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ABSTRACT

SEMI-PARAMETRIC METHODS FOR PERSONALIZED TREATMENT
SELECTION AND MULTISTATE MODELS

Chathura Siriwardhana

April 14th 2016

This dissertation contains three research projects on personalized medicine

and a project on multi-state modelling.

The idea behind personalized medicine is selecting the best treatment that

maximizes interested clinical outcomes of an individual based on his or her genetic

and genomic information. We propose a method for treatment assignment based on

individual covariate information for a patient. Our method covers more than two

treatments and it can be applied with a broad set of models and it has very desir-

able large sample properties. An empirical study using simulations and a real data

analysis show the applicability of the proposed procedure.We then extend this idea

for treatment section for survival outcomes under right-censoring by introducing

re-weighted estimation to adjust the bias caused by censoring. Series of empirical

studies using simulations show the desirable performance of re-weighted estimation

concept in treatment selection in finite sample cases. We provide a real data ap-

plication of the proposed procedure to illustrate the applicability for right-censored

data. Next we propose a novel method for individualized treatment selection when

the treatment response is multivariate. The proposed method uses a rank aggre-

gation technique to estimate an ordering of treatments based on ranked lists of

treatment performance measures such as smooth conditional means and conditional
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probability of a response for one treatment dominating others. An empirical study

demonstrates very desirable performances of the proposed method in finite sample

cases. We also present a data analysis using a HIV clinical trial data to show the

applicability of the proposed procedure for real data.

Multi-state models are extensions of simple survival models that incorporate

the progression of a subject in an interconnected system such as a disease net-

work. An important measure arising from a mutistate model is the subjects’ state

occupational probabilities given baseline covariates. In the final portion of this dis-

sertation we introduce an inverse censoring probability re-weighted semi-parametric

single index model based approach to estimate conditional state occupation prob-

abilities of a given individual in an acyclic multistate model under right-censoring.

Besides obtaining a temporal regression function, we also test the potentially time

varying effect of a baseline covariate on future state occupations. We show that

the proposed technique has desirable finite sample performances. Its performance

is competitive when compared with two other existing approaches. We illustrate

the proposed methodology using two different data sets. First we re-examine a

well known data set on various event times tracking the progression of a sample of

leukemia patients undergoing bone marrow transplant. Our second illustration is

based on the functional status of a set of spinal cord injured patients undergoing a

rehabilitation program.

v



TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Personalized Medicine . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Personalized plans with multiple treatments . . . . . . 1

1.1.2 Personalized treatment selection for survival outcome . 4

1.1.3 Personalized treatment plans with multivariate outcome

measures . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Multistate models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Flexible semi-parametric regression of state occupational

probabilities in a multistate model with right-censored

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. PERSONALIZED PLANS WITH MULTIPLE TREATMENTS . . . 10

2.1 Treatment Selection . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Theoretical Properties . . . . . . . . . . . . . . . . . . 16

2.2 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 ACTG-175 HIV Clinical Trial . . . . . . . . . . . . . . . . . . . 21

2.3.1 Examination of the survival aspect . . . . . . . . . . . 23

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. TREATMENT SELECTION FOR SURVIVAL OUTCOME . . . . . 32

3.1 Treatment Selection . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Estimation of the IPCW Weights . . . . . . . . . . . . 34

vi



3.1.2 Re-weighted Single Index Estimator . . . . . . . . . . . 35

3.1.3 Re-weighted Estimator of Treatment Selection . . . . . 36

3.2 Empirical studies . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Re-weighted Single index estimator . . . . . . . . . . . 39

3.2.2 Treatment Selection . . . . . . . . . . . . . . . . . . . 40

3.3 ACTG-175 HIV Clinical Trial . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. PERSONALIZED TREATMENT PLANS WITH MULTIVARIATE

OUTCOME MEASURES . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Treatment Selection . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 ACTG-175 HIV Clinical Trial . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5. FLEXIBLE SEMI-PARAMETRIC REGRESSION OF STATE OC-

CUPATIONAL PROBABILITIES IN A MULTISTATE MODEL WITH

RIGHT-CENSORED DATA . . . . . . . . . . . . . . . . . . . . . . 78

5.1 The Proposed Methodology . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Data Structure and Notations . . . . . . . . . . . . . . 78

5.1.2 Binary Choice Single Index Model for the Right-censored

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.3 Conditional Transition Hazard Rates and State Occu-

pation Probabilities . . . . . . . . . . . . . . . . . . . . 82

5.1.4 Censoring Hazards and Estimation of the Weights Ki(t) 83

5.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



5.2.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Absolute Error of Estimated State Occupation Probability 86

5.2.3 Coverage of Confidence Interval Developed for Estimated

State Occupation Probability . . . . . . . . . . . . . . 88

5.2.4 Power and Size of Regression Parameters . . . . . . . . 89

5.2.5 Robustness of the Proposed Method . . . . . . . . . . 91

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Bone Marrow Transplant study . . . . . . . . . . . . . 92

5.3.2 Spinal Cord Injury Study . . . . . . . . . . . . . . . . 95

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



LIST OF TABLES

Table 2.1. Frequencies of correct treatment assignments in 1000 test cases

by four competing algorithms in the two groups case. The re-

gression models used in the simulations include linear and non-

linear SIM models, as well as models that are not SIM. Cases

where the proposed method (ours) outperformed a competing

method is denoted by *. . . . . . . . . . . . . . . . . . . . . . 27

Table 2.2. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method in multiple groups case (K > 2), using

Type I nonlinear regression models, withC′ =
(
1/
√
r, ...1/

√
r
)

1×r.

28

Table 2.3. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method in multiple groups case (K > 2), using

Type II nonlinear regression models. Selected β vectors are

shown in Table 2.4. . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 2.4. β vectors of Type II models, for model dimensions (r) 3, 5, and

8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 2.5. Two groups treatment assignment summary for ACTG-175 trial,

by four methods. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2.6. Four groups treatment assignment summary for ACTG-175 clin-

ical trial, by the proposed method. . . . . . . . . . . . . . . . . 31

Table 2.7. Obseved ρ and ρm by four treatment selection methods, under

different treatment possibilities. . . . . . . . . . . . . . . . . . 31

ix



Table 3.1. Properties of re-weighted SIM model for randomly generated

censoring times, evaluated with 1000 Monte-Carlo simulations. 46

Table 3.2. Properties of re-weighted SIM model for covariate dependent

censoring times, evaluated with 1000 Monte-Carlo simulations. 47

Table 3.3. Frequencies of correct treatment assignments in 1000 test cases

for three methods: Probability of Dominance (PD), Smooth

Means (SM), and Cox model approach, in two groups case (K =

2) using linear and nonlinear regression models that are listed

in Table 3.6, under random and covariate dependent censoring. 48

Table 3.4. Frequencies of correct treatment assignments in 1000 test cases

by two methods: Probabilities of Dominances (PD) and Smooth

Means (SM), in multiple groups case (K > 2), using nonlinear

regression models that are shown in Table 3.7. . . . . . . . . . 49

Table 3.5. The used sets of parameters to generate censoring times for two

groups assignment cases. . . . . . . . . . . . . . . . . . . . . . 50

Table 3.6. Model functions that are used for two group treatment selection

simulations. Table 3.5 shows the used censoring parameters. . 50

Table 3.7. Model functions that are used for multiple treatment selection

simulations. Here, β′ =
(
1/
√
r, ...1/

√
r
)

1×r. Table 3.8 shows

the used censoring parameters. . . . . . . . . . . . . . . . . . . 51

Table 3.8. The used sets of parameters to generate censoring times for

multiple groups (K > 2) assignment cases. . . . . . . . . . . . 52

Table 3.9. Two groups treatment assignment summary for ACTG-175 trial,

by two proposed techniques: Probability of Dominance (PD)

and Smooth Means (SM). . . . . . . . . . . . . . . . . . . . . . 53

Table 3.10. My caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x



Table 3.11. Four groups treatment assignment summary for ACTG-175 clin-

ical trial, by two proposed techniques: Probability of Dominance

(PD) and Smooth Means (SM). . . . . . . . . . . . . . . . . . 53

Table 4.1. Sets of mean functions used to generate treatment responses,

with C′ =
(
1/
√

10, ...1/
√

10
)

1×10
. . . . . . . . . . . . . . . . . 67

Table 4.2. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Two treatments with two responses. 68

Table 4.3. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Two treatments with three responses. 69

Table 4.4. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Two treatments with four responses. 70

Table 4.5. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Three treatment groups with two

responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 4.6. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Three treatment groups with three

responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 4.7. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method. Three treatment groups with four

responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.8. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method, for three treatment groups with three

responses, using weights, ω1 = 0.5, ω2 = 0.3, and ω3 = 0.2, for

responses 1, 2, and 3, respectively. . . . . . . . . . . . . . . . 74

xi



Table 4.9. Frequencies of correct treatment assignments in 1000 test cases

by the proposed method, for three treatment groups with four

responses, using weights ω1 = 0.4, ω2 = 0.3, ω3 = 0.2, and

ω4 = 0.1, for responses 1, 2, 3, and 4, respectively. . . . . . . . 75

Table 4.10. Treatment assignment summary for ACTG-175 clinical trial data,

by the proposed method selecting both CD4 and CD8 counts as

clinical response using weights ωCD4 = 0.6, ωCD8 = 0.4 for CD4

and CD8 counts, respectively. . . . . . . . . . . . . . . . . . . 76

Table 4.11. Treatment assignment summary for ACTG-175 clinical trial data,

by selecting CD4 counts as the clinical response. . . . . . . . . 76

Table 4.12. Treatment assignment summary for ACTG-175 clinical trial data,

by selecting CD8 counts as the clinical response. . . . . . . . . 77

Table 5.1. L1 Distances of estimated state conditional occupying probabil-

ities at 25th, 50th, and 75th quantiles of state reaching (states -

1, 2) and leaving (state - 0) times, with 500 Monte-Carlo simula-

tions, for two different censoring mechanisms and various rates,

using the proposed method and Cox-Regression approach. . . 98

Table 5.2. The coverage probability of 95% bootstrap based confidence in-

tervals for estimated state conditional occupation probabilities

using the proposed method, at 25th, 50th, and 75th quantiles of

state reaching (states - 1, 2) and leaving (state - 0) times, under

random censoring with 0 to 50% rates, averaging 500 Monte-

Carlo’s with 100 bootstraps per each simulation. . . . . . . . . 99

xii



Table 5.3. L1 Distances of estimated state conditional occupying probabil-

ities at 25th, 50th, and 75th quantiles of state reaching (states -

1, 2) and leaving (state - 0) times, with perturbed SIM models,

under random censoring, based on averaging 500 Monte-Carlo

simulations, using the proposed method and Cox-Regression ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 5.4. Matrix showing the state-to-state transition counts for the Bone

Marrow Transplant data . . . . . . . . . . . . . . . . . . . . . 101

Table 5.5. Absolute mean difference between conditional state occupation

probabilities of two cases: x = (20, 20)′ and x = (40, 40)′, us-

ing the proposed method. The corresponding p-values are in

parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 5.6. Matrix showing the state-to-state transition counts for the Spinal

Code Injury data . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiii



LIST OF FIGURES

Figure 3.1. Graphs of log(∆)vs log(n) by re-weighted SIM model, for ran-

domly censored cases, with censoring percentages from left to

the right: 50%, 30%, 10%. Dotted line represent the fitted liner

line for the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.2. Graphs of log(∆)vs log(n) by re-weighted SIM model, for covari-

ate dependent censored cases, with censoring percentages from

left to the right: 50%, 30%, 10%. Dotted line represent the

fitted liner line for the data. . . . . . . . . . . . . . . . . . . . 54

Figure 5.1. Graphical representation of the three state progressive illness-

death model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.2. Plots of log(n) vs log(∆New
L1

(t|x)) generated at 25th, 50th, and

75th quantiles of state reaching (states - 1, 2) and leaving (state

- 0) times, under random censoring with a rate of 50%. Dotted

lines represent the corresponding liner regression line fitted to

the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.3. Plots showing power and size properties of β2 parameter in the

re-weighted binary choice SIM models, which are estimated for

risk processes of the three state progressive illness death model.

Plots are generated at 25th, 50th, and 75th quantiles of state

reaching (states - 1, 2) and leaving (state - 0) times, under

random censoring with 25% rate, for n = 100 and n = 500 cases. 105

xiv



Figure 5.4. Plots showing power and size properties of β2 parameter in the

pseudo-value based Logistic regression models, which are esti-

mated for state occupations in the three state progressive illness

death model. Plots are generated at 25th, 50th, and 75th quan-

tiles of state reaching (states - 1, 2) and leaving (state - 0) times,

under random censoring with 25% rate, for n = 100 and n = 500

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.5. Plots of log(n) vs log(∆New
L1

(t|x)) generated at 25th, 50th, and

75th quantiles of state reaching (states - 1, 2) and leaving (state

- 0) times, under random censoring with a rate of 50% with per-

turbed SIM models. Dotted lines represent the corresponding

liner regression line fitted to the data. . . . . . . . . . . . . . . 107

Figure 5.6. Graphical representation of Bone Marrow transplant multi-state

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.7. Plots of estimated conditional state occupational probabilities

of 7 clinical states in the bone marrow transplant data, by the

proposed method for a covariate vector of x = (28, 28)′, along

with 95% bootstrap based confidence intervals (represented by

the dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.8. Plots of estimated conditional state occupational probabilities

of 7 clinical states in the bone marrow transplant data, by the

proposed method for a two covariate vectors: x = (20, 20) and

x = (40, 40). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.9. Graphical representation of spinal code injury multi-state model 111

xv



Figure 5.10. Plots of estimated conditional state occupational probabilities of

5 clinical states in the spinal Code Injury data, by the proposed

method for a covariate vector of x = (0.08, 38.0, 0.92, 33.0)′,

along with 95% bootstrap based confidence intervals (repre-

sented by the dotted lines). . . . . . . . . . . . . . . . . . . . . 111

xvi



CHAPTER 1

INTRODUCTION

1.1 Personalized Medicine

This section introduces three projects focused on different aspects in person-

alized medicine. In particular we address the following topics.

• Personalized plans with multiple treatments

• Personalized treatment selection for survival outcome

• Personalized treatment plans with multivariate outcome measures

We provide introductory outlines of these projects as below.

1.1.1 Personalized plans with multiple treatments

Designing optimal treatment regimes based on individual patient character-

istics has gained a momentum over the last few years (see for example van’t Veer

and Bernards, 2008; Varquez, 2013). Dynamic treatment regimes that are geared

towards the “best” outcome for a patient based on his/her genetic and genomic

markers are of high importance. Rather limited literature on this topic mainly

deals with deciding between two treatments based on patient characteristics. As-

suming without any loss of generality that a larger outcome is desirable, the methods

developed in the literature essentially determine the larger conditional expectation

1



of the outcome given the set of markers for the patient. Cai et al. (2011) use

a smoothed sub-group mean in the comparison of two treatments. Here the sub-

groups are determined via a set of contours (scores) that define overall similarities

among patients. For continuous responses, these scores have been defined via linear

models. Qian and Murphy (2011) discuss a two step procedure that is based on

an estimation of a conditional mean followed by a maximization of that mean over

a set of possible treatments. In a different approach for treatment assignments,

Zhao et al. (2012) consider an optimization technique to select between two treat-

ments where the binary optimization procedure is within a class of pre-specified

model functions. Drawing parallels to the support vector machine technology, these

authors show decision optimality of the treatment selection procedure within the

binary framework showing that the procedure discussed in Qian and Murphy (2011)

is inferior to theirs in the two treatments case. In a more recent article, Zhang et al.

(2012) use a robust conditional mean estimation method to alleviate possible wrong

model postulation when one estimates the conditional mean for each patient’s pro-

file. Schulte et al. (2014) provide details of using Quality learning (Q-learning) and

Advantage learning (A-learning) concepts in devising sequential rules based on a set

of pre-specified decision points. The optimality of the decision algorithm, based on

the conditional sequential mean, has been discussed by these authors. While math-

ematically and computationally tedious, it gives a sequential decision rule that self

updates the changing patient behavior in switching to a different treatment. Ad-

ditional references on dynamic treatment regimes can be found in Schulte et al.

(2014). Treatment selection based on observational studies has been treated by

many authors. Readers are referred to Robins et al. (2004, 2008) and references

therein for additional details of such procedures.

In many treatment selection situations clinicians have more than two treat-

ments to select from and the decision of assigning the treatment protocol based on

2



individual patient characteristics is highly desirable. In this work, we discuss the K

treatment (K ≥ 2) scenario where we compare quantities that are suitable approxi-

mations to true conditional probabilities of outcome variable of each treatment dom-

inating other treatments given patient specific scores constructed from covariates.

In particular, instead of estimated marginal conditional expectations, we examine

estimated conditional probability of each treatment dominating the others based

on K independent pairs of outcomes and covariates, one for each treatment. We

choose the optimal treatment as the one that has the highest estimated probability

of dominating every one else for a given patient score. This allows one to compare

treatments for a wide variety of distributions of outcome measures. As seen in our

empirical investigations, the performance of this method is comparable to selection

using conditional means when responses have finite means. In our approach, scores

are defined via a set of Single Index Models (SIMs) or Partially Linear Single Index

Models (PLSIMs) and our scoring system simplifies to the same type of scoring as

in Cai et al. (2011) if K = 2. The method we propose is general where the above

SIMs (PLSIMs) used to obtain scores can be quantile regression models rather than

mean regression models, thus allowing a broad class of structures to get a suitable

score. Empirical evaluations of this new mechanism using a detailed simulation

study to assess the accuracy of treatment selection show that the proposed method

is comparable with existing methodology in the two treatment option with linear

models, it has a higher accuracy in the two treatment case with SIMs and performs

very well in the multiple treatment case. Furthermore, we applied our method to an

existing dataset with multiple treatment arms to examine the use of treatment as-

signment based on patient characteristics. The results show that one arm is highly

preferred over the others for patients in this study with respect to the primary out-

come variable which was a blood count. We also assessed possible gains or losses of

patient survival had the patients were assigned according to the rule proposed here.
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Interestingly our study reveals that there could have been an advantage in terms of

survival also to have used our selection method in the treatment assignment.

1.1.2 Personalized treatment selection for survival outcome

In many severe illnesses, for examples in cancer or HIV, a patients’ survival

time is usually considered as the primary clinical outcome when one is investigating

different treatment options/protocols. When the clinical response of interest is a sur-

vival outcome, patient survival times are often subject to censoring due to dropouts,

competing risks or administrative reasons forcing treatment selection methods de-

veloped for complete observations to become inapplicable. Exiting literature on

personalized treatment rules is often limited to completely observed responses. In

this part of our research we develop a treatment selection method that addresses

the multiple treatments selection issue with right-censored survival outcome.

Frequently, censoring adds an additional complexity to any statistical prob-

lem. It becomes more complicated when the censoring mechanism is a non-random

process. Variety of methods have been developed to address this issue. Often, in

regression methodology, the bias caused by partially observed observations is han-

dled by utilizing a weighting scheme; specifically the inverse censoring probability

weighting (ICPW), a widely applied technique in such problems.

This idea was first developed by Koul et. al (1981) for survival outcomes in

regression. Subsequently this idea has been widely applied in many survival related

studies. Robins and Rotinizky (1992), and Robins (1993) discussed a new class of

tests and estimators for Cox model, accelerated failure time models and a model

for the mean treatment effect, in case of dependent censoring, using a re-weighted

scheme. Satten and Datta (2001) derived Kaplan-Meier estimator as an IPCW av-

erage. Satten et al. (2001) implemented this idea to estimate the marginal survival
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function in the presence of time dependent covariates, calculating covariate depen-

dent censoring probabilities using Aalens additive hazard model (Aalen, 1980, 1989).

Datta and Satten (2002) estimated integrated transition hazards and stage occu-

pation probabilities for non-Markov systems under dependent censoring utilizing

IPC weights calculated using Aalen’s linear model. Similar to these studies, in this

work, we use a weighting scheme in all estimation steps of personalized treatment

selection methods proposed above when responses are censored. This involves two

steps: first estimating treatment specific SIM models to calculate patients’ scores

followed by estimating the probability of one treatment dominating all others for a

given score. Lopez et al. (2013) discussed adjusting the single index estimator in the

case of right censored observations using Cox model based weights for covariate de-

pendent censoring. Our proposed re-weighted single index estimator is an extension

of Ichimura et al. (1993) single index estimator, weighted by IPCW obtained by

Aalens additive hazard model under covariate dependent censoring. In the case of

random censoring, a Kaplan-Meier estimator based weighting scheme can be used.

In the same fashion a new re-weighted estimator is proposed to estimate the treat-

ment selection probability. We evaluate the re-weighted single index estimator and

the proposed treatment selection concept via an extensive empirical study. We

compare our method with an alternative method based on Cox’s (1972) approach.

To demonstrate practical applications, we apply this method to a real dataset with

multiple treatments, where the survival outcome is heavily right-censored.

1.1.3 Personalized treatment plans with multivariate outcome measures

Current methods in personalized medicine only deals with deciding between

treatments based on a single outcome measure modeled against patient character-

istics. Assuming without any loss of generality that a larger outcome is better, the
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methods developed in the literature essentially determine the best treatment as the

one associated with the largest of a measure of dominance. Existing literature use

either a conditional location parameter (Cai et al., 2011; Qian and Murphy, 2011;

Zhao et al. 2012; Zhang et al. 2012; Zhao et al., 2015) or a measure based on a

conditional probability of an outcome for one treatment exceeding the outcomes for

others, given the set of markers for the patient, which described in the first project.

In many practical situations the success of a treatment cannot necessarily

be measured via a single outcome as a variety of factors may compel both patients

and clinicians to consider recovery in a rather broad view. For example, in deciding

a treatment for a cancer, a clinician may use multiple values of gene expressions

from different families of genes (Kelly et al., 2011,) as endpoint indicators of a

successful treatment. Situations where the disease is not curable, eg: Multiple

Myeloma, may require monitoring multiple measurements such as immunoglobulins,

creatinine level etc. as outcome measures in planning optimal long term treatment

regimes. Also, in many cancer treatment regimes while longer remission times are

highly desired, the impact of drug side effects/reactions, long term effects from drug

combinations, the quality of life, social, family and economic factors etc. can also

play an important role in deciding on treatment protocols. Hence, selecting the

best treatment considering multiple outcome measures becomes a relevant issue for

most patient populations.

In this work we consider selection of the optimal treatment among K possible

treatments for a patient using his or her baseline characteristics when multivariate

outcomes (responses) are to be considered. First, to handle statistical issues aris-

ing due to high dimensional covariates, each patient is assigned a score based on

his/her covariate values. Then we use a weighted rank aggregation method (see

for example Pihur et al., 2007 and Pihur et al., 2009) to combine ranks (orderings)

assigned to treatments based on each response. These ranks can be determined for
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each response using an existing criteria such as ordered conditional mean for each

response given the patient score (eg: Zhang et al. 2012) or quantities based on

conditional probability of one treatment dominating others given the patient score,

as described in projects 1 and 2. Additionally, the rank aggregation method in

Pihur et al. (2007) is flexible to assign different importance factors to each response

variable. This allows one to use apriori opinions on the importance of each response

in determining the best treatment procedure. Our simulations studies show that

the proposed method has very desirable properties in terms of selection frequency

of the best treatment. A real data analysis show differences in the selection of the

best treatment using multi responses compared with the selection using a single

response.

1.2 Multistate models

In this section we introduce a project on estimating conditional state occu-

pation probabilities of an individual given covariates under right-censored data in

a disease network.

1.2.1 Flexible semi-parametric regression of state occupational probabilities in a

multistate model with right-censored data

Multi-state models represent subjects’ movement along time in terms of state

occupation starting from an initial state to a final (absorbing) state. It can be a sim-

ple survival model that describes transition between two states or a more complex

model which contains several intermediate and final states. The well studied bone

marrow transplant data described by Copelan et al. (1991) is an example of such

a system, which illustrates the transition of acute leukemia subjects in numerous

different clinical states in time, after the bone marrow transplant. An important in-
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vestigation for such a system centers around future state occupancy of an individual

at a specific time since enrollment into the system given subject specific informa-

tion. In reality, the complete movement of a subject in a multistate model may

not fully be observable due to censoring, which restricts of using typical regression

concepts for this problem. In this work, we propose a new method to estimate the

conditional state occupation probability given a subject’s covariates, in the presence

of right-censoring. In our model, transitions between states are allowed to follow

a dynamically varying nonlinear relationship with the individuals’ covariates. Fur-

thermore, the functional form of this non-linear relationship is semi-parametrically

estimated at every time point using two single index models and thereby offering

great flexibility in practice.

The literature of multistate models has been fairly dominated by paramet-

ric approaches over a long period. See Anderson and Keing (2002) for examples.

However several works based on fully nonparametric concepts have added a great

momentum to this area. In the past, Aalen (1976, 1978) and Aalen Johanson (1978)

introduced nonparametric estimators of state occupational probabilities of a mul-

tistate model based on Nelson-Aalen type transition hazards. Datta and Satten

(2001, 2002) showed the validity of these estimators under non-Markovian setting

and extended their work further for subject dependent censoring. Introducing a new

avenue to the parametric approach in multistate models, Anderson and Klein (2007)

introduced a pseudo-values based regression approach starting with a marginal es-

timator which could be both parametric or nonparametric. Mostajabai and Datta

(2013) developed a fully nonparametric approach to estimate conditional ‘state-to-

state transitions counts’ and ‘number at-risk’ processes of a progressive multistate

model under right-censoring given a value of a covariate. They incorporated the

inverse probability censoring weighting (IPCW) concept described in Datta and

Satten (2002), Satten and Datta (2002) to adjust the selection bias caused by the
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censoring mechanism. However, limiting the practicability, their method handles

only a single contentious covariate. Recently Chakrabory, Datta, and Datta (2015)

extended this approach to multiple covariate cases, using the generalized additive

model (Hastie and Tibshirani, 1990). However, this approach considers binary

outcomes as contentious values between [0,1] interval for the model estimation,

which may cause instability in the estimation. Furthermore, the robustness of their

method under departure from the pre-assumed additive structure is uncertain. We

propose a novel method to estimate underlining temporal processes of a multistate

model, conditionally on given a covariate vector, introducing IPCW re-weighted

binary choice Single Index Model (SIM). This approach allows one to estimate the

conditional transition matrix for a given covariate vector at a specific time point,

even when the transition mechanism has a highly nonlinear and rapidly varying de-

pendency with multivariate baseline covariates. This is followed by a product limit

calculation as in Datta and Satten (2002) to produce estimated conditional state

occupying probabilities given the baseline covariates. Series of simulation studies

show that the proposed method has desirable finite sample properties and it is ro-

bust under departure SIM from. We show that our method is fairly competitive

for both estimation of the regression function and testing the effect of a baseline

covariate, for future state occupation at a given time, by numerical comparisons

with existing methods suitable for each of these purposes. We demonstrate the

applicability of the proposed methodology in real life using two data sets resulting

bone marrow transplantation and spinal cord injury studies.
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CHAPTER 2

PERSONALIZED PLANS WITH MULTIPLE TREATMENTS

2.1 Treatment Selection

In this section we describe the proposed procedure and list some of its de-

sirable large sample properties. Let (Y ∗i ,X) be the hypothetical (counterfactual)

response and covariate pair for treatment i, i = 1, . . . , K where larger values of

the response are indicative of better outcomes and X is a vector of r covariates.

