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ABSTRACT 
 
 
 

ALTERNATIVE PIEZORESISTOR DESIGNS 
FOR MAXIMIZING CANTILEVER SENSITIVITY 

 
 
 

Patrick Carl Fletcher 
 

July 11, 2008 
 

Over the last 15 years, researchers have explored the use of piezoresistive 

microcantilevers/resonators as gas sensors because of their relative ease in fabrication, 

low production cost, and their ability to detect changes in mass or surface stress with 

fairly good sensitivity. However, existing microcantilever designs rely on irreversible 

chemical reactions for detection and researchers have been unable to optimize symmetric 

geometries for increased sensitivity. Previous work by our group showed the capability of 

T-shaped piezoresistive cantilevers to detect gas composition using a nonreaction-based 

method – viscous damping. However, this geometry yielded only small changes in 

resistance. Recently, computational studies performed by our group indicated that 

optimizing the geometry of the base piezoresistor increases device sensitivity up to 700 

times. Thus, the focus of this work is to improve the sensitivity of nonreaction-based 

piezoresistive microcantilevers by incorporating asymmetric piezoresistive sensing 

elements in a new array design.  

A three-mask fabrication process was performed using a 4” silicon-on-insulator 

wafer. Gold bond pads and leads were patterned using two optical lithography masks, 

gold sputtering, and acetone lift-off techniques. The cantilevers were patterned with 
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electron-beam lithography and a dry etch masking layer was then deposited via electron-

beam evaporation of iron. Subsequently, the silicon device layer was deep reactive ion 

etched (DRIE) to create the vertical sidewalls and the sacrificial silicon dioxide layer was 

removed with a buffered oxide etch, completely releasing the cantilever structures. 

Finally, the device was cleaned and dried with critical point drying to prevent stiction of 

the devices to the substrate. For the resonance experiments, the cantilevers were driven 

electrostatically by applying an AC bias, 10 Vpp, to the gate electrode. A DC bias of 10 V 

was placed across the piezoresistor in series with a 14 kΩ resistor. The drive frequency (0 

– 80 kHz) was swept until the cantilever resonated at its natural frequency, which 

occurred when the output of the lock-in amplifier reached its maximum. These devices 

have been actuated to resonance under vacuum and their resonant frequencies and Q-

factors measured.  

The first mode of resonance for the asymmetric cantilevers was found to range 

between 40 kHz and 63 kHz, depending on the piezoresistor geometry and length of the 

cantilever beam. The redesigned piezoresistive microcantilevers tested yielded  static and 

dynamic sensitivities ranging from 1-6 Ω/µm and 2-17 Ω/µm displacement, respectively, 

which are 40 –730 times more sensitive than the best symmetric design previously 

reported by our group. Furthermore, the Q-factors ranged between 1700 and 4200, typical 

values for MEMS microcantilevers. 
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NOMENCLATURE 
 

°C = degrees Celsius 
µ = dynamic viscosity of gas 
µA = microamp 
µm = micrometer 
Å = angstrom 
AC = alternating current 
AFM = atomic force microscope 
BOE = buffered-oxide etch 
CL = cantilever length 
cm = centimeter 
CMOS = complementary metal-oxide-semiconductor 
DC = direct current 
deg = degree 
DI = de-ionized 
DRIE = deep-reactive ion etch 
E = Young’s modulus of cantilever material 
f = resonance frequency in vacuum 
FEA = finite element analysis 
GHz = gigahertz 
GPIB = general purpose interface bus 
Hz = hertz 
IPA = isopropyl alcohol 
k = cantilever spring constant 
K = Kelvin 
kHz = kilohertz 
kV = kilovolts 
kΩ = kilohm 
L = cantilever beam length 
LL = piezoresistor leg length 
LOR3A = liftoff resist 3A 
LS = piezoresistor leg separation 
m = mass of cantilever 
M = molar mass of gas 
mb = mass of the cantilever 
MEMS = micro-electro-mechanical systems 
MHz = megahertz 



ix 
 

MIBK = methyl isobutyl ketone 
nC = nanocoulomb 
NEMS = nano-electrical-mechanical systems 
nm = nanometer 
NPGS = nanometer pattern generation system 
P = pressure 
pH = acidity or alkalinity of a solution 
PL = piezoresistor length 
PMMA = polymethyl methacrylate 
PSD = position-sensitive detector 
PW = piezoresistor width 
Q-factor = quality factor 
R = radius of sphere 
R0 = 8.314 J/(mol • K ) 
R0 = resistance at non-resonance 
R0 = resistance at zero deflection 
R1 = maximum resistance at deflection Δx 
R1 = resistance at resonance 
RF = radio frequency 
Rpm = rotations per minute 
sccm = standard cubic centimeters per minute 
SEM = scanning electron microscope 
SOI = silicon-on-insulator 
T = absolute temperature 
t = cantilever thickness 
UV = ultra-violet 
V = total tip displacement 
V = Volts 
VCSEL = vertical-cavity surface-emitting laser  
W = Watt 
W = width of cantilever 
w = width of cantilever 
Δf = shift of the resonance frequency 
Δx = deflection of cantilever tip 
Ω = Ohm 
ωo = cantilever resonant frequency 
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I. INTRODUCTION 
 
 

Micro-electrical-mechanical systems (MEMS) have been generating increasing 

research interest in the past two decades, which has resulted in an exponential growth of 

commercially-available MEMS devices (Salzberg, 2002). MEMS and Nano-electrical-

mechanical systems (NEMS) have found widespread applications in the fields of sensors, 

actuators, and other microsystems (Judy, 2001; Blencowe, 2005; Craighead, 2000; 

Roukes, 2001). MEMS devices typically operate at the micron scale and are characterized 

as very small machines utilizing the mechanical and electrical properties of silicon and 

other semiconductor materials. MEMS devices are typically fabricated using 

micromachining techniques classically reserved for semiconductor fabrication (Judy, 

2001).  

Micro-mechanical resonators constitute a large portion of MEMS and NEMS 

devices and are making significant contributions to the sensing field (Lavrik, 2004; 

Porter, 2001; Ziegler, 2004). Resonators operate on the principle that a physical, 

chemical, or biological stimulus will change the mechanical characteristics of the 

resonator, producing a change in frequency, amplitude, and/or quality-factor (Q-factor) 

output signal. In this way, the resonator acts as a transducer by converting the stimulus 

input into an electrical output signal. The resulting changes can be measured using 

electronic, optical, or other sensing means (Carr, 1999; Scuor, 2006). 

Micro/Nanofabricated structures create ideal platforms for high sensitivity resonators   

because of their ability to generate high resonance frequencies and high Q-factors, due to 

their small size and mass (Yao, 2000). Thus, micro and nano resonators have been used 
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for a variety of applications such as  gas detection  (Chopra, 2004; Thiele, 2003; Xu, 

2006; Zribi, 2005), mass (Gupta, 2004; Ekinci, 2003; Abedinov, 2001), heat flux 

(Abedinov, 2001; Volklein, 1999; Wang, 2005), force (Kenny, 2001; Mei, 2000; Chui, 

1998), surface stress (Datskos, 2001; Preissig, 2001; Muller, 2001), and charge (Riehl, 

2003) sensors. 

In regards to gas sensing, microresonators have primarily measured changes in 

mass or surface stress through a chemical interaction between the gas and the resonator 

material/surface, which causes a measurable shift in the resonance frequency (Zribi, 

2005). The resonant frequency of the microresonator can be measured through electronic 

circuitry using the piezoelectric effect (Wang, 2003) or the piezoresistive effect 

(Partridge, 2000), and can also be measured optically using a laser focused on the 

vibrating structure (Gupta, 2004). 

Microcantilevers, in particular, are a special type of microresonator well-suited for 

gas detection because of the relatively simple fabrication methods required, suitability for 

arrangement in an array, and relatively large displacement compared to other 

microresonators (Ziegler, 2004). Microcantilevers have been utilized in many other 

applications besides gas sensing such as atomic-force microscopes (AFM) (Albrecht, 

1990), accelerometers (Kim, 1995), etc. The majority of microcantilevers fabricated, to 

date, use a symmetric geometry for the base of the cantilever beam (Su, 2003; Lavrik, 

2004; Xu, 2006; Lee, 2003) and a piezoresistive or piezoelectric sensing element 

(Partridge, 2000; Wang, 2003). For example, previous work by our group involved the 

fabrication of a T-shaped piezoresistive sensing element at the base of the cantilever for 

performing gas composition analysis (Xu, 2006).  The T-shaped geometry yielded small, 
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but measurable, changes in resistance while the cantilever resonated, due to bending 

stresses in the support structure of the cantilever as the tip was displaced. However, the 

beneficial axial stresses largely canceled due to the symmetric geometry of the cantilever 

base; thereby, decreasing the sensitivity of the sensor. 

These measurements are carried out by measuring the stress in the ‘piezo’ element, 

which when increased should enhance the sensitivity of the cantilever. Currently, the 

stress in the piezo element can be increased by: 1) lengthening the cantilever; 2) 

increasing the stress concentration with sharper corners; and/or, 3) increasing the 

deflection of the resonating cantilever. However, there are several limitations to these 

methods.  Specifically, increasing the length of the cantilever adds mass to the beam, 

which decreases the natural frequency and leads to a lower Q-factor.  Regarding stress 

concentration, it is difficult to consistently produce sharp features with conventional 

micromachining techniques since the minimum feature size that can be produced by 

traditional lithographic techniques is 1 μm. Furthermore, increasing the deflection of the 

cantilever requires a larger AC drive voltage, which means more power consumption and 

more equipment. 

An alternative method for increasing the stress in the ‘piezo’ element must be 

developed.  An unutilized alternative is to vary the geometry of the ‘piezo’ element, 

creating more favorable coupling stresses in the element.  Thus, the objective of this work 

is to demonstrate that altering the geometry of the piezoresistive element in a resonating 

microcantilever will improve the cantilever sensitivity. 
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A. Purpose of Study 

The purpose of this study was to fabricate and test the sensitivity of silicon 

microcantilever arrays with varying asymmetric piezoresistive sensing element 

geometries.  

B. Hypothesis 

The hypothesis of this study is that piezoresistive sensing microcantilevers with 

asymmetric geometries will have greater sensitivity than a symmetric, T-shaped design. 

C. Significance of Study 

A common problem with existing microcantilever based gas sensors is the need for 

chemically-reactive coatings on the cantilever for absorbing or desorbing the desired 

analyte. This technique has limitations: 

• The coating must be designed with a suitable reaction mechanism; 

• The coating must be precisely placed without damaging the cantilever; 

• The types of gases that can be detected are limited; 

• Unknown or inert gases cannot be detected; and, 

• The detection process is usually irreversible. 

Recently, Xu, et al. (2006) explored new alternative cantilever designs, which are 

non-reaction-based for gas detection. This cantilever utilizes the damping effect of gases 

to distinguish between gases with different molar masses. The major advantage of this 

technique is that it does not rely on a chemical reaction.  However, the T-shaped design 

of the microcantilever sensing element developed by Xu yielded low sensitivity values.  

Xu’s best device sensitivity was 0.0294 Ω/µm and her T-9 resonators had an 

average relative resistance change of 2.7×10-6 for a 1 μm deflection of the free end of the 
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cantilever.  This 10-6 relative resistance change approaches the detection limit of the 

Wheatstone bridge configuration used to measure the change in piezoresistance. Lang et 

al. (2005) identified microcantilevers as very capable chemical and biological sensors, 

but highlighted the need for optimized device design to further improve sensitivity. In the 

future if these microcantilevers are to be used in a handheld package then the 

microcantilever sensitivity, or the change in piezoresistance during resonance, must be 

improved so that conventional integrated circuit packages can be used in place of lab-

grade equipment, such as a lock-in amplifier, to detect changes in microcantilever 

resonance. New piezoresistor element designs must be formulated to enhance device 

sensitivity. An asymmetric piezoresistor element which increases microcantilever 

sensitivity is the first step in the improvement of these novel MEMS sensing devices. 

  



6 
 

II. RELATED LITERATURE 
 
 

Current research and production of MEMS devices mainly focuses on actuation-

based sensors for physical (Morante, 1996; Agoston, 2005; Mamin, 2001; Stowe, 1997), 

chemical (Lange, 1999; Thundat, 1995; Ji, 2001; Butt, 1995), and biological (Ilic, 2000; 

Baselt, 1996; Grogan, 2002; Antonik, 1997) sensing. In the last two decades, it has 

become possible to produce inexpensive MEMS sensors through batch silicon 

micromachining techniques developed for the integrated circuit industry. MEMS 

microactuators typically consist of beams (Yasuda, 1997; Pan, 1997) and diaphragms 

(Carlen, 1999; Hirata, 1996), though microactuated beams have demonstrated the highest 

detection sensitivity, repeatability, and reproducibility (Li, 2003; Stowe, 1997; Ilic, 

2000). 

A. Microcantilever Sensors 

The microcantilever is the most common type of MEMS microactuator, which is 

characterized by a suspended single-clamped beam that acts as the sensing element. The 

microcantilever sensor works by detecting changes in mechanical stress or resonance 

response of the beam, which statically or dynamically indicates changes in deflection or 

damping of the cantilever, respectively. Commercial cantilevers are typically made of 

silicon, silicon nitride, or silicon oxide (Ziegler, 2004).  

Microcantilevers were initially used in contact with other surfaces and were 

characterized by low spring constants with high sensitivity to applied forces and high 

resonance frequencies for faster response times (Ziegler, 2004). Resonating cantilevers 

have shown advantages in detecting minute quantities of external stimuli due to their 
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naturally high resonant frequencies and high Q-factors (Yao, 2000). The evolution of the 

microcantilever has led to sensors that no longer bring surfaces into contact with the 

microcantilever. Instead, the microcantilevers act as miniature transducers based on 

fundamental principles of physics like the bimetallic effect (Chu, 1993), mechanical 

stress (Bargatin, 2005), or the harmonic oscillator (Lee, 1996).    

There are typically three ways that microcantilevers are used to transduce an input 

stimulus into a measureable output: measure mass loading from a frequency change, 

monitor temperature change from bimetallic cantilever deformation, or sense surface 

stress on one side of the cantilever from cantilever deformation (Ziegler, 2004). 

Arranging different microcantilevers into an array has enormous potential for improving 

the reliability, sensitivity, and selectivity of microcantilever-based sensors. 

