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ABSTRACT 

son~ PHOSPHATE DETECTION AND ARCHAEOLOGY: 
IN-STRIDE PHOSPHATE DETECTION AND THE ELIMINATION OF ARSENATE 

INTERFERENCE TO THE MALACHITE GREEN METHOD 

Laura A. DeNeve 
December, 2007 

Archaeologists use soil analysis to detect chemicals, like phosphate, to indicate areas of 
anthropogenic activity. Phosphate detection is a multi-step process, which makes 
standard techniques time consuming. 

Kinetic studies decreased the analysis time for the malachite green (MG) method of 
phosphate detection. The 3-minute method allows extraction and analysis to be complete 
in 15 minutes. Continued studies resulted in two-color spectral monitoring, which 
provided values instantaneously. 

Arsenate (As(V» interfers with the MG method and results in overestimation of 
phosphate. As(V) must be reduced to non-interfering arsenite. Two As(V) reducing 
agents - L-Cysteine and thiosulfate - were investigated. The thiosulfate method was 
suitable for field implementation with the 3-minute malachite green method. L-Cysteine 
is compatible with both MG time scales, but pre-reduction could not be improved beyond 
20 minutes. 

The 3-minute malachite green method was utilized at an archaeological site in Virginia. 
The survey led to delineation of the site boundaries. 
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1 

INTRODUCTION 

1.1 Phosphate and Archaeology 

The field of archaeology has benefited from chemistry in many ways For 

example, radiocarbon dating has made a profound impact on archaeolof,'Y by increasing 

the accuracy of chronological analysis. Additional analytical techniques that have 

crossed into the field of archaeology include laser induced breakdown spectroscopy, 

Raman spectroscopy, and inductively coupled plasma absorption emission spectroscopy. 

These techniques have been used to characterize historical objects, which provide 

valuable information pertaining to the materials and technology of the period. 

The above techniques are all used after the excavation of the artifact. While some 

historic sites are easily located, it is often difficult to determine the layout of settlements, 

intrastate usage and settlement hierarchy. For settlements abandoned within more recent 

history, this task is aided by historic documents such as deeds and wills, but for many 

societies these documents are no longer available. Other solutions utilize remote sensing 

methods to aid in the determination of boundary lines. For example, aerial photography 

and high spatial resolution satellite imagery are used to map potential ancient settlements. 

Infrared and thermal imaging are used to detect buried remains. However, these four 

techniques cannot be utilized in areas with dense vegetation. In heavily forested areas, 

ground survey methods are employed. Ground penetrating radar, magnetic prospection, 



and shovd tests are conducted by surveying areas on foot As sites are often many 

hectares, the tests are conducted at 30-50 m intervals. In the event the test is positive and 

locates an artifact additional tests are conducted in the surrounding area. These tests only 

provide data on the area sampled and it is highly probable that historical objects are 

missed. 

Ground surveys have been improved by soil analysis. Many anthropogenic 

activities deposit elements in soil The majority of the elemt~nts left behind are rapidly 

depleted from the soil or the elements are mobile and do 110t remain in the original 

location. Phosphorus binds rapidly with Fe, AI, or Ca in soil and becomes relatively 

immobile. Prolonged occupation of a settlement causes phosphorus to accumulate, and 

as a result areas of human occupation show large concentrations of phosphorus when 

compared to native phosphorus. For this reason, large archaeological sites boundaries 

can be delineated from the surrounding irrelevant areas. 

Sarris at el. (2004) used soil phosphorus detection as well as traditi.onal 

techniques, such as shovel testing and magnetic detection, during survey of Veszto-Bikeri 

in Southeastern Hungary. As a result, the layout and organization of a dispersed 

agricultural settlement was reconstructed. The phosphorus analysis indicated the site was 

composed of ] 0 or 12 trenched compounds and structures. Additionally Sarris ef al. were 

able to determine the location of kilns, ovens, hearths, and a midden. 

Phosphorus analysis is also extremely useful at sites where the boundaries and 

layout of the settlement have already been determined. Middelton (2004) studied the 

phosphorus distribution within an archaeological site in Catalhoyuk, Turkey. As seen in 

Figure 1-1, there was a large variation in the amount of phosphorus within the remains of 
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a building. The high concentration of phosphorus indicates the area was once used as an 

interior hearth. The phosphorus accumulated as a result of repeated burnings of organic 

material. 

-­
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Figure 1-1: Distribution of phosphorus at a domestic structure from an archaeological 
site in Catalyhoyuk Turkey as reported by Middleton (2004). 

Phosphorus analysis can be used on both pre-agricultural and agricultural 

societies. There are several anthropogenic activities all societies have in common-such 

as meal preparation, waste disposal and phosphorus enrichment around burial sites. 

Other activities are specific to a particular culture or settlement type-such as religious 

ceremonies and agricultural activities. Each activity increases the phosphorus in the area 

the activity occurred creating a "hot spot" of phosphorus. 

