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ABSTRACT

STRONG QUOTA PAIR SYSTEMS AND MAY’S THEOREM ON MEDIAN
SEMILATTICES

Lucas Hoots

May 12, 2015

Kenneth May [16], in 1952, characterized simple majority rule in terms of

three conditions: anonymity, neutrality, and positive responsiveness. In this thesis,

we remove the condition of neutrality and obtain a characterization of the class of

voting rules that satisfy anonymity and positive responsiveness. The key concept

in this characterization is the notion of a strong quota pair system. The situation

with two alternatives studied by May can be thought of as a very simple example of

a finite median semilattice. The main result of this thesis is an extension of May’s

theorem to the domain of all finite median semilattices.
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CHAPTER 1

MAY’S THEOREM

In 1952, Kenneth May gave an elegant characterization of simple majority

decision on two alternatives [16]. This represents the classic notion of deciding be-

tween exactly two candidates by declaring as the winner the candidate who receives

the most votes from among a collection of voters. In the following this idea will be

presented more precisely, along with the terms and notational conventions required

for an easy understanding.

Let X = {−1, 0, 1} where −1 and 1 represent two competing alternatives,

or candidates; and 0 represents abstention, or a vote of non-preference. Let N =

{1, . . . , n} be the set of n voters with n ≥ 2. We will call any P = (x1, . . . , xn) ∈ Xn

a profile and we will sometimes denote any xi in P as P (i).

Definition 1.1. A function of the form f : Xn → X will be called a social aggre-

gation function.

This function receives some profile P ∈ Xn as its input, representing the

votes of n individuals, and outputs a single element of X. An output of 0 indicates

a tie between the two candidates, while any other output identifies the “winner” of

the election.

Our first example of a social aggregation function is given below, where

sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0.
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Definition 1.2. The simple majority rule function, fs, is defined as:

fs(P ) = sign(
n∑
i=1

P (i)).

It will only be the case that fs(P ) = 1 when P contains more ones than

negative ones, fs(P ) = −1 only when P contains more negative ones than ones,

and fs(P ) = 0 only when P contains exactly as many ones as negative ones (a tie).

This is the version of simple majority decision studied by Kenneth May [16]. May

introduced a set of axioms that any reasonably “fair” social aggregation function

should satisfy.

Axiom 1.1. A social aggregation function f : Xn → X satisfies anonymity if,

for any permutation σ of N = {1, . . . , n}, we have f(P ) = f(σP ), where σP =

(xσ(1), . . . , xσ(n)).

An anonymous function treats all votes equally, so no voter or group of voters

receives undue consideration. Since we will be dealing with anonymous functions,

all we are really concerned about is the number of votes each candidate receives.

We consider the following notation to help facilitate that idea:

K1(P ) = {i : P (i) = 1} and K−1(P ) = {i : P (i) = −1}.

Axiom 1.2. A social aggregation function f : Xn → X satisfies neutrality if, for

any P, P ′ ∈ Xn,

K1(P ) = K−1(P
′) and K−1(P ) = K1(P

′)⇒ [f(P ) = 1⇔ f(P ′) = −1].

A neutral function treats all candidates equally. If candidate 1 wins over

candidate −1, then switching all the votes should cause a switch in the winning

outcome, and vice versa. If the result is a tie, then switching all the votes should

cause no change and 0 should still be the outcome. Notice P ′ in the above can be

thought of as −P since it has a −1 wherever P has a 1 and a 1 wherever P has a

2



−1. Since our alternatives are 1, −1, and 0 we can say that a social aggregation

function f satisfies neutrality if and only if, for any profile P ∈ Xn,

f(−P ) = −f(P ).

Definition 1.3. For two profiles P, P ′ ∈ Xn we say P ≤ P ′ if P (i) ≤ P ′(i) for all

i ∈ {1, . . . , n}.

In this way we can describe P ′ as “favoring 1” more than P , since P ′ will

have at least as many votes for 1 as P and it can have at most as many votes for

−1 as P . This notion is expressed symbolically below.

P ≤ P ′ iff K1(P ) ⊆ K1(P
′) and K−1(P

′) ⊆ K−1(P ). (1.1)

It is easy to verify that “≤” forms a partial order on Xn.

Definition 1.4. A profile P ∈ Xn is almost equal to a profile P ′ ∈ Xn, denoted

P (ae)P ′, when there exists i0 ∈ N such that P (i) = P ′(i) for all i 6= i0 and

P (i0) 6= P ′(i0).

This simply means that the two profiles are identical in every position save

exactly one, where a difference must occur.

Axiom 1.3. A social aggregation function f : Xn → X satisfies positive respon-

siveness if f(P ) ∈ {0, 1}, P ≤ P ′, and P (ae)P ′ implies f(P ′) = 1.

This notion is not as complicated as it may appear. If a function outputs

a 1 or 0 for a particular profile and we change a single vote in such a way as to

favor candidate 1 (by either giving 1 an extra vote or taking a vote away from −1),

then the function that satisfies positive responsiveness will output a 1 on this new

profile.

With these axioms formally in place, we can state May’s Theorem.
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Theorem 1.1 (May’s Theorem). A social aggregation function f satisfies anonymity,

neutrality, and positive responsiveness if and only if f = fs.

Our goal is to generalize May’s Theorem by proving it for a much broader

domain, namely all finite median semilattices. The first step is to refine May’s

Theorem a bit, so as to make it amenable to generalization. We begin by splitting

up positive responsiveness into two simpler conditions. First we present a simple

implication of positive responsiveness.

Lemma 1.1. If f satisfies positive responsiveness and P ≤ P ′, P (ae)P ′ for some

P, P ′ ∈ Xn, then f(P ′) = −1 implies f(P ) = −1.

Proof. Suppose f satisfies positive responsiveness. Consider P, P ′ ∈ Xn such that

P ≤ P ′ and P (ae)P ′. If f(P ′) = −1 then it must be the case that f(P ) = −1 as

well. If not, i.e. f(P ) = 0 or f(P ) = 1, then positive responsiveness implies that

f(P ′) = 1, contradicting the assumption that f(P ′) = −1. Since X = {−1, 0, 1} it

must be the case that f(P ) = −1, as desired.

Axiom 1.4. A social aggregation function f : Xn → X satisfies monotonicity if,

for P, P ′ ∈ Xn, K1(P ) ⊆ K1(P
′) and K−1(P

′) ⊆ K−1(P ) implies

f(P ) = 1⇒ f(P ′) = 1 and f(P ′) = −1⇒ f(P ) = −1.

Using equation (1.1) we can express Axiom 1.4 in the following form:

P ≤ P ′ ⇒ f(P ) ≤ f(P ′).

Monotonicity handles the situation in positive responsiveness where the so-

cial aggregation function outputs a 1. This means that a monotonic function is one

that will select the same candidate as the winner for a particular profile whenever

it selects that candidate as the winner for a less favorable profile. Here, a“less fa-

vorable” profile is one in which that candidate receives fewer votes and/or one in
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which the alternative candidate receives more; since each voter has the option to

abstain (a vote of 0), these scenarios do not necessarily imply one another. The

alternative case presented in positive responsiveness, where the social aggregation

function outputs a 0, is treated below in its own axiom.

Axiom 1.5. A social aggregation function f : Xn → X satisfies tie-breaking if,

for P, P ′ ∈ Xn such that P (ae)P ′,

f(P ) = 0⇒ f(P ′) ∈ {−1, 1}.

When a social aggregation function outputs a 0 we consider this a tie between

the two candidates. A function that satisfies tie-breaking is simply that, a function

that breaks ties. If a function outputs a 0 for a particular profile and we change

exactly one vote, then a tie-breaking function would output anything but 0 for the

modified profile, thus breaking the tie.

Since the goal was to split positive responsiveness into two seperate condi-

tions, we have the following proposition:

Proposition 1.1. If a social aggregation function f : Xn → X satisfies positive

responsiveness then f satisfies monotonicity and tie-breaking.

Proof. Suppose we have two profiles P, P ′ ∈ Xn such that P ≤ P ′, P 6= P ′, and

f(P ) = 1. If P (ae)P ′ then positive responsiveness implies f(P ′) = 1. If it is not

the case that P (ae)P ′ then let i0 be the first position where P (i0) 6= P ′(i0). Now

we can consider P ′′ ∈ Xn such that P ′′(i) = P (i) for all i 6= i0 and P ′′(i0) = P ′(i0).

Thus, P ≤ P ′′ and P (ae)P ′′, hence positive responsivness implies f(P ′′) = 1 as

well. If P ′′(ae)P ′ then we can apply positive responsiveness again to get the desired

result, if not, then we can repeat this procedure on P ′′. Since the length of each

profile is finite, we can repeatedly apply this procedure to eventually achieve the

desired result of f(P ′) = 1.
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Alternatively, suppose we have two profiles P, P ′ ∈ Xn such that P ≤ P ′,

P 6= P ′, and f(P ′) = −1. If P (ae)P ′ then Lemma 1.1 implies f(P ) = −1. If it is

not the case that P (ae)P ′ then let i0 be the first position where P ′(i0) 6= P (i0). Now

we can consider P ′′ ∈ Xn such that P ′′(i) = P ′(i) for all i 6= i0 and P ′′(i0) = P (i0).

Thus, P ′′ ≤ P ′ and P ′′(ae)P ′, hence Lemma 1.1 implies f(P ′′) = −1 as well. If

P (ae)P ′′ then we can apply Lemma 1.1 again to get the desired result, if not,

then we can repeat this procedure on P ′′. Since the length of each profile is finite,

we can repeatedly apply this procedure to eventually achieve the desired result of

f(P ) = −1.

Suppose instead that P (ae)P ′ and f(P ) = 0. Since P (ae)P ′ we know that

either P ≤ P ′ or P ′ ≤ P . If P ≤ P ′, then, since f(P ) ∈ {0, 1} and P (ae)P ′,

f(P ′) = 1 by positive responsiveness. If P ′ ≤ P and f(P ′) = 0, then positive

responsiveness implies f(P ) = 1, contradicting the assumption that f(P ) = 0.

Therefore, in either case f(P ′) ∈ {−1, 1}.

It is also the case that the converse of this statement holds.

Proposition 1.2. If a social aggregation function f : Xn → X satisfies monotonic-

ity and tie-breaking then f satisfies positive responsiveness.

Proof. Suppose we have two profiles P, P ′ ∈ Xn such that P ≤ P ′, P (ae)P ′, and

f(P ) = 1. We can immediately apply monotonicity to get the desired result of

f(P ′) = 1. If, on the other hand, f(P ) = 0 then tie-breaking implies f(P ′) ∈

{−1, 1} and monotonicity implies f(P ′) ∈ {0, 1}. Thus, it must be the case that

f(P ′) = 1 as desired.

Now that the equivalence of these axioms has been demonstrated, we can

restate May’s Theorem using the new axioms.

Theorem 1.2 (May’s Theorem). A social aggregation function f satisfies anonymity,

neutrality, monotonicity, and tie-breaking if and only if f = fs.

6



There are multiple directions one can take in the attempt to generalize May’s

Theorem. Before we consider expanding the domain to broader mathematical struc-

tures, we consider manipulating the axioms. This kind of thinking is in line with

other work that has been done on May’s Theorem. Aşan and Sanver replace positive

responsiveness with Maskin monotonicity and characterize the absolute q-majority

rules in [2]. For more on axiomatic modifications see [1], [4], [12], [22], and [24]. In

the next chapter we discuss a specific generalization of May’s Theorem, in which the

axiom of neutrality is dropped and a characterization of all aggregation functions

which satisfy anonymity and positive responsiveness is presented. After that, we

will extend simple majority rule to an order theoretic domain. For more on simple

majority rule with more than two alternatives see [3], [9], and [23].
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CHAPTER 2

A SIMPLE EXTENSION OF MAY’S THEOREM

2.1 Background

As we saw in the previous chapter, Kenneth May characterized all aggre-

gation functions that satisfy the properties of anonymity, neutrality, and positive

responsiveness and reached the result that they are all, in fact, equivalent to simple

majority rule. An obvious question to ask is what our social aggregation func-

tion would look like if we drop one of these axioms. In 1995 Young, Taylor, and

Zwicker characterized all aggregation functions that satisfy anonymity, neutrality,

and monotonicity, dropping the tie-breaking portion of positive responsiveness[24].

Their answer was based on a concept called quota systems. Perry and Powers built

on this concept and gave a characterization of all aggregation functions that satisfy

just anonymity and monotonicity, removing neutrality[22]. They based their work

on a concept known as a quota pair system. In the following section we build on this

work to characterize all aggregation functions that satisfy anonymity, monotonicity,

and tie-breaking i.e. all aggregation functions that satisfy anonymity and positive

responsiveness.

Definition 2.1. A quota system based on n ≥ 2 voters is a non-increasing se-

quence of integers

q0 ≥ q1 ≥ . . . ≥ qn

such that
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Q1: n−k
2
< qk ≤ n− k + 1 for all k ∈ {0, 1, . . . , n};

Q2: qk+1 ∈ {qk, qk − 1} for all k ∈ {0, 1, . . . , n− 1}.

Similar to the notation given in the previous section, we define a way to keep

track of the abstention votes; for any P ∈ Xn:

K0(P ) = {i : P (i) = 0}.

