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ABSTRACT

A MATHEMATICAL PROGRAMMING APPROACH FOR DISPATCHING AND

RELOCATING EMS VEHICLES

Farshad Majzoubi

March 21, 2014

We consider the problem of dispatching and relocating EMS vehicles during a

pandemic outbreak. In such a situation, the demand for EMS vehicles increases and

in order to better utilize their capacity, the idea of serving more than one patient by

an ambulance is introduced. Vehicles transporting high priority patients cannot

serve any other patient, but those transporting low priority patients are allowed to

be rerouted to serve a second patient. We have considered three separate problems

in this research. In the first problem, an integrated model is developed for

dispatching and relocating EMS vehicles, where dispatchers determine hospitals for

patients. The second problem considers just relocating EMS vehicles. In the third

problem only dispatching decisions are made where hospitals are pre-specified by

patients not by dispatchers.

In the first problem, the objective is to minimize the total travel distance and

the penalty of not meeting specific constraints. In order to better utilize the

capacity of ambulances, we allow each ambulance to serve a maximum of two

patients. Considerations are given to features such as meeting the required response

time window for patients, batching non-critical and critical patients when necessary,

iv



ensuring balanced coverage for all census tracts. Three models are proposed- two of

them are linear integer programing and the other is a non-linear programing model.

Numerical examples show that the linear models can be solved using

general-purpose solvers efficiently for large sized problems, and thus it is suitable for

use in a real time decision support system.

In the second problem, the goal is to maximize the coverage for serving future

calls in a required time window. A linear programming model is developed for this

problem. The objective is to maximize the number of census tracts with single and

double coverage, (each with their own weights) and to minimize the travel time for

relocating. In order to tune the parameters in this objective function, an event

based simulation model is developed to study the movement of vehicles and

incidents (911 calls) through a city. The results show that the proposed model can

effectively increase the system-wide coverage by EMS vehicles even if we assume

that vehicles cannot respond to any incidents while traveling between stations. In

addition, the results suggest that the proposed model outperforms one of the

well-known real time repositioning models (Gendreau et al. (2001)).

In the third problem, the objective is to minimize the total travel distance

experienced by all EMS vehicles, while satisfying two types of time window

constraints. One requires the EMS vehicle to arrive at the patients’ scene within a

pre-specified time, the other requires the EMS vehicle to transport patients to their

hospitals within a given time window. Similar to the first problem, each vehicle can

transport maximum two patients. A mixed integer program (MIP) model is

developed for the EMS dispatching problem. The problem is proved to be NP-hard,

and a simulated annealing (SA) method is developed for its efficient solution.

Additionally, to obtain lower bound, a column generation method is developed. Our

numerical results show that the proposed SA provides high quality solutions whose

objective is close to the obtained lower bound with much less CPU time. Thus, the

SA method is suitable for implementation in a real-time decision support system.

v



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii
ABSTRACT iv
LIST OF TABLES ix
LIST OF FIGURES x

CHAPTER

I INTRODUCTION 1

A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2

C Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 4

D Feasibility of Serving More than One Patient by an Ambulance 4

E Benefit of Applying Proposed Approach . . . . . . . . . . . . 5

F Dissertation Organization . . . . . . . . . . . . . . . . . . . 7

II LITERATURE REVIEW 9

A Coverage Problem . . . . . . . . . . . . . . . . . . . . . . . 9

B Dispatching Problem and Integrated Approach . . . . . . . . 19

C Chapter Discussion . . . . . . . . . . . . . . . . . . . . . . 28

III AN INTEGRATED MODEL FOR DISPATCHING, HOSPI-

TAL SELECTION AND RELOCATION OF EMS VEHICLES 30

A Problem Statement . . . . . . . . . . . . . . . . . . . . . . 30

B A Nonlinear Integer Program Formulation . . . . . . . . . . 32

C A Linear Integer Program Formulation . . . . . . . . . . . . . 37

D An Efficient Approximation Method . . . . . . . . . . . . . . 39

vi



E Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 40

F Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV AN OPTIMIZATION AND SIMULATION MODEL FOR

THE EMS VEHICLE COVERAGE PROBLEM 55

A Problem Definition and Mathematical Model for the Real Time

Coverage Problem . . . . . . . . . . . . . . . . . . . . . . . 55

B The Discrete Event Simulation Model . . . . . . . . . . . . . 57

C Simulation Model Results . . . . . . . . . . . . . . . . . . . 58

D Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V DISPATCHING EMS VEHICLES TO PATIENTS AND THEIR

CHOICE OF HOSPITALS 62

A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Problem Description and Mathematical Formulation . . . . . . 63

C Mathematical Formulation . . . . . . . . . . . . . . . . . . . 67

D Obtaining Lower Bound . . . . . . . . . . . . . . . . . . . . 71

1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 71

2 A Labeling Method for Solving the Pricing Problem . . 73

E Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

VI HEURISTIC ALGORITHMS FOR DISPATCHING AND RE-

LOCATING EMS VEHICLES 77

A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Heuristics for The EMS Vehicle Coverage Problem . . . . . . . 77

1 Obtaining an Initial Solution . . . . . . . . . . . . . . 77

2 A Simulated Annealing Algorithm . . . . . . . . . . . . 78

3 Numerical Results . . . . . . . . . . . . . . . . . . . 79

C Heuristics for Dispatching EMS Vehicles to Patients and Their

Choice of Hospitals . . . . . . . . . . . . . . . . . . . . . . 79

vii



1 A Simulated Annealing Algorithm . . . . . . . . . . . . 79

2 Numerical Results . . . . . . . . . . . . . . . . . . . . 85

D Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VII THE EMS DISPATCHER APPLICATION IN A REAL

TIME DECISION SUPPORT SYSTEM 92

A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Application . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VIII CONCLUSIONS AND FUTURE RESEARCH 97

REFERENCES 100

CURRICULUM VITAE 110

viii



LIST OF TABLES

TABLE Page

III.1 Vehicle Information . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.2 Patient Information . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.3 Hospitals and EMS Stations Information in Example 1 . . . . . . . 42

III.4 The value of coefficients in the objective function in Example 1. . . . 42

III.5 Average Waiting Time for Patients . . . . . . . . . . . . . . . . . 46

III.6 Computational Time (in CPU seconds) . . . . . . . . . . . . . . . 47

III.7 Computational Time (in CPU seconds) . . . . . . . . . . . . . . . 47

III.8 Computational Time (in CPU seconds) . . . . . . . . . . . . . . . 52

IV.1 Comparison of results of optimization model for different Cs given

threshold=0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IV.2 Results of best travel time penalty, C, found . . . . . . . . . . . . 60

IV.3 Comparison of results of the optimization model and Gendreau et

al.(2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

VI.1 Comparison of results of optimization model with simulated annealing

for Coverage Problem . . . . . . . . . . . . . . . . . . . . . . . . 80

VI.3 Comparison between the SA and the MIP model by CPLEX . . . . 89

VI.4 Comparison between the SA and the lower bound from column generation 90

VI.5 Comparison between the Pure SA and Hybrid SA . . . . . . . . . . 91

ix



LIST OF FIGURES

FIGURE Page

I.1 Decision support system for EMS dispatcher . . . . . . . . . . . . 4

I.2 Benefit of the serving more than one patient by one vehicle . . . . . 6

I.3 Benefit of re-routing . . . . . . . . . . . . . . . . . . . . . . . . 7

III.1 Examples of inefficient rerouting(upper) and ”efficient” rerouting(lower)

41

III.2 Illustration of Example 1 . . . . . . . . . . . . . . . . . . . . . . 41

III.3 Computational Time vs. the Number of Vehicles Requested at the

Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.4 Computational Time vs. The Number of Vehicles Belonging to V H
2 49

VII.1User interface for ambulance dispatch assistant . . . . . . . . . . . 93

VII.2Current unserved patients . . . . . . . . . . . . . . . . . . . . . . 93

VII.3Assignment of EMS vehicles in real-time . . . . . . . . . . . . . . 94

VII.4After Assignment of EMS vehicles . . . . . . . . . . . . . . . . . 95

x



CHAPTER I

INTRODUCTION

A Introduction

Emergency Medical Services (EMS) is a vital component of the infrastructure

that provides public safety in a city. EMS personnel serve nearly 20 million patients

a year in the United States (Armstrong et al., 2006). The primary goal of EMS is to

use scarce resources, physical and human, to provide critical emergency services

effectively and efficiently. Of the total $5 billion EMS expenditure, over $2.5 billion

is for transportation of patients in the medical program (Sayre et al., 2001). This

shows that one of the most important issues in EMS is the management of the

vehicles. These resources need to be used efficiently to provide the best possible

response in an emergency situation. This has therefore attracted the attention of

operations researchers to develop models to optimize the usage of EMS vehicles.

Much research has taken place since the 1960s on EMS vehicle location and

deployment.

We briefly list the types of decisions made by EMS management. Upon

receiving a call at the emergency call center, the following steps are undertaken.

1. The severity of call is determined and a priority is given to the call.

2. A decision is made about specific vehicle(s) that must be dispatched.

3. Vehicles are sent to the emergency scene.

4. Vehicles arrive at the scene and provide services.

5. After completion of service and/or transport to the hospital the vehicle

becomes idle and proceeds to a predetermined location to wait for the next call.
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Basically, there are three levels of decision making in management of EMS

systems.

Strategic decisions are concerned with choosing location of fixed EMS

stations and purchasing equipment and facilities.

Tactical decisions are about specifying the number of vehicles needed in a

particular shift and scheduling personnel.

Operational decisions involve determining the specific set of vehicles to be

dispatched, the set of locations they should be sent to after service and also

procedures by paramedical staff

B Problem Statement

This study considers the operation of EMS vehicles during a medical surge

when the demand for EMS vehicles increases significantly and thus many available

vehicles become busy. The national EMS Research Agenda (Sayre et al., 2001) has

reported that a majority of the patients being treated by EMS do not have a major

injury. Hence, a large portion of EMS budget is assigned to serving patients with

low priorities who do not have life threatening conditions. We can further increase

the system capacity, by allowing vehicles to serve more than one patient. Vehicles

transporting low priority patients can serve another patient and this yields better

usage of resources especially when a large portion of the vehicles are busy.

To our knowledge, this idea has not been considered in the past and this

study models the service of two patients by an ambulance. In our discussions with

EMS personnel, such a strategy is clearly being used during normal and surge

situation.

The primary goal of this research is to develop models to dispatch EMS

vehicles in a real time environment. The aim is to, first, assign EMS vehicles to

patients, then assign them to hospitals (if required) and finally determine the base

EMS station for each vehicle. We consider three different problems for this purpose.

2



In the first problem (Chapter III), these three different decisions are

integrated in one mathematical programming model. This model uses real time

information of EMS vehicles for their routing. The model is run whenever a state

change occurs. A state changes whenever any of the following events occur:

• A vehicle becomes idle.

• A patient call is received at the call center.

• A vehicle must be dispatched to a hospital.

In the second problem (Chapter IV), we only consider idle vehicles and

develop a model to efficiently allocate these vehicles in a real time environment.

When coverage of the system drops below a given threshold, the optimization is run

and it gives recommendation for relocating vehicles.

In the third problem (Chapter V), we only consider the dispatching problem

to serve patients who have called and requested service from 911. Here, it is

assumed the hospital of each patient is given prior to passing the call to the

dispatcher. The hospitals can be selected by an external model such as the one in

Sun et al. (2013) or patients choice. Here, the problem is to dispatch EMS vehicles

to patients while ensuring specified time windows for serving patients are satisfied.

Similar to Chapter III, serving more than one patient by a vehicle is allowed.

Two types of data are required for our model: static data and real time data.

The static data must be known before running the model for the first time. This

data are related to the facilities of EMS stations, geographical location of stations,

and number and type of EMS vehicles. The real time data must be provided

instantly at the time a decision must be made. This data includes the current

location of EMS vehicles, vehicle state, and patient information. This data must be

integrated with a routing tool and an optimization model to provide a decision

support system for the dispatcher. Figure I.1 shows this procedure schematically.

3



Figure I.1. Decision support system for EMS dispatcher

C Contribution

The contribution of this dissertation is as follows.

1. We develop a model for dispatching EMS vehicles that transport more

than one patient.

2. We prove the EMS vehicle transporting two patients problem is NP-hard.

3. We develop a column-generation based procedure to compute the lower

bound for the EMS dispatching problem with two patients.

4. We develop a simulated annealing meta-heuristic for solving the EMS

dispatching problem efficiently.

5. We develop a simulation-optimization framework for relocating EMS

vehicles in real time.

6. We develop a decision support systems employing advanced heuristics

methods for possible adoption by EMS industry.

D Feasibility of Serving More than One Patient by an Ambulance

In this section, we discuss the practicality of serving more than one patient

by an ambulance. Many counties such as Louisville KY have EMS vehicles that can
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accommodate two patients, one on the bench and another on the stretcher. Thus,

what we are proposing can actually be implemented in many areas of the country.

It should be noted, however, that our model does not force all of the vehicles to

serve more than one patient. If an ambulance is unable to transport more than one

patient, it can be constrained to serve only one patient. The proposed model thus

gives some flexibility to the dispatcher in reducing the service times by permitting

ambulances with sufficient capacity and resources to transport more than one

patient as required. If the condition of a patient deteriorates during transit, this can

be considered to be a new event wherein the patient is re-classified as a high priority

patient thus not allowing any more patients to be assigned to that ambulance.

Additionally, our model is customized for situations (e.g., major influenza

outbreak) when the demand for vehicles is high. In such a situation, equipping

vehicles with more than one bed, ventilator, isolation, and other devices can be

more cost effective than other options. This leads to more efficient usage of vehicle

capacity. In the special case of pandemic flu, it would be helpful to design and equip

vehicles with isolation areas and facilities to prevent transfer of virus from one

patient to another. In addition, transporting more than one patient in an

ambulance has been suggested as one way to provide better response during medical

emergencies. Relevant discussions include: the Emergency Medical Services and

Non-Emergent (Medical) Transport Organizations Pandemic Influenza Planning

Checklist (2006), Recommended Actions for EMS Providers to Prepare For and

Respond to Pandemic(2009) and Russo (2006), for example.

E Benefit of Applying Proposed Approach

To clarify how the proposed idea can improve a real system’s performance,

two examples are illustrated schematically. In these examples, we compare the

solutions of the proposed method with a simple greedy heuristic where the closest

vehicle is always dispatched. Figure I.2 shows that applying the proposed idea of

5



transporting two patients in one EMS vehicle can decrease the response time,

increase the coverage area and reach a patient in the desired time window. Figure

I.2 illustrates this example.

Figure I.2. Benefit of the serving more than one patient by one vehicle

In Figure I.2, if vehicle 3 is dispatched to serve patient 2 (suggested by the

simple greedy algorithm) the shaded area in Figure I.2 will be left uncovered for

some period of time and this decreases the coverage in the virtual city significantly.

Additionally, vehicle 3 is not able to serve patient 2 in a required time window

which is unsatisfactory for patient 1. While, if vehicle 1 is rerouted to patient 2, this

patient can be reached in a required time window and also the shaded area in figure

will be covered by vehicle 3.

In another example, shown in Figure I.3 the proposed idea of transporting

two patients in one EMS vehicle proposes that vehicle 1 be rerouted to serve patient

2 and this causes both patients 2 to be served in her required time window, while in

the solution of the greedy model which always assign the closest idle vehicle to the

patient, patient 2 cannot be served in her required time window (8 minutes). This

shows the advantage of using the proposed method for the patients. Additionally,

travel time in the solution obtained by the proposed model is less than that in the

solution obtained by the method which always assigns the closest idle vehicle. This

6



shows that patients, on average, can be serviced earlier when our proposed method

is used by the dispatcher.

Figure I.3. Benefit of re-routing

F Dissertation Organization

Below is the organization of the reminder of this dissertation:

Chapter II reviews previous studies that have applied operations research to

EMS management. This chapter includes the literature related to the coverage and

dispatching models for EMS vehicles. A brief review of the vehicle routing problem

(VRP) is also presented.

In Chapter III, three optimization models are presented. These models

consider an integrated approach for ambulance assignment when the hospital can be

chosen by the dispatcher. They are customized for use during a pandemic outbreak.

Additionally, experimental analysis of the proposed models is also presented. The

analysis focuses on two aspects of the models: logic and performance.

Chapter IV considers the coverage problem independently. In this chapter,

first an optimization model for the real time relocation of vehicles is proposed. After

that, an event based simulation model is used to tune the parameters of the

optimization model and evaluate its performance. The results of the simulation

7



show that applying the proposed optimization model will result in an increase in

percentage of calls serviced in desired time window.

Chapter V considers the dispatching problem when patient hospitals are

pre-determined. The problem is formulated as a vehicle routing problem. The

problem is also proved to be NP-hard. Additionally an exact algorithm for

obtaining lower bound using column generation method is developed.

In Chapter VI, two heuristic algorithms are presented for solving models

presented in Chapters IV and V. Both algorithms are based on simulated annealing.

Additionally, for dispatching problem (in Chapter V) a nested algorithm on top of

simulated annealing is applied. The results of this algorithm is compared to the

column generation method presented in Chapter V and it is shown that the

heuristic provides high quality solutions.

Chapter VII presents a real time decision support system developed based on

studies in the previous three chapters. The tools and the specialized algorithms

within the decision support are described in this chapter.

Finally, Chapter VIII summarizes the dissertation and points future research.

8



CHAPTER II

LITERATURE REVIEW

This chapter reviews past studies related to the ambulance assignment

problem. Numerous papers on this topic are available. An overview on these papers

can be found in Owen and Daskin (1998), Brotcorne et al. (2003) and Goldberg

(2004). The ambulance assignment problem can be categorized into two main

sub-problems: coverage problem and dispatching problem. Some papers which have

attempted to integrate the two sub-problems are also reviewed in this chapter, along

with papers on the vehicle routing problem.

A Coverage Problem

The aim of the coverage problem is to:

1. Determine the location of ambulance base stations.

2. Determine the number of vehicles and staff needed for each time period.

3. Redeploy vehicles to base-stations under different system states.

We first present the basic models. Then, probabilistic models are reviewed,

followed by studies that incorporate multiple objectives, GIS approaches and

heuristic approaches. Finally, papers which consider dynamic repositioning of

ambulances are reviewed.