B. Microcantilevers for Physical, Biological, and Chemical Sensing 

Lang et al. (2005) have investigated the possible applications and uses for 

microcantilevers over many years. Their investigation has found that an array of 

microcantilevers can function in many capacities, including as an artificial nose for the 

detection of vapors and as a biological detector capable of detecting specific DNA 

sequences. The cantilever coatings can be applied by a cost-effective ink-jet spotting 

device, or by insertion into solution-filled glass capillaries. They concluded that a 

cantilever sensor array is highly capable of detecting physisorption and chemisorption 

processes, as well as determining material-specific properties such as enthalpy changes 

during phase transitions. However, Lang and his colleagues indicate that the challenge in 

cantilever sensor array technology lies in optimizing the cantilever sensors to improve 

their sensitivity.  
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1. Physical Sensors 

Microcantilever beams can be extremely sensitive to physical stimuli. Stowe et al. 

(1997) developed a microcantilever capable of detections attonewtons at 4.8 K in a  

vacuum. Microcantilever beam sensors have also been used to measure the viscosity of 

complex organic liquids (Agoston, 2005), low frequency acceleration (Morante, 1996), 

gas flow velocity (Su, 2002), and temperature (Thundat, 1995). 

2. Biological Sensing 

Biosensing with cantilevers requires an understanding of the complex biochemical 

processes taking place on the cantilever, and therefore is more difficult than non-

biological microcantilever sensing. Cells can be cultured on the surfaces of cantilevers 

and these cell/cantilever platforms can detect the response of cells to external stimuli 

(Antonik, 1997). Antibody-coated microcantilevers are capable of sensing interactions 

with antigens (Grogan, 2002), and can even count the number of bacteria on the 

cantilever by monitoring the shift in the cantilever’s resonant frequency (Ilic, 2000). 

3. Chemical Sensing 

Liquid and chemicals can be easily detected when cantilevers are coated with 

chemically selective thin-films layers. Gold coated, silicon nitride AFM cantilevers have 

been shown to deflect based on the pH and salinity of the surrounding liquid (Butt, 1995) 

and the sensitivity of pH detection has been improved by using chemically modified 

microcantilevers (Ji, 2001). It is also possible to selectively detect very minute 

concentrations of metal ions using cantilevers coated in selective self-assembled response 

layers (Cherian, 2002; Ji, 2000; Ji, 2001). Cantilevers have even been modified with 
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synthetic receptor compounds to detect various neutral aromatic compunds in aqueous 

solution (Tipple, 2002). 

Gaseous chemicals can also be detected using specially coated microcantilevers. 

Gold and palladium coated cantilevers are capable of detecting mercury vapor (Thundat, 

1995) and hydrogen gas (Lang, 1999). Detection of mercury vapor by Thundat et al. 

(1995) was one of the first gas sensor applications of microcantilevers. Their gold-coated 

silicon nitride cantilevers deflected due to an increase in mass when the gold absorbed 

mercury vapor. The changes in resonant frequency were not reversible because the 

mercury and gold formed an amalgam. PMMA has been used as a microcantilever 

coating for the detection of different alcohols (Lang, 1998). Microcantilevers have also 

been coated in organic thin-films to detect humidity and other vapors (Thundat, 1995).   

Lang et al. (1998) developed a “chemical nose” based on a microcantilever array 

containing eight cantilevers. Each cantilever was coated with a different material to 

detect specific analytes, such as alcohols and H2. However, the array used an optical lever 

detection method which added expense and bulk to the measurement setup. Also, the 

measurement signal was extremely noisy and required a comparison of the sensing 

cantilever to a reference cantilever in order to determine the signature of the analyte. 

Battiston et al. (2001) also developed a chemical sensor based on a simple array of 

eight microcantilevers. These cantilevers were vertically actuated with a piezoelectric 

crystal and movement was detected with a vertical-cavity surface-emitting laser (VCSEL) 

paired with a position-sensitive detector (PSD). Different polymer materials were applied 

to the cantilevers in droplets and dried. Each coating was most sensitive to the solvent 

typically used to dissolve the polymer. They were able to detect water, primary alcohols 
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(butanol, propanol, ethanol, and methanol), alkanes (hexane, heptanes, octane, nonane, 

decane, undecane, and dodecane), and certain perfume oils in both dynamic and static 

actuation modes. They were also able to release the analyte from the polymer absorption 

layer by purging the test chamber for some time with dry nitrogen. However, this group 

used the bulky and costly optical lever detection method paired with only one PSD. This 

meant that the eight VCSELs were time-multiplexed at a frequency of 3 Hz so that only 

one incident light source was switched on at a time, resulting in sequential displacement 

detection with the PSD. While this may not have delayed the signals by much time, the 

data points for each cantilever were sampled at different points in time, not 

simultaneously. A better approach for high-speed detection would be to collect data from 

each microcantilever simultaneously.   

C. Detection Methods 

Any cantilever sensor operates on the principle that it can detect accurate, real-time 

measurements of cantilever deflection. Detection is performed by monitoring one of the 

cantilever beam parameters for a change corresponding to deflection, such as the 

resonator tip position or radius of beam curvature. 

1. Optical Lever Method 

By far the most common method of determining the deflection of a cantilever is the 

optical lever technique (Meyer, 1988). As shown in Figure 1, a laser is focused on the 

end of the cantilever, which acts as a mirror to reflect the laser onto a position sensitive 

photodetector (PSD). A change in deflection of the cantilever will move the laser on the 

PSD, whose change in output is proportional to the deflection of the cantilever.  
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Figure 1 - Schematic of "Optical Lever" Detection Method (Lavrik, 2004). 
 

This method has several advantages when compared to other techniques. It is 

characterized by a linear response and is very reliable. Also, cantilever beams that are 

non-conductive can be used with the optical lever technique. One major limitation is that 

this method cannot be used with portable systems because of the bulky optical 

components which must be finely aligned to the cantilever. Also, this method is limited 

by the bandwidth of the PSDs, which is around several hundred kilohertz (Lavrik, 2004). 

2. Piezoelectric Method 

Piezoelectric cantilever detection methods require that a piezoelectric substance be 

deposited on the microcantilever. Some common piezoelectric materials used in MEMS 

fabrication are lead zirconium titanate (PZT) (Gaucher, 1998; Furukawa, 1979) and 

crystalline zinc oxide (ZnO) (Xu, 2003). The principle behind this type of detection is 

that the cantilever deforms and the piezoelectric material generates an electric charge that 

can be measured by readout circuitry (Gaucher, 1998; Lee, 2003; Wang, 2003).  
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Similar to piezoresistive detection, an advanatage to piezoelectric detection is that 

there are no external optics or external actuators needed for detection. The piezoelectric 

material serves as both the actuator and the sensor. The main disadvantage of this 

technique is that the piezoelectric layer must be thick enough to generate an adequately 

large output signal. This requirement usually requires a thickness above the value for 

adequate mechanical operation of the microcantilever. In addition, this method is not as 

effective when the cantilever operates at low frequencies. 

3. Capacitive Method 

The capacitive sensing method is based on the principle that the capacitance 

between two electrodes is inversely proportional to the distance between the plates. For 

capacitive cantilever detection, the cantilever is used as an electrode and a fixed 

conductor on the supporting substrate is used as the second electrode. When the 

cantilever deforms, the gap between the cantilever and electrode changes, changing the 

capacitance (Brugger, 1992; Abadal, 2001). For a large output signal, the gap between 

the cantilever and the fixed electrode is usually very small. The main advantage of the 

capacitance method is that it is very sensitive and measures the absolute displacement of 

the cantilever. A disadvantage of this method is that it can only be used to measure small 

displacements. 

4. Piezoresistive Method 

Piezoresistivity is a phenomenon in which the bulk resistance of a material changes 

with applied stress. This property can be exploited to measure the deformation of a 

resonator made of a piezoresistive material by monitoring the change in resistance. One 
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common micromachining material that exhibits a strong piezoresistive effect is doped 

silicon (Brysek, 1991; Tufte, 1963).  

One advantage of piezoresistive detection compared to optical detection is the 

elimination of expensive optical components and laser alignment steps. A second 

possible advantage is the integration of read-out electronics on the same chip as the 

cantilever using CMOS fabrication technology. Another advantage is that piezoresistive 

detection works in non-transparent solutions.     

The primary disadvantage of piezoresistoive detection is the Joule heating effect. 

The current flowing though the resistor generates heat and thus causes additional 

dissipation of heat and thermal drift. This can be partially overcome by including another 

cantilever in the Wheatstone bridge which acts as a reference cantilever and is influenced 

by the same thermal environment as the sensing cantilever. By measuring the differential 

signal between the sensing cantilever and the reference cantilever, the thermal drift can 

be mostly eliminated from the measurements (Thaysen, 1999).   

D. Piezoresistive Microcantilever Sensors 

The piezoresistive cantilever technique was first reported by Tortonese (1991), and 

has been utilized by several different groups since then (Chui, 1998; Yuan, 1994; 

Willemin, 1998; Abedinov, 2001; Porter, 2001; Xu, 2006). Piezoresistive cantilevers are 

usually designed to include two identical piezoresistor “legs”. By attaching the cantilever 

to the piezoresistive element, the bending of the cantilever causes stress in the 

piezoresistive element which can be monitored through the resistance change of the 

piezoresistor. The change in resistance is typically measured by including the cantilever 

in a DC-biased Wheatstone bridge (Tortonese, 1993; Gel, 2004).  
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E. Reaction Versus Non-Reaction Microcantilever Sensors 

Most microcantilevers used as sensors rely on an addition of mass to the cantilever 

for sensing purposes. The cantilever beam is coated with a material that functionalizes it 

or the cantilever beam itself is capable of absorbing an analyte (Battiston, 2001). The 

added mass is detected statically by monitoring beam deformation and dynamically by 

monitoring resonance frequency changes (Lavrik, 2004). Static cantilever deflections are 

either caused by external forces exerted on the beam, such as in an Atomic Force 

Microscope (AFM), or intrinsic stresses generated on the beam surface or within the 

beam. Intrinsic stresses may be caused by thermal expansion or 

physisorption/chemisorption processes. Dynamic cantilevers are essentially acting as 

mechanical oscillators. The resonance characteristics depend upon the beam mass and the 

viscoelastic properties of the surrounding medium. Absorption of analyte molecules on a 

resonating cantilever causes a reduction in resonant frequency due to an increase in beam 

mass. 

The reactions used to absorb analytes are typically permanent (Kooser, et al. 2003) 

and limited by the availability of suitable gas reaction mechanisms, severely limiting the 

life and potential applications of the sensors. These microcantilever sensor reactions can 

sometimes be reversed by applying a vacuum, with a nitrogen gas purge, or by applying 

heat. The reaction-based microcantilever sensor’s life is limited to the life of the 

functionalized surface. 

The alternatives to reaction-based microcantilever sensors are cantilever sensors 

that perform detection without a physisorption or chemisorption process (Xu, Lin, et al. 

2006). Non-reaction-based cantilever sensors are capable of measuring physical 
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parameters in the surrounding environment that do not rely on chemical reactions, such as 

temperature (Thundat, 1995), acceleration (Morante, 1996), gas flow velocity (Su, 2002), 

and viscosity (Agoston, 2005). One of these non-chemical physical interactions that 

influence a resonating microcantilever is the damping force caused by gas particles in the 

surrounding environment.  

1. Viscous Damping of a Resonating Microcantilever  

Blom et al. (1992) calculated the theoretical shift in resonance frequency of a 

microcantilever due to the viscous damping effect from a surrounding gas and 

demonstrated that the shift is a function of the gas pressure and molar mass of the gas. 

The molar mass of the gas can be obtained by measuring the resonance frequency shift 

due to the damping effect, thus yielding the gas or the composition of the gases in the 

environment. Blom theoretically analyzed the effect of damping in a gaseous 

environment on the resonance frequency and quality factor of microresonators. At higher 

pressure, in the viscous regime, the inertial force of the gas on the resonator creates a 

damping effect, which lowers the resonance frequency. The relative resonance frequency 

shift in the viscous regime is given by 
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where mb is the mass of the cantilever, R0 = 8.314 J/(mol • K ) is the gas constant, T is 

the absolute temperature, M is the molar mass of the gas, P is the pressure, µ is the 

dynamic viscosity of the gas, f is the resonance frequency in vacuum, and Δf is the shift 

of the resonance frequency. The cantilever is approximated by a string of spheres, with R 

equal to the radius of one of the spheres. The inertial force of the gas is proportional to 

the product of the mass times the acceleration of the gas in contact with the cantilever. 



16 
 

The relative resonance frequency shift due to inertial damping is thus dependent on the 

molar mass of the gas in the environment. By measuring the relative resonance frequency 

shift at a specific temperature and pressure (e.g., room temperature and atmospheric 

pressure), the molar mass of the unknown gas can be obtained. 

F. Previous Work With Symmetric Microcantilevers 

Xu et al. (2006) demonstrated a remarkable piezoresistive cantilever beam capable 

of gas detection solely through viscous damping of a laterally vibrating beam. The 

piezoresistive sensing opens up the possibilities for on-board signal processing by 

integrating the circuitry onto the same silicon chip with CMOS technology. The 

magnitude of the viscous damping was found to be directly determined by the molar mass 

of the surrounding gas. This technique avoids the difficult alternative of coating the 

microcantilever with a gas-sensitive polymer, and also allows the detection process to be 

simple, fully reversible, and capable of detecting non-reactive gases.  

However, Yang’s microcantilever beams had relatively low sensitivity to the 

surrounding gases; the resonant frequency of the microcantilever (~42,000 Hz) changed 

by only 20 Hz when the CO2 concentration was changed by 20%, resulting in a 0.05% 

change in the resonant frequency. Yang’s best device sensitivity was 0.0231 Ω/µm and 

her T-9 resonators had an average relative resistance change of 2.7×10-6 for a 1 μm 

deflection of the free end of the cantilever. This 10-6 relative resistance change 

approaches the detection limit of the Wheatstone bridge configuration used to measure 

the change in piezoresistance. This also resulted in a low signal-to-noise ratio, especially 

at atmospheric pressure with ambient lighting. One alternative to increase the device 

sensitivity is to decrease the length of the cantilever, since, according to Equation 1 the 



17 
 

relative frequency shift is inversely proportional to the mass and hence to the length of 

the cantilever. Yang’s work can be further improved and built-upon by incorporating 

similarly designed microcantilevers into an array for redundancy and selectivity, and by 

optimizing the cantilever geometry to improve device sensitivity.    

Current piezoresistive and piezoelectric microcantilevers rely on symmetric 

geometry to measure changes in cantilever mass or surface stress. These measurements 

are carried out by measuring the stress in the piezo element. Bending stresses in the 

support structure of the cantilever, which occur when the cantilever tip is displaced, cause 

changes in piezoresistance. However, the beneficial axial stresses largely cancel due to 

the nature of the symmetric geometry of the cantilever base. An alternative method for 

increasing the stress in the piezo element must be developed. The geometry of the 

cantilever base can be optimized, thereby improving the resistance sensitivity. An 

unutilized alternative is to vary the leg stagger and leg length of the piezoresistive 

element, creating an asymmetric piezoresistive element with favorable coupling stresses. 