Thus, K0(P ) ∪K1(P ) ∪K−1(P ) = {1, . . . , n}.

Definition 2.2. A social aggregation function f : Xn → X, where X = {−1, 0, 1},

is determined by a quota system

q0 ≥ q1 ≥ . . . ≥ qn

if, for any P ∈ Xn, we have

f(P ) =


1 if |K1(P )| ≥ qk and |K0(P )| = k

−1 if |K−1(P )| ≥ qk and |K0(P )| = k

0 otherwise.

Young, Taylor, and Zwicker[24] proved the following theorem:

Theorem 2.1. A social aggregation function f : Xn → X satisfies anonymity,

neutrality, and monotonicity if and only if f is determined by a quota system.

The lower bound given in Q1 ensures the aggregation function is well-defined,

preventing 1 and −1 from both receiving enough votes to win in a single profile. The

second bound in Q1 eliminates redundant quota sytems since any quota higher than

the number of non-abstaining voters is unobtainable by either candidate; a situation

we still want to account for. Monotonicity is ensured by Q2. A quota system can

be used to create several common voting methods. Setting each qk to be a specific

fraction of the non-abstaining votes creates a supermajority function (such as the

9



two-thirds and three-fifths majority used in our government [10]), where some level

of support greater than a half is required to select a winner. When one-half is

used (setting each qk equal to the least integer greater than half the number of

non-abstaining votes) the quota system is identical to May’s simple majority rule

as stated in the previous chapter. An alternative characterization is of these rules

was given by Fishburn, for more information see [8] and [14].

The notion of a quota system was expanded upon by Perry and Powers in

[22] to deal with the case where neutrality is dropped.

Definition 2.3. A quota pair system based on n ≥ 2 voters is a pair of non-

increasing sequences of integers

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln

such that

QP1: 0 ≤ qk, lk ≤ n+ 1− k for all k ∈ {0, 1, . . . , n};

QP2: qk + lk ≥ n+ 1− k for all k ∈ {0, 1, . . . , n};

QP3: qk+1 ∈ {qk, qk − 1} and lk+1 ∈ {lk, lk − 1} for all k ∈ {0, 1, . . . , n− 1}.

In a quota pair system the absence of neutrality forces the inclusion of a

second non-increasing sequence of integers so that each candidate has their own set

of quotas. The lower bound given in Q1 is replaced by the lower bound given in

QP2 in order to ensure our social aggregation function is well-defined. We will

illustrate a quota pair system with the following example:

Example 2.1. Let n = 2 and consider the non-increasing sequences

3 ≥ 2 ≥ 1 and 1 ≥ 0 ≥ 0.

10



Here q0 = 3, q1 = 2, q2 = 1, l0 = 1, l1 = 0, and l2 = 0. Notice that

0 ≤ qk, lk ≤ 3−k for k ∈ {0, 1, 2}, thus QP1 is satisfied. Observe that qk+lk ≥ 3−k

for k ∈ {0, 1, 2}, thus QP2 is satisfied. Also qk+1 ∈ {qk, qk−1} and lk+1 ∈ {lk, lk−1}

for k ∈ {0, 1}, thus QP3 is satisfied as well.

Definition 2.4. A social aggregation function f : Xn → X is determined by a

quota pair system

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln

if, for P ∈ Xn, we have

f(P ) =


1 if |K1(P )| ≥ qk and |K0(P )| = k

−1 if |K−1(P )| ≥ lk and |K0(P )| = k

0 otherwise.

Notice that, due to the properties of a quota pair system, this is a well-defined

function.

Perry and Powers[22] proved the following theorem:

Theorem 2.2. A social aggregation function f : Xn → X satisfies anonymity and

monotonicity if and only if f is determined by a quota pair system.

We build on their notion of a quota pair system to create what we call a

strong quota pair system.

2.2 Strong Quota Pair Systems

The material in this section has been submitted for publication [11].

Definition 2.5. A strong quota pair system based on n ≥ 2 voters, SQP system

for short, is a pair of non-increasing sequences of integers

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln

such that
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SQP1: 0 ≤ qk, lk ≤ n+ 1− k for all k ∈ {0, 1, . . . , n};

SQP2: n+ 1− k ≤ qk + lk ≤ n+ 2− k for all k ∈ {0, 1, . . . , n};

SQP3: qk+1 ∈ {qk, qk − 1} and lk+1 ∈ {lk, lk − 1} for all k ∈ {0, 1, . . . , n− 1};

SQP4: qk + lk = n+ 2− k ⇒ qk−1 = qk and lk−1 = lk for all k ∈ {1, 2, . . . , n}.

The upper bound given in SQP2 and the new condition SQP4 were added

to the definition of a quota pair system to ensure our aggregation function satisfies

tie-breaking. Observe that since the conditions on a quota pair system are all

conditions on a strong quota pair system we can conclude that any strong quota

pair system is itself a quota pair system. We will refer to a social aggregation

function being determined by a strong quota pair system in exactly the same way

that a function is determind by a quota pair system in Definition 2.4. We illustrate

the definition of a strong quota pair system with the following example:

Example 2.2. Let n = 2 and consider the non-increasing sequences

2 ≥ 2 ≥ 1 and 1 ≥ 1 ≥ 0.

Here q0 = 2, q1 = 2, q2 = 1, l0 = 1, l1 = 1, and l2 = 0. Notice that

0 ≤ qk, lk ≤ 3 − k for k ∈ {0, 1, 2}, thus SQP1 is satisfied. Observe that 3 − k ≤

qk + lk ≤ 4−k for k ∈ {0, 1, 2}, thus SQP2 is satisfied. Also qk+1 ∈ {qk, qk−1} and

lk+1 ∈ {lk, lk− 1} for k ∈ {0, 1}, thus SQP3 is satisfied. Finally, qk + lk = n+ 2− k

only when k = 1, that is q1 + l1 = 2 + 1 = n + 2 − k. Since q0 = q1 and l0 = l1

SQP4 is satisfied. Hence this pair of non-increasing sequences is a strong quota

pair system on 2 voters. With this new definition we can state our theorem.

Theorem 2.3. A social aggregation function f : Xn → X satisfies anonymity and

positive responsiveness if and only if f is determined by a strong quota pair system.

12



Before we prove this theorem a lemma will be presented which offers some

insight as to when exactly this function will result in a tie.

Lemma 2.1. If a social aggregation function f : Xn → X is determined by a strong

quota pair system

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln,

then f(P ) = 0 for some profile P ∈ Xn if and only if qk + lk = n + 2 − k with

|K0(P )| = k, |K1(P )| = qk − 1, and |K−1(P )| = lk − 1.

Proof. Suppose f(P ) = 0, thus qk − 1 ≥ |K1(P )| and lk − 1 ≥ |K−1(P )| where

|K0(P )| = k, hence qk+lk−2 ≥ |K1(P )|+|K−1(P )| = n−k. Thus qk+lk ≥ n+2−k;

by SQP2 above we know qk + lk ≤ n + 2 − k therefore qk + lk = n + 2 − k =

|K1(P )|+ |K−1(P )|+ 2. Recall that qk − 1 ≥ |K1(P )| and lk − 1 ≥ |K−1(P )| hence

qk ≥ |K1(P )|+ 1 and lk ≥ |K−1(P )|+ 1, since qk + lk = |K1(P )|+ |K−1(P )|+ 2 we

get qk = |K1(P )|+ 1 and lk = |K−1(P )|+ 1.

If, for some profile P ∈ Xn, we have |K0(P )| = k, |K1(P )| = qk − 1, and

|K−1(P )| = lk−1 then clearly |K1(P )| < qk and |K−1(P )| < lk. Thus f(P ) = 0.

In Example 2.2 when k = 1 we have qk + lk = n + 2 − k but if we consider

P = (−1, 0) then |K1(P )| = 0 6= q1 − 1 and |K−1(P )| = 1 = l1 6= l1 − 1 thus

f(P ) = −1, not 0. If, on the other hand, we consider P = (1, 0) then |K0(P )| = 1,

|K1(P )| = q1 − 1, and |K−1(P )| = l1 − 1. Thus, f(P ) = 0.

Armed with Lemma 2.1, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let f be a social aggregation function determined by a strong

quota pair system as above. Since a strong quota pair system is a quota pair system

it follows from Theorem 2.2 that f satisfies both anonymity and monotonicity. By

Proposition 1.2 all that remains to be shown is that f satisfies tie-breaking.
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Let P, P ′ ∈ Xn be two profiles such that P (ae)P ′ and f(P ) = 0. Want to

show f(P ′) ∈ {−1, 1}. Lemma 2.1 implies qk + lk = n + 2 − k with |K0(P )| = k,

|K1(P )| = qk−1, and |K−1(P )| = lk−1. Since P (ae)P ′ we know |K1(P )| 6= |K1(P
′)|

and/or |K−1(P )| 6= |K−1(P ′)|, furthermore, we know that |K0(P )|−1 ≤ |K0(P
′)| ≤

|K0(P )|+ 1. Let k′ = |K0(P
′)|, thus we can write k − 1 ≤ k′ ≤ k + 1.

If f(P ′) = 0 then Lemma 2.1 implies qk′+lk′ = n+2−k′ and |K1(P
′)| = qk′−1

as well as |K−1(P ′)| = lk′ − 1.

If k′ = k then we know |K1(P
′)| = qk′−1 = qk−1 = |K1(P )| and |K−1(P ′)| =

lk′ − 1 = lk − 1 = |K−1(P )|, contradicting the above observation that this is not

possible. Hence, k′ 6= k.

If k′ = k−1 then we know qk′+ lk′ = n+ 2−k′ = n+ 2− (k−1) = n+ 3−k.

But SQP4 says that qk + lk = n + 2 − k ⇒ qk−1 = qk and lk−1 = lk which implies

qk′ + lk′ = qk + lk = n + 2 − k, so we can’t have f(P ′) = 0 in this case without

contradicting SQP4. Hence, k′ 6= k − 1.

If k′ = k + 1 then SQP4 implies qk′ + lk′ = n + 2 − k′ ⇒ qk′−1 = qk′ and

lk′−1 = lk′ which implies qk + lk = n + 2 − k′ = n + 2 − (k + 1) = n + 1 − k,

contradicting Lemma 2.1 which implies qk + lk = n+ 2− k, so we know k′ 6= k + 1

either.

Thus, in any case, the tie is broken. Therefore, f satisfies positive respon-

sivness.

Let f be an aggregation function that satisfies anonymity and positive re-

sponsiveness. Proposition 1.1 implies f satisfies monotonicity. Therefore, by Theo-

rem 2.2, f is determined by a quota pair system

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln.

Our goal is to show that f is determined by a strong quota pair system. As

noted earlier, the differences between a quota pair system and a strong quota pair
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system are the upper bound in SQP2 and the new condition SQP4. Since the

rest of the conditions of a strong quota pair system are inherited from a quota pair

system, these two conditions are all we need to show.

Assume, for the sake of contradiction, that there exists k ∈ {0, 1, . . . , n} such

that qk + lk > n+ 2− k. Since qk, lk ≤ n+ 1− k it follows that qk ≥ 2 and lk ≥ 2.

Choose P ∈ Xn such that

|K1(P )| = qk − 2 and |K0(P )| = k.

Then

|K−1(P )| = n− (qk − 2 + k) = n+ 2− k − qk.

Since qk ≤ n+ 1− k it follows that

|K−1(P )| ≥ 1.

Since qk + lk > n+ 2− k it follows that

|K−1(P )| = n+ 2− k − qk < (qk + lk)− qk = lk.

Thus, f(P ) = 0 since |K1(P )| < qk and |K−1(P )| < lk. Choose i0 ∈ {1, . . . , n} such

that P (i0) = −1 and pick P ′ ∈ Xn such that P ′(ae)P and P ′(i0) = 1. Observe

that k′ = k where |K0(P )| = k and |K0(P
′)| = k′. Also notice that |K1(P

′)| =

|K1(P )|+ 1 = qk−1 and that |K−1(P ′)| = |K−1(P )|−1. Thus, |K1(P
′)| = qk−1 =

qk′ − 1 < qk′ and |K−1(P ′)| = |K−1(P )| − 1 < lk = lk′ . It follows that f(P ′) = 0 but

this contradicts tie-breaking. Hence qk + lk ≤ n+ 2− k for all k ∈ {0, 1, . . . , n} and

so, SQP2 holds.

Assume that there exists k ∈ {1, . . . , n} such that qk + lk = n + 2 − k and,

for the sake of contradiction, that either

qk = qk−1 − 1 and lk = lk−1 or qk = qk−1 and lk = lk−1 − 1.
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It can’t be the case that both qk = qk−1 − 1 and lk = lk−1 − 1, since SQP3 implies

qk−1 + lk−1 ≤ n+3−k. Suppose we have the case where qk = qk−1−1 and lk = lk−1.

Choose P ∈ Xn such that |K0(P )| = k and |K1(P )| = qk − 1 (such a P exists since

k + qk − 1 ≤ n and qk ≥ 1). Pick i0 ∈ {1, . . . , n} such that P (i0) = 0 and choose

P ′ ∈ Xn such that P ′(ae)P and P ′(i0) = 1. First, notice that

|K−1(P )| = n− (k + qk − 1) = n+ 1− k − qk < (qk + lk)− qk = lk.

