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ABSTRACT 

STUDY OF NOVEL NANOPARTICLE TRANSPORT AND DRUG RELEASE FOR CANCER 

TREATMENT 

 

Christopher G. England 

 

November 13, 2014 

 

 

Nano-scale particles sized 10—400 nm administered systemically preferentially extravasate from tumor 

vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, 

however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor 

vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating 

cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. In this 

study, gold nanoparticles were functionalized with phosphatidylcholine (two-layer) or phosphatidylcholine 

and HDL (three-layer) in the formation of “layered” nanoparticles. The diffusivity of both two- and three 

layered colloidal gold nanoparticles and silica gold nanoshells were examined in 3D cell cultures. Both 

two- and three layered nanoparticles showed enhanced diffusivity in comparison to previously developed 

PEGylated nanoparticles. As the two layer nanoparticles displayed enhanced diffusivity in comparison to 

three layer nanoparticles, the two layered nanoparticles were further examined in vivo using mice implanted 

with orthotopic pancreatic adenocarcinomas. The two layer colloidal gold nanoparticles showed enhanced 

diffusivity in comparison to silica gold nanoshells in vivo, suggesting that smaller nanoparticles were able 

to localize and diffuse from vasculature better than larger nanoparticles. Overall accumulation of solid gold 

nanoparticle accumulated in the tumor and filtering organs (liver and spleen) was 2X higher than silica gold 

nanoshells. Thus, two layer colloidal gold nanoparticles were loaded with cisplatin or paclitaxel to 

determine optimal drug release kinetics. Drug release from paclitaxel-loaded nanoparticles displayed a 

slower release while cisplatin-loaded nanoparticles experienced an initial burst of drug release followed by 

a slower release of remaining drug. Lastly, drug-loaded colloidal gold nanoparticles were tested in 3D cell 

cultures to determine their cytotoxicity. Both two and three layer nanoparticles loaded with cisplatin or 
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paclitaxel showed similar efficacy to drug alone, suggesting their viable use in vivo for cancer treatment. 

This study has demonstrated the potential use of layered nanoparticles for increasing the delivery of 

chemotherapeutics deeper into tumor tissue.  
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CHAPTER I 

INTRODUCTION TO NANOTHERAPEUTICS IN CANCER TREATMENT 

 

Biological Barriers to Successful Treatment 

Several biological differences between the microenvironment found within solid tumors and that 

of normal tissue effectively limit the efficacy of chemotherapeutic drugs as well as nanotherapeutics. Non-

cancerous tissue contains organized vasculature providing oxygen, nutrients, and drug delivered 

systemically to all of the surrounding cells. Cancerous tissue presents multiple barriers to the successful 

delivery of oxygen, nutrients and therapeutics. These barriers are “hallmarks” of the microenvironment of 

solid tumors and include: (1) irregular and disorganized vasculature, (2) high interstitial fluid pressure 

(IFP), (3) low oxygen tension and hypoxia, (4) low extracellular pH, (5) and a dense extracellular matrix 

(ECM) (Figure 1) [1, 2].  
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Figure 1. Microenvironment of Solid Tumors. Solid tumors elicit several characteristics different from 

healthy tissue primarily attributed to irregular vasculature. Cells distant from surrounding blood vessels 

will experience hypoxia as oxygen diffusion is limited, thus certain regions of tissue will have inadequate 

access to oxygen and other nutrients (e.g. glucose). Those cells distant from vasculature will also have 

impaired means of eliminating metabolic waste, resulting in an increased extracellular acidity. The cells 

distant from vasculature can become quiescent or necrotic due to the lack of nutrients.  Also, an increase in 

IFP results from the irregular vasculature along with impaired lymphatic function. This increase can further 

decrease the diffusion of small molecules, effectively limiting the access of drugs and nanoparticles to the 

tumor.   

The irregular and leaky vasculature in solid tumors arises from un-balanced regulation of pro-

angiogenic and anti-angiogenic factors [3]. As a result, portions of tissue will become hyper-vascularized 

while other portions will become hypo-vascularized. Another leading contributor to the disorganized tumor 

vasculature are the disproportional mitotic rates between endothelial and tumor cells, as the latter 

proliferate much faster than endothelial cells making up the vasculature, thus leading to sporadic blood 

vessel formation [4]. As a consequence of irregular vasculature, malignant cells will become distant from 

surrounding blood vessels, possibly beyond the diffusion limit of oxygen (100µm). This results in the 

development of oxygen and nutrient gradients in which cells closer to vessels will receive most of the 

nutrients and proliferate, while cells distal to the vasculature will receive insufficient oxygen and nutrients, 

thus promoting cellular quiescence and even necrosis [5].  

It has been well documented that solid tumors commonly possess elevated interstitial fluid 

pressure (IFP) in comparison to non-cancerous tissue, where the IFP is regulated to optimize fluid flow and 

nutrient transport from blood vessels to surrounding cells [2]. Whereas in normal tissue the IFP is slightly 

negative (-1 to -3 mm Hg), in solid tumors it can range as high as 10 to 30 mm Hg [6]. For example, the 

IFP of implanted A549 orthotopic solid tumors in mice were monitored in correlation with tumor size. As 

the tumor volume increased to 2000 mm3, IFP also increased from 2 mm Hg to 4 mm Hg, with other cell 

lines exhibiting higher increases [7]. There are three factors that influence IFP in solid tumors, including:  

decreased function of blood vessels and lymphatics residing within the tumor microenvironment, osmotic 

forces that draw solute into the tissue, and contraction of the tumor stroma [1]. As the factors are 
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synergistic, they can promote high solid tumor IFPs s [1]. Numerous studies have analyzed how increased 

IFP affects the therapeutic efficacy of drugs, with most studies showing a positive correlation between 

increased IFP and poor prognosis [8].  

As the cells further away from vasculature become quiescent, a gradient of decreasing cell 

proliferation with increased distance from blood vessels will develop [9]. Quiescent cells have shown 

increased incidence of resistance to both chemotherapeutics and radiotherapy [10, 11]. Reasons include: 

(A) hypoxic cells are usually quiescent not allowing for cycle-dependent chemotherapeutics to be effective, 

(B) chemotherapeutics may be inactive in acidic or hypoxic microenvironments, and (C) cells may receive 

sub-optimal drug concentrations simply attributed to the distance from the nearest blood supply [4].  

The acidic microenvironment of solid tumors can hinder the delivery of chemotherapeutics in 

multiple ways [12]. The low pH found in solid tumors is attributed to the build-up of metabolites such as 

lactic acid and carbonic acid in the extracellular space. As healthy non-cancerous cells excrete metabolites 

from the cellular cytoplasm to the interstitial space, surrounding vasculature and lymphatic ducts will 

eliminate the metabolites from the tissue. In cancerous tissue, insufficient vasculature and lymphatic 

processes hinder metabolite elimination, leading to their accumulation and resulting in acidic 

microenvironments. In accordance with the theory of ion trapping, drugs must be in an uncharged state in 

order to cross cellular membranes. Drugs such as doxorubicin are weak bases, which will become ionized 

in acidic environments, thus being unable to cross the cell membrane. As the amount of drug entering the 

cell decreases, the potential therapeutic action will also diminish [13]. Thus, the acidity of the 

microenvironment can significantly impact therapeutic outcomes.  

Solid tumors can possess significantly more ECM proteins in comparison to non-cancerous tissue, 

resulting in decreased diffusivity of various nutrients and drugs. The ECM is the tissue outside of the cells 

that provides structural and biochemical support for the cellular structure. It is responsible for cell adhesion, 

cell-to-cell communication, and structural integrity with various proteins (e.g. proteoglycans, collagen, 

hyaluronic acid) and can have a large impact on drug delivery as the composition and quantity of ECM can 

drastically hinder the movement of both medium and large molecular weight proteins [4] due to size and 

charge constraints. For example, collagen possesses a slightly positive charge which may attract anionic 
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nanoparticles or drugs, thus decreasing their delivery to malignant tumor cells residing further away from 

vasculature [14].  

Besides limitations exhibited by the solid tumor, certain chemotherapeutic drugs have poor 

pharmacokinetic properties that can also limit their effectiveness. For example, certain hydrophobic drugs 

(e.g. paclitaxel) are difficult to use clinically due to deficient water solubility and high plasma protein 

binding [15]. Many compounds have been eliminated as potential drug candidates due to their unsuitable 

physiochemical properties. To overcome these issues, nanoparticles have been utilized as drug carrier 

molecules. Nanoparticles are candidates for the delivery of various compounds including 

chemotherapeutics, miRNAs, and imaging agents. For example, paclitaxel is currently available as a nano-

based therapeutic albumin-bound drug (Abraxane) for the treatment of lung cancer [16]. 
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Delivering Nanoparticles to Solid Tumors 

Interest arose in the use of nanoparticles as potential drug carriers because they could be combined 

with previously developed biologically active compounds to improve drug delivery to tumors at increased 

concentrations in comparison to free drug. Properties of nanoparticles that make them candidates for 

therapeutic applications, include: (1) high tunability allowing for modification of properties such as shape, 

size, and surface charge, (2) ability to specifically target cancer cells, (3) ability to sporadically accumulate 

in tumor tissue via passive targeting, (4) ability to overcome physiochemical limitations of the drug itself, 

(5) controllable drug release profiles which can be modified for various cancers or treatment regimens, (6) 

ability to act as theranostic agents or the simultaneous delivery of diagnostic molecules and therapeutic 

agents for the concurrent imaging and treatment of disease, (7) ability to carry multiple drugs, and (8) 

ability to bypass intrinsic cellular resistance mechanisms for entry into cells, such as P-glycoprotein. Each 

of these properties will be discussed in more detail below.  

(1) Nanoparticles are highly tunable, which makes them optimal for appropriate applications in 

medicine. Properties including conformational shape, maximum absorbance, surface charge, and 

hydrodynamic size can be chemically modified to enhance their efficacy. Conformational shape can have a 

crucial impact on cell uptake in vivo, as spherical nanoparticles have been shown to accumulate in tumor 

tissue better than rod-shaped nanoparticles. In 2013, Kolhar et al. showed that rod-shaped nanoparticles 

exhibited higher specific accumulation in lung endothelium in comparison to spherical-shaped particles 

[17]. The maximum absorbance is another modifiable property of nanoparticles, which can be chemically 

altered for purposes such as photoacoustic imaging or photothermal therapy. Investigators were able to 

monitor gold nanoparticles with an absorption peak around 780 nm as they circulated throughout systemic 

circulation using photoacoustic imaging [18]. Ren et al. was able to synthesize paclitaxel-loaded gold 

nanorods with a maximum absorbance near 780 nm and showed the feasibility of using these nanoparticles 

for both photothermal and chemotherapy efficacy in treating lung cancer [19].  

Surface charge also has a large impact on the travel of nanoparticles within circulation and their 

diffusion through tissue. Cationic nanoparticles accumulate in tumor vasculature due to electrostatic 

interactions, but the cationic charge must be minimal for nanoparticles to extravasate from blood vessels 

[20, 21]. It has been shown that neutral charged nanoparticles diffuse rapidly within tumor tissue in 
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comparison to charged nanoparticles which may react with extracellular proteins such as hyaluronan or 

collagen [14, 22]. The effect of nanoparticle size on tissue distribution has been extensively studied. 

Smaller nanoparticles (10-100 nm) exhibit enhanced diffusivity in tumor tissue as compared to larger 

nanoparticles, while larger nanoparticles (100-400 nm) are significantly sequestered due to the EPR effect. 

For example, liposomes ranging in size from 100-200 nm displayed enhanced tumor accumulation in vivo, 

as compared to smaller liposomes (<100 nm) and larger nanoparticles (>200 nm) [23]. Further studies have 

analyzed the diffusion of even smaller nanoparticles in tumor tissue, such as Huang et al. who examined 

the relationship of ultra-small gold nanoparticles and tumor accumulation using nanoparticles ranging in 

size from 2-15 nm. It was shown that 2 and 6 nm nanoparticles accumulate in tumor tissue after intravenous 

injection in higher concentrations than slightly larger nanoparticles (15 nm). They further analyzed the 

localization of these nanoparticles within individual cancer cells and the microenvironment of the tumor, 

illustrating that both 2 and 6 nm particles were distributed throughout the cytoplasm and nucleus of cancer 

cells, while larger nanoparticles were only found within the cytoplasm where they formed aggregates [24].  

(2) The process of functionalizing nanoparticles refers to the chemical addition of various surface 

modifications, such as proteins, peptides, antibodies, or other compounds that can be used to enhance the 

delivery of nanoparticles to the tissue of interest. By specifically targeting cancer cells, systemic off target 

toxicity that is commonly associated with current chemotherapeutics can be minimized. This process has 

been termed “active targeting.” Previous studies have targeted nanoparticles to cell surface receptors 

commonly up-regulated in cancer cells, such as EGFR [25-28]. Kao et al. recently demonstrated that gold 

nanoparticles targeted to EGFR in A549 cells exhibited higher radioactivity retention in the tumor after 

intravenous injection, as compared to non-targeted nanoparticles [25]. Additional groups such as Peng et al. 

developed EGFR-targeted heparin nanoparticles loaded with cisplatin, which were shown to significantly 

increase the intracellular concentration of drug in H292 NSCLC cells as compared to cisplatin alone. These 

nanoparticles showed enhanced pharmacokinetics and bio-distribution through systemic circulation 

improving antitumor activity without weight loss or associated nephrotoxicity [28]. As nanoparticles 

possess high surface area to volume ratio due to their small size and shape, studies have shown the 

feasibility of attaching multiple targeting ligands onto a single nanoparticle, thus increasing the odds of 

cellular interactions with the targeted tissue. For example, Rangger et al. developed liposomes targeted 
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with two peptides: an arginine-glycine-aspartic acid peptide and a neuropeptide. While the additional 

surface modification was predicted to increase tumor accumulation of the liposomes, they found no 

additional tumor uptake with the dual-targeted liposomes compared to single targeted liposomes [29]. This 

study demonstrated an important concept; while adding multiple targeting ligands seems very useful, the 

activity of the targeting ligands may not provide a synergistic effect on targeting capabilities and tumor 

accumulation.  

(3) Irregular vasculature in tumor tissue hinders the delivery of nutrients to some of the cells 

residing in the tumor. The same holds true for freely circulating drugs, in which cells distant from 

vasculature will receive minimal amounts of chemotherapeutics leading to suboptimal drug concentrations. 

Nanoparticle accumulation in tumor tissue is only a small fraction of the loading dose. Previous studies 

have shown that most injected nanoparticles will accumulate in the liver (40-50%), spleen (24-40%), lungs, 

kidneys, and heart. Only 1-5% of injected nanoparticles will accumulate in the tumor tissue, which can 

ultimately lead to therapeutic failure [30]. For this reason, coating nanoparticles with polymers such as 

poly(ethylene) glycol (PEG) has been used to enhance the bioavailability. It was shown that nanoparticles 

coated with PEG exhibit an increase circulation time in vivo, over 2X that of non-coated nanoparticles [31, 

32]. Passive targeting of nanoparticles is based upon the observation that nanoparticles will accumulate in 

tissue surrounding the leaky vasculature as a result of wide fenestrations of the endothelial layer and 

reduced lymphatic draining [2, 33]. This phenomenon has been termed the enhanced permeability and 

retention effect (EPR), which was first described by Hiroshi Maeda in 1985 [34, 35]. Scientists discovered 

that increasing the circulation time of nanoparticles in vivo led to higher accumulation in tumor tissue, as 

the EPR effect was time-dependent.   

(4) The biological effect of a drug is significantly dependent upon its pharmacokinetic properties. 

Many chemotherapeutics have substandard pharmacokinetic profiles which limit their travel throughout 

systemic circulation, due to factors such as rapid metabolism or elimination. Major issues associated with 

poorly water-soluble compounds include: poor bioavailability, lack of dose-response proportionality, 

suboptimal dosing, use of harsh excipients, use of basic or acid conditions to enhance solubility, 

uncontrollable precipitation after dosing, and noncompliance by the patient due to dosing strategies [36].  

The limited pharmacokinetic properties can be overcome by using nanovectors as a delivery mechanism. 
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As nanoparticles are synthesized with tunable pharmacokinetic properties, drugs will be delivered to the 

tumor tissue based upon the pharmacokinetic properties of the nanoparticle. For example, paclitaxel is one 

of the most effective FDA-approved chemotherapeutic drugs due to its anti-cancer activity and relatively 

low EC50, yet minimal water solubility and harsh solvents can hinder efficient delivery and increase the risk 

of severe toxicity. The nano-based formulation of albumin-bound paclitaxel has shown enhanced 

effectiveness, increased survival rates, increased time to disease progress, and decreased systemic toxicity 

[37].  

(5) Once drugs are loaded onto nanoparticles, their release profiles can be modified for the 

treatment of specific diseases. Drug release from nanoparticles is dependent upon several factors including 

pH of the surrounding microenvironment, interactions between the drug and nanoparticle (e.g. covalent 

linkage or non-covalent linkage), and the physiochemical properties of the nanoparticles. For example, Yin 

et al. synthesized curcumin-loaded nanoparticles with three different amphilic methoxy PEG (mPEG)-

polycaprolactone (PCL) block copolymers varying in chain length. They showed that mPEG10k-PCL30k 

had the highest loading efficiency and most sustained drug release profile of the three polymers. Results 

from this study illustrated that various alterations in polymer size could have substantial effects on drug 

release kinetics, so constructing nanoparticles specifically for certain release profiles is feasible and 

worthwhile [38]. Through surface modifications, rapid and slow drug release patterns can be achieved. The 

most common method for analyzing drug release kinetics from nanoparticles is by dialysis, along with 

analysis by UV-spectroscopy or high performance liquid chromatography (HPLC) [39]. Li et al. loaded 

doxorubicin in anionic methoxy PEG-b-poly(L-glutamic acid) nanoscale complexes that exhibited pH 

responsive drug release and significantly prolonged blood circulation time in comparison to drug alone in 

nude mice with A549 NSCLC xenografts [40]. By prolonging circulation time of the nanoparticle, there 

were more opportunities for the nanoparticle to localize in the tumor tissue as it continuously re-circulated 

throughout the body while avoiding the healthy tissue.  

(6) While loading drugs onto nanoparticles can provide enhanced therapeutic responses, this 

concept was extended to loading imaging agents along with drugs. The development of such particles was a 

direct result of scientists wishing to visualize the effects of anticancer treatments. New imaging 

methodologies along with novel theranostic nanoparticles made this process possible. For example, 
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photoacoustic imaging with multispectral optoacoustic tomography (MSOT) has enabled monitoring the 

systemic circulation of gold nanoparticles in real-time [41-43]. Magnetic resonance imaging (MRI) has 

been most extensively utilized with theranostic nanoparticles. Patel et al. recently developed theranostic 

nanoparticles containing multiple modifications including: PEG-coating to increase systemic circulation, a 

CREKA peptide for active targeting to lung cancer, and a cytotoxic compound known as c-substituted 

diindolymethanes (CIM-C-pPhC6H5) for therapeutic activity. These newly developed nanoparticles 

exhibited a 40-fold increased transport in tumor vasculature compared to control nanoparticles [44].  

(7) Due to the high surface area to volume ratio, multiple targeting ligands and therapeutic agents 

can be loaded onto a single nanoparticle. This is advantageous since chemotherapeutics regimens 

commonly consists of two or more drugs in combination. Aratula et al. developed mesoporous silica 

nanoparticles with two anti-cancer drugs (cisplatin and doxorubicin) and two siRNA molecules targeted to 

MRP1 and BCL2 mRNA to decrease cellular resistance. Using the luteinizing hormone releasing peptide 

(LHRH) as an active targeting ligand, they were able to enhance tumor accumulation, as the siRNA 

suppressed cellular resistance to the anticancer drugs, and the anti-cancer agents exhibited enhanced 

therapeutic effect for the treatment of NSCLC in vivo [45]. Another group, Liu et al., encapsulated both 

doxorubicin with paclitaxel and doxorubicin with rapamycin into magnetic mesoporous silica nanoparticle 

to demonstrate the feasibility of loading both hydrophobic and hydrophilic drugs onto the same 

nanoparticle. The nanoparticles showed high internalization and enhanced efficacy in A549 NSCLC cells 

[46]. By loading multiple drugs onto single nanoparticles, patient compliance could be improved as the 

number of necessary drug doses could be decreased.  

(8) Drug resistance is a critical hindrance to successful chemotherapeutic treatment. Multidrug 

resistance (MDR) has been the most extensively studied mechanism in which cancer cells become immune 

to multiple chemotherapeutics [47]. There are both cellular and physiological factors that can alter drug 

resistance. Cellular responses involved in drug resistance include altered molecular targets, increased drug 

metabolism, genetic defects, reduced apoptosis, and up-regulation of efflux pumps [48]. Physiological 

mechanisms of drug resistance include cell-cell interactions, increased IFP, acidic microenvironment, 

hypoxic or necrotic regions in tissue, and irregular tumor vasculature [48]. Efflux pumps such as P-

glycoprotein are commonly associated with increased drug resistance to multiple classes of 
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chemotherapeutics including doxorubicin, vinca alkaloids, and taxols [49, 50]. Using nanoparticles, some 

mechanisms of drug resistance can be overcome. For example, Cuvier et al. showed that both sensitive and 

resistant cells would uptake the same amount of doxorubicin if delivered via nanoparticles [51]. Other 

groups have looked to target intracellular apoptotic mechanisms, such as Bcl-2, which is a protein that 

inhibits downstream apoptotic pathways and is up-regulated in most solid tumors. To overcome this drug 

resistance mechanism, Bcl-2 siRNAs has been encapsulated to decrease drug resistance in vivo [52-54]. For 

example, Saad et al. developed liposomes containing two different siRNAs, Bcl2-siRNA and MRP1-

siRNA, and doxorubicin for use in MDR lung cancer cells. Results showed effective co-delivery of 

doxorubicin and siRNAs with up to 95% cell-death induction, with high suppression of cellular resistance 

[55].  
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Lung Cancer Facts and Statistics 

While other cancer cell lines are utilized in this study, lung cancer is the primary focus. Lung 

cancer remains a lethal ailment in the United States in spite of recent treatment advances. Treatment 

options are disease-dependent, and can include surgical intervention, radiation therapy, chemotherapeutics, 

and select targeted therapies. While these modalities have been shown to improve life expectancy and 

enhance quality of life, late onset of clinical symptoms frequently yields diagnoses resulting in incurable 

advanced disease. Patients with inoperable disease depend entirely on currently available 

chemotherapeutics, yet rapid resistance, miniscule therapeutic windows, excessive off-target toxicity, and 

substandard pharmacokinetic properties make many of these drugs therapeutically suboptimal. Even for 

patients diagnosed at early stages, undergoing chemotherapy and radiation after surgical removal of the 

primary tumor commonly causes severe adverse effects related to off-target drug toxicity.  

A remarkable shift occurred in the late part of the 20th century as incidences of lung cancer grew 

exponentially, eventually surpassing the incidence rates of all other forms of cancer.  Along with increased 

prevalence, associated deaths transcend all other cancers, rendering lung cancer as the leading cause of 

cancer-related death in both men and women in the United States [16, 56]. While incidence and mortality 

rates have declined for men since the 1980s, women have only recently begun to see a decline is death 

rates. In 2013, estimates show that lung cancer will account for approximately 14% of newly diagnosed 

cancers (228,190 cases) and nearly 27% of cancer-related deaths (159,480 deaths) [56]. Compared to other 

forms of cancer, lung cancer accounts for twice the deaths associated with breast cancer in women, and 

three times that of prostate cancer in men [57]. Overall, recent statistics show that men have a 1 in 13 

chance of developing lung cancer throughout their lifetime, while women have slightly better odds of 1 in 

16 [56]; these statistics include both smokers and non-smokers. When considering the population of non-

smokers, male smokers are approximately 23 times more likely and female smokers are 13 times more 

likely to get lung cancer in their lifetime [56].  

Despite major advances in combatting this disease, overall 5-year survival rates for all types of 

lung cancer remain at a dismal 16% [56]. While 5-year survival rates for localized disease is nearly 52%, 

virtually 70% of patients present with regional or distantly advanced disease, which have 5-year survival 

rates of 14% and 1%, respectively [16, 56]. For such patients, current treatment options provide a median 
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survival of 10-12 months, indicating that early detection is critical for enhancing survival [16]. The 

majority of cancer cases manifest in individuals >59 years of age, as the probability of developing lung 

cancer increases proportionately with age. For example, the overall probability of developing lung cancer 

while 40-59 years of age is 1 in 120 (0.9%), 60-69 years of age is 1 in 51 (2.1%), and >70 years of age 

embodies the highest odds at 1 in 17.5 (5.7%) [58]. As with many other cancers, racial disparity is evinced 

as African Americans experience higher incidence and mortality rates from lung cancer; however, recent 

data suggest that this trend will diminish within the next 40-50 years as smoking cessation offerings have 

increased in African American communities [59]. These statistics highlight the essential need for novel 

treatment options to enhance quality of life and increase survival.  

Lung cancer is considered the most preventable form of cancer, as positive correlations between 

cigarette smoking and increased incidence rates have been studied extensively since the 1950s. The first 

acknowledgement that lung cancer could be associated with cigarette smoking came from Sir Richard Doll 

and Austin Hill in 1950 [60]. It was not until 1964 that the U.S. Surgeon General declared cigarette 

smoking as the causative agent for most incidences of lung cancer, while also declaring that increased risk 

of lung cancer was proportional to quantity and duration of exposure [61].  It is estimated that 

approximately 80-90% of lung cancer deaths in the U.S. can be directly associated with tobacco use, while 

other cases have been attributed to environmental factors (e.g. asbestos) [62, 63]. Studies have shown that 

smoking duration has an essential role in estimating potential risk for developing lung cancer, as the risk 

diminishes each year the person remains smoke-free. For example, a 65 year old male who quits smoking at 

50-54 years old will decrease his relative risk for developing lung cancer by approximately 70% [64]. 

Overall, it is estimated that tobacco users who continuously smoke throughout their lifetime have 20-fold 

greater odds of developing lung cancer compared to individuals who successfully abstain from smoking for 

at least one year [64].  

While exposure to tobacco smoke accounts for a large portion of lung cancer incidences, there are 

several other risk factors for lung cancer such as passive smoking (second-hand smoke or environmental 

exposure), asbestos exposure, contact with certain metals (e.g. chromium and arsenic), and radiation [56]. 

Previous studies showed significant synergistic interactions among risk factors for lung cancer. For 

example, smokers who are exposed to asbestos or radiation have much higher odds of developing lung 
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cancer than smokers not exposed to asbestos or radiation as the two risk factors are synergistic [65]. 

Current estimates suggest that ~10% of lung cancer cases can be linked to occupational exposure [66], 

making it the most common workplace-associated cancer [67]. Other risk factors such as contact with 

certain metals and radiation contribute a small number of incidences each year (<1%) [68]. It is important 

to remember that only a small portion of lung cancer cases can be associated with individuals not exposed 

to tobacco or other carcinogens.  