Optimizing the stagger of the cantilever base legs and the length of the base legs should 

maximize the bending and axial loads on the base legs. Both types of loads produce a 

change in resistance and the optimized, asymmetric geometry will improve the overall 

device sensitivity.  

Compared to other microresonator gas sensors, there are several major advantages 

of the asymmetric, lateral microcantilever sensor developed in this study, including: 

• A simple fabrication process that does not require a specific material for the resonator 

or any chemically sensitive coatings. 

• Greater sensitivity than previous T-shaped designs. 
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• Non-reactive and inert gases can be detected. 

• The detecting process is reversible and repeatable. 

• Detection can be performed at atmospheric pressure. 

• The device and measurement circuitry can be integrated on a chip using MEMS and 

CMOS technology. 

• An array of resonators can be used to detect particular analytes and can serve as 

redundant systems. 

Computational studies (Bradshaw, et al. 2007) have indicated that Yang’s symmetric 

device sensitivity can be increased up to 700 times, purely by optimizing the geometry of 

the base piezoresistive support structure. The purpose of this work is to report on the 

fabrication and experimental testing of these novel asymmetric piezoresistive 

microcantilevers.  
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III. MATERIALS AND METHODS 
 
 
 

Current piezoresistive and piezoelectric microcantilevers rely on symmetric 

geometry to measure changes in cantilever mass or surface stress. These measurements 

are carried out by measuring the stress in the piezo element. A laterally resonating 

piezoresistive cantilever with T-shaped geometry (Figure 2) has been fabricated and 

tested in our group, but the resonating device sensitivity was low (Xu, Lin, et al. 2006). 

 
Figure 2 - Laterally Vibrating Silicon Microcantilever with Symmetric, T-Shaped 

Piezoresistive Element (Xu, 2006). 
 

A. Design 

1. Computational Studies 

Bradshaw et al. (2007) showed that the changes in resistance for the symmetric, 

laterally resonating microcantilever were due to bending stresses in the support structure 

of the cantilever, which occurred when the cantilever tip was displaced. However, the 

beneficial axial stresses largely canceled due to the nature of the symmetric geometry of 

the cantilever base. The axial loads are equal and opposite in each piezoresistor leg and 

the moments are equal and opposite through the cross section, causing the beneficial 
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stresses to largely cancel each other out. A free-body diagram of the symmetric 

piezoresistive element is shown in Figure 3. 

 
Figure 3 - Free-Body Diagram of T-Shaped Piezoresistive Element (Bradshaw, et al. 

2007). 
 

To increase the sensitivity of the cantilever, the relative change in stress in the piezo 

element must be increased when the cantilever is deflected. Currently, the stress in the 

piezo element can be increased by lengthening the cantilever, increasing stress 

concentration with sharper corners, and increasing the deflection of the resonating 

cantilever. However, there are several limitations to these methods: 

• Increasing the length of the cantilever adds mass to the beam, which decreases the 

natural frequency. This leads to a lower Q-factor. 

• It is hard to consistently produce sharp features with current micromachining 

techniques with a minimum feature size of 1μm.  

• Increasing the deflection of the cantilever requires a larger AC drive voltage, which 

means more power consumption and more equipment. 

An alternative method for increasing the stress in the piezo element must be 

developed. The geometry of the cantilever base can be optimized, thereby improving the 

T-Shaped Model 

Left Base Leg                                                                           Right Base Leg 
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resistance sensitivity. Bradshaw et al. (2007) pointed out that an unused alternative is to 

vary the leg stagger and leg length of the piezoresistive element, creating an asymmetric 

piezoresistive element with favorable coupling stresses. The axial stresses that largely 

canceled in the symmetric model will form a force couple induced by the leg separation, 

placing both piezoresistive legs in tension or compression at the same time and leading to 

much larger changes in piezoresistance. A free-body diagram of an asymmetric 

piezoresistive element is shown in Figure 4.  

 
Figure 4 - Free-Body Diagram of Asymmetric Piezoresistive Element (Bradshaw, et al. 

2007). 
 

A finite element analysis (FEA) model was developed to determine the optimal 

piezoresistor geometry for fabrication. The model was built in 2D using an assumption of 

plane stress, and in 3D. PLANE223 and SOLID226 coupled field solid elements were 

used for 2D and 3D models, respectively, in the FEA computer package (ANSYS, 

Canonsburg, PA) to develop a parametric model with varying beam length, piezoresistor 

leg lengths, piezoresistor leg offsets, fillet radii, and silicon crystal orientation. The 

symmetric microcantilever geometry terms are explained in Figure 5. The piezoresistor 

ends were fixed in all degrees of freedom and a voltage drop of 5 Volts was applied 

        Left Base Leg              

                                                         Asymmetric Model                  Right Base Leg    
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across the piezoresistor. The tip of the cantilever beam was displaced 10 µm when 

loaded. The resulting current change during loading was used to find the resistance 

change of the piezoresistor during actuation.  

 
Figure 5 - Symmetric Microcantilever Geometry. 

 
The model was run iteratively in a loop to test many piezoresistor designs and thus find 

the optimal geometry for the piezoresistor. The normalized resistance change for the 

symmetric piezoresistor with varying leg widths is shown in Figure 6. The normalized 

resistance change for the asymmetric piezoresistor with varying leg separations and 

piezoresistor widths is shown in Figure 7.  
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Figure 6 - Normalized Resistance For T-Shaped Model in <110> Orientation and 1.1 µm 

Thick Piezoresistor (Bradshaw, et al. 2007). 
 

 
Figure 7 - Normalized Resistance for Asymmetric Model in <110> Orientation and 1.1 

µm Thick Piezoresistor (Bradshaw, et al. 2007). 
 

The optimum geometry was analytically determined (Bradshaw, et al. 2007) to 

have a leg separation of 1 µm and leg lengths of 20 µm. The asymmetric microcantilever 

geometry is shown in Figure 8. Optimizing the stagger of the cantilever base legs and the 
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length of the base legs should maximize the bending and axial loads on the base legs. 

Both types of loads produce a change in resistance and the optimized, asymmetric 

geometry should improve the overall device sensitivity. 

 
Figure 8 - Asymmetric Microcantilever Geometry. 

 
Ten different piezoresistive microcantilever designs were formulated to verify the 

improved sensitivity of the optimum designs. Several variations of the asymmetric 

cantilever geometry were fabricated by varying the leg separation (LS), the leg length 

(LL), and the total piezoresistor length (PL). The PL is defined as  

PL = LS + 2 * LL.                                                    (2) 

The microcantilever dimensions are listed in Table I. Beam 1 used Xu’s (2006) exact T-

shaped geometry to serve as a control to compare against earlier, less sensitive designs. 

Beam 2 used the optimum piezoresistor geometry (see Table I for all dimensional 

values). Beams 3 and 4 used optimum piezoresistor geometry with two variations to 

maintain the optimum PL, but vary LL and LS. Beam 5 was a microcantilever with a 

wider piezoresistive element (thickness = 1.3 µm) to determine whether Deep Reactive 

Electrode 

Electrode 

Width 
Beam Length 

Leg Separation (LS) 
Leg 
Length 
(LL) 



25 
 

Ion Etching (DRIE) causes electrical damage in the piezoresistor. Beams 6 and 7 had 

optimal piezoresistor geometry with shorter (110 µm) and longer (150 µm) cantilever 

beams. Beam 8 was a piezoresistor design with the optimum LS, but shorter PL. Beams 9 

and 10 were piezoresistor designs with the shorter PL, but varied LL and LS. 

TABLE I 

ASYMMETRIC MICROCANTILEVER GEOMETRY DESIGNS 

Beam Number LS (µm)a LL (µm) a PL (µm) a PW (µm) a CL (µm) a

1 - 4.5 9 1.1 128 
2b 1 20 41 1.1 128 
3 2 19.5 41 1.1 128 
4 4 18.5 41 1.1 128 
5 1 20 41 1.3 128 
6 1 20 41 1.1 110 
7 1 20 41 1.1 150 
8 1 10 21 1.1 128 
9 2 9.5 21 1.1 128 
10 4 8.5 21 1.1 128 

a. LS = leg separation, LL = leg length, PL = piezoresistor length, PW = piezoresistor 
width, CL = cantilever length 

b. The optimum geometry 
 

The device layout (Figure 9) has 10 microcantilever beams arranged in an array on 

a silicon wafer. Each microcantilever has a driving electrode and the piezoresistive 

element is a freely-suspended, boron-doped silicon bridge positioned between two 

sensing electrodes.  
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Figure 9 - Device Layout with 10 Microcantilever Beams in an Array. 

 
B. Fabrication 

The fabrication process for this device began with a commercial, 4” silicon-on-

insulator (SOI) wafer (Ultrasil Corporation, Hayward, CA). This wafer was comprised of 

three layers. The top layer was called the device layer and was comprised of a 2 μm ± 0.5 

μm thick layer of boron-doped (resistivity 0.01-0.02 Ω·cm) crystal silicon with a <100> 

orientation. The middle layer was composed of buried silicon dioxide, acting as an 

electrical insulator, and was 2 μm ± 0.1 μm thick. The bottom layer, or handle layer, was 

510 μm ± 10 μm thick, which also consisted of a boron-doped (resistivity 0.01-0.02 Ω 

·cm) crystal silicon wafer. A base clean was performed to remove most impurities from 

the surface of the wafer and to strip away the native oxide on the silicon. This cleaning 

consisted of a 5 minute rinse in acetone, followed by a 5 minute soak in nanostrip and a 

rinse in de-ionized (DI) water. Finally, the wafer was soaked in a buffered oxide etch 

(BOE) for 30 seconds to remove any remaining native oxide and rinsed in DI water. 

The overall fabrication process is illustrated in Figure 10.  As an overview, the gold 

bond pads and leads were patterned using optical lithography, gold sputtering, and 

acetone lift-off techniques (Figure 10b). The iron masking layer for the dry etching 

Asymmetric 
piezoresistive 
element 
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process was then patterned using e-beam lithography, evaporation, and acetone lift-off 

techniques (Figure 10c). Next, the silicon device layer was dry etched (DRIE) using the 

gold and iron as masks (Figure 10d). In conclusion, the sacrificial silicon dioxide layer 

was wet etched, releasing the structure, and the device was cleaned and dried with critical 

point drying (Figure 10e). Each fabrication step is discussed below in further detail. 

 
Figure 10 - Schematic for Fabrication Process (Xu, 2006). 

 
1. Optical Lithography 

Gold wire-bonding pads and electrical leads were fabricated using an optical 

lithography technique. Two lithography steps were required because the desired gold   

bond pads were thicker than the gold layer desired for the leads. Figure 11 shows the two 

masks used in the optical lithography process. 
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(a) Mask 1                                                      (b) Mask 2 

Figure 11 - Design Layout of the Optical Lithography Mask Files. Mask 1 was used first 
to pattern the electrical leads, followed by mask 2 to pattern the bond pads. 

 
To begin the photolithography process, the SOI wafer was ‘baked’ for 5 minutes at 

115°C on a hotplate to remove excess moisture and promote photoresist adhesion. Lift-

Off Resist 3A (LOR3A, Microchem Corp., Newton, MA) was then applied to the silicon 

surface using a wafer spinner at a spread speed of 450 rpm for 2.0 seconds and a spin 

speed of 3000 rpm for 10 seconds to achieve a LOR3A thickness of 330 nm. 

Subsequently, the SOI wafer was baked on a hotplate for 5 minutes at 170°C with a 

vacuum contact to remove excess solvent from the resist. Shipley 1827 positive 

photoresist (Rohm and Haas Electronic Materials, LLC, Marlborough, MA) was then 

applied on top of the LOR3A using a spinner (the spread and spin speeds were the same 

as those used for the LOR3A) and  soft baked at 115°C for 75 seconds to remove excess 

solvent from the positive resist.  

Next, the substrate was exposed to UV light for 11 seconds using Mask 1 in a mask 

aligner (AB-M, Technical Manufacturing Corp., Peabody, MA). The resulting pattern 
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was developed in MF 319 (Rohm and Haas Electronic Materials LLC, Marlborough, 

MA) for 90 seconds with varied lateral agitation and rinsed in DI water. Following 

drying, an adhesion layer of 10 nm thick chromium was RF sputtered (4604, Technics, 

Inc, Dublin, CA) onto the substrate at 350W for 27 seconds (~0.3 nm/s) and a 35 nm 

thick layer of gold was DC sputtered onto the substrate at 120W for 24 seconds (~1.5 

nm/s). After sputtering, a gold/chrome lift-off process was performed by submerging the 

wafer in a recirculating acetone bath for one hour to remove the excess gold and 

chromium, leaving the desired electrode lead pattern on the substrate. The wafer was 

rinsed in a DI water bath to remove excess acetone.  

Optical lithography was performed a second time to create the bond pads. Again, 

the wafer was dehydration baked, LOR3A was applied and soft baked onto the substrate, 

Shipley 1827 was applied and soft baked onto the substrate using the same parameters 

mentioned previously in the first photolithography process. The substrate was exposed to 

UV light for 11 seconds on the AB-M mask aligner using Mask 2. The resulting pattern 

was developed in MF 319 for 90 seconds and rinsed in DI water. An adhesion layer of 10 

nm, thick chromium was RF sputtered onto the substrate at 350W for 27 seconds and a 

150 nm thick layer of gold was DC sputtered onto the substrate at 120W for 103 seconds 

(~1.5 nm/s). After sputtering, a lift-off process was again performed in a recirculating 

acetone bath for one hour and the wafer was rinsed in DI water. The lift-off revealed the 

intricate gold leads and bond pads patterned on the substrate surface.  

