
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2012

Parallelizing a network intrusion detection system using a GPU. Parallelizing a network intrusion detection system using a GPU.

Anju Panicker Madhusoodhanan Sathik 1984-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Madhusoodhanan Sathik, Anju Panicker 1984-, "Parallelizing a network intrusion detection system using a
GPU." (2012). Electronic Theses and Dissertations. Paper 879.
https://doi.org/10.18297/etd/879

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/879
mailto:thinkir@louisville.edu

P ARRELLELIZING A NETWORK INTRUSION DETECTION SYSTEM
USINGAGPU

By

Anju Panicker Madhusoodhanan Sathik
B.Tech. University of Kerala, India. 2006

A Thesis
Submitted to the faculty of the

j.8. Speed School of Engineering ofthe University of Louisville
In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

Department of Computer Science and Engineering
University of Louisville

Louisville, Kentucky

May, 2012

Copyright 2012 by Anju Panicker Madhusoodhanan Sathik

All rights reserved

P ARRELLELIZING A NETWORK INTRUSION DETECTION SYSTEM
USINGAGPU

By

Anju Panicker Madhusoodhanan Sathik
B. Tech., University of Kerala, India, 2006

A Thesis Approved on

April 11, 2012

by the following Thesis Committee:

Adviser - Ming Ouyang, Ph.D.

Ahmed H. Desoky, Ph.D.

Ibrahim Imam, Ph.D.

-------~---- . ,----
Roman Yampolskiy, P.h.D.

Jeff Hieb, Ph.D.

ii

ACKNOWLEDGMENTS

lowe my deepest gratitude to my advi~er Dr. Ming Ouyang for his immense help

and guidance. without which it would have been impossible to complete this thesis. I like

to thank all my professors, especially Dr. Desoky, Dr. Imam, and Dr. Yampolskiy for

their invaluable support and faith that has helped me reached this far.

I thank Dr. Jeff Hieb for his timely advice and insights, which provided the

momentum when it was most needed, as well as for agreeing to serve in my committee. I

thank Mr. James Murphy for setting up the honey pot environment, which was crucial in

obtaining the results.

I am most grateful to Martin Roesch, Nandakumar, and Russ Combs from Snort

developers, and Giorgos Vasiliadis from Gnort developers, for helping me with my

queries and doubts.

Above all, I would like to thank my husband Jyothish for his personal support and

encouragement that has helped me to hold on during trying times. I also thank my family

for their unequivocal support, as always, for which I still remain indebted to.

III

ABSTRACT

P ARRELLELIZING A NETWORK INTRUSION DETECTION SYSTEM
USINGAGPU

Anju Panicker Madhusoodhanan Sathik

April II, 2012

As network speeds continue to increase and attacks get increasingly more

complicated, there is need to improved detection algorithms and improved performance

of Network Intrusion Detection Systems (NIDS). Recently, several attempts have been

made to use the underutilized parallel processing capabilities of GPUs, to offload the

costly NIDS pattern matching algorithms. This thesis presents an interface for NIDS

Snort that allows porting of the pattern-matching algorithm to run on a GPU. The

analysis show that this system can achieve up to four times speedup over the existing

Snort implementation and that GPUs can be effectively utilized to perform intensive

computational processes like pattern matching.

IV

TABLE OF CONTENTS

PAGE
ACKNOWLEDGi'v1ENTS........ 111

ABSTRACT ... IV

LIST OF TABLES .. vii
LIST OF FIGURES ... VIII

CHAPTER

I. INTRODlJCTION

1.1 Network Intrusion Detection and Prevention System

1.2 Snort ... 2

1.3 Fermi Architecture on NVIDIA's Tesla GPU using CUDA 3

2. LITERATURE REVIEW... 6

2.1 Snort Architecture.. 7

2.2 Programming in CUDA...... 8

2.3 GPU Thread Architecture............................ 9

3. METHODS .. 12

3.1 Packet Capture and Preprocessing ... 12

3.2 Signature Detection .. 13

3.3 Snort's Multi Pattern Search (Aho-Corasick)................................ 15

4. IMPLEl\1ENTATION .. 19

4.1 Packet Capture and Buffering... 19

4.2 Transferring the DFAs and Packets to the GPU 21

v

4.3 Perfonn Pattern Matching and Obtain the Output 22

4.4 Results ... 23

5. CONCLUSION AND FUTURE WORK .. 27

REFERENCES .. 29

ClJRRICULUM VITAE... 32

VI

LIST OF TABLES

TABLE PAGE

I. DF A for the String "black'.. 21

VII

LIST OF FIGURES

FIGURE PAGE

1. Block Diagram of Fermi Architecture ... 4

2. Fermi Memory Hierarchy..................... 5

3. Block Diagram of Snort .. 8

4. CUDA Thread Organization.................................... 10

5. Structure ofa Signature .. 14

6. Example of a f)F A.. 16

7. Total Run Time Comparison GPU vs CPU (# packets = 250) 24

8. Search Time Comparison (# packets = 250) ... 25

9. Search Time vs Buffer Size (# packets = 1645) ... 25

10. Comparison of Search Time '... 26

V 111

I. INTRODUCTION

Network intrusions are a real and serious threat to most organizations and hence

have been a focus of study for over two decades. There have been numerous efforts to

develop applications that detect intrusions or prevent such activities. However, majority

of the widely available software packages sutfer a serious def~ct: the time delay in

detecting an intrusion after its onset. Recently, with the advent of CUDA enabled GPU

computing, research to improve the speed of intrusion detection systems using GPUs is

receiving a significant amount of attention. In this thesis an open source Network

Intrusion Detection and Prevention software package, Snort®, is subjected to

parallelization and ported to run on NVIDIA C2050/C2070 Tesla GPU. The performance

of this GPU augmented Snort is evaluated under a variety of conditions and its

performance are compared with the existing CPU serial implementation (using AMD

Phenom II X4 965 processor), and the results are presented.

1.1 Network Intrusion Detection and Prevention System

A Network Intrusion Detection System (NIOS) is an application that monitors

the network for any unauthorized accesses into the network. The application monitors the

network for violation of access permissions or other malicious activities. An Intrusion

Prevention System blocks or prevents an intrusion. Intrusion detection and prevention

are sometimes combined to form an Intrusion Detection and Prevention System (IDPS).

Snort is one such IDPS software on which this thesis is based.