Assume further that a patient’s covariate value X is used to obtain a lower dimen-

sional composite patient score U(X). In practice one cannot observe the whole

vector (Y ∗1 , ..., Y
∗
K)′ for a single patient. However, using iid observations of type

(Ỹi,Xi, Ai), i = 1, ..., n where Ai is the binary treatment indicator for two treat-

ments and Ỹi is the observed response for the ith patient, previous authors have

proposed the estimated difference in conditional means given a score U to com-

pare two treatments. For example, Zhang et al. (2012) use robust estimators of

E[Y ∗1 |A = 0, U(X)] − E[Y ∗2 |A = 1, U(X)] where U(X) = X and A = 0, 1 assign

treatments 1 and 2 respectively.

In our approach, we consider pairs of independent observations (Yk,Xk) from

the marginal distribution of (Y ∗k ,X), k = 1, ..., K to extend the treatment selection

for K treatments using a set of probabilities defined as

pi(u) = P [Yi > maxi 6=jYj|U(Xk) = u; k = 1, ..., K]; i = 1, ..., K (2.1)

for a suitable score defined via a score function U . Note that in (2.1), the Y s do
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not denote the set of true counterfactuals for a patient (given the set of X) but are

independently distributed with the same marginal distributions (given the set ofX).

Although the function pi(u) does not use the joint distribution of (Y ∗1 , ..., Y
∗
K ,X)

for a patient with covariate value X, we argue that pi above nevertheless gives

a measure of dominance for the ith treatment over the others and hence can be

used in selecting the best treatment. This is an alternative to measures based on

conditional expectations which require restrictive moment assumptions on the error

distribution for all inference aspects in a regression context, the natural framework

of handling such data. On the other hand, estimation of quantities like pis can be

done using conditional U-statistics with minimal assumptions. In our approach,

for a given set of functions p1(.), ..., pK(.), we define the best treatment for patients

with a score U0 as the treatment given by

k∗(U0) = arg max
1≤i≤K

{pi(U0)}. (2.2)

This procedure can be thought of as maximizing a value function that is the joint

conditional expectation of an indicator of one treatment dominating the others given

the score rather than evaluating E[Y |U ] for each treatment and picking the largest.

For example, in Zhao et al. (2012), the best treatment was in principle defined

as the index corresponding to the larger of E[Y1|U ] and E[Y2|U ] where Y1 and Y2

are the responses for each treatment. In practice, we propose to use estimators of

pi(U0) based on clinical data and then choose the best treatment as the one that is

given by the corresponding estimator of k∗(U0).

The above approach can be meaningfully used for any set of models that is

appropriate for relating responses and covariates provided that those models define

an ordering of the above pis for at least one score so that one of the treatments

stands out. If several treatments have the same largest pi value for a given score,

one may pick one of those at random. As shown below, one set of models that can
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provide such an ordering are Single Index Models (SIMs). In the sequel we base our

discussions on Single Index Models relating response Yi for the ith treatment and

covariates Xi via

Yi = gi (β
′
iXi) + εi (2.3)

for i = 1, . . . , K where each βi is a r-vector of parameters, gis are unknown link

functions for which we assume some reasonable smoothness conditions to hold, and

ε is an error term with E[ε|X] = 0. This model can also be taken as a quantile

regression model with suitable modifications.

In methods based on conditional means, one would ideally use E[Yi|X] to

select the best treatment. However, when X has very high dimension, a natural

choice is to use a composite score U(X) that has a much smaller dimension. We

show in the sequel that if gi (β
′
iX) > gj

(
β′jX

)
for all i 6= j, then the corresponding

pi(u) > pj(u), i 6= j for the realization U = u for our proposed score. Hence, using

pis to choose the best treatment is somewhat more general than using conditional

expectations. Although the properties of the proposed approach discussed in the

sequel are for mean SIMs, they all also hold for quantile SIMs models. Additionally,

those properties extend to PLSIMs as the parameters of the linear part of PLSIMs

can be estimated at a
√
n rate (see for example Liang et al., 2010).

If the model relating Yi to Xi is not a SIM, we can still implement the

same mechanism of obtaining the scores via a single index model approximation

to the mean or the median of the responses and then estimate the corresponding

pis. This can be thought of as using a first order Projection Pursuit Regression

to model the responses. Since nonparametric estimation of pis require minimal

model assumptions, our approach is applicable for a very wide class of models. For

notational simplicity, we only list properties of the procedure for conditions that

are appropriate for mean SIMs . Modifications in these conditions needed for other

models are minimal.
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Our data are of the following form. Let Yij indicate the jth responses from

a group of ni individuals under treatment i with covariate values Xij, j = 1, . . . , ni.

The sample sizes ni are assumed to satisfy the condition that ni/N tends to a

positive number where N =
∑
ni. Then, for this data, relationship 2.3 is written

as

Yij = gi(β
′
iXij) + εij, j = 1, . . . , ni. (2.4)

Our approach to define an appropriate overall score U is first to use a rea-

sonable model to obtain a treatment specific score for each patient. The score for

treatment i measures how favorable it is for a patient to receive this treatment when

compared to if he or she were to receive other treatments. To be more specific, we

first define

Si (X) = gi (β
′
iX)−max

j 6=i

{
gj
(
β′jX

)}
.

Next, we define the overall score to be the combination of the maximum of these

treatment specific scores, and an index that indicates for which treatment the max-

imum has been achieved for the particular covariate value. That is, we define

S (X) = max
i
{Si}

δ (X) = arg max
i
{Si} . (2.5)

Then, for a patient with covariate value X we define the patient score as U(X) =

(S(X), δ(X))′. Note that the score U(X) reduces to the score used in the two

treatment case by Cai et al. (2011) if we restrict gs to be linear. Also, if K = 2 and

errors are symmetric about 0, δ becomes the index for the treatment with the larger

location parameter for a given X. However, when K > 2, this is not necessarily

the case.

In practice one does not know the error distributions and model functions

for models defined in 2.3 and therefore we cannot directly calculate pis at a given

score u. Thus, to apply the proposed selection method, we first need to estimate
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each pi using a standard function estimation method. This requires observed Yij

values as well as observed U values corresponding to those responses. However, Us

defined above are hypothetical scores for a covariate value X as we do not know

gis and βis. Hence, in estimating pis, we propose to use “estimated” U(Xij) values

, Û(Xij), say, corresponding to responses Yij, j = 1, ..., ni; i = 1, ..., K.

Now, to obtain Û(Xij) values, suitable estimators of link functions gis and

index vectors βis can be used to construct estimators Ŝ (X) and δ̂(X) of S(X) and

δ(X), respectively. There is a vast literature on estimating the link function and

the index vector of a single index model (see, for example, Hristache et al., 2001, Yu

and Ruppert, 2002 and references therein) allowing us to use one out of a several

available reasonable estimation methods to estimate the gs and the βs. We used

the procedure given in Hristache et al. (2001) in our simulations and data analysis

in the sequel. In the sequel these estimators will be generically denoted by ĝi and

β̂i, respectively, for i = 1, . . . , K. In particular, for any given vector x, let

Ŝi(x) = ĝi

(
β̂′ix

)
−max

j 6=i

{
ĝj

(
β̂′jx

)}
Ŝ (x) = max

i

{
Ŝi(x)

}
δ̂ (x) = arg max

i
{Si(x)}

and

Û(x) = (Ŝ (x) , δ̂ (x))′ (2.6)

We randomly select an index δ̂ in the unlikely event that multiple treatments

produce the same Ŝ. Now, we construct our estimator for pi(u), i = 1, ..., K at a

given u = (s, d)′ as follows. Define

J = {(j1, . . . , jK) |ji ∈ {1, . . . , ni}, i = 1, . . . , K} .
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and, for J ∈ J we let

ŵJ (s) =
K∏
i=1

1

hi
w

(
s− Ŝ (Xiji)

hi

)
where w is a kernel function with w ≥ 0 and

∫
w(t)dt = 1, and his are a set of

smoothing parameters. Also, let

η̂J (d) =
K∏
k=1

I
[
ĝd

(
β̂′dXkjk

)
= max

m

{
ĝm

(
β̂′mXkjk

)}]
=

K∏
k=1

I
(
δ̂ (Xkjk) = d

)
.

Now, taking an approach similar to the construction of conditional U -statistics

(Stute, 1991), an estimator of pi(u), i = 1, ..., K can be defined as

p̂i (u) =

∑
J∈J I [Yiji > maxk 6=i {Ykjk}] ŵJ (s) η̂J (d)∑

ŵJ (s) η̂J (d)
. (2.7)

For a realization X0 of the covariate X, if we knew the corresponding realization of

the score, u0 = (S(x0), δ(x0))′, we can estimate pi(u0) by p̂i(u0). However, due to

the aforementioned reasons, we can only find an estimate û0 of u0 using 2.6 above.

Thus, we use p̂i(û0) as our estimate of pi(u0) for i = 1, ..., K. Finally, the estimated

best treatment for a patient with estimated score û0 is defined as

k̂∗ = arg max
1≤i≤K

{p̂i(û0)}. (2.8)

Under reasonable conditions stated below, we can show that

p̂i(û0)→ pi(u0) (2.9)

in probability for each i. Hence, if for some k∗, pk∗(u0) > maxj 6=k∗{pj(u0)}, then the

treatment selection procedure described above is consistent since the best treatment

is defined as the treatment corresponding to the largest pi and, given the property

p̂i(û0)→ pi(u0), our procedure selects the best treatment with probability tending

to one. The ordering of the pis depends on models that relate the responses and

the covariates.
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Bandwidth selection for estimating the link functions and pis is a challenging

issue. Method suggested in Wand and Jones (1995) seemed to perform reasonably

well in our simulations and data analysis. However, these choices may not be

optimal. We do not investigate the optimal bandwidth selection issue in this work.

2.1.1 Theoretical Properties

In this section we list a few results that show the consistency of the pro-

posed procedure. We begin by introducing some conditions that are needed to

develop these theoretical results. In the sequel we assume that the random vari-

ables (Yi,Xi), i = 1, ..., K are independent and further assume that Xi, i = 1, ..., K

are iid. Let F (s, d) be the common joint distribution function of (S (X1) , δ (X1)).

We define Ti = gi (β
′
iX1), T = (T1, . . . , TK)′ and we let fT (t) be the joint pdf of T.

We need following additional assumptions.

Assumption 1. F (s, d) is absolutely continuous in s for fixed d and has a density

function f (s, d), which is bounded.

Assumption 2. The kernel function w is symmetric, has bounded support, Riemann-

integrable, nonnegative, bounded away from zero at 0, and has bounded derivative

and finite total variation.

Assumption 3. fT is continuous.

Assumption 4. The errors εij, j = 1, ..., ni; i = 1, ..., K are i.i.d with a continuous

pdf fε (ε) and fε (0) > 0.

Remark 1. All distributional assumptions above are very reasonable and easily

satisfied for many error distributions. Assumptions regarding the kernel function w

are standard in nonparametric smoothing literature.
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The following lemma shows that the orderings of the pis exist under models

specified in 2.3. The proofs of some of these results use techniques similar to those

used in the proofs of generalized U -statistics theory (Stute, 1991). However,since

the generalized U -statistics theory is not directly applicable here, we give outlines

of the proofs in the Appendix.

Lemma 1. Under Assumption 1-4 and models 2.3, for a realization u = (s, d)′ of

the score U(X) defined above, functions pi (u) , i = 1, ..., K are continuous in s and

pd (u) > max1≤k≤K;k 6=d pk (u).

The above lemma shows that under the SIM structure, if there is a link

function function dominating others at a given covariate value, then there is a

corresponding p function that dominates the other p functions over a non trivial set

of scores. We now illustrate the consistency of p̂i (û0) as an estimator for pi (u0) at

a given score u0.

For our next result which shows that the estimator p̂ (û0) converges to pi(u0)

we need the following assumption. In light of Remark 2 in the Appendix where the

proof of Lemma 2 is provided and uniform convergence properties of nonparametric

estimators of the link function in Single Index Models (see Wang and Yang (2007)

and references therein), we see that this is a reasonable assumption.

Assumption 5. For each i = 1, . . . , K, smoothing parameters hi ∝ N−1/5 and

supx∈SX

∣∣∣ĝi (β̂′ix)− g (βix)
∣∣∣ = Op

(
N−2/5 logN

)
.

Now we have the following.

Theorem 1. Under Assumptions 1-5, for u0 and û0 defined above, we have p̂i (û0)−

pi (u0) = op (1) for i = 1, ..., K.

This result shows that the selection of the appropriate treatment is consistent

where we define consistency as being able to identify the index associated with the
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largest p function in 2.1. In the next section we will provide an empirical assessment

of the proposed procedure.

2.2 Empirical Studies

In this section we present a detailed simulation study that investigates the

properties of the proposed procedure in finite samples.

We conducted a series of simulations with the proposed procedure under

various settings. Primarily, we focused on the accuracy of treatment assignment of

a new (test) observation by using estimated values of the pi functions from a set of

training data. This simulation study was performed for both the two and multiple

(K > 2) treatment groups cases. Results for the two groups cases were compared

with the corresponding results for existing methods. However, such comparisons

were not possible with multiple treatments since there is currently no other method

covering more than two treatments. We select our model sets such that each model

in a set dominates other competing models for some combination of covariate values;

in other words, none of considered models fully dominate other models within the

whole covariate space. This signifies, subjects with distinct covariates vectors, could

experience corresponding highest response from different treatments illustrating the

personalized medicine concept.

In our study, we first simulated K independent samples with sample size n

(n = 50 or n = 100) per group. The components of the r dimensional covariate

vectors X were generated independently from a U(−1, 1) distribution, where r

ranged from 3 to 8. Using various link functions and index vectors, where a selected

few are listed in Tables 2.1-2.3, we obtained the treatment responses from model 2.3.

Here the errors were generated from N(0, σ2) and DE(0, σ) where the dispersion

parameter σ was chosen from the set {0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. We have considered
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the performance under both linear and nonlinear regression models. We discuss

additional details of the structures of these models in the sequel.

Once the K samples were generated, we estimated the corresponding SIMs

followed by an estimation of scores at each covariate value. SIMs were estimated

by the procedure given in Hristache et al. (2001) using Epanechnicov kernels (see

Polzehl, 2013). Then, a new covariate value X0 was generated in the same man-

ner as previous covariates above, and for its corresponding estimated score û0, we

calculated p̂i(û0) for i = 1, ..., K. The kernel function in this estimation was taken

to be a U(−1, 1) probability density function (pdf). We chose the bandwidths by

the algorithm given by Wand and Jones (1995) for each i, i = 1, ..., K. We then

generated K new responses, Y ∗i , each with mean gi(β
′
iX0) for i = 1, ..., K, corre-

sponding to this X0 using model 2.3 where the errors were generated independently

from the same error distribution that was used to generate the K original samples.

We define the treatment assignment to be correct if

arg max
i
{p̂i(û0)} = arg max

i
{Y ∗i } .

We repeated this procedure 1000 times for each model and error distribution com-

bination. The frequency of correct treatment assignment for a selected set of cases

are given in the Tables 2.1-2.3 and a few additional tables are provided in the

supplemental materials.

In the analysis of the two groups case (Table 2.1), we used N(0, σ2) errors

with σ = 0.1 and 0.2. We also compared these results with corresponding results

for the two groups assignment methods proposed by Cai et al. (2011), Zhang et

al. (2012), and Zhao et al. (2012). We report the number of cases in which their

selection (using the highest conditional mean) matched with the group with the

largest response. We chose to compare only with these three methods because these

methods highly differ in their approaches and dominate other existing methods in
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the literature for the two groups case. Here, we highlighted the settings in which

other methods underperformed against our method by an asterisk sign. Out of

48 cases the new method competed well with the existing methods in 40 cases.

Clearly, the proposed method has a high accuracy in nonlinear models compared

to the three existing treatment selection methods. In the case of linear treatment

models, which is represented by Model 1 in Table 2.1, the new method performed

comparably to the best method. Model 4 in Table 2.1 was chosen to demonstrate

the robustness of the proposed method, where the requirement of SIM’s is violated.

Even in these cases, the accuracy remained fairly high, showing that the proposed

method is rather robust.

We studied the multiple treatment groups case for K = 3 and 4, using a

variety of models generated from several nonlinear model families. All considered

cases produced results that are generally anticipated in a study of this nature. Cases

involving highly nonlinear curves with minor differences in the mean value function

performed somewhat poor compared with cases where the nonlinearity is less severe

or the differences between the signals is higher. Our discussion in the sequel focuses

on two families

Yi = gi

{
πki + π

(
β′X

)}
+ ε, i = 1, ..., K, (Type I),

and

Yi = gi

{
πki + π

(
β′iX

)}
+ ε, i = 1, ..., K, (Type II).

In each type above, gi is either a sine or a cosine function. In Type I models, the

same single index vector β has been used for the treatment groups where the gi

function varies across the groups. In our simulations we chose this common vector

to be C′ =
(
1/
√
r, ..., 1/

√
r
)

1×r Table 2.2. In Type II models we used a variety of

βi index vectors whose components were selected in an arbitrary fashion. These

components are given in Table 2.4. For example, in the three treatment case with
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r = 3, β1 =
(
1.5, 1.6, 0.9

)′
, β2 =

(
0.8, 0.6, 0.7

)′
, and β3 =

(
1.8, 2.1, 0.8

)′
.

If several models are close to each other within the whole covariate domain, a

high classification error (i.e., incorrect treatment assignment) can be expected due

to the lack of functional separations. In general, the functional behavior of a multi

covariate nonlinear model cannot be easily visualized. Type-I models used here

have relatively substantial functional differences compared to some Type II models

for each K. Tables 2.2 and 2.3 show the correct assignment frequencies for a repre-

sentative set of multi-groups cases. Again, the results for all examined cases were

very similar to the few presented here.

Examination of the results reveal high assignment accuracy for large sample

sizes and low error variability. In general, we observed fairly high accuracies for

low covariate dimensions. The presented simulation results are based on sine and

cosine functions which are bounded in (-1, 1). Hence, an increment in σ by 0.1

adds a relatively large noise to a model. Consequently, as expected, we observed a

decline in the correct assignment frequency as σ is increased. The results for the

three groups case for both Type I and II models are somewhat comparable whereas

the results for Type II models for four groups case were lower compared to those

corresponding to Type I models. As indicated in the previous paragraph, we believe

these differences are due to relative lack of separation in the model functions.

2.3 ACTG-175 HIV Clinical Trial

In this section we illustrate our proposed method using a real clinical trial

dataset.

The data resulted from the ACTG 175 clinical trial (Hammer et al. 1996).

This trial was a randomized, double-blinded, placebo-controlled clinical trial that
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was conducted for comparing antiviral medications for HIV-1 patients whose T-cell

CD4 counts were in the range of 200 to 500 per cubic millimeter. The dataset

(Juraska et al. 2012) contains information on 2136 HIV-1 infected individuals who

were randomized into four treatment arms; those treated with Zidovudine (arm-0),

combination of Zidovudine and Didanosine (arm-1), combination of Zidovudine and

Zalcitabine (arm-2), Didanosine (arm-3). Arms 0, 1, 2, and 3 contain 532, 519, 524,

and 561 patients, respectively. The severity of HIV progression is measured through

a decline in CD4 counts. This trial periodically measured a patient’s CD4 count as

the clinical outcome. In our analysis, we considered the log transformed CD4 count

of a patient after 20 weeks of treatment as the clinical response. As covariates,

we used log-CD4 and log-CD8 counts at baseline, age, weight, and the number of

months a patient received pre-antiviral therapy.

We applied the proposed treatment assignment strategy to the data from all

four arms of the study. We also provide an illustration to compare with several

existing two-treatment methods. In each situation, we randomly selected 200 pa-

tients from each arm as “training” data to estimate the SIMs. Remaining patients

were considered as new (test) patients. After fitting SIMs to training data we

estimated the scores for the test cases and estimated the corresponding pi functions

using Gaussian kernels at corresponding scores to assign each test patient to the

best treatment suggested by the largest estimated pi value.

We report the results for the two group comparisons first. When we used the

proposed method, out of 651 test patients, only 3 were assigned to arm-0, suggesting

that possibly a large number of patients would have experienced a more favorable

outcome from arm-1. We also applied the two-group assignment methods proposed

by Cai et al. (2011), Zhao et al. (2012), and Zhang et al. (2012), for the same

training and test data. These methods also assigned lesser number of patients to

arm 0, than the actual assignment by the randomized trial. We present these results
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in Table 2.5. For example, in Table 2.5, the (1, 0) cell for the Proposed Method

indicates that only 2 out of 319 patients who were actually treated in arm-1 would

have been assigned to arm-0 had we used the proposed method.

In the multiple treatments assignment setting, we have a total of 1336 pa-

tients in the test set. Among them, we assigned the majority: 828 to arm-1 whereas

306 and 186 patients are assigned to arms 2 and 3, respectively. Similar to the two

group assignment, the new method assigns only few patients to arm-0, seemingly

suggesting that one of the other arms almost always dominate arm 0 with respect

to our scoring mechanism. These results are summarized in Table 2.6. We noticed

that, a large number of patients (1023) are proposed to be assigned to a different

treatment arm than their actual assignment. Based on these allocations, it appears

that the majority of patients in the study would have benefited from arm 1.

2.3.1 Examination of the survival aspect

The proposed treatment selection method above is an attempt to assign

patients to receive the optimal outcome based on their score. Given that the above

analysis shows that the optimal assignments based on patient characteristics are

different from actual assignments towards a higher CD4 count, it might be the case

that such an assignment rule could also improve the expected value of the related

survival time conditional on the score. To explore whether such an implication

might hold, we proceed as follows.

In the dataset, there are three types of events: (i) when an individual’s CD4

count drops less than 50% of his/her pretreatment count, (ii) an event indicating

progression to AIDS, (iii) death. Thus, the term “survival time” would denote an

event time in the above sense. In addition, there was right censoring present in the

data. Now, consider the i th subject in the test set with covariate value Xi who is

23



assigned to a particular arm by an assignment mechanism. Suppose the individuals

estimated score is ûi =
{
Ŝ(Xi), δ̂(Xi)

}
. Let k∗i be the group the procedure would

assign this patient based on his/her estimated score ûi and let ki be the treatment

group he was assigned in the original trial. Conditional on û, we estimated the

difference in the survival times in the two groups, as

∆i = E(tk∗i |ûi)− E(tki |ûi).

For a fixed k, we consider a symmetric neighborhood of width 2h centered around

Ŝ(Xi),

Nh =
{
Ŝ(Xi)− h, Ŝ(Xi) + h

}
,

where h was the bandwidth chosen by the procedure given in Wand and Jones (1995)

for scores for all patients. Next, we selected a subgroup of patients from the whole

set (training and test), whose covariate values X satisfy (i) patient was originally

treated in arm k and (ii) Ŝ(X) ∈ Nh and (iii) the score satisfies δ̂(X) = δ̂(Xi). If

the size ( d, say) of the above subgroup is less than 30, we increased the width of

the neighborhood Nh in multiples of h (i.e., 3h, 4h etc.) to make d ≥ 30. After

that the Kaplan Meier estimator was calculated using the survival times of those

individuals in Nh.

Our estimator of the expected survival time for each group, i.e., E(tki|ûi),

ki = 1, ..., K, was the area covered under the corresponding Kaplan-Meier curve. For

a given ûi, we then find the estimated survival gain ∆̂i from the proposed selection

as the difference between the two estimated expectations, Ê(tk∗i |ûi) − Ê(tki|ûi).

Finally we estimate the overall treatment selection efficiency as the averaged ∆̂is

for all test patients,

ρ =
1

N

N∑
i=1

∆̂i, (2.10)

where N is the number in the test set. Note that a positive value for ρ indicates an

overall effective treatment selection. Table 2.7 gives these ρ values for the proposed
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procedure with two and multiple treatments cases along with the resulting estimated

survival gains for methods proposed by Cai et al. (2011), Zhao et al. (2012), and

Zhang et al. (2012), for the two-groups application. Additionally, we consider the

marginal survival functions and define,

∆
′

i = E(tk∗i )− E(tki),

where E(tk∗i ) and E(tki) are corresponding marginal expected survival times of new

(k∗i ) and actual (ki) arms. Again using the area under the marginal Kaplan Meier

estimates, we calculate estimated values of ∆
′
i, i = 1, ..., N . Similar to 2.10, we

obtain ρm using these marginal estimates. Corresponding ρm’s are also reported

in Table 2.7. Since the proposed treatment selection is based on a scoring scheme,

we argue that examining the score dependent survival outcome would be a more

reliable approach. This is confirmed by the fact ρm ≤ ρ in all cases.