So f(P ) = 0 since |K−1(P )| < lk and |K1(P )| = qk − 1. Now notice that

|K0(P
′)| = k − 1,

|K1(P
′)| = qk = qk−1 − 1 = qk′ − 1, and

|K−1(P ′)| = |K−1(P )| < lk = lk−1 = lk′ .

Thus, f(P ′) = 0, contradicting tie-breaking. The case where qk = qk−1 and lk =

lk−1 − 1 can be solved symmetrically (choose P ′ with P ′(i0) = −1 instead). Thus

when qk + lk = n + 2 − k we know qk−1 = qk and lk−1 = lk which is exactly SQ4.

Hence, the quota pair system that determines f when f satisfies anonymity and

positive responsiveness is indeed a strong quota pair system.

2.3 Counting Strong Quota Pair Systems

It’s easy enough to count the number of social aggregation functions that

satisfy anonymity, neutrality, and positive responsiveness; there’s only one, simple

majority rule. In the previous section we altered the axioms and characterized

social aggregation functions with quota systems, quota pair systems, and strong

quota pair systems. It is a natural question to ask how many of each of these there

are. Young, Taylor, and Zwicker[24] counted the number of quota systems.

Theorem 2.4. The number of quota systems for n ≥ 0 voters is given by

ZQ(n) =

(
n+ 1

bn
2
c+ 1

)
,
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where bxc is the greatest integer less than or equal to x.

The number of quota systems has a connection with the Catalan numbers.

Let

C(n) =
1

n+ 1

(
2n

n

)
,

where C(n) denotes the nth Catalan number. The Catalan numbers can be used

to formulate a recursive definition of ZQ(n):

Theorem 2.5.

ZQ(n+ 1) =

 2ZQ(n) if n is even,

2ZQ(n)− C(n+1
2

) if n is odd.

Perry and Powers[22] counted the number of quota pair systems.

Theorem 2.6. The number of quota pair systems for n ≥ 2 voters is given by

ZQP (n) =

(
2n+ 3

n+ 1

)
.

Next we will present a lemma that illustrates how each strong quota pair

system contains a smaller strong quota pair system, and will give us a means to

systematically construct all quota pair systems; making them amenable to enumer-

ation.

Lemma 2.2. If q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln is a strong quota pair

system based on n ≥ 3 voters, then q1 ≥ . . . ≥ qn and l1 ≥ . . . ≥ ln is a strong quota

pair system based on n− 1 voters.

Proof. Let q′k = qk+1 and l′k = lk+1 for k ∈ {0, 1, . . . , n − 1}, and let n′ = n − 1 as

well. To verify SQP1 we need to show that

0 ≤ q′k, l
′
k ≤ n′ + 1− k = n− k for k ∈ {0, 1, . . . , n′}.

We know the qis and lis form a strong quota pair, hence
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0 ≤ q′k, l
′
k = qk+1, lk+1 ≤ n+ 1− (k + 1) = n− k for k ∈ {0, 1, . . . , n′}

as desired. To verify SQP2 we need to show that

n′ + 1− k ≤ q′k + l′k ≤ n′ + 2− k for k ∈ {0, 1, . . . , n′}.

Since the qis and lis form a strong quota pair, we know

n+ 1− (k + 1) ≤ qk+1 + lk+1 ≤ n+ 2− (k + 1) for k ∈ {0, 1, . . . , n}.

If we substitute q′k for qk+1, l
′
k for lk+1, and n′ for n− 1 we get

n′ + 1− k ≤ q′k + l′k ≤ n′ + 2− k for k ∈ {0, 1, . . . , n′}

as desired. To verify SQP3 we need to show that

q′k+1 ∈ {q′k, q′k − 1} and l′k+1 ∈ {l′k, l′k − 1} for k ∈ {0, 1, . . . , n′ − 1}.

Since q′k = qk+1 and l′k = lk+1 we get q′k+1 = qk+2 and l′k+1 = lk+2. Since the qis and

lis form a strong quota pair we know

qk+2 ∈ {qk+1, qk+1 − 1} and lk+2 ∈ {lk+1, lk+1 − 1} for k ∈ {0, 1, . . . , n− 2}.

Substituting leads us to

q′k+1 ∈ {q′k, q′k − 1} and l′k+1 ∈ {l′k, l′k − 1} for k ∈ {0, 1, . . . , n′ − 1}

as desired. To verify SQP4 we need to show that

q′k + l′k = n′ + 2− k ⇒ q′k−1 = q′k and l′k−1 = l′k for k ∈ {1, 2, . . . , n′}.

As the qis and lis form a strong quota pair system, we know

qk+1 + lk+1 = n+ 2− (k + 1)⇒ qk = qk+1 and lk = lk+1 for k ∈ {0, 1, . . . , n− 1}.

Substituting leads us to

q′k + l′k = n′ + 2− k ⇒ q′k−1 = q′k and l′k−1 = l′k for k ∈ {1, 2, . . . , n′}

as desired.
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The previous lemma suggests a strategy to modify the strong quota pair

systems for n voters to create all strong quota pair systems for any n + 1 voters.

Our method will involve shifting each quota “up” (i.e. increasing all subscripts)

and assigning a new q0 and l0. As long as we are careful with our choices for q0

and l0, making sure our new strong quota pair systems meet all the criteria of the

definition, then we will only create legitimate strong quota pair systems. This is

accomplished in the following lemma.

Lemma 2.3. If the pair of non-increasing sequences of integers q0 ≥ q1 ≥ . . . ≥ qn

and l0 ≥ l1 ≥ . . . ≥ ln is a strong quota pair system based on n ≥ 2 voters,

ε = (n+ 2)− (q0 + l0), q′0 ∈ {q0, q0 + ε} and l′0 ∈ {l0, l0 + ε}, and q′0 + l′0 ≥ q0 + l0 + ε,

then

q′0 ≥ q0 ≥ q1 ≥ . . . ≥ qn and l′0 ≥ l0 ≥ l1 ≥ . . . ≥ ln

is a strong quota pair system on n+ 1 voters.

Proof. Suppose q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln is a strong quota pair

system based on n voters. Consider q′0 ≥ q′1 ≥ . . . ≥ q′m and l′0 ≥ l′1 ≥ . . . ≥ l′m,

(hereafter referred to as the prime sequences), where m = n+1, such that q′i = qi−1

and l′i = li−1 for i ∈ {1, . . . ,m}, q′0 ∈ {q0, q0 + ε} and l′0 ∈ {l0, l0 + ε}. We know from

SQP1 that

0 ≤ qk, lk ≤ n+ 1− k for all k ∈ {0, 1, . . . , n}.

This can be re-indexed to obtain

0 ≤ qk−1, lk−1 ≤ n+ 1− (k − 1) for all k ∈ {1, . . . , n+ 1},

which can be rewritten as

0 ≤ qk−1, lk−1 ≤ (n+ 1) + 1− k for all k ∈ {1, . . . , n+ 1}.

We can make substitutions based on the values defined above to get

0 ≤ q′k, l
′
k ≤ m+ 1− k for all k ∈ {1, . . . ,m}.
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Since ε = (n + 2) − (q0 + l0), SQP2 tells us that ε ∈ {0, 1}. From SQP1, we can

see that 0 ≤ q0, l0 ≤ n+ 1, thus 0 ≤ q′0, l
′
0 ≤ (n+ 1) + 1 = m+ 1, thus

0 ≤ q′k, l
′
k ≤ m+ 1− k for all k ∈ {0, . . . ,m}.

Hence, the prime sequences satisfy SQP1. We know from SQP2 that

n+ 1− k ≤ qk + lk ≤ n+ 2− k for all k ∈ {0, 1, . . . , n}.

This can be re-indexed to obtain

n+ 1− (k − 1) ≤ qk−1 + lk−1 ≤ n+ 2− (k − 1) for all k ∈ {1, . . . , n+ 1},

which can be rewritten as

(n+ 1) + 1− k ≤ qk−1 + lk−1 ≤ (n+ 1) + 2− k for all k ∈ {1, . . . , n+ 1}.

Substituting as above yields

m+ 1− k ≤ q′k + l′k ≤ m+ 2− k for all k ∈ {1, . . . ,m}.

From SQP2 we can see that n+1 ≤ q0+l0 ≤ n+2. If q0+l0 = n+2 then ε = 0, hence

q′0 = q0 and l′0 = l0. Thus it is clearly the case that (n+1)+1 ≤ q′0+ l′0 ≤ (n+1)+2,

that is, m + 1 ≤ q′0 + l′0 ≤ m + 2. If q0 + l0 = n + 1 then ε = 1. We assumed

q′0 + l′0 ≥ q0 + l0 + ε thus q′0 + l′0 ≥ (n + 1) + 1 and the largest that q′0 + l′0 could

be is q0 + l0 + 2 = (n + 1) + 2. Thus (n + 1) + 1 ≤ q′0 + l′0 ≤ (n + 1) + 2, that is,

m+ 1 ≤ q′0 + l′0 ≤ m+ 2, thus

m+ 1− k ≤ q′k + l′k ≤ m+ 2− k for all k ∈ {0, 1, . . . ,m}.

Hence, the prime sequences satisfy SQP2. We know from SQP3 that

qk+1 ∈ {qk, qk − 1} and lk+1 ∈ {lk, lk − 1} for all k ∈ {0, 1, . . . , n− 1}.

This can be re-indexed to obtain

qk ∈ {qk−1, qk−1 − 1} and lk ∈ {lk−1, lk−1 − 1} for all k ∈ {1, . . . , n}.
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Substituting as above yields

q′k+1 ∈ {q′k, q′k − 1} and l′k+1 ∈ {l′k, l′k − 1} for all k ∈ {1, . . . ,m− 1}.

Since q′0 ∈ {q0, q0 + ε} and l′0 ∈ {l0, l0 + ε} we can say q′1 ∈ {q′0, q′0 − 1} and

l′1 ∈ {l′0, l′0 − 1}, thus

q′k+1 ∈ {q′k, q′k − 1} and l′k+1 ∈ {l′k, l′k − 1} for all k ∈ {0, 1, . . . ,m− 1}.

Hence, the prime sequences satisfy SQP3. We know from SQP4 that

qk + lk = n+ 2− k ⇒ qk−1 = qk and lk−1 = lk for all k ∈ {1, 2, . . . , n}.

This can be re-indexed to obtain

qk−1+ lk−1 = n+2−(k−1)⇒ qk−2 = qk−1 and lk−2 = lk−1 for all k ∈ {2, . . . , n+1},

which can be rewritten as

qk−1+ lk−1 = (n+1)+2−k ⇒ qk−2 = qk−1 and lk−2 = lk−1 for all k ∈ {2, . . . , n+1}.

Substituting as above yields

q′k + l′k = m+ 2− k ⇒ q′k−1 = q′k and l′k−1 = l′k for all k ∈ {2, . . . ,m}.

If q′1 + l′1 = m+ 2− 1 then q0 + l0 = n+ 2, thus ε = 0 and we have q′0 = q0 = q′1 and

l′0 = l0 = l′1. Thus, we can write

q′k + l′k = m+ 2− k ⇒ q′k−1 = q′k and l′k−1 = l′k for all k ∈ {1, 2, . . . ,m}.

Hence the prime sequences satisfy SQP4. Thus,

q′0 ≥ q0 ≥ q1 ≥ . . . ≥ qn and l′0 ≥ l0 ≥ l1 ≥ . . . ≥ ln

is a strong quota pair sytem on m = n+ 1 voters, as desired.

To help understand this lemma, consider the following examples.
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Example 2.3. Consider the strong quota pair system on 2 voters from example 1:

(3, 2, 1) and (1, 0, 0).

This strong quota pair system attains its upper bound in the k = 0 case;

q0 + l0 = 3 + 1 = 4 = 2 + 2− 0 = n+ 2− 0.

If those values belonged to the q1 and l1 position in a strong quota pair system on

3 voters then SQP4 implies that they could only be preceded by q0 and l0 creating

the strong quota pair system:

(3, 3, 2, 1) and (1, 1, 0, 0).

Example 2.4. Consider the strong quota pair system on 2 voters:

(2, 2, 1) and (1, 1, 0).

This strong quota pair system attains it’s lower bound in the k = 0 case;

q0 + l0 = 2 + 1 = 3 = 2 + 1− 0 = n+ 1− 0.

If those values belonged to the q1 and l1 position in a strong quota pair system on 3

voters then SQP2 implies that they could be preceded by any of three combinations

of q0s and l0s since in this case q0 = q1 + 1 or l0 = l1 + 1 or both, creating the

following strong quota pair systems:

(3, 2, 2, 1) and (1, 1, 1, 0),

(2, 2, 2, 1) and (2, 1, 1, 0),

(3, 2, 2, 1) and (2, 1, 1, 0).

Let ZSQP (n) be the number of strong quota pair systems on n ≥ 2 voters.

Our goal is to find a formula for ZSQP (n).
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Lemma 2.4. ZSQP (2) = 17.

