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ABSTRACT 

P ARRELLELIZING A NETWORK INTRUSION DETECTION SYSTEM 
USINGAGPU 

Anju Panicker Madhusoodhanan Sathik 

April II, 2012 

As network speeds continue to increase and attacks get increasingly more 

complicated, there is need to improved detection algorithms and improved performance 

of Network Intrusion Detection Systems (NIDS). Recently, several attempts have been 

made to use the underutilized parallel processing capabilities of GPUs, to offload the 

costly NIDS pattern matching algorithms. This thesis presents an interface for NIDS 

Snort that allows porting of the pattern-matching algorithm to run on a GPU. The 

analysis show that this system can achieve up to four times speedup over the existing 

Snort implementation and that GPUs can be effectively utilized to perform intensive 

computational processes like pattern matching. 
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I. INTRODUCTION 

Network intrusions are a real and serious threat to most organizations and hence 

have been a focus of study for over two decades. There have been numerous efforts to 

develop applications that detect intrusions or prevent such activities. However, majority 

of the widely available software packages sutfer a serious def~ct: the time delay in 

detecting an intrusion after its onset. Recently, with the advent of CUDA enabled GPU 

computing, research to improve the speed of intrusion detection systems using GPUs is 

receiving a significant amount of attention. In this thesis an open source Network 

Intrusion Detection and Prevention software package, Snort®, is subjected to 

parallelization and ported to run on NVIDIA C2050/C2070 Tesla GPU. The performance 

of this GPU augmented Snort is evaluated under a variety of conditions and its 

performance are compared with the existing CPU serial implementation (using AMD 

Phenom II X4 965 processor), and the results are presented. 

1.1 Network Intrusion Detection and Prevention System 

A Network Intrusion Detection System (NIOS) is an application that monitors 

the network for any unauthorized accesses into the network. The application monitors the 

network for violation of access permissions or other malicious activities. An Intrusion 

Prevention System blocks or prevents an intrusion. Intrusion detection and prevention 



are sometimes combined to form an Intrusion Detection and Prevention System (IDPS). 

Snort is one such IDPS software on which this thesis is based. 

1.2 Snort 

Snort is a signature based Intrusion Detection Prevention software package that 

performs real time network traffic analysis and logs the output. A signature is any pattern 

in the packet data that identifies a possible intrusion. The incoming/outgoing packets in 

the network are analyzed and the packet data are subjected to pattern search. Depending 

on the presence of a signature and the position of its occurrence inside the packet, 

appropriate actions like alert. log, pass, drop etc. are taken for the packet. 

Snort can be configured to run in three different modes: 

1. Sniffer mode: in this mode Snort reads the packets from the network and displays 

them on the screen. It can be configured to display just the protocol headers, or to 

display the entire packet including headers and the packet data. 

2. Packet Logger mode: in this mode snort can be used to record all the network 

traffic into a file. It can be configured to log the network traffic to and from 

specific subnets or specific ports. 

3. Network Intrusion Detection System (NIDS) mode: This is the most complex 

mode and allows matching packets against a user defined set of rules and 

performing several actions like drop, pass, alert etc. based on what it sees. 

Every mode uses a configuration file snort.confto set up its running environment. 

The configuration file is used to define the network addresses, a set of rules which Snort 

will apply to network packets, the desired type of output (such as: original ASCn coded 
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format or a binary log file), and several other run modes in which snort can be configured 

to work. Run modes can also be specified as command line options when starting Snort, 

and command line options override any of the options specified in the configuration file. 

1.3 Fermi Architecture on NVIDIA's Tesla GPU using CUDA 

Compute Unified Device Architecture (eUDA) is a massively parallel computing 

architecture that allows a heterogeneous co--processing computing model between a GPU 

(Graphics Processing Unit) and a CPU. The sequential parts of the application run on the 

CPU and the computation intensive parts are accelerated by the GPU. The GPU contains 

hundreds of processor cores, which are capable of running many thousands of parallel 

threads that work together to achieve high throughputs. Applications that leverage the 

CUDA architecture can be developed in a number of different languages including C, 

C++, Fortran, OpenCL, and DirectCompute. 

The latest generation CUDA architecture is called Fermi, first released in 2010. 

