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ABSTRACT 

HElVlOLYSIS IN NEEDLES 

Giridhar Kommidi 

Ma) 10,2008 

Hemolysis, the major caUSl~ for specimen rejection III clinical laboratories is 

defined as the rupture of red hlood cell membrane~" resulting In the release of 

hemoglobin into the plasma. Blood flow in needles causes hemolysis resulting in 

complications sllch JS incorrect aSS1Y results [1'.14j, repeated painful blood draws 14.9.1'1 

and also the release of hemoglobin into the plasma. which is toxic to the kidneys IIXI. 

Hemolysis mainly occur ... due to high fluid ... tresse,> that act on the red blood cells 

III blood tlow through the needle 1~21. Highest stresse" during blood draws act near the 

downstream edge of the needle entrance. In this project. the needle has been modified 

with a more rounded entrance to r:~duce the effect of the stresses acting near the tip. 

Experiments were al ... o performed \\ith needles of be\'eled entrance to reduce the 

hemolysis. 

This thesis discu,,'>es in detai I. experiment'> conducted v,ith 16G and 20G standard 

and modified needles in hoth rewr"c and normal orientations at three different pressures. 

Blood was drawn into a syringe, then the needle is attached to it and the assembly is 



placed in a fixture. The fixture was designed to hold the synnge 111 place and apply 

desired pressure on the :"YTinge. Th,.~ hlood tlowing out of the syringe was collected in a 

test tube and thi" process was repeated for all the comhinations of pressures and needle 

orientations viz. normal and reverse. The collected test tubes were then centrifuged and 

the plasma wa.., removed and analyzed in a "pectrophotometer. Results were tabulated 

and graphs were plotted to compare the hel110lysis in the test and control needles. 

A~OVA p-values clearly indicated that the rounded entrance significantly 

reduced hemolysis compared to the stanclard needle" for the 20G size in the reverse 

orientation at all three pressure" (p-\ alLle.., at 20p"J. 3Spsi and SOpsi were 0.053, 4.60E-08 

and I.00E-08, respectively). There \\a.., also a significant relation between the 16G with 

rounded entrance and the standard needles in the reV'erse orientation (p-values were 

0.017,0.004 and 0.00 I at l.:ipsi. 30psi and 4Spsi. respectively). hut no significant relation 

for the 16G needles with be\eled entrance. 
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I. INTRODUCTION 

Rejecli()l1 of blood "peCIIlh'Jl', h) \ C'l1ipunctllrc rejection in many clinical 

lahoratoriel., can he atl ribllted to Ilellwly:-;i", llcll](ll) "i" C~ll1 he dclineu al., the hreakage of 

red blood cells relcal.,lllg hell1(lgi(lbin into the pLI"Il1a 01 blood, 

Human hlo(ld (Fig, I) i" l'umpu"cd I'lainl> (if tour compollenh: 

(ii) White blood cell" (leukocyte,,)' Thc) con"ritute onJ\ 1(/; of hloou and they 

furm the immune ~y"telll 1)1 rill: body, [:, 

(iii) Platelet'> (thnqnhl1cyte,,): Tht'\ em: L!sllalh hcpflll in clotting of hlood at the 

time uf inJur), : ''': 

(i\) Plasma: It forms 5Y;r oj bluud and (.)i.)f!( nf r,laSllla is water. It is a medium 

(liquid like) carrying all the Iwi hl(i(lLi celh, white blood cells and platelets 

that reIll(l\l' all the \\,lSIC pnliJuch of meLlbulism from different partl., of the 



Pla.ma 

Figure l.B1ood composition- plasma, white cells, platelets, red cells [38 

Figure 2. Red blood cell 
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A red blood cell (Fig. 2) contains hemoglobin that carries oxygen to various parts 

for the proper functioning of the body. During hemolysis, this hemoglobin is released 

from the red blood cell into the plasma and this effects the oxygen carrying capacity of 

RBC. This plasma free-hemoglobin interacts with the assays of a number of metabolites, 

electrolytes and enzymes like potassium [17], glucose, creatinine, bilirubin and alkaline 

phosphate [12.13.9]. This leads to incorrect assay results and also in repeated blood draws 

[13.14] resulting in waste of resources and time [17.4]. especially when the patient's blood 

results are needed in an emergency condition. It is also a discomfort for the patient to 

undergo the painful procedure repeatedly [13.9.4]. Also, hemoglobin is toxic to the kidneys 

and the damaged cells cannot transport oxygen to the various parts of the body [18]. 

Hemolysis is also observed in hemodialysis procedures. Hemodialysis is a 

procedure in which metabolic products and impurities are removed from the blood of 

patients whose kidneys are not functioning properly. This is done by passing the blood 

along one side of a semi-permeable membrane and the impurities are removed by 

diffusion through the membrane. Hemolysis during hemodialysis procedure may result in 

nausea and abdominal or back pain occurring during the later stages of the session of 

dialysis [21.16]. 

It is found that plasma-hemoglobin concentration above 250mg/l OOml is very 

toxic, the body degrades these molecules and kidneys cannot dispose of the waste in such 

quantities [18]. Moreover, a decrease in intracellular hemoglobin concentrations can lead 

to anemia. 
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Blood transfusions are common in infants, so hemolysis also has an effect on 

pediatric patients [1.3J. Blood is injected into the veins in the scalp of under-weight 

newborns. This is done with small needles that may result in hemolysis and a high level 

of hemolysis may become dangerous to the patient's life. 

One of the main reasons causing hemolysis is the flow of blood through needles. 

Blood flows through the needle when it is injected into the body or when it is drawn out 

of the body. Therefore the flow of blood in the needles is studied under two different 

cases: 

(i) when blood is drawn from the body (reverse orientation In our experiment) like 

sampling for labs, dialysis and apheresis 

(ii) when blood is injected into the body (normal orientation in our experiment) like 

transfusions, dialysis and apheresis. 

The main cause of hemolysis in needles is the fluid stress acting on the blood cells 

[22]. It is found that the maximum stress acting on the blood cells passing through a needle 

is at the entrance of the needle. So in order to reduce the stress at the needle entrance, a 

new rounded entrance was proposed and experiments were performed to show that the 

hemolysis is reduced in the modified needles compared to the standard needles. 
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Figure 3. Standard Needle with sharp entrance [15] 
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Figure 4. Modified needle with rounded entrance [15] 
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This project explains in detail the study of hemolysis in two different sets of 

needles viz. 20G and 16G needles. The needle entrance in both these cases was modified 

to reduce the effect of stress on the blood cells passing through it compared to that in a 

standard needle (Figure 3). There were two sets of 16G needles, one with rounded 

entrance (Fig. 4) manufactured by the electric discharge machining (EDM) method and 

the other set of needles with beveled entrance by the micro-machining method (Fig. 6). 