Hearths and kitchen middens are hot spots created by meal activities. The 

burning of organic tissue from both plants and animals, as well as the ash from the fire, 
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enriches the phosphoms concentration in the area surrounding the hearth. Sjoberg (1976) 

explains a careful study of the hearth area is useful for two reasons. First, information 

gained allows archaeologists to infer the use of the rooms containing the hearth. Low 

amounts of phosphate suggested it was used solely for warming and higher levels of 

phosphoms indicated the hearth was used for food preparation. Second, analysis of the 

levels of phosphorus in the hem1h may also give evidence to the diet of the people since 

animal food products result in greater deposition of phosphorus than plant products. 

It is important to determine the location of the kitchen midden since it is the area 

where many domestic items, such as pots and utensils, were also discarded. Waste from 

meals was also deposited in the kitchen middens. Therefore as a result of the large 

amount of decaying meat, fish and plant refuse, the area surrounding the midden has 

elevated level of phosphoms. 

Burial sites are rich in phosphoms because phosphorus is a main component in 

DNA and RNA 1966. Bona's excavated a 6th
_ century grave. Control soil samples and 

soils immediately surrounding the grave were analyzed to determine the concentration of 

phosphate. When the levels of phosphate were compared, it was easy to see the soil 

surrounding the grave had significantly higher levels of phosphoms. In fact, the high 

levels of phosphorus created an outline of the skeleton (Duma, 1972). 

Agricultural societies have large areas with high levels of phosphate. Barns and 

stables accumulate phosphoms from the animal waste. Similarly, well traveled herding 

paths and animal grazing areas have elevated phosphorus. Fertilizer used in crop fields 

enriched soil phosphorus because it was created from guano, animal products and human 

waste. Animal pens and crop fields can be separated from housing stmctures because 
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agriculture sites cover more area and have higher levels of phosphorus. Craddock et al. 

(1985) excavated a settlement in Fengate, Petersborough, known as Cat's Water, 

containing many huts that were randomly distributed. It was important to distinguish the 

huts that were once used for human occupation from those used for animals, which are 

less likely to contain historical objects. This task was accomplished through soil analysis 

and Craddock and coworkers were able to separate the animal pens from the housing 

sites. 

Depending upon the society, religious rituals may also lead to the accumulation of 

phosphorus. Religious altars used for sacrifices have higher levels of phosphorus as a 

result of decaying animal tissue and bones. It should be noted that these areas only have 

a slight enrichment of phosphorus since rituals are less likdy to be preformed daily. 

Sanchez et al. (1996) discovered a ram skull in an area of high phosphorus. After 

considering the location of the skull, the level of phosphate, and the culture of this 

prehistoric settlement, the group determined the ram skull was likely used in a fertility 

ritual. The ash accumulated from the burning of incense also enriches soil phosphorus. 

After the phosphate levels have been determined and the artifacts have been 

excavated, several archaeologists have seen a strong correlation between the phosphorus 

level and the location of the artifact. Sanchez at el. (1996) excavated a site in the 

southeastern quarter of the Iberian Peninsula that was approximately 40 ha. Several 

objects of cultural significance were located in areas with elevatt'~d levels of phosphorus. 

The materials found included ceramic pots, bowls, platters, dishes, flint and potsherds. 

Craddock et af. (1985) also found a correlation between the location of artifacts 

and the level of phosphorus during the excavation of an Iron Age settlement in Maxey, 
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Cambridgeshire. The twelve-acre site was known to have archaeological significance; 

however at the time of the excavation it was a working plough field. The eastern portion 

of the tield had higher levels of phosphorus than the western portion The west fields did 

not yield any significant archaeological finds. However, the eastern portion, with the 

higher phosphorus level, contained pottery shards and bones. In both Craddock and 

Sanchez' excavations, there was a clear correlation between phosphorus and artifacts, 

which validates the use of phosphate soil analysis. 

Phosphorus detection becomes most useful when surveying potential sites with 

rough terrain. Bjelajac et a1. (1996) demonstrated the effectiveness of soil phosphate 

analysis when attempting to determine the boundaries of an archaeological site in Sunol 

Valley, California. A visual survey of the site was nearly impossible since the site was 

analyzed during a period of dense vegetation and surface artifacts could not be seen. The 

group sampled 33 soils that represented soils considered on-site and off-site. The 

phosphate levels were compared and Bejelajac et af. discerned the boundaries of the site, 

facilitating a more effective search for artifacts. 

Soil phosphorus analysis is an important archaeological tool capable of both 

delineating large archaeological sites and aiding the determination of intra site usage. 

However, the quantitative soil analysis methods used in the examples above are lengthy 

and require a familiarity with the chemical principles involved. Therefore, analysis often 

occurs in a laboratory setting at a museum or university. The benefits of soil analysis are 

diminished by the time requirements of shipping soil to a new location for testing. The 

length of quantitative phosphorus detection methods must be shortened and made 

portable in order to be incorporated into large scale archaeological surveys. 
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1.2 Phosphate Soil Chemistry 

Phosphorus soil chemistry is rich and complex, but a basic knowledge of the 

subject is imperative to understanding why phosphorus is more significant than other 

elements for archaeological analysis. Additionally, phosphorus soil chemistry has a large 

effect on the selection of suitable extraction and analysis methods. 