Set Covering Location Problem (SCLP)

Hakimi (1965) is among the first researchers to consider the problem of

coverage in a network. Toregas et al. (1971) consider a set covering problem to

9



determine the location of emergency facilities. This problem is known as the Set

Covering Location Problem (SCLP). The formulation of this problem is as follows:

min
∑
j∈W

xj (II.1)

s.t. (II.2)∑
j∈Wi

xj ≥ 1(i ∈ V ) (II.3)

xj ∈ {0, 1} (II.4)

In this model, the set of demands is denoted by V and the set of potential

EMS facility locations is denoted by W , Wi is the coverage matrix, xj is a decision

variable and equal to 1 if facility is located at node j; xj is equal to 0 otherwise.

The objective function in equation (II-1) minimizes the total number of facilities

used. The objective function has equal weights for the location of each facility. The

constraints (II-2) ensure that each demand node is covered. The SCLP model does

not consider some aspects of real life problems. First, if an ambulance is dispatched

the area which it previously covered may not be covered for some time period. Also,

the model assumes that a fixed number of vehicles are always available which may

not be true in real situations. However, this model provides a good lower bound for

the number of EMS vehicles needed for full coverage.

Maximal Covering Location Problem (MCLP)

Church and ReVelle (1974) consider a location problem and they extend the

SCLP to maximize the demand coverage. The formulation is as follows

10



max
∑
i∈V

diyi (II.5)

s.t. (II.6)∑
j∈Wi

xj ≥ yi(i ∈ V ) (II.7)

∑
j∈W

xj ≤ N (II.8)

xj ∈ {0, 1}∀j ∈W (II.9)

yi ∈ {0, 1}∀i ∈ V (II.10)

In this model, yi is a decision variable and is equal to 1 if node i is covered; is equal

to 0 otherwise. Additionally, di denotes the demand of vertex i and N is the

number of available vehicles. The remaining parameters are the same as in the

SCLP model.

In this model, the objective function maximizes the covered expected

demand. Constraints (II-4) impose yi to be equal to 1, if an ambulance is located

within the desired distance of node i. Constraints (II-5) restrict the total number of

facilities to not exceed N .

SCLP and MCLP are complementary of each other. SCLP can be used for

strategic and tactical planning to determine the number of vehicles and home

stations needed while MCLP is an operational model to determine vehicle allocation

to home stations.

Back Up Coverage Problem

Church and Waver (1985) develop the ”vector assignment p-median model”.

In this work, it is assumed that x percent of demands points will be covered by the

closest and y percent by the 2nd closest vehicle. Repede and Bernardo (1994)

suggest repositioning vehicles based on the history of calls and demands during a

11



week. Gendreau et al. (1997) propose a model to maximize the double coverage for

each node. In this work, a specific percentage of nodes need to be covered at least

by one ambulance in a radius r1 and all of the nodes need to be covered in radius

r2 (r2 > r1), while the objective function is to maximize the nodes covered by two

or more vehicles in radius r1.

Probabilistic Models

Daskin (1983) is the first to consider the unavailability of a vehicle. He

develops an expected covering location model, taking into consideration that a

vehicle will be unable to respond to a demand. His model maximizes the number of

demands that are covered. He also proposes a way to calculate the probability of

availability of vehicle when it is idle. He assumes that vehicles operate

independently in the model. This model is applied to a real situation in Austin, TX.

In another study, Current et al. (1997) consider uncertainty in the number of

vehicles. They consider the minimization of expected opportunity loss (EOL), and

the minimization of maximum regret in their model.

Maximal Expected Coverage Location Model (MEXCLP)

Daskin (1983) also designs an integer programming model for the

maximization of covered nodes. This model considers the probability of

unavailability of vehicles and is written as follows:
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max
∑
i∈V

N∑
k=1

(1− p)pk−1diyik (II.11)

s.t. (II.12)∑
j∈Wi

xj ≥
N∑

k=1

yik (i ∈ V ) (II.13)

∑
j∈W

xj ≤ N (II.14)

xj ∈ {0, 1} ∀j ∈W (II.15)

yik ∈ {0, 1} ∀i ∈ V&k = 1.., N (II.16)

In this model, p is the probability that an ambulance is busy, N is the maximum

number of facilities, di is the demand in node i and xj is equal to 1 if a facility is

located at station j; 0 otherwise, yik is equal to 1 if node i is covered by at least k

facilities; is equal to 0 otherwise. The remaining parameters are the same as in the

SCLP model.

The objective function in Equation (II-6) maximizes the demand coverage. If

a node is covered by k − 1 vehicles, the expected covered demand is equal to

di(1− pk−1). If the kth vehicle is added to cover that node, the expected covered

demand is incremented by this value di(1− pk)− di(1− pk−1) = (1− p)pk−1.

We can observe this value as the coefficient of yik in the objective function.

Constraints (II-7) and (II-8) are the same as the constraints in the MCLP model.

This model has been applied to some case studies. Fujiwara et al. (1987) conducts a

case study for Bangkok, Thailand. In another study, Repede and Bernardo (1994)

use Louisville, Kentucky data and make an extension of MEXCLP named

TIMEXCLP. In this model, the variation of travel time is considered. Repede and

Bernardo (1994) use simulation to assess their proposed approach and show that by

applying this method, the response time can be decreased by 36% and coverage can

be increased by 13%. ReVelle and Hogan (1989) construct a 0-1 integer
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programming model similar to MCLP and calculate the probability of a vehicle

being busy. Each node must be covered by at least b vehicles. This formulation is

named Maximum Availability Location Problem (MALP I and MALP II). In

MALP I, the availability percentage for all of vehicles is fixed, but in MALP II, the

busy fraction varies for each vehicle. However, knowing the exact probability of

being busy before allocating vehicles is unrealistic because this depends upon how

vehicles are deployed to home stations.

Techniques such as hypercube model and simulation model are used to obtain

the busy fraction.

Hypercube Models

Larson (1974) is the first to consider a hypercube algorithm in ambulance

location. This method is used for evaluating the performance of the suggested

allocation decisions. The model assumes calls are received based on Poisson process

and the service time is exponentially distributed. These assumptions are used to

calculate the probability of a vehicle being busy. Each patient has a priority list of

locations and the first vehicle in this list which is idle will serve that demand. For

simplifying the hypercube calculation, Larson (1975) proposes an approximate

hypercube model.

Chelst and Jarvis (1979) develop a hypercube queuing model to estimate the

probability of traveling times for emergency service systems. The hypercube models

consider an EMS as a multi-server queuing system. Chelst and Jarvis (1979)

calculate the travel time from each atom (the smallest unit of separation in a city)

to another atom. They also consider the workload of each atom for each server and

use the workload to predict the travel time.

Batta et al. (1989) implement a two-step procedure that uses Larsons

hypercube algorithm. In their model, three assumptions of the TIMEXCLP are

relaxed: servers operate independently, servers have the same busy probabilities,
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and server busy probabilities are invariant with respect to their locations. They

conclude that MEXCLP can overestimate or underestimate coverage up to 25%.

This accuracy ly depends on the size of coverage matrix. If the matrix becomes

larger, the problem becomes harder to solve. Problem complexity justifies the use of

metaheuristics for solving coverage problems.

Queuing Models

In MALP (ReVelle and Hogan, 1989), it is assumed that server busy fractions

are independent which this is not the case in Marianov and ReVelles (1996) work.

In this work, Marianov and ReVelle (1996) develop a maximal availability location

problem which uses queuing theory. In Marianov and ReVelle (1996), the model is

connected to the MALP model for calculating the minimum number of servers

required for an EMS station for a period of time.

Marianov and Serra (2001 and 2002) extend the set covering model to ensure

that each vehicle is available with probability of p. In this study, queuing theory is

applied and vehicles can be dependent on each other. They formulate a hierarchical

queuing location set covering (HiQ-LSCP) to have complete coverage of the

population while minimizing the number of servers. In HiQ-LSC, the objective is to

minimize the cost of locating servers such that all demands are served from a

specific distance of its origin. Each customer in this model can join the queue of

servers when there are at most b other customers standing in the queue with

probability of at least . In another model, they try to maximize the population

covered, but serving entire population is not mandatory (HiQ- MCL). They also

formulate the problem when a demand to a low level server can also be assigned to

a er level server.
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Multi Objective Models

Charnes and Storbeck (1980) develop a goal programming model for locating

EMS vehicles to maximize coverage. Back up coordination is assured. They use

multiple levels of emergency health service for basic life support and advanced life

support facilities.

Badri et al. (1998) develop a multiple criteria model to locate fire stations.

The criteria include minimizing fixed costs, maximizing service to those areas that

have most demands, minimizing average and maximum distance travelled from

station to accident sites, minimizing average and maximum time traveled, attaining

targeted number of fire stations, minimizing service overlap, attaining favored area

status for locating fire stations, and minimizing locations where water is not

abundant.

GIS Approach

Some researchers have considered deployment of emergency vehicles from a

GIS perspective. An overview on works involving facility location and GIS science

can be found in Church (2002). Hillsman and Rhoda (1979) apply a GIS based

method to locate EMS stations. Their focus is mainly zone structures with demand

aggregated at zone levels. The most ideal case is to have as small unit as possible,

but this increases the computational time significantly. Therefore, one node should

represent an area for demand through a city. They specify three types of errors in

structuring zones.

Type A errors: errors which measure the distance from the center of a cluster

while the actual location is different from the location of aggregated calls.

Type B errors: errors caused by not knowing the location of calls Type C

errors: errors in dispatching due to not knowing correct distance from bases to calls

in aggregated zones.

Current and Schilling (1987) show how errors of types A and B can be
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eliminated by using GIS approach. Hodgson and Neuman (1993) show how to

eliminate errors of type C with GIS.

Heuristics Methods

Daskin (1983) develops a heuristic method for solving his own model

(MEXCLP). This algorithm finds optimal or suboptimal solutions for all values of p

(busy fraction) between 0 and 1.The algorithm guarantees optimality when p closes

to 1, but when p closes to 0, optimality is not guaranteed. In this algorithm, when

values of p close to 1, the optimal solution puts all facilities at the node with the est

demand. Then, a search is conducted by performing single node substitutions to

find the non-dominated solutions for different values of p.

ReVelle (1993) shows that the location problem can be solved by using

general optimization software tools for a medium size of problem (100 demand

points and 50 relocation sites). Gendreau et al. (1997) develop a tabu search

heuristic for the coverage problem with the consideration of back up assurance.

Aytug and Saydam (2002) develop four approaches for MEXCLP: Integer

Programming, Daskins heuristic, a genetic algorithm and a genetic algorithm with

local search. They conclude that GA which performs a random search can find a

good solution in a reasonable time, Daskins algorithm can provide better solution

but it is very time consuming and GA with local search can find high quality

solutions but requires more computational time than GA.

Galvao et al (2005) develop a simulated annealing algorithm for unifying

MCLP and MALP. They use the hypercube method for calculating the busy

probability. Rajagopalan et al. (2007) develop an ANOVA to evaluate the

performance of four met heuristics- evolutionary algorithm, tabu search, simulated

annealing, and a hybridized hill-climbing algorithm - to see which of them provide

better solutions. They conclude that EA (evolutionary algorithm) provide better

solutions compared to others.
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Dynamic Repositioning

Gendreau et al. (2001) develop a real time repositioning model using parallel

computing. Their model is as follows:

max
n∑

i=1

λix
2
i −

m∑
j=1

P∑
l=1

M t
jlyjl (II.17)

s.t. (II.18)

m∑
j=1

P∑
l=1

δijyjl ≥ 1 ∀νi ∈ V (II.19)

n∑
i=1

λix
1
i ≥ α

n∑
i=1

λi (II.20)

m∑
j=1

P∑
l=1

γijyjl ≥ x1
i + x2

i ∀νi ∈ V (II.21)

x2
i ≤ x

1
i ∀νi ∈ V (II.22)

m∑
j=1

yjl = 1l = 1, .., P (II.23)

P∑
l=1

yjl ≤ pj ∀νi ∈ V (II.24)

Where yjl is 1 if ambulance l is located at station j; 0 otherwise. x1
i is 1 if

point i is covered; 0 otherwise. x2
i is 1 if point i is covered by more than ambulance.

V is the set of demand points. nui is point i. δij = 1 if station j covers point i in

radius r1; 0 otherwise. Similarly, γij = 1 if station i covers point j in radius r2; 0

otherwise. M t
ij is the travel time depending upon time interval t. P is total

number of ambulances.

They use tabu search for determining the location of vehicles to solve this

model. In this model, frequent movement of an ambulance is discouraged. Based on

the history of movements between stations, each ambulance incurs a penalty. More

frequent movement in the previous few hours causes the penalty coefficient to
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increase. They find that applying this redeployment strategy to the city of Montreal

can pre-compute 95% of strategies successfully. Comparing their solution with

CPLEX, they find out that their heuristic has 2% deviation from the optimal

solution in the worst case. This approach is also used in Sathe and Miller (2005) for

a case study in Montreal, Canada.

Maxwell et al. (2010) use an approximate dynamic approach for

redeployment of ambulances. They also design a simulation model to evaluate the

performance of their model.

B Dispatching Problem and Integrated Approach

Dispatching vehicles is another important problem for which operations

research has been applied. The ambulance dispatching problem is a special type of

general assignment problem which is addressed by Martello et al (1987), Ross et al

(1975) and Fisher (1986).

Closest Available Vehicle

There has been a debate among researchers to see if dispatching the closest

vehicle is the most favorable in every situation. Miller (1981) concludes that always

dispatching the closest aircraft doesnt guarantee the best performance. Hogan and

ReVelle (1986) suggest the closest vehicle dispatching for high priority patients. For

low priority patients, they suggest that a vehicle should be dispatched if it can reach

the patient in the required time window and if such a dispatch has minimal

influence on the coverage. Cuninghame-Greene and Harries (1988) suggest the

closest is good if the objective is to minimize the average response time.

Disaster Situation

Another aspect of the dispatching problem pertains to the management of

fleet when there is a disaster. The aim of most papers on this topic is to serve as
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many patients as possible. It is possible that vehicles may not be able to serve all

the casualties.

Islam (1998) considers air tank redeployment for controlling fire in forests.

His model determines the number of tanks required in each day and the locations to

which they must be dispatched. Gong and Batta (2004) design a procedure when

there are too many patients requesting EMS vehicles and the number of patients

exceeds the number of vehicles. They categorize patients into three classes severe,

moderate and mild. They propose two queuing control methods: One is the server

cut off method, where they use a greedy search to determine how many vehicles to

allocate to each group of patients. The other is queue length cut off. In this

method, if the number of patients for priority 2 and 3 are fewer than specific

thresholds, vehicles only serve priority 1 patients until the number of patients in

queues 2 or 3 reaches their respective thresholds. They also define two dispatching

strategies. One is the patient initiated dispatch. Under this strategy, the number of

vehicles is more than the number of patients and an ambulance is dispatched which

can minimize the response time for the current patient and a potential future

patient. The other strategy is ambulance initiated dispatch, which is used when the

number of patients is more than the number of vehicles. In this approach when an

ambulance becomes idle, it is dispatched to serve the patient. This patient is

selected based on the scenarios defined above for putting patients on queues.

Gong and Batta (2007) consider the growth of clusters during a disaster.

They propose the relocation of ambulances in specific times. They allocate

ambulances to clusters to minimize the time of serving all casualties. The

earthquake in Northridge, LA in 1994 is considered as their case study. Gong and

Lin (2009) develop a model for dispatching vehicles in disaster situations. They use

clustering and develop a central dynamic routing based on parallel computing

technology. They also use ArcGIS and the network of Changchun city for simulating

an earthquake.
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Jotshi et al. (2009) suggest a methodology for dispatching and routing

vehicles when an earthquake has occurred and there are a large number of

casualties. Simulation is used for verifying their approach.

Integrated Approach

As mentioned, if the objective is to minimize the total driving distance,

dispatching the closest vehicle will provide the best solution, but when time window

is considered for each patient dispatching the closest vehicle may not provide the

most favorable solution. In this case, it is required to include multiple

considerations to ensure that vehicle dispatch will meet these criteria.

Weintraub et al. (1999) present a model for dispatching vehicles for electric

utility. These vehicles are similar to EMS dispatch in terms of random call arrivals

and the traffic patterns. They geographically divide the calls into clusters and

assign the vehicles to the clusters. Then, they design a heuristic tour for each

vehicle to serve demands within a cluster.

Yang et al. (2004) develop an integrated approach for the dispatch of EMS,

police and fire trucks. Their problem is an expansion of the multi-dimensional

assignment problem. It is assumed that the number of vehicles is predetermined.

This model could be used in a real time to decide the subsequent destination for

each vehicle. In this model, rerouting of vehicles is allowed if it provides

significantly reduces the performance of the entire system. The objective function

attempts to minimize the travel time, maximize reaching a patient in the specific

time window and coverage throughout the city. They also use a simulation model to

evaluate the performance of the model.

Andersson and Varbrand (2007) propose new algorithms for ambulance

dispatch and the dynamic relocation problems. Their work is similar to Weintraub

el al. (1999) and is adopted for EMS vehicles. They categorize calls into three

different categories: Priorities 1, 2 and 3. For priority 1 calls, the closest vehicle is
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dispatched. For priority 2 and 3 calls, the vehicle that can reach the call in the time

window is dispatched and its dispatch has the least effect on the coverage. In their

algorithm, reassignment of vehicles is considered.

For dynamic ambulance relocation, Andersson and Varbrand (2007) construct

a mathematical programming model whose objective is to minimize the maximum

travel time of vehicles for relocating to different EMS stations. In this model,

coverage of each region named preparedness cannot go under a specific value. They

use a tree search algorithm for solving the dynamic relocation problem. They use a

simulation model for evaluating their model.

Ibri et al. (2010) integrate dispatching and coverage problem in the same

model and use combination of ant colony and tabu search algorithms for solving the

model. They use the model proposed by Yang et al. (2004).

Recently, another study is dedicated to evacuation of hospitals when there is

an emergency. Tayfur and Taaffe (2009) consider the problem of evacuation of

hospitals. They build a mathematical model to minimize the cost of round trip of

vehicles, cost of nurses and cost of not evacuating patients in a time period. The

optimization model is modeled as mixed integer programming.

In this model it is decided how many patients to be evacuated in each stage,

how many nurses are required and how many vehicles are required, and how vehicles

should be assigned to different types of patients with their limited capacities. They

discuss that their model cannot be solved using general solver optimization model

solver in most cases, hence, they identify a lower bound model and use some

heuristic approaches for solving the model. .

Vehicle Routing Problem

One of the problems related to ambulance dispatch is the vehicle routing

problem (VRP). In ambulance dispatch, the decision maker needs to dynamically

assign the fleet to demand points - the location of patients or hospitals. This makes
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the dispatch problem similar to VRP which also assigns vehicles to demand points.

