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ABSTRACT 
 

THE EFFECT OF SPINAL CORD INJURY ON VAGAL AFFERENTS 
 

April N. Herrity 
 

December 2, 2014 
 

 Spinal cord injury (SCI) is a significant public health concern that leaves 

patients with a multitude of life-long disabilities. Major complications of SCI apart 

from paralysis, include deficits in bladder and bowel function. Lower urinary tract 

dysfunction continues to remain a top priority issue affecting quality of life for this 

population. The majority of visceral organs receive a dual sensory innervation 

from both spinal nerves as well as the vagus nerve. Following SCI, the vagus 

nerve is a potential pathway through which information from regions below the 

level of a spinal injury can travel directly to the brainstem, bypassing the spinal 

cord. The effect of SCI on the vagus nerve and the tissue it supplies has not 

been thoroughly examined. In order to advance bladder management after SCI, 

a thorough understanding of its neural control following chronic injury is needed 

to ultimately improve existing therapeutic options, as well as develop novel 

interventions that take advantage of this extraspinal route.  
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The objective of this project was to describe the anatomical, 

neurochemical, and electrophysiological profiles of vagal innervation of the rat 

urinary bladder. Initially, the first study identified both single and double-labeled 

vagal afferents supplying the rat bladder and distal colon in the nodose ganglion 

(NG). The degree of neural innervation to the colon also was assessed, as a 

single axon that dichotomizes and innervates both organs can serve an important 

role for mediating both normal physiological and pathological reflexes.  

Following chronic SCI, we evaluated potential plasticity in subsets of NG 

neurons which contain projections that bypass the spinal cord from visceral 

organs, including those projections that specifically supply the bladder. Vagal 

sensory cell bodies displayed an increase in P2X3 expression and a decrease in 

IB4 binding, which also held true for many neurons innervating the bladder. 

Bladder-innervating neurons also displayed altered membrane 

electrophysiological properties, suggesting they are responsive to a chronic 

spinal injury. Even though SCI does not directly sever the vagus nerve, our 

results indicate vagal afferents, including those innervating the bladder, exhibit 

neurochemical plasticity post-injury that may have implications for visceral 

homeostatic mechanisms and nociceptive signaling. 
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CHAPTER I 
 

GENERAL INTRODUCTION 
 

Major complications of spinal cord injury (SCI), apart from paralysis, 

include deficits in bowel, bladder and sexual function, autonomic function and 

chronic pain (Kirchberger et al., 2010). SCI is classified as one the most 

expensive hospital diagnoses (AHCPR, 1996). Deficits in urological and bowel 

function rank high in terms of factors affecting quality of life (Anderson, 2004). 

Development of a neurogenic bladder is a cause of significant morbidity and 

mortality in the SCI population (Glick et al., 1984, Lynch et al., 2001). To improve 

bladder and bowel management after SCI, a thorough understanding of its neural 

control is needed to ultimately aide in improving existing therapeutic options, 

avoiding unnecessary procedures, and developing novel methods. The outcomes 

of this project will also provide important information for others suffering from 

bowel/ bladder dysfunction and visceral pain, including individuals with Multiple 

Sclerosis, Parkinson’s disease, stroke, carcinoma, peripheral nerve insult, 

interstitial cystitis (IC) and irritable bowel syndrome (IBS). Although the proposed 

study is directed more toward bladder function, the colon is also being 

investigated since 1) innervation of the colon by the vagus is known and will 
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serve as a complementary comparison to the bladder (Altschuler et al., 1993) 

and 2) interactions with the circuitry (Basinski et al., 2003, De Wachter and 

Wyndaele, 2003) including issues surrounding cross-sensitization (Pan et al., 

2010) between the bladder and colon in humans make both necessary to study. 

Bladder Dysfunction Following Spinal Cord Injury 

Bladder complications post-SCI include over activity of the detrusor 

muscle leading to incontinence, sustained high pressure within the bladder wall, 

and sphincter-detrusor dyssynergia which results in a loss of coordination(de 

Groat and Yoshimura, 2006). SCI individuals often exhibit chronic vesico-ureteral 

reflux into the renal pelvis, leading to hydronephrosis and ultimately renal failure. 

Additionally, the backward flow of urine introduces bacteria into the kidneys and 

can lead to sepsis and hospitalization. In previous years, the leading cause of 

death in SCI patients was due to renal failure(NSCISC, 2010). However, 

improvements in urological management have reduced mortality rates, although 

many treatment options often have low patient compliance (Hansen et al., 2010). 

Current treatment options for neurogenic bladders include pharmacological 

agents, catheterizations, surgical procedures, and botulism toxin(Samson and 

Cardenas, 2007). Even though optimal sterile conditions are sought in bladder 

care management, most SCI patients develop urinary tract infections, which is 

the number one medical concern affecting overall health and medical costs 

(NSCISC, 2010). With the common use of anticholinergic medications, side 
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effects such as dry mouth and constipation further exacerbate the underlying 

urologic dysfunction, making compliance difficult (Benevento and Sipski, 2002).   

Innervation of Pelvic Viscera 

Anatomical connections to the bladder stem from lumbar sympathetics, 

sacral parasympathetics and a somatic supply to the external sphincter. 

However, many studies have shown that much of the pelvic viscera is supplied 

by both spinal and vagal afferents (Gattone et al., 1986, Jancso and Maggi, 

1987, Ortega-Villalobos et al., 1990, Altschuler et al., 1993, Hubscher and 

Berkley, 1995, Komisaruk et al., 1997, Ersoz and Akyuz, 2004, Hubscher et al., 

2004). Evidence of a vagal connection to the pelvic viscera in humans can be 

demonstrated from the fact that women with functionally “complete” SCI (ASIA 

criteria) are able to perceive sensations from mechano-stimulation to the vagina 

and cervix and even respond with orgasms (Komisaruk et al., 1997, Komisaruk et 

al., 2004). Additionally, patients with functionally “complete” SCI are able to 

perceive visceral pain from urinary and bowel distention as well as sensations of 

bladder distention and filling (Wyndaele, 1991, 1997, Ersoz and Akyuz, 2004). 

Although anatomical evidence of connections between the pelvic viscera and 

vagus nerve is discussed in the clinical literature pertaining to chronic SCI cases, 

no human studies have been performed to determine a vagal connection to the 

urinary bladder and bowel. Also, anatomy textbooks emphasize that vagal 

innervations extend only as far as the left colic (splenic) flexure(Agur and Dalley, 
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2009). However, earlier neuroanatomical tracing studies in rats have shown that 

abdominal branches of the vagus nerve innervate all areas of colon, besides the 

rectum (Altschuler et al., 1993) and portions of the female reproductive tract 

(uterus, cervix) (Ortega-Villalobos et al., 1990, Hubscher and Berkley, 1995). 

Evidence of a vagal-bladder connection was found with injection of HRP-WGA 

into the bladder, which labeled neurons in both spinal ganglia and nodose 

ganglia (Jancso and Maggi, 1987). 

Cross-Sensitization 

Of particular interest is not only the contribution of the vagus to bladder 

function under normal and pathological conditions, but also aspects of cross-

sensitization. Central viscero-visceral convergence may explain why some 

patients experience referred pain or altered sensations in apparently unaffected 

viscera (Berkley, 2005). In general, cross-talk between pelvic organ systems, 

such as with the bladder and colon, exist to play a role in normal visceral 

functioning. For example, distention of the urinary bladder leads to contractions 

of the external anal sphincter, preventing defecation and allowing for micturition 

(Basinski et al., 2003). The opposite is true in the process of allowing for 

defecation while inhibiting micturition. Injury or trauma leading to disruption with 

the coordination of any of these mechanisms can cause the injured organ to 

affect the functionality of the non-injured one (Pezzone et al., 2005, Kaddumi and 

Hubscher, 2006, Malykhina, 2007). If insult to central sources occurs, such as in 

the case of SCI, there is a potential that alternative inputs to visceral organs may 



 

5 
 

become more involved, demonstrating a role in plasticity. Inflammation of the 

bladder itself has been shown to increase afferent excitability that can elicit 

painful sensations (Sengupta and Gebhart, 1994). In studies with non-injured 

humans and rats, both bladder-to-colon and colon-to-bladder cross-sensitization 

is linked with painful sensations (Alagiri et al., 1997, Pezzone et al., 2005, 

Theoharides et al., 2008). Therefore, characterizing, using immunohistochemical 

techniques, the histochemical phenotype of vagal afferents involved in the 

bladder or colon circuitry and their expression of injury-responsive cellular 

markers (GS-I-B4, P2X3, SubP) following chronic SCI will provide more insight 

into the role vagal afferents may play mediating visceral sensation.  

Clinical Relevance 

Although afferent innervation of most viscera stems from both spinal and 

vagal neurons, it is typically thought that nociceptive impulses are mediated 

through the spinal component (Knowles and Aziz, 2009). However, following 

injury or irritation, vagal afferents are reported to encode stimuli well into the 

potentially noxious range which could contribute to visceral hypersensitivity 

(Bielefeldt et al., 2005). Once clearly identified, these connections can be 

targeted as possible therapeutic pathways, improving bladder voiding and 

continence as well as altered sensations. In terms of the overall clinical 

relevance, vagal nerve stimulation has been shown to be a successful alternative 

treatment for conditions such as refractory epilepsy (Labar et al., 1999), 

depression (Cristancho et al., 2011) and even systemic inflammation (Tracey, 
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2007). Therefore, understanding the interconnectedness of the vagus nerve and 

the role it may play in pathological conditions signifies that there may be 

mechanisms involved in our capability of targeting of the vagus nerve 

therapeutically to begin to address bladder/bowel dysfunction. Given that many 

pelvic pain conditions involve organ cross-sensitization mechanisms, our work 

defining the nature of multi-organ-innervation of single nodose ganglion neurons 

may provide us with new insights into their co-morbities.
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CHAPTER II 
 

IDENTIFICATION OF BLADDER AND COLON AFFERENTS IN THE NODOSE 
GANGLIA OF MALE RATS1  

 
 
 
  

                                            
1 Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH (2014) 
Identification of bladder and colon afferents in the nodose ganglia of male rats. J 
Comp Neurol 522:3667-3682. 
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Introduction 

 

Neural innervation of the lower urinary tract to/from the spinal cord 

includes sensory and somato-motor components as well as a lumbar 

sympathetic and sacral parasympathetic supply. Furthermore, the micturition 

reflex requires descending input from central sources located in an area of the 

pons referred to now as the pelvic organ stimulating center (POSC,) since it also 

coordinates other pelvic organ eliminative functions (Holstege et al., 1979, 

Holstege and Kuypers, 1982, Holstege et al., 1986, Aguayo and White, 1992, 

Blok et al., 1997b, Huynh et al., 2013, Beckel and Holstege, 2014). In most 

species, voiding is initiated when information regarding bladder fullness, 

conveyed by A-δ fibers, projects to the pelvic organ spinal relay center (POSRC) 

(Beckel and Holstege, 2011b, a) located near the dorsal horn of the sacral spinal 

cord, before ascending to the periaqueductal gray (PAG) (Vanderhorst et al., 

1996, Holstege, 2005, Klop et al., 2005), a main relay center in the midbrain. 

From there, receiving cues from the brain indicating voiding is appropriate (Blok 

et al., 1997a, Blok et al., 1998), the PAG activates the POSC to initiate 

micturition (Beckel and Holstege, 2011b). In addition to spinal and supraspinal 

derived sources of neural innervation, numerous animal studies have shown that 

many pelvic viscera are supplied also by a non-spinal vagal component (Burden 

et al., 1983, Gattone et al., 1986, Jancso and Maggi, 1987, Ortega-Villalobos et 

al., 1990, Altschuler et al., 1993, Hubscher and Berkley, 1995, Komisaruk et al., 
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1997, Collins et al., 1999, Ersoz and Akyuz, 2004, Hubscher et al., 2004, 

Komisaruk et al., 2004). Dual sources of innervation by non-spinal routes that 

convey sensory information to the brain from visceral organs are likely of high 

functional significance under pathological conditions including chronic spinal cord 

injury. 

Prior neuroanatomical tracing experiments in normal adult rats have 

shown that the abdominal branches of the vagus nerve innervate all areas of 

colon, but not the rectum (Altschuler et al., 1993) and comparative studies in rats 

receiving a complete spinal cord transection at T8 confirm vagal innervation of 

the colon (Vizzard et al., 2000). Note that the majority of vagal afferent fibers 

outnumber efferent fibers by a ratio of 10:1 (Grundy, 2002). The degree of vagal 

contribution to the bladder, however, has not previously been determined. 

Furthermore, examining the possible connection between the bladder and colon 

through the vagus nerve is important since cross-talk between pelvic organ 

systems is part of normal visceral functioning and therefore, physiologically 

important for maintaining homeostasis. For example, urinary bladder micturition 

and defecation occur alternately through mutually-inhibitory reflexes. Distention 

of the urinary bladder leads to contractions of the external anal sphincter, 

preventing defecation and allowing for micturition (Basinski et al., 2003). The 

opposite is true in the process of allowing for defecation while inhibiting 

micturition. If both organs are distended, micturition occurs prior to defecation 

since it is thought that voiding should happen in a timelier manner due to the fact 



 

10 
 

that prolonged urinary retention could irritate the urothelial lining (De Wachter et 

al., 2007). The vagus nerve also displays important regulatory cross-talk as seen 

with the baroreceptor reflex, demonstrating its role in maintaining stable blood 

pressure and heart rate (Dampney, 1994, Spyer, 1994). Injury or trauma leading 

to disruption with the coordination of any of a number of vagal- or spinal-

mediated processes can cause the pathological organ to affect the functionality 

of the non-injured one through a number of mechanisms: cross-excitatory or 

dorsal root/axonal reflexes, intraganglionic and interaxonal interactions, axon 

collateral activation, as well as central sensitization (Malykhina et al., 2004, 

Pezzone et al., 2005, Kaddumi and Hubscher, 2006, Malykhina et al., 2006, 

Liang et al., 2007, Malykhina, 2007, Ustinova et al., 2007, Brumovsky and 

Gebhart, 2010, Pan et al., 2010, Ustinova et al., 2010). Influential effects from 

one organ to another are evident through convergence of inputs at the primary 

afferent level as well as at second order neurons and higher integrative centers.  

Based on our earlier electrophysiological research on responsiveness of 

medullary reticular formation neurons to stimulation of abdominal branches of the 

vagus nerve, we found evidence for non-specific afferent induced plasticity with 

chemical irritation of the bladder, suggesting that vagal afferents may innervate 

the lower urinary tract (Kaddumi and Hubscher, 2006, 2007). We therefore 

sought to determine, through anatomical tracing, if evidence of a vagal neural 

connection to the bladder exists and to assess the degree of convergence (i.e. 

dichotomizing afferents - reflective of the direction of information flow) with the 
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known vagal supply of the distal colon. We hypothesized that there are distinct 

subsets of NG neurons innervating the bladder or colon, as well as a subset 

innervating both visceral structures. For comparison, we simultaneously 

processed and assessed within the same group of animals spinal ganglia (L1/L2 

and L6/S1 dorsal root ganglia (DRG)) that are known to innervate both the 

bladder and colon in the rat. We hypothesized that a greater degree of bladder, 

colon, and convergent labeling are present in the L6/S1 DRG compared to the 

NG.  
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Methods 

 

Animals 

All experimental procedures were carried out according to NIH guidelines 

and protocols reviewed and approved by the Institutional Animal Use and Care 

Committee at the University of Louisville School of Medicine. All adult male 

Wistar rats (n=12, Harlan Sprague Dawley, Inc, Indianapolis, IN), approximately 

250 grams in weight, were individually housed in an animal room with a 12-hour 

light and dark cycle. They had ad libitum access to water and food (Laboratory 

Rodent Diet). 

 

Injection of retrograde tracers into the urinary bladder and distal colon 

One group of adult male Wistar rats (n=8), anesthetized under ketamine 

(80mg/kg of body weight) and xylazine (10mg/kg), received a ventral/caudal 

midline peritoneal incision to expose the urinary bladder and distal colon. The 

bladder was emptied and the abdominal viscera were gently shifted to the side 

for exposure of the distal colon. Using a protocol previously published (Rau et al., 

2007), the fluorescent tracer FAST DiO™ oil (3,3'-dilinoleyloxacarbocyanine 

perchlorate, 5mg dye dissolved in 0.1ml methanol, Molecular Probes Inc., 

Eugene, OR) was injected with a dye-dedicated 33-gauge needle coupled to a 

Hamilton microsyringe (Fisher Scientific, Pittsburgh, PA) into the distal colon wall, 

followed by a separate dye-dedicated 33-gauge microsyringe injection of FAST 
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DiI™ oil (1,1’-dilinoleyl-3,3,3’,3’,-tetramethylindo-carbocyanine perchlorate, 5mg 

dye dissolved in 0.1ml methanol, Molecular Probes, Inc., Eugene, OR) into the 

bladder wall. Note that the abbreviations DiI and DiO are used throughout the 

text/figures/legends to refer to FAST DiI™ oil and FAST DiO™ oil, individually 

and respectively, and the term carbocyanine to refer to them collectively. For the 

distal colon, injections were made 1-3 centimeters rostral to the anus (10μl 

volume per animal divided into 10 injections of 1μl each). For the bladder, 

bilateral injections were made to the trigone and dome (10μl volume per animal 

divided into 10 injections of 1ul each). Injections were made into the distal colon 

prior to bladder injections as to avoid organ to organ contact and potential tracer 

contamination. For tracer comparisons, a set of additional rats (n=2, 4 ganglia) 

received bladder injections of either tetramethlyrhodamine (TMR) (anionic, 

lysine-fixable, 3000MW, 2.0% concentration in 0.9% saline, Molecular Probes, 

Inc., Eugene, OR) or Cholera Toxin Subunit B (CTB)–594 (0.5% injection, 

Molecular Probes, Inc., Eugene, OR) and distal colon injections of either 

Fluorescein Dextran (FD) (anionic, lysine-fixable, 3000MW, 2% concentration in 

0.9% saline, Molecular Probes, Inc., Eugene, OR) or CTB–488 (0.5% injection, 

Molecular Probes, Inc., Eugene, OR). A final subset of rats (n=2, 4 ganglia) also 

received colon-only injections of DiI, utilizing the same protocol above.  

Animal body temperature was maintained at 37-40°C during surgery via a 

warm water recirculator (Gaymar, Kent Scientific, Winston-Salem, NC). After 

each injection, the needle was removed slowly; any leakage was controlled by 
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cotton-tipped applicators, and the site was rapidly sealed with n-butyl 

cyanoacrylate monomer glue (Henkel Consumer Adhesives, Avon, OH). After 

injections were completed, the intestines were rehydrated with 5% Dextrose 

Lactated Ringers, the abdominal musculature was sutured closed (Ethicon 4-0 

non-absorbable surgical suture), the skin closed with Michel clips (Fine Science 

Tools, Foster City, CA), and a topical antibiotic (Bacitracin, Actavis Mid Atlantic 

LLC, Lincolnton, NC) applied. Following surgery, animals were placed on a 

heating pad and core temperature monitored. They were given subcutaneous 

injections of ketoprofen (Ketofen, 2.5mg/kg, Fort Dodge Animal Health, Fort 

Dodge, IA) for analgesia twice a day for 2 days, 0.5ml of dual penicillin (PenJect 

®, The Butler Company, Columbus, OH) single dose peri-operatively as a 

general prophylactic and 5mg/kg gentamicin (GentaFuse®, Butler Schein, 

Dublin, OH) once per day for 5 days to prevent infections. All animals were 

monitored daily to inspect the surgical incision and identify any changes in an 

animal’s general condition.  

 

Perfusion and Tissue Collection 

Ten days after tracer injection, animals were deeply anesthetized with a 

ketamine (80mg/kg body weight)/xylazine (10mg/kg) mixture and transcardially 

exsanguinated with heparinized saline, followed by 4% paraformaldehyde 

perfusion.  Each vagus nerve was identified adjacent to the carotid artery and 

gently separated from surrounding tissues and traced rostrally to the NG, which 
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was excised using surgical microscissors and removed. Superior cervical ganglia 

were identified on both sides at the bifurcation of the common carotid artery and 

removed to be used as control tissue. In the same rats, following a dorsal spinal 

laminectomy and removal of the overlying dura mater, paired L1/L2 and L6/S1 

dorsal root ganglia were dissected free. Upon removal, all NG and L1/L2/L6/S1 

ganglia were placed immediately in individually labeled tubes containing a 

cryoprotectant solution of 30% sucrose/phosphate buffer with 1% sodium azide 

at 4°C for at least 24 hours. The abdominal cavity and viscera were inspected for 

potential tracer leakage, followed by the removal of the bladder and distal colon.  

