximity to hydroxyl groups within their own primary micelle, 

being near additional hydroxyl groups may not lead to the increasing changes in chemical 

shifts observed; therefore, this arrangement is less likely.  

The only proton around the hydrogen bond belt that showed a trend opposite 

(sensed a more hydrophobic environment) to the others mentioned above was H9a (see 

Figure 3-3A). It is possible that the hydrogen bond belt in primary micelles interacts with 

the belts of neighboring micelles creating an extended hydrogen bond network. The 

formation of this extended hydrogen bond network could change the orientation of the 

hydroxyl lone pairs thus decreasing their deshielding effect on H9a. This would create a 

less polar environment around H9a.  

Protons on the first ring (hydrophilic face) of the NaCho monomer include H1e, 

H2a, and H4a. H1e sensed a more hydrophilic environment as secondary micelles formed. 

H1e would be closest in proximity to the top/bottom of the neighboring micelles. On the 

other hand, H2a and H4a sensed a more hydrophobic environment as secondary micelles 

formed. This may be due to the hydroxyl groups at position 7 and 12 interacting and 

creating an extended hydrogen bond belt network with the top/bottoms of neighboring 

primary micelles. This interaction may diminish the deshielding effect of the electron 

lone pairs of the hydroxyl groups and cause these protons to sense a more hydrophobic 

environment.  
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Proposed Secondary Micelle Model 

As the concentration of NaCho increases beyond 50 mM, primary micelles begin 

to aggregate and form secondary ones. It is proposed that primary micelles stack together 

in two ways. First, the tops and bottoms of primary micelles stack together to form 

columns, these are held together by ion dipole and water mediated interactions. Secondly, 

it is also proposed primary micelles stack together in a staggered-stacked arrangement 

where the top/bottom of one primary micelle is in the vicinity of the central hydrogen-

bond ‘belt’ of the neighboring micelle (see Figure 3-4).   

Confirmation of the Proposed Micellar Arrangement by Two-dimensional NMR 

studies 

2D-NMR experiments such as 
1
H-

1
H ROESY or NOESY can be used to 

determine which protons are within 5 Å of each other. Under these conditions, 

magnetization is transferred through space and cross peaks are observed connecting the 

resonances corresponding to these protons. ROESY spectra were collected for 30 mM 

(primary micelles), 50 mM (primary and secondary micelles are present), 100 and 200 

mM (secondary micelles only). These spectra were compared to reveal possible new 

cross peaks as secondary micelles formed. These new peaks include contacts between 

H9a-H21 (see Fig. 3-5), H9a-H23’, H11e-H21, H9-H2a, H21-H15e, H11e-H6a, H12-H15a 

and H16a-H4e. However, there is significant spectral overlap at 100 mM NaCho and 

assignments were more difficult. For example, a new cross peak was observed with H16a 

and was correlated to a resonance where H4e and H22 overlapped. To determine if H16a 

was correlated to H4e or H22, other known off-diagonal peaks correlating to H4e or H22 

were examined. The cross peak between H4e and H4a (which is observed at all NaCho 

concentrations) aligned with the cross peak connecting H4e and H16a. Therefore, the new  



61 

 

 

 

 

 
 

Figure 3-4: Proposed model for NaCho secondary micelles. Primary micelles stack 

together in a staggered-stacked arrangement and held together by ion dipole and water 

mediated interactions. The extended hydrogen-bond ‘belt’ is shown in red.  
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Figure 3-5: ROESY spectra collected for a) 30 and b) 100 mM NaCho. New cross peaks 

present in secondary micelles are shown with red dotted arrows.  
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contact was assigned to H4e and H16a. Assignments were made using this method in 

other cases where there was significant spectral overlap. Contacts that support the 

staggered-stacked arrangement include the new contacts mentioned above with the 

exception of H12-H15a, H4-H23’ and H16a-H4e. These contacts are possible in the 

primary micelle model as described in Chapter 2. However, they were not observed in 

ROESY spectra at 30 mM NaCho. This indicates that these protons must be further than 

5 Å away from each other in primary micelles. However, the trends for changes in 

chemical shift for protons on the hydrophobic face indicated the tightening of primary 

micelles in the secondary micelle arrangement. This observation is supported by the 

presence of these new contacts placing them closer together in secondary micelle 

concentrations (100 mM).     

  

CONCLUSIONS 

A more detailed model has been proposed and partially tested for the arrangement 

of primary micelles within secondary ones. As discussed in Chapter 2, both hydrophobic 

interactions and H-bonding play equally important roles in the formation of primary 

micelles. However, the main force in the formation of secondary micelles is attributed to 

H-bonding and the increase in the strength of these interactions as the H-bond belts that 

surround individual primary micelle interact with neighboring ones and become 

elongated and surround the larger aggregate (see Fig. 3-4). As this elongation takes place, 

increase in cooperativity leads to tighter belts that make the core of the individual 

primary micelles even more hydrophobic. 
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Although the new through-space interactions support the staggered packing of 

linear stacks of NaCho primary micelles, further studies are needed to validate the 

proposed model.  
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CHAPTER 4 

NMR STUDY OF THE IMPACT OF SALT CONCENTRATION, CATION SIZE 

AND CHARGE ON SODIUM CHOLATE PRIMARY MICELLES 

 

INTRODUCTION 

In the previous chapters of this dissertation, the molecular arrangements of 

primary and secondary micelles of sodium cholate (NaCho) were explored at 

physiological pH and in the absence of additional salts. In this chapter, the impact of 

mono- and divalent cations is investigated at neutral and basic pH.   

The formation of micelles of any surfactant is affected by ionic strength, 

temperature, and pH.
25

 For bile salt micelles and with the use of noninvasive methods 

such as potentiometry
25

, derivative spectrophotometry
46

 and light scattering
28, 67

, Reiss 

and co-workers determined cmc values for bile salts at various ionic strengths.
25

 The 

results obtained with each method were compared to previously published values and 

showed that different methodologies may lead to different cmc values. Furthermore, the 

comparison was difficult because parameters such as pH, ionic strength, and temperature 

had not been specified in some previous reports. Using potentiometry, the results for 

sodium cholate showed the cmc decreased from 7.3 to 6.85 mM as the NaCl 

concentration increased from 0.10 to 0.20 M. Similarly, for sodium glycocholate the cmc 

decreased from 9.44 to 5.91 mM as the concentration of NaCl increased.
25

 This is 

attributed to the reduction of the screening effect that the anionic carboxylate groups 

provide. 
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The impact of temperature on cmc for NaCho was investigated by Garidel et al. 

with the use of isothermal titration calorimetry.
29

 The cmc values reported by the 

researchers for NaCho in 0.1 M NaCl, showed a slight decrease (from 12.5 to 10 mM) as 

the temperature increased from ~11 C to 26 ºC. At higher temperatures, the cmc 

increased and reached 15.5 mM at ~ 70 ºC.
29

   

Regarding the impact of salt concentration on cmc, review of the literature shows 

that as the concentration of NaCl is increased from 0.001 to 0.5 M, the cmc decreased 

from 7.6 to 2.1 mM at pH 7.0 and from 8.3 to 2.6 mM at pH 9.
25, 68

 This effect can be 

explained by the reduction of electrostatic repulsions at higher ionic strength. As a result, 

the micellization takes place at lower concentrations.
69

   

Salt concentration also affects the aggregation number n. For example, light 

scattering studies of NaCho at pH ~ 6.8, showed n to change from 6 to 8 as the 

concentration of NaCl was increased from 0.5 to 1 M. Using ultracentrifugation, the 

values for n were evaluated for NaCho at pH of ~ 9 and shown to increase from 4 to 6 as 

the concentration of NaCl was varied from 0.05 to 0.3 M.
10

     

Although the previous studies do show the impact of salt concentration and pH, 

they do not reveal the conformational/structural changes that take place at the molecular 

level. This chapter focuses on the exploration of the impact of both pH and salts of mono- 

and divalent of various sizes. Both salt concentration and pH have been increased beyond 

physiological conditions to gain insight on the possibility of manipulating these 

parameters for future studies to enhance drug uptake and release by NaCho micelles.    

This study follows the model presented in Chapter 2 in which four (or six) NaCho 

monomers associate in an anti-parallel arrangement and form a barrel-shaped micelle. In 

this model, a cooperative hydrogen-bond ‘belt’ is formed with the hydroxyl groups on C7 
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and C12. This water-mediated belt surrounds the outer central region of the micelle. In 

addition, the top and bottom of the ‘barrel’ are held by water-mediated hydrogen bonds 

between the carboxylate ions and the OH groups at C3.  

With the use of one- and two-dimensional NMR spectroscopy, the impact of the 

concentration of NaCl, NH4Cl, MgCl2 and CaCl2 on the compactness and arrangement of 

NaCho primary micelles is investigated at physiological pH and at pH 9.1. Lower pH 

values were not tested because the pKa of NaCho is between 4.6 and 5.5  and the 

protonation of the carboxylate group leads to the precipitation of the micelles at pH 

values of 6.5 or lower.
54

  

 

MATERIALS AND METHODS 

Chemicals. Sodium Cholate (NaCho) and NH4Cl were obtained from Sigma-Aldrich 

(St. Louis, MO). Reagent grade NaCl was obtained from EMD Chemicals, Inc. 

(Gibbstown, NJ). MgCl2 and DSS (4,4-dimethyl-4-silapentane-1-sulfonate, Na salt) were 

purchased from Aldrich Chemical Co., Inc. (Milwaukee, WI). NANOpure water 

(Barnstead, resistivity of 18MΩcm
-1

) was used for all aqueous solutions.  

Sample preparation. The appropriate amount of NaCho was weighed and placed in a 

20-mL vial. Nanopure water was added to attain a final concentration of 200 mM in H2O. 

This stock solution was used to prepare 20 mM NaCho solutions with various salt 

concentrations. Aqueous solutions (1.0 M) of NaCl, NH4Cl, MgCl2, and CaCl2 were 

prepared. The correct amount of these salt solutions was pippetted to create 20 mM 

NaCho solutions with final salt concentrations of 0.15, 0.30, 0.45, or 0.60 M. The 

solutions were sonicated in a bath sonicator (Cole-Parmer 8890) for about 15 minutes. 

The pH was adjusted using 0.1 M and 0.05 M NaOH or HCl to achieve final pH values of 
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7.4 ± 0.1 and 9.1 ± 0.1. Less than 10 μL were needed to adjust the pH. Therefore, the 

contribution of Na
+
 from the pH adjustment did not alter significantly the final salt 

concentration.   

One-dimensional NMR studies. NMR experiments were performed on a Varian Inova 

500 MHz spectrometer (Palo Alto, CA) equipped with a triple resonance probe. The 

frequency used for 
1
H was 500.1 with a total number of 128 scans. All one-dimensional 

spectra were processed using MestReC Version 2.01 (Santiago de Compostela, Spain) on 

a personal computer. All acquisitions were carried out at 25ºC. A coaxial insert 

containing 1.0 mM 4,4-dimethyl-4-silapentane-1-sulfonate, sodium salt (DSS) dissolved 

in D2O was inserted in the NMR tube and used for signal locking and referencing of 

NMR spectra. 

 

RESULTS AND DISCUSSION 

 This study explores the impact of salt concentration and pH on the formation of 

primary micelles of sodium cholate (NaCho). With the use of NMR spectroscopy, we 

have investigated the effects of cation size and charge on primary micelles. The observed 

trends at each pH will be presented first. Then, with the aid of the theoretical predictions 

discussed in Chapter 2, these experimental trends are interpreted and models are 

proposed to account for the effects of increasing salt concentration as well as cation size 

and charge on the arrangement of primary micelles.    

Effect of the addition of NaCl, NH4Cl, MgCl2 and CaCl2 to NaCho primary 

micelles at pH 7.4. Figure 4-1 shows the NaCho molecule with the labeling scheme and 

the spectra acquired for a solution of 20 mM NaCho only (trace a) and those containing 

0.6 M of NH4Cl (trace b), NaCl (trace c), and MgCl2 (trace d). No trace is included for 
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0.6 M CaCl2 because significant precipitation took place at this concentration and at 0.45 

M. The spectra are arranged by decreasing ionic diameter and increasing charge; with 

NH4
+
, Na

+
, Mg

2+
 having ionic diameters of 296 pm, 204 pm, and 144 pm, respectively.

14
 

The proton labels correspond to the number of the carbon to which they are attached. 

Axial and equatorial protons are designated with the letters a or e, respectively. The 

resonances labeled in the spectra correspond to the three methyl groups H18, H19, and 

H21, as well as those related to H3, H7, and H12, the protons attached to carbons with a 

bound hydroxyl group. These resonances can be easily assigned as they are well resolved. 

In general, Fig. 4-1 shows that the addition of these salts caused the shielding of the 

chosen protons. Relative to trace a, the most significant changes in both chemical shift 

and broadening are observed in trace d (MgCl2). Conversely, the presence of NH4Cl led 

to relatively minor decreases in chemical shift and did not cause broadening.  

Changes in chemical shifts. The changes induced by the addition of salts were 

evaluated. Figure 4-2 shows the net changes in chemical shifts with respect to NaCho 

only (no additional salts) at pH 7.4. The chemical shift values for all of the resonances 

examined in this study were obtained by 
1
H NMR one-dimensional spectral data. Graphs 

A, B, C, and D correspond to the results obtained upon addition of increasing 

concentrations of NH4Cl, NaCl, CaCl2 and MgCl2, respectively. In these graphs, the 

errors in the measurements are represented by the size of the symbol. Overall, the 

chemical shifts of the chosen resonances decreased (became more shielded) as the salt 

concentration increased. H21 followed this trend but the degree of change in chemical 

shift was lower relative to those for the other resonances. This trend was observed with 

three salts (NH4Cl, NaCl, MgCl2) but not in the presence of CaCl2, graph C. The presence 

of NH4Cl led to the smallest changes in chemical shift, followed by NaCl, CaCl2 and  
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Figure 4-1: NaCho molecule with labeling scheme and 
1
H spectra acquired for a solution 

of a) 20 mM NaCho only and those containing b) 0.6 M NH4Cl c) 0.6 M NaCl and d) 0.6 

M MgCl2. 
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MgCl2. As shown in Graph 2B, at NaCl concentrations of 0.45 M or greater, a plateau 

was reached. MgCl2 induced the greatest changes in chemical shifts. Indeed, the 

decreases in chemical shifts were nearly twice greater than those seen with NaCl.  

Changes in linewidths. Figure 4-3 shows the changes in linewidth for these resonances 

at pH 7.4. The addition of various salts led to significant changes in linewidth in the 

resonances corresponding to the methyl protons. In the presence of NH4Cl and NaCl, the 

resonances became narrower, with increasing concentrations up to 0.45 M. Further 

increases resulted in the increase in linewidth. With CaCl2, slight broadening was 

observed with all resonances. However, linewidths at higher CaCl2 concentrations are not 

reliable due to micelle precipitation. With MgCl2, the opposite was observed. Indeed, up 

to 0.3 M the resonances were wider but narrowing was observed at higher concentrations. 

The resonances corresponding to H3, H7, and H12 exhibited a decrease in linewidth 

similar to methyl protons in NH4Cl and NaCl. Linewidth studies for MgCl2 showed the 

broadening of the H3, H7, and H12 resonances as the concentrations was increased.      

Effect of the addition of NaCl, NH4Cl, and MgCl2 to NaCho primary micelles at 

pH 9.1.  

Changes in chemical shifts. Figure 4-4 shows the changes in chemical shift with 

increasing salt concentration at pH 9.1. Overall, and just as with the solutions at pH 7.4, 

shielding was observed in the chosen resonances as the salt concentration increased. For 

each salt, the decrease in chemical shift was comparable for the various resonances with 

the exception of H21, whose chemical shift decreased to a lesser extent (except in the 

presence of CaCl2). When NH4Cl was used as the electrolyte, a small decrease in 

chemical shift was observed (Fig. 4-4A). NaCl induced greater changes in chemical shift 

above 0.45 M compared to pH 7.4. In the presence of CaCl2, the decreases in chemical  
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shifts were similar to those seen at pH 7.4. As also observed at 7.4, the presence of CaCl2 

resulted in a smaller decrease in chemical shift for H3 at the higher pH (9.1). On the other 

hand, and just as observed at pH 7.4, H21 showed the greatest decrease in chemical shift. 

Relative to the other salts and as observed at pH 7.4, MgCl2 also caused the greatest 

degree of change in chemical shifts at the higher pH of 9.1.  

 Changes in linewidths. Figure 4-5 shows the changes in linewidth for the selected 

resonances for 20 mM NaCho at pH 9.1 as the salt concentration was increased. For 

NH4Cl, there was an increase in linewidth that reached a maximum at 0.45 M. NaCl 

caused an increase in linewidth at 0.15 M, but above this concentration no significant 

changes in linewidth were observed. In the presence of CaCl2, resonances became 

broadened as the salt concentration increased to 0.3 M. CaCl2 concentrations of 0.45 and 

0.6 M are shown in red circles denoted with an asterisk because the obtained spectral 

does not represent the 20 mM concentration of NaCho or the salt concentration due to 

micelle precipitation. The linewidth study using MgCl2 shows a similar trend with the 

exception of H18, which became narrower at 0.15 M.  The greatest degree of broadening 

occurred at 0.3 M, subsequent additions of MgCl2 resulted in a decrease in linewidths.      