Fermi is optimized for scientific applications with key features like over 500 gigaflops of 

IEEE standard floating point hardware support that provides a fused multiply-add 

instruction for both single and double precision arithmetic operations, L I and L2 caches, 

coalesced memory access, local lIser managed data caches in the form of shared memory 

dispersed within the GPU and ECC or Error Checking and Correction that protects the 

memory from soft errors caused by external electromagnetic interferences. 
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Figure 1: Block Diagram of Fermi Architecture [Source: :'I/vidia] 

Figure 1 shows the block diagram of Fermi architecture of NVIDIA 

C2050/C2070 Tesla GPU. It consists of 448 CUDA cores which are organized into 14 

Streaming Multiprocessors (SM). with each SM consisting of 32 cores. A CUDA core 

executes one floating point or integer instruction per clock cycle for a thread. It uses a 

two level distributed thread scheduler called the GigaThread thread scheduler. CUDA 

threads have access to multiple memory spaces during code execution. All threads have 

access to 3GB global memory space. All threads within the same block have access to the 

same configurable shared memory (up to 48KB per SM) during the lifetime of the 

corresponding block. The shared memory and L 1 cache together is 64KB, and this 64KB 

can be configured as 48KB shared memory and 16KB LI cache or 16KB shared memory 

and 48KB LI cache. If shared memory is not used it automatically defaults to 16KB 

shared memory and 48KB L I cache. Fermi supp0l1s a 768KB unified L2 cache that 
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services all load, store, and texture operations. It enables efficient high-speed data s.haring 

across the GPU. Figure 2 demonstrates the Fermi memory hierarchy. The L1 cache 

enables high speedup in execution of programs whose memory accesses are not known 

beforehand. 

Fermi Memory Hierarchy 
Thread 

DRAM 

Figure 2: :Fermi Memory Hierarchy [Source: Nvidia, Fermi Architecture White Paper] 

The focus of this thesis is on accelerating the performance of Snort by porting Snort's 

string searching algorithm to run on a GPU. A GPU adaptation of the Aho-Corasick 

algorithm is implemented and incorporated into the Snort code. The rest of the thesis is 

organized as follows: Chapter 2 is a literature survey of other publications related to this 

work. Chapter 3 presents various methods and algorithms that form the basis of this 

work. Chapter 4 discusses the actual implementation details and presents results of the 

experiments conducted. Chapter 5 presents conclusions and directions future work. 
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II. LITERATURE SURVEY 

The performance of intrusion detection systems is heavily dependent on pattern 

matching, as millions of packets must be examined at Mbps or Gbps. A large number of 

pattern matching algorithms have been deve'loped which have found use in a variety of 

fields including bioinformatics, network security, and forensics where large amount of 

data have to be analyzed for pattern matches. 

Pattern matching algorithms may be classified into single or multi pattern search 

algorithms. The Boyer Moore algorithm r23] is a single pattern search algorithm that 

searches for a pattern of length m in the text. The Boyer Moore algorithm uses some 

simple heuristics to improve performance and for a text of length n, it has an average 

performance of O(nlmJ comparisons. In the Knuth-Morris-Pratt single pattern search 

algorithm [II], the authors describe a method in which the performance can be 

marginally improved by relying on the information gained by previous symbol 

comparisons. By making use of the information gained by previous symbol comparisons, 

KMP avoids re-comparison of any text symbol that has matched a pattern symbol. The 

Knuth-Morris-Pratt algorithm has an average complexity of O(m+n). 

Multi pattern search algorithms search the text for a set of patterns 

simultaneously, and their performance is independent of the number of patterns being 

searched. This is achieved by building an automaton from all the patterns. The automaton 

can be a table, a tree or a combination of both. Each character in the text needs to be 
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examined only once for all the patterns together. Several algorithms have been developed 

for multi pattern searches. The Wu- Manber [22] algorithm makes use of the text shifting 

in the Boyer Moore algorithm, and proposes the use of a hash table and a prefix table to 

determine the candidate pattern for a match and to verify the match. The Aho-Corasick 

algorithm [I] makes use of a non-detenninistic (NFA) or deterministic finite (DFA) 

automaton to perform simultaneous pattern matching, and thus its performance is 

independent of the number of patterns, and is I inear in the lengths of the patterns plus the 

length of the test string. 