2. Electron Beam Lithography 

The microcantilever array was fabricated using electron beam (e-beam) lithography 

because conventional contact optical lithography is not capable of producing the small, 
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high resolution feature sizes needed. Prior to e-beam lithography, the 4” SOI wafer was 

diced on a dicing saw (DAD 321, Disco Hi-Tec America, Inc., Manchester, NH) so that 

each individual SOI substrate contained one die. To begin the e-beam lithography 

process, the diced SOI substrate was cleaned with acetone in an ultrasonic bath for 10 

seconds, rinsed in isopropyl alcohol (IPA), and blown dry with nitrogen. The substrate 

was then dehydration baked on a hotplate for 5 minutes at 115°C. A copolymer positive 

resist (MMA 8.5 MAA EL9, Microchem Corp., Newton, MA) was applied to the 

substrate surface using a wafer spinner with a spread speed of 450 rpm for 2.0 seconds 

and spin speed of 6000 rpm for 40 seconds. Subsequently, the EL9 was baked to remove 

excess solvent at 180°C for 5 minutes. A positive resist (495 PMMA A5.5, Microchem 

Corp., Newton, MA) was spread on the substrate surface at 450 rpm for 2 seconds and 

spun at 6000 rpm for 40 seconds to produce. The A5.5 was baked on a hotplate at 180°C 

for 5 minutes. Finally, a third positive resist (950 PMMA A8, Microchem Corp., Newton, 

MA) was spread at 450 rpm for 2 seconds and spun at 6000 rpm for 40 seconds. The 

layer of A8 was baked on a hotplate at 180°C for 15 minutes. 

The pattern for the e-beam lithography process was designed using Design CAD 

(IMSI, Novato, CA). Each cantilever was designed and saved in a separate file; as a 

result, each cantilever required alignment before e-beam writing. An example of the 

design file for a typical cantilever is shown in Figure 12. The exposure parameters of the 

anchors and the beam were different in order to speed up the writing process, to shorten 

the write time from 87 minutes to ~9 minutes.  
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Figure 12 - Example of Cantilever Pattern for E-Beam Writing. 

 
 The three-layer photoresist-coated substrate was placed in a scanning electron 

microscope (SEM) (Model Zeiss LEO 1430, Carl Zeiss SMT AG, Germany) with a 

Nanometer Pattern Generation System (NPGS) to perform the e-beam writing procedure. 

The exposure parameters, such as magnification, dose, probe current, center-to-center 

distance and line width, were input in the Run-File of the NPGS. The anchor areas were 

exposed to a 20 kV electron beam at a magnification of 125x, a dose of 1.3 nC/cm, a 

probe current of 80 μA, a center-to-center distance 1000Å, and a line width of 2000Å. In 

contrast, the beam areas were exposed at a dose of 1.3 nC/cm, a probe current of 80 μA, a 

center-to-center distance 1400Å, and a line width of 1400Å.   

 The individual, exposed SOI die substrates were developed in methyl isobutyl 

ketone (MIBK) (Microchem Corp., Newton, MA) for 60 seconds and rinsed in isopropyl 

alcohol (IPA) for 30 seconds. An optical microscope was used to determine if the beam 

patterns were properly developed and whether additional development in MIBK was 

required. This development step created openings in the photoresist of the individual SOI 

die substrates down to the silicon device layer in the shape of the cantilever beams. A 5 
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nm thick layer of iron was deposited on the sample surface using an electron-beam 

evaporator (Kurt J. Lesker Company, Pittsburgh, PA) at a pressure of 5x10-7 Torr. Next, 

another lift-off process was performed in acetone, leaving the iron layer to act as a 

masking layer for the cantilever beams during the dry etching process. 

3. Dry Etching Process 

An anisotropic Deep-Reactive Ion Etch (DRIE, Multiple ASE Advanced Silicon 

Etcher, Surface Technology System USA, Inc., Newport, UK) process was performed to 

etch the silicon device layer of the SOI wafer because it is capable of forming high aspect 

ratio vertical sidewalls in silicon without etching the silicon-dioxide layer. The plasma 

was inductively coupled at 13.56 MHz via a matching unit and coil assembly. 

Independent energy control was provided by a 13.56 MHz biasing of the platen via 

automatic power control and a separate 380 kHz generator. The platen was cooled by a 

DI water chiller and the backside of the substrate was cooled with helium gas. 

The dry etch was performed with a base pressure of 0.2 mTorr and a process 

pressure of 10 mTorr at room temperature. An RF power of 600W was applied by the 

13.56 MHz generator for the etcher and the platen was powered by 15W of RF power 

from the platen generator. The flow rate of the octafluorocyclobutane (C4H8) was 75 

sccm and the flow rate of the sulphurhexaflouride (SF6) was 40 sccm. An in situ etching 

process with simultaneous passivation was chosen to generate the desired smooth 

sidewall features.  

Prior to etching, each individual SOI die substrate was placed on a “dummy” silicon 

wafer that was coated with Shipley 1813 photoresist to prevent etching of the “dummy” 

wafer and it increased the etching surface area which reduced the overall etch rate of the 
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process. The SOI die substrate was affixed to the “dummy” wafer with CoolGrease to 

improve heat transfer between the SOI die substrate and the “dummy” wafer as well as 

decrease the DRIE etch rate. The sulphurhexaflouride etched the exposed silicon surface 

while the reactant gas, octafluorocyclobutane, produced a protective polymer layer on the 

etched sidewalls to prevent further etching. The dry etching process was finished when 

the sacrificial silicon-dioxide layer was reached, indicated by a change in appearance 

from colorful Si to purple SiO2. The average etch rate was ~0.17 μm/min, which 

generally resulted in a processing time of 12 minutes for the 2 μm thick silicon device 

layer. The etching process was performed in short time steps to prevent over etching to 

prevent damaging the cantilever beams. Specifically, the SOI die substrate was initially 

etched for 6 minutes and checked to see if the purple silicon dioxide was visible. If the 

silicon dioxide was not visible, the etching process was performed again for an additional 

2 minutes. This process was repeated until the silicon dioxide was completely visible. 

After etching, the SOI die substrates were imaged and measured in an SEM (Model Zeiss 

LEO 1430, Carl Zeiss SMT AG, Germany).  

4. Wet Etching Process 

The cantilever beams were released from the substrate through an isotropic wet 

etching of the sacrificial SiO2 layer in a BOE to partially remove the SiO2 layer under the 

small structures, but maintain the majority of the SiO2 under the large pads and electrode 

leads. The SiO2 in these larger areas acted to electrically insulate the leads from one 

another and provide additional structural support for the free-standing microstructures. 

This wet etching procedure was a critical step to prevent exposing the cantilever beams to 

surface tension which caused them to irreversibly stick to the substrate, a phenomenon 
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known as “stiction”. For the wet etching procedure, a small Nalgene® beaker, not much 

larger than the SOI die substrate, was placed inside a much larger Nalgene® beaker. 

Subsequently, two pipettes filled with BOE were placed in the small beaker and emptied 

until the SOI die substrate was completely covered with BOE. The individual dies were 

etched with BOE for 30 minutes, after which the BOE was displaced with DI water.  

The displacement was performed by gently spraying DI water into the small beaker 

and letting it overflow into the larger beaker. The fluid, diluted BOE, in the large and 

small beaker was removed using an aspirator while care was taken not to remove all the 

liquid in the small beaker. It was very important that the SOI die stayed completely 

submerged in the fluid to prevent stiction as mentioned earlier. This process was repeated 

a total of four times so that the remaining liquid in the small beaker was almost entirely 

DI water. The same displacement process was repeated with IPA four times until the 

liquid covering the SOI die was almost entirely IPA. At this point, the SOI die substrate 

was ready for critical point drying. 

5. Critical Point Drying Process 

After wet etching, critical point drying was used to dry the SOI die to prevent the 

surface tension of the drying IPA from deforming the free standing cantilever structure 

during the final nitrogen drying step. The critical point of a liquid-vapor system is the 

temperature and pressure at which a phase boundary ceases to exist, or there is no 

distinction between the liquid and the gas. Critical point drying was performed using the 

SAMDRI®-PVT-3D system (Tousimis Research Corporation, Rockville, MD) and CO2 

was used as the transitional medium, which has a critical point at 31.1°C and 1072 psi. 

The SOI die substrate was placed in the chamber, which was partially filled with IPA 
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ahead of time, and sealed shut. When moving the SOI die from the IPA-filled beaker to 

the SAMDRI chamber, it was crucial to hold the die level to insure the IPA meniscus 

covered the cantilever beams. The chamber was then cooled below 0°C and filled with 

liquid CO2 until all IPA was purged from the system. Next, the chamber was heated to a 

temperature above the critical temperature of CO2, converting the liquid CO2 to the 

gaseous form. Finally, the gaseous CO2 was vented from the chamber at a temperature 

above 31.3°C and the chamber was allowed to return to room temperature and pressure. 

The finished device was removed from the chamber and prepared for testing and 

characterization. 

C. Piezoresistive Detector Characterization Studies 

Microcantilevers operate in either static or dynamic modes for sensing purposes. To 

determine the novelty and usefulness of an asymmetric microcantilever, the cantilever 

sensitivity must be tested in both static and dynamic situations. Static actuation of a 

microcantilever occurs when the beam is initially unloaded and not moving. The beam is 

then deformed by an external stimulus and remains in the deformed position until the 

external stimulus is removed. Thus, the piezoresistor has a constant application of stress 

that does not generate heat other than the Joule heating generated by the DC voltage 

across the piezoresistor. For these static piezoresistance tests, an electrically isolated 

needle statically actuated the piezoresistors. Dynamic loading of a microcantilever occurs 

while the microcantilever is in resonance, or vibrating at its natural frequency. The mass 

of the vibrating cantilever beam is altered by an external stimulus, changing the 

fundamental frequency of the vibrating beam. The resistance across the microcantilever 

base changes from its absolute maximum to its absolute minimum during one dynamic 
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cycle. At high frequencies, this motion also generates heat through cyclic stress loading 

(ie. mechanical damping). Therefore, the dynamic and static sensitivity must be 

determined and evaluated separately to validate the usefulness of the asymmetric 

cantilever design. 

1. Determination of Static Piezoresistor Resistance 

Static resistance measurements were made of the various cantilever geometries to 

determine base-line resistances. The average resistance of the piezoresistors will be used 

to determine the appropriate resistor for use in the voltage dividing sensor circuit. The 

resistor should have a value equivalent to the piezoresistor value when the 

microcantilever is in a non-deflected state. A probe station (Microchamber Attoguard, 

Cascade Microtech, Beaverton, OR) was used to perform the static characterization 

studies on the microcantilever piezoresistors (Figure 13).  The probe station consisted of 

two probes which were placed in contact with the bond pads electrically connected across 

the piezoresistors. The probes were connected to a precision semiconductor parameter 

analyzer (Model Agilent 4156C, Agilent Technologies Inc., Santa Clara, CA) that passed 

a fixed current (600 µA) through the piezoresistor while monitoring the output voltage. A 

graph of the voltage versus current was produced for each microcantilever beam (Figure 

14).  The relationship between voltage and current was linear for these piezoresistors, so 

a representative point was chosen on the graph for a voltage value and the corresponding 

current value. The output voltage was divided by the current to give a resistance value in 

accordance with Ohm’s Law: 

ܴ ൌ  (3)                                                           ܫ/ܸ
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Figure 13 - Probe Station Used to Measure Resistance Across Piezoresistors. 

 

 
Figure 14 - Typical Graph of Voltage Versus Current Across a Piezoresistor. 

 
2. Microcantilever Metrology 

Each microcantilever’s geometry was carefully measured in an SEM (Zeiss- LEO 

1430, Carl Zeiss SMT AG, Germany) using built-in software tools and recorded. 

Specifically, the piezoresistor width, leg length, offset, and beam length (see Figure 15 as 

a reference for these terms) were measured. The cumulative mean and standard deviation 

Probe Station
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for each geometrical design for all die were calculated to compare the fabricated results 

to the original design. 

 
Figure 15 - Microcantilever Geometry Measurements. 

 
D. Resonator and Sensitivity Detection Experiments 

1. Resonator Actuation Experiments 

An experiment was performed to determine whether the resonators could vibrate 

laterally with an AC driving signal, and to find each microcantilever’s resonant frequency 

and threshold voltage. The device dies were loaded into the sealed chamber of a 

cryogenic probe station (Test Equipment Solutions LTd, Berkshire, UK) and the pressure 

was reduced to about 1x10-7 Torr. Tungsten test probes (PTT-120/4-25, 45 deg, 12 µm, 

Cascade Microtech, Beaverton, OR) were used to make electrical contact with electrode 

A, B, and C of each microcantilever (Figure 16). A function generator (Agilent 33220A, 

Agilent Technologies Inc., Santa Clara, CA) provided the AC bias to electrode A and 

simultaneously sent a reference signal to the lock-in amplifier (EG&G 5210, Test 

Equipment Solutions Ltd, Berkshire, UK). The function generator served as an AC signal 

Electrode 

Electrode 

Width 
Beam length 

Offset 

Note: The leg length and offset are 
beam center-to-center measurements. 

Leg length 
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source that provided a 10 Volt peak-to-peak, sinusoidal signal to the driving electrode 

which was swept from 0 to 80 kHz in increments of 1 Hz. A DC power supply (Agilent 

E3645A, Agilent Technologies Inc., Santa Clara, CA) supplied a 10 Volt DC bias across 

the piezoresistor and a fixed resistor (14 kΩ), forming a simple voltage divider circuit. 

The fixed resistor value matched the mean resistance value of the piezoresistors 

calculated in a previous sub-section. The input to the lock-in amplifier was connected to 

electrode B and the output was read by a digital multimeter (Keithley 196, Keithley 

Instruments Inc., Cleveland, OH). Electrode C was connected to universal ground. The 

lock-in amplifier was used for phase-sensitive determination of the AC electrical 

potential between the fixed resistor and the piezoresistor. The function generator, DC 

power supply, and digital multimeter were connected to a PC using GPIB cables 

interfaced to a LabVIEW program that served as the data acquisition system (Figure 17 & 

Figure 18). 

 
Figure 16 - Electrode Layout for Microcantilever Device. 

A B 

C 
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Figure 17 - Schematic of General Instrumentation Setup. (——) BNC Cable, (- - - -) 

GPIB Cable. 
 

   
Figure 18 - Instruments Used in the Experimental Setup. 

 

Lateral vibration was visually observed in the probe station using a video camera 

focused through a viewing port of the probe station. The driving frequency was typically 
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swept from 0 kHz to 80 kHz at a rate of 1Hz per second. After the frequency range was 

swept, the output data was plotted in an Excel® graph as frequency versus voltage output 

from the lock-in amplifier and the data was inspected for resonance frequency peaks. A 

LabVIEW virtual instrument algorithm was custom-designed and developed (see 

Appendix A)  and a front panel was displayed on the monitor of a PC (Pentium 4 CPU 

2.80 GHz, 512 MB Ram, Dimension 3000, Dell Inc., Round Rock, TX) during testing  

(Figure 19).  

 
Figure 19 - LabVIEW VI Entitled Sweep_Freq2.Vi Used To Sweep The Resonant 

Frequencies. 
 