Interpretation of Trends 

Cation size and charge at pH-7.4: 

NH4
+
, Na

+
, Ca

2+
 and Mg

2+
 were chosen as electrolytes in this study to explore the 

impact of ionic diameter and charge on NaCho micelles. The four electrolytes resulted in 

the decrease of chemical shifts for the chosen resonances. To aid in the interpretation of 

the experimental trends, the theoretical predictions of chemical shifts reported in Chapter 

2 were used. The chemical shifts were theoretically predicted for resonances 

corresponding to a NaCho monomer in isolation, and then surrounded by chloroform,  
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methanol, or water. Those calculations predict the deshielding for methyl protons H18 

and H19 as the polarity of the solvent increases. However, H21 protons which are closer 

to the COO
-
 groups are expected to become more shielded as the solvent polarity 

increases and diminish the deshielding effect of the carboxylate oxygens. Protons H3, H7 

and H12 were predicted to increase their chemical shift (more deshielded) with increasing 

solvent polarity. 

Linewidth studies were carried out for methyl protons (H18 and H19) as well as 

H3, H7 and H12. Linewidths for H21 were not included in this study due to the splitting 

pattern (doublet) and the spectral overlap with the H1a resonance. This made it difficult 

to measure accurately the linewidth of the H21 resonance. For the interpretation of 

changes in linewidth, it is necessary to understand the causes for these variations. 

Linewidth is often evaluated as the peak width at half height, Δ1/2. High resolution NMR 

spectra of small molecules is inversely related to the effective spin-spin relaxation time 

(T2*) which is related to slight variations in the magnetic field sensed by the sample. For 

small spherical molecules, T2* is long thus resulting in small linewidths, in the order of a 

few Hertz. Linewidths are also affected by the motional correlation time (τc), the time it 

takes for the molecule or molecular ensemble to rotate one radian.  As the molecular 

weight increases, so does τc and T2 decreases resulting in line broadening. Similarly, 

when monomers form aggregates in solution, the mobility of the aggregate decreases thus 

enhancing τc and decreasing T2.
15

 Assuming that the tumbling time of primary micelles in 

each case did not vary significantly, line broadening will be interpreted in terms of 

decreases in T2 values.  

As discussed below, each electrolyte caused unique changes in the spectral traces 

of NaCho. These variations result from the different ionic diameter and charge of the 
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chosen cations. Taking into account both the changes in chemical shifts and in 

linewidths, the paragraphs below postulate the nature of the interactions between each 

salt and the NaCho micelles. 

Postulates of possible interactions between NH4Cl and NaCho: NH4
+
,
 
with the 

largest ionic diameter of 296 pm, resulted in the smallest changes in chemical shift. This 

is proposed to be due to the lower charge density of NH4
+
. This factor limits the strength 

with which this cation interacts with oxygen lone pairs in the OH groups and with the 

carboxylate group. As the concentration of NH4
+ 

increased, the methyl protons became 

more shielded. The theoretically predicted trends suggest a decrease in polarity around 

H18 and H19 but the opposite effect around H21. Cations positioned in the proximity of 

carboxylate groups in the top and bottom of the micelle may reduce the deshielding effect 

caused by the oxygens in this moiety. As a result, the H21 protons are relatively more 

shielded.   

The same predictions show that as the solvent polarity increases, H3, H7, and H12 

protons become deshielded. In this study, as salt concentration increased, the resonances 

corresponding to H3, H7, and H12 became more shielded. This effect can be attributed to 

NH4
+
 ions interacting with the lone pairs on the hydroxyl groups forming both the H-

bond central belt (H7 and H12) and the top/bottom of the micelle as well as with 

carboxylate ions thus reducing the deshielding effect of these moieties on their 

neighboring protons.    

Linewidth studies for NH4Cl showed an initial narrowing of the resonances 

related to the three methyl groups after the first few additions of NH4Cl, suggesting that 

the core of the micelle is less compact, as modeled in Figure 4-6b. In order for the 
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micelle to expand, the hydrogen-bond network involving the OH groups at C7 and C12 

must be weakened or disrupted. As a result, protons H7 and H12 are expected to be  

slightly further from neighboring protons and their resonances become narrower. The 

narrowing of the resonance corresponding to H3 also suggests the weakening of  

interactions in the top and bottom networks of the micelle; this can be attributed to NH4
+ 

ions that interact with the OH group at C3 and carboxylate ions.  As the NH4Cl 

concentration increased from 0.45 to 0.6 M, the linewidth for each of the chosen 

resonances increased to values similar to those observed in the absence of NH4Cl. This 

suggests that after the initial expansion of the micelles, NH4
+
 ions may be integrated 

within the hydrogen-bonding central belt as well as with the top and bottom networks and 

bring the micelle back to a more compact state (see Figure 4-6c).  

Postulates of possible interactions between NaCl and NaCho: To determine if the 

changes in NaCho micelles are affected by the size of the cation, NaCl was chosen and 

compared to NH4Cl. Given that Na
+
 (diameter: 204 pm) is smaller than NH4

+
 (diameter: 

296 pm), its charge density is greater and, therefore, it has the ability to interact with 

electronegative moieties more effectively than NH4
+
. These enhanced interactions are 

reflected by the greater decreases in chemical shifts observed when NaCl, rather than 

NH4Cl, was added. The significant decrease in chemical shifts seen for H18 and H19 

resonances suggests that the core of the micelle senses a less polar environment. The 

decrease in chemical shift for H21, on the other hand, indicates that this methyl group is 

not deshielded as much in the presence of NaCl.  Given the location of this methyl group 

near the carboxylate groups, the decrease in chemical shift suggests the presence of Na
+
 

ions in either or both the top and bottom ionic/H-bond networks as well as the central H- 
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bond belt. This possibility is supported by the shielding of the H3, H7, and H12 protons 

that suggests that Na
+
 ions effectively interact with carboxylate ions and hydroxyl lone 

pairs thus reducing their deshielding effect on neighboring protons. Using NaCl as the 

electrolyte shows an interesting difference when compared to the other salt species. 

Indeed, upon reaching 0.45 M, smaller changes in chemical shifts were observed.  

Possible reasons for this trend are offered below.  

Linewidth studies for NaCl showed narrowing of the resonances corresponding to 

the methyl groups (H18 and H19) as the salt content increased. The magnitude of change 

was not as large as that observed with NH4Cl, suggesting that the compactness of the 

micelles is not as affected. It is possible that with the first addition of NaCl there is little 

impact on the hydrogen-bond central belt as the Na
+
 ions are expected to be preferentially 

attracted to the carboxylate ions. As the concentration of NaCl increases the hydrogen-

bond belt may become weakened (see Fig.4- 6b) but not as much as with NH4Cl. NH4
+
 is 

a larger ion (296 pm diameter) and thus the charge is delocalized over a greater volume 

that could possibly affect various adjacent OH groups, causing greater disruption of the 

central H-bond belt. Na
+
, on the other hand, being smaller (204 pm diameter) could affect 

a more localized environment and lead to less loosening of the micelle, as reflected by the 

smaller decrease in linewidths. In the last addition of NaCl, line broadening was observed 

suggesting Na
+
 ions are becoming integrated into the hydrogen-bond network by metal 

ion-dipole interactions creating a more compact micelle (see Fig. 4-6c).  

Postulates of possible interactions between CaCl2 and NaCho: To determine if 

the degree of changes in NaCho micelles is affected by cation charge, CaCl2 was chosen 

and compared to NaCl because they have similar ionic diameter (Ca
2+

 = 200 pm and Na
+
 

= 204 pm). Changes in chemical shift were greater than those observed in the presence of 
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NaCl (Fig. 4-3c). These protons became shielded as the salt concentration increased. 

Changes in chemical shift for these protons above 0.45 M are not truly reflected in the 

graphs due to micelle precipitation. Unlike the other salts, in the presence of CaCl2, H21 

showed the greatest change in chemical shift followed by H18 and H19. The decrease in 

chemical shift (shielded) for H21 suggests nearby COO- groups are interacting with Ca
2+

 

ions thus inhibiting their deshielding effect on neighboring protons. The degree of 

shielding observed is significantly greater than trends observed with +1 cations. This 

suggests that the increase in cation charge can more effectively interact with COO
-
 

groups. The trends observed with H18 and H19 suggests the core of the primary micelles 

is becoming less polar. H3, H7 and H12 also became shielded as salt concentration was 

increased. Ca
2+

 ions are interacting with the lone pairs on hydroxyl groups and 

carboxylate ions thus reducing the deshielding effect of these moieties on their 

neighboring protons. Interestingly, H3 showed the smallest decrease in chemical shift. 

This suggests Ca
2+

 ions are preferentially interacting with COO- groups. This is to be 

expected given the very high value of Ksp for CaCO3 (Ksp ~ 10
-9

).
70

 Both the greater 

charge density and the size of Ca
2+

 (200 pm in diameter) contribute to its strong 

interaction with COO
-
 where the oxygens are about ~ 220 pm apart.  

  Linewidth studies for CaCl2 showed trends different from the other salts 

examined in that the changes in linewidths observed were much smaller. In the presence 

of CaCl2, H18 and H19 became slightly broadened suggesting that either the core of the 

primary micelles is becoming tighter and/or that the screening effect provided by the 

negatively charged COO- is diminished and aggregation may take place. The linewidths 

corresponding to H3, H7 and H12 also became broadened. If these changes were due to 

tightening of the micelles, one could propose that Ca
2+

 ions do not disrupt the hydrogen-
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bond networks as seen with NH4Cl and NaCl but can integrate themselves into these 

networks forming metal ion-dipole interactions at the top/bottom (OH-3 and COO
-
) and 

central region (OH-7 and OH-12) thus creating a more compact primary micelles (see 

Fig. 4-7b). However, the possibility of aggregation (see Fig. 4-7c) cannot be ruled out, 

particularly since at concentrations of 0.45 M and above, precipitation occurs. ). Details 

on how aggregation is taken place are hard to discern, Ca
2+

 can reduce the screening 

effect that keep primary micelle in solution causing micelle aggregation.  However, it is 

also possible that CaCl2 can bridge primary micelles together through the COO
-
 groups of 

primary micelles causing aggregation to occur. Linewidth changes cannot distinguish 

between these possibilities and further studies are needed. 

Postulates of possible interactions of MgCl2 and NaCho: To determine the impact 

of the size and charge of the cation on NaCho micelles, the results obtained with MgCl2 

were compared to those obtained with NaCl and CaCl2. Mg
2+

 is doubly charged and has 

the smallest ionic diameter (144 pm) of the cations tested in this work. Compared to Na
+
, 

NH4
+
 and Ca

2+
, Mg

2+
 caused the greatest degree of shielding. H18 and H19 are thus 

proposed to be in less polar environments and H21 in a more polar surrounding when 

MgCl2 is added. Both the smaller size and greater charge Mg
2+

 lead to a greater attraction 

toward the hydroxyl lone pairs and negative charges on carboxylate ions. As a result, the 

deshielding effect of these moieties on neighboring protons is diminished and leads to 

greater shielding.  

Linewidth studies for the chosen resonances showed the initial broadening, unlike 

the trends seen in the presence of NaCl
 
or NH4Cl. This trend suggests that as the 

concentration of MgCl2 is increased, the micelles may become more compact until they 

peak at 0.3 M (see Fig. 4-8b). It is possible that Mg
2+

 ions are small enough to integrate  
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within the central hydrogen-bonding as well as the top and bottom networks through 

metal ion-dipole interactions after the first addition of MgCl2. At concentrations above 

0.3 M MgCl2 there is a decrease in linewidths, suggesting the partial loosening of the 

micelles (see Fig. 4-8c). This trend may be attributed to the excess Mg
2+

 ions that may 

compete for the OH groups in the H-bond-Mg
2+

 central belt. As the OH group interacts 

with both Mg
2+

 ions integrated into the H-bond belt and excess external Mg
2+

 ions, the 

strength of the belt is reduced.   

Cation size and charge at pH-9.1: 

To understand the effects of pH on NaCho micelles, studies similar to those 

discussed above were carried out at pH 9.1. Lower pHs were not tested because as the pH 

begins to approach the pKa value (pKa 4.6-5.5)
54

 of cholic acid, the carboxylate group 

becomes partially protonated and the micelles begin to precipitate at pH values of 6.5 and 

below. For a solution of 20 mM NaCho only, the chemical shift of the chosen resonances 

increased at the higher pH, with the exception of that for H21, which decreased at pH 9.1 

(see supplemental information). The changes in chemical shifts for all NaCho resonances 

followed the trends observed in the theoretical predictions obtained using solvents of 

increasing polarity. This indicates that the presence of a greater concentration of 

negatively charged OH- groups in the solvent leads to a more polar environment at pH 

9.1. 

 Linewidth studies for a solution of 20 mM NaCho only from 7.4 to 9.1 showed a 

narrowing of the chosen resonances as the pH increased, suggesting that NaCho micelles 

are less compact (see Fig. 4-9). The loosening effect observed can be attributed to the 

disruption or weakening of the hydrogen-bond network involving OH groups at C7 and  
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C12 due to the attraction between the abundant hydroxide ions toward the hydroxyl 

groups in NaCho micelles. 

Postulates of possible interactions of NH4Cl and NaCho: Each electrolyte caused 

shielding of the chosen protons, similar to the trends seen at pH 7.4. As the salt 

concentration increased, the chosen protons became more shielded. The reasons for the 

observed shielding are similar to those discussed for pH 7.4.  

As observed at pH 7.4, the first addition of NH4Cl led to a decrease in chemical 

shift of the chosen proton resonances at pH 9.1. At NH4Cl concentrations greater than 0.3  

M, smaller changes in chemical shift were observed. The reduced shielding effect 

observed at pH 9.1 can be attributed to the attraction of NH4
+
 ions toward the excess 

hydroxide ions present in the solution.  

Changes in the linewidths of the chosen resonances showed a trend opposite to 

that seen at pH 7.4. Indeed, at higher concentrations, the linewidths increased, suggesting 

that tighter micelles may be formed. At pH 9.1, the loosened micelle may enable NH4
+
 

ions to integrate into the hydrogen-boding network and/or reduce the disrupting effect of 

OH
-
 on the network. Both possibilities could lead to tighter micelles after the second 

addition of NH4Cl, as represented in Figure 4-10b. Linewidths continued to increase as 

NH4
+
 concentration increased until a plateau was observed around 0.45 M. This plateau 

may indicate that at this high NH4
+
 concentration, the maximum number of NH4

+
 ions 

may have been integrated in the hydrogen-bond central belt as well as the top and bottom 

networks. As a result, the greatest level of compactness could have been reached and 

further addition of NH4Cl could not cause greater line broadening.  

Postulates of possible interactions of NaCl and NaCho: NaCl also reduced the 

chemical shifts of NaCho resonances to a greater degree than NH4Cl.  This trend suggests  
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Figure 4-10: Primary micelle model in the presence of NH4
+
 at pH 9.1. a) Cartoon of 

primary micelle at pH 9.1 with no salt added and b) above 0.15 M NH4Cl NH4
+
 ions 

incorporate into the hydrogen-bond network that leads to a more compact micelle.  
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that, compared to NH4
+
 ions, Na

+
 ions are more effective in reducing the deshielding 

effect that excess hydroxide ions in the solvent have on NaCho protons. Compared to the 

results at pH 7.4, each addition of NaCl resulted in slightly greater degree of shielding at 

pH 9.1. 

Linewidth studies showed line broadening after the first salt addition. It is 

possible that Na
+
 ions are small enough to be disrupt the hydrogen-bond belt and interact 

with the oxygen lone electron pairs through metal ion-dipole interactions and/or they may 

reduce the effect of OH
-
 in the weakening of the H-bond networks (see Figure 4-11). 

Either effect would result in more compact micelles. Similar to the trend observed at pH 

7.4, the linewidths became narrower after 0.15 M NaCl; with a smaller magnitude of 

change.  The smaller degree of change could result from the attraction between excess 

hydroxide ions and Na
+
 ions thus limiting the impact of Na

+
 around the central hydrogen-

belt network as seen in pH 7.4. Above 0.45 M NaCl line broadening was observed 

suggesting the compaction of micelles. This trend suggests that Na
+
 ions may be 

integrating into the hydrogen-belt as well as the top and bottom networks through metal 

ion-dipole interactions. 

Postulates of possible interactions between CaCl2 and NaCho: Similar to trends 

observed at pH 7.4, in the presence of CaCl2 chemical shifts for NaCho protons became 

more shielded than when NaCl was present. Ca
2+

 ions having a greater charge are more 

effective in reducing the deshielding effect of OH- ions thus leading to more shielding. 

However, the degree of change in chemical shift was slightly less than at pH 7.4. This 

may be due to Ca
2+

 ions interacting with OH
-
 ions in solution as well as OH and COO- 

groups on the NaCho micelles. H21 showed the greatest decrease in chemical shift 

followed by H18 and H19. The changes in chemical shift indicate that H3 was the least  
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Figure 4-11: Primary micelle model in the presence of Na
+
 at pH 9.1.  a) Cartoon of 

primary micelle at pH 9.1 with no salt added and b) above 0.15 M NaCl, Na
+
 ions 

incorporate into the hydrogen-bond network that leads to a more compact micelle.  
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affected proton. The interactions between Ca
2+

 ions and the COO
-
 groups cause H21 to 

sense a more hydrophilic environment. In addition, the interactions between Ca
2+

 ions 

and hydroxyl groups would cause H3, H7 and H12 to become shielded as CaCl2 

concentration increases.  

Linewidth studies showed slight broadening for all resonances as CaCl2 

concentrations increased. Similar to NaCl, it is possible that Ca
2+

 ions are small enough 

to be integrated into the hydrogen-bond belt (by metal ion-dipole interactions) and/or 

reduce the effect of OH
-
 ions in the weakening of the H-bond networks. At 0.3 M CaCl2, 

H18 and H19 showed the greatest degree of broadening. This indicates that either the 

core of the primary micelles becoming more compact or aggregation of primary micelles 

takes place (see Figure 4-12).  

Interactions between Ca
2+

 ions and hydroxyl groups result in the broadening of 

the resonances for H3, H7 and H12. Above this concentration, primary micelles are most 

compact and begin to precipitate out of solution. Linewidth studies above 0.45 M are not 

reliable due to micelle precipitation.  