There are four major types of lung cancer based upon tissue morphology, including 

adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and small cell carcinoma. The first three 

types have similar prognosis and treatment options, thus encompassing the non-small cell lung cancer 

(NSCLC) category. Small cell carcinoma is the only form of lung cancer categorized as small cell lung 

cancer (SCLC). NSCLC accounts for approximately 84% of yearly diagnosed cases, while SCLC accounts 

for the remainder (15%) [56]. NSCLC is known to have a much slower growth rate and doubling time (i.e. 

the time it takes a tumor to double in size) (184 days) as compared to SCLC (86.3 days), [69]. 

Adenocarcinoma is the most predominant form of lung cancer accounting for nearly 50% of diagnosed 

cases, and is known for rapid metastases to other portions of the lung, liver, bone, adrenal glands, kidneys, 

and CNS [70]. Adenocarcinomas possess vast amounts of heterogeneous tissue [71]. Currently, an 

increased trend in adenocarcinoma has been seen in women and non-smokers, yet it remains most 

predominant in males <50 years old and women of all ages [61, 72].  

The second most common form of NSCLC is squamous cell carcinoma, which accounts for 30% 

of cases diagnosed cases each year. Squamous cell carcinomas tend to involve the central airways and are 

known for metastasizing late in the disease process, thus having better prognoses in comparison to 

adenocarcinomas [73, 74]. Lastly, nearly 10% of diagnosed NSCLC cases are classified as large cell 

carcinoma and are undifferentiated tumors with histological features atypical of other NSCLC types [73]. 

Small cell carcinomas account for ~15% of all incidences of lung cancer in the United States. This type is 

very aggressive, often metastasizing before diagnosis (60-70% of cases) and leading to scarce treatment 

options and dismal survival rates [75]. Treatment for patients with limited stage SCLC who undergo 

radiation and chemotherapy have a 20-25% cure rate, yet extensive stage SCLC is incurable [76]. The 
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overall 5-year survival rate is much lower for SCLC compared to NSCLC, at 6% and 18%, respectively 

[56].  

Early detection is critical for successful treatment, yet only ~15% of cases are localized at 

diagnosis with the other 85% of diagnosed cases being regional or metastatic [77]. Overall, lung cancer is 

not easy to diagnose early due to the late onset of associated symptoms, along with other factors including 

concurrent respiratory problems that may mask cancer-related symptoms. The most common symptoms 

associated with lung cancer include cough, dyspnea, chest pain, sputum production, and hemoptysis [73]. It 

is not uncommon for physicians to overlook these symptoms in patients with histories of tobacco use, as 

these symptoms are often associated with on-going chronic pulmonary and cardiovascular disease. 

Advanced disease can cause other non-pulmonary symptoms such as neurological deficits, liver 

dysfunction, or bone pain, and these symptoms may be difficult to diagnosis early [73].  

Common methods for detecting lung cancer include chest x-rays, computed tomography (CT) 

scan, and positron emission tomography (PET). Historically, studies have shown that chest radiography and 

sputum cytology do not reduce lung cancer mortality in comparison to the usual care provided by primary 

care physicians [78]. While integrated CT-PET has shown promise in comparison to either CT or PET 

alone in staging NSCLC [79, 80], there has been renewed interest in CT screening for at-risk patients with 

a 20% survival improvement over chest x-rays [81]. If needed, physicians may request further tests such as 

magnetic resonance imaging (MRI), bronchoscopy, or needle biopsy [82]. Upon surgical resection, 

pathological examination of tumor biopsy is performed to confirm diagnosis and determine the stage of the 

disease.  

Staging of NSCLC is performed using the TNM staging classification from the World Health 

Organization. The classification scheme is based upon the primary tumor size and extent (T), regional 

lymph node involvement (N), and presence or absence of distant metastases (M) [83, 84]. Like most other 

cancers, there is a simpler four stage grouping system which states that stage I refers to tumors confined to 

the lung without lymphatic spread, stage II refers to large tumors with ipsilateral peribronchial or hilar 

lymph node involvement, stage III refers to the inclusion of other lymph node and regional involvement, 

and stage IV refers to tumors with distant metastases [85].Staging of SCLC is performed using a two-stage 

method by the Veterans Administration Lung Cancer Study Group, known simply as limited and extensive. 
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In this grouping system, limited stage is defined as being confined to the primary tumor or surrounding 

lymph nodes, while extensive stage is not.  

Currently available treatment options include surgical intervention, radiation therapy, 

chemotherapy, and select targeted therapies. Surgical resection of the tumor remains the most effective 

treatment, yet is not feasible in many cases. In these circumstances, chemotherapy, radiotherapy, and 

targeted therapies have been shown to increase survival rates and improve quality of life. While 

chemotherapeutics can be life-saving, their toxicity can evoke adverse effects such as arthralgia, pyrexia, 

rigors, hematuria, convulsions with the platinum-containing chemotherapeutic cisplatin, changes in color 

vision, and unusual lethargy [86]. While adverse effects caused by these chemotherapeutics can be 

debilitating, they remain in clinical use due to a lack of better alternatives.  

If left untreated, most patients with NSCLC will die within one year of diagnosis. The first line 

treatment for stage I and II NSCLC is surgery, either lobectomy or pneumonectomy, depending upon stage 

and lymph node involvement. For those individuals who undergo surgery, 60-70% of patients with stage 1 

and 40-50% of patients with stage II NSCLC will survive for at least 5 years after surgery with no sign of 

recurrence [87].  Adjuvant therapy using chemotherapeutics or radiotherapy in early stage resectable 

NSCLC has been debated, yet several large studies have shown benefits in survival. For example, the 

International Adjuvant Lung Cancer Trial (IALT) showed a 17% improvement in disease-free survival with 

a 4% increase in overall survival for patients receiving platinum-based adjuvant therapy in comparison to 

patients receiving no adjuvant therapy [88].  

NSCLC patients who present with advanced; non-resectable disease at the time of diagnosis 

depends on chemotherapy as the first line of treatment. Chemotherapy can normally provide an extra 2-4 

months of life expectancy with 10% of patients surviving 12 months [87, 89]. First line chemotherapy 

treatment for NSCLC includes a doublet combination of a platinum-containing compound (cisplatin or 

carboplatin) with an additional non-platinum containing compound, such as gemcitabine, paclitaxel, 

docetaxel, or vinorelbine [90]. First line treatment is normally administered for 4-6 cycles in patients 

benefiting from the therapy, after which second line treatment will be administered. Second line 

chemotherapy for NSCLC includes docetaxel, pemetrexed, and erlotinib, yet there is no consensus 

regarding the optimal second-line treatment [91]. Agents such as erlotinib and gefitinib depended upon the 
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over-expression of epidermal growth factor receptor (EGFR) by lung cancer cells, by acting as tyrosine 

kinase inhibitors. Both of these drugs have shown antitumor activity for patients with advanced recurrent 

NSCLC, along with low toxicity and enhanced quality of life [92, 93]. 

SCLC is more responsive to chemotherapy and radiotherapy in comparison to other forms of lung 

cancer [76]. While early stage NSCLC patients will undergo surgery for tumor resection, SCLC tumors are 

rarely removed due to aggressive growth rates [94]. Combination therapy using radiotherapy with 

chemotherapy has increased median survival rates for both limited and extensive SCLC by 14-20 months 

and 9-11 months, respectively in comparison to chemotherapy alone [94]. Since SCLC tumors are normally 

very radiosensitive, radiotherapy is used in combination with chemotherapeutics as first line treatment. As 

with NSCLC, doublet administration of chemotherapeutics is superior to single drug administration. For 

SCLC, there are fewer chemotherapeutics available; first line agents include cisplatin, carboplatin, 

etoposide, irinotecan, and topotecan. The most common combinations are cisplatin with etoposide, 

carboplatin with etoposide, cisplatin with irinotecan, and carboplatin with irinotecan [94].  Second line 

treatment of SCLC includes the agents ifosfamide, paclitaxel, docetaxel, and gemcitabine, with studies 

showing that patients who relapse after first line treatment have a mean survival of 4-5 months [94]. 

 

 

 

 



17 
 

Nanoparticles for Lung Cancer 

The term “nanomedicine” refers to the use of nanoparticles, typically 10-1000 nm in size, for the 

treatment of various diseases including lung cancer. Nanotherapeutics can enhance the delivery of vital 

chemotherapeutics and other agents to solid tumors by passively and actively targeting tumor tissue 

compared to freely circulating drug, thus increasing the drug concentration within cancerous tissue. Once in 

the target vasculature, nanoparticles accumulate in the tumor tissue due to a phenomenon known as EPR 

effect. In particular, in the treatment of lung cancer, nanoparticle delivery has been extensively studied 

using two routes of administration, inhalation and intravenous. Inhalation minimizes potential adverse 

effects as the particles are delivered mainly to the lung tissue.  

The field of nanotherapeutics has grown exponentially since the mid 1900’s. While much progress 

has been made, the use of nanoparticles in vivo still invokes unanswered concerns about potential toxicity 

and therapeutic efficacy. Although nanoparticles may be candidates for improved cancer therapy, more 

definitive studies regarding effective dose requirements and potential toxicity concerns are required. 

The numerous types of nanoparticles that have been synthesized can ultimately be divided into two 

categories, organic and inorganic nanoparticles.  

Organic nanoparticles are those containing carbon residues such as carbon nanotubes, quantum 

dots, dendrimers, liposomes, and polymeric nanoparticles, as shown in Figure 2. Inorganic nanoparticles 

are particles containing no carbon residues and include magnetic nanoparticles, metallic nanoparticles, 

nanoshells, and ceramic nanoparticles as seen in Figure 3. Each type of nanoparticle will be discussed in 

detail illustrating their applications within the past five years in the diagnosis and treatment of lung cancer.  
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Figure 2. Classification of Organic Nanoparticles. Organic nanoparticles contain carbon residues within 

their structure and can be divided into five categories: carbon nanotubes, quantum dots, dendrimers, 

liposomes, and polymeric nanoparticles. Carbon nanotubes contain numerous 6-carbon rings that align next 

to each other and fold over to make a tube structure, capable of traversing cells without disturbing cell 

membranes. Quantum dots are small nanoparticles with cadmium cores and metallic shells shown to be 

effective imaging agents as they are brighter and more stable than most organic dyes. Dendrimers are 

branched macromolecules that can be precisely controlled during synthesis and capable of carrying large 

drug loads. Liposomes are closed spherical phospholipid bilayers that are non-toxic and biodegradable in 

vivo. Polymeric nanoparticles are colloidal particles that are modified with biodegradable polymer matrices 

to enhance circulation time and overall drug delivery. 
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Figure 3. Classification of Inorganic Nanoparticles. Inorganic nanoparticles do not contain any carbon 

residues within their structure. Inorganic nanoparticles can be divided into four groups including magnetic 

nanoparticles, metallic nanoparticles, nanoshells, and ceramic nanoparticles. Magnetic nanoparticles have 

an inner core, most commonly of iron oxide, with an outer of shell of silica or other ceramic molecules. 

These nanoparticles can potentially be used for magnetic hyperthermia, a method of destroying tumor cells 

using heat. Metallic nanoparticles are composed of a solid metal such as gold or silver. Gold nanoparticles 

have been used extensively in research and can be functionalized with various targeting ligands or loaded 

with drugs for therapeutic action. Nanoshells consist of two layers similar to magnetic nanoparticles. For 

silica-gold nanoshells, there is outer layer of gold that surrounds a hollow silica sphere. Nanoshells are 

highly tunable as the thickness of the layer of gold surrounding the silica is modified. Ceramic 

nanoparticles are made from biocompatible materials such as silica or titania and exhibit enhanced 

biological stability and water solubility. 
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Organic Nanoparticles for Lung Cancer  

Carbon nanotubes (CNTs) have been studied in several biological applications including targeted 

delivery of vaccines, genes, siRNA’s, and chemotherapeutics to tumors. Research has shown that CNTs 

transverse cell membranes without perturbing them, thus CNTs have the ability to delivery drugs into cells 

[95-97]. CNTs are produced by rolling up one or multiple layers of graphite sheets, which align as 

cylindrical tubes having diameters within the nanometer range [98]. They are noted for possessing strong 

material strength, along with high electrical and thermal conductivity due to their small size and mass [99]. 

The large surface area to volume ratio that is exposed to the outside environment makes them optimal for 

biological modification allowing for tumor-specific targeting, drug loading, and fluorescent tracking [100]. 

While the use of CNTs in lung cancer is feasible, many groups have shown that long-term exposure of 

CNTs can cause severe toxicity. For example, it was shown that CNTs can induce malignant 

transformation, tumorigenesis, and mitotic disruption of lung cells [101, 102]. Similarly, a study by 

Lohcharoenkal et al. showed a positive correlation between CNT exposure and mesothelioma. This group 

was further able to assess the mechanism of toxicity, which was linked to matrix metalloproteinase-2 

(MMP-2), an enzyme involved in the breakdown of ECM [103].  

Applications for CNTs in treating lung cancer have been explored in the last five years with 

positive results. Das et al. modified CNTs with the Technitium-99m radionucletoide, an Alexa-fluor 

fluorochrome, folic acid as a targeting molecule, and methotrexate as an active anticancer agent. This study 

showed a 19-fold tumor specific accumulation increase of the multi-functionalized CNTs in comparison to 

drug alone, proving that multi-functional nanoparticles could display better benefits in comparison to 

previously designed nanoparticles [104]. To further explore the use of multiple surface modifications, Datir 

et al. functionalized CNTs with hyaluronic acid and the anticancer agent doxorubicin, along with the same 

radionucleotide and fluorochrome as Das et al. for use in the A549 cell line. This study showed an increase 

in efficacy by 3.2-fold in comparison to drug alone with pH-specific doxorubicin release [105]. The 

potential of CNTs acting as co-therapeutic agents for various chemotherapeutics was also demonstrated by 

Arya et al. through the utilization of graphene oxide CNTs for potentiating the efficacy of paclitaxel [106]. 

Minati et al. developed multi-functional carbon nanotube/gold hybrids that encapsulated doxorubicin for 

the treatment of A549 lung cancer cells. Results from this study showed that nanoparticles exhibited a large 
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absorption band in the NIR-region making it an ideal imaging agent, along with enhanced cellular uptake of 

doxorubicin [107]. Further studies have analyzed the use and possible toxicity associated with carbon 

nanotubes in lung cancer including [108-114]. 

Quantum Dots (QD’s) have semiconductor properties, also known as quantum-confinement, 

providing capability to emit fluorescence from the visible to near infrared wavelength [115]. Along with 

fluorescence properties, their small size makes them viable candidates for diagnostic purposes as they can 

remain in circulation for extended periods of time. QD’s are synthesized from two atoms from the II/VI or 

III/V group of elements in the periodic table [116-119]. Some of the most widely employed quantum dots 

include Cd/Se consisting of a Cd/Se core with a ZnS shell, proving a wavelength around 470-655nm [120]. 

QD’s can be made biocompatible with increased water solubility, core durability, and suspension 

characteristics by adding various surface modifications [121]. While QD’s have the ability to function as 

drug carrier molecules, their small size and quantum-confinement properties have mainly promoted their 

use as imaging agents.  

Currently, applications of QD’s in photodynamic therapy have shown promise as a novel 

treatment method, in which light is used to increase the potency and therapeutic efficacy of the particles. 

For example, it was shown that UV-B irradiation was the most effective method for increasing the 

therapeutic efficacy of QD’s in A549 cell lines by amplifying both apoptotic and necrotic pathways [122]. 

Another group functionalized QD’s with two antibodies for the detection of micro-metastases of lung 

cancer using patient blood samples, displaying the capability of detecting lung cancer using peripheral 

blood. The test was shown to be reliable with a positive detection rate of 81% (21 out of 26 lung cancer 

samples) and no false positives [123]. Furthermore, recent studies have demonstrated that QD’s possess 

enhanced photostability and imaging capabilities as compared to traditional organic dyes. For example, the 

influence of paclitaxel on endocytotic trafficking in live A549 cells was studied by labeling QD’s with 

epidermal growth factor (EGF).  By analyzing the endocytosis and post-endocytotic trafficking of the 

EGFR, it was shown that cells treated with cisplatin have shortened endosomal trafficking pathways and a 

30% decrease in directed motion [124]. Related studies have been performed on the use of QD’s for the 

diagnosis of lung cancer [125-129]. Overall, QD’s have displayed promise as imaging agents for the 
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detection of tumor, yet limitations such as toxicity, specificity, and sensitivity must be further evaluated 

before clinical application. 

Dendrimers are highly branched 3D synthetic polymeric nanoparticles that extend from a center 

core from which multiple generations of monomers attach. Dendrimers can range in size from 2-20 nm, and 

their synthesis must be carefully controlled to ensure the addition of one monomer layer at a time [130]. 

Their synthesis can be completed by two methods: (1) either growth from the inner to outer regions, also 

known as divergent synthesis, (2) or from the outside inward to the core, known as convergent synthesis 

[130]. Multiple branches (i.e. monomers) can be added to the core and each set of branches is known as a 

generation. Dendrimers have many properties that make them suitable nanoparticles for biological purposes 

including their small size that is similar to that of proteins and DNA, numerous active surface groups 

capable of bio-conjugation, an interior open space that can be used for drug loading, minimal 

immunogenicity, and the ability to modify their excretion from the body through size and surface charge 

alterations [131-133].  

Movassaghian et al. developed dendrosomes with a non-cationic liposomal shell containing an 

antisense oligonucleotide that increased the suppression of the target gene, protein kinase C (PKC)-alpha in 

A549 cells with high encapsulation efficiency and no visible toxicity [134]. Wang et al. further 

functionalized dendrimers by synthesizing folic acid-modified dendrimer-entrapped gold nanoparticles for 

use as CT imaging agents in lung cancer. These novel dendrimers showed enhanced biocompatibility with 

no alterations on cell morphology or viability, demonstrating the potential use of dendrimers as imaging 

agents with low toxicity [135]. Dendrimers have also been conjugated to various proteins or peptides in 

hopes to increase the therapeutic efficacy of the protein or peptide. For example, after discovering a novel 

NSCLC-targeting peptide known as lung cancer targeting peptide (LCTP), Liu et al. conjugated the peptide 

to acetylated polyamidoamine (PAMAM) dendrimers. It was concluded that although the dendrimer-

peptide conjugate was successfully targeted to the NSCLC tumors, more studies were needed for analyzing 

its efficacy as a drug carrier molecule [136]. The addition of cisplatin onto dendrimers has been studied by 

many groups, including Malik et al. who conjugated cisplatin through the sodium carboxylate surface of 

PAMAM dendrimers. The success of this formulation was studied in B16F10 tumor mice, and further 
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application of this formulation could be applied for lung cancer [137]. Additional studies using dendrimers 

for studying lung cancer have been performed by [138-141].  

Liposomes consist of closed spherical assemblies of amphiphilic phospholipid bilayers, capable of 

encapsulating drugs or other molecules within an inner aqueous core. Liposomes are the most extensively 

studied type of nanoparticle for the treatment of most cancers due to their ease of synthesis, minimal 

toxicity, and biodegradability. Many groups have successfully targeted liposomes containing two common 

anticancer agents used for the treatment of lung cancer, cisplatin or paclitaxel, to lung tissue [142-144]. For 

example, Zhou et al. loaded paclitaxel onto liposomes with a mitochondrial targeting molecule for the 

treatment of drug-resistant lung cancer. Using the A549/cDDP xenograft tumor model, targeted paclitaxel 

liposomes experienced significantly enhanced uptake into the mitochondria of the lung cancer cells, 

resulting in enhanced apoptosis by acting on the mitochondrial signaling pathways [145]. A similar study 

by Li et al. developed lonidamine liposomes in combination with epirubicin liposomes for the con-current 

treatment of drug resistant lung cancer. They showed that lonidamine liposomes in combination with an 

anticancer agent can enhance the response of drug resistant lung cancer through action on the mitochondrial 

signaling pathway [146]. Clinically, there are stage III trails analyzing the use of liposomal cisplatin in 

combination with paclitaxel for a first line treatment of NSCLC with reduced systemic toxicity and 

increased systemic drug circulation time. There were no significant differences between group  (A) 

liposomal cisplatin in combination with paclitaxel and (B) cisplatin in combination with paclitaxel, yet 

there was significant decreased nephrotoxicity, leucopenia, neuropathy, nausea, vomiting, and fatigue 

[147]. There are multiple clinical trials using liposomal forms of cisplatin for the treatment of NSCLC, 

including Lipoplatin and SPI-77 [148-152].  

Doxorubicin is another anticancer drug that has been successfully encapsulated using liposomes 

that have shown greater efficacy in the treatment of lung cancer compared to freely circulating drug [153-

156]. Liposomal doxorubicin in combination with liposomal tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) was shown to have a stronger antitumor effect when used together, as 

doxorubicin sensitizes cells to TRAIL-induced apoptosis [157]. Saad et al. designed liposomes for the co-

delivery of doxorubicin and siRNA targeted to suppressors of pump and non-pump cellular resistance 



24 
 

mechanisms. The study revealed suppression of cellular resistance by the siRNA and increased therapeutic 

efficacy due to the doxorubicin [55].  

Some groups are analyzing new methods for sensitizing lung cancer cells to current 

chemotherapeutics such as cisplatin. For example, Ou et al. developed a liposomal form of a novel tumor 

suppressor gene, LKB1, in combination with low-dose cisplatin to decrease the number of lung metastatic 

tumor nodules in vivo. The use of siRNA as a therapeutic treatment in lung cancer has recently been studied 

by multiple groups [55, 158], including Taetz et al. who created cationic hyaluronic-modified liposomes for 

the targeted delivery of anti-telomerase siRNA to CD44 receptor-expressing A549 lung cancer cells [159]. 

There are many additional groups who have used liposomes for both treatment and diagnostic purposes in 

lung cancer [156, 160-164]. 

Polymeric Nanoparticles are colloidal particles of biodegradable polymer matrices that can range 

in size from 10-1000 nm. Current uses of polymeric nanoparticles in medicine include delivery of plasmic 

DNA, proteins, peptides, water-insoluble drugs, contrasts agents, and other compounds to targeted tissue. 

The most commonly used polymers used in lung cancer nanotherapeutics include polylactic acid (PLA) 

[165-167], poly(lactide-co-glycoside) (PLGA) [168-170], poly(ethylene glycol) (PEG) [171-176], 

poly(ethyleneimine) (PEI) [177-181], chitosan [182-186], and gelatin [187-190]. Nguyen et al. developed 

conjugates that coupled cell penetrating peptides (CPP) to PEI, through a PEG linker. Overall, the addition 

of PEG and coupling of CPPs to PEI enhanced the bioactivity of the particles after intra-tracheal delivery 

[191]. Similarly, Koshkina et al. analyzed the biodistribution of human p53 plasmid with PEI in vivo 

through inhalation, which showed increased lung accumulation that lasted for at least 24 hours [192]. While 

PEI functions as a gene-delivery polymer, its toxic nature makes it unsuitable for clinical applications. To 

overcome toxicity, Hong et al. developed a novel biocompatible polymer, glycerol triacrylate-spermine 

(GT-SPE) for the delivery of gene therapy in lung cancer. The particles possessed an average size of 121 

nm with a strong anionic charge, as the particles protected the DNA from nucleases and decreased 

proliferation and angiogenesis markers in a murine model [193].  

Polymeric nanoparticles have been utilized for photodynamic therapy, the process in which a 

photosensitizer produces singlet oxygen and other reaction oxygen species that lead to peroxidation and 

ultimately to cellular death. Fadel et al. developed biodegradable copolymer PLGA nanoparticles for the 
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delivery of zinc (II) phthalocyanine (ZnPc), a photosensitizer for photodynamic therapy. The PLGA 

nanoparticles encapsulating ZnPc showed enhanced tumor regression as compared to freely circulating 

ZnPc, demonstrating that polymers can assist in delivering nanoparticles to regions of interest [194]. Jung 

et al. prepared polymeric nanoparticles using polylactic acid and an amphilic block copolymer (mPEG-

PLA) for the delivery of paclitaxel in A549 xenograft mice. The polymeric nanoparticles exhibited 

enhanced anticancer and radiotherapeutic efficacy in vivo by intravenous injection of the paclitaxel loaded 

nanoparticles [195]. The feasibility of delivering biodegradable polymeric nanoparticles via inhalation for 

drug delivery was studied by Beck-Broichsitter et al. using 5-(6)-carboxyfluorescein entrapped in 

biocompatible, fast degrading, branched polyester nanoparticles. The nanoparticles were delivered to an 

isolated rabbit lung model, and displayed rapid release kinetics with 90% of drug being released during the 

first fifty minutes along with encapsulation efficiencies ~60%. Overall, their approach showed that these 

new polymeric nanoparticles were excellent candidates for the pulmonary delivery of nanomedicine 

through inhalation [196]. Recently, Anselmo et al. attached PLGA nanoparticles to red blood cells (RBC) 

to decrease their uptake in the liver and spleen resulting in increased tumor accumulation. While the 

nanoparticles would travel throughout circulation, they would eventually mechanically transfer the 

nanoparticles from the RBC surface to the lung endothelium [197].  
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Inorganic Nanoparticles for Lung Cancer 

Magnetic nanoparticles are biocompatible, non-toxic, chemically stable particles that vary in size 

from 5-200 nm and possess magnetic properties that can be utilized for the enhancement of therapeutic 

efficacy. The applications of magnetic nanoparticles in cancer therapy have included thermotherapy, 

targeted delivery of drugs, magnetic cell separation, and imaging agents (e.g. MRI). The most commonly 

investigated magnetic nanoparticle is comprised of an iron-oxide core, Fe3O4. While thermotherapy has 

shown promise in decreasing tumor size, inadequate intra-tumoral accumulation of nanoparticles often 

results in sub-lethal temperature increase and inadequate therapeutic response. To enhance the delivery of 

superparamagnetic iron oxide (SPIO) nanoparticles to NSCLC in vivo tumors, Sadhuka et al. actively 

targeted the nanoparticles to EGFR resulting in superior intra-tumoral particle accumulation and significant 

inhibition of the lung tumor growth [198]. Concurrent delivery of multiple drugs on a single nanoparticle 

provides additional benefit in comparison to single drug-loaded nanoparticles and to freely circulating drug, 

as most cases of lung cancer will be treated with a regimen of two or more drugs simultaneously. Liu et al. 

synthesized two types of magnetic mesoporous silica nanoparticles co-loaded with either doxorubicin-

paclitaxel or doxorubicin-rapamycin. Using A549 cells, the group showed increased efficacy of the dual-

drug loaded nanoparticle in comparison to single drug loaded nanoparticles [46]. To further study the 

applications of magnetic nanoparticles, Guthi et al. developed multi-functional micelles that entrapped 

SPIO nanoparticles containing doxorubicin for the concurrent imaging and treatment of lung cancer. The 

SPIO-loaded nanoparticles were targeted using a lung cancer-targeting peptide, which resulted in a 3-fold 

increase of SPIO loaded micelles in comparison to control untargeted micelles, thus showing the potential 

of “smart” targeted, image-guided treatments for lung cancer [199].  