2.4 Discussion

In this Chapter we proposed a novel personalized treatment plan to select

the optimal treatment from a set of multiple treatments. This method is a sin-

gle step procedure which can be easily applied. The proposed method is based on

semi parametric Single Index Models which, add great flexibility in modeling real

life situations. Furthermore, this method can also be used for quantile regression

SIMs providing additional model flexibility compared with existing methods based

on conditional expectations. Our empirical studies show that the proposed method

performs very satisfactorily in selecting the optimal treatment in a multiple treat-

ment setting while outperforming existing methods for the two treatment case for

non-linear models which are more realistic in practical situations. In addition, as

our simulations showed, the method is rather robust against departures from SIMs.

We show that the proposed method has desirable theoretical properties. Our anal-
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ysis of a real clinical trials dataset which has the multiple treatment option reveals

a possible connection between optimal treatment selection and a gain in patient

survival.

This discussion deals with complete responses. However, censoring is very

common in practice. An extension of the proposed methodology to a covariate

dependent censoring setting and various lifetime aspects such as multi state models

is forthcoming. Our study is addressing the optimal treatment selection based on a

single response. However, there are numerous circumstances where the optimality

is desired with respect to multiple criteria. For example, a treatment may have to

be selected to maximize the survival rates but minimize after effects and maximize

the quality of life in terms of temporary side effects. In such cases we have a multi

criteria optimization problem. This opens up another interesting future research

avenue.
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2.5 Tables

Models(regression function)
Error SD

(σ)

Per Group

Size (n)

Proposed

Method

Cai’s

Method

Zhao’s

Method

Zhang’s

Method

(1) (1.5X1 − 0.1X2 + 2X3 + 2X4 − 1.5X5 − 1.6X6)/
√

15.07: Group 1

(2X1 + 1.6X2 + 2.2X3 + 3.5X4 + 1.2X5 + 1.5X6)/
√

27.34: Group 2

0.1
50 864 889 800* 899

100 891 906 856* 902

0.2
50 794 817 773* 801

100 825 840 821* 844

(2) sin
{
π(X1 − 0.3X2 −X3)/

√
2.09

}
: Group 1

sin
{
π/4 + π(X1 +X2 +X3)/

√
3
}

: Group 2

0.1
50 900 683* 676* 683*

100 891 722* 698* 728*

0.2
50 860 670* 691* 693*

100 853 708* 683* 718*

(3) sin
{
π(0.8X1 + 1.1X2 + 0.9X3 +X4 + 0.9X5 + 1.1X6)/

√
5.68

}
: Group 1

sin
{
π/2 + π(1.8X1 − 1.3X2 + 0.8X3 +X4 − 1.2X5 −X6)/

√
9.01

}
: Group 2

0.1
50 880 605* 633* 678*

100 911 680* 671* 700*

0.2
50 839 606* 603* 672*

100 868 672* 652* 664*

(4) sin
{
π(X1 +X2 +X3)/

√
3
}

+X2
1 : Group 1

sin
{
π/2 + π(X1 +X2 +X3)/

√
3
}

+ 0.7X2
1 : Group 2

0.1
50 920 743* 694* 804*

100 935 794* 764* 842*

0.2
50 908 741* 703* 796*

100 924 774* 740* 834*

Table 2.1: Frequencies of correct treatment assignments in 1000 test cases by four

competing algorithms in the two groups case. The regression models used in the

simulations include linear and nonlinear SIM models, as well as models that are not

SIM. Cases where the proposed method (ours) outperformed a competing method

is denoted by *.
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Number of

Groups
Models (regression function)

Dimension

r

Per Group

Size

Normal Error

SD (σ)

DE Error

SD (σ)

0.1 0.3 0.5 0.1 0.3 0.5

Three

sin
{
π
(
C

′
X
)}

: Group 1

cos
{
π
6 + π

(
C

′
X
)}

: Group 2

sin
{

7π
5 + π

(
C

′
X
)}

: Group 3

3
50 937 857 733 929 804 649

100 946 866 766 936 846 720

5
50 934 843 761 922 818 682

100 973 916 796 949 843 728

8
50 897 816 707 883 726 563

100 962 875 784 950 839 739

Four

sin
{
π
(
C

′
X
)}

: Group 1

sin
{
π
2 + π

(
C

′
X
)}

: Group 2

sin
{
−π
2 + π

(
C

′
X
)}

: Group 3

sin
{
π + π

(
C

′
X
)}

: Group 4

3
50 904 799 653 890 699 529

100 939 822 714 909 773 625

5
50 895 775 640 878 699 518

100 946 827 687 910 752 608

8
50 853 720 549 836 644 438

100 926 809 689 903 717 577

Table 2.2: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method in multiple groups case (K > 2), using Type I nonlinear regression

models, with C′ =
(
1/
√
r, ...1/

√
r
)

1×r.
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Number of

Groups
Models (regression function)

Dimension

r

Group

Size

Normal Error

SD (σ)

DE Error

SD (σ)

0.1 0.3 0.5 0.1 0.3 0.5

Three

sin
{

π
‖β1‖

(
β
′
1X
)}

: Group 1

cos
{
π
6 + π

‖β2‖
(
β
′
2X
)}

: Group 2

sin
{

7π
5 + π

‖β3‖
(
β
′
3X
)}

: Group 3

3
50 956 878 766 924 818 688

100 970 896 796 948 844 737

5
50 930 865 762 926 802 694

100 947 897 802 942 838 741

8
50 888 801 649 862 736 537

100 947 881 791 942 812 724

Four

sin
{

π
|β1‖
(
β
′
1X
)}

: Group 1

cos
{
π
8 + π

‖β2‖
(
β
′
2X
)}

: Group 2

cos
{
−π
6 + π

‖β3‖
(
β
′
3X
)}

: Group 3

sin
{
π + π

‖β4‖
(
β
′
4X
)}

: Group 4

3
50 830 652 562 772 602 464

100 884 738 616 819 673 513

5
50 727 595 508 731 558 410

100 822 697 557 791 645 508

8
50 725 586 447 685 486 381

100 823 657 549 802 599 490

Table 2.3: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method in multiple groups case (K > 2), using Type II nonlinear regres-

sion models. Selected β vectors are shown in Table 2.4.
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Treatment

groups
Group

Number of

covariates
β1 β2 β3 β4 β5 β6 β7 β8

Three

1

3 1.5 1.6 0.9

5 1.5 1.6 0.9 1.2 1.4

8 1.5 1.6 0.9 1.2 1.4 -1.5 1.2 1.6

2

3 1.0 1.4 0.8

5 1.0 1.4 0.8 0.8 0.6

8 1.0 1.4 0.8 0.8 0.6 -1.1 0.8 0.6

3

3 1.3 1.7 0.7

5 1.3 1.7 0.7 0.9 1.1

8 1.3 1.7 0.7 0.9 1.1 -1.3 -0.1 0.9

Four

1

3 0.8 0.6 0.7

5 0.8 0.6 0.7 0.5 0.6

8 0.8 0.6 0.7 0.5 0.6 0.8 0.7 0.5

2

3 1.2 1.4 0.9

5 1.2 1.4 0.9 1.5 0.9

8 1.2 1.4 0.9 1.5 0.9 1.1 1.4 1.2

3

3 0.2 0.3 0.8

5 0.2 0.3 0.8 0.6 0.3

8 0.2 0.3 0.8 0.6 0.3 0.1 0.4 0.6

4

3 1.8 2.1 0.8

5 1.8 2.1 0.8 0.7 0.9

8 1.8 2.1 0.8 0.7 0.9 1.3 1 1.3

Table 2.4: β vectors of Type II models, for model dimensions (r) 3, 5, and 8.
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Orginal

Assignment

New Assignment

Proposed

Method

Cai’s

Method

Zhao’s

Method

Zhang’s

Method

Arm-0 Arm-1 Arm-0 Arm-1 Arm-0 Arm-1 Arm-0 Arm-1

Arm-0 1 331 13 319 0 332 28 304

Arm-1 2 317 11 308 0 319 25 294

Total 3 648 24 627 0 651 53 598

Table 2.5: Two groups treatment assignment summary for ACTG-175 trial, by four

methods.

Original

Assignment

Proposed Assignment

Arm-0 Arm-1 Arm-2 Arm-3

Arm-0 2 211 70 49

Arm-1 2 193 77 47

Arm-2 5 201 73 45

Arm-3 5 223 88 45

Total 14 828 308 186

Table 2.6: Four groups treatment assignment summary for ACTG-175 clinical trial,

by the proposed method.

Two Groups Assignments Four Groups Assignments

by Proposed MethodProposed

Method

Cai’s

Method

Zhao’s

Method

Zhang’s

Method

ρ 76.1 73.0 77.2 66.0 56.3

ρm 62.5 58.5 63.1 53.0 32.2

Table 2.7: Obseved ρ and ρm by four treatment selection methods, under different

treatment possibilities.
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CHAPTER 3

TREATMENT SELECTION FOR SURVIVAL OUTCOME

3.1 Treatment Selection

The goal of this project is to extend project 1 to handle censored responses.

Here, the response is a survival time or an event time that is subject to right

censoring.

Let (Yi, Xi) be the survival response and covariate pair for the i’th treatment

group, the covariate vector is r dimensional. Let Ci denote the right censoring time

and let Ti = Yi ∧ Ci and δ
′
i = I[Yi ≤ Ci]. We denote the survival function by

S
′
(t) = E{I[Yi > t]}, with hazard function λ(t) and cumulative hazard function

Λ(t). Suppose patients’ covariate is used to obtain a score U(Xi). Assuming all

Yi’s are observed, in our previous work, we define a function pi(u) that provides the

probability of dominance for the i th treatment over others, for a patients’ with a

covariate value Xk and a score U(Xk) = u, for k = 1, ..., K:

pi(u) = P [Yi > maxi 6=jYj|U(Xk) = u; k = 1, ..., K].

For a given set of functions, p1(.), ..., pk(.), for a patient with a score of U0, the

best treatment is given by,

k∗(U0) = arg max
1≤i≤K{pi(U0)}.

As we described before, pi(u) is an alternative to measures based on conditional

expectations which requires restrictive moment assumptions. Here, scores are ob-
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tained via a set of single index models or partial linear models define for each group

given by (2.3). We define a patient score as a composite function given by (2.5),

U(X) = (S(X), δ(X)).

Since the score is estimated via a set of estimated single index models, for a given

patient we have an estimated score of Û(X) = (Ŝ(X), δ̂(X))′. For completely

observed responses, the probability of ith treatment dominating the others for a

given score value (u) is given by (2.7). However, once patients’ response’s are subject

to right censoring, some Yij
′s may be unobservable, which makes the application

our of previous treatment selection method directly to available data impossible.

In this study we introduce a modified method developed in parallel to the previous

personalized treatment selection concept. This involves modification of the single

index estimator and the estimator of pi(u). Use of data weighting schemes for

the purpose of bias reduction are well known in statistical literature. One way

to handle censored observations in the context of regression is to introduce a re-

weighing scheme to the original estimator developed for complete data, in a way

that the bias caused due to censoring fades away asymptotically. This idea was

first introduced by Koul (1981), for the randomly right censored data in linear

regression. Datta et al (2001) described estimating the marginal survival time

in the presence of time dependent covariates, using a re-weighted Kaplan-Meier

estimate, applying the IPCW calculated by Aalen’s additive hazard model (1989).

In a recent article, Lopez et al. (2013) described estimating the single index model

incorporating IPCW. In their method, they used cox’s proportional hazard model

to obtain covariate dependent censoring probabilities. Similar to these concepts, in

our study, we introduce a reweighing scheme to estimators of single index model

and p(u) function.
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3.1.1 Estimation of the IPCW Weights

We applied Aalen’s additive hazard model to estimate the weights in the case

of covariate dependent censoring. Aalen’s model is more flexible compared to Cox’s

proportional hazard model. However, it’s important to note that estimating Aalen’s

model involves inverting a non full rank matrix. Although estimated hazards depend

on the solution of the selected generalized inverse, it doesn’t impact the proposed

weighting scheme, since weights are uniquely defined. In this study, we employed

Moore-Penrose generalized inverse. Also, in Aalen’s model there is no strong criteria

imposed to restrict the hazard to be positive. Aalen’s additive hazard model can

be written as,

λc[t|Zi(t)] =
J∑
j=0

βj(t)Zij(t).

where, βj(t) is an unknown function, that needs to be estimated. Zij(t) is a pred-

icable process and Zij(t) is the corresponding value avialabe just before time t.

Here, Zi0(t) ≡ 1. Define Bj(t) as,

Bj(t) =

∫ t

0

βj(s)ds.

Aalen’s model estimates, B(t) = (B0(t), ..., BJ(t)) by,

B̂(t) =
n∑
i=1

I(ti ≤ t)(1− δi)A−1(ti)Zi(ti),

where, Zi(t) = (Zi0(t),..., ZiJ(t) ), and A(t) =
∑n

i=1 I(ti ≥ t)Zi(ti)Z
T
i (ti). Cumula-

tive hazard at time t for covariate Zi(t), is given by,

Λ̂c[t|Zi(t)] =
J∑
j=0

∫ t

0

ZiJ(t) dB̂j(s).

In the case of random censoring, we obtain inverse censoring probabilities by Kaplan-

Meier estimator.
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3.1.2 Re-weighted Single Index Estimator

Suppose variable Y is linked to a linear combination of set predictors (X)

represented by β′X via an unknown link function g. SIM model is defined by,

Y = g(β′X) + ε,

where,

E(ε|X) = 0.

For the purpose of identifiability, we may replace β by a unit vector,

θ = β||β||−1.

where ||.|| is the Euclidean norm. Thus, an equivalent model can be written as,

Y = g(θ′X) + ε.

Assuming all Y ’s are completely observed, Ichimura et al. (1993) proposed an

estimator to estimate the above SIM model. Accordingly, the unknown function

g(.) is estimated at point u, by leave-one-out cross validation method, omitting the

pair of (Yi, Xi),

ĝ−i(u|θ) =

∑
j 6=i Yjωh(u− θ

′
Xj)∑

j 6=i ωh(u− θ
′Xj)

.

where, h is a smoothing parameter, ωh(.) = ω(./h), and ω, is a fixed kernel function

with ω ≥ 0 and
∫
ω(t)dt = 1. Ichimura et al. (1993) showed, estimates of θ and h

can be achieved by simultaneously minimizing the following objective function with

respect to θ and h.

Ŝ(θ, h) =
∑
i

{Yi − ĝi(θ′x|θ)}2

Once observed data subject to right censored, above SIM estimator is no longer

valid. We suggest an alternative SIM estimator, which is capable of handling right

censored data in survival outcomes. This new estimator is primarily based on the
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method proposed by Ichimura et al (1993), but it’s re-weighted by a IPCW weighting

scheme. We define leave-one-out re-weighed estimator of g(.) as,

ĝ−i(u|θ) =

∑
j 6=i

δ
′
j Tj

Kc
−i(Tj−)

ωh(u− θ
′
Xj)∑

j 6=i ωh(u− θ
′Xj)

.

Here, Kc(T−) is the survival probability of an individual not being censored just

before time T , which can be estimated from either Aalen’s linear model or Kaplan-

Meier estimator, depending on the censoring mechanism. We estimate θ and h by

minimizing the following weighted objective function denoted by (Ŝ
′
(θ, h)) simul-

taneously with respect to both θ and h.

Ŝ
′
(θ, h) =

∑
i

δ
′
i

Kc(Ti−)
{Ti − ĝi(θ′Xi|θ)}2

For estimators θ̂ and ĥ, g(.) function at a new point u0 = θ
′
x0, can be estimated as,

ĝ(u0|θ̂) =

∑
i

δ
′
j Tj

Kc(Tj−)
ωh(u0 − θ̂

′
Xj)∑

i ωh(u0 − θ̂′Xj)
. (3.1)

In reality, we replace Kc(.) by its corresponding estimator K̂c(.). A simulation

study to evaluate the properties of the re-weighted single index estimator showed

reasonable performance under both random and covariate dependent censoring,

seemingly suggesting that the alternative SIM estimator is a reasonable estimator

of estimating patient scores with right censored responses. We explain detailed

results later in the “Empirical Studies”.

3.1.3 Re-weighted Estimator of Treatment Selection

Assuming all treatment responses (Y ) are observed, in project-1 we provided

a treatment selection rule that assigns a patient to the treatment that dominates all

others for a given patient score. The corresponding probability that ith treatment

dominating for a patent with a score of u is given by (2.7). In the same fashion
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as the single index model was re-weighted, we introduce a new estimator of p(u)

capable of coping with right censored data by employing IPCW weighting scheme.

Again, the new rule is structured on the same score criteria given by (2.6). The

new estimator is defined as below. Let

J = {(j1, . . . , jK) |ji ∈ {1, . . . , ni}, i = 1, . . . , K} .

and, for J ∈ J we let

ŵJ (s) =
K∏
i=1

1

hi
w

(
s− Ŝ (Xiji)

hi

)

where w is a kernel function with w ≥ 0 and
∫
w(t)dt = 1, and his are a set of

smoothing parameters. Also, let

η̂J (d) =
K∏
k=1

I
[
ĝd

(
β̂′dXkjk

)
= max

m

{
ĝm

(
β̂′mXkjk

)}]
=

K∏
k=1

I
(
δ̂ (Xkjk) = d

)
.

As indicated before, suppose, Kc(T−) is the survival probability of an individual

not being censored just before time T . We define κ̂J ,

κ̂J =
K∏
k=1

δ
′

kjk

K̂(Tkjk−)
.

Estimator of p(u), is given by,

p̂i (u) =

∑
J∈J I [Tiji > maxk 6=i {Tkjk}] ŵJ (s) η̂J (d) κ̂J∑

ŵJ (s) η̂J (d)
. (3.2)

For a given patient with a covariate vector x0 and estimated score of û0 = (Ŝ(x0), δ̂0),

the proposed treatment rule assign him/her into k∗ th group if,

k̂∗ = arg max
1≤i≤K

{p̂i(û0)}. (3.3)

37



As mentioned in the treatment selection for complete data, the optimal bandwidths

selection for this problem is challenging. Our empirical studies demonstrated rea-

sonable performance using the bandwidth selection given by Wand and Jones (1995),

even in the right censored case.

As an alternative approach to the above treatment selection plan that is

based on pi(u)’s, we also propose a method based on comparing conditional expected

means using a re-weighted estimator for smooth means given u = (s, d). The

proposed estimator is given by,

µ̂i (u) =

∑ni
j=1

∆ij

K̂(Tij−)
Tijw

(
(s− Ŝ(Xij))/hi

)
I
(
δ̂ (Xij) = d

)
∑ni

j=1w
(

(s− Ŝ(Xij))/hi

)
I
(
δ̂ (Xij) = d

) . (3.4)

The optimal treatment using µ̂i(u)’s is defined for an individual with an

estimated score û0 = (Ŝ(x0), δ̂0) as,

k̂∗ = arg max
1≤i≤K

{µ̂i(û0)}. (3.5)

In this work we used the Wand and Jones (1995) bandwidth selection concept

for estimating µi(u)’s for a comparative study with optimal treatment selection

based on pi(u)’s.

3.2 Empirical studies

In this section we provide detailed information on a simulation study per-

formed to assess the performance of new treatment selection rule and single index

model estimator for right-censored data.
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3.2.1 Re-weighted Single index estimator

The following simulation study explores the performance of the IPCW re-

weighted single index estimator in finite sample.

In this experiment, we generated survival time Y ’s using a three dimensional

covariate vector X, in a highly non-linear model given by,

Y = a+ sin{π(β
′
X)}+ ε, ε ∼ N(0, 0.12).

We chose, β = ( 1√
3.5
, 1.5√

3.5
, 0.5√

3.5
)
′
. and a = 1.2. Here each component of X was

independently generated from U(−1, 1). The study examines the performance of the

SIM estimator under two censoring mechanisms; random and covariate dependent

with combinations of various censoring percentages ranging approximately from

10% to 50%, and model training sizes (n) from 100 to 2000. Random censoring

time was generated from single parameter scale Exponential distribution with a

parameter φ selected from the set {0.1, 0.3, 0.4}, whereas in the covariate dependent

censoring setting, we obtained censoring time using a function which is a mixture

of two distinct Exponential distributions, defined for a threshold value of a linear

combination of covariates given by,

C ∼ I(β
′

cX > w)exp(φ1) + I(β
′

cX ≤ w)exp(φ2).

We fixed w = 0.4 for βc = (0.2, 0.3, 0.4) and selected (φ1, φ2) from the set
{

(0.01, 0.10),

(0.15, 0.40), (0.30, 0.70)
}
. In each scenario, we first estimated the SIM model and

then determined the average L1 distance between predicted and true functions for

a testing set of size 1000, that was generated similarly to the training set. Thus the

average L1 distance is given by,

∆ =
1

1000

∑
i

|ĝ(β̂
′
Xi)− g(β′Xi)|.

Tables 3.1 and 3.2 show average bias, standard error of re-weighted SIM parameters

and average ∆ observed under each setting, using 1000 Mote-Carlo simulations.
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∆ clearly decreased as n increased for both censoring mechanisms and rates,

suggesting that the estimated function asymptotically converges to the true func-

tion. Also, we observed a reduction in bias and standard error for large n. As to

be expected, comparably larger bias and standard error were reported under high

censoring rates. Suppose,

∆ ∼ n−γ.

So that,

log(∆) ∼ −γ log(n).

In the simulated examples, we observed a linear trend in log(∆avg) vs log(n), sug-

gesting that the above linear relationship is reasonable. These graphs are shown

in Figures 3.1 and 3.2. Estimated γ’s for random censoring with 10%, 30%, 50%

are 0.38, 0.42, 0.43 and for covariate dependent with censoring rates 10%, 30%, 50%

cases are 0.32, 0.31, 0.35 respectively.

3.2.2 Treatment Selection

In this section we provide details of an extensive simulation study that in-

vestigates the properties of the proposed treatment selection method under various

settings. The overall study design is comparable to the empirical study described in

Project 1. Primarily, we focused on the accuracy of treatment assignment of a new

(test) observation by using estimated values of the pi functions from a set of train-

ing data. Illustrating the personalized treatment concept, we choose our model sets

such that each model in a set dominates others for some combination of covariate

values. In this simulation study, we address both two (K = 2) and multiple groups

(K ≥ 2) treatment selection, under random and covariate dependent censoring. We

simulated K,K ∈ {2, 3, 4} independent samples of size n, n ∈ {50, 100, 200} per

group. All components of r dimensional covariate vectors were generated indepen-
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dently from U(0, 1), where r is ranged from 2 to 8. Using various functions and

index vectors, we obtained the survival outcome from model (2.3), where σ was se-

lected from the set {0.1, 0.2}. For the kth, k = 1, .., K group, we generated random

censoring time (Ck) using single parameter Exponential distribution with parame-

ter φk, whereas covariate dependent censoring was obtained using a combination of

two single parameter Exponential distributions, given by following expression.

Ck ∼ I(β
′

cX > wk)exp(φk1) + I(β
′

cX ≤ wk)exp(φk2), (3.6)

Here, (φk1, φk2), βc , and wk were chosen specifically for the kth model given by (3.6),

controlling the censoring percentage. We provide all selected censoring parameters

corresponding to each scenario in Tables 3.5 - 3.8. Once K samples were generated,

we estimated SIM for each group using the re-weighted SIM estimator applying

a Gaussian kernel. The probability of not being censored (Kc(.)) was estimated

using Kaplan-Meier and Aalen’s estimators for random and covariate dependent

censoring scenarios, respectively. A new covariate value X0 was generated in the

same manner as generating training set. After that, using the estimated re-weighted

SIM models, scores were calculated at each covariate value including the estimated

score at x0 (û0). We estimated p̂k(û0) and µ̂k(û0) for k, k = 1, ..., K, choosing a

U(−1, 1) probability density function as the kernel. The bandwidth was chosen by

Wand and Jones (1995) procedure for each i, i = 1, ..., K. The treatment group

for the new patient was determined via (3.3) and (3.5). Using the treatment mean

model gi(βiX0) we then generated the response Y ∗i , for each treatment group as

in model (2.3) with the same error distribution used to generate model sets. We

defined the treatment assignment to be correct if,

arg max
i
{p̂i(û0)} = arg max

i
{Y ∗i } .

This procedure was then repeated for 1000 times for each combination of selected

settings. We also considered an alternative approach based on the Cox method,
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where we fit a Cox regression model for the survival outcome of each treatment.

These models are used to find the conditional hazards given individuals’ covariates,

which allows one to estimate the expected survival outcome of a given individual.

In this approach the best treatment can be selected as the treatment with the high-

est expected survival mean. In the case of two groups (Table 3.3), we chose both

linear and nonlinear model functions. When linear models are used, the treatment

selection based on Cox method had the best accuracy in terms of optimal treatment

selection. However, in cases of non-linear model functions, the proposed methods

using pi(u)’s and µi(u)’s clearly compete the Cox approach. In general, we observed

a high selection accuracy for low censoring percentages in both random and covari-

ate dependent censoring settings. Comparing accuracies observed for pi(u)’s and

µi(u)’s, we noticed that use of pi(u)’s has a relatively higher accuracy than µi(u)’s

when the censoring rate gets severe. As to be expected, results revealed compara-

bly high accuracies for large model sizes and low error variances. The model set

4 in Table 3.3 violates the SIM condition. We chose this model to demonstrate

the robustness of the proposed concepts under the departure from SIM structure.

Observed high accuracies reflect the robustness of the proposed concepts against

the departure from SIM assumptions.

We performed simulations for Multiple treatment groups (K = 3, K = 4)

simulations using Type-1 nonlinear models described in “Empirical Studies” of

project 1. We chose the common vector as, C′ =
(
1/
√
r, ..., 1/

√
r
)

1×r and di-

mension (r) selected from the set of {3, 5, 8} with error standard deviation σ = 0.1

and σ = 0.2. Simulation results that are presented in Table 3.4 for the multiple

group case show high accuracies for larger sample sizes and low censoring rates,

the same trend that was observed in the two groups case. These results indicate

better treatment selection accuracy with pi(u)’s, than µi(u)’s. We observed a rela-

tive decline in the accuracy as the dimension was increased. However, the observed
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result seems to be highly acceptable in consideration of the complexity in treat-

ment selection problem under a high degree of non-linear models and severities of

censoring.

3.3 ACTG-175 HIV Clinical Trial

In this section we illustrate our proposed method using a dataset resulted

from ACTG 175 clinical trial. A complete description of this trial and the data set

is given in Section 2.3.