Postulates of possible interactions of MgCl2 and NaCho: Similar to the results 

obtained at pH 7.4, the greatest decrease in chemical shift was observed when using 

MgCl2 as the electrolyte. Mg
2+

 ions have the greatest impact on the degree of change in 

chemical shift due to the greater attraction toward hydroxide ions. The degree of change 

in linewidth is smaller than pH 7.4 due to the attraction between Mg
2+

 ions and excess 

hydroxide ions. This attraction may reduce the impact of Mg
2+

 ions on the hydrogen-

bond networks seen in pH 7.4. Linewidth studies showed that after the first addition of 

MgCl2 the linewidth decreased. The narrowing of linewidths was more pronounced in 

H18 and H19, suggesting that at 0.15 M MgCl2, there may not be enough Mg
2+

 ions to  
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tighten the looser hydrogen-bond belt expected at pH 9.1. With increasing concentration, 

enough Mg
2+

 ions may be available to integrate themselves into the hydrogen-bond 

network through metal ion-dipole interactions and create a more compact micelle (see 

Figure 4-13b). Above 0.3 M MgCl2, a decrease in linewidth was observed. This 

observation suggests that 0.3 M MgCl2, the number of Mg
2+

 ions incorporated in the H-

bond networks may have reached its maximum and further addition of Mg
2+ 

ions lead to 

the partial weakening of the networks as Mg
2+

 ions interact with the OH groups of 

NaCho (see Figure 4-13c).   

 

CONCLUSIONS 

As expected, both ionic and H-bonding interactions are affected by the presence 

of mono-and divalent cations. Between NH4
+
 and Na

+
, and at pH 7.4, the larger size of 

NH4
+
 leads to a more effective disruption of the H-bond belt, as reflected by the 

narrowing of the resonances. At pH 9.1, the micelles are not as tight as at pH 7.4 and the 

addition of NH4
+
 leads to tightening of the micelles, suggesting that NH4

+
 ions can 

intercalate within the H-bond loose belt. 

For the divalent cations, Ca
2+

 with its larger size relative to Mg
2+

, causes the 

greatest degree of aggregation at both pH values. This can be attributed to Ca
2+
’s high 

affinity toward the COO
-
 group.  The screening effect provided by the negative charge of 

the COO
-
 groups diminishes significantly and aggregation of primary micelles ensues. 

Mg
2+

, on the other hand, and because of its smaller size, causes the tightening of primary 

micelles at both pH values because it can become incorporated into the H-bond belt. At 

higher concentrations of Mg
2+

 this effect diminishes because the excess Mg
2+

 ions 

compete for the OH groups forming the belt. 
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These studies do demonstrate that the tightness of these micelles can be modified 

by changes in pH and salt composition and concentration. It would be beneficial to 

investigate simultaneously the aggregation number. NMR data have provided very 

helpful information but further studies with independent methods need to be pursued.  
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CHAPTER 5 

NMR STUDY OF THE IMPACT OF SALT CONCENTRATION, CATION SIZE 

AND CHARGE ON SODIUM CHOLATE SECONDARY MICELLES 

 

INTRODUCTION  

Beyond the cmc, primary micelles begin to associate to form larger (70 nm)
14

 

secondary micelles. Relatively less detailed information is available regarding the 

formation of secondary micelles. Previous studies have explored the impact of pH and 

salt concentration on bile salt micelles. However, those studies were limited to primary 

micelles.  

The current study explores the effect of pH and salt addition on secondary 

micelles. The concentrations of 50 and 100 mM NaCho were selected because at 50 mM 

NaCho primary and secondary micelles coexist and at 100 mM only secondary micelles 

exist.  

This study follows the model for secondary micelles presented in Chapter 3. 

Barrel-shaped primary micelles aggregate into secondary micelles via ion-dipole and 

hydrogen-bonding interactions that connect the top and bottom of the primary micelles. 

The central hydrogen-belt network proposed for primary micelles is extended and 

strengthened as neighboring micelles become linked to each other.  
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MATERIALS AND METHODS 

Chemicals. Sodium Cholate (NaCho) and NH4Cl were obtained from Sigma-Aldrich (St. 

Louis, MO). Reagent grade NaCl was obtained from EMD Chemicals, Inc. (Gibbstown, 

NJ). MgCl2 and DSS (4,4-dimethyl-4-silapentane-1-sulfonate, Na salt) were purchased 

from Aldrich Chemical Co., Inc. (Milwaukee, WI). NANOpure water (Barnstead, 

resistivity of 18MΩcm
-1

) was used for all aqueous solutions.  

Sample preparation. The appropriate amount of NaCho was weighed and placed in a 

20-mL vial. Nanopure water was added to attain a final concentration of 200 mM. This 

stock solution was used to prepare 50 and 100 mM NaCho solutions varying in ionic 

strength. Aqueous solutions (1.0 M) of NaCl, NH4Cl, and MgCl2 were prepared. The 

correct amount of these salt solutions was pippetted to create 50 and 100 mM NaCho 

solutions to reach final salt concentrations of 0.15, 0.30, 0.45, or 0.60 M. The solutions 

were sonicated in a bath sonicator (Cole-Parmer 8890) for about 15 minutes. The pH was 

adjusted using 0.1 M and 0.05 M NaOH or HCl to achieve final pH values of 7.4 ± 0.1 

and 9.1 ± 0.1. Less than 10 μL were used to adjust the pH and the contribution of Na
+
 

from the pH adjustment did not significantly alter the total salt concentration.  

 

One-dimensional NMR studies. NMR experiments were performed on a Varian Inova 

500 MHz spectrometer (Palo Alto, CA) equipped with a triple resonance probe. The 

frequency used for 
1
H was 500.1 with a total number of 128 scans. All one-dimensional 

spectra were processed using MestReC Version 2.01 (Santiago de Compostela, Spain) on 

a personal computer. All acquisitions were carried out at 25ºC. A coaxial insert 

containing 1.0 mM 4,4-dimethyl-4-silapentane-1-sulfonate, sodium salt (DSS) dissolved 
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in D2O was inserted in the NMR tube and used for signal locking and referencing of 

NMR spectra.  

 

RESULTS AND DISCUSSION 

 As an extension to the study on NaCho primary micelles, we have investigated the 

effects of cation size and charge on secondary micelles with the use of NMR 

spectroscopy. The trends observed for each NaCho concentration (50 and 100 mM) at the 

two pH values will be presented first.  

Effect of the addition of NaCl, NH4Cl, and MgCl2 to NaCho secondary micelles at 

pH 7.4. 

1) Effect on 50 mM solutions of NaCho.  

a) Changes in chemical shift. The impact of salt addition on the 
1
H NMR spectrum of 

NaCho micelles is seen in Figure 5-1. The changes in chemical shift () were evaluated 

with respect to the chemical shifts of a solution of 50 mM NaCho (no salt added) at pH 

7.4. The chemical shift values for all of the resonances examined in this study were 

obtained by 
1
H NMR one-dimensional spectral data. Results obtained upon the addition 

of increasing concentrations of NH4Cl, NaCl, and MgCl2 are shown in graphs a, b, and c 

respectively. In these graphs, the standard deviations (n = 3) in the measurements are 

represented by the size of the symbol. In these studies, CaCl2 was not included due to 

micelle precipitation even at the lowest concentration (0.15 M) tested. Overall, as salt 

concentration increased, the changes in chemical shifts became more negative for the 

chosen resonances, indicating that the corresponding protons became more shielded 

(decreased in ). The smallest changes in chemical shift occurred in the presence of 

NH4Cl, followed by NaCl. The decreases were greater for NaCl than for NH4Cl. The  
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addition of MgCl2 produced the greatest changes in chemical shifts, as shown in Fig. 5-

1c.          

b) Changes in linewidth.  Figure 5-1 shows the changes in linewidth for the chosen 

resonances with respect to a 50 mM NaCho solution at pH 7.4. With each addition of salt, 

significant changes in linewidth were observed.  

NH4Cl: As the NH4Cl concentration increased, an initial decrease in linewidth was 

observed for the chosen resonances (see Figure 5-1d). However, at 0.3 M and above, 

resonances became broader, with H18, H19, and H12 showing the greatest increase in 

linewidth.  

NaCl: When the concentration of NaCl was increased from 0.15 M to 0.45 M, an 

overall decrease in linewidth was observed (see Figure 5-1e). The methyl resonances 

(H18, H19), H7 and H12 were impacted the most at 0.3 M. Above 0.45 M, the chosen 

resonances increase in linewidth.  

MgCl2: With the first addition of MgCl2, a decrease in linewidth was seen, particularly 

in the resonances corresponding to H18 and H19. However, further additions resulted in 

increasing linewidths (see Figure 5-1f).  

2) Effect on 100 mM solutions of NaCho.  

a) Changes in chemical shift.  Figure 5-2 shows the changes in chemical shift () 

caused by each salt relative to the 's seen for a 100 mM NaCho solution at pH 7.4 

without any additional salt.  

NH4Cl: The first addition of NH4Cl did not significantly impact the chemical 

shifts of the chosen resonances. At 0.45 M, and above, a plateau was reached (see Figure 

5-2a).  



102 

  

 
 F

ig
u

re
 5

-2
. 
C

h
an

g
es

 i
n
 c

h
em

ic
al

 s
h
if

ts
 (

a,
 b

 a
n
d
 c

) 
an

d
 l

in
ew

id
th

s 
(d

, 
e 

an
d

 f
) 

w
it

h
 t

h
e 

ad
d
it

io
n
 o

f 
N

H
4

+
 (

a 
an

d
 d

),
 N

a+
 (b

 a
n
d
 e

) 

an
d
 M

g
2

+
 (

c 
an

d
 f

) 
to

 1
0
0

 m
M

 N
aC

h
o
 a

t 
p
H

 7
.4

 

  



103 

NaCl: Overall, just as with 50 mM NaCho solutions, as the salt concentration 

increased, 's decrease (negative . This is an indication of shielding of chosen protons. 

The changes in chemical shifts were smaller relative to those seen for 50 mM NaCho (see 

Figure 5-2b).  

MgCl2: As observed for the 50 mM NaCho solution, MgCl2 resulted in the 

greatest decrease in chemical shift. An increase to 0.6 M MgCl2 led to precipitation of 

NaCho micelles (see Figure 5-2c).     

b) Changes in linewidth. Figure 5-2 shows the changes in linewidth for chosen 

resonances for 100 mM NaCho solutions at pH 7.4.  

NH4Cl: In the first addition of NH4Cl, there is an initial narrowing of resonances, 

as ionic strength increases, slight broadening is observed (see Figure 5-2d).  

NaCl: In the presence of NaCl, linewidths decreased as the salt concentration 

increased; line narrowing was not as significant as observed in the presence of NH4Cl. At 

0.3 M NaCl and above, line broadening was observed (see Figure 5-2e). 

MgCl2: As MgCl2 is introduced, a decrease in linewidth is observed (see Figure 5-

2f). Unlike the other salts, MgCl2 has the greatest impact on linewidths causing 

significant broadening above 0.15 M concentrations.  

Effect of the addition of NaCl, NH4Cl, and MgCl2 to NaCho secondary micelles at 

pH 9.1.  

1) Effect with 50 mM NaCho Solutions. 

Changes in chemical shift. Figure 5-3 presents changes in chemical shift for 50 mM 

NaCho solutions at pH 9.1. Similar to pH 7.4, changes in chemical shift show a decrease 

in the chemical shifts as the concentration of each salt increased. The degree of shielding 

is comparable to that seen at pH 7.4. As the concentration of NH4Cl increased, the  
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changes in chemical shift reached a plateau around 0.45 M (see Fig. 5-3a). As expected, 

MgCl2 caused the greatest decrease in  for the chosen resonances shown in Figure 5-3c.   

Changes in linewidth. Figure 5-3 shows the changes in linewidth for the three salts in 

50 mM NaCho solution at pH 9.1.  

NH4Cl: There were significant changes in linewidth for NH4Cl; in the first 

addition, the chosen resonances became slightly narrower (see Figure 5-3d). Further 

additions caused broadening of resonances. Above 0.45 M, the resonances decrease their 

linewidths. H3 was the exception; only small changes in linewidth were observed as the 

salt concentration was increased.  

NaCl: Smaller changes in linewidth were shown with NaCl addition; resonances 

corresponding to methyl protons became narrower with the first addition of NaCl (see 

Figure 5-3e). Above 0.3 M NaCl only slight changes in linewidth were observed. 

MgCl2: Similar to the trends seen for NaCl, the first addition of MgCl2 resulted in 

decreases in linewidth for methyl protons. As the concentration of MgCl2 increased to 0.6 

M, significant broadening was observed (see Figure 5-3f).   

2) Effect of 100 mM NaCho Solutions. 

 Changes in chemical shift. Figure 5-4 shows changes in chemical shifts for solutions 

of 100 mM NaCho with each of the three salts at pH 9.1. As expected, the chosen 

resonances decreased their chemical shift as the salt concentration increased. The overall 

changes in chemical shifts for the three salts are slightly less than those observed for the 

50 mM solution of NaCho at pH 9.1. The greatest changes in chemical shift occurred 

with MgCl2. Above 0.45 M MgCl2, the changes in chemical shifts are not shown due to 

micelle precipitation.    
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Changes in linewidth. Figure 5-4 shows the changes in linewidth for 100 mM NaCho in 

the presence of the three salts at pH 9.1.  

NH4Cl: Minor changes for chosen resonances were observed for NH4Cl; the first 

and second additions of NH4Cl resulted in a decrease in linewidth (see Figure 5-4d).  

Above 0.3 M NH4Cl concentrations, an increase in linewidth is observed and 

begins to plateau around 0.6 M. 

NaCl: Overall, as the concentration of NaCl increases, resonances were slightly 

broadened (see Figure 5-4e). 

MgCl2: Significant changes in linewidth for the chosen resonances were observed 

in the presence in MgCl2. The greatest change in linewidth occurred between 0.3 and 

0.45 M MgCl2 (see Figure 5-4f). The changes in linewidths for 0.45 M are not included in 

the graph because they were beyond the scale of the graph. The scale was not changed in 

order to easily compare the changes in linewiths with the other salts studied. These actual 

values can be found in the supplemental information. Above 0.45 M micelles 

precipitation was observed. 

Cation size and charge at pH 7.4: 

To explore the impact of ionic diameter and charge on NaCho secondary micelles; 

the electrolytes chosen in this study include NH4
+
, Na

+
, and Mg

2+ 
with ionic diameters of 

296, 204, and 144 pm, respectively. In this study, changes in chemical shift (δ) and 

linewidths (Δν1/2) were evaluated and were interpreted with the aid of the theoretical 

predictions presented in Chapter 2.   

Postulates of possible interactions between NH4Cl, NaCl, and MgCl2 with 50 mM 

NaCho: 
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At 50 mM, both primary and secondary micelles of NaCho co-exist. Although the 

relative amounts of primary and secondary micelles are not known at this concentration, 

we have reported that no further changes in chemical shifts and linewidths were observed 

after a concentration of 100 mM is reached
71

, suggesting that only secondary micelles are 

present at 100 mM and above. In this study we compared chemical shifts and linewidths 

observed at 50 mM with those reported at 20 mM NaCho (primary micelles) and 100 mM 

NaCho (secondary micelles). As the electrolyte concentration was increased, changes in 

chemical shifts and linewidths were calculated with respect to the values recorded 

without the addition of salt. We selected those resonances because they are well resolved 

and are associated with key protons in NaCho. H3 is in the head of the molecule, H7 and 

H12 are connected to C7 and C12, where the OH proposed to form a central H-bonding 

belt are attached. H18 and H19 are related to the methyl protons located in the 

hydrophobic core of the micelles. H21 corresponds to the methyl group that is more 

exposed to the hydrophylic face of NaCho. H21 was not included in linewidth studies due 

the splitting pattern and spectral overlap with the H1a resonance. 

Regarding changes in chemical shifts, the trends observed—overall decrease in , 

or shielding of the corresponding protons—were comparable to those observed with 

primary micelles undergoing similar variations in salt concentration. However, each 

electrolyte caused different changes in linewidths suggesting that cation size and charge 

cause significant variations in the degree of micellar compactness, as discussed next.  

NH4Cl: With the first addition of NH4Cl, decreases in linewidths were observed 

for all resonances except H3, whose linewidth did not change significantly upon addition 

of NH4Cl. Since H3 is believed to be located at the top and bottom of primary and 

secondary micelles, this suggests NH4
+
 ions are not interacting with these specific areas 
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in NaCho micelles. On the other hand, the linewidths for H7 and H12 became narrower 

suggesting that NH4
+
 ions are interacting with the lone pairs of the oxygens in the 

hydroxyl groups at C7 and C12. As a result, the hydrogen-belt network is weakened and 

the primary and secondary micelles are more loosely packed causing the narrowing of 

these resonances. As the micelle central-belt is disrupted the linewidths of the three 

methyl resonances also decreased suggesting the loosening of the hydrophobic core of the 

NaCho micelles.  

At concentrations above 0.30 M NH4Cl, broadening was observed for each of the 

chosen resonances. This effect may be due to the tightening of primary/secondary 

micelles or due to association of primary micelles into secondary micelles. NMR spectral 

changes alone cannot discern which possibility prevails but we favor greater association 

due to the reduction of the screening effect.  