 

Antibody Characterization  

 The primary antibodies used for signal enhancement of the TMR and FD 

tracers in this study are described in Table 1 and have been documented 

previously in numerous tracing studies (McNeill and Burden, 1986, Angelucci and 

Sainsbury, 2006, Kowski et al., 2008, Saleem et al., 2008, Borra et al., 2010, 

deCampo and Fudge, 2013). The antibody against TMR has been analyzed 

previously for cross-reactivity through the dot-blotting method and was shown not 

to recognize FD or Cascade Blue dextran amines (Kaneko et al., 1996). As 

expected, both the polyclonal antibodies against TMR and FD did not recognize 

cells in control tissue from animals not receiving tracer injections in this study 

(DRG sections) as well as others (Kaneko et al., 1996, McNeal et al., 2010). 
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Cell Quantification 

Ganglia coated in embedding medium were cross-sectioned at 12µm on a 

Leica CM 1850 cryostat and mounted onto gelatin-coated histological slides 

(Azer Scientific, Morgantown, PA). In the group that received dextran injections, 

signal amplification of slide-mounted sections was performed by overnight 

incubation in primary antisera (Rbt-anti-TMR, Molecular Probes, Inc., Eugene, 

OR, Cat# A-6397, RRID: AB_1502299 and Goat-anti-FD, Vector Labs, 

Burlingame, CA, Cat # SP-0601, RRID: AB_2307446 ) (see Table 1). Secondary 

antisera (Jackson Immuno ResearchLaboratory Inc., West Grove, PA) diluted 

1:200 and 1:100, respectively, was applied for both primary antisera (anti-rbt-

Texas Red and anti-goat-FITC).  

To view the DiI/DiO labeled sections, imaging was performed using the 

Nikon Eclipse TiE inverted microscope with NIS Elements software. Initially, 

images were captured using a 10x lens (APO DIC N1 10x/0.45 NA, Nikon) with 

consistent exposure times and computationally stitched together to visualize 

whole ganglion sections. Fluorescent imaging utilized a mercury arc lamp filtered 

through either a Brightline Tritc-B bandpass filter (543/22nm excitation, 

593/40nm emission, 562nm dichroic, Semrock) or through a GFP bandpass filter 

(470/40nm excitation, 525/50nm emission, 495nm dichroic, Nikon). As previously 

determined, the individual emission maxima of DiI and DiO are easily separated, 

facilitating two-color labeling, and were therefore selected as our tracers (Honig 

and Hume, 1986, Godement et al., 1987, Ragnarson et al., 1992). Across the 
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entire ganglion, assembled by automated stitching, counts of all singly-, dually- 

as well as non-labeled (collectively comprising total neuronal counts) NG and 

DRG neurons with a visible nucleus and definable soma were made using Nikon 

Elements software in every 5th section (60 microns apart) to avoid double 

counting. Note that non-labeled cells were quantified if they met the above 

criteria and did not exhibit any evidence of punctate fluorescence distributed 

within the cytoplasm, disqualifying them as bladder-, colon- or convergent-

specific neurons. Counts for regional differences (rostral, middle and caudal 

divisions) of the NG were determined using an anatomical division of the NG 

made by a laryngeal branch of the vagus nerve as described previously 

(Bielefeldt et al., 2006b). Positive neuron counts were expressed as a 

percentage of the total number of neurons (labeled and non-labeled) from within 

the entire stitched ganglion as well as a percentage of all labeled neurons. A 

Nikon Eclipse 90i confocal microscope (Plan Apo VC DIC N2 oil 60x, 1.4 NA, 

488nm excitation/515 emission, 561nm excitation/605nm emission, 1µm step 

size, 13 passes) with EZ-C1 3.60 software and a Nikon A1R MP+ confocal 

microscope (Plan Apo λ 20x, 0.75 NA, 488nm excitation/525nm emission, 561nm 

excitation/595nm emission, 0.5µm step size, 47 passes) with Elements software 

were used to collect high resolution, serial optical sections of NG and S1 DRG 

neurons, respectively. All channels of the confocal images were contrast 

enhanced simultaneously for display purposes only.  
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Statistics 

 Analyses were performed using SPSS v19-20 (IBM, North Castle, NY). 

Levene’s statistic was applied for homogeneity of variances and data are 

expressed as mean ± SD. Repeated measures analysis of variance (ANOVA) 

with a group factor was performed for analyzing side differences in the NG. After 

finding no significant differences between the right and left sides, bilateral ganglia 

were averaged (some ganglia were lost due to tissue processing errors). Next, 

these averaged values were analyzed via one-way ANOVA assessing regional 

differences in the NG. For cell quantifications and tracer comparisons, data were 

normalized as percentages of total NG cells and analyzed with a one-way 

ANOVA, followed by Tukey HSD post hoc t-tests. Two-way ANOVA and Tukey 

HSD post hoc t-tests were performed for the analysis of DRG ganglion 

differences and pelvic organ differences. One-way ANOVA followed by Tukey 

HSD post hoc t-tests were used for section sampling data. An independent t-test 

was performed for evaluating group differences (DiI vs DiO) in colon labeled NG 

neurons. Statistical significance was defined as p≤.05.  
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Results 

Nodose Ganglion (NG) Labeling 

 Use of the retrograde lipophilic tracers, DiI and DiO, revealed a total count 

of 5516 either singly- or dually-labeled afferents supplying the rat bladder and 

distal colon in the NG (8 rats; 15 total ganglia). Tracer injections into these two 

different pelvic organs (Figure 1) resulted in significantly more neurons labeled 

only from bladder than either only from colon or convergent neurons and 

significantly more neurons labeled only from colon than convergent neurons 

(Table 2 and Figure 2). Specifically, bladder labeled afferents in the NG were 

approximately 40% or 1.7 times more numerous than those labeled from the 

distal colon and 66% or almost 3 times more numerous than those labeled from 

both organs. Colon labeled afferents (Figure 1B) were approximately 43% or 1.8 

times more numerous than dually-labeled afferents (Figure 2). Of the total 

number of labeled afferents in the NG, 51.6 ± 1.9% were labeled only from the 

bladder, 31.2 ± 1.5% only from colon, while convergent neurons represented 

17.2 ± 1.6%. Retrograde tracing from the bladder and colon did not reveal any 

obvious somatotopy in terms of side-to-side or intra-NG arrangement (Figures 3 

and 4, respectively). A typical example showing labeling of NG neurons traced 

from the bladder and colon is provided in the Figure 5 confocal. Note that 

percentages of NG labeling from bladder and colon in a female rat (n=2 ganglia) 

did not reveal significant differences from the male rats (unpublished 

observations).   
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L6/S1 DRG labeling 

 In the same set of male Wistar rats (n=8, 24 ganglia), injections of DiI into 

the wall of the bladder and DiO into the wall of the distal colon revealed singly- 

and dually-labeled spinal afferents in both L6 and S1 DRG. There were 

significantly more bladder labeled neurons than colon (p<.01) and convergent 

neurons (p<.01) and significantly more colon labeled than convergent neurons 

(p<.01) within the L6 DRG (Table 2). Specifically, bladder labeled afferents within 

the L6 DRG were approximately 47% or 1.9 times more numerous than those 

labeled from the L6 colon and 95% or 20 times more numerous than those 

labeled from both organs. Colon labeled afferents were approximately 91% or 11 

times more numerous than dually-labeled afferents within the L6 ganglia (Figure 

6). With respect to only the total number of labeled afferents in the L6 DRG, the 

bladder represented (64.3 ± 2.2%), the colon represented (32.5 ± 2.1%), while 

convergent neurons represented (3.2 ± 0.5%). 

In contrast to the L6 DRG, the numbers of bladder labeled afferents within 

the S1 DRG were not significantly different from the numbers of colon labeled 

afferents and, as a group, colon labeled afferents were not significantly different 

from convergent afferents (p>.05). However, bladder labeled afferents within the 

S1 DRG were approximately 78% or 4.6 times more numerous than those 

labeled from both organs (p<.05). With respect to only the total number of labeled 

afferents in the S1 DRG, the bladder represented (59.7 ± 3.8%), the colon 

represented (25.7 ± 2.9%), while convergent neurons represented (14.7 ± 1.9%). 
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Examination of labeled neurons across the ganglia revealed that bladder-specific 

afferents (74.1% or 3.9 times, p<.01) and colon-specific afferents (82% or 5.6 

times, p<.01) were more numerous in L6 than those labeled from S1. A typical 

example showing labeling of traced S1 neurons from the bladder and colon is 

provided in the Figure 7 confocal image.   

Since the majority of labeled afferents were present in L6 compared to S1, 

specific aspects of the collected data were evaluated (i.e. sampling per section) 

to determine if there were differences between the two DRG levels. Specifically 

evaluating bladder afferents, there were significantly more DiI + cells per section 

in L6 (23.7 ± 7.2) versus S1 (6.8 ± 3.6, p<.05), but the total number of 

cells/section were similar (128.8 ± 25.9 versus 124.1 ± 34.2) between the two 

ganglia. Overall, L6 had a greater amount of DiI labeling compared to S1 and, 

therefore, a significantly greater percentage of bladder labeling throughout the 

ganglion (18.6 ± 5.2% vs 5.4 ± 2.2%, p<.001).  

 

L1/L2 DRG Labeling 

In a subset of the same male Wistar rats (n=4, 15 ganglia), injections of 

DiI into the wall of the bladder and DiO into the wall of the distal colon revealed 

singly- and dually-labeled spinal afferents in both L1 and L2 DRG. In contrast to 

the L6 and S1 DRG, bladder and colon labeling was uniform throughout the L1 

and L2 DRG demonstrating no significant differences within and across the 

ganglia (Table 2). However, in the L2 DRG bladder and colon labeling was 
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significantly greater than convergent labeling (bladder, 2.5 ± 1.3% vs 0.2 ± 0.6%, 

p<.001; colon, 2.1 ± 0.9% vs 0.2 ± 0.6%, p=.001). With respect to only the total 

number of labeled afferents in L1, the bladder represented (44.8 ± 19.5%), the 

colon (42.4 ± 19.0%) and convergent neurons (12.7 ± 16.6%). Similar results 

were found for L2, where the bladder represented (50.5 ± 17.3%), the colon (44.3 

± 15.6%) and convergent neurons (5.2 ± 4.5%). 

 

Spinal versus non-spinal labeling 

In terms of the total percentage of DiI labeled bladder sensory afferents, 

49.8% are represented by a vagal source (NG) and 50.2% are represented by a 

spinal source (43.9% for L6/S1 and 6.3% for L1/L2). For example, in comparison 

with the L6 DRG, which contains the vast majority of bladder-labeled neurons, 

significantly more DiI + cells/section were found in the NG (51.3 ± 23.2 versus 

23.7 ± 7.2 in L6) as well as total cells/section (232.5 ± 76.7 for NG versus 128.8 ± 

25.9 for L6) (Table 3). However, the proportion of bladder labeled neurons 

relative to the total population of neurons was similar in the NG relative to L6 

(21.6 ± 3.9% vs 18.6 ± 5.2%, Table 3).  

 

Comparisons with other tracers and controls 

 Comparisons with other widely used neuronal tracers were performed to 

assess the effectiveness of the lipophilic tracers DiI and DiO. We compared NG 

neuronal labeling following injections of dextrans (TMR–into bladder and FD–into 
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colon) and CTB (-594–into bladder and -488–into colon). We did not find any 

significant differences in the percentage of bladder-specific, colon-specific, and 

convergent-specific neurons in the NG between dextrans TMR/FD and 

carbocyanines DiI/DiO. However, there were significantly fewer CTB-bladder 

labeled neurons in the NG than DiI and TMR and significantly fewer CTB-colon 

labeled neurons than DiO (Figure 8).  

Removal of the superior cervical ganglion, which lies in close proximity to 

the NG, did not reveal any evidence of punctate labeling in conjunction with any 

of our tracers (image not shown). Furthermore, results from two additional rats 

that received DiI injections into the distal colon did not reveal significant 

differences in colon labeled NG afferents from those animals which received prior 

DiO injections in the distal colon (DiI, 11.0 ± 1.8% vs DiO, 12.9 ± 2.3%). As an 

additional control, the bladder was sectioned and imaged, to ensure there was no 

evidence of tracer cross-contamination from the distal colon and indicating that 

the tracer remained in that organ (image not shown). 
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Discussion 

 

 In the present study, we identified both singly- and dually-labeled vagal 

afferents supplying the rat bladder and distal colon. We found a uniform 

distribution of labeling throughout all regions of bilateral NG ganglia. 

Furthermore, considering the proportional distribution of labeled afferents 

between the NG and DRG, the percentages of bladder vagal afferents were 

similar to the percentages of bladder spinal afferents in the L6 DRG. This result 

demonstrates that the vagus nerve makes a substantial contribution to the 

anatomical connections of the male rat bladder. A summary diagram of the dual 

innervation to the bladder and colon from both spinal and vagal supplies is 

provided in Figure 9. Based on our comparisons with other types of tracers, the 

labeling efficacy of the retrograde tracers DiI and DiO, with no known selective 

tropism for different types of neurons, was appropriate for these experiments with 

regard to quantifying cells at the primary afferent level. 

 

Nodose Ganglion Labeling  

Injections of the retrograde tracers DiI and DiO revealed bladder-, colon- 

and convergent-specific neurons in the NG of the male Wistar rat. Anatomically, 

this suggests that a single vagal afferent can supply either the bladder or colon, 

but also can dichotomize and supply both organs, thereby providing a 

mechanism of communication between the two structures.  
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Evidence of vagal innervation to the male rat bladder provides a greater 

level of understanding to the complexity of the neural circuitry of the pelvis. 

These results are in line with previous animal studies demonstrating that the 

vagus nerve can indeed project below the transverse colon (splenic flexure), 

providing sensory innervation to the kidney (Gattone et al., 1986), ovary (Burden 

et al., 1983) and even portions of the female reproductive tract (uterus, cervix) 

(Ortega-Villalobos et al., 1990, Hubscher and Berkley, 1995, Collins et al., 1999). 

Additionally, indication of a possible vagal-bladder connection was noted when 

injection of horseradish peroxidase (HRP)- wheat germ agglutinin (WGA) into the 

bladder was performed, in which the authors report subsequently labeled 

neurons in the NG as well as spinal ganglia (Jancso and Maggi, 1987). 

Furthermore, our result of 21.4% of bladder neurons represented in the NG is 

similar to the percentage of NG neurons labeled from stomach (18%) (Sakurai et 

al., 2008), demonstrating that the vagus nerve provides a substantial degree of 

afferent innervation to the bladder.  

 The fact that 7.4% of the neurons in the NG were double labeled 

demonstrates that through the presence of vagal dichotomizing afferents, 

convergence of bladder and colon afferents are present at the primary afferent 

level. The percentage of convergent neurons falls within the range of other 

studies (DRG neurons) in multiple species (5-27%) (McNeill and Burden, 1986, 

Brumovsky and Gebhart, 2010). Dichotomizing spinal bladder/colon afferents 

have been shown at multiple DRG levels in both the rat, mouse (Keast and De 
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Groat, 1992, Christianson et al., 2007) and cat (De Groat, 1987b). The existence 

of these shared peripheral neural pathways may contribute to some of the 

bladder/colon co-morbid conditions seen clinically, such as interstitial cystitis and 

irritable bowel syndrome. Evidence of anatomically traced dichotomizing vagal 

axons has been reported with dually-labeled gastroduodenal (Zhong et al., 2008) 

and pancreatic (head and tail) afferents present in the NG (Fasanella et al., 

2008). Since the bladder and colon are closely related (stemming from the same 

embryological origin, having the same spinal innervation peripherally, similar 

central processing areas, similar functions related to storage and elimination), it 

is perhaps not surprising that there is evidence of co-innervation and sensory 

neuron-level cross-talk. The functional relevance of communication between the 

bladder and colon is thought to aid  in maintaining bodily homeostasis (Denny-

Brown, 1933, Floyd et al., 1978, 1979, 1982, De Wachter and Wyndaele, 2003, 

Vilensky et al., 2004, De Wachter et al., 2007, Malykhina et al., 2012).  

 The existence of such shared pathways also provides a means by which 

pathology in one organ can affect the functionality of an adjacent, healthy organ. 

For instance, numerous studies in experimental models of different species and 

in clinical reports (Whorwell et al., 1986a, Whorwell et al., 1986b, Alagiri et al., 

1997) demonstrate physiological evidence of cross-organ sensitization between 

both organs, including effects such as increased urinary frequency, urgency, 

nocturia, abnormal bladder detrusor muscle contractility and emptying or 

increased responses to colonic distention at lower than normal pressures (Floyd 



 

27 
 

et al., 1978, 1979, 1982, Bouvier et al., 1990, Malykhina et al., 2004, Pezzone et 

al., 2005, Qin et al., 2005, Bielefeldt et al., 2006a, Lamb et al., 2006, Malykhina 

et al., 2006, Ustinova et al., 2006, Noronha et al., 2007, Qiao and Grider, 2007, 

Rudick et al., 2007, Ustinova et al., 2007, Ustinova et al., 2010, Lei and 

Malykhina, 2012, Lei et al., 2013).  It is important to note that convergence 

through both spinal and/or vagal afferents occurs centrally as well. Neurons in 

the solitary nucleus and medullary reticular formation, for example, have been 

shown to receive mechano-sensitive inputs from multiple pelvic organs, 

demonstrating convergence at the second order neuronal level and beyond 

(Hubscher and Berkley, 1995, Kaddumi and Hubscher, 2006). Central viscero-

visceral convergence likely explains why multi-symptomatic patients experience 

referred pain or altered sensations in unaffected viscera (Berkley et al., 2005).  

 

L6/S1 and L1/L2 Labeling 

The quantitative results of singly- and dually-labeled spinal afferents 

supplying the male rat bladder and colon were similar to an earlier study 

(Christianson et al., 2007) assessing this same outcome for L6/S1 and L1/L2 

spinal ganglia in the rat despite using different tracers and in a different strain 

(Sprague-Dawley). There were no significant differences from the Christianson et 

al. study in terms of labeling between the bladder, colon and convergent spinal 

afferents in the L6/S1 ganglia when considering only labeled afferents. Similar 

findings were also apparent for the L1 and L2 ganglia between studies. Although 
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percentages for labeled afferents with respect to all neurons (both labeled and 

non-labeled) was not reported in that study, the current study indicates significant 

differences when considering the L6 and S1 separately for this measurement 

criterion. A similar pattern of labeling in the L6 DRG was found compared to the 

NG, where there were a greater number of bladder labeled afferents followed by 

colon and then convergent neurons. In S1, only significantly more bladder than 

convergent neurons was found. However, L6 still displayed a greater percentage 

of bladder and colon afferents than S1, indicating a larger degree of 

bladder/colon information travels through this DRG compared to S1. Even though 

this study focused on sensory afferents (NG via the abdominal branches of the 

vagus and L6/S1 via the pelvic nerve) of nerves containing parasympathetic 

fibers to the bladder, there also are some inputs to thoracolumbar DRG’s via the 

hypogastric nerve which contains sympathetic innervation of the bladder. Note 

that the L1/L2 DRG results are consistent with a predominant sensory supply via 

L6/S1 pelvic afferents (Christianson et al., 2007) and even when combined the 

spinal sources and NG supply are in relatively similar proportions.  

The general finding of significantly more bladder versus distal colon 

labeled afferents in both the NG and DRG may be attributed to surface area 

differences between the two organs. For example, even though the same 

circumferential region of the distal colon (1-3cm rostral to the anus) and bladder 

receive the same injection parameters across all animals, the actual injection 

area of the distal colon is smaller than the bladder with respect to the entire 
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organ and therefore may explain the smaller percentage of distal colon afferents 

relative to the bladder.  

The bladder afferent percentages in the NG were most similar to those 

found in the L6 ganglia. Despite the fact that the NG exhibited more bladder-

specific cells per section as well as more total cells per section compared to L6, 

there were no significant differences in the overall representation of bladder 

labeling throughout the two ganglia. These findings are consistent with reports on 

the percentage of stomach-labeled afferents in the NG, which were also found on 

average to be similar to the percentage of DRG (T9/10) stomach labeled (18%) 

afferents (Sakurai et al., 2008). The proportional similarities of the dual supply of 

bladder afferents may relate to different functional roles of NG and DRG neurons. 