This trial measured the survival of HIV patients as one of its secondary

outcomes, which had been severally subjected to right-censoring. A primary analysis

of the survival outcome shows the rate of censoring is approximately 80%. In our

analysis, we considered the log transformed number of survived days as the survival

outcome. As covariates, we used log-CD4 counts and log-CD8 counts at baseline,

age, weight, and the number of months a patient received pre-antiviral therapy.

We applied proposed treatment assignment strategies based on two proposed

concepts: probabilities of dominances and smooth means, on the survival outcome

using all four arms of the study. We randomly selected 200 patients from each

arm as “training” data to estimate the SIM’s, while considering the remaining

patients as new (test) patients, which are considered for the treatment selection.

After fitting SIMs to training data we estimated the scores for the test cases and

estimated the corresponding pi(u)’s and µi(u)’s functions using Gaussian kernels at

corresponding scores to assign each test patient to the best treatment suggested by

the corresponding largest estimated pi(u) or µi(u) value.

We present two treatment assignment results in Table 3.9. For example, in

Table 3.9, the (0, 0) cell indicates that 141 out of 322 patients who were actually

treated in arm-0 would have been assigned to arm-0 had we used the proposed
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method based on for probability of dominance. The overall result shows a notable

difference between treatment assignments for proposed techniques. For example,

the major proportion of test patients have been assigned to arm-1, using the proba-

bilities of dominance. On the other hand, the smooth means approach has assigned

a large number of patients to arm-0. Such disparity in treatment selection was

observed throughout our simulation studies also, especially when the censoring rate

was severe. Overall these simulation studies seem to indicate a better performance

in treatment assignment with probabilities of dominances.

In the multiple treatments assignment setting, we have a total of 1336 pa-

tients in the test set. Using probabilities of dominances, we assigned the majority;

553 to arm-2, whereas 42, 254 and 477 patients are assigned to arms 0, 1 and 3,

respectively. This result seemingly suggesting that one of the other arms almost

dominate arm-0 with respect to our scoring mechanism when we use pi(u)’s.These

results are summarized in Table 3.11. Similar to the two treatment assignment we

noticed a clear difference between two methods. A close inspection of the overall

assignment indicates that, a large number of patients; 1105 and 976 are proposed to

be assigned to a different treatment arm than their actual assignment in the original

trial with selectionss based on pi(u)’s and µi(u)’s respectively.

3.4 Discussion

In this work, we developed a novel personalized treatment selection concept

that addresses the multiple treatment selection for survival outcome which can be

subjected to right-censoring. This method is an extension of the project-1 described

in the previous chapter.

We introduced IPCW re-weighting schemes to Ichimura et al. (1993) SIM

estimator and the treatment selection estimator introduced in project-1 to handle
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the selection bias caused by the censoring mechanism. Similar to the method based

on probabilities of dominances, we also introduce a treatment selection concept us-

ing conditional means. Based on an empirical study that evaluate the performance

of the re-weighted SIM estimator, we observed the absolute error associated with

the estimated function goes away asymptotically as sample size increases. The per-

formance of the new treatment selection concept was investigated using a series

of simulation studies to study the of accuracy in selecting the best treatment that

maximizes the patients’ survival outcome. Where we considered both two treatment

and multiple treatments options under various model functions with various rates

of random and covariate dependent censoring. The overall empirical results indi-

cated a reasonable treatment selection accuracy. The proposed method seems to be

robust under the deviation from SIM conditions. Between two proposed techniques;

probabilities of dominances and smooth means, our empirical studies suggested a

comparable performance with both methods under low rates of censoring. However

when the censoring rate is severe, the method based on probability of dominances

is performing relatively better than method based on smooth means. Demonstrat-

ing the applicability of our method in real data, an application of the new concept

using ACTG 175 HIV trial data showed acceptable treatment allocations and its

potential of maximizing the survival outcome.

Since the treatment selection method introduced in project-1 can be utilized

with quantile regression models, for a greater applicability, our method can be

further generalized by adjusting quantile regression SIM estimators using a suitable

re-weighting concept in the same fashion. Often, outcomes of a treatment is not

only restricted to a single response. For example, one may consider patients’ CD4

counts and survival as paired responses for a HIV patient. A possible extension of

our method could be the addressing of such complex treatment selection problems

that deal with maximizing various outcomes which may include potentially right-
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censoring.

3.5 Tables

Censoring Rate Sample Size Bias (10−3) S.E (10−2) ∆(10−1)

β1 β2 β3 β1 β1 β1

100 4.449 -0.875 0.712 9.478 6.975 5.749 2.554

500 -0.226 0.078 0.578 1.574 1.129 2.196 1.217

50% 1000 -0.137 0.074 -0.138 1.151 0.672 1.302 0.944

2000 0.016 -0.018 0.004 1.563 0.536 0.381 0.701

100 -0.209 0.120 0.027 3.679 2.678 4.003 1.836

500 -0.078 0.043 -0.047 1.221 0.713 1.397 0.945

30% 1000 -0.078 0.053 -0.024 0.614 0.394 0.760 0.713

2000 -0.009 0.004 0.001 0.340 0.213 0.478 0.519

100 0.217 -0.274 -1.451 1.887 1.179 2.227 1.152

500 -0.297 0.384 -0.587 0.509 0.317 0.605 0.597

10% 1000 -0.264 0.149 0.020 0.350 0.216 0.383 0.488

2000 -0.092 0.092 0.416 0.238 0.175 0.253 0.369

Table 3.1: Properties of re-weighted SIM model for randomly generated censoring

times, evaluated with 1000 Monte-Carlo simulations.

a+sin{π + π(β′X)} a+sin{3π
2

+ π(β′X)}

a+sin{π + π(β′X)}
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Censoring Rate Sample Size Bias (10−3) S.E. (10−2) ∆(10−1)

β1 β2 β3 β1 β1 β1

100 -7.610 1.631 -37.814 9.400 6.648 10.493 3.243

50% 500 0.550 7.485 -28.060 2.571 1.785 3.339 1.667

1000 2.244 6.336 -26.591 1.685 1.142 2.206 1.404

2000 2.724 6.210 -26.281 1.092 0.782 1.609 1.272

100 5.673 5.502 -18.270 4.831 3.231 5.694 2.109

30% 500 0.856 3.542 14.011 1.4381 1.010 1.938 1.192

1000 0.712 3.291 -12.064 0.877 0.604 1.183 0.984

2000 0.855 3.035 -11.305 0.556 0.400 0.883 0.858

100 -0.918 1.518 4.343 1.675 1.132 2.092 1.124

10% 500 0.082 0.773 -0.265 0.528 0.361 0.655 0.619

1000 0.108 0.642 2.213 0.3403 0.231 0.393 0.495

2000 0.090 0.526 1.793 0.2190 0.148 0.266 0.399

Table 3.2: Properties of re-weighted SIM model for covariate dependent censoring

times, evaluated with 1000 Monte-Carlo simulations.

47



No Random Censoring Covariate Dependent Censoring

Models Sample Size Error SD Censoring 10% 30% 50% 10% 30% 50%

(n) (σ) PD SM Cox PD SM Cox PD SM Cox PD SM Cox PD SM Cox PD SM Cox PD SM Cox

50
0.1 916 920 942 906 883 947 857 802 940 772 677 940 910 882 947 869 811 946 789 714 943

0.2 878 878 902 877 867 899 828 774 899 755 703 899 879 860 906 838 798 902 765 697 891

A1: Group 1
100

0.1 946 949 953 930 922 949 887 844 943 837 746 943 922 901 949 923 864 953 865 781 946

A2: Group 2 0.2 899 905 909 886 880 904 869 817 902 802 719 902 890 864 910 893 838 914 851 770 900

200
0.1 950 950 951 934 922 948 920 869 951 890 810 952 940 927 951 929 883 948 917 816 951

0.2 905 904 909 897 891 909 889 836 906 865 797 909 909 897 908 895 856 904 873 797 908

50
0.1 899 884 594 846 838 602 785 760 619 739 709 603 865 842 603 810 770 610 737 701 606

0.2 836 834 587 822 814 599 778 767 604 711 684 585 838 820 586 785 760 602 724 694 590

A3: Group 1
100

0.1 902 895 605 899 887 629 856 835 623 792 776 621 895 888 619 888 846 623 825 749 626

A4: Group 2 0.2 856 861 597 865 856 629 825 809 608 770 737 612 860 861 619 852 826 613 791 738 620

200
0.1 922 917 657 893 891 646 892 863 631 850 823 638 913 914 661 892 864 631 860 808 643

0.2 893 889 654 857 852 641 843 825 622 835 796 630 885 879 651 870 853 625 837 790 639

50
0.1 854 855 534 823 807 563 769 749 600 682 654 556 818 797 561 776 755 578 651 635 561

0.2 817 814 530 797 793 558 743 715 567 662 650 557 804 797 575 743 725 562 649 614 541

A5: Group 1
100

0.1 874 874 565 834 832 582 804 786 576 782 738 580 864 853 563 811 783 556 759 716 557

A6: Group 2 0.2 845 843 553 802 793 586 785 755 579 739 707 574 842 832 568 803 780 568 732 682 548

200
0.1 904 903 566 862 863 567 844 821 608 818 771 593 867 864 588 852 826 601 812 784 600

0.2 862 868 580 839 850 564 825 804 600 792 755 580 843 845 575 819 799 601 800 763 595

50
0.1 798 784 532 757 743 537 673 664 547 539 550 529 736 725 533 603 606 526 505 478 527

0.2 756 751 547 727 726 537 630 633 540 568 568 534 751 738 528 581 591 507 490 463 531

A7: Group 1
100

0.1 843 838 557 844 836 554 759 743 545 627 604 542 824 821 521 741 725 556 588 564 525

A8: Group 2 0.2 799 798 550 820 815 564 751 728 546 599 591 542 808 808 525 710 689 549 570 548 536

200
0.1 892 885 564 877 864 549 835 796 563 754 712 540 872 858 526 820 804 528 658 628 547

0.2 866 867 578 839 835 548 804 778 553 716 687 540 832 829 544 782 781 539 650 634 539

Table 3.3: Frequencies of correct treatment assignments in 1000 test cases for three

methods: Probability of Dominance (PD), Smooth Means (SM), and Cox model

approach, in two groups case (K = 2) using linear and nonlinear regression models

that are listed in Table 3.6, under random and covariate dependent censoring.
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No Random Censoring Covariate Dependent Censoring

Groups Models Dimension Sample Size Error SD Censoring 10% 30% 50% 10% 30% 50%

(r) (n) (σ) PD SM PD SM PD SM PD SM PD SM PD SM PD SM

3

50
0.1 928 926 886 858 844 760 628 582 905 892 856 792 737 667

0.2 878 878 851 817 784 712 619 578 866 846 824 782 672 619

100
0.1 935 935 907 881 876 821 785 681 924 919 897 847 853 762

0.2 893 892 852 831 843 800 748 668 871 847 857 830 805 727

200
0.1 938 938 935 917 891 833 855 740 935 931 921 880 892 785

0.2 902 900 884 871 862 821 798 695 896 890 874 843 837 772

B1: Group 1

5

50
0.1 923 921 875 847 768 722 579 580 865 855 805 752 600 588

0.2 847 847 821 802 736 708 560 575 828 817 763 735 564 571

Three B2: Group 2
100

0.1 925 925 880 854 853 793 748 680 913 892 881 840 766 714

0.2 882 880 867 833 831 765 688 637 871 858 846 806 737 694

B3: Group 3
200

0.1 933 933 911 889 879 821 828 735 937 912 903 849 847 774

0.2 893 893 869 846 842 783 790 702 889 877 854 827 813 751

8

50
0.1 929 927 891 877 835 806 683 698 897 892 863 832 624 612

0.2 886 886 861 849 792 781 655 659 846 847 806 792 607 599

100
0.1 943 939 929 909 897 864 796 757 940 928 898 870 801 762

0.2 904 904 883 865 857 816 769 744 898 894 879 841 766 728

200
0.1 950 949 943 925 914 876 877 805 940 939 933 894 892 836

0.2 917 917 896 880 888 844 853 776 911 904 896 873 846 810

3

50
0.1 926 924 866 835 826 754 702 628 903 880 857 790 748 664

0.2 878 880 838 827 782 714 645 605 866 845 797 753 712 638

100
0.1 939 939 902 874 865 792 801 700 918 904 894 830 846 724

0.2 883 886 859 836 840 759 757 649 886 882 858 820 798 710

200
0.1 945 945 910 903 893 846 838 741 929 921 904 866 884 790

B1: Group 1 0.2 885 884 875 855 851 818 805 729 887 882 872 842 831 752

5

50
0.1 914 918 857 834 781 703 603 587 865 847 790 749 638 610

B2: Group 2 0.2 831 831 793 782 740 681 542 543 819 805 765 730 595 588

Four
100

0.1 922 922 892 873 862 797 748 664 911 889 871 815 779 705

B3: Group 3 0.2 874 875 842 823 792 729 717 674 857 842 818 775 744 680

200
0.1 938 937 911 886 882 832 845 741 924 908 907 866 872 790

B4: Group 4 0.2 872 872 848 835 838 798 786 736 862 852 847 811 821 751

8

50
0.1 887 887 837 820 744 725 585 603 857 853 732 717 580 591

0.2 833 834 791 766 714 692 542 568 798 789 709 700 548 560

100
0.1 918 917 871 855 830 799 690 693 914 909 847 801 719 716

0.2 874 875 834 828 773 746 702 671 860 852 788 759 708 685

200
0.1 928 929 908 895 877 827 823 751 915 900 896 871 829 775

0.2 890 889 869 853 830 793 782 710 877 863 849 803 785 751

Table 3.4: Frequencies of correct treatment assignments in 1000 test cases by two

methods: Probabilities of Dominances (PD) and Smooth Means (SM), in multiple

groups case (K > 2), using nonlinear regression models that are shown in Table

3.7.
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Model

Set
Group

θ
(
φ1
φ2

)
w β′c

20% 30% 50% 20% 30% 50%

1
1st 0.10 0.20 0.40

(
0.05
0.30

) (
0.10
0.40

) (
0.20
0.70

)
0.6 (1,1,0)

2nd 0.10 0.20 0.40
(
0.05
0.30

) (
0.10
0.40

) (
0.20
0.70

)
0.6 (1,1,0)

2
1st 0.15 0.25 0.40

(
0.05
0.30

) (
0.10
0.40

) (
0.20
0.70

)
0.6 (1,1,0)

2nd 0.25 0.35 0.70
(
0.05
0.30

) (
0.10
0.40

) (
0.20
0.70

)
0.6 (1,1,0)

3
1st 0.15 0.25 0.40

(
0.05
0.15

) (
0.20
0.35

) (
0.20
0.50

)
0.3 (1,1,1,1,0,0,0,0)

2nd 0.25 0.55 0.80
(
0.20
0.30

) (
0.30
0.70

) (
0.60
1.00

)
0.3 (1,1,1,1,0,0,0,0)

4
1st 0.10 0.20 0.40

(
0.05
0.20

) (
0.10
0.40

) (
0.40
0.60

)
0.4 (1,0,0)

2nd 0.10 0.20 0.40
(
0.20
0.30

) (
0.30
0.70

) (
0.60
1.00

)
0.4 (1,0,0)

Table 3.5: The used sets of parameters to generate censoring times for two groups

assignment cases.

Regression Functions

A1: 2.0 + 1√
3.19

(1.9X1 + 2X2 − 1.6X3)

A2: 1.8 + 1√
6.52

(4.8X1 − 3.5X2 + 2.7X3)

A3: 1.2+sin{ π√
3.19

(0.7X1 + 1.2X2 − 1.1X3)}

A4: 1.2+cos{ π√
6.62

(0.6X1 − 0.1X2 + 2.5X3)}

A5: 1.2+sin{ π√
4.28

(X1 − 0.3X2 + 0.7X3 + 0.1X4 + 0.8X5 − 0.6X6 + 0.5X7 + 1.2X8)}

A6: 1.2+sin{π + π√
11.65

(2X1 +X2 + 0.5X3 + 0.5X4 − 0.7X5 + 0.1X6 + 2.3X7 − 0.6X8)}

A7: 1.2+cos{ π√
1.26

(X1 − 0.5X2 + 0.1X3)}+ 0.4X2
1

A8: 1.2+cos{3π
2

+ π√
7.13

(1.6X1 + 2.1X2 + 0.4X3)}+ 0.2X2
1

Table 3.6: Model functions that are used for two group treatment selection simula-

tions. Table 3.5 shows the used censoring parameters.
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Regression Functions

B1: a+sin{π(β′X)}

B2: a+sin{3π
2

+ π(β′X)}

B3: a+sin{π(β′X)}

B4: a+sin{−π
2

+ π(β′X)}

Table 3.7: Model functions that are used for multiple treatment selection simula-

tions. Here, β′ =
(
1/
√
r, ...1/

√
r
)

1×r. Table 3.8 shows the used censoring parame-

ters.
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Number of

Groups

Dimension

(r)
Groups

θ
(
φ1
φ2

)
w β′c

20% 30% 50% 20% 30% 50%

3

3

1st 0.15 0.25 0.50
(
0.10
0.20

) (
0.10
0.40

) (
0.30
0.70

)
1.00 (1,1,0)

2nd 0.10 0.20 0.40
(
0.10
0.20

) (
0.10
0.40

) (
0.30
0.70

)
1.00 (1,1,0)

3rd 0.20 0.40 0.80
(
0.10
0.30

) (
0.20
0.60

) (
0.30
1.00

)
1.20 (1,1,0)

5

1st 0.20 0.40 0.70
(
0.10
0.40

) (
0.30
0.60

) (
0.50
1.00

)
1.00 (1,1,1,0,0)

2nd 0.10 0.20 0.40
(
0.10
0.20

) (
0.20
0.50

) (
0.30
1.00

)
1.00 (1,1,1,0,0)

3rd 0.20 0.30 0.60
(
0.10
0.30

) (
0.20
0.60

) (
0.40
1.00

)
1.20 (1,1,1,0,0)

8

1st 0.30 0.60 1.20
(
0.40
0.60

) (
0.50
1.00

) (
0.80
1.50

)
1.00 (1,1,1,1,1,0,0,0)

2nd 0.20 0.30 0.50
(
0.20
0.40

) (
0.30
0.50

) (
0.50
1.00

)
1.00 (1,1,1,1,1,0,0,0)

3rd 0.10 0.20 0.40
(
0.10
0.40

) (
0.20
0.40

) (
0.50
1.00

)
1.00 (1,1,1,1,1,0,0,0)

4

3

1st 0.15 0.25 0.50
(
0.15
0.30

) (
0.20
0.50

) (
0.50
1.00

)
0.40 (1,1,0)

2nd 0.30 0.60 1.20
(
0.10
0.70

) (
0.30
0.90

) (
0.50
1.20

)
1.00 (1,1,0)

3rd 0.15 0.20 0.40
(
0.10
0.40

) (
0.20
0.50

) (
0.20
0.70

)
0.60 (1,1,0)

4th 0.25 0.40 0.80
(
0.20
0.40

) (
0.40
0.60

) (
0.70
1.30

)
0.50 (1,1,0)

5

1st 0.15 0.25 0.50
(
0.20
0.60

) (
0.50
1.00

) (
0.80
1.50

)
0.40 (1,1,1,0,0)

2nd 0.30 0.60 1.20
(
0.10
0.70

) (
0.30
0.90

) (
0.50
1.20

)
1.00 (1,1,1,0,0)

3rd 0.10 0.20 0.40
(
0.10
0.40

) (
0.20
0.50

) (
0.20
0.70

)
0.60 (1,1,1,0,0)

4th 0.25 0.40 1.00
(
0.20
0.40

) (
0.40
0.60

) (
0.70
1.30

)
0.50 (1,1,1,0,0)

8

1st 0.15 0.25 0.50
(
0.30
0.50

) (
0.40
0.80

) (
0.60
1.50

)
0.60 (1,1,1,1,1,0,0,0)

2nd 0.30 0.60 1.20
(
0.10
0.70

) (
0.30
0.90

) (
0.60
1.30

)
1.50 (1,1,1,1,1,0,0,0)

3rd 0.10 0.20 0.40
(
0.10
0.40

) (
0.20
0.50

) (
0.50
1.30

)
0.90 (1,1,1,1,1,0,0,0)

4th 0.25 0.40 1.00
(
0.10
0.30

) (
0.20
0.40

) (
0.40
1.00

)
0.75 (1,1,1,1,1,0,0,0)

Table 3.8: The used sets of parameters to generate censoring times for multiple

groups (K > 2) assignment cases.
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PD SM

Arm-0 Arm-1 Arm-0 Arm-1

Arm-0 141 191 225 107

Arm-1 119 200 195 124

Total 260 391 420 231

Table 3.9: Two groups treatment assignment summary for ACTG-175 trial, by two

proposed techniques: Probability of Dominance (PD) and Smooth Means (SM).

Table 3.10: My caption

PD SM

Arm-0 Arm-1 Arm-2 Arm-3 Arm-0 Arm-1 Arm-2 Arm-3

Arm-0 6 62 137 127 114 82 69 67

Arm-1 7 64 138 110 104 94 63 58

Arm-2 12 61 136 115 117 65 64 78

Arm-3 17 67 152 125 133 87 53 88

Total 42 254 553 477 468 328 249 291

Table 3.11: Four groups treatment assignment summary for ACTG-175 clinical

trial, by two proposed techniques: Probability of Dominance (PD) and Smooth

Means (SM).
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Figure 3.1: Graphs of log(∆)vs log(n) by re-weighted SIM model, for randomly

censored cases, with censoring percentages from left to the right: 50%, 30%, 10%.

Dotted line represent the fitted liner line for the data.
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Figure 3.2: Graphs of log(∆)vs log(n) by re-weighted SIM model, for covariate

dependent censored cases, with censoring percentages from left to the right: 50%,

30%, 10%. Dotted line represent the fitted liner line for the data.
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CHAPTER 4

PERSONALIZED TREATMENT PLANS WITH MULTIVARIATE OUTCOME
MEASURES

4.1 Treatment Selection

In this section we describe the proposed procedure. Let (Y∗i ,X) be the

hypothetical (counterfactual) response vector and covariate pair for treatment i,

i = 1, . . . , K where without loss of generality larger values of the each component

of the q dimensional response vectors Y∗i = (Y ∗1i, ..., Y
∗
qi)
′ are indicative of better

outcomes andX is a vector of r covariates. Assume further that a patient’s covariate

value X is used to obtain a lower dimensional composite patient score U(X). In

practice one cannot observe the whole composite vector (Y∗1, ...,Y
∗
K)′ for a single

patient.

In the single response case (q = 1) using iid observations of type (Ỹ1i,Xi, Ai),

i = 1, ..., n where Ai is the binary treatment indicator for two treatments and Ỹ1i

is the observed single response for the ith patient, previous authors have proposed

the estimated difference in conditional means given a score U to compare two treat-

ments. For example, Zhang et al. (2012) use robust estimators of E[Y ∗11|A =

0, U(X)]− E[Y ∗12|A = 1, U(X)] where U(X) = X and A = 0, 1 assign treatments

1 and 2 respectively. For the K treatment case with a single outcome measure, one

may use the largest index corresponding to estimated values of

µk = E [Y ∗1k|U(X) = u]
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k = 1, ..., K for a suitable score function U as the best treatment. In contrast to this

approach, in the 1st project we consider pairs of independent observations (Y1k,Xk)

from the marginal distribution of (Y ∗1k,X), k = 1, ..., K for the treatment selection

for K treatments. In that work they proposed a method based on estimators of a

set of probabilities defined as

pk(u) = P [Y1k > maxk 6=jY1j|U(Xl) = u; l = 1, ..., K]; k = 1, ..., K (4.1)

and compared that method against the criteria that uses the largest index corre-

sponding to estimated values of

µk = E [Y1k|U(Xk) = u] (4.2)

k = 1, ..., K as the best treatment. Note that in (4.1) and (4.2), the Y s do not

denote the set of true counterfactuals for a patient (given the set of X) but are

independently distributed with the same marginal distributions (given the set of

X). Although the function pi(u) above does not use the joint distribution of

(Y ∗11, ..., Y
∗

1K ,X) for a patient with covariate value X, they argue that pi above

nevertheless gives a measure of dominance for the ith treatment over the others

and hence can be used in selecting the best treatment. This was suggested as an

alternative to measures based on conditional expectations (µk, k = 1, ..., K) which

require restrictive moment assumptions on the error distribution for inferential as-

pects in a regression context. The method based on the pis was very competitive

against methods based on µis for a variety of models as shown from their empirical

studies.

In dealing with multiple responses, we consider pairs of independent observa-

tions (Yk,Xk) from the marginal distribution of (Y∗k,X), k = 1, ..., K to select the

optimum treatment for K treatments using either vectors of smoothed conditional

means for each treatment or sets of probabilities defined in a similar fashion in (4.1)
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above. For example, in generalizing the approach of using the conditional means

for the response vector Yk = (Y1k, ..., Yqk)
′ we define

µik(ui) = E[Yik|Ui(Xk) = ui]; i = 1, ..., q; k = 1, ..., K (4.3)

and vectors µk(u) = (µ1k(u1), ..., µqk(uq))
′ for u = (u1, ..., uq)

′ where components

of these vectors correspond to each response. Now we rank the K values for each

component to get size K vectors vi(u) = (vi1(u), ..., viK(u))′ where vik(u) is the

rank of µik among µik, k = 1, ..., K for each i with the largest µik value given the

rank 1. Then, we use an aggregation method to combine these rank vectors to

get an overall ranking of treatments. In this work we use the method proposed in

Pihur et al. (2007, 2009) to aggregate these rank vectors for a given score vector

U0 = (U10, ..., Uq0)′. In particular, for a suitably chosen set of weights ωi; i = 1, ..., q

and a distance measure γ (Pihur et al. 2007), we minimize a quantity

ψ(v) =

q∑
i=1

ωiγ(v,vi(U0)) (4.4)

over PK , the set of all permutations of {1, ..., K} to get a vector v∗ = (v∗1, ..., v
∗
K)′

where

v∗ = arg min
v∈PK

ψ(v).