NaCl: With the first addition of NaCl interesting changes in linewidth were 

observed. H3 became broader; such a trend was not observed for primary and secondary 

micelles upon addition of NH4Cl. This observation suggests the interaction between Na
+
 

ions and either the COO
-
 and/or OH-3 groups located at the tops and bottoms of primary 

micelles. H7 and H12 showed decreases in linewidth similar to those seen for secondary 

micelles (100 mM) but to a lesser magnitude. These decreases suggest that Na
+
 ions are 

weakening the central hydrogen-bond belt network. The disruption of the central belt has 

a significant impact on the loosening of the micelles core (H18 and H19). Overall, Na
+
 

ions disrupt all areas (top/bottom and central H-bond belt) in NaCho micelles unlike 

trends seen with the addition of NH4Cl that only had a significant impact around the 

central H-bond belt. Na
+
 ions effectively interact with COO

-
 due to a smaller ionic 
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diameter whereas; NH4
+
’s size and dispersed charge reduces or eliminates such 

interactions.  

  At 0.30 M NaCl, the resonances for H3 as well as H7 and H12 became slightly 

narrower. This indicates that Na
+ 

ions are beginning to disrupt the central belt to a greater 

extent than the top and bottom of the micelles. This effect is also reflected through the 

significant decrease in methyl resonances. The degree of impact with the first addition of  

salt is less than NH4
+
 ions due to NH4

+
’s larger size. However, Na

+
 ions continue to cause 

disruptions on hydrogen-bond networks until 0.45 M NaCl is reached; unlike tends 

observed with NH4Cl. This disruption causes the loosening of primary and secondary 

micelles; it is also possible secondary micelles are breaking apart into primary micelles. 

Above 0.45 M, all resonances began to broaden, particularly those associated with H18 

and H19.  H3, H7, and H12 resonances did not broaden to values of 50 mM NaCho in the 

absence of salt, suggesting the H-bond networks are not as tight. Similar to trends 

observed with NH4
+ 

ions, association of primary to secondary micelles is most plausible 

due to the weakening of the screening effect. The degree of broadening achieved at 0.6 M 

NaCl is not as significant as seen with NH4Cl. This may be due to the greater disruption 

caused by NaCl that could lead to an increase in the number of primary micelles. 

Therefore, the number of exposed negative charges is expected to be greater with NaCl 

compared to that in the presence of NH4Cl. Even at this high concentration of NaCl, it is 

possible that the amount of Na
+
 ions in solution is not enough to screen the increased 

number of negative charges. As a result, the association of primary micelles into 

secondary micelles may be less than NH4Cl based on the degree of broadening for chosen 

resonances. However, overall association of primary micelles is expected to be greater 
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with Na
+
 ions since they are more effective at reducing electrostatic charges around the 

top and bottom of micelles due to its smaller ionic diameter. 

MgCl2: The addition of Mg
2+

 ions caused the largest decrease in linewidths 

compared to the other salts. Linewidths decreased for all resonances with the first 

addition of MgCl2 particularly for the three methyl resonances. Mg
2+

 ions disrupt all 

areas of NaCho micelles similar to NaCl. This trend is unlike trends seen in 20 mM 

NaCho primary micelles suggesting the loosening of secondary micelles outweighs the 

tightening of primary micelles seen at 20 mM NaCho. Secondary micelles become 

loosened through disruption of hydrogen-bonding networks that hold the secondary 

micelle assembly together. Compared to the other two salts, Mg
2+

 ions are more effective 

at disrupting micelles as seen in the significant decreases in linewidths for all resonances. 

At 0.3 M MgCl2 concentrations, linewidths increased for all resonances. It is 

possible that this broadening is caused by a less effective screening effect causing the 

association of primary micelles. Due to the disruption observed at lower concentrations 

of MgCl2, the amount of primary micelles present may also increase, similar to the effect 

seen with NaCl. Greater additions of Mg
2+

 did not affect the linewidths significantly. It is 

possible that the small Mg
2+

 ions can enter into secondary micelles; as a result, primary 

micelles may be pushed further apart from one another. This effect may be due to the 

buildup of positive charges. This could result in repulsive forces that keep NaCho 

primary micelles farther apart from each other thus resulting in a looser secondary 

micelle. However, this effect is not creating further decreases in linewidths but it is 

inhibiting the association of primary micelles into secondary micelles.   
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Postulates of possible interactions between NH4Cl, NaCl, and MgCl2 with 100 mM 

NaCho: 

At concentrations of 100 mM NaCho only secondary micelles are present. Similar 

to 50 mM NaCho, changes in chemical shifts followed the expected trends (decrease in 

); therefore, the focus of this discussion will focus on changes in linewidths as each salt 

is introduced as well as interpretations for interactions between the various cations and 

secondary micelles. 

NH4Cl: As NH4Cl was introduced, narrowing of chosen resonances was observed. 

This effect may be a result of NH4
+
 ions being attracted to hydroxyl lone pairs, resulting 

disruption or weakening hydrogen-bond networks. If NH4
+
 ions are in the vicinity of the 

central H-belt; this could result in loosening of the hydrophobic core indicated by the 

narrowing of methyl resonances. Indeed methyl resonances were impacted the greatest by 

the first addition of NH4Cl, as a result, secondary micelles are loosened (see Figure 5-5b). 

Slight increases in linewidth were observed as the concentration of NH4Cl increased from 

0.3 to 0.60 M (see Figure 5-5c). However, the broadening observed never reached the 

linewidth values of 100 mM NaCho in the absence of salt. Also, the degree of broadening 

was significantly less than that seen at 50 mM NaCho concentrations; this may be due to 

the increased ratio of NaCho to salt concentration.  

NaCl: Similar to trends observed with NH4Cl, resonances became narrower with 

the first addition of NaCl (decrease 1/2). Na
+
 ions continued to cause narrowing for all 

resonances as NaCl was increased to 0.3 M (see Figure 5-5b). Above 0.45 M NaCl, 

resonances showed slight broadening but never reached the linewidth measured for 100 

mM NaCho with no additional salt (see Figure 5-5c). At higher concentrations of NaCl, 

the degree of broadening observed for all resonances was greater than that observed for  
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Figure 5-5. a) Secondary micelle in the absence of salt b) Cartoon showing NH4
+
 and 

Na+ ions weakening the hydrogen- bonding networks and c) cations are incorporated into 

these networks resulting in a more compact secondary micelle.   
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similar concentrations of NH4Cl. This difference in broadening may be due to Na
+
 ions 

having a centrally located charge thus, minimizing the screening effect more efficiently. 

As a result, tighter secondary micelles are formed.         

MgCl2: The first addition of MgCl2 produced results similar to those seen with 

NH4
+
 and Na

+
 ions. However, Mg

2+
 ions resulted in greater decreases in linewidth. The 

three methyl resonances become significantly narrower than other resonances; this may 

suggest loosening of secondary micelles (see Figure 5-6b). Above 0.15 M MgCl2 

significant broadening for the chosen resonances was observed. Broadening may be 

caused by either or both aggregation as the Mg
2+

 ions shield the negative charges of  

COO- and allow for micelles to associate together, and/or the tightening of secondary 

micelles due to Mg
2+

 becoming incorporated into the hydrogen-bonding networks 

forming a metal ion-dipole network (see Figure 5-6c). Although both effects may occur 

simultaneously, aggregation is proposed to be the main cause of line broadening. Indeed, 

as the concentration of MgCl2 increased from 0.45 to 0.6 M, precipitation of secondary 

micelles was observed. 

Cation size and charge at pH 9.1: 

Postulates of possible interactions between NH4Cl, NaCl, and MgCl2 with 50 mM 

NaCho: 

Similar to the studies at pH 7.4, changes in andwere calculated at 50 and 

100 mM NaCho with respect to the values recorded in the absence of salt. The trends 

observed in the 'swere comparable to pH 7.4 for each NaCho concentration. Increasing 

salt concentration resulted in the shielding of chosen protons (decrease and as 

expected, Mg
2+

 ions caused the greatest degree of shielding. However, changes in 

linewidth varied for each electrolyte, as also seen at pH 7.4, suggesting cation size and  
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Figure 5-6. a) Secondary micelle in the absence of salt b) Cartoon showing at 0.15 M 

MgCl2, Mg
2+

 ions loosen secondary micelles and c) Above 0.45 M MgCl2, tighter 

secondary micelles are formed due to the incorporation of Mg
2+

 ions. Aggregation of 

secondary micelles is also present.   
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charge play a key role in altering NaCho micelles. Before presenting the interpretations 

of for each cation, it is relevant to point out that at pH 9.1, the narrower resonances 

observed suggest that primary and secondary micelles are looser when compared to pH 

7.4 (see Figure 5-7). The loosening effect observed at pH 9.1 may be due to the 

attractions between excess hydroxide ions in solution with hydroxyl groups in NaCho 

micelles positioned at C3, C7, and C12. This may lead to the weakening of the hydrogen-

belt network causing the overall loosening of micelles, including the hydrophobic core, as 

indicated by narrowing of the resonances for the methyl protons H18 and H19.   

NH4Cl: After the first addition of NH4Cl, the linewidths decreased, except for H3. 

The narrowing of H7, H12, and the three methyl groups suggests secondary micelles are  

becoming loosened. At this higher pH, excess hydroxide ions are present in solution and 

are expected to be in the vicinity of the hydrogen-belt network. In the presence of NH4Cl, 

it is anticipated NH4
+
 ions to be attracted to hydroxide ions therefore, causing further 

disruption around the central hydrogen-belt. Above 0.15 M NH4Cl linewidths increased, 

indicating the transition of primary micelles associating into secondary micelles as well 

as the tightening of secondary micelles. The linewidth for H3 does not significantly 

increase until 0.45 M NH4Cl, where it began to increase following the other resonances. 

The linewidths measured for 50 mM NaCho with 0.45 and 0.6 M NH4Cl were compared 

to the linewidths for primary and secondary micelles without the addition of salt. The 

resonances were broader for 50 mM NaCho with 0.45 and 0.6 M NH4Cl than for 

secondary micelles. This indicates that at higher salt concentrations secondary micelles 

are becoming more compact. The tightening of secondary micelles may be due to the 

incorporation of NH4
+
 ions into the hydrogen-bonding networks that hold the primary 

micelles within the secondary micelles assembly.  
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Figure 5-7. Secondary micelle in the absence of salt for pH 7.4 and 9.1.  At pH 9.1 the 

presence of OH- ions leads to the overall loosening of the secondary micelle structure.  
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NaCl: In the presence of 0.15 M NaCl, slight decreases in linewidth occurred for 

the resonances related to H3, H7, and H12. Decreases in the three methyl resonances 

were also observed. This indicates loosening of the secondary micelle core. As the 

concentration of NaCl increased, the resonances slightly broadened suggesting 

incorporation of Na
+
 ions in the hydrogen-bond networks and the tightening of the central 

hydrogen-bond belt (by metal ion-dipole interactions) and/or association of primary 

micelles into secondary micelles. With the last addition of NaCl, all resonances did not 

show significant changes in linewidth.  

MgCl2: Decreases in linewidth were observed for the three methyl resonances and 

H12. The linewidth of H3 remained the same but H7 increased its linewidth. The 1/2 seen 

after the first addition of MgCl2 was similar to recorded values of primary and secondary 

micelles; overall Mg
2+

 ions are creating looser secondary micelles by interacting with H-

bonding networks holding the secondary micelles together. Above 0.3 M MgCl2, 

resonances broadened significantly; the impact with Mg
2+

 ions was greater than the other 

two cations. This effect may be due to the doubly charged nature of the Mg
2+

 ion that can 

effectively minimize the screening effect. At higher Mg
2+

 concentrations, association of 

primary micelles and the tightening of secondary micelles may both occur as reflected by 

the significant increases in linewidth for all resonances.  

Postulates of possible interactions between NH4Cl, NaCl, and MgCl2 with 100 mM 

NaCho: 

NH4Cl: Unlike the other two salts, the first addition of NH4Cl caused the 

narrowing of chosen resonances; and similar to 50 mM NaCho at pH 9.1, the methyl 

resonances (H18 and H19) were impacted the greatest. This effect may be due to the size 

of NH4
+
 ions; with its larger ionic diameter it can cause greater disruption around the 
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central hydrogen belt thus, resulting in the loosening of the hydrophobic core in 

secondary micelles (see Figure 5-8b). Above 0.15 M NH4Cl, the linewidths began to 

increase and at higher concentrations resonances broaden slightly more than 100 mM 

NaCho without additional salt; suggesting the tightening of secondary micelles (see 

Figure 5-8c). This trend begins to plateau around 0.6 M NH4Cl; this may be due to the 

amount NH4Cl compared to the increased amount of NaCho relative to 50 mM NaCho.  

NaCl: As NaCl is introduced to secondary micelles, slight changes in linewidths 

were observed; all resonances increased in linewidth except for H18 and H19. This 

suggests the beginning of the formation of tighter secondary micelles. Above 0.15 M 

NaCl, resonances broadened with increasing salt concentration; this may be due to the 

incorporation of Na
+
 ions into the central hydrogen-belt network through metal ion-

dipole interactions as well as around the top and bottom of the micelles leading to the 

tightening of secondary micelles. Changes in linewidth were not as significant as seen in 

50 mM NaCho at similar pH; this may be due to high NaCho concentrations consisting of 

secondary micelles carrying an overall negative charge. Therefore, it would take higher 

concentrations of NaCl (above 0.6 M) to see increased broadening or further aggregation 

that would lead to precipitation.  

MgCl2: In the presence of MgCl2, linewidths increased after the first addition of 

MgCl2 for all resonances, unlike the trends seen for NH4
+
 and Na

+
 ions. Significant 

broadening was observed between 0.30 and 0.45 M (see Figure 5-10b). As mentioned 

with NaCl, the presence of the greater negative charge at these NaCho concentrations 

requires higher salt concentrations. Mg
2+

 is an exception due to its double charge; in fact, 

with higher MgCl2 concentrations Mg
2+

 ions can overcome the screening effect that holds 

secondary micelles apart. This effect was observed at and above 0.45 M MgCl2 where  
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Figure 5-9. a) Secondary micelle in the absence of salt at pH 9.1 b) Cartoon showing at 

0.15 M NaCl, tighter secondary micelles are formed due to the incorporation of Na
+
 ions 

into the extended hydrogen-bond networks. 
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Figure 5-10. a) Secondary micelle in the absence of salt at pH 9.1 b) Above 0.15 M 

MgCl2, Mg
2+

 ions cause association of secondary micelles into larger aggregates. Above 

0.45 M MgCl2 precipitation of secondary micelles is observed. 
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solutions became cloudy due to association of secondary micelles into larger aggregates. 

This effect is represented by the larger increases in linewidth seen at 0.45 M MgCl2. As 

these aggregates become larger, micelles begin to precipitate out of solution; this is also 

supported by visual observations.      

 

CONCLUSIONS 

At 50 mM NaCho primary and secondary micelles co-exist and at 100 mM 

NaCho, only secondary micelles are present. The following conclusions are limited to the 

results obtained for 100 mM NaCho because at this concentration only secondary 

micelles are present.  

Comparing the three salts, NH4
+
 and Na

+
 ions caused the greatest disruption of the 

extended hydrogen-bond belt; this suggests that the size of the ion affects the degree of  

disruption. As the concentration of monovalent cations increased it is possible these 

cations cause the tightening of secondary micelles. It is possible that the cations enter the 

secondary micelles and become integrated into the extended hydrogen bonding networks 

(by metal ion-dipole interactions) and reinforces them. As expected, Mg
2+

 showed the 

greatest decrease in chemical shifts compared to the other salts studied. The smaller ionic 

diameter and larger charge density of Mg
2+

 accounts for the more effective reduction in 

the screening effect that keep secondary micelles from aggregating. Indeed, Mg
2+

 caused 

the tightening of secondary micelles and at high MgCl2 concentrations micelle 

aggregation and eventual precipitation were observed.       

The major findings of these studies demonstrate that the tightening or loosening 

of secondary micelles can be modified by changes in pH and salt concentration. It would 
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be beneficial to investigate simultaneously the aggregation number and monitor micellar 

growth as the salt concentration increases for both mono- and divalent cations.    
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CHPATER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

The studies included in this dissertation explored the molecular organization of 

primary and secondary micelles of sodium cholate (NaCho), one of the most abundant 

primary bile salts produced in our bodies. These micelles were studied at physiological 

pH and in the absence of additional salts first. In addition, primary and secondary 

micelles have been studied in the absence of and in the presence of mono- and divalent 

cations at neutral and basic pH. The impact of salt concentration was explored to 

understand how primary and secondary micelles interact with cations that vary in size 

and charge. From nuclear magnetic resonance (NMR) spectral changes in chemical shift 

and linewidth, the interactions between the different cations (NH4
+
, Na

+
, Mg

2+
 and Ca

2+
) 

were inferred and models to describe these interactions have been proposed and tested. 

The paragraphs below summarize the main conclusions of this project and provide 

possible directions for future research. 

 

New and Powerful of NMR spectrometer (700 vs 500 MHz) 

NMR spectroscopy is an essential tool in chemistry for the characterization and 

determination of molecular structures. NMR spectroscopy was used throughout all the 

studies of NaCho primary and secondary micelles presented in this dissertation. Both a 

500 and a 700 MHz NMR spectrometer were used to acquire one- and two-dimensional 
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spectral traces. All salt concentration and pH studies were acquired on the 500 MHz 

instrument to explore the impact of these parameters on primary and secondary micelles. 

Then, the presence of the 700 MHz NMR instrument studies on the molecular 

arrangements of NaCho primary and secondary micelles were obtained. The stronger 

magnet in this instrument provided greater spectral resolution and sensitivity in the 

measurements and allowed for faster acquisition times. In addition to the higher magnetic 

field, this instrument is equipped with a cryogenically cooled probe. This technological 

advancement enables a three- or four-fold enhancement in sensitivity compared to 

conventional probes.
72

 The increased spectral resolution was crucial for the studies on the 

molecular arrangements of primary and secondary micelles because twenty-five 

resonances appear within a narrow spectral region between 1.0 and 2.3 ppm. 2D HSQC 

experiments examined through-bond interactions between two different types of nuclei 

(
1
H and 

13
C). This technique and the enhancement of sensitivity and spectral resolution 

achieved by the 700 MHz spectrometer allowed the confirmation and correction of 

NaCho assignments and importantly, each resonance could be followed at the various 

conditions tested. In addition, 2D NMR ROESY was applied to examine through-space 

interactions (< 5 Å) among NaCho protons in the monomer as well as in primary and 

secondary micelles. This information was used to test and validate the models proposed 

for the micellar arrangements. 