As the drive frequency neared the resonant frequency of the cantilever, the 

cantilever tip would begin to vibrate. The resonant frequency of each microcantilever was 

verified when the output of the lock-in amplifier reached a peak value which was 

demonstrated by looking for a voltage output peak on the Excel® graph of frequency 

sweep data for lock-in amplifier voltage output versus frequency. The resonant frequency 

was also confirmed when the cantilever tip showed maximum lateral displacement. This 

maximum lateral displacement could only be observed visually on the video monitor but 
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was not measured (see an example in Figure 20). The cantilever tip blurred and swung 

rapidly from side-to-side only when it was in resonance and at no other time during the 

frequency sweep. The resonant frequency was recorded for each cantilever beam and the 

lock-in amplifier output for the swept frequency was saved to an Excel® data file. Each 

microcantilever on the seven completed die packages was checked in the frequency range 

0 kHz to 80 kHz for resonance. 

       
    (a)                               (b)                                (c)                               (d) 

Figure 20 - A Beam5 Microcantilever Resonating In The Probe Station. 
 

2. Static Deflection Tests 

To determine whether the new piezoresistor geometry increased the sensitivity of 

the microcantilevers, static deflection tests were performed to determine the correlation 

between tip deflection and piezoresistance. Device dies were placed in an SEM (Zeiss 

Supra 35VP, Carl Zeiss SMT AG, Germany) and a digital multimeter (Agilent 34410A) 

was connected to electrodes B and C (see Figure 16). A tungsten needle actuated by a 

nanomanipulator (Zyvex S100 Nanomanipulator, Zyvex Instruments, Richardson, TX) 

was used to deflect the tip of the microcantilever in 4 µm increments governed by an 

overlaid grid. The deflecting probe was gently lowered near the tip of the microcantilever 

until it made contact with the silicon substrate. The probe was then raised until it no 

longer made contact with the substrate, but was on a horizontal level with the suspended 

cantilever beam. The probe was slowly moved into contact with the cantilever tip and the 
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tip was deflected in 4 µm increments. At each measurement location, the probe was 

stopped and the resistance of the piezoresistor was allowed to stabilize.  

Resistance measurements were recorded at each lateral deflection distance, which 

was normally a total distance of 20 µm, or 5 measurements. Displacement versus 

resistance was plotted for each microcantilever and the sensitivity of the device was the 

slope this line. The static sensitivity was calculated as  

Static Sensitivity ൌ ோభିோబ
∆௫

                                              (4) 

where R0 is the beginning resistance at zero deflection and R1 is the maximum resistance 

at a deflection of Δx. Static sensitivity is given in Ω/µm. The probe was then moved in 

the opposite direction until the cantilever tip was released and freely suspended. Videos 

were captured of each static deflection test and an overall view of the probe setup is 

shown in Figure 21. The nanomanipulators and a microcantilever device array are shown 

in Figure 22. 

 
Figure 21 - Tungsten Needle Statically Actuating a Microcantilever in an SEM. 
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Figure 22 - Nanomanipulators and Microcantilever Device in an SEM. 

 
3. Dynamic Deflection Tests 

Sensitivity tests were also performed on resonating microcantilevers to determine 

the correlation between tip deflection and piezoresistance during resonance. Device dies 

were placed in an SEM (Zeiss LEO 1430) and wired into the instrumentation circuit 

shown in Figure 17 using a leaded chip carrier (CCJ04419, Spectrum Semiconductor 

Materials, Inc., San Jose, CA) and soldered to a custom-made prototyping circuit board 

(Figure 23). The microcantilever to be tested was brought into resonance using the 

frequency value already determined in the probe station. The resonant frequency was 

locked in when the cantilever tip appeared to be at its maximum lateral vibration and an 

image of the cantilever was taken; the total tip displacement, V, was measured using 

software tools and the captured image (see Figure 24 for reference). As shown in Figure 

24, when the cantilever was static (solid line) the width of the cantilever equaled W; 
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however, when the cantilever was vibrating (dashed line) the width of the blurred tip 

equaled V. The deflection of the cantilever tip, Δx, was calculated as 

ݔ∆ ൌ ௏ିௐ
ଶ

  .                                                          (5) 
 

    
Figure 23 - Custom-Made Prototyping Circuit Board for Imaging Microcantilever Array 

in an SEM. 
 

 
Figure 24 - Schematic Drawing of the Resonating Cantilever Deflection Measurement. 

  

The cantilever drive frequency was changed to a value that reflected absolutely no 

movement in the cantilever tip; the drive frequency was changed to the resonant 

frequency minus 700 Hz. A frequency range of 1 kHz was then swept using 

W 

V 

Δx 
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Sweep_Freq2.vi with the resonant frequency occurring about two-thirds of the way 

through the sweep. The cantilever movement quickly falls off after the resonance 

frequency is reached, so this 1 kHz range effectively provides data on the piezoresistance 

of the dynamic cantilever before resonance, during peak resonance, and after resonance. 

The output of the lock-in amplifier during the sweep was saved to an Excel® data file.  

Then, the digital multimeter output for resonance and non-resonance was converted 

to a voltage at node B, shown in Figure 25. The lock-in amplifier multiplies the sensed 

voltage at node B by a gain value according to the sensitivity setting on the lock-in 

amplifier. The gain for each dynamic sensitivity test was calibrated so that at resonance, 

the output of the lock-in amplifier was between 5 and 8 Volts. Therefore, the gain values 

used for each test varied and a conversion chart (shown in Table II) was used to convert 

the lock-in amplifier voltage output to the actual output at node B in Figure 25. Equation 

3 was used to calculate the current from node A to B as well as the resistance of the 

piezoresistor for resonance and non-resonance together with the voltages at node B. The 

dynamic sensitivity was calculated as:  

Dynamic Sensitivity ൌ ோభିோబ
∆௫

                (Ω/µm)                   (6) 
 

where R0 is the calculated resistance at non-resonance, R1 is the calculated resistance at 

resonance, and Δx is the measured lateral displacement of the microcantilever at 

resonance. 
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Figure 25 - Schematic of Voltage Divider Circuitry. 

 
TABLE II 

LOCK-IN AMPLIFIER GAIN AT SELECTED SENSITIVITY VALUES 

Full-scale 
sensitivity

Gain at dynamic 
reserve setting 

3 V 0.3332 
1 V 1 

300 mV 3.332 
100 mV 10 
30 mV 3.332 
10 mV 10 
3 mV 33.32 
1 mV 100 

 

 

  

10 V 
To Lock-in 

Amp 

14 kΩ Piezoresistor A B 
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IV. RESULTS 
 

Fabrication methods were refined and used to create laterally vibrating 

microresonators with arbitrary geometries. Seven microcantilever devices were 

successfully fabricated, consisting of ten microcantilevers each, for a total of seventy 

microcantilevers. Not all microcantilevers were successfully tested due to fabrication and 

cleanliness issues. The actuation of these microcantilevers was verified using Scanning 

Electron Microscopy. The piezoresistive detector was characterized by measuring the 

static and dynamic sensitivities of these resonators. The details of the results from these 

studies are described below. 

A. Determination of Static Piezoresistor Resistance 

The mean static piezoresistance of the microcantilevers was determined by 

measuring the resistance of the microcantilevers in one array. The resistance 

measurements for a typical device are shown in Table III.    

TABLE III 

CALCULATED RESISTANCE FOR DEVICE 1 

Beam V (Volts)   = I (µA)  * R (kΩ) PL (µm) PW (µm) 
1 8.7282 600.0 14.547 9 1.1 
2 8.0500 600.0 13.417 41 1.1 
3 7.254 600.0 12.090 41 1.1 
4 8.4810 600.0 14.135 41 1.1 
5 10.1894 600.0 16.982 41 1.3 
6 9.988 600.0 16.647 41 1.1 
7 8.6430 600.0 14.405 41 1.1 
8 7.2836 600.0 12.139 21 1.1 
9 8.565 600.0 14.275 21 1.1 
10 10.5606 600.0 17.601 21 1.1 

Average   14.624   
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B. Microcantilever Metrology 

The metrology measurements for all seven device array dies are given in appendix 

B. Graphs of the mean leg length, leg separation, beam length, and beam width for each 

beam design across all the fabricated devices are shown in Figure 26, Figure 27, Figure 

28, and Figure 29, respectively. Graphs of the percent error of fabrication parameters for 

each beam design across all the fabricated devices are shown in Figure 30, Figure 31, 

Figure 32, and Figure 33. The error bars represent the first standard deviation of the set of 

values. Percent error is defined as  

ݎ݋ݎݎܧ ݐ݊݁ܿݎ݁ܲ ൌ  ெ௘௔௦௨௥௘ௗ ௏௔௟௨௘ି஽௘௦௜௥௘ௗ ௏௔௟௨௘
஽௘௦௜௥௘ௗ ௏௔௟௨௘

כ 100   .                      (7) 

The mean absolute value of the percent error for the four geometry parameters is 

shown in Table IV, along with the mean percent error for the entire fabrication process 

(an average of the percent errors for each parameter). The beam width percent error was 

relatively high (12.90%), as was the leg length percent error (9.24%). The offset and 

beam length had much lower error, 5.94% and 4.85%, respectively. The overall 

fabrication process had an 8.23% error. The percent error and standard deviation were 

much lower for parameters with larger dimensions; conversely it was much harder to 

produce small features with accuracy 
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Figure 26 - Mean Leg Length and Standard Deviation for Measured Microcantilevers. 

 

 
Figure 27 - Mean Leg Separation and Standard Deviation for Measured Microcantilevers. 
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Figure 28 - Mean Beam Length and Standard Deviation for Measured Microcantilevers. 

 

 
Figure 29 - Mean Beam Width and Standard Deviation for Measured Microcantilevers. 
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Figure 30 - Percent Error in Leg Length Parameter Fabrication.  

 

 

Figure 31 - Percent Error in Leg Separation Parameter Fabrication. 
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Figure 32 - Percent Error in Beam Length Parameter Fabrication. 

 

 

Figure 33 - Percent Error in Beam Width Parameter Fabrication. 
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TABLE IV 

PERCENT ERROR FOR GEOMETRY PARAMETERS AND OVERALL ERROR 

Parameter Percent Error 
Beam Width 12.90% 
Leg Length 9.24% 

Offset 5.94% 
Beam Length 4.85% 

Mean Overall Error 8.23% 
 

C. Resonator Actuation Experiments  

All microcantilever devices were tested in a vacuum-sealed probe station to 

determine their resonant frequency. The theoretical resonant frequency for each 

cantilever was found using Equations 8 and 9, where the Young’s modulus of crystal 

silicon is 150x106 g/(µm•s2) and the density is 2.33x10-12 g/µm3. The results are shown in 

appendix B and a graph of the measured versus the theoretical resonant frequency is 

shown in Figure 34 . The calculated theoretical resonant frequency is always a factor of 

two larger than the measured resonant frequency because one full cycle of motion in the 

theoretical model constitutes the tip of the microcantilever passing the driving electrode 

twice. Thus, the theoretical frequency in Figure 34 has been divided by two for accurate 

comparison.  

The resonant frequencies for microcantilever geometry designs 1 through 5 are 

between the range of 46,500 Hz to 57,500 Hz with no outliers. Microcantilever geometry 

design 6 has a relatively high mean resonant frequency compared to the other cantilevers, 

and geometry design 7 has a relatively low mean resonant frequency compared to the 

other cantilevers. This was expected because design 6 has a shortened cantilever (110 

µm) and design 7 has a lengthened cantilever (150 µm). Microcantilever geometry 
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designs 8 through 10 have resonant frequencies in the range of 40,000 Hz to 52,000 Hz 

with no apparent outliers. This range of frequency values is lower than the range for 

geometry designs 1 through 5. 

 
Figure 34 - Measured and (Theoretical/2) Resonant Frequencies of Cantilever Devices. 

 
D. Static Deflection Tests  

All microcantilever geometries on three devices were tested to verify their static 

sensitivity. Only three of the seven completed devices were tested because the static 

deflection test could not be performed on the four devices already soldered into the 

prototyping circuit boards (see Figure 23). Also, the static deflection test was harsh and 

caused failure in several of the tested microcantilevers. For each displacement increment 

in the SEM (4 µm), a resistance was recorded. As an example, graphs of the 

measurements taken for two microcantilevers are shown in Figure 35 and Figure 36. All 

25

30

35

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y 
(k

H
z)

Beam Number

Device 1 Actual
Device 1 Theory
Device 2 Actual
Device 2 Theory
Device 3 Actual
Device 3 Theory
Device 4 Actual
Device 4 Theory
Device 5 Actual
Device 5 Theory
Device 6 Actual
Device 6 Theory
Device 7 Actual
Device 7 Theory



56 
 

numerical results are specified in Appendix C and Figure 37 shows a graph of the static 

sensitivity data. The mean static sensitivities with error bars of one standard deviation 

and a constant cantilever beam length (128 µm) are shown in Figure 38. 

The average static sensitivity of the cantilever beams varied from 1.2 Ω/µm to 6.7 

Ω/µm. The optimal microcantilever (beam 2) had a static sensitivity of 2.9 ± 0.5 Ω/µm. 

Sensitivity was not found for Beam 1 designs. Beam 2, 3, 4, and 5 samples had steadily 

decreasing sensitivities, in that order. Beam 6 had the highest mean static sensitivity and 

beam 7 also had relatively high sensitivity. Beam 8, 9, and 10 samples had steadily 

decreasing sensitivities, in that order, that were low in comparison to beam 2-5. Beam 8’s 

result for Device 7 was classified as an outlier because it was twice as sensitive as any 

other Beam but had less optimum geometry. Beam 9’s result for Device 3 was classified 

as an outlier because it is 5 times higher than the mean of the other two recorded data 

points. Finally, beam 10’s result for Device 1 was classified as an outlier because it is 

more sensitive than the mean of beam 6 despite being the least sensitive geometric design 

and it is 10 times more sensitive than the other sensitivity data recorded for that 

microcantilever shape.  
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Figure 35 - Graph of Resistance Versus Deflection for Device 7, Beam 6. 

 
Figure 36 - Graph of Resistance Versus Deflection for Device 1, Beam 2. 

 

Linear Regression:
y = 0.0046x + 19.638

R² = 0.9981

19.63

19.65

19.67

19.69

19.71

19.73

0 5 10 15 20

R
es

is
ta

nc
e 

(k
Ω

)

Deflection (µm)

Rel. Δ in resistance = 0.479% for 20 µm
Sensitivity = 4.7 Ω/µm

Linear Regression:
y = 0.0026x + 14.565

R² = 0.9429

14.56

14.57

14.58

14.59

14.6

14.61

14.62

14.63

0 5 10 15 20

R
es

is
ta

nc
e 

(k
Ω

)

Deflection (µm)

Rel. Δ in resistance = 0.35% for 20 µm
Sensitivity = 2.55 Ω/µm



58 
 

 
Figure 37 - Static Sensitivity of Cantilever Devices. 