1.2 Snort

Snort is a signature based Intrusion Detection Prevention software package that

performs real time network traffic analysis and logs the output. A signature is any pattern

in the packet data that identifies a possible intrusion. The incoming/outgoing packets in

the network are analyzed and the packet data are subjected to pattern search. Depending

on the presence of a signature and the position of its occurrence inside the packet,

appropriate actions like alert. log, pass, drop etc. are taken for the packet.

Snort can be configured to run in three different modes:

1. Sniffer mode: in this mode Snort reads the packets from the network and displays

them on the screen. It can be configured to display just the protocol headers, or to

display the entire packet including headers and the packet data.

2. Packet Logger mode: in this mode snort can be used to record all the network

traffic into a file. It can be configured to log the network traffic to and from

specific subnets or specific ports.

3. Network Intrusion Detection System (NIDS) mode: This is the most complex

mode and allows matching packets against a user defined set of rules and

performing several actions like drop, pass, alert etc. based on what it sees.

Every mode uses a configuration file snort.confto set up its running environment.

The configuration file is used to define the network addresses, a set of rules which Snort

will apply to network packets, the desired type of output (such as: original ASCn coded

2

format or a binary log file), and several other run modes in which snort can be configured

to work. Run modes can also be specified as command line options when starting Snort,

and command line options override any of the options specified in the configuration file.

1.3 Fermi Architecture on NVIDIA's Tesla GPU using CUDA

Compute Unified Device Architecture (eUDA) is a massively parallel computing

architecture that allows a heterogeneous co--processing computing model between a GPU

(Graphics Processing Unit) and a CPU. The sequential parts of the application run on the

CPU and the computation intensive parts are accelerated by the GPU. The GPU contains

hundreds of processor cores, which are capable of running many thousands of parallel

threads that work together to achieve high throughputs. Applications that leverage the

CUDA architecture can be developed in a number of different languages including C,

C++, Fortran, OpenCL, and DirectCompute.

The latest generation CUDA architecture is called Fermi, first released in 2010.

Fermi is optimized for scientific applications with key features like over 500 gigaflops of

IEEE standard floating point hardware support that provides a fused multiply-add

instruction for both single and double precision arithmetic operations, L I and L2 caches,

coalesced memory access, local lIser managed data caches in the form of shared memory

dispersed within the GPU and ECC or Error Checking and Correction that protects the

memory from soft errors caused by external electromagnetic interferences.

3

Figure 1: Block Diagram of Fermi Architecture [Source: :'I/vidia]

Figure 1 shows the block diagram of Fermi architecture of NVIDIA

C2050/C2070 Tesla GPU. It consists of 448 CUDA cores which are organized into 14

Streaming Multiprocessors (SM). with each SM consisting of 32 cores. A CUDA core

executes one floating point or integer instruction per clock cycle for a thread. It uses a

two level distributed thread scheduler called the GigaThread thread scheduler. CUDA

threads have access to multiple memory spaces during code execution. All threads have

access to 3GB global memory space. All threads within the same block have access to the

same configurable shared memory (up to 48KB per SM) during the lifetime of the

corresponding block. The shared memory and L 1 cache together is 64KB, and this 64KB

can be configured as 48KB shared memory and 16KB LI cache or 16KB shared memory

and 48KB LI cache. If shared memory is not used it automatically defaults to 16KB

shared memory and 48KB L I cache. Fermi supp0l1s a 768KB unified L2 cache that

4

services all load, store, and texture operations. It enables efficient high-speed data s.haring

across the GPU. Figure 2 demonstrates the Fermi memory hierarchy. The L1 cache

enables high speedup in execution of programs whose memory accesses are not known

beforehand.

Fermi Memory Hierarchy
Thread

DRAM

Figure 2: :Fermi Memory Hierarchy [Source: Nvidia, Fermi Architecture White Paper]

The focus of this thesis is on accelerating the performance of Snort by porting Snort's

string searching algorithm to run on a GPU. A GPU adaptation of the Aho-Corasick

algorithm is implemented and incorporated into the Snort code. The rest of the thesis is

organized as follows: Chapter 2 is a literature survey of other publications related to this

work. Chapter 3 presents various methods and algorithms that form the basis of this

work. Chapter 4 discusses the actual implementation details and presents results of the

experiments conducted. Chapter 5 presents conclusions and directions future work.

5

II. LITERATURE SURVEY

The performance of intrusion detection systems is heavily dependent on pattern

matching, as millions of packets must be examined at Mbps or Gbps. A large number of

pattern matching algorithms have been deve'loped which have found use in a variety of

fields including bioinformatics, network security, and forensics where large amount of

data have to be analyzed for pattern matches.

Pattern matching algorithms may be classified into single or multi pattern search

algorithms. The Boyer Moore algorithm r23] is a single pattern search algorithm that

searches for a pattern of length m in the text. The Boyer Moore algorithm uses some

simple heuristics to improve performance and for a text of length n, it has an average

performance of O(nlmJ comparisons. In the Knuth-Morris-Pratt single pattern search

algorithm [II], the authors describe a method in which the performance can be

marginally improved by relying on the information gained by previous symbol

comparisons. By making use of the information gained by previous symbol comparisons,

KMP avoids re-comparison of any text symbol that has matched a pattern symbol. The

Knuth-Morris-Pratt algorithm has an average complexity of O(m+n).

Multi pattern search algorithms search the text for a set of patterns

simultaneously, and their performance is independent of the number of patterns being

searched. This is achieved by building an automaton from all the patterns. The automaton

can be a table, a tree or a combination of both. Each character in the text needs to be

6

examined only once for all the patterns together. Several algorithms have been developed

for multi pattern searches. The Wu- Manber [22] algorithm makes use of the text shifting

in the Boyer Moore algorithm, and proposes the use of a hash table and a prefix table to

determine the candidate pattern for a match and to verify the match. The Aho-Corasick

algorithm [I] makes use of a non-detenninistic (NFA) or deterministic finite (DFA)

automaton to perform simultaneous pattern matching, and thus its performance is

independent of the number of patterns, and is I inear in the lengths of the patterns plus the

length of the test string.

Snort [36] uses the Aho-Corasick algorithm to pcrfonn a multi pattern search on

the network packets. It first constructs an NF A, and then converts that NF A to a DF A

with a reduced number of states. Several attempts have been made to improve the

performance of Snort using a GPU [4, 6, 9, 10], by parallelizing the pattern matching

algorithm.