Proof. We present a complete list of all strong quota pair systems on n = 2 voters:

(0, 0, 0) and (3, 2, 1), (1, 0, 0) and (2, 2, 1), (1, 1, 0) and (2, 1, 1),

(3, 2, 1) and (0, 0, 0), (2, 2, 1) and (1, 0, 0), (2, 1, 1) and (1, 1, 0),

(1, 1, 0) and (2, 2, 1), (1, 1, 1) and (2, 1, 0), (1, 1, 1) and (2, 1, 1),

(2, 2, 1) and (1, 1, 0), (2, 1, 0) and (1, 1, 1), (2, 1, 1) and (1, 1, 1),

(1, 0, 0) and (3, 2, 1), (2, 1, 0) and (2, 1, 1), (2, 1, 1) and (2, 1, 1),

(3, 2, 1) and (1, 0, 0), (2, 1, 1) and (2, 1, 0).

Observe that there are 17 SQP systems on n = 2 voters presented in the list

above.

We now come to the main theorem of this section.

Theorem 2.7. The number of strong quota pair systems for n ≥ 2 voters is given

by

ZSQP (n) =

(
3

2
+
√

2

)
(1 +

√
2)n +

(
3

2
−
√

2

)
(1−

√
2)n.

Proof. Let A(n) be the set of all strong quota pair systems on n ≥ 2 voters,

q0 ≥ q1 ≥ . . . ≥ qn and l0 ≥ l1 ≥ . . . ≥ ln

such that q0 + l0 = n + 2. Similarly, let B(n) be the set of all strong quota pair

systems such that q0 + l0 = n+ 1. We will let

an = |A(n)| and bn = |B(n)|.

Consider a function f : A(n+ 1)→ B(n) defined by

f(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1) = q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l

′
1 ≥ l′2 ≥ . . . ≥ l′n+1.
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It follows from Lemma 2.2 that q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l
′
1 ≥ l′2 ≥ . . . ≥ l′n+1

is a SQP system on n voters. We know that q′0 + l′0 = (n + 1) + 2. By SQP2

we know q′1 + l′1 ≤ (n + 1) + 2 − 1. Since q′1 + l′1 < q′0 + l′0, it follows from the

contrapositive of SQP4 that q′1 + l′1 6= (n + 1) + 2 − 1. Therefore, by SQP2, we

have q′1 + l′1 = (n+ 1) + 1− 1 = n+ 1. Thus, f is well-defined.

Also, f is invertible, with the mapping f−1 : B(n)→ A(n+ 1) defined by

f−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n) = q′0+1 ≥ q′0 ≥ . . . ≥ q′n, l

′
0+1 ≥ l′0 ≥ . . . ≥ l′n.

It follows from Lemma 2.3 that q′0 + 1 ≥ q′0 ≥ . . . ≥ q′n, l
′
0 + 1 ≥ l′0 ≥ . . . ≥ l′n is a

SQP system on n+ 1 voters. We know that q′0 + l′0 = n+ 1, thus

(q′0 + 1) + (l′0 + 1) = n+ 3 = (n+ 1) + 2.

Hence, f−1 is well-defined. Consider the composition

f(f−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n)).

Clearly this is equal to q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n. Consider the

composition

f−1(f(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1))

which is equal to q′1 + 1 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
1 + 1 ≥ l′1 ≥ . . . ≥ l′n+1. We saw above

that q′1 + l′1 = (n + 1) + 1− 1 = n + 1 and we assumed q′0 + l′0 = (n + 1) + 2 thus,

according to SQP3, we know

q′0 = q′1 + 1 and l′0 = l′1 + 1.

We can conclude from this that f is a bijection between A(n+ 1) and B(n). Thus,

an+1 = bn.

24



Let B̂(n) be the set of all SQP systems on n ≥ 2 voters such that q0 + l0 = n + 1

where

q0 = q1 + 1 and l0 = l1.

Let B̃(n) be the set of all SQP systems on n ≥ 2 voters such that q0 + l0 = n + 1

where

q0 = q1 and l0 = l1 + 1.

Let B̄(n) be the set of all SQP systems on n ≥ 2 voters such that q0 + l0 = n + 1

where

q0 = q1 and l0 = l1.

These three sets are clearly pairwise disjoint by definition. Moreover, SQP3 implies

that the only other possible SQP system that can exist is one where

q0 = q1 + 1 and l0 = l1 + 1,

but, in this case, it cannot be that q0+l0 = n+1 since this would imply q1+l1 = n−1,

which directly contradicts SQP2. Thus, we can say that

B̂(n) ∪ B̃(n) ∪ B̄(n) = B(n).

Consider a function g : B̂(n+ 1)→ B(n) defined by

g(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1) = q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l

′
1 ≥ l′2 ≥ . . . ≥ l′n+1.

It follows from Lemma 2.2 that q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l
′
1 ≥ l′2 ≥ . . . ≥ l′n+1 is a SQP

system on n voters. We know that q′0 + l′0 = (n + 1) + 1. Since q′0 = q′1 + 1 and

l′0 = l′1 we know q′1 + l′1 = n+ 1. Thus, g is well-defined.

Also, g is invertible, with the mapping g−1 : B(n)→ B̂(n+ 1) defined by

g−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n) = q′0+1 ≥ q′0 ≥ . . . ≥ q′n, l

′
0 ≥ l′0 ≥ . . . ≥ l′n.
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It follows from Lemma 2.3 that q′0 + 1 ≥ q′0 ≥ . . . ≥ q′n, l
′
0 ≥ l′0 ≥ . . . ≥ l′n is a SQP

system on n+ 1 voters. We know that q′0 + l′0 = n+ 1, thus

(q′0 + 1) + l′0 = n+ 2 = (n+ 1) + 1.

Hence, g−1 is well-defined. Consider the composition

g(g−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n)).

Clearly this is equal to q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n. Consider the

composition

g−1(g(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1)),

which is equal to q′1 + 1 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
1 ≥ l′1 ≥ . . . ≥ l′n+1. According to how

B̂(n) was defined, we know q′1 + 1 = q′0 and l′1 = l′0. Thus, q′1 + 1 ≥ q′1 ≥ . . . ≥

q′n+1, l
′
1 ≥ l′1 ≥ . . . ≥ l′n+1 = q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l

′
0 ≥ l′1 ≥ . . . ≥ l′n+1. We can

conclude that g is a bijection between B̂(n+ 1) and B(n). Thus,

|B̂(n+ 1)| = bn.

Consider a function h : B̃(n+ 1)→ B(n) defined by

h(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1) = q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l

′
1 ≥ l′2 ≥ . . . ≥ l′n+1.

A symmetric argument to the one presented above for g can be used to show

that h is a bijection between B̃(n+ 1) and B(n). Thus,

|B̃(n+ 1)| = bn.

Consider a function j : B̄(n+ 1)→ A(n) defined by

j(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1) = q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l

′
1 ≥ l′2 ≥ . . . ≥ l′n+1.
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It follows from Lemma 2.2 that q′1 ≥ q′2 ≥ . . . ≥ q′n+1, l
′
1 ≥ l′2 ≥ . . . ≥ l′n+1 is a SQP

system on n voters. We know that q′0 + l′0 = (n + 1) + 1. Since q′0 = q′1 and l′0 = l′1

we know q′1 + l′1 = n+ 2. Thus, j is well-defined.

Also, j is invertible, with the mapping j−1 : A(n)→ B̄(n+ 1) defined by

j−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n) = q′0 ≥ q′0 ≥ . . . ≥ q′n, l

′
0 ≥ l′0 ≥ . . . ≥ l′n.

It follows from Lemma 2.3 that q′0 ≥ q′0 ≥ . . . ≥ q′n, l
′
0 ≥ l′0 ≥ . . . ≥ l′n is a SQP

system on n+ 1 voters. We know that q′0 + l′0 = n+ 2, thus

q′0 + l′0 = n+ 2 = (n+ 1) + 1.

Hence, j−1 is well-defined. Consider the composition

j(j−1(q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n)).

Clearly this is equal to q′0 ≥ q′1 ≥ . . . ≥ q′n, l
′
0 ≥ l′1 ≥ . . . ≥ l′n. Consider the

composition

j−1(j(q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1)),

which is equal to q′1 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
1 ≥ l′1 ≥ . . . ≥ l′n+1. According to how

B̄(n) was defined, we know q′1 = q′0 and l′1 = l′0. Thus, q′1 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
1 ≥

l′1 ≥ . . . ≥ l′n+1 = q′0 ≥ q′1 ≥ . . . ≥ q′n+1, l
′
0 ≥ l′1 ≥ . . . ≥ l′n+1. We can conclude that

j is a bijection between B̄(n+ 1) and A(n). Thus,

|B̄(n+ 1)| = an.

Recall that B̂(n) ∪ B̃(n) ∪ B̄(n) = B(n). Thus, using the relations just shown, we

can write

bn+1 = an + 2bn.

It was show earlier that an+1 = bn, we can use this fact along with the equality just

established and the definition of ZSQP (n) to write the following equalities:

ZSQP (n+ 2) = an+2 + bn+2 = bn+1 + an+1 + 2bn+1 = ZSQP (n+ 1) + 2bn+1.
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We can continue to apply our known equalities to the right-hand side to obtain:

ZSQP (n+ 2) = ZSQP (n+ 1) + bn+1 +an+ 2bn = ZSQP (n+ 1) + bn+1 +an+ bn+an+1.

If we regroup this we can rewrite ZSQP (n+ 2) as the following homogeneous linear

recurrence relation:

ZSQP (n+ 2) = 2ZSQP (n+ 1) + ZSQP (n).

This recurrence has the following characteristic equation:

x2 − 2x− 1 = 0.

The roots of the characteristic equation can be found to be 1 ±
√

2, thus we can

write ZSQP (n) as:

ZSQP (n) = c1(1 +
√

2)n + c2(1−
√

2)n.

where c1, c2 ∈ R are some constants. We can solve for these constants if we can

establish sufficient base cases. Lemma 2.4 tells us that ZSQP (2) = 17, and we can

further inspect this list to find that a2 = 5 and b2 = 12. These values can be used

with the previously determined equalities to find that a3 = 12 and b3 = 29, thus

ZSQP (3) = 41. These base cases enable us to set up a system of linear equations in

two variables:

17 = c1(1 +
√

2)2 + c2(1−
√

2)2

41 = c1(1 +
√

2)3 + c2(1−
√

2)3

which can be used to find

c1 =
3

2
+
√

2 and c2 =
3

2
−
√

2.

Using this information, we can write the general formula for ZSQP (n) as follows:

ZSQP (n) =

(
3

2
+
√

2

)
(1 +

√
2)n +

(
3

2
−
√

2

)
(1−

√
2)n.
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Table 2.1 – Number of functions on n voters

Axioms n=2 n=3 n=4 n=5

A,N,Mon,TB 1 1 1 1

A,N,Mon 3 6 10 20

A,Mon,TB 17 41 99 239

A,Mon 35 126 462 1716

The sequence generated by this formula for the number of strong quota pair

systems on n voters is a known one. It has several different interpretations that

can be found in [21]. Table 2.1 lists the number of distinct functions satisfying

the various combinations of axioms discussed in this chapter. This gives a general

impression of how restrictive some of the axioms are.
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CHAPTER 3

MEDIAN SEMILATTICES

Before we can discuss generalizing May’s Theorem to an order theoretic

domain some background must be provided. This is a brief chapter on language

and concepts needed to understand the next chapter. For more information on

median semilattices see [5] and [20], the latter having an emphasis on the related

idea of median graphs.

Definition 3.1. A partial order is a relation on a set X that is reflexive, transi-

tive, and antisymmetric.

We will henceforth refer to the set X as a partially ordered set (poset), taking

it as implied that there is a reflexive, transitive, and antisymmetric relation on it.

The least upper bound, or supremum, of two elements is referred to as their join.

For any two elements a, b ∈ X their join is denoted as:

a ∨ b = sup{a, b}.

The greatest lower bound, or infimum, of two elements is referred to as their meet.

For any two elements a, b ∈ X their meet is denoted as:

a ∧ b = inf{a, b}.

Definition 3.2. If X is a partially ordered set in which any two elements have a

join and a meet, then X is a lattice.

If X is finite then this definition implies X has a maximum and a minimum

element, conventionally denoted as 1 and 0 respectively.
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Definition 3.3. If X is a partially ordered set in which any two elements have a

meet, then X is a meet semilattice.

It follows from this definition that every lattice is a meet semilattice as well.

A distributive lattice is one in which the conventional notion of distributivity applied

to joins and meets holds for all elements in the lattice. Meaning, for all elements

a, b, c ∈ X we have

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Definition 3.4. A meet semilattice X is distributive if, for all x ∈ X, the set

{y ∈ X|y ≤ x} is a distributive lattice.

The following definitions round out the majority of the vocabulary needed

to understand the next chapter.

Definition 3.5. A meet semilattice X satisfies the join-Helly property if, for all

x, y, z ∈ X, whenever x ∨ y, x ∨ z, and y ∨ z exist, then x ∨ y ∨ z exists as well.

In Figure 3.1 we can see an example of a finite meet semilattice that does

not satisfy the join-Helly property, although it is distributive.