For example, it has been hypothesized that spinal afferents are responsible for 

conveying noxious mechanical information, while noxious chemical stimuli are 

conveyed via vagal afferents (Schuligoi et al., 1998, Michl et al., 2001, Page et 

al., 2002, Holzer, 2003, Lamb et al., 2003, Danzer et al., 2004, Holzer et al., 

2004, Sugiura et al., 2005, Kaddumi and Hubscher, 2007). Aside from 

communicating differential stimuli from the periphery, both vagal and spinal 

projections likely converge in the brainstem. In particular, the midbrain PAG 

receives spinal afferent information from the lower urinary tract as well as vagal 

afferent visceral information via projections from the solitary nucleus (Herbert and 

Saper, 1992, Monnikes et al., 2003, Nishii et al., 2008). The PAG also receives 

input from various cortical regions which play a role in conscious control such as 
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determining when voiding is appropriate (Blok et al., 1997a, Blok et al., 1998, 

Kuipers et al., 2006); Please refer to (Beckel and Holstege, 2014) for a thorough 

review). Numerous levels of input and organization help provide fine tune control 

over complex neural pathways important for conscious control of continence and 

micturition. 

We did not find significant differences between NG colon and convergent 

afferent labeling compared to that from DRG neurons. A large degree of 

convergent afferents may be expected for the DRG supply based upon their 

known roles in multiple eliminative functions, but this was not the case. It should 

be noted, however, that labeled DRG and NG neurons may not accurately reflect 

the full extent of the peripheral supply to these pelvic organs as there could be 

differences in the extent of branching. For example, sacral DRGs have been 

shown to have 2.3 times the number of peripheral fibers as there are cell bodies 

(Langford and Coggeshall, 1981).  

 

Organization of the NG Neurons 

Included in the quantification of NG neuronal labeling from the bladder and 

colon were assessments of potential rostral, middle and caudal regional 

differences. The NG may exhibit a specialized viscerotopic organization where, 

potentially, vagal afferents from one organ reside more frequently in one area 

compared to other regions (Browning and Mendelowitz, 2003, Bielefeldt et al., 

2006b). A specific organized distribution is important for the coordination of 
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events and reflexes as demonstrated in higher integrative centers (Broussard 

and Altschuler, 2000, Altschuler, 2001). The solitary nucleus, location of vagal 

afferent terminals, for example, exhibits a high degree of organization with a 

distinctive organotypic pattern of inputs. Gustatory information is localized 

rostrally, while cardiovascular, respiratory and gastrointestinal afferents terminate 

in the caudal two-thirds of the nucleus (Torvik, 1956, Cottle, 1964, Beckstead 

and Norgren, 1979, Kalia and Mesulam, 1980). Cell counts in sections from the 

rostral, middle and caudal NG were analyzed and no significant regional 

differences were found. The finding of a uniform distribution of labeled 

bladder/colon/convergent cells in the NG also has been demonstrated for upper 

digestive afferents in the mouse (Zhong et al., 2008) and rat (Altschuler et al., 

1989) as well as for pancreatic afferents in the rat (Sharkey and Williams, 1983).  

In addition, side to side comparisons between both NG’s were made since 

the left and right vagus nerves are known to play different roles with regard to 

cardiac function (Randall et al., 1986, Saper et al., 1990, Schachter and Saper, 

1998). Importantly, retrograde tracing from the heart (coronary sulcus and 

anterior interventricular groove) and pancreas reveal asymmetrical vagal 

distributions in the NG (Sharkey and Williams, 1983, Carobi, 1987, Fasanella et 

al., 2008, Hayakawa et al., 2011). However, despite the slight anatomical 

differences in the distribution of the thoraco-abdominal vagus, no side differences 

were present in the current study for the pelvic viscera supplied by the abdominal 

branches of the vagus. 
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Tracing Controls 

One caveat related to the selection of neuroanatomical tracers is whether 

multiple fiber types take up and retrogradely transport the tracer, as the goal of 

this initial study was not only to determine if evidence of vagal innervation of the 

bladder/colon exists but also to quantify the extent of innervation by the 

abdominal branches of the vagus nerve. The selection of the carbocyanine 

retrograde tracers, Fast DiI™ and Fast DiO™, for the current study was based 

upon their capability of uptake in all cell types (small, medium, large, 

unmyelinated, lightly- and myelinated) and a well-documented method for tracing 

cells from the periphery (Honig and Hume, 1989, Su et al., 1999, Wang and 

Scott, 1999, Ohtori et al., 2001, Ueno et al., 2001, Gold et al., 2002, Deng et al., 

2007, Wang et al., 2007). The additional assessments with other tracers, dextran 

amines and CTB, allowed us to examine the versatility of the lipophilic tracers we 

were interested in utilizing and ensure their effectiveness for the current study. 

Certain HRP conjugates, such as Biotinylated-HRP or WGA-HRP have been 

shown to have a preference towards larger diameter or smaller diameter, 

myelinated axons, whereas vagal afferents are comprised of primarily small to 

medium size, unmyelinated or lightly myelinated axons (Robertson and 

Arvidsson, 1985, Rivero-Melian and Grant, 1991, Maslany et al., 1992, Zhuo et 

al., 1997). Cholera toxin subunit B (CTB), a commonly used tracer, may be 

problematic since it requires the presence of the GM-1 ganglioside for uptake 

(Heyningen, 1974) and perhaps not all vagal bladder/colon afferents express this 
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receptor. This consideration could provide an explanation for why we found 

significantly fewer CTB-labeled bladder and colon neurons in the NG compared 

to the other tracers used. It is important to note that the use of dextran amines 

(TMR/FD), while yielding similar NG cell counts as DiI/DiO, also utilize a different 

uptake mechanism (active transport) than the lipophilic type (passive diffusion) 

(Kobbert et al., 2000).  

As a control, the superior cervical ganglia were processed for detection of 

the retrograde dyes. This ganglion is spatially close to the NG, with fibers that run 

relatively adjacent to the vagus nerve. There was no evidence of any dye transfer 

between the two ganglia in the present study. In addition, previous studies 

examining the use of these tracers did not find any complications with tracer 

leakage or the spread of dye to adjacent organs/neurons as well as spread within 

the ganglia itself (DRG in this example) (Dang et al., 2005, Dang et al., 2008).  

To address any quantification concerns due to potential spectral overlap 

from the long fluorescent emission tail of DiO that may confound our image 

analyses, DiI was injected into the distal colon of two additional rats and counts 

of DiI positive neurons were compared with DiO positive colon neurons in the 

NG. In agreement with our initial colon counts, similar percentages of colon 

labeled afferents were found between the two groups, indicating that the tracers 

could be used reliably together and separated by the emission filter combinations 

used. Additionally, this finding corroborates the notion of convergent neurons in 

the NG. Overall, based on our controls, the lipophilic tracers incorporated in this 
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study were effective for accurately labeling bladder and colon afferents as well as 

maintaining stable fluorescence for cell quantification in the NG.  

 

Clinical Relevance 

Current human anatomical texts report that vagal innervation to the 

viscera terminates at the left colic (splenic) flexure (Agur and Dalley, 2009). 

Complementary to this understanding, a 2013 review of the female 

abdominopelvic region indicates this caudal extension of the vagus based upon a 

drawing from the mid-1800s (Frankenhaüser, 1866), in which the authors 

additionally state that upon entry into the abdomen, the sympathetic and vagal 

fibers become “indistinguishably mixed” (Shoja M., 2013). Indirect evidence of a 

vagal connection to the pelvic viscera in humans is demonstrated from the fact 

that women with functionally “complete” spinal cord injury (SCI - American Spinal 

Injury Association criteria) are able to perceive sensations from mechano-

stimulation to the vagina and cervix and even respond with orgasms (Komisaruk 

et al., 1997, Komisaruk et al., 2004). Additionally, patients with functionally 

“complete” SCI are able to perceive visceral pain from urinary and bowel 

distention as well as sensations of bladder distention and filling (Wyndaele, 1991, 

Ersoz and Akyuz, 2004). An unanswered question is whether additional tracing 

studies would reveal a further caudal extension of the vagus in humans. Although 

anatomical evidence of connections to the pelvic viscera by the vagus nerve is 

discussed in the clinical literature pertaining to chronic SCI cases, we 
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hypothesize that the vagal pathways exist in the human pelvic cavity, but in terms 

of generating perception, the fibers are “silent” and re-organize following injury or 

under certain pathophysiological conditions and thus become evident. Given that 

the putative role of vagal afferents is relaying homeostatic information, much of 

which we are unaware, this hypothesis seems plausible. However, vagal 

afferents show the capability of detecting noxious stimuli, as seen in the lungs for 

example. Their responses to inflammatory insults evoke defensive responses 

such as a temporary cessation of breathing, bronchoconstriction, hypotension 

and coughing, thereby providing the organ with its own potential sense of injury, 

which fulfills Sherrington’s role of a nociceptor (Sherrington, 1906, Coleridge and 

Coleridge, 1984, Undem et al., 2004).  

 

 

 

 

 

 

 

 

 

 

  



 

36 
 

Table 1 

Summary of antibodies used 

 
Target Immunogen Host organism, 

clonality, 
manufacturer, 
catalog No., 

Research 
Resource 
Identifier 

Dilution Specificity 
controls 

TMR 5-carboxy-
tetramethylrhodamine 

Rabbit, polyclonal, 
Molecular Probes, 

Cat# A-6397,  
RRID: AB_1502299 

1:6,000 Tissue type 
controls did 
not produce 

perikarya 
labeling. 

FD Fluorescein 
isothiocyanate 

Goat, polyclonal, 
Vector Labs, Cat# 
SP-0601, RRID: 

AB_2307446 
 

1:2,000 Tissue type 
controls did 
not produce 

perikarya 
labeling. 

TMR-tetramethylrhodamine, FD-Fluorescein Dextran 
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Table 2  

Average (± SD) number of DiI/DiO-positive neurons counted per ganglion 

 

 Vagal PNS Spinal PNS Spinal PNS Spinal SNS Spinal SNS 

 NG L6 DRG S1 DRG L1 DRG L2 DRG 

Bladder 188.5 ± 92.0 165.8 ± 64.7 42.9 ± 28.7 30.7 ± 42.2 30.1 ± 17.7 

Colon 114.3 ± 52.8 87.9 ± 49.6 15.8 ± 9.4 23.9 ± 24.5 24.1 ± 11.9 

Convergent 64.9 ± 38.6 8.1 ± 4.7 9.3 ± 6.1 5.0 ± 4.4 2.4 ± 1.9 

      
Total 
Labeled 

367.7 ± 
162.1 

261.8 ± 
110.9 68.0 ± 33.0 59.6 ± 66.2 56.6 ± 24.9 

Overall 
Total 
(Labeled + 
Non-
labeled) 

879.8 ± 
365.8 

955.9 ± 
466.9 

774.9 ± 
302.3 

1011.7 ± 
228.5 

1166.5 ± 
160.3 

NG, Nodose Ganglion; DRG, Dorsal Root Ganglion; PNS, Parasympathetic  
Nervous System; SNS, Sympathetic Nervous System 
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Table 3  

Cell sampling data between the NG and L6 DRG 

 

 

 

 

 

 

NG, Nodose Ganglion; DRG, Dorsal Root Ganglion 

 

 

 

 

 

 

 

 

 

 

 

Sampling Data NG L6 DRG 

DiI+ cells/section (n) 51.3 ± 23.3 23.7 ± 7.2 

Total cells/section (n) 232.5 ± 76.7 128.8 ± 25.9 

DiI+ cells/ganglia (%) 21.6 ± 3.9 18.6 ± 5.2 
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Figure 1 Visceral Organ Tracer Injections  

Hamilton microsyringe retrograde tracer injections (arrows) of FAST DiI™ were 

made into the wall of the urinary bladder (A) and FAST DiO™ into the distal 

colon wall (B). 
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Figure 2 Percentage of bladder-, colon- and convergent-specific neurons in the 

nodose ganglion (NG)  

The percentages are in relation to the total number of neurons counted. There 

were significantly more bladder labeled neurons than colon (21.4 ± 3.1% vs 12.7 

± 1.6%, *p<.001) and convergent (7.4 ± 2.8%, *p<.001) and significantly more 

colon labeled neurons than convergent (#p=.001). (Simple bar graph, data are 

expressed as mean ± SD, one-way AVOVA with Tukey HSD post hoc t-tests, 15 

ganglia total) 
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Figure 3 Assessment of side differences between NG 

There were no significant differences between the left and right NG using DiI and 

DiO tracers. (Grouped bar graph, data are expressed as mean ± SD, part one of 

RM ANOVA with group factor, 15 ganglia total.) 
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Figure 4 Assessment of regional differences in the NG 

No significant differences were found in the percentage of NG labeled cells 

among rostral (proximal), middle and caudal (distal) regions of the NG using 

DiI/DiO. Rostral, middle, caudal divisions were demarcated anatomically by the 

laryngeal branch of the vagus nerve. White scale bar is 200 µm. (Stacked bar 

graph, data are expressed as mean ± SD, part two of RM ANOVA with group 

factor, 15 ganglia total.) 
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Figure 5 Fluorescent labeling in the NG  

A representative confocal image of the NG displayed in the orthogonal view is 

shown. A bladder-only labeled cell is indicated with an arrow. A colon-only 

labeled cell is indicated with an arrowhead. A non-labeled cell is indicated with a 

# sign. Orthogonal guides (red lines) are centered upon a double-labeled cell 

(yellow) and the corresponding XZ and YZ projections are indicated at the bottom 

and right side of the image, respectively. Only one example of each cell type is 

indicated above. The scale bar is 25µm (60X objective).  
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Figure 6 Bladder-, colon- and convergent-specific neurons in the L6 and S1 

dorsal root ganglia (DRG)  

Within L6, there were significantly more bladder neurons (165.8 ± 64.7) than 

colon (87.9 ± 49.6, *p<.01) and convergent (8.1 ± 4.7, *p<.01) neurons and 

significantly more colon than convergent (*p<.01) neurons. Within S1 there were 

significantly more bladder neurons (42.9 ± 28.7) than convergent neurons (9.3 ± 

6.1, #p<.05). Across the ganglia, there were significantly more bladder and colon 

labeled neurons in L6 compared to S1 (S1 colon, 15.8 ± 9.3, ** p<.01). (Grouped 

bar graph, data are expressed as mean ± SD, two-way ANOVA with Tukey HSD 

post hoc t-tests, 10 ganglia (L6) and 14 ganglia (S1).) 
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Figure 7 Fluorescent labeling in the S1 DRG  

A representative confocal optical section of the S1 DRG is shown revealing in A) 

a bladder-only labeled cell indicated by the red arrow, in B) a colon-only labeled 

cell indicated by the green arrow, and in C) a convergent neuron indicated by the 

yellow arrow. A 3D projection of the cells from A-C is shown in panel D. The 

white scale bars in the bottom images are 50µm (20X objective).  
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Figure 8 Tracer comparisons in the NG 

The percentage of bladder-specific, colon-specific and convergent neurons in the 

NG after injections of either TMR, CTB-594, or carbocyanine (DiI) into the 

bladder and FD, CTB-488 or carbocyanine (DiO) into the distal colon showed 

significantly fewer CTB-bladder and colon labeled cells than DiI (# bladder, 

p<.005), DiO (+ colon, p=.001) and TMR (* bladder, p<.05) in the NG. No 

significant differences were found between both dextrans and carbocyanine 

labeling nor between FD (colon) and CTB-488 (colon) (p>.05). (Grouped bar 

graph, data are expressed as mean ± SD, one-way ANOVA with Tukey HSD 

post hoc t-tests, Dextran 2 ganglia, CTB 2 ganglia, Carbocyanine 15 ganglia, 

TMR=tetramethylrhodamine, CTB=cholera toxin subunit B.) 
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Figure 9 Summary diagram of spinal and vagal innervation to the bladder and 

colon 

The top pie graphs represent the percentage of bladder-, colon- and convergent-

specific labeling from spinal (L1/L2 and L6/S1) and vagal (NG) sources with 

respect to only labeled neurons counted. The bottom pie graphs examine the 

percentage of bladder-, colon-, and convergent-specific labeling from spinal and 

vagal sources with respect to total neurons counted (labeled and non-labeled). 
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CHAPTER III 
 

THE EFFECT OF SPINAL CORD INJURY ON THE NEUROCHEMICAL 
PROPERTIES OF VAGAL NEURONS  
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Introduction 

 

 Spinal cord injury (SCI) results in deficits to sensorimotor systems and 

profoundly affects the functionality of the autonomic nervous system. Basic 

research focusing on improving pelvic-visceral outcomes following SCI is of great 

clinical importance, since complications such as bladder, bowel and sexual 

dysfunction affect health and quality of life for this population (Anderson, 2004, 

Ditunno et al., 2008, Hammell, 2010). Despite the direct immediate impact of 

injury to the spinal-derived autonomic supply of the pelvic viscera, most of the 

body’s visceral organs also are supplied by a non-spinal source through the 

vagus nerve. Since the vagus nerve does not travel directly through the spinal 

cord, its neurocircuitry is often considered intact following SCI. Nevertheless, 

there is some degree of indirect involvement of both vagal afferents and 

efferents. For example, following SCI, subsequent neuroplastic-responsive 

changes have been extensively described within the dorsal vagal complex 

controlling gastric function (Holmes, 2012). Gastrointestinal (GI) alterations after 

human upper-thoracic SCI include conditions such as dysphagia (Wolf and 

Meiners, 2003), esophagitis (Stinneford et al., 1993), peptic ulcerations (Tanaka 

et al., 1979, Gore et al., 1981), gastroparesis and overall dysmotility (Rajendran 

et al., 1992, Stinneford et al., 1993, Segal et al., 1995, De Looze et al., 1998, 

Kao et al., 1999, Williams et al., 2012). Although the mechanisms of GI 

dysfunction in humans after SCI are not thoroughly understood, experimental 
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studies in rats suggest that many of the delays in gastric emptying and transit 

may in part be attributed to vagally-mediated pathways (Gondim et al., 1998, 

Gondim et al., 1999, Gondim et al., 2001, Tong and Holmes, 2009, Holmes, 

2012). In fact, subdiaphragmatic vagotomy has been shown to prevent much of 

the SCI-induced GI sequelae (Gondim et al., 2001). 

 The vagus nerve, with sensory cell bodies primarily located in the nodose 

ganglia (NG), provides innervation to the thoraco-abdominal structures. Despite 

the view that the vagus nerve does not innervate viscera caudal to the transverse 

colon, numerous experimental studies have demonstrated that it also provides 

sensory innervation to the majority of the pelvic viscera (Burden et al., 1983, 

Gattone et al., 1986, Jancso and Maggi, 1987, Ortega-Villalobos et al., 1990, 

Altschuler et al., 1993, Hubscher and Berkley, 1995, Collins et al., 1999, Vizzard 

et al., 2000, Herrity et al., 2014). Even though the vagus nerve has such 

widespread projections, SCI does not disconnect the anatomical relationship the 

nerve has with the tissue it innervates. However, SCI does lead to pathological 

changes and dysfunction of below-level target organs, such as the bladder (de 

Groat et al., 1990, Kruse and de Groat, 1993, de Groat et al., 1997), and can 

thereby influence neuronal phenotype (Vizzard, 1997, Yoshimura et al., 1998, 

Vizzard, 1999, Yoshimura, 1999, Vizzard, 2000a, Qiao and Vizzard, 2002, 

Zvarova et al., 2004, Qiao and Vizzard, 2005, Zvarova et al., 2005, Zvara et al., 

2006, Ward et al., 2014). Furthermore, various classes of primary sensory 

neurons, including vagal afferents, have been shown to alter their phenotype and 
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the expression of different receptors in response to nerve injury and tissue 

inflammation (Murphy et al., 1995, Neumann et al., 1996, Li et al., 1999, Michael 

and Priestley, 1999, Zhou et al., 1999, Banerjee et al., 2009a, Banerjee et al., 

2009b, Hill et al., 2010, Wang et al., 2011). In this study, we examined the effects 

of SCI on the neurochemistry of the NG. 