2.1 Snort Architecture

Snort's intrusion detection functionality is achieved with the five mam

components, which is illustrated in Figure 3. Snort relies on an external packet capturing

library /ibpcap to sniff the network packets. The raw packets are then fed to the Packet

Decoder. The packet decoder can be considered as the first main component of the snort

architecture. The packet decoder mainly segments the protocol elements of the packets to

populate an internal data structure. These decoding routines are called in order through

the protocol stack, from the data link layer up through the transport layer, finally ending

at the application layer. Once the packet decoding is complete, the traffic is passed over

7

to the Preprocessors for normalization, statistical analysis and some non-rule based

detection. Any number of preprocessor plugins can examine or manipulate the packets

and then passes them over to the next component, the Detection Engine. The detection

engine scrutinizes each packet data and search for intrusion signatures. The Logging and

Alerting system either logs the packet information to a file or sends alerts through the

output plugins. The last component of Snort is the Output Plugins, which generates the

appropriate alerts to the present suspicious activity to the user.

.' '''f' -'-.,

l P,ept""'t"~o'~

P""k.-t"
tlntppe:d.

()Ulput

Mooui<'.

Figure 3: Block Diagram of Snort (Source: 1351)

2.2 Programming in CUDA

CUDA SDK uses an extended C language that allows the user to program using

the CUDA architecture. A user defined C fUllction that is executed in the GPU is called a

kernel. A set of parallel threads, which are organized into thread blocks and grids of

thread blocks, execute the kernel concurrently. The programmer specifies the number of

8

times the kernel has to be executed by specifying the number of threads in the program.

Each thread executes one instance of the kernel. So, if the user specifies the number of

threads as N, the kernel will be executed N times by N different threads. CUOA follows a

Single Instruction Multiple Thread (SIMT) programming model. The Fermi architecture

also supports concurrent global kernel execution by allowing up to 16 kernels to execute

simultaneously. The limitation with executing multiple kernels is that all kernels must

belong to the same program, as eUDA cannot manage application level parallelism.

2.3 GPU Thread Architecture

The massive parallelism in the eUDA programming model is achieved through

its multi-threaded architecture. This thread parallelism allows the programmer to partition

the problem into coarse sub problems that can be processed in parallel by blocks of

threads, and each sub problem is further divided into finer pieces that can be solved

cooperatively in parallel by all threads within a block. The CUDA threads are organized

into a two-level hierarchy using unique coordinates called block JD and thread JD. Each

of these threads can be independently identitied within the kernel using its unique

identifier represented by the built-in variable blockldx and threadJdx.

The programmer can configure the number of threads required in a thread block,

with a maximum of 1024 threads per block. An instance of the kernel is executed by each

of these threads.

9

-_t -(t..,

-(t..) -floe)

-1 (1.&) ..
~. \
~ 1

\\
\ \

Figure 4: eUDA Thread Organization [Source: Nvidia]

A group of 32 threads with consecutive thread IDs is called a Warp, which is the

unit of thread scheduling in SMs. The Fermi architecture supports 16 SMs each of which

can track a total of 48 warps simultaneously resulting in a total of 24,576 (16 x 32 x 48)

concurrent threads on a single chip.

Gnarf [14] explores two methods of configuring the GPU threads, both of which achieve

a speedup by a factor of two. One approach is to assign a single packet to each

multiprocessor at a time, and the second approach is to assign a single packet to each

stream processor at a time. In the first approach, each packet is divided into 32 equal

chunks, which are concurrently processed by the 32 threads of a warp in parallel. Let X

be the maximum pattern length in the state table. To handle correctly the patterns that

span over consecutive chunks, each thread searches X bytes in addition to the chunk

assigned to it. This chunk overlapping requires extra processing, which introduces

overhead in execution. In the second approach, each packet is processed by a different

10

thread. Let Y be the total number of packets sent in a batch to the GPU. If the GPU has N

multiprocessors, N thread blocks are created, and each thread block processes YIN

packets. In this thesis, Snort is subjected to parallelization along the lines of Gnort's

second approach, where a single packet is analyzed by a single thread.

In a later publication by Vasiliadis et al. [15], the perfonnance was improved by

60% by implementing regular expression matching on the GPU. Regular expressions are

more expressive and flexible than byte patterns, and several patterns can be combined to

fonn a single regular expression. Similar to byte patterns, regular expression matching

can also be parallel ized using GPU. The GPU adaptation for pattern matching is applied

to web pages to obtain 28 times peak perfonnance as explained in [19]. Lin et al. [7]

proposed a novel parallel algorithm Parallel Failureless-AC algorithm (PF AC) to speed

up string matching, and is t'(mnd to be 4,000 times faster than the existing Snort. In the

PF AC algorithm, a trie similar to the Aho-Corasick algorithm is constructed but with the

failure states removed. Each byte in the input packet is assigned a thread in the GPU,

which searches for any signature patterns starting at that byte.

1 I

111. METHODS

This Chapter explains the methods used by Snort that are relevant to the

implementation. These are the functionalities of Snort that are modified or dealt with in

the new implementation.

3.1 Packet Capture and Preprocessing

The first phase of any network intrusion detection system is packet capturing. All

data in the network are transmitted in the form of a packet, which comprises of a packet

header, packet data, and sometimes. a trailer. The packet header consists of several Open

Systems Interconnection (OSI) layer information, checksums, fragmentation flags and

offsets, source and destination IP addresses. source and destination port numbers, etc.; the

packet data consists of the payload [6]; the trailer contains end of packet and error

checking codes. The OSl model is a 7 layer network architecture (Physical Layer, Data

Link Layer, Network Layer, Transport Layer, Session Layer, Presentation Layer and

Application Layer) model which standardizes the functions of a communication system

in terms of abstraction layers. Packets in the network first reach the Network Interface

Card (NIC) of a computer. which when operated in promiscuous mode passes all packet

frames to the CPU rather than just those addressed to the NICs MAC address. Libpcap is

a platform independent open source library used to capture and process raw network

packets. The raw packets thus captured are processed to extract the source and destination

12

addresses, source and destination ports, protocol infonnation, and the packet payload all

of which are essential for detecting intrusions. The infonnation that is extracted is stored

for comparison and reassembling the packet later. For IDS it is important to reassemble

fragmented packets before detection because fragmentation can be used to hide attacks

from signature based intrusions. One part of the signature may be in one fragment and the

other part on another fragment. Hence the preprocessors play a vital role in de­

fragmenting the packets and later reassembling the data before delivering it to the

intended recipient.