0

x1 x2 x3

x4 x5 x6

X =

Figure 3.1: A meet semilattice that is not a median semilattice

Definition 3.6. A meet semilattice is a median semilattice if it is distributive

and satisfies the join-Helly property.
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In Figure 3.2 we can see the median semilattice that represents the two-

alternative version of May’s Theorem discussed in the previous chapters. Another

important class of median semilattices are hierarchies, discussed in Chapter 5.

0

1 −1

X =

Figure 3.2: May’s Case

Definition 3.7. An element j of a meet semilattice X is join irreducible if j 6= 0

and j = x ∨ y ⇒ j = x or j = y for all x, y ∈ X.

The definition of median semilattice is the key concept needed for the gen-

eralization in the next chapter.
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CHAPTER 4

MAY’S THEOREM ON MEDIAN SEMILATTICES

4.1 Introduction

In the previous chapter some definitions and ideas concerning ordered sets

were presented. Prior to that, May’s Theorem and and some generalizations of

May’s Theorem were given in the case of two alternatives. This two-alternative

case can be thought of as a particular example of a median semilattice. In this

chapter we will state and prove our main result, a generalization of May’s theorem

to an arbitrary finite median semilattice.

Let X be a finite median semilattice. This X represents a collection of

alternatives from which one will be selected. We call any P = (x1, . . . , xn) ∈ Xn

a profile for some n ≥ 2. This profile represents the preferences of N = {1, . . . , n}

individuals from amongst the alternatives in X. As in Chapter 1, we will denote

the preference of a particular individual, xi, as P (i).

Definition 4.1. A function of the form f : Xn → X will be called a consensus

function.

Let J be the set of all join irreducible elements of X. Next we establish some

important notation. For any P ∈ Xn and any join irreducible j ∈ J let

Kj(P ) = {i ∈ N : j ≤ P (i)} and Kj(P ) = {i ∈ N : j ∨ P (i) D.N.E.}.

Here, the abbreviation “D.N.E.” means “does not exist.” Put simply, Kj(P )
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represents the individuals who favor j, and Kj(P ) represents the individuals who

do not favor j. Observe that when X is lattice, Kj(P ) = ∅ for all j ∈ J . It is

worth noting that since X is a meet semilattice, it has a 0 element. This represents

the notion of abstention or non-preference, as distinguished from the elements of

Kj(P ), which are better thought of as preferences for a competitor to j. We keep

track of these abstentions with a special case of our established notation, where, for

P ∈ Xn we have:

K0(P ) = {i ∈ N : P (i) = 0}.

Now we define an extremely important example of a consensus function.

Definition 4.2. The simple majority rule function, fs : Xn → X, is defined

such that for any P ∈ Xn:

fs(P ) =
∨
{j ∈ J : |Kj(P )| > |Kj(P )|}.

Presented below is a useful lemma concerning the simple majority rule func-

tion. The proof of this lemma uses the concept of a join prime element. An element

j ∈ X is join prime if j ≤ x ∨ y ⇒ j ≤ x or j ≤ y for all x, y ∈ X.

Lemma 4.1. For any t ∈ J and P ∈ Xn, t ≤ fs(P )⇒ |Kt(P )| > |Kt(P )|.

Proof. Suppose t ≤ fs(P ) =
∨
{j ∈ J : |Kj(P )| > |Kj(P )|}. Since X is distributive

and t is a join irreducible, we know t is join prime; thus it follows that t ≤ j

such that |Kj(P )| > |Kj(P )|. Since t ≤ j we know that |Kt(P )| ≥ |Kj(P )| and,

moreover, that |Kj(P )| ≥ |Kt(P )|. To get this last relation, observe that if t ≤ j

and t ∨ x does not exist for some x ∈ X then j ∨ x does not exist either. Thus,

|Kt(P )| ≥ |Kj(P )| > |Kj(P )| ≥ |Kt(P )|

as desired.
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Remark 4.1. It is worth mentioning that Lemma 4.1 is indeed a true biconditional,

as the reverse direction is a direct consequence of the definition of fs.

Remark 4.2. Observe that if X is a lattice, then, for any P = (x1, . . . , xn),

fs(P ) = x1 ∨ x2 ∨ . . . ∨ xn.

Since X is a lattice, it follows that Kj(P ) = ∅ ∀j ∈ J and so

fs(P ) =
∨
{j ∈ J : |Kj(P )| > 0}. (4.1)

Since X is distributive, we know that every element of X is the join of all the join

irreducibles less than or equal to it, thus if t ∈ J and t ≤ x1 ∨ x2 ∨ . . .∨ xn then we

know t ≤ xi for some i. In this case, |Kt(P )| > 0 which implies t ≤ fs(P ) by Remark

4.1, so it follows that x1 ∨ x2 ∨ . . . ∨ xn ≤ fs(P ). If j ∈ J satisfies j ≤ fs(P ), then

by Lemma 4.1, |Kj(P )| > 0 and so j ≤ xi for some i. Thus, j ≤ x1 ∨ x2 ∨ . . . ∨ xn.

It follows that fs(P ) ≤ x1 ∨ x2 ∨ . . . ∨ xn. Hence fs(P ) = x1 ∨ x2 ∨ . . . ∨ xn.

Below is another consensus function defined only in the case when the finite

median semilattice X is also a lattice.

Definition 4.3. The top function, fT : Xn → X, is defined such that for any

P ∈ Xn:

fT (P ) = 1 ∀P ∈ Xn.

The top function will be important in this chapter.

4.2 Axioms

Axiom 4.1. A consensus function f : Xn → X satisfies Anonymity (A) if, for

any P ∈ Xn and any σ, a permutation of N = {1, . . . , n}; f(σP ) = f(P ).
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This means that f(P ) is determined only by the elements of Pi that appear,

regardless of how they are assigned; i.e. an anonymous function makes a decision

based on what the ballots say, not who submitted each one. Also called equality or

egalitarian [16].

Axiom 4.2. A consensus function f : Xn → X satisfies Monotonicity (MON)

if, for any P, P ′ ∈ Xn and any j ∈ J ; if Kj(P ) ⊆ Kj(P
′) and Kj(P

′) ⊆ Kj(P )

then j ≤ f(P )⇒ j ≤ f(P ′).

This means that f responds to changes of preference in a “positive” way.

That is, if f favors j and any individual or group of individuals changes their vote

in such a way that they now favor j then f will still favor j.

Axiom 4.3. A consensus function f : Xn → X satisfies Competitive Decisive

Neutrality (CDN) if, for any P, P ′ ∈ Xn and any j, j′ ∈ J ;

Kj(P ) = Kj′(P
′) and Kj(P ) = Kj′(P

′)⇒ [j ≤ f(P )⇔ j′ ≤ f(P ′)].

This means f does not favor any of the alternatives over another. Thus, if we

replaced all the votes consistently, f would favor whichever alternative replaced the

previous winner. This axiom is an extention of May’s Neutrality and first appeared

in [17].

Axiom 4.4. A consensus function f : Xn → X satisfies Tie Breaking (TB) if,

for every P, P ′ ∈ Xn and j, j′ ∈ J such that

{P} ∪ {P ′} ⊆ {j, j′, 0}

and P (ae)P ′

we have

j � f(P ) and j′ � f(P )⇒ j ≤ f(P ′) or j′ ≤ f(P ′).
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This is what it sounds like; if the result is a tie and a single vote changes

then f will pick a winner, breaking the tie. It is worth remarking that it is possible

for j = j′, in which case TB becomes simplified quite a bit. Meaning, if j = j′ then

{P} ∪ {P ′} ⊆ {j, 0}

and P (ae)P ′

implies

j � f(P )⇒ j ≤ f(P ′).

Theorem 4.1. The simple majority rule function, fs, satisfies Anonymity, Mono-

tonicity, Competitive Decisive Neutrality, and Tie-Breaking.

Proof. Since fs(P ) is determined by the values |Kj(P )| and |Kj(P )| it follow that

fs satisfies A.

Suppose P, P ′ ∈ Xn are two profiles such thatKj(P ) ⊆ Kj(P
′), Kj(P

′) ⊆ Kj(P ), and j ≤

fs(P ) for some j ∈ J . To show fs satisfies MON we need to show that j ≤ fs(P
′).

Observe that,

Kj(P ) ⊆ Kj(P
′)⇒ |Kj(P )| ≤ |Kj(P

′)|

Kj(P
′) ⊆ Kj(P )⇒ |Kj(P

′)| ≤ |Kj(P )|.

By Lemma 4.1 we have j ≤ fs(P )⇒ |Kj(P )| > |Kj(P )|. Thus,

|Kj(P
′)| ≥ |Kj(P )| > |Kj(P )| ≥ |Kj(P

′)|

which, by the definition of fs, implies j ≤ fs(P
′) as desired.

Suppose P, P ′ ∈ Xn are two profiles such thatKj(P ) = Kj′(P
′), Kj(P ) = Kj′(P

′), and j ≤

fs(P ) for some j, j′ ∈ J . To show fs satisfies CDN we need to show that j′ ≤ fs(P
′).
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By Lemma 4.1 we have j ≤ fs(P )⇒ |Kj(P )| > |Kj(P )|. Thus,

|Kj′(P
′)| = |Kj(P )| > |Kj(P )| = |Kj′(P

′)|.

Hence j′ ≤ fs(P
′) as desired. The reverse direction, j′ ≤ fs(P

′) ⇒ j ≤ fs(P ) is

done in a similar way.

To show fs satisfies TB, consider P, P ′ ∈ Xn such that for j, j′ ∈ J we have

{P} ∪ {P ′} ⊆ {j, j′, 0}

P (ae)P ′,

j � fs(P ),

and j′ � fs(P ).

We want to show that j ≤ fs(P
′) or j′ ≤ fs(P

′); this will be handled in two cases.

Case 1: j ∨ j′ exists.

In this case, since {P} ∪ {P ′} ⊆ {j, j′, 0}, we know Kj(P ) = ∅ = Kj′(P ). Lemma

4.1 tells us that

j � fs(P )⇒ |Kj(P )| ≤ |Kj(P )|,

j′ � fs(P )⇒ |Kj′(P )| ≤ |Kj′(P )|.

Thus Kj(P ) = ∅ = Kj′(P ), hence P = P0 where {P0} = {0}. Since P (ae)P ′ and

{P}∪{P ′} ⊆ {j, j′, 0} we know either P ′(i) = j or P ′(i) = j′ for some i ∈ {1, . . . , n}.

If P ′(i) = j then |Kj(P
′)| = 1 > 0 = |Kj(P

′)| implying j ≤ f(P ′). If P ′(i) = j′

instead, then |Kj′(P
′)| = 1 > 0 = |Kj′(P

′)| implying j′ ≤ f(P ′). Thus, j ≤ f(P ′)

or j′ ≤ f(P ′) as desired.
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Case 2: j ∨ j′ does not exist.

In this case, since {P} ∪ {P ′} ⊆ {j, j′, 0} we know

Kj(P ) = Kj′(P ), Kj′(P ) = Kj(P ),

Kj(P
′) = Kj′(P

′), Kj′(P
′) = Kj(P

′).

Using Lemma 4.1 again, we know

j � fs(P )⇒ |Kj(P )| ≤ |Kj(P )|,

j′ � fs(P )⇒ |Kj′(P )| ≤ |Kj′(P )|.

We can combine these two sets of facts to conclude that

|Kj′(P )| = |Kj(P )| ≤ |Kj(P )| = |Kj′(P )| and

|Kj(P )| = |Kj′(P )| ≤ |Kj′(P )| = |Kj(P )|.

Hence,

|Kj(P )| = |Kj(P )| = |Kj′(P )| = |Kj′(P )|.

Since P (ae)P ′, the difference between P and P ′ can be divided in to three possible

subcases:

If P (i0) = j′, then P ′(i0) = 0 or P ′(i0) = j.

If P ′(i0) = 0 then |Kj′(P
′)| = |Kj′(P )| − 1 and |Kj(P

′)| = |Kj(P )|. Hence

|Kj(P
′)| = |Kj(P )| = |Kj′(P )| > |Kj′(P )| − 1 = |Kj′(P

′)| = |Kj(P
′)|.

Thus j ≤ fs(P
′).

If P ′(i0) = j then |Kj′(P
′)| = |Kj′(P )| − 1 and |Kj(P

′)| = |Kj(P )|+ 1. Hence

|Kj(P
′)| = |Kj(P )|+ 1 > |Kj(P )| − 1 = |Kj′(P )| − 1 = |Kj′(P

′)| = |Kj(P
′)|.

Thus j ≤ fs(P
′).
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If P (i0) = j then an argument symmetric to the one just given can be used to

conclude j′ ≤ fs(P
′).

If P (i0) = 0, then P ′(i0) = j or P ′(i0) = j′. If P ′(i0) = j then |Kj(P
′)| = |Kj(P )|+1

and |Kj′(P
′)| = |Kj′(P )|, thus

|Kj(P
′)| = |Kj(P )|+ 1 > |Kj(P )| = |Kj′(P )| = |Kj′(P

′)| = |Kj(P
′)|.

Thus j ≤ fs(P
′).

If P ′(i0) = j′, then an equivalent argument will conclude j′ ≤ fs(P
′), as desired.

Theorem 4.2. When X is a lattice, the top function, fT , satisfies Anonymity,

Monotonicity, Competitive Decisive Neutrality, and Tie-Breaking.