In this experiment, P2X3 receptor and SP immunoreactivity (ir) as well as 

IB4 binding was examined in NG neurons, including those traced from the 

bladder. These particular markers were selected based on their presence in the 

NG (Lewis et al., 1995, Michael and Priestley, 1999, Hubscher et al., 2001, Dang 

et al., 2005, Wang et al., 2014), involvement in the spinal and vagal circuitry 

(Bradbury et al., 1998, Cockayne et al., 2000, Vizzard, 2001, Young et al., 2008, 

Zhong et al., 2008, Banerjee et al., 2009a, McIlwrath et al., 2009) and the 

potential physiological role these markers may play in nociceptive signaling 

(Burnstock, 1996, Cook et al., 1997). In addition, anatomical evidence that the 

vagus nerve provides sensory innervation to the bladder in male rats  (Herrity et 

al., 2014) and the presence of these cellular markers in bladder tissue (Liu et al., 

2009, Birder, 2010, Arms and Vizzard, 2011, Birder, 2011, Birder et al., 2012, 

Birder and Andersson, 2013) adds to the importance of understanding the 

relationship between target-organ tissue and its innervating neurons. The 

neurochemical changes that occur in primary afferent neurons may reflect the 

outcomes of peripheral events. While it is noted that other markers such as 

TRPV1 (capsacin receptor) and CGRP (calcitonin gene-related peptide) may be 
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important to examine in the context of vagal afferent neurochemistry given their 

presence in dichotomizing vagal afferents (Zhong et al., 2008) and their role in 

classifying subpopulations of small sensory neurons involved in the sensation of 

pain (Lawson et al., 2002, Christianson et al., 2006), we felt that examining the 

selected markers in this study would help us compare and build upon our 

previous work in both the NG and DRG (Petruska et al., 2000a, Petruska et al., 

2000b, Petruska et al., 2000c, Hubscher et al., 2001, Petruska et al., 2002). 

Additionally, we are limited by the number of microscope optical channels 

available to image multi-fluorescence immunohistochemistry. 

We therefore hypothesized that following SCI, the expression profile of known 

injury-responsive factors P2X3, IB4 and SP, would be altered in the NG and that 

the same would be true for NG neurons innervating the bladder. 
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Materials and Methods 

 

Animals 

All experimental procedures were carried out according to NIH guidelines 

and protocols reviewed and approved by the Institutional Animal Care and Use 

Committee at the University Of Louisville School Of Medicine. All adult male 

Wistar rats (n=16, Harlan Sprague Dawley, Inc, Indianapolis, IN), approximately 

250 grams in weight, were individually housed in an animal room with a 12-hour 

light and dark cycle. They had ad libitum access to water and food (Laboratory 

Rodent Diet). Groups were either naïve (n=8) or spinal cord injured (n=8). Each 

group had a subset (n=4 each) which received retrograde neural tracer injected 

into the bladder to enable identification of single NG neurons which innervated 

the bladder. 

 

Spinal cord injury 

Half of the animals (n=8) were anesthetized with a mixture of ketamine 

(80mg/kg) and xylazine (10mg/kg), injected intraperitoneally, for spinal 

transection. All surgeries were performed under aseptic conditions and the body 

temperature was maintained within the range of 36-37ºC via a warm water 

recirculator (Gaymar T/Pump, Gaymar Industries Inc, Orchard Park, NY) 

throughout the surgery and recovery period. Following our previously published 

protocol (Kaddumi and Hubscher, 2007), a dorsal longitudinal incision was made 
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to expose the T7 vertebra and a laminectomy was performed in order to expose 

the underlying T8 spinal cord. The overlying dura was reflected laterally and the 

spinal cord cut using a pair of surgical microdissecting scissors. Gentle suction 

with an air vacuum was used to carefully elevate the cut stump in order to verify 

the completion of the lesion. Gelfoam (Pharmacia & Upjohn Company, 

Kalamazoo, MI) soaked in topical hemostat solution (Henry Schein Inc., Melville, 

NY) was placed in the lesion cavity. The incision was closed using 4-0 nylon 

suture for the muscle layers and fascia and surgical clips for the skin. Animals 

were given subcutaneous injections of ketoprofen (Ketofen, 2.5mg/kg, Fort 

Dodge Animal Health, Fort Dodge, IA) for analgesia twice a day for 2 days, 0.5ml 

of dual penicillin (Penicillin G coupled with Procaine, PenJect ®, The Butler 

Company, Columbus, OH) in a single dose peri-operatively as a general 

prophylactic and 5mg/kg gentamicin (GentaFuse®, Butler Schein, Dublin, OH) 

once per day for 5 days to prevent bladder infections. After surgery each animal 

was housed individually. The urinary bladder was expressed every 8 hours until 

the micturition reflex occurred automatically, typically 6–12 days after surgery 

(Hubscher and Johnson, 2000). Animals survived for six weeks followed by 

euthanasia and tissue removal. 

 

Retrograde tracer injection 

At five weeks post injury, four spinally-transected rats and four age-

matched naïve control rats were anesthetized with a mixture of ketamine 
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(80mg/kg) and xylazine (10mg/kg). They received a ventral/caudal midline 

peritoneal incision to expose the urinary bladder which was subsequently 

manually voided by pressure. Using an established protocol (Rau et al., 2007, 

Herrity et al., 2014), the fluorescent tracer FAST DiI™ oil (1,1’-dilinoleyl-3,3,3’,3’,-

tetramethylindo-carbocyanine perchlorate, 5mg dye dissolved in 0.1ml methanol, 

Molecular Probes, Inc., Eugene, OR) was injected into the bladder wall with a 

dye-dedicated 33-gauge needle coupled to a Hamilton microsyringe (Fisher 

Scientific, Pittsburgh, PA). Note that the abbreviation DiI is used throughout the 

text/figures/legends to refer to FAST DiI™ oil. Dye injections were made to the 

circumference of the trigone, body and dome areas (10μl volume per animal 

divided into 10 injections of 1ul each; (Herrity et al., 2014)).  

Animal body temperature was maintained within the range of 36-37°C 

during surgery via a warm water recirculator (Gaymar T/Pump, Gaymar 

Industries Inc, Orchard Park, NY). After each injection, the needle was removed 

slowly and any dye-leakage was removed by cotton-tipped applicators. After 

injections were completed, the exposed viscera were hydrated as necessary with 

5% Dextrose Lactated Ringers, the abdominal musculature was sutured closed 

(Ethicon 4-0 non-absorbable surgical suture), the skin closed with Michel clips 

(Fine Science Tools, Foster City, CA), and a topical antibiotic (Bacitracin, Actavis 

Mid Atlantic LLC, Lincolnton, NC) applied. Following surgery, animals were 

placed on a heating pad and core temperature monitored. Post-operative 

medication was provided as per spinal transection surgery. All animals were 



 

56 
 

monitored daily to inspect the surgical incision and identify any changes in an 

animal’s general condition.  

 

 Perfusion and Tissue Collection 

All 16 animals were deeply anesthetized with a ketamine (80mg/kg body 

weight)/xylazine (10mg/kg) mixture and transcardially exsanguinated with 

heparinized saline, followed by 4% paraformaldehyde perfusion.  Each vagus 

nerve was identified adjacent to the carotid artery and gently separated from 

surrounding tissues and traced rostrally to the NG, which was excised. Superior 

cervical ganglia were identified on both sides at the bifurcation of the common 

carotid artery and removed to be used as control tissue. For the transected group 

of rats, following a dorsal spinal incision, removal of the spinal cord tissue 1mm 

above and below the transection site was performed. All tissues were placed in 

individually-labeled tubes of 4% paraformaldehyde for at least 48h, followed by 

immersion in a cryoprotectant solution of 30% sucrose/phosphate buffer solution 

with 1% sodium azide for at least 24h. Following removal from the cryoprotectant 

solution, NG’s were embedded in OCT® compound (Baxter Scientific) and 12-

14μm sections were cut on a cryostat (Leica CM 1850). During retrieval of the 

bladder, the abdominal cavity and surrounding viscera were inspected for tracer 

leakage. Overall, gross inspection of all bladder tissue from the SCI animals did 

not display evidence of chronic cystitis nor was hematuria or pyuria evident two 

weeks after surgery (reported time frame for these sequale to surface) which 
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could potentially influence the neurochemical properties of NG neurons post-SCI 

(Hong and Henderson, 1989). 

 

Histology of the lesion epicenter 

The lesion cavity, coated in embedding media, was cut into 18µm sagittal 

sections using a Leica CM 1850 cryostat and mounted onto gelatin-coated 

histological slides (Azer Scientific, Morgantown, PA). The slides were then 

stained with both Luxol fast blue and cresyl violet (Kluver-Barrera method) to 

observe myelin and Nissl substance, respectively. Spot Advanced software 

(Diagnostic Instruments, Sterling Heights, MI) and the Nikon E400 microscope 

were used to image the lesion cavity and verify the completeness of the spinal 

transection (Kaddumi and Hubscher, 2007).  

 

Hindlimb assessment for lesion completeness  

We used the Basso-Beattie-Bresnahan (BBB) scale (Basso et al., 1995), 

an open-field locomotor assessment that is often used to evaluate hindlimb 

function as an assessment of post-injury spinal cord function. Each animal was 

placed in an open-field and tested for 4 minutes by the same two scorers, who 

were presented with injured and non-injured animals in random order. A 21-point 

scale was used to assess hindlimb coordination and rated parameters such as 

individual joint movements (0-7), weight support (8-13) and paw placement (14-

21). Intact animals should demonstrate a locomotor score of 21; whereas 
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animals that receive a completeT8 transection should exhibit complete paralysis 

of the hindlimbs (0 score). However, due to the fact that the lumbar enlargement 

is intact and receives afferent input from the hindlimbs, BBB scores following 

complete transection are typically higher than 0, averaging around a score of 3 

(extensive movement of 2 joints) (Basso et al., 1996, Singh et al., 2011). Note 

that to prevent any functional connections across the lesion site from potential 

spared tissue, gelfoam was placed between the two cut stumps. It has been 

demonstrated that as little as 4-5% sparing (primarily in the ventrolateral funiculi) 

was sufficient for attaining a BBB score of 7 following “complete” spinal 

transection (no gelfoam used across lesion) (Fang et al., 2011). A combination of 

the BBB score along with an assessment of sparing at the lesion cavity was used 

to determine the degree of “completeness” following SCI in this study. Note that 

one animal from the transection group was removed in this study due to a BBB 

score of 6 and an incomplete lesion.  

 

Immunofluorescence histochemistry 

Sections were thaw-mounted onto slides and allowed to air-dry. They 

were then encircled with hydrophobic resin (PAP Pen, Research Products 

International Corp). Slide-mounted sections were incubated at room temperature 

for 2h in a solution of 2% Triton X-100® in phosphate buffered saline (PBS). This 

pre-treatment step improves the quality of P2X3-ir (Petruska et al., 2000a). The 

slides were rinsed in distilled water and then incubated for 30min in a solution of 



 

59 
 

10% normal donkey serum (Jackson Immuno Research, West Grove, PA) in 

PBS with 0.3% Triton X-100 (MP Biomedicals, LLC, Solon, OH) to block non-

specific antibody binding. The immunohistochemical reagents and the labeling 

procedures are summarized in Table 4. Incubations in primary antisera were 

performed overnight (14–18 hours). All steps were followed by multiple rinses 

with PBS.  All fluorescent secondary antisera were diluted 1:100 and incubations 

were 2 hours. The tyramide signal-amplification (TSA™) reagent kit (Sigma-

Aldrich, St. Louis, MO) (Bobrow et al., 1989, Bobrow et al., 1991, Bobrow et al., 

1992) was used at 1:100 and incubations were for 4-5min (Rau et al., 2007). 

Once all steps were completed, the slides were coverslipped with a glycerol-

based photobleach-protective medium (Fluoromount-G, Southern Biotech). 

 

Cell Quantification 

To view labeled sections, imaging was performed using the Nikon Eclipse 

TiE inverted microscope with NIS Elements software. Initially, images were 

captured using a 10x lens (APO DIC N1 10x/0.45 NA, Nikon) with consistent 

exposure times and computationally stitched together to visualize whole ganglion 

sections. Imaging of individual fluorophores was achieved with a mercury-arc 

lightsource and the following filter sets: for Cy3 [543/22nm excitation, 593/40nm 

emission, 562nm dichroic, Semrock]; for Alexa Fluor 488 [470/40nm excitation, 

525/50nm emission, 495nm dichroic, Nikon]; for Alexa Fluor 350 [350/50nm 
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excitation, 460/50nm emission, 400nm dichroic, Nikon]; for Cy5 [615/70nm 

excitation, 700/74nm emission, 660nm dichroic, Nikon].  

In order to obtain unbiased percentages of P2X3, SP and IB4 positive 

neurons in the NG, the physical dissector method was applied (Pakkenberg and 

Gundersen, 1988, Coggeshall and Lekan, 1996). Across the entire ganglion, 

assembled by automated stitching, counts of all singly-, multi- as well as non-

labeled/other (collectively comprising total neuronal counts) NG neurons were 

made by a scorer blinded to treatment groups. Starting with a random section, 

neurons with a clearly visible nucleus and definable soma were counted only if 

they were not present in an adjacent “look up” serial section. As an added 

measure to avoid double counting single neurons, the counting-sections were at 

least 60 microns apart (every 5th section). To differentiate background from 

foreground pixels, threshold values also were obtained based off the image 

histogram for each marker and held constant for each image quantified. Note that 

non-labeled/other cells (NeuN+ only) were quantified and represented the total 

neuron population (Mullen et al., 1992, Gittins and Harrison, 2004, Herculano-

Houzel and Lent, 2005). Images of tissue without application of the primary 

antibody were taken and utilized as baseline controls (images not shown).  

Positive neuron counts were expressed as a percentage of the total 

number of neurons (NeuN+ only) from within the entire stitched ganglion as well 

as a percentage of all labeled neurons. An Olympus 3 Laser scanning confocal 

microscope with Fluoview 500 software (Mellville, NY) and a Nikon A1R MP+ 
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confocal microscope with Elements software were used to collect high resolution, 

serial optical sections of NG neurons.  

 

Statistics 

Analyses were performed using SPSS v19-20 (IBM, North Castle, NY). 

Levene’s statistic was applied for homogeneity of variances and data are 

expressed as mean ± standard deviation (SD). A one-way analysis of variance 

(ANOVA) with Tukey HSD post hoc t-tests was performed for the assessment of 

all histochemical markers and NG bladder labeling within groups. For the 

analysis of the histochemical markers between groups, data were normalized as 

percentages of total NG cells and analyzed via a two-way ANOVA with Tukey 

HSD post hoc t-tests. For all other analyses, two-tailed Student's t-tests were 

performed assuming equal variance. Statistical significance was defined as 

p≤.05.  
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Results 

 

Immunohistochemical signature of NG neurons 

 IB4 binding in NG neurons was localized to the plasma and axonal 

membranes as well as the Golgi complex. Immunoreactivity (-ir) for P2X3 and SP 

was present in the cytoplasm and P2X3-ir also could be found in the plasma and 

axonal membranes. All of the patterns of staining for these markers were 

consistent with previous studies in both NG and DRG (Averill et al., 1995, 

Petruska et al., 2000a, Hubscher et al., 2001, Vulchanova et al., 2001, Banerjee 

et al., 2007). When examining the total percentage of labeled NG neurons, all of 

the markers were well represented (Figure 10 A), with the majority of NG 

neurons binding IB4 (IB4, 65.5 ± 6.2% versus SP, 31.1 ± 10.3%; IB4 versus 

P2X3, 51.2 ± 7.9%). Overall, when considering all possible combinations of the 

markers used, there were 8 different histochemical signatures represented in the 

NG (Figure 10 B). The most prevalent combinations were neurons that were IB4+ 

only followed by the P2X3+ only and IB4+/P2X3+/SP- combinations (IB4+ only 

versus P2X3+ only, 33.3 ± 7.1% versus 15.0 ± 3.3%, p<.001; IB4+ only versus 

IB4+/P2X3+ only, 33.3 ± 7.1% versus 15.0 ± 5.0%, p<.001). A typical example of 

the quadruple immunohistochemical staining in the NG is provided in Figure 11. 
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Effect of SCI on NG neurons expressing P2X3, SP and binding IB4 

 Following a chronic transection injury at T8, BBB assessments at the 6 

week time point for all transected animals revealed an average score of (0.9 ± 

0.9). Examination of the cellular markers after SCI revealed a significant increase 

in the percentage of NG neurons expressing P2X3 (p<.001) as well as a 

significant decrease in the percentage of NG neurons binding IB4 (p<.05) relative 

to non-injured controls (Figure 12). There were no significant differences in SP or 

NeuN expression between groups. P2X3 expression and IB4 binding in the NG 

are demonstrated in Figure 13. Within the transected group, the percentage of 

neurons expressing P2X3 and the percentage of neurons binding IB4 were each 

significantly greater than the percentage of neurons expressing SP, which was 

unchanged from the non-injured group of animals (P2X3, 27.3 ± 4.8% versus SP, 

6.5 ± 2.8%, p<.01; IB4, 23.7 ± 6.5% versus SP, 6.5 ± 2.8%, p<.01; SP, 6.5 ± 

2.8% versus SP-non-injured, 5.8 ± 3.8%). With respect to the total number of 

labeled neurons within their individual populations (i.e. all P2X3+ neurons and all 

IB4+ neurons), the distribution of the P2X3+/IB4-/SP-only subset represents 

50.7% of all P2X3+ neurons, while the IB4+/P2X3-/SP-only subset represents 

42.6% of all IB4+ neurons. Overall, these populations of neurons comprised 

about half of the total population of NG neurons examined. 
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Immunohistochemical profile of bladder non-injured and injured NG neurons  

The retrograde tracer DiI, was injected into the bladder wall in order to 

determine if the subsets of NG neurons affected by spinal cord transection 

include those that supply the bladder. Initially, we found that the percentage of 

NG neurons traced from the bladder in both groups in this study is similar to our 

previous study of spinally intact animals (22.2 ± 3.6% versus 21.4 ± 4.0%, 

(Herrity et al., 2014)) .  

With respect to the total population of P2X3+ NG neurons after chronic 

SCI (50.7 ± 8.2%), bladder-innervating neurons (DiI+/P2X3+/IB4-) represented 

32.8 ± 1.1%, while with respect to the total population of neurons that were IB4+ 

after injury (42.6 ± 5.1%), bladder-innervating neurons (DiI+/P2X3-/IB4+) 

represented  21.5 ± 7.4%. Overall, in these two distinct subsets of NG neurons, 

more than half of the neurons are traced from the bladder (Figure 14). Images of 

the DiI+/P2X3+ and DiI+/IB4+ subsets following transection are demonstrated in 

Figure 15. Note that in this study, the proportion of NG neurons traced from the 

bladder in spinally-intact rats (23.7 ± 3.6%) did not differ significantly from the 

proportion traced from the bladder after chronic spinal transection injury (20.2 ± 

3.0%). 
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Discussion 

 
 Visceral organs including those in the pelvic region have a dual sensory 

innervation from spinal and non-spinal (i.e., the vagus nerve) sources (Burden et 

al., 1983, Gattone et al., 1986, Jancso and Maggi, 1987, Ortega-Villalobos et al., 

1990, Hubscher and Berkley, 1995, Collins et al., 1999, Herrity et al., 2014). This 

study, using immunohistochemical techniques, examined the vagal component 

by assessing changes in the presence of P2X3, IB4 and SP in NG neurons 

following SCI. Following spinal transection at T8, we evaluated potential plasticity 

in subsets of NG neurons which contain projections that bypass the spinal cord 

from visceral organs, including those projections that specifically supply the 

bladder. A major traumatic event to the nervous system, such as SCI, leads to 

dysfunction in multiple organ-systems, and ultimately influences the neurons that 

innervate these tissues. In this study, vagal sensory cell bodies displayed an 

increase in P2X3 expression and a decrease in IB4 binding, which also held true 

for many neurons innervating the bladder. These results suggest that NG 

neurons, including the bladder subset, are sensitive to a spinal injury and are 

capable of responding by modifying their phenotype.  