3.2 Signature Detection

Signatures or Rules are vital to the efficiency of Snort as a Network Intrusion

Detection System. Most known intrusions have a signature or pattern, and Snort uses

them to identify whether the received packet is part of an intrusion or not. Snort has a set

of attack signatures that are read line··by-Iine, parsed and loaded into an internal data

structure when the service begins. Every incoming packet is then inspected and compared

with these rules. When an intrusion is detected, appropriate actions are taken for the

packet. Every time a new intrusion is reported, a rule that identifies that intrusion is

created and added to the existing set. Every rule starts with an Action, which is the action

to be performed if that rule is matched. Current rule actions are:

• Alert -- Generate an alert and then log the packet.

• Log - Generate a log entry.

• Pass - Ignore the packet.

• Activate -- Alert and tum on dynamic rules.

13

• Dynamic - After activated by the Activate rule, act as a log rule.

• Drop - Make iptables drop the packet and log the packet.

• Reject - Make iptables drop the packet, log it, and then send an

unreachable message if the protocol is User Datagram Protocol (UDP).

• Sdrop - Make iptables drop the packet but do not log it.

A typical Snort rule consists of two main components: the rule header and the rule

options. The rule header comprises of protocols, variables, and ports. The rule options

include parameters like rule title, flow, content, depth, offset, etc. Figure 5 shows an

example of a Snort rule.

Action

Header

Rule Options

Figure 5: Signature or Rule

In the rule in the example illustrated by Figure 5, the action to be taken is 'drop' .

The protocol here is ' tep '. Other protocols identified by the NIDS are ' ;p ', 'udp ', and

' ;emp·. Next part of the header is the Source and Destination IP addresses. In the above

14

example the source IP is HOME_NET and the destination IP is EXTERNAL_NET.

EXTERNAL __ NET and HOME_NET are variables, the values of which can be set in a

configuration file. The next parameter in the rule is the source and destination port

numbers. In the above example, the Source port and Destination port values are set as

'any'. This means that the rule can be applied to all packets irrespective of the port

numbers to which it is sent or received, provided the remaining parts of the header match.

The direction in the signature tells in which way the signature has to match. This means

that only packets with the same direction as that of the rule can match. The direction of

traffic in which the above rule will be active is from source to destination. The direction

can be 'leli to right (-»', 'right to left «-)' or 'both <>' .

The second part of the rule is the rule options. The options in a rule may include

'msg', 'sid', 'content', 'uricontent'. ~flow', 'depth', 'ofl~'et', 'within', etc. Each of these

keywords is supplied with a value. The value for 'msg' will be the rule title that will be

logged if a packet is matched with that rule; 'sid' will have the unique rule id for each

rule; 'content' denotes the pattern that is to be searched for in the payload and

'uricontent' is the pattern that is to be searched for in the request-uri; 'flow' helps to

control load by limiting the search to a certain type of stream; 'depth', 'offset', and

'within' specify the location of the particular pattern inside the payload.

3.3 Snort's Multi Pattern Search (Aho-Corasick)

Snort requires a pattern matching system that can search for thousands of patterns

in relatively small packets at very high speeds. This can be achieved with multi pattern

search algorithms like Wu-Manber or Aho-Corasick. The latest version of Snort uses the

15

Aho-Corasick algorithm, as it is slightly faster and less sensitive to the size of the pattern

being searched. The Aho-Corasick algorithm uses a Deterministic Finite Automata

(DF A) for performing the multi pattern search.

The Aho-Corasick (AC) algorithm was developed by Alfred V. Aho and Margaret

J. Corasick in 1975 [I]. The AC algorithm works by constructing a tinite state pattern­

matching machine from the set of keywords to be searched. This machine is then used to

process the input text string in a single pass. The tinite state pattern-matching machine is

basically a finite automaton that is built from the keywords. Figure 6 shows an example

of a pattern matching machine that is built from the keywords P = {he, she, his, hers}.

The final states will be 2, 5, 7, and 9.

Figure 6: Example ofa DFA (From III)

The pattern machine is constructed by starting at the root node and inserting each

pattern one after the other. The algorithm works as follows:

• Start at the root node.

• For each pattern in P

16

• If the path ends befor8 the pattern, continue

adding edges and nodes for the remaining characters

in the pattern.

• Once the pattern is identified mark it as the final

state.

The time taken for the search is linearly proportional to the length of the pattern being

searched. The search algorithm is similar to the above one.

• Start at the root node.

• For each character in the text, follow the path led by

the trie

• If it is a final state node, the pattern is present

in the text.

• If the path terminates before the text, the pattern

is not present in the text.

In the Aho-Corasick automaton the actions are determined by three functions:

I. The gala function g(q,a) is the next state from the current state q, on receiving

symbol 'a'.

2. Thcfailure function f(q). for q* 0, is the next state in case of a mismatch.

3. The output function out(q) gives the set of patterns found at state q.

17

The Aho-Corasick algorithm as explained in [I] is illustrated below.

Input: A text string x = a ;a) L1" where each aj is an input symbol
and a pattern matching machine !'-1 with goto function g, t'ailure
function f, and output function out, as described above.

output: Locations at which keywords occur in x.

Method:
begin

end

state t- a
for i t- 1 until n do

begin
while g(state, a) == fail do state t- f(state)

state t- g(stat.e, ai)

end

if out (state) ¥ empty then
begin
print i
print Qut(state)
end

18

IV. IMPLEMENTATION

The Detection Engine that performs the signature matching handles the most

computationally intensive process in Snort Around 75% of the total execution time is

spent in signature matching process [16]. Therefore the speed of execution can be

considerably increased if the signature matching process is accelerated through

parallelization. We aim to achieve this by porting the string-matching algorithm used in

Snort, Aho-Corasick, to run on a GPU. The AC algorithm relies on a set of OF As for the

string comparison. These OF As also need to be transferred to the GPU memory for the

string comparison.

The new design is incorporated into the existing Snort source code. The basic

components of Snort can now be re-organized to three main components: Packet Capture

and Buffering, Transferring the DFAs and Packets to the GPU, and Perform Pattern

Matching and Obtain the Outputs.