So, studying approaches applied for solving VRP can provide good insights into

solving ambulance dispatching problem. An overview on VRP models and solving

techniques can be found in Toth and Vigo (2002).

The type of VRP that is more relevant to the ambulance dispatch problem is

the one that vehicles can change their routes dynamically and each demand has a

time window. In this type of VRP, the goal is to find vehicle routes that can service

customers in the minimum amount of time. The following constraints are imposed

on this problem:

Each vehicle is required to depart and terminate at a fixed depot.

Each demand needs to be served only once.

The capacity of vehicles is not exceeded and each customers demand must

be satisfied.

Each demand has a service time window within which the service should be

provided. The time window is a soft constraint and if violated, a penalty for wait or

delay will be incurred.

Taillard et al. (1997) propose a parallel tabu search algorithm for VRP. In

this method, first a search is conducted and the x numbers of the best routes found

are stored in an adaptive memory. Then, the following procedure is applied for the

limited number of iterations.

An initial solution is made by combining the solutions in the adaptive

memory. Then, the current solution is disjoined into some subsets of routes. After

that, a tabu search for each subset of routes is applied. Finally, the resulting routes

are merged.

The best solutions from the above parallel tabu search are added to the

adaptive memory and the procedure continues for a specific number of iterations.

Finally, a post-optimization algorithm is used for each individual route.

Gendreau et al. (1999) use the Taillard et al.s (1997) method for routing and
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dispatching vehicles in a real time situation. In fact, they add a dynamic aspect to

the above mentioned parallel tabu search method. In this dynamic problem, if no

events occur the optimization process is continued by using the previous search, but

when an event occurs, the search is stopped and the best routes are added to the

adaptive memory. If that event is the occurrence of a new demand, the adaptive

memory is updated by inserting of the new demand in each solution and if no

feasible found the demand is rejected. If the event is not the occurrence of new

demand, the next destination of the driver is obtained from the best solution in the

adaptive memory and the other solutions are updated. After that, a new tabu

search is started using new solutions from the adaptive memory. Diversion is not

allowed in this method and the drivers will choose their next destination based on

the previous adaptive memory solution.

Gendreau et al.(2006) propose a neighborhood search structure for vehicle

routing problem with the pickups and deliveries. In this method, they use a tabu

search heuristic using parallel computing for real time dispatch of fleet in the case

when a new request occurs. For the real time problem there are many

considerations such as current location of vehicles, their current routes, policy of the

service, travel time between points and etc.

Jung and Haghani (2001) formulate a mixed integer programing model for

the time dependent vehicle routing problem (TDVRP). They consider soft time

windows, real time service requests and real time variations in travel times between

demand nodes. The objective function consists of the fixed cost of using a vehicle,

routing cost and also some constraints related to the inconvenience of customers.

They implement a genetic algorithm to solve that mixed integer programing model.

Haghani and Jung (2005) compare their genetic algorithm with an exact method

using lower bounds exact solutions. They show that GA can obtain very good

results in this problem. Their GA can be used when the number of nodes is up to

70 and the demand locations in less than 20 minutes. They also compare static and
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dynamic routing strategies and conclude that if there is uncertainty in forecasting

travel time, dynamic strategy can provide superior solutions.

Malandraki and Daskin (1992) develop two heuristics for solving the TDVRP.

In the first heuristic called Sequential Route Construction, a vehicle is for the node

which has the shortest distance to the last visited node. This allocation continues as

long as constraints on total time duration and capacity are satisfied. If these

constraints are violated another vehicle is added and the procedure continues until

all nodes are visited. In the second heuristic called Simultaneous Road

Construction, a search is conducted for the nodes. That node which is the closest to

all the available vehicles is selected. Then, this node is added to the tour of the

corresponding vehicle. The procedure continues until all the nodes are visited or no

more capacity is available. Additionally, cutting plane and dynamic programing

methods are used for solving the traveling salesman problem which is a special case

of the VRP.

In Malandraki and Daskin (1992), it is assumed that a vehicle leaving earlier

than another, does not necessarily arrive sooner than the other one because the

travel time is a step function and not a continuous function. In order to overcome

this deficiency, they suggest virtual waiting at the customer place. This issue is

solved in Ichoua et al. (2003). In this model, vehicle which leaves earlier, arrives

earlier if the route and the time of arrival are the same.

Li et al. (2009) develop a model for the vehicle rerouting problem. This

model is customized for scheduling a disruption due to breakdown of a vehicle. In

such a situation, the other vehicles may have to change their tasks. These vehicles

can be rerouted to serve the customers which had been originally planned to be

served by the broken down vehicle. They show that vehicle rerouting problem is

NP-hard problem. They provide a path based formulation of the vehicle rerouting

problem with time windows and then, develop a Langrangian based heuristic. In

this heuristic, a primal heuristic and finally a dynamic programing is proposed for
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solving the Lagrangian relaxation problem quickly. They implement an insertion

based heuristic for obtaining the primal solution.

Desrochers et al. (1992) consider a vehicle routing with hard time windows.

They propose an exact method for solving VRPTW using column generation

technique. In their approach, they convert VRP to a set partitioning model. They

claim that set partitioning model can be converted to the set covering problem if

the cost matrix dos not violate the triangular inequality. Hence, subset of routes is

given to the set covering model and is solved using a general simplex algorithm.

The simplex algorithm provides some dual variables associated with each constraint.

These dual variables are used in pricing problem. Then, the pricing model is solved

to determine which variable(s) should be added to the subset of routes. This pricing

model can be modeled as a shortest path problem with resource constraints SPPRC.

The regular shortest path problem can be solved using Dijkstra’s algorithm.

However this algorithm cannot be used when costs are negative. Bellman proposes a

dynamic programing algorithm when the costs can be negative.

Desrochers et al. (1992) propose a dynamic algorithm to solve the problem

similar to Bellman algorithm for the vehicle routing problem. They propose some

algorithm to have one-cycle and two-cycle eliminations. This method can be solved

with relatively low computational effort, however, it does not provide very good

lower bounds.

Krumke et al.(2005) proved that the vehicle routing problem when each

vehicle has to visit at most two requests is an NP-complete problem. They use a

reduction function from the problem of 3 dimensional matching, 3DM 1, which is an

NP-complete problem.

They consider a dispatching problem when the number of request is twice the

number of vehicles. Then, they introduce an instance and show that this instance

13DM problem. There are three finite, disjoint sets named X,Y, andZ sets, and there is a subset
named M of XY Z and has triples (x, y, z) such that x ∈ X, y ∈ Y, andz ∈ Z. Now M ⊆M is
a 3-dimensional matching if the following condition is true: for any two distinct triples (x1, y1, z1)
∈M and (x2, y2, z2) ∈M,x1 6= x2, y1 6= y2, andz1 6= z2.
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has an equivalent in 3DM problem. Hence, the dispatching problem when the

number of requests is equal to two is an NP-complete problem.

Fillet et al. (2004) propose an algorithm for the elementary shortest path

problem with resource constraint ESPPRC. They use some domination rules to

avoid cycles.

Li and Lim (2001) propose a hybrid algorithm of tabu search and simulated

annealing. They consider up to 50 requests and their computational time takes

30-4000 seconds on a i686. Bent and Van Hentenryck (2003) use a large

neighbourhood search (LNS). They consider up to 500 requests and the largest

problems was solved in 135 minutes on 1.2 Ghz AMD.

Ropke et al (2006) propose an extended large neighborhood search algorithm

for the VRPPD. They consider up to 500 requests, and the average time to solve

largest problems was 90 minutes, but some of the problems took up to eight hours

to solve (on a Pentium IV, 1.5 Ghz).

Beaudry et al (2010) consider a problem for transporting patients in a

hospital campus. Their problem is dynamic and new transportation requests arise

dynamically and their objective is to minimize a weighted sum of three criteria:

total travel time, total lateness and total earliness. They develop a two-phase

heuristic procedure to solve their particular dial a ride problem. They use insertion

movements and tabu search respectively.

Similarly, Kergosien et al (2011) consider the problem of transportation of

patient between care units. They use a tabu search method similar to the method

used in Gendreau et al. (1999).

One of the problems which is a subset of VRP is Dial a Ride Problem

(DARP). The main difference between DARP and VRP is that DRP is only for

transporting people. The approaches used in both are very similar. Cordeau and

Laporte (2003) did an overview on models and algorithms for DARP. They discuss

that three important decisions are made by solving DARP.
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1) Determining clusters of users for a vehicle to serve.

2) Determining the sequence of users for each vehicle.

3) Scheduling pick-up, driving and drop-off activities along each route.

One of the applications of DARP is in transporting elderly and disabled

persons. Madisen et al. (1995) consider this problem when user can either specify

pick-up or drop-off time, but not both. In their problem, different types of vehicles

are considered, availability of vehicles varies based on vehicles status and requests

arrive dynamically. An insertion method named REBUS is used originally

developed by Jaw et al. (1986). In this algorithm simply, all variations of insertion a

new request to a route are examined and the insertion with the best objective

function is selected.

Hunsacker and Savelsbergh (2002) proposed a procedure which evaluates

feasibility of an inserting a request to a route which has been already constructed.

They have shown that time complexity of insertion is O(q) where q is the number

of requests.

Paragh (2011) considers a DARP and develop two mathematical models for

this problem. A variable neighborhood search is used to solve the problem.

C Chapter Discussion

In this chapter, research on ambulance management is reviewed. The papers

were categorized into three main areas: coverage problem, dispatching problem and

vehicle routing problem.

Most of the research papers consider the static problems and they do not deal

with the dynamic aspect of the ambulance dispatch and redeployment problem. In

this era, with advanced telecommunication abilities, more accurate approaches are

anticipated to facilitate real time decision making for deployment and dispatch of

EMS vehicles in real time.

Not many papers dealing with dealing with EMS vehicle management
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situations in pandemic outbreak situations are available. There is no unified

mathematical approach which can help dispatchers allocate vehicles optimally by

properly utilizing vehicle capacity. These two important gaps in the literature

trigger the present research. This dissertation first presents an integrated approach

for dispatching and relocating patients in a pandemic outbreak which uses real time

information of EMS vehicles. After that, we consider the problems of dispatching

and relocating separately.

In order to utilize the capacity of EMS vehicles, we have allowed one vehicle

to serve maximum two patients. This problem has not been considered before in

researches related to EMS dispatching domain. We have proposed new

mathematical models and algorithms in Chapters III and V to efficiently dispatch

EMS vehicles. Also, in Chapter IV, a new simulation-approach was proposed for the

coverage problem which has not been considered in the literature.
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CHAPTER III

AN INTEGRATED MODEL FOR DISPATCHING,

HOSPITAL SELECTION AND RELOCATION OF EMS

VEHICLES

A Problem Statement

We consider the EMS vehicle dispatching and relocating problem for

determining, in real-time, the subsequent destination for each vehicle when there is

a state change. A state change occurs when a patient makes a request for a vehicle

by calling 911, or when a vehicle has just picked up the patient, or when a vehicle

has just completed the service.

We make the following assumptions in our model. First, all vehicles are of the

same type, and can serve any patient. If a patient needs more than one vehicle, his

or her request will be split into two with the same location and priority. Second, all

vehicles are equipped with global positioning systems and are tracked continuously.

Third, we assume that the information pertaining to hospital resource is

known a priori. In this chapter we develop a mathematical model and corresponding

algorithm to be embedded in a real-time decision support system module for the

dispatch of EMS vehicles. It is part of a larger effort involving the development of a

real time decision support system (RTDSS) (see www.rtdss.org) for use by

healthcare and public health officials during and immediately after a medical

emergency. Another module (see Sun et al 2013) developed for the RTDSS predicts

patient flow to hospitals over a six to ten month period and estimates the resource

shortage over that period. Some results from that module are used as input
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information to our dispatch module. Upon receiving capacity information from

another module, we pre-process the data for our dispatch model as follows. If a

hospital does not have enough resources to admit patients, it will be excluded from

the set of available hospitals.

Fourth, any time the model is invoked to make a dispatch decision, we only

consider available vehicles and exclude those that are busy at hospitals, are at a

patient scene and have been re-routed once. We also consider only the available

hospitals and exclude those on diversion.

Fifth, the priority of each call is known by the dispatchers. In fact, one of the

responsibilities of EMS call takers is to prioritize patient and pass this information

to dispatchers. They use some protocols to prioritize patients (see, see e.g. Palumbo

et al., (1996) and Clawson et al. (2007)) and our paper does not address this issue.

Finally, we assume that vehicles have no fixed home stations.

With the above assumptions, our dispatch model accomplishes three tasks.

First, it assigns a vehicle to a patient when a service request is received. This

assignment is based on the current location of all vehicles and their availability.

Note that a vehicle can be rerouted in this assignment, as long as such rerouting

minimizes the total travel time (distance). The second task is to assign a hospital to

a patient based on the travel distance to the hospital and the resource availability at

that hospital. Finally, the model relocates vehicles that have completed the first two

tasks to an EMS station so it can be ready to serve the next patient. The objective

of the dispatch model is to minimize the travel time from the vehicles current

locations to patient location, from patient location to hospitals, and from hospitals

to patient location or EMS stations. It also minimizes the total penalties incurred if

the pre-specified response time for patients is not met or if the relocation of EMS

vehicles does not provide sufficient coverage for one or more regions.

Finally, unique to our model is its capability to transport a maximum of two

patients to increase the service capacity during a medical emergency. Particularly,
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we categorize patients into two groups: high priority and low priority patients. The

weight of response time for high priority patients is greater than that for the low

priority patients. A vehicle transporting a low priority patient is allowed to serve an

additional patient. However, a vehicle transporting a high priority patient or two

patients is not allowed to serve any other patient. EMS call takers prioritize a

patient and this is an input to the model.

B A Nonlinear Integer Program Formulation

In order to formulate the optimal dispatching model as a mathematical

program, we introduce the following notation.

Sets:

V = V P ∪ V H
1 ∪ V H

2 ∪ V Z : Set of available vehicles; mutually exclusive;

V P : Set of vehicles en route to serve a patient

V H
1 : Set of vehicles transporting a high priority patient or two patients and

enroute to a hospital

V H
2 : Set of vehicles transporting a low priority patient and enroute to a

hospital

V Z : Set of vehicles which are idle or enroute to an EMS base

W = W 1 ∪W 2: Set of patients

W 1: Set of high priority patients

W 2 :Set of low priority patients

Indices:

i = 1, , , I Vehicles

j = 1, , , J Patients

k = 1, , ,K Hospitals

s = 1, , , S EMS stations

r = 1, , , R Census tracts

pr(j) Priority of patients, j= 1 or 2
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Parameters:

x0
ij =1 if vehicle i has been dispatched to serve patient j; =0 otherwise

yik= 1 if vehicle i has been assigned to hospital k; =0 otherwise

Tij : The predicted travel time for vehicle i to arrive at patient js location

when departing at the current time

Tik: The predicted travel time for vehicle i to arrive at hospital k when

departing at the current time

Tis: The predicted travel time for vehicle i to arrive at EMS station s when

departing at the current time

(Note that Tij , Tik and Tis are updated from one time frame to next)

Tjk: The predicted travel time for transporting patient j to hospital k

µ: The average service time for an ambulance at the patient location

PPpr(j) : The travel cost per time unit to reach patient j with priority of

pr(j)

V Ppr(i): The travel cost per time unit to arrive at hospital for vehicle i

which has patient with priority of pr(i)

IP: The travel cost per time unit for an idle vehicle

Aij = PPpr(j) ∗ Tij , The travel cost for EMS vehicle i to reach a patient

Bik = V Ppr(i) ∗Tik, The travel cost for EMS vehicle i to arrive at hospital k

Bij = V Ppr(i) ∗ Tij , The travel cost for EMS vehicle i to reach another

patient j

Bw(i) = V Ppr(i) ∗ µ,The waiting cost for the patient in an ambulance that

is serving another patient at that patients location

Bjk = V Ppr(i) ∗ Tjk, The cost for vehicle i to travel from patient js location

to hospital k

Cis = IP ∗ Tis, The cost for EMS vehicle i to travel to EMS station s

D: The penalty incurred by an ambulance for serving more than one patient

E: The penalty for inefficient rerouting of vehicle enroute to a hospital
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αp: The penalty of not serving a patient with priority p in a required time

window

βr: The penalty of not covering census tract r by an ambulance

ψsr =1 if home station s can cover census track r; 0 otherwise

φj : The required response time for patient j at time t

ω: Threshold time for accepting a reroute

η: Threshold value for allowing rerouting of ambulances to serve another

patient

gi: Zip code of the patient served by that ambulance i

Decision Variables:

xij =1 if vehicle i is dispatched to serve patient j; 0 otherwise

yik = 1 if vehicle i is dispatched to hospital k; 0 otherwise

zis = 1 if vehicle i is dispatched to EMS station s; 0 otherwise

πi = 1 if ambulance i serves more than one patient; 0 otherwise

θi = 1 if ambulance i is rerouted to serve more than one patient; 0 otherwise

τik =Tikyik if πi = 0;
∑

j Tikyikxij if πi = 1

ζijk = xijyik

uj = 1 if patient j is not served in a required time window; 0 otherwise

νr = 1 if census tract r is not covered by at least one ambulance;0

otherwise.

wi = 1 if vehicle i is rerouted; 0 otherwise

Using the above notation, the real-time EMS vehicle dispatching

(RTEMSVD) model can be formulated as the following integer nonlinear program.

RTEMSVD-A:

min
∑I

i=1

∑J
j=1Aijxij +

∑
i∈V H

1

∑K
k=1Bikyik +

∑
i∈V H

2

∑K
k=1Bikyik(1−∑I

i=1 xij) +
∑

i∈V H
2

∑J
j=1Bijxij +

∑
i∈V H

2

∑K
k=1 yik(

∑I
i=1 xij)(

∑J
j=1Bjkxij +

Bw(i)) +
∑I

i=1

∑S
s=1Ciszis +

∑R
r=1 βrνr +

∑2
p=1 αp

∑
j∈WP uj

(III.1)
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s.t.
I∑

i=1

xij = 1 ∀j (III.2)

j∑
j=1

xij = 1 ∀i ∈ V P (III.3)

K∑
k=1

yik +
S∑

s=1

zis = 0 ∀i ∈ V P (III.4)

∑
i′=1

I
∑

j∈WP

x0
i′jAij −

I∑
i′=1

xi′jAij − ω ≥ −Mwi ∀i ∈ V P (III.5)

J∑
j=1

xijx
0
ij ≤M(1− wi) (III.6)

K∑
k=1

yik = 1 ∀i ∈ V H
1 (III.7)

J∑
j=1

xij +
S∑

s=1

zis = 0 ∀i ∈ V H
1 (III.8)

K∑
k=1

yik = 1 ∀i ∈ V H
2 (III.9)

J∑
j=1

xij ≤ 1 ∀i ∈ V H
2 (III.10)

S∑
s=1

zis = 0 ∀i ∈ V H
2 (III.11)

S∑
s=1

zis +
J∑

j=1

xij = 1 ∀i ∈ V E (III.12)

K∑
k=1

yik = 0 ∀i ∈ V E (III.13)

I∑
i=1

xijTij − φj ≤Muj ∀j (III.14)

1−
S∑

s=1

I∑
i=1

zisψsr ≤Mνr ∀r (III.15)

Equation (III.1) represents the objective consisting of eight terms. The first term
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minimizes the vehicle travel cost to reach a patient. The second term minimizes the

vehicle travel cost for vehicles transporting high priority patients to arrive at a

hospital. Note that these vehicles will not serve any other patients.