Among possible distance measures for γ is the weighted Spearman’s Footrule dis-

tance (Pihur et al., 2007) which was used in our empirical work. We then define

the optimal treatment as

k∗(U0) = arg min
1≤k≤K

{v∗k} (4.5)

We illustrate the proposed procedure with a simple example. Suppose we

have a situation with K = 3 treatments with q = 4 responses with µiks and corre-

sponding ranks as
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30 35 28

10 18 30

14 12 8

22 18 31


and



2 1 3

3 2 1

1 2 3

2 3 1


.

For example, the first row of the second matrix above indicates that with respect

to the first response, the second treatment as the best followed by treatments 1 and

3. Now, if we use the aggregation algorithm in Pihur et al., (2007, 2009) which uses

both the values of µik, i = 1, ..., 4; k = 1, ..., 3 and their corresponding ranks in the

weighted Spearman’s Footrule distance γ combined with ωi = 1, i = 1, ..., 4 we get

the aggregated rank vector v∗ = (3, 2, 1)′ indicating that the treatment 3 is the best

among the three competitors. On the other hand, use of ω1 = 0.4, ω2 = 0.3, ω3 =

ω4 = 0.15, in the same aggregation algorithm results in v∗ = (3, 1, 2)′ indicating

that treatment 2 is optimal. If we are to use conditional probabilities as in project-1

to rank the treatments, we consider

pik(ui) = P [Yik > maxk 6=jYij|Ui(Xl) = ui; l = 1, ..., K]; i = 1, ..., q; k = 1, ..., K

(4.6)

and use the same aggregation method above to vectors of ranks corresponding

to pk(u) = (p1k(u1), ..., pqk(uq))
′, k = 1, ..., K in a similar fashion. We base our

discussion on a set of Single Index Models relating the ith component Yik of the

response vector Yk for the kth treatment and covariates Xk via

Yik = gik (β′ikXk) + εik (4.7)

for i = 1, . . . , q and k = 1, ..., K where each βik is a r-vector of parameters, giks

are unknown link functions for which we assume some reasonable smoothness con-

ditions to hold, and εik are error terms with E[εik|X] = 0. Furthermore we assume

independence of εiks across k = 1, ..., K for a fixed i where these terms are corre-
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lated across is for any given k. The Single Index formulation provides flexibility

and reasonable efficiency in modeling many types of data.

Our observations are of the following form. Let Yikj indicate the ith com-

ponent of the jth response from a group of nk individuals under treatment k with

associated covariate values Xkj, j = 1, . . . , nk. The sample sizes ni are assumed to

satisfy the condition that ni/N tends to a positive number where N =
∑
ni. Then,

for this data, relationship (4.7) is written as

Yikj = gik(β
′
ikXkj) + εikj, j = 1, . . . , nk. (4.8)

Following Siriwardhana et al. (2015) we define an appropriate overall score vector

U as follows. First define

Sik (X) = gik (β′ikX)−max
l 6=k
{gil (β′ilX)} .

Next, define the ith components of the combined overall score vectors as

Si (X) = max
k
{Sik}

δi (X) = arg max
k
{Sik} . (4.9)

Then, for a patient with covariate value X we define the patient score as U(X) =

(U1, ..., Uq)
′ where Ui = (Si, δi)

′ for i = 1, ..., q. In practice one does not know the

error distributions and model functions for models defined in (4.7) and therefore

we cannot directly calculate either the µks or pks at a given score u. Thus, to

apply the proposed selection method, we first need to estimate components of these

vectors using a standard function estimation method. This requires observed Yikj

values as well as observed Ui, i = 1, ..., q values corresponding to those responses.

However, Us defined above are hypothetical scores for a covariate value X as we do

not know link functions giks and index vectors βiks. Hence, in estimating piks and

µiks, we propose to use “estimated” U(Xkj) values , Û(Xkj), say, corresponding
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to responses Yikj, i = 1, ..., q; j = 1, ..., nk; k = 1, ..., K. Now, to obtain Û(Xij)

values, suitable estimators of link functions giks and index vectors βiks can be

used to construct estimators Ŝi (X) and δ̂i(X) of Si(X) and δi(X), respectively.

Estimators of the link functions and index vectors can be obtained using responses

for each i,i = 1, ..., q coupled with the corresponding covariate observations for any

given k, k = 1, ..., K, since this estimation amounts to estimating the mean function

of a vector random variable with covariates. There is a vast literature on estimating

the link function and the index vector of a single index model (see, for example,

Ichimura et al., 1993, Hristache et al., 2001, Yu and Ruppert, 2002 and references

therein) allowing us to use one out of a several available reasonable estimation

methods to estimate the gs and the βs. We used the procedure given in Ichimura

et al. (1993) in our simulations and data analysis in the sequel. In the sequel these

estimators will be generically denoted by ĝik and β̂ik, respectively, for i = 1, . . . , q

and k = 1, . . . , K. In particular, for any given vector x, let

Ŝik(x) = ĝik

(
β̂′ikx

)
−max

l 6=k

{
ĝil

(
β̂′ilx

)}
Ŝi (x) = max

k

{
Ŝik(x)

}
δ̂i (x) = arg max

k

{
Ŝik(x)

}
and

Ûi(x) = (Ŝi (x) , δ̂i (x))′ (4.10)

We randomly select an index δ̂i in the unlikely event that multiple treatments

produce the same Ŝik.

Now, for a given i, i = 1, ..., q, we construct estimators for µik(u) and pik(u),

k = 1, ..., K at a given u = (s, d)′ as follows. For estimating µik for a given i

and k, we first let w be a kernel function with w ≥ 0 and
∫
w(t)dt = 1, and

let hl, l = 1, ..., K be a set of smoothing parameters. We define an estimator of

µik(u), k = 1, ..., K as
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µ̂ik (u) =

∑nk
j=1 Yikjw

(
(s− Ŝi(Xkj))/hk

)
I
(
δ̂i (Xkj) = d

)
∑nk

j=1w
(

(s− Ŝi(Xkj))/hk

)
I
(
δ̂i (Xkj) = d

) (4.11)

where I(A) is the indicator of A. The estimator p̂ik (u) of pik(u) for a given u is

obtained by 2.7.

For a realization x0 of the covariate X, if we knew the corresponding real-

izations of the scores, ui0 = (Si(x0), δi(x0))′, we can estimate µik(ui0) and pik(ui0)

by µ̂ik(ui0) and p̂ik(ui0) respectively. However, due to the aforementioned reasons,

we can only find an estimate ûi0 of ui0 using (4.10) above. Thus, we use µ̂ik(ûi0)

and p̂ik(ûi0) as our estimates of µik(ui0) and pik(ui0) respectively for i = 1, ..., q; k =

1, ..., K. The estimators µ̂ik(û0), i = 1, ..., q; k = 1, ..., K and p̂ik(û0) are consistent

for µik(ui0) and pik(ui0) follows from arguments similar to those given in project-1.

Finally, for either using means or the probabilities, for a given estimated

score vector û0 = (û10, ..., ûq0)′, the estimated best treatment for a patient with

covariate value x0 is defined via the minimization of

ψ(v) =

q∑
i=1

ωiγ(v,vi(û0)) (4.12)

over PK and defining a

k̂∗ = arg min
1≤k≤K

{v̂∗k} (4.13)

where v̂∗k, k = 1, ..., K are the ranks obtained by the minimization of the distance

function (4.12) for the corresponding procedure.

Bandwidth selection for estimating the link functions, piKs and µiks is a

challenging issue which has not been investigated in this work. However, meth-

ods suggested in Wand and Jones (1995) for kernel smoothing seemed to perform

reasonably well in our simulations and data analysis.
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4.2 Empirical Studies

In this section we present a simulation study that investigates the properties

of the proposed procedure in finite samples.

We conducted a series of simulations with the proposed procedure under

various settings. Primarily, we focused on the accuracy of treatment assignment

of a new (test) observation using estimated values of µik and pik functions from a

set of training data. This simulation study was performed for treatment groups

cases K = 2 and 3 with response dimension q = 2, 3 and 4. We selected our model

sets such that each model in a set dominates other competing models for some

combination of covariate values; in other words, none of considered models fully

dominate other models within the whole covariate space. This signifies, subjects

with distinct covariates vectors, could experience corresponding highest response

from different treatments illustrating the personalized medicine concept.

In our study, we first simulated K independent multivariate (dimension q)

samples of size n (n = 100 or n = 200) per group. The components of the r dimen-

sional covariate vectors X were generated from a r dimensional multivariate normal

distribution with zero mean and a covariance matrix with the ijth element equal to

ρ|i−j| where ρ was chosen from the set {0.1, 0.5, 0.9}. We examined r = 3, 8 and 10

cases. Using various link functions and index vectors, we obtained the treatment

responses from model (4.7) for each k. Here, for a given k, k = 1, ..., K, the errors

were generated from either a q dimensional multivariate normal distribution or a

multivariate t distribution with zero mean and a correlation matrix with the ijth

element given by x
|i−j|
i where xis were chosen from the set {0.1, 0.5, 0.9}. The R

package mvtnorm (Genz et al., 2015) was used for the generation of these random

vectors where in the multivariate normal case, the dispersion parameter σ was cho-

sen from the set {0.1, 0.3, 0.5} . The degrees of freedom for each marginal was set

at 3 and 8 for t variables. We examined the performance of the proposed method-
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ology under a variety of both linear and nonlinear regression models with the SIM

structure.

Once K samples were generated, we estimated the corresponding SIMs fol-

lowed by an estimation of scores at each covariate value. SIMs were estimated by

the procedure given in Ichimura et al. (1993) using Gaussian kernels. Then, a new

covariate value X0 was generated in the same manner as previous covariates above,

and for its corresponding estimated score û0, we calculated µ̂ik(ûi0) and p̂ik(ûi0) for

i = 1, ..., q; k = 1, ..., K and the corresponding k̂∗ values for equal weights (ωi = 1

for all i) cases and few unequal weights cases. The kernel function in this estimation

was taken to be a U(−1, 1) probability density function. We chose all bandwidths

by the algorithm given by Wand and Jones (1995) for each i, i = 1, ..., K.

Next, we generated K new response vectors, Y ∗k , k = 1, ..., K, each with

mean vector (g1k(β
′
1kX0), ..., gqk(β

′
qkX0))′ for k = 1, ..., K, corresponding to this

X0 using model (4.7) where the errors were generated independently from the same

error distribution that was used to generate the K original samples. Then we obtain

rank vectors ṽi,i = 1, ..., q, say, for each row of the data matrix (Y ∗1 , ...,Y
∗
K), and

minimize

ψ(v) =

q∑
i=1

ωiγ(v, ṽi) (4.14)

over PK for same corresponding weights ωi = 1 above to get the corresponding

aggregated vector (
ˆ̂
v∗1, ...,

ˆ̂
v∗K)′ and define the treatment assignment to be correct if

k̂∗ = arg min
1≤k≤K

{ ˆ̂
v∗k}

for the k̂∗ corresponding to the criteria using µ̂iks or p̂iks.

We repeated this procedure 1000 times for each model and error distribution

combination. The frequency of correct treatment assignment for a representative set

of cases are given in the Tables 4.2 - 4.9. The results presented below are for model
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functions and index vectors given in Table 4.1 below and for covariate dimension

r = 10.

An examination of these tables reveal that the selection accuracy drops when

the error distribution has a high variability. Both methods, based on smoothed

means and the method based on pik have very comparable selection frequencies

in all cases. This pattern was seen even in the single dimensional response case.

The selection frequency appears to be slightly lower when the covariate correlation

is higher although the drop is very marginal in most cases. When the number

of responses was 4, selection frequencies appear to get lower as the correlation

among the responses increase. We also observed a slight increment in the selection

frequency when the number of responses are increased for all group sizes. This is

perhaps due to the performance of the rank aggregation method which seems to

perform better when aggregating a larger number of ranked lists compared with

just two lists.

4.3 ACTG-175 HIV Clinical Trial

In this section we illustrate our proposed method using a real clinical trial

dataset.

The data resulted from the ACTG 175 clinical trial (Hammer et al. 1996).

This trial was a randomized, double-blinded, placebo-controlled clinical trial that

was conducted for comparing antiviral medications for HIV-1 patients whose T-cell

CD4 counts were in the range of 200 to 500 per cubic millimeter. The dataset

(Juraska et al. 2012) contains information on 2136 HIV-1 infected individuals who

were randomized into four treatment arms; those treated with Zidovudine (arm-0),

combination of Zidovudine and Didanosine (arm-1), combination of Zidovudine and

Zalcitabine (arm-2), Didanosine (arm-3). Arms 0, 1, 2, and 3 contain 532, 519, 524,
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and 561 patients, respectively. T cell CD4 and CD8 are critical components in the

human immune system. Frequently, the severity of HIV progression is measured

through a decline in CD4 counts. This trial periodically measured both these cell

counts for each patient as the clinical outcome. In our analysis, we considered the

log transformed CD4 and CD8 counts of a patient after 20 weeks of treatment as

the bivariate clinical response. As covariates, we used log-CD4, log-CD8 counts at

baseline, age, weight, and the number of months a patient received the pre-antiviral

therapy.

We applied the proposed treatment assignment strategy to the data from

all four arms of the study. In each situation, we randomly selected 200 patients

from each arm as “training” data to estimate the SIMs. Remaining patients were

considered as new (test) patients. After fitting SIMs to training data we estimated

the scores for test cases and estimated the corresponding pik and µik functions at

those scores to assign each test patient to the best treatment group suggested by

the rank aggregation method.

Between CD4 and CD8 T cell types, the scientific literature on HIV/AIDS

often declare CD4 cell as the primary T cell type that is suppressing the HIV

cell replication, whereas the critical role of the CD8 cell is typically referred to as

the antibody reaction against cancers and various types of other viruses. However

some studies have illustrated the important role of the CD8 during early stages

of HIV progression (Eg: Streeck and Nixon, 2010). Therefore, when we applied

the proposed method with two responses (both CD4 and CD8), we weighted the

importance of two responses differently (ωCD4 = 0.6, ωCD8 = 0.4), by giving more

priority to the CD4.

We report the results for the joint response case (Table 4.10) and for cases

when CD4 and CD8 were considered as single responses (Tables 4.11-4.12). For

example, in Table 4.10, the (0, 0) cell indicates that only 6 out of 332 patients
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who were actually treated in arm-0 would have been assigned to arm 0 had we

used the proposed method based on pik’s. When we applied the new method based

on pik’s for the joint response, the majority: 773, out of 1336 test patients were

assigned to arm 1. Similarly, a great number: 668 were assigned to arm 1 using

the assignment based on µik’s. As shown in Tables 4.11 and 4.12, if we are to only

consider CD4 (or CD8) as the response, 828 (or 421) patients were assigned to arm

1 using pik’s, whereas 640 (or 400) individuals were correspondingly assigned to

arm 1 using the method given by µik’s. We observed a notable difference between

the number of individuals assigned to arm 0 using single responses. For instance,

if the CD4 was used as the response, only 14 individuals were assigned to arm 0

using pik’s. However, comparably more number of individuals: 367 were assigned to

arm 0 using the same approach, if the CD8 had been used. Comparing Tables 4.10

and 4.11, we noticed a clear agreement between the resulted overall assignment by

the weighted joint response and the single assignment by CD4, which is reasonable

since we used a larger weight for the CD4.

4.4 Discussion

In this project we proposed a novel personalized treatment plan to select the

optimal treatment from a set of multiple treatments when the outcome measures are

multivariate. This method is a single step procedure which can be easily applied.

The proposed method is based on semi parametric Single Index Models which add

great flexibility in modeling real life situations. Furthermore, this method can also

be used for quantile regression SIMs providing additional model flexibility compared

with existing methods based on conditional expectations. Our empirical studies

show that the proposed method performs very satisfactorily in selecting the optimal

treatment in a multiple treatment setting. Our analysis of a real clinical trials
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dataset which has the multiple treatment option reveals a possible changes if one

were to use multiple outcome measures as opposed to a single measure.

This project deals with complete responses. However, censoring is very com-

mon in practice. An extension of the proposed methodology to a covariate depen-

dent censoring setting and various lifetime aspects such as multi state models is

forthcoming.

4.5 Tables

Response
Mean functions

Group-1 Group-2 Group-3

1 sin
{
π
(
C

′
X
)}

sin
{
π
6 + π

(
C

′
X
)}

sin
{
π
4 + π

(
C

′
X
)}

2 cos
{
π
(
C

′
X
)}

cos
{
π
6 + π

(
C

′
X
)}

cos
{
π
4 + π

(
C

′
X
)}

3 sin
{
π
2

(
C

′
X
)}

sin
{
π
6 + π

2

(
C

′
X
)}

sin
{
π
4 + π

2

(
C

′
X
)}

4 cos
{
π
2

(
C

′
X
)}

cos
{
π
6 + π

2

(
C

′
X
)}

cos
{
π
4 + π

2

(
C

′
X
)}

Table 4.1: Sets of mean functions used to generate treatment responses, with C′ =(
1/
√

10, ...1/
√

10
)

1×10
.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 877 844 858 817 833 800

ρe = 0.5 901 863 878 852 829 816

ρe = 0.9 870 827 871 837 836 829

σ = 0.5

ρe = 0.1 678 680 648 650 678 682

ρe = 0.5 626 614 637 633 622 622

ρe = 0.9 630 634 629 623 569 569

n = 200

σ = 0.1

ρe = 0.1 919 862 892 862 913 867

ρe = 0.5 911 880 909 871 892 846

ρe = 0.9 914 860 911 866 900 859

σ = 0.5

ρe = 0.1 667 671 690 687 679 677

ρe = 0.5 626 632 634 636 676 670

ρe = 0.9 629 623 619 626 627 630

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 626 626 643 630 603 610

ρe = 0.5 597 600 591 593 591 591

ρe = 0.9 549 550 541 542 508 499

DF = 8

ρe = 0.1 640 639 616 626 595 595

ρe = 0.5 566 564 600 595 590 581

ρe = 0.9 569 568 558 571 540 541

n = 200

DF = 3

ρe = 0.1 646 647 606 605 625 624

ρe = 0.5 600 604 580 582 589 596

ρe = 0.9 528 530 562 564 535 525

DF = 8

ρe = 0.1 640 640 640 649 627 631

ρe = 0.5 606 605 554 561 589 591

ρe = 0.9 553 556 549 555 538 537

Table 4.2: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Two treatments with two responses.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 864 860 842 841 792 781

ρe = 0.5 870 856 816 826 805 809

ρe = 0.9 885 875 826 815 799 792

σ = 0.5

ρe = 0.1 535 548 545 544 597 591

ρe = 0.5 558 538 521 528 535 524

ρe = 0.9 560 556 543 552 506 498

n = 200

σ = 0.1

ρe = 0.1 913 921 891 898 876 876

ρe = 0.5 897 899 878 871 873 870

ρe = 0.9 862 860 889 879 864 858

σ = 0.5

ρe = 0.1 587 581 572 581 579 559

ρe = 0.5 578 574 552 551 572 576

ρe = 0.9 576 556 531 535 536 538

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 507 507 511 516 493 487

ρe = 0.5 496 496 526 506 511 519

ρe = 0.9 542 542 501 502 504 501

DF = 8

ρe = 0.1 516 516 491 491 524 527

ρe = 0.5 527 527 507 511 484 487

ρe = 0.9 513 513 523 510 505 516

n = 200

DF = 3

ρe = 0.1 506 506 525 534 498 499

ρe = 0.5 490 490 495 501 518 516

ρe = 0.9 499 499 526 517 532 524

DF = 8

ρe = 0.1 520 520 538 536 516 516

ρe = 0.5 510 510 523 521 538 532

ρe = 0.9 478 478 519 523 497 491

Table 4.3: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Two treatments with three responses.

69



Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 869 825 812 751 786 754

ρe = 0.5 855 795 806 757 811 779

ρe = 0.9 886 834 828 775 773 749

σ = 0.5

ρe = 0.1 617 613 640 640 573 576

ρe = 0.5 598 593 555 556 575 575

ρe = 0.9 557 555 541 538 521 519

n = 200

σ = 0.1

ρe = 0.1 870 824 863 832 853 811

ρe = 0.5 887 861 861 797 858 805

ρe = 0.9 875 807 874 819 851 789

σ = 0.5

ρe = 0.1 650 652 626 626 625 621

ρe = 0.5 610 609 569 576 602 607

ρe = 0.9 594 598 549 555 571 569

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 575 566 559 547 555 560

ρe = 0.5 519 520 555 553 554 559

ρe = 0.9 541 528 532 537 518 518

DF = 8

ρe = 0.1 596 609 603 604 576 577

ρe = 0.5 572 577 562 565 544 551

ρe = 0.9 515 519 508 501 522 513

n = 200

DF = 3

ρe = 0.1 594 593 577 584 558 564

ρe = 0.5 577 571 545 545 551 547

ρe = 0.9 561 555 539 543 530 526

DF = 8

ρe = 0.1 611 615 581 594 607 612

ρe = 0.5 560 562 540 537 554 549

ρe = 0.9 509 505 532 533 503 514

Table 4.4: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Two treatments with four responses.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 622 577 587 563 559 547

ρe = 0.5 606 588 600 581 551 550

ρe = 0.9 629 580 596 563 584 558

σ = 0.5

ρe = 0.1 661 634 654 644 620 601

ρe = 0.5 650 614 658 632 630 625

ρe = 0.9 669 635 653 631 637 634

n = 200

σ = 0.1

ρe = 0.1 377 382 368 359 357 349

ρe = 0.5 372 394 370 368 379 391

ρe = 0.9 360 360 349 341 362 368

σ = 0.5

ρe = 0.1 379 389 372 355 367 370

ρe = 0.5 372 382 357 343 371 374

ρe = 0.9 359 368 347 353 360 358

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 403 406 398 407 417 416

ρe = 0.5 403 404 395 390 403 409

ρe = 0.9 393 406 415 407 378 366

DF = 8

ρe = 0.1 422 426 442 447 448 430

ρe = 0.5 421 414 437 448 415 417

ρe = 0.9 414 421 421 419 421 429

n = 200

DF = 3

ρe = 0.1 367 375 384 382 355 356

ρe = 0.5 352 349 359 341 370 375

ρe = 0.9 365 362 367 363 326 311

DF = 8

ρe = 0.1 359 362 377 380 372 389

ρe = 0.5 376 386 363 366 372 375

ρe = 0.9 393 381 330 323 357 352

Table 4.5: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Three treatment groups with two responses.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 707 650 705 671 669 640

ρe = 0.5 720 671 682 652 672 635

ρe = 0.9 698 660 687 645 648 645

σ = 0.5

ρe = 0.1 380 400 368 369 385 407

ρe = 0.5 408 390 374 384 391 379

ρe = 0.9 401 408 382 384 386 386

n = 200

σ = 0.1

ρe = 0.1 806 753 790 718 729 690

ρe = 0.5 772 709 793 720 743 685

ρe = 0.9 783 737 800 725 738 704

σ = 0.5

ρe = 0.1 438 434 401 413 395 392

ρe = 0.5 385 391 393 399 396 395

ρe = 0.9 403 413 400 403 381 388

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 350 327 370 362 369 360

ρe = 0.5 343 336 372 369 337 336

ρe = 0.9 339 343 339 328 349 348

DF = 8

ρe = 0.1 378 370 359 360 343 351

ρe = 0.5 336 333 343 345 338 341

ρe = 0.9 346 347 312 309 374 365

n = 200

DF = 3

ρe = 0.1 355 373 355 358 353 355

ρe = 0.5 357 363 345 353 337 335

ρe = 0.9 332 333 353 357 354 358

DF = 8

ρe = 0.1 382 385 339 341 373 373

ρe = 0.5 350 371 358 357 353 344

ρe = 0.9 343 338 368 373 354 344

Table 4.6: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Three treatment groups with three responses.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 741 682 685 637 648 643

ρe = 0.5 701 665 671 627 643 607

ρe = 0.9 709 640 703 649 636 610

σ = 0.5

ρe = 0.1 410 411 402 410 373 378

ρe = 0.5 375 385 382 376 384 378

ρe = 0.9 408 388 376 383 377 379

n = 200

σ = 0.1

ρe = 0.1 781 716 747 715 745 712

ρe = 0.5 737 684 722 690 684 659

ρe = 0.9 755 700 734 687 690 653

σ = 0.5

ρe = 0.1 438 425 437 439 408 416

ρe = 0.5 410 422 395 401 415 425

ρe = 0.9 419 413 394 393 410 397

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 363 341 377 377 322 313

ρe = 0.5 339 351 337 333 354 352

ρe = 0.9 338 329 360 346 328 316

DF = 8

ρe = 0.1 341 351 320 316 346 336

ρe = 0.5 337 341 348 347 353 349

ρe = 0.9 352 342 319 320 363 368

n = 200

DF = 3

ρe = 0.1 365 352 377 379 328 320

ρe = 0.5 369 378 341 351 352 334

ρe = 0.9 357 359 335 317 354 352

DF = 8

ρe = 0.1 364 349 336 336 378 383

ρe = 0.5 368 375 351 355 340 345

ρe = 0.9 337 342 377 368 330 326

Table 4.7: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method. Three treatment groups with four responses.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 690 660 656 642 621 593

ρe = 0.5 699 658 652 627 612 606

ρe = 0.9 675 653 647 601 590 589

σ = 0.5

ρe = 0.1 397 414 368 374 401 401

ρe = 0.5 414 426 399 412 401 399

ρe = 0.9 407 419 374 391 376 369

n = 200

σ = 0.1

ρe = 0.1 734 702 731 688 677 664

ρe = 0.5 736 686 729 685 706 647

ρe = 0.9 742 709 728 681 704 685

σ = 0.5

ρe = 0.1 442 441 440 450 404 411

ρe = 0.5 398 391 387 396 408 411

ρe = 0.9 420 424 398 398 390 393

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 368 353 336 336 363 357

ρe = 0.5 363 353 364 358 329 334

ρe = 0.9 330 342 362 353 338 335

DF = 8

ρe = 0.1 369 371 357 373 342 339

ρe = 0.5 362 368 349 350 353 362

ρe = 0.9 362 352 335 320 364 357

n = 200

DF = 3

ρe = 0.1 356 365 350 357 345 346

ρe = 0.5 370 374 378 377 341 349

ρe = 0.9 340 345 344 346 353 344

DF = 8

ρe = 0.1 366 372 362 363 380 364

ρe = 0.5 351 367 348 345 333 319

ρe = 0.9 354 353 364 364 358 358

Table 4.8: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method, for three treatment groups with three responses, using weights,

ω1 = 0.5, ω2 = 0.3, and ω3 = 0.2, for responses 1, 2, and 3, respectively.
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Error

dist.