Snort [36] uses the Aho-Corasick algorithm to pcrfonn a multi pattern search on 

the network packets. It first constructs an NF A, and then converts that NF A to a DF A 

with a reduced number of states. Several attempts have been made to improve the 

performance of Snort using a GPU [4, 6, 9, 10], by parallelizing the pattern matching 

algorithm. 

2.1 Snort Architecture 

Snort's intrusion detection functionality is achieved with the five mam 

components, which is illustrated in Figure 3. Snort relies on an external packet capturing 

library /ibpcap to sniff the network packets. The raw packets are then fed to the Packet 

Decoder. The packet decoder can be considered as the first main component of the snort 

architecture. The packet decoder mainly segments the protocol elements of the packets to 

populate an internal data structure. These decoding routines are called in order through 

the protocol stack, from the data link layer up through the transport layer, finally ending 

at the application layer. Once the packet decoding is complete, the traffic is passed over 
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to the Preprocessors for normalization, statistical analysis and some non-rule based 

detection. Any number of preprocessor plugins can examine or manipulate the packets 

and then passes them over to the next component, the Detection Engine. The detection 

engine scrutinizes each packet data and search for intrusion signatures. The Logging and 

Alerting system either logs the packet information to a file or sends alerts through the 

output plugins. The last component of Snort is the Output Plugins, which generates the 

appropriate alerts to the present suspicious activity to the user. 

.' '''f' -'-., 

l P,ept""'t"~o'~ 

P""k.-t" 
tlntppe:d. 

()Ulput 

Mooui<'. 

Figure 3: Block Diagram of Snort (Source: 1351) 

2.2 Programming in CUDA 

CUDA SDK uses an extended C language that allows the user to program using 

the CUDA architecture. A user defined C fUllction that is executed in the GPU is called a 

kernel. A set of parallel threads, which are organized into thread blocks and grids of 

thread blocks, execute the kernel concurrently. The programmer specifies the number of 
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times the kernel has to be executed by specifying the number of threads in the program. 

Each thread executes one instance of the kernel. So, if the user specifies the number of 

threads as N, the kernel will be executed N times by N different threads. CUOA follows a 

Single Instruction Multiple Thread (SIMT) programming model. The Fermi architecture 

also supports concurrent global kernel execution by allowing up to 16 kernels to execute 

simultaneously. The limitation with executing multiple kernels is that all kernels must 

belong to the same program, as eUDA cannot manage application level parallelism. 

2.3 GPU Thread Architecture 

The massive parallelism in the eUDA programming model is achieved through 

its multi-threaded architecture. This thread parallelism allows the programmer to partition 

the problem into coarse sub problems that can be processed in parallel by blocks of 

threads, and each sub problem is further divided into finer pieces that can be solved 

cooperatively in parallel by all threads within a block. The CUDA threads are organized 

into a two-level hierarchy using unique coordinates called block JD and thread JD. Each 

of these threads can be independently identitied within the kernel using its unique 

identifier represented by the built-in variable blockldx and threadJdx. 

The programmer can configure the number of threads required in a thread block, 

with a maximum of 1024 threads per block. An instance of the kernel is executed by each 

of these threads. 
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Figure 4: eUDA Thread Organization [Source: Nvidia] 

A group of 32 threads with consecutive thread IDs is called a Warp, which is the 

unit of thread scheduling in SMs. The Fermi architecture supports 16 SMs each of which 

can track a total of 48 warps simultaneously resulting in a total of 24,576 (16 x 32 x 48) 

concurrent threads on a single chip. 

Gnarf [14] explores two methods of configuring the GPU threads, both of which achieve 

a speedup by a factor of two. One approach is to assign a single packet to each 

multiprocessor at a time, and the second approach is to assign a single packet to each 

stream processor at a time. In the first approach, each packet is divided into 32 equal 

chunks, which are concurrently processed by the 32 threads of a warp in parallel. Let X 

be the maximum pattern length in the state table. To handle correctly the patterns that 

span over consecutive chunks, each thread searches X bytes in addition to the chunk 

assigned to it. This chunk overlapping requires extra processing, which introduces 

overhead in execution. In the second approach, each packet is processed by a different 
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thread. Let Y be the total number of packets sent in a batch to the GPU. If the GPU has N 

multiprocessors, N thread blocks are created, and each thread block processes YIN 

packets. In this thesis, Snort is subjected to parallelization along the lines of Gnort's 

second approach, where a single packet is analyzed by a single thread. 