Proof. Since fT (P ) = 1 ∀P ∈ Xn we have fT (P ) = fT (σP ) = 1 for any σ, hence,

fT satisfies A.

Suppose P, P ′ ∈ Xn are two profiles such that Kj(P ) ⊆ Kj(P
′), Kj(P

′) ⊆

Kj(P ), and j ≤ fT (P ) for some j ∈ J . To show fT satisfies MON we need to

show that j ≤ fT (P ′). Since fT (P ′) = 1 it is clearly the case that j ≤ fT (P ′).

Suppose P, P ′ ∈ Xn are two profiles such that Kj(P ) = Kj′(P
′), Kj(P ) =

Kj′(P
′), and j ≤ fT (P ) for some j, j′ ∈ J . To show fT satisfies CDN we need to

show that j′ ≤ fT (P ′). Since fT (P ′) = 1 it is clearly the case that j ≤ fT (P ′).

Since fT (P ) = 1 ∀P ∈ Xn, it will never be the case that j � fT (P ) for any

j or P . This means the conditions of TB will never be met, thus it is vacuously

satisfied.
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Not only do these two functions satisfy our axioms, they are characterized

by them. This fact is the main result of this thesis and is proven below.

4.3 Main Result

Theorem 4.3. If X is a finite median semilattice and f : Xn → X satisfies

Anonymity, Monotonicity, Competitive Decisive Neutrality, and Tie-Breaking then

f = fs or f = fT .

To prove this theorem we first consider the profile P0, where {P0} = {0}, in

a lemma. We will build up to less trivial profiles in a series of lemmas, culminating

in the proof of the theorem.

Lemma 4.2. f(P0) = 0 or f(P0) = 1.

Proof. Suppose f(P0) 6= 0. Since X is finite there exists j ∈ J such that j ≤ f(P0).

For any j′ ∈ J notice that

Kj(P0) = Kj′(P0) = ∅ and Kj(P0) = Kj′(P0) = ∅.

Thus, by CDN, j ≤ f(P0) ⇔ j′ ≤ f(P0). Since j′ was an arbitrary element of J ,

this implies t ≤ f(P0) ∀t ∈ J , hence f(P0) = 1.

Observe that the previous lemma follows directly from CDN and does not

use the other axioms.

Lemma 4.3. If j ∈ J satisfies j ≤ f(P ) for some P ∈ Xn, and f(P0) = 0, then

Kj(P ) 6= ∅.

Proof. Suppose not, i.e. j ≤ f(P ) and Kj(P ) = ∅ for some P ∈ Xn. Then

Kj(P ) = Kj(P0) = ∅ and Kj(P0) ⊆ Kj(P ).

Thus, MON implies j ≤ f(P0), which contradicts the assumption that f(P0) = 0.

Therefore Kj(P ) 6= ∅.
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Notice that the previous lemma follows directly from MON and does not

use the other axioms.

Lemma 4.4. If {P} ⊆ {j, 0} for some P ∈ Xn and j ∈ J such that Kj(P ) 6= ∅,

and f(P0) = 0, then j ≤ f(P ).

Proof. Consider P ′ ∈ Xn such that P ′(i0) = j for some i0 ∈ Kj(P ) and P ′(i) = 0

for all i 6= i0. Thus

{P ′} ∪ {P0} ⊆ {j, 0}

and P ′(ae)P0

Since j � f(P0) TB implies j ≤ f(P ′). Since Kj(P
′) ⊆ Kj(P ) and Kj(P ) =

Kj(P
′) = ∅, MON implies j ≤ f(P ).

The previous lemma follows from MON and TB.

Lemma 4.5. If {P} ⊆ {j1, j2, 0} and |Kj1(P )| = |Kj2(P )| > 0 for P ∈ Xn and

j1, j2 ∈ J such that j1 ∨ j2 does not exist, then

f(P ) =
∨
{t ∈ J : t ≤ j1 and t ∨ j2 exists

or t ≤ j2 and t ∨ j1 exists}.

Proof. Consider t ∈ J such that t ≤ j1 and t ∨ j2 exists. Also consider P ′ ∈ Xn

such that {P ′} ⊆ {j1, 0} and Kj1(P
′) = Kj1(P ). By Lemma 4.4, j1 ≤ f(P ′).

Consider P ′′ ∈ Xn such that {P ′′} ⊆ {t, 0} and Kt(P
′′) = Kj1(P

′). Which im-

plies t ≤ f(P ′′), again by Lemma 4.4.

Observe Kt(P
′′) ⊆ Kt(P ) and Kt(P

′′) = Kt(P ) = ∅, thus, MON implies t ≤ f(P ).

Suppose u ∈ J such that u ≤ f(P ). Since we assumed the existence of j1, j2 ∈ J
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such that j1 ∨ j2 does not exist, we know X can’t be a lattice. Since X is not a

lattice it cannot be the case that f(P0) = 1, thus Lemma 4.2 implies f(P0) = 0,

hence, Lemma 4.3 implies Ku(P ) 6= ∅. Thus u ≤ j1 or u ≤ j2; without loss of

generality, let u ≤ j1. We need to show u ∨ j2 exists.

If u ∨ j2 does not exist then

Ku(P ) = Kj1(P ) and Ku(P ) = Kj1(P ),

hence CDN implies j1 ≤ f(P ). Consider P ′′′ ∈ Xn such that {P ′′′} ⊆ {j, j′, 0}

where

Kj1(P
′′′) = Kj2(P ),

Kj2(P
′′′) = Kj1(P ),

and K0(P
′′′) = K0(P ).

It was assumed that |Kj1(P )| = |Kj2(P )|, hence, we have that P ′′′ is simply a

permutation of the elements of P , thus, A implies j1 ≤ f(P ′′′). Observe that

Kj1(P ) = Kj2(P
′′′) and Kj1(P ) = Kj2(P

′′′).

Since j1 ≤ f(P ) it follows from CDN that j2 ≤ f(P ′′′). But now f(P ′′′) is an upper

bound for {j1, j2}, contrary to the fact that j1∨j2 does not exist. Thus u∨j2 exists,

as desired.

The last lemma utilized all the axioms to arrive at a proof. With these

lemmas established, we can complete the proof of Theorem 4.3.

Proof of Theorem 4.3. It follows from Lemma 4.2 that f(P0) = 0 or f(P0) = 1.

If f(P0) = 1 then consider P ∈ Xn such that P 6= P0. Observe that for

any j ∈ J we have Kj(P0) = ∅, thus Kj(P0) ⊆ Kj(P ). If f(P0) = 1 then
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Kj(P0) = Kj(P ) = ∅. Furthermore, if f(P0) = 1, then j ≤ f(P0). Thus, by

MON, j ≤ f(P ). Since j is an arbitrary element of J , this implies t ≤ f(P ) ∀t ∈ J ,

hence f(P ) = 1. Thus, in this case, f = fT .

If f 6= fT then f(P0) = 0, which is equal to fs(P0), since the join of the

empty set is 0. Suppose j ≤ f(P ) for some P ∈ Xn. Want to show j ≤ fs(P ).

Lemma 4.3 implies |Kj(P )| > 0. If |Kj(P )| = 0 then we’re done.

If |Kj(P )| > 0 consider P ′ ∈ Xn and j′ ∈ J such that j ∨ j′ does not exist,

where

P ′(i) = j for i ∈ Kj(P ),

P ′(i) = j′ for i ∈ Kj(P ), and

P ′(i) = 0 otherwise.

Thus, Kj(P
′) = Kj(P ) and Kj(P

′) = Kj′(P
′) = Kj(P ), hence, CDN implies

j ≤ f(P ′). This implies

|Kj(P
′)| > |Kj(P

′)| = |Kj′(P
′)|.

If not (that is, if |Kj(P
′)| ≤ |Kj′(P

′)|) then consider {P ′′} ⊆ {j, j′, 0} ∈ Xn such

that

Kj(P
′) ⊆ Kj(P

′′),

Kj(P
′′) ⊆ Kj(P

′), and

|Kj′(P
′′)| = |Kj(P

′′)|.

Thus, MON implies j ≤ f(P ′′). Lemma 4.5 implies

f(P ′′) =
∨
{t ∈ J : t ≤ j and t ∨ j′ exists

or t ≤ j′ and t ∨ j exists}.
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Since j ≤ f(P ′′) and j is join prime, we know that j ≤ t such that either

t ≤ j and t ∨ j′ exists⇒ j ∨ j′ exists, or

t ≤ j′ and t ∨ j exists⇒ j ∨ j′ exists.

Both cases contradict the assumption that j ∨ j′ does not exist. Hence, |Kj(P
′)| >

|Kj′(P
′)|. Thus, by the definition of fs, |Kj(P )| > |Kj(P )| ⇒ j ≤ fs(P ).

Now we will assue j ≤ fs(P ) and show j ≤ f(P ). Lemma 4.1 implies

|Kj(P )| > |Kj(P )|. If |Kj(P )| = 0 then consider P ′ ⊆ {j, 0} such that Kj(P
′) =

Kj(P ). Lemma 4.4 implies j ≤ f(P ′) hence, by CDN, j ≤ f(P ). If |Kj(P )| > 0

then there exists j′ ∈ J such that j∨ j′ does not exist. Consider P ′ ⊆ {j, j′, 0} with

Kj′(P
′) = Kj(P ), Kj(P

′) ⊆ Kj(P ), and |Kj(P
′)| = |Kj′(P

′)|.

Thus, by Lemma 4.5,

f(P ′) =
∨
{t ∈ J : t ≤ j and t ∨ j′ exists

or t ≤ j′ and t ∨ j exists}.

If j ≤ f(P ′) then, since j is a join irreducible, we know that j ≤ t such that either

t ≤ j and t ∨ j′ exists⇒ j ∨ j′ exists, or

t ≤ j′ and t ∨ j exists⇒ j ∨ j′ exists.

Both cases contradict the fact that j∨ j′ does not exist, hence j � f(P ′). Similarly,

j′ � f(P ′). Consider P ′′ ⊆ {j, j′, 0} where

Kj′(P
′′) = Kj′(P

′), Kj(P
′) ⊆ Kj(P

′′), and |Kj(P
′′)| = |Kj(P

′)|+ 1.

Observe that P ′(ae)P ′′. Since j � f(P ′) and j′ � f(P ′), TB tells us that either

j ≤ f(P ′′) or j′ ≤ f(P ′′). Since Kj′(P
′′) ⊆ Kj′(P

′) and Kj′(P
′) ⊆ Kj′(P

′′), if
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j′ ≤ f(P ′′) then MON would imply j′ ≤ f(P ′); a contradiction. Hence, j ≤ f(P ′′)

and we can use A and MON to get j ≤ f(P ).

Since j ≤ f(P )⇒ j ≤ fs(P ) and j ≤ fs(P )⇒ j ≤ f(P ), we have f = fs as

desired.

It is obviously the case that fT only makes sense as a function when X is a

lattice, thus when X is not a lattice A, CDN, MON, and TB uniquely characterize

the simple majority rule function fs. Since we would like a unique characterization

on any finite median semilattice X, the case when X is a lattice will require some

further study; which is done in the following sections. It will be shown in the

next section that, when X is a lattice, A is implied by the other axioms. To see

the importance of Anonymity when X is not a lattice we will look at a particular

consensus function that uses the following notation.

|Kj(P )|1 =

 |Kj(P )|+ 1 if j ≤ P (1);

|Kj(P )| if j 6≤ P (1);

|Kj(P )|1 =

 |Kj(P )|+ 1 if j ∨ P (1) D.N.E.;

|Kj(P )| otherwise.

Example 4.1. Let the function f̂s : Xn → X be defined by:

f̂s(P ) =
∨
{j ∈ J : |Kj(P )|1 > |Kj(P )|1}.

This function satisfies MON, CDN, and TB, but not A. This function can

be thought of as simple majority rule only the first voters vote is counted twice. The

argument for f̂s satisfying MON, CDN, and TB is very similar to the argument

for fs satisfying those same axioms. To see that f̂s does not satisfy A, consider

P = (x1, x2, 0, . . . , 0) and P ′ = (x2, x1, 0, . . . , 0), where x1 ∨ x2 does not exist; such

an x1 and x2 can be found because X is not a lattice.
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It turns out (as we would hope) that when X is not a lattice, all of our axioms

are independent of one another. The function presented above demonstrates the

independence of Anonymity; below, functions will be presented which demonstrate

the independence of the remaining three axioms.

Example 4.2. The function fj∗ : Xn → X where X is any finite median semilattice

besides the two element chain, and j∗ ∈ J a fixed atom, is defined by:

fj∗(P ) =

 fs(P ) ∨ j∗ if Kj∗(P ) = ∅

fs(P ) otherwise.