4.1 Packet Capture and Buffering

As mentioned 111 section 3.1. Snort uses the external packet capturing library

/ibpcap to sniff the packets in the network. These packets are processed by the

preprocessing component of Snort before any analysis. The network addresses that need

19

to be monitored are explicitly stated in the Snort conf~guration file. Snort captures and

analyses the packets one by one serially. In this implementation, the same library is used

for capturing the network packets. After a number of packets are captured, the

parallelized pattern-matching algorithm is applied to all of these packets simultaneously

in the GPU. To achieve this, the incoming packets have to be buffered. A separate packet

buffering scheme is implemented and incorporated in Snort that groups the incoming

packets into buffers.

Snort reads the entire set of rules and classifies them into different groups based

on their source and destination IP addresses and port numbers. The rule contents and

uricontents are then extracted to construct the OF As that are used by the Aho-Corasick

algorithm to perform string matching. SnOl1 does not assign an identitler to a rule group

and the associated OF A. The different rule groups in the present implementation are

assigned unique group identifiers. The source and destination IP addresses and port

numbers of the incoming packets are observed and the rule group to which it belongs is

determined. A separate butTer is created for each rule group. The buffer size is made to

vary from 32, 64, ... , to 4096 for different numbers of input packets. Packets that fall in

the same group are copied to the corresponding packet buffer. The buffers are operated

based on a timer. When the buffer is full, the packets are transferred to the GPU. If the

buffer is still not full after a prescribed time threshold (lOOms in the present

implementation), the contents of the buffer are transferred anyway, such that there is

minimal latency introduced by buffering.

20

4.2 Transferring the D.'As and Packets to the GPlJ

Snort uses rule contents and uricontents of all the rules in a rule group to construct

one DF A, which is implemented using a hash table. In this implementation the DFA is

represented in the t<')fm of a table or a two dimensional array. This table has 256

columns, each of which represents the cOITesponding ASCII character (0-255); the

number of rows is equal to the number of states in that DF A [14]. Each cell in this table

is a data structure containing two integers. The first integer represents the next state f()f

that particular row (row represents the current state) and column (which represents the

current symbol), which corresponds to the golo function of the AC algorithm [1]. The

second integer denotes whether that is a final state or not. If it is a final state this integer

will have a value 1, and 0 otherwise.

Table 1 :Table Representing a DFA for the String 'black'

0 j
- --

State 0

------r---+ 97 98 99 -- 107 108 -- 255 --- .---- --.
1,0

State I 2,0
-- r'

State 2
- --
,0

State 3

State 4
±j4,1) I - -----j4,1

_ __ I . _L_-.-L __

Table 1 shows a simple example of how the DFA table for the string 'black' would look

like. The ASCII values of characters 'b', 'I', 'a', 'c' and 'k' are 98,108,97,99, and 107

respectively. State '0' is the starting state. At State 0, it goes to State' I' only when it

encounters the character 'b' represented by ASCII value 98. For all other characters it

remains on State '0'. At State' I', it goes to State "2' on receiving the character 'I', which

21

has an ASCII value of 108 and so on. On receiving any character other than' I' in State

'}', it goes back to the starting state or State '0'. In this OFA State '4' is the final state.

Hence at State '4' there is no transition and the second integer has the value' l' indicating

that it is the final state.

In this implementation, the rule contents and uricontents of Snort are used to

construct the OF As in the tabular format. These tables are then rearranged to form a

single one-dimensional array of cells, which are copied to the GPU global memory. An

additional array of offsets is constructed so as to retrieve the correct table for comparison

when a set of packets is received.

The packets are transferred either when the buffer is full or if the timer has timed

out. In either case, the OFA table that represents that group is identified and the packets

along with the table offset are transferred to the GPU.

4.3 Perform Pattern Matching and Obtain the Output

The Aho-Corasick multi-pattern search algorithm was ported to work with the

GPU parallel architecture. The GPU implementation of the algorithm is slightly different

from the original AC algorithm.

Input: DFA Table, Set of packets {Pi' Ph "., Pr,} I data structures for
storing the output
Output: Locations where the patterns occur In each packet

begin
Declare n threads; one for each packet
currentState ~ 0
patternJ"ength ~ 0
numPatterns ~ 0
for cursor ~ beginning of packet to end of packet

if DFATable[current state] [packet[cursorjj.nextSt3te i- 0 then
if DFATable [current state] [packet [culsor] J • isFinal =, 0 then

currentState = DFATable[cllrrent state} [packet[cllrsorjj.nextState
patternLength = patternLength~l

22

else
matchPostion = cursor - patternLength
matchState = currentState
numPatterns = numPatterns +}

else

end

patternLength f- 0
currentState f- 0

A data structure is created to record all the match instances for each packet. The

position at which the pattern was found, the DF A state at which the pattern \\>as found,

and the total number of instances of pattern matches found in the packet can be recorded

in this data structure. An array of such structures:, one for each packet, is copied to the

GPU global memory along with the packets. After the string comparison, any match

found in a packet is recorded into the corresponding data structure.

After pattern matching, the data structures containing the results are copied back

to the CPU RAM. This output can directly be logged or can be used to raise an alert in

case of a match.

4.4 Results

In this section, the actual results obtained from the comparison of CPU and GPU

implementations are presented. The CPU used for the experiments was a 2.8 GHz AMD

Phenom II X4 965 processor with 4 cores, 16 GB total memory and 512 KB cache. Th(~

GPU used for the implementation was a Tesla C2050 device with 14 multiprocessors and

32 cores per multiprocessor. It has a GPU clock speed of 1.15 GHz and 2.68 GB global

memory.

23

The performance of Network Intrusion Detection using GPU was measured using

various benchmarks. Initial analysis was made on sample pcap files obtained from the

websites [37, 38]. Later, a Honey Pot was set up so as to attract actual intrusion packets

into the system, and these packets were analyzed by the new application.

"Honey Pots are any security resource whose values lies in being probed,

attacked, or compromised. They can be real operating systems or virtual environments

mimicking production systems'· [17]. They create fake working environments so as to

attract intruders such that the signatures left by them can be studied and analyzed .

Figure 7 shows the variation in total run time for CPU and GPU for a fixed

number of packets. It is observed that GPU is twice as fast as CPU on average. It is

independent of the buffer size for small numbers of packets.