In a later publication by Vasiliadis et al. [15], the perfonnance was improved by 

60% by implementing regular expression matching on the GPU. Regular expressions are 

more expressive and flexible than byte patterns, and several patterns can be combined to 

fonn a single regular expression. Similar to byte patterns, regular expression matching 

can also be parallel ized using GPU. The GPU adaptation for pattern matching is applied 

to web pages to obtain 28 times peak perfonnance as explained in [19]. Lin et al. [7] 

proposed a novel parallel algorithm Parallel Failureless-AC algorithm (PF AC) to speed 

up string matching, and is t'(mnd to be 4,000 times faster than the existing Snort. In the 

PF AC algorithm, a trie similar to the Aho-Corasick algorithm is constructed but with the 

failure states removed. Each byte in the input packet is assigned a thread in the GPU, 

which searches for any signature patterns starting at that byte. 
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111. METHODS 

This Chapter explains the methods used by Snort that are relevant to the 

implementation. These are the functionalities of Snort that are modified or dealt with in 

the new implementation. 

3.1 Packet Capture and Preprocessing 

The first phase of any network intrusion detection system is packet capturing. All 

data in the network are transmitted in the form of a packet, which comprises of a packet 

header, packet data, and sometimes. a trailer. The packet header consists of several Open 

Systems Interconnection (OSI) layer information, checksums, fragmentation flags and 

offsets, source and destination IP addresses. source and destination port numbers, etc.; the 

packet data consists of the payload [6]; the trailer contains end of packet and error 

checking codes. The OSl model is a 7 layer network architecture (Physical Layer, Data 

Link Layer, Network Layer, Transport Layer, Session Layer, Presentation Layer and 

Application Layer) model which standardizes the functions of a communication system 

in terms of abstraction layers. Packets in the network first reach the Network Interface 

Card (NIC) of a computer. which when operated in promiscuous mode passes all packet 

frames to the CPU rather than just those addressed to the NICs MAC address. Libpcap is 

a platform independent open source library used to capture and process raw network 

packets. The raw packets thus captured are processed to extract the source and destination 
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addresses, source and destination ports, protocol infonnation, and the packet payload all 

of which are essential for detecting intrusions. The infonnation that is extracted is stored 

for comparison and reassembling the packet later. For IDS it is important to reassemble 

fragmented packets before detection because fragmentation can be used to hide attacks 

from signature based intrusions. One part of the signature may be in one fragment and the 

other part on another fragment. Hence the preprocessors play a vital role in de

fragmenting the packets and later reassembling the data before delivering it to the 

intended recipient. 

3.2 Signature Detection 

Signatures or Rules are vital to the efficiency of Snort as a Network Intrusion 

Detection System. Most known intrusions have a signature or pattern, and Snort uses 

them to identify whether the received packet is part of an intrusion or not. Snort has a set 

of attack signatures that are read line··by-Iine, parsed and loaded into an internal data 

structure when the service begins. Every incoming packet is then inspected and compared 

with these rules. When an intrusion is detected, appropriate actions are taken for the 

packet. Every time a new intrusion is reported, a rule that identifies that intrusion is 

created and added to the existing set. Every rule starts with an Action, which is the action 

to be performed if that rule is matched. Current rule actions are: 

• Alert -- Generate an alert and then log the packet. 

• Log - Generate a log entry. 

• Pass - Ignore the packet. 

• Activate -- Alert and tum on dynamic rules. 
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• Dynamic - After activated by the Activate rule, act as a log rule. 

• Drop - Make iptables drop the packet and log the packet. 

• Reject - Make iptables drop the packet, log it, and then send an 

unreachable message if the protocol is User Datagram Protocol (UDP). 

• Sdrop - Make iptables drop the packet but do not log it. 