 
Immunohistochemical phenotype of NG neurons 
 

Overall, from the cellular markers examined in this study, the majority of 

NG neurons were IB4+. Isolectin B4 has been shown to label primarily a 

subpopulation of non-peptidergic spinal sensory afferents that respond to 
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noxious stimuli and are thought to be functionally distinct from peptidergic or 

neurons that are IB4 negative (Stucky and Lewin, 1999). Even though IB4+ 

neurons, in general, are widely expressed within the NG (Silverman and Kruger, 

1990, Li et al., 1997, Hubscher et al., 2001, Young et al., 2008, Zhong et al., 

2008), the function of this population in vagal afferents is still unclear. For 

instance, vagal afferents are largely known for their involvement in conveying 

information about the physiologic state of the viscera to the brain as part of 

homeostatic regulation (Cervero, 1994, Janig, 1996, Grundy, 2002). In the 

gastrointestinal tract, vagal afferent fibers are responsive to stretch and tension 

as well as to locally released hormones following the ingestion of food (Berthoud 

and Powley, 1992, Wang et al., 1997, Phillips and Powley, 2000, Berthoud et al., 

2001). Although they are typically not responders to visceral stimuli within the 

noxious range (Ozaki et al., 1999), previous data from our lab and that of others 

suggest otherwise. For example, while spinal afferents may be responsible for 

relaying mechanical nociceptive information, vagal afferents may play more of a 

predominant role in conveying chemical nociceptive stimuli, thus contributing to 

disease-related conditions stemming from visceral hyperalgesia (Schuligoi et al., 

1998, Michl et al., 2001, Page et al., 2002, Holzer, 2003, Lamb et al., 2003, 

Danzer et al., 2004, Holzer et al., 2004, Sugiura et al., 2005, Kaddumi and 

Hubscher, 2007). Therefore, besides the known role of vagal afferents in relaying 

homeostatic information to the brain, the population of vagal afferents that also 

are IB4+ may be involved in visceral nociceptive processing (based on the 
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putative role of the majority of DRG IB4 binding neurons (Vulchanova et al., 

2001, Petruska et al., 2002)). 

In the current study, it was shown that many vagal visceral afferents 

innervating the bladder also were IB4+. In other NG visceral afferents and in line 

with the results here, labeled vagal afferents from the stomach and duodenum 

demonstrated a substantial percentage of IB4 binding (Zhong et al., 2008). 

Furthermore, numerous studies identify a low percentage of calcitonin gene 

related peptide (CGRP)-ir or peptide-containing NG neurons projecting to 

thoraco-abdominal viscera (Green and Dockray, 1987, Zhuo et al., 1997, Dutsch 

et al., 1998, Ichikawa and Helke, 1999, Wank and Neuhuber, 2001, Hoover et al., 

2008). Despite the fact that a large proportion of visceral NG neurons appear to 

be IB4+, the functional significance of these specific subsets also has yet to be 

determined, as evidence of particular markers for the coding of vagal afferent 

subtypes are limited (Berthoud and Neuhuber, 2000). One exception may be 

calretinin (calcium binding protein), which appears to be expressed specifically 

by cervical esophageal vagal afferents (Dutsch et al., 1998). 

 Similar to other studies reporting P2X3 receptor expression in vagal 

sensory cell bodies using immunohistochemical techniques we also found that 

P2X3 receptors were highly prevalent and distributed throughout the NG 

(Banerjee et al., 2009a, Wang et al., 2014). These findings suggest that a large 

population of vagal afferents are sensitive to ATP and thus through purinergic 

signaling mechanisms, serve an important role in mechanosensory transduction. 
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When considering individual subsets of neurons based on the cellular markers 

examined in this study, P2X3 receptor expression was present in about half of 

the IB4+ NG neurons, a co-expression subset we have reported previously in the 

NG (Hubscher et al., 2001) and others in the DRG (Vulchanova et al., 1996, 

Vulchanova et al., 1997, Bradbury et al., 1998, Vulchanova et al., 1998, Xiang et 

al., 1998).  

In regards to the overall population of NG neurons, the percentage of SP+ 

only neurons we found was similar to an earlier report, around 30% (Wu et al., 

2005). In general, SP may be an important neuropeptide utilized in vagal afferent 

synaptic transmission. While it is noted that SP+ neurons are abundant in the NG 

(Zhuo et al., 1997), their distribution has been reported to be located near the 

rostral pole of the ganglion (Helke and Niederer, 1990, Zhuo et al., 1997, Wu et 

al., 2005). We and others have previously found a homogenous distribution of 

visceral labeling throughout the NG (Sharkey and Williams, 1983, Altschuler et 

al., 1989, Zhong et al., 2008, Herrity et al., 2014). Although we did not assess the 

existence of an organotypic distribution of labeling for the histological markers of 

interest within the NG in this study, the presence of the many SP-ir neurons in 

the rostral region may be anticipated due to the fact that it is anatomically close 

to the jugular ganglion, which is primarily peptidergic in its neurochemical 

composition (Undem et al., 2004, Plato et al., 2006). The proximity of neurons 

with similar neurochemical phenotypes may be important for performing like 
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functions and even for sensory afferent integration (Browning and Mendelowitz, 

2003).  

 

Effect of SCI on P2X3-ir in NG neurons 

 Following chronic SCI, two significant changes were observed in subsets 

of NG neurons. The first finding was a significant increase in the number of 

neurons expressing P2X3-ir in the spinal-transected group relative to non-injured 

controls. In the somatosensory system, alterations in P2X3 expression following 

nerve injury have been mixed. Both down-regulation (Bradbury et al., 1998) and 

up-regulation (Eriksson et al., 1998, Novakovic et al., 1999) of the receptor have 

been documented in various peripheral nerve injury models such as axotomy, 

ligation and chronic constriction. In both studies where there were increases in 

P2X3 expression, the injury model used resulted in some neurons that would be 

potentially “uninjured”. To assess these differences, activating transcription factor 

3 (ATF3), a marker of peripheral nerve injury and absent from intact neurons 

(Tsujino et al., 2000), identified decreased P2X3 (mRNA) in ATF3-ir neurons, 

while the increased expression was evident in the intact subset of neurons 

(Tsuzuki et al., 2001). The significant increase in NG P2X3-ir found in the present 

study was consistent with the ATF3-ir findings (Tsuzuki et al., 2001), since the 

vagal afferents are likely not directly injured given they by-pass the SCI, though 

this has not yet been directly tested.  
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Even though contact between the vagus nerve and its peripheral targets has not 

been severed, there is an overall effect of injury on the vagal afferent 

neurocircuitry (Hubscher and Berkley, 1995, Kaddumi and Hubscher, 2007) and 

the increased P2X3 expression seen in the NG here may help to improve our 

understanding of the indirect effect on the vagal system after injury. For instance, 

the increased P2X3-ir following SCI may be attributed to an inflammatory 

reaction of the system due to the nature of the injury itself. Acutely, SCI triggers 

an inflammatory response characterized by various cellular events such as the 

synthesis of cytokines, chemokines and the infiltration of leukocytes, neutrophils 

and monocytes (Bartholdi and Schwab, 1997, Klusman and Schwab, 1997, 

Popovich et al., 1997, Bethea et al., 1998, Hausmann, 2003, Saville et al., 2004, 

Fleming et al., 2006, Stirling and Yong, 2008), which, over time, systemically may 

affect tissues outside the central nervous system leading to organ dysfunction.  

Released inflammatory cells from the blood stream can impact the functionality of 

different viscera due to the intimate relationship these organs have with the 

vascular system (Campbell et al., 2005, Gris et al., 2008, Bao et al., 2011). In 

addition, both acute and chronic SCI induce significant changes in organs with 

spinal innervation from segments below the lesion-level. Organs such as the 

bladder experience substantial stress and histopathology, which can lead to 

alterations in the integrity of the lining of the bladder (Apodaca et al., 2003) 

making the bladder more susceptible to chronic inflammation (Herrera et al., 

2010). 
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Structural changes after SCI also include bladder (detrusor muscle) 

hypertrophy, which triggers a release of neurotrophic factors such as NGF from 

the urothelial lining (Vizzard, 2000a, Seki et al., 2002, Vizzard, 2006, Fowler et 

al., 2008). Increases in NGF following SCI (Yoshimura, 1999, Vizzard, 2000a, 

Ward et al., 2014) or inflammation (Oddiah et al., 1998, Steers and Tuttle, 2006) 

as well as other excitatory neurotransmitters such as ATP (Sun et al., 2001), play 

a major role in neuro-epithelial interactions. For example, in a migraine headache 

model, retrograde transport of NGF from the periphery to the trigeminal ganglion 

or exposure of trigeminal afferents to NGF led to an upregulation of P2X3 

receptor protein in the cell bodies (D'Arco et al., 2007, Giniatullin et al., 2008).  

Given that the vagus nerve provides a substantial degree of innervation to 

the bladder (Herrity et al., 2014), the fact that we found many co-labeled 

DiI+/P2X3+ NG neurons after injury in this study, the presence of the high affinity 

receptor for NGF (TrkA) (Zhuo and Helke, 1996, Helke et al., 1998, Lamb and 

Bielefeldt, 2003) and low affinity (p75) receptor (Verge et al., 1992, Zhuo et al., 

1997) and that vagal afferents have the capability to transport NGF (Helke et al., 

1998), the phenotypic changes with respect to P2X3 -ir in the bladder-innervating 

NG neurons have the potential to be mediated through the actions of NGF. 

Importantly, in a manner distinct from the actions of NGF (D'Arco et al., 2007), 

CGRP-mediated insertion of P2X3 into the cell-surface membrane is an 

alternative mechanism, which has been demonstrated in sensitized trigeminal 

ganglion neurons (Fabbretti et al., 2006). However, since the majority of CGRP 
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expressing neurons appear to reside in other cranial ganglia (petrosal, trigeminal, 

glossopharyngeal and jugular) compared to the NG (Helke and Hill, 1988, Helke 

and Niederer, 1990, Helke, 2005, Hayakawa et al., 2010)  this molecular 

mechanism may indirectly affect NG neurons, perhaps acting at a distance 

through en passant synaptic contact (Koerber et al., 1999). 

The P2X3 receptor, predominantly expressed on sensory afferents (Chen 

et al., 1995, Lewis et al., 1995), including vagal fibers (Kestler et al., 2009), also 

can be separately retrogradely transported from the periphery to the cell body via 

endosomes (Chen et al., 2012). This retrograde transport is thought be important 

for maintaining neuronal activity and cell excitability through activation of 

transcription factors (Chen et al., 2012). In disease states, such as SCI, the 

extracellular milieu of ATP may be relatively high compared to healthy states, 

where excesses are rapidly hydrolyzed (North, 2004, Khakh and North, 2006, 

Burnstock, 2007). Large amounts of ATP (likely released from damaged tissue 

(Cook and McCleskey, 2002)), can signal through P2X3 receptors and may show 

that P2X3 has a more extensive role in the NG besides normal visceral afferent 

transduction, perhaps contributing to nociceptive signaling following injury or 

tissue inflammation. 

 

Effect of SCI on IB4 binding in NG neurons 

 The second change following chronic transection injury was a decrease in 

NG IB4 binding relative to controls. This finding is similar to that of others in 



 

73 
 

cases where decreases in the total number of IB4 binding DRG neurons on the 

contralateral side (uninjured side) also have been demonstrated following L5 

spinal nerve transection (Li and Zhou, 2001). Importantly, the numbers remain 

reduced at the chronic time point (5 weeks post-injury), suggesting the effect was 

not transient. 

An explanation for the decrease in IB4 binding may be attributed to a 

stress response to the system following transection. Since glial cell-line derived 

neurotrophic factor (GDNF) supports and aids in the regulation of IB4 neurons 

post-natally (Molliver et al., 1997), perhaps some disruption to its availability or 

receptor complex as well as alteration to the IB4 binding glycoconjugate could 

explain the observed decrease (Peyronnard et al., 1989, Bennett et al., 1998). 

However, in response to peripheral nerve injury, spared IB4 neurons also 

demonstrate the capability to sprout, forming perineuronal nets with both satellite 

and adjacent cells within the ganglion (Li and Zhou, 2001). It has been suggested 

that a mechanism behind this spouting in response to nerve injury may involve 

inflammatory environmental changes that create a chemotactic gradient, 

attracting various chemokines (Bogen et al., 2009). This communication between 

injured and non-injured “neighbors” within the ganglion may serve as a basis for 

cross-excitation and could eventually induce hyperalgesia or allodynia (Amir and 

Devor, 2000, Bogen et al., 2005). Even though the injury model used in this study 

does not directly injure vagal neurons, they could be considered “spared” 
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neurons that also demonstrate a phenotypic switch in response to CNS damage 

and have the potential to drive visceral nociceptive signaling. 

 

Effect of SCI on SP expression in NG neurons 

 SP is one of the main neuropeptides released from a proportion of primary 

afferent terminal endings that express SP, in response to irritation or 

inflammation (Avelino et al., 2002, Bueno and Fioramonti, 2002, Domotor et al., 

2005) and is present in NG neurons (Zhuo et al., 1997). No significant 

differences in SP-ir were present in this study between transected and non-

injured groups. A previous report assessing changes in NG neurotransmitters 

found that SP-ir was unaffected by vagal axotomy (Helke and Rabchevsky, 

1991). The lack of changes in the NG with respect to SP-ir following injury does 

not preclude any particular alterations at terminal endings, either peripherally in 

target organs or centrally (solitary nucleus). For instance, there is a high 

concentration of SP afferent terminals, primarily of vagal origin, present in solitary 

nucleus (Helke et al., 1980, Maley and Elde, 1982, Maley et al., 1983, Maley et 

al., 1987, Maley, 1996, Zhuo et al., 1997). Alternatively, there may be molecular 

pathway alterations involved in the release of SP and translation at the cell body 

(Tang et al., 2007, Pan et al., 2010). An acute SCI or direct tissue inflammation 

model (such as acetic acid instillation into the bladder) may provide more insight 

to vagal SP expression in the rat (Banerjee et al., 2007, Pan et al., 2010). 
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Alterations to bladder NG neurons following SCI 

SCI did not result in differences compared to non-injured controls in the 

number of NG neurons labeled from bladder, confirming these vagal afferents 

remain intact after cord transection. Although vagal afferents exhibit a high 

degree of neurochemical and electrophysiological plasticity in response to 

trauma and inflammation (Zhang et al., 1996, Myers et al., 2002, Browning and 

Mendelowitz, 2003, Peters et al., 2013), it is likely that the observed 

neurochemical changes in this study are a result of interactions with the target 

organs these vagal fibers innervate rather than direct neural damage. It should 

be noted, however, that other, extrinsic sources of ATP can reach P2X3 

receptors through release from sympathetic neurons, tumor cells or from 

vascular endothelial cells associated with ischemia (Burnstock, 1996). 

In the two subsets of NG neurons that changed after SCI (P2X3+ only and 

IB4+ only), more than half of the neurons in each subset supplied the bladder 

(DiI+). An important factor to consider is that the second part of this study which 

examined histochemical changes in bladder NG neurons did not assess SP 

expression because that marker/channel was replaced with the red DiI tracer. 

Therefore, the percentages of bladder neurons in both the P2X3+ and IB4+ 

subsets after SCI are likely an overestimation. As a result, it would be possible 

that some of the neurons in those percentages would contain SP+ and SP- 

neurons, which if included, could lower the overall numeric values.  



 

76 
 

Plasticity related changes in bladder vagal afferents falls in line with evidence 

from the spinal system after SCI. Spinal sensory neurons innervating the bladder 

exhibit both morphological and physiological changes after SCI (Kruse et al., 

1995, Yoshimura and de Groat, 1997). Given the important transduction role of 

P2X3 receptors in spinal bladder afferents (Cockayne et al., 2000) and the fact 

that many vagal neurons traced from the bladder expressed P2X3 suggests that 

the vagus nerve may participate in the sensory portion of micturition function. Our 

collective recent data indicating extensive vagal afferent innervation of 

mammalian urinary bladder (Herrity et al., 2014) and spinal cord injury-induced 

changes in a transduction channel like P2X3, may have important clinical 

applications. Such changes could contribute to whatever plasticity underlying 

reports of altered sensations stemming from the below level viscera, such as 

sensations of bladder filling or fullness in clinically complete SCI patients above 

T10 (Wyndaele, 1991, Komisaruk et al., 1997, Ersoz and Akyuz, 2004).  

Even though IB4 binding decreased in a subset of NG neurons following 

injury, there are still spared IB4+ neurons that have the potential to sprout (Li and 

Zhou, 2001) although this phenomenon has yet to be demonstrated in vagal 

afferent neurons. A large proportion of the IB4 neurons were traced from the 

bladder which is complementary to an earlier study showing that IB4 binds 

different types of visceral afferents in the NG (Zhong et al., 2008). Although we 

did not trace from the distal urethra, a large proportion of spinal neurons which 

innervate this region of the lower urinary tract include IB4+ afferents (Yoshimura 
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et al., 2003). Sprouting at the lumbosacral cord after transection injury from these 

afferents altered voiding efficiency, likely by contributing to detrusor-sphincter 

dyssynergia (Zinck and Downie, 2008). These studies in the somatosensory 

system are referenced in order to point out that while we identified many IB4+ 

bladder NG neurons that may have the chemical capability to sprout for example, 

the functionality of such a subset with these attributes has not been analyzed.  
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Table 4  

Immunohistochemical Reagents 

 

Target Primary 
Detection 

 

Dilution/Vendor/ 

Catalog # 

Secondary 
Detection 

 

Dilution/Vendor/ 

Catalog # 

P2X3 GP-anti 
P2X3 

 

1:1000/Neuromics/ 

GP10108 

Dky anti-
GP-
AF®488 

1:100/Jackson/ 

706-545-148 

Biotinylated 
Lectin from 
Bandeiraea 
Simplicifolia  
Isolectin B4 
(IB4) 

HRP-SA 1:500/Sigma-
Aldrich/L2140 

Tyramide-
AF®350 

1:100/Molecular 
Probes/T20937 

TSA™ Kit#27 

SP RBT-anti 
SP 

 

1:1000/Abcam/ 

ab67006 

Dky anti-
RBT-Cy™3 

1:100/Jackson/ 
711-165-152 

NeuN MS-anti 
NeuN 

1:1000/Chemicon/ 

MAB377 

Dky anti-
MS-Cy™5 

1:100/Jackson/ 

715-175-151 

AF, Alexa Fluor; Dky, Donkey; GP, Guinea Pig; HRP, Horseradish peroxidase; 
MS, Mouse; RBT, rabbit; SA, Strepavidin; SP, Substance P; TSA, Tyramide 
Signal Amplification  
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Figure 10 Immunohistochemical representation of P2X3, IB4 and SP in NG 
neurons 

A. Following staining of the immunohistochemical markers P2X3, SP and IB4, 

the bar graph demonstrates that all three were well represented in the NG, with 

the majority being IB4+ (IB4 vs P2X3, #p<.05; IB4 vs SP, **p<.001; P2X3 vs SP, 

*p<.01). B. A pie graph depicting all possible combinations of the molecular 

targets in the NG. Note that neurons that were IB4+ only were the most prevalent 

and most NG neurons were labeled with at least one of the three cellular targets 

examined. (One-way ANOVA with Tukey post hoc t-tests, n=3, 2 ganglia, values 

are expressed as mean ± S.D.) 
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Figure 11 Quadruple immunohistochemical staining in the NG 

A confocal image displays the typical staining within the NG. NeuN was used to 

label all neurons. Different histochemical combinations include neurons that were 

IB4+, P2X3+, but SP- (white arrows) and neurons that were IB4-, P2X3+ and SP- 

(yellow arrows). Scale bar indicates 25µm. 
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Figure 12 The effect of SCI on number of NG neurons expressing the individual 
markers 

Following SCI, there was an increase in P2X3-ir in the transected group relative 

to intact/normal (SCI, 27.3 ± 4.8% versus non-injured, 15.0 ± 3.3%, *p<.001) and 

a decrease in IB4 binding in the transected group relative to intact/normal (SCI, 

23.7 ± 6.5% versus non-injured, 33.3 ± 7.1%, #p<.05). No changes were 

apparent for SP. The “Other” category represents neurons that were NeuN+, but 

did not express or bind any of the markers. (N=6, 12 ganglia) 
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Figure 13 The effect of SCI on P2X3 and IB4 in the NG 

An example displaying P2X3-ir (A) and IB4 binding (C) in the NG and following 

chronic spinal cord transection injury at T8 (B and D, respectively). Note the 

presence of increased P2X3-ir and decreased IB4 binding post-SCI. Images of 

sections from both SCI and non-injured animals were stained and captured with 

the same protocols and at the same time. 
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Figure 14 Effect of SCI on bladder-traced NG neurons 

Demonstrating that out of the total percentage of either P2X3 or IB4 subsets after 

injury, more than half of the neurons were traced from bladder. Bladder 

innervating neurons in the P2X3+ subset represent (32.8 ± 1.1%) while in the 

IB4+ subset, they represent (42.6 ± 5.1%). (N=3, 6 ganglia) 

 

 

 

 



 

84 
 

 

 

Figure 15 P2X3-ir and IB4 binding in bladder-traced NG neurons after transection 

A confocal image illustrating a DiI+ neuron in panel A that is also IR for P2X3 in 

panel B (white arrows). Panel C demonstrates the overlay. An image from the 

inverted Nikon microscope illustrating a DiI+ neuron in panel D that also binds 

IB4 in panel E (white arrowhead). Panel F demonstrates the overlay. One 

example of each is displayed. In both images, the scale bar indicates 25 µm. 
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CHAPTER IV 
 

THE EFFECT OF SPINAL CORD INJURY ON THE ELECTROPHYSIOLOGICAL 
PROPERTIES OF NODOSE GANGLION NEURONS INNERVATING THE 

URINARY BLADDER  
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Introduction 

 

Vagal afferent neurons of the nodose ganglia (NG) have receptors on their 

peripheral terminals that play an important role in responding to a wide variety of 

stimuli from most of the body’s internal organs. Sensory information is 

transduced into neural activity and is transmitted to the central nervous system 

where it is integrated within the brainstem and processed in multiple regions. The 

central circuitries mediating visceral organ function include an efferent limb from 

the dorsal motor nucleus of the vagus that exits the brainstem back to the target 

organs. A signaling reflex that includes input to the NTS and output from the 

dorsal motor nucleus of the vagus is necessary for maintaining physiological 

homeostasis at different levels of gastrointestinal (Browning and Mendelowitz, 

2003, Travagli et al., 2006, Holmes, 2012), cardiovascular (Aviado and Guevara 

Aviado, 2001) and respiratory (Jordan, 2001) control. Aside from receiving 

afferent innervation from the vagus nerve, most of the viscera also are dually 

supplied from spinal afferents (Burden et al., 1983, Gattone et al., 1986, Jancso 

and Maggi, 1987, Neuhuber, 1987, Springall et al., 1987, Altschuler et al., 1989, 

Neuhuber, 1989, Ortega-Villalobos et al., 1990, Berthoud and Powley, 1992, 

Kummer et al., 1992, Altschuler et al., 1993, Cheng et al., 1997, Komisaruk et al., 

1997, Collins et al., 1999, Vizzard et al., 2000, Hubscher et al., 2004, Komisaruk 

et al., 2004, Herrity et al., 2014). A dual sensory supply may serve as a 

biologically important mechanism for relaying different types of visceral 
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sensations. Information that is conveyed centrally by the vagus typically mediates 

functions that are below the level of consciousness, although intense stimuli after 

injury may be perceived as discomfort and/or pain (Janig, 1996). In fact, with 

many terminal endings in close contact to the mucosal lining of the viscera, vagal 

afferents appear to be conveniently located to detect noxious chemical 

information (Berthoud and Neuhuber, 2000).Thus, besides functioning as 

physiological sensors and serving an interoceptive role, vagal afferents may also 

play a role in noxious visceral signaling. 