The 20G needles with rounded entrance were manufactured by EDM. 

The 20G and 16G needles with rounded entrance were manufactured by wire 

EDM by Norman Noble Inc. Wire EDM technique is different from conventional vertical 

EDM in that wire EDM uses electric discharge erosion action with a wire electrode 

moving longitudinally through the work-piece. Standard 304 stainless steel needles were 

modified to produce a more rounded entrance compared to the standard needles. 

One set of 16G needles was modified on an ultra high precision micro-milling 

machine that allows small scale machining. A fixture was designed to align the needle in 

the desired position during the machining process. A photograph of the needle during 

machining is shown in Fig. 6. 
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Figure 5. Standard needle 

Oval entrance 

Figure 6. Modified needle without oval shape 
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II. LITERATURE REVIEW 

Many experiments have been conducted to study the different factors effecting 

hemolysis including stress, time of exposure to stress, cell-cell interactions and cell­

surface interactions [35] . Shapiro & Williams studied the effect of low shear stress on 

blood in a double gap viscometer [35J. They concluded from their experiments (low stress) 

that stress is not the only factor responsible for hemolysis and in their case the hemolysis 

was due to surface interactions (cell-cell and cell-surface). They also found that 

hemolysis is an increasing function of time when the stress is constant [35]. 

Leverett and many other researchers performed experiments In a rotational 

viscometer [27]. They found that there is a threshold shearing stress (1500 dyn/cm2 in their 

case) above which the hemolysis is only due to shearing stress and time of exposure to 

stress, and all the remaining factors such as cell-cell interactions, cell-surface 

interactions, mixing of sheared and unsheared layers and viscous heating were negligible. 

They also concluded that in low-stress regions, cell damage is low and is due to surface 

interactions and in high stress regions, cell damage is high and is purely based on the 

high shear stress and time of exposure [27]. 
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Leverett et al. came to a conclusion that when stresses is above 1500dyn/cm2
, the 

cell damage is purely due to shear stress and all the other factors like cell-cell and cell­

surface interactions had no significant role [7J. Many other experiments in which the 

blood cells were subjected to low stresses showed that cell damage is directly 

proportional to the surface-to-volume ratio [35). 

From experiments, many other scientists obtained different values of threshold 

stresses. The threshold stress depends on the magnitude of stress and the time of exposure 

[27]. Rooney (1970) conducted experiments with pulsating gas bubble immersed in blood 

and Williams et al. (1970) using oscillating wire obtained a threshold value of 5600 

dyn/cm2
• The times of exposure were 10'3 sec and 10'4 sec respectively for both the 

experiments. Keshvaiah (1970) and Blackshear (1971) obtained the threshold stress value 

of 4500 dynlcm2 for ordinary capillaries and 7000 dynlcm2 for capillaries with smooth 

and tapered entrance. They conducted their experiments with canine blood flow through 

capillaries and the time of exposure wa 10'2 sec. Forkstrom (1969) and Blackshear 

(1970) performed experiments with jets of blood and jets of other liquids into blood and 

they obtained the threshold stress value as high as 40000 dyn/cm2 when exposed for 10.5 

sec [27]. The magnitude of stress and the time of exposure calculated from various 

experiments are tabulated below in Table 1. 
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SUMMAR Y OF EFPECT OF SHEAR STRESS ON HEMOLYSIS 

Order of 
Tbresbold level References and 

Type of exposure masnitude of 
exposure time or damaae comments 

J~C dyn,,/ em' 
Turbulent jet JO- ' 40,00> Porstrom (1969) aDd Black-

sbear (1971) 
Oseillating wire 10-' S600 Williams et al. (1970) (buman 

and canine) 
Oscillating bubble 10-' 4500 Rooney (1970) (buman and 

canine) 
Capillary flow 10· ... • 5000 Bacher and Williams (1970) 

(bovine blood) 
Capillary dow J€r' 4500-7(0) Keshaviah (1970) and Blaek-

sbear (1911) (canine blood) 
Concentric cylinder 10' 1500 This work 
Concentric cylinder, 10--10' Relatively little Shapiro aod Williams (1970) 

maximum stress, bemolysis per (surface effects domiDate) 
600 dynes/em' unit time 

Concentric cylinder, 10' Relatively little Knapp and Yarborousb 
maximum stress, bemolysis per (1969) (surface effects dom. 
250 dynes/em' unit time inate) 

Concentric cylinder, 10' Relatively little Steinbach (1970) and Black-
maltimum stress, hemolysis per shear (1971) (surface effects 
600 dynes/em' unit time dominate) 

Table 1. Red blood cell damage by shear stress [27] 

Mechanical hemolysis has been studied in blood with flows in different devices 

such as concentric viscometer, cone & plate viscometer, capillary tube. In all of these 

devices, the surface effects have a role in the hemolysis. This makes it difficult to study 

the effect of shear stress alone. Experiments were conducted to reduce the surface effects 

where pulsating gas bubble and oscillating wire were used to hemolyze blood [26). 

11 



Blackshear defined three classes of mechanical hemolysis: 

(i) surface induced- where the surface interactions have a significant role in the 

hemolysis. 

(ii) in-bulk medium stress (1000 - 2500 dyn/cm2) 

(iii) in-bulk high stress (order of 40000 dyn/cm2) 

The hemolysis of the second type takes a longer time of exposure whereas the hemolysis 

of the third type is more spontaneous (Fig. 7). 

Sutera and Mehrjardi conducted experiments in a concentric cylinder viscometer, 

applying stress in increments. They studied the cell shape after fixing the cells with 

gluteraldehyde while the viscometer was rotating. To observe the cells, a 1-2 ml sample 

was centrifuged and then washed with distilled water. A drop of distilled water was 

placed on a 12mm dia gla s cover slip placed on a scanning electron microscope (SEM) 

stub. Small amount of fixed cells were added and finally coated with chromium in a 

vacuum evaporator. They concluded that the flow in their case (stress 100-4500 dyn/cm2
) 

was turbulent. They also checked the reversibility of the deformation. They found that the 

red cells that were subjected to low shear could regain their original shape [26). 

Hemolysis in needles was also found to depend on the driving pressure. Eurerius 

and Smith performed experiments while varying the driving pressure and found that there 

was an increase in hemolysis with increase in driving pressure and age of blood (3). Blood 

12 



was forced through needles of 18, 22 and 26G at driving pressures of 100, 200 and 300 

mm HG. A fenwal bag system was used to deliver the above mentioned pressure [3). 