 
Figure 38 - Mean Static Sensitivity of Cantilever Devices, Beam Length Constant. 
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E. Dynamic Deflection Tests  

All microcantilevers with previously discovered resonant frequencies (in the probe 

station) on the seven devices were tested to verify their dynamic sensitivity. Only four of 

the seven completed devices had any microcantilevers that would resonate in the SEM 

chamber. All numerical results are specified in Appendix D and a graph of the dynamic 

sensitivity data are shown in Figure 39. The mean dynamic sensitivities with error bars of 

one standard deviation and a constant cantilever beam length (128 µm) are shown in 

Figure 40. As stated previously, no beam 1 designs on the seven fabricated 

microcantilevers would resonate, so dynamic sensitivity data could not be gathered. The 

average dynamic sensitivity for the microcantilevers varied from 2.5 Ω/µm to 16.7 Ω/µm. 

The microcantilever with the optimal piezoresistor geometry (beam 2) had an average 

sensitivity of 12.82 Ω/µm, but only one data point was collected.  

Similar to the static sensitivity results, beams 2, 3, 4, and 5 had decreasing mean 

sensitivities, in that order, with beam 2 having the highest sensitivity in the group. No 

functioning beam 6 designs would resonate in the SEM chamber. Beam 7 devices had an 

average dynamic sensitivity of 16.73 ± 3.95 Ω/µm. This was the highest mean dynamic 

sensitivity out of all the beam designs. Beam 8 designs had an average dynamic 

sensitivity of 3.09 ± 2.53 Ω/µm and beam 9 designs had an average dynamic sensitivity 

of 2.45 ± 1.67 Ω/µm. Beam 8 and 9 designs had relatively low mean sensitivities and no 

reliable data could be collected for beam 10 designs. Beam 10 on Device 1 was classified 

as an outlier because it was 8 times as sensitive as beam 9, which had similar geometry.  

A comparison of static sensitivities and dynamic sensitivities for the tested beam designs 

is shown in Figure 41. Dynamic sensitivity is consistently higher than static sensitivity 
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for each cantilever beam. Yang’s (2006) best device sensitivity was 0.0231 Ω/µm versus 

the optimum device sensitivity reported here of 12.82 Ω/µm, making the optimum 

piezoresistor design 550 times more sensitive than the symmetric piezoresistor reported 

previously. 

 
Figure 39 - Dynamic Sensitivity Of Cantilever Devices. 

 
Figure 40 - Mean Dynamic Sensitivity of Cantilever Devices, Beam Length Constant. 
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Figure 41 - Dynamic and Static Sensitivity Of Cantilever Devices. 
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V. DISCUSSION 
 

Laterally resonating microcantilevers were fabricated using the methods described 

in Section III. B. The resonator is based on a resonating cantilever whose base support 

acts as a piezoresistor. This MEMS resonator is driven electrostatically and deflection 

was detected using the piezoresistive sensing method. The piezoresistive base has been 

optimized to increase sensitivity over previous designs (Xu, 2006). The piezoresistive 

detector was characterized by investigating the relationship between the deflection of the 

cantilver and the change in resistance of the beam base using experimental analysis. The 

new, asymmetric resonator was judged against the old symmetric resonator by comparing 

the static and dynamic sensitivities of the two designs. It was found that the optimized 

geometry results in a significant increase in device sensitivity. The implications of the 

results will be discussed below. 

A. Fabrication  

Initially, only Shipley 1827 photoresist was applied to the substrate before optical 

lithography processing. The result was a resist sidewall profile that had a positive slope 

and allowed metallization of the sidewall during sputtering. This made lift-off of large 

sacrificial gold areas very difficult because the acetone had to penetrate the metalized 

sidewalls. Lift-off took several days while soaking in acetone and was often incomplete. 

The solution was to apply LOR3A to the substrate prior to applying the Shipley 1827 

photoresist. This addition created a negative slope in the resist sidewall and an overhang 

after photolithography development, preventing metallization of the resist sidewalls and 

promoting a discontinuous film deposition. The lift-off process was greatly improved and 

the time for complete lift-off was reduced to one hour in a recirculating acetone bath. 
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The sputtering deposition rate for gold and chromium relies on many factors, 

including the vacuum base pressure, the argon working gas pressure, the DC sputtering 

power, and the RF sputtering power. Even after characterizing the deposition process, the 

deposition rate in the sputtering machine still varies widely from week-to-week. The gold 

deposited for the device pads and leads was thinner than desired on the outer edges of the 

SOI wafer because the sputtered metals were not deposited uniformly in a radial 

direction. Less gold on the bond pads makes it hard or impossible to wire bond from the 

gold pads using a wire bonder. It is recommended that the deposition rates for the 

sputtering machine be checked a few days before sputtering on the SOI wafer to improve 

device yield and ease of wire bonding. 

Initially, during e-beam lithography all ten microcantilevers on each device were 

written simultaneously so that only one alignment had to be performed to save time. 

Subsequently, the SEM and NPGS system were set on very low magnifications so that 

they could image the entire substrate. The result was incomplete exposure of every 

cantilever, a lack of needed resolution in the structures, and poor alignment at the outer 

edges of the e-beam exposure (see Figure 42 for an example). The solution was to align 

and expose each microcantilever individually, which added time and complicated the e-

beam lithography procedure. Also, alignment for the microcantilever was performed on 

the nearest trace corner which exposed the corner resist, forming openings in the resist 

after development that were filled with iron during the e-beam evaporation. After DRIE, 

this resulted in silicon artifacts at the alignment points (see Figure 43 for an example). 

However, these artifacts did not affect device performance and individually exposing 

each microcantilever was a success. 
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Figure 42 - E-Beam Exposure of Ten Microcantilevers Simultaneously After 

Development. 
 

 
Figure 43 - Alignment Artifacts From E-Beam Writing. 

 

Alignment artifacts 
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Initially, the DRIE etch was performed for 12 minutes in one lump sum that was 

only marginally successful. If overetched, the iron mask would begin to peel off and 

etching of the microcantilever beam material would commence (example shown in 

Figure 44). Alternatively, the etch could be performed in increments, while still 

maintaining straight sidewalls, so that the etch progress could be checked incrementally. 

This change in procedure increased device yield to almost 100%. 

 
Figure 44 - Overetching Microcantilever in DRIE; Iron Masking Layer Peeling Off. 

 
Drying MEMS structures in close proximity to other structures or a substrate is 

complicated by the tendency for the surface tension of the liquid to pull one structure in 

contact with another. The structures tend to stay in contact after being dried. An example 

of a microcantilever that was removed from a BOE wet etchant, rinsed in DI water, and 

then placed in IPA before being critical point dried is shown in Figure 45. Placement of 

the “stuck” microcantilever structures in IPA and briefly dunking them in an ultrasonic 
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bath is not a viable solution, as evidenced by Figure 46. The microcantilever was 

completely destroyed in the ultrasonic bath. 

 
Figure 45 - SEM Micrograph of a Microcantilever That Was Removed From the Liquid 

BOE and Rinsed in DI Water and IPA Before Critical Point Drying. 
 

 
Figure 46 - SEM Micrograph of Microcantilever After Brief (Under 1 Second) Dunk in 

Ultrasonic Bath. 
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The solution to this stiction problem was presented in the Critical Point Drying 

Process section of Materials and Methods. Removing the BOE and DI water from the 

device die before critical point drying was accomplished through a liquid displacement 

and aspiration process. This improved drying method avoided the stiction problem and 

significantly increased device yield to almost 100% after its implementation.  

B. Determination of Static Piezoresistor Resistance 

Resistance across the zero-deflection piezoresistor for each geometric design was 

measured to determine whether the DRIE process had critically damaged the electrical 

conducting capability of the boron-doped silicon bridge. Xu (2006) observed that there 

was a critical thickness below which electrical conductivity was severely restricted. She 

noted that an average piezoresistor width of 1.03 µm had resistances near 11 kΩ, while 

an average thickness of 0.54 µm or 0.16 µm had resistances on the order of tens of Giga-

ohms. Her T-9 devices had an average piezoresistor width of 1.1 µm. 

The new asymmetric microcantilevers had an average piezoresistor width of 1.26 

µm ± 0.08 µm and the same average thickness as the piezoresistors reported by Xu, et al., 

2.0 µm ± 0.5 µm. As shown in Table III, the asymmetric microcantilevers had resistances 

from 12 kΩ to 17 kΩ. A 14 kΩ resistor was paired with the piezoresistor in the voltage 

dividing circuitry, shown in Figure 17 and Figure 25, because it was a good average 

value of the resistance measurements and could be used in the voltage divider for all the 

microcantilevers. These resistance values are in line with Yang’s measurements; the 

higher resistances are associated with thinner piezoresistors and the variation in 

resistances can be attributed to fabrication uncertainty. Several fabrication steps affect the 

piezoresistance of the microcantilever base. The DRIE process has been shown to 
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damage the electrical conductivity, to some depth, of boron-doped silicon (Xu, 2006), so 

variations in the DRIE etch time altered the extent of conductivity damage. Also, the 

variance in smoothness of the iron masking layer affected the maximum conductivity 

capability of the piezoresistor, ie. notches in the piezoresistor dictated the effective width 

of the piezoresistor. Finally, the variance in piezoresistor thickness caused limits in the 

total current carrying capacity of the doped silicon bridge.  

C. Microcantilever Metrology 

Every fabricated microcantilever’s geometry was carefully measured to compare 

the desired geometry to the actual device geometry.  The averages for each beam design 

were given in Figure 26 through Figure 29 and the percent errors in the measured values 

are given in Figure 30 through Figure 33. The average “leg length” parameter for actual 

devices tended to be 0.5-2 µm shorter than desired. This is attributed to calibration errors 

in the Nanometer Pattern Generation System (NPGS), variability in the e-beam 

development process, variability in the iron deposition masking layer, and variability in 

the DRIE etching process. In the NPGS system, the magnification value used in the SEM 

did not properly correspond to the magnification value input in the NPGS system, 

causing the written images to be slightly too big or too small. The e-beam development of 

small features hinges very precisely on development time, freshness of the three 

photoresists on the substrate, freshness of the developing medium (MIBK), and proper 

exposure of the pattern. Resist overhangs formed during development limit the deposition 

area of the iron masking layer, causing some features to be too thick or too thin. Finally, 

the uncertainty of the DRIE undercutting of the iron masking layer caused the 

microcantilever beam and piezoresistor to be thicker or thinner than desired.  
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The average “offset” parameter for actual devices varied from 0-0.25µm from the 

dimensions desired. Again, these errors can be attributed to fabrication errors discussed in 

relation to the “leg length” parameter. The average “beam length” parameter for devices 

was consistently 6-7 µm shorter than desired. Yet again, these errors can be attributed to 

fabrication errors discussed previously, but the consistent error with little standard 

deviation suggests a consistent problem with the e-beam lithography process. The image 

produced by the NPGS system was most likely consistently undersized, suggesting a 

recalibration of the system is required. In addition, the NPGS “center-to-center” distance 

and “line width” distance affect how closely spaced the electron beams are that expose 

the resist. These values may need to be adjusted by recalibrating the e-beam lithography 

process. Also, the pattern development in MIBK may have been too short such that the 

exposed pattern was not completely opened up.  

Finally, the piezoresistor “beam width” parameter had a large amount of variability 

and averaged 0.1-0.3 µm thicker than intended. This phenomenon stems from an over-

magnification of the desired pattern in the NPGS system, e-beam currents and doses that 

were too high for the intended resist target, and overdevelopment of the exposed pattern 

in MIBK. Also, scattering of the e-beam in the resist causes the polymer chains to break 

molecular bonds on either side of the electron beam path, making the developed path 

susceptible to solvent wider than intended. These e-beam characteristics make the NPGS 

exposed pattern wider than intended during development and the subsequent etching 

steps.  

Errors in the microcantilever dimensions cause the piezoresistance, sensitivity, and 

resonant frequency to be different than desired. Shorter leg lengths after fabrication make 
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the overall piezoresistor shorter, resulting in lower resistances. Similarly, the thicker 

beam widths provide more cross-sectional area for conductivity in the piezoresistor and 

therefore lower the resistance of the piezoresistor. The thicker cantilever beam width 

results in additional mass, lowering the resonant frequency of cantilever. Conversely, the 

consistently shortened cantilever beams have less mass than intended and resonate at 

higher frequencies than beams with correct lengths. 

D. Resonator Actuation Experiments 

In general, the newly-designed asymmetric cantilevers with beam lengths of 128 

µm resonated between 43 kHz and 54 kHz, depending on the piezoresistor base 

geometry. This is in agreement with Yang’s (2006) T-shaped microcantilevers (base 

beams 9 µm in length), whose resonant frequencies varied between 42 kHz and 50 kHz. 

The beam 6 designs tended to yield higher resonant frequencies, 62,856 Hz ± 2,356 Hz, 

due to the shorter cantilevers (110 µm long). In comparison, beam 7 designs had lower 

resonant frequencies, 40,290 Hz ± 5,182 Hz, because the cantilever lengths were longer 

(150 µm). Microcantilever resonant frequencies are inversely related to the length of the 

cantilever and the mass of the cantilever beam. The resonant frequency of a cantilever is 

given by 

௢ݓ ൌ ට ௞
௠

                                                              (8) 

 
where m is the mass of the cantilever and k is the cantilever spring constant, defined as 

݇ ൌ ா௪௧య

ସ௅య                                                              (9) 
 

in which E is Young’s modulus of the cantilever material, w is the cantilever width, t is 

the cantilever thickness, and L is the beam length. The theoretical resonant frequencies 

calculated and shown in Figure 34 agree fairly well with the measured resonant 
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frequencies. Discrepancies could be caused by differences in the material properties of 

the crystalline silicon than those used in the equations. Also, errors differences in the 

cantilever thickness would cause errors in the value calculated for the cantilever resonant 

frequency. Finally, the base of the cantilever is not completely fixed because of the 

suspended piezoresistor and therefore does not behave exactly as predicted by Equations 

8 and 9. 

 The beam 1 cantilever design served as a control for Xu, et al.’s (2006) T-shaped 

design; however, it did not resonate when the drive frequency was swept from 0 to 80 

kHz in 1 Hz increments and the drive electrode was actuated with an AC voltage of 10 

Volts peak-to-peak, which is the maximum output of the function generator ( Agilent 

33220A). Possible sources for this phenomenon include thick piezoresistor geometry 

(average of 1.38 µm when 1.1 µm was the intended thickness), short piezoresistor legs 

(average of 3.93 µm when 4.5 µm was the intended length), piezoresistor damage from 

DRIE, or a resonating frequency higher than 80 kHz. These dimensional errors are 

relatively significant; since the beam length and piezoresistor legs are short but the 

piezoresistor and beam are too wide, it is most likely that the overall e-beam pattern was 

too small and overexposed, resulting in short line lengths that became too thick when 

developed in MIBK. Since the static resistance tests showed reasonable values, the 

piezoresistors are conductive. The drive signal (10 Volts peak-to-peak) may not provide 

enough electrostatic potential to bring the thick cantilever beam into resonance. 