The application of magnetic nanoparticles for purposes such as magnetic hyperthermia has been of 

interest recently due to the non-invasive approach and efficiency of tumor ablation. The process of 

magnetic hyperthermia occurs when SPIO nanoparticles are exposed to an alternating magnetic field, 

causing the nanoparticles to release heat within the cell resulting in cell death. For this method to be 

efficacious in practice, an adequate number of injected nanoparticles must be able to reach the malignant 

cancerous cell residing within solid tumors. To overcome this problem, Sadhukha et al. synthesized 

inhalable SPIO nanoparticles targeted to the EGFR, which resulted in an increase of nanoparticle 
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accumulation in the tumor adequate for significant inhibition of lung tumor growth after magnetic 

hyperthermia [198]. Similar studies have utilized magnetic nanoparticles for the treatment and imaging of 

lung cancer [200-205]. 

Metallic Nanoparticles are synthesized from various metals including gold [19, 206-210], silver 

[211-214], copper [215-217], palladium [218], ruthenium [219], and nickel [220-222]. These nanoparticles 

have been proven to be multi-functional, as they can be utilized in numerous applications including drug 

delivery and in vivo imaging, such as photoacoustic imaging. On the contrary, poor biocompatibility and 

uncertain fate in vivo has hindered their use clinically [223].  Wang et al. showed that gold nanoparticles 

coated with 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) were readily uptaken into A549 

cells, yet they induced the formation of lamellar bodies which could export the nanoparticles out of the cell, 

thus acting as a cellular resistance mechanism [224]. In Chapter 2, England et al. analyzes the diffusion of 

three types of citrate gold nanoparticles in 3D cell cultures of A549 cells. Nanoparticles with multiple 

layers, including PEG, phosphatidylcholine (PC), or PC with high density lipoprotein (HDL) were 

developed. From analyzing the diffusion patterns of these coated nanoparticles in 3D cell cultures, they 

show that nanoparticles coated with both PC and HDL exhibited enhanced tissue penetration in comparison 

to PEGylated or PC-only coated nanoparticles. While PEG is the primary polymer used for enhancing the 

circulation time of nanoparticles, this study suggests that the multi-layering of gold nanoparticles may 

augment transport within solid tumors [225]. Some groups have attempted to use gold nanoparticles to 

diagnose lung cancer using non-invasive approaches. Recently, gold nanoparticles have been shown to be 

effective sensors in diagnosing lung cancer in exhaled breath by detecting high concentrations of several 

volatile organic compounds [226] and through histological classification by binding to biomarkers of 

distinct lung cancer types [227]. 

As metallic nanoparticles have been associated with possible toxicity concerns, multiple groups 

are searching for ecofriendly and nontoxic methods for synthesizing nanoparticles. As the manufacturing of 

nanoparticles can pose health concerns for workers, finding better methods for creating nontoxic 

nanoparticles is of particular interest. For example, Bhat et al. developed a green chemistry approach to 

synthesize gold nanoparticles with the mushroom Pleurotus florida through a photo-irradiation method. 

The bio-functionalized nanoparticles showed enhanced anticancer properties in A549 cells, as well as four 
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other cancer cell lines [228]. Many other metals been have studied for their potential for biological 

purposes, yet most have displayed toxicity in vivo. Nickel nanoparticles are of particular interest due to 

their use in modern industries for purposes such as sensors and catalysts. A link between nickel 

nanoparticles and reduced mitochondrial function was recently discovered. In addition, nickel nanoparticles 

resulted in leakage of lactate dehydrogenase in a dose and time-dependent manner in A549 cells, 

suggesting the metallic nanoparticles are toxic to human lung epithelial cells [229].  

Nanoshells are synthesized using a template-mediated method with an inner core composed of 

various materials including silica, polystyrene, poly (lactic-co-glycolic) acid, and Fe3O4 with outer metallic 

shells. For example, silica-gold nanoshells are composed a dielectric silica core with an outer metallic shell 

of gold, and have been studied extensively for applications in lung cancer [230, 231]. They are optically 

tunable for specific applications, as the maximum wavelength and hydrodynamic size can be altered 

chemically by altering the thickness of the outer metallic shell. Interestingly, nanoshells can be optimized 

to exhibit maximum absorbance values in the NIR-spectral range, making them candidates for both multi-

modality imaging and photothermal therapy. The Stöber process is used to synthesize silica gold-nanoshells 

through functionalization of organosilane molecules such as aminopropyltriethoxysilane (APTES) [232]. 

After formation of the silica cores, ultra-small gold nanoparticles with diameters ~1 nm are covalently 

attached to the core creating a shell of gold around the silica core [233]. After this process, nanoshells can 

be functionalized using various chemical entities such as polymers, lipids, or targeting ligands. England et 

al. functionalized silica gold nanoshells with three different surface entities to compare physiochemical 

characteristics and tissue diffusivity in A549 3D cell culture. By applying different surface modifications, 

the size of the nanoshells ranged from 145-160 nm and the wavelength fluctuated from 820 to 860 nm, 

showing their highly tunable properties [225].  

Using lasers corresponding to the maximum wavelengths of these nanoparticles, photothermal 

therapy can be used to excite the particles resulting in increased temperatures as the nanoparticles release 

vibrational energy in the form of heat in the surrounding tissue, promoting cell death. In the process of 

photothermal therapy, electromagnetic radiation from the laser is absorbed by the nanoparticles and 

transformed into heat, resulting in irreversible damage to the target tissue and triggering cell death [234]. 

The uniqueness of this treatment is its minimal invasiveness, as laser light can travel through skin tissue 



29 
 

with minimal transfer of energy. While most photothermal therapy has been used with subcutaneous 

tumors, Bagley et al. recently showed the feasibility of photothermal therapy for intraperitoneal tumors by 

using small implanted NIR sources, which may also have implications for lung cancer [235].  

Previous studies have shown that nanoshells are more effective at photothermal therapy than other 

types of theranostic nanoparticles such as gold nanorods. For example Cheng et al. showed that silica-gold 

nanoshells that underwent laser activated photothermal therapy experienced an increase in temperature of 

the environment by 25˚ C, while gold nanorods only exhibited a 10˚ C increase in temperature at 7 minutes 

of laser irradiation (30 V cm-2). From this study, it was concluded that silica-gold nanoshells required the 

lower nanoparticle accumulation in the tissue to induce cell damage, thus making them optimal candidates 

for future studies [230, 236]. While photothermal therapy is currently not available for human use, some 

groups have recently shown its feasibility [237]. Liu et al. used gold nanoshells with carboxylated 

polystyrene spheres for photothermal therapy in Lewis lung carcinoma mice, which resulted in an average 

tumor inhibition rate of over 55% in comparison to controls [231]. Clinical trials using silica-gold 

nanoshells for photothermal therapy have only recently begun in cancers such as melanoma and head-and-

neck cancers. There is currently an ongoing clinical trial using gold nanoshells for photothermal therapy in 

human head and neck cancer (Nanospectral Biosciences, Inc.) [238], and it has recently been declared that 

the first clinical trial for gold nanoshells in the treatment of lung cancer will be carried out in the United 

States [239].  

Ceramic Nanoparticles are synthesized from ceramic chemicals such as hydroxyapatitie [240], 

silica [241-244], nitrides (e.g. boron nitride) [245], and oxides (e.g. zinc, titanium, iron oxide, manganese) 

[246-250]. Currently, hollow mesoporous nanospheres are of particular interest due to their high drug 

loading efficiency and minimal toxicity in vivo. Drugs such as bortezomib, the first clinically approved 

proteasome inhibitor, experienced limited efficacy due to its poor water-solubility and stability. Using 

hollow mesoporous silica nanospheres containing bortezomib, Shen et al. showed improved anti-tumor 

efficacy in comparison to drug alone in an NSCLC cell line with a 42% decrease in IC50 from the 

bortezomib- loaded nanoparticles [242]. Other groups have also shown effective drug loading capabilities, 

including Huang et al. who demonstrated the potential use of mesoporous nanoparticles are imaging agents 

for MRI and pH-controlled drug release [243]. Ashokan et al. also studied the applications of ceramic 
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nanoparticles for imaging purposes (MRI, X-ray, NIR fluorescence) by using hydroxyapatite nanocrystals, 

which exhibited selective accumulation in cancer cells through targeting of the folate receptor [240].  

EGFR targeting has been of great interest due to its overexpression in most cancer cell lines [251-

253]. Sundarraj et al. recently targeted mesoporous silica nanoparticles to EGFR overexpressing NSCLC 

cells, with an anticancer agent pryyolidine-2. Using EGFR as the targeting agents, the nanoparticles 

showed enhanced accumulation in the NSCLC cells with enhanced therapeutic efficacy [254]. Some types 

of nanoparticles can be combined with the goal of enhancing their therapeutic efficacy in vivo, such as 

polymeric micelles and mesoporous silica nanoparticles. For example, Yuan et al. studied cellular uptake 

and cytotoxicity of doxorubicin-loaded stearic acid-g-chitosan nanoparticles in A549 cells demonstrating 

faster cellular uptake with increased silica ratio [255]. Despite the advantages of ceramic nanoparticles in 

drug delivery and cancer therapy, questions have been raised about the potential toxic effects. Another type 

of ceramic nanoparticle, titanium dioxide, has been shown to induce genotoxicity and apoptosis in A549 

cells [256, 257]. To explore the potential toxicity of silica nanoparticles, Ahamed investigated the induction 

of cytotoxicity, oxidative stress, and apoptosis caused by silica gold nanoparticles in NSCLC, showing a 

dose-dependent cytotoxicity in A549 cells, along with induction of oxidative stress in a dose-dependent 

manner [244].   
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Nanotoxicology 

Administration of nanoparticles to the lungs can be accomplished through systemic circulation 

(e.g. intravenous injection) or pulmonary inhalation. Systemic circulation can result in systemic toxicity as 

the nanoparticles distribute within other tissues and organ systems, while inhalation provides a direct route 

to the lungs [258]. Both intentional administration of nanoparticles for medicinal purposes and 

occupational exposure as a result of inhaling aerosols released during the production process of various 

nano-materials can result in toxicity.  As there are no universal parameter sets required for synthesis and 

study of nanoparticles, it is difficult to directly compare the associated toxicity of nanoparticles. Recent 

reports suggests that certain characterization processes should be completed for each type of nanoparticle 

synthesized, including information regarding size distribution, shape, composition, agglomeration status, 

dissolution, purity, surface area, and surface modifications [259]. If each type of nanoparticle synthesized 

were characterized by a set of standards, direct comparisons of toxicity could be made providing enhanced 

insight into treatments for nanoparticle overdose and accidental exposure. 

Numerous studies have analyzed the toxicities associated with both systemically distributed and 

inhalable nanoparticle therapies [260-266]. Park et al. studied the toxicity of various inhalable metallic 

nanoparticles (i.e. titanium oxide, gold, alumina, zinc, and nickel) by analyzing the apoptotic and 

morphological damages caused by the nanoparticles in A549 cells. They showed a dose-dependent toxicity 

with zinc nanoparticles having the most apoptotic effect and titanium oxide nanoparticles exhibiting the 

most morphological damage [267]. Another study further analyzed the toxic effects of metallic oxide 

nanoparticles in comparison to multi-walled carbon nanotubes (MWCNT). Results from this study showed 

that copper oxide nanoparticles displayed the most toxicity regarding cytotoxicity and DNA damage. In the 

study, zinc oxide nanoparticles showed significant adverse effects on cell viability, yet iron oxide 

nanoparticles showed minimal toxicity [268].  

Nanoparticles delivered via inhalation will distribute throughout the airways with size-dependent 

deposition patterns, with particles <10 nm depositing primarily in the tracheobronchial regions, particles 

20-30 nm depositing in the alveolar regions, and particles 30-100 nm depositing within all regions of the 

lung [269]. Currently, there is a lack of research analyzing the potential toxic effects of nanoparticles in 
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human lungs, although some groups have studied the deposition patterns of inhaled nanoparticles using 

computational models [270-272].  

The most common toxicity associated with the use of inhaled nanoparticles in vivo is pulmonary 

fibrosis, or an increased amount of collagen within the lung tissue. Currently, carbon nanotubes have been 

the most common nanoparticle studied in reference to potential toxicity. Mitchell et al. analyzed the 

toxicity of inhaled MWCNT, showing that they did not result in significant lung inflammation or tissue 

damage after 7 days (6 hour exposure/day), yet higher concentrations of the MWCNTs did cause non-

monotonic system immunosuppression after 14 days, which was primarily characterized by a reduction in 

T-cell dependent antibody as well as T-cell proliferation [273]. Other studies have identified nanoparticles 

as potential toxic entities through in vitro cytotoxicity testing. For example, Vandebriel and De Jong 

recently summarized the mammalian cellular toxicity of zinc oxide nanoparticles by showing that their 

primary toxicity was due to low solubility of nanoparticles and the decreased contractility of airway smooth 

muscle in the lungs. Other common toxicities were also evaluated including cytotoxicity, oxidative stress, 

intracellular calcium flux, decreased mitochondrial membrane potential, and numerous immune reactions 

[274].  

While all nanoparticles exhibit some degree of toxicity in a dose-dependent manner, metallic 

nanoparticles have shown increased risk as their structure is prone to agglomeration. As more people are 

exposed to metallic nanoparticles in industrial plants, there is a growing concern about the potential 

systemic toxicities associated with chronic exposure to metallic nanoparticles. Yu et al. studied the effects 

of metallic nanoparticles in vivo, where rats were treated with 2×106 nanoparticles per cm3 by inhalation for 

6 hours per day for 15 days. Exposure for five days resulted in accumulation of gold within the lungs and 

by day 15, nanoparticles were detected in the esophagus, tongue, kidneys, aorta, spleen, heart, and blood. 

There was also down-regulation of genes related to muscle function in the lungs, displaying potential lung 

toxicity [275]. The location of nanoparticle accumulation in vivo can directly correlate with toxicity, as 

certain organs, such as the liver and spleen, will accumulate more nanoparticles than other organ systems. 

Toxicity testing focuses on these particular sites [276]. Additional studies have been performed analyzing 

possible links between nanoparticle size and toxicity. For example, Chen et al. showed that gold 

nanoparticles ranging in size from 8-37 nm caused severe sickness in mice that received repeated 



33 
 

intraparental injections [277]. Ferin et al. studied the retention of ultrafine nanoparticles inhaled by rats 

exposed for 12 weeks resulting in acute inflammatory response in the lungs [278]. In addition, Geys et al. 

studied the dose-dependent toxicity of nanoparticles using carboxyl-coated quantum dots that caused 

vascular thrombosis [279].  

Overall, several factors must be considered when analyzing the toxicity of nanoparticles. First, 

while nanoparticles may display toxicity in cell lines (i.e. in vitro), one should recognize that toxicity in 

vitro does not always correlate with toxicity in vivo as the animal model is more complex than cell cultures. 

For example, while fullerenes were highly toxic in vitro, the in vivo finding showed no adverse effects in 

the lung tissue at 3 months post-exposure to the highest concentration of fullerenes available [280]. In 

another study, Sayes et al. tested five different nanoparticles for toxicities including carbonyl iron, 

crystalline silica, amorphous silica, and zinc oxide nanoparticles.  It was demonstrated that toxicity between 

in vitro and in vivo should not be correlated without experimental results, as nanoparticles showing toxicity 

in vitro did not show toxicity in vivo and vice versa [281]. Another factor that can influence the toxicity 

profile of nanoparticles is surface modifications. Even simple surface alterations or modifications can result 

in significant changes in toxicity. This supports the need for a set of characterization standards by which 

nanoparticles can be assessed. In conclusion, the toxicity of nanoparticles is highly dependent upon the type 

of particle being employed and should not be estimated based upon in vitro results alone. While in vitro 

toxicity may indicate the potential for in vivo toxicity, little correlation has been established between cell 

culture and animal models.  Additional studies are needed to determine the possible toxicities associated 

with nanoparticle usage and to determine optimal treatment strategies. 
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Hypotheses and Aims 

Nanotherapeutics provide an alternative method for delivering chemotherapeutics to solid 

tumors, yet the transport of nanoparticles in vivo is not fully understood. After systemic injection of 

nanoparticles, a large portion of injected dose will become sequestered by macrophages of the liver and 

spleen resulting in a diminished treatment. Once nanoparticles localize the tumor, they must extravasate 

from the irregular vasculature and diffuse throughout the tissue reaching all malignant cells. Currently, 

there is little research regarding the movement of nanoparticles throughout tumor tissue.  

We will examine the potential use of two and three layer gold nanoparticles for treating cancerous 

solid tumors by investigating their diffusivity properties, drug loading and release capabilities, and their 

efficiency at causing cell death. We hypothesize that smaller nanoparticles with enhanced diffusivity 

properties, such as colloidal gold nanoparticles, will be more efficacious in the treatment of solid tumors.  

 

Aim 1: Design two and three layer gold nanoparticles and examine the diffusivity of these particles in 3D 

cell cultures. Hypothesis: Two and three layer gold nanoparticles will diffuse further than previously 

developed PEGylated nanoparticles because the physiochemical properties of the layered nanoparticles. 

a) Synthesize two and three layer colloidal gold nanoparticles and silica gold nanoshells and 

characterize particles to ensure presence of surface moieties.  

b) Determine the accumulation of nanoparticles in 3D cell cultures of human lung, pancreas, and 

liver cell lines.  

c) Compare the diffusivity of two and three layer nanoparticles to the diffusivity of previously 

developed PEGylated nanoparticles in 3D cell cultures.  

 

Aim 2: Examine the biodistribution and diffusivity of PC-coated two layer citrate gold nanoparticles and 

silica gold nanoshells in vivo. Hypothesis: We hypothesize that size-dependent localization of nanoparticles 

will occur, with smaller citrate gold nanoparticles accumulating at higher concentrations and diffusing 

further from vasculature in the orthotopic pancreatic tumor in comparison to the larger silica gold 

nanoshells, as they have been shown to be hindered due to their large size.  
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a) Compare the accumulation of two layer colloidal gold nanoparticles and silica gold nanoshells in 

the liver, spleen, and pancreatic tumor. 

b) Analyze the diffusivity of two layer citrate gold nanoparticles and silica gold nanoshells from 

nearest extravasation sites in liver, spleen, and pancreatic tumor sections.  

 

Aim 3: Analyze the drug loading capabilities and release kinetics of two and three layer colloidal gold 

nanoparticles. Hypothesis: We hypothesize the hydrophobic region between the first and second layer of the 

nanoparticles is optimal for loading of hydrophobic compounds, including paclitaxel. For this reason, the 

loading efficiency of paclitaxel will be high with a controlled release pattern.  

a) Synthesize two and three layer colloidal gold nanoparticles loaded with cisplatin or paclitaxel.  

b) Determine the loading efficiency of paclitaxel and cisplatin onto each type of particle.  

c) Analyze the drug release patterns to determine the best model to describe the release of drug from 

each type of nanoparticle.  

 

Aim 4: Compare the efficacy of two and three layer nanoparticles loaded with cisplatin or paclitaxel to free 

drug using 3D cell culture models of lung cancer. Hypothesis: We hypothesize that drug loaded 

nanoparticles will show similar efficacy at causing cell death as free drug because layered nanoparticles 

release drug while diffusing throughout tissue.  

a) Examine the efficacy of free cisplatin and paclitaxel in monolayer cell cultures.  

b) Compare the drug dosages required for cell death in monolayer cell cultures and 3D cell cultures.  

c) Analyze the efficacy of cisplatin or paclitaxel-loaded two and three layer nanoparticles in 3D cell 

cultures.  
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CHAPTER II 

ENHANCED PENETRATION INTO 3D CELL CULTURES USING TWO- AND THREE LAYERED 

NANOPARTICLES 

 

Background 

Microenvironment of Solid Tumors 

In addition to excessive cellular proliferation, solid tumors typically elicit irregular angiogenesis 

resulting in structurally abnormal and leaky vascular structures. The passive mechanism of nanoparticle 

accumulation (EPR effect) takes advantage of this situation by enabling systemically administered 

nanoparticles sized 10–400 nm to preferentially extravasate from the vasculature into the interstitial space 

of solid tumors [282, 283]. Additional factors contributing to nanoparticle pharmacodynamics and 

cytotoxicity include size, surface charge and morphology [284, 285]. These properties are typically tailored 

to design systems that exhibit optimal tumor tissue uptake. Drugs delivered via nanoparticles can thus 

increase treatment effectiveness while reducing systemic toxicity.   

In particular, gold nanoparticles have shown promise in cancer treatment. Bulk gold itself is an 

inert material, though nanoparticles smaller than 5nm in diameter have documented cytotoxic properties 

[286, 287]. Larger particles have demonstrated little cytotoxicity, depending on the surface charge. Cationic 

particles can be more cytotoxic at lower concentrations compared to anionic nanoparticles, which has been 

attributed to electrostatic interactions of the positively-charged particles with negatively-charged cell 

membranes [288]. Surface coatings of poly-(ethylene glycol) (PEG) can effectively hide the nanoparticles 

from the immune system, further lowering systemic toxicity [284, 287]. 

However, heterogeneity in blood flow due to irregular angiogenesis and vascular remodeling at the 

tumor site promote tissue hypoxia and thus cell quiescence, presenting a physical barrier to cell-cycle 

dependent chemotherapeutics delivered by nanocarriers [289-291]. Inadequate vascularization leads to 
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further impediments that hinder optimal treatment, including insufficient drug dosages due to abnormally 

long inter-vascular diffusion distances, as well as disturbed convection and diffusion of molecules (such as 

glucose, oxygen) and nanoparticles in the interstitium [289, 292-294], as has recently been explored 

through intravital microscopy and mathematical modeling [292, 295]. Cancerous tissue can contain almost 

twice the volume of interstitial space compared to normal tissue [289, 294]; an abundance of ECM proteins 

along with an increased interstitial pressure may further inhibit nanoparticle delivery and drug diffusion in 

under-vascularized tumor regions [289, 294, 296]. These physical barriers, coupled with intrinsic resistance 

mechanisms at the cell-scale, often cause cancer drug therapies to fail. Recently, engineering and physics-

based approaches are being applied to help tackle these challenges in cancer treatment [297]. 

Estimates of nanoparticle distribution in 3D tissue have been previously obtained in collagen gels 

[298] as well as in 3D cell culture [24, 299]. Gold nanoparticle accumulation was shown to be size 

dependent, suggesting that particles ~20 nm or smaller had superior penetration abilities compared to larger 

particles [299]. For example, particles < 10 nm were able to better penetrate breast cancer tumor spheroids 

representing avascular tumor tissue than larger particles, which has also been confirmed in vivo [24]. It has 

been shown that while larger polymeric micelles distribute within hypervascularized tumors, only sub-100 

nm particles were able to meaningfully penetrate hypoxic tumors [300]. However, smaller particles (< 50 

nm) are not as useful for drug delivery compared to larger nanoparticles, since they are typically unaffected 

by the EPR effect and are thus less targeted [24]. Previous studies have shown cellular uptake of both 

smaller citrate gold nanoparticles and larger silica gold nanoshells, with enhanced cellular uptake of the 

smaller particles [301-303].  

Purpose of Study 

In this study we examine the uptake of functionalized silica gold nanoshells into a 3D cell culture 

(spheroid) model as a first step to represent avascular liver, lung, and pancreatic tumor tissue. In addition to 

the nanoshells, citrate-gold nanoparticles were investigated for comparison. Cells aggregate in 3D culture 

to create avascular nodules with the production of ECM components and the establishment of diffusion 

gradients of oxygen, glucose, and nanoparticles [290]. Experiments with 3D cell cultures have previously 

helped to analyze the effect of under-vascularization on particle and drug delivery [299, 304]. Here, particle 

surfaces were functionalized by a process consisting of either two- or three-layers to optimize uptake into 
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tumor tissue. Two-layer particles were synthesized with an inner layer of alkanethiol and an outer layer of 

PC, a type of phospholipid that is a major component of biological membranes [305]. In order to further 

optimize tumor uptake, active targeting was promoted by adding a layer of HDL, since the HDL receptor is 

mainly expressed by liver and cancer cells, thus creating a three-layered particle. Size, zeta potential, and 

morphology were optimized, and the uptake and distribution were compared to the performance of 

PEGylated nanoparticles.  
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Methods 

Synthesis of Citrate Gold Nanoparticles  

Particles were synthesized using the method in which gold chloroauric acid is reduced by 

trisodium citrate [306]. In this process, 2.2-2.4 mL 1% wt/v citrate (Fischer Scientific) and 200 mL 0.01% 

wt/v HAuCl4 (Alfa Aesar, MA) are mixed and heated to boiling, which promotes the reaction of sodium 

citrate to citric acid. Once the reaction is completed, the solution is concentrated using a rotovapor (Buchi 

Rotovapor System) to ~20 mL before the addition of layering to the particles. 

Synthesis of Silica Gold Nanoshells  

Particles have an inner core composed of silica with an outer coating of gold. Synthesis follows 

the Stöber method [232, 307, 308], which consists of four stages: production of small gold seeds, 

fabrication of monodispersed silica cores, attachment of gold to the seeds, and gold shell growth. The gold 

colloid solution is created using the recipe from Duff et al [309]. Growth of the silica cores requires the 

combination of 7.5 mL tetraethyl-orthosilicate (Sigma Aldrich), 225 mL absolute ethanol (Decon Labs), 

and 12.5-13.5 mL ammonia (Sigma Aldrich) [310]. Ammonia is adjusted to achieve silica core sizes 110 

+/-5 nm. After removal of the paraffin cover and evaporation of the ammonia, the cores are coated with 3-

4% aminopropyltriethoxysilane (APTES) (Sigma Aldrich). Once the seeds are washed, the 10% gold 

solution (THPC) is added. After reaction time, the seeds are washed and redispered in DI water. The seeds 

are diluted to 0.3-0.5 OD (optical density) at 530 nm (Varian Cary 50Bio UV-Visible Spectrometer). A 

sweep of the seeds is performed to optimize the chemical ratio between them, K2CO3-HAuCl4, and 

formaldehyde (Fisher Scientific).  

Particle Functionalization 

The first layer applied to the citrate gold particles was Hexadecathiol (Sigma Aldrich) dissolved in 

ethanol [311]. While stirring, 20 mL pure ethanol (Decon Labs) was placed in a breaker with 60 μL 1-

Hexadecathiol being added secondly. The nanoparticles were added to the sample slowly over the next few 

minutes. The sample was first agitated for 20 minutes, then placed for 12 hours on an orbital rocker 

(Boekel Scientific). The sample was spun down and the pellet was washed twice and resuspended in 

chloroform (Sigma Aldrich). The second functionalization was the addition of the PC. The stock solution 

was made by diluting PC in chloroform, and 100 μL were added to the particles after the thiol layer and 
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allowed to set overnight on an orbital rocker. The solutions were transferred to glass tubes and the 

chloroform evaporated at ambient temperature. This process completed the two-layered particles, referred 

to as CAU/TL/PC (citrate gold/thiol/phosphatidylcholine) and NS/TL/PC 

(nanoshell/thiol/phosphatidylcholine). The three-layered particles, referred to as CAU/TL/PC/LP and 

NS/TL/PC/LP, were created by optimizing the ratio of high-density-lipoprotein (HDL) to nanoparticle 

optical density, and allowed to react overnight.  