Hemolysis was found to depend on the age of the blood. Wilcox, et al. conducted 

experiments on blood using a constant-rate syringe delivery pump for 25G needle and 

found that the hemolysis was greater in the samples that were stored for 9 days compared 

to the samples stored 2 days [2], 
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Figure 7. Effect of exposure time on the threshold shear stress [27,32] 
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Calkins and others studied the effect of dilution, pres ure and flow rate on 

hemolysis (24] . They conducted experiments and found that the hemolysis was less in 

samples, which were diluted compared to the undiluted ones. They found that high 

pressure, more dilution and short tubing will cause increase in flow rate that in turn 

increases the hemolysis [24] . 

Laugel and Beissinger performed experiments to study hemolysis under low­

stress conditions in a capillary tube. They concluded from their results that blood damage 

increases very fast in the first few seconds and increases slowly afterwards. They also 

concluded that the REC's must travel a minimum capillary length before any hemolysis 

occured and that the cell damage depended on two factors: time of shearing and shearing 

intensity level [33]. 

Yang and Lin conducted experiments with a minimodule dialyser and studied the 

flow conditions by changing the flow rates and blood volume. They found that hemolysis 

increased with increase in blood flow velocity and decreased with increase in blood 

volume [29] . 

Yasuda and other researchers performed experiments on a rotational viscometer to 

study the effects of pressure and shear stress on hemolysis. They found that there was no 

influence of pressure and temperature on hemolysis and there was significant hemolysis 

when the shearing rate was 1500 /sec or more applied for 120 minutes [5.7] (Fig. 8). 
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Figure 8. %Hemolysis as a function of applied stress [26] 

In summary, hemolysis in needles can be attributed primarily to stress and time of 

exposure to stress, and secondly to cell- urface interactions and age of blood. In this 

thesis experiment there were two sets of needles (160 & 200) and each set comprised 

three modified (rounded or beveled entrance - test needles) and three standard needles 

(control needles). Experiments were performed with the needle in both normal and 

reverse orientation with three different driving pressures (explained in detail in later 

sections). 
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III. EFFECT OF SHEARING STRESS ON BLOOD CELLS 

Hemolysis is known to depend mainly on two reasons, high shear stress acting on 

the blood cells and the time of exposure to high shear stress. The flow velocities in the 

needle are maximum at the center of the needle and minimum at the needle walls. Blood 

when acted upon by high shear stress damages the red blood cell membrane and the stress 

values at the needle entrance are almost three times higher compared to the stresses at the 

needle outflow [19) . 

The blood cells pass through the needle tip and they spend only a fraction of a 

second near the tip and still it causes damage to the blood cell. From this it can be 

understood that the stresses acting on the blood cell near the tip are lot more than the 

stresses acting inside the needle near the wall. The shear stress increases with increase in 

blood flow [22, 19] . 

When stress acts on the red blood cell, the cell deforms and regains its shape if the 

stress applied is low. There is a certain value of the stress (3500 dyne/cm2 in this case) [24J 

above which the cell can ' t regain its original shape after deformation. When the applied 

stress acting on the red blood cell is gradually increasing. the red blood cell becomes 

ellipsoidal in shape and then gradually into dumbbell shape (Fig. 9) and finally they 

separate into two palis (Fig. 10-11). 
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Figure 9. One of the cells is stretched into a dumbbell shape [26] 
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Figure 10. Human red blood cells sheared for 4min at (a) 2000dynes/cm2 (b) 3500dynes/cm2 and 

then recovered. (a) completely recovered its original shape [26] 
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Figure 11. Human red cells fixed after sheared at (a)100dynes/cm2 (b) 2000dynes/cm2 (c) 

3500dynes/cm2 (d) 4500 dynes/cm2 [26] 
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IV. METHODS AND MATERIALS 

Experiments were performed with both 16G and 20G needles with the modified 

and standard entrance geometries and results were compared. Two sets of the 16G 

needles are manufactured. (i) beveled entrance by micro-milling (ii) rounded entrance by 

electric discharge machining (EDM). The 16G and 20G needles used in the experiment 

were I W' in length, all the experimental conditions are tabulated in Table 2. The 

pressure driving the flow through the needle bore was reduced compared to the chamber 

pressure due to the friction of the plunger against the bore of the syringe, viscous losses 

of the blood flowing in the syringe and hub, and inertia of the blood in the syring and 

needle. The driving pressure was calculated by the model in Sharp & Mohammad (1998). 

Needle Needle Manufacturing 
Chamber Driving 
Pressure Pressure 

Size Shape Technique (psi) (psi) 

15 5.5 
16G Rounded EDM 30 15.5 

45 24.4 
15 5.5 

16G Beveled Micro-mil ling 30 15.5 
45 24.4 

20 12.2 

20G 
Rounded 

EDM 35 22.4 

50 31 .7 
Table 2. Detailed experimental conditions with needle size, shape, manufacturing technique and 
pressures. 
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Electric discharge machining (EDM), also known as spark machining or spark eroding, is 

a non-traditional machining method primarily used for hard materials. This method 

involves a series of rapidly recurring electric arc discharges between an electrode, which 

is the cutting tool and the workpiece. The cutting tool is made to travel along the desired 

path very close to the work piece without actually touching it resulting in the formation 

of series of micro-craters on the workpiece. The removed particles are washed away by 

the dielectric fluid . There are primarily two types of EDM machines, ram EDM and wire­

cut EDM. The method used in manufacturing the needles for this experiment is wire 

EDM. Wire-cut EDM has the ability to machine very intricate and complicated shapes 

and uses water as its dielectric. The limitation of using EDM method is that it can be 

applied only to electrically conductive materials. Micro-milling is similar to the more 

conventional machining process, except on a small scale. The needles with rounded 

entrance are difficult to manufacture using the micro-milling process, therefore EDM 

technique was used for this and micro-milling was used only for making the beveled 

needles. 

Three different pressure values were selected that provided little or no hemolysis, 

moderate hemolysis and high hemolysis for all the needle sizes. There are some steady 

flow losses in the syringe and also by the fluid and syringe plunger inertia that account 

for the pressure difference in the chamber pres ure and the pressure across the needle [14]. 

Therefore the actual driving pressure across the needle is less than the chamber pressure, 

they were calculated for the two sets of pressures and are tabulated in Table 3. 
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Blood when drawn by pulling the plunger of the syringe, pressure created by 

vacuum is much lower than the lowest pressure that we operate. There might not be 

significant difference in hemolysis for the modified and standard needles at such low 

pressure. In order to see hemolysis, much higher driving force is used. To apply a 

controlled pressure to force blood through the needles. a pressure chamber was designed 

that used a four-inch cast iron flanged tee (Fig. 12). This airtight chamber was connected 

to a supply of compressed air. Two valves and a pressure gauge were provided to adjust 

the pressure to the desired value before each test. 