E. Static Deflection Tests 

Beam 3 had very similar geometry to beam 2 and thus had a static sensitivity very 

close, but lower, 2.7 ± 1.6 Ω/µm, than that of beam 2. Beam 4 deviated even more from 
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the optimum geometry and therefore the static sensitivity was even lower (2.1 ± 0.1 

Ω/µm). The beam 5 design used a thicker piezoresistor base (1.3 µm) to help study DRIE 

conductivity damage. This larger base resulted in a lower stress in the piezoresistor, 

making it less sensitive. This was corroborated when the tested device yielded a static 

sensitivity of only 1.2 Ω/µm.  

Beam 6 and beam 7 used the optimal piezoresistor geometry, but had shorter and 

longer cantilever beams, respectively. A 20 µm displacement at the tip of beam 6 is not 

equivalent to a 20 µm displacement at the tip of beam 2; the tip of beam 2 rotates 9.0° 

while the tip of beam 6 rotates 10.5°, yielding a larger piezoresistor stress than beam 2. 

Thus, beam 6 produced the highest static sensitivity recorded for the microcantilevers 

(6.0 ± 1.2 Ω/µm). Similarly, a 20 µm displacement at the tip of beam 7 is slightly less 

than a 20 µm displacement at the tip of beam 2; the tip of beam 2 rotates 9.0° while the 

tip of beam 7 rotates 7.7°. Beam 7 had a static sensitivity of 3.7 ± 1.9 Ω/µm, which was 

higher than the optimum design (beam 2), but also had a larger standard deviation in 

sensitivity. This larger standard deviation could be caused by noise in the sensing 

circuitry, non-optimal orientation of the microcantilevers in the <110> crystal plane, or 

inconsistency in fabrication techniques. 

Beams 8, 9, and10 possessed a shorter piezoresistor length (PL) while varying the 

leg separation and leg length. The static sensitivity of beams 8, 9, and 10 were 1.5 Ω/µm, 

1.25 ± 0.9 Ω/µm, and 0.8 Ω/µm, respectively. Only one beam was successfully tested for 

each of beam 8 and 10. Some resistance versus deflection measurements were not as 

linear as others (Figure 35 versus Figure 36). This is most likely due to errors in the 

measurement setup for the static deflection tests. Each deflection increment was not 
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accurately 4 µm because the nanomanipulators could not reliably move the tungsten 

needles according to the overlaid grid. The tip of the cantilever was also visually lined up 

with the overlaid grip, which lacks precision and introduces error. Finally, the electron 

beam of the SEM causes charging in the structures it images, which makes the resistance 

measurements less accurate.   

In summary, as the leg separation (LS) increases and the leg length (LL) decreases, 

but the piezoresistor length (PL) remains constant, the static sensitivity of the 

piezoresistor reduces. Eliminating beam length as a variable (ignoring beam 6 & 7), the 

static sensitivity data shows that the most sensitive piezoresistor has an optimum beam 

geometry of LS = 1 µm, LL = 20 µm, and PL = 41 µm. This has been corroborated in 

Finite Element Analysis (FEA) of the asymmetric microcantilever (Bradshaw, et al. 

2007). 

F. Dynamic Deflection Tests 

Beam 3 had a lower average dynamic sensitivity (5.82 ± 0.70 Ω/µm) than the 

optimum design for reasons discussed in the static sensitivity section; similarly, beam 4 

had a lower average dynamic sensitivity (3.34 ± 4.65 Ω/µm) than beam 3 when compared 

to beam 2. No data for dynamic sensitivity of beam 6 designs was collected because none 

of these beams resonated in the SEM chamber. Only 2 devices resonated in the probe 

station and none would resonate in the SEM after significant exposure to room air. A 

considerable amount of particulate debris was observed on all the device surfaces by the 

time they were ready for dynamic sensitivity testing, with many particles ending up on 

beam 6 designs. Beam 7 devices had an average dynamic sensitivity significantly higher 

than the sensitivity of beam 2. However, beam 7 devices used the same piezoresistor 
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geometry but had cantilever beams which were 22 µm longer than the cantilevers for 

beam 2. This resulted in lower resonate frequencies (~40 kHz) but larger resonate 

displacements (~40 µm for beam 7 but only ~17 µm for beam 2). If beam 2 

microcantilevers had resonant displacements similar to the distance displaced by beam 7 

microcantilevers, they would also have higher dynamic sensitivities. This explains why 

the beam 7 microcantilevers have higher dynamic sensitivities than their beam 2 

counterparts. 

The dynamic sensitivities for beams 8 (3.09 ± 2.53 Ω/µm) and 9 (2.45 ± 1.67 

Ω/µm) followed a down-sloping trend similar to the static sensitivity trend described 

previously. No data was successfully collected for beam 10 microcantilevers because 

only one would resonate in the SEM chamber and its dynamic sensitivity data appeared 

to be an outlier. Since beam 1 designs were not successfully brought into resonance in the 

probe station, their dynamic sensitivity could not be tested. The dynamic sensitivities of 

the cantilever beams were consistently higher than their static sensitivities. This is most 

likely a result of the cyclic loading introduced at the piezoresistor base during dynamic 

testing. Joule heating and mechanical damping of the oscillating structures raises the 

temperature of the piezoresistor, thereby increasing the resistance of the piezoresistor. 

When the structure is dynamically actuated but is not in resonance, the mechanical 

damping does not create as much heat as when it is in resonance and the tip deflection is 

significantly higher (~1 µm when not in resonance versus ~17 µm when in resonance). 

Therefore, the piezoresistor becomes hotter when in resonance and the dynamic sensing 

mode is more sensitive than the static sensing mode. 
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A lack of working devices was the result of fabrication damage to the piezoresistor 

from DRIE and BOE etching, stiction of the devices to the substrate, and debris on the 

microcantilever after significant exposure to room air during epoxy, wire bonding, and 

soldering actions. Device yield could be significantly increased if these actions were 

performed in a cleanroom environment. Again eliminating beam length as a variable 

(ignoring beam 6 & 7), the dynamic sensitivity data shows that the most sensitive 

piezoresistor has an optimum beam geometry of LS = 1 µm, LL = 20 µm, and PL = 41 

µm. This has been corroborated in finite element analysis (FEA) of the asymmetric 

microcantilever (Bradshaw, et al. 2007).  

These asymmetric microcantilevers are significantly more sensitive than the 

symmetric versions, and will therefore be more accurate in performing gas composition 

analysis using the viscous damping principal. While the change in natural frequency 

caused by viscous damping will be the same regardless of piezoresistor geometry, the 

larger change in resistance as a result of the redesigned sensing element will be much 

easier for measurement electronics to detect. This increase in sensitivity will make it 

possible for less power to be used in the measurement circuit and subsequently allow the 

measurement to be performed by on-chip CMOS electronics rather than lab-grade 

equipment. Using asymmetric microcantilevers for applications in which symmetric 

cantilevers have traditionally been used offers the potential to radically improve existing 

sensor sensitivity. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 

Lateral vibrating silicon resonators have been successfully fabricated and the 

fabrication technique has been documented. A new method for drying the 

microcantilevers to avoid stiction was developed. Piezoresistive sensing has been 

successfully used to detect resonance, avoiding complicated and bulky optical detection 

methods. Experimental studies have been performed to characterize 10 different 

piezoresistor geometries and compare the results to computational models (Bradshaw, et 

al. 2007). The optimum asymmetric piezoresistor geometry was found to be more 

sensitive than the symmetric piezoresistor geometry, as reported previously by Dr. Yang 

Xu (2006).  

The microcantilevers developed in this study can be used for detecting the molar 

mass of a gas environment based purely on the viscous damping effect using a similar 

protocol as defined by Xu, et al. (2006). Further studies using these asymmetric 

microcantilever arrays should investigate resonator response to gaseous environments 

and pursue the use of these devices for obtaining a ‘signature’ for a gas during 

composition analysis. The fabrication process should be further refined to achieve 

optimal device thicknesses of 1.1 µm while maintaining other geometric parameters.
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APPENDIX A - LABVIEW ALGORITHM 

The following are screenshots of the entire LabVIEW virtual instrument 

Sweep_Freq2.vi used to control instruments in the measurement circuit (Figure 17) and 

collect data.  
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APPENDIX B - MICROCANTILEVER METROLOGY 

The following spreadsheet contains the metrology measurements for each 

microcantilever available on the seven fabricated devices. It also summarizes the resonant 

frequency, Q factor, static sensitivity, and dynamic sensitivity for each microcantilever. 

The summary at the end contains the mean and standard deviation for each parameter of 

every microcantilever design. 

Beam 1 2 3 4 5 6 7 8 9 10 
Device 1 

Width 1.7 1.6 1.43 1.31 1.47 1.53 1.403 1.39 1.22 1.28 
Leg Length 3.59 17.5 17.5 16.54 18.27 18.16 18.7 8.93 8.82 7.67 

Offset 0 1 2 3.98 1.12 1.2 1.26 1.06 2.04 3.95 
Beam Length 121.3 121 121.3 121 121.1 104 142.8 121.4 121.5 121.5 

Res. Frequency     57500   51865   45862 40175 40877 50750 
Q factor (freq/width)     7666.6   1383.1   13103.4 11478.5 2043.8 2602.5 
Static Sens. (Ω/µm) 2.55 1.6 2 1.2 6 5.55 1.9 7 

Dynamic Sens. (Ω/µm)     5.332       19.519 6.004 2.816 15.115 
Device 2 

Width 1.57 1.57 1.55 1.33 1.25 1.87 1.734 1.549 1.475 1.385 
Leg Length 3.9 18.01 17.14 17.03 17.64 18.1 18.34 9.116 8.61 7.701 

Offset 0 0.82 1.68 3.62 0.715 1.202 1.278 1.073 2.09 3.878 
Beam Length 121.7 122.3 122 122.4 122.1 105.1 142.9 122.3 122.2 122.2 

Res. Frequency     54799 55947 52416       51766   
Q factor (freq/width)     3535.4 3390.7 2329.6       1437.9   

Dynamic Sens. (Ω/µm)     6.316 6.628         3.901   
Device 3 

Width 1.234 1.095 1.041 1.03 1.159 1.2 1.06 0.953 1.03 1.05 
Leg Length 4.036 18.35 17.82 16.95 18.53 18.4 18.37 9.251 8.9 7.833 

Offset 0 0.98 1.851 3.778 0.95 1.043 1.06 0.95 2.054 3.926 
Beam Length 121.8 121.9 121.9 121.6 121.8 104.3 143.3 122.2 121.8 122.2 

Res. Frequency   52298 46536 50658 48054   39396 44972 42331   
Q factor (freq/width)   1743.2 3722.8 3752.4 2745.9   2073.4 1499.0 1801.3   
Static Sens. (Ω/µm) 3.25 3.8125 2.15 7.15 3.65 1.5 5.75 0.75 

Dynamic Sens. (Ω/µm)    12.817     3.294    13.934  1.579  0.625   
Device 4 

Width 1.424 1.26 1.06 1.14 1.21 1.184 1.16 1.025 1.041 1.081 
Leg Length 3.917 18.18 17.05 17.09 18.31 18.22 18.4 9.045 8.735 7.753 

Offset 0 0.96 1.78 3.63 0.81 1.093 1.099 1.085 2.025 3.759 
Beam Length 120.9 121.4 121.6 121.4 121.9 104 142.1 122.1 121.6 121.6 

Res. Frequency                     
Q factor (freq/width)                     

Device 5 
Width     1.025   1.293     1.025 1.2 1.147 

Leg Length 17.69 18.39 9.04 8.69 7.745 
Offset 1.858 0.86 0.96 1.943 3.81 

Beam Length 121.2 121.2 121.8 121.7 121.7 
Res. Frequency     49266           44735   

Q factor (freq/width)     1642.2           1491.1   
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Device 6 
Width                     

Leg Length   
Offset   

Beam Length   
Res. Frequency           64522         

Q factor (freq/width)           4963.2         
Device 7 

Width 0.958 1.033 1.059 1.2 1.284 1.082 1.132 1.169 1.111 1.136 
Leg Length 4.2 18.37 17.89 16.99 18.04 18.59 18.48 9.095 8.709 7.733 

Offset 0 0.98 1.854 3.81 0.96 1.082 0.94 0.89 1.987 3.757 
Beam Length 122.3 122.7 122.1 122.1 121.9 104.9 143.2 122.9 122.2 122.6 

Res. Frequency   49392   56048   61190 35613 44209 44241 42124 
Q factor (freq/width)   3087   2802.4   3399.4 2158.3 2763.0 1966.2 2632.7 
Static Sens. (Ω/µm) 4.7 1.75 11.8125 0.6 

Dynamic Sens. (Ω/µm)        0.0521       1.6729      
Averages 

Avg Width 1.3772 1.3116 1.1941 1.202 1.2776 1.3732 1.2978 1.1851 1.1795 1.1798 
Desired Width 1.1 1.1 1.1 1.1 1.3 1.1 1.1 1.1 1.1 1.1 

Avg Leg Length 3.9286 18.082 17.515 16.92 18.196 18.294 18.458 9.0795 8.744 7.7391 
Desired Leg Length 4.5 20 19.5 18.5 20 20 20 10 9.5 8.5 

Avg Offset 0 0.948 1.8371 3.7636 0.9025 1.124 1.1274 1.003 2.0231 3.8466 
Desired Offset 0 1 2 4 1 1 1 1 2 4 

Avg Beam Length 121.6 121.86 121.68 121.7 121.66 104.46 142.86 122.11 121.83 121.96 
Desired Beam Length 128 128 128 128 128 110 150 128 128 128 
Avg Res. Frequency 0 50845 52025 54218 50778 62856 40290 43119 44790 46437 

Avg Q Factor 0 2415 2967 3315 2153 4181 2116 2131 1748 2618 
Avg. Static Sens. 2.9 2.706 2.075 1.2 5.95 3.65 1.5 1.25 0.75 

Avg. Dynamic Sens. 12.817 5.824 3.340 3.294 16.727 3.086 2.448 
Standard Deviations 
Width Standard Dev. 0.291 0.263 0.23 0.123 0.106 0.324 0.275 0.236 0.164 0.127 
Leg Length Std. Dev. 0.224 0.356 0.35 0.218 0.316 0.199 0.144 0.105 0.102 0.055 

Offset Std Dev. 0 0.072 0.105 0.148 0.140 0.072 0.142 0.080 0.051 0.083 
Beam Length Std Dev. 0.529 0.680 0.376 0.556 0.413 0.512 0.472 0.503 0.301 0.432 

Res. Freq. Std. Dev. 0 2054.8 5013.7 3083.1 2375.3 2356.0 5182.7 2577.6 4193.0 6099.5 
Q Factor Std Dev. 0 950.2 1151.0 479.5 698.4 1105.8 60.0 893.8 273.9 21.3 

Static Sens. Std Dev. 0.495 1.564 0.106 1.226 1.9 0.919 
Dynamic Sens. Std Dev. 0.696 4.650 3.949 2.529 1.669 
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APPENDIX C - STATIC DEFLECTION SENSITIVITY 

The following spreadsheet contains the deflection and resistance measurements for 

the tested microcantilevers during the static sensitivity experiment. The data has been 

plotted to the right of the measurements and the sensitivity was calculated.   