Theoretical Predictions 

NMR spectroscopy was applied to explore the changes that take place as NaCho 

monomers associate to form primary micelles (first micellization) and as primary micelle 

aggregate to form secondary ones (second micellization). The results from these studies 

were interpreted based on trends observed for chemical shifts calculated theoretically 
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using the polarizable continuum medium (PCM) approach for solvents with different 

dielectric constants. The analysis of these trends played a significant role in the 

interpretation of experimental data that, in turn, allowed for the postulation of molecular 

arrangements for primary and secondary micelles. These predictions showed the 

deshielding of most proton resonances (increase in ) as the polarity of the solvent 

increased. However, these predictions showed opposite changes in chemical shift for 

protons on the hydrophilic face of the NaCho monomer. This is due to the presence of 

paramagnetic fields generated by lone pair electrons. In a non-polar environment, the 

oxygen lone pairs present in the OH groups at C3, C7, and C12 cause deshielding of 

neighboring protons. When the environment becomes more polar, these lone pairs 

interact with the solvent, thus reducing the deshielding of neighboring protons.  

Primary Micelle Model 

From the interpretations of changes in chemical shifts observed for NaCho 

protons as the first micellization process occurs, the barrel-like model was postulated for 

primary micelles. In this model, four (or six) NaCho monomers associate in an anti-

parallel arrangement to form primary micelles. These micelles are held together by a 

central hydrogen-bond ‘belt’ that includes the hydroxyl groups (OH-7 and OH-12). At 

the top and bottom of the barrel, the monomers interact with their neighbors via ion-

dipole and water-mediated H-bonds. For the first time, the barrel-like model postulated 

for primary micelles has been validated using through-space magnetization transfer 2D-

NMR ROESY techniques. The results from these experiments place protons located on 

the head of the monomer in the proximity of protons on the tail of the neighboring 

monomer.    
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Secondary Micelle Model 

Previous studies on bile salt micelles had been limited to primary micelles only. 

There has been little information offered on secondary micelles. A previous study on 

secondary micelles provided the concentration at which secondary micelles form and 

postulated (based only on the chemical features of bile salts) that primary micelles 

aggregate to form secondary ones through hydrogen bonding interactions.
10

 In this 

dissertation, detailed studies on the molecular arrangements of secondary micelles have 

been presented. For the first time, a model has been proposed on the arrangement of 

primary micelles within secondary ones. In this model, primary micelles form stacks 

where the tops and bottoms of neighboring primary micelles are held together through H-

bonding and ion-dipole interactions. These stacks interact with neighboring stacks in a 

staggered fashion and extended H-bonding belts surround the secondary micelle. 

Hydrogen-bonding plays an important role in the stabilization of these nanostructures. 

This model has been partially tested using 2D-NMR ROESY techniques and 

further studies are needed to validate conclusively the postulated model for secondary 

micelles. It is proposed however that water pockets are present between the hydrophilic 

surfaces of primary micelles within the secondary micelles structure (see Figure 6-1). The 

size and geometry of these pockets are unknown but their study could be potentially 

useful for the incorporation of hydrophilic compounds that due to their polarity cannot 

traverse biomembranes. Possible approaches for such studies are mentioned later in this 

chapter. 

Intercalation of NH4
+
 and Na

+
 into H-bond Belt 

Linewidth studies for NaCl and NH4Cl showed an overall narrowing of proton 

resonances suggestive of the loosening of primary micelles. In order for the micelle to  
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Figure 6-1: Proposed model for NaCho secondary micelles showing the presence of 

water pockets between the hydrophilic surfaces of primary micelles with in the secondary  

micelle structure. 
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expand, the hydrogen-bonding network involving the OH groups at C7 and C12 must be 

weakened or disrupted by NH4
+
 or Na

+
 ions. However, as the salt concentration increased 

above 0.3 M, the υ1/2 increased indicating the formation of tighter primary micelles. 

This suggests that after the initial expansion of the micelles, NH4
+
 or Na

+
 ions may be 

integrated within the hydrogen-bonding central belt as well as within the top and bottom 

networks and bring the micelle back to a more compact state. 

Aggregation and Precipitation with Ca
2+

 ions 

The divalent cation, Ca
2+

 caused a greater decrease in chemical shift compared to 

the monovalent cations studied. This is attributed to calcium’s higher charge density and 

smaller ionic diameter that allows for a more effective reduction in the deshielding effect 

of OH
-
 groups. Linewidth studies suggest that Ca

2+
 ions lead to more compact micelles. 

However, Ca
2+

 ions have a high affinity toward the COO
-
 groups on NaCho located at the 

tops/bottoms of primary micelles. This interaction leads to the aggregation of primary 

micelles and at high CaCl2 concentration, micelle precipitation was observed. Further 

studies are needed to determine the aggregation number of NaCho primary micelles as 

salt concentration is increased.              

Mg intercalation and tightening 

MgCl2 caused initial broadening at low concentrations (< 0.3 M) and, at 

concentrations above 0.3 M, a decrease in linewidth was observed. This suggests the 

partial loosening of the micelles and may be attributed to the excess Mg
2+

 ions that may 

compete for the OH groups in the H-bond-Mg
2+

 central belt. As the OH groups interact 

with both internal and external Mg
2+

 ions, the strength of the belt is reduced. At pH 9.1, 

at higher salt concentrations, the linewidths increased, suggesting that tighter micelles 

may be formed.  
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As mentioned in Chapter 4, it is unclear to determine if micelles are becoming more 

compact or aggregation occurs.  

Future Directions for the Use of Bile Salts as Drug Carriers 

Small hydrophobic molecules easily partition across lipid membranes. However, 

hydrophilic molecules require a selective transport system or they are otherwise unable to 

traverse biomembranes.
73

 The ability to transport hydrophilic molecules for subsequent 

intracellular delivery is a difficult challenge but worth pursuing as many drug candidates 

contain polar moieties. Bile acids have been investigated as carriers of polar molecules.  

Kahne and co-workers investigated bile acids derivatives as potential drug 

delivery transporters. They synthesized derivatives of cholic acid by attaching glucose 

units to hydroxyl groups on C7 and C12 creating additional hydrogen-bonding groups. 

As a result, the hydrophilicity of the polar surfaces on the amphiphile was altered. Their 

findings showed that the overall hydrophobicity of the molecule does not predict how 

efficient the bile acid will be at transporting polar molecules across the lipid bilayer. 

Indeed, the more hydrophilic, glycosylated compound was more effective in transporting 

polar molecules across the membrane. This study demonstrates the use of bile acids as 

capable transport agents for polar compounds.
73,74

 However, the nature of the interactions 

between polar drug compounds and bile acids was not addressed.  

Previous studies on the interactions between sodium cholate and adenosine 

triphosphate (ATP) revealed H-bonding interactions between ATP with the hydrophilic 

surface of NaCho primary micelles.
49

 ATP was proposed to remain in the “self stacked” 

conformation allowing the adenosyl moiety of ATP to form H-bonds with the H-bonding 

central belt of NaCho primary micelles.  
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To further test the possibility of trapping ATP within the water pockets of 

secondary micelles, additional studies need to be completed. 2D NMR ROESY studies 

will provide information on where ATP is interacting with NaCho secondary micelles. 

We should be able to see new cross peaks between protons of ATP and NaCho if they are 

within 5Å. However, as mentioned before, the size of these water pockets is unknown; if 

they are large enough and ATP is indeed trapped inside the water pockets, the distance 

between ATP and NaCho could be larger than 5 Å. In this scenario, it would not be 

possible to observe any off-diagonal peaks between ATP and NaCho. Nonetheless, using 

the knowledge gained from the studies on secondary micelles and the impact of salt 

concentration and pH, it is possible to adjust the relative size of the water pockets i.e. 

making them smaller by creating more compact micelles, as a result, contacts between 

ATP and NaCho would be observed.   

In addition to the entrapment of ATP within the water pockets of secondary 

micelles, it is also expected that ATP will interact with the surface of secondary micelles 

in a fashion similar to that described for ATP attachment to NaCho primary micelles. 

Since we are only interested in the trapped ATP, we can explore enzymatic digestion 

using ATPase as another method to quantify how much ATP is not trapped. Assuming 

that ATPase cannot enter the secondary micelles, only externally bound and free ATP 

will be converted to adenosine diphosphate (ADP). The ratio of ATP to ADP can be 

monitored by 
31

P NMR spectroscopy. After determining whether or not ATP can indeed 

be trapped, exploring ways to enhance ATP uptake and delivery is necessary. We predict 

that secondary micelles with trapped hydrophilic molecules will cross the lipid 

membrane. As the concentration of bile salts in the intracellular fluid is lower, this may 
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cause demicellization where the secondary micelle assembly would break apart into 

primary micelles thus releasing the trapped hydrophilic molecules.  

 

Concluding Remarks 

 

This work produced two detailed models for primary and secondary micelles. 

This testing would not have been possible without the availability of the new 700 MHz 

NMR spectrometer equipped with the cryogenically cooled probe.  Results from the salt 

concentration studies can be implemented in future studies for bile salt micelles as drug 

carriers. The incorporation of molecules can be enhanced by altering the salt 

concentration to create looser primary and secondary micelles. Once the molecule of 

interest is incorporated, specific amounts of salt can be added to tighten these micelles. 

These studies can be implemented to improve the entrapment of both hydrophilic and 

hydrophobic molecules. In addition, ROESY or NOESY NMR techniques can be used to 

explore the interactions between bile salt micelles and the molecules of interest.     



134 

REFERENCES 

1. Shaw, R.; Elliott, W.; Barisas, B. G., Estimation of critical micelle concentrations 

of bile acids by reversed-phase high performance liquid chromatography. Mikrochim 

Acta 1991, 105 (4-6), 137-145. 

2. le Maire, M.; Champeil, P.; Møller, J. V., Interaction of membrane proteins and 

lipids with solubilizing detergents. Biochimica et Biophysica Acta (BBA) - Biomembranes 

2000, 1508 (1–2), 86-111. 

3. Garidel, P.; Hildebrand, A., Thermodynamic properties of association colloids. 

Journal of Thermal Analysis and Calorimetry 2005, 82 (2), 483-489. 

4. Goyal, P.; Aswal, V., Micellar structure and inter-micelle interactions in micellar 

solutions: Results of small angle neutron scattering studies. CURRENT SCIENCE-

BANGALORE- 2001, 80 (8), 972-979. 

5. Seddon, A. M.; Curnow, P.; Booth, P. J., Membrane proteins, lipids and 

detergents: not just a soap opera. Biochimica et Biophysica Acta (BBA) - Biomembranes 

2004, 1666 (1–2), 105-117. 

6. Nelson, D. L.; Lehninger, A. L.; Cox, M. M., Lehninger principles of 

biochemistry. W.H. Freeman: New York, 2008. 

7. London, E.; Brown, D. A., Insolubility of lipids in Triton X-100: physical origin 

and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochimica et 

Biophysica Acta (BBA) - Biomembranes 2000, 1508 (1–2), 182-195. 



135 

8. Funasaki, N.; Fukuba, M.; Hattori, T.; Ishikawa, S.; Okuno, T.; Hirota, S., Micelle 

formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR 

spectroscopy. Chem Phys Lipids 2006, 142 (1-2), 43-57. 

9. Stark, R. E.; Leff, P. D.; Milheim, S. G.; Kropf, A., Physical studies of CHAPS, a 

new detergent for the study of visual pigments. The Journal of Physical Chemistry 1984, 

88 (24), 6063-6067. 

10. Small, D. M., Size and structure of bile salt micelles: influence and structure, 

concentration, counterion concentration, pH and temperature. In E.D Goddard, Ser., A. 

C., Ed. Plemum Press: New York, 1968; Vol. 84, pp 31-52. 

11. Roda, A.; Hofmann, A. F.; Mysels, K. J., The influence of bile salt structure on 

self-association in aqueous solutions. J Biol Chem 1983, 258 (10), 6362-70. 

12. Hofmann, A. F., Bile Acids: The Good, the Bad, and the Ugly. News Physiol Sci 

1999, 14, 24-29. 

13. Navas D  az, A.   arc  a S nchez, F.   arc  a Pareja, A., Cholic acid behavior in 

water and organic solvent: study of normal and inverted aggregates. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects 1998, 142 (1), 27-34. 

14. Small, D. M., The physical chemistry of cholanic acids. The bile acids 1971, 1, 

249-356. 

15. O'Connor, C. J.; Ch'ng, B. T.; Wallace, R. G., Studies in bile salt solutions: 1. 

Surface tension evidence for a stepwise aggregation model. Journal of Colloid and 

Interface Science 1983, 95 (2), 410-419. 



136 

16. Mukhopadhyay, S.; Maitra, U., Chemistry and biology of bile acids. Current 

Science 2004, 87 (12), 1666-1683. 

17. Trauner, M.; Boyer, J. L., Bile Salt Transporters: Molecular Characterization, 

Function, and Regulation. Physiological Reviews 2003, 83 (2), 633-671. 

18. Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A., Membranolytic activity of bile 

salts: influence of biological membrane properties and composition. Molecules 2007, 12 

(10), 2292-326. 

19. Carey, M. C.; Small, D. M., Micelle Formation by Bile-Salts - Physical-Chemical 

and Thermodynamic Considerations. Arch Intern Med 1972, 130 (4), 506-&. 

20. Baskin, R.; Frost, L. D., Bile salt-phospholipid aggregation at submicellar 

concentrations. Colloids Surf B Biointerfaces 2008, 62 (2), 238-42. 

21. Hofmann, A. F.; Small, D. M., Detergent properties of bile salts: correlation with 

physiological function. Annu Rev Med 1967, 18, 333-76. 

22. Simonović, B.  Momirović, M., Determination of critical micelle concentration of 

bile acid salts by micro-calorimetric titration. Mikrochim Acta 1997, 127 (1-2), 101-104. 

23. Matsuoka, K.; Moroi, Y., Micelle formation of sodium deoxycholate and sodium 

ursodeoxycholate (part 1). Biochim Biophys Acta 2002, 1580 (2-3), 189-99. 

24. Ninomiya, R.; Matsuoka, K.; Moroi, Y., Micelle formation of sodium 

chenodeoxycholate and solubilization into the micelles: comparison with other 

unconjugated bile salts. Biochimica et Biophysica Acta (BBA) - Molecular and Cell 

Biology of Lipids 2003, 1634 (3), 116-125. 



137 

25. Reis, S.; Moutinho, C. G.; Matos, C.; de Castro, B.; Gameiro, P.; Lima, J. L., 

Noninvasive methods to determine the critical micelle concentration of some bile acid 

salts. Anal Biochem 2004, 334 (1), 117-26. 

26. Madenci, D.; Egelhaaf, S. U., Self-assembly in aqueous bile salt solutions. 

Current Opinion in Colloid & Interface Science 2010, 15 (1-2), 109-115. 

27. Matsuoka, K.; Suzuki, M.; Honda, C.; Endo, K.; Moroi, Y., Micellization of 

conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into 

their micelles: comparison with other four conjugated bile salts species. Chem Phys 

Lipids 2006, 139 (1), 1-10. 

28. Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B., Quasielastic light 

scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of 

bile salt micelles. Biochemistry-Us 1979, 18 (14), 3064-3075. 

29. Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A., Thermodynamic 

characterization of bile salt aggregation as a function of temperature and ionic strength 

using isothermal titration calorimetry. Langmuir 2000, 16 (12), 5267-5275. 

30. Zhang, X.; Jackson, J. K.; Burt, H. M., Determination of surfactant critical 

micelle concentration by a novel fluorescence depolarization technique. Journal of 

Biochemical and Biophysical Methods 1996, 31 (3–4), 145-150. 

31. Lopez, F.; Samseth, J.; Mortensen, K.; Rosenqvist, E.; Rouch, J., Micro- and 

Macrostructural Studies of Sodium Deoxycholate Micellar Complexes in Aqueous 

Solutions. Langmuir 1996, 12 (26), 6188-6196. 



138 

32. Schurtenberger, P.; Mazer, N.; Kaenzig, W., Static and dynamic light scattering 

studies of micellar growth and interactions in bile salt solutions. The Journal of Physical 

Chemistry 1983, 87 (2), 308-315. 

33. Kawamura, H.; Murata, Y.; Yamaguchi, T.; Igimi, H.; Tanaka, M.; Sugihara, G.; 

Kratohvil, J. P., Spin-label studies of bile salt micelles. The Journal of Physical 

Chemistry 1989, 93 (8), 3321-3326. 

34. Campanelli, A.; Candeloro De Sanctis, S.; Giglio, E.; Viorel Pavel, N.; Quagliata, 

C., From crystal to micelle: A new approach to the micellar structure. J Incl Phenom 

Macrocycl Chem 1989, 7 (4), 391-400. 

35. Campanelli, A. R.; Desanctis, S. C.; Chiessi, E.; Dalagni, M.; Giglio, E.; 

Scaramuzza, L., Sodium Glycodeoxycholate and Taurodeoxycholate - Possible Helical 

Models for Conjugated Bile-Salt Micelles. J Phys Chem-Us 1989, 93 (4), 1536-1542. 

36. Jacobsen, N. E., NMR Spectroscopy Explained: Simplified Theory, Applications 

and Examples for Organic Chemistry and Structural Biology. Wiley: 2007. 

37. Macomber, R. S., A complete introduction to modern NMR spectroscopy. Wiley: 

New York, 1998; p xvii, 382 p. 