Figure 12. Fixture that holds the syringe 
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Located inside the chamber was a mechanism with a solenoid that served to hold the 

plunger of the syringe in place and release the plunger when the solenoid was engaged 

(Fig. 14). 

air line 

Pressure 
Chamber 

trigger 
.-",=:::::11 4 .. - .... 

. synnge 

Figure 13. Schematic of the experimental setup with needle in the reverse orientation [14] 
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When the plunger was released, the pressure inside the chamber forced the blood 

in the syringe through the needle. A syringe adapter facilitated an air-tight seal between 

the syringe and the chamber, and hold-down clamps allowed quick attachment of the 

assembly to the chamber. 
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Figure 14.Needle attached in the reverse orientation 

Figure IS.Needle attached in the normal ol'ientation 
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Figure 16.Solenoid in (a) engaged position (plunger unlocked) (b) disengaged position (plunger 

locked) 
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v. EXPERIMENTAL PROCEDURE 

Each array of experiments required approximately 300ml of expired banked 

blood. These units of blood were acquired from the University of Louisville blood bank. 

The following procedure was followed to measure the hemolysis in needle flow: 

The blood sample was first tested for its hematocrit level. Two samples were 

drawn in micro capillary tubes and then centrifuged for 10 minutes in an AUTOCRIT 

ULTRA 3 centrifuge (Fig. 15). During the centrifugation process, the red blood cells that 

are higher in density compared to plasma, settle to the bottom of the capillary tube. The 

hematocrit level was then measured as the ratio of the length of the column of red blood 

cells to the length of the column of whole blood. 

Before the experiment with each blood sample, the hematocrit of the ample was 

adjusted if necessary by adding saline to make the hematocrit value between 40%-45%. 

Saline solution is added to the blood instead of water because the addition of water to 

blood will result in the rupturing of red blood cells. An isotonic solution of NaCI and 

water was used so that the RBC's are in equilibrium with the solution and the cells are 

not ruptured or destroyed. 
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Figure 17. AUTOCRIT ULTRA3· Centrifuge to measure the hematocrit 
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The necessary dilution to adjust hematocrit was calculated by the fo llowing 

method. 

Assume the initial volume of the blood = 300 ml 

Let the measured hematocrit = X m1 

Volume of 0.9 % Saline to be added =Y m! 

300 * X = (300+ Y) * 0.45 .... .. .. .. ......... (i) 

From (i), we can calculate the volume of saline needed to add to the whole blood to make 

it 45% hematocrit. 

Two more samples of blood were then taken and centrifuged again for 10 minutes 

and the hematocrit was determined. The above procedure was performed until the 

hematocrit level was around 40% - 45%. 

For each of the cases in the main array of experiments, 3-5 ml of blood was drawn 

into the syringe. The proper needle was then attached to it and the assembly was placed 

in the fixture . The two hold-down clamps on the fixture were used to secure the syringe 

before applying pressure. The solenoid was disengaged, which allowed the trigger bar to 

slide under the plunger by spring action. The valves were used to adjust the chamber 

pressure and when the desired pressure was attained, the solenoid was engaged releasing 

the plunger. The blood flowing out of the needle was collected in a test tube. This process 

was repeated until all the combinations of pressures and needle orientations were 

completed with the control and test needles. The tests were conducted with two different 

orientations of the needle. (i) normal orientation (ii) reverse orientation. For the reverse 
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orientation, the needle was fixed to the syringe using a fiber optic cable boot (Fig. 16). 

The order of the tests was randomized. 

Figure 18. Fiber optic cable boot 

Reference samples were also prepared by adding whole blood into distilled water based 

on Table 3. 

Hemolysis (%) Water (ml) Whole Blood (ml) 

10 4.500 0.500 

5 4.750 0.250 

2 4.900 0.100 

Hemolysis (%) Water (ml) 10% HemolYsed (ml) 

1 4.500 0.500 
0.5 4.750 0.250 

0.2 4.900 0.100 
O. J 4.950 0.050 

0.05 4.975 0.025 

Hemolysis (%) Water (ml) 2 % Hemolysed (ml) 

0.02 4.950 0.050 

0.01 4.975 0.025 

Table 3. Table used for preparing reference samples 
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The sample test tubes along with the reference samples were centrifuged for twenty 

minutes at 2400rpm speed at 4°C in a Beckman TJ-6 centrifuge (Fig. 17). After the blood 

samples were centrifuged, the red blood cells settle down due to the high density 

compared to the plasma (Fig. 18-19). 

Figure 19. Beckman TJ-6 centrifuge 
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Figure 20. Test specimens after centrifugation 

Figure 21. RBC's settle at the bottom after the centrifugation process 
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Plasma at the top of the sample test tubes was carefully pippetted so that there is 

no cell structure floating in it. This plasma was pippetted into a micro cuvette and then 

placed in a 6-cell holder (Fig. 20) inside a Beckman DU-650 Spectrophotometer (Fig. 

21), to measure hemolysis. 

Figure 22. Cuvette placed in the 6-cell holder 
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Figure 23. Beckman 650 Series Spectrophotometer 

Spectrophotometer works on the principle of absorbance of wavelengths. Light is 

passed through the sample and is absorbed on the other end by a photodetector. 

Wavelengths are set based on the absorption spectrum of sample being tested. Three 

fixed wavelengths were used in this experiment. 
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After getting all the values from the spectrophotometer, hemolysis was calculated using 

the equation below: 

PFHB (Plasma-free hemoglobin) = [AI - A3 - (A2 - A3)( ,11- ,12)]126 mg/dJ [12.14] 
,13- ,12 

Where Ai = absorbance at wavelength AI " 576.5 nm 

A2 = absorbance at wavelength ,12 = 596.0 nm 

A3 ;;;: absorbance at wavelength ,13 = 560 nm 

126 is an empirical factor 

To calibrate the hemolysis values more precisely, the reference samples with 

known percent hemolysis were tested in the spectrophotometer. The PFHB values 

obtained by the spectrophotometric method were plotted versus known % hemolysis 

(example in Fig. 22). A common characteristic of the spectrophotometric method is that 

for high hemolysis, the curve becomes non-linear and inaccurate. To avoid this problem, 

a plot like Fig. 22 was produced for each unit of blood. The upper limit of linearity 

(usually 5% hemolysis) was observed and a linear curve fit was obtained for the points up 

to that limit. Samples with measured PFHB higher than the linear limit were diluted with 

saline to reduce the PFHB below the limit and remeasured with the spectrophotometer. 