Phosphorus has a strong affinity for oxygen and accordingly, in soil, phosphorus 

is found as orthophosphate. There are three forms of orthophosphate: H2P04', HPol, 

and pol (Figure 1-2). Collectively, in the context of archaeological discussions, all 

three forms are generalized as phosphate. 

-2-
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Figure 1-2: Structure of phosphate, shown in three forms 

Phosphate is found as a precipitate in soil. It is either adsorbed to the surface of 

the soil particle or occluded within the soil particle. If the phosphate is occluded, it is 

either physically incorporated or chemically entrapped in the soil particle. Accordingly, 

occluded phosphate is more difficult to extract. 
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Phosphate can be found in soil in both inorganic and organic forms Organic 

forms are linked to an ester, whereas inorganic forms are bound to metallic cations. 

Archaeologists are typically only interested in inorganic phosphate or total phosphate 

(8jelajac, 1996). Organic phosphate on its own is not archaeologically significant since 

it accumulate in the soil as the result of recently decomposed material. Over time, 

organic phosphate is converted into the inorganic form through mineralization. 

Microorganisms control the mineralization of organic phosphate. The moisture content 

of the soil affects the extent of microorganism activity and therefore, the extent of 

mineralization depends on the season (Sanchez ef al. 1996; Schlezinger, 2000l 

Inorganic phosphate readily binds to Fe3
" Ca2

', or Al3
, depending on the pH of 

the soiL Highly acidic soils (pH below 5) contain a mixture of phosphates bound to All 

and F e:l'. Basic soils with a pH above 8 have phosphates bound to Ca2 
i. Phosphate ions 

in soils with moderate pH between 5-8 are bound to all three cations (Lillios, 1992; Sinaj 

e/ al. 2002). Changes in the pH of soil affect the fixation of phosphorus. For example, if 

the pH of a basic soil decreases, the phosphate bound to Ca2
+ is released and a portion of 

the phosphate may be lost to plants. The remaining phosphate binds to A13~ and Fe3~ and 

creates new insoluble compounds (Schlezinger, 2000). The pH of the soil affects the 

choice of extracting reagent. Weakly acidic extracting reagents are capable of 

soluabilizing the bonds between phosphorus and Ca2 
i, Alv and to a lesser extend Fe'. 

These extracting reagents are used for acidic soils. Strong acids, such as HCI04, are 

more aptly suited for alkaline soils. Extracting reagents with a slightly basic pH are also 

used (Lillios, 1992). 
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Inorganic phosphate is classified by the strength of the bond formed with the soil 

particle. Phosphate is considered available, active or occluded. Available phosphate has 

weak bonds and is considered mobik It is easily transformed to organic phosphate and 

highly susceptible to dissolution and desorption. As a result, it is readily available to be 

taken up by plants. Typically, the loss of P to plants is minimal and does not affect 

archaeological analysis. The available forms of phosphate are H2PO- and p~ol since 

these forms have lower bonding energy and are more soluble. This type of phosphate is 

easily extracted from the soil using mild reagents; however, it represents only a small 

portion of the total phosphate in soil. 

Active phosphate has moderately strong bonds with the soil particles. In this 

case, the phosphate only undergoes transformation to organic phosphate, dissolution and 

desorption after prolonged exposure to microorganisms and moisture during rainy season. 

Active phosphate is the prevalent fraction of phosphate at an archaeological site The 

extracting reagents used are stronger than those used on available phosphate because of 

the increased bond strength. 

Occluded phosphate is strongly bound to the soil particles. Thus, it is not readily 

transformed, desorpt and it is not susceptible to dissolution. It is virtually immobile in 

soil, except in a few select soil environments. Occluded phosphate is an excellent 

indicator of human habitation because it does not move vertically throughout the soil 

profile and is not lost to plant sorption. As a result of the high degree of stability of 

occluded soil phosphoms, archaeological sites dating back to the late Bronze Age (1500-

1000 B.C.E) can be studied (White, 1978). For example, Craddock et a/. (1997) were 

able to determine Bronze Age settlement areas by analyzing the phosphate concentration 
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In soil sampled at a depth of 70 em (27.5 inches). However, it should be noted that 

occluded phosphate is difficult to extract from the soil. Strong acid solutions and highly 

concentrated reagents must be used 

Phosphate cycles throughout the environment relatively slowly on a geological 

timescale and the removal of appreciable amounts of phosphate requires millions of 

years Thus, natural processes do not conceal phosphate. However, the distribution can 

be altered through natural processes. Water erosion leads the relocation of small 

concentrations of phosphate (Schlezinger, 2000). Available and active phosphates are 

more likely to be affected by water erosion than occluded phosphate. However, the 

majority of phosphate lost to water erosion is from the topsoil (2-5 inches). 

Archaeological soils are 6-12 inches deep and these deeper layers are not greatly affected. 

The distribution of phosphate is also changed by current anthropogenic activities. 

Phosphate prospection is difficult in actively inhabited areas because modern farming, 

animal husbandry, terrain modification and waste production interfere with accurate 

analysis of the past activities. Interference from recent changes to the phosphorus in soil 

can be avoided by obtaining soil samples from deeper soil horizons. 