Sample

size

per group

Error

dist.

parameter

Error

correlation

Correlation between covariates

ρc = 0.1 ρc = 0.5 ρc = 0.9

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Prob of

dominance

Smooth

means

Normal

n = 100

σ = 0.1

ρe = 0.1 701 678 690 655 634 611

ρe = 0.5 735 680 683 646 613 584

ρe = 0.9 704 667 665 624 608 597

σ = 0.5

ρe = 0.1 399 401 401 413 380 386

ρe = 0.5 372 371 391 386 377 371

ρe = 0.9 392 381 396 382 393 394

n = 200

σ = 0.1

ρe = 0.1 796 765 738 709 726 712

ρe = 0.5 771 737 748 710 697 670

ρe = 0.9 778 737 753 683 698 670

σ = 0.5

ρe = 0.1 404 407 430 439 412 417

ρe = 0.5 405 414 411 402 415 420

ρe = 0.9 400 409 394 384 396 388

ρc = 0.1 ρc = 0.5 ρc = 0.9

T

n = 100

DF = 3

ρe = 0.1 368 348 358 358 332 335

ρe = 0.5 324 342 333 337 344 326

ρe = 0.9 326 312 358 357 321 326

DF = 8

ρe = 0.1 355 352 325 340 366 358

ρe = 0.5 370 370 317 325 359 362

ρe = 0.9 339 334 337 324 355 354

n = 200

DF = 3

ρe = 0.1 368 367 349 359 344 339

ρe = 0.5 353 370 349 336 362 350

ρe = 0.9 365 354 349 326 343 339

DF = 8

ρe = 0.1 335 335 359 367 357 354

ρe = 0.5 360 374 365 373 363 360

ρe = 0.9 347 346 349 362 334 326

Table 4.9: Frequencies of correct treatment assignments in 1000 test cases by the

proposed method, for three treatment groups with four responses, using weights

ω1 = 0.4, ω2 = 0.3, ω3 = 0.2, and ω4 = 0.1, for responses 1, 2, 3, and 4, respectively.
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Orginal

Assignment

Proposed Assignment

Arm-0 Arm-1 Arm-2 Arm-3

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Arm-0 6 18 201 159 60 84 65 71

Arm-1 7 20 178 162 60 67 74 70

Arm-2 13 25 187 158 63 66 61 75

Arm-3 11 26 207 189 76 76 67 70

Total 37 89 773 668 259 293 267 286

Table 4.10: Treatment assignment summary for ACTG-175 clinical trial data, by

the proposed method selecting both CD4 and CD8 counts as clinical response using

weights ωCD4 = 0.6, ωCD8 = 0.4 for CD4 and CD8 counts, respectively.

Orginal

Assignment

Proposed Assignment

Arm-0 Arm-1 Arm-2 Arm-3

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Arm-0 2 27 211 152 70 93 49 60

Arm-1 2 20 193 161 77 76 47 62

Arm-2 5 31 201 151 73 82 45 60

Arm-3 5 38 223 176 88 84 45 63

Total 14 116 828 640 308 335 186 245

Table 4.11: Treatment assignment summary for ACTG-175 clinical trial data, by

selecting CD4 counts as the clinical response.
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Orginal

Assignment

Proposed Assignment

Arm-0 Arm-1 Arm-2 Arm-3

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Prob. of

dominance

Smooth

means

Arm-0 89 89 125 93 59 42 59 108

Arm-1 76 85 94 96 75 42 74 96

Arm-2 98 78 94 106 73 33 58 107

Arm-3 104 97 108 105 68 37 81 122

Total 367 349 421 400 275 154 272 433

Table 4.12: Treatment assignment summary for ACTG-175 clinical trial data, by

selecting CD8 counts as the clinical response.
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CHAPTER 5

FLEXIBLE SEMI-PARAMETRIC REGRESSION OF STATE OCCUPATIONAL
PROBABILITIES IN A MULTISTATE MODEL WITH RIGHT-CENSORED

DATA

5.1 The Proposed Methodology

5.1.1 Data Structure and Notations

In this section we briefly describe the outline of a multistate model and

notations used. Suppose that starting from an initial state 0, a set of n individuals

move along an acyclic interconnected networked system of J number of states, 0, 1,

..., (J − 1) in a time continuous multistate model, where an individual enters the j

th state at most once. Such a model can be graphically represented as a directed

graph using arrows to represent transitions from one node to another. For example,

Figure 5.6 presents the progressive illness death model that contains three states.

Consider the i th, i = 1, ..., n, individual in the multistate system. Let Si(t)

be the state occupied by the individual at time t. Suppose, the time taken to reach

the final state (J−1) to be T ∗i , which can be subjected to right-censoring. Let Ci be

the right-censoring time and Ti = min{T ∗i , Ci} is the observed final transition time.

Define, δi = I(Ci ≥ T ∗i ) indicates observing the final transition. For any two states

j and j
′
, in case the ith individual moves from j to j

′
, we define Ui,jj′ to be the

transition time from j to j
′
, which is considered to be∞ if the transition is not made

at all. Let Ki(t) be the conditional survival function of the censoring distribution
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for the individual. Suppose Xi = (Xi1, Xi2, ..., Xip) is the individual’s p dimensional

covariate vector that contains subject specific baseline information. We assume full

data consists of independent and identically distributed copies of {S(t), X(t), δ(t)}

given by {Si(t), Xi(t), δi(t)}, corresponding to 1 ≤ i ≤ n, n individuals, which are

observed at points t in a contentious time frame (t ∈ [0,∞)). Our goal is to estimate

the conditional state occupational probabilities given baseline covariate vector (x):

pj(t) = Pr{S(t) = j|X = x}, j = 0, 1, ..., J − 1, based on the observed data.

5.1.2 Binary Choice Single Index Model for the Right-censored Data

Use of data weighting schemes for the purpose of bias reduction are well

known in statistical literature. One way to handle censored observation in the

context of regression is to introduce a re-weighing scheme to the original estimator

developed for complete data, in a way that the bias caused due to censoring fades

away asymptotically. This idea was first introduced by Koul, Susarla, and Van

Ryzin (1981) for the randomly right censored data in linear regression.

The main body of this work is based on the IPCW re-weighted Klein and

Spady (1993) binary choice single index model, which is used to estimate conditional

transitions and risk processes to formulate a conditional transition hazard matrix

given a covariate value at a specific time point. Generally speaking, conditional risk

processes estimated for a multistate model provide natural approximations for the

conditional state occupational probabilities. However such approximates could have

a noisy form in finite samples. Thus, we consider obtaining fairly stable estimates

using a product limit function of transitions hazards, which we will discuss in a

sequel.

Let Njj′ be the counting process for transitions from state j to j′, with jumps

at t corresponding to ∆Njj′(t) =
∑n

i=1 I(Si(t−) = j, Si(t) = j′) =
∑n

i=1 ∆Ni,jj′(t)
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and let Yj(t) =
∑n

i=1 I(Si(t−) = j) be the risk process of individuals occupying

state j just prior to t. These two process may not be completely observable due to

the right-censoring.

We assume the means of conditional at-risk process in jth state µYi,j(t|X)

and event process between states j to j′ µNi,jj′(t|X) of an individual i at t are in

following forms,

µYi,j(t|X) = E(Yi,j(t)|Xi) = ft,j(β
T
t,jXi), (5.1)

µNi,jj′(t|X) = E(Ni,jj′(t)|Xi) = ft,jj′(β
T
t,jj′Xi), (5.2)

where ft,j, ft,jj′ are unknown smooth functions and βt,j, βt,jj′ are p dimensional

unknown parameter vectors. Here we present IPCW modified versions of the Kevin

and Spardy (1993) binary choice single index model to estimate µYu,j(t|X = x) and

µNu,jj′(t|X = x), for a hypothetical individual (u) with a specified covariate vector

X = x. Since these functions are estimated in the same fashion, we describe the

proposed algorithm in terms of a generic subject specific process denoted by Hi(t).

Suppose we have the independent observations H1(t), H2(t), ..., Hn(t) from n

individuals on a right-censored stochastic process H(t) with corresponding censor-

ing indicators δ1(t), δ2(t), ..., δn(t) and respective survival probabilities of censoring

K1(t), K2(t), ..., Kn(t). Using the triplet Ωi(t) = {Hi(t), δi(t), Ki(t)}, i = 1, ..n, we

proceed to estimate E(H(t)|X = x) in the following manner. Suppose,

P (Hi(t) = 1|X = xi) = Pi(t) = Ft(β
′

txi); i = 1, ..., n.

The IPCW re-weighted log-likelihood function L(t) at t is given by,

L(t) =
n∑
i=1

δi(t)

Ki(t)

{
Hi(t)ln

[
Pi(t)

]
+
[
1−Hi(t)

]
ln
[
1− Pi(t)

]}
,

where Ki(t) =
∏

s≥t[1 − λC(t|Z̄i(s))ds] and Z̄i(t) is a generalized covariate defined

for the ith individual, which we will explain in detail in the sequel, when estimating

Ki(t). Generally speaking Ki(t) does not have the survival function interpretation,
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unless Z̄i(t) is formed with non-time-varying covariates. We will later describe a

flexible model to estimate Ki(t).

Equivalently, we represent L(t) as,

L(t) =
n∑
i=1

δi(t)

Ki(t)

{
Hi(t)ln

[
Ft(β

′

txi)
]

+
[
1−Hi(t)

]
ln
[
1− Ft(β

′

txi)
]}
.

For the case of completely observed data, Klein and Spady (1993) introduced a semi-

parametric likelihood, by approximating Ft(β
′
xi) using a non parametric estimator,

which is similar to the leave-one-out estimator described by Ichimura, Hall, and

Hardle (1993). Thus, for the right-censored data, we obtain a similar estimator by

introducing IPCW criteria,

F̂t−i(β
′

txi) =

∑n
l 6=i φ

(β′txi−β′txl
h

)Hl(t)δl(t)
Kl(t)∑n

l 6=i φ
(β′txi−β′txl

h

) ,

where φ(.) is kernel function with φ(.) ≥ 0 and
∫
φ(u)du = 1, and h is a smoothing

parameter. This leads to find a quasi likelihood function given by,

Lq(t) =
n∑
i=1

δi(t)

Ki(t)

{
Hi(t)ln

[
F̂t−i(β

′

txi)
]

+
[
1−Hi(t)

]
ln
[
1− F̂t−i(β

′

txi)
]}
τ̂i,

where τ̂i is a trimming sequence that is introduced by Klein and Spady (1993) for

feasible likelihood criterion, which down-weight observations for which the corre-

sponding densities are small. The solution of βt is the maximizer of the Lq(t). For

the finite sample problem, we obtain estimates (β̂t, h0) of βt, h by maximizing the

quasi log-likelihood function (Lq(t)) with respect to both βt and h simultaneously.

Finally, Ft(β
′
tx) for X = x, is given by,

F̂t(β̂
′

tx) =

∑n
i=1 φ

( β̂′tx−β̂′txi
h0

)Hi(t)δi(t)
Ki(t)∑n

i=1 φ
( β̂′tx−β̂′txi

h0

) .

In the proposed method, we estimate conditional means of at-risk process

and event process between all possible pairs of nodes in the multistate model at t

given a covariate X = x, using the above procedure. Thus, we find µ̂Yj (t|X = x) and
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µ̂Njj′(t|X = x) by fixing {Hi(t), Ki(t), δi(t)} by their respective processes given by

{Yi,j(t), K̂i(t
′−), δi(t

′
)} and {Ni,jj′(t), K̂i(t

′−), δi(t
′
)}, where t

′
= min{t,minj′ 6=j{Ui,jj′}},

and δi(a) = I(Ci ≥ a).

Ê(Yj(t)|X = x) = nµ̂Yu,j(t|X = x)

Ê(Njj′(t)|X = x) = nµ̂Nu,jj′(t|X = x)

In the estimation process, one can conveniently choose elements of t as the

union of all event times of the multistate model. Since state-to-state conditional

transitions are supposed to be non-decreasing function of time, estimated means of

the conditional transitions are monotonized via isotonic regression with the gener-

alized pooled adjacent violators algorithm (Barlow et al., 1972; Leeuw, Hornik, and

Mair, 2009).

5.1.3 Conditional Transition Hazard Rates and State Occupation Probabilities

In an uncensored experiment, the conditional hazards of transitions from

state j to j
′

(j 6= j′) given a specific value of covariate vector X = x is given by,

αjj′ (t|X = x) = lim
dt→0

Pr
{
S(s) = j

′
, for some s ∈

[
t, t+ dt

)
|S(t−) = j,X = x

}
/dt,

where S(t−) is the state occupied just before time t. Note that this conditional

transition hazard only condition on the current state for a given X = x. Hence this

also known as the partially conditional transition hazards (Pepe and Cai, 1993).

The cumulative (integrated) conditional state-to-state transition hazard ma-

trix (A(t|X = x)) for the multistate model can be obtained as,

Ajj′ (t|X = x) =


∫ t

0
αjj′ (u|x)du, if j 6= j

′

−
∑

j 6=j′ Ajj′ (t|X = x), otherwise.
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Now we obtain an estimator for Ajj′ (t|X = x) as described in Datta and Satten

(2002), which is given by,

Âjj′ (t|X = x) =


∫ t

0
dÊ(Njj′ (u|X = x))/Ê(Yj(u|X = x)), if j 6= j

′

−
∑

j 6=j′ Âjj′ (t|X = x), otherwise.

Note that, components of the Â(t|X = x) have the Nelson-Aalen form. Thus,

Â(t|X = x) is referred as the generalized Nelson-Aalen estimator for a multistate

model. The process given by dÊ(Njj′ (t|X = x)) can be obtained from the corre-

sponding jumps of estimated conditional state-to-state transitions between [t−, t).

In this calculation we interpret the division by zero to be zero. The estimator

of state occupation probabilities follows from the above results via the product

limit (integral). This estimator reduce to the Aalen-Johansen estimator (Aalen

and Johansen, 1978) under the independent censoring and it’s valid even when

the multistate model is not hold the Markovian property (Datta and Satten, 2001;

2002). The state conditional occupation probabilities on a given value of X = x,

pj(t|X = x) = Pr(S(t) = j|X = x), is given by,

p̂j(t|X = x) =
J−1∑
k=0

Ŷk(0 + |X = x)

n
p̂kj(0, t|X = x)

where p̂kj(0, t|X = x) is the (j, k)-th element of the matrix P̂ (s, t|X = x) =∏
(s,t](I + dÂ(u|X = x)).

5.1.4 Censoring Hazards and Estimation of the Weights Ki(t)

Let Zi(t) is a generalized covariate defined for individual i, 1 ≤ i ≤ n, at

time t, which may contains both baseline and additional covariates (could be time

varying) than the covariates of primary interest (X), that are affect the censoring

hazards. For example, current state occupation indicator at the given time t may

affect to the censoring hazard in addition to the baseline covariates. Suppose Z̄i(t) =
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σ{Zi(s) : 0 ≤ s < t} is the observed covariate history prior to t. We assume that

the censoring mechanism satisfies, λiC(Z̄i(t), Si(.)) = λiC(t|Z̄i(t)), where λiC(t|.) =

limdt→0 Pr(Ci ∈ [t, t+ dt)|Ti ≥ t, .)/dt. We use the Aalen’s nonparametric additive

model (Aalen, 1980 and 1989) to calculate IPCW weights, which provides a flexible

structure to estimate the censoring hazards by allowing covariates to be varied over

the time. The censoring hazard of ith individual at time t is given by the following

the linear form,

λiC(t|Z̄i(t)) =
m∑
k=0

βk(t)Wik(t),

where, Wi0(t) ≡ 1 and Wik(t) = fk(Z̄i(t)), k = 1, ...,m, are possibly time-dependent

function of the past history of the covariate process for subject i. βk(t) are unknown

regression functions that measure the effect of corresponding covariate function

on the censoring hazard. Define Wi(t) = (Wi1(t), ..,Wip(t)). Then the Aalen’s

estimator of cumulative censoring hazard for the ith individual is given by,

Λi
C(t|Z̄i(t)) =

∫ t

0

λ̂iC(u|Z̄i(t))du =
n∑
j=1

I(Tj ≤ t)(1− δj)Wi(Tj)R
−1(Tj)Wj(Tj),

where, R(t) =
∑n

i=1 I(Ti ≥ t)Wi(t)W
′
i (t). The estimated IPCW weight for ith

individual can be expressed as, K̂i(t) = exp(−Λ̂i
C(t|Z̄i(t))), where, Λi

C(t|Z̄i(t)) =∫ t
0
λiC(u|Z̄i(t))du.

5.2 Simulation Study

5.2.1 Study Design

In this section we present a detailed simulation study that investigates the

properties of the proposed procedure in finite sample.

We conducted the simulation study using the progressive illness death model

given in Figure 5.6. In this model, an individual starting from the initial healthy
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state (state-0) at time 0, moves to the absorbing state (state-2) denoted as death, by

following either of two possible paths, where the path is controlled by an independent

Bernoulli random variable. An individual at state-0 has a 60% chance of moving

through the intermediate disease state (state-1) to the final state and 40% chance of

reaching the final state directly. We simulated n independent individuals starting

from state-0 at time 0, whereas n is chosen from the set {100, 500, 1000}. For each in-

dividual, we then generated a three dimensional covariate vector (X = (X1, X2, X3))

that contains subject specific information, where its first component (X1) is gen-

erated from the bernoulli distribution with the probability of 0.5 and the other

two components (X2, X3) are obtained from multivariate normal distribution with

a mean vector of (0, 0)′ and a dispersion matrix (D) given by,

D =

1.0 0.3

0.3 1.0

 .
We assumed that individuals’ transition times follow Log-Normal distributions,

in such a way that the log-mean parameters depend upon their baseline covari-

ate vectors. Likewise, transition times T01, T12, and T02 are drawn using log-

normal distribution (lnN(µjj′ , 0.5
2)), with log-mean parameters µ01 = (β

′
X)2 +0.1,

µ12 = (β
′
X)2, and µ02 = (β

′
X)2 + 0.5 respectively. We chose β to be a normal-

ized vector given by β = (0.40, 0.79, 0.46)′. In the uncensored experiment, the time

(T ∗) required for an individual to move from state 0 to 2 directly or through the

intermediate state are T02 or T01 + T12, respectively. However, the observed time is

considered to be T = min{T ∗, C}, when the right-censoring is present. In this sim-

ulation study, we considered both random and covariate dependent right-censoring

cases with 25% and 50% censoring rates. The random censoring times are generated

from the Exponential distributions with scale parameters 3 × 10−2 and 1.5 × 10−1

for 25% and 50% cases, respectively. For the covariate dependent censoring setting,

we obtained censoring time using an Exponential distribution that is specified by
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an indicator function for a threshold value of a linear combination of covariates,

which is given by,

C ∼ I(β
′

cX > w)exp(φ1) + I(β
′

cX ≤ w)exp(φ2).

We fixed w = 0.1 for βc = (0.3, 0.2, 0.5)′ and select pairs (φ1, φ2) from the set of

{(6× 10−2, 1× 10−2), (1.8× 10−1, 9× 10−2)}, for respective 25% and 50% censoring

cases.

We applied the proposed procedure to estimate state occupation probabilities

for an arbitrarily selected covariate vector, that was given by x0 = (1.0, 0.2,−0.1).

In this work, we used uniform kernels for the IPCW re-weighted binary choice single

index models.

5.2.2 Absolute Error of Estimated State Occupation Probability

We examined the absolute error (∆L1(t|x0)), measured between estimated

and “true” state occupying probabilities at 25th, 50th, and 75th quantile points cor-

respond to state reaching (states - 1, 2) and leaving (state - 0) times, for the covariate

vector X = x0. ∆L1(t|x0) is defined as, ∆L1(t|x0) = E|θ̂(t|x0)−θ(t|x0)|, where θ(x0)

is the “true” conditional state occupation probability for X = x0 and θ̂(x0) is the

corresponding estimator by the proposed method. We approximated θ(x0) by the

proportions of state occupation using an uncensored experiment with large number

(10,000) of instances that are generated for the covariate vector X = x0. In this

study, we used Cox’s model (Cox, 1972) based alternative procedure as a benchmark

estimate, in which the state-to-state transitions hazards in the multi-state model

are estimated using Cox’s regression model fitted marginally for each transition,

where the corresponding baseline hazard function is estimated by Breslow’s method

(Breslow, 1972). Thus, the conditionally estimated transition hazards of transitions

between states j to j′ (j 6= j′; j, j′ = 0, 1, 2) at a given time t can be obtained as,
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αCoxjj′ (t|X) = λjj
′

0 (t)exp(XTγ), where λjj
′

0 (t) is the baseline hazard of transition from

state j to j′ at time t, γ = (γ1, γ2, γ3) is the three dimensional vector that contains

respective regression coefficients of baseline covariates X = (X1, X2, X3). Next, we

obtained the conditional transition hazards matrices based on α̂Coxjj′ (t|X) to derive

estimates for the state occupation probabilities p̂Coxj (t|X) at a specific covariate

value X = x0, by following the Aalen-Johansen formulation as discussed in Section

5.3.

We calculated ∆L1(t|x) via averaging 500 Monte-Carlo repetitions. Table

5.1 presents the resulted ∆L1(t|x) for selected settings under random and covariate

dependent censoring cases. Demonstrating reasonable performance, results for the

proposed method show a clear decline in the ∆New
L1

(t|x), as the sample size is in-

creased for all types of censoring and rates. As to be expected, ∆New
L1

(t|x) is higher

for scenarios with a larger censoring rate. ∆New
L1

(t|x) at 50th and 75th quantile times

are relatively larger than corresponding values at 25th quantiles.

Suppose ∆New
L1

(t|x) ∼ n−κ, and log{∆New
L1

(t|x)} ∼ −κlog(n). Complying with

this relationship, we observed a linear trend between log(n) and log{∆New
L1

(t|x)} in

every case. For example, Figure 5.6 shows linear relationships in plots of log(n) vs

log{∆New
L1

(t|x)} that are developed for the random censoring at a rate of 25%. This

infers that the proposed estimator is reaching the true conditional state occupying

probability, in an asymptomatic fashion. Clearly, throughout the whole experi-

ment ∆Cox
L1

(t|x) remained almost unchanged with sample sizes. This result shows

considerably large L1 errors, especially at 50% and 75% quantile points for the

Cox approach compared to the proposed method, which suggests the Cox approach

is incapable of providing reliable state occupation probability estimates under the

selected transition model functions.

87



5.2.3 Coverage of Confidence Interval Developed for Estimated State Occupation

Probability

Next, we examined the empirical coverage probability of 95% bootstrap based

confidence bands developed for the estimated state occupation probability.

Let θ̂h be the estimator of θ, which is calculated using a sample of size n

with a bandwidth (h) that results from a cross-validation process. Suppose θ̂∗ is the

respective bootstrap estimator which results from a bootstrap sample of size n that

obtained by re-sampling data with a replacement. Li and Datta (2001) described

the distributional relationship given by D(θ̂h̃ − θ) ≈ D(θ̂∗ − θ̂g̃), where θ̂g is the

corresponding over-smoothed estimate that involves a larger smoothing parameter

g (g > h), satisfies limn→∞
h
g

= 0. Denote, υ∗b = θ̂∗b−θ̂g, b = 1, ..., B, where B is the

number of bootstrap samples drawn from the given data. Suppose (Qα
2
, Q1−α

2
) are

the respective α
2

and 1− α
2

percentile points for the data given by υ∗1 , .., υ∗B . Thus,

(θ̂h−θ) lies in the interval of [Qα/2, Q1−α/2] with a probability of (1−α), which yields

the (1 − α)% confidence interval for θ as [θ̂h − Q1−α
2
, θ̂h − Qα

2
]. Suppose θ̂h̃ is the

conditional state occupation probability estimated by the proposed method using

a set of bandwidths h̃ = (h1, ., hm, ., hM), M ∈ Z+. The over-smoothed estimator

θ̂g̃ can be determined as g̃ = (g1, ., gm, ., gM), such that gm > hm, 1 ≤ m ≤ M . For

0 < ϕ < 1; one can select gm as,

gm =

h
ϕ
m, if h < 1

h
1/ϕ
m , otherwise.

In this simulation, we first calculated θ̂h̃, θ̂g̃ from a sample of n individuals. Then

we drew n individuals from the original data with replacement to obtain θ̂b
∗

h̃b
, b =

1, .., B for B number of bootstrap samples. We chose ϕ to be 0.9 and B to be

100. For a randomly generated dataset, we determined the indicator of I
[
θ ∈

[θ̂h̃−Q1−α
2
, θ̂h̃−Qα

2
]
]
, which shows the presence of empirically approximated “true”
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state occupation probability is inside the constructed confidence interval. Finally,

the coverage probability is determined by averaging indicators of 500 Monte-Carlo

repetitions. For simplicity, we focused on coverages at the 25th, 50th, and 75th

quantile time points corresponding to state reaching (states - 1, 2) and leaving

(state - 0) times, described earlier.

Due to the computational burden, this study was limited to random censoring

setting with sample sizes n = 100 and n = 500 cases. Resulted coverages that are

summarized in Table 5.2 show reasonable coverages close to the nominal level of 95%

almost in every case, which seemingly suggest that the proposed method potentially

holds a reliable precision.