38. Lambert, J. B., Organic structural spectroscopy. Prentice Hall PTR: 1998. 

39. Sanders, J. K. M.; Hunter, B. K., Modern Nmr Spectroscopy: A Guide for 

Chemists. Oxford University Press, Incorporated: 1993. 

40. Barnes, S.; Geckle, J. M., High resolution nuclear magnetic resonance 

spectroscopy of bile salts: individual proton assignments for sodium cholate in aqueous 

solution at 400 MHz. J Lipid Res 1982, 23 (1), 161-70.



139 

 

41. Ishikawa, H.; Nakashima, T.; Inaba, K.; Mitsuyoshi, H.; Nakajima, Y.; Sakamoto, 

Y.; Okanoue, T.; Kashima, K.; Seo, Y., Proton magnetic resonance assay of total and 

taurine-conjugated bile acids in bile. J Lipid Res 1999, 40 (10), 1920-1924. 

42. Stevens, R. D.; Ribeiro, A. A.; Lack, L.; Killenberg, P. G., Proton magnetic 

resonance studies of the aggregation of taurine-conjugated bile salts. J Lipid Res 1992, 33 

(1), 21-9. 

43. Waterhous, D. V.; Barnes, S.; Muccio, D. D., Nuclear magnetic resonance 

spectroscopy of bile acids. Development of two-dimensional NMR methods for the 

elucidation of proton resonance assignments for five common hydroxylated bile acids, 

and their parent bile acid, 5 beta-cholanoic acid. J Lipid Res 1985, 26 (9), 1068-78. 

44. Campredon, M.; Quiroa, V.; Thevand, A.; Allouche, A.; Pouzard, G., NMR 

studies of bile acid salts: 2D NMR studies of aqueous and methanolic solutions of sodium 

cholate and deoxycholate. Magnetic Resonance in Chemistry 1986, 24 (7), 624-629. 

45. Funasaki, N.; Ueshiba, R.; Hada, S.; Neya, S., Stepwise Self-Association of 

Sodium Taurocholate and Taurodeoxycholate As Revealed by Chromatography. The 

Journal of Physical Chemistry 1994, 98 (44), 11541-11548. 

46. Funasaki, N.; Hada, S.; Neya, S., Self-Association Patterns of Sodium 

Taurocholate and Taurodeoxycholate As Studied by Frontal Derivative Chromatography. 

The Journal of Physical Chemistry B 1998, 103 (1), 169-172. 



140 

47. Funasaki, N.; Fukuba, M.; Kitagawa, T.; Nomura, M.; Ishikawa, S.; Hirota, S.; 

Neya, S., Two-dimensional NMR study on the structures of micelles of sodium 

taurocholate. J Phys Chem B 2004, 108 (1), 438-443. 

48. Puppato, A. J. Analytical and biophysical studies of sodium cholate micelles and 

phospholipids. Ph.D. Dissertation, University of Louisville, Louisville, 2008. 

49. Phillips, S. C. PREPARATION AND CHARACTERIZATION OF METAL 

OXIDE/ADENOSINE TRIPHOSPHATE/BILE SALT NANOHYBRIDS. Dissertation, 

University of Louisville, Louisville, 2009. 

50. Bauer, E.; Jakob, S.; Mosenthin, R., Principles of physiology of lipid digestion. 

Asian-australasian journal of animal sciences 2005, 18 (2), 282-295. 

51. Santhanalakshmi, J.; Lakshmi, G.; Aswal, V. K.; Goyal, P. S., Small-angle 

neutron scattering study of sodium cholate and sodium deoxycholate interacting micelles 

in aqueous medium. J Chem Sci 2001, 113 (1), 55-62. 

52. Hildebrand, A.; Beyer, K.; Neubert, R.; Garidel, P.; Blume, A., Temperature 

dependence of the interaction of cholate and deoxycholate with fluid model membranes 

and their solubilization into mixed micelles. Colloids and Surfaces B: Biointerfaces 2003, 

32 (4), 335-351. 

53. Hildebrand, A.; Garidel, P.; Neubert, R.; Blume, A., Thermodynamics of 

demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir 

2004, 20 (2), 320-8. 

54. Cabral, D. J.; Hamilton, J. A.; Small, D. M., The ionization behavior of bile acids 

in different aqueous environments. J Lipid Res 1986, 27 (3), 334-43. 



141 

55. Leibfritz, D.; Roberts, J. D., Nuclear magnetic resonance spectroscopy. Carbon-

13 spectra of cholic acids and hydrocarbons included in sodium desoxycholate solutions. 

J Am Chem Soc 1973, 95 (15), 4996-5003. 

56. Kolehmainen, E., Solubilization of aromatics in aqueous bile salts. IV—Two-

dimensional 1H NMR study on intra- and inter-molecular interactions in aromatic 

solubilizate–cholate systems. Magnetic Resonance in Chemistry 1988, 26 (9), 760-764. 

57. Sugioka, H.; Moroi, Y., Micelle formation of sodium cholate and solubilization 

into the micelle. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 

1998, 1394 (1), 99-110. 

58. Funasaki, N.; Fukuba, M.; Kitagawa, T.; Nomura, M.; Ishikawa, S.; Hirota, S.; 

Neya, S., Two-Dimensional NMR Study on the Structures of Micelles of Sodium 

Taurocholate. J. Phys. Chem. B 2004, 108, 438-443. 

59. Miertuš, S.  Scrocco, E.  Tomasi, J., Electrostatic interaction of a solute with a 

continuum. A direct utilizaion of AB initio molecular potentials for the prevision of 

solvent effects. Chemical Physics 1981, 55 (1), 117-129. 

60. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; 

Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J., Gaussian 03, revision C. 02; 

Gaussian, Inc: Wallingford, CT, 2004. There is no corresponding record for this 

reference 2010. 

61. Wu, C.-K.; Dailey, H. A.; Rose, J. P.; Burden, A.; Sellers, V. M.; Wang, B.-C., 

The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. 

Nature Structural & Molecular Biology 2001, 8 (2), 156-160. 



142 

62. Barnes, S.; Geckle, J. M., High resolution nuclear magnetic resonance 

spectroscopy of bile salts: individual proton assignments for sodium cholate in aqueous 

solution at 400 MHz. J. Lipid Res. 1982, 23, 161-170. 

63. Chiang, J. Y., Bile acids: regulation of synthesis. J Lipid Res 2009, 50 (10), 1955-

66. 

64. Fung, B. M.; Peden, M. C., The nature of bile salt micelles as studied by 

deuterium NMR. Biochim Biophys Acta 1976, 437 (1), 273-9. 

65. Sugioka, H.; Matsuoka, K.; Moroi, Y., Temperature effect on formation of 

sodium cholate micelles. J Colloid Interface Sci 2003, 259 (1), 156-62. 

66. Kratohvil, J. P.; Hsu, W. P.; Jacobs, M. A.; Aminabhavi, T. M.; Mukunoki, Y., 

Concentration-dependent aggregation patterns of conjugated bile salts in aqueous sodium 

chloride solutions. Colloid & Polymer Sci 1983, 261 (9), 781-785. 

67. Mazer, N. A.; Benedek, G. B.; Carey, M. C., An investigation of the micellar 

phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic 

light scattering spectroscopy. The Journal of Physical Chemistry 1976, 80 (10), 1075-

1085. 

68. Campanelli, A. R.; Desanctis, S. C.; Giglio, E.; Pavel, N. V.; Quagliata, C., From 

Crystal to Micelle - a New Approach to the Micellar Structure. J Inclusion Phenom 1989, 

7 (4), 391-400. 

69. Oshitani, J.; Takashina, S.; Yoshida, M.; Gotoh, K., Difference in Screening 

Effect of Alkali Metal Counterions on H-AOT-Based W/O Microemulsion Formation. 

Langmuir 2009, 26 (4), 2274-2278. 



143 

70. Hastings, A. B.; Murray, C. D.; Sendroy, J., STUDIES OF THE SOLUBILITY 

OF CALCIUM SALTS: I. THE SOLUBILITY OF CALCIUM CARBONATE IN SALT 

SOLUTIONS AND BIOLOGICAL FLUIDS. Journal of Biological Chemistry 1927, 71 

(3), 723-781. 

71. Puppato, A. J. Analytical and biophysical studies of sodium cholate micelles and 

phospholipids. 2008. 

72. Kovacs, H.; Moskau, D.; Spraul, M., Cryogenically cooled probes—a leap in 

NMR technology. Progress in Nuclear Magnetic Resonance Spectroscopy 2005, 46 (2-

3), 131-156. 

73. Chen, Y.; Ho, D. M.; Gottlieb, C. R.; Kahne, D.; Bruck, M. A., Facial 

Amphiphiles. J Am Chem Soc 1992, 114 (18), 7319-7320. 

74. Venkatesan, P.; Cheng, Y.; Kahne, D., Hydrogen-Bonding in Micelle Formation. 

J Am Chem Soc 1994, 116 (15), 6955-6956. 



144 

APPENDIX A 

 

LIST OF ACRONYMS 

 

NaCho sodium cholate 

cmc critical micelle concentration 

mM millimolar  

SDS sodium dodecyl sulfate 

CHAPS 3-[(3-cholamidopropyl)dimethylammino]-1-

propanesulfonate 

n aggregation number 

TC trihydroxyl taurocholate 

TDC taurodeoxycholate 

TCDC taurochenodeoxycholate 

NaTDC sodium taurodeoxycholate 

NaCl sodium chloride 

ESR electron spin resonance  

τc rotational correlation (tumbling) time 

NMR nuclear magnetic resonance 

rf radiofrequency 

I spin quantum number 

m nuclear spin quantum number 

γ magnetogyric ratio 

h Plank’s constant 

B0 applied magnetic field 

T1 spin-lattice (longitudinal) relaxation time 

T2 spin-spin (transverse) relaxation time 

ν 1/2 linewidth at half height 

FID free induction decay 

FT Fourier transform 

B magnetic field 

σ shielding tensor 

σdiamag diamagnetic shielding tensor 

σparamag  paramagnetic shielding tensor 

δ chemical shift 

ppm parts-per-million 

J coupling contant 

Hz Hertz 

COSY COrrelation SpectroscopY 

TOCSY Total COrrelation SpectroscopY 

HETCOR HETeronuclear CORrelation spectroscopy 

NOESY Nuclear Overhauser Effect SpectroscopY 
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HSQC gradient heteronuclear single quantum correlation 

spectroscopy 

HMBC gradient heteronuclear multiple bond correlation 

spectroscopy 

HMQC heteronuclear multiple quantum correlation spectroscopy 

NaTC sodium taurocholate 

ABB antiparallel back-to-back 

PBB parallel back-to-back 

AFF antiparallel face-to-face 

ABF antiparallel back-to-face 

PFF parallel face-to-face 

PBF parallel back-to-face 

BA bile acids 

BS bile salts 

PL phospholipids 

ITC isothermal titration calorimetry 

D2O deuterium oxide 

NaOD sodium deuteroxide 

DSS 4,4-dimethyl-4-silapentane-1-sulfonic acid 

gHSQC gradient heteronuclear single quantum correlation 

spectroscopy 

PCM polarizable continuum model 

ε dielectric constant 

OH hydroxyl 

COO
-
 carboxylate 

H-bond hydrogen bond 

NH4Cl ammonium chloride 

CaCl2 calcium chloride 

MgCl2 magnesium chloride 

NaOH Sodium hydroxide 

HCl hydrochloric acid 

pm picometer 

T2
*
 effective spin-spin relaxation time 

Ksp solubility product constant 

nm nanometer 

con. concentration 

Δ Change 

ATP adenosine triphosphate 

ADP denosine diphosphate 
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APPENDIX B 

SUPPLEMENTAL INFORMATION 

 

Table B-1 
Proton chemical shifts for 2, 10, 20 and 30 mM 

NaCho 

  
Figure B-1 Changes in chemical shifts for primary micelles  

  
Figure B-2 

Changes in chemical shifts for protons located on the 

tail of NaCho (secondary micelles) 

 

  
Table  B-2 

Chemical shift values for 20 mM NaCho in the 

absence of salt at pH 7.4 and 9.1. 

  
Table B-3 

Change in chemical shift values for 20 mM NaCho in 

the presence of MgCl2 with respect to 20 mM NaCho 

only (no additional salt) at pH 9.1. 
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Table B-1: Chemical shift values for all protons in NaCho for 2, 10, 20 and 30 mM.  
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Figure B-1: Changes in chemical shifts for primary micelles.  
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Figure B-2: Changes in chemical shifts for protons located on the tail of NaCho 

(secondary micelles). 
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Table B-2. Chemical shift values for 20 mM NaCho in the absence of salt at pH 7.4 and 

9.1. 
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Abstract  

1

H NMR spectroscopy has been used to quantify squalene in meibum and sebum. 

Squalene has many beneficial properties and its loss on the surface of skin upon 

ultraviolet light exposure or in the tear film with dry eye could be detrimental. In this 

study, we confirm the NMR proton resonance assignments of squalene, squalene in 

human meibum, and in human eyelid lipid using heteronuclear single quantum 

correlation spectroscopy. Our results confirm the presence of squalene in eyelid lipid but 

not in meibum. We speculate that the source of squalene in eyelid lipid could be from 

sebaceous glands. The beneficial characteristics of squalene including its anti-

inflammatory, antioxidant, and antibacterial qualities suggest that the presence of a 

squalene film could be of significant biological and physical benefit. Its loss in human 

meibum from patients with dry eye could be detrimental and contribute to the symptoms 

observed in these patients.  

Key Words  

Lipids; Meibum; NMR; Sebum; Squalene; Tears  

 

Abbreviations  

EML  

human eyelid meibum lipid  

HSQC  

heteronuclear single quantum correlation spectroscopy  

SQ  

Squalene  
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Introduction  

NMR spectroscopy has been a valuable tool for the evaluation of the lipid 

composition in the ocular lens [1] (reviewed in [2]), human eyelid meibum lipid [3-7] and 

skin sebum lipid [3,8]. Meibum is produced in the meibomian glands of the eyelids and 

has many functions: prevent the overflowing of tears, lubricate, improve refraction, 

inhibit evaporation, physically stabilize the tear film, degrade mucinic clots, provide 

antibacterial activity, and suppress light [9]. The role of skin sebum is less clear but it has 

been suggested that sebum may protect the skin from dehydration, ultraviolet radiation, 

wrinkling, and infection [10,11]. Squalene (SQ), a major component of human sebum 

[3,12], may serve to protect the skin from UVinduced peroxidation [13,14].  

NMR spectroscopy was used to show that SQ reaches concentrations of 4% in 

human eyelid meibum lipid (EML) [3] and reaches levels of 28 % in sebum [3,8,12]. The 

area of the 
1

H NMR resonances near 5.14 ppm has been used to quantify SQ [3,8]. The 

resonances around 5.14 ppm resonances are due to protons on carbons #3,#7,#11,#14,#18 

and #22 (Fig. C-1). Confirmation of the 5.14 ppm resonance assignment is clinically 

important because the relative intensity of this resonance in the NMR spectra of human 

meibum inversely correlated with and unstable tear film and signs and symptoms of dry 

eye [5,7]. When the intensity of the resonance is restored with azithromycin or 

doxycycline treatment, tear film stability is restored and patients no longer are afflicted 

by symptoms of dry eye [7].  

We used an inverse heteronuclear NMR 2D technique called heteronuclear single 

quantum correlation spectroscopy (HSQC) to confirm the NMR resonance assignments 

of the NMR spectra of human sebum and confirmed that other NMR resonances do not 

interfere with the 5.14 ppm resonance [8]. HSQC may be used to determine the proton  
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Figure C-1. (Top) Formula of squalene. (bottom) 
1

H NMR spectrum of squalene atop the 

heteronuclear single quantum correlation (HSQC) spectrum. Numbers above the 
1

H 

NMR resonances indicate the carbon number of squalene associated with the resonance. 

Quantification of the protoncarbon ppm associations from HSQC are provided in Tables 

1 and 2. Figure 2. 
1

H NMR spectra of: a and c) Human lid meibum extracted from 

Sebutape®. b and d) Squalene.  
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resonances that are associated with specific carbon resonances [15]. The technique 

involves the transfer of magnetization from the proton to the heteronucleus (in this case 

carbon 13) and then back to proton, the more sensitive nucleus. The technique can 

discern between CH3 and CH moieties and CH2 moieties. In this study we used HSQC to 

confirm the resonance assignments of SQ [16], and the SQ resonance assignments for the 

NMR spectra of EML.  

Materials and Methods 

Materials 

Cyclohexaned12, SQ and tetramethylsilane, and deuterated chloroform were 

obtained from SigmaAldrich (St. Louis, MO). HPLC grade chloroform was obtained 

from ThermoFisher Scientific Inc. (Waltham, MA). Sebutape® was purchased from 

CuDerm Corporation, Dallas Texas.  

Clinical Diagnosis  

The subjects for NMR spectroscopic analysis were recruited from the Kentucky 

Lion’s Eye Center (Louisville KY). Normal status was assigned when the subject’s 

meibomian gland orifices showed no evidence of keratinization or plugging with turbid 

or thickened secretions, and no dilated blood vessels were observed on the eyelid margin.  

Collection and Processing of Human Meibum and EML for NMR Spectroscopic 

Analysis  

 
Written, informed consent was obtained from all donors. Protocols and 

procedures performed at the University of Louisville were reviewed by the University of 

Louisville Institutional Review Board. All procedures were in accord with the 

Declaration of Helsinki. Meibomian glands were expressed by pressing the eyelid 
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between cottontipped applicators with strict attention to avoid touching the eyelid margin 

during expression. All four eyelids were expressed, and approximately 1 mg of meibum 

was collected per individual for direct spectroscopic study. For the NMR studies, the 

expressate was collected with a platinum spatula and immediately dissolved into 0.5 mL 

of deuterated cyclohexane in a 9mm microvial with a Teflon cap (Microliter Analytical 

Supplies Ind., Suwanee, GA). Argon gas was bubbled onto the samples to prevent 

oxidation. The samples in the vials were capped and frozen under argon gas until 

analysis. Analyses were performed within 3 weeks of collection of the sample. Storage of 

the sample under argon did not affect the sample [17]. 