Although it is commonly thought that vagal afferents are not involved in 

the sensation of pain (Cervero, 1994, Ozaki et al., 1999), there is accumulating 

evidence that they partake in this process. For instance, gastric distention in the 

noxious range has been shown to result in a greater level of c-fos 

immunoreactivity (a marker of central neuronal activity following a peripheral 

stimulus) in the solitary nucleus compared to regions in the thoracic spinal cord 

that receive gastric input (Traub et al., 1996). It also has been proposed that 

activation of vagal afferents, whether through electrical or chemical means could 

contribute to changes in nociception through either facilitation or inhibitory 

modulation (Randich and Gebhart, 1992). Electrical stimulation of vagal afferent 

fibers has been shown to excite spinothalamic tract neurons in the cervical spine 

and was proposed to be a potential mechanism for referred pain that 

accompanies myocardial ischemia (Fu et al., 1992, Chandler et al., 1996). 

Furthermore, previous work from our lab demonstrated increased 
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responsiveness in the medullary reticular formation to vagal nerve stimulation 

with chemical irritation of the bladder compared to mechanical distention of the 

bladder in the context of a complete thoracic spinal transection (Kaddumi and 

Hubscher, 2007).  

Alterations to internal organs from injury, inflammation or even 

denervation secondary to trauma or disease states impacts the sensory neurons 

that innervate those tissues and can affect how information they convey is 

interpreted centrally in the nervous system. Subsequent changes to the 

microenvironment of the viscera have the potential to influence soma phenotype 

of sensory neurons and can lead to changes in afferent input and even contribute 

to the development of visceral hypersensitivity (Murphy et al., 1995, Neumann et 

al., 1996, Li et al., 1999, Michael and Priestley, 1999, Zhou et al., 1999, Banerjee 

et al., 2007, Banerjee et al., 2009a, Banerjee et al., 2009b, Hill et al., 2010, Wang 

et al., 2011). For instance, spinal cord injury (SCI) above the lumbosacral region 

results in significant impairments to both the neurological and histological 

integrity of visceral organs, such as the bladder, ultimately leading to global 

deficits in function. SCI disrupts voluntary and supraspinal control of micturition, 

initially triggering an a-reflexive bladder, followed by increased external urethral 

sphincter tone, urinary retention and the development of an automatic spinal 

voiding reflex (de Groat, 1995, de Groat and Yoshimura, 2006). Altered 

micturition results from the bladder and external urethral simultaneously 

contracting, referred to as detrusor-sphincter dyssynergia (de Groat and 
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Yoshimura, 2010). Over time, post-SCI changes to the lower urinary tract create 

a system of high intravesical pressure, detrusor muscle overactivity as well as a 

disruption of the bladder urothelial lining (de Groat et al., 1990, Apodaca et al., 

2003). 

It also has been suggested that SCI triggers phenotypic changes in the 

bladder afferent pathways to the spinal cord, including soma hypertrophy (Kruse 

et al., 1995, Yoshimura and de Groat, 1997, Yoshimura et al., 1998), 

neurochemical alterations (Vizzard, 2000b, Zvarova et al., 2005, Vizzard, 2006, 

Zinck et al., 2007, Zinck and Downie, 2008) and electrophysiological changes 

(Yoshimura et al., 1996, Yoshimura and de Groat, 1997). These SCI-induced 

phenomena may explain the bladder overactivity or hyperreflexia that appears 

post-injury (Yoshimura, 1999). Additional target-neural interactions, mediated by 

neurotrophic factor release from the urothelial lining in response to a 

hypertrophied detrusor muscle or release from the spinal cord, also can influence 

innervating neurons (Seki et al., 2002, Seki et al., 2004, Vizzard, 2006). 

The results from Chapter III of this dissertation indicate that SCI triggers a 

phenotypic switch in NG neurons as well as in NG neurons innervating the 

bladder. In both populations, there are significant increases in the number of 

neurons expressing P2X3 and decreases in the number of neurons binding IB4. 

More than half of the bladder-innervating NG neurons displayed these molecular 

changes. To further understand the functional capability of bladder-vagal 

afferents, electrophysiological properties were examined using whole cell patch-
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clamp methods. It is hypothesized that SCI results in increased excitability in NG 

neurons innervating the bladder, as measured by in vitro cellular recordings. 

Changes in visceral sensitivity (i.e. hypersensitivity) can contribute to disorders in 

vagal afferent processing and affect the overall homeostatic state of the viscera.  
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Methods 

Animals 

All experimental procedures were carried out according to NIH guidelines 

and protocols reviewed and approved by the Institutional Animal Care and Use 

Committee at the University Of Louisville School Of Medicine. This study used 6-

12 week old male Wistar rats (n=16, Harlan Sprague Dawley, Inc, Indianapolis, 

IN) which were approximately 175-250 grams in weight at the time of tracer 

injection and SCI and 350-375 grams in weight when euthanized for in vitro NG 

electrophysiology recordings. All animals were individually housed in an animal 

room with a 12-hour light and dark cycle. They had ad libitum access to water 

and food (Laboratory Rodent Diet). Groups were either naïve (n=8) or spinal cord 

injured (n=8). Each group received retrograde neural tracer injected into the 

bladder to enable identification of single NG neurons which innervated the 

bladder.  

 

Spinal cord injury 

At six weeks of age, a subset of animals (n=8) for spinal transection were 

anesthetized with a mixture of ketamine (80mg/kg) and xylazine (10mg/kg), 

injected intraperitoneally. All surgeries were performed under aseptic conditions 

and the body temperature was maintained within the range of 36-37ºC via a 

warm water recirculator (Gaymar T/Pump, Gaymar Industries Inc, Orchard Park, 

NY) throughout the surgery and recovery period. Following our previously 
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published protocol (Kaddumi and Hubscher, 2007), a dorsal longitudinal incision 

was made to expose the T7 vertebra and a laminectomy was performed in order 

to expose the underlying T8 spinal cord. The overlying dura was reflected 

laterally and the spinal cord cut using a pair of surgical microdissecting scissors. 

Gentle suction with an air vacuum was used to carefully elevate the cut stump in 

order to verify the completion of the lesion. Gelfoam (Pharmacia & Upjohn 

Company, Kalamazoo, MI) soaked in topical hemostat solution (Henry Schein 

Inc., Melville, NY) was placed in the lesion cavity. The incision was closed using 

4-0 nylon suture for the muscle layers and fascia and surgical clips for the skin. 

Animals were given subcutaneous injections of ketoprofen (Ketofen, 2.5mg/kg, 

Fort Dodge Animal Health, Fort Dodge, IA) for analgesia twice a day for 2 days, 

0.5ml of dual penicillin (Penicillin G coupled with Procaine, PenJect ®, The Butler 

Company, Columbus, OH) in a single dose peri-operatively as a general 

prophylactic and 5mg/kg gentamicin (GentaFuse®, Butler Schein, Dublin, OH) 

once per day for 5 days to prevent bladder infections. After surgery each animal 

was housed individually. The urinary bladder was expressed every 8 hours until 

the micturition reflex occurred automatically, 6–12 days (Hubscher and Johnson, 

2000). Animals survived for six weeks followed by euthanasia and NG tissue 

removal, which was immediately prepared for in vitro recordings. Note that the 

age-matched non-injured rats survived the same time frame as the SCI rats. 

 

Retrograde tracer injection 
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At 10-11 weeks of age, all animals were anesthetized with a mixture of 

ketamine (80mg/kg) and xylazine (10mg/kg). They received a ventral/caudal 

midline peritoneal incision to expose the urinary bladder which was subsequently 

manually voided by pressure. Using an established protocol (Rau et al., 2007, 

Herrity et al., 2014), the fluorescent tracer FAST DiI™ oil (1,1’-dilinoleyl-3,3,3’,3’,-

tetramethylindo-carbocyanine perchlorate, 5mg dye dissolved in 0.1ml methanol, 

Molecular Probes, Inc., Eugene, OR) was injected into the bladder wall with a 

dye-dedicated 33-gauge needle coupled to a Hamilton microsyringe (Fisher 

Scientific, Pittsburgh, PA). Note that the abbreviation DiI is used throughout the 

text/figures/legends to refer to FAST DiI™ oil. Dye injections were made to the 

circumference of the trigone, body and dome areas (10μl volume per animal 

divided into 10 injections of 1µl each; (Herrity et al., 2014)). Animal body 

temperature was maintained within the range of 36-37°C during surgery via a 

warm water recirculator (Gaymar T/Pump, Gaymar Industries Inc, Orchard Park, 

NY). After each injection, the needle was removed slowly and any dye-leakage 

was removed by cotton-tipped applicators. After injections were completed, the 

exposed viscera were hydrated as necessary with 5% Dextrose Lactated 

Ringers, the abdominal musculature was sutured closed (Ethicon 4-0 non-

absorbable surgical suture), the skin closed with Michel clips (Fine Science 

Tools, Foster City, CA), and a topical antibiotic (Bacitracin, Actavis Mid Atlantic 

LLC, Lincolnton, NC) applied. Following surgery, animals were placed on a 

heating pad and core temperature monitored. Post-operative medication was 
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provided as per spinal transection surgery. All animals were monitored daily to 

inspect the surgical incision and identify any changes in an animal’s general 

condition. 

 

Preparation of cells for patch-clamp electrophysiology 

NG extraction methods (Herrity et al., 2014) and cellular dissociation 

procedures (Petruska et al., 2000c, Petruska et al., 2002) have been described 

previously. Briefly, animals were deeply anesthetized with a ketamine (80mg/kg 

body weight)/xylazine (10mg/kg) mixture and transcardially exsanguinated with 

heparinized phosphate buffered saline.  Each vagus nerve was identified 

adjacent to the carotid artery, gently separated from surrounding tissues, and 

traced rostrally to the NG, which was excised and desheathed. Bilateral ganglia 

were digested in a tube containing dispase II (neutral protease, 5mg/ml; Roche) 

and collagenase type 1 (2mg/ml; Worthington). The tube was incubated in a 

circulating water bath (37ºC) for 90 min. During this time frame, the cells were 

then gently triturated every 30 minutes to dissociate them. The cells were 

removed and then washed and plated on 8-10 poly-l-lysine (Sigma)-coated petri 

dishes. Dishes were kept in an aerated holding bath for at least 2 h before use. 

The holding bath was removed from ambient light to prevent any potential 

photobleaching of dye-containing cells. All recordings were made at room 

temperature (22-23ºC) and were completed within 10 h of NG retrieval from an 

animal. 
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Solutions 

Plated cells were placed in Tyrode's solution containing 140 mM NaCl, 4 

mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM glucose, and 10 mM HEPES, 

adjusted to pH 7.4 with NaOH. The recording electrodes were filled with 130 mM 

K-gluconate, 2 mM Mg-ATP, 0.3 mM Tris-GTP, 11 mM EGTA, 1 mM CaCl2, 1 

mM MgCl2, and 10 mM HEPES, 7mM KCL, 2mM NaCl, adjusted to pH 7.4 with 

KOH; Osmolarity was between 315–325 mOsm.  

 

Whole cell patch recording 

The electrophysiological recording techniques used in this study have 

been previously described in detail (Petruska et al., 2000c, Petruska et al., 2002). 

Electrodes were prepared (1.8–4.2 MΩ) from glass pipettes using a Brown and 

Flaming-type horizontal puller (Sutter model P87). Each petri dish was briefly 

illuminated using epifluorescence microscopy to reveal DiI-labeled cells (total 

exposure of field <1 min). Only intensely fluorescent cells were considered 

positive and only one cell was recorded per dish. Whole cell recordings were 

made with an Axopatch 200B (Molecular Devices). Stimuli were controlled and 

digital records captured with pClamp8.1 software and a Digipack 1322A 

converter (Molecular Devices). Series resistance (RS) was compensated 30–

60%. Whole cell resistance was assessed by pClamp software from voltage 

transients associated with small step commands (10 mV). After a recording was 
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completed, digital images of the brightfield and fluorescent fields of view (545nm) 

were captured using a Dage MTI RC300 camera coupled to a PC running Scion 

Image 4.0.2. All experiments were conducted at room temperature. Only cells 

having a resting membrane potential (RMP) of −40 to −70 mV were included in 

this study. 

 

AP generation and measurements 

Action potentials were evoked at threshold through a 1-ms, 1,500- to 

5,000-pA current step. The average of three action potentials was used to 

determine afterhyperpolarization (AHP) and action potential duration at the base 

(APDb). To quantify AHP, a criterion of 80% recovery to baseline was used 

(AHP80) (Djouhri et al., 1998)). All electrophysiological measurements were 

performed using Clampfit analysis software. APDb was measured as the time 

from the first upward deflection of the AP waveform to its return to baseline (-

60mV). Currents were normalized by dividing by whole cell capacitance, an 

indicator of cell size (pF). Rates of decay (τ) were determined for peak currents 

using the equation f(t) = Ai exp(−e − t/τi) … + C, where A is amplitude and C is 

capacitance. Single and multiple exponential fits were examined.  

 

Statistics 

Due to extreme ranges of values in the data, analyzing the total set as a 

group results in high variability.  As a result, any comparisons with that data are 
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not significant. Graphing the data revealed a significant bi-modal distribution. 

Therefore, we used the median of the entire data set to establish high and low 

responders, since it was not appropriate to analyze the data with parametric 

statistics of means and standard deviations (Hays, 1981). Briefly, the grand 

median was acquired for the entire AP frequency-current data set. Based on the 

grand median, data were categorized into high responders (≥6 APs/current step) 

and into low responders (<6 APs/current step). An independent-sample median 

test was applied for a comparison of high and low responders as a whole. A 

repeated measure mixed model analysis of variance (ANOVA) with Tukey’s post 

hoc t-tests was performed for evaluating group differences (high and low 

responders in both the non-injured and SCI groups) for current-frequency curves. 

Binomial proportions and Student’s t-tests were used to examine the possibility of 

significant differences between the electrophysiological characteristics of 

selected groups. Pearson correlations were performed for evaluating degrees of 

linear dependence between electrophysiological variables of selected groups. 

For all tests, a difference was considered significant if p ≤ to 0.05. Results are 

reported as means ± SD. 
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Results 

 

Identification of bladder neurons in the NG 

The retrograde tracer DiI was injected into lining of the bladder (FIG 16A) 

in order to identify bladder-innervating neurons in the NG. DiI+ neurons were 

readily detected and demonstrated a punctate cytoplasmic pattern of staining 

(FIG 16B) evident through epifluorescence illumination.  

 

Electrophysiological characteristics of NG neurons innervating the bladder 

Whole cell patch-clamp recordings of 33 intensely labeled DiI+ NG 

neurons (FIG 17) were subsequently made from 16 animals (32 extracted 

NGs/bilateral ganglia used per experiment). In order to examine the features of 

individual APs, brief (1-ms) depolarizing current steps were used to evoke single 

APs (Figure 18). The AP peak (from RMP -mV), overshoot (above 0 mV), AHP 

and AHP 80% recovery, as well as APDb from all bladder-innervating NG cells 

were quantified, and the values are displayed in Table 5. Additional anatomical 

and electrophysiological characteristics, including, cell diameter (µm), cell 

capacitance (pF), tau (µs), membrane resistance (MΩ), rheobase (pA) and peak 

instantaneous frequency (IF) (Hz) also are provided.  

Among the total number of non-injured bladder-innervating NG cells, AP 

frequency patterns revealed two significant subsets. Cells could be identified as 

either high responders (displaying ≥ 6 action potentials (APs) evoked throughout 
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the duration of a 1-ms current step) or low responders (displaying < 6 action 

potentials evoked throughout the duration of the 1-ms current step). There was a 

significant difference in the distributions of individual high and low responders in 

the non-injured group across 300pA–1000pA steps of current injection (Figure 

19). Neurons from the non-injured high responder (NHR) group displayed 

significantly greater AP firing frequency at consecutive points of current injection 

compared to neurons from the non-injured low responder (NLR) group (Figure 

20, p<.05). Note that the average total number of APs fired across the range of 

current steps (0-1000pA) for the NHR (15.78 ± 10.8) was significantly greater 

than the average number of APs fired for the NLR (1.30 ± 0.6, p<.01). Average 

rheobase, or the minimum amount of current required to elicit an AP between the 

two non-injured subsets also was significant (NHR, 85.00 ± 41.2 pA versus NLR, 

175.0 ± 88.0 pA, p<.05). However, peak instantaneous frequency (capacity of the 

cell to fire sequential APs) was not significantly different between the two subsets 

(NHR, 42.04 ± 17.0 Hz versus NLR, 25.43 ± 17.9 Hz). 

 

Effects of SCI on NG neurons innervating the bladder 

In relation to the non-injured group, spinal transection injury did not cause 

a significant difference in the average number of bladder-labeled cellular 

recordings per experiment (Non-injured, 5.25 ± 2.9 versus SCI, 5.75 ± 2.1). SCI 

also did not result in a significant difference in resting membrane potential of 

bladder afferent NG neurons compared to the spinally intact group. There were 
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no significant differences in AHP trough, AHP80 (80% recovery to RMP), AP 

duration (width) or rheobase (with respect to the 2 groups overall, Non-injured vs 

SCI) due to SCI (Table 5). However, the membrane resistance (Rm) was 

significantly greater and the mean depolarizing threshold for eliciting an AP was 

significantly greater in the transected group as a whole (Table 5).  

Following recordings of DiI+ NG neurons from animals receiving chronic 

spinal transection, two distinct populations of high and low responders, (SHR and 

SLR, respectively), also were evident, as significant differences in their 

distribution plots across all current steps occurred (from 100pA-1000pA, Figure 

19). Interestingly, the SHR group and NHR both displayed similar AP frequency-

current curves, but at the midway point of the current step series, the SHR group 

exhibits declining mean AP frequency, whereas the NHR group AP frequency 

plateaus (Figure 20). A comparison of the AP frequency-current curves between 

the two high responder groups (NHR vs SHR) was not statistically significant. 