The third through fifth terms, which cause the non-linearity of the

formulation, minimize the travel costs for those vehicles transporting a low priority

patient. For these vehicles, there are two possibilities. First, the vehicle can directly

go to a hospital. In this case, because the vehicle will not serve any other

patient,(1−
∑J

j=1 xij = 1)and the travel cost is calculated as in the third term.

Second, the vehicle can be rerouted to serve another patient. In this

case,(
∑J

j=1 xij = 1)and three costs are incurred - the travel cost to the patient

location as calculated in the fourth term; the waiting time cost for treating the

second patient at the scene and the travel cost from the second patient to a

hospital, as calculated in the fifth term.

The sixth term in the objective is the travel cost for vehicles to return to the

EMS stations and the seventh term is the penalty for not serving patients in their

required time windows. Finally, the last term calculates the penalty of not covering

census tracts to fulfill future demands. The penalty of not covering a census tract

by any ambulance, βr, impacts where the vehicles are positioned. This penalty

varies per census tract and it depends on the history of the number of calls and also

the estimated number of patients in an outbreak in that census tract. The larger

the number of calls, the larger this penalty.

Constraint (III.2) states that each patient is served by one ambulance.

Constraints (III.3) through (III.6) pertain to those vehicles en route to serve

patients. In particular, constraint (III.3) ensures any vehicle that has been

dispatched is assigned to a patient. Constraint (III.4) states that vehicles en route

to serve patients can neither go to a hospital nor to an EMS station. Constraints

(III.5) and (III.6) allow a vehicle to change its route if there is a significant

improvement in the overall travel time. Further, constraints (III.7) and (III.8)
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pertain to vehicles transporting high priority patients. For these vehicles, (III.7)

ensures they are assigned to a hospital, while (III.8) prohibits them from serving

another patient or returning to the home station. On the other hand, constraints

(III.9) through (III.11) pertain to vehicles transporting low priority patients. In

particular, (III.9) assigns these vehicles to a hospital, (III.10) allows them to serve

another patient, and (III.11) prohibits them from returning to a home station.

Additionally, constraints (III.12) and (III.13) consider vehicles en route to or idle at

EMS stations. Constraint (III.12) states that such a vehicle can either serve a

patient or remain at an EMS station (the current or a different station), and

constraint (III.13) prohibits such a vehicle from being assigned to a hospital.

Finally, constraints (III.14) and (III.15) ensure that each patient is served within

the required response time and that all census tracts are covered at a pre-specified

level, respectively.

C A Linear Integer Program Formulation

As previously mentioned, RTEMSVD-A is a non-linear integer program

because the travel cost for vehicles transporting low priority patients depends on

whether or not they will be assigned to a second patient. In the following

alternative formulation RTEMSVD-B, we introduce binary variables ζijk and πi to

linearize the third and fifth terms in the objective function of RTMESVD-A.

RTEMSVD-B

min
∑I

i=1

∑J
j=1Aijxij +

∑
i∈V H

1

∑K
k=1Bikyik +

∑
i∈V H

2

∑K
k=1 τik +∑I

i=1

∑S
s=1Ciszis +

∑R
r=1 βrνr +

∑2
p=1 αp

∑
j∈WP uj

(III.16)

s.t.

Constraints (III.1) to (III.14)
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J∑
j=1

xij ≤ πi ∀i ∈ V H
2

(III.17)

J∑
j=1

xij − 0.5 ≥ −M(1− πi) ∀i ∈ V H
2

(III.18)

−Bikyik + τik ≥ −Mπi ∀i ∈ V H
2 and∀k

(III.19)

τik −
J∑

j=1

(Bjk −BW (i)ζijk +Bijxij ≥ −M(1− πi) ∀i ∈ V H
2 and∀k

(III.20)

xij + yik − ζijk ≤ 1∀i ∈ V H
2 , ∀jand∀k

(III.21)

−xij − yik + 2ζijk ≤ 0∀i ∈ V H
2 , ∀jand∀k

(III.22)

In RTEMSVD-B, the travel cost for the (low priority) patient currently in a vehicle

to arrive at a hospital,τik , is expressed in the third term, whether or not the vehicle

is rerouted. Indeed, it is calculated in constraints (III.17) through (III.22). In

particular, τik equals to the time for the (low priority) patient in ambulance i to

arrive at hospital k. If vehicle i is rerouted to serve another patient, as defined in

constraint (III.20), τik is the sum of the travel time cost from the current vehicle

location to the second patient’s location, the waiting time cost at the second

patient’s location, and the travel time cost from the second patient’s location to the

hospital. If the vehicle does not serve any other patient, τik is the travel time from

its current location to the hospital, as in constraint (III.19). Other constraints

(III.17), (III.18), (III.21) and (III.22) are auxiliary constraints.

Although RTEMSVD-A and RTEMSVD-B are mathematically equivalent,
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our numerical study suggests that the linear integer program RTEMSVD-B is

computationally more efficient. In the next section, we present a heuristic method

for solving RTEMSVD-B that further reduces the solution time for large-size

dispatching instances.

D An Efficient Approximation Method

If a vehicle transporting a low priority patient is rerouted to serve a second

patient, the total travel costs in RTEMSVD-B include the travel cost to arrive at

the second patient, the time spent at the second patient’s scene, and the travel cost

from the second patient to the hospital. The exact calculation of these costs

requires additional variables (e.g., πiand ζijk ) and constraints in the integer linear

program. We propose to use an estimated parameter to represent the fixed travel

cost incurred by vehicles that are rerouted. Doing so significantly reduces the

number of binary variables and constraints, thus increasing the computational

efficiency. The approximate model is formulated as follows.

RTEMSVD-C:

min
∑I

i=1

∑J
j=1Aijxij +

∑
i∈V H

1 V H
2

∑K
k=1Bikyik +

∑I
i=1

∑S
s=1Ciszis +∑R

r=1 βrνr +
∑2

p=1 αp

∑
j∈WP uj +D

∑
i∈V H

2
πi + E

∑
i∈V H

2
θi

(III.23)

s.t.

Constraints(III.2)to(III.15)

Constraint(III.17)

∑
j∈WP

tjkxij−
K∑

k′=1

tik′y0
ik′−η ≤M(1−πi)+Mθi+M(1−yik) ∀i ∈ V H

2 and∀k

(III.24)
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As in RTEMSVD-A and RTEMSVD-B, the objective function in RTEMSVD-C

minimizes the total travel costs, penalties of not transporting patients within the

required time window and not covering census tracts. However, objective (III.23)

simplifies the calculation of costs incurred due to re-routing all vehicles by

introducing a fixed rerouting cost D in the sixth term.

Note that with this simplification, the travel cost between the vehicle

locations and the hospitals in the second term are generalized to all vehicles, i.e.,

V ∈ V H
1 orV H

2 , whether or not they are rerouted. Furthermore, the seventh term

in (III.23) penalizes any inefficient re-routing with a cost of E. An inefficient

rerouting occurs when the travel time from the second patient’s location to the

suggested hospital is larger than the travel time from the vehicles current location

to its previously assigned hospital plus the threshold of η. The value of η is set to

be 25% of the time for a high priority patient who has just called, i.e η = φj/4.

Figure III.1 illustrates ”efficient” and ”inefficient” re-routings. The solid arrows in

these figures represent the current destinations of vehicles and the dashed arrows

represent the destinations after re-routing. Finally, constraint (III.24) determines

whether or not the rerouting is efficient using binary variable θi.

E Numerical Results

We evaluated the proposed models using numerical examples. LINGO is used

to solve the associated linear/nonlinear programs. The CPU times reported here are

from a Dell Intel(R) W3503 Processor with 2.4 GHz and a 4GBRAM: on a 64-bit

operating system.

As illustrated in Figure III.2, Example 1 has five vehicles, four patients, two

hospitals, six census tracts and three EMS stations. Table III.1 shows the current

locations and status of the five vehicles. Similarly, Table III.2 provides the

information on the location, time of call, priority class and required service time

window of the four patients, while Table III.3 displays the locations of hospitals and
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Figure III.1. Examples of inefficient rerouting(upper) and ”efficient” rerouting(lower)

Figure III.2. Illustration of Example 1
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TABLE III.1

Vehicle Information

Vehicles X Y Status
1 14 3 idle at EMS station#3
2 12 14 en route to serve patient#3
3 16 16 en route to serve patient#1
4 9 3 transporting a low priority patient to hospital#2
5 2 10 on the way to serve patient#2

TABLE III.2

Patient Information

Patients Priority X Y Remaining Time Window(minutes) Time of Call
1 Low 17 17 7 8:22
2 High 4 12 3 8:25
3 Low 14 12 12 8:27
4 High 8 4 8 8:30

TABLE III.3

Hospitals and EMS Stations Information in Example 1

Hospital X Y
Hospital 1 14 14
Hospital 2 7 5

EMS Station 1 1 1
EMS Station 2 7 16
EMS Station 3 14 3

TABLE III.4

The value of coefficients in the objective function in Example 1.

α1 α2 PP(1) PP(2) VP(1) VP(2) IP D E
10000 2000 100 20 30 20 5 200 400
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EMS stations. In this and subsequent examples, we assume the distance unit to be

a kilometer. For example, if the position of hospital 1 is (7, 5), it is located 7 km to

the east and 5 km to the north of the origin. The speed of ambulance is assumed to

be 60 km/hr. The desired response time is 8 minutes for high priority and 15

minutes for low priority patients and the average waiting time at the patient scene

is 10 min. Table III.4 lists the value of coefficients in the objective functions. The

value of βr ranges from 8 to 52.

We assign the values of penalties for the multiple factors based on priorities

associated with these factors. The most important consideration in dispatching

EMS vehicles is to reach patients in the required time window. The required time

window for the high priority patients is less than that for the low priority patients.

This penalty should be larger than J ∗ PP1 ∗Max(Tij) to ensure that the

penalty of not reaching a patient in the specified time window is larger than the

maximum penalty of travel time to reach all high priority patients in their required

time windows. For the same reason α2 should be larger than J ∗ PP1 ∗Max(Tij)

for low priority patients.

The next important coefficient is the travel time penalty for reaching a high

priority patient (PP1). In other words, this penalty is the third priority after time

window penalties (1 and 2). On the other hand, the travel time penalty for reaching

a low priority patient (PP2), does not need to be very large, as long as a low

priority patient can be reached within the required time window. These penalties

(PP1 and PP2) factors can be adjusted by estimating the cost of waiting per

minute by EMS administers. The travel time penalties for transporting a patient to

a hospital are V P1 and V P2. V P1 should be larger than V P2 for obvious reasons.

V P2 should be close to the value of PP2 to almost have the same cost per time

unit for a low priority patient to be waiting in ambulance or in the patient scene.

The penalty of not covering a census tract by any ambulance, βr, affects

where the vehicles are positioned. This penalty varies per census tract and it
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depends on the history of the number of calls for that census tract. The larger the

number of calls, the larger this penalty. To prevent frequent idle movements of

vehicles and long travel times, the penalty parameter IP is set such that the

reconfiguration of vehicles occurs when there is a substantial improvement to the

coverage.

In the fixed cost model, coefficients D and E play important roles in the

optimal solution. Intuitively, we should set D ≥ V P2µ to guarantee that the fixed

cost for rerouting a vehicle from a hospital is at least larger than the penalty of

waiting time at the patient scene. On the other hand, the coefficient E should

discourage large deviation of vehicles transporting low priority patients from their

ways to the hospital. Therefore, we should have E > V P2φj , where φj is the time

window for a low priority patient who just called. In this case, if there is an idle

ambulance which can reach patient j in the desired time window, an inefficient

rerouting will be discouraged.

Assuming the maximum travel is 17(2)0.5 which is the diameter of the virtual

square city in Figure III.2, α1 needs to be 4* 17(2)0.5 * 100 which is almost 10,000

and α4 ∗ 17(2)0.5 ∗ 20 which is almost 2,000. The factor D is to be larger than

20*10=200 and E is to be larger than 20*15=300.

We have also tested 100 random instances similar to Example 1 with four

patients, five vehicles, three EMS stations and two hospitals. In these instances, the

values of α1 ranged from 4,000 to 15,000 and no change in the optimal solution is

found compared to the values listed in Table III.4. Similarly for α2 100 instances

are run with the values of α2 changes from 1,000 to 3,000 and in 90 of the

instances, the optimal solution is the same as the optimal solution yielded by the

value of 2,000. Also, in these instances it is observed that within the range of (1800,

2400) all of the solutions are the same.

This example demonstrates the value of allowing an EMS vehicle to transport

two patients. From Figure III.2, patient 4 is on the way of vehicle 4 to hospital 2.
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Thus, assigning vehicle 4 to this patient is the most efficient. But when vehicles are

not allowed to transport two patients, vehicle 1 would be assigned to patient 4. The

latter causes some area (the area shaded in in Figure III.2) in the eastern part of

the city to lose its coverage. Finally, we note that for this example, the same

optimal solution is returned by the heuristic method based on the approximation

model RTEMSVD-C.

In order to examine the benefit of allowing two patients in an ambulance

more extensively, more cases should be considered. Table III.5 shows the average

waiting time of patients for the cases when only one patient in an ambulance is

permitted versus the case when two patients in an ambulance are allowed. In this

table, 12 different sizes of vehicles and patients are listed in the rows and each row

is a product of five random instances. In these instances, it is assumed that 60% of

vehicles are idle and no vehicle has been assigned to patients yet. As shown in Table

III.5, in all of the examples, the average waiting for the case when two patients are

allowed is less than the case when only one patient is allowed in an ambulance. As

seen in the last column, the average waiting time for models are close to each other

when the number of patients is low, but, when the number approaches the number

of idle vehicles, average waiting time when more than one patient is considered is

significantly better.

We also examine the computational time of the three models. As shown in

Tables III.6 and III.7, RTEMSVD problems with various numbers of vehicles and

patients are tested. Table III.6 reports the average computational times (in CPU

seconds) for five randomly generated instances for each combination of vehicle and

patient sizes using three models RTEMSVD-A, RTEMSVD-B, RTEMSVD-C (listed

as A, B and C, in the table, respectively). In these examples, if the number of

patients exceeds the number of vehicles, we assume patients are put in the queue

and are not considered in the model. Each time a patient’s request is being

considered, there is a state change and the dispatch model is invoked. The columns
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TABLE III.5

Average Waiting Time for Patients

No. of Vehicles No. of Patients Not Allowing Allowing Percentage
two patients two patients Improvement

100 10 5.254699234 5.125296403 2.5%
100 20 5.693098413 5.46074175 4.5%
100 30 6.532742911 5.861419792 11.3%
100 40 8.551500106 7.272180501 17.6%
100 50 8.16786918 6.931952421 17.8%
100 60 9.567018703 6.313189941 51.5%
150 15 4.950919443 4.636213204 6.8%
150 30 5.293697101 4.860380155 8.9%
150 45 6.50916452 5.673660528 14.7%
150 60 6.189192738 5.360870132 15.5%
150 75 6.588699506 5.400426864 22%
150 90 8.409576115 5.613277238 49.8%

in Tables III.6 and III.6 represent the number of patients in the system who have

called thus far and it is assumed two news calls are just received. For example, in

column 1 of Table III.6, there are 10 patients waiting for EMS vehicles and two

patients call and request two vehicles. Thus, the model assigns two vehicles to the

newly called patients and also decides whether any of the previously assigned

vehicles require rerouting.

Some observations can be made from Table III.6. First, the solution time for

all three models increases as the number of vehicles increase. Second, the heuristic

method based on the approximation model RTEMSVD-C requires the least CPU

time, followed by the linear integer model. Because the proposed EMS dispatch

model is intended for a real-time decision support system, we consider the

acceptable solution time to be no more than one minute. Our computational results

in Table III.6 suggest models B and C are suitable for practical implementation

when the number of patients and vehicles are in these ranges. Hence, we drop the

nonlinear integer model A from consideration, and only compare the performance of
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TABLE III.6

Computational Time (in CPU seconds)

No. of Patients
No.of 10 20 30 40 50

Vehicles A B C A B C A B C A B C A B C
15 6 3 1
25 45 5 1 21 1 3
35 112 13 2 104 6 2 30 2 2
45 64 7 2 155 12 4 1161 13 3 32 2 3
55 113 9 2 175 15 5 1464 8 3 86 6 5 46 3 3

TABLE III.7

Computational Time (in CPU seconds)

No. of Patients
No.of 60 70 80 90 100 120

Vehicles B C B C B C B C B C B C
65 5 4
75 7 5 6 7
85 48 8 6 6 6 5
95 114 8 64 10 7 6 8 6
110 191 11 85 9 67 8 6 4 5 4
130 180 13 127 14 224 13 107 10 80 8 8 6

the heuristic model C and the integer linear model B in the further evaluations.

To evaluate the performance of the model when the number of patients is

large, more experiments are considered. In this case, we have assumed that the

number of patients (at the one time instance) in the system in a medium size

metropolitan (such as Louisville, KY) would not exceed 120, which appears to be an

acceptable estimate given that the Level 1 Trauma Center Emergency Department

at the University of Louisville had 38,000 ER patients in 2011, about 104 per day.

Table III.7 reports the computational time of Models B and C for sizes of vehicles

between 65 and 130, and the range of patients is between 65 and 120. Similar to
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Table III.6, each CPU time is a product of five instances. As shown in Table III.7,

Model C in almost all the cases is faster than Model B. Also, when the number of

patients approached the number of vehicles, the computational time decreases. This

could be explained by the fact that the set of feasible solutions is small because

most of the vehicles need be assigned. Hence, there is not too much room for

optimization.