1.3 Phosphate Analysis 

The process of determining the amount of phosphate in soil is completed in three 

steps First, the soil must be removed from the ground. Soil samples are not collected 

from the topsoil. Rather, soil is collected from deeper layers of the soil horizon in order 

to prevent interference from recent anthropogenic activities. The depth at which the soil 

is sampled depends on the time period of the settlement Either the A soil horizon or the 
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B horizon (6 inch and 12 inch deep, respectively) is sampled to obtain phosphate 

concentrations for settlements abandoned within the last several hundred years. Soil is 

taken from a deeper location of the soil profile for archaeological sites dating back to 

more ancient times 

After the soil is removed from the earth, it must be ground into fine particles and 

filtered to remove organic debris. At this point, the phosphate is extracted from the soil 

using chemical reagents to break the bonds between the phosphorus and the soil 

particulate. Over 50 phosphate extraction methods have been published in soil science 

literature (Holliday and Gartner, 2007). The majority of the methods are used by soil 

scientists in the agricultural field. However several of the methods have been used for 

archaeological purposes. 

The final step in phosphate determination is the analysis of the extract. There are 

multiple methods of phosphate analysis and most were designed for agricultural 

purposes. Commercially available analysis procedures used commonly for phosphate 

detection in water have also been employed for phosphate prospection of archaeological 

sites. 

1.3.1 Phosphate Extraction 

The many phosphate extraction methods can be separated into groups according 

to the type of phosphoms removed from the soil. There are three groups of soil 

extraction methods that are relevant to archaeology: 

1. Acid digestion for total phosphoms analysis 

2. Fractionation extractions, which separate the individual types of inorganic 

phosphate 
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3. Extraction methods for available phosphoms 

Acid digestion of soil extracts all forms of inorganic and organic phosphoms. 

Total phosphate is extracted using either a single strong acid, such as HCl04, or mixture 

of acids The choice of acid or acids is dependent on the type of soiL For on-site 

extractions, 2 N Hel has been used. However, to ensure complete digestion the samples 

must be heated for one hour in a steam bath. (Craddock et al. 1985). Instead of heat, 

other researchers used ultra sonic baths or centrifuges to ensure complete digestion 

(Sanchez et al. 1996). 

Some archaeologists assert that methods providing information on total phosphate 

are poor indicators of prior human habitation (Terry et al. 2000). The different chemical 

forms of phosphate must be differentiated. In order to separate native phosphate from 

anthropogenic phosphate fractionation methods were developed. For example, Eidt and 

Woods (1977) proposed a fractionation method for the analysis of soil phosphate that 

requires seven extractions and four different colorimetry methods for the analysis of total 

phosphate. The first extraction requires 12 hours of shaking and the last extraction 

requires 4 hours of shaking. Two of the extractions require the sample be heated in a hot 

water bath. Although some archaeologists, such as Lillos (1992), claimed to have 

success using the Edit method, fractionation methods are not widely received throughout 

the archaeological community. Some experts argue that the method fails to account for 

the varying properties of different soil types (Terry et al. 2000). Others have argued that 

fractionation methods are "the most complex methods" used in archaeology (Sanchez e/ 

a1. 1996) Therefore the method is ineffectual for large sites. 
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A variety of methods are available for the extraction of available phosphorus. 

These methods are commonly used by agricultural soil scientist and many of the methods 

were designed for in-field analysis. Many of the available phosphorus extraction 

methods are designed to accommodate a specific soil pH. Bray PI, Bray P2, and 

Mehlichl methods are the most common extracting methods for acidic soils. The Bray 

method utilizes dilute ammonium fluoride and HCI and the Mehlich 1 method utilizes a 

mixture of dilute HCl and H2S04. The Olsen method and Ammonium bicarbonate­

DTPA, are used on basic soils. (Jones, 2001; Olsen and Sommers, 1982). 

Two extracting reagents that have a larger soil pH range are the Mehlich3 method 

and CaCh method. The CaCl 2 method requires 2 hours of shaking and large reagent 

volumes. Mehlich3 however, is well suited for fieldwork as it requires a minimal 5 

minutes of shaking. In order to span a broader pH range, this reagent contains HN03, 

which extracts Ca'2 bound phosphate, and NH,f, which extracts both Fe:H and A13
+ 

bound phosphates. This method also extracts Ca2
', Mg2+, Na', and K I. 

There are several requirements that must be met in order to move phosphate 

analysis from the lab and into the field. Archaeological sites often cover large areas and 

produce many soil samples. Therefore, to be effective, analysis methods used in situ 

should be rapid and inexpensive. The method should require few reagents and 

manageable instrumentation since sites are typically in remote locations. Waste products 

should be limited and non-hazardous in order to prevent contamination of the 

environment Finally, the extraction method should not require a great deal of technical 

skill, as the investigator is not always a trained chemist. 
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The majority of the methods discussed above are inappropriate for in-stride 

analysis. The chemical digestion methods require strong and dangerous reagents, such as 

perchloric acid, and are only suitable for laboratory work. Edit's fractionation method is 

far too lengthy and requires knowledge of laboratory techniques. The only methods 

which meet the requirements for in-stride analysis are those designed to extract the 

available phosphorus. 