The remeasured PFHB was then adjusted by the dilution fraction to obtain the PFHB of 

the original sample. 
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Hemolysis Reference 
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Figure 24. A typical graph plotted from an experiment depicting the hemolysis values to lie in the 

linear range 
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VI. RESULTS 

This chapter presents the results. Experiments were conducted with the needle 

oriented in two different directions (normal & reverse) at three pressures of 15psi, 30psi 

and 45psi for the two types of J 60 needles and 20psi, 35psi, 50psi for the 200 needles 

and the results are discllssed separately. 

The results for both the reverse and normal orientation of the 16G (rounded & 

beveled) and 20G rounded needle are summarized in Tables 4-6. The numbers in the 

tables represent the average percentage of hemolysis, standard deviation and ANOV A p­

value for each control and test needle at the three different specified pressures calculated 

from the data in Appendices I-VI. A few value in the appendices were left blank, as 

some samples were not operated at correct pre sures and in some cases, the blood sample 

unit was not sufficient to run all combinations of pressures. 
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20G Needle 

The 20G needles with rounded entrance produced less hemolysis than the 20G 

standard needles for all pressures in reverse orientation (p-values less than about 0.05), 

but differences were not significant in normal orientation (Table 4). 

REVERSE ORIENTATION 
20psi 35psi 50psi 

Standard Rounded Standard Rounded Standard Rounded 
A ya % HEMOLYSIS -0.004 -0.062 00417 0.153 2.364 1.006 

STDDEY 0.102 0.124 0.283 0.168 0.933 0.610 
P-YALUE 0.053 4.6 B-08 1 E-OS 

NORMAL ORIENTATION 
Standard Rounded Standard Rounded Standard Rounded 

A ya % HEMOLYSIS -0.025 -0.013 0.182 0.148 1.108 1.264 
STDDEY 0.11 3 0.085 0.109 0.170 0.529 0.770 

P-YALUE 0.665 0,357 0.365 

Table 4. Average percent hemolysis, standard deviation and p-values for the 20G needles in normal 

and reverse orientation 

16G NEEDLE (MICRO-MILLED) 

There was no reduction in hemolysis with the 16G needles with beveled entrance. 

P-values for the beveled needles in both normal and reverse orientations for all pressures 

were 0.09 or more (Table 5). 
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REVERSE ORIENTATION 
15 :lsi 30Jsi 45psi 

Standard Beveled Standard Beveled Standard Beveled 
AVO % HEMOLYSIS 0.021 0.045 0.378 0.279 1.485 1.387 

STDDEV 0.2 14 0.243 0.338 0.151 0.415 0.499 
P-VALUE 0.704 0.172 0.444 

NORMAL ORIENTATION 
Standard Beveled Standard Beveled Standard Beveled 

AVO % HEMOLYSIS 0.023 0.007 0.280 0.348 1. 171 1.352 
STDDEV 0.240 0.238 0.207 0.274 0.34 1 0.413 
P-VALUE 0.810 0.309 0.090 

Table 5. Average percent hemolysis, standard deviation and p-values for the 16G needles (micro-

milled) in normal and reverse orientation 

16G NEEDLE (EDM) 

Hemolysis values were significantly reduced for the 160 needles with rounded 

entrance in the reverse orientation at all pressures and there was no significant difference 

in the normal orientation. P-values for the rever e orientation at all pressures were less 

than 0.05 and p-values for the normal orientation were not (Table 6). 

REVERSE ORIENTATION 
15psi 30psi 45psi 

Standard Rounded Standard Rounded Standard Rounded 
AVO % HEMOLYSIS -0.004 -0.017 0.232 0.143 1.368 1.090 

STDDEV 0.015 0.022 0.1 20 0.095 0.277 0.303 
P-VALUE 0.017 0.004 0.00 1 

NORMAL ORIENTATION 
Standard Rounded Standard Rounded Standard Rounded 

AVO % HEMOLYSIS -0.003 -0.0 13 0.207 0.298 1.047 1.124 
STDDEV 0.032 0.022 0.136 0.206 0.260 0.258 

P-VALUE 0.176 0.063 0.282 

Table 6. Average percent hemolysis, standard deviation and p-values for the 20G (rounded & 

beveled) needles (EDM) in normal and reverse orientation 

39 



The average percent hemolysis, standard deviation and the p-values for the 20G 

and 16G needles with rounded entrance for the reverse orientations are plotted in Fig. 25-

26. 

Fig. 25 is plotted with the average percent hemolysis against three pressures 

15psi, 30psi and 45psi for the 16G needles with rounded entrance in the reverse direction. 

Hemolysis was significantly reduced at all pressures. 

1 8 

16 

1 4 
tJI 

1.2 'ij; 
~ 
~ ; 
:c 08 .. .. 
4> 0.6 I;') 

-= 

0.004 

a:; 
04 ~ 
0 2 

0 

·0.2 
15psi 30psi 

PI esslII e 

CJ Standard 

• Rounded 

Figure 25. Graph with average percent hemolysis versus pressure for the 16G needJes with rounded 

entrance in the reverse orientation 
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Fig 26 is plotted with the average percentage hemolysis against three pressures 

20psi , 35psi and 50psi for the 20G rounded needles in the reverse, Hemolysis was 

significantly reduced at all pressures. 
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Figure 26. Graph with average percent hemolysis versus pressure for the 20G EDM needles in the 

reverse orientation 
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VII. DISCUSSION 

This chapter explains the results and contains related discussion. 16G and 20G 

needles with rounded entrance significantly reduced hemolysis in the reverse direction 

and 16G needle with beveled entrance howed no significant improvement in reducing 

hemolysis. 

The main reason that the needles with rounded and beveled entrances were 

expected to reduce hemolysis is that these entrance geometries are known to reduce 

pressure drop and fluid stresses for flow into such entrances in conventional piping 

systems, with the rounded entrance producing the greater effect. This expectation was 

confirmed by the 16G and 20G rounded needles in reverse orientation. In addition, 

rounding and beveling has little effect on pressure drop and fluid stresses when the flow 

is exiting the e geometries in conventional piping systems, thus no difference in 

hemolysis was expected for normal orientation. Again, the 16G and 20G rounded needles 

demonstrated this expected behavior in the normal orientation. The 16G beveled needles 

also showed no significant differences in hemolysis in the normal orientation. Thus there 

is one important result to be explained - why the beveled entrance did not reduce 

hemolysis in the reverse direction. 
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Firstly, red cells have inherently nonlinear response to fluid stresses. While minor 

releases of hemoglobin may occur due to high stress of short duration when self-healing 

pores are created in the membrane, the major component of hemoglobin loss is associated 

with fragmentation of the cell at a combination of high stress and higher duration. Stress 

or duration of stress greater than the threshold to cause membrane failure does not result 

in greater hemoglobin release from cells that have already failed. Therefore, reduction of 

fluid stresses may not be effective in reducing hemolysis until stress is decreased below 

the threshold for membrane failure. It is possible, then, that beveling the entrance of the 

needle does not decrease stress enough to reduce hemolysis. Second, the rounded and 

beveled needles were manufactured by difference methods. 16G and 20G needles with 

rounded entrance were manufactured by wire EDM method and the l6G needles with 

beveled entrance were manufactured by micro-milling method. In the wire EDM method, 

the machined surface tends to exhibit small pits caused by electrochemical erosion, but is 

overall relatively smooth. On the other hand, micro-milling method can leave burrs and 

rough edges, depending on the speed, depth and direction of the cut and the condition of 

the cutting edge. While the micro-milled needles were inspected carefully and found to 

be free of burrs, microscopic rough edges might have remained, causing localized high 

stresses and obscuring the potential reduction in hemolysis in the reverse direction. 