While Tables III.6 and III.7 reveal the impact of problem size on the solution

time for all three models, Figures III.3 and III.4 show how the computational time

is affected by the number of vehicles requested at the moment, and by the number

of vehicles transporting low priority patients, i.e., the number of vehicles that may

be rerouted, respectively. Particularly, the numerical examples for Figure III.3,

consider a scenario with 8 hospitals, 25 EMS stations, and 62 vehicles. Among the

62 vehicles, 30 are transporting low priority patients (i.e., |V H
2 | = 30). Further, the

number of vehicles requested range from one to ten, as seen in the horizontal axis in

the figure. Figure III.4 shows that the computational time for the heuristic model C

is less sensitive to the number of vehicles requested than model B. For example,

when the number of requested vehicles increases from 2 to 10, the computational

time for model C stays around 3 seconds, while that for model B increases from 3 to

44 seconds. On the other hand, Figure III.4 uses the same scenario as in Figure

III.3 by fixing the number of vehicles currently requested as 15. Particularly, it

compares the computational times for models B and C when the number of vehicles

subject to rerouting (i.e., the number of vehicles transporting low priority patients)

changes. Again, the heuristic model C is more robust in terms of CPU time than

model B. For instance, as the number of vehicles transporting low priority patients

changes from 5 to 25 to 30, the computational time for model C stays around 3

seconds, while the one for model C increases from 12 to 300 seconds. In summary,

both Figures III.3 and III.4 suggest to adopt the heuristic model C when the

number of requests is large as in a medical emergency.
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Figure III.3. Computational Time vs. the Number of Vehicles Requested at the
Moment

Figure III.4. Computational Time vs. The Number of Vehicles Belonging to V H
2
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The above analyses suggest that the heuristic method based on model

RTEMSVD-C is more advantageous in solution time and is more robust compared

to RTEMSVD-A and RTEMSVD-B. We now study the solution quality from the

approximation model RTEMSVD-C. Particularly, we compare solutions from

RTEMSVD-C with those from RTEMSVD-B using two sets of tests. Test instances

in the first set allow only one patient to call and request EMS vehicles at a time,

while in the second set of test instances multiple patients may call at one time.

We randomly created 30 instances similar to Example 1 in the first set. The

number of patients in these instances ranges from 10 to 27. In the first 10 instances,

the number of vehicles is 100, among which 20 are transporting low priority patients

(thus are subject to rerouting), and the remaining 90 vehicles are either idle or en

route to serve a patient. In the second 10 instances, the number of vehicles is 60,

among which 30 are transporting low priority patients (thus are subject to

rerouting), and the remaining 32 vehicles are either idle or en route to serve a

patient. In the last 10 instances, the total number of vehicles is 35, among which 30

are transporting low priority patients and are subject to rerouting. All 30 instances

in the first test have fixed numbers of EMS stations (26), hospitals (8) and census

tracts (196). These values are chosen to represent the real-world situation in cities

like Louisville, KY. The results for the 30 instances in this set are quite favorable to

the heuristic model RTEMSVD-C. Particularly, RTEMSVD-C yields the same

optimal dispatching solutions as does RTEMSVD-B for all of the first and second 10

instances, where the percentage of vehicles that are subject to rerouting is 10%

(10/100) and 48.3% (30/62). In the third set of 10 instances, where the percentage

of vehicles that are subject to rerouting is 85.7% (30/35), RTEMSVD-C provides

the same optimal dispatching solutions as RTEMSVD-B for nine instances in this

group. In the only instance where the heuristic model (RTEMSVD-C) provides a

different solution from the exact model (RTEMSVD-B), the discrepancy occurs only

to one patient’s vehicle assignment.
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In the second set of tests, we created 30 instances in which the numbers of

vehicles, hospitals, EMS stations and census tracts are the same as those in the first

set. However, the number of patients who call to request EMS vehicles is set to be

10. These attributes of the 20 instances are listed in columns of No. of Vehicles, No.

of Vehicles in Set V H
2 , and No. of Patients Calls, respectively, in Table III.8. The

computational comparisons between RTEMSVD-B and RTEMSVD-C are

summarized in Column No. of Vehicles Dispatching the Same Patients. The

criterion in this comparison is to examine among the total of 10 vehicles requested

(the same as the total number of patients calls), how many of them are dispatched

to the same patients by the two models. For example, for instance 18, there are 62

vehicles (30 of them are subject to rerouting) and 10 patient calls from different

locations at the moment. Models RTEMSVD-B and RTEMSVD-C assign the same

vehicles to 9 of the 10 patients. Overall, 91.6% of the patients are assigned to the

same vehicles by the two models. When examining the first group of 10 instances

where the percentage of vehicles that are subject to rerouting is 10% (10/100), the

two models assign the same vehicles to all 10 patients for all instances. For the

instances 11 to 20, where the percentage is 48.3% (30/62), the two models assign the

same vehicles to all 10 patients for three instances, to 9 patients for six instances, to

8 patients in one instance. This averages about 92% of patients who are assigned to

the same vehicles. For, instances 21 through 30 where the percentage of vehicles

that are subject to rerouting is 85.7% (30/35), the overall percentage of patients

who are assigned to the same vehicles drops to 83%. Particularly, there is one

instance that both models agree on the vehicle assignments for 9 of the 10 patients,

two instances for 8 of the 10 patients, and four instances for 7 of the 10 patients.

Collectively, the results on the 60 instances from the two sets of tests suggest

that the heuristic model RTEMSVD-C provides quality solutions when the

percentage of vehicles that are subject to rerouting is low, medium or high,

regardless the number of patients currently requesting EMS vehicles. Furthermore,
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TABLE III.8

Computational Time (in CPU seconds)

No. of No. of No. of Patients Percentage of
No. of Vehicles in Patients Assigned to the Patients Assigned to

Instances Vehicles Set V H
2 Calls Same Vehicle the Same Vehicle

1 100 10 10 10 100%
2 100 10 10 10 100%
3 100 10 10 10 100%
4 100 10 10 10 100%
5 100 10 10 10 100%
6 100 10 10 10 100%
7 100 10 10 10 100%
8 100 10 10 10 100%
9 100 10 10 10 100%
10 100 10 10 10 100%
11 62 30 10 9 90%
12 62 30 10 10 100%
13 62 30 10 9 90%
14 62 30 10 9 90%
15 62 30 10 9 90%
16 62 30 10 8 80%
17 62 30 10 10 100%
18 62 30 10 9 90%
19 62 30 10 9 90%
20 62 30 10 10 100%
21 35 30 10 10 100%
22 35 30 10 8 80%
23 35 30 10 7 70%
24 35 30 10 7 70%
25 35 30 10 9 90%
26 35 30 10 7 70%
27 35 30 10 7 70%
28 35 30 10 10 100%
29 35 30 10 10 100%
30 35 30 10 8 80%
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the heuristic model also provides high quality solutions (90% solutions are optimal)

when the percentage of vehicles that are subject to rerouting is (about 85%) and

there is only one patient requesting EMS vehicle at a time. Finally, the solution

quality from the heuristic model RTEMSVD-C is still good (83% solutions are

optimal) when a high percentage of vehicles are subject to rerouting, and there are

multiple patients requesting vehicles at a time. We envision that in the real world,

it is rather improbable that such a situation would occur, especially when the

decision support system is implemented in real time. Therefore, it is concluded that

solutions from the heuristic model is robust and high quality.

F Conclusions

In this chapter, an integrated approach for dispatching EMS vehicles during a

pandemic outbreak is presented. In such situations the demand for EMS vehicles

increases. To increase the operational capacity, the idea of serving more than one

patient by an ambulance is introduced. Mixed integer programming is used for

modeling the system. Three optimization models are proposed for dispatching EMS

vehicles. The objective is to minimize the total travel distance, the penalty of not

reaching a patient in a required time window and the penalty of not covering a

census tract. The first model is an integer nonlinear programming model (INLP).

The other two models are linear. The first linear model called ILP model is a linear

version of INLP model. The second linear model called the fixed cost model is not

as accurate as the two previous models in terms of calculating the predicted

travelling distance of each ambulance transporting a low priority patient.

In addition, we propose a heuristic model to approximate the mixed integer

linear program. Numerical results on randomly generated instances show that the

linear integer model requires less CPU time than does the nonlinear integer model.

Furthermore, the heuristic approximation model uses substantially less CPU time

than the linear integer model and provides robust and high quality solutions for
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most cases we have tested.
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CHAPTER IV

AN OPTIMIZATION AND SIMULATION MODEL FOR

THE EMS VEHICLE COVERAGE PROBLEM

A Problem Definition and Mathematical Model for the Real Time

Coverage Problem

In this chapter, we consider the coverage problem which deals with

reassigning units to stations in real time. First, a mathematical model is presented.

Then, a simulation model is presented to tune the parameters and analyze the

benefit of applying the model.

The problem is to relocate EMS vehicle in a real time environment. A vehicle

is considered relocated when it has changed its station. The ultimate goal of solving

this problem is to minimize number of calls which cannot be serviced in a desired

time window. Here, we consider a call as a missed call when it cannot be serviced in

a specified desired time window. Ideally, if vehicles can relocate instantaneously, the

percentage of missed calls will be minimized. However, in reality this is not possible

and relocation has a cost. Therefore, as a means to the goal, which is minimization

of the percentage of missed calls, we wish to maximize the coverage while minimize

the relocation costs. In order to find the tradeoff between these two factors, a

simulation is modeled and applied.

The mathematical model for the coverage problem is as follows.

Indices:

i = 1, , , I Vehicles

s = 1, , , S EMS stations
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r = 1, , , R Census tracts

Parameters:

C: The penalty assigned to an idle vehicle traveling to an EMS station

βrq: The encouragement factor to cover tract r with q level, q = 1, 2,

βrl ≥ βr2

Tis: The predicted travel time for vehicle i to arrive at EMS station s when

departing at the current time

ψsr= if driving time from station s to tract r is less than the desired time

window

α= The ratio of total number of tracts which need to be covered.

Decision Variables:

zis = 1 if vehicle i is assigned to EMS station s; 0 otherwise

νrq = 1 if census tract r is covered by at least q ambulances; 0 otherwise.

q = 1, 2

η : Penalty variable for the case when percentage of covered tracts is less

than α; 0 ≤ α ≤ 1

max
R∑

r=1

2∑
q=1

βrqνrq − C
I∑

i=1

S∑
s=1

zisTis −Mη (IV.1)

S∑
s=1

I∑
i=1

zisψsr ≥
2∑

q=1

νrq ∀r ∈ R (IV.2)

νr1 ≤ νr2∀r ∈ R (IV.3)

R∑
r=1

νr1 ≥ αR−Mη (IV.4)

The objective function in equation (IV.1) consists of four parts. In the first

part, the model maximizes the census tracts covered. The weight of each tract is set

to the expected number of calls in that tract. In the second part, the model

maximizes the tracts which have double coverage. In the third part, the model

minimizes the travel time for relocating between stations. In the last part, the
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objective function is penalized with a relatively large number, M , if the percentage

of covered tracts is less than α

Constraint (IV.2) ensures that the number of ambulances covering tract r is

at least one if νr1 = 1 and two if νr1 = νr2 = 1. Constraint (IV.3) ensures that

νr1 is greater than or equal to νr2. Constraint (IV.4) ensures that α percent of

tracts are covered; otherwise, the objective function is penalized with M .

B The Discrete Event Simulation Model

In this section, we describe a simulation model which is developed to analyze

the optimization model. In addition to this, the simulation model can be used to

compare the performance of alternate optimization models and also to tune some

parameters in the optimization model. This model simulates the coverage of a city

in different areas and also the availability and location of vehicles. The simulation

model has an interaction with the optimization model and uses it for relocating

vehicles; hence, the output of the optimization model will determine the subsequent

deployment of vehicles.

The following assumptions are made in this simulation model:

- The vehicle service times follow an exponential distribution

- The closest vehicle is dispatched to serve a call

- One vehicle is needed per each call

- Calls are put in the queue when there is no vehicle available

The details of the simulation model are provided below.

Step 0. Read the Initial Data which reflects the current state of the system

While time ≤ FinishT ime

NextT imeOfCall = Ln(1−Rnd())/(
∑
λ) + CurrentT ime

Set EarliestT imeOfGettingFree as the earliest time a vehicle-

becomes available

If NextT imeOfCall ≤ EarliestT imeOfGettingFree Then
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CurrentT ime = NextT imeOfCall

Get the tract of call i.e. TractNo = {k|Λk ≤ (Rnd ∗
∑
λ) ≤ Λk+1}

If there is an available vehicle Then

Make the closest vehicle busy and set its busy time to −Ln(Rnd)/µ;

Else

Put the patient in queue

EndIf

Else

Make the vehicle available

If there is any patient waiting in the queue Then

Assign the vehicle to the first in queue

Set its busy time to −Ln(Rnd)/µ

EndIf

EndIf

If(ThereIsNeedtoRunOptimizer)

Run Optimization Model

EndIf

EndWhile

C Simulation Model Results

In this section, we present the results of the simulation model. The

simulation model can be used for tuning the parameters of the mathematical model.

we used C# to implement the simulation algorithm. In the simulation model, we

directly solve the optimization model using Lingo 14.0 which is called from the

simulation model in C#.

The time simulation length is set to one week. As an input for our simulation

model, we have considered a virtual square city with 625 square miles and 169

census tracts. In this virtual city, it is assumed that calls arrive according to a
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Poisson distribution and β value for each tract is inversely proportional to its

distance from the centroid of the city.1.

In the first experiment, we tried to find the best C (travel time penalty for

an idle vehicle). We first set the Threshold (the coverage threshold for triggering the

optimization model) to be 0.8. We incremented the value C by two starting from

one. We ran the simulation model 10 times using different random number seeds.

We compared the percentage of calls which could not be reached within the desired

time window for different scenarios. This desired time window is the same as the

one used for calculating ψsr in the optimization model. Table IV.1 shows the

percentage of missed calls for different Cs for ten different random numbers. By

default, it is assumed while vehicles are traveling between stations for repositioning

the are considered as unavailable and do not provide coverage. The last row in

Table IV.1 considers the case when vehicles provide coverage at the destination

station while repositioning.

In order to find the best C for our model, we follow a simple procedure. In

this procedure, we eliminate any C value which has caused an increase in

percentage of missed calls. Among the remaining C values, we select the one which

has the lowest value of missed calls. Using this procedure, we obtained C = 3 as

the best value for our optimization model when the threshold, α is set to 0.8.

As shown in Table IV.1 considering vehicles providing coverage at the

destination station, on average, the compliance rate improves approximately by 4%.

We have also let the simulation model run using ten different random number

seeds for C = 3. In all the instances, the percentage of missed calls decreased using

our optimization model. Table IV.2 shows the results for the best C value found.

In another experiment, we found the ratios between coefficients of single

coverage βr1 and double coverage βr2. Simulation was used for determining the

best combination of C and ratio of ratio = βr1/βr2. In this experiment the value

1We have tried the data of the virtual city to be similar to a medium sized city like Louisville,
KY. The number of stations and tracts we have considered are close to those of Louisville, KY.
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TABLE IV.1

Comparison of results of optimization model for different Cs given threshold=0.8

RN Seed 1 2 3 4 5 6 7 8 9 10
Wo Optimzation 0.1530 0.1586 0.1722 0.1533 0.1646 0.1601 0.1660 0.1496 0.1621 0.1565

C=1 0.1463 0.1415 0.1500 0.1479 0.1472 0.1648 0.1556 0.1471 0.1452 0.1313
C=3 0.1362 0.1359 0.1484 0.1366 0.1412 0.1437 0.1460 0.1336 0.1407 0.1470
C=5 0.1500 0.1367 0.1566 0.1391 0.1565 0.1605 0.1581 0.1268 0.1315 0.1492
C=7 0.1291 0.1356 0.1512 0.1479 0.1490 0.1580 0.1496 0.1341 0.1341 0.1455
C=9 0.1480 0.1395 0.1546 0.1528 0.1532 0.1457 0.1651 0.1380 0.1402 0.1575
C=11 0.1536 0.1437 0.1650 0.1504 0.1594 0.1691 0.1652 0.1393 0.1489 0.1520
C=13 0.1489 0.1410 0.1625 0.1526 0.1560 0.1573 0.1548 0.1637 0.1465 0.1617
C=15 0.1680 0.1588 0.1713 0.1565 0.1571 0.1622 0.1696 0.1432 0.1541 0.1533
C=17 0.1600 0.1560 0.1643 0.1539 0.1707 0.1643 0.1575 0.1578 0.1520 0.1536
C=19 0.1690 0.1699 0.1632 0.1595 0.1706 0.1674 0.1710 0.1690 0.1369 0.1758
C=21 0.1640 0.1483 0.1746 0.1605 0.1847 0.1711 0.1704 0.1652 0.1660 0.1665
C=23 0.1662 0.1572 0.1843 0.1731 0.1608 0.1751 0.1776 0.1668 0.1549 0.1804
C=25 0.1743 0.1549 0.1929 0.1764 0.1753 0.1790 0.1835 0.1541 0.1732 0.1626
C=27 0.1737 0.1807 0.1944 0.1777 0.1896 0.1796 0.1857 0.1916 0.1776 0.1884
C=29 0.1680 0.1637 0.2073 0.1692 0.1929 0.2020 0.1994 0.1787 0.1689 0.1737
C=31 0.1770 0.1821 0.2015 0.1752 0.1845 0.1975 0.1981 0.2054 0.1755 0.1885
C=33 0.1875 0.1787 0.1869 0.2032 0.1914 0.1975 0.2080 0.1728 0.1847 0.1882

Coverage in 0.1211 0.1136 0.1257 0.1159 0.1138 0.1198 0.1212 0.1346 0.1121 0.1192
repositioning

TABLE IV.2

Results of best travel time penalty, C, found

RN Seed 11 12 13 14 15 16 17 18 9 20
WO Optimization 0.165 0.148 0.142 0.163 0.153 0.160 0.171 0.159 0.149 0.165

Optimization Model 0.140 0.129 0.135 0.150 0.133 0.154 0.147 0.146 0.136 0.155
Results for C = 3
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TABLE IV.3

Comparison of results of the optimization model and Gendreau et al.(2001)

RN Seed 1 2 3 4 5 6 7 8 9 10
Genderea:2001 Model 0.137 0.155 0.138 0.139 0.152 0.158 0.157 0.140 0.140 0.141

Proposed Model 0.112 0.133 0.119 0.116 0.120 0.126 0.126 0.113 0.117 0.132

of ratio changed from one to eight and C from one to 15. We ran five replications,

and the combination of ratio = 7 and C = 7 resulted the best performance.