There is a high degree of variability in the amount of phosphorus extracted using 

the available phosphorus extraction methods, For example, in acidic and neutral soils 

Mehlich3 phosphorus is 4% more than Bray PI phosphorus (Mehlich, 1984). Mehlich3 

phosphorus in calcareous soils is notably higher than Olsen phosphorus. It has been 

reported to extract up to 12% more phosphorus than the Olsen method (Maiti, 2007). 

The established successes of Mehlich3, combined with its versatility, make it an 

excellent choice for field archaeological work This method is compatible with many 

methods of phosphate analysis. Then~fore, Mehlich3 extracting reagent was chosen as 

the extraction method to be used for all soil samples subjected to phosphate analysis. The 

efficiency of the Mehlich3 method is limited by the preparation procedure, Chapter 2 

examines possible adaptations to the physical soil preparation and the effectiveness of the 

Mehlich3 method for in-stride analysis. 

1.3.2 Phosphate Detection 

Multiple methods are used to determine the amount of phosphate extracted from 

the soil sample. The majority of the analysis is performed in a laboratory setting; 

however, a few methods are available for in situ analysis. One of the simplest techniques 
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used in the field is known as the ring test or a spot test Soil is placed on a filter and a 

few drops of acid extracting solution are applied. A color-developing reagent is added 

next and then the intensity of the s.pot is examined (Jones, 2001). The method requires 

the researcher to relate the color characteristics of the ring to the amount of phosphate in 

the soil. This method has several drawbacks. Difficulties arise due to differing color 

perceptions, which leads to inaccuracies. It has been suggested that ring tests are 

ineffectual in areas of high phosphate concentrations (Terry e/ al. 2000). Ring tests are 

also limited to qualitative data and the results change based on sample amount, which 

results in diminished reproducibility. These tests cannot produce gradated maps (which 

allow areas of high phosphate to be rapidly identified) to be used during interpretation. 

However, it should be noted that this method is inexpensive, rapid and easily preformed. 

Commercially available kits for in-stride phosphate detection are also used (Terry 

et al. 2000). These kits, such as the HACH DR/800 portable colorimeter, use 

colorimetric methods of detection and provide quantitative data. Most kits are intended 

for water analysis; however, the HACH colorimeter has been employed for soil analysis. 

The phosphate is extracted from the soil using a method for the extraction of available 

phosphorus. Then a packet of a powdered developing reagent is added to the extract, 

which in the case of HACH colorimeter is similar to those used in the ascorbic acid 

method. After 10 minutes, the absorbance is obtained and related to the concentration of 

phosphorus. Some researchers dispute the accuracy of the HACH kits after finding the 

available phosphate concentration of uncontaminated water to be an order of magnitude 

higher than the total phosphorus in the sample (Stauffer, 1983). 
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Spectrophotometric methods are also used to obtain quantitative results. 

Spectrophotometric methods are more versatile than colormetric methods. In general, 

these methods rely on the formation of a complex between phosphate and molybdate. 

The phosphomolybdate complex then binds with a basic dye in an acidic environment. 

Commonly used dyes include malachite green, rhodamine B, and methyl green (Altmann 

et al. 1971; Baykov et al. 1988; D'Angelo et al. 2001; Van Veldhoven and Mannaerts, 

1987). 

10 

Another popular spectrophotometric method is the Murphy Riley method, 

also known as the ascorbic acid method. This method does not rely on basic dyes to 

produce color in the presence of phosphate. Rather, a phosphomolybdate complex is 

produced using ammonium molybdate and then reduced using ascorbic acid. Substituting 

vanadomolybdate for ammonium molybdate forms a more stable phosphomolybdate 

complex (Olsen and Sommers, 1982). 

The two most widely used spectrophotometric methods are the Murphy Riley and 

the malachite green method. The Murphy Riley method was originally the preferred 

method for phosphate analysis. However in recent years the malachite green method has 

gained popularity, because it is more sensitive. Ohno and Zibilske (1991) state that the 

malachite green method is approximately 3.3 times more sensitive than the Murphy Riley 

method. The increase in sensitivity is the result of the higher absorption coefficient of the 
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malachite green-phosphomolybdate complex when compared to the reduced 

phosphomolybdate complex. Furthennore, VanVeldhoven and Mannaerts (1987) state 

that the malachite green reagents can be stable for over a year. The robustness of this 

reagent is ideal for sites in remote locations where reagent preparation is difficult. 

Murphy Riley reagents must be made fresh daily. 

After examining the advantages and disadvantages of each method, it is clear that 

the malachite green method of phosphate analysis possess great potential for in situ work. 

The method has high sensitivity and the absorbance can be detennined using a portable 

spectrometer. Published studies state the malachite green method requires one hour for 

full development, making the method too lengthy for rapid analysis of multiple samples. 

The time dependence of the development process must be reduced in order to enhance the 

effectiveness of malachite green as an in-stride method. Chapter 3 discusses 

1.4 Arsenate Interference 

Possible interferences to the malachite green method of development were 

examined. Iron, silica, and arsenate (As(V)) are components of soil that are capable of 

interfering with malachite green analysis (Linge and Oldham, 2001; Matsubara et af. 