Perhaps most telling, however, is that a CFD-based hemolysis simulation (Chen 2006) 

predicted a reduction in hemolysis for the rounded entrance, but not for the beveled 

entrance. This simulation showed reduced stresses for the beveled needle, but not small 

enough to reduce hemolysis. 
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Negative values of hemolysis were obtained from some cases, which is clearly not 

possible. The negative values were very small and indicate the level of accuracy of the 

measurements and the calibration method. 

Considerable variability was found among the units of blood. Each unit can have 

different composition of blood plasma and RBC's, which will give different values of 

hemolysis for the same experimental conditions. Different units may have different 

volumes of blood captured from the experiment, which in turn can have different percent 

of hemolysis. There can also be slight variations in the pressures applied during the 

experiment, which may occur while setting the chamber pressure. This difference in 

pressure changes the velocity of flow and gives different values of hemolysis. 

Red cells increase in vulnerability to stress with increasing age. Blood used in the 

experiments differed in the age from 41 to 48 days. However, the greatest change is 

susceptibility to hemolysis occurs in the first few days, and it was found that the 

difference in hemolysis among samples with ages 3-14 days (mean 11 days) versus 16-39 

days (mean 29 days) was less than 5% [56]. Therefore, the age effect is likely not 

important in these experiments. 
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VIII. CONCLUSION & RECOMMENDATIONS FOR FUTURE 
WORK 

In conclusion, hemolysis in 20G and 16G with rounded entrances was significantly 

reduced for reverse orientation compared to the standard needles, but no relation could be 

found between the standard and beveled 16G (micro-milled) needles, nor among any of 

the groups for normal orientation. 

Observations regarding the experimental apparatus include that, after several runs 

of the experiments, the plunger of the syringe sometimes released before attaining the 

desired pressure. This OCCUlTed due to the plunger being worn out and the problem was 

rectified by replacing with a new plunger. It was also found that all moving parts inside 

the fixture should be lubricated. 

All the experiments in this thesis were performed with expired blood samples (age 

greater than 40 days). Since the important application for the new needles is in drawing 

or transfusing fresh blood, experiments with fresh human samples should eventually be 

performed on the final needle design. Prior to these final in vitro experiments, however, 

research should be done on how to manufacture these needles in a more economical way, 

and the needles with entrance designs with promising compromises between potential for 

hemolysis reduction and cost of production should be tried. Cold forming or cold forging 

45 



is one method that should be tried to manufacture needles. In this method, metal is placed 

within a die and a punch is pressed to cold form the part. This method is faster than 

EDM, produces little or no waste of material and also consumes less energy. Etching, 

which can be used on metals, semiconductor materials and even glass using acids, bases 

or other chemicals, preferentially attacks projecting edges, and could produce a rounded 

entrance in needles. The sharp skin-piercing tip would need to be protected during this 

process, or formed in a subsequent operation. Etching has the advantage that, in contrast 

to the individual operations necessary for EDM and cold forming, large numbers of 

needles could be processed in the same etching bath. 
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APPENDIX I 

The below table (Table AI) shows hemolysis values of different specimens obtained 

from the spectrophotometer for the 20G needle in the reverse orientation. 

% H em,"lyais Revers e OrieniaUm 

20 si 35 SI 50 psi 

C\lrrent ROU1~1 .. d Current R01.mded Current Ro\lflded 
Nee dle needle neeelle needle needle needle needle 

EI #1 ·0 .29 .0.423 0.381 0,27 1 396 1,842 

112 ·0,24 ·0.257 0974 0.1 24 3.978 244 

113 ·0 .1 2 ·0,397 0565 ·0.048 3.926 2.229 

E2 II I 0,00 7 .0.237 0,575 .0.064 3.698 1.577 

#2 ·0,242 ·0,22 0552 0,333 2.798 1.905 

#3 0.1 44 .1) ,185 0.51 0,026 2.559 1.142 

E3 #1 ·0.019 .0,058 0.632 0,279 2.416 1.174 

#2 .0.0 11 0025 0.708 0,311 296 2 1.15 

#3 ·0,06 0,062 0.72 0.261 2.771 1.431 

E4 #1 0.01 6 ·0,021 0.298 0.09 1 1.643 0.75 

#2 .0.0 12 ·0 019 0.556 0.058 1.942 0.787 

#3 0,012 0.Ql 6 0.548 0,69 6 2.79 1.226 

E5 #1 O.Ql S ·0008 0.583 0,356 2.45 1 1.065 

#2 0.042 0,021 0.47 8 0,41 231 0,951 

#3 0071 ·0.017 0504 0.167 2,635 1.339 

EO #1 ·00 09 ·Q.CJ41 0,002 .0,006 0,889 0.45 2 

#2 ·0.036 ·0007 0.037 0.014 0,747 0.211 

#3 .0.03 ·00 35 0.026 ·0.0 23 0941 0.24 

E7 #1 0.09 9 ·0.017 0.049 0.08 5 0,842 OJ 7 

#2 1) ,019 ·0,01 8 ·0 005 0.031 1.648 0.141 

#3 0085 ·0,042 0,022 0,092 1.288 0.112 

E8 #1 0,004 .0.025 0.08 .0.006 1.1 94 0.427 

#2 0.014 .0.011 0,14 ·00 12 3.199 0.179 

#3 ·0.022 ·0 ,01 0.01 3 ·0,012 1.49 0,564 

E9 #1 0.072 0,01 6 0,68 0.197 2.605 1.09 2 

#2 0.078 0.001 0.774 0 267 2,772 1.359 

#3 0.049 0.02 3 0712 0.146 2.66 5 1.193 

E 10 #1 0,06 5 ·0,002 0.35 0.165 2.45 0.9 

#2 009 2 0032 0454 0.208 2.625 0.937 

#3 0,077 ·0,003 0,604 0.178 2.716 0.998 

Table AI: Summary of all the experiments for the 20G needle in reverse orientation 
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APPENDIX II 

Table A2 shows hemolysis values of different specimens obtained from the 

spectrophotometer for several experiment with the 200 needle in the normal orientation. 