A typical Snort rule consists of two main components: the rule header and the rule 

options. The rule header comprises of protocols, variables, and ports. The rule options 

include parameters like rule title, flow, content, depth, offset, etc. Figure 5 shows an 

example of a Snort rule. 

Action 

Header 

Rule Options 

Figure 5: Signature or Rule 

In the rule in the example illustrated by Figure 5, the action to be taken is 'drop' . 

The protocol here is ' tep '. Other protocols identified by the NIDS are ' ;p ', 'udp ', and 

' ;emp·. Next part of the header is the Source and Destination IP addresses. In the above 

14 



example the source IP is HOME_NET and the destination IP is EXTERNAL_NET. 

EXTERNAL __ NET and HOME_NET are variables, the values of which can be set in a 

configuration file. The next parameter in the rule is the source and destination port 

numbers. In the above example, the Source port and Destination port values are set as 

'any'. This means that the rule can be applied to all packets irrespective of the port 

numbers to which it is sent or received, provided the remaining parts of the header match. 

The direction in the signature tells in which way the signature has to match. This means 

that only packets with the same direction as that of the rule can match. The direction of 

traffic in which the above rule will be active is from source to destination. The direction 

can be 'leli to right ( -»', 'right to left «-)' or 'both <>' . 

The second part of the rule is the rule options. The options in a rule may include 

'msg', 'sid', 'content', 'uricontent'. ~flow', 'depth', 'ofl~'et', 'within', etc. Each of these 

keywords is supplied with a value. The value for 'msg' will be the rule title that will be 

logged if a packet is matched with that rule; 'sid' will have the unique rule id for each 

rule; 'content' denotes the pattern that is to be searched for in the payload and 

'uricontent' is the pattern that is to be searched for in the request-uri; 'flow' helps to 

control load by limiting the search to a certain type of stream; 'depth', 'offset', and 

'within' specify the location of the particular pattern inside the payload. 

3.3 Snort's Multi Pattern Search (Aho-Corasick) 

Snort requires a pattern matching system that can search for thousands of patterns 

in relatively small packets at very high speeds. This can be achieved with multi pattern 

search algorithms like Wu-Manber or Aho-Corasick. The latest version of Snort uses the 
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Aho-Corasick algorithm, as it is slightly faster and less sensitive to the size of the pattern 

being searched. The Aho-Corasick algorithm uses a Deterministic Finite Automata 

(DF A) for performing the multi pattern search. 

The Aho-Corasick (AC) algorithm was developed by Alfred V. Aho and Margaret 

J. Corasick in 1975 [I]. The AC algorithm works by constructing a tinite state pattern

matching machine from the set of keywords to be searched. This machine is then used to 

process the input text string in a single pass. The tinite state pattern-matching machine is 

basically a finite automaton that is built from the keywords. Figure 6 shows an example 

of a pattern matching machine that is built from the keywords P = {he, she, his, hers}. 

The final states will be 2, 5, 7, and 9. 

Figure 6: Example ofa DFA (From III) 

The pattern machine is constructed by starting at the root node and inserting each 

pattern one after the other. The algorithm works as follows: 

• Start at the root node. 

• For each pattern in P 
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• If the path ends befor8 the pattern, continue 

adding edges and nodes for the remaining characters 

in the pattern. 

• Once the pattern is identified mark it as the final 

state. 

The time taken for the search is linearly proportional to the length of the pattern being 

searched. The search algorithm is similar to the above one. 

• Start at the root node. 

• For each character in the text, follow the path led by 

the trie 

• If it is a final state node, the pattern is present 

in the text. 

• If the path terminates before the text, the pattern 

is not present in the text. 

In the Aho-Corasick automaton the actions are determined by three functions: 

I. The gala function g(q,a) is the next state from the current state q, on receiving 

symbol 'a'. 

2. Thcfailure function f(q). for q* 0, is the next state in case of a mismatch. 

3. The output function out(q) gives the set of patterns found at state q. 
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The Aho-Corasick algorithm as explained in [I] is illustrated below. 

Input: A text string x = a ;a) .... L1" where each aj is an input symbol 
and a pattern matching machine !'-1 with goto function g, t'ailure 
function f, and output function out, as described above. 

output: Locations at which keywords occur in x. 