1987; Matsubara et af. 1993 ; Van Veldhoven and Mannaerts, 1987). Arsenate is 

considered a chemical analogue of phosphate. The structure of arsenate (shown in Figure 

1-3) is similar to phosphate because both anions have a similar structure, symmetry and 

identical charge. 
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Figure 1-3: Structure of arsenate, shown in three forms. 

During the malachite green phosphate detection method, As(V) complexes with 

molybdenum and malachite green. The interference causes an over estimation of the 

concentration of phosphate because both complexes are indistinguishable at the 

maximum absorbance of 630 nm. (Figure 1-4) 
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Figure 1-4 A comparison ofthe absorbtion spectra of phosphomolybdate and 
Arsenomolybdate complexes. The spectra from both complexes are indistinguishable at 
630nm. 

The presence of As(V) in a phosphate containing soil extract causes an increase in 

the absorbance at 630 nm. Figure 1-5 shows the impact of 5 !lM As(V) on a solution of 5 

!lM P04-
3 The increase in the absorbance has a drastic affect on the final calculated 

concentration of phosphate because the soil extract is often diluted by a factor of 100. 

For example if the sample shown below in Figure 1-5 is scaled for a dilution of 50, the 

tinal phosphate concentration of the spiked sample is 520 ~lM as opposed to the accurate 

concentration of 235 !lM. Therefore, the error is increased dramatically and may cause 

the misidentification of an anthropic soil. The phosphate and arsenate signals must be 

decoupled in order to accurately analyze the soil phosphate. 
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Figure 1-5 As(V) increases the absorbance and causes inaccuracies in phosphate 
concentration calculation. [P04

3
-] was calculated using the phosphate only calibration. 

The kinetics of arsenate and molybdate complexation are complicated in the 

presence of phosphate. In solutions void of phosphate, As-Mo-MG forms slower than P-

Mo-MG. However in the presence of phosphate, the rate of formation of the As-Mo-MG 

accelerates (Matsubara el at. 1987; Matsubara el al. 1990 ; Stauffer,1983). This makes it 

difficult to decouple the phosphate and arsenate signals temporally. 

As(V) is the only chemical form of arsenic that interferes with the malachite 

green method. The reduced form of As(V), arsenite (As(lIl» , is incapable of binding 

malachite green and therefore does not interfere with phosphate analysis_ A method for 

the reduction of the arsenate to arsenite is necessary for the accurate analysis of 

phosphate. 
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1.5 Arsenate and Soil 

Arsenate enters the environment from anthropogenic activities and from 

geochemical background. Arsenic, in all of its chemical forms, occurs in over 200 

minerals naturally. Over time, rocks containing As minerals are weathered and As is 

deposited into the environment (Ng et ai. 2001, Pillai et al. 2000). Arsenic is also 

associated with sulphide ores and iron oxides found in soil (Lenoble et al. 2003). 

Baseline concentrations of As in soil range from 5-10 mg kg-1 (Frank, 2005; Matera, 

2003; Smedley and Kinniburgh, 2002). These low levels of naturally occurring arsenate 

do not significantly affect phosphate analysis. 

Additional arsenate is added to the soil through anthropogenic activities. Modem­

day activities such as mining, disposal of industrial waste, smelting of nonferrous metal 

ores, and other industrial processes increase the concentration of arsenate in the soil 

(Frank, 2005; Pillai et al. 2000; Shi et al. 2003). Areas in the proximity of mines report 

concentrations of As up to 27,000 mg kg-1 (Frank, 2005). The arsenate deposited by 

these activities is likely to be confined to the top soil. The interference can be avoided by 

excavating deeper layers of the soil horizon. 

Historically, arsenate was used in pesticide, herbicides and fungicides (Shi et at. 

2003). In the early 1900s, lead arsenate was heavily used as a pesticide in apple orchards 

on the north eastern coast of the United States. Multiple studies have been conducted to 

determine the extent of arsenate contamination of New England soils. Some have 

claimed arsenic does not move beyond the top soil, while others have detected elevated 

levels of arsenic as deep as 47 inches (Newton, 2006). A recent study found most of the 
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As(V) is contained within the first 8 inches of the soil. The average As(V) concentration 

throughout the first 8 inches of soil was 120 Ilg kg-I soil (Newton, 2006). 

In natural systems, arsenic occurs in four oxidation states: (-3), (0), (+3) and (+5). 

As(III) and As(V) are the most prevalent forms in soil (Matera, 2003). As(V) is the 

dominant oxide in soils with pH values between 4 and 7. As(III) is found strongly sorbed 

to oxides in soils with pH values ranging from 7 to 10 (Manning et al. 2002; Matera, 

2003; Ng et al. 2001). In areas prone to flooding, arsenic exists in organic forms such as 

dimethylarsenic acid (DMA) and monomethylarsenic acid (MMA). 

Similar to phosphate, arsenate adsorbs to iron, aluminum and calcium oxides. Iron 

and aluminum oxides adsorb arsenate in acidic soils. Iron arsenate is the more common 

form found in the environment. In alkali soils, arsenate is sorbed to calcium oxides 

(Manning, 2002; Matera, 2003; Ng et af. 2001). 