In a separate experiment, we compared our optimization to the one presented

in Gendreau et al. (2001). In this experiment to avoid the effect of travel time

penalty, we have set the travel time penalty to 0 (which is C in our optimization

model and M t
jl in Gendreau et al. (2001)). We have set α to 0.9 in both models (as

suggested in Gendreau et al. (2001)). Table(IV.3) shows the results of both models.

As shown in this table for all of the cases, the proposed model was able to provide

more favorable solutions.

D Conclusions

In this chapter, we have considered the problem of real time relocation of

EMS vehicles. We have introduced a new linear programming model for this

problem. After that, we developed an event based simulation model to first tune the

parameters of the mathematical model and second evaluate the benefit of applying

the model. The simulation was able to set the mathematical model parameters. It

was shown how setting different parameters can affect the performance of the

system. The simulation results show that the model can significantly reduce the

number of missed calls even if we assume that the vehicles cannot respond to any

calls while repositioning. Additionally, when we compared the model with one of

the well-known models in the literature (Gendreau et al. (2001)), it was shown that

the proposed model can provide high quality solutions in the studied virtual city.
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CHAPTER V

DISPATCHING EMS VEHICLES TO PATIENTS AND

THEIR CHOICE OF HOSPITALS

A Introduction

In this chapter, the problem of dispatching vehicles is considered in a more

general way. Despite Chapter III in this chapter, the dispatcher cannot determine

the hospital for an ambulance; hence, the EMS vehicles transport patients to the

hospitals which they have requested.

The problem is to assign vehicles to patients. For the high priority patient,

always the closest vehicle is dispatched to serve the patient. An ambulance serving

a high priority patient cannot serve any other patient. On the other hand, an

ambulance serving a low priority patient can serve more than one patient.

The following assumptions are made:

1. An idle ambulance can serve any patient.

2. An ambulance can transport the patient to a hospital which the patient

has requested.

3. An ambulance which has been rerouted cannot be rerouted any more until

it is finished with the current task.

4. An ambulance en route to a high priority patient or transporting a high

priority patient cannot be rerouted.

5. An ambulance serving a low priority patient can serve more than one

patient.

6. Routing software packages can provide us the route between each pair of
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nodes.

7. Each patient has a desired time window to be reached by an ambulance.

8. Each patient has a desired time window for spending in ambulance to be

transported to hospital.

Unlike Chapter III, the high priority and low priority patients are not

considered in one mathematical model, and each of these patients is considered in a

separate mathematical model.

In other words

1. For the high priority patient: Always the closest vehicle is dispatched

2. For the low priority patient:

2.1. When the number of busy vehicles is less than a threshold: a vehicle is

dispatched which can reach the patient in his/her desired time window and its

dispatch has the least effect on coverage.

2.2. When the number of busy vehicles is more than a threshold: a vehicle is

dispatched which is idle or transporting a low priority patient while ensuring that it

can satisfy the time window constraints. Otherwise, it will be treated similar to 2.1

Considering the above scenarios, 1 and 2.1 are relatively easy problems to

solve, however the problem in 2.2 is harder to solve. In the remainder of this

chapter we will describe the methods to solve this case.

B Problem Description and Mathematical Formulation

The EMS dispatching problem (EMSDP) assigns vehicles to patients so that

the total travel distance is minimized while the times that the vehicle arrives at the

patient scene and delivers the patient to the hospital are within specified time

windows. We categorize patients as low priority and high priority patients, and

assume that an ambulance serving a low priority patient can serve one more patient.

Thus, vehicles that are idle, or transporting a low priority patient, or en route to

serve a low priority patient are considered in our model. In other words, we exclude
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those vehicles that are en route to high priority patients or are transporting them.

Specific assumptions in the model are as follows:

• An idle ambulance can serve any patient.

• An ambulance transports the patient to a hospital that is pre-determined

either by patients or EMS staff.

• An ambulance serving a high priority patient cannot serve another patient.

• An ambulance can be rerouted after it finishes its current task.

• An ambulance serving a low priority

patient can serve one more patient.

• Routing software packages can provide us the route between each pair of

nodes.

• Each patient has a desired time window to be reached by an ambulance.

• Each patient has a desired time window to finally arrive at the hospital.

In the literature, Krumke et al. [49] study the vehicle dispatching problem

with at most two requests (VDP2), which simply dispatches vehicles to serve

requests with each vehicle serving at most two requests, so that the total

transportation cost is minimized. Note that unlike a k-customer VRP (e.g.,

Haimovich et al. [36]), all vehicles in VDP-2 are geographically dispersed and thus

are not necessarily based at one depot. Furthermore, Krumke et al. [49] how that

the VDP2 is NP-complete. In analyzing the computational complexity for the

EMSVPTP, we demonstrate that essentially VDP2 is reducible to the EMSVPTP in

polynomial time.

Below, we first formally introduce the VDP2 in [49], and then show that the

vehicle dispatching problem with two requests and a common destination depot
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(VDP2CDD), a slight variation of VDP2, is NP-complete. Finally we establish the

proof that the EMSVPTP is NP-complete through the reduction from VDP2CDD.

Vehicle Dispatching Problem with two Requests (VDP2) ([49])

Given a set of requests R, a set of vehicles U (|U | ≤ 2|R|), cost

function c : (U ∪R)× (U ∪R) 7→ R+, the vehicle dispatching

problem with two requests (VPD2) finds a tour tu = (u, ru,1, ru,l(u))

for each vehicle u ∈ U that serves l(u) ≤ 2 requests, such that each

request is served in exactly one tour and the total cost of all tours is

minimized.

Vehicle Dispatching Problem with Two Requests and a

Common Destination Depot (VDP2CDD) Given a set of requests

R, a set of vehicles U (|U | ≤ 2|R|), a common destination depot d,

cost function c : (U ∪R)× (U ∪R ∪ {d}) 7→ R+, the vehicle

dispatching problem with two requests and a common destination depot

(VDP2CDD) finds a tour tu = (u, ru,1, .., ru,l(u), d) for each vehicle

u ∈ U that serves l(u) ≤ 2 requests, such that each request is served in

exactly one tour, all tours end at d and the total cost of all tours is

minimized.

The VDP2CDD is NP-hard.

Proof. Consider any VDP2 instance (R,U, c). Construct a VDP2CDD

instance (R,U, c, d), where c(r, d) = a 6= 0 for all r ∈ R. As described, the

construction of VDP2CDD can be done is polynomial time. In addition, any

optimal solution to VDP2 solves the above constructed VDP2CDD and vice versa.

In Krumke et al. [49], it is shown that the decision version of the VDP2 is

NP-complete, thus VDP2 is NP-hard. Therefore, VDP2CDD is NP-hard.

To establish the complexity proof for the EMSVPTP, next we restate the

EMSVPTP as follows.
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EMS Vehicle Patient Transportation Problem (EMSVPTP)

Given a set of patients P and a set of their corresponding requested

hospitals H = {h(p)|∀p ∈ P} (|H| = |P |), a set of vehicles V

(|V | ≤ 2|P |) each with a capacity of k patients, cost function

s : (V ∪ P ∪H)× (V ∪ P ∪H) 7→ R+, the EMS vehicle patient

transportation problem (EMSVPTP) finds a tour

tv = (v, pv,i1, pv,i2, · · · , pv,il(v), hv,il(v)+1
, hv,il(v)+2

, · · · , hv,i2l(v)) for

each vehicle v ∈ V that serves at most l(v) ≤ k patient requests, i.e.,

picks up each patient and drops each patient off at the requested

hospital, such that each patient is served in exactly one tour and the

total cost of all tours is minimized.

Note that in the above definition for EMSVPTP, (i1, i2, · · · , i2l(v)) is a

permutation for {1, 2, · · · , 2l(v)}. Further, if patient p0 is the imth stop for

vehicle v in its tour and its associated hospital h0 = h(p0) is the inth stop for the

vehicle, i.e., p0 = pv,im , h0 = hv,in and h0 = h(p0), then in > im.

Below, Theorem B establishes the NP-hardness result for the EMSVPTP

with k = 2 from the reduction of the VDP2CDD problem in Lemma B in

polynomial time.

The EMS patient transportation problem with k = 2 is NP-hard.

Proof. Consider any instance of VDP2CDD (R,U, c, d). To construct an

equivalent EMSVPTP with k = 2, let V = U , P = R, s = c, and

H = {d, d, ..., d}, i.e., all of destination hospitals are at the same location.

Clearly, the EMSVPTP(V, P,H, s) problem can be constructed in polynomial time.

Let t∗ = {t∗u}u∈U be an optimal solution to VDP2CDD. Then, for each

vehicle u, the optimal tour serves either one or two requests.

(i) If u ∈ U serves one request , i.e., t∗u = (u, r∗u,1, d), then the corresponding

solution to the EMSVPTP with k = 2 is w∗v = (v, p∗v,1 = r∗u,1, h = d).
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(ii) If u ∈ U serves two requests , i.e. t∗u = (u, r∗u,1, r
∗
u,2, d), the corresponding

solution to the EMSVPTP with k = 2 is w∗v = (v, p∗v,1, p
∗
v,2, h = d).

Note that the (ii) is true because both requests have the common destination.

We show that {w∗v}v∈V is optimal to the above-constructed EMSVPTP with

k = 2 by contradiction. If there exists a solution w̄ = {w̄v∈V } with total cost∑
v s̄v ≤

∑
v s
∗
v, then solution w̄ will induce an alternative solution t̄ using (i)-(ii)

with lower cost for VDP2CDD. This contradicts that t∗ is an optimal solution to

VDP2CDD. Thus, any optimal solution to VDP2CDD solves the above constructed

EMSVPTP. Similarly, it can be shown that any optimal solution w∗ to the

EMSVPTP with k = 2 solves the VDP2CDD. Thus, the VDP2CDD is equivalent

to the so constructed EMSVPTP. From Lemma B, EMSVPTP with k = 2 is

NP-hard.

Due to the above complexity results for EMSVPTP, we focus on developing

efficient heuristic methods for solving EMSVPTP in a real-time decision support

system. Because the current paper deals with the EMSVPTP with k = 2 as a

prototype problem, in subsequent sections we refer to the EMSVPTP with k = 2

simply as EMSVPTP without explicitly specifying k = 2.

C Mathematical Formulation

Given the above problem description and assumptions, we model the EMSDP

as a VRPPD. In this problem, patients’ requests are considered as pickup nodes and

the hospital associated with each patient request is defined as a delivery node.

Similar to VRPPD, patients (pick up nodes) are required to be visited prior to

associated hospitals (delivery nodes). Several characteristics unique to EMSDP are

as follows. First, in EMSDP each ambulance can service at most two patients.

Second, if different patients (pick up nodes) choose the same hospital, we treat these

hospitals as different delivery nodes. In the other words, each request is associated

with a unique combination of pick-up and delivery nodes. Third, if an ambulance is
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already transporting a patient, we consider the location of that patient (a request

node) to be the same as the location of the ambulance. Finally, similar to VRP,

each ambulance starts from a depot and ends at a depot. In EMSDP, we assume the

“virtual origin depots” to be at the current locations of ambulances, and the “virtual

destination depots” to be the last hospital visited by that the ambulances would go.

In such a setting, the travel time from hospitals to the destination depots is zero.

The objective is to minimize the travel time for EMS vehicles. Also, we

ensure that each patient is served in a desired time window by putting on visiting

pickup and delivery nodes. The time window for a pick up node is regarded as a

time window which a patient has to be served in; likewise the time window for a

delivery node is a time window which within that a patient has to be dropped off at

the hospital. Hence, we do not consider the patient waiting time in our objective

function and consider their requirements as our hard constraints.

In order to formulate the EMSCP as linear integer program, we define the

following sets and parameters:

Sets:

V = VP ∪ VH Set of vehicles

VP Set of vehicles which are idle or en route to serve patients

VH Set of vehicles en route to hospitals

P Set of patient locations

H Set of hospitals requested by patients

N = P ∪H All nodes including patient locations and hospitals

O Set of origin points of vehicles which are tied to vehicles

D Set of final destination of vehicles.
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Parameters:

tij The driving time between points i and j

ψj The desired time by which point j must be visited by an ambulance

Ord(k) Order of vehicle k in set of VH

n The total number of patients including those in ambulances

q The number of patients who have not yet been picked up

o(k) Location of vehicle k

d(k) Final destination of vehicle

i(k) Patient that vehicle k is transporting

Let binary variable xijk be 1 if vehicle k goes from location i to j and 0

otherwise. In addition, we use Tik to represent the time that vehicle k arrives at i.

Using the above notation, we formulate the EMSDP as the following mixed

integer program.
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(EMSDP) min
∑
ij∈N

∑
k∈V

tijxijk (V.1)

s.t.
∑
i∈N

∑
k∈V

xijk = 1, ∀j ∈ P (V.2)

∑
j∈N

xijk −
∑
j∈N

xj(n+i)k = 0, ∀i ∈ P, ∀k ∈ V (V.3)

∑
j∈P

xo(k)jk = 1, ∀k ∈ V P (V.4)

xo(k)i(k)k = 1, ∀k ∈ V H (V.5)∑
i∈N∪o(k)

∑
j∈P

xijk ≤ 2, ∀k ∈ V (V.6)

∑
i

xijk −
∑
i

xjik = 0, ∀j ∈ N, ∀k ∈ V (V.7)

Tik + ti,n+i,k ≤ Tn+i,k, ∀i ∈ P, ∀k ∈ V (V.8)

Ti,k ≤ ψi, ∀i ∈ N, ∀k ∈ V (V.9)

Tjk ≥ Tik + tijk −M(1− xijk), ∀i, j ∈ N, ∀k ∈ V

(V.10)

Equation (V.1) minimizes the total travel time for vehicles transporting low

priority patients to arrive at hospitals. Note that these vehicles will not serve any

other patients. Constraint (V.2) states that each patient is to be served by a

vehicle. Constraint (V.3) states that each vehicle must transport the patient to the

designated hospital for the patient. Constraint (V.4) states each en-route vehicle is

to be assigned to a patient. Constraint (V.5) ensures that a vehicle en-route to

hospital is assigned to its patient. One important key point in this model is related

to those patients which are already on board and being transported to a hospital.

In order for our model to ensure that these patients are served by the same vehicle,

we have defined i(k) which in constrain V.5 it is ensure that these patients are

served by the same vehicle. Constraint (V.6) states that a vehicle can serve

maximum two patients. Constraint (V.7) states any vehicles going to a patient or a
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hospital must depart from that location. Constraint (V.8) states that the time at

which a vehicle arrives at a patient location must be less than by which the time

that the vehicle must arrive at the designated hospital. Constraint (V.9) states that

each node has to be visited in the desired time window. Finally, constraint (V.10)

calculates the time that a vehicle visits either a patient or a hospital.

D Obtaining Lower Bound

In this section we present a column generation approach for obtaining good

lower bounds for the EMSVPTP. We first present the basics of applying the column

generation technique to the general VRP similar to many works in the literature

(e.g., Desrochers et al. (1992) , Xu et al.(2003), Fillet (2004) and Ropke and

Cordeau (2009). Then we discuss a special pricing algorithm for solving the sub

problem in the column generation method for the EMSVPTP.

1 Preliminaries

In the literature, many have used the column generation technique to solve

the VRP through a reformulation of the set covering problem (e.g., Xu et al.(2003).

When considered as a set covering problem, the vehicle routing problem is to

determine the set of routes with the minimum total travel cost given the entire set

of all possible routes.

More formally, let aiku = 1 if route u visits node i by vehicle k and 0

otherwise, and cku be the cost of route u for vehicle k. In addition, let Ω be the set

of all feasible routes and Ω1 ⊆ Ω be an arbitrary subset of Ω. Suppose decision

variable θku = 1 if route u is served by vehicle k and 0 otherwise. Then, our

problem (which we have shown that it is a VRP) can be written compactly as a set
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covering problem as follows:

(VRP-SC) min
∑
k∈V

∑
u∈Ω

ckuθku (V.11)

s.t.
∑
k∈V

∑
u∈Ω

aikuθku ≥ 1, ∀i ∈ N (V.12)

∑
u∈Ω

θku ≤ 1, ∀k ∈ V (V.13)

θku ∈ {0, 1}. (V.14)

Note that in (VPR-SC) the time window constants have already been

addressed in defining feasible routes. The column generation approach starts with a

subset of routes Ω1 to solve the following (restricted) master problem of (VRP-SC).

(MP) min
∑
k∈V

∑
u∈Ω1

ckuθku (V.15)

s.t.
∑
k∈V

∑
u∈Ω1

aikuθku ≥ 1, ∀i ∈ N · · ·λi (V.16)

∑
u∈Ω1

θku ≤ 1, ∀k ∈ V · · ·ωk (V.17)

θku ∈ {0, 1}, ∀k ∈ V. (V.18)

When solving the linear relaxation of the master problem (MP), we can

obtain a lower for our problem. (It is a lower bound not the optimal solution

because linear relaxation of the problem is solved). Let λi and ωk be the dual

variables associated with constraints (V.17) and (V.18), respectively. Then, the

subproblem of minimizing the reduced cost for all routes u ∈ Ω is solved. If the

minimum reduced cost is zero, then the optimal route is found; otherwise, we

update Ω1 by including the reduced-cost minimizing route and resolve the master

problem (MP). Therefore, many refer to the subproblem as the “pricing” problem.

Rather compactly, the subproblem can be written as:

(PP) : min
u∈Ω
{−

∑
i∈N

aikuλi + ωk + cku}
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Let bijku = 1 if route u uses vehicle k to visit arc (i, j) and 0 otherwise.

Then, aiku =
∑

j∈N bijku and

cku =
∑

(i,j)∈(N∪O)×N bijkutij =
∑

i,j∈N bijkutij +
∑

j∈N bo(k)jkuto(k)j . Thus,

the objective function in (PP) can be simplified as

cku−
∑
i∈N

aikuλi +ωk =
∑

i,j∈N

bijku(tij−λi)+
∑
j∈N

bo(k)jkuto(k)j +ωk. (V.19)

In other words, the travel cost between nodes is (ti,j − λi) for i, j ∈ N and

(to(k),j + ωk) for (o(k), j) ∈ O ×N . Therefore, the subproblem (PP) can

considered as an elementary shortest path problem with resource constraints

(ESPPRC) (see e.g., Desrochers et al(1992) and Ropke and Cordeau (2009), where

the resource constraints correspond to the time window constraints in the

underlying route selection.