% H ~molysis . N om\~ Orient.ation 

20 oi 35 psi 50 psi 

CUln nt RolJllded CUll'~nt Rounded Current Rounded 
Needle medl~ ne edle medl~ needle needle needle 

EI #1 ·0.29 0.112 0.387 0.855 2.588 2779 

#2 .04 .011 2 0136 0.244 2.1 39 2.417 

#3 0,02 ·0.283 0,13 ·0,002 1455 1.893 

E2 #1 .0,052 ·0,01 7 0.159 ·0,067 1.598 1,646 

#2 ·0,228 ·0,276 0,36 0053 1.123 3.521 

#3 ·0,202 ·0,076 0.101 0,(155 0.786 0,92 1 

E3 #1 Q,OOI 0.10 3 0.306 0,24 1.359 2.092 

#2 0,065 0,00 6 0.209 0.347 1.376 173 

#3 0,051 OCiO 1 0,218 (1 ,127 1.073 1143 

Eo! #1 0,025 0,004 0,287 0142 1,437 1.489 

#2 ·0,026 0,022 0,132 0.194 0,958 1.432 

#3 ·0,01 9 0.062 0,154 0,043 0.58 1.128 

E5 #1 0,043 0,046 0,205 0,252 1.514 1.601 

#2 0,131 0.004 0.251 0.182 1.332 1,256 

#3 .0007 0,037 0,362 0.277 1.D67 1.01 6 

E6 #1 ·0,027 ·0,062 0,03 .5 0,046 0438 0.402 

#2 IJ,021 .0,031 0,006 .001 0.559 0,789 

#3 .0,025 ·0 ,049 -0.008 0,016 0.342 0394 

E7 #1 0,00 2 0,00 8 0,016 0,048 0.313 0,175 

#2 [1 ,[138 ·0,009 0,076 0,081 0612 0,837 

#3 0,003 0.027 0,129 0,058 0,678 0,891 

E8 #1 ·0,008 0,021 0.12 5 0,031 0,889 0.175 

#2 .0,025 ·0.D27 0.254 0.052 1.365 0.722 

#3 ·0 ,009 0,009 0.028 0,021 0,432 0,172 

E9 #1 0,025 0.Dl 2 0,236 0209 1.511 1.33 1 

#2 0,108 0,02 5 0,209 0,262 1.375 1.426 

#3 0,031 0,02 6 0,201 0,155 1.327 0,985 

E 10 #1 0,01 2 0,002 0.327 0,259 1.242 1,69 1 

#2 0,006 ·O,CIOI 0,204 0.176 1.257 1.235 

#3 0,009 0,1)15 0,22 0.083 0,524 0,624 

Table A2: Summary of aU the experiments for the 20G needle in normal orientation 
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APPENDIX III 

Table A3 shows hemolysis values from several ru ns of experiments with standard and 

modified needles obtained from the spectrophotometer for the 160 micro-milled needle 

in reverse orientation. 

% Hemolysis. Reverse Orientation 
15 psi 30 ps i 45 ps i 

CUn'enl Beveled CUlTent Beveled Current Beveled 
needl e needle needle needle needle needle needle 

E I #1 -0.03 ·0.485 0.019 0.143 2.678 2.746 
#2 ·0.55 -0.180 ·0.068 0.039 1.807 
#3 ·0.37 ·0.579 0.218 0.195 1.993 2.387 

E :2 #1 0.011 0.057 0.197 0.198 1.630 1.576 
#2 0.042 ·0.006 1.377 0.194 1.1 48 1.397 

#3 0.005 0.043 1.308 0.117 1. 607 0.184 
E 3 #1 0.003 -0.01 3 0.225 0.185 1.001 0.993 

#2 0.245 ·0.012 0.120 0.29 1 0.792 0.940 
#3 0.087 0.000 ·0.003 0. 241 1.034 0.953 

4 E #1 ·0.078 0.145 0.305 0.223 1.893 1.557 
#2 0.009 -0.076 0.158 0.216 1.69 1 1.942 

#3 ·0.088 0.039 0.282 0.33 1 1.892 1.546 
E 5 #1 0.437 0.598 0.701 0.530 1.053 0.990 

#2 0.497 0.382 0.582 0.520 1.091 1.037 

#3 0. 340 0.575 0.630 0.660 1.073 1.075 
E € #1 -0.068 0.014 0.634 0.367 1.923 1.526 

#2 0.145 0.008 0.26 1 0.140 1.771 1.554 

#3 ·0. 11 3 0.205 0.5 17 0.375 1.830 1.836 
E 7 #1 ·0.052 0.139 0.464 0.344 1.493 1.321 

#2 0.063 -0.025 0.214 0.254 1.3 11 1.476 

#3 ·0.085 0.102 0.44 1 0.361 1.468 1.323 

E 8 #1 -0.056 0.068 0.3 11 0.192 1.360 1.22 1 
#2 0.072 ·0.030 0.180 0.168 1.134 1.168 

#3 ·0.091 0. 160 0.328 0.196 1.353 1.135 

E 8 #1 0.094 0.048 0.275 0.579 1.544 1.579 
#2 ·0.093 0.084 0.287 0.332 1.218 1.567 

#3 0. 192 ·0.053 0.244 0.157 1.625 1.021 

Table A3 : Summary of all the experiments for the 16G (micro. milled) needle in reverse orientation 
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APPENDIX IV 

Table A4 shows hemolysis values from the spectrophotometer for various specimen 

samples of the 16G micro-milled needle in normal orientation. 