EML was collected from a 59 year old Caucasian donor once in the morning and 

once at night for a period of a week using Sebutape® [18]. Lipid absorbent Sebutape® is 

a micro porous film that was designed to collect sebum from the skin [3,18] and EML 

from the eyelids [18]. The Sebutape® and backing was folded to collect meibum on the 

lid margins. The eyelid was retracted to evert the eyelid margin but care was taken to 

apply minimal pressure to avoid stretching of the eyelid which could inadvertently 

squeeze out meibum. For the collection of meibum, the cardboard was folded upon itself 

to allow contact with just the eyelid. Sebutape® was pressed for about 45 seconds onto 

each eyelid. Fiftysix Sebutape® samples were removed from the cardboard backing and 

placed directly onto a 15 mL glass scintillation vial containing 5 mL of a choloroform. 

The samples were sonicated under an atmosphere of argon gas in an ultrasonic bath 

(Branson 1510, Branson Ultrasonics, Danbury, CT) for 10 minutes. The tape was 

removed from the vial and placed into another vial containing 5 mL choloroform which 

was again sonicated. The tape was removed and the choloroform from the two extractions 

were mixed and the chloroform was evaporated under a stream of nitrogen gas. CDCl3 
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(500 μL) was added to 17.4 mg of extracted EML. The sample was sonicated under an 

atmosphere of argon gas in an ultrasonic bath (Branson 1510, Branson Ultrasonics, 

Danbury, CT) for 10 minutes and placed into an NMR tube for spectral measurement. 

 

NMR Spectral Measurements  

Spectral data were acquired using a Varian VNMRS 700 MHz NMR spectrometer 

(Varian, Lexington, MA) equipped with a 5 mm H{C/N} C enhanced PFG cold probe 

(Palo Alto, CA). Spectra were acquired with a minimum of 250 scans, 45˚ pulse width, 

and a relaxation delay of 1.000 second. All spectra were obtained at 25˚C. HSQC was 

performed using 512 increments with 16 scans per increment, 45˚ pulse width, and a 

relaxation delay of 1.000 second, mixing time of 0.080 second, and a onebond coupling 

constant of 140 Hz and analyzed using MestReNova software, version 7.1.210008 

(Mestrelab Research S.L., Santiago de Compostela, Spain). The TMS resonance was set 

to 0.00 ppm. Commercial software (GRAMS 386; Galactic Industries Corp., Salem, NH) 

was used for spectral deconvolution and fitting. The area of each band was used for the 

quantification of lipid composition.  

Purification and Characterization of Squalene from Human Meibum  

Three lipid standards found in meibum were used to test if thin layer 

chromatography could separate them. About 0.3 mg of each of the wax ester arachidyl 

dodecanoate, the cholesteryl ester cholesteryl stearate, and SQ were dissolved in 0.3 ml 

of chloroform. ELM extracted from sebutape® was spotted on a Whatman® thin layer 

chromatography plate (K6, silica gel 250 im, Piscataway, NJ). Standards were spotted on 

a separate plate. The plates were eluted with Hexane/Ether (59:1, v/v) at the same time in 
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the same container. The plates were dried and the standards plate was visualized using 

iodine vapor. The region where squalene was potentially present was scrapped into a vial 

with 5ml chloroform and was sonicated for ten minutes in bath sonicator (Branson 1510, 

Branson Ultrasonics, Danbury, CT), and centrifuged on a bench top centrifuge. The top 

layer was removed and evaporated in a stream argon. The sample was lyophilized for one 

hour. Finally, the sample was dissolved in 500 μl CDCl3 for NMR analysis.  

Results  

The molecular structure and 
1
H NMR spectra of the 3 regions associated with SQ 

protons are shown in Figure 1. The CH region of the NMR spectrum of SQ is 

characterized by two clusters of proton resonances, one centered at 5.17 ppm and the 

other near 5.12 ppm (Fig. C-1). The CH2 region is characterized by three clusters of 

proton resonances, centered near 2, 2.03 and 2.09 ppm (Fig. C-1). Three resonances are 

resolved in the CH3 region, one at 1.69 ppm, one at 1.61 ppm containing a shoulder at 

1.62 ppm (Fig. C-1). The relative areas of the 
1
H NMR resonances matched the 

calculated areas based on the primary structure of SQ (Table C-1). HSQC was used to 

confirm previous assignments for the 
1
H and 

13
C NMR spectra of SQ (Table C-2) [16].  

The CH resonance region, 5.2 to 5.06 ppm of the 
1
H NMR spectrum of EML (Fig. 2a) 

directly corresponds with that of SQ (Fig. C-2b). This region accounts for 6 of the 50 

protons of SQ. The close correspondence between the 
1
H NMR spectra of EML and SQ 

indicates that the resonances in this region for the NMR spectrum of EML are due to 

terpenoids. The HSQC spectra confirm the resonance assignments for this region of the 

1
H and 

13
C spectra of EML (Fig. C-3a, Table C-3). The 

1
H resonances near 5.15 ppm and 

the corresponding 
13

C resonances near 124 ppm are from the =CH groups of terpenoids,  
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Figure C-2. 
1

H NMR spectra of: a and c) Human lid meibum extracted from Sebutape®. 

b and d) Squalene.  
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Table C- 1. Resonance Areas of 
1

H NMR spectrum of squalene  

 

*The experimental relative area was determined by dividing the area of the proton 

resonances in the NMR spectrum of squalene by the total areas of all the proton 

resonances. Curve fitting was used for overlapping resonances. The calculated relative 

area was determined by dividing the number of protons by the total number of protons 

from the structure of squalene given in Figure 1. 
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*Eyelid meibum lipid extracted from Sebutape®.  

 

 

 

 

 

 

 

 

 

 

Table C-2. HSQC confirmation of 
1

H and 
13

C NMR resonance assignments for squalene. 
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Table C-3. HSQC confirmation of 
1

H and 
13

C NMR resonance assignments for EML. 
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presumably SQ (Fig. C-3a, Table C-3).  

In the NMR spectrum of EML (Fig. C-2c), the 
1
H resonances from CH3 and CH2 

moieties of SQ (Fig. C-2d) are overwhelmed by resonances from other moieties. 

However, the resonance at 1.69 ppm assigned to the CH3 moieties from SQ protons on 

carbons 25 and 30 (Table C-1) are well resolved. Some of the resonances in the NMR 

spectrum of EML such as the one at 1.69 ppm are shifted slightly when compared to the 

corresponding resonance of SQ (Fig. C-2). The small shifts are due to the different 

environments of the moieties. SQ was not diluted with CDCl3 and EML was. The relative 

area of this resonance is 0.97 times as intense as resonances near 5.15 ppm assigned to 

the =CH moieties of SQ which is close to the calculated value of 1 confirming the 

assignment of this resonance (Table C-3) and lack of interference from other resonances. 

The HSQC spectrum of EML confirms the resonance assignments of the 1.69 
1
H and 

25.77 ppm 
13

C resonance (Table C-3). In the 
1
H NMR spectrum of EML (Fig. C-2c), the 

SQ CH3 resonances near 1.6 ppm and CH2 resonances near 2.0 ppm are overwhelmed by 

much larger resonances assigned to the COOCH2CH2CH2and CH2CH=CH from wax and 

cholesteryl ester moieties. Nevertheless, the CH3 and CH2 resonances from SQ are 

resolved in the HSQC spectrum (Fig. C-3b). For instance, note that the 
1
H and 

13
C 

resonances at 2.03 and 39.74 ppm, respectively, assigned to SQ CH2 carbons #5,#9,#16 

and #20 (Table C-3) are well resolved (Fig. C-3b).  

The 
1
H NMR spectra of a pool of adults and children (Table C-4) in the region of 

the SQ =CH resonances between 5 and 5.2 ppm are shown in Figure C-4B and 5. The 

largest resonance in this region at 5.32 ppm and shoulder at 5.35 ppm are assigned to 

the =CH moieties from hydrocarbon chains and carbon #6 of cholesterol esters, 

respectively. HSQC spectra of the region confirmed that the large proton resonances at  
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Figure C-3. Heteronuclear single quantum correlation spectra of human lid meibum 

extracted from Sebutape® a) =CHregion of the NMR spectrum. B) CH2 and CH3 

region of the spectrum. Arrows point to resonances that are potentially from squalene. 

Resonance assignments are provided in Table 3. 
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*first two numbers are the age of the donor (y), M= male, F=female, C=Caucasian, 

B=black 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C-4. Human meibum samples pooled.   
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5.32 and 5.35 ppm were associated with carbons at 129.3 and 122.0 ppm, respectively, 

assigned to trans double bonds (Fig. C-4). Vicinal coupling constants (
3

JHH), the 

distance between the split peaks, are larger for trans– (range: 12– 18 Hz; typical: 15 

Hz) than for cis– (range: 0–12 Hz; typical: 8 Hz) isomers [17]. The vicinal coupling 

constants for the peaks near 5.15 ppm range from 14.7 to 15.4 Hz, typical of and 

confirming our trans isomer assignment. HSQC could not resolve the protoncarbon 

associations in the region between 5 and 5.2 ppm. For EML and human meibum 

samples, the molar ratios of SQ:cholesterol ester:triglyceride:wax ester were calculated 

from the relative intensities of the 5.11, 4.6, 4.28 to 4.15 and 4.04 ppm 
1

H NMR 

resonances due to SQ, cholesterol esters, triglycerides and wax esters, respectively 

[3,4]. The mole percentage of SQ in EML was about 6% and only 1% for pools of 

human meibum (Table C-5). Thin layer chromatography was used to separate SQ from 

wax and cholesteryl esters with an Rf of 0.89, 0.29 and 0.22, respectively. The CH2 and 

CH3 resonance regions of the 
1

H NMR spectrum of the thin layer chromatography band 

from ELM (Fig. C-6b) that comigrates with SQ standard corresponds with that of SQ 

(Fig. C-6c). A large resonance near 1.61 ppm in the NMR spectra of extracts from an 

unloaded thin layer chromatography plate interfered with the resolution of the 1.61 ppm 

bands.  

 

Discussion  

Using HSQC and the coupling constants, we confirmed that the 
1

H resonances 

near 5.2 ppm in the NMR spectrum of SQ, and EML, are from the protons on carbons 11 

and 14, and the resonances near 5.1 ppm are from the protons on carbons 3, 7, 22 and 18 

(Fig. C-1, Tables C-1-3). The resonance near 5.2 ppm was tentatively assigned to SQ in 

the NMR spectra of EML [3]. In our EML sample the molar percentage of SQ was 6 %  
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Figure C-4. A and B) 
1

H NMR spectra of the =CH stretching regions of (a) meibum 

pooled from adults (Table 4); (b) meibum pooled from infants and children (Table 4); (c) 

squalene. C) Heteronuclear single quantum correlation (HSQC) spectra of meibum from 

pooled from infants and children.  
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Figure C-5. 
1

H NMR spectrum of the ester resonance region of a pool of eyelid lipid 

from a 59 year old male Caucasian.  

 



171 

(Table 5) close to the value reported [3]. Both the relative resonance intensities, position 

and pairing of 
1

H and 
13

C resonances confirm the NMR assignments (Tables C-1-3).  

Based on the intensities of the 
1

H NMR resonances assigned to SQ and those 

assigned to wax and cholesteryl esters, the relative amount of SQ was about 6 times 

higher in EML than meibum expressed directly from the meibomian glands. This 

observation agrees with a mass spectrometry study confirming that SQ is present in tears 

but because of the lower amount of SQ in meibum it was not detected in meibum by mass 

spectrometry [19]. SQ was identified in human meibum with the use of highpressure 

liquid chromatography/mass spectrometry (HPLC/MS) [20], and the level of SQ in 

human meibum has been reported to be between 0 to 7 % using thin layer 

chromatography [23-25]. The paucity in the amount of SQ in human meibum contributed 

to our inability to confirm the NMR resonance assignments using HSQC. Using Raman 

spectroscopy we estimated only 90 ig of terpenoids per g of meibum [17]. This is a lower 

limit of terpenoids in meibum because we observed the decrease of the Raman bands 

possibly due to photochemical decomposition of the sample. The Raman study [17] 

reported the loss of carotenoids, a class of terpenoids similar to SQ. Based the current 

NMR study and the lack of color from carotenoids, it is likely that the SQ rather than 

carotene, is the terpenoid lost in human meibum.  

What is the source of the elevated levels of SQ in EML compared with meibum? 

One possibility is the sebaceous glands in the eyelids. The amount of SQ from sebaceous 

glands may reach 28 % [3,8]. The glands of Zeis, located on the eyelids and Caruncula 

lacrimalis, are sebaceous, pilosebaceous glands (associated with hair follicles) [9]. They 

were discovered almost 200 years ago [9,24]. Jannin noted in 1772 that when the 
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caruncula was gently compressed, it expelled sebaceous material [9,25]. There are over 

400 sebaceous ciliary glands per eye [9], but the meibomian glands are much larger. 

Sebum contains much more SQ and triglycerides and less cholesteryl esters than meibum 

(Table C-5). Our NMR data [8] confirmed the levels of SQ reported previously [3]. We 

calculate that if only 10 % sebum, perhaps from the glands of Zeis, was mixed on the 

eyelid with meibum, the composition would match that of EML (Table C-5). This is 

possible since it is known that the tear film lipid layer is in contact with the eyelid skin 

acting as a barrier to the aqueous layer [26]. A “hydrophobic line” has been observed 

between the periocular skin and lid margin [27]. Lipophilic substances at the skin of the 

lower eyelid (such as squalene) may be able to reach the inferior tear meniscus 

supracutaneously and mix with the tear film lipid layer [27-30]. The large variability in 

the composition of human meibum may be due to the variable mixing of sebum with 

meibum [31].  

SQ may be beneficial to tear stability. Using Langmuir trough technology we 

showed in vitro that when meibum was mixed with SQ at low surface pressures, SQ filled 

thinner regions of meibum films [8]. It is this property of SQ that could potentially 

stabilize the tear film during break up by migrating to the areas without a tear film lipid 

layer offering protection to the cornea. SQ is also an antioxidant, scavenging radicals on 

the skin surface produced by ultraviolet radiation [10,11,13,14]. Nonhuman primates do 

not have SQ in their sebum [32-34]. Perhaps because humans do not have fur to protect 

the skin from ultraviolet radiation, we have adapted to have SQ produced in our sebum as 

a source of protection. It is noteworthy that sebum from most animals do not contain SQ 

except the otter, beaver, mole and kinkajou which contain up to 94 % SQ in their sebum 
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[32-35]. All of these species inhabit wet environments suggesting a water repellant 

function for SQ.  

Based on the above studies, loss of SQ could be detrimental. Indeed, loss of SQ 

with meibomian gland dysfunction and dry eye symptoms have been reported [5,7,17]. 

Raman studies on human meibum [17] concur with NMR studies showing the loss of 

terpenoids, most likely SQ, in human meibum from donors with MGD [57].  

We confirmed the presence of SQ in EML but not in meibum. We speculate that 

the source of SQ in EML could be the sebaceous glands. The characteristics of SQ 

including its antiinflammatory, antioxidant, and antibacterial qualities suggest that a 

film containing SQ could contribute beneficially to the biophysical and biological 

functions on the surface of the eye. Its loss in human meibum from patients with dry 

eye symptoms could be detrimental.  
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Figure C-6. 
1

H NMR spectra of: a) ELM, b) ELM thin layer chromatography band 

extracted from the squalene region, c) squalene. a and c were obtained using a 700 mHz 

NMR. b was obtained using a 400 mHz instrument.  

 



175 

REFERENCES 

 
1. Yappert MC, Borchman D (2004) Sphingolipids in human lens membranes: an update 

on their composition and possible biological implications. Chem Phys Lipids 129:1-

20.  

2. Borchman D, Yappert MC (2010) Lipids and the Ocular Lens. J Lipid Res 51:2473--

88.  

3. Robosky LC, Wade K, Woolson D, Baker JD, Manning ML, Gage DA, Reily MD 

(2008) Quantitative evaluation of sebum lipid components with nuclear magnetic 

resonance. J Lipid Res 49:686-692.  

4. Shrestha RK, Borchman D, Foulks GN, Yappert MC (2011) Analysis of the 

Composition of Lipid in Human Meibum from Normal Infants, Children, 

Adolescents, Adults and Adults with Meibomian Gland Dysfunction using 
1

HNMR 

Spectroscopy. Invest Ophthalmol Vis Sci 52:7350-7358.  

5. Borchman D, Foulks GN, Yappert MC, Milliner SE (2012) Differences in Human 

Meibum Lipid Composition with Meibomian Gland Dysfunction using NMR and 

Principal Component Analysis. Invest Ophthalmol Vis Sci 53:337-47.  

6. Borchman D, Foulks GN, Yappert MC, Milliner SE (2012) Changes in Human 

Meibum Lipid Composition with Age Using NMR Spectroscopy. Invest Ophthalmol 

Vis Sci 53:475-482.  

7. Foulks GN, Borchman D, Yappert MC, Kakar S (2013) Topical Azithromycin and 

Oral Doxycycline Therapy of Meibomian Gland Dysfunction: A Comparative 



176 

Clinical and Spectroscopic Pilot Study. Cornea. . 32:44-53.  

8. Georgieva G, Borchman D, Yappert MC, Milliner SE, Yokoi N (2013) Relationships 

between squalene and film characteristics; an NMR spectroscopy, Brewster angle 

microscopy and Langmuir trough study. Colloids and Interface Surfaces B. 

submitted.  