2 A Labeling Method for Solving the Pricing Problem

In order to solve the pricing problem (PP) as an elementary shortest path

problem with resource constraints, we propose a method similar the Dijkstra

algorithm (e.g., Fillet (2004). Specific to our EMS vehicle patient transportation

problem are the labels associated with each node:

Label Description

l.VisitedPatients: patients who have been picked up in route u

(either delivered or not delivered)

l.NotDeliveredPatients: patients who have been picked up

in route u but not delivered yet

l.Cost: reduced cost of the route calculated by (V.19)

l.Time: time of the route

In addition, several domination rules are used to facilitate efficient computing

of the shortest paths. Particularly, route l1 dominates l2 if: 1) l1.Cost ≤ l2.Cost;
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and 2) l1.Time ≤ l2.Time; and 3) l1:VisitedPatients ⊆ l2:VisitedPatients; and 4)

l1.NotDeliveredPatients ⊆ l2.NotDeliveredPatients.

Furthermore, the shortest paths are dynamically extended from the origin,

i.e., EMS vehicle’s current location, to the destination, i.e., hospitals for the last

patient. We develop an “Extend” function to perform this task. Particularly, the

“Extend” function of route u to node i returns four labels (Cost, Time,

VisitedPatients, and NotDeliverdPatients) for node i if the extension to node i is

feasible with respect to time window constraints, or nothing is returned otherwise.

Let j b the last node visited by route u. When extending route u to node i, Cost

label is incremented by (ti,j − λi), and Time label by (ti,j). If node i is a patient

node, then it is added to VisitedPatinet and NotDeliveredPatient sets.If node i is a

hospital node, its associated patient is deleted from NotDeliveredPatient label.

After that, the feasibility of route is examined. l.T ime ≤ T imeWindow(i) and

not more than two patients nodes cannot be in VisitedPatient label. If these criteria

is met then route u is extended to node i; otherwise null is returned.

Let L and NL be the set of all labels and the set of all labels with negative

reduced costs, respectively. Then, using the above labels, domination rules and

“Extend” function, the labeling method for the pricing problem (PP) can described

in Subroutine 4 below.

Subroutine 4. The Labeling Method for (PP)

ucandidate = F(λi, ωk)i∈N,k∈V

Step 0. (Initialize)

Create label associated with each node i ∈ N

L = O

For all l ∈ O {l.NotDeliveredPatients = 0, l.T ime = 0, l.Cost = 0, l.V isitedPatients = 0 }

Step 1. Find a label with the smallest Cost value.

Let the label associated with that be l and the node associated with l, be j

Step 2. Scanning label l

Step 2.1) Delivering Patients

If (l.NotDeliveredPatients is Empty) Then
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get the associated Cost with that.

If (l.Cost < 0) Then NL = NL ∪ l

Else

For all i ∈ l.NotDeliveredPatients

Extend label l by going to node hi (delivering i) .

Compare the new label lhi with all labels of node hi, Lhi .

If lhi is dominated by a label in Lhi , then lhi is deleted.

Delete all of the labels in Lhi dominated by lhi

EndFor

EndIf

Step 2.2) Picking up Patients

If ( |l.V isitedPatients| ≤ 2 Then

For all (i ∈ P )

If (i /∈ l.V isitedPatients) Then

Extend label l by going to node i .

Compare the new label li with all labels of node i, Li.

If li is dominated by a label in Li , then li is deleted.

EndIf

EndFor

EndIf

Step 3. Let L = L \ l.

If (L = ∅) Then

STOP.

Else

go to Step 1.

EndIf

Step 4. Return the route associated with the label with most negative cost in NL.

E Conclusions

In this chapter, we consider EMS dispatching problem during an emergency

that minimizes the total travel distance by all vehicles while ensuring all patient

requests are served with pre-specified time constraints. In order to better utilize the
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EMS vehicles’ capacity, we propose that each EMS vehicle can serve at most two

patients. We present a mixed integer program formulation for the EMSDP problem,

similar to the vehicle routing problem with pickup and delivery. We have designed

an algorithm for calculating lower bound using column generation method.
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CHAPTER VI

HEURISTIC ALGORITHMS FOR DISPATCHING AND

RELOCATING EMS VEHICLES

A Introduction

In this chapter, we present two heuristic algorithms for solving the

mathematical problems in chapters IV and V. First, we present a heuristic for

solving a coverage problem (presented in Chapter IV). After that a heuristic is

presented for solving the dispatching problem. We present the results for each of

these heuristics at the end of each section.

B Heuristics for The EMS Vehicle Coverage Problem

In order to solve the above model, the following algorithm has been designed.

We have tried a variety of heuristic search algorithms for solving this coverage

problem. In here, we only present an algorithm which performed the best. This

algorithm has two modules. The first one generates an initial solution. And , the

last one is a simulated annealing.

1 Obtaining an Initial Solution

In order to obtain an initial solution, at the first, ambulances are assigned to

the closest home station.

In this module, idle vehicles which have not been assigned to any patient will

keep their last destinations and if they dont have any destination, the closest EMS

station is assigned to them. This algorithm is described as follows.
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Step0. Set all of zis s equal to 0.

Step 1. For idle vehicles, keep their destination i.e. ∀i ∈ VE and∑S
s=1 zis = 1 set zis = z0

is.

Step 2. Assign vehicles which are idle and dont have any destination, to the

closest EMS station i.e. If i ∈ V E, and
∑S

s=1 z
0
is = 0, then : set zis = 1 such that

Tis = MinTis|s = 1, .., S

2 A Simulated Annealing Algorithm

In this module, an ambulance is randomly assigned to an EMS station. This

is the last search module which tries to escape from a bad local optimum which the

previous greedy algorithm might have found. This module is described as follows.

Randomly, one home station and one ambulance are selected. Then if there is

an improvement from the last solution it is saved otherwise with the probability of

exp(−differenceintheobjfn)/T the new solution is accepted. Total number of iteration

is almost one twentieth of all of the possible solutions for coverage problem. The SA

module is shown in below. In the algorithm, the total number of iterations is

dependent upon the number of vehicles. A variable named MaxIteration is

defined set to int((I + 1)/5) ∗ 20, 000. The total number of iteration in each

temperature is set to one tenth of MaxIteration

Step 0: Set the z1=(Current Solution) ; set incumbent=z1 ; T=T(0) and

Counter=0.

Step1: Set N(T)=0.

Step2. If N(T)¿ MaxIteration go to Step7.

Step3: Randomly select an ambulance and a base and allocate that

ambulance to that base and let this solution be z2.

Step4. Calculate the difference in the objective between z1 and z2 and set it

equal to dif . (d = f(z2)− f(z1)).

Step5. Generate a Random Number = RND.
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Step6: If (dif¡0) or (RND¡e−dif/T ) then z1 = z2.

Step7: If (dif¡0) Set the incumbent= z1.

Step8: N(T)=N(T)+1 and Counter= Counter+1 and go to Step 2.

Step9. If Counter ≥MaxIteration/10, go Step 11 otherwise go to Step

10.

Step 10: T=0.9*T and go to Step1.

Step 11. Go to Step 8 in Module 3.1.

3 Numerical Results

Visual Basic is used to implement the simulated annealing heuristic, and

Lingo called from C# are used to model and solve the mixed integer. In order to

evaluate the proposed simulated annealing heuristic for the real time coverage

problem, we have considered a virtual city. In our numerical experiment, all test

instances are generated randomly in this virtual square city with the dimension of

50 miles by 50 miles. The location of patients and vehicles are chosen based on

uniform distribution within the city. We have considered 23 stations which their

locations remain the same in all instances.

As shown in Table(VI.1) out of 60 instances, the SA algorithm was able to

find the optimal solution in 58 instances. The results show that the SA can be

successfully implemented in medium size departments when the number of vehicles

and stations are around the values in Table(VI.1)

C Heuristics for Dispatching EMS Vehicles to Patients and Their

Choice of Hospitals

1 A Simulated Annealing Algorithm

This section develops a meta-heuristic method for the EMSVPTP using the

simulated annealing approach. We define a pairwise exchange type of neighborhood
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TABLE VI.1

Comparison of results of optimization model with simulated annealing for Coverage
Problem

Instance No SA IP Gap Instance No SA IP Gap
No of Vehicles Model No of Vehicles Model
1 30 15066.78 15066.78 0 31 40 15004.35 15004.35 0
2 30 15013.11 15038.29 0 32 40 15002.28 15002.28 0
3 30 15069.53 15069.53 0 33 40 14996.29 14996.29 0
4 30 15045.89 15045.89 0 34 40 14960 14997.02 0
5 30 15064.74 15064.74 0 35 40 15013.21 15013.21 0
6 30 15074.25 15074.25 0 36 40 14828.55 15015.28 0.01
7 30 15043.75 15043.75 0 37 40 14995.85 14995.85 0
8 30 15045.05 15045.05 0 38 40 14973.84 14973.84 0
9 30 15073.52 15073.52 0 39 40 15020.13 15020.13 0
10 30 15064.93 15064.93 0 40 40 14964.17 14964.17 0
11 30 15060.78 15060.78 0 41 50 14956.41 14956.41 0
12 30 15063.23 15063.23 0 42 50 14976.55 14976.55 0
13 30 15080.60 15080.60 0 43 50 14888.18 14948.90 0
14 30 15066.78 15066.78 0 44 50 14946.38 14946.38 0
15 30 15060.65 15060.65 0 45 50 14938.96 14938.96 0
16 30 15034.45 15084.20 0 46 50 14950.39 14950.39 0
17 30 14787.94 15037.85 0.02 47 50 14993.34 14993.34 0
18 30 15058.40 15058.40 0 48 50 14935.47 14935.47 0
19 30 15000.36 15054.32 0 49 50 14968.86 14968.86 0
20 30 15022.07 15022.07 0 50 50 14954.40 14954.40 0
21 40 15014.72 15014.72 0 51 50 14952.29 14952.29 0
22 40 15006.52 15006.52 0 52 50 14943.69 14943.69 0
23 40 14977.64 14977.64 0 53 50 14958.73 14958.73 0
24 40 15010.89 15010.89 0 54 50 14966.25 14966.25 0
25 40 14999.54 14999.54 0 55 50 14938.34 14938.34 0
26 40 14960.69 14960.69 0 56 50 14917.31 14917.31 0
27 40 15015.40 15015.40 0 57 50 14962.55 14962.55 0
28 40 14987.87 14987.87 0 58 50 14964.22 14964.22 0
29 40 15015.97 15015.97 0 59 50 14938 14938 0
30 40 14965.67 14965.67 0 60 50 14941.92 14941.92 0
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function/search in Subroutine 2, followed by Subroutine 3 which describes how we

optimally sequence the nodes visited by a vehicle once the selections of nodes are

determined for all vehicles. Finally, Subroutine 4 conducts a specialized local search

aiming to introduce more diverse solutions at later stage (with lower temperatures)

of the SA procedure. We refer to the combination of this local search with the

pairwise exchange neighborhood search as the “hybrid” method in this and

subsequent sections.

In particular, Subroutine 1 uses {(ni, nj, p
1
i , p

2
i , p

1
j , p

2
j)}i,j∈V to denote a

pair of patient assignments pertaining to vehicles i and j that are en route either to

patient scenes or to hospitals, where ni and nj are the numbers of patients assigned

to vehicles i and j, respectively. Note that if i ∈ V P , then 1 ≤ ni ≤ 2, and if

i ∈ V H , then 0 ≤ ni ≤ 1. In addition, pik and pjk for k = 1, 2 are the two

patients served by vehicles i and j, respectively. Note that it is possible that

plk = ∅ for k = i, j and l = 1, 2. Using this notation, the neighborhood function

in Subroutine 1 performs pairwise swaps on patients in all currently busy vehicles.

First, two vehicles are randomly chosen. Second, we randomly select one patient

from each vehicle and swap them. Note that because a patient in a vehicle can be

an empty set as described previously, such a swap has three possible outcomes: 1)

swapping two patients between the two chosen vehicles when both selected patients

are non-empty set; 2) moving one patient from one vehicle to the other when one

patient is indeed an empty set and the other patient is not; 3) doing nothing when

both patients are empty set. Subroutine 1 excludes all swaps with outcome 3).

Finally, sequence optimization Subroutine 3 is performed after a random feasible

swap.

81



Subroutine 1: The Pairwise Exchange Neighborhood Function

X̄ = (n̄i, n̄j, p̄
1
i , p̄

2
i , p̄

1
j , p̄

2
j )}i,j∈V = N (X = {(ni, nj, p

1
i , p

2
i , p

1
j , p

2
j )}i,j∈V )

Step 0: (Initialize the neighbor solution)

(n̄i, n̄j, p̄
1
i , p̄

2
i , p̄

1
j , p̄

2
j ) = (ni, nj, p

1
i , p

2
i , p

1
j , p

2
j ) for all (i, j) ∈ V .

Step 1: (Select the patients to swap from vehicles i and j)

Loop l = i, j

if l ∈ V P , then choose randomly one patient index kl =rand(1,2);

if l ∈ V H , then choose patient index kl = 1;

EndLoop

Step 2: (Swap selected patients in vehicles i and j)

If pki

i 6= ∅ and p
kj

j 6= ∅, Then p̄ki

i = p
kj

j , p̄
kj

j = pki

i );-

-(if both patients are non-empty then swap them)

Else (perform only two type of feasible swaps)

Loop a = i, j

b = {i, j}\{a};

If pka
a = ∅ and pkb

b 6= ∅, Then p̄ka
a = pkb

b , p̄
kb

b = pka
a , n̄a = n̄a + 1, n̄b = n̄b − 1);

EndLoop

Step 3: (Optimize the routes in vehicles i and j)

Loop l = i, j

if l is idle or enroute to a patient find the best possible sequence from all possible

six sequences(see Subroutine 2);

if l is transporting a patient, find the best possible sequence from all possible three

sequences(see Subroutine 2);

EndLoop

Subroutine 2 OptimizeSequence determines the best sequence of all nodes to

be visited vehicle k when it serves two patients. In this case, at most six possible

sequences exist because there are, at most, two patients and two hospitals to be

visited by a vehicle, and each patient is visited before the associated hospital. In

particular, let 1 ≤ ρ ≤ 6 be the sequence index, p1 and p2 be the two patients and

h1 and h2 be their respective hospitals. Then sequences 1 through 6 are defined as

follows. For example, in sequence 3 vehicle k visits patient p1 first, followed by

his/her hospital h1, then patient p2 and finally the his/her hospital h2.
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sequence index ρ the actual sequence

1 (k, p1, p2, h1, h2)

2 (k, p1, p2, h2, h1)

3 (k, p1, h1, p2, h2)

4 (k, p2, p1, h1, h2)

5 (k, p2, p1, h2, h1)

6 (k, p2, h2, p1, h1)

Using this notation, Subroutine 2 examine all applicable sequences l through

u (l ≤ u) for vehicle k in serving patient j with X being the associated solution. If

improvement is found, the subroutine will update X with the optimal sequencing.

Note that for vehicle k ∈ V P , all six sequences are feasible, hence l = 1 and

u = 6. However, for vehicle k ∈ V H , because only sequences 1 through 3 are

feasible, l = 1 and u = 3.

Subroutine 2: OptimizeSequence(X̄, k, j, l, u)

Loop ρ = l, · · · , u // l through u are the applicable sequence indices

Calculate times to reach the first and second patient g1(ρ) and g2(ρ);

Calculate times to transport the first and second patient to their respective hospitals-

-g3(ρ) and g4(ρ);

If gl(ρ), l = 1, 2, 3, 4 are all feasible, Then

Evaluate the new objective value associated with sequence ρ, i.e., Obj(ρ);

If Obj(ρ) < BestObj Then

Assign patient j to vehicle k using sequence ρ and update solution X̄;

BestX=X̄;

BestObj=Obj(ρ);

EndLoop

Return BestX

In addition to the pairwise exchange neighborhood search in Subroutine 1, we

propose a nested vehicle search (NVS) algorithm to be used in later stages of the SA

process when the temperature in the SA is relatively low. In essence, the NVS in
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Subroutine 3 attempts to diversify the solution space when the SA process starts to

concentrate its search. In Particular, starting with the current incumbent solution

thus far in the SA process, the NVS first randomly select a patient (j) and cancels

the assignment of patient p1 to its current hospital h1. Second, a local greedy

search of vehicle is performed for this patient j. This search checks all vehicles with

three possible scenarios. In the first scenario where vehicle i is assigned to only one

patient, step 1.2.1 checks if patient j can be reached by vehicle i with required time

windows. In addition, the sequence is optimized from six possible sequences as

described in Subroutine 2. In the second scenario where vehicle i is transporting a

patient to a hospital, step 1.2.2 checks all three possible sequence when performing

sequence optimization. This is because the current patient has to be the first

patient, thus making ρ = 4→ 6 infeasible in Subroutine 2. In the third scenario

where a vehicle i is assigned to serve two patients. Let j1 be the immediate patient

and j2 the second patient, then step 1.2.3 checks if swapping current patient j with

the second patient j2 can lead to a better solution. In addition, step 1.2.3 examines

if j2 can be served by either a vehicle which is assigned to a patient ( step 1.2.1) or

a vehicle en-route to a hospital (step 1.2.2). If so, the swap will be accepted. After

considering all three scenarios for patient j, the best assignment is obtained. This

process repeats for all patients other than j before a best local solution is identified.

Subroutine 3: The Nested Vehicle Search Neighborhood Function

BestX = N (X̄)

Step 0. (Initialize) Set the initial solution to the best solution obtained by SA

Step 1:// Assign vehicles to patients selected by SA based on a greedy selection

Loop j = p1, p2 going through patients selected by SA

If (j 6= 0) Then

Step 1.1: Do not assign any vehicles to patient j

Step 1.2: Select a vehicle for patient j using the following procedures

Loop k = 1, ..|V | //searching through all vehicles

Step 1.2.1: //first, examine vehicles en route to a patient and not yet -
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-being assigned to a second patient

If Vehicle k ∈ V P and it is assigned to only one patient Then

Obtain X̄ resulted from assigning patient j to vehicle k using-

-OptimizeSequence(X̄, k, j, 1, 6)

EndIf

Step 1.2.2: // second, examine vehicles en route to a hospital

If Vehicle k ∈ V H and no patient is assigned to it Then

Obtain X̄ resulted from assigning patient j to vehicle k using-

-OptimizeSequence(X̄, k, j, 1, 3)

EndIf

Step 1.2.3:// third, examine vehicles that are assigned to two patients-

-with different requested hospitals,

If k ∈ V P and it is assigned to two patients with two different-

- hospitals Then

Examine if the second patient of vehicle k can be served by a different -

-vehicle k′ using similar processes as in Steps 1.2.1 and 1.2.2;

If a k′ is found Then

Obtain X̄ resulted from assigning patient j to vehicle k-

-using OptimizeSequence(X̄, k, j, 4, 6)

EndIf

EndIf

EndLoop // going through vehicle k

Step 1.3:

If obj ≤BestObj Then

BestX=X̄ , BestObj=Obj;

EndIf

EndIf

EndLoop // going through patient j

Step 2. STOP

2 Numerical Results

In order to evaluate the proposed simulated annealing heuristic, we used C#

to implement the SA heuristic, as well as the mixed integer model for EMSVPTP
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via the ILOG/Concert technology by CPLEX 12.4 [16]. The CPU times reported

here are from a Dell Intel(R) W3503 Processor with 2.4 GHz and a 4GBRAM on a

64-bit operating system.