Since fs is a well defined function all we have to check to make sure fj∗ is

well defined is that fs(P ) ∨ j∗ exists when Kj∗(P ) = ∅. If fs(P ) = 0, then it is

clearly the case that fs(P ) ∨ j∗ exists. If fs(P ) 6= 0 then observe that since X is

finite, we know fs(P ) =
∨
{j ∈ J : j ≤ fs(P )}. Recall that fs satisfies all the

axioms and that fs(P0) = 0, thus we can apply Lemma 4.3 and conclude that for

any j ∈ J , if j ≤ fs(P ) then Kj(P ) 6= ∅, thus there exists an i ∈ N such that

j ≤ P (i). Since Kj∗(P ) = ∅ we have that P (i) ∨ j∗ exists, and is thus an upper

bound for both j∗ and any j ∈ J such that j ≤ fs(P ), hence, j ∨ j∗ exists. If

|{j ∈ J : j ≤ fs(P )}| = 1 then {j ∈ J : j ≤ fs(P )} = {fs(P )} and we have that

fs(P ) ∨ j∗ exists. If |{j ∈ J : j ≤ fs(P )}| ≥ 2 then the join-Helly property implies

fs(P ) ∨ j∗ exists. Thus the function fj∗ is well defined, it is also the case that fj∗

satisfies A, MON, and TB, but not CDN.

It follows from the fact that fs satisfies A that fj∗ does as well. The fact that

fs satisfies TB and the observation that fs(P ) ≤ fj∗(P ) for all profiles P ∈ Xn,

that fj∗ satisfies TB as well. To see that fj∗ satisfies MON, consider P, P ′ ∈ Xn

such that Kj(P ) ⊆ Kj(P
′), Kj(P

′) ⊆ Kj(P ), and j ≤ fj∗(P ) for some j ∈ J .

We want to show j ≤ fj∗(P
′). Since j∗ is an atom, it follows that j ≤ fj∗(P )

implies j ≤ fs(P ) or j = j∗ (with Kj∗(P ) = ∅). If j ≤ fs(P ) then j ≤ fs(P
′)
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since fs satisfies MON, and thus j ≤ fj∗(P
′). If j = j∗ and Kj∗(P ) = ∅ then

Kj(P
′) ⊆ Kj(P ) implies Kj∗(P

′) = ∅ and we have fj∗(P ) = fs(P ) ∨ j∗, thus

j ≤ fj∗(P
′) as desired. To see that fj∗ does not satisfy CDN consider any j ∈ J

such that j 6= j∗; j∗ ≤ fj∗(P0) but j � fj∗(P0) even though the conditions of CDN

are met at P0.

Example 4.3. Let the function f0 : Xn → X be defined by:

f0(P ) = 0

This function satisfies A, CDN, and MON but not TB. This function

clearly satisfies A. f0 vacuously satisfies CDN and MON. Since this function

always outputs a 0 the tie can never be broken.

We will see an example of a function that satisfes A, CDN, TB, but not

MON in Chapter 5.

4.4 Lattice Case

It was mentioned in the preceding sections that things simplify quite a bit

when X is a lattice. In this section X will be restricted to being a distributive

lattice in order to study these simplifications. Just as we previously defined the

profile {P0} = {0}, it will be convenient to define {P1} = {1}, which is a potential

profile now that X is a lattice. We begin with the axioms of Monotonicity and

Competitive Decisive Neutrality, which reduce to axioms studied by Monjardet in

[19]; these axioms, Decisive Monotonicity and Decisive Neutrality respectively, are

presented below.

Axiom 4.5. A consensus function f : Xn → X satisfies Decisive Monotonicity

(DM) if, for any P, P ′ ∈ Xn and any j ∈ J ; if Kj(P ) ⊆ Kj(P
′) then j ≤ f(P )⇒

j ≤ f(P ′).
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When X is a lattice and P ∈ Xn is a profile, then Kj(P ) = ∅ for all

j ∈ J . One way of looking at this is that MON isn’t actually changed, but that

the condition requiring Kj(P
′) ⊆ Kj(P ) is vacuously satisfied by all profiles P and

P ′ ∈ Xn.

Axiom 4.6. A consensus function f : Xn → X satisfies Decisive Neutrality

(DN) if, for any P, P ′ ∈ Xn and any j, j′ ∈ J ;

Kj(P ) = Kj′(P
′) ⇒ [j ≤ f(P )⇔ j′ ≤ f(P ′)].

As with MON, the requirement that Kj(P ) = Kj′(P
′) is vacuously satisfied

by all profiles when X is a lattice.

RestrictingX to being a lattice does not change the presentation of Anonymity

or Tie Breaking, however, when X is a lattice DM, DN, and TB imply Anonymity.

Theorem 4.4. If X is a distributive lattice and f : Xn → X satisfies DM, DN,

and TB then f satisfies A.

Proof. Since X is a lattice, DM and DN are equivalent to MON and CDN. Thus,

it follows from Lemma 4.2 that f(P0) = 0 or f(P0) = 1. It follows from the same

argument given in the proof of Theorem 4.3 that if f(P0) = 1 then f(P ) = 1 for

all P ∈ Xn, thus, since f is constant, it clearly satisfies Anonymity. If f(P0) = 0

consider P, P ′ ∈ Xn such that P ′ = σP for some permutation σ and j ≤ f(P ) for

some j ∈ J . Lemma 4.3 implies Kj(P ) 6= ∅ thus Kj(P
′) 6= ∅. Consider P ′′ ∈ Xn

such that {P ′′} ⊆ {j, 0} and Kj(P
′′) = Kj(P

′). Lemma 4.4 implies j ≤ f(P ′′) and

DM implies j ≤ f(P ′). Since f(P ) =
∨
{j : j ≤ f(P ) and j ∈ J}, it follows that

f(P ) ≤ f(P ′). An argument symmetric to the one just presented can be used to

show f(P ′) ≤ f(P ), thus f(P ) = f(P ′) as desired.
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This interesting result allows us to remove the axiom of Anonymity from

Theorem 4.3 when X is a lattice. This result is presented below as a corollary.

Corollary 1. If X is a distributive lattice and f : Xn → X is a consensus function

that satisfies DM, DN, and TB then f = fs or f = fT .

To see that A is the only axiom implied by the others we can consider the

following examples of consensus functions that satisfy all but one of the remaining

axioms.

In the following example let X = B2, the Boolean lattice with two atoms,

pictured in Figure 4.1.

Figure 4.1: The lattice B2

0

a1 a2

1

X =

Define the function f1 : Xn → X by:

f1(P ) = x1 ∧ x2 ∧ . . . ∧ xn ∀P = (x1, . . . , xn) ∈ Xn.

We now show that the function f1 satisfies DM and DN, but not TB. Since

j ≤ f1(P ) if and only if Kj(P ) = {1, . . . , n}, for any j ∈ J and P ∈ Xn, DM

is vacuously satisfied. To see that DN is satisfied, consider P, P ′ ∈ Xn such that

Kj(P ) = Kj′(P
′) for some j, j′ ∈ J and j ≤ f1(P ). This implies Kj(P ) = N thus

{P ′} = Kj′(P
′) and it follows that j′ ≤ f1(P

′). To see that TB is not satisfied,

consider P0 = (0, 0, . . . , 0) and P = (a1, 0, . . . , 0). It follows from the definition of
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f1 that f1(P0) = f1(P ) = 0, hence the tie is not broken.

The next example function is defined on the chain with two join irreducibles,

a and 1, pictured in Figure 4.2.

Figure 4.2: The 3 element chain

0

a

1

X =

The following function satisfies Decisive Monotonicity and Tie-Breaking, but

not Decisive Neutrality. Define f2 : Xn → X by:

f2(P ) =

 x1 ∨ x2 ∨ . . . ∨ xn if P 6= P0

a if P = P0.

To see that this function satisfies DM observe that, when j = a, DM is

satisfied automatically; if j = 1 then 1 ≤ f2(P ) implies P (i) = 1 for some i ∈ K,

thus K1(P ) ⊆ K1(P
′) implies P ′(i) = 1 for some i ∈ K, thus 1 ≤ f2(P

′). A similar

argument illustrates that f2 satisfies TB, since a ≤ f2(P ) for all profiles P the

only case we need to consider is when j = j′ = 1. If 1 � f2(P ) for some P such

that {P} ⊆ {0, 1} then we know P = P0. Thus, P (ae)P ′ implies P ′(i) = 1 for

some i ∈ K, hence, 1 ≤ f2(P
′) and f2 satisfies TB. Lastly, consider P = P0 and

P ′ = (a, 0, . . . , 0), Ka(P ) = K1(P
′) = ∅ and a ≤ f2(P ) but 1 � f2(P

′), thus f2

does not satisfy DN.

For the last example, consider the two element chain seen in Figure 4.3.

Define f3 : Xn → X as:
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Figure 4.3: The 2 element chain

0

1

X =

f3(P ) =

 x1 ∨ x2 ∨ . . . ∨ xn if P 6= P1

0 if P = P1.

The function f3 satisfies Decisive Neutrality and Tie-Breaking, but not De-

cisive Monotonicity. To see that it satisfies DN consider the fact that 1 is the only

join irreducible and X consists of only two elements, so K1(P ) = K1(P
′) implies

P = P ′ for all profiles P, P ′ ∈ Xn, thus 1 ≤ f3(P )⇔ 1 ≤ f3(P
′), so DN is satisfied.

To see that f3 satisfies TB observe that 1 � f3(P ) implies P = P0 or P = P1,

in either case if P (ae)P ′ then 1 ≤ f3(P
′). The function f3 does not satisfy DM,

which can be seen by considering the profiles P = (0, 1, . . . , 1) and P ′ = P1, thus

K1(P ) ⊆ K1(P
′), however, 1 ≤ f3(P ) but 1 � f3(P

′).

Thus DN, DM, and TB are independent of one another. Since the lattices

in the preceeding examples are also all finite median semilattices, these functions

demonstrate the independence of CDN, MON, and TB when X is any finite

median semilattice. Combined with the example at the end of the previous section,

we can see that all the axioms in Theorem 4.3 are independent of one another.

4.5 Unanimity

To get the unique characterization that we want we will need to further

restrict what functions we are describing. Following is the definition of another

common axiom from voting theory, unanimity.
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Axiom 4.7. A consensus function f : Xn → X satisfies Unanimity (U) if, for

any P ∈ Xn and x ∈ X such that P = (x, . . . , x), then f(P ) = x.

Thus, if a profile indicates that all the individuals favor the same alternative,

a unanimous function will select that alternative as the output.

Lemma 4.6. The simple majority rule function fs satisfies Unanimity.

Proof. Let X be a finite median semilattice. Let P ∈ Xn be a profile such that

{P} = {x} for some x ∈ X. Recall that fs is defined as:

fs(P ) =
∨
{j ∈ J : |Kj(P )| > |Kj(P )|}.

Since Kj(P ) = {i ∈ N : j ≤ P (i)} and Kj(P ) = {i ∈ N : j ∨ P (i) D.N.E.}, we

know that if j ∈ J and j ≤ x then Kj(P ) = N and Kj(P ) = ∅, thus |Kj(P )| >

|Kj(P )| and we have j ∈ {j ∈ J : |Kj(P )| > |Kj(P )|}. If j ∈ J and j � x then

Kj(P ) = ∅, thus |Kj(P )| = 0 and we have j /∈ {j ∈ J : |Kj(P )| > |Kj(P )|}. Hence

{j ∈ J : |Kj(P )| > |Kj(P )|} = {j ∈ J : j ≤ x}. It follows from this that

∨
{j ∈ J : |Kj(P )| > |Kj(P )|} =

∨
{j ∈ J : j ≤ x}

but we know X is finite, so
∨
{j ∈ J : j ≤ x} = x; thus fs(P ) = x.

It is worth remarking at this point that our other important example of a

consensus function, the top function fT , does not satisfy unanimity. To see this,

consider fT (P0). The profile P0 = (0, . . . , 0), thus {P0} = {0} but fT (P0) = 1.

Just as it turned out that restricting X to being a lattice caused Anonymity

to be implied by the other axioms, adding Unanimity makes Decisive Neutrality

redundant when X is a lattice.

Theorem 4.5. If X is a distributive lattice and f : Xn → X satisfies U, DM, and

TB then f satisfies DN.
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Proof. Consider P, P ′ ∈ Xn such that Kj(P ) = Kj′(P
′) for some j, j′ ∈ J where

j ≤ f(P ). We want to show j′ ≤ f(P ′). Observe that U implies f(P0) = 0,

satisfying the conditions of Lemmas 4.3 and 4.4; hence, by Lemma 4.3, Kj(P ) 6= ∅.

Since Kj(P ) = Kj′(P
′) there is some i ∈ N such that i ∈ Kj′(P

′). Consider

P ′′ ∈ Xn such that P ′′(i) = j′ and P ′′(k) = 0 for k 6= i. It follows from Lemma 4.4

that j′ ≤ f(P ′′). Since Kj′(P
′′) ⊆ Kj′(P

′), DM implies j′ ≤ f(P ′) as desired.

Theorem 4.6. Let X be a finite median semilattice and let f : Xn → X.

(a) If X is not a lattice, then f satisfies A, CDN, MON, and TB iff f = fs.

(b) If X is a lattice, then f satisfies U, DM, and TB iff f = fs.

Proof. If X is a finite median semilattice that is not a lattice and f : Xn → X is a

consensus function satisfying A, CDN, MON, and TB, then Theorem 4.3 implies

f = fs or f = fT . Since X is not a lattice, then it cannot be the case that f = fT

since this function is only defined on a lattice, thus f = fs. If f = fs then it follows

from Theorem 4.1 that f satisfies A, CDN, MON, and TB.