Arsenate is considered relatively immobile in soil. However, the extent of 

mobility is controlled by multiple factors. Changes in soil pH, organic content of the soil 

and microbial activity alter the anion exchange capacity and thus the mobility of arsenate. 

For example, As(V) is strongly sorbed to iron or aluminum at low pH and if the pH of the 

soil increases, it becomes highly mobile. An increase in mobility results in As(V) 

moving deeper into the soil profile or moving to a new location. 

As a result of As(V) sensitivity to pH, it is easily extracted from the soil using 

mildly acetic solutions. Dilute perchloric, nitric, acetic and hydrochloric acids have 

successfully been used to extract arsenic species from soil. Ammonium nitrate has also 

been used in combination with hydrochloric acid to increase the amount of arsenic 

extracted (Cao, 2004; Jiang, 2005; Matera, 2003; Newton, 2006). As mentioned above in 
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Section 1.3.1, perchloric acid and hydrochloric acid are common reagents used to extract 

phosphate from soil. Ammoniunl nitrate and nitric acid are both found in the Mehlich3 

extracting reagent. Thus, it is possible for arsenate to be extracted from the soil as a 

result of the phosphate extraction method. 

While all archaeological sites are not affected by As(V), it is clear that certain sites 

are contaminated with As(V) deposited by anthropogenic activities. In order to ensure an 

accurate analysis of soil phosphate, an As(V) reduction method must be employed. 

MUltiple samples from the excavation site must be tested to determine if As(V) is present 

in the area. If the soils do not contain As(V), then the phosphate analysis can proceed 

without an As(V) reduction step. However, if the samples do contain As(V), every 

sample must be treated with an As(V) reducing agent before phosphate analysis. Thus, 

the reduction process must meet the requirements for onsite analysis methods and be 

compatible with the method of phosphate analysis. 

1.6 Arsenate Reduction Methods 

Since As(III) is toxic, environmental agencies are concerned with the speciation 

of arsenic in water and soil. Therefore, there are multiple methods for the reduction of 

arsenate to arsenite in soil and water solutions. 

Several methods use potassium iodide as a reducing agent. If KI is used as the 

only reducing agent, reduction takes four to five hours to complete. The method also 

requires strong HCI solutions (5-6 M HCl) because the reaction is driven by the 

formation of AsCh. The reduction is made more efficient by using SnCh used in 

combination with KI. This reduction method requires significantly less time than KI 
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alone but requires profuse shaking, strong acid solutions and an arsine generator. (Chen 

et al. 1992; Dasgupta et al. 2002). KI, with or without SnCh, has never been used in 

combination with the malachite green method or other spectrophotometric methods. 

Sodium thiosulfate and sodium thiosulfite have successfully been used as an 

As(V) reducing agent with spectrophotometric methods. For example, Na2S203 (Figure 

1-6) was used to reduce As(V) concentration under 225 !J.g L-1 before water samples were 

analyzed with the ascorbic acid method. 

2-

2Na+ 

Figure 1-6: Structure of sodium thiosulfate. 

As(V) reduction using sodium thiosulfate must occur in an acidic environment. A 

low pH is necessary for the fonnation of Sz gas, which reduces As(V) to As(III). 

Therefore, NaZS203 is either prepared in a solution of H2S04, or the As(V) sample is 

acidified before the Na2SZ03 is added. 

A wide range of reduction times have been reported for the thiosulfate and 

thiosulfite methods. Between eight and fifteen minutes are required for the reduction of 

As(V) concentrations under 1 !J.M using thiosulfate (Goulden and Brooksbank, 1974; 
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Johnson, 1971). Carvalho et af. (1998) reported a reduction time of 3 hours was necessary 

to reduce concentrations of As(V) over 1 /-tM. In the case of thiosulfite, one hour is 

required for complete reduction of As(V) 1.9 /-tM (Linge, 2001). 

There are several problems inherent in the thiosulfate reduction method. As the 

mechanism below shows, thiosulfate decomposes to form colloidal sulfur in an acid 

environment. 

S20/-(aq) + 2H\aq) ----+ S(s) + S02(g) + H20(l) 

The formation of the colloid interferes with the development of malachite green. 

Malachite green binds to S2, which decreases the amount of malachite green available to 

complex with phosphomolybdate. Linge et af. (2001) noted that because malachite green 

developing reagent is often in an acidic solution, colloidal sulfur formed immediately 

upon the addition of the developing reagent. To negate interference of colloidal sulfur, 

additional reagents, such as metabisulfate, can be added in excess (Johnson, 1971; Linge 

et al.2001). 

Additionally, this reduction method is unsuitable for soils with high iron 

concentrations because Fe(III) binds with thiosulfate (Motomizu et af. 1988). The 

thiosulfate bound to Fe(III) is unavailable to reduce As(V). Therefore, complete reduction 

is not achieved in solutions containing high concentrations of iron. 

A third option for As(V) reduction is the L-Cysteine method. This method has 

been used to pre-reduce As(V) before photometric detection of As(III) (Dasgupta et af. 

2002; Shi et af. 2003). However, L-Cysteine (shown in Figure 1-7) is more commonly 

used in combination with analysis techniques coupled with hydride generation, such as 
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hydride generation atomic absorption spectrometry (Chen et al. 1992; Shi et al. 2003; 

Shraim et al. 1999). 