Preliminary pilot studies are conducted to fine tune the parameters in the

proposed SA heuristic. From the pilot runs, the best parameter setting

recommends: 1) the initial temperature Tinit = 20 which equates to an

approximate 80% probability of accepting an uphill transition initially; 2) the choice

of the exponential cooling function Tk = T0α
k with α = 0.9; 3) the total epoch

length L = 10000 and total length Ltotal = 100000.

In our numerical experiment, all test instances are generated randomly in a

virtual square city with the dimension of 50 miles by 50 miles. The location of

patients and vehicles are chosen based on uniform distribution within the city. We

have considered the locations of hospitals the same in all instances.

We first compare the performance of the SA heuristic for EMSVPTP against

that of the MIP model in Section V.C by CPLEX on 43 test instances. These test

instances are of relatively small size, with the number of patients ranging between 5

and 35 and the number of EMS vehicles ranging between 5 and 15. Multiple

instances are created for each combination of patient and vehicle sizes. The

comparison results are summarized in Tables VI.3, which displays the number of

patients and EMS vehicles for each group of instances in column 2, the objective

function value and the computational time for SA in columns 3 and 4, and for

CPLEX in columns 5 and 6. We have set the time limit for CPLEX to be 30

minutes. Also reported in Table VI.3, are the average objective function value and

CPU time for SA and CPLEX. Note that because CPLEX experienced “out of

memory” issue before termination for instance 34, we have excluded this instance

when calculating the average CPU time and objective function value.

Overall, Table VI.3 suggests that from small size EMSVPTP instances, the

average CPU time used by SA is 7.39 seconds, compared to 38.63 seconds for
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CPLEX. On the other hand, the improvement on the objective function by the SA

is about 0.016% (966.5-966.35/966.5). More specifically, in three of the 43 instances,

the CPLEX solution of is better than those of SA solution. On the other hand, for

38 out of 43 examples both solvers found the same optimal solution. Among these

instances, 21 experience less CPU time with the SA than with CPLEX. Thus, we

conclude that the proposed SA algorithm is efficient and robust, because for most

instances it was able to provide the same solution as CPLEX in much less CPU

time.

In another experiment, we compared the result of the proposed heuristic with

the results of the lower bound method described in Chapter V. Table VI.4 lists

similar information to those in Table VI.3, with the exception that column 4 is a

lower bound instead of an optimal objective value from CPLEX. Furthermore,

column 7 provides the optimality gap for the SA solution using the lower bound

from the column generation method. we generated 50 medium to large size

EMSVPTP instances whose number of patients and vehicles range between 70 and

80, and between 55 and 95, respectively. All associated master and pricing problems

for the column generation method were again solved by CPLEX via Concert

technology using C#.As previously, the maximum CPU limit for CPLEX is set as

30 minutes. As shown in Table VI.4 the solution provided by SA is very close to the

lower obtained by column generation method. The average gap of the solutions is

2.5% indicating that the SA algorithm was able to provide a solution very close to

the lower bound. Thus, Table VI.4 shows that the proposed SA algorithm provides

quality solution for large scale EMSVPTP instances.

Finally, we compare the results for the pure and hybrid SA methods. The

pure SA method refers to the SA method using purely pairwise exchange

neighborhood function in Subroutine 1, and the hybrid SA method refers to the one

using the pairwise exchange neighborhood function in Subroutine 1 and the nested

vehicle search neighborhood function in Subroutine 4. As mentioned in SA
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algorithm, preliminary tests on the hybrid method suggests that the benefit of

including the nested vehicle search neighborhood search is only significant after the

temperature in SA is relatively low. Thus the hybrid SA method only includes the

nested vehicle search when the algorithm is in final 5 % iterations.

Table VI.5 shows the results of this hybrid method. Overall, this table

suggests that the hybrid method is able to provide better solutions for 11 out of 50

instances with an average improvement on the objective value of 0.4%. For

instances 5 and 28, the improvement is larger than 1%.

D Conclusions

In this chapter, we have designed two heuristic methods for solving coverage

problem and dispatching problem independently. In the first heuristic, simulated

annealing was used to solve the coverage problem which gives recommendation for

relocating EMS vehicles in real time. Our results show that the algorithm can

efficiently provide favorable solutions for medium-sized cities. In the second

algorithm, a hybrid simulated annealing algorithm is developed to solve the

dispatching problem. Our numerical results show that the proposed method is

efficient in solving large-scale instances for EMSDP, when compared to the lower

bound obtained in Chapter V.
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TABLE VI.3

Comparison between the SA and the MIP model by CPLEX

Instance (Patients,Vehicles)
SA Method CPLEX

CPU time Objective CPU time Objective
(seconds) function (seconds) function

1 2 262.20 1 262.20
2 2 236.25 0 236.25
3 (5,5) 2 284.18 0 284.18
4 3 285.63 0 285.63
5 3 274.73 0 274.73
6 2 530.81 0 530.81
7 3 538.01 1 538.01
8 (15,5) 3 578.88 1 578.88
9 2 446.21 1 446.21
10 3 566.01 1 566.01
11 6 609.68 2 609.68
12 6 587.08 2 587.08
13 (15,10) 5 601.61 2 601.61
14 5 627.41 2 627.41
15 5 553.03 3 553.03
16 11 808.54 11 808.54
17 10 785.50 11 785.50
18 (15,15) 11 777.32 10 777.32
19 11 733.41 6 733.41
20 11 713.87 6 713.87
21 2 831.93 3 831.93
22 (25,5) 2 701.01 3 701.01
23 14 767.80 3 767.80
24 5 913.04 5 913.04
25 (25,10) 4 847.58 4 847.58
26 5 944.23 6 944.23
27 9 898.14 14 898.14
28 (25,15) 8 1030.70 19 1030.70
29 8 1000.25 18 1000.25
30 10 1114.78 50 1113.73
31 (25,20) 11 1059.30 404 1055.47
32 8 1059.88 27 1059.88
33 14 1183.19 371 1178.5
34 (25,25) 12 1109.18 out of memory
35 12 1115.84 1800 1121.22
36 3 1150.65 8 1150.65
37 (35, 5) 3 1156.25 9 1156.25
38 3 1164.39 9 1164.39
39 9 1146.83 15 1146.55
40 (35,10) 4 1213.31 11 1213.31
41 6 1211.02 14 1211.00
42 7 1269.86 17 1269.82
43 (35,15) 8 1249.56 24 1249.56

Average (excluding instance 34,35) 7.39 966.50 38.63 966.35
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TABLE VI.4

Comparison between the SA and the lower bound from column generation

Instance (Patients,Vehicles)
Column Generation SA
CPU time Lower CPU time Objectiven Gap
(seconds) bound (seconds) function

1 58 2212.98 22 2257.01 0.02
2 66 2188.19 21 2249.69 0.03
3 (70,55) 40 2528.95 21 2560.59 0.01
4 36 2544.59 22 2594.91 0.02
5 75 2139.33 23 2275.72 0.06
6 77 2826.89 23 2875.12 0.02
7 117 2592.88 24 2674.12 0.03
8 (70,65) 71 2750.32 24 2808.20 0.02
9 126 2550.82 23 2623.34 0.03
10 81 2665.34 24 2707.24 0.02
11 139 3089.35 24 3152.08 0.02
12 143 2948.28 27 3006.09 0.02
13 (70,75) 253 2531.67 25 2686.45 0.06
14 144 3028.31 27 3118.06 0.03
15 230 2586.04 24 2672.26 0.03
16 230 3129.15 29 3208.77 0.03
17 381 2845.20 29 2929.64 0.03
18 (70,85) 219 3349.72 29 3387.80 0.01
19 426 2858.99 28 2991.63 0.05
20 378 2919.77 26 3008.02 0.03
21 697 3071.83 31 3138.05 0.02
22 666 2994.84 27 3094.19 0.03
23 (70,95) 413 3589.32 28 3684.37 0.03
24 684 3314.72 27 3404.28 0.03
25 681 3210.95 30 3280.08 0.02
26 84 2385.12 24 2422.17 0.02
27 51 2595.33 27 2669.51 0.03
28 (80,55) 67 2334.90 23 2400.11 0.03
29 58 2515.78 23 2551.03 0.01
30 31 2716.51 24 2732.64 0.01
31 106 2569.75 23 2605.09 0.01
32 71 2753.18 27 2768.36 0.01
33 (80,65) 111 2641.25 28 2690.82 0.02
34 74 2856.14 29 2904.54 0.02
35 100 2788.42 24 2828.41 0.01
36 173 2980.87 26 3085.75 0.04
37 225 2788.54 25 2849.62 0.02
38 (80,75) 174 2876.06 26 2889.58 0.00
39 179 3175.96 30 3234.47 0.02
40 171 3037.90 29 3119.75 0.03
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Instance (Patients,Vehicles)
Column Generation SA
CPU time Lower CPU time Objectiven Gap
(seconds) bound (seconds) function

41 408 3012.30 33 3088.57 0.03
42 435 2974.11 29 3067.08 0.03
43 (80,85) 452 2950.10 27 3042.16 0.03
44 263 3342.04 32 3409.64 0.02
45 303 3239.11 33 3324.23 0.03
46 483 3496.24 34 3532.93 0.01
47 375 3538.92 29 3623.35 0.02
48 (80,95) 476 3418.44 29 3512.85 0.03
49 691 3500.45 33 3572.43 0.02
50 490 3477.38 29 3573.89 0.03

Average 249.64 2888.66 26.68 2957.74 0.024

TABLE VI.5

Comparison between the Pure SA and Hybrid SA

Instance (|V |, |P |) Pure SA Hybrid SA Instance (|V |, |P |) Pure SA Hybrid SA
1 2535.99 2535.99 26 2603.40 2603.40
2 1594.66 1594.66 27 2202.94 2202.94
3 (70,55) 1854.27 1854.28 28 (80,55) 1820.79 1802.47
4 2138.83 2138.83 29 2378.62 2378.62
5 1996.92 1975.63 30 2038.20 2038.20
6 2393.18 2393.18 31 1609.04 1605.60
7 2555.89 2546.30 32 3333.48 3333.48
8 (70,65) 3151.53 3151.53 33 (80,65) 3080.37 3080.37
9 3134.20 3134.04 34 3310.50 3310.50
10 2372.09 2372.09 35 1836.93 1832.58
11 4151.72 4151.72 36 2753.34 2753.34
12 3563.92 3563.92 37 2135.84 2131.59
13 (70,75) 2133.42 2133.42 38 (80,75) 4107.14 4107.14
14 2141.11 2141.11 39 1989.81 1989.81
15 2707.39 2707.39 40 3294.01 3294.01
16 2297.93 2297.93 41 2945.17 2945.17
17 2114.90 2114.90 42 1808.49 1804.25
18 (70,85) 3382.58 3382.58 43 (80,85) 2403.39 2387.27
19 3646.00 3636.19 44 2513.34 2513.34
20 2651.87 2651.87 45 2853.63 2853.63
21 2570.54 2567.53 46 2856.95 2856.95
22 2946.79 2946.79 47 4387.25 4387.25
23 (70,95) 2693.41 2693.41 48 (80,95) 4658.17 4658.17
24 2571.92 2571.92 49 3942.90 3942.90
25 2438.35 2438.35 50 2635.10 2635.10
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CHAPTER VII

THE EMS DISPATCHER APPLICATION IN A REAL

TIME DECISION SUPPORT SYSTEM

A Introduction

In this chapter, we present a real time decision support web application. The

EMS Dispatcher module is a web based application developed in ASP.Net 4.0

technology, C# programming language and MS SQL Server 2008 R2. [MacDonald

(2010), MacDonald, and Freeman(2010), and Rankins et al (2010)].

B Application

This application is capable of performing multiple, important functions such

as determining the three best EMS vehicles to serve a patient, committing one of

them, maintaining an active case log, handling un-served patient requests and EMS

vehicle status on a real-time basis. Figure VII.1 shows how this module can be used

in a real time decision setting for the EMS dispatcher

When the EMS dispatcher clicks on any of the records (unserved patients) in

Figure VII.2, the optimization algorithm discussed in the next section is triggered,

an EMS routing problem is solved in real-time and the related information is

displayed on the screen displaying the three alternative optimal solutions. Based on

the information displayed on the screen, the dispatcher can select an ambulance to

assign to a patient. These assigned patients are shown in the Active Case Log

Table.( see Figure VII.3)

In order to help the dispatchers check the availability of the ambulances,
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Figure VII.1. User interface for ambulance dispatch assistant

Figure VII.2. Current unserved patients
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there is a list of ambulances and with related status. (see Figure VII.3)

By clicking on any records in Active Case Log Table, all the information on

that patient will be displayed on Case Activity Screen and by clicking on Map

button, the directions from the assigned ambulance to the assigned patient and for

that patient to the assigned hospital will be shown on a Google Map.

When a patient is taken to the hospital, clicking on the Served button causes

to assign the patient as served patient and that patient will be erased from unserved

patient list on Active Log Case table. (see Figures VII.3 and VII.4)

Figure VII.3. Assignment of EMS vehicles in real-time

C Algorithm

This section describes an algorithm when serving more than one patient by

an ambulance is permitted. This algorithm is a greedy algorithm that: 1) minimizes

the travel time; 2) ensures that all patients are served within the required time

window; and 3) minimizes the number of required routes.

The algorithm first sorts the patients who have not been served in a list

named ”Unservedpatients”. Then, the first patient from this list is selected. After

that, the first vehicle which is either transporting a low priority patient, or, enroute

to service a patient, or assigned to serve two patients is considered. For each of

these vehicle statuses, the algorithm considers three cases.
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Figure VII.4. After Assignment of EMS vehicles
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The first case is related to a vehicle transporting a low priority patient to a

hospital. In this case it is examined if this vehicle can serve the patient while

satisfying time window constraints. If so, the total travel time is calculated.

In the second case, vehicles that are en route to serve one patient are

considered. The algorithm checks if the patient can be inserted to this vehicle’s

route. If time window constraints are satisfied, this vehicle can be another candidate

and we calculate the total travel time.

In the third case, the algorithm considers a vehicle already assigned to two

patients, but, has not yet served any of them. In this case, it is examined if the

second patient of this vehicle can be served by another vehicle. If so, then the

objective function for serving patient using this vehicle is calculated.

If a feasible solution is found using the above steps, a vehicle with the least

objective function is assigned to the patient. Otherwise, an idle vehicle is dispatched

which can serve this patient in the required time window and its dispatch has the

least effect on the coverage. This procedure repeats until all patients in the

UnservedPatient list have been added to routes.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we have considered the problem of dispatching and

relocating vehicles from different aspects. We have considered the idea of serving

two patients by an EMS vehicle for the first time for two cases: 1- when hospital

selection is a decision variable 2- when hospital selection is an input. Additionally,

we used a new approach for relocating EMS vehicles in real time.

At first, we proposed an integrated approach for assigning vehicles to

patients, selecting hospitals and determining returning EMS station for the vehicles.

We introduced the idea of serving two patients by an EMS vehicle which has not

been considered before for the EMS dispatching problem. Three mathematical

models were proposed which two of them calculate the exact travel cost of vehicles,

one is nonlinear and the other is its linearized version. In the third model, the travel

cost is approximately calculated for vehicles. Several observations are made from

numerical experiments. First, numerical results show serving two patients by a

vehicle results in a significantly better performance in terms of waiting time for

patients, especially when the demand for vehicles is high. Second, it was shown that

the approximated model can provide high quality solutions in a real time

environment, thus, this model can be implemented when there is a surge and EMS

managers have the authority to determine hospitals for patients.

In the second problem, we considered the coverage problem independently.

The optimization-simulation approach used for this problem has not been considered

in other researches related to the ambulance coverage problem. We have used a

simulation approach to first tune the parameters of the optimization model, and
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second, evaluate the performance of the optimization model. The simulation results

show that implementing the optimization model can result in decreasing the number

of patients not served in the required time window. Additionally, our simulation

results showed that our proposed model had better performance than the model in

Gendreau at al. (2001) for the considered virtual city. Also, a simulated annealing

algorithm was developed for this problem and the results show that for medium

sized cities in 97% of the cases, the algorithm can provide optimal solutions.

In the third problem, we considered the problem of dispatching

independently. In the third problem, contrasting to the assumptions made in the

first problem where dispatchers choose hospitals for patients, the choice of hospitals

can be made by either a patient or by a separate patient-hospital assignment

module (e.g., Sun et al. (2013)) available in an EMS management system. For the

first time, we proved that the EMS dispatching problem, when the number of

pickups for an ambulance is limited to two, is NP hard. The problem is modeled as

a vehicle routing problem with pickup and delivery, and, a simulated annealing

algorithm was proposed for solving it. Further, a column generation method was

proposed for obtaining the lower bound. The results showed that the algorithm was

able to provide solutions within 2.5 % of the lower bound.

We have also presented a real time decision support tool for dispatching EMS

vehicle and the algorithm within that is presented. A customized heuristic

algorithm was also developed for this decision support tool.

The current research can be continued in different directions. Below, we have

listed the main ideas for the future research:

1) One extension of the research can be developing an exact algorithm for the

models proposed in Chapter III using decomposition techniques.

2) Another extension of the current research can be related to developing a

customized exact algorithm for EMSDP. In Chapter V, a column generation method

was proposed. We can extend this method by implementing a branch and price

98



algorithm to find the optimal feasible solution.

3) Another important case of ambulance can be found in the areas of hospital

evacuation. The proposed model can be extended to solve this problem.

4) Analyzing the proposed algorithm with the real data can be another area

for the future research for the models proposed in Chapters III, IV and V. Testing

the models with real data is desirable and it will show how optimization models

behave under real life situations, it is also useful in fine tuning parameters of the

models.

5) In Chapter IV, we have designed a simulation-optimization approach for

relocating EMS vehicles. Similarly, we can design an optimization-simulation

approach for the dispatching problem as well. By applying simulation and

optimization, an approach similar to approximate dynamic programming can be

used to determine the optimal policy for dispatching at each time of a day.
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