Static Deflection Sensitivity Tests 
Device 8-30 

Beam 5  

Deflection (µm) Resistance (kΩ) 

0 18.028 

4 18.028 

8 18.028 

12 18.028 

16 18.028 

20 18.028 

Sensitivity = 0 Ω/µm 

Rel. Δ in resistance = 0.0000% for 20 µm 

Increase over Yang = 0.00 fold 

Device 8-30  

Beam 6 

Deflection (µm) Resistance (kΩ) 

0 19.636 

4 19.657 

8 19.676 

12 19.695 

16 19.71 

20 19.73 

Sensitivity = 4.7 Ω/µm 

Rel. Δ in resistance = 0.4787% for 20 µm 

Increase over Yang = 127.32 fold 

Device 8-30  

Beam 7 

Deflection (µm) Resistance (kΩ) 

0 16.015 

10 16.028 

15 16.04 

20 16.05 

Sensitivity = 1.75 Ω/µm 

Rel. Δ in resistance = 0.2185% for 20 µm 

Increase over Yang = 48.32 fold 
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Device 8-30 

Beam 8  

Deflection (µm) Resistance (kΩ) 

0 11.681 

4 11.73 

8 11.744 

12 11.7 

16 11.87 

20 0 

Sensitivity = 11.8125 Ω/µm 

Rel. Δ in resistance = 1.6113% for 16 µm 

Increase over Yang = 499.39 fold 

Device 8-30  

Beam 9 

Deflection (µm) Resistance (kΩ) 

0 14.729 

4 14.731 

8 14.733 

12 14.736 

16 14.738 

20 14.741 

Sensitivity = 0.6 Ω/µm 

Rel. Δ in resistance = 0.0815% for 20 µm 

Increase over Yang = 16.17 fold 

Device 7-24  

Beam 2 

Deflection (µm) Resistance (kΩ) 

0 14.57 

4 14.575 

8 14.58 

12 14.59 

16 14.608 

20 14.621 

Sensitivity = 2.55 Ω/µm 

Rel. Δ in resistance = 0.3500% for 20 µm 

Increase over Yang = 40.85 fold 
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Device 7-24 

 

Beam 3 

Deflection (µm) Resistance (kΩ) 

0 12.971 

4 12.982 

8 12.986 

12 12.99 

16 12.995 

20 13.003 

Sensitivity = 1.6 Ω/µm 

Rel. Δ in resistance = 0.2467% for 20 µm 

Increase over Yang = 100.96 fold 

Device 7-24  

Beam 4 

Deflection (µm) Resistance (kΩ) 

0 14.605 

4 14.609 

8 14.614 

12 14.623 

16 14.635 

20 14.645 

Sensitivity = 2 Ω/µm 

Rel. Δ in resistance = 0.2739% for 20 µm 

Increase over Yang = 32.60 fold 

Device 7-24  

Beam 5 

Deflection (µm) Resistance (kΩ) 

0 17.716 

4 17.722 

8 17.726 

12 17.729 

16 17.734 

20 17.74 

Sensitivity = 1.2 Ω/µm 

Rel. Δ in resistance = 0.1355% for 20 µm 

Increase over Yang = 40.32 fold 
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Device 7-24  

Beam 6 

Deflection (µm) Resistance (kΩ) 

0 17.565 

4 17.588 

8 17.611 

12 17.64 

16 17.658 

20 17.685 

Sensitivity = 6 Ω/µm 

Rel. Δ in resistance = 0.6832% for 20 µm 

Increase over Yang = 155.88 fold 

Device 7-24  

Beam 7 

Deflection (µm) Resistance (kΩ) 

0 15.971 

4 16 

8 16.022 

12 16.041 

16 16.063 

20 16.082 

Sensitivity = 5.55 Ω/µm 

Rel. Δ in resistance = 0.6950% for 20 µm 

Increase over Yang = 216.17 fold 

Device 7-24  

Beam 9 

Deflection (µm) Resistance (kΩ) 

0 14.854 

4 14.863 

8 14.87 

12 14.877 

16 14.885 

20 14.892 

Sensitivity = 1.9 Ω/µm 

Rel. Δ in resistance = 0.2558% for 20 µm 

Increase over Yang = 72.13 fold 
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Device 7-24  

Beam 10 

Deflection (µm) Resistance (kΩ) 

0 17.357 

4 17.357 

8 17.392 

12 17.441 

16 

20   

Sensitivity = 7 Ω/µm 

Rel. Δ in resistance = 0.4840% for 20 µm 

Increase over Yang = 0.00 fold 

Device 7-30.2  

Beam 2 

Deflection (µm) Resistance (kΩ) 

0 16.893 

4 16.88 

8 16.867 

12 16.858 

16 16.831 

20 16.828 

Sensitivity = -3.25 Ω/µm 

Rel. Δ in resistance = -0.3848% for 20 µm 

Increase over Yang = -91.61 fold 

Device 7-30.2  

Beam 3 

Deflection (µm) Resistance (kΩ) 

0 15.380 15.393 

4 15.354 15.400 

8 15.331 15.407 

12 15.309 15.416 

16 15.309 15.454 

20 15.305 

Sensitivity = -3.75 Ω/µm 3.8125 

Rel. Δ in resistance = -0.4876% for 20 µm 0.3963% 

Increase over Yang = -201.25 fold 54.14 
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Device 7-30.2 

Beam 4 

Deflection (µm) Resistance (kΩ) 

0 17.154 17.093 

4 17.143 17.099 

8 17.134 17.108 

12 17.124 17.118 

16 17.114 17.129 

20 17.104 17.136 

Sensitivity = -2.5 Ω/µm 2.15 

Rel. Δ in resistance = -0.2915% for 20 µm 0.2516% 

Increase over Yang = -76.34 fold 41.79 

Device 7-30.2 

Beam 6 

Deflection (µm) Resistance (kΩ) 

0 21.359 21.310 

4 21.393 21.273 

8 21.424 21.240 

12 21.456 21.201 

16 21.473 21.164 

20 21.502 21.135 

Sensitivity = 7.15 Ω/µm -8.75 

Rel. Δ in resistance = 0.6695% for 20 µm -0.8212% 

Increase over Yang = 189.50 fold -206.70 

Device 7-30.2 

Beam 7 

Deflection (µm) Resistance (kΩ) 

0 18.557 18.340 

4 18.568 18.327 

8 18.581 18.309 

12 18.597 18.311 

16 18.626 18.239 

20 18.630 

Sensitivity = 3.65 Ω/µm -6.3125 

Rel. Δ in resistance = 0.3934% for 20 µm -0.5507% 

Increase over Yang = 70.57 fold -84.38 
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Device 7-30.2 

Beam 8 

Deflection (µm) Resistance (kΩ) 

0 14.185 

4 14.185 

8 14.188 

12 14.193 

16 14.205 

20 14.215 

Sensitivity = 1.5 Ω/µm 

Rel. Δ in resistance = 0.2115% for 20 µm 

Increase over Yang = 0.00 fold 

Device 7-30.2 

Beam 9 

Deflection (µm) Resistance (kΩ) 

0 15.742 15.788 

4 15.739 15.797 

8 15.737 15.805 

12 15.734 15.823 

16 15.730 15.880 

20 15.723 

Sensitivity = -0.95 Ω/µm 5.75 

Rel. Δ in resistance = -0.1207% for 20 µm 0.5827% 

Increase over Yang = -22.69 fold 67.86 

Device 7-30.2 

Beam 10 

 

Deflection (µm) Resistance (kΩ) 

0 16.140 15.936 

4 16.142 15.906 

8 16.142 15.907 

12 16.138 15.912 

16 16.128 15.933 

20   15.924 

Sensitivity = -0.75 Ω/µm -0.6 

Rel. Δ in resistance = -0.0743% for 20 µm -0.0753% 

Increase over Yang = 14.75 fold -224.11           
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APPENDIX D - DYNAMIC DEFLECTION SENSITIVITY 

The following spreadsheet contains the deflection and resistance measurements for 

the tested microcantilevers during the dynamic sensitivity experiment. The lock-in 

amplifier output has been plotted to the right of the measurements (x-axis is the cantilever 

frequency and y-axis is lock-in amp output in volts) and the sensitivity was calculated.   

Dynamic Sensitivity Tests  
 
Device 7-24 

Beam 3 
Maximum deflection = 8.07 µm
Max voltage output = 0.042689873 Volts
Min voltage output = 0.011988608 Volts
Current in circuit = 0.000713429 Amps
Initial resistance = 16.80419652 Ω
Final resistance = 59.83755969 Ω
Sensitivity = 5.332510925 Ω/µm

  
Device 7-24  

Beam 7 
Maximum deflection = 7.0285 µm
Max voltage output = 0.107902532 Volts
Min voltage output = 0.010006329 Volts
Current in circuit = 0.000713571 Amps
Initial resistance = 14.02289253 Ω
Final resistance = 151.2148549 Ω
Sensitivity = 19.51938 Ω/µm

  
Device 7-24 

Beam 8 
Maximum deflection = 8.595 µm
Max voltage output = 0.039226582 Volts
Min voltage output = 0.00236962 Volts
Current in circuit = 0.000714116 Amps
Initial resistance = 3.318254655 Ω
Final resistance = 54.93023157 Ω
Sensitivity = 6.004883876 Ω/µm
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Device 7-24 
Beam 9 

Maximum deflection = 7.81 µm
Max voltage output = 1.310346924 Volts
Min voltage output = 1.296670567 Volts
Current in circuit = 0.000621666 Amps
Initial resistance = 2085.798093 Ω
Final resistance = 2107.797604 Ω
Sensitivity = 2.816838812 Ω/µm

Device 7-24  
Beam 10 

Maximum deflection = 5.9 µm
Max voltage output = 0.439696203 Volts
Min voltage output = 0.378405063 Volts
Current in circuit = 0.000687257 Amps
Initial resistance = 550.6021529 Ω
Final resistance = 639.7844511 Ω
Sensitivity = 15.11564377 Ω/µm

   
Device 7-30.1 

Beam 3 
Maximum deflection = 9.355 µm
Max voltage output = 0.050737975 Volts
Min voltage output = 0.008568354 Volts
Current in circuit = 0.000713674 Amps
Initial resistance = 12.00598335 Ω
Final resistance = 71.09408048 Ω
Sensitivity = 6.316204931 Ω/µm

  
Device 7-30.1 

Beam 4 
Maximum deflection = 7.61 µm
Max voltage output = 0.056325316 Volts
Min voltage output = 0.02036962 Volts
Current in circuit = 0.000712831 Amps
Initial resistance = 28.57567592 Ω
Final resistance = 79.01639644 Ω
Sensitivity = 6.628215574 Ω/µm
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Device 7-30.1 
Beam 9 

Maximum deflection = 8.2975 µm
Max voltage output = 0.06575443 Volts
Min voltage output = 0.04273038 Volts
Current in circuit = 0.000711234 Amps
Initial resistance = 60.07925257 Ω
Final resistance = 92.45125023 Ω
Sensitivity = 3.901415807 Ω/µm

 
Device 7‐30.2 

Beam 2 
Maximum deflection 

=  8.2925  µm
Max voltage output =  1.205076967  Volts
Min voltage output =  1.137796891  Volts
Current in circuit =  0.000633015  Amps
Initial resistance =  1797.426247  Ω
Final resistance =  1903.711452  Ω

Sensitivity =  12.81702801  Ω/µm

Device 7‐30.2 
Beam 5 

Maximum deflection 
=  10.0355  µm

Max voltage output =  0.028293723  Volts
Min voltage output =  0.00469213  Volts
Current in circuit =  0.000713951  Amps
Initial resistance =  6.572065722  Ω
Final resistance =  39.62980639  Ω

Sensitivity =  3.294080083  Ω/µm

Device 7‐30.2 
Beam 7 

Maximum deflection 
=  21.015  µm

Max voltage output =  0.392886076  Volts
Min voltage output =  0.18764557  Volts
Current in circuit =  0.000700882  Amps
Initial resistance =  267.727587  Ω
Final resistance =  560.5591504  Ω

Sensitivity =  13.93440701  Ω/µm
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Device 7‐30.2 
Beam 8 

Maximum deflection 
=  14.2285  µm

Max voltage output =  0.018279873  Volts
Min voltage output =  0.002235949  Volts
Current in circuit =  0.000714126  Amps
Initial resistance =  3.131029196  Ω
Final resistance =  25.59754627  Ω

Sensitivity =  1.57898001  Ω/µm
Device 7‐30.2 

Beam 9 
Maximum deflection 

=  13.81  µm
Max voltage output =  0.010471772  Volts
Min voltage output =  0.004311266  Volts
Current in circuit =  0.000713978  Amps
Initial resistance =  6.038375456  Ω
Final resistance =  14.66680426  Ω

Sensitivity =  0.624795714  Ω/µm

Device 8‐30 
Beam 4 

Maximum deflection 
=  12.53  µm

Max voltage output =  0.001558801  Volts
Min voltage output =  0.001092399  Volts
Current in circuit =  0.000714208  Amps
Initial resistance =  1.529525664  Ω
Final resistance =  2.182559452  Ω

Sensitivity =  0.052117621  Ω/µm

Device 8‐30 
Beam 8 

Maximum deflection 
=  17.2105  µm

Max voltage output =  0.025198307  Volts
Min voltage output =  0.004643123  Volts
Current in circuit =  0.000713954  Amps
Initial resistance =  6.503391906  Ω
Final resistance =  35.29401749  Ω

Sensitivity =  1.672852362  Ω/µm
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