Method: 
begin 

end 

state t- a 
for i t- 1 until n do 

begin 
while g(state, a) == fail do state t- f(state) 

state t- g(stat.e, ai) 

end 

if out (state) ¥ empty then 
begin 
print i 
print Qut(state) 
end 
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IV. IMPLEMENTATION 

The Detection Engine that performs the signature matching handles the most 

computationally intensive process in Snort Around 75% of the total execution time is 

spent in signature matching process [16]. Therefore the speed of execution can be 

considerably increased if the signature matching process is accelerated through 

parallelization. We aim to achieve this by porting the string-matching algorithm used in 

Snort, Aho-Corasick, to run on a GPU. The AC algorithm relies on a set of OF As for the 

string comparison. These OF As also need to be transferred to the GPU memory for the 

string comparison. 

The new design is incorporated into the existing Snort source code. The basic 

components of Snort can now be re-organized to three main components: Packet Capture 

and Buffering, Transferring the DFAs and Packets to the GPU, and Perform Pattern 

Matching and Obtain the Outputs. 

4.1 Packet Capture and Buffering 

As mentioned 111 section 3.1. Snort uses the external packet capturing library 

/ibpcap to sniff the packets in the network. These packets are processed by the 

preprocessing component of Snort before any analysis. The network addresses that need 
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to be monitored are explicitly stated in the Snort conf~guration file. Snort captures and 

analyses the packets one by one serially. In this implementation, the same library is used 

for capturing the network packets. After a number of packets are captured, the 

parallelized pattern-matching algorithm is applied to all of these packets simultaneously 

in the GPU. To achieve this, the incoming packets have to be buffered. A separate packet 

buffering scheme is implemented and incorporated in Snort that groups the incoming 

packets into buffers. 

Snort reads the entire set of rules and classifies them into different groups based 

on their source and destination IP addresses and port numbers. The rule contents and 

uricontents are then extracted to construct the OF As that are used by the Aho-Corasick 

algorithm to perform string matching. SnOl1 does not assign an identitler to a rule group 

and the associated OF A. The different rule groups in the present implementation are 

assigned unique group identifiers. The source and destination IP addresses and port 

numbers of the incoming packets are observed and the rule group to which it belongs is 

determined. A separate butTer is created for each rule group. The buffer size is made to 

vary from 32, 64, ... , to 4096 for different numbers of input packets. Packets that fall in 

the same group are copied to the corresponding packet buffer. The buffers are operated 

based on a timer. When the buffer is full, the packets are transferred to the GPU. If the 

buffer is still not full after a prescribed time threshold (lOOms in the present 

implementation), the contents of the buffer are transferred anyway, such that there is 

minimal latency introduced by buffering. 
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4.2 Transferring the D.'As and Packets to the GPlJ 

Snort uses rule contents and uricontents of all the rules in a rule group to construct 

one DF A, which is implemented using a hash table. In this implementation the DFA is 

represented in the t<')fm of a table or a two dimensional array. This table has 256 

columns, each of which represents the cOITesponding ASCII character (0-255); the 

number of rows is equal to the number of states in that DF A [14]. Each cell in this table 

is a data structure containing two integers. The first integer represents the next state f()f 

that particular row (row represents the current state) and column (which represents the 

current symbol), which corresponds to the golo function of the AC algorithm [1]. The 

second integer denotes whether that is a final state or not. If it is a final state this integer 

will have a value 1, and 0 otherwise. 

Table 1 :Table Representing a DFA for the String 'black' 

0 j 
- --

State 0 

------r---+ 97 98 99 -- 107 108 -- 255 --- .---- --. 
1,0 

State I 2,0 
-- r' 

State 2 
- --
,0 

State 3 

State 4 
±j4,1) I - -----j4,1 

_ __ I . _L_-.-L __ 

Table 1 shows a simple example of how the DFA table for the string 'black' would look 

like. The ASCII values of characters 'b', 'I', 'a', 'c' and 'k' are 98,108,97,99, and 107 

respectively. State '0' is the starting state. At State 0, it goes to State' I' only when it 

encounters the character 'b' represented by ASCII value 98. For all other characters it 

remains on State '0'. At State' I', it goes to State "2' on receiving the character 'I', which 
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has an ASCII value of 108 and so on. On receiving any character other than' I' in State 

'}', it goes back to the starting state or State '0'. In this OFA State '4' is the final state. 