PEGylation is considered a common form of surface modification for delivering nanoparticles into 

cancerous tissue, thus we created PEGylated nanoparticles (CAU/PEG, citrate gold/pegylated, and NS/PEG, 

gold nanoshell/pegylated) to compare the efficacy of the synthesized two- and three layer nanoparticles. To 

prepare PEGylated nanoparticles, 2000 MW PEG was added at a molar ratio of 2500:1. The solution was 

allowed to react overnight on the rocker. Excess PEG was removed by centrifuging the particles at 13,000G 

for 20 minutes. The pellet was resuspended in PBS. It is well documented that pegylated particles will stay 

in circulation longer than non-pegylated particles [312]. To create the pegylated particles, both citrate gold 

nanoparticles and silica gold nanoshells were incubated with 2000 MW poly(ethylene)glycol overnight and 

then centrifuged to separate the particles.  

Particle Characterization 

Nanoparticle identity was verified as follows.  (i) Maximum absorption wavelengths were 

obtained using the Varian Cary 50 Bio UV-Visible Spectrometer. (ii) Size and zeta potential measurements 

were obtained using the ZetaSizer Nanoseries ZS90 (Malvera Instruments). (iii) Shape and size were 

determined using a Zeiss Supra 35VP scanning electron microscope (SEM). (iv) Presence of lipids on the 

particle cores was confirmed using a Fourier transform infrared (FTIR) instrument (Perkin Elmer Spectrum 

BX) and through visual analysis using the SEM.   

Cell Culture and Particle Experiments 

Human lung adenocarcinoma (A-549) and liver hepatocellular carcinoma (HEPG2) cells were 

maintained in Dulbecco’s modified Eagle’s medium (Sigma) with 10% fetal bovine serum and 1% 

penicillin-streptomycin-glutamine solution in a humidified atmosphere of 5% CO2 at 37˚C. Pancreatic 

adenocarcinoma (S2VP10) cells were maintained with RPMI 1640 medium (Cellgro) in similar conditions. 

All cells were grown to 80% confluence before 3D cell culture formation. Using 24 well ultra-low 
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attachment plates (Corning), 100K cells were placed in each well and lightly shaken for ~15 min. Tumor 

spheroid formation occurred by self-aggregation after 7-14 days of incubation. Spheroids typically 

measured between 0.5 and 2 mm in diameter, though the S2VP10 cells produced smaller, grape-like 

structures.  Spheroids were incubated with 40 μL particles at 25 OD for 6 hours before being washed with 

PBS. 

3D Cell cultures were placed in cryomolds made of tissue freezing medium.  Samples were 

allowed to set for two hours, and then sectioned at 5µm using a Leica CM1860 Cryostat.  Sectioned 

spheroids were then fixed onto Superfrost Plus microscope slides (Fisher Scientific).  Successful fixation 

was determined via bright-field microscopy. Excess media was removed by soaking with 30% Neutral 

Buffered Formalin for 1 min. Slides were washed in DI water prior to analysis. All experiments were done 

in triplicate.  

Silver Enhancement Stain 

Slides were placed in cold acetone (Fischer Scientific) for 30 sec., then allowed to dry for 1 min. 

Slides were placed in 10% formalin buffer (Sigma Aldrich) for 3 min., then washed 2x with DI water and 

allowed to dry for 5 min. The silver enhancement solution was prepared by mixing 1 mL/slide Silver 

Enhancement Stain A along with 1 mL/slide Silver Enhancement Stain B (Sigma Aldrich). The two 

solutions were mixed in a 50 mL tube and vortexed for 10-15 sec. The combined solution (2 mL) was 

added to each slide and allowed to react for 6 min. After the reaction time, the solution was washed off 2x 

using DI water. Slides were analyzed using NIS Elements AR and an Accuscope 3032 inverted light 

microscope. ROI intensity measurements were recorded for both stained and unstained samples.  

Particle Detection using Hyperspectral Imaging 

The CytoViva Hyperspectral Imaging System was used to located nanoparticles within sections of 

3D cell cultures.  A DAGE camera with the dark field microscope was used to obtain images highlighting 

the nanoparticles. Particle presence was confirmed using hyperspectral imaging, with data analysis 

performed using ENVI 4.8 and ImageJ.  Using the software, linear [0-255] enhancement was applied and 

the z-profile library was used to detect single nanoparticles within 3D cell cultures. Regions of interest 

(ROIs) were determined and particles within these regions were counted to determine concentration in 

various tumor areas. The number of particles decreased from the periphery towards the center; accordingly, 
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measurements from 10 to 50 µm from the tumor periphery were taken to determine spatial distribution of 

particles into the tumor spheroids.  

Statistical Analysis 

Analyses used the two-tailed Student’s t test with significant values being less than 0.05.  

Statistically significant differences are illustrated with an (*) in the Results. 
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Results 

Nanoparticle Characterization 

Silica gold nanoshell and citrate gold particles were layered with either two- or three- layers 

(Figure 4) to promote enhanced penetration into 3D cell cultures of various cancer cell lines, while 

comparing their penetration and diffusion capabilities to previously designed PEGylated nanoparticles.  

Nanoparticles were characterized with UV-Visible (UV-Vis) absorbance spectroscopy, zeta potential 

analysis, dynamic light scattering (DLS), SEM, and FTIR to ensure proper particle formation and 

modification.  

 

Figure 4. Illustration of Functionalized Gold Nanoshells. Six types of nanoparticles were developed 

including citrate gold particles and silica gold nanoshells. Particles were modified to form PEGylated, two 

layer, and three layer particles. 
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Optical and charge measurements (Figure 5) indicated that the surface modifications were 

successful. Prepared citrate-gold nanoparticles (Figure 5A) had a peak absorbance between 533-541 nm 

(Table 1), which is consistent with previous work [313]. Silica-gold nanoshells (Figure 5B) exhibited peak 

absorbance between 820-860 nm (Table 1), which is typical for nanoshells having 110 nm diameter silica 

cores and a ~15 nm gold coating [314]. The spectra displayed minute amounts of noise at higher 

wavelengths, which is expected for silica gold nanoshells [315]. Nanoshells demonstrated ideal optical 

properties for near-infrared (NIR) application [316, 317], though such experiments were not included in the 

scope of this work.   

 

 

Figure 5. Characterization of Gold Nanoparticles by UV-Visible Spectrometry and Zeta Potential Analysis. 

Wavelengths for each particle are presented with PEGylated particles (dotted line), two layer (dashed and 
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dotted line), and three layer (dashed line). (A) Spectrum of citrate gold nanoparticles indicates a maximum 

absorption ranging from ~533-541 nm. (B) Spectrum of silica gold nanoshells suggests a maximum 

absorption at ~820-860 nm.  For verification of surface modifications, zeta potential analysis is shown 

below the spectra as an indication of surface charge. (C) PEGylated citrate gold nanoparticles had a zeta 

potential of -9 mV, two layer citrate gold nanoparticles had -20 mV, and three layer citrate gold 

nanoparticles had -2 mV. (D) A zeta potential of -18 mV was found for PEGylated silica gold nanoshells, 

for two layer silica gold nanoshells it was -29 mV, and for three layer nanoshells it was -6.8 mV.  

 

 

Table 1 

Determination of Nanoparticle Size and Wavelength  

 

 

Nanoparticle Penetration in 3D Cell Cultures 

In order to verify particle surface modifications, the zeta potential was measured (Figure 5C).  

Modification with PC and thiol resulted in more highly negatively charged particles compared to 

PEGylated particles. Conversely, HDL caused the zeta potential to become more positively charged when 

compared to PEGylated particles, but still yields slightly negatively charged particles. PEGylated citrate 

gold nanoparticles exhibited a zeta potential of -9 mV, while the two-layer citrate gold nanoparticles had a 

zeta potential of -20 mV and the three-layer citrate gold nanoparticles had -2 mV. Gold nanoshells 

generally exhibited higher surface charge than citrate gold nanoparticles, which is consistent with the larger 

size of the nanoshells.  PEGylated nanoshells had a zeta potential of -18 mV, two-layer nanoshells 

measured a zeta potential of -29 mV, and three-layer nanoshells had a zeta potential of -6.8 mV. These 

results were in agreement with previous studies [318-320]. 
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To ensure the presence of surface modifications, FTIR was performed (Figure 6). PEGylated 

nanoparticles exhibited C-O-C stretch of the PEG ether ~1050 cm-1 and vibration ~1350 cm-1, along with  -

CH2 and –CH3 bending vibrations around ~1450 cm-1. This stretch is smaller than previously reported 

[321], possibly due to the addition of PEG onto the silica-core nanoshells. Two layer nanoparticles with an 

outer layer of PC exhibited PO4
3- group vibrations between ~820-1000 cm-1, C-O-C stretch ~1100 cm-1, 

with the largest band corresponding to the asymmetric and symmetric -CH2 (2880 cm-1) and -CH3 (2950 

cm-1) stretch and vibration, respectively. For HDL coated nanoparticles, the asymmetric and symmetric -

CH2 (2880 cm-1) and -CH3 (2950 cm-1) stretch and vibration are still shown along with C=O from the lipid 

ester ~1750 cm-1, amide bonds between 1600-1700 cm-1, and a phospholipid P=O2 stretch ~1250 cm-1. The 

two- and three layer exhibited overlap in their spectra due to the layering process of the surface 

modifications.  

 

 

Figure 6. Determination of Surface Functionalizing using FTIR.  From bottom to top: PEGylation, two 

layer containing dodecathiol and PC, and three layer containing dodecathiol, PC and HDL. PEGylated 

nanoparticles exhibited C-O-C stretch of the PEG ether ~1050 cm-1 and vibration ~1350 cm-1, along with  -

CH2 and –CH3 bending vibrations around ~1450 cm-1. Two Layer nanoparticles with an outer layer of PC 
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exhibited PO4
3- group vibrations between ~820-1000 cm-1, C-O-C stretch ~1100 cm-1, with the largest band 

corresponding to the asymmetric and symmetric -CH2 (2880 cm-1) and -CH3 (2950 cm-1) stretch and 

vibration, respectively. For HDL coated nanoparticles, the asymmetric and symmetric -CH2 (2880 cm-1) 

and -CH3 (2950 cm-1) stretch and vibration are still shown along with C=O from the lipid ester ~1750 cm-1, 

amide bonds between 1600-1700 cm-1, and a phospholipid P=O2 stretch ~1250 cm-1 

 

SEM was used to determine particle size and morphology (Figure 7). Nanoparticle shape has been 

demonstrated to influence particle uptake into tissues [287]. Gold nanoshells, and for the most part citrate-

gold nanoparticles, were spherical, which is desirable to produce optimal optical properties for potential 

NIR treatments. PEGylated gold nanoshells had spherical morphology and were ~150-170 nm in diameter. 

The influence of hydrodynamic size plays a large role in how nanoparticles will act in vivo. DLS values 

were determined for each type of particle with varying sizes similar to those depicted by SEM (Table 1). To 

ensure decreased aggregation before DLS analysis, particles were sonicated and mixed thoroughly.  

 

 

Figure 7. Scanning Electron Images of Functionalized Gold Nanoparticles. Silica gold nanoshells exhibit a 

particle size ~150-170 nm in diameter. Citrate gold nanoparticles with an average diameter of ~50 nm were 
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much smaller than nanoshells, and appeared to form polydispersed clusters, with the two- and three-layer 

citrate gold particles being approximately the same size.  

 

Citrate gold nanoparticles were much smaller than nanoshells (Figure 7), measuring ~50 nm in 

diameter. Aggregation was more prevalent with citrate gold nanoparticles, as evidenced by the PEGylated 

particles (Figure 7). This aggregation is due to the decreased zeta potential of citrate gold nanoparticles 

when compared to the gold nanoshells. Addition of hexadecanethiol and PC is estimated to add ~5-7 nm to 

the diameter of the gold nanoparticles due to the size of PC (~2.5-3 nm and –thiol ~2.5 nm)[322, 323], 

while HDL is estimated to add ~10 nm due to the size of this molecule [324]. 

Nanoparticle Penetration in 3D Cell Cultures 

In order to determine particle penetration and distribution into 3D cell cultures, region of interest 

(ROI) measurements were taken at the periphery and center of the spheroid sections using silver 

enhancement staining (Figure 8). This staining is commonly used for nanoparticle detection.  We also 

evaluated the samples using hyperspectral imaging with dark field microscopy. Results (ROI intensity) 

were measured between unstained and stained samples. Differences between the samples were extracted in 

order to obtain particle accumulation in the 3D cell cultures.  
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Figure 8. Nanoparticle Detection in 3D Cell Cultures through Silver Staining. ROI intensities were 

measured for both unstained and stained tissue sections; darker regions denote an increase in ROI intensity. 

Top: 20X image of A549 3D cell culture (A) before and (B) after silver staining. Bottom: 20X image of 

HEPG2 3D cell culture (C) before and (D) after silver staining.  

 

For all three cell lines, the two- and three layer silica gold nanoshells staining exhibited higher 

ROI intensity values than the PEGylated counterpart (Figure 9). For the HEPG2 cells, the two layer 

nanoshells presented ROI intensity values that were statistically the same between periphery and interior, 

indicating uniform distribution into the tissue.  This particle type had an ROI intensity nearly 2x that of the 

three layer and 3x that of the PEGylated particles (Figure 9A).  The two layer citrate gold particles had a 

peripheral ROI intensity that was almost 2x that of the interior, indicating a steep diffusion gradient into the 

3D cell culture. In contrast, the three layer citrate gold particles exhibited similar intensities between 

periphery and interior at lower values than the silica gold nanoshells, suggesting uniform yet poorer 

penetration. The PEGylated particles had higher ROI intensity at the periphery than the interior while 

showing the lowest particle uptake. It should be noted that ROI intensity differences for the HEPG2 cell 
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line were higher than both the A549 and S2VP10 cell lines, suggesting an increased amount of particles 

present in the HEPG2 tumors regardless of particle type.   

 

 

Figure 9. Accumulation of Gold Nanoparticles in 3D Cell Cultures by Silver Enhancement. ROI intensity 

measurements were taken at the periphery (black bars) and in center regions (grey bars) of HEPG2 (liver), 

A549 (non-small cell lung cancer), and S2VP10 (pancreatic) 3D cell cultures. Exposure to the various types 

of silica gold nanoshells and citrate gold nanoparticles generally exhibited equal or increased amounts of 

particles on the spheroid periphery as compared to the interior. All error bars represent standard deviation 
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from at least n=3 measurements; asterisk indicates statistically significant difference (p<0.05) determined 

by Student’s t-test with α=0.05. 

 

The ROI intensities for the A549 cell line indicated an increased accumulation of two layer 

compared to PEGylated silica gold nanoshells (Figure 9B). The two layer particle had higher penetration 

but with more of a differential between periphery and tumor interior compared to the three layer case. The 

three layer citrate gold particle exhibited higher ROI and more uniform values compared to the other citrate 

gold cases. 

The S2VP10 cell line presented ~2x the ROI intensity values at the periphery for both two- and 

three-layer silica gold nanoshells compared to the PEGylated case (Figure 9C), although the three-layer had 

~50% higher values than the two-layer in the interior. Both two- and three-layer silica nanoshell and citrate 

gold particles had significantly higher ROI in the interior than the PEGylated particles, indicating increased 

particle penetration. The two- and three layer citrate gold particles presented similar ROI intensity values 

between periphery and interior compared to the PEGylated case, suggesting a more uniform particle 

distribution. 

Modified particles within the sectioned tumor spheroids were observable in the images captured 

via dark-field microscopy. The particles reflected the light, displaying sharp contrast with the surrounding 

tissue, and could be numerically calculated. A representative image is displayed in Figure 10, and arrows 

pointing to the small red-orange dots indicate the position of sample particles within the tissue. To ensure 

that the particles could be distinguished from the tissue, hyperspectral mapping was used to filter out the 

tissue while leaving nanoparticles [325]. Spectral libraries, as shown in Figure 11, were used to locate 

nanoparticles within the 3D cell culture. Individual nanoparticles were identified and accumulation within 

various spheroid regions was calculated.  
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Figure 10. Detection of Nanoparticles in 3D Cell Cultures using Dark Field Microscopy. Nanoparticle 

uptake was determined using the CytoViva setup with a dark field microscope to visualize the 

nanoparticles, and with hyperspectral imaging to confirm particle identity. (A) 60× image showing 

increased particle concentration around periphery of HEPG2 3D cell culture with decreasing particle 

numbers towards the interior. (B) 100× image of a549 3D cell culture showing the particles (arrows) 

distributed throughout the tissue. 
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Figure 11. Hyperspectral Imaging of Nanoparticles using CytoViva Imaging System. Nanoparticles in 

solution were placed on slide for analysis using hyperspectral imaging. Individual particles could be 

identified using this technique. For further analysis of the particles, individual spectra are presented for the 

PEGylated, and two and three layer nanoparticles. Spectra differences are associated with varying surface 

modifications. 

 

Particle uptake and penetration from the periphery of the tumor spheroids into interior regions was 

analyzed via counts obtained from the hyperspectral dark-field images (Figure 12). In agreement with the 

silver staining measurements, the two layer silica gold nanoshells in the HEPG2 tumors and the three layer 

citrate gold nanoparticles in the A549 tumors had the best performance in terms of higher uptake and 

uniform distribution, while both of these particle types behaved similarly in the S2VP10 tissue with lower 

uptake and steeper diffusion gradients. The three-layer particles showed slightly higher uptake into S2VP10 

tissue, which could be due to the morphology of these tumors resembling a cluster of grapes, as well as 

other cancer-specific interactions with the HDL. Generally, the PEGylated particles exhibited lower uptake 

and poorer penetration.   
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Figure 12. Nanoparticle Penetration and Distribution in 3D Cell Cultures Measured by Dark Field 

Microscopy. Diamonds and dotted line: PEGylated; Squares and dashed/dotted line: two layer; Triangles 

and dashed line: three layer. Particle uptake was quantified for citrate gold nanoparticles (left) and silica 

gold nanoshells (right) for HEPG2 (liver), A549 (non-small cell lung cancer), and S2VP10 (pancreatic) 3D 

cell cultures as a function of distance from the spheroid periphery. The two layer silica gold nanoshells in 

the HEPG2 tumors and the three layer citrate gold nanoparticles in the A549 tumors had the best 

performance in terms of higher uptake and uniform distribution, while both of these particle types behaved 

similarly in the S2VP10 tissue with lower uptake and steeper diffusion gradients. Generally, the PEGylated 

particles exhibited lower uptake and poorer penetration. All error bars represent standard deviation from at 

least n=3 measurements. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3794839_ijn-8-3603Fig6.jpg
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Comparing the gold nanoshell results across cancer types, the two-layer exhibited an average 50% 

higher uptake compared to the three-layer nanoshells. Citrate-gold nanoparticles had approximately 30% 

more penetration at the tumor periphery compared to the gold nanoshells, but this was mostly due to the 

larger size of the nanoshells, which are 3x the size of the citrate gold particles. 
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Discussion 

We developed “two-” and “three-layer” nanoshells to compare the penetration and diffusion 

capabilities of these particles against PEGylated AuroShells™ in 3D cell cultures. To this end we used PC, 

which has previously been employed as a passivating agent for gold nanorods significantly reducing their 

cytotoxicity [326]. In addition, PC is the most abundant phospholipid within the body and can be found in 

all cell membranes, and is thus expected to be less immunogenic.   

In order to form a layer of PC around the gold nanoshells, a hydrophobic layer must also be 

created. Thiol groups exhibit strong binding to gold, and can be used to displace other stabilizing ligands 

and adsorbed molecules to stabilize the particles. An alkanethiol possesses optimal qualities for this 

purpose; the hydrophobic carbon chains will interact with the fatty acids of the PC to form a properly 

oriented layer. Here, we theorized that such a two-layer approach would yield better biocompatibility and 

thus improved penetration into under-vascularized tumor regions when compared to PEGylated particles. 

With the two-layer method, a hydrophobic region is created between the PC and alkanethiol, which could 

potentially hold hydrophobic drugs to produce a more potent therapeutic agent. Further, NIR-absorbing 

gold nanoshells have proven effective at reducing cell viability significantly in solid tumors due to 

hyperthermia when treated with laser radiation [316, 327]. 

We find that modifying gold nanoshells with an alkanethiol and PC creates a viable two-layer 

nanoparticle platform that consistently outperforms the current standard, PEGylated nanoparticles, when 

measuring particle accumulation in 3D cell cultures. As such, two-layer nanoshells should be further 

considered for potential photothermal and targeted drug delivery therapies. The addition of the PC layer 

makes the nanoparticles similar to liposomes, which have been previously used for enhanced delivery of 

gold nanoparticles [328]. We hypothesize that the phospholipid similarities increased cellular uptake of 

these nanoparticles as compared to PEGylated nanoparticles. We also developed a three-layer system; 

experimental evidence suggests that HDL uptake in hepatocytes is upregulated in liver cancers [329]. 

Adding a layer of HDL around the two-layer particles could potentially allow the particles to penetrate 

deeper into liver cancers as the surface modifications make uptake by the hepatocytes more likely rather 

than just relying on the EPR effect for passive targeting. The enhanced uptake of HDL in pancreatic and 

liver cancer suggests increased cellular uptake of HDL-coated nanoparticles [330, 331]. Surface charge has 
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a large effect on how nanoparticles will react in vivo. PEGylated nanoparticles were expected to exhibit 

slightly negative values similar to those found in literature. Two layer nanoparticles with PC were expected 

to exhibit highly negative zeta potentials from -15to -40 mV due to the negative choline head group, while 

the neutral surface charge of HDL would yield particles with neutral surface charges [332]. These 

expectations were confirmed as shown in Figure 5.  

FTIR confirmed the identity of the nanoparticles by revealing the presence of various bands. For 

HDL, bands associated with lipid esters (1700-1800 cm-1) and two distinct amide stretches (~1500-1700 

cm-1) were expected along with characteristics from the FTIR of PC (due the layering process of 

nanoparticles) [333]. PC coated nanoparticles were expected to have a large peak associated with –CH2 and 

–CH3 groups (~3000 cm-1) along with phosphate group vibrations ~900 cm-1 [334]. PEGylated 

nanoparticles were expected to exhibit decreased –CH2, –CH3, and –CH out of plane bending intensities. 

These particles were also expected to exhibit a PEG ether stretch C-O-C between 1050-1100 cm-1 with the 

corresponding vibration band  between 1342-1353 cm-1 [335].The bands of the two- and three layer 

nanoparticles were stronger than the PEGylated nanoparticles. 

The penetration and diffusion capabilities of two-layer and three-layer citrate-gold nanoparticles 

into 3D cell cultures was also analyzed, although the application of these particles in cancer therapy is 

limited compared to silica-core gold nanoshells. Citrate-gold nanoparticles are much smaller than 

nanoshells and do not possess tunable optical properties; they also lack absorption in the NIR range and 

thus cannot be used for photothermal ablation therapy. Evaluation of the diffusivity of nanoparticles in 3D 

cell cultures was also dependent upon the morphology and stability of the cell cultures. Since HEPG2 3D 

cell cultures formed less tightly bound clusters, nanoparticles could enter these cultures better than the 

A549 and S2VP10 cell cultures. This could explain the accumulation of more nanoparticles in HEPG2 

spheroids in comparison to the other cell lines.  

This study focused on evaluating the uptake and distribution of nanoparticles within 

avascular/hypoxic regions of solid tumors at varying depths of penetration using 3D cell cultures as an in 

vitro model of avascular tumor tissue. By quantifying the amount of particles within specific regions of 

tissue, the diffusion of particles can be analyzed and this information combined with mathematical 

modeling to better understand effectiveness of these particles for cancer treatment. The results could then 
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be utilized to calibrate computational simulations to elucidate the complex dynamics of particles and drug 

molecules within solid tumors [292, 296, 336, 337]. The work here represents an initial step to assess the 

performance of two- and three-layered nanoparticles in penetrating avascular tissue. We note that 3D cell 

culture is a rudimentary model of avascular tumor tissue; also, the reticuloendothelial system (RES) and 

other systemic factors may significantly affect nanoparticle performance in vivo.   

This study can be continued by examining the efficacy of the two-layer nanoshell system in 

photothermal applications and determining its benefits compared to PEGylated nanoshells.  In addition, 

work is currently in progress to investigate the potential for embedding drugs into the layers of the two-

layer nanoshell for chemotherapeutic delivery. A more interesting approach would be to combine the 

photothermal treatments with drug delivery. A system could potentially be designed that would release its 

drug payload once the particle has been excited through NIR energy, disrupting the layers on the nanoshell. 

These steps would provide a logical progression towards developing more efficacious systems for targeted 

cancer therapy. 

 

 

 

 

 



59 
 

 

 

 

CHAPTER III 

DETECTION OF PHOSPHATIDYLCHOLINE-COATED NANOPARTICLES IN ORTHOTOPIC 

PANCREATIC CANCER USING HYPERSPECTRAL IMAGING 

 

Background 

Systemic Delivery of Nanoparticles to Tumors 

Systemic delivery of nanoparticles to solid tumors can be considered in three distinct stages: 

systemic travel while avoiding sequestering by the reticuloendothelial system (RES, mainly the liver and 

the spleen), extravasation from intra-tumoral capillaries, and diffusion to reach and penetrate malignant 

cells [338, 339]. The compromise of any of the associated processes can lead to suboptimal nanoparticle 

uptake within tumor tissue, resulting in diminished therapeutic or diagnostic efficacy. To facilitate systemic 

travel, surface modifications have been applied to nanoparticles to enhance passive and active targeting 

while minimizing RES sequestering, e.g., coating with the hydrophilic polymer poly(ethylene)-glycol 

(PEG) results in prolonged circulation time and diminished RES uptake [340, 341]. Coating with targeting 

ligands specific to over-expressed receptors on cancer cells (e.g., high-density lipoprotein receptor 

(HDLR)) can further enhance nanoparticle uptake and accumulation at the tumor site [341]. 

However, the typically irregular tumor vasculature resulting from uncoordinated pro- and anti-

angiogenic stimuli further hinders nanoparticle passive transport to cellular targets as well as therapeutic 

efficacy even if systemic travel and targeted accumulation were successful [342]. Hypo-vascularized 

regions of tissue lead to cells invoking survival mechanisms to overcome oxygen and nutrient deprivation 

including minimization of metabolism (quiescence) resulting in cell cycle-dependent chemotherapeutic 

resistance [343]. In addition to intrinsic and microenvironment-associated resistance mechanisms, cells 

distant from vasculature in solid tumors receive suboptimal levels of diffusible substances as transport may 

be limited by increased interstitial fluid pressure (IFP), a chaotic and dense ECM, and an acidic 

microenvironment [338, 342, 344-346]. 
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To overcome these transport barriers and successfully deliver nanoparticles more homogeneously 

into tumor tissue, nanoparticle size and surface modifications have traditionally been modulated [292]. 