~ 

% Hemolysis. Normal Orientati on 
15 psi 30 psi 45 psi 

Current Bevelled Current Bevelled Current Bevelled 
n~cdl e needle needle needle needle needle needle 

E I #1 ·0.394 ·0.515 -0.186 0.347 1. 816 2.527 
#2 ·0.406 ·0.335 0.126 -0.159 2. 105 

#3 -0.575 -0.593 0.041 -0.094 0.93 1 1.706 

E 2 #1 0.012 ·0.013 0.097 0.278 0.205 1.559 
#2 0.016 0.261 0.249 1.326 0.943 1.628 

#3 0.022 ·0.013 0.168 0.185 0.801 0.28 1 

E 3 #1 -0.003 -0.032 0.124 0.274 0.869 0.9 17 
#2 0.032 0.015 0.151 0.213 0.937 0.9 17 

#3 0.002 0.052 0. 11 7 0.165 0.901 1.003 
4 E #1 ·0,073 -0.100 0,141 0.334 1.381 1.87 1 

#2 ·0.008 ·0.013 0.355 0,21 I 1.611 1,450 

#3 0.067 ·0.080 0.376 0,278 1,166 1,444 

E 5 #1 0.358 0,358 0,609 0,665 1,028 1,098 
#2 0.489 0.491 0,6 J I 0.646 1.059 1.026 
#3 0.578 0,390 0,789 0,649 0,943 1.030 

E 6 #1 ·0,084 ·0.024 0,286 0.374 1.405 1. 859 
#2 0,065 0.038 0,249 0.348 1.706 1.414 

#3 0,185 ·0,052 0.406 0.429 1.1 58 1.1 91 

E 7 #1 ·0,084 -0,072 0,396 0.538 1.292 J,558 
#2 0,082 0,046 0.4 16 0.327 J,48 1 1.359 
#3 0. 144 ·0,059 0.402 0.368 1,163 1,392 

E 8 #1 ·0,063 0,136 0.223 0.347 1,123 1.356 
#2 0,080 0,002 0,170 0.268 1,270 1.143 

#3 0,150 -0,034 0.284 0.189 0.9 13 1. 257 

E 8 #1 0,167 0,1 90 0.388 0,498 1.378 1.225 
#2 ·0,055 -0.094 0,510 0.170 1.540 1.52 1 

#3 -0,089 0.240 0.052 0,210 1.421 1.424 

Table A4 : Summary of all the experiments for the 16G (micro-milled) needle in normal orientation 
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APPENDIX V 

Below (Table A5) is the summarized table of hemolysis values of standard and modified 

needles for the 16G EDM needle in the reverse orientation. 

% Hemolysis. Reverse Orientation 
15 psi 30 psi 45 psi 

CUITlill1t Rounded Current Rounded Current Rounded 
Needle needle needle needle needlc needle ncedle 

E I #1 -0.065 0.326 0.037 1.578 1.004 

#2 0.004 -0.052 0.048 0.908 1.297 

#3 ·0.073 0.055 -0.006 1.409 0.788 

E " #1 -0.008 ·0.022 0.094 0.137 0.895 1.210 

#2 0.016 0.007 0.135 0.050 0.886 0.534 

#3 0.016 ·0.008 0.082 0.060 1.775 0.682 

E 3 # 1 ·0.011 ·0.020 0.077 0.077 1.692 1.666 

#2 -0.016 0.004 0.11 4 0.058 1.134 0.649 

#3 -0.026 -0.017 0.046 0.050 1.3 14 0.707 

E 4 #1 0.015 ·0.011 0.438 0.223 1.455 1.508 

#2 0.005 -0.004 0.309 0.338 1.526 1.363 

#3 0.009 ·0.0 14 0.350 003 18 1.535 1.382 

E 5 # 1 -0.012 0.00 1 0.214 0.355 1.283 1. 11 8 

#2 0.014 -0.0 18 0.25 1 0.2 19 1.355 1.063 

#3 0.002 -0.014 0.262 0.206 1.33] 1.310 

E 6 #1 0.007 0.013 0.198 0,145 1.671 0,657 

#2 -0,003 0.004 0. 297 0,162 1.748 1.234 

#3 -0.01 1 -0,002 0, 229 0.230 1,80 1 1.219 

E 7 #1 ·0,014 0,020 0.299 0. 138 1.222 0.995 

#2 ·0,0 14 ·0.023 0, 220 0.139 1.203 0,986 

#3 -0.030 -0.033 0.559 0, 123 ],184 1,169 

E 8 #1 ·0,0 13 ·0.Q38 0.209 0,027 1,626 1.671 

#2 ·0,031 ·0,029 0,262 0,129 1.268 1.238 

#3 -0,021 -0.014 0,262 0.140 1.725 1,085 

E 9 #1 0,008 ·0,003 0. 268 0,187 1.185 0.921 

#2 0,004 ·0.021 0,166 0,126 1.051 1.134 

#3 0,015 ·0,020 00302 0.142 1.180 0.835 

Table AS : Summary of all the experiments for the 16G (EDM) needle in reverse orientation 
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APPENDIX VI 

Table A6 shows hemolysis values from several runs of experiments with standard and 

modified needles obtained from the spectrophotometer for the 160 EDM needle in the 

normal orientation. 

% Hemolysis. Normal Orientation 
15 psi 30 psi 45 psi 

Current Rounded Current Rounded CUITent Rounded 
Needle needle needle needle needle needle needle 

E I #1 -0.064 0.061 0.134 0.986 
#2 -0.053 -0.040 0.3 14 1.285 1.524 
#3 -0.070 0.05 1 1.047 0.528 0,944 

E 2 #1 0.039 -0.012 0.077 0.167 0.871 1.003 
#2 0.006 0.004 0.093 0.160 J.l 52 1.262 
#3 0,088 0.00 1 0.057 0.118 0.970 0.719 

E 3 #1 -0,094 -0.01 2 0,054 0.08 1 0.785 0.923 
#2 -0.004 -0.01 5 0.206 0.123 1.188 1.342 
#3 -0.016 0.001 0.051 0.040 0.584 0.877 

4 E #1 0.Q31 0.008 0.238 0.3 19 1.51 7 1.446 
#2 0.000 -0.007 0.475 0.664 1.540 1.539 
#3 0.009 -0.012 0. 230 0.495 1.15 1 1.474 

E 5 #1 -0.010 -0.002 0.489 0.347 0.809 1.198 
#2 0.002 0.002 0.435 0.5 10 1.045 1. 288 
#3 -0.004 -0.013 0.273 0.259 1.141 1.260 

E ~ #1 -0.011 0.00 1 0.360 0.263 1.374 0.883 
#2 0.009 -0.008 0.413 0.398 1.011 1.58 1 
#3 0.001 -0.019 0.149 0.247 0.876 0.808 

E 7 #1 -0.020 -0.033 0.160 0.258 0.979 0.805 
#2 0.002 0.025 0.218 0.435 1.148 \.084 

#3 -0.012 -0.020 0.148 0.253 1.046 0.775 

E 8 #1 -0.020 -0.039 0.258 0.186 1.079 1.149 
#2 -0.028 -0.034 0.307 0.235 1.484 1.338 

#3 -0.014 -0.017 0. 125 0.260 1.035 1.1 36 

E 9 #1 0.010 0.012 0. 145 0.298 0.901 1.133 
#2 0.00 1 0.006 0.192 0.282 0.999 1.018 

#3 0.006 -0.0 10 0. 11 2 0.153 0.729 0.865 

Table A6: Summary of all the experiments for the 16G (EDM) needle in normal orientation 
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