1200

1000
,......

800 III e
'-' 600 ~ e

400 E=
200

a

Total Run Time Comparison GPU vs CPU
(# packets = 250)

-T---···------------··-----·-·--- _.- ---.-------.--.--.-------.----.--

4 8 32 64 128 256

Buffer Size • GPU Total Time

• CPU Total Time

Figure 7: Total Run Time Comparison

However, as shown in Figures 8 and 9, when the total time taken for the search

process alone is compared, it is found that for small fixed numbers of packets, the CPU

24

outperforms the GPU by a factor of two. This variation is due to the buffering scheme in

the new implementation. For fewer numbers of packets, the buffering scheme introduces

a delay while waiting for lOOms for the buffer to be full , in case of large buffer size; or

frequent GPU memory accesses in case of smaller buffer sizes.

- --- -.- --l

Search Time Comparison GPU vs CPU
(# packets = 250)

160 -r--.-----------
140

'Vi' 120
E 100
~ 80
e 60

E= 40
20
o

4 8 32 64 128 256

Buffer Size • GPU Search Time

• CPU Search Time

Figure 8: Search Time Comparison

Search Time Vs Buffer Size for constant
(# packets = 1645)

700 ~---------.----------------------¥ 600 +--------­
';' 500 +-tI_- __ - __ --
e 400

E= 300
.c
l: 200
~ 100
til

o
8 16 32 64 128 256 512 1024 2048

Buffer Size • GPU Search Time

• CPU Search Time

Figure 9: Variation of Search Time vs Buffer Size

(t can be observed that for hundreds of thousands of packets the performance of

GPU is at least twice as fast as the CPU in the case of total search time, as can be seen

25

from Figure 10. A maximum performance of four times the speed was observed as can be

seen from the graph. The values are recorded for different number of packets for the time

being.

Comparison of Search Time GPU vs CPU

60 ,--- 350000

50

o
32 64 120 256 512 1024 2048 4096

Buffer Size

300000

250000

~obooo ~
u
~

150000 c..
=II:

100000

50000

o

- GPU Search Time
(ms)

- CPU Search Time
(ms)

- #Packets

Figure to: Comparison of Search Time

The speed of the GPU augmented Snort is clearly increased by oftloading the

pattern-matching algorithm to the GPU. The performance improvement shows a steady

rise as the number of packets received per second increases. It can also be observed that

the GPU search time shows a very gradual rise as the number of packets increases.

Therefore, it can be concluded that for real attacks like Denial Of Service attack, when a

large number of packets need to be analyzed , GPUs exhibit a consistent performance

while the cPU s tend to get slower.

26

V. CONCLUSION AND FUTURE WORK

The importance of Network Intrusion Detection Systems is increasing as new

threats and viruses invade the network each day and more intrusion signatures are added

to the existing rule set. The speed of the pattern matching algorithm is therefore one of

the main concerns in the Network Intrusion Detection Systems. With the advent of

CUDA several attempts have been made to parallelize the existing algorithms as well as

to develop other new algorithms that work best '\-'ith CUDA architecture.

Gnort [2] was a prototype implementation of Snort that claimed to have a

performance of twice the speed of Snort. This thesis presented the implementation of an

actual application that runs like Snort but with twice to four-fold the speed.

There is a huge room for improvement in this work. Every time a new GPU card

is released with improved computational features, the horizon further advances. As future

work, this application can be ported to multiple GPU devices that will run in parallel. As

the number of GPU cards used increases, a proportional speed up of the application is

expected. Presently, this implementation performs only the content matching, which can

be extended to regular expression matching that will give a tremendous boost to the

performance. Research can also be conducted to improve the performance of the

application by coupling the use of serial CPU during low traffic hours and switching to

GPU computation during high traffic hours.

27

The idea of parallelizing the pattern matching algorithm can be extended to

parallelizing the packet preprocessmg part. The

preprocessing component of Snort that examines packets for SUSpICIOUS activity or

process packets to provide appropriate input to detection engines, can be ported to the

GPU. for further improvement in speed. This process is expected to produce enormous

speed as all the costly computations can be offloaded to the GPU.

The accuracy of detection of intrusion packets is not measured in the current

implementation as it was built over Snort and Snort does post processing of the packets,

which further filters them into intrusion and non -- intrusion packets. This is one area

which can be worked on to implement all post processing activities similar to Snort and

compare the accuracy.

28

REFERENCES

[1] A. V. Aho, and M. J. Corasick (1975). Efficient string matching: an aid to
bibliographic search. Communications o.fthe ACM, 18(6), pp. 333-340.
[2) Ando, K., Okada, M., Shishibori, M., Jun-Ichi Aoe (J 997). Efficient multi-attribute
pattern matching using the extended Aho-Corasick method. Systems, Man, and
Cybernetics, 1997. Computational (vbernetics and Simulation., 1997 IEEE International
Conference, 4, pp. 3936-3941.
[3] Anithakumari, S., Chithraprasad, D (2009). An Efficient Pattern Matching Algorithm
for Intrusion Detection Systems. Advance Computing Conference, 2009. IACC 2009.
IE'EE International, (pp. 223-227).
[4] Antonino Tumeo, O. V., Donatella Sciuto (2010). Efficient pattern matching on GPUs
for intrusion detection systems. Proceedings o.lthe 7th ACM international conference on
Computingfrontier.'" CF la, (p. 87).
[5] Charalampos S Kouzinopoulos, Konstantillos G Margaritis (2009). String Matching
on a Multicore GPU Using CUDA. 13th Panhellenic Conference on Informatics.
[6] Cheng, Y. W. (Feb 2010). Fast Virus Signature Matching Based on the High
Performance Computing ofGPU. Communication Software and Networks, 2010. 1CCSN
'iO. Second International Conference, (pp. 513-515).
[7] Cheng-Hung Lin, Chen-Hsiung Liu, Shih-Chieh Chang (Dec. 2(11). Accelerating
Regular Expression Matching Using Hierarchical Parallel Machines on GPU. Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (pp. 1-5). IEEE.
[8] Cheng-hung Lin, Sheng-yu Tsai, Chen-hsiung Liu, Shih-chieh Chang, Jyuo-min Shyu
(2010). Accelerating String Matching Using Multi-threaded Algorithm on GPU.
Communications Society.
[9] Chengkun Wu, Jianping Yin, Zhiping Cai, En Zhu, Jieren Chen (2009). A Hybrid
Parallel Signature Matching Model for Network Security Applications Using SIMD
GPU. APPT '09 Proceedings of the 8th international Symposium on Advanced Parallel
Processing Technologies, 5737, pp. 191-204.
[10] Chih-chiang Wu, Sung-hua Wen, Nen-fu Huang, Chia-nan Kao. (2005). A Pattern
Matching Coprocessor for Deep and Large Signature Set in Network Security System.
GLOBECOM 05 IEEE Global Telecommunications Conference, (pp. 1791-1795).
[Ill D. E. Knuth, J. Morris, and V. Pratt (1977). Fast pattern matching in strings. SIA}';f
Journal on Computing, 6(2), 127-146.
[121 Daniel Luchaup, Randy Smith, Cristian Estan, Somesh lha (20 II). Speculative
Parallel Pattern Matching. iEEE Transactions on information Forensics and Security,
(pp. 438-451).
[13] Fechner, B. (Feb. 2010). GPU-Based Parallel Signature Scanning and Hash
Generation. Architecture of Computing I~vstems (ARCS), 2010 23rd International
Conlerence, (pp. 1-6).