The SHR group demonstrated significantly greater than average overall 

AP frequency compared to the SLR group (SHR, 14.22 ± 8.2 versus SLR, 0.80 ± 

0.2, p<.05). The SHR group also displayed a significantly lower than average 

rheobase compared to the SLR subset (SHR, 82.14 ± 66.8 versus SLR, 216.67 ± 

175.6 Hz, p<.05). Peak instantaneous frequency for the SLR group was non-

applicable since AP firing was never greater than one and thus comparisons for 

this criterion between the subsets could not be made. A representative example 

of an SCI low responder pattern compared to a high responder pattern is 
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provided in Figure 21. A comparison of mean AP threshold revealed significant 

differences not only between non-injured and SCI groups as whole (Table 5), but 

even with respect to the high and low responder subsets, significant differences 

were apparent. Regardless of AP frequency, SCI resulted in a lower than 

average mean threshold for firing an AP (Figure 22).Overall, the proportion of 

high to low responders within the SCI group was significantly greater compared 

to the proportion in the non-injured group (Figure 8, p<.001).  
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Discussion 

 

 This study utilized in vitro electrophysiology to examine passive and active 

cell membrane properties of bladder-innervating NG neurons and assess how 

those electrical properties are affected by SCI. Initial data in non-injured bladder-

innervating NG neurons revealed two distinct subsets that were roughly in equal 

proportions, high and low responders. These subsets also were apparent in the 

SCI group, and the proportion of high-to-low responders was significantly 

increased in the SCI group. Overall, SCI resulted in a greater membrane 

resistance and higher AP threshold compared to neurons from the spinally intact 

group. 

 

Retrograde tracer injections  

The use of DiI has shown to be an effective retrograde tracer of visceral 

afferents for in vitro procedures in both the NG and DRG (Dang et al., 2005, Rau 

et al., 2007, Dang et al., 2008, Grabauskas et al., 2010, Rau et al., 2014) and in 

a spinal transection model (Takahashi et al., 2013). We previously demonstrated 

that DiI injections into the lining of bladder results in a clearly labeled population 

of bladder-innervating NG neurons (Herrity et al., 2014). Despite the fact that the 

enzymatic process of dissociation likely results in a partial loss of neurons, in this 

study, DiI yielded a substantial population of intensely labeled cells to sample 

from. Importantly, DiI negative neurons were noted, indicating that the lipophilic 
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tracer did not spread non-specifically. Prior controls for DiI from our lab (Herrity et 

al., 2014) and of others (Dang et al., 2008) suggest this tracer can be reliably 

used to label visceral afferents and remain stable when acutely dissociated for 

whole cell patch-clamp experiments. Finally, the number of DiI+ cells did not 

differ between the spinally intact and SCI groups, suggesting that there was not 

an overall loss of vagal neurons after transection injury. It should be noted, 

however, that since rats received multiple procedures (SCI followed 5 weeks 

later by tracer injections), a conditioning or priming effect from the second 

manipulation could occur, thereby influencing our electrophysiological results. 

Injured sensory DRG neurons that have been repeatedly manipulated after CNS 

injury, developed an intrinsic growth capacity, which is sustained to enhance the 

regeneration of injured axons (Neumann et al., 2005) 

 

Electrophysiological properties of NG neurons 

Early electrophysiological recordings of nodose ganglion neurons in 

different species have previously documented three general populations based 

off action potential characteristics and conduction velocities in an effort to classify 

them as either A-type (myelinated) or C-type (unmyelinated) or more recently Ah-

type (myelinated, fast CV) (Jaffe and Sampson, 1976, Gallego and Eyzaguirre, 

1978, Stansfeld and Wallis, 1985, Puizillout and Gambarelli, 1989, Li and Schild, 

2007). Although it is noted that these criteria do not provide a strict classification 

of neuronal type, they do demonstrate that the NG contains a heterogenous 
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mixture of neurons (Schild et al., 1994). Along those lines, findings from the 

patch-clamp recordings in this study of bladder-innervating neurons also 

revealed distinct subsets based on AP frequency within both the intact and SCI 

populations. Although we did not classify A-, Ah- and C-type neurons, as this 

study did not maintain intact vagal afferent fibers from which conduction velocity 

and afferent fiber type can be determined, many C-type neurons were apparent. 

Most recorded neurons displayed characteristic electrical properties typical of this 

subtype as reported in the literature, such as a longer AP duration (>4ms), a 

longer AHP recovery (75-250ms) and reflecting the classical “hump” present on 

the repolarization phase (Ikeda et al., 1986, Schild et al., 1994). It is noted 

however, that a small proportion of these C-type neurons we observed could be 

of the myelinated Ah-type. They also display a delay on the repolarization phase, 

but maintain a higher conduction velocity than the C-type and therefore, have the 

potential to be miscategorized if classification is based on AP features (Li and 

Schild, 2007, Lu et al., 2013). It has been suggested that the repolarization hump 

is primarily dependent on the degree of Ca2+ current, but also may be influenced 

by Na+ ion currents of sufficient magnitude (Gallego and Eyzaguirre, 1978, 

Stansfeld and Wallis, 1985). 

In agreement with reports in the literature, we found that vagal afferents 

with projections to the bladder, have little to no spontaneous or baseline activity 

(Gebhart et al., 2002, Browning and Mendelowitz, 2003). Vagal afferents in 

general also appear to display a varied or non-uniform level of passive and active 
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membrane properties (Undem and Weinreich, 1993, Mendelowitz et al., 1995). In 

this study, the two distinct subsets in both groups (non-injured and SCI) were 

evident based on AP frequency over increasing increments of current injection. 

From the onset, the collected data set appeared to contain a great deal of 

variability (i.e. neurons exhibiting numerous APs and neurons exhibiting single 

APs). The ionic basis for increased AP frequency in the high responder subsets 

in this study is undetermined. However, repetitive firing properties have been 

previously reported in the literature of intact NG neurons (Stansfeld and Wallis, 

1985) and it is thought that this characteristic is influenced by the transient 

outward current of voltage-gated K+ channels. Alternatively, repetitive AP firing 

may be caused by levels of both intra- and extracellular Ca2+ concentration that 

may indirectly influence membrane potassium channels (Smith et al., 1983, 

Schild et al., 1994).  

Another explanation for the increased AP frequency may be attributed to 

the adaptation response of vagal nerve endings to a stimulus (Jaffe and 

Sampson, 1976). For instance, mechanosensitive vagal afferents innervating the 

lungs have been shown to fall into either slowly adapting receptors (a burst of 

APs which are maintained as long as the stimulus is present) or rapidly adapting 

receptors (a brief burst of APs, after which, they rapidly adapt and may cease 

firing) (Knowlton and Larrabee, 1946, Widdicombe, 1954). Earlier research has 

shown that the adaptation response which underlies these two vagal populations 

in the lungs highly correlates with embryological origin (nodose versus jugular) 
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(McAlexander et al., 1999). Afferent fibers from the placode-derived nodose 

ganglion, predominately rapidly adapt, whereas the majority of fibers that 

originate from the neural crest-derived jugular ganglion adapt slowly 

(McAlexander et al., 1999). It is noted that the adaptation response initiated at 

terminal endings does not always equate with the same electrophysiological 

response present at the soma (McAlexander et al., 1999). This feature may be 

particularly relevant when considering the use of pharmaceuticals as ionic 

channel blockers for studies/therapies. If embryological origin has such a strong 

influence on response profiles, it may predict how they respond to a treatment 

(i.e. vagal nerve stimulation). 

Since subsets of neurons in both the non-injured and SCI populations 

exhibited increased AP frequency patterns, it is unclear whether or not these 

properties are attributed injury/stress (spinal transection, tracer injection or 

dissociation procedures) and/or if interaction with the bladder target tissue 

contributed. Assessment of the expression of activating transcription factor-3 

(ATF-3), which is induced de novo in sensory and motor neurons following 

peripheral nerve injury and absent from intact neurons (Tsujino et al., 2000), may 

help determine if the experimental procedures incorporated in this study 

influenced the electrophysiological properties of the DiI+ NG neurons. Initially, all 

neurons sustain a peripheral as well as central injury from dissociation. However, 

all recordings are performed within 10 hours of NG extraction and therefore it is 

unlikely at this stage that these neurons would be undergoing ATF-3 induction, 
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since its upregulation has been shown to occur around 14-24 hours after injury 

(axotomy, in DRG) (Averill et al., 2004, Rau et al., 2014). Since ATF-3 also is 

induced by cellular stress/damage, its expression in the NG SCI population may 

help provide an explanation for the observed decline of the SHR current-

frequency curve around 600pA  (Hai et al., 1999, Allen-Jennings et al., 2001, 

Okamoto et al., 2001, Kawauchi et al., 2002, Hartman et al., 2004). It is possible 

however, that the SHR subgroup is displaying a rapidly adapting quality and that 

the observed decline in AP firing is reflective of a modified or fading signal rather 

than an absolute response to stimulus intensity. 

Earlier intracellular recordings from an intact or in situ preparation of vagal 

ganglia fibers demonstrate similar membrane properties to patch-clamp 

recordings of dissociated neurons, suggesting that the procedure of dissociation 

does not induce excitability, but rather, the electrical properties seen reflect their 

physiology (Gallego and Eyzaguirre, 1978, Stansfeld and Wallis, 1985). It is likely 

that fluorescent exposure did not alter membrane parameters (Christian et al., 

1993, Yoshimura et al., 1994), as control recordings from non-injured DiI 

negative neurons maintained similar passive and active membrane properties 

compared to non-injured DiI+ neurons (data not shown here).  

No significant differences were found for cell size or capacitance indicating 

that SCI did not induce soma hypertrophy or an increase in membrane surface 

area. These passive membrane properties have the potential to influence active 

properties such as AP duration and threshold for AP generation (Titmus and 
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Faber, 1990). We did find however, that SCI required a significantly higher 

depolarizing threshold in both the high and low responder subsets to elicit an AP. 

This higher AP threshold indicates that these bladder-innervating vagal neurons 

are less excitable after SCI. Evidence of decreased vagal afferent activity has 

come from the work of Homes et al., in which they show that following a high 

thoracic SCI (T3), NTS neurons demonstrate diminished vagal afferent sensitivity 

to gastrointestinal neuropeptides (Tong et al., 2011). It has been suggested that 

even though the vagal neurocircuitry remains intact after SCI, there appears to 

be an overall hyposensitivity of vagal afferent neurotransmission to the brainstem 

(Holmes, 2012). 

In this study, SCI also resulted in an increase in membrane resistance 

(Rm), suggesting fewer reduced leak currents. A combination of increased Rm 

as well as a low rheobase (apparent for both the NHR and SHR subsets) 

suggests that less current is required to excite the bladder-innervating NG 

neurons after SCI. Alternatively, neurons in the SCI group required a greater 

depolarization threshold to generate an AP, thereby exhibiting less excitability. 

Overall, the AP firing patterns present here may be regulated by the proportion of 

ion channels. The various types of ion channels and their kinetics differentially 

contribute to current flow across the membrane and can affect overall excitability. 

In order to clarify the mechanism underlying the changes seen after SCI, future 

studies with a focus on voltage-gated Na+ and K+ channels should be examined. 
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Table 5 

Electrophysiological properties of NG bladder neurons 

 

 Non-Injured SCI 
No. cells/rats 16/8 17/8 
Cell Diameter (µm) 31.87 ± 4.89 32.36 ± 1.16 
Input Capacitance (pF)  50.15 ± 14.88 49.40 ± 5.09 
Membrane Resistance (MΩ)  379.27 ± 245.85    785.99 ± 491.30* 
Tau (µs) 124.92 ± 57.71 112.89 ± 19.00 
RMP (mV)       -52.68 ± 5.62 -51.52 ± 1.42 
Action Potential:      
     Peak (mV) 
     Overshoot (mV) 
     Threshold (mV) 
     Duration (ms) 

 
107.36 ± 13.78 
 54.67 ± 14.49 
-18.17 ± 7.68 
 4.01 ± 1.66 

 
100.65 ± 2.80 
 49.13 ± 2.93 

      - 7.44 ± 0.56 ** 
   4.74 ± 0.49 

AHP Trough (mV) -7.84 ± 5.92   - 8.31 ± 1.20 
Peak IF (Hz)  39.63 ± 19.04  39.81 ± 2.91 
*p<.01, **p<.001 
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Figure 16 Retrograde tracer injections and identification of bladder NG neurons 

 
The retrograde tracer Fast DiI was injected into the lining of the bladder (A, black 

arrows) 7-10 days prior to NG dissociation. A12µm thick section of the NG used 

for epifluorescence purposes reveals DiI+ neurons (B, white arrows) and DiI 

negative neurons (B, numeric sign). Scale bar indicates 25 µm. 
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Figure 17 Whole cell patch-clamp electrophysiological recording of an NG 

bladder afferent 

The Brightfield (BF) image illustrates the recording electrode forming a GΩ seal 

on a NG neuron that also is DiI+. Images were captured at 40X magnification. 

Scale bar indicates 25µm. 
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Figure 18 AP characteristics of a NG neuron innervating the bladder 

 
An example of the action potential characteristics of a DiI+ NG neuron following a 

2500pA current injection. Note the presence of the calcium hump on the 

repolarization phase of the AP, typical of C-type (unmyelinated) NG neurons. 
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Figure 19 Distribution of non-injured and SCI high and low responders 

 
The number of APs quantified for each cell and each group was separated based 

on the grand median value of 6 APs and plotted for each step of current injection. 

Non-injured cells represented a significant distribution of high to low responders 

from 300pA to 950pA, p<.001 and at 1000pA, p<.005. SCI cells represented a 

significant separation into distinct subsets of high to low responders from 100pA-

1000pA (p<.05 at 100pA, 900pA, 950pA, 1000pA; p<.01 at 850 pA; p<.005 at 

100pA, 400pA, 700pA, 750pA, 800pA; p=.001 at 200pA, 250pA, 550pA; p<.001 

at 300pA, 350pA, 450pA, 500pA, 600pA, 650pA) (Median test between 

responders, grand median of 6, n=33 total cells). 
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Figure 20 Current-Frequency plots of high and low responders in both the intact 

and SCI populations of bladder-innervating NG neurons. 

Current frequency curves of all subsets of DiI+ bladder-innervating NG neurons 

are plotted. Non-injured high responders (NHR) maintained greater AP frequency 

from (350pA-1000pA, *p<.05) compared to the non-injured low responders 

(NLR). SCI high responder (SHR) AP frequency was significantly greater than 

SCI low responders (SLR) from (300pA-650pA, *p<.05), after which AP 

frequency declines. (RM mixed model ANOVA with Tukey HSD post hoc t-test, 

n=33 cells, mean ± SD) 
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Figure 21 AP profile of SCI high and low responders 

The top trace illustrates an example of a SCI low responder (SLR), firing a single 

action potential at a higher than average rheobase (300pA). The bottom trace is 

an example of an SCI high responder (SHR), firing multiple action potentials at a 

lower than average rheobase (50pA). 
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Figure 22 The effect of SCI on AP threshold in NG DiI+ neurons 

 
A grouped bar graph illustrating that SCI resulted in a significantly greater (less 

negative) depolarizing threshold in both the HR and LR subsets compared to the 

non-injured subsets (SCI HR vs Non-injured HR, **p=.001; SCI HR vs Non-

injured LR, *p<.001; SCI LR vs Non-injured LR, *p<.001; SCI LR vs Non-injured 

HR, #p<.05) (One-way ANOVA with Tukey HSD post hoc t-tests, n=33 cells, 

mean ± SD). 
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CHAPTER V 

 
GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

This dissertation aimed to develop a thorough understanding of the neural 

innervation to the bladder following chronic SCI by examining the vagus nerve, a 

route that bypasses the spinal cord injury (SCI) in an effort to improve post-SCI 

bladder management and visceral pain syndromes. Apart from the paralysis that 

ensues, major complications of SCI also include deficits to bladder, bowel and 

sexual function as well as autonomic function and chronic pain. The vagus nerve, 

having cell bodies located in the nodose ganglia (NG) and terminals in the 

solitary nucleus is a route through which information from regions below the level 

of spinal injury can travel directly to the brainstem, by-passing the spinal cord. 

The extent of this extraspinal route has important implications in regards to 

understanding many of the post-SCI visceral symptoms and perceptual 

responses evident in clinically complete SCI patients (Wyndaele, 1991, 

Komisaruk et al., 1997, Ersoz and Akyuz, 2004, Komisaruk et al., 2004). . The 

vagus nerve may serve as an important source of input to the brain as the 

majority of visceral organs receive a dual sensory innervation from both the 

vagus as well as spinal nerves (Burden et al., 1983, Gattone et al., 1986, Jancso 

and Maggi, 1987, Neuhuber, 1987, Springall et al., 1987, Altschuler et al., 1989, 

Neuhuber, 1989, Ortega-Villalobos et al., 1990, Berthoud and Powley, 1992, 
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Kummer et al., 1992, Altschuler et al., 1993, Cheng et al., 1997, Komisaruk et al., 

1997, Collins et al., 1999, Vizzard et al., 2000, Hubscher et al., 2004, Komisaruk 

et al., 2004, Herrity et al., 2014). The vagus nerve is only thought to innervate 

thoraco-abdominal viscera as far caudally as the transverse colon in humans and 

is initially supported by the finding that electrical stimulation of the vagus nerve in 

the spinally intact dog has no effect on bladder pressure (Rozman and Bunc, 

2004). However, in humans, functionally complete SCI patients have reported 

significant analgesia in response to self-stimulation to the genital area and some 

even were aware of orgasms (Komisaruk et al., 1997). Functional magnetic 

resonance imaging also demonstrated activation of the solitary nucleus (terminal 

site of the vagus) upon cervical self-stimulation in functionally complete SCI 

women (Komisaruk et al., 2004).  

Although anatomical evidence of connections between the pelvic viscera 

and vagus nerve is discussed in the clinical literature pertaining to chronic SCI 

cases, no human studies on non-injured individuals demonstrate a vagal 

connection to the bladder, suggesting the possibility of reorganization of the 

circuitry under pathological conditions. It is possible that the neural connections 

are infrequently used in the normal condition and become revealed only with 

pathology, which is perhaps why it has not been seen in humans. For instance, in 

the urinary system after SCI, descending control from higher centers in the 

midbrain is severed, triggering a local spinal segmental voiding reflex, driven by 

an “exposed” C-fiber circuitry. In the non-injured state, C-fibers innervating the 
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bladder normally relay responses to noxious stimuli and have a limited role in 

normal voiding (“silent”) (Habler et al., 1990). After SCI, it appears that these 

fibers now become sensitive not only to noxious stimuli, but also normal bladder 

filling and can play a role in hyperreflexia of the bladder detrusor after injury (de 

Groat, 1995). It is highly unlikely that the vagus nerve develops new major 

peripheral projections in pathological conditions, suggesting that these 

connections are likely there since development, but are perhaps “masked” and 

have not been observed. It is not yet known if vagal afferents innervating the 

bladder contribute to post-SCI bladder dysfunction. However, support of an 

extraspinal pathway involved in the neural control of the lower urinary tract stems 

from promising preliminary work from Ruggieri et al. They demonstrate significant 

activation of brain regions receiving vagal inputs (solitary nucleus, NTS) during 

saline bladder filling using functional magnetic resonance imaging in clinically 

complete SCI patients (Krhut J, 2014).  

Once the anatomical innervation from the vagus nerve to the bladder was 

identified in this project, we next sought to characterize these afferents by 

examining their immunohistochemical phenotype and evaluating how SCI might 

alter that phenotype. Information gained from these experiments may help 

provide insight into particular sensory processes bladder-innervating vagal 

afferents play a role in. For example, one important molecular marker that was 

focused on, P2X3 plays an essential role in bladder sensory transduction. We 

found that SCI results in a significant increase in the number of NG neurons 
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expressing this particular marker, and this result also was present in the majority 

of the bladder-innervating NG neurons, suggesting vagal afferents may play a 

role in the sensory portion of the micturition reflex (Chapter III). A future direction 

would be to examine peripheral vagal afferent terminal innervation into different 

layers of the bladder and how this contribution from the vagus nerve is altered 

after SCI. 