5.2.4 Power and Size of Regression Parameters

In this section, we study the power and size properties of regression param-

eters in the IPCW re-weighted binary choice SIM model. For this purpose, we

focused on the parameters estimated for risk processes, which are natural approx-

imations for state occupation probabilities in a multi-state model. Following the

normality property of the binary choice SIM parameter estimates described by Klein

and Spady (1993), we evaluated the hypothesis represented by H0 : βp(t, s) = 0 vs

H1 : βp(t, s) 6= 0, p = 1, .., P , using the bootstrap method based standard error. For

illustrative purposes, this study is conducted for the 2nd component of β parameter

vector; β2, using the three state progressive illness death model with the transition

settings as described in section 3.1, but ranging the value of β2 in a sequence from

0 to 0.95, under the constraint that satisfies |β ′| = 1. This experiment is initiated

by estimating β̂ from a sample of n individuals at a fixed time. After that, we drew

n individuals from the original data with replacement to obtain the corresponding

bootstrap estimates: β̂∗b , b = 1, .., B for B number of bootstrap samples. For each
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fixed value of β2 the corresponding estimate β̂2 is tested for rejecting the above null

hypothesis. Likewise the power is computed by the average rejections in 500 Mote-

Carlo simulations, using 100 bootstrap per each. This power study is conducted

under random censoring settings with 25% rate for n = 100 and n = 500 cases.

We also compare our results with a method based on pseudo-values de-

scribed by Anderson and Klein (2007). In this approach, pseudo-values of the state

occupation probabilities are calculated using the Jackknife method which yields

p̂psi (t) = n · p̂(t) − (n − 1) · p̂−i(t), i = 1, ..., n, where p̂−i(t) is the Aalen-Johansen

(Aalen and Johansen, 1978) state occupation probability estimate obtained from a

sample of size n − 1 by eliminating the ith individual from the data, and p̂(t) is

the corresponding estimate calculated using the whole sample. For the ith indi-

vidual, the most probable state occupation at a fixed time is determined using the

observed pseudo-values, which allows one to estimate the parametric Logistic regres-

sion model that relates state occupational indicators with the baseline covariates.

In such a way, we conducted the power study for the 2nd parametric component;

βps2 in the above Logistic model.

In Figures 5.6 and 5.6 we present powers and sizes evaluated at 25th, 50th,

and 75th quantile time points for a proposed model and pseudo-value approach,

respectively. Examining the properties of power functions derived for the IPCW

re-weighted binary choice SIM model, we observed a fair agreement between the

observed size with the nominal value of 0.05 for most scenarios that covered in the

experiment. Clearly, the power is steadily increased as the sample size increases

from n = 100 to n = 500. The overall behavior of power function provides key

evidence for the reliability of the new technique, showing its ability to detect crucial

covariates upon the state occupation at a given time. The pseudo-value technique

has illustrated poor performance in terms of the power, whereas the plots show

an irregular behavior in the power function, which can possibly be caused due to
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the incapability of handling subjects’ nonlinear transition mechanism with baseline

covariates by the logistic model that assumes a pre-specified linear model structure.

5.2.5 Robustness of the Proposed Method

The proposed method for estimating conditional state-to-state transitions

counts and at-risk processes is established on a strict condition that assumes the

underlying functions have the SIM form. However, in practice this may not often

hold. Thus, we performed a simulation study to investigate the performance of the

proposed method under perturbed SIM functions. Similar to Section 5.2, we exam-

ined the absolute error denoted by ∆L1(t) at quintile time points, using the same

three-state progressive illness-death model described in our previous simulations,

but using a new set of functions that have perturbed SIM structure. Likewise, in

this experiment, T01,T12, and T02 transition times are generated from Log-Normal

distribution (lnN(µjj′ , 0.5
2)) with log-mean parameters µ01 = (βTX)2+(ϑX2)2+0.1,

µ12 = (βTX)2 + (ϑX2)2, and µ02 = (βTX)2 + (ϑX2)2 + 0.5 respectively, where X2

is the 2nd component in the covariate vector X = (X1, X2, X3). Consequently, this

new set of models violate the SIM conditions in temporal processes of multi-state

model.

In this study, we chose β and ϑ to be β = (0.40, 0.79, 0.46)′ and ϑ = 0.4. The

robustness of the proposed method was examined under the random censoring cases.

Table 5.3 summarizes both ∆New
L1

(t|x) and ∆Cox
L1

(t|x) values that are obtained by

averaging 500 Monte-Carlo simulations. Similar to the outcome observed in section

3.2, ∆New
L1

(t|x) clearly declines with the sample size. Demonstrating the consistency

of our estimate, further investigation of the results show a linearity between log(n)

and log{∆New
L1

(t|x)} values (refer to Figure 5.6), that suggests the proposed method

is rather robust under perturbed SIM conditions. As we expected, the Cox approach
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demonstrated poor performance with the underlying simulation conditions. The

overall result has a high correspondence to the outcome we described in Section 5.2.

5.3 Applications

In this section, we illustrate two applications of the proposed method in real

data using bone marrow transplant study (Copelan et al., 1991), and spinal code

injury data (Harkema et al., 2012).

5.3.1 Bone Marrow Transplant study

The bone marrow transplant study had been conducted during years 1984 to

1989 for acute leukemia patients in four worldwide centers. This transplant surgery

is considered one of the standard therapies for acute leukemia condition. Usually,

a subject experiences various clinical conditions during the recovery process, after

receiving the transplant from a donor, which can be represented as states of a multi-

state model. In this study, 137 acute leukemia subjects underwent bone marrow

transplantation. After that, these individuals were followed up to a maximum of 7

years. In a multi-state representation, starting from the primary state of receiving

the bone marrow transplant, there are five intermediate states that an individual

may reach before he/she reaches the final (absorbing) state, which is relapse or death

by leukemia. Five intermediate states are represented by conditions of developing

Acute Graft Versus Host disease (GVHD); returning of platelet levels to normal

levels; returning of platelet levels to normal levels after developing acute GVHD;

Developing acute GVHD after platelet recovery; and developing chronic GVHD.

A schematic representation of the multi-state model is given in Figure 5.6. We

summarize the transition counts for the study in Table 5.4. For additional details

of this study and the dataset, we refer readers to Klein and Moeschberger (1997).
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The bone marrow transplant data described here has been analyzed by many

authors for various aspects. In this work, our primary goal is to estimate the

state occupation probability for a hypothetical individual represented by a specific

covariate vector. Among several covariates available, we use ages of patient and

donor for our work. We apply the proposed procedure by choosing the covariate

vector x = (28, 28)′ corresponding to patient’s age and donor’s age to estimate

the state occupation probability (p̂j(t|x), j = 0, .., 6). After that, we construct 95%

bootstrap method based confidence intervals by following the procedure described in

the simulation section. Datta and Satten (2001) showed that the censoring depends

on the currently occupied state. Hence we consider patient age and the time varying

covariate given by current state for calculating IPCW weights.

Figure 5.6 provides sets of plots that are show the estimated conditional state

occupation probabilities for an individual of age 28 who receives a bone marrow

transplant from a donor of the same age of 28. The plot of state-0 shows prob-

ability of staying at this state dramatically declines within a short period, which

means the individual possibly moves to another clinical state soon after he/she un-

dergoes surgery. As shown in the plot of state-2, the most probable second state for

such an individual must be the ‘Platelet Recovery’ state, whereas the probability

of staying in this state at the very beginning appears to be as high as 0.7. How-

ever, the state occupation probability for this state quickly decreases below 0.3 and

reaches an almost steady level within first 500 days of the surgery. Plots of states 1

and 3 clearly indicate that the chances of staying in ‘Acute GVHD’ and one of its

subsequent states given by ‘Platelet recovery after acute GVHD’ are very low for

the particular individual. As shown in the plot 4, occupying ‘Acute GVHD After

Platelet Recovery’ at the beginning seems to be close to 0.1, which then declines

gradually. The occupation probability at state-5 that is ’Chronic GVHD’, quickly

increases to approximately 0.25 and remains almost unchanged for a long span. As
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to be expected, the chance of moving to the absorbing state (Relapse/Death) in-

creases with time, then it reaches to a constant level after nearly 1000 days after the

surgery. Based on 95% bootstrap confidence intervals (with B = 500) developed for

state occupation probabilities, we observe reasonable precision with our estimates.

We provide another illustration (refer Figure 5.6) of conditional state oc-

cupation probabilities for two covariate vectors: x = (20, 20)′ and x = (40, 40)′.

Visual inspection of these plots shows some noticeable differences for two baseline

vectors. For example, the overall state occupation probability at ‘Platelet recovery

after acute GVHD’ state for an individual with x = (20, 20)′ is larger compared to

an individual with x = (40, 40)′. Conversely, occupying ‘Chronic GVHD’ state is

lower for x = (20, 20)′ than x = (40, 40)′ case. To determine if these differences are

statistically significant, we developed a test statistic and computed its correspond-

ing p-value using a re-sampling scheme. We calculated the mean absolute difference

D =
∫
|θ̂(t|X = x1)− θ̂(t|X = x2)|dEn(t), where θ̂(.|X = x) is the proposed estima-

tor of state occupation probability given X = x to quantify the overall difference for

above covariate vectors. We drew a bootstrap sample of size n by re-sampling labels

from the original data {1, .., n}, using simple random sampling. Then we re-sampled

X by drawing samples from the corresponding original data, which was performed

independently from the previous re-sampling step. After that we calculated D us-

ing the bootstrap sample, denoted D∗. This procedure was repeated for B times to

obtain D∗1, D
∗
2, ..D

∗
B. Then the p-value was computed by p = 1

B

∑B
b=1 I(D∗b ≥ D).

In Table 5.5, we present the result based on B = 500 bootstrap samples. As shown

in the table, the difference at ‘Platelet Recovery After Acute GVHD’ is shown to

be significant at 5% significant level. Other differences, such as in ‘Acute GVHD

After Platelet Recovery’ can be considered as borderline significant.
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5.3.2 Spinal Cord Injury Study

Spinal code injury (SCI) data contains information on 296 subjects with in-

complete spinal code injury from a national activity-based rehabilitation program

(Harkema et al., 2012). The program primarily focused on individuals with clinically

incomplete SCI after discharge from inpatient rehabilitation. During the program,

patients underwent with sessions of locomotor training, based on a screening assess-

ment at enrollment. The locomotor training program is an activity-based therapy

for functions relating to standing and walking. Functional progress of these individ-

ual has been thoroughly evaluated periodically in terms of mobility, standing, and

stepping, after receiving therapeutic sessions. For instance, this study assessed 6-

minute walk and 10-meter walk tests. There are several clinical benchmarks defined

based on the walking speed of an individual. For example, 0.44 m/s represents the

minimum walking speed associated with the ability to walk in the community, 0.7

m/s separates those who require assistive walking devices from those who do not,

and 1.2 m/s approximately defines the speed required to cross a street at a stop-

light (van Hedel and Dietz, 2010). Thus, we represent the progress of a SCI subject

though the rehabilitation program as states of a multi-state model as follows: (1)

nonambulatory, (2) able to walk but slower than 0.44 m/s, (3) able to walk but

in between 0.44 to 0.7 m/s, (4) able to walk but in between 0.7 m/s to 1.2 m/s,

(5) able to walk faster than 1.2 m/s. A graphical representation of the multi-state

model with 5 states is given in Figure 5.9. We also provide a summary of transition

counts in Table 5.5. It is important to note that individuals in this study have been

entered to the multi-state model from various states, which is one of the primary

difference between SCI and bone marrow transplant studies. In a previous anlsysis

of this dataset, Lorenz and Datta (2015) estimated an individuals’ waiting time to

reach state-1 in the model, based on a linear hazards model approach.
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Among several subject specific measures given, we used (1) initial speed at

enrollment, (2) patient age at enrollment, (3) time from spinal cord injury to enroll-

ment, and (4) lower motor score from the International Standards for Neurological

Classification to estimate the state occupation probability for a given individual

with a specified baseline covariate vector. We noticed that SCI subjects with se-

vere conditions, such as nonambulatory or patients with slower walking speed than

0.44 m/s very rarely regain a walking ability than 1.2 m/s. Thus, most of these

patients have been subjected to right-censoring before they were discharged from

the program upon recovery, resulting approximately 82% censoring rate in terms of

reaching the final state. We believe the censoring hazards may have an effect by the

cumulative number of training sessions the individual received prior to censoring,

which can be considered as a time varying covariate. Thus, we use this informa-

tion in addition to baseline covariates to calculate the IPCW weights. Figure 5.6

presents conditional state occupation probabilities estimated using the proposed

method along with 95% bootstrap confidence intervals (B = 150), for an individual

with a covariate vector x = (0.08, 38.0, 0.92, 33.0)′, which corresponds to median

baseline covariates of study participants. For this individual, represent by the se-

lected covariate vector, the chance of occupying state-0 at the early period is close

to 0.5, which then sharply declines. There is an approximately 0.25 chance of oc-

cupying state-1 at the beginning, which relatively increases over time. Occupying

at states 2 gradually declines, while 3, and 4 considerably elevates when reaching

to 500 days of enrollment. We believe lack of transitions along with high rate of

censoring may have caused relatively large confidence bands for our estimates.

5.4 Discussion

In this work we proposed a novel method to estimate the conditional state

96



occupational probability of a multi-state model, given a covariate, in the presence of

right-censoring. The proposed method has broad potential advantages in complex

multi-state problems, where the transition mechanism follows a dynamically varying

high nonlinearity with baseline covariates. We proposed IPCW re-weighted semi-

parametric binary choice SIM model to estimate state-to-state transitions and at-

risk processes, which allows one to estimate transition hazards between pairs of

states in the multi-state model. The integrated IPCW re-weighting scheme handles

the bias caused by censoring, ensuring theoretical properties of the model.

We present a series of simulation studies that investigates properties of the

proposed method in finite sample. We primarily focused on the L1 distance between

the estimated and true conditional state occupational probabilities (∆) given a vec-

tor of covariates, at a selected set of time points. Clearly, L1 distance seems to be

decreasing with the sample size for both random and covariate dependent censoring

mechanisms, under low and high censoring rates. These results suggest a linear

relationship between log(n) and log(∆). Thus, the proposed estimator seemingly

converges to the true conditional state occupation probability asymptomatically. A

study that investigates the coverage of bootstrap confidence intervals demonstrated

a reasonable agreement between the empirical coverage and the nominal level. We

also demonstrated the performance of the proposed model in examining the covari-

ate effects using a power study, whereas this study infers the poor performance

of pseudo-value based parametric method under complex transition mechanisms.

Although the proposed method is based on SIM conditions, evidence of our study

showed that the proposed estimator is rather robust under the model functions’

departure from SIM conditions, signifying the potential capability of the proposed

method for handling many real applications. Two applications of the proposed

method in real data were illustrated using bone marrow transplantation and SCI

data, which contain several possible clinical states.
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A possible extension for the current methodology could be generalizing for

high dimensional case that contain excessive number of covariates, which may be

achievable by imposing a strong dimension reduction criteria. Such an approach

may have wide range applications with sophisticated multi-state models under high

dimensional covariates, such as genomic biomarkers.

5.5 Tables

State

Quantile

Time

Point

Sample

Size

(n)

∆ (10−2)

No Censoring
Random Censoring Covariate Dependent Censoring

25% Rate 50% Rate 25% Rate 50% Rate

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

State-0

25%

100 6.673 8.463 6.605 8.342 6.629 8.277 6.921 8.049 7.472 8.211

500 3.610 8.503 3.378 8.608 3.549 8.491 3.710 8.249 3.884 7.947

1000 2.705 8.446 2.578 8.527 2.581 8.448 2.839 8.216 3.652 8.216

50%

100 7.719 18.358 7.399 18.355 8.120 18.360 7.927 18.210 8.158 17.916

500 4.569 18.210 4.317 18.681 4.397 18.459 4.543 17.990 4.898 18.105

1000 3.346 18.135 3.271 18.432 3.357 18.285 3.432 17.802 3.707 17.802

75%

100 7.189 26.345 8.032 26.281 8.154 26.236 7.631 26.001 7.670 25.447

500 4.312 25.956 4.441 26.751 4.720 26.397 4.156 25.567 4.485 25.896

1000 3.222 25.869 3.228 26.389 3.501 26.208 2.954 25.391 3.711 25.391

State-1

25%

100 5.202 5.153 5.521 5.441 5.872 5.377 5.464 5.149 5.902 4.903

500 2.966 4.970 2.867 5.113 2.871 5.064 2.798 4.936 3.087 5.139

1000 2.325 4.915 2.247 5.011 2.284 4.981 2.315 4.843 3.677 4.843

50%

100 6.560 11.149 6.246 11.446 6.332 11.505 6.866 11.269 7.477 11.025

500 4.189 11.048 3.776 11.235 3.601 11.165 3.580 11.070 4.144 11.262

1000 2.859 10.977 2.964 11.065 3.079 11.055 3.035 10.807 3.892 10.807

75%

100 7.484 14.094 7.508 14.637 8.115 14.661 7.934 14.455 8.279 13.916

500 4.369 14.055 4.448 14.272 5.042 14.146 4.420 13.920 5.108 14.375

1000 3.055 13.902 3.083 14.050 3.362 14.015 2.993 13.869 4.207 13.869

State-2

25%

100 7.206 7.584 6.398 7.566 6.792 7.310 7.136 7.131 8.475 6.853

500 3.902 7.186 3.506 7.519 3.718 7.392 3.883 6.954 4.209 7.321

1000 2.735 7.231 2.920 7.463 3.167 7.369 2.951 6.942 4.375 6.942

50%

100 7.871 15.720 9.151 16.071 8.930 15.756 8.907 15.074 10.095 15.081

500 4.777 15.636 4.245 16.217 4.743 16.062 4.698 15.305 5.509 15.165

1000 3.561 15.610 3.824 16.112 3.830 15.932 3.672 14.894 4.859 14.894

75%

100 7.229 22.660 7.317 23.761 8.286 23.327 7.611 22.088 8.091 22.218

500 4.587 23.096 4.326 24.026 4.896 23.722 4.621 22.565 6.082 22.022

1000 3.101 23.055 3.569 23.834 4.042 23.542 3.355 22.113 5.282 22.113

Table 5.1: L1 Distances of estimated state conditional occupying probabilities at

25th, 50th, and 75th quantiles of state reaching (states - 1, 2) and leaving (state -

0) times, with 500 Monte-Carlo simulations, for two different censoring mechanisms

and various rates, using the proposed method and Cox-Regression approach.
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Censoring

Mechanism

Size

(n)

95% Coverage Probability

State-0 State-1 State-2

25% 50% 75% 25%1 50% 75% 25% 50% 75%

No Censoring
100 0.93 0.94 0.97 0.91 0.95 0.98 0.95 0.97 0.98

500 0.91 0.93 0.94 0.91 0.93 0.94 0.94 0.92 0.93

Random Censoring

25% Rate

100 0.95 0.95 0.96 0.94 0.95 0.97 0.96 0.96 0.96

500 0.94 0.93 0.96 0.94 0.91 0.95 0.93 0.92 0.92

Random Censoring

50% Rate

100 0.93 0.96 0.97 0.91 0.95 0.97 0.95 0.96 0.99

500 0.98 0.97 0.97 0.98 0.96 0.95 0.97 0.96 0.91

Table 5.2: The coverage probability of 95% bootstrap based confidence intervals for

estimated state conditional occupation probabilities using the proposed method, at

25th, 50th, and 75th quantiles of state reaching (states - 1, 2) and leaving (state -

0) times, under random censoring with 0 to 50% rates, averaging 500 Monte-Carlo’s

with 100 bootstraps per each simulation.
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State

Quantile

Time

Point

Sample

Size

(n)

∆ (10−2)

No Censoring
Random Censoring

25% Rate 50% Rate

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

Proposed

Method

Cox

Method

State-0

25%

100 6.516 9.988 6.621 9.791 6.661 9.719

500 4.032 10.088 3.882 10.046 3.882 10.157

1000 3.050 10.043 3.082 10.018 3.086 10.102

50%

100 8.380 20.899 8.052 21.001 8.570 20.898

500 5.127 20.793 4.994 20.965 5.091 21.166

1000 3.932 20.754 4.045 20.806 4.274 20.932

75%

100 9.053 29.593 8.798 29.669 9.367 29.577

500 5.177 29.318 5.437 29.715 5.920 30.034

1000 4.065 29.288 4.032 29.505 4.427 29.709

State-1

25%

100 5.062 5.945 5.162 6.114 5.297 6.101

500 3.151 5.920 2.903 5.974 3.007 6.031

1000 2.356 5.872 2.415 5.938 2.507 5.984

50%

100 6.646 12.466 6.844 12.757 6.619 12.752

500 4.377 12.303 4.230 12.411 4.343 12.461

1000 3.311 12.253 3.362 12.303 3.469 12.353

75%

100 8.481 15.046 8.197 15.509 8.627 15.468

500 4.269 15.009 4.656 15.008 4.912 15.124

1000 3.382 14.859 3.285 14.894 3.587 14.945

State-2

25%

100 6.842 9.260 6.853 8.851 7.332 8.886

500 3.943 9.093 4.012 9.279 4.218 9.363

1000 2.974 9.138 3.052 9.206 3.359 9.289

50%

100 8.651 18.879 8.868 18.816 9.059 18.997

500 5.401 18.801 5.377 19.221 5.469 19.367

1000 4.096 18.842 4.251 19.054 4.626 19.193

75%

100 8.221 26.701 8.303 27.254 9.422 27.510

500 5.373 27.222 5.831 27.755 6.594 28.026

1000 3.902 27.212 4.323 27.575 5.133 27.836

Table 5.3: L1 Distances of estimated state conditional occupying probabilities at

25th, 50th, and 75th quantiles of state reaching (states - 1, 2) and leaving (state - 0)

times, with perturbed SIM models, under random censoring, based on averaging 500

Monte-Carlo simulations, using the proposed method and Cox-Regression approach.
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To

From 0 1 2 3 4 5 6

0 0 7 117 0 0 1 12

1 0 0 3 0 2 2

2 20 0 19 44 34

3 0 0 1 2

4 2 11 6

5 32 27

6 83

Table 5.4: Matrix showing the state-to-state transition counts for the Bone Marrow

Transplant data

State D (10−2)

0: Bone Marrow Transplant 0.533 (0.65)

1: Acute GVHD 0.854 (0.15)

2: Platelet Recovery 3.457 (0.13)

3: Platelet Recovery After Acute GVHD 1.710 (0.03)

4: Acute GVHD After Platelet Recovery 2.152 (0.08)

5: Chronic GVHD 3.506 (0.15)

6: Relapse/Death 1.843 (0.42)

Table 5.5: Absolute mean difference between conditional state occupation proba-

bilities of two cases: x = (20, 20)′ and x = (40, 40)′, using the proposed method.

The corresponding p-values are in parenthesis.
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To

From 0 1 2 3 4

0 79 47 10 0 0

1 68 38 16 0

2 39 33 7

3 55 27

4 32

Table 5.6: Matrix showing the state-to-state transition counts for the Spinal Code

Injury data
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5.6 Figures

 

 

0: Bone Marrow  

    Transplant 

2: Dead 

1: Diseased 0: Healthy 

Figure 5.1: Graphical representation of the three state progressive illness-death

model
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Figure 5.2: Plots of log(n) vs log(∆New
L1

(t|x)) generated at 25th, 50th, and 75th

quantiles of state reaching (states - 1, 2) and leaving (state - 0) times, under ran-

dom censoring with a rate of 50%. Dotted lines represent the corresponding liner

regression line fitted to the data.
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Figure 5.3: Plots showing power and size properties of β2 parameter in the re-

weighted binary choice SIM models, which are estimated for risk processes of the

three state progressive illness death model. Plots are generated at 25th, 50th, and

75th quantiles of state reaching (states - 1, 2) and leaving (state - 0) times, under

random censoring with 25% rate, for n = 100 and n = 500 cases.
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Figure 5.4: Plots showing power and size properties of β2 parameter in the pseudo-

value based Logistic regression models, which are estimated for state occupations in

the three state progressive illness death model. Plots are generated at 25th, 50th,

and 75th quantiles of state reaching (states - 1, 2) and leaving (state - 0) times,

under random censoring with 25% rate, for n = 100 and n = 500 cases.
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Figure 5.5: Plots of log(n) vs log(∆New
L1

(t|x)) generated at 25th, 50th, and 75th

quantiles of state reaching (states - 1, 2) and leaving (state - 0) times, under random

censoring with a rate of 50% with perturbed SIM models. Dotted lines represent

the corresponding liner regression line fitted to the data.
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Figure 5.6: Graphical representation of Bone Marrow transplant multi-state model
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Figure 5.7: Plots of estimated conditional state occupational probabilities of 7 clin-

ical states in the bone marrow transplant data, by the proposed method for a co-

variate vector of x = (28, 28)′, along with 95% bootstrap based confidence intervals

(represented by the dotted lines).
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Figure 5.8: Plots of estimated conditional state occupational probabilities of 7 clin-

ical states in the bone marrow transplant data, by the proposed method for a two

covariate vectors: x = (20, 20) and x = (40, 40).
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0 100 300 500

0.
0

0.
4

0.
8

State−0

Days

P
ro

ba
bi

lit
y

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

State−1

Days

P
ro

ba
bi

lit
y

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

State−2

Days

P
ro

ba
bi

lit
y

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

State−3

Days

P
ro

ba
bi

lit
y

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

State−4

Days

P
ro

ba
bi

lit
y

Figure 5.10: Plots of estimated conditional state occupational probabilities of 5

clinical states in the spinal Code Injury data, by the proposed method for a covariate

vector of x = (0.08, 38.0, 0.92, 33.0)′, along with 95% bootstrap based confidence

intervals (represented by the dotted lines).

111



REFERENCES

[1] Cai, T., Tian, L., Wong, P. H., and Wei, L. J. (2011), Analysis of Randomized

Comparative Clinical Trial Data for Personalized Treatment Selections, Bio-

statistics, 12:270–282.

[2] Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R.

T., Haubrich, R. H., Henry, W. K., Lederman, M. M., Phair J. P., Niu M., Hirsch

M. S., and Merigan T. C. (1996), A Trial Comparing Nucleoside Monotherapy

with Combination Therapy in HIV-Infected Adults with CD4 Cell Counts from

200 to 500 per Cubic Millimeter, New England Journal of Medicine, 335:1081–

1090.

[3] Hristache, M., Juditsky, A., Polzehl, J., and Spokoiny, V. (2001), Structure

Adaptive Approach for Dimension Reduction, The Annals of Statistics, 29:1537–

1566.

[4] Juraska, M., Gilbert, P. B., Lu, X., Zhang, M., Davidian, M., and Tsiatis, A.