Hence at State '4' there is no transition and the second integer has the value' l' indicating 

that it is the final state. 

In this implementation, the rule contents and uricontents of Snort are used to 

construct the OF As in the tabular format. These tables are then rearranged to form a 

single one-dimensional array of cells, which are copied to the GPU global memory. An 

additional array of offsets is constructed so as to retrieve the correct table for comparison 

when a set of packets is received. 

The packets are transferred either when the buffer is full or if the timer has timed 

out. In either case, the OFA table that represents that group is identified and the packets 

along with the table offset are transferred to the GPU. 

4.3 Perform Pattern Matching and Obtain the Output 

The Aho-Corasick multi-pattern search algorithm was ported to work with the 

GPU parallel architecture. The GPU implementation of the algorithm is slightly different 

from the original AC algorithm. 

Input: DFA Table, Set of packets {Pi' Ph "., Pr,} I data structures for 
storing the output 
Output: Locations where the patterns occur In each packet 

begin 
Declare n threads; one for each packet 
currentState ~ 0 
patternJ"ength ~ 0 
numPatterns ~ 0 
for cursor ~ beginning of packet to end of packet 

if DFATable[current state] [packet[cursorjj.nextSt3te i- 0 then 
if DFATable [current state] [packet [culsor] J • isFinal =, 0 then 

currentState = DFATable[cllrrent state} [packet[cllrsorjj.nextState 
patternLength = patternLength~l 
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else 
matchPostion = cursor - patternLength 
matchState = currentState 
numPatterns = numPatterns +} 

else 

end 

patternLength f- 0 
currentState f- 0 

A data structure is created to record all the match instances for each packet. The 

position at which the pattern was found, the DF A state at which the pattern \\>as found, 

and the total number of instances of pattern matches found in the packet can be recorded 

in this data structure. An array of such structures:, one for each packet, is copied to the 

GPU global memory along with the packets. After the string comparison, any match 

found in a packet is recorded into the corresponding data structure. 

After pattern matching, the data structures containing the results are copied back 

to the CPU RAM. This output can directly be logged or can be used to raise an alert in 

case of a match. 

4.4 Results 

In this section, the actual results obtained from the comparison of CPU and GPU 

implementations are presented. The CPU used for the experiments was a 2.8 GHz AMD 

Phenom II X4 965 processor with 4 cores, 16 GB total memory and 512 KB cache. Th(~ 

GPU used for the implementation was a Tesla C2050 device with 14 multiprocessors and 

32 cores per multiprocessor. It has a GPU clock speed of 1.15 GHz and 2.68 GB global 

memory. 
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The performance of Network Intrusion Detection using GPU was measured using 

various benchmarks. Initial analysis was made on sample pcap files obtained from the 

websites [37, 38]. Later, a Honey Pot was set up so as to attract actual intrusion packets 

into the system, and these packets were analyzed by the new application. 

"Honey Pots are any security resource whose values lies in being probed, 

attacked, or compromised. They can be real operating systems or virtual environments 

mimicking production systems'· [17]. They create fake working environments so as to 

attract intruders such that the signatures left by them can be studied and analyzed . 

Figure 7 shows the variation in total run time for CPU and GPU for a fixed 

number of packets. It is observed that GPU is twice as fast as CPU on average. It is 

independent of the buffer size for small numbers of packets. 

1200 
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800 III e 
'-' 600 ~ e 

400 E= 
200 

a 

Total Run Time Comparison GPU vs CPU 
(# packets = 250) 

-T---···------------··-----·-·--- _.- ---.-------.--.--.-------.----.--

4 8 32 64 128 256 

Buffer Size • GPU Total Time 

• CPU Total Time 

Figure 7: Total Run Time Comparison 

However, as shown in Figures 8 and 9, when the total time taken for the search 

process alone is compared, it is found that for small fixed numbers of packets, the CPU 
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outperforms the GPU by a factor of two. This variation is due to the buffering scheme in 

the new implementation. For fewer numbers of packets, the buffering scheme introduces 

a delay while waiting for lOOms for the buffer to be full , in case of large buffer size; or 

frequent GPU memory accesses in case of smaller buffer sizes. 