Identification of the extent of vagal afferent innervation to the bladder 

becomes particularly important especially since the first step in initiating the 

micturition reflex involves the relationship between afferent fibers and 

urothelial/suburothelial tissue layers participating in bladder distension. It is also 

shown that sensory afferents innervating the bladder can release 

neurotransmitters and neuropeptides from their peripheral terminals, which can 

act in an efferent manner by influencing smooth muscle activity, triggering local 

inflammatory responses and participating in autonomic reflexes (de Groat, 

1987a). Immunofluorescence studies of spinal innervation in both the rat and 

human bladder show numerous CGRP- and SP-containing free nerve terminal 

endings in the submucosal and urothelial layers (Yokokawa et al., 1986, 

Wakabayashi et al., 1993). Electron microscopy studies also have provided 

evidence of dense networks containing nerve fibers and capillaries between the 

urothelium and lamina propria (Inoue and Gabella, 1992). With the majority of 

fibers being unmyelinated (Zhuo et al., 1997), it is anticipated that 

parasympathetic vagal afferents innervating the bladder would share a similar 
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layer distribution as spinal parasympathetic pelvic nerve afferents (C-fibers 

portion), having a widespread distribution in the detrusor and urothelium (Kanai 

and Andersson, 2010). This position would allow them to detect volume changes 

from urothelial cells as well as stretch and tension in response to bladder 

distention. Vagal afferents are already primed to do so as they have specialized 

nerve endings termed IMAs (intramuscular arrays) and IGLEs (intraganglionic 

laminar endings) that are thought to function like pacinian or golgi-tendon organs, 

sensing stretch and tension/contraction in the stomach and gut wall (Phillips and 

Powley, 2000). 

Chapter III of this dissertation discussed how activation of the P2X3 

receptor, which is predominantly expressed on sensory afferents (Chen et al., 

1995, Lewis et al., 1995) including NG neurons (Lewis et al., 1995, Hubscher et 

al., 2001, Dang et al., 2005, Kestler et al., 2009) and in NG neurons innervating 

the bladder (Herrity et al., 2014), has been established as one of the peripheral 

receptors facilitating afferent transmission of the micturition reflex (Cockayne et 

al., 2000, King et al., 2004). Immunoreactivity to the P2X3 receptor has been 

found on pelvic afferent terminal fibers in the mouse (Vlaskovska et al., 2001) as 

well as in human bladder urothelial tissue (Elneil et al., 2001, Yiangou et al., 

2001). In other tissue layers of the bladder such as the detrusor muscle, 

activated P2X3 enhances smooth muscle contraction especially in conditions of 

overactivity or inflammation when the P2X3 ligand, ATP, appears to be in excess 

(Hoyle, 1994, Palea et al., 1995, D'Agostino et al., 2012).  
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P2X3 receptors also are present on cells located in the suburothelial layer 

(myofibroblasts/interstitial cells) which have been proposed to play a role in the 

sensation of bladder fullness (Wiseman et al., 2003, Sui et al., 2004). ATP-

sensitive afferent fibers may therefore be well suited to signal the degree of 

bladder distention. Based on the results from Chapter 3 of this dissertation, it 

appears that vagal afferents innervating the bladder also have the potential to 

signal through purinergic mechanisms via P2X3 receptors. Further evaluation of 

P2X3-immunoreactive vagal afferents innervating the bladder may be an 

important endeavor since the presence of this receptor is evident in multiple 

bladder tissue layers, it is involved in regulating both afferent and efferent 

pathways of the bladder circuitry (Ford et al., 2006) and it plays a role in disease 

states such as overactive bladder syndrome, neurogenic bladder and interstitial 

cystitis (Burnstock, 2014). It should be noted however, that the control of 

micturition actually involves many neurotransmitters, neuropeptides and different 

receptors and ion channels, all of which could be potential pharmacological 

targets for therapeutic interventions (de Groat and Yoshimura, 2001). However, 

the challenge is to identify drugs that exhibit a selective action on the lower 

urinary tract without the addition of undesirable side effects that could potentially 

alter normal bladder function. A combinational approach to treating bladder 

dysfunction may be more advantageous. 

Additional future directions for this project would be to examine the degree 

of overlap with the bladder from multiple visceral organs in the NG (primary 
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afferent level) as well as the central inputs and possible viscero-visceral 

convergence from the vagus nerve in the solitary nucleus (secondary afferent 

level). In general, cross-talk between pelvic organ systems, such as with the 

bladder and colon, exist to aide in normal visceral functioning and are usually 

cross-inhibitory reflexes (i.e. voiding and defecation occur alternatively, voiding 

takes precedence over defecation) (Basinski et al., 2003). The vagus nerve also 

participates in regulatory cross-talk as evidenced with the baroreceptor reflex, 

demonstrating its role in maintaining stable blood pressure and heart rate 

(Dampney, 1994, Spyer, 1994). Under pathological conditions, cross-excitatory 

reflexes occur when a disease state in one organ influences the functionality of 

an adjacent, sometimes distant organ (Qin et al., 2007, Kaddumi et al., 2012) 

through shared (i.e. dichotomizing, trichotomizing) pathways. Cross-sensitization 

between the bladder and other pelvic viscera is a clinical concern that makes 

diagnosing and treating the etiology difficult (Berkley, 2005, Berkley et al., 2005, 

Baranowski et al., 2008, Theoharides et al., 2008, van de Merwe et al., 2008). In 

humans and in animals, the organs that seem to be most often involved in pelvic 

cross-sensitization besides bladder and colon, with respect to spinal afferents, 

appear to be the pelvic urethra and the uterus (Dmitrieva et al., 2001, 

Giamberardino et al., 2001, Dmitrieva and Berkley, 2002, Morrison et al., 2006, 

Winnard et al., 2006, Peng et al., 2008a, Peng et al., 2008b, Peng et al., 2009). 

The extent of viscero-visceral interaction between these organs and the degree 

of overlap with the bladder in the NG has not been established yet.  
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Unpublished preliminary data from (Ruggieri, 2014) suggests that vagal 

afferents do not innervate the pelvic urethra, as fast blue labeled cell bodies 

traced from this organ were not observed in the female canine NG or NTS. 

However, it is unclear whether or not a specific area of the urethra (external or 

internal urethral sphincter [EUS, IUS, respectively]) was targeted with the tracer 

injection in this instance. A follow-up tracing study between male and female rats 

would be beneficial since sex differences exist with respect to the function of 

these sphincters. The female internal urethral smooth muscle sphincter is not as 

distinct at the bladder neck as it is in males, which serves important role in 

preventing reflux of ejaculate into the bladder (Shafik, 1997). The functional 

relevance of the IUS in the female is unclear as continence does not appear to 

be affected by an incompetent bladder neck (Versi et al., 1986). On the other 

hand, the EUS is more intricate in females as it serves to contract both the 

urethra and vagina (Oelrich, 1983). The relationship of the urethra with the 

vagina also is functionally important for assisting the muscles of the pelvic floor 

after a vaginal delivery (Phillips and Monga, 2005). Since voluntary control of 

voiding is possible only if neural innervation to both the bladder and urethra is 

intact (Elbadawi and Schenk, 1974), examining the potential vagal contribution to 

the urethral sphincters and the degree of overlap with the bladder in the NG may 

suggest further evidence of a possible functional relationship between the two 

structures, which are essential for the storage and elimination of urine. 
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Additional important pelvic regulatory processes, such as micturition, 

defecation, and ejaculation, are spinobulbospinal reflexes and possible viscero-

visceral interactions could be due to the convergence of visceral inputs that occur 

not only through peripherally mediated mechanisms, but also due to convergent 

input onto second order supraspinal neurons, such as the NTS and medullary 

reticular formation (Berkley et al., 2005, Qin et al., 2005, Kaddumi and Hubscher, 

2006, Brumovsky and Gebhart, 2010). Promising new data from Ruggieri et al. 

assessing bladder re-innervation strategies in a lower motoneuron SCI canine 

model, found evidence of dye labeled cells in both the NG and NTS following 

fluorogold retrograde tracer injection in the bladder wall. The use of fluorphore-

conjugated dextran amines as a follow-up step should result in robust labeling at 

the secondary afferent level in the NTS. Although tracing data from us and that of 

others has revealed a homogenous distribution of visceral afferent labeling in 

nodose ganglion neurons (Sharkey and Williams, 1983, Altschuler et al., 1989, 

Zhong et al., 2008, Herrity et al., 2014), we would expect to find a viscerotopic 

organization of terminal labeling in the NTS. For instance, (Altschuler et al., 

1993) showed that following tracer injection of CT-HRP into the colon, labeling in 

the NTS was localized in the dorsal region of the commissural NTS, and 

(Hubscher and Berkley, 1994) have shown that whereas neurons in the rostral 

NTS process gustatory information, neurons in the caudal NTS receive inputs 

from pelvic reproductive organs (vagina, cervix, uterine horn and colon). A 
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specific organized distribution may have important implications for the 

coordination of visceral processing.  

It has been reported that sensory neurons in the NTS project to the 

parabrachial nucleus and that information can then be relayed to the amygdala, 

hypothalamus and limbic cortex which may influence the autonomic and 

emotional responses to noxious visceral stimuli (Cechetto, 1995). Using a model 

of noxious gastric distention, research from Traub and colleagues also suggest 

that while vagal afferents can participate in the processing of noxious visceral 

stimuli, it is likely that they contribute to the affective-emotional aspect of pain 

versus the sensory-discriminative aspect (Traub et al., 1996). Furthermore, vagal 

afferents projecting from the lungs to the NTS and then to the parabrachial 

pontine region have been suggested to contribute to plasticity involved in 

respiratory control as well as influencing the integration of other systems involved 

in that control, including voluntary breathing, sleep-wake patterns, and emotions 

(Kubin et al., 2006). Analysis of higher order neuronal levels, such as with the 

use of fMRI, during measures of bladder capacity and output following chronic 

SCI may point to areas in the brain associated with vagal inputs that could play a 

role in the micturition reflex after injury (Krhut J, 2014).  

In addition to identifying the extent of vagal innervation to the bladder and 

characterizing those neurons using immunohistochemistry, we also examined the 

electrophysiological properties of the NG neurons innervating the bladder and 

how those properties were effected by SCI. Overall, SCI resulted in increased 



 

127 
 

excitability in the bladder-innervating population of NG neurons as demonstrated 

by a significant overall decrease in threshold for eliciting an AP as well as a 

significant increase in membrane resistance. A broader aspect to consider is 

whether the alterations in the bladder-innervating NG neuronal membrane 

properties are modulated by disease states and are important, in this case, for 

the system’s response to SCI, perhaps initiating some plasticity-related changes 

in those fibers. Future work will include immunocytochemistry on preserved DiI+ 

NG recorded cells (bladder-innervating) from the electrophysiological 

experiments to assess differential expression of activating transcription factor 

(ATF-3), a sensitive marker of nerve injury (Tsujino et al., 2000) and cellular 

stress/damage (Hai et al., 1999, Allen-Jennings et al., 2001, Okamoto et al., 

2001, Kawauchi et al., 2002, Hartman et al., 2004). This staining will be 

performed in both the non-injured and SCI populations in order to determine if 

our procedures (tracer injection, tracer incorporation, dissociation) resulted in an 

injury or stress response that could potentially alter the electrophysiological 

properties of those neurons (Rau et al., 2014). As a control to aide in this 

understanding, staining for ATF3 will be performed on NG sections taken from a 

rat receiving injection of bladder tracer, but perfused prior to ganglion excision. At 

the same time point, additional immunocytochemical analysis will include an 

assessment of P2X3 expression in the DiI+ NG neurons. We would expect to find 

that the DiI+ NG cells from the SCI group would exhibit a greater proportion of 
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P2X3 expressing neurons relative to the non-injured group, which would parallel 

our findings in Chapter III.  

Examining the electrophysiological properties in bladder-innervating NG 

neurons helps provide an understanding of the ways in which excitability 

following SCI could correlate with functional measures (cystometrogram) of 

bladder storage and output. Alterations to the bladder tissue itself after SCI has 

the potential to impact AP discharge patterns. Measures of vagal afferent action 

after SCI could display a phasic pattern of activity, characteristic of spinal bladder 

afferents mediating the switch-like manner of bladder operation: storage and 

elimination (de Groat, 1995). On the other hand, it is possible that NG bladder 

afferents may behave in a tonic mode, reflecting the nature of autonomic function 

to the respiratory and cardiovascular system for example (McAlexander et al., 

1999). 

With the ultimate goal of targeting this extraspinal pathway for translational 

objectives, future studies may involve the identification of suitable biomarkers in 

the bladder that could serve as a way to define the presence of or measure the 

degree of clinical bladder pathology and the physiological response to a 

treatment (vagal nerve stimulation). Vagus nerve stimulation (VNS) has been 

approved by the Food and Drug Administration for the treatment of refractory 

epilepsy and depression and more recently, is being studied for its applications in 

obesity, Alzheimer's disease, heart failure, and inflammatory disease (Tracey, 

2002, Li et al., 2004, Groves and Brown, 2005, Milby et al., 2008, Schwartz et al., 
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2008). Given that the vagus nerve would not be distinguishable from sympathetic 

fibers once it enters the abdominal region (Shoja M., 2013), the most common 

area of access to the nerve for stimulation would be on the cervical vagus. 

Typically, the left cervical vagus is used for therapeutic stimulation since it does 

not affect heart rate (Saper et al., 1990, Schachter and Saper, 1998). Despite 

differential roles of the vagus nerve to cardiac function (Randall et al., 1986, 

Saper et al., 1990, Schachter and Saper, 1998), we did not find any differences 

in bladder NG labeling between the right and left side (Herrity et al., 2014). 

Treatment stimulation parameters have been variable due to the fact that the 

vagus nerve is primarily comprised of small diameter (0.2-2 µm), unmyelinated c-

fibers with a slow conduction velocity (0.3–2 m/s) and properly accessing this 

population of afferents requires a higher stimulation waveform and longer 

duration (Castoro et al., 2011). As a result, unwanted side effects such as 

hoarseness, neck pain, coughing, difficulty breathing and swallowing have been 

reported (Milby et al., 2008). VNS causes antidromic and orthodromic activation 

of nerve fibers and the challenge is trying to achieve a balance between 

therapeutic benefit while mitigating unwanted side-effects. Since every patient 

presents with a unique set of symptoms related to their condition, clinicians 

should have the capability to alter electrode frequency and waveforms to best 

suit the patients’ condition.  

To investigate the influence of VNS therapy on the bladder, one potential 

avenue would be to assess urinary biomarkers, as urine samples from patients 
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would be easy to collect. Another possibility may include a physical 

measurement, such as bladder wall thickness, which is measured via 

transabdominal ultrasound (Fry et al., 2014). Given its role in the regulation of 

bladder function, urinary ATP may be considered a potential biomarker. 

Collection is non-invasive and serves as a reliable measurement method 

(luciferin-luciferase bioluminescence assay). Care must be taken to immediately 

snap freeze samples after collection in order to avoid ATP degradation (Silva-

Ramos et al., 2013). ATP release is enhanced in patients with overactive bladder 

and interstitial cystitis and excesses of ATP are thought to underlie the enhanced 

sensation or bladder urgency (Burnstock, 2014). 

Other popular candidates have included the presence of inflammatory 

mediators such as cytokines and prostaglandins as well as nerve growth factor 

(NGF). They have been shown to correlate with the severity of overactive bladder 

syndrome for example, but have not been extremely effective in terms of serving 

as an independent predictive measurement (Cartwright et al., 2011). In particular, 

excretion of NGF into the urine is increased in patients with overactive bladder 

syndrome and interstitial cystitis. However, its concentration has been reported to 

have wide variation in patients with overactive bladders and may not be sensitive 

enough to identify individuals with true pathology (Kuo et al., 2010, Liu et al., 

2010, Ochodnicky et al., 2011). Other factors confounding its specificity for 

bladder dysfunction include a lack of a clear baseline measure of NGF in normal 

subjects as well as biochemical issues, such as NGF binding to cellular 
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components and proteins present in the urine, thus not being able to serve as a 

clear indicator or measure of dysfunction (Ochodnicky et al., 2011).  

Despite the fact that NGF may not serve as a reliable biomarker for 

bladder dysfunction, it still may be a viable marker to target therapeutically given 

its role in target organ-neural interactions as well as its response to locomotor 

step-training therapy (decrease in mRNA) and exercise that could potentially 

ameliorate bladder dysfunction post-SCI (Vizzard, 2000a, Steers and Tuttle, 

2006, Vizzard, 2006, Liu et al., 2010, Ward et al., 2014). Subsequent detrusor-

sphincter dyssynergia that results after injury leads to a functionally obstructed 

urethra and eventually, bladder hypertrophy. In response to these events, NGF is 

released in the bladder and transported to bladder afferent pathways leading to 

hyperexcitability of these fibers and ultimately influencing neurogenic detrusor 

over activity. NGF can function to sensitize the C-fiber bladder afferents and 

change their responses to mechanical stimuli, making them more excitable (de 

Groat and Yoshimura, 2006, 2010). 

In addition to its release in the bladder, NGF also is increased in the spinal 

cord after SCI, contributing to hyperexcitability of the bladder afferent pathways 

(Yoshimura, 1999, Seki et al., 2002). In SCI rats, direct targeting of NGF with 

intrathecal administration of NGF antibodies, led to a reduction in NGF levels at 

the L6 spinal cord and resulted in a suppression of detrusor hyperreflexia and 

improved bladder-urethral function (Seki et al., 2002, Seki et al., 2004). In a 

phase two clinical trial, Tanezumab, a humanized anti-NGF monoclonal antibody 
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that binds with high affinity to NGF preventing it from interacting with TrkA 

receptors on nociceptive neurons, was tested for efficacy in patients with 

moderate to severe interstitial cystitis associated pain (Evans et al., 2011). 

Although Tanezumab decreased urinary frequency, some patients experienced 

paresthesia, hypoesthesia and arthralgia due to a systemic type-blockade of 

NGF at sites other than the bladder (i.e. peripheral joints) (Evans et al., 2011, 

Kashyap et al., 2013). In an attempt to limit these global side-effects, novel 

intravesical treatments targeting urinary NGF have been more recently explored 

using antisense oligonucleotides complexed to liposomes (Kashyap et al., 2013). 

This approach may be more advantageous to treating altered NGF levels since 

the afferent nerve fibers that play a large role in the development of bladder 

overactivity and/or neurogenic bladder form a dense network near the 

urothelium, thus readily accessible to this type of treatment. Overall, it highlights 

the dynamic relationship between target organs and their neural connections and 

how the two influence each other in terms of contributing to normal physiological 

homeostasis to triggering pathology and developing treatment strategies that 

address both structures. 

Overall, this project identifies the anatomical innervation of the bladder by 

sensory vagal afferents (Figure 23), which by-pass the spinal cord, and confirms 

the vagal anatomical connection with the distal colon. A pre-existing neural 

substrate through vagal afferents can mediate physiological reflexes between the 

bladder and colon that are important for maintaining homeostasis. In addition, 
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through dichotomizing vagal afferent pathways and cross sensitization 

mechanisms, pathology in either the bladder or colon could contribute to the 

clinical overlap of conditions such as interstitial cystitis or irritable bowel 

syndrome. Even though this project points to the significant role dichotomizing 

afferents play with respect to cross-talk between two visceral organs, NG 

neurons could display multi-organ innervation given the extent of its contribution 

to numerous viscera. We also demonstrated the vagus nerve provides a 

substantial degree of innervation to the bladder, which was equivalent to the 

parasympathetic spinal supply.  

These identified vagal pathways to the bladder and colon provide an 

extraspinal route through which sensory information from below the level of a 

spinal injury can flow to the brainstem. Despite the fact that SCI does not directly 

damage the vagus nerve, we demonstrate that vagal afferents are indirectly 

affected by a distant, chronic spinal injury and respond by modifying both their 

neurochemical and electrophysiological properties. Following SCI, NG neurons 

exhibit an immunohistochemical phenotypic shift, represented by a change in the 

proportion of neurons expressing different injury-responsive markers, which also 

held true for many bladder-innervating NG neurons. In addition, alterations in the 

electrophysiological membrane properties of bladder-innervating NG neurons 

suggest they also are sensitive to a remote spinal injury. Overall, characterizing 

vagal neurons, including those that innervate the bladder will provide further 
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insight into their role in afferent signaling in the context where descending, tonic 

control to the bladder is removed. 
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Figure 23 Anatomical innervation of the bladder by the vagus nerve 

 

A summary figure is provided which demonstrates the dual sensory supply from 

both vagal and spinal sources to the urinary bladder. Adapted from (Fernandez, 

2002, Furuta et al., 2007). Dorsal root ganglia (DRG), external urethral sphincter 

(EUS), inferior mesenteric ganglia (IMG), inferior splanchnic nerves (ISN), 

sympathetic chain ganglia (SCG). 
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