9. Murube J (2012) The Origin of Tears. III. The Lipid Component in the XIX and XX 

Centuries. Ocul Surf 10:200-209.  

10. Smith KR, Thiboutot DM (2008) Thematic review series: skin lipids. Sebaceous 

gland lipids: friend or foe? J Lipid Res 49:271-281.  

11. Picardo M, Ottaviani M, Camera E, Mastrofrancesco A (2009) Sebaceous gland 

lipids. Dermatoendocrinol 1:68–71.  

12. Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M (2010) Comprehensive 

analysis of the major lipid classes in sebum by rapid resolution highperformance 

liquid chromatography and electrospray mass spectrometry. J Lipid Res 51:3377--

3388.  

13. Kelly GS (1999) Squalene and its potential clinical uses. Alternative Med 4:29-36.  

14. De Luca C, Valacchi G (2010) Surface Lipids as Multifunctional Mediators of Skin 

Responses to Environmental Stimuli. Mediators of Inflammation 2010:111 article 

number 321-494.  



177 

15. Jacobsen NE (2007) NMR Spectroscopy Explained: Simplified theory, 

Applications and Examples for Organic Chemistry and Structural Biology; 1st ed.; 

WileyInterscience. Pogliani L, Ceruti M, Ricchiardi G, Viterbo D (1994) An NMR 

and molecular mechanics study of squalene and squalene derivatives. Chem Phys 

Lipids 70:21–34. Oshima Y, Sato H, Zaghloul A, Foulks GN, Yappert MC, 

Borchman D (2009) Characterization of Human Meibum Lipid using Raman 

Spectroscopy. Curr Eye Res 34:824–835.  

16. Ashraf Z, Pasha U, Greenstone V, Akbar J, Apenbrinck E, Foulks GN, Borchman D 

(2011) Quantification of Human Sebum on Skin and Human Meibum on the Eye Lid 

margin using Sebum Tape, Spectroscopy and Chemical Analysis. Curr Eye Res 

36:553-562.  

17. Butovich IA, Wojtowicz JC, Molai M (2009) Human tear film and meibum. Very 

long chain wax esters and (Oacyl)omegahydroxy fatty acids of meibum. J Lipid Res 

50:2471-85.  

18. Krenzer KL, Dana MR, Ullman MD, Cermak JM, Tolls DB, Evans JE, Sullivan DA 

(2000) Effect of androgen deficiency on the human meibomian gland and ocular 

surface. J Clin Endocrinol Metab 85:4874-4882.  

19. Ehlers N (1965) The precorneal film. Biomicroscopical, histological and chemical 

investigations. Acta Ophthalmol Suppl 81:11-34.  

20. Keith GC (1967) Seborrhoeic blepharokeratoconjunctivitis. Trans Ophthalmol Soc 

U.K. 87:85-103.  



178 

21. Tiffany JM (1978) Individual variations in human meibomian lipid composition. Exp 

Eye Res 27:289300.  

22. Zeis E (1835) In: von Ammon F. Zeitschrift für Ophthalmologie 4:231  

23. Janin J (1772) [Anatomic, physiologic and physic recollection and observations of the 

eye and the diseases of this organ]. Lyon & Paris pp. 85, 90, 92. French  

24. Khanal S, Millar TJ (2010) Nanoscale phase dynamics of the normal tear film. 

Nanomedicine 6:707-13.  

25. Tsubota K, Monden Y, Yagi Y, Goto E, Shimmura S (1999) New treatment of dry 

eye: the effect of calcium ointment through eyelid skin delivery. Br J Ophthalmol 

83:767-70.  

26. Norn MS (1980) Natural fat in external eye. Vitalstained by Sudan III powder. Acta 

Ophthalmol (Copenh) 58:331-6.  

27. MacKeen DL, Roth HW, Doane MG, MacKeen PD (1998) Supracutaneous treatment 

of dry eye patients with calcium carbonate Adv Exp Med Biol 438:985-90.  

28. Goto E, Dogru M, Fukagawa K, Uchino M, Matsumoto Y, Saiki M, Tsubota K 

(2006) Successful tear lipid layer treatment for refractory dry eye in office workers by 

lowdose lipid application on the fulllength eyelid margin Am J Ophthalmol 142:264-

70.  



179 

29. Pucker AD, Nichols JJ (2012) Analysis of meibum and tear lipids. Ocul. Surf. 10: 

23050.  

30. De Luca C, Fanfoni GB, Picardo M, NazzaroPorro M, Passi S (1989) The skin 

surface lipids of man compared with those of other different primates. J Invest 

Dermatol 92:473-473.  

31. De Luca C, Fanfoni GB, Stancato A, Passi S (1997) Significant differences in skin 

surface lipids between man and other primates. Chem Phy Lipids 88:125-125.  

32. Nicolaides N, Fu HC, Rice GR (1968) The skin surface lipids of man compared with 

those of eighteen species of animals. J Invest Dermatol 81:83-89.  

33. Stewart ME, Downing DT (1991) Chemistry and Function of mammalian sebaceous 

lipids. Advances Lipid Res 24:263-301.  

 

 

 

 

 

 

 

 

 

 

 



180 

 

 

 

CURRICULUM VITAE 

EDUCATION 

University of Louisville (2008-Present) 

Louisville, KY 

Ph. D. Anticipated Graduation Date: May 2013 

Dissertation: Spectral Investigation of the Conformation of Primary and Secondary 

Micelles of Sodium Cholate and the Impact of pH and Ionic Strength.  

 

University of Louisville (2008-2011) 

Louisville, KY 

M.S. in Analytical Chemistry 

Thesis: Investigation of Sodium Cholate Primary and Secondary Micelles as Potential 

Drug Delivery Vehicles  

 

Eastern Kentucky University (2004-2008) 

Richmond, KY 

B.S. in Forensic Science  

Cum Laude and University Honors Scholar 

Areas of Concentration: Chemistry and Biology 

Honors Thesis: Carriage of Methicillin-Resistant Staphylococcus aureus in University 

Student Population 

 

AWARDS AND HONORS 

 Five-year Graduate Teaching Assistantship at University of Louisville  

 Groundwork Education in Mathematics and Science (GEMS) fellowship (2009 - 

2011) 

 Poster presentation award recipient (third place), Institute of Molecular Diversity 

& Drug Design (IMD
3
), March 8, 2011  

 IMD
3
 Travel Award for the American Chemical Society National Conference, 

Fall 2012. 

 

RESEARCH AND PROFESSIONAL EXPERIENCE 

 

Graduate Researcher (Fall 2008- Present) 

Department of Chemistry, University of Louisville, Louisville KY 



181 

 Re-evaluation of previously acquired spectral data and correction of mis-assigned 

NMR resonances obtained for primary and secondary micelles of sodium cholate 

(NaCho) micelles. 

 NMR spectral studies of sodium cholate micelles to understand the forces and 

interactions that lead to the formation of these nanostructures. This information is 

essential for future development of drug delivery nanoconstructs using bile salts.  

 One and two-dimensional NMR studies (
1
H, HSQC, HMBC and ROESY) with a 

700 MHz NMR spectrometer equipped with a cryogenic probe for:  

o Validation of conformational/structural models proposed previously for 

primary and secondary micelles of NaCho  

o Investigation of the impact of pH, salt concentration, cation size, and 

charge on the molecular arrangement of NaCho primary and secondary 

micelles 

 Supervision of undergraduate researchers as well as training them in the operation 

and troubleshooting of NMR instrumentation. Acted as a liaison between the 

researchers and the advisor.  

 

Instructor- CHEM 201 General Chemistry I (Fall 2012) 

Department of Chemistry, University of Louisville, Louisville KY 

 Taught students the various aspects in Chemistry including compounds, reactions, 

stoichiometry, gases, thermodynamics, atomic structure, and periodicity, and 

molecular structure. 

 Responsible for all aspects of teaching: preparing a syllabus, lesson preparation 

and delivery, and grading. 

 Supervised graduate and undergraduate teaching assistants who were responsible 

for teaching recitation.   

 

Graduate Research Assistant (2011 to present) 

Department of Chemistry, University of Louisville, Louisville KY 

 Study of compositional differences in meibum lipids from normal donors and 

donors with meibomiam gland dysfunction using NMR spectroscopy.  

 Choice and application of appropriate analytical methods, specifically NMR 

experiments which include: one-dimensional 
1
H and 

13
C as well as two-

dimensional approaches (HSQC, HMBC and ROESY) for identification and 

quantification of waxes, cholesteryl esters, triglycerides, squalene and saturation 

in meibum lipids.  

 

Teaching Assistant- CHEM 201 General Chemistry I (Spring 2012) 

Department of Chemistry, University of Louisville, Louisville KY 



182 

 Development of course syllabus for each recitation section. Responsibilities 

included knowledge of course content, preparing quizzes, and administering 

grades.  

 For each recitation, a presentation was prepared to reinforce content taught by the 

senior instructor. The overall goal of recitation is to engage student learning 

through discussion, problem solving, and group work.  

 

Teaching Assistant- CHEM 527 Separations and Spectroscopy (Fall 2011) 

Department of Chemistry, University of Louisville, Louisville KY 

 Teaching the hands-on operation of contemporary chemical instrumentation 

including gas chromatography, atomic and molecular absorption spectroscopy as 

well as 
1
H and 

13
C nuclear magnetic resonance (NMR) spectroscopy. Procedure 

and application of synthetic processes.  

 

GEMS Fellow (Fall 2010-Spring of 2011) 

Jefferson County Public Schools, University of Louisville, Louisville KY 

 Groundwork Education in Mathematics and Science (GEMS) was a collaborative 

project between University of Louisville and Jefferson County Public Schools 

funded by National Science Foundation (NSF) Graduate Fellows in K-12 

education.  

 Graduate Fellow at Conway Middle School (Fall 2009-Spring 2010) and Farnsley 

Middle School (Fall 2010-Spring 2011) 

 Planning, developing, implementing an inquiry-based learning approach to 

enhance student learning. GEMS fellows acted as content specialists and assumed 

active roles in the classroom.  

 Collaboration with other GEMS fellow/teacher teams and mentors in monthly 

seminars to evaluate student growth toward conceptual understanding, discussed 

core content being taught in the classroom as well as assessing innovative 

teaching methods to enhance student learning.    

 

Chemistry Graduate Student Association (CGSA)-Vice President (Fall 2009-Spring 

2011) 

Department of Chemistry, University of Louisville, Louisville KY 

 Vice President (2009 – 2011). Organization and coordination of the banquets and 

hospitality events for the distinguished Nobel Laureates that were invited to speak 

at the University 

 Hostess of the Annual Distinguished Lecturer Series.  

  2012 Richard R Schrock  

  2011 Ei-ichi Negishi 

 Liaison for all Chemistry Graduate Students to the University CGSA. 

   

Teaching Assistant- CHEM 207 (Summer 2009 and Summer 2011) 



183 

Department of Chemistry, University of Louisville, Louisville KY 

 Teaching of the methodology of analytical chemistry, as well as the fundamental 

laboratory procedures that were part of the class.  

 Supervision of laboratory sessions that included following proper laboratory 

safety rules. Grading of reports and managing records for all students.   

 

Teaching Assistant- CHEM 201 General Chemistry I (Fall 2008 – Spring 2009) 

Department of Chemistry, University of Louisville, Louisville KY 

 Development of course syllabus for each recitation section. Responsibilities 

included knowledge of course content, preparing quizzes, and administering 

grades.  

 For each recitation, a presentation was prepared to reinforce content taught by the 

senior instructor. The overall goal of recitation is to engage student learning 

through discussion, problem solving, and group work.  

 

Undergraduate Research Thesis (Spring 2008)  

Department of Chemistry, Eastern Kentucky University, Richmond KY 

 Conducted Research for the Carriage of Methicillin-Resistant Staphylococcus 

aureus in University Student Population. 

 

Undergraduate Intern: Researcher (Summer 2007) 

United States Department of Agriculture, ARS Forage Animal Production Research Unit 

(FAPRU), University of Kentucky Campus, Lexington KY 

 Fescue Toxicosis has been linked to ergot alkaloids produced by tall fescue 

and have shown to produce direct narrowing of the blood vessels resulting in 

reduced blood flow to the animal’s extremities.  

 Conducted research on the presence of ergot alkaloids in bovine feces using 

GC-MS analysis. 

 

PUBLICATIONS AND PAPERS 

 

Differences in human meibum lipid composition with meibomian gland dysfunction 

using NMR and principal component analysis. Rashmi K. Shrestha, Douglas Borchman,  

Gary N. Foulks, Marta C. Yappert, and Sarah E. Milliner
 
 Investigative Ophthalmology 

& Visual Science 2012, 53(1), 337-47  

 

Changes in human meibum lipid composition with age using nuclear magnetic resonance 

spectroscopy. Douglas Borchman,
 

 Gary N. Foulks, M.C. Yappert, and Sarah E. 

Milliner Investigative Ophthalmology & Visual Science 2012, 53 (1), 475-482.
 

http://pubget.com/paper/22131391
http://pubget.com/paper/22131391
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Shrestha%20RK%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Borchman%20D%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Foulks%20GN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Yappert%20MC%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Milliner%20SE%5Bauth%5D
http://pubget.com/paper/22169100
http://pubget.com/paper/22169100
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Borchman%20D%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Foulks%20GN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Yappert%20MC%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Milliner%20SE%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Milliner%20SE%5Bauth%5D


184 

 

Analysis of the Composition of Lipid in Human Meibum from Normal Infants, Children, 

Adolescents, Adults, and Adults with Meibomian Gland Dysfunction Using 
1
H-NMR 

Spectroscopy. Rashmi K. Shrestha, Douglas Borchman,
 
 Gary N. Foulks, M.C. 

Yappert, and Sarah E. Milliner
 
Investigative Ophthalmology & Visual Science 

2011 52:7350-7358.  

 
13C and 1H NMR Ester Region Resonance Assignments and the Composition of Human 

Infant and Child Meibum.  Exp Eye Res, In Press, 2013. Douglas Borchman, M. C. 

Yappert, Sarah E. Milliner, D. Duran, G. W. Cox, Ryan. J. Smith, and Rahul Bhola.  

 

Relationships between SQ and film characteristics; an NMR spectroscopy, Brewster 

angle microscopy and Langmuir trough study. Submitted  Colloids and Surfaces B: 

Biointerfaces. 2013. Georgiev, G., D. Borchman, M. C. Yappert, Sarah E. Milliner, and 

N. Yokoi.  

 

Confirmation of SQ in human eye lid lipid by heteronuclear single quantum correlation 

spectroscopy.  Lipids. Submitted, 2013.  Douglas Borchman, M. C. Yappert, Sarah E. 

Milliner, and Rahul Bhola. . 

 

           13C and 1H NMR Assignments for Human Infant Meibum Using Inverse Heteronuclear 2D 

Experiments.  In Preparation for Spectroscopy. 2013. Sarah E. Milliner, Douglas 

Borchman, Marta C. Yappert, Gray N. Foulks, Ryan J Smith, and Rahul Bhola  

 

POSTERS AND PRESENTATIONS 

Poster Presentation (March 2013) 

The Institute for Molecular Diversity and Drug Design Symposium, Jewish Hospital and 

St. Mary’s HealthCare, Louisville KY 

 “Investigation of the Molecular Arrangement of Primary Micelles of Sodium 

Cholate” Sarah E. Milliner and M.C Yappert. 

Poster Presentation (August 2012) 

American Chemical Society Fall National Meeting, Philadelphia, PA 

 “Investigation of sodium cholate primary and secondary micelles as potential drug 

delivery vehicles” Sarah E. Milliner and M.C Yappert. 

 

Poster Presentation (March 2012) 

The Institute for Molecular Diversity and Drug Design Symposium, Jewish Hospital and 

St. Mary’s HealthCare, Louisville KY 

 “Investigation of sodium cholate primary and secondary micelles as potential drug 

delivery vehicles” Sarah E. Milliner and M.C Yappert. 

 3
rd

 place poster award 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Shrestha%20RK%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Borchman%20D%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Foulks%20GN%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Yappert%20MC%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Yappert%20MC%5Bauth%5D
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Milliner%20SE%5Bauth%5D


185 

Oral Presentation (April 2011) 

 “Formative Assessment Strategies Designed to Scaffold Student Learning in K-12 

Science.”  Christine Rich, Lee Ann Nickerson, Thomas Tretter, Sarah E. 

Milliner, Kristen Magness, Katherine Sellers, Amy Strite, Lacey Eckels, and 

Beth Sanders 2
nd

 Annual STEM Symposium.  UK/Partnership Institute for 

Mathematics and Science Education Reform STEM Education Symposium, 

Lexington, KY, April 29, 2011. Roundtable presentation. 

 

Poster Presentation (March 2010) 

NSF Graduate Stem Fellows in K-12 Education, Washington, DC  

 “Building Communication Skills:  EMS Strategies Facilitate Science Discourse in 

the K-12 Classroom.” Sarah E. Milliner, Kristen Magness, Katherine Sellers, and 

Christine Rich. American Association for the Advancement of Science/National 

Science Foundation. Annual GK-12 Conference, Washington D C., March 12, 2011.  

 

Poster Presentation (November 2007) 

Kentucky Academy of Science 93
rd

 Annual Meeting, Bellarmine University & University 

of Louisville, Louisville KY 

 “Carriage of Methicillin-Resistant Staphylococcus aureus in University Student 

Population.” 

   

MEMBERSHIPS 

 

American Chemical Society (December 2011- present) 

 

 


	Spectral investigation of the conformation of primary and secondary micelles of sodium cholate and the impact of pH and salt concentration.
	Recommended Citation

	Milliner TOC-3
	MillinerDissertation2