Figure 1-7: Structure ofL-Cysteine 

L-Cysteine reduces As(V) by forming thiolated As(III) complexes. L-Cystine and 

water are formed as byproducts. 

L-Cysteine is denoted as HSR and the oxidized form L-Cystine is denoted as 

RSSR. 

Similar to thiosulfate, L-Cysteine reduction must occur in an acidic solution 

between a pH of 1 and 4. In this pH range, L-Cysteine is protonated and capable of 

forming the thiolated As(IIJ) complex. To obtain the proper pH, the L-Cysteine solution is 

prepared in dilute HCl (less than 1 M). At room temperature, the reduction takes one hour 

to complete. However, heating the sample to 70-100 ()C reduces the reduction time to as 

little as a minute (Carvalho et al. 1998; Chen et al. 1992; Shi et al. 2003; Tsalev et al. 

2000). Raising the acidity of the solution can also shorten the reduction time. Chen et ai. 
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(1992) report that increasing the concentration of HCI from 0.02 M to 1.0 M decreased the 

reduction time of 35 nM As(V) from one hour to five minutes. 

The As(V) reduction method must also meet the requirements for in-stride 

analysis and it must be compatible with the malachite green analysis method. The 

procedures described in the literature are all unsuitable for field work. KI and Sn2CI 

methods are either too lengthy or require strong acids. Thiosulfate and L-Cysteine are the 

more promising methods for eliminating the interference of As(V) because both have been 

used with either malachite green or ascorbic acid analysis. However, thiosulfate is 

unsuitable because the metabisulfite required to prevent the formation of colloidal sulfur 

must be prepared daily. Thiosulfite does not form colloidal sulfur, but the required 

reduction time is not suitable for large scale surveys. L-Cysteine is only an efficient 

method at elevated temperatures, which is not feasible in remote locations. 

Chapter 4 discusses \1; 

, L-Cysteine. 

L-Cysteine reduction without increasing the solution temperature and a 

slight decrease in the thiosulfate reduction period 

1.7 Muti-elemental Analysis 

Phosphorus is only one of many elements deposited by human activities. For 

example, carbon, nitrogen, sodium and potassium are enriched in areas of human activity. 

However, these elements are highly susceptible to leaching, oxidation and plant uptake. 

Other elements, such as gold and mercury, are deposited during activities specific to a 

particular culture and are considered immobile and stable in the soil matrix. Analysis of 
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these elements provides supplemental data that enhances the determination of intra-site 

usage and provides valuable information pertaining to cultural practices. 

Undisturbed, abandoned soil floors are excellent candidates for multi-elemental 

analysis. Hutson et al. (2006) utilized multi-elemental analysis to study ancient domestic 

structures from a Mayan settlement in Mexico. Ancient Mayans commonly used a 

mercury sulfide known as cinnabar during burial rituals of the elite due to mercury 

sulfide's blood red color. Therefore, the determination of the areas with high Hg 

concentration was useful for locating Mayan burial sites. Huston et al. also found the 

concentration of Hg to be useful for locating burial sites. Two burials complete with 

offerings (70 jade and shell ornaments) were located in areas of high Hg concentration. 

Cook et ai. (2006) achieved similar success by analysis of the chemical 

components of two ancient Mayan soil floors in Guatemala. These studies focused on the 

analysis of trace heavy metals (Hg and Au) as well as rare earth elements. The Au 

concentration was determined to be unusually high and has become a point of contention 

in the archaeological society, as there is a consensus that gold was not used during 

Classic period Maya. Cook et al. were unable to draw definite conclusions about the 

origin of the Au; however the Au enrichment is not the result of natural sources or 

modem human influence. 

Rare earth elements (REE) are considered by many to be excellent indicators of 

past human activity. REE include Sc, Y, and the Lanthanide group. The exact 

anthropogenic source of REE enrichment is unknown, but it is suspected that the 

concentrations of REE are elevated by the decomposition of human teeth, hair, bone and 

skin (Cook et al. 2006; Enstwile et al. 2000). These elements are good indicators of 
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human activity because the native concentration is low. However, enrichment of the 

REE is minimal (often between 1 ng g-I soil and 1 ~g g-I soil) and can be difficult to 

detect. 

The examples of multi-elemental analysis cited above were all conducted in a 

laboratory using either Inductively Coupled Plasma Mass Spectrometry (lCP-MS) or 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The analysis 

process is confined to the lab due to the cumbersome instrumentation. However, the 

portable UV Nis spectrometer can be exploited and used to detect many other elements 

and ions while onsite. 

For example, Fe(III) can be detected through use of potassium thiocyanate 

(KSCN) (Aggrawal, 2003; Chriswell and Schilt, 1974; Ivsic and Tamhina, 2003; 

Kawakubo et al. 2004; Kopacek et al. 2001; Peters and French, 1941). The Fe[SCNh 

complex is a vibrant orange and absorbs at a maximum of 450 nm. The reaction is rapid 

and requires minimal amounts of chemicals and therefore it is an ideal method for 

fieldwork. 

Iron is a major component of the earth's surface and is found in high 

concentrations in soil. Iron analysis alone is