29

[14] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis
(2008). Gnort: High performance network intrusion detection using graphics processors.
In Proceedings of 11 th International Symposium on Recent Advances in Intrusion
Detection (RAID), (pp. 116-134).
[15] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. loannidis
(2009). Regular Expression Matching on Graphics Hardware for Intrusion Detection.
12th International Synopsium on Recent Advances in Intrusion Deteclion (RAID).
[16] J. B. D. Cabrera, J. G., W. Lee, R. K. Mehra (Dec. 2004). On the Statistical
Distribution of Processing Times in Network Intrusion Detection. 43rd IEEE Conference
on Decision and Control, (pp. 75-80).
[17] Jammi Ashok, Y. Raju, S.Munisankaraiah (20 I 0). Intrsion Detection Through
Honey Pots. InternationaiJournal of Engineering Science and Technology, 2(10), 5689-
5696.
[18] Jiangfeng Peng, Hu Chen, Shaohuai Shi (May 2010). CUgrep: A GPU-based high
performance multi-string matching system. Future (~omputer and Communication
(ICFCq, 2010 2nd International Conferenceo
[19] Jiangfeng Peng, Hu Chen, Shaohuai Shi (20 10). The GPU-based string matching
system in advanced AC algorithm. IEEE International Conference on Computer and
Information Technology, (pp. 1158-1163).
[20] Lee, T.-H. (2007). Generalized Aho-Corasick Algorithm for Signature Based Anti­
Virus Applications. Computer Communications and Networks, 2007. ICCCN 2007.
Proceedings of 16th International Conference, (pp. 792-797).
[21] Lei Wang, Shuhui Chen, Yong Tang, Jinshu Su (2011). Gregex: GPU Based High
Speed Regular Expression Matching Engine. Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS). 2011 F~fth International Conference, (pp. 366-370).
[22] S. Wu and U. Manber (1994). A fast algorithm for multi-pattern searching.
[23] R. S. Boyer and J. S. Moore (1977). A fast string searching algorithm.
Communications (~lthe Associationfor Computing Machinery, 20(10), pp. 762-772.
[24] Nen-Fu Huang, H.-W. H., Sheng-Hung Lai, Yen-Ming Chu, Wen-Yen Tsai (2008).
A GPU-Based Multiple-Pattern Matching Algorithm for Network Intrusion Detection
Systems. Advanced Information Networking and Applications - Workshops, 2008.
AINAW 2008. 22nd International Conference, (pp. 62-67).
[25] Nigel Jacob, Carla Brodley (2006). Oftl\)ading IDS Computation to the GPU. 2006
22nd Annual Computer Security Applications Coriference ACSAC06, (pp. 371-380).
[26] NVIDIA CUDA manual reference. (n.d.). Retrieved from
http://developer.nvidia.com/object/gpucomputing.html
[27] Randy Smith, Nee/am Goyal, Justin Onnont, Karthikeyan Sankaralingam, Cristian
Estan (2009). Evaluating GPUs for network packet signature matching. 2009 IEEE
International Symposium on Performance Analysis of Systems and Software, (pp. 175-
184).
[28] Rehman, R. U. (2003). Intrusion Detection Systems with Snort: Advanced IDS
Techniques with Snort, Apache, MySQL, PHP, and ACID. Prentice Hall PTR.
[29J Sunho Lee, Dong Kyue Kim (2009). Efficient multiple pattern matching algorithms
for Network Intrusion Detection Systems. 2009 IEEE International Conference on
Network Infrastructure and Digital Content, (pp. 609-613).

30

[30] Tuck, N., Sherwood, T., Calder, B., Varghese, G (2004). Deterministic memory­
efficient string matching algorithms for intrusion detection. INFOCOM 2004. Twenty­
third A nnualJoint Conference of the IEEE Computer and Communications Societies, 4,
pp.2628-2639.
[31] Vasiliadis, G., Polychronakis, M., Ioannidis, S (Nov. 2011). Parallelization and
characterization of pattern matching using GPUs. Workload Workload Characterization
(IISWC), 2011 IEEE Internationa/S);mposium, (pr. 216-255).
[32] Vespa, L. J., Ning Weng (Oct. 2011). GPEP: Graphics Processing Enhanced Pattern­
Matching for High-Performance Deep Packet Inspection. Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th International Conference
on C);ber, Physical and Social Computing, (pp. 74-81).
[33] Xinyan Zha, Sahni, S. (March 2012). GPlJ-to-GPU and Host-to-Host Multipattern
String Matching on a GPU. Computers, 1EEE Transactions.
[34] Xinyan Zha, Salmi, S. (2011). Multipattern string matching on a GPU . Computers
and Communications (ISCC) , 2011 IEEE S~vmpos;um, (pr. 277-282).
[35] Zha, X., & SahnL S. (2008). Highly compressed Aho-Corasick automata for etlicient
intrusion detection. Computers and Communications. 2008. ISCC 2008. IEEE
,\ymposium, (pp. 298-303).
[36] http://www.snort.org/
[3 7] http://www.ll.mit.edu/mission/communications/istlcorpora/ideval/data/index.html
[38] http://wiki.wireshark.org/SampleCapture
[39] Jack Koziol. Intrusion Detection with Snort ,ISBN-\ 0: 157870281 X ISBN-
13: 9781578702817 Publisher: Sams Publishing Copyright:2003 Format: Paper; 360
pp Published: OS/20/2003

31

CURRICULUM VITAE

Anju Panicker Madhusoodhanan Sathik
2241 Arthur Ford Ct. Apt #4,
Louisville, KY 40217.
E-mail:-anjupanicker.ms@gmail.com

Personal Profile:-

• Received the Highest Cumulative Scholastic Standing award from University
of Louisville for the Computer Scienct: Master's program.

• Worked as Teaching Assistant for Infonnation Security, Performance Evaluation
and Algorithms courses. Perfonned duties like grading tests and projects and has
given lectures.

• Performed research in performance improvement of Boolean Satisfiability
problem (SAT) using GPU intensified Parallel Programming with the use of
CUDA architecture.

• Current research is on Network Intrusion Detection System using parallel
programming with CUDA-enabled gpu.

• Hands on experience in Software Development and Information Technology.
• .Net: Experience in developing Windows Mobile application for mobility

enterprise solutions.
• Experience in Embedded C programming for POS applications.
• Involved in analysis. coding, testing, client communication and knowledge

transfer activities.

• Exceptional ability to motivate others and help provide a highly productive
development environment.

Experience Summarv:-

• Worked as Teaching Assistant at University of Louisville for 12 months. (2011)
• Worked at REACH (Resources for Academic Achievements), an undergraduate

association at University of Louisville, as a student tutor for 4 months.
• 2.8 years of experience in Software Development at Infosys Technologies Ltd.

as a Software Engineer

32

EducationaIOualification:-

• Pursuing Master of Science degree at University of Louisville with a current
GPA of 3.93/4. (2010-2012)

• Bachelor of Technology in Electronics and Communication from
University of Kerala with an aggregate of 78.8%. (2002-2006)

• ISC with subject aggregate of 90%. (2000-2002)
• ICSE with an aggregate of90%. (2000)

Publications:-

• Ahmed H. Desoky, Anju P. Madhusoodhanan. Bitwise Hill Cipher Cr}pto
System. IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), December 14- I 7,2011 - Bilbao - Spain.
httP/!w~\\\.:i~it.orgiisspit(2()JJ-,'pruJbPJr

Abstract:

This paper describes a modification to the conventional Hill Cipher system. The
purpose of this paper is to explore the adeptness of Hill Cipher for binary data. The
plaintext is any binary data such as images, audio, video, etc. The plaintext is
subjected to scrambling by dividing it into 8 planes. Each of these planes is
encrypted using a different key. From the study conducted on Bitwise Hill Cipher, it
is found that it has enough security required for commercial applications.

Technical Expertise:­
Programming Languages

Operating Systems
Database

PROJECTS:-

1. BootsPDT Replacement:

: Boots (UK)
: Developer.

CUDA, Matlab, C, C++, Visual Basic,
VB.Net, C#.Net

Windows NT, Windows 2000/XP, Linux
Microsoft SQL Server 2000.

Client
Role
Duration : Sept 2008 to July 2009.

33

Project Introduction:

The Boots PDT replacement project dealt with devdoping a windows mobile
application for the MC70 scanner for the store's inventory stock management. Boots
store initially used a Symbol device which was to be replaced by MC70 in order to
improve performance.
The core functionalities delivered by the project are:

• Active tile download to the MC70 scanner trom an EPOS controller during
the Start of Day process and Export data upload to the EPOS controller at End
of Day.

• Maintaining a local database which would help the application to maintain the
Total Stock Figure for the store.

• Applications like Shelf Management, Goods In and Goods Out which are used
for the day to day maintenance of the goods in and out of the store.

Responsibilities:

1. Involved in the project from Requirement Analysis phase.

2. Design of the Shelf Management ft!atures.
3. Development of the Shelf Management application which includes the

features like:
• Shelf Monitor: To manage the count of products inside the

store
• Excess Stock: To manage the goods in back shop.
• Item Info: Allows viewing the details of an item which is

scanned using the scanner.
• Price Check: To determine an increase/decrease in price of any

item.
• Space Planning: Obtain the Plano gram details of the scanned

item.

4. Done complete testing for the project including the regression cycles.

2. Nordstrom POS application:

: Nordstrom (US)
: Developer

Client
Role
Duration : Mar 2006 to Sept 2007.

34

Project Introduction:

Enhancements on the Nordstrom Point Of Sale application, GlobalSTORE developed
by Fujitsu which include multi-vendor infrastructure management services and point­
of-sale hardware and software.

The key enhancements were:

• MeR 1 or Multi Channel Retailing vvhich introduced online transactions in
Global STORE.

• Developing server side services for Register Alerting which would update the
POS application with updates from a central controller.

Responsibilities:

1. Analysis & Design, Coding.
2. Ensure implementation of application, verification & validation

activities to achieve the quality of deliverables.
3. Review the design, code, unit test plan, test cases & test results.

3. Mobile POS:

Client
Role
Duration

Project Introduction:

: lnfosys Technologies Ltd.
: Developer
: Mar 2006 to July 2009.

The mobile POS application will allow the transaction in a store to be performed
using the mobile phone. The image of the barcode of a particular product will be
captured using the mobile phone camera. This will be decoded and the product details
will be fetched from a dedicated server using Wi-Fi connectivity. The transaction is
completed by making a credit card payment. The credit card details entered in the
mobile phone will be validated by a credit server.

35

Responsibilities:

I. Analysis & Design, Coding of the Customer Interest Tracker module which
would fetch the sales record from the database within a particular period for a
selected number of items and would providt~ a graphical display of the same.

2. Review the design, code, unit test plan, test cases & test results

Personal Profile

Date of Birth
Sex
Marital Status
Languages Known
Nationality
Permanent Address

Declaration:-

24-08-1984
Female
Married
English, Malayalam and Hindi
Indian
#I08,Chayakkudi Lane
Pettah P.O. Trivandrum - 695024.
Kerala, India.

I hereby declare that the information presented above is correct and complete
to the best of my knowledge and belief.

Anju Panicker M.S.

36

	Parallelizing a network intrusion detection system using a GPU.
	Recommended Citation

	tmp.1423685735.pdf.QLVYP