- --- -.- --l 
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Figure 8: Search Time Comparison 
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Figure 9: Variation of Search Time vs Buffer Size 

(t can be observed that for hundreds of thousands of packets the performance of 

GPU is at least twice as fast as the CPU in the case of total search time, as can be seen 
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from Figure 10. A maximum performance of four times the speed was observed as can be 

seen from the graph. The values are recorded for different number of packets for the time 

being. 

Comparison of Search Time GPU vs CPU 

60 ,----------------------------------------- 350000 

50 

o 
32 64 120 256 512 1024 2048 4096 

Buffer Size 

300000 

250000 

~obooo ~ 
u 
~ 

150000 c.. 
=II: 

100000 

50000 

o 

- GPU Search Time 
(ms) 

- CPU Search Time 
(ms) 

- #Packets 

Figure to: Comparison of Search Time 

The speed of the GPU augmented Snort is clearly increased by oftloading the 

pattern-matching algorithm to the GPU. The performance improvement shows a steady 

rise as the number of packets received per second increases. It can also be observed that 

the GPU search time shows a very gradual rise as the number of packets increases. 

Therefore, it can be concluded that for real attacks like Denial Of Service attack, when a 

large number of packets need to be analyzed , GPUs exhibit a consistent performance 

while the cPU s tend to get slower. 
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V. CONCLUSION AND FUTURE WORK 

The importance of Network Intrusion Detection Systems is increasing as new 

threats and viruses invade the network each day and more intrusion signatures are added 

to the existing rule set. The speed of the pattern matching algorithm is therefore one of 

the main concerns in the Network Intrusion Detection Systems. With the advent of 

CUDA several attempts have been made to parallelize the existing algorithms as well as 

to develop other new algorithms that work best '\-'ith CUDA architecture. 

Gnort [2] was a prototype implementation of Snort that claimed to have a 

performance of twice the speed of Snort. This thesis presented the implementation of an 

actual application that runs like Snort but with twice to four-fold the speed. 

There is a huge room for improvement in this work. Every time a new GPU card 

is released with improved computational features, the horizon further advances. As future 

work, this application can be ported to multiple GPU devices that will run in parallel. As 

the number of GPU cards used increases, a proportional speed up of the application is 

expected. Presently, this implementation performs only the content matching, which can 

be extended to regular expression matching that will give a tremendous boost to the 

performance. Research can also be conducted to improve the performance of the 

application by coupling the use of serial CPU during low traffic hours and switching to 

GPU computation during high traffic hours. 
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The idea of parallelizing the pattern matching algorithm can be extended to 

parallelizing the packet preprocessmg part. The 

preprocessing component of Snort that examines packets for SUSpICIOUS activity or 

process packets to provide appropriate input to detection engines, can be ported to the 

GPU. for further improvement in speed. This process is expected to produce enormous 

speed as all the costly computations can be offloaded to the GPU. 

The accuracy of detection of intrusion packets is not measured in the current 

implementation as it was built over Snort and Snort does post processing of the packets, 

which further filters them into intrusion and non -- intrusion packets. This is one area 

which can be worked on to implement all post processing activities similar to Snort and 

compare the accuracy. 
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Project Introduction: 
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Project Introduction: 

Enhancements on the Nordstrom Point Of Sale application, GlobalSTORE developed 
by Fujitsu which include multi-vendor infrastructure management services and point
of-sale hardware and software. 

The key enhancements were: 

• MeR 1 or Multi Channel Retailing vvhich introduced online transactions in 
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• Developing server side services for Register Alerting which would update the 
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Project Introduction: 

: lnfosys Technologies Ltd. 
: Developer 
: Mar 2006 to July 2009. 

The mobile POS application will allow the transaction in a store to be performed 
using the mobile phone. The image of the barcode of a particular product will be 
captured using the mobile phone camera. This will be decoded and the product details 
will be fetched from a dedicated server using Wi-Fi connectivity. The transaction is 
completed by making a credit card payment. The credit card details entered in the 
mobile phone will be validated by a credit server. 
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