Studies have described positive correlations between 50 nm nanoparticles and enhanced tumor 

accumulation and diffusivity within tumor tissue [347], while larger 100 nm nanoparticles are readily 

filtered by the liver and their transport is hindered once at the tumor due to a dense ECM [299, 348]. Very 

small (5 nm) gold nanoparticles conjugated with anti-EGFR antibody were shown to successfully target 

and treat pancreatic cancer when injected intraperitoneally into mice [349]. Using 3D cell cultures, size-

specific localization of nanoparticles was demonstrated by showing that small nanoparticles (2 and 6 nm) 

exhibited superior penetration in comparison to slightly larger (15 nm) nanoparticles [24]. It was also 

shown that nanoparticles ~20 nm displayed superior penetration in comparison to even larger nanoparticles 

[299].  

Previously, we have shown that smaller citrate gold nanoparticles (45-60 nm) display enhanced 

tissue diffusivity in comparison to larger silica-gold nanoshells (160-175 nm) [225]. We also evaluated the 

effects of surface modifications on passive transport by functionalizing nanoparticles with PC and HDL. 

Results showed that both PC-coated and HDL-coated nanoparticles displayed enhanced tissue penetration 

compared to PEGylated nanoparticles in 3D cell cultures of human pancreatic, lung, and hepatocellular 

cancers [225]. As PEGylation is the most common surface modification, the results demonstrated that such 

alternative surface modifications might enhance passive transport through solid tumor tissue. 

Detecting Nanoparticles in Tissue 

Nanoparticle localization is usually assessed using SEM and transmission electron microscopy 

(TEM), yet these methods alone cannot conclusively detect nanoparticles. In combination with other tools 

(e.g., energy dispersive X-ray (EDX) microanalysis), elemental analysis can provide further confirmation 

of nanoparticle identity [350]. Here, we employ hyperspectral imaging to create libraries of known 

nanoparticles and thus enable their detection within tissue samples or individual cells. Recently, the 

deposition patterns of cisplatin aerosol therapy in surgically resected stage II lymph nodes from lung cancer 

patients was analyzed using hyperspectral imaging [351]. Further, recombinant human epidermal growth 

factor was encapsulated into liposomes, from which the morphology and particle distribution was analyzed 

using hyperspectral imaging [352]. This imaging has also been utilized in patients for rapid, on-sight 
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histological classification of lung cancer [353], demonstrating the flexibility of this technique in biomedical 

applications. While nanoparticles can be identified using dark field microscopy alone, the combination of 

hyperspectral imaging with dark field microscopy allows for automatic detection of nanoparticles within 

the tissue, leading to less humanized error .  

Purpose of Study 

We examine the uptake and diffusivity of PC-coated citrate gold nanoparticles and silica-gold 

nanoshells in tumors of the pancreas. Pancreatic cancer is the fourth most common cause of cancer-related 

death in the United States with dismal 5-year relative survival rates of < 6% [56]. Due to the late onset of 

clinical symptoms and a paucity of known biomarker candidates, pancreatic cancer prevention and 

diagnosis remain difficult, with over 70% of pancreatic cancer cases diagnosed at stage III or IV, when 

surgical intervention is generally no longer an option as the disease has spread through metastasis [354]. 

Current treatment options fail to effectively cure pancreatic tumors and have only provided minimal 

increases in survival rates, demonstrating the vital need for novel treatment options. Here, we synthesize 

and characterize PC-coated gold nanoparticles using methods outlined previously [225], and tail-vein inject 

them into mice bearing orthotopic pancreatic tumors.  

An orthotopic model was chosen for these experiments because it provides a more realistic 

comparison to the human pancreatic tumors in comparison to subcutaneous models. After allowing for 48 

hours of circulation, the animals were euthanized and the organs harvested for histological analysis. Ex 

vivo identification and localization of nanoparticles in the liver, spleen, and pancreatic tumor tissues were 

determined using hyperspectral imaging of histology sections. Results were compared to previous work in 

which uptake of these nanoparticles was assessed in 3D cell culture [225]. 

 

  

 

Methods 

Synthesis of Gold Nanoparticles 

As previously described [225], nanoparticles were synthesized using the method in which gold 

chloroauric acid is reduced by trisodium citrate [306]. In this process, 2.2–2.4 mL 1% weight/volume 
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(wt/v) sodium citrate (Fisher Scientific, Waltham, MA, USA) and 200 mL 0.01% wt/v HAuCl4 (Alfa 

Aesar, Ward Hill, MA, USA) are mixed and heated to boiling, which promotes the reaction of sodium 

citrate to citric acid. Temperature and final concentration of the gold salt allows particles of varying sizes. 

Once the reaction is completed, the solution is concentrated using a rotovapor (Buchi Rotovapor System, 

BÜCHI Labortechnik AG, Flawil, Switzerland) to ~20 mL before the addition of layering to the particles. 

The silica gold nanoparticles have an inner core composed of silica with an outer coating of gold. 

Synthesis consists of four stages: production of a colloid of small gold particles (2-4 nm) through reduction 

and aging of gold colloid produced by the recipe of Vogel et al. [355], fabrication of monodispersed silica 

cores from the Stöber method [232, 308], attachment the seeds to the silica surface, and finally gold shell 

growth via reduction of additional gold. The gold colloid solution is created utilizing the THPC 

(Tetrakis(hydroxymethyl)phosphonium chloride) method [316]. Growth of the silica cores requires the 

combination of 7.5 mL tetraethyl-orthosilicate (TEOS, Sigma Aldrich, St Louis, MO, USA), 225 mL 

absolute ethanol (Decon Labs, King of Prussia, PA, USA), and 12.5–13.5 mL ammonia (Sigma Aldrich). 

Ammonia is adjusted to achieve silica core sizes 110 ± 5 nm. After removal of the paraffin cover and 

evaporation of the ammonia, the cores are coated with 3%–4% aminopropyltriethoxysilane (APTES; Sigma 

Aldrich). This allows for slightly positive cores for deposition of small colloidal gold particles, thus 

forming what is hence called a seed particle.  

The seeds are then washed and a 10% gold solution is added to complete the shell. After reaction 

time, the seeds are washed and re-dispersed in DI water. The seeds are diluted to 0.3–0.5 optical density 

(OD) at 530 nm (Varian Cary 50 Bio UV-Visible Spectrometer, McKinley Scientific, Sparta, NJ, USA). A 

sweep of the seeds is performed to optimize the chemical ratio between them, K2CO3-HAuCl4, and 

formaldehyde (Fisher Scientific). Limiting the concentration of gold in the final reduction step controls the 

thickness of the gold shell. 

Functionalization of Nanoparticles 

The first layer applied to the citrate gold nanoparticles and silica-gold nanoshells was 1-

Hexadecanethiol (Sigma Aldrich) dissolved in ethanol. While stirring, 20 mL pure ethanol (Decon Labs) 

was placed in a beaker with 60 μL 1-Hexadecanethiol being added secondly. The nanoparticles were added 

to the sample slowly over the next few minutes. The sample was first agitated via shaking and sonication 
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for 60 minutes, and then placed for 12 hours on an orbital rocker (Boekel Scientific, Feasterville, PA, USA) 

overnight. The sample was spun down, and the pellet was washed twice and resuspended in chloroform 

(Sigma Aldrich). The second functionalization was the addition of the PC. The stock solution was made by 

diluting PC in chloroform, and 100 μL were added to the particles after the thiol layer and allowed to set 

overnight on an orbital rocker. The solutions were transferred to glass tubes and the chloroform evaporated 

at ambient temperature. After removal of chloroform, PC-coated citrate gold nanoparticles and silica-gold 

nanoshells were reconstituted in ddH2O to 2 OD.  

Nanoparticle Characterization 

Nanoparticle maximum absorption wavelengths were obtained using the Varian Cary 50 Bio UV-

Visible Spectrometer (McKinley Scientific).  Nanoparticle size and zeta potential measurements were 

obtained using the Zeta-Sizer Nanoseries ZS90 (Malvern Instruments, Worcestshire, UK).  Hydrodynamic 

size in solution based upon Brownian motion was measured using DLS (dynamic light scattering). Shape 

and size were also previously determined using SEM, with the presence of lipids on the particle cores 

confirmed using a FTIR spectroscopy (England et al. 2013). 

Cell Culture Experiments 

The highly metastatic pancreatic adenocarcinoma cell line, S2VP10 cells expressing luciferase, 

was obtained from Dr. Michael Hollingsworth (University of Nebraska). Cells were grown in DMEM with 

10% FBS and 1% L-glutamine at 37 ̊C in a humidified incubator. 

Human Pancreatic Cancer Orthotopic Xenograft Mouse Model 

Adherence to the University of Louisville Institutional Care and Use Committee (IAUCUC) 

approved protocol was upheld for the in vivo experiments. Severe combined immunodeficiency (SCID) 

female mice (Harlan, Indianapolis, IN) received orthotopic pancreatic injections of S2VP10 metastatic 

pancreatic adenocarcinoma cells expressing luciferase, resulting in pancreatic tumors within 7 days. The 

procedure for orthotopic pancreatic cell implantation was previously described (McNally et al. 2010). 

Briefly, mice were anesthetized with isoflurane (≤4% isoflurane for induction and ~1.5% maintenance 

dose) at 100% O2. The left upper abdominal quadrant of the animals was sterilized before making a 1-cm 

incision. The pancreas was localized using forceps, and the tail of the organ was injected with 1.5×105 

cells/30 µL S2VP10 cells expressing luciferase using a 28-gage needle. Peritoneal leakage of cell solution 
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from pancreatic injection site was minimized by applying a sterile cotton tip applicator for 30 seconds. 

Organs were returned to normal anatomical position prior to closing the skin and peritoneum using 5-0 

Nylon sutures. Animals recovered in a warm area and received liquid acetaminophen for 24 hours post-

surgery. Growth of the tumor was monitored using the AMI-1000X bioluminescence imaging system 

(Spectral Imaging Instruments, Tucson, AZ). 2.5 mg luciferin was given via intraparenteral injection to 

each mouse 10 minutes prior to imaging.   

An intravenous (tail vein) injection of 200 µL 2 OD nanoparticle solutions was given to the mice 

nine days after tumor cell implantation. As there were five mice in each group, the first group received an 

injection of PC-coated citrate gold nanoparticles; the second group mice received an injection of PC-coated 

silica-gold nanoshells, and the third group was the negative control (no particle injection).  

Mouse Euthanasia, Organ Resection, and Histological Processing 

Nanoparticles were allowed to circulate for 48 hours before mice were euthanized using CO2. The 

pancreatic tumor, liver, and spleen were removed from each mouse for histological processing. Histology 

was performed by the University of Louisville Pathology Laboratory (Louisville, KY, USA). Tissues were 

cut into 4 µm sections and placed onto slides before undergoing a series of ethanol and xylene washes. 

Cover slips were applied before experimental analysis. 

Nanoparticle Detection using Hyperspectral Imaging  

Hyperspectral imaging in combination with dark field microscopy was used to assess nanoparticle 

uptake and distribution within histology tissue sections. The CytoViva® Hyperspectral Imaging System 

(CytoViva Inc., Auburn, AL, USA) was used for this purpose. This system uses a Dage camera with a 

microscope with dark field capability. Hyperspectral profiles are acquired using a Pixelfly camera and 

visualized using ENVI 4.8 software (Exelis Visual Information Solutions, Boulder, CO, USA). To confirm 

the identity of nanoparticles, spectral libraries were created using z-spectral profiles and compared to the 

tissue samples. We found that spectral mapping was able to detect and confirm the nanoparticles within 

tissue samples by using multiple tissue images (> 10) containing either nanoparticles or no nanoparticles. 

Data analysis was performed with ImageJ. Regions of interest were randomly determined and particles 

within these regions were counted to determine the concentrations in liver, spleen, and pancreatic tumor 
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tissues. A sufficient number of regions were evaluated to ensure at least 90% accuracy based on 

stereological analysis.  

Statistical Analysis 

Analyses used the two-tailed Student’s t-test with significant values being less than 0.05. 

Statistically significant differences are illustrated with an asterisk (*) in the results. 
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Results 

Nanoparticle Synthesis and Characterization 

The addition of a PC layer to citrate gold nanoparticles and silica-gold nanoshells was 

accomplished using a layering process in which the charged head group of hexadecanethiol binds to the 

nanoparticle (Figure 13), resulting in hydrophobic nanoparticles with hydrocarbon chains pointed outward 

towards the surrounding environment. The addition of PC to the hexadecanethiol-coated nanoparticles 

binds tail-to-tail creating water-soluble nanoparticles containing an inner layer suitable for hydrophobic 

drug loading.  

 

Figure 13. Synthesis of Two and Three Layer Nanoparticles. Briefly, citrate gold nanoparticles were 

synthesized by the reduction of chloroauric acid by sodium citrate. The citrate is removed from the surface 

by the addition of hexadecanethiol, which is used for the conjugation of PC. Silica-gold nanoparticles were 

synthesized by first creating silica cores before adding ultra-small colloidal gold nanoparticles onto the 

surface of the cores to create a thin layer of gold through a reduction process. The same modifications of 

hexadecanethiol and PC were applied to the silica-gold nanoshells. TEOS: tetraethyl-orthosilicate. 

 

 

Optical measurements of functionalized citrate gold nanoparticles and silica-gold nanoshells 

confirmed nanoparticle identity and functionalization (Figure 14). Colloidal gold nanoparticles exhibit UV-
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Vis maximum absorbance values ranging between 510-550 nm, in agreement with the PC-coated 

nanoparticles experiencing an optimal peak at 540 nm (Figure 14A). In comparison, previously synthesized 

PEGylated citrate gold nanoparticles displayed a maximum wavelength of 533 nm [225]. Maximum 

absorbance of silica-gold nanoparticles is based upon the radius of the silica core and size of the gold shell 

surrounding the core, with smaller shells producing larger wavelengths. Silica-gold nanoshells synthesized 

in this study displayed a maximum absorbance of 835 nm that is similar to silica gold nanoparticles with 

~110nm diameter silica cores and ~10-15 nm gold coating (Figure 14B). In comparison, previously 

synthesized PEGylated silica-gold nanoshells displayed a maximum absorbance of 820 nm. We have 

previously shown that silica-gold nanoparticles commonly possess wavelengths ranging from 820-860 nm 

based upon sizing and surface modifications [225].  

 

 

Figure 14. UV-Visible Spectroscopy Spectra of Nanoparticles. (A) Citrate gold nanoparticles displayed a 

maximum absorption at 540 nm. (B) Silica-gold nanoshells displayed a maximum absorption at 830 nm.  

 

Further characterization elucidated information regarding hydrodynamic radii and surface charge 

(Figure 15). The hydrodynamic radius has a crucial impact on deposition patterns in vivo as a thin electric 

dipole layer of the solvent adheres to the surface of the nanoparticles as they move through a liquid 

medium. The size determined through DLS was greater than the sizing information obtained visually by 

SEM, which is a common occurrence. The PC-coated citrate gold nanoparticles had an average DLS size of 

82.3 ± 9.4 nm (Figure 15A), while PC-coated silica-gold nanoparticles had an average size of 144.13 ± 11.7 
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nm (Figure 15B). These DLS sizes can be contrasted with previously synthesized PEGylated citrate gold 

nanoparticles and silica-gold nanoshells exhibiting sizes of 82.81±13.4 nm and 161.82±12.2 nm, 

respectively. The size difference between citrate gold and gold nanoshells is expected to have an impact on 

diffusivity within in vivo tumor tissue, in accordance with previous observations using 3D cell culture 

[225]. The surface charge showed similar zeta potentials between the citrate gold nanoparticles and silica-

gold nanoshells of -23 mV (Figure 16A) and -31 mV (Figure 16B), respectively.   

 

 

Figure 15. Hydrodynamic Radius of Nanoparticles Measured using DLS. (A) The radius of PC-coated 

citrate gold nanoparticles was 82.3 ± 9.4 nm. The hydrodynamic radius of PC-coated silica gold 

nanoparticles was 144.13 ± 11.7 nm.  

 

 

Figure 16. Surface Charge of Nanoparticles Measured using the Zetasizer. The surface charge, or zeta 

potential, of these nanoparticles displayed similar cationic surfaces with (A) the PC-coated citrate gold 
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nanoparticles possessing a zeta potential of -23 mV. The PC-coated silica-gold nanoshells were slightly 

more cationic at -31 mV. 

 

Creation of Nanoparticle Spectral Libraries 

Before nanoparticles were detected in tissue samples from mice, spectral libraries were created of 

the PC-coated citrate gold nanoparticles and silica-gold nanoshells that could be later matched to the 

images for detection (Figure 17). The spectral libraries were synthesized from samples of both types of 

nanoparticles in solution. Visible color changes from green to yellow to red illustrated the shift of the 

maximum absorbance wavelength of the nanoparticles. For PC-coated citrate gold nanoparticles, the 

majority of nanoparticles in solution exhibited green color indicating the particles processed maximum 

absorbance values within the lower range (500-600 nm) (Figure 17A). This was confirmed through the z-

profile spectra mapping showing a maximum band ~550-570 nm. The solution of PC-coated silica-gold 

nanoshells contained a significant concentration of red nanoparticles, indicative of absorbance at higher 

wavelengths (>700 nm) (Figure 17B). As nanoshells exhibit wavelengths higher than colloidal gold 

nanoshells, this also helped to confirm the identity of the nanoparticles.  
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Figure 17. Hyperspectral Imaging of PC-coated Gold Nanoparticles. (A) Citrate gold nanoparticles were 

primarily green, with a spectral profile indicating a maximum wavelength of 570 nm. (B) Silica-gold 

nanoshells displayed an abundance of red and yellow nanoparticles, with a spectral profile maximum of 

700 nm. While the actual maximum wavelength of silica-gold nanoshells in solution is between 820-860 

nm, hyperspectral imaging is known to underestimate entities containing higher wavelength maxima. Size 

bar corresponds to 20 µm.  

 

Evaluation of Nanoparticle Uptake and Distribution 

The creation of spectral libraries of PC-coated nanoparticles enables nanoparticle detection in 

tissue samples. After nanoparticles extravasate from vasculature, they diffuse through the tissue composed 

of cells and ECM. In some tissues, extravasation sources residing relatively close to each other can provide 

a more homogenous layout of source points. Nanoparticle counts were obtained in the vicinity of source 

points in histology sections to determine the uptake and distribution in sections of liver, spleen, and 

orthotopic pancreatic tumor (Figure 18).  
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Figure 18. Nanoparticle Penetration in Liver, Spleen, and Pancreatic Tumor. Citrate gold nanoparticle and 

silica-gold nanoshell penetration measured in liver, spleen, and pancreatic tumor tissue samples. Distances 

from the nearest source were measured using hyperspectral imaging. In the liver and pancreatic tumor, 

citrate gold nanoparticles had a linear diffusion pattern, while the spleen had an exponential decline.  Silica 

gold nanoshells had an exponential decline, suggesting limited diffusivity in all three tissue types.  Citrate 

gold nanoparticles had highest extravasation close to their sources in the spleen while for silica gold 

nanoshells extravasation was highest in the liver.  All error bars denote standard deviation (n=3). 

 

For citrate gold nanoparticles, the liver and pancreatic tumor on average exhibited a linear decline 

in nanoparticle concentration from the nearest source, with 26.5 ± 8.2 and 23.3 ± 4.1 particles/100μm2, 

respectively, within 10 μm of the source and few nanoparticles penetrating beyond 50 μm (Figure 18). The 
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spleen displayed on average a higher uptake of 35.5 ± 9.3 particles/100μm2 within 10 μm followed by an 

exponentially decaying penetration pattern, also limited to ~50 μm (Figure 18).   

Silica-gold nanoshell were uptaken the most within the liver showing on average 31.1 ± 4.1 

particles/100μm2 within 10 μm of the nearest source, with penetration hindered beyond 30 μm (Figure 18). 

The spleen and pancreatic tumor also exhibited limited penetration beyond 30 μm (Figure 18), with uptake 

of 22.1 ± 6.2 and 15.8 ± 6.1 particles/100μm2, respectively, within 10 μm. While the penetration of citrate 

gold nanoparticles suggests linear diffusion, the nanoshells displayed more of a decaying exponential 

pattern further implying limited diffusivity. We hypothesize that the limited diffusivity of nanoshells in the 

liver, spleen, and pancreatic tumor is size-dependent, thus larger particles (>150 nm) would experience 

even greater diffusion limitations. 

Nanoparticle Accumulation in Liver, Spleen, and Pancreatic Tumor 

The average concentration of citrate gold nanoparticles was highest in the liver (1.09 ± 0.14 

nanoparticles per µm2), as compared to the spleen (0.74 ± 0.12 nanoparticles per µm2) and pancreatic tumor 

(0.43 ± 0.07 nanoparticles per µm2) (Figure 19A). In contrast, the average concentration of silica gold 

nanoshells was 0.43 ± 0.07 nanoparticles per µm2 in the liver, 0.30 ± 0.06 nanoparticles per µm2 in the 

spleen, and 0.20 ± 0.04 nanoparticles per µm2 in the pancreatic tumor (Figure 19A). Using the two-tailed 

student t-test, statistically significant differences between the accumulation of nanoparticles in each tissue 

are shown (all p-values < 0.05).  
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Figure 19. Citrate gold nanoparticle (black bars) and silica gold nanoshell (grey bars) concentrations within 

liver, spleen, and pancreatic tumor show differential uptake. (A) The liver exhibited highest concentration 

of either citrate gold nanoparticles or silica gold nanoshells, followed by the spleen and the pancreatic 

tumor. Statistically significant differences are signified by (*) with a p-value < 0.05, with statistical 

differences between each tissue type for both citrate gold nanoparticles and silica gold nanoshells. Error 

bars denote standard deviation.  Hyperspectral imaging of nanoparticles in combination with dark field 

microscopy highlights the density of extravasation sites that may affect the uptake of nanoparticles within 

tissue. (B) The liver provides numerous extravasation sites. (C) The spleen also has numerous extravasation 

sites, albeit to a lesser extent compared to the liver. (D) The pancreatic solid tumor has fewer sites, leading 

to diminished nanoparticle uptake.  Bars, 100 μm 

 

Uptake of nanoparticles is a function of vasculature of an organ or tissue. The liver and spleen 

with similar patterns of highly vascularized tissue are expected to present a higher number of nanoparticle 

source points, while the pancreatic tumor with a more heterogeneous vascular pattern would have less. 
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Dark-field tissue sections were compared to evaluate extravasation sites within the tissue (Figure 19B-D). 

Some regions of pancreatic tumor may contain large quantities of sprouting vessels due to sporadic 

angiogenesis, while other regions experience diminished vascular density with possibly few vessels 

supporting large volumes of tissue. This heterogeneity may result in tumor tissue becoming hypoxic and 

necrotic, with correspondingly restrained nanoparticle accumulation in these regions. 
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Discussion 

We synthesized PC-coated citrate gold nanoparticles and silica-gold nanoshells to study their 

uptake and diffusivity within tissue in vivo. PC is the most abundant phospholipid found in cellular 

membranes and thought to decrease possible immunogenicity [356]. The addition of PC was previously 

shown to significantly reduce associated cytotoxicity and particle aggregation, while enhancing passive 

targeting capabilities [357]. In previous work, we observed enhanced diffusivity of PC-coated nanoparticles 

in 3D cell cultures, with superior uptake and penetration in comparison to PEGylated nanoparticles [225]. 

PEG is currently the most widely employed FDA-approved polymeric platform used in the synthesis of 

medicinal nanoparticles for treating various cancers and related diseases, including Genexol-RM for 

metastatic breast cancer, Oncaspar for acute lymphoblastic leukemia, and Neulasta for chemotherapy-

associated neutropenia [358]. While PEGylation is effective in enhancing drug delivery, multiple adverse 

effects have been associated with the use of PEG including possible immunogenicity, which is still debated 

[359]. The evaluation of PC-coated nanoparticles may longer term enable an alternative therapeutic option. 

We note that the only FDA-approved nanotherapeutic currently available for pancreatic cancer is 

Abraxane, an albumin-bound form of paclitaxel [360]. 

In this study, the formation of a bilayer membrane around nanoparticles was achieved by first 

adding hexadecanethiol, which displaced the outer coating of citrate and formed a hydrophobic 

nanoparticle (Figure 13). Through the addition of PC, the hydrophobic tails of the hexadecanethiol interact 

with the hydrocarbon chains of PC to form the membrane layer. The hydrophobic region between 

hexadecanethiol and PC can potentially be utilized for entrapping hydrophobic drugs, resulting in enhanced 

bioavailability. In addition, PC-coated silica-gold nanoshells exhibit wavelengths within the near infrared 

(nIR) region, making them potential candidates for photothermal ablation therapy as well as diagnostic 

imaging through multispectral optoacoustic tomography (MSOT)  [18, 361-363]. Recently, specific uptake 

of hybrid iron-oxide core gold-shell nanoparticles by pancreatic cells in photothermal therapy has been 

demonstrated. Cells exposed to nanoparticles and laser irradiation produced dose-dependent temperature 

increases and a reduction in cell proliferation, suggesting that photothermal ablation may be of use in the 

treatment of pancreatic cancer [364].  
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Detection of nanoparticles in tissue samples has been extensively accomplished using electron 

microscopy techniques (TEM, SEM, STEM) [365], yet newer methodologies present opportunities. 

Additional studies have utilized confocal microscopy to examine the translocation of nanoparticles in co-

culture cancer models [366]. While these models can detect nanoparticles, they lack the ability to confirm 

the presence of nanoparticles in tissue based upon spectral mapping. Hyperspectral imaging of 

nanoparticles in solution demonstrates the feasibility of determining the spatial location, agglomeration 

status, wavelength differentiation, and partial size determination [367]. Using hyperspectral imaging, 

nanoparticles can be further analyzed and characterized to determine properties such as surface 

modifications.  

In this study, we used hyperspectral imaging to analyze the uptake and distribution of gold 

nanoparticles within tissue samples. We note that nanoparticle agglomeration can distort the results when 

attempting to assess nanoparticle concentrations within regions of interest. Consequently, numerical data 

gained from this method should be considered approximate and not absolute. Also, nanoparticle spectral 

profiles can be altered by factors including agglomeration status, backscatter from other sources, and other 

mechanisms. While the citrate gold nanoparticles exhibited similar spectra to those adapted from UV-Vis 

spectroscopy, the silica-gold nanoshells displayed a lower maxima (Figure 14). Such small changes are 

considered normal. Another common occurrence in detecting nanoparticles stems from the use of dense 

tissue samples, in which light scattering from different tissue components may hinder proper view. For this 

reason, spectral matching should be mapped for each image to computationally extract the nanoparticles, 

providing a clear depiction of which positive pixels are nanoparticles as compared to other tissue elements. 

The spatial distribution of vessels within organs can cause some data distortion as vascular source 

points in mice reside within close proximity of each other [368]; nanoparticles extravasated from a 

particular source point may thus overlap with those extravasated from a nearby source. This was considered 

when counting the nanoparticles and was a reason to limit the distance of evaluation to 50 μm, which is the 

typical inter-vessel distance in the murine liver [369]. 

Recently, we have evaluated uptake and penetration of functionalized nanoparticles in avascular 

3D cell cultures. Diffusion is both size and surface modification dependent, shown by analyzing the 

penetration of citrate gold nanoparticles and silica gold nanoshells (size difference ~80 nm) based on 
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functionalization with hexadecanethiol (TL) and PC, or TL, PC, and HDL, and finding that coating with PC 

or HDL increased uptake and penetration [225]. The results herein show that PC-coated citrate gold 

nanoparticles exhibit a quasi-linear diffusion pattern in vivo similar to the 3D cell cultures (Figure 19A). In 

contrast, PC-coated silica gold nanoshells experienced a steeper decline in concentration from the nearest 

source point (Figure 19) compared that observed in 3D cell culture [225]. Further, the particle uptake 

observed within 10 μm of the nearest source in the pancreatic tumor was on average 67% lower than 

observed with these same cells in vitro.   

While 3D cell cultures mimic the morphological structure of tissue in vivo, tissue found within 

live subjects is more complex. This tissue is composed of a fully developed ECM and multiple cell types 

(including cells of the immune system) that are in contact with the blood supply and the lymphatic system, 

which may affect the deposition patterns and uptake of nanoparticles beyond the effects from 3D space. 

The extravasation in vivo is also expected to be hindered by interstitial fluid pressure within tumor tissue as 

has been shown in experimental as well as modeling studies [342, 345, 370]. The elevated concentration of 

nanoparticles in the liver and spleen highlights the sequestering by the RES (Figure 19A). Overall, the 

smaller citrate gold nanoparticles exhibited enhanced accumulation compared to the silica gold nanoshells. 

This difference can be primarily attributed to their smaller size. Nevertheless, the hypo-vascularization in 

the pancreatic tumor tissue can significantly hinder nanoparticle uptake regardless of size (Figure 19).  

This study can be continued by examining the drug loading efficiency of the PC-coated 

nanoparticles. Hydrophobic drugs could be loaded into the hydrophobic region between the 

hexadecanethiol and PC, and thus facilitate their delivery through the hydrophilic tissue environment. To 

enhance local release, one would require the use of gold particles which absorb light in a region transparent 

to tissue, such as near infrared (nIR) absorbing gold nanoparticles (gold silica nanoshells, nanorods, or 

gold-sulfide aggregate nanoparticles). Drug release would then be mediated by heating of the surface (using 

the correct amount of energy via light dosing) to allow release of surface bound molecules. This method 

would minimize damage to surrounding tissue. Further, the nIR wavelength associated with the gold silica 

nanoshells in this study makes them potential candidates for photothermal ablation therapy. Citrate gold 

colloid based particles should not be used for thermal ablation as the wavelength of light (~540 nm) used 

for activation will cause harm due to absorption of energy by the tissue.  Nevertheless, citrate gold NPs 



78 
 

may be easier for designing a layered system for drug transport modeling studies [225]. Finally, by 

analyzing diffusivity and distribution patterns of these nanoparticles in vitro and in vivo, mathematical 

modeling could be applied to help design and predict treatment outcomes [295, 296, 336, 370, 371]. 
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CHAPTER IV 

RELEASE KINETICS OF CISPLATIN AND PACLITAXEL FROM TWO AND THREE LAYER 

NANOPARTICLES 

 

Background 

Gold Nanoparticles for Cancer Therapy 

Tumor chemotherapeutic response can be significantly affected by drug physiochemical 

properties, such as water solubility and bioavailability, as well as intrinsic and physiologic resistance by the 

tumor tissue itself. In order to enhance tumor response while minimizing systemic toxicity, a variety of 

drugs have been encapsulated in organic or inorganic nanoparticles, ranging in size from 1 to 1000 nm. 

Gold nanoparticles, in particular, have been utilized as agents for drug delivery, thermal therapy, and in 

vivo imaging, and as radio-sensitizers for both pre-clinical and clinical purposes [372]. An early-phase 

clinical trial showed the effectiveness of 27-nm citrate gold nanoparticles functionalized with poly-

(ethylene)-glycol (PEG) while addition of tumor necrosis factor-α enhanced targeting of solid tumors and 

increased tumor toxicity [283]. 

Cisplatin and Paclitaxel 

Two commonly utilized chemotherapeutics in cancer treatment are cisplatin and paclitaxel [373]. 

Cisplatin inhibits cell proliferation through multiple mechanisms, including: binding with DNA to form 

intra-stand adducts causing changes in DNA conformation, promoting mitochondrial damage leading to 

diminished energy production, altering cellular transport mechanisms, and decreasing ATPase activity 

within the cells [148, 374]. Paclitaxel enhances tubulin polymerization to stable microtubules and stabilizes 

them against depolymerization, which results in mitotic arrest [375]. While both drugs are effective, they 

are known to possess adverse reaction profiles. Cisplatin induces renal toxicity caused by its activation 

within proximal and distal tubules, neurotoxicity by damaging Schwann cells of the myelin sheath, and 

tumor lysis syndrome (TLS), which results in abnormal metabolic and electrolyte profiles [148]. Paclitaxel 
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has shown dose-limiting hematological toxicity (e.g. neutropenia) and sensory neurotoxicity, along with 

other adverse non-hematological toxicities including arthralgia, myalgia, and fluid retention [376]. In 

addition to adverse profiles, the poor water solubility and low bioavailability of paclitaxel has hampered its 

clinical use. The drug is administered in a solubilized form, Cremophor EL, to overcome minimal water 

solubility; while the castor oil used to solubilize the drug enhances bioavailability, it is known to induce 

histamine release resulting in hypersensitivity reactions in some patients [15, 377].  

Drug Release from Nanoparticle Systems 

The rate of drug release from nanoparticles is dependent upon the physiochemical properties of the 

drug, attachment strength between drug molecules and the nanoparticle surface, and surface modifications 

used in the synthesis process. Nanoparticles can be designed through alteration of these properties to 

exhibit drug release profiles specific for a targeted cancer to help optimize treatment response. The addition 

of surfactant PEG is known to escalate nanoparticle circulation time by one to two orders of magnitude 

compared to freely circulating drugs, providing additional time for nanoparticles to localize in the solid 

tumor tissue.  Even without being actively targeted, studies have shown that PEG will increase nanoparticle 

accumulation in solid tumors due to the enhanced permeation and retention (EPR) effect caused by the 

irregular and leaky vasculature typically found in tumor tissue [378]. Through nanoparticle 

functionalization, drug release may be modulated to ensure sufficient time for nanoparticles to localize in 

the tumor (e.g., PEG-coated nanoparticles) or to release drug at specific locations (e.g., hypoxic regions) 

within the tumor microenvironment [379]. While drug release profiles can significantly alter response in 

situ, the surface modifications must also ensure that nanoparticles can successfully travel throughout 

systemic circulation to the tumor, extravasate from the intratumoral capillaries, and diffuse throughout the 

tissue to reach every malignant cell [380]. This can be a challenge as nanoparticles administered in vivo are 

often sequestered and removed from systemic circulation by the reticuloendothelial system (RES) [381].  

The heterogeneous cell cycling patterns typically found in tumors ideally require nanoparticle 

accumulation with a sustained drug release. Paclitaxel-loaded gold nanoparticles have been extensively 

utilized for decreasing toxicity and lowering chemoresistance in various cancers [89, 382]. Highly stable 

PEG-coated gold nanoparticles loaded with paclitaxel have been synthesized, exhibiting a biphasic drug 

release pattern with an initial burst followed by a slower release over the next 120 hours [383]. Studies 
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have shown that cisplatin-loaded gold nanoparticles show similar release patterns [384-388]. “Smart-

sensing” pH-sensitive nanoparticles have been developed that release cisplatin in specific environments, 

such as the acidic microenvironment of the tumor or within the cellular endosome once the nanoparticles 

have entered the cell [25]. Recently, controlled release of cisplatin from magnetic nanoparticles has been 

evaluated with the goal to minimize toxicity in non-cancerous tissues [389, 390].  

Purpose of Study 

In this study, we examine the release profiles of cisplatin and paclitaxel from novel two and three 

layer gold nanoparticles for the purpose of aiding the development of gold-based nanotherapeutics. Two 

layer gold nanoparticles were synthesized by adding hexadecanethiol and PC to the outside of gold cores. 

The addition of PC to the outer layer of TL creates a hydrophobic region, similar to the lipid bilayer found 

on liposomes, which can be utilized for loading hydrophobic drugs. For the three layer gold nanoparticles, 

HDL was added to the two layer nanoparticles for the purpose of improving liver targeting [225]. For both 

two and three layer gold nanoparticles, paclitaxel was loaded in the hydrophobic region between the TL 

and PC. Cisplatin was loaded through non-covalent interactions onto the outside of two or three layer gold 

nanoparticles. The release of drug was evaluated based upon particle surface modifications and drug 

physiochemical properties to determine the rate of drug release from nanoparticles. Kinetic models were 

evaluated to further assess the mechanisms of drug release, including: zero-order kinetic model, first-order 

kinetic model, simplified Higuchi model, and Korsmeyer-Peppas mode [391].  
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Methods 

Materials  

HAuCl4 (Alfa Aesar, Ward Hill, MA, USA), trisodium citrate (Fisher Scientific, Waltham, MA, 

USA), 1-Hexadecanethiol (TL) (Sigma Aldrich), 100% Ethanol (Decon Labs, King of Prussia, PA, USA), 

Chloroform (Sigma Aldrich), L-PC (Sigma Aldrich), HDL (Lee Biosolutions, St. Louis, MO, USA), 

Phosphate-Buffered Saline (PBS) (Life Technologies, Grand Island, NY), Cisplatin (Sigma Aldrich), 

Paclitaxel (Cayman Chemical, Ann Arbor, MI, USA), Acetonitrile (Sigma Aldrich), Trifluoroacetic acid 

(TFA) (Sigma Aldrich) 

Synthesis of Gold Nanoparticles 

Particles were synthesized using a method in which gold chloroauric acid is reduced by trisodium 

citrate as previously described [306]. In this process, 2.2–2.4 mL 1% weight/volume (wt/v) citrate is added 

to 200 mL of boiling 0.01% wt/v HAuCl4, and the solution is allowed to continue boiling for 10 minutes to 

promote the reaction of sodium citrate to citric acid. Once the reaction is completed, the solution cools at 

room temperature before concentrated using a rotovapor (Buchi Rotovapor System, BÜCHI Labortechnik 

AG, Flawil, Switzerland) to ∼20 mL. After the nanoparticles are concentrated, surface modifications were 

added as described below.  

Particle Functionalization 

The first layer applied to the citrate gold nanoparticles was 1-hexadecanethiol dissolved in ethanol. 

The thiol compound displaces the citrate bound to the core of the nanoparticles as thiol has a stronger 

binding affinity for the surface of gold in comparison to citrate, creating a hydrophobic nanoparticle, as the 

hydrocarbon chains of the thiol compound will point outward from the gold core. While stirring, 20 mL 

pure ethanol was placed in a beaker with 60 μL 1-Hexadecanethiol being added secondly. The 1-

hexadecanethiol solution was added slowly to the nanoparticle solution over the next 10 minutes, while 

also agitating the sample by sonication. After addition of 1-Hexadecanethiol, the sample was agitated for 

two hours, and then placed for 12 hours on an orbital rocker (Boekel Scientific, Feasterville, PA, USA). 

The sample was spun down, and the pellet was washed twice and resuspended in chloroform. The second 

functionalization was the addition of the PC to the surface of nanoparticles. The stock solution was made 

by diluting PC in chloroform, and 100 μL were added to the particles after the TL layer and allowed to set 
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overnight on an orbital rocker. The solutions were transferred to glass tubes and the chloroform evaporated 

at ambient temperature. This process completed the two layer citrate gold nanoparticles containing gold 

core, TL, and PC. The three-layered nanoparticles were created by optimizing the ratio of HDL to particle 

optical density (1 mg HDL per 20 OD nanoparticle), and allowed to react overnight after two hours of 

agitation. 

Loading Nanoparticles with Drug 

 Paclitaxel and cisplatin were loaded onto the nanoparticles in distinct regions to ensure optimal 

loading efficiency. Paclitaxel was loaded after the addition of 1-hexadecathiol and before the addition of 

PC. Briefly, after nanoparticles were placed on an orbital shaker for 12 hours, the solution was removed. 

After nanoparticles were resuspended in 9 mL chloroform, an addition 1 mL of chloroform containing 5 mg 

paclitaxel was added to the solution. Nanoparticles were agitated for two hours using sonication before the 

solution was placed on an orbital rocker for six hours. The solution was further modified to add the second 

layer of PC to the surface of the nanoparticles. While paclitaxel was loaded into the hydrophobic region 

created between the TL and PC layer, cisplatin was loaded at two different areas dependent upon the 

layering. For the two layer citrate gold nanoparticles, cisplatin was added after the addition of PC. This was 

done by transferring the solutions to glass tubes and the chloroform evaporated at ambient temperature. 

Next, the nanoparticles were resuspended in 10 mL ultrapure H2O (Purelab Ultra, Elga Labwater, UK) 

containing 7.5 mg cisplatin. For the three layer citrate gold nanoparticles, cisplatin was added after the 

addition of HDL by synthesizing the particles as described above, yet after HDL was added to the particles 

and allowed to react for two hours, the solution was removed, and 7.5 mg cisplatin was added. Excess 

chemotherapeutic was removed from the solution by centrifuging the particles at 7000 rpm for 25 minutes, 

removing the supernatant, and re-suspending the particles in the corresponding solvent. Washing was 

performed twice.  

Nanoparticle Characterization 

Nanoparticle identity was verified as follows: (1) Maximum absorption wavelengths were 

obtained using the Varian Cary 50 Bio Ultraviolet-Visible (UV-Vis) Spectrometer (McKinley Scientific); 

(2) size and zeta potential measurements were obtained using the ZetaSizer Nanoseries ZS90 (Malvern 

Instruments, Worcestshire, UK); (3) DLS (dynamic light scattering, also known as Photon Correlation 
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Spectroscopy) to determine hydrodynamic size in solution based upon Brownian motion; (4) shape and size 

were determined using a Zeiss Supra 35VP (Carl Zeiss, Oberkochen, Germany) SEM; (5) presence of lipids 

on the particle cores was confirmed using a FTIR instrument (Perkin Elmer Spectrum BX; Perkin Elmer, 

Waltham, MA, USA) and through visual analysis using the SEM. 

In Vitro Drug Release Studies 

In vitro drug release studies were carried out using dialysis tubing cellulose membrane with an 

average flat width of 25 mm and 12,000 MW cutoff (Fisher Scientific, Waltham, MA, USA). The prepared 

drug-loaded nanoparticles were added to dialysis tubes and subject to dialysis by submerging the tubing 

into a beaker containing 500 mL 1X PBS at pH 7.4. The solution was agitated continuously throughout the 

release study using a magnetic stirrer at room temperature covered with Parafilm to ensure no evaporation 

would take place during the study. At established time intervals, 3 mL samples of PBS containing drug 

were removed and replaced with fresh buffer to ensure a constant volume. The amount of drug in each 

sample was determined using HPLC. Cumulative drug release versus time was expressed by the following 

equation (Eq. 1):  

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑟𝑢𝑔 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (%) =
[𝐷𝑟𝑢𝑔]𝑡

[𝐷𝑟𝑢𝑔]𝑡𝑜𝑡𝑎𝑙
× 100  Eq. (1) 

where [Drug]t refers to the concentration of drug release at time t and [Drug]total is the total amount 

of drug loaded onto the nanoparticles.  

Drug Detection using HPLC 

Samples of paclitaxel and cisplatin were analyzed using a Waters Alliance e2695 HPLC equipped 

with a Waters 2998 photodiode array UV/Vis detector and a µRPC C2/C18 ST 4.6/100 column (GE 

Healthcare, catalog number 17-5057-01). Initial injection conditions were 100% water/0.1% TFA 

immediately followed upon injection by 5 minutes with 100% water/0.1% TFA, 35 minutes of linear 

gradient to 100% acetonitrile/0.1% TFA, 5 minutes at 100% acetonitrile, followed by a return to 100% 

water/0.1% TFA to prepare the column for the next run. Total run time was 55 minutes. The flow rate was 

0.5 ml/min. Spectrophotometric data were collected from 200 to 800 nm. The baseline for each run was 

monitored at 260 nm and 280 nm. A standard calibration curve was created for paclitaxel (0.01 µM to 10 

µM plus a blank sample) and cisplatin (2.5 µM to µ500 M plus a blank sample) by injection of pure 

compounds dissolved in water or buffer.  
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The peak corresponding to paclitaxel was integrated at 230 nm to minimize overlap of peaks 

belonging to interfering compounds and to maximize peak area. Cisplatin was integrated at 380 nm for the 

same reasons. After elution, peaks were integrated using Waters Empower software. A calibration curve 

was generated by plotting peak area vs. concentration using Microsoft Excel. Analytical samples of each 

compound were then compared to the standard curve to determine their approximate concentration. 

Determination of Drug Encapsulation Efficiency and Drug Loading Efficiency 

Drug incorporation efficiency (I.E.) (%) was expressed as the percentage of drug in the produced 

nanoparticles with respect to the initial amount of drug that was used for synthesizing the nanoparticles 

[392]. This calculation was determined using HPLC as described above in conjunction with the following 

equation (Eq. 2):  

𝐼. 𝐸. (%) =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑟𝑢𝑔 𝑖𝑛 𝑁𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑚𝑔)

𝐼𝑛𝑡𝑖𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑟𝑢𝑔 (𝑚𝑔)
× 100   Eq. (2) 

 

Mechanism of Drug Release 

To assess the mechanism of drug release, in vitro release patterns were analyzed using four kinetic 

models: zero-order kinetic model, first-order kinetic model, simplified Higuchi model, and Korsmeyer-

Peppas model. The zero order model is associated with drug dissolution that is independent of drug 

concentration (Eq. 3) [393]: 

𝑄𝑡 = 𝑄0 + 𝑘0𝑡       Eq. (3) 

where Qt is the amount of drug dissolved in time t, Q0 is the initial amount of drug in solution, and 

k0 describes the zero-order rate constant. The first order model describes drug release that is concentration-

dependent (Eq. 4) [393]: 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶       Eq. (4) 

where C refers to drug concentration and k is the first order rate constant. This equation can also 

be expressed as (Eq. 5): 

log 𝐶 = log 𝐶0 −
𝑘𝑡

2.303
      Eq. (5)   

where C0 corresponds to the initial concentration of drug. The simplified Higuchi model utilizes 

the following equation to describe drug release from matrix and polymeric systems (Eq. 6) [394]: 



86 
 

𝑀𝑡

𝑀∞
= 𝑘√𝑡       Eq. (6) 

where (Mt/M∞) is the cumulative amount of drug released at time t, and k is the Higuchi constant 

based upon the formulation of the system. The Korsmeyer-Peppas model describes drug release from 

matrix and polymeric systems through the following equation (Eq. 7) [395]: 

𝑀𝑡

𝑀∞
= 𝑘′𝑡𝑛       Eq. (7) 

where (Mt/M∞) is the cumulative amount of drug released at time t, k’ is the kinetic constant, and n 

is the exponent that describes a particular diffusion mechanism.   

The first 60% of drug release is typically sufficient for determining the best fit model of drug 

release [396]. For each model, a graph was constructed using Microsoft Excel from which the rate constant 

and correlation values were obtained by applying a linear regression fit. The zero-order kinetic model was 

obtained by plotting cumulative % drug release vs. time. The first-order kinetic model was analyzed by 

plotting log cumulative % of drug remaining vs. time. The Higuchi model was evaluated by plotting 

cumulative % drug release vs. square root of time, while the Korsmeyer-Peppas model was analyzed by 

plotting log cumulative % drug release vs. log time.  
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Results 

Nanoparticle Synthesis and Characterization 

We have previously characterized the diffusivity and transport of two and three layer gold 

nanoparticles in 3D cell cultures and in vivo tissue in Chapter 2, finding that they performed better than 

PEG-coated versions. Here, we examine the in vitro release profiles of cisplatin and paclitaxel from such 

nanoparticle formulations. We evaluate nanoparticles functionalized with TL and PC for the development 

of an inner hydrophobic region with a surrounding hydrophilic exterior, or TL, PC and HDL as three 

layered gold nanoparticles (Figure 20). To ensure proper synthesis and surface functionalization, 

nanoparticles were characterized through UV-Vis (ultraviolet-visible) spectroscopy to determine maxima 

absorbance, SEM for morphological and size analysis, DLS (dynamic light scattering) to determine 

hydrodynamic size in solution based upon Brownian motion, zeta potential to determine surface charge, 

and FTIR analysis to ensure the presence of surface modifications.  

 

 

Figure 20. Nanoparticle Illustration of Synthesis and Functionalization. Nanoparticles were synthesized 

with either two or three layers, in which a lipid containing a hexadecanethiol (TL) head group was applied 

to the gold surface. This displaced the citrate stabilizer, forming a hydrophobic nanoparticle. The addition 

of PC to the solution promoted water solubility as the hydrophobic tails of PC bound the tails of TL. The 
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two layer gold nanoparticles (A) were compared to three layer nanoparticles (B), in which HDL was further 

added to alter the in vivo reactivity, drug release profile, and enhancement of tumor targeting.  

 

Optical measurements were performed through UV-Vis spectroscopy and offer information 

regarding nanoparticle size, shape, and agglomeration status. The spectra of two layer gold nanoparticles 

exhibited a maximum absorbance peak at 540 nm, while three layer gold nanoparticles displayed a similar 

spectrum with a maximum absorbance of 541 nm (Figure 21A). This particular wavelength near 534-545 

nm is characteristic for nanoparticles with a diameter 50-70 nm, as nanoparticle size is proportional to 

maximum absorbance with larger nanoparticles shifting maximum absorbance values to higher spectral 

wavelengths [313]. Visual determination of nanoparticle size was accomplished using SEM, showing that 

two layer gold nanoparticles had an average size of 47.1 ± 12.6 nm, while three layer gold nanoparticles 

were 33% larger with an average size of 62.8± 14.9 (Figure 21B). The size difference can be attributed to 

the addition of HDL to the surface of PC. 
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Figure 21. UV-Spectroscopy and Zeta Potential Analysis of Gold Nanoparticles. Gold nanoparticles were 

characterized using UV-Vis spectroscopy to determine the maximum absorbance wavelength and with 

scanning electron microscopy (SEM) for size analysis. (A) The maximum absorbance of two and three 

layer gold nanoparticles was 542 nm and 537 nm, respectively. Nanoparticles optical density does not 

correspond to actual O.D. as both spectra were modified to fit graph. (B) SEM showed the size of two layer 

gold nanoparticles at 47.1 ± 12.6 nm and three layer gold nanoparticles at 62.8 ± 14.9 nm. 

 

DLS establishes the hydrodynamic size of nanoparticles in solution by considering Brownian 

motion. As nanoparticles travel throughout solution, a thin electric dipole layer of solvent adheres to their 

surface, which in turn can hinder or assist nanoparticles in reaching their target destination. Figure 22 

reveals the hydrodynamic size for two and three layer gold nanoparticles at 74.91 ± 13.3 nm and 85.26 ± 
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18.7 nm, respectively (Table 2). The surface charge of two and three layer gold nanoparticles, determined 

through zeta potential analysis as illustrated in Figure 20, shows that HDL-coated nanoparticles (-2 mV) 

were more neutrally charged in comparison to anionic PC-coated gold nanoparticles at -20 mV (Table 2). 

For comparison, un-coated gold nanoparticles possessed a zeta potential near -40 mV, while thiol coated 

nanoparticles were approximately -30 mV.  

 

Figure 22. Hydrodynamic Size of Gold Nanoparticles in Solution. Gold nanoparticles were characterized 

using dynamic light scattering (DLS) to determine hydrodynamic size in solution and with zeta potential to 

determine surface charge. (A) The hydrodynamic size of two and three layer gold nanoparticles was 

determined to be 74.91 ± 13.3 nm and 85.26 ± 18.7 nm, respectively. (B) Two layer gold nanoparticles 

exhibited an anionic charge of -20 mV, while three layer gold nanoparticles were more neutrally charged at 

-2 mV.  

 

Table 2 

Characterization Results of Two and Three Layer Gold Nanoparticles 
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FTIR was employed to confirm the presence of surface modifications (Figure 23). Spectra 

obtained from two and three layer gold nanoparticles were compared with spectra of pure PC [397] and 

HDL [333]. Two layer gold nanoparticles functionalized with TL and PC exhibited several signature peaks 

that confirmed the presence of TL and PC onto the gold core. Signature peaks included PO4
3− group 

vibrations between ∼850–1000 cm−1, a C−O−C stretch ∼1100 cm−1, a [(-CH2)n] rocking vibration ~720 cm-

1,  both asymmetric and symmetric −CH2 (2880 cm−1) and −CH3 (2950 cm−1) stretch and vibration, and a -

CH2 stretching and scissoring at 1375 and 1470 cm-1, respectively. Slight differences in the spectra can be 

attributed to other chemicals used in the synthesis of the layered nanoparticles, including TL and colloidal 

gold. For HDL-coated nanoparticles, the asymmetric and symmetric −CH2 (2880 cm−1) and −CH3 (2950 

cm−1) stretch and vibration occur along with C=O from the lipid ester ∼1700-1800 cm−1, along with amide 

bond stretches between 1500–1700 cm−1, and a phospholipid P=O2 stretch ∼1250 cm−1. As these 

nanoparticles were also coated with TL and PC, distinct bands from both TL and PC were expected to be 

present in the spectra of the three layer formulation.  
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Figure 23. Surface Modification Analysis using FTIR. Gold nanoparticle surface modifications were 

confirmed using Fourier Transform Infrared Spectroscopy (FTIR). The peaks were matched with those of 

pure PC and HDL. The PC-coated two layer gold nanoparticles exhibited multiple peaks that were used for 

conformation, including a [(-CH2)n] rocking vibration ~720 cm-1, a PO4
3- group vibration between 820-

1000 cm-1, C-O-C stretch ~1100 cm-1, - CH2 stretching and scissoring (1375 and 1470 cm-1). The HDL-

coated three layer gold nanoparticles exhibited several peaks including: asymmetric and symmetric −CH2 

(2880 cm−1), −CH3 (2950 cm−1) stretch and vibration, C=O from the lipid ester between 1700-1800 cm−1, 

amide bond stretches between 1500–1700 cm−1 and a phospholipid P=O2 stretch ∼1250 cm−1. 

 

Drug Release from Two and Three Layered Gold Nanoparticles 

Both two and three layer gold nanoparticles were loaded with either cisplatin or paclitaxel to 

evaluate the effect that the surface modifications may have on hydrophilic and hydrophobic drug release 

kinetics. The cumulative percent of drug release was plotted against time to analyze the drug release 

kinetics for each case (Figure 24). For cisplatin-loaded two layer gold nanoparticles, an initial burst of 35.7 

± 2.3% was observed during the first 5 hours, followed by a steady release for the next 14 days (336 hours), 

with 64.0 ± 2.4% of loaded cisplatin released (Figure 24A). Three layer gold nanoparticles loaded with 

cisplatin also showed an initial burst of 68.4 ± 1.0%, followed by a steady profile with 98.3 ± 2.6% of 
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loaded drug released at the end of 14 days (Figure 24B). Drug release within the first 24 hours was plotted 

separately to highlight the initial burst followed by the switch to a more linear profile (Figure 25).  

Paclitaxel release from two layer gold nanoparticles showed a linear profile with only 22.3 ± 1.5% of 

loaded drug being released at the end of 14 days, indicating that nearly 78% of entrapped drug was still 

attached to the nanoparticles (Figure 24C). In contrast, the three layer formulation effectively released 97.8 

± 2.3% of encapsulated drug by day 14 (Figure 24D). The first 24 hours were also plotted separately to 

highlight the initial release (Figure 25).   

 

Figure 24. Drug Release from Functionalized Two and Three Layer Gold Nanoparticles. Hydrophilic and 

hydrophobic drug release profiles from gold nanoparticles coated with PC and TL (two layer), or PC, TL, 

and HDL (three layer). (A) Cisplatin-loaded two layer gold nanoparticles exhibited a burst during the first 5 

hours, with ~35% of drug being released. A steady release followed over the next 14 days. (B) Cisplatin-

loaded three layer gold nanoparticles also experienced an initial burst with ~70% of encapsulated drug 

being released within the first 5 hours. Drug release then became steady for the next 14 days. (C) Paclitaxel 
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release from two layer gold nanoparticles was steady with only ~20% of encapsulated paclitaxel released 

during the 14 days. (D) Almost 100% of paclitaxel encapsulated within three layer gold nanoparticles was 

released by 14. Error bars represent standard deviation (n=3). 

 

 

Figure 25. First 24 Hours of Drug Release from Gold Nanoparticles. Graphs highlighting drug release from 

two- and three-layer gold nanoparticles during the first 24 hours are included. Additional graphs illustrating 

model fitting to release curves are also shown.  

 

The amount of drug loaded onto the nanoparticles was determined indirectly by measuring the 

amount of drug that did not load (Table 3). For two layer gold nanoparticles, 68.4 ± 7.1% of cisplatin and 

78.9 ± 4.9% of paclitaxel were effectively loaded. For the three layer formulation, higher drug 

incorporation efficiencies were obtained with 99.1 ± 0.7% of cisplatin and 99.4 ± 0.4% of paclitaxel 
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loaded. Nearly 100% of paclitaxel became encapsulated, suggesting that even higher drug concentrations 

may be possible.  

 

Table 3 

Drug Incorporation Efficiency of Two and Three Layer Gold Nanoparticles 

 

 

Kinetic Models for Drug Release 

Mathematical models may be useful to evaluate the kinetics and mechanism of drug release from 

nanoparticles. The release curves from Figure 24 were fitted to four distinct models to determine which one 

exhibited the highest correlation with experimental results (Table 4). Hydrophobic drug (paclitaxel) release 

from three layer gold nanoparticles exhibited high correlation with the zero-order kinetic model and the 

Korsmeyer-Peppas models, both with R2>0.98 (Figure 26). Release of paclitaxel from the two layer gold 

nanoparticles also showed high correlation with the simplified Higuchi model (R2=0.9862), possibly due to 

the profile curve denoting an early stage of release since only 22.3 ± 1.5% of paclitaxel was unloaded by 

day 14. Both two and three layer gold nanoparticles loaded with hydrophilic drug (cisplatin) correlated best 

with the Korsmeyer-Peppas model with R2>0.98. Both the Higuchi and Korsmeyer-Peppas models are 

typically used to describe drug release from degrading matrix and polymeric systems [398]. Although in 

this study the particles were metallic, the results suggest that aggregate release of drug from multiple 

particles confined within a dialysis bag may be modeled similar to a polymeric system which undergoes 

degradation.   

 

Table 4 

Rate Constants and Correlation Coefficients Obtained from Modeling Drug Release from Two and Three 

Layer Gold Nanoparticles through the following: zero-order kinetic model, first-order kinetic model, 

simplified Higuchi model, and Korsmeyer-Peppas model. 
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Figure 26. Paclitaxel release from three layer gold nanoparticles (points, representing average values) fitted 

to kinetic models (lines). The first 60% of cumulative release was fitted to each kinetic model: zero-order 

kinetic model by plotting cumulative % drug release vs. time, first-order kinetic model by plotting log of % 

drug remaining vs. time, simplified Higuchi model by plotting cumulative % drug release vs. square root of 

time, and Korsmeyer-Peppas model by plotting log cumulative % drug release vs. log time. Both the zero-

order kinetic and the Korsmeyer-Peppas models showed high correlation with R2>0.98.  
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Discussion 

We synthesized two and three layer gold nanoparticles to analyze the effect of surface 

modifications on the loading and release kinetics of two commonly utilized chemotherapeutics, cisplatin 

and paclitaxel, representing hydrophilic and hydrophobic drugs, respectively. Two layer gold nanoparticles 

were synthesized through the addition of a TL layer and PC coating [225], thus creating a hydrophobic 

region accessible to water insoluble drugs such as paclitaxel (Figure 20). Besides aiding in drug 

entrapment, a PC coating around gold nanoparticles was previously shown to significantly reduce 

nanoparticle cytotoxicity [357].  PC-coated gold nanoparticles were synthesized by first displacing the 

citrate stabilizer with TL. The strong binding affinity felt by the head group of TL for the gold core creates 

water insoluble nanoparticles, as the hydrophobic tails of TL point outward from the gold cores (Figure 

20). Addition of PC to the outer layer of TL re-establishes water solubility of the nanoparticles, as the tail 

of the PC molecule binds tail-to-tail with TL. This process is expected to effectively create a hydrophobic 

region between the TL and PC layers that can be utilized for loading hydrophobic drugs. The two layer 

nanoparticles may be considered analogous to liposomes, yet containing an inner gold core. Addition of the 

bilayer to the outside of gold nanoparticles is expected to increase the bioavailability and decrease 

immunogenicity, as PC is a primary component of all cellular membranes. 

Three layer gold nanoparticles were synthesized through the addition of HDL to the surface of PC-

coated two layer gold nanoparticles. This modification is expected to enhance tumor-targeting capabilities, 

especially for hepatocellular carcinoma as HDL receptors are unregulated in liver cancer [329]. Cisplatin 

was loaded after the addition of PC for the two layer gold nanoparticles or after the addition of HDL for the 

three layer gold nanoparticles, and expected to exhibit faster release kinetics in comparison to paclitaxel 

due to the weakness of the non-covalent linkages (Figure 20). 

Nanoparticles were characterized to confirm proper synthesis and modifications. Currently, a set 

of characterization standards for characterizing nanoparticles does not exist [399], thus this study utilized 

common instrumentation to ensure size, surface charge, and surface functionalization. While SEM (Figure 

21) and DLS (Figure 22) are two common techniques for determining nanoparticle size [400], measurement 

variances are often seen between samples using both instruments [401]. Hydrodynamic sizes of 

nanoparticles obtained via DLS are often larger than sizes determined through SEM analysis, yet this is 
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common as DLS considers the effects of Brownian motion in solution [401]. Nanoparticle surface charge 

can affect the transport of nanoparticles in vivo. As the head groups of PC are negatively charged, it was 

expected that two layer nanoparticles would be moderately anionic. A previous study showed that the zeta 

potential of PC-coated nanoparticles varies based upon pH, from 14 mV at pH=5 to -40 at pH=7 [402]. Due 

to the orientation of the PC onto the nanoparticles on top of the thiol compound, a slightly negative zeta 

potential was obtained. The zeta potential of HDL coated nanoparticles was expected to be more neutrally 

charged as HDL is a neutrally charged molecule [403]. These expectations were confirmed, as shown in 

Table 1.  

Previous studies have shown that highly cationic or anionic nanoparticles experience increased 

uptake in the liver, thus inactivating the nanoparticles before they have time to reach the target destination 

and resulting in possible liver toxicity [404-406]. It has been shown that nanoparticles with a slightly 

negative charge may have low liver uptake and enhanced accumulation in solid tumors [404], thus 

suggesting that nanoparticles with slightly negative surface charges will display improved biocompatibility, 

reduced RES sequestering, and enhanced drug delivery to solid tumors.  

FTIR confirmed the presence of surface modifications by comparing the peaks of two and three 

layer gold nanoparticles to pure PC and HDL (Figure 23). Two layer gold nanoparticles coated with TL and 

PC were expected to have a large peak associated with –CH2 and –CH3 groups (~3000 cm–1) along with 

phosphate group vibrations ~900 cm–1 [334, 407]. While these bands were present in the nanoparticle 

spectra, the intensity of the peaks were diminished from the spectra of pure PC. This can be attributed to 

the layering process, as the PC is loaded on top of TL, and both are attached to gold cores. For HDL-coated 

nanoparticles, bands were expected to show with lipid esters between 1700–1800 cm–1 and two amide 

stretches between 1500–1700 cm–1 [333]. As the HDL is loaded on top of the PC-coated nanoparticles, PC 

representative peaks were expected to be visible in the spectra of the three layer gold nanoparticles.  

Cisplatin release from two and three layer gold nanoparticles showed an initial burst during the 

first five hours followed by a steady release for the following 14 days (Figure 24 A-B). An initial burst is 

common for nanoparticles, yet is highly dependent upon surface polymers and strength of drug attachment 

[408]. As cisplatin was bound to the nanoparticles non-covalently, the initial burst was expected. In 

comparison, paclitaxel showed a steady drug release profile (Figure 24 C-D). Minimal paclitaxel was 
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released within 14 days from the two-layer formulation, which can be attributed to its tight encapsulation 

within the hydrophobic layer created by the TL and PC. While PC may be degraded inside the body, it will 

stay relatively intact in PBS, thus not allowing most of the drug to escape.  

However, the addition of HDL to the surface of PC disrupts the layer allowing for paclitaxel to 

slowly release from the hydrophobic region. This hypothesis is supported by the work of Scherphof et al. 

who determined that HDL could disrupt the structural integrity of liposomes synthesized with PC [409]. 

This previous work demonstrated that albumin encapsulated in liposomes could be effectively released by 

adding HDL to the solution [409]. This effect could explain the difference between the two and three layer 

gold nanoparticles loaded with paclitaxel, showing a 5-fold increase in release from the three layer 

formulation coated with HDL in comparison to the two layer (Figure 24 C-D). This also suggests that the 

addition of HDL may not be creating an actual layer on the outside of the nanoparticles, yet only inserting 

itself into the PC layer.  

Paclitaxel release was best fitted by the simplified Higuchi model for the two layer nanoparticles 

and the Korsmeyer-Peppas model and zero-order kinetic model for the three layer nanoparticles, both with 

correlation values >0.98.  For these nanoparticles, the long term sustained release could make them suitable 

candidates for therapeutic applications. Cisplatin release from two and three layer gold nanoparticles was 

best modeled by the Korsmeyer-Peppas equation. Both the simplified Higuchi model and Korsmeyer-

Peppas models describe drug release from degrading matrix and polymeric systems, thus suggesting that 

the aggregate drug released from multiple gold particles confined within a dialysis bag may be modeled 

similar to a system which undergoes degradation. The Higuchi model is based upon the following 

assumptions: (1) diffusion of drug only occurs in a single dimension, (2) negligible matrix swelling and 

dissolution, (3) much smaller drug molecules than system thickness, (4) constant drug diffusivity, (5) 

release environment acts as a perfect sink, and (6) much higher drug solubility than matrix initial drug 

concentration [32]. The Korsmeyer-Peppas model is a semi-empirical relation also known as the power 

law, in which the fraction of drug release is exponentially related to the time for release. Two main 

assumptions include: (1) the equation is only applicable for the first 60% of drug release and (2) the release 

must occur in a single dimension [410, 411]. The single dimension is constructed by the release of drug 

radially outward from the source, thus making it possible to model a 1-D problem.  
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For comparison, we also evaluated the Weibull model as a possible candidate for describing the 

drug release. While this model is a general empirical equation that is widely applied to drug release from 

pharmaceutical dosage forms, the model is limited by the inability to establish in vivo and in vitro 

correlation and the lack of parameters that can be related to the drug dissolution rate [410]. The Weibull 

model exhibited low correlation for cisplatin-loaded two and three layer gold nanoparticles, with R2 values 

of 0.7617 and 0.8792, respectively. The model was a better fit for the paclitaxel-loaded nanoparticles, with 

the two layer gold nanoparticles having R2=0.9313 and the three layer formulation with R2=0.9743. 

In contrast to polymeric or matrix nano-materials in which drugs are loaded within the nanocarrier 

structure, gold surfaces allow for drug molecule attachment via charge interactions and thiol-gold bonds 

that approach covalent bonds in strength. Based on desired release profiles and sequestration of molecules 

due to particular physical properties (such as charge and hydrophobicity), there may be applications for 

which a layered system is easier to design using gold instead of polymeric nano-materials. Thus, citrate 

gold particles represent an initial step to build a multilayer system on a gold surface, which can be used to 

elucidate interactions with cells. The next step would be to transition to a gold coated particle capable of 

absorbing light at a specified wavelength to create heat and to use this energy to release drugs from the 

nanoparticle, thus leading to enhanced localized delivery. However, to enhance release requires particles 

which absorb light in a region transparent to tissue, such as near-infrared absorbing gold nanoparticles 

(nanorods, gold silica nanoshells or gold-sulfide aggregate nanoparticles). Citrate gold colloid based 

particles are unsuitable for thermal absorption as the wavelength of light used to activate these particles 

(~540 nm) will harm living tissues due to absorption of energy at this wavelength [412].   

Enhanced understanding of hydrophilic and hydrophobic drug release kinetics from multi-layered 

gold nanoparticles can result in the development of combinatorial treatment strategies targeting tumor cells. 

This study analyzes the release kinetics of cisplatin and paclitaxel from TL, PC, and HDL coated versions 

of citrate gold nanoparticles as a first step in this evaluation. The results may further help to calibrate 

computational simulations that can provide insight into the complex dynamics of nanoparticle transport and 

drug release within solid tumors [336, 371, 413].  
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CHAPTER V 

CYTOTOXICITY OF 2- AND 3- LAYER GOLD NANOPARTICLES IN 3D MODELS OF LUNG 

CANCER 

 

Background 

Chemotherapeutic Delivery to Solid Tumors 

Formation of hypoxic and necrotic portions of solid tumors arise from inefficient vascularization 

and irregular angiogenesis, as the lack of blood vessel organization results in hypo-vascularization and 

nutrient deprivation [414]. Similarly, chemotherapeutic delivery in vivo is hindered by diffusion limitations 

and the increased interstitial fluid pressure (IFP) of solid tumors [415]. While circulating drug can exit the 

highly fenestrated capillaries of the tumor [416], various biological barriers hinder the drug particle from 

diffusing beyond 3-5 cell diameters from the extravasation site [417, 418]. Treatment failure results if a 

therapeutic concentration of chemotherapeutic fails to effectively reach all cancer cells, including those in 

hypo-vascularized portions of tumor [415]. As tumors elicit a 3-dimsensional (3D) morphology in the 

body, it is important to understand the spatial geometry of drug diffusion within 3D cell cultures to develop 

novel treatment modalities [419]. Several groups have incorporated the use of 3D cell cultures in 

computational models to better understand the mechanisms of nutrient diffusion and drug transport in 

cancerous spheroids [413, 420].  

Cell Cultures: Monolayer versus Spheroid 

While 2-dimensional (2D) monolayer cell cultures are commonly utilized for cytotoxicity testing, 

they lack the physiological features of the in vivo condition and the spatial response of drug activity [421]. 

3D cell cultures are a closer representation of the morphological environment of solid tumors found within 

the body, as they mimic the effects of the ECM components, nutrient diffusion gradients, and IFP 

alterations [422, 423]. Thus, 3D cell cultures can provide additional details concerning the effectiveness 

and toxicity of drugs not attainable through monolayer cell cultures. For example, Godugu et al. showed 
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that the IC50 value of chemotherapeutics would increase between monolayer and 3D cell cultures, which 

was linked to higher drug resistance in the 3D model [424]. While 3D cell cultures require more care and 

planning then 2D cell cultures with a higher cost, newer methodologies such as hanging drop arrays 

described by Tung et al. make it possible to perform high-throughput screening of compounds in 3D cell 

cultures [425]. 

In 2014, lung cancer remains the leading cause of cancer-related death in the United States with an 

overall 5-year survival rate of 17% [56]. While treatment options exist, the late onset of symptoms results 

in 85% of cases being diagnosed at advanced disease when the 5-year survival rate is only 4% [56]. Current 

treatment options for patients with inoperable tumors include chemotherapeutics and radiation therapy, yet 

these options only provide an average extension of life between 2-12 months [426, 427]. Oftentimes, 

chemotherapeutic treatment results in severe off-target toxicity as the compounds distributes to all tissues 

in the body [428, 429], treatment failure as the drug molecules cannot reach all the cells residing within the 

tumor due to inefficient vascularization [430], or the development of resistance mechanisms by the 

cancerous cells such as P-glycoprotein by cancer cells can render the drug compound ineffective [431]. 

Research studies are underway to determine optimal methods for overcoming each of the issues in order to 

more effectively treatment solid tumors. Previous studies utilizing nanoparticles for lung cancer treatment 

have shown great potential for the treatment of lung cancer (please refer to the following review papers: 

[432, 433]).  

Purpose of Study 

The last decade has shown that nanoparticles can be effective in the treatment of solid tumors for 

several reasons, including their passive targeting capabilities resulting from the EPR effect [433], improved 

ability to avoid systemic distribution by active targeting [434], and their avoidance of resistance 

mechanisms by undergoing distinct mechanisms of endocytosis [435]. Additionally, the large surface area 

to volume ratio of nanoparticles can be functionalization with polymers, drugs, or other compounds to 

enhance targeting capabilities and bioavailability [436]. Cisplatin and paclitaxel are two commonly utilized 

chemotherapeutics for the treatment of NSCLC [437], with cisplatin functioning in the nucleus by 

disturbing DNA replication and paclitaxel functioning by stabilizing microtubules in the cytoplasm [438, 

439]. 
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In this study, gold nanoparticles were modified with thiol and PC in the formation of a two-layer 

system or thiol, PC, and HDL for a three-layer system. We have previously shown that both two- and three- 

layer gold nanoparticles showed superior diffusivity in comparison to PEGylated nanoparticles in 3D cell 

cultures [225]. It was also shown that both two- and three layer gold nanoparticles could be loaded with 

cisplatin and or paclitaxel and showed unique drug unloading profiles [440]. This study examines the use of 

cisplatin or paclitaxel loaded nanoparticles in 2D and 3D cell cultures to determine their cytotoxicity in 

three NSCLC cell lines. 
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Methods 

Synthesis of Citrate Gold Nanoparticles 

Citrate gold nanoparticles were synthesized using a method in which gold chloroauric acid is 

reduced by trisodium citrate described by G. Frens in 1973 [306]. In this process, 2.2–2.4 mL 1% 

weight/volume (wt/v) trisodium citrate (Fisher Scientific, Watham, MA, USA) is added to 200 mL of 

boiling 0.01% wt/v HAuCl4 (Alfa Aesar, Ward Hill, MA, USA), and the solution is allowed to continue 

boiling for 10 minutes to promote the reaction of sodium citrate to citric acid. Once the reaction is 

completed, the solution cools at room temperature before concentrated using a rotovapor (Buchi Rotovapor 

System, BÜCHI Labortechnik AG, Flawil, Switzerland) to 20 mL. The addition of surface modifications 

followed the protocol outlined below.  

Nanoparticle Functionalization  

1-Hexadecanethiol (Sigma Aldrich) was the first layer applied to the gold nanoparticles. The TL 

compound has a stronger binding affinity for the surface of the gold nanoparticles, thus displacing the 

citrate molecules. While stirring, 20 mL pure ethanol was placed in a beaker with 60 μL 1-Hexadecanethiol 

dissolved in ethanol added secondly. The 1-Hexadecanethiol solution was added slowly to the nanoparticle 

solution over the next 10 minutes, while also agitating the sample by sonication. After addition of 1-

Hexadecanethiol, the sample was agitated for two hours, and then placed for 12 hours on an orbital rocker 

(Boekel Scientific, Feasterville, PA, USA). The sample was spun down, and the pellet was washed twice 

and resuspended in chloroform. PC (Sigma Aldrich) was the second functionalization added to the 

nanoparticles. PC was solubilized in chloroform (Sigma Aldrich) and 100 μL were added to the particles 

after the TL layer and allowed to set overnight on an orbital rocker. The solutions were transferred to glass 

tubes and the chloroform evaporated at ambient temperature. This process completed the two layer citrate 

gold nanoparticles containing gold core, TL, and PC. The three-layered nanoparticles were created by 

optimizing the ratio of HDL (Lee Biosolutions, St. Louis MO, USA) to particle optical density (1 mg HDL 

per 20 OD nanoparticle), and allowed to react overnight after two hours of agitation. 

Loading of Chemotherapeutic onto Nanoparticles 

Paclitaxel (Cayman Chemicals, Ann Arbor, MI, USA) and cisplatin (Sigma Aldrich) were loaded 

onto the nanoparticles in distinct regions to ensure optimal loading efficiency. Paclitaxel was loaded after 
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the addition of 1-Hexadecathiol and before the addition of PC. Briefly, after nanoparticles were placed on 

an orbital shaker for 12 hours, the solution was removed. After nanoparticles were resuspended in 9 mL 

chloroform, an addition 1 mL of chloroform containing 5 mg paclitaxel was added to the solution. 

Nanoparticles were agitated for two hours using sonication before the solution was placed on an orbital 

rocker for six hours. The solution was further modified to add the second layer of PC to the surface of the 

nanoparticles. While paclitaxel was loaded into the hydrophobic region created between the TL and PC 

layer, cisplatin was loaded at two different areas dependent upon the layering.  

For the two layer citrate gold nanoparticles, cisplatin was added after the addition of PC. This was 

done by transferring the solutions to glass tubes and the chloroform evaporated at ambient temperature. 

Next, the nanoparticles were resuspended in 10 mL ultrapure H2O (Purelab Ultra, Elga Labwater, UK) 

containing 7.5 mg cisplatin. For the three layer citrate gold nanoparticles, cisplatin was added after the 

addition of HDL by synthesizing the particles as described above, yet after HDL was added to the particles 

and allowed to react for two hours, the solution was removed, and 7.5 mg cisplatin was added. Excess 

chemotherapeutic was removed from the solution by centrifuging the particles at 7000 rpm for 25 minutes, 

removing the supernatant, and re-suspending the particles in the corresponding solvent. Washing was 

performed twice. 

Nanoparticle Characterization 

Nanoparticle identity was verified as follows: (1) Maximum absorption wavelengths were 

obtained using the Varian Cary 50 Bio Ultraviolet-Visible (UV-Vis) Spectrometer (McKinley Scientific); 

(2) size and zeta potential measurements were obtained using the ZetaSizer Nanoseries ZS90 (Malvern 

Instruments, Worcestshire, UK); (3) DLS (dynamic light scattering, also known as Photon Correlation 

Spectroscopy) to determine hydrodynamic size in solution based upon Brownian motion; (4) shape and size 

were determined using a Zeiss Supra 35VP (Carl Zeiss, Oberkochen, Germany) SEM; (5) presence of lipids 

on the particle cores was confirmed using a FTIR (Perkin Elmer Spectrum BX; Perkin Elmer, Waltham, 

MA, USA) and through visual analysis using the SEM. 

Evaluation of In Vitro Drug Release 

 The drug-loaded nanoparticles were placed into dialysis tubes and submerged into beakers 

containing 500 mL 1X PBS at pH 7.4. The dialysis tubing cellulose membrane had an average flat width of 
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25 mm and 12,000 MW cutoff (Fischer Scientific, Waltham, MA, USA) and was clipped at both ends to 

ensure no particles could exit. The beaker was continually agitated using a magnetic stirrer and covered 

with Parafilm to ensure no evaporation of PBS would take place as experiments were performed at 37 ̊C. At 

various time intervals, 3 mL samples of the PBS solution with drug were removed and replaced with fresh 

PBS to ensure a constant volume. Drug concentration of each sample was analyzed using HPLC. 

Cumulative drug release was found using the following equation (Eq. 8):  

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑟𝑢𝑔 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (%) =  
[𝐷𝑟𝑢𝑔]𝑡

[𝐷𝑟𝑢𝑔]𝑡𝑜𝑡𝑎𝑙
×  100   (Eq. 9) 

where [Drug]t is the concentration of drug in the sample at time t and [Drug]total is the total amount 

of drug loaded onto the nanoparticles.  

Cell Culture 

Three human NSCLC cell lines were used in this study: A-549, PC-9, NCI-H358. Cell lines were 

maintained in RPMI 1640 medium (Cellgro, Corning Inc.) supplemented with 10% fetal bovine serum 

(Cellgro, Corning Inc.) and 1% penicillin-streptomycin-glutamine solution (Cellgro, Corning Inc.) in a 

humidified atmosphere of 5% CO2 at 37 ̊C. All cells were grown to 80% confluence before use in 2D or 3D 

cell cultures.  

Evaluation of Free Drug Cytotoxicity in 2D Cell Cultures 

A-549, PC-9, and NCI-H358 cells were seeded into 24-well plates at a density of 2×104 cells per 

well, and incubated at 37 ̊C for 24 hours. Media was removed from wells and replaced with 1mL fresh 

RPMI-1640 media containing varying concentrations of drug for 48 hours. For cisplatin experiments, cells 

were exposed to the following concentrations for 48 hours: 1024, 256, 64, 16, 4, 1, 0.25, 0.0625 µM. For 

paclitaxel experiments, cells were exposed to the following concentrations for 48 hours: 1024, 256, 64, 16, 

4, 1, 0.25, 0.0625 nM. After incubation, media was removed and cells were washed with 1X PBS. Cells 

were detached using 250 µL 0.05% trypsin per well and an additional 250 µL of fresh RPMI-1640 media 

was added to each well. Cells were counted visually using trypan blue (Cellgro, Corning Inc.) exclusion. 

For determining statistically significant differences, each case was done in quadruplicate (n=4).  

Evaluation of Free Drug Cytotoxicity in 3D Cell Culture 

A-549, PC-9, and NCI-H358 cells were seeded into 24-well ultra-low cluster plates (Costar, 

Corning Inc.) at a density of 1×105 cells per well, and shaken for ~10 minutes to promote aggregation of 
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cells. Cells were then placed in an incubator 37 ̊C for 5 days for spheroid acclimation. After spheroid 

formation, the media was removed while carefully avoiding the spheroid. 1mL of media containing either 

cisplatin or paclitaxel at varying concentrations was added to the corresponding wells. For cisplatin 

experiments, cells were exposed to the following concentrations: 1024, 256, 64, 16, 4, 1, 0.25, 0.0625 µM. 

For paclitaxel experiments, cells were exposed to the following concentrations: 1024, 256, 64, 16, 4, 1, 

0.25, 0.0625 nM. Spheroids were treated with drugs were incubated at 37 ̊C for 48 hours. After 48 hours, 

drug-containing media was removed. 500 µL 0.05% trypsin was added to detach the individual cells of the 

spheroid from each other and 500 µL fresh RPMI-1640 media was added to deactivate the trypsin. Cells 

were counted visually using trypan blue exclusion. For statistically significant differences, each case was 

done in quadruplicate (n=4). 

Evaluation of Drug Loaded Nanoparticles in 3D Cell Culture 

A-549, PC-9, and NCI-H358 cells were seeded into 24-well ultra-low cluster plates at a density of 

1×105 cells per well, and shaken for ~10 minutes to promote aggregation of cells. Cells were then placed in 

an incubator 37 ̊C for 5 days. Spheroids were exposed to the same concentration of nanoparticle-loaded 

drug as free drug (see above). The dose of drug-loaded nanoparticle was calculated by considering two 

parameters: (1) the loading efficiency from HPLC data showed the exact concentration of drug on 

nanoparticles and (2) the percent of drug released at 48 hours. By considering both of these factors, the 

amount of drug needed to reach each concentration was calculated.  
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Results 

Characterization of Nanoparticles 

Diffusivity of two and three layer gold nanoparticles was previously shown to be superior in 

comparison to PEGylated nanoparticles when tested in 3D cell cultures [225]. When these nanoparticles 

were loaded with cisplatin or paclitaxel, they displayed unique release curves with cisplatin having an 

initial burst of drug release followed by a steady release and paclitaxel displaying a sustained release curve 

over a period of 14 days [440]. Here, we examine the cytotoxicity of two and three layer drug-loaded 

nanoparticles in 2D and 3D cell cultures (Figure 27). Two layer nanoparticles were synthesized by first 

adding TL and secondly PC, which created a hydrophobic region capable for loading water-insoluble 

compounds. The three-layer nanoparticle contained an additional modification of the outer PC layer of 

HDL.  

 

 

Figure 27. Synthesis of two- and three layered gold nanoparticles. Nanoparticles were functionalized by a 

layering process as depicted in this figure. (A) Before functionalization, gold nanoparticles were 



109 
 

synthesized using a sodium citrate method resulting in a citrate-covered nanoparticle. (B) Hexadecanethiol 

was added to the nanoparticle solution that displaced the citrate molecules, forming water-insoluble 

nanoparticles. (C) To create a region suitable for loading of hydrophobic drugs, PC was added to the 

nanoparticle solution, binding tail-to-tail with the thiol layer. (D) To further functionalize the nanoparticles, 

a three-layer system was created by adding HDL to the surface of the PC-coated system.  

 

Confirmation of the particle identity was gained through characterized using several techniques, 

including: ultraviolet-visible (UV-Vis) spectroscopy to determine the maximum absorbance values, 

dynamic light scattering (DLS) to determine hydrodynamic size in solution based upon Brownian motion, 

SEM for analyzing the shape and size of particles, zeta potential for studying surface charge alterations, 

and FTIR spectroscopy to determine surface modifications.  

UV-Vis spectroscopy was performed to ensure nanoparticles were not agglomerating in solution 

(add citation). Two and three layer nanoparticles displayed similar spectra with a shift of ~4 nm, with the 

two layer nanoparticles having a maximum absorbance peak of 539 nm and the three layer nanoparticles 

displaying a peak at 535 nm (Figure 28). Using SEM, sizing of two and three layer gold nanoparticles was 

shown to be 54.7 ± 7.9 nm and 62.1± 8.8 nm, respectively (Figure 29). DLS provided further details 

regarding the sizing of nanoparticles when in solution based upon the effects of Brownian motion. Sizing 

from DLS is based upon the thin electric dipole layer of solvent that adheres to the surface of nanoparticles 

[441]. The hydrodynamic size for two and three layer gold nanoparticles was 71.5 ± 9.7nm and 80.2± 12.4 

nm, respectively (Table 5). Further characterization utilizing zeta potential analysis showed that three layer 

nanoparticles displayed a relatively neutral surface charge of -6 mV, while two layer nanoparticles were 

more anionic at -21 mV (Table 5).  
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Figure 28. Gold nanoparticles were characterized using UV-Vis spectroscopy to determine the maximum 

absorbance wavelength. The maximum wavelength for the two layer gold nanoparticles was 539 nm, while 

the three layer gold nanoparticles produced a maximum absorbance of 535 nm.   

 

 

Figure 29. Scanning electron microscopy was utilized to determine the size and shape of two and three 

layer nanoparticles. Gold nanoparticles were mostly spherical in shape, yet contained a heterogeneous 
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assortment of nanoparticle sizes. On average, the two and three layer nanoparticles were determined to be 

54.7 ± 7.9 nm and 62.1± 8.8 nm, respectively. 

 

Table 5 

Characterization of 2- and 3-Layer Nanoparticles using UV-Visible Spectroscopy, Dynamic Light 

Scattering, and Zeta Potential Analysis. 

 

Max Wavelength 

(wavenumber-1) DLS (nm) 

Zeta Potential 

(mV) 

2-Layer Nanoparticles (TL/PC) 539 71.5 (9.7) -21 mV 

3-Layer Nanoparticles (TL/PC/HDL) 535 80.2 (12.4) -6 mV 

 

FTIR was utilized to confirm the presence of PC and HDL onto the surface of nanoparticles 

(Figure 30). The spectra of pure PC and HDL were used for comparison [333, 397]. There were several 

peaks used to confirm the presence of TL and PC on the gold nanoparticles. Some of the key peaks 

included a [(-CH2)n] rocking vibration at 720 cm-1, PO4
3− group vibrations at 900 cm-1, a C−O−C stretch  at 

1100 cm−1, and an asymmetric and symmetric −CH2  at 2880 cm−1 and −CH3  at 2950 cm−1 stretch and 

vibration. Additional peaks were associated with the other chemicals used to synthesize the particles. HDL-

coated nanoparticles exhibited several similar peaks to PC-coated nanoparticles, which were expected due 

to the layering process. The asymmetric and symmetric −CH2 (2880 cm−1) and −CH3 (2950 cm−1) stretch 

and vibration were still present from the PC-coating, yet several signature peaks of HDL also became 

visible. These peaks included a C=O from the lipid ester between 1700-1800 cm−1, an amide bond stretches 

between 1500–1700 cm−1, and a phospholipid P=O2 stretch at 1250 cm−1. 
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Figure 30. FTIR spectroscopy of Nanoparticles. Spectra of pure PC and HDL were used for comparison. 

Peaks used to confirm the presence of PC included a [(-CH2)n] rocking vibration at 720 cm-1, PO4
3− group 

vibrations at 900 cm-1, a C−O−C stretch  at 1100 cm−1, and an asymmetric and symmetric −CH2  at 2880 

cm−1 and −CH3  at 2950 cm−1 stretch and vibration. HDL-nanoparticles exhibited additional peaks, 

including a C=O from the lipid ester between 1700-1800 cm−1, an amide bond stretches between 1500–

1700 cm−1, and a phospholipid P=O2 stretch at 1250 cm−1. 

 

Drug Release Kinetics 

Release of paclitaxel and cisplatin from both two- and three layer nanoparticles was dependent 

upon the type of drug loaded and the number of layers on the nanoparticle core. Paclitaxel was shown to 

release drug much slower than cisplatin, which experienced an initial burst of drug release (Table 6). The 

cumulative percent of paclitaxel released from the nanoparticles during the first 3 hours was 1.42 ± 0.12% 

and 2.39 ± 0.27% for the two- and three layer nanoparticles, respectively. For the cisplatin-loaded system, 

the two layer nanoparticles released 33.8 ± 2.6% of drug within the first 3 hours, while the three layer 

system released ~2X this amount (59.1 ± 2.0%). At the end of 96 hours, none of the nanoparticle systems 

had released the total amount of drug loaded. Results from a longer release experiment of 14 days have 
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been published [440]. Three layer nanoparticles loaded with cisplatin released the most amount of drug 

(78.9 ± 2.1%) at the end of 96 hours as compared to the two-layer system (49.7 ± 0.70%). For the 

paclitaxel-loaded nanoparticles, the three layer system released 5X more drug as compared to the two layer 

system.  

 

Table 6 

Cumulative Release of Drug at Various Time Intervals with Associated Loading Efficiency [440] 

 3 

Hours 

12 

Hours 

24 

Hours 

48 

Hours 

72 

Hours 

96 

Hours 

Loading 

Efficiency 

2-Layer 

Nanoparticles 

w/Cisplatin 

33.8 

(2.6) 

37.6 

(2.7) 

43.0 

(1.1) 

46.9 

(1.5) 

48.9 

(0.51) 

49.7 

(0.70) 

68.4 (7.1) 

2-Layer 

Nanoparticles 

w/Paclitaxel 

1.42 

(0.12) 

3.38 

(0.13) 

3.80 

(0.11) 

8.20 

(0.09) 

10.8 

(0.11) 

11.9 

(0.90) 

99.1 (0.7) 

3-Layer 

Nanoparticles 

w/Cisplatin 

59.1 

(2.0) 

70.2 

(0.94) 

72.8 

(0.87) 

76.7 

(1.84) 

77.7 

(1.1) 

78.9 

(2.1) 

78.9 (0.7) 

3-Layer 

Nanoparticles 

w/Paclitaxel 

2.39 

(0.27) 

3.88 

(0.10) 

7.50 

(0.9) 

23. 1 

(4.2) 

36.5 

(4.3) 

55.7 

(4.7) 

99.4 (0.4) 

 

Since cytotoxicity measurements were performed at 48 hours for cell culture experiments, the 

amount of drug release at 48 hours from each of the nanoparticle systems was noted (Table 6). The two 

layer nanoparticles released 46.9 ± 1.5% of cisplatin and 8.20 ± 0.09% of paclitaxel at 48 hours in PBS. 

The three layer nanoparticles released 76.7 ± 1.84% of cisplatin and 36.5 ± 4.3% of paclitaxel at 48 hours. 

The loading efficiency was determined by subtracting the amount of unbound drug from the amount of 

drug utilized to synthesize the nanoparticles.  The loading efficiency of two layer nanoparticles was 68.4 ± 

7.1% of cisplatin and 99.1 ± 0.7% of paclitaxel. For the three layer nanoparticles, the loading efficiency of 

cisplatin was 78.9 ± 4.9% and paclitaxel was 99.4 ± 0.4%.  

Cytotoxicity of Free Drug in 2D and 3D Cell Cultures 

 The cytotoxicity of both free cisplatin and paclitaxel were measured in 2D and 3D cell cultures at 

48 hours, as depicted in Figure 31. It was expected that 2D cell cultures would experience higher levels of 

cytotoxicity as lower concentrations of drug in comparison to 3D cell cultures, as monolayer cell cultures 

lack 3D morphology. In each cell line, 3D cell cultures showed more cell viability at higher concentrations 
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of drug (Figure 31 A, C, E). Similar results were obtained for paclitaxel cytotoxicity experiments in A549, 

H358, and PC9 cell lines (Figure 31 B, D, F). While lower concentrations did not correlate with significant 

cytotoxicity differences, higher concentrations of paclitaxel produced a significant difference between the 

cytotoxic effects in 2D versus 3D cell cultures. In each case, cells residing within 3D cell culture provided 

to be more difficult to induce cytotoxicity in comparison to cells of monolayer cultures. 

 

 

Figure 31. Cytotoxicity of free cisplatin and paclitaxel in three NSCLC (A549, H358, and PC9) cancer cell 

lines. For reference, black bars represent free drug in 3D cell cultures, while grey bars are indicative of free 

drug in 2D (i.e. monolayer) cell cultures. In all cases, the concentration of drug required to cause 

cytotoxicity in 3D cells was higher than concentrations needed in 2D cell cultures. At concentrations of 1 
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µM or higher for cisplatin (A,C,E), the difference in cell viability between 3D and 2D cell cultures was 

significant. Concentrations of paclitaxel above 4 nM showed similar results (B,D,F).  

 

Cytotoxicity of Drug-Loaded Nanoparticles in 3D Cell Cultures 

Cytotoxicity of drug-loaded nanoparticles was tested in 3D cell cultures to determine their 

effectiveness as potential therapies. For this reason, drug-loaded nanoparticles were compared to free drug. 

Cisplatin-loaded two and three layer nanoparticles were tested in 3D cell cultures of A549, H358, and PC9 

NSCLC cell lines. Similarly, paclitaxel-loaded nanoparticles were tested in the same cell lines with results 

shown in Figure 32. The cisplatin-loaded nanoparticles showed similar performance to free drug in 3D cell 

cultures at all concentrations. In A549 cell line, the two-layer platform outperformed the free drug at higher 

concentrations (65 and 256 µM) (Figure 32A). Both two- and three layer nanoparticles showed superior 

efficacy in comparison to free drug at higher concentrations (16, 64, and 256 µM) in H358 3D cell cultures 

(Figure 32B). The PC9 cell line showed so statistically significant differences between the cytotoxicity of 

free drug versus nanoparticle-loaded drug, yet the nanoparticle systems performed equally as well as free 

drug (Figure 32C), which would still have benefits for possible therapeutic uses.  

Two and three layer nanoparticles loaded with paclitaxel were also tested in 3D cell cultures to 

determine their cytotoxicity in comparison to free paclitaxel (Figure 32). For the A549 (Figure 32B) and 

PC9 (Figure 32F) cell lines, no statistical differences were seen between the cytotoxicity caused by free 

paclitaxel versus the drug-loading nanoparticles. The cytotoxicity graphs do suggest that the nanoparticle 

platforms performed similarly to free paclitaxel in each case. For the H358 cell line, the two-layer 

nanoparticle outperformed free drug at higher concentrations of 65 and 256 nM (Figure 32D). Similarly, 

the three-layer nanoparticle displayed similar cytotoxicity as the two layer nanoparticles at 256 nM. 

Overall, paclitaxel-loaded nanoparticles performed similarly to free paclitaxel in each case.  
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Figure 32. Cytotoxicity of drug-loaded nanoparticles in comparison to free drug in 3D cell cultures. For 

reference, orange bars represent free drug in 3D cell cultures, green bars represent the two-layer 

nanoparticle system, and dark blue represents the three layer nanoparticle system with cisplatin toxicity 

being shown on the left column and paclitaxel toxicity on the right column in 3 NSCLC cell lines (A549, 

H358, and PC9).  In each case, the drug loaded nanoparticles showed similar efficacy to free drug.   
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Discussion 

This study examined the possible use of two and three layer nanoparticles for the delivery of both 

hydrophobic and hydrophilic chemotherapeutics to lung cancer. More specifically, cisplatin and paclitaxel 

were chosen due to their current effectiveness in treating NSCLC. To determine the effectiveness of two 

and three layer nanoparticles at destroying cancerous lesions, these layered nanoparticles systems were 

studied in both 2D (i.e. monolayer) and 3D cell cultures. Previous studies have determined that 3D cell 

provide a more realistic morphology of cancerous tumors that are found within the body as they possess 

similar characteristics [442].  

The layering system was applied to the surface of gold nanoparticles to enhance their tumor 

targeting capabilities, while decreasing possibly immunogenicity and possibly avoid the reticuloendothelial 

system (RES) [443]. The RES includes macrophages of the liver and other areas noted for removing a large 

portion of systemically injected nanoparticles in vivo [444].  Two layer nanoparticles were synthesized with 

a TL layer followed by a PC layer, which was critical for the formation of a hydrophobic region capable of 

loading water-insoluble drugs. This was accomplished as the tail groups of TL and PC bind tail-to-tail 

creating a water-soluble nanoparticle with similar characteristics to liposomal delivery systems (Figure 27). 

With this nanoparticle system, the region between the TL and PC acts as a hydrophobic bilayer allowing 

for the loading of water-insoluble compounds. As liposomes cause less toxicity in vivo in comparison to 

other nanoparticle platforms, the PC layer also acted as a camouflage to decrease possible immunogenicity 

and increase bioavailability [445]. The three layer nanoparticles were constructed by adding an additional 

layer of HDL to the surface of two layer nanoparticles, as shown in Figure 27.  

While both cisplatin and paclitaxel are commonly used in combination therapy for lung cancer, 

both compounds work quite differently in causing cell death and possess distinct adverse effects. While 

cisplatin is a water-soluble drug capable systemic delivery in saline with 5% dextrose, paclitaxel is a 

hydrophobic compound that requires castor oil [446]. Castor oil has been linked to severe toxicity in 

patients receiving this drug [446]. For this reason, nanoparticles capable of delivering paclitaxel are of 

particular interest. In this study, paclitaxel is loaded into the hydrophobic region of nanoparticles formed by 

the TL and PC layers. With paclitaxel being loaded in this region, it was expected that paclitaxel would 

exhibit a slower release from the polymeric systems. This was confirmed through drug release experiments. 
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Cisplatin was expected to experience a faster drug release profile due to its location of binding, onto the 

outer layer of PC for two layer nanoparticles or HDL for three layer nanoparticles. This faster release was 

attributed to the weak non-covalent interactions made between the cisplatin compound and its binding 

location.  

After synthesis of two and three layer nanoparticles systems, characterization protocols were 

utilized to ensure correct modifications were present. While there is no standard set of characterization 

procedures at this time, we chose to use the common characterization tools followed by other groups. By 

characterizing the size, surface charge, and surface modifications, the identity of the nanoparticle systems 

could be confirmed. The wavelength of both two and three layer nanoparticles was within the common 

range for citrate gold nanoparticles between 50-80 nm (Figure 27) [313]. Nanoparticle size was measured 

using two different methods, both SEM and DLS (Figure 27 and Table 5). While sizing of nanoparticles 

with SEM occurs optically, measurements of size with DLS take into account the effects of Brownian 

motion that the particles may experience while traveling in solution. Sizing measurements by SEM and 

DLS can vary with nanoparticles experiencing a larger hydrodynamic radius through DLS in comparison to 

SEM measurements [447].  

Zeta potential is another useful tool for characterizing nanoparticles as it provides information 

regarding the surface charge of nanoparticles (Table 5). The surface charge can have significant effects on 

nanoparticle travel inside the body, as proteins and other components of the body have zeta potentials that 

may attract or repel the nanoparticle. For example, it is documented that nanoparticles possessing a neutral 

charge are less likely to be removed by the liver and spleen in comparison to highly cationic or anionic 

nanoparticles [448, 449]. The two layer nanoparticles with an outer layer of PC were expected to produce a 

slight negative surface charge. Previously, it was shown that zeta potential measurements vary with the pH 

of the solution that nanoparticle, with more acidic environments (pH ~5) producing a more positively 

charged surface area, while neutral pH (~7) produced nanoparticles with negative surface charges [450]. In 

comparison, HDL nanoparticles were expected to possess a neutral surface charge, as the HDL molecule is 

relatively neutral as well [332].   

 Furthermore, it was critical to ensure that nanoparticles were functionalized correctly by analyzing 

the chemical moieties on the surface. FTIR was utilized to ensure the presence of PC and HDL on the 



119 
 

surface of the gold nanoparticles (Figure 30). This was accomplished by comparing the representative 

peaks of PC and HDL with spectra of gold nanoparticles and pure PC and HDL. Since nanoparticles were 

constructed using a layering process, it was expected that some bands would be seen in both the two and 

three layer nanoparticle systems. The amide bond stretches between 1500-1700 cm-1 and lipid ester linkage 

near 1700-1800 cm-1 were the primary two bands that confirmed the presence of HDL [333].  

 Release of cisplatin and paclitaxel from nanoparticles was measured for 96 hours to determine the 

necessary doses for cytotoxicity experiments (Table 6). Cisplatin-loaded nanoparticles displayed an initial 

burst of drug release, a common occurrence for compounds possessing weak interactions with the 

nanoparticle surface. Paclitaxel-loaded nanoparticles provided a steady release of drug during the 96 hours 

of release, which was attributed to the efficiency of loading within the hydrophobic layer. In both cases, 

addition of HDL augmented the total amount of drug released during the experiment. We hypothesized that 

this was due to a disturbance in the PC-coating caused by the HDL components. A previous study by 

Scherphof et al. showed that albumin-loaded liposomes exposed to HDL would effectively release most of 

their payload as the HDL components disrupted the membrane integrity of the liposome [409]. This also 

provides evidence that the HDL components may be integrating itself into the PC layer and not creating an 

actual “three layer” particle.  

 Previous studies have shown that 3D nanoparticles are superior to 2D cell cultures for cytotoxicity 

experiments [421, 451]. Several companies have developed newer and easier methodologies for creating 

and utilizing 3D cell cultures in the laboratory [424, 451]. The 3-dimensional morphology of 3D cell 

cultures promotes a spherical shape, in which only the cells residing on the periphery of the spheroid are 

exposed to the environment. When both 2D and 3D cell cultures are treated with drugs, differences in 

cytotoxicity become visible. In monolayer cell cultures, the cells produce a single layer allowing ensuring 

that the majority of will be exposed to drug. This does not hold true for 3D cell cultures as only cells of the 

outer periphery are exposed to drug, with inner regions of the spheroid experiencing lower levels of 

chemotherapeutic and possible necrosis [452]. For this reason, higher concentrations of chemotherapeutics 

are required to actively kill the cells residing within the center regions of the spheroid (Figure 31).  

 Cytotoxicity experiments showed that two and three layer gold nanoparticles showed similar efficacy to 

free drug in all cases (Figure 32). In some instances, drug-loaded nanoparticles outperformed the free drug. 
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 We hypothesize the effectiveness of the nanoparticle systems can be attributed to their ability 

diffuse throughout the tissue gaining access to cells residing within inner regions of the spheroid. While 

drug molecules can diffuse from the surface of spheroid inward, diffusion limitations only permit short 

distances of travel for free drug, as most drug will be uptaken by the cells on the periphery of the spheroid. 

Previously, two- and three layer nanoparticles were shown to diffuse from the periphery of 3D cell cultures 

inward more effectively than previously designed PEGylated particles [225]. As the nanoparticles are 

constantly releasing drug as they diffuse from the periphery of the spheroid inward, the cells being exposed 

are receiving adequate concentrations of drug effective for cellular apoptosis.  

 This study analyzed the cytotoxicity of two and three layer gold nanoparticles in 3D cell cultures 

to determine the possible applications for in vivo work in the future. As the particles showed similar 

efficacy to the freely drug, we would expect that the nanoparticles would function well in vivo as the 

nanoparticles are more likely to accumulate in the tumor as compared to freely circulating drug. Results 

from this study also support the possibility of attaching both paclitaxel and cisplatin a single nanoparticle, 

allowing for a combination treatment in the future.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The purpose of this project was to examine the use of drug loaded gold nanoparticles as potential 

drug delivery agents for the treatment of solid tumors. This was accomplished by analyzing the diffusivity 

of gold nanoparticles in 3D cell cultures, measuring the uptake of gold nanoparticles in vivo when injected 

systemically, interpreting the drug-loading capabilities of functionalized gold nanoparticles, and to 

determine the efficacy of these drug-loaded gold nanoparticles in 2D and 3D cell cultures.  

The ability to modify the surface of nanoparticles makes them well adaptable for several 

applications including the delivery of chemotherapeutics to solid tumors. This project specifically utilized 

nanoparticles modified using a layering process, in which surface functionalization of thiol and PC created 

two layer nanoparticles, and an additional layer of HDL onto the PC layer formed the three layer 

nanoparticles. It was hypothesized that the addition of PC would decrease possible immunogenicity and 

immune cell uptake in various filtering organs in the body. As HDL is up-regulated in some forms of 

cancer, it was predicted that three layer nanoparticles might have additional benefits from the PC-coated 

nanoparticles.  

Two and three layer citrate gold nanoparticles and silica gold nanoshells were synthesized. While 

both citrate gold nanoparticles and silica gold nanoshells are both metallic nanostructures, they differ in 

size and applications.  Synthesis of nanoparticles and accurate modifications were confirmed using several 

characterization techniques described in the methods section. It was also predicted that PC- coated 

nanoparticles would be able to diffuse greater distances from vasculature due to its similar structural 

composition in comparison to cellular membranes. For comparison, previously developed PEGylated 

nanoparticles were utilized. Our hypotheses were confirmed in this study as the two and three layer 

nanoparticles diffused further from vasculature in comparison to PEGylated nanoparticles, suggesting that 

PC- and HDL- coated nanoparticles may potentially be able to delivery drug deeper into tumors. In 

addition, this study showed that smaller citrate gold nanoparticles accumulated in 3D cell cultures at higher 
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concentrations in comparison to silica gold nanoshells. In the pancreatic cancer cell line, S2VP10, the two 

layer nanoparticles showed superior diffusivity in comparison to PEGylated and HDL-coated nanoparticles. 

For this reason, two layer citrate gold nanoparticles and silica gold nanoshells were used for in vivo 

experimentation.  

After analyzing the diffusivity of gold nanoparticles in 3D cell cultures, the two layer 

nanoparticles were examined in vivo.  Mice with orthotopic pancreatic adenocarcinomas were injected with 

two layer gold nanoparticles to determine the accumulation efficiency in the tumor vs. filtering organs (i.e. 

liver and spleen). The diffusivities of the nanoparticles from vasculature were also measured to determine 

which particle could more effectively exit the fenestrations of the solid tumor. This was accomplished 

using dark field microscopy in combination with hyperspectral imaging, using the CytoViva Hyperspectral 

Imaging system. Results from this study showed a size-dependent hindrance of nanoparticle diffusion, as 

the PC-coated silica gold nanoshells diffused shorter distances from vasculature in comparison to smaller 

citrate gold nanoparticles. As the size difference is 3:1, this was expected. An overall accumulation of 

colloidal gold nanoparticles was higher in the tumor, liver, and spleen in comparison to silica gold 

nanoshells. Since citrate gold nanoparticles showed superior efficacy compared to silica gold nanoshells, 

the smaller nanoparticles were chosen for the remainder of this project for drug loading and in vitro 

experimentation.  

Since the colloidal gold nanoparticles displayed higher accumulation in vivo, they were utilized to 

determine drug loading capabilities and release kinetics. Drug release from nanoparticles is a complex 

process dependent upon the physiochemical properties of the nanoparticle and drug molecule. Since the 

nanoparticles were layered, the TL and PC surface modifications created a region of hydrophobicity around 

the nanoparticle optimal for loading the water-insoluble compound paclitaxel. On the outside of the 

nanoparticles, cisplatin was loaded and interacted through non-covalent interactions. Results from this 

study showed that paclitaxel released slower than cisplatin, which was attributed to method of drug loading. 

The addition of the third layer (HDL) was shown to puncture the PC layer of the nanoparticles, promoting 

the release of more paclitaxel from the hydrophobic layer. By understanding the amount of drug released at 

various time intervals, we were able to design cytotoxicity experiments to test the efficacy of these novel 

nanotherapeutic systems.  
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The efficacy of cisplatin and paclitaxel-loaded colloidal gold nanoparticles were evaluated in 3D 

cell cultures. Results from this study showed that drug-loaded nanoparticles performed similarly to free 

drug in each case. As the nanoparticles are targeted to tumors, unlike freely circulating drug, we would 

expect the nanoparticles to perform well in an animal model. Also, nanoparticles could result in less liver 

and kidney toxicity as drug release is delayed from nanoparticle systems, unlike free drug, which 

accumulates in the liver faster.  

In conclusion, the two and three layer nanoparticles system is a potential candidate for cancer 

therapy. Additional studies are needed to determine the effectiveness of the nanoparticle compounds in 

animal models. Future prospects for this project include the co-delivery of two drugs simultaneously. 

Additionally, more studies are needed to examine potential toxicities associated with both two and three 

layer nanoparticles.  
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