A. (2012), speff2trial: Semiparametric Efficient Estimation for a Two-Sample

Treatment Effect. R package version 1.0.4.

[5] Liang, H., Liu, X., Li, R., amd Tsai, C-H. (2010), Estimation and Testing for

Partially Linear Single Index Models, Annals of Statistics, 38:3811–3836.

[6] Polzehl, J. (2013),EDR: Estimation of the effective dimension reduction (EDR)

space, R package version 0.6–5.1.

112



[7] Qian, M., and Murphy, S. A. (2011), Performance Guarantees for Individualized

Treatment Rules. The Annals of Statistics, 39:1180–1210.

[8] Schulte, P.J., Tsiatis, A.A., Laber, E.B., and Davidian, M. (2014), Q- and

A-learning Methods for Estimating Optimal Dynamic Treatment Regimes, Sta-

tistical Science, 29(4):640-661.

[9] Robins, J. (2004), Optimal structured nested models for optimal sequential de-

cision, In: Lin DY, Heagerty PJ, editors. Proceedings of the Second Seattle Sym-

posium on Biostatistics. New York: Springer, 179:189–326.

[10] Robins, J., Orellana, L., and Rotnitzky, A. (2008), Estimation and extrapola-

tion of optimal treatment and testing strategies, Statist. Med., 27(23):4678–4721

[11] Stute, W. (1991), Conditional U -Statistics, Annals of Probability, 19:812–825.

[12] van’t Veer, L.J. and Bernards, R. (2008), Enabling Personalized Cancer

Medicine Through Analysis of Gene-Expression Patterns, Nature, 452:564–570.

[13] Vazquez, A. (2013), Optimization of Personalized Therapies for Anticancer

Treatment, BMC Systems Biology, 7–31

[14] Wand, M. P. and Jones, M. C. (1995), Kernel Smoothing, Chapman and Hall,

London.

[15] Wang, L. and Yang, L. (2009), Spline Estimation of Single Index Models,

Statistica Sinica, 19:765–783

[16] Yu, Y. and Ruppert, D. (2002), Penalized Spline Estimation for Partially Linear

Single-Index Models, Journal of the American Statistical Association, 97:1042–

1054.

113



[17] Zhang, B., Tsiatis A. A., Laber, E. B., and Davidian, M. (2012), A Robust

Method for Estimating Optimal Treatment Regimes, Biometrics, 68(4):1010–

1018.

[18] Zhao, Y., Donglin, Z., Rush, A. J., and Kosorok, M. K. (2012), Estimating

Individualized Treatment Rules Using Outcome Weighted Learning, Journal of

the American Statistical Association, 107(449):1106–1118.

[19] Cai, T., Tian, L., Wong, P. H., and Wei, L. J. (2011), Analysis of Randomized

Comparative Clinical Trial Data for Personalized Treatment Selections, Bio-

statistics, 97:270–282.

[20] Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B.,

Maechler, M., and Hothorn, T. (2015), mvtnorm: Multivariate Normal and t

Distributions, R package version 1.0–3.

[21] Ichimura, H., Hall, P., Hardle, W. (1993), Optimal smoothing in single index

models, The Annals of Statistics, 21(1):157–178.

[22] Kelly, Zo L, Agnieszka Michael, Butler-Manuel,Simon, Pandha,Hardev S, and

Morgan, Richard G.L. (2011), HOX genes in ovarian cancer, Journal of Ovarian

Res., 4–16.

[23] Pihur, V., Datta, S., and Datta, S. (2007) Weighted rank aggregation of clus-

ter validation measures: a Monte Carlo cross-entropy approach Bioinformatics,

23(13):1607–1615.

[24] Pihur, V., Datta, S., and Datta, S. (2009) RankAggreg, an R package for

weighted rank aggregation BMC Bioinformatics, 10:62.

[25] Siriwardhana, C., Zhao, M., Datta, S., and Kulasekera, K.B. (2015), Personal-

ized Plans with Multiple Treatments, Technical Report TR2015 6 cs,mz,sd,kk,

114



http : //www.clemson.edu/ces/math/dept publications.html, Department of

Mathematical Sciences, Clemson University.

[26] Streeck, H. and Nixon, D. F. (2010), T Cell Immunity in Acute HIV-1 Infection,

The Journal of Infectious Diseases, 202(S2):302–308.

[27] Aalen O. O. (1976). Non-parametric inference in connection with multiple

decrement models. Scandinavian Journal of Statistics 3:15–27.

[28] Aalen O. O. (1978). Non-parametric inference for a family of counting pro-

cesses. The Annals of Statistics 6:701–726.

[29] Aalen, O. O. (1980). A model for non-parametric regression analysis of counting

processes, In: Klonecki, W., Kozek, A., Rosiski, J. (Eds.), Lecture Notes on

Mathematical Statistics and Probability 2, Springer, New York, 1–25.

[30] Aalen O. O. (1989). A linear regression model for the analysis of lifetimes.

Statistics in Medicine 8:907–925.

[31] Aalen O. O. and Johansen, S. (1978). An empirical transition matrix for non-

homogeneouMarkov chaisn based censored observations. Scandinavian Journal

of Statistics 5:141–150.

[32] Anderson, P. K. and Kieding, N. (2002). Multistate models for event history

analysis, Statistical Methods in Medical Research 11:91–115.

[33] Anderson, P. K. and Klein, J. P. (2007). Regression analysis for multistate

models based on a pseudo-value approach, with application to bone-marrow

transplant studies. Scandinavian Journal of Statistics 34:3–16.

[34] Barlow, R. E., Bartholowmew, J. M., Bremner, J. M., and Brunk, H. D. (1972).

Statistical Inference under Order Restrictions. New York: Willey.

115



[35] Breslow, N. E. (1972). Discussion of the paper by D. R. Cox. Journal of Royal

Statistical Society, Series B 34:216–217.

[36] Chakraborty, S., Datta, S., and Datta, S. (2015). Nonparametric regression of

state occupation probabilities in a multistate Model. Manuscript submitted for

publication.

[37] Copelan, E.A., Biggs, J. C., Thompson, J. M., Crilley, P., Szer, J., Klein,

J. P., Kapoor, N., Avalos, B. R., Cunningham, I., Atkinson, K., Downs, K.,

Harmons, G. S., Daly, M. B., Brodsky, I., Bulova, S. I., and Tutschka, P. J.

(1991). Treatment for Acute Myelocytic Leukemia With Allogeneic Bone Mar-

row Transplantation Following Preparation With BuCy2. Blood 78:838–843.

[38] Cox, D. R. (1972). Regression model and life-tables. Journal of Royal Statis-

tical Society Series B 34:187–220.

[39] Datta, S. and Satten, G. A. (2001). Validity of the Aalen-Johansen estimators of

state occupation probabilities and integrated transition hazards for non-Markov

models. Statistics and Probability Letters 55:403–411.

[40] Datta, S. and Satten, G. A (2002). Estimation of integrated transition hazards

and stage occupation probabilities for non-Markov system under dependent cen-

soring. Biometrics 58:792-802.

[41] Harkema, S.J., Schmidt-Read, M., Behrman, A.L., Bratta, A., Sisto, S.A.,

Edgerton, V.R. (2912). Establishing the NeuroRecovery Network: Multisite re-

habilitation centers that provide activity-based therapies and assessments for

neurologic disorders. Archives of Physical Medicine and Rehabilitation 93:1498–

1507.

116



[42] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Mono-

graphs on Statistics and Applied Probability 43, Boca Raton: Chapman and

Hall/CRC.

[43] Leeuw, J., Hornik, K., Mair, P. (2009). Isotone Optimization in R: Pool-

Adjacent-Violators Algorithm (PAVA) and Active Set Methods. Journal of

Statistical Software 32:1–24.

[44] Li, G. and Datta, S. (2001). A Bootstrap Approach to Nonparametric Regres-

sion for Right Censored Data. Annals of the Institute of Statistical Mathematics

53:708–729.

[45] Lorenz D. J. and Datta S. (2015). A nonparametric analysis of waiting times

from a multistate model using a novel linear hazards model approach. Electronic

Journal of Statistics 9:419–443.

[46] Ichimura, H., Hall, P., Hardle, W. (1993). Optimal smoothing in single index

models. Annals of Statistics 21:157–178.

[47] Klein J. P. and Moeschberger, M. L. (1997), Survival Anlsysis: Techniques for

Censored and Truncated data. New York: Springer-Verlag.

[48] Klein R. W. and Spady R. H. (1993). An efficient estimator for binary response

models. Econometrica 66:387–421

[49] Koul, H., Susarla, V. Van Ryzin, J. (1981). Regression analysis with randomly

right censored data. Annals of Statistics 9:1276–1288.

[50] Mostjabai, F. and Datta, S. (2013). Nonparametric regression of state occupa-

tion, entry, exit, and waiting times with multistate right-censored data. Statis-

tics in Medicine 32:3006–3019.

117



[51] Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression

analysis for current failure times and time dependent covariates. Journal of

American Statistical Association 88: 811–820.

[52] Satten, G. A. and Datta, S. (2002). Marginal estimation for multi-state models:

waiting time distribution and competing risks analyses. Statistics in Medicine

21:3–19.

[53] van Hedel, H.J. and Dietz, V. (2010). Rehabilitation of locomotion after spinal

cord injury. Restorative Neurology and Neuroscience 28:123–134.

118



APPENDIX

In this Appendix we provide outlines of the proofs of the technical results of

project 1.

Proof. Proof of Lemma 1

First, we prove (ii), the continuity of pi (u) in s under regularity conditions.

Let

fε (ε) =
K∏
i=1

fε (εi) , (5.3)

where ε = (ε1, . . . , εK)′, and ε = (ε1, . . . , εK)′. For a K-vector a = (a1, . . . , aK)′

and a subset I of {1, . . . , K}, let a(I) denote the (K − ‖I‖)- vector obtained from

a by removing the ith element from a for an i ∈ I, and, let a{I} denote the ‖I‖-

vector consisting of ai for i ∈ I. Without loss of generality, assume d = 1. Let

ti = (ti1, . . . , tiK)′ be vectors in RK and tj (s) = (tj1 (s) , tj2 (s) , . . . , tjK (s))′ where

tij (s) =

 maxk>1 tik + s, if j = 1,

tij, if j 6= 1 .

It can be shown that

pi (u) =

∫
. . .
∫ ∫

A
(i)
s
fε (ε)

∏K
j=1 fT (tj (s)) dεdt1(1) . . . dtK(1)∫

. . .
∫ ∏K

j=1 fT (tj (s)) dt1(1) . . . dtK(1)

(5.4)

where ε = (ε1, . . . , εK)′, ε = (ε1, . . . , εK)′, and

A
(i)
s =

{
ε ∈ RK |εi + tii (s) > maxk 6=1,i {εk + tkk (s)}

}
. Let s′ = s + ∆s, u′ = (s′, 1)
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and ei =
(

0, . . . , 1
ith
, . . . , 0

)
. We then have

∫
. . .

∫ ∫
A

(i)

s′

fε (ε)
K∏
j=1

fT (tj (s′)) dεdt1(1) . . . dtK(1)

−
∫
. . .

∫ ∫
A

(i)
s

fε (ε)
K∏
j=1

fT (tj (s)) dεdt1(1) . . . dtK(1)

=

∫
. . .

∫ ∫
A

(i)
s

fε (ε−∆se1)
K∏
j=1

fT (tj (s) + ∆se1) dεdt1(1) . . . dtK(1)

=

∫
. . .

∫ ∫
A

(i)
s

(
fε (ε−∆se1)

K∏
j=1

fT (tj (s) + ∆se1)− fε (ε)
K∏
j=1

fT (tj (s))

)

dεdt1(1) . . . dtK(1),

(5.5)

and∫
. . .

∫ K∏
j=1

fT (tj (s′)) dt1(1) . . . dtK(1) −
∫
. . .

∫ K∏
j=1

fT (tj (s)) dt1(1) . . . dtK(1)

=

∫
. . .

∫ ( K∏
j=1

fT (tj (s) + ∆se1)−
K∏
j=1

fT (tj (s))

)
dt1(1) . . . dtK(1) (5.6)

By Assumption 3, we have

lim
∆s→0

pi (u
′)− pi (u) = 0

proving the continuity of pi.

Now we show that p1 (u) > pk (u) for any k > 1. Since the denominator of

the right hand side of 5.5 is not affected by i, we only need to show the inequality for

the numerator. In the following discussion, we use the assumption that ε1, . . . , εK

are iid random variables with the common pdf fε. Consider we have

I1 =

∫
. . .

∫ ∫
A

(1)
s

fε (ε)
K∏
j=1

fT (tj (s)) dεdt1(1) . . . dtK(1)

=

∫
. . .

∫
P

(
ε1 + t11 (s) ≥ max

j>1
{εj + tjj (s)}

) K∏
j=1

fT (tj (s)) dεdt1(1) . . . dtK(1)
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Now, we have

P

(
ε1 + t11 (s) ≥ max

j>1
{εj + tjj (s)}

)
= P

(
ε1 ≥ εk + tkk (s)− t11 (s) and ε1 ≥ max

j>1,j 6=k
{εj + tjj (s)− t11 (s)}

)
= P

(
εk ≥ ε1 + tkk (s)− t11 (s) and εk ≥ max

j>1,j 6=k
{εj + tjj (s)− t11 (s)}

)
≥ P

(
εk ≥ ε1 + tk1 (s)− t1k (s) and εk ≥ max

j>1,j 6=k
{εj + tjj (s)− t1k (s)}

)
= P

(
εk ≥ ε1 + t′11 (s)− t′kk (s) and εk ≥ max

j>1,j 6=k

{
εj + t′jj (s)− t′kk (s)

})
= P

(
εk + t′kk (s) ≥ max

j 6=k

{
εj + t′jj (s)

})
,

where t′ij = tij if i 6= 1, k and t′1j = tkj, t
′
kj = t1j. Thus, we have

I1 ≥
∫
. . .

∫
P

(
εk + t′kk (s) ≥ max

j 6=k

{
εj + t′jj (s)

}) K∏
j=1

fT
(
t′j (s)

)
dεdt′1(1) . . . dt

′
K(1)

=

∫
. . .

∫ ∫
A

(k)
s

fε (ε)
K∏
j=1

fT (tj (s)) dεdt1(1) . . . dtK(1)

Considering the assumption of fε (0) > 0, it can be shown that the above inequality

is strict. This results in

p1 (u) > pk (u) .

Now we show an intermediate result that would be used in proving Theorem

1. First, for any given u = (s, d)′ we define

η̃J (d) =
K∏
k=1

I
[
gd (β′dXkjk) = max

m
{gm (β′mXkjk)}

]

and

w̃J (s) =
K∏
i=1

1

hi
w

(
s− S (Xiji)

hi

)
.
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Now, let

p̃i (u) =

∑
J∈J I [Yiji > maxk 6=i {Ykjk}] w̃J (s) η̃J (d)∑

J∈J w̃J (s) η̃J (d)
, (5.7)

The following lemma shows that p̃i above behaves almost as pi for any u in

large samples.

Lemma 2. Under Assumptions 1–4, for u = (s, d) such that f (s, d) > 0 for s in

an open interval containing s, we have p̃i (u)
P→ pi (u) if hi → 0 and Nhi → ∞,

i = 1, . . . , K.

The following lemmas are needed for the proof of Lemma 2.

Lemma 3. Let U and V be positive random variables, defined on a probability

space (Ω1,F1, P1), and A, B be a subsets of Ω1. We have (i) V ar (UIA) ≤

V ar (U) + E2 (U), (ii) |Cov (UIA, V IB)| ≤ |Cov (U, V )|+ E (U)E (V )

Proof.

V ar (UIA) = E
(
U2IA

)
− E2 (UIA)

≤ E
(
U2
)
− E2 (U) + E2 (U)− E2 (UIA)

= V ar (U) + E2 (U)− E2 (UIA)

≤ V ar (U) + E2 (U)

This proves (i).

Cov (UIA, V IB) = E (UV IAIB)− E (UIA)E (V IB)

≤ E (UV )− E (UIA)E (V IB)− E (U)E (V ) + E (U)E (V )

= Cov (U, V ) + E (U)E (V )− E (UIA)E (V IB)

≤ Cov (U, V ) + E (U)E (V ) ≤ |Cov (U, V )|+ E (U)E (V ) .
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Also,

Cov (UIA, V IB) = E (UV IAIB)− E (UIA)E (V IB) ≥ −E (UIA)E (V IB)

≥ −E (U)E (V )− |Cov (U, V )| ,

proving (ii).

Now, we define

µw,d,k (h,s) =
K∑

d1=1

∫
1

h
w

(
s− s1

h

)
I (d1 = d) f (s1, d1) ds1,

=

∫
1

h
w

(
s− s1

h

)
f (s1, d) ds1

µw =

∫
w (s) ds

and

σ2
w,d,k (h, s) =

K∑
d=1

∫ (
1

h
w

(
s− s1

h

)
I (d1 = d)

)2

fk (s1, d) ds1 − µ2
w,d,k (h,s)

=

∫ (
1

h
w

(
s− s1

h

))2

fk (s1, d) ds1 − µ2
w,d,k (h,s)

σ2
w =

∫
w2 (s1) ds1.

It can be verified that

lim
h↘0

µw,d0,k (h, s0) = fk (s0, d0)µw (5.8)

and

lim
h↘0

hσ2
w,d0,k

(h, s0) = fk (s0, d0)σ2
w. (5.9)

Straight forward calculations yield the following result.

Lemma 4. For J, J ′ ∈ J , let A (J, J ′) = {1 ≤ k ≤ K : jk = j′k}, and B (J, J ′) =

{1, . . . , K} \ A (J, J ′). Then, for J, J ′ ∈ J , we have

E (w̃J (s) η̃J (d)) =
K∏
k=1

µw,d,k (hk, s) (5.10)
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Cov (w̃J (s) η̃J (d) , w̃J ′ (s) η̃J ′ (d)) =
∏

k∈A(J,J ′)

σ2
w,d,k (hk, s)

∏
k∈B(J,J ′)

µ2
w,d,k (hk, s)

(5.11)

Now we prove Lemma 2.

Proof. First we analyze the numerator pf p̃i. It can be shown that

E

(
I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d)

)
= pi

K∏
k=1

fk (s, d) +Op (max {hk}) . (5.12)

The proof of this result is a standard procedure for kernel estimation of smooth

functions and is omitted here. Next, consider the variance.

V ar

(∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d)

)

=
∑
J∈J

∑
J ′∈J

Cov
(
I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d) ,

I

[
Yij′i > max

k 6=i

{
Ykj′k

}]
w̃J ′ (s) η̃J ′ (d)

)
=

∑
J,J ′∈J ,A(J,J ′)6=∅

Cov
(
I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d) ,

I

[
Yij′i > max

k 6=i

{
Ykj′k

}]
w̃J ′ (s) η̃J ′ (d)

)
≤

∑
J,J ′∈J ,A(J,J ′)6=∅

∣∣∣Cov(I[Yiji > max
k 6=i
{Ykjk}

]
w̃J (s) η̃J (d) ,

I

[
Yij′i > max

k 6=i

{
Ykj′k

}]
w̃J ′ (s) η̃J ′ (d)

)∣∣∣
≤

∑
J,J ′∈J ,A(J,J ′) 6=∅

(
|Cov (w̃J (s) , w̃J ′ (s))|+ E2 (w̃J (s))

)
(by Lemma 3)

≤
∑

J,J ′∈J ,A(J,J ′)6=∅

( ∏
k∈A(J,J ′)

σ2
w,d,k (hk, s)

∏
k∈B(J,J ′)

µ2
w,d,k (hk, s) +

K∏
k=1

µ2
w,d,k (hk, s)

)
Thus, by 5.10 and 5.11, for large N ,

V ar

(∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d) .

)
≤

∑
J,J ′∈J ,A(J,J ′)6=∅

c1

∏
k∈A(J,J ′)

1

hk
,

(5.13)
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where c1 is a value that is not dependent on N . The right-hand side of Equation

5.13 is the sum of
∏
nk (
∏
nk −

∏
(nk − 1)) terms. The number of terms for which

‖A (J, J ′)‖ = r is of order O
(
N rN2(K−r)). These terms are of the form c1 divided

by the product of r of the hk’s, and thus, the sum of these terms is of order o
(
N2K

)
.

Therefore we conclude,

V ar

(∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d) .

)
= o

(
N2K

)
.

Combining ?? and ?? we have that

1∏
nk

∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d)

P→ pi

K∏
k=1

f (s, d) . (5.14)

Following a similar procedure, we can show that

1∏
nk

∑
J∈J

w̃J (s) η̃J (d)
P→

K∏
k=1

f (s, d) . (5.15)

Combining 5.14 and 5.15 we have the desired result.

Remark 2. From the proof of Lemma 1 it can be seen that, to achieve optimal

rate of convergence for variances of both the numerator and denominator of the

right-hand side of 5.7, the bandwidth hk need to be of order N−1/5 for k = 1, . . . , K.

We will introduce some additional notation before we prove Theorem 1.

Define

F
(n)
i (s, d) =

1

ni

ni∑
j=1

I
(
Ŝ (Xij) ≤ s, δ̂ (Xij) = d

)
and

F̃
(n)
i (s, d) =

1

ni

ni∑
j=1

I (S (Xij) ≤ s, δ (Xij) = d) .

Furthermore, let y = (y1, . . . , yK)′, s = (s1, . . . , sK)′, d = (d1, . . . , dK)′, F (n) (s,d) =

F
(n)
1 × . . .×F (n)

K , F̃ (n) (s,d) = F̃
(n)
1 × . . .× F̃ (n)

K , and finally, let F = F ×F2× . . .×

FK . We need the following assumption that is a very reasonable assumption from

empirical distribution results.
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Assumption 6.
∥∥∥F̃i − Fi∥∥∥

∞
= op

(
N−1/2 log (N)

)
.

Proof. Proof of Theorem 1

Let v (s) =
∏K

k=1
1
hk
w
(
si−s0
hk

)
I (sd0 > maxk 6=d0 sk). By assumption 2, we

have that v (s) is Riemann-integrable. Let Si(j) denote the jth largest of S (Xi1) , . . . ,

S (Xini). Similarly we can define Ŝi(j). Since supx∈Sx

∣∣∣ĝi (β̂′ix)− g (βix)
∣∣∣

= Op

(
N−2/5 logN

)
, we have, supx

∣∣∣S (x)− Ŝ (x)
∣∣∣ = Op

(
N−2/5 logN

)
. Addition-

ally, maxi,j

∣∣∣Ŝ (Xij)− S (Xij)
∣∣∣ = Op

(
N−2/5 logN

)
. After some tedious calculations

we can deduce that the above also implies maxi,j

∣∣∣Ŝi(j) − Si(j)∣∣∣ = Op

(
N−2/5 logN

)
.

Combine this with 6, and the fact that d̂0 → d0 (by the fact that s0 is positive and

the second part of Assumption 5), we can find sets AN ⊂ Ω and positive numbers

aN ∝ N−2/5 logN such that for ω ∈ AN , maxi,j

∣∣∣Ŝi(j) − Si(j)∣∣∣+∥∥∥F̃ (n) − F (n)
∥∥∥
∞
≤ aN

and d̂0 = d0. Define qij, i = 1, . . . , K; j = 1, . . . , ni to be values such that

F (qij, d) = j
niF (∞,d)+1

. With condition 1, we can find bN ∝ N−1/2 logN such that

maxi,j
∣∣qij − Si(j)∣∣ ≤ bN if qij ∈ (s0 − d1, s0 + d1), a neighborhood of s0. Thus, by

properly redefining aN ∝ N−2/5, we can assume when ω ∈ AN , maxi,j

∣∣∣qij − Ŝi(j)∣∣∣ ≤
aN . By condition 2, without loss of generality we can assume that w

(
s−s0
hk

)
= 0 for

s outside (s0 − d1, s0 + d1). Let c1, . . . , cm be such that ci−ci−1 = 4bN , and the sup-

port of w is within

(
c1−s0+2bN

h
(2)
k

, cm−s0−2bN

h
(2)
k

)
. Define c′i = ci+ci+1

2
for i = 1, . . . ,m− 1.

For k = 0, . . . , 2K − 1, let Ik be collection of K-dimensional intervals of the form[
c∗i1 − c

∗
i1−1

]
× . . .×

[
c∗iK − c

∗
iK−1

]
, where c∗ij is either cij or c′ij depending the whether

the jth position of the k when written as a binary number is 0 or 1. For I ∈ Ik, let

v̄I,h
(
vI,h
)

be the supremum (infimum) of v (s) over s ∈ I. For J = (j1, . . . , jK) ∈ J ,

let I
(k)
J denote the I in Ik such that s = (q1j1 , . . . , qKjK ) ∈ I. By condition 2, we
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have

1

n1 . . . nK

∑
J∈J

(
v̄
I
(k)
J ,h
− v

I
(k)
J ,h

)
≤ 1

n1 . . . nK

K∏
k=1

d4bNnk ‖f‖∞e
∑
I∈Ik

(
v̄I,h − vI,h

)
= O

(
(4bN)K

∑
I∈Ik

(
v̄I,h − vI,h

))
→ 0

for k = 0, . . . , 2K − 1. Note that the first inequality in the above expression is

due to the fact that the number of qij’s that falls into [ck, ck+1] (
[
c′k, c

′
k+1

]
) is less

than d4bNni ‖f‖∞e. When ω ∈ AN , for J = (j1, . . . , jK) ∈ J , we have that

S = (S (X1j1) , . . . , S (XKjK )) must be in one of the I
(k)
J ’s. Thus,

1

n1 . . . nK

(∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
w̃J (s) η̃J (d)

−
∑
J∈J

I

[
Yiji > max

k 6=i
{Ykjk}

]
ŵJ (s) η̂J (d)

)

≤ 1

n1 . . . nK

2K−1∑
k=0

∑
J∈Jk

[(
v̄IJ ,h − vIJ ,h

)]
→ 0

Similarly, we can show that when ω ∈ AN ,

1

n1 . . . nK

(∑
J∈J

w̃J (s) η̃J (d)−
∑
J∈J

ŵJ (ŝ) η̂J (d)

)
→ 0

These combined with 5.14 and 5.15 give us the desired result.
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