If X is a finite median semilattice that is a lattice and f : Xn → X is a

consensus function satisfying U, DM, and TB, then Theorem 4.5 implies f satisfies

DN as well. Thus Corollary 1 implies f = fs or f = fT , but since f also satisfies U

then it cannot be the case that f = fT since we saw above that fT does not satisfy

Unanimity, thus f = fs. If f = fs then it follows from Theorem 4.1 and Lemma

4.6 that f satisfies U, DN, DM, and TB.

To summarize, if X is a finite median semilattice and we know whether or not

it is a lattice, then we can uniquely characterize the simple majority rule function

with four axioms or less. Monotonicity, and Tie-Breaking are required for either

case; Unanimity if X is a lattice, Anonymity and Competitive Decisive Neutrality

if X is not a lattice. If X is a general finite median semilattice then all five are

required for a unique characterization of fs.

54



CHAPTER 5

MAY’S THEOREM ON HIERARCHIES

The true power of Theorem 4.3 can be seen by looking at a particular example

of a median semilattice. In this chapter the median semilattice of hierarchies is

considered. We will see that the characterization of simple majority rule given in

Chapter 4 can be applied to the median semilattice of hierarchies to obtain a version

of May’s Theorem on hierarchies.

Definition 5.1. A hierarchy H, on a finite set S of size n ≥ 3, is a collection of

subsets of S such that

• ∅ 6∈ H and S ∈ H;

• {x} ∈ H for all x ∈ S;

• A ∩B ∈ {A,B,∅} for all A,B ∈ H.

The application of the hierarchy concept in the field of clustering is illustrated

in [13]. An element of a hierarchy is called a cluster; in particular, a cluster A ∈ H

is a nontrivial cluster if 1 < |A| < n, whereas A is a trivial cluster if it is a

singleton subset of S or the entire set S. Let

H∅ = {{x}, S : x ∈ S} and HA = H∅ ∪ {A}.

In Figure 5.1, the hierarchy H{a,b,c} with S = {a, b, c, d} is shown. Notice that H∅

is a hierarchy on S containing only the trivial clusters and HA is a hierarchy on S

containing a single nontrivial cluster, A. For any two hierarchies H and J on S, we
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{a} {b} {c} {d}

{a, b, c}

S

Figure 5.1: The hierarchy H{a,b,c}

say H ≤ J if H ⊆ J . It is easy to check that ≤ is a partial order on the set of all

hierarchies. The first two items in the definition of a hierarchy H are equivalent to

H∅ ≤ H.

We denote the set of all hierarchies on a set S by H(S), or just H when the

set S is understood from context.

Proposition 5.1. The pair (H(S),≤) is a median semilattice.

Proof. By the definition of hierarchy,

H∅ ≤ H ∀H ∈ H(S)

Next, for any H,H ′ ∈ H(S), we have H∅ ≤ H ∩ H ′. For any nontrivial clusters

A,B ∈ H ∩ H ′ we know A,B ∈ H, since H ∩ H ′ is a subset of H. Since H is a

hierarchy, we know A ∩B ∈ {A,B,∅}, hence,

H ∩H ′ ∈ H(S).

So (H(S),≤) is a meet semilattice with set intersection as the meet operation.

Let H ∈ H(S) and consider the set

{J ∈ H(S) : J ≤ H}.

Because we are considering only hierarchies that are subsets of a fixed hierarchy,

this set is a lattice with intersection as meet and union as join. Since intersection

distributes over union and vice versa, it follows that this lattice is distributive.
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Let H,H ′, H ′′ ∈ H(S) such that

H ∪H ′, H ∪H ′′, H ′ ∪H ′′ ∈ H(S).

Now consider H ∪ H ′ ∪ H ′′. As before, H∅ ≤ H ∪ H ′ ∪ H ′′. For any nontrivial

clusters A,B ∈ H ∪ H ′ ∪ H ′′ it follows that A is in one of H, H ′, or H ′′; likewise

with B. Since each of H, H ′, and H ′′ is a hierarchy, as well as each of their pairwise

unions, we have A∩B ∈ {A,B,∅}, so H ∪H ′ ∪H ′′ ∈ H(S) and H(S) satisfies the

join-Helly property. Thus, H(S) is a median semilattice.

As one might expect, the set of all hierarches on a gives set grows large very

quickly as the size of the base set increases. For a diagram of the median semilattice

derived from the set of all hierarchies on a set of size 4, see [5]. It will also be useful

to be able to talk about the join irreducible elements of the median semilattice

H(S), this prompts the following proposition:

Proposition 5.2. For any median semilattice H(S),

(a) If A is a nontrivial subset of S, then HA is a join irreducible element of H(S).

(b) If J is a join irreducible element of H(S), then J = HA for some nontrivial

subset A.

Proof. (a) Suppose HA = J ∪ J ′, where J, J ′ ∈ H(S). Without loss of generality

we can assume A ∈ J . We also know H∅ ∈ J thus HA ⊆ J . it is clearly the case

that J ⊆ J ∪ J ′ = HA hence J = HA.

(b) Suppose J is a join irreducible element of H(S). This implies J 6= H∅,

thus there exists some non trivial subset A such that A ∈ J . Now suppose there

exists some non trivial subset B ∈ J such that A 6= B, then we can say J =

HA ∪ (J \ A), contradicting the assumption that J is a join irreducible. Thus

J = HA.
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If we let K = {1, . . . , k} be a set of individuals, then a function of the form

f : Hk → H

is called a consensus function, and a k-tuple P = (H1, . . . , Hk) ∈ Hk in the

domain of f is called a profile. Here k ≥ 2 is the length of a profile. For any

P = (H1, . . . , Hk) ∈ Hk, let {P} = {H ∈ H : H = Hi for some i ∈ K}. For any

profile P and any cluster A let

KA(P ) = {i ∈ K : A ∈ Hi} and KA(P ) = {i ∈ K : Hi ∪ {A} 6∈ H}.

The majority rule consensus function Maj : Hk → H is defined by

Maj(P ) =

{
A : |KA(P )| > k

2

}
.

A simple pigeonhole argument shows that Maj is well defined [15]. The simple

majority rule consensus function Maj+ : Hk → H is defined by

Maj+(P ) = {A : |KA(P )| > |KA(P )|}.

This function is called Majority Rule + in [6] where the domain is
⋃
k≥1
Hk, this is

why we use the notation Maj+.

Presented below are the axioms used in Theorem 4.3 but explicitly expressed

for hierarchies.

Axiom 5.1. A function f : Hk → H satisfies anonymity (A) if, for any permu-

tation σ of K = {1, . . . , k}, we have f(P ) = f(σP ), where σP = (Hσ(1), . . . , Hσ(n)).

Axiom 5.2. A function f : Hk → H satisfies competitive decisive neutrality

(CDN) if, for any P, P ′ ∈ Hk and any nontrivial clusters A and B;

KA(P ) = KB(P ′) and KA(P ) = KB(P ′)⇒ [A ∈ f(P )⇔ B ∈ f(P ′)].
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Axiom 5.3. A function f : Hk → H satisfies monotonicity (MON) if, for any

P, P ′ ∈ Hk and any nontrivial cluster A; if KA(P ) ⊆ KA(P ′) and KA(P ′) ⊆ KA(P )

then A ∈ f(P )⇒ A ∈ f(P ′).

The two functions mentioned above, Maj and Maj+, satisfy all of these

axioms. They differ in that Maj+ satisfies the following axiom of tie breaking,

whereas Maj does not.

Definition 5.2. Two profiles P = (H1, . . . , Hk) and P ′ = (H ′1, . . . , H
′
k) are almost

equal, denoted P (ae)P ′, if there exists i0 ∈ K such that Hi = H ′i for all i 6= i0 and

Hi0 6= H ′i0.

Axiom 5.4. A function f : Hk → H satisfies tie breaking (TB) if, for every

P, P ′ ∈ Hk and nontrivial clusters A and B such that

{P} ∪ {P ′} ⊆ {HA, HB, H∅}

and P (ae)P ′

we have

A 6∈ f(P ) and B 6∈ f(P )⇒ A ∈ f(P ′) or B ∈ f(P ′).

Theorem 5.1. A consensus function F : Hk → H satisfies Anonymity, Competitive

Decisive Neutrality, Monotonicity, and Tie Breaking if and only if F = Maj+.

Proof. We saw in Proposition 5.1 that (H(S),≤) is a median semilattice, moreover,

because |S| ≥ 3 it is easy to see that (H(S),≤) is not a lattice. Since the axioms

above are equivalent to those in Theorem 4.3, we get that Theorem 5.1 follows from

Theorem 4.3, Proposition 5.1, and the observation that H is not a lattice.

The Maj+ function has been characterized before [7], but this characteriza-

tion highlights the parallels between Maj+ and fs by using extensions of the axioms

originally used by May to characterize simple majority rule. We can see that all
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the axioms are independent of one another by considering the following examples of

consensus functions that satisfy all but one of the axioms. The first example uses a

unique notation defined as follows:

|KA(P )|1 =

 |KA(P )|+ 1 if A ∈ H1;

|KA(P )| if A 6∈ H1;

|KA(P )|1 =

 |KA(P )|+ 1 if {A} ∪H1 6∈ H;

|KA(P )| if {A} ∪H1 ∈ H.

Example 5.1. The function f1 : Hk → H defined by

f1(P ) = {A : |KA(P )|1 > |KA(P )|1}

satisfies CDN, MON, TB, but not A. Since we can think of f1 as Maj+ on profiles

of length k + 1, f1 is well-defined.

Example 5.2. The function L : Hk → H defined by

L(P ) = Maj(P ) ∪ {X : |KX(P )| > 0 and |KX(P ) = 0}

satisfies A, CDN, MON, but not TB. L(P ) is the “loose consensus function” [18].

Recall that Maj also satisfies A, CDN, MON, but not TB.

Example 5.3. The function NU : Hk → H, with k ≥ 3, defined by

NU(P ) = H∅ ∪ {X : k > |KX(P )| > |KX(P )|}

satisfies A, CDN, TB, but not MON.

Example 5.4. The function Maj+A : Hk → H, with a fixed nontrivial cluster A,

defined by

Maj+A(P ) =

 Maj+(P ) ∪HA if KA(P ) = ∅

Maj+(P ) otherwise.

satisfies A, MON, TB, but not CDN.
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Using the fact that the collection of all hierarchies on a given set forms a

median semilattice, we were able to offer a new characterization of Maj+ that is

essentially a corollary of Theorem 4.3. In this way, we can see that Maj+ truly is

May’s simple majority rule on hierarchies.
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CHAPTER 6

APPLICATIONS AND FUTURE WORK

6.1 Applications

A direct application of the main result to the field of hierarchical clustering

was presented in Chapter 5. Now we will discuss an idea on how to apply the main

result to the area of social science. Most governments have some notion of what

is called a “bill.” This bill is what the representatives in the legislature create,

discuss, debate, revise, harangue, and ultimately vote upon; the outcome of said

vote determining whether or not the bill becomes a law.

The process of creating a law is lengthy, partly because each bill is a lengthy

document composed of many component parts. No one single law is getting voted on

in a typical bill, instead each bill addresses numerous issues and is full of numerous

provisions, provisos, addendums, and amendments that are added, removed, and

modified during the revision process in the attempt to create a law that will get a

majority approval.

If we consider each of the component parts that any particular law maker

might like to see in a bill as separate entities, then we can look at every possible

combination of those parts as a distinct variation of the bill. Since all we are really

considering here is some subset of the set of all possible combinations of these

components, we can think of each possible bill as an element in a partially ordered

set with union and intersection as the join and meet operations, respectively. It
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would inherit it’s distibutive property from the power set lattice on which it is

based. It is possible that this structure is a distributive lattice or, more generally,

a median semilattice. So we could apply our main result to this situation as a way

of designing a bill; each representative would vote for the version of the bill they

found most agreeable and the output would be a new version of the bill that has

the most overall approval. This relatively simplistic idea can be readily applied to

almost any situation where people are trying to chose a subset from among a larger

set of alternatives.

6.2 Future Work

In the case with two alternatives, the simple majority rule function is uniquely

determined by anonymity, neutrality and positive responsiveness. It has been

demonstrated that anonymity and positive responsiveness alone characterize a larger

class of functions based on the idea of strong quota pair systems. A more ambitious

yet worthwhile endeavor would be to fully characterize the class of functions satis-

fying any combination of these axioms, comparing these results would undoubtedly

shed insight into the nature and restrictiveness of each condition.

It has also been demonstrated that the simple majority rule function can be

characterized on finite median semilattices, yielding a true generalization of May’s

Theorem to an order theoretic domain. What is not yet known is how the notion

of strong quota pair systems could be generalized to the domain of finite median

semilattices or what this class of functions would look like.

Finally, the generalization of May’s theorem on median semilattices could

be pushed further. The concept of medain semilattices is very closely related to

that of median graphs, an undirected graph where each set of three vertices has

a unique vertex belonging to the shortest paths between each pair of the three
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vertices. Translating the axioms and theorems presented in this dissertation to the

realm of graph theory is a more than feasible task and the result would be a further

generalization of May’s theorem to the realm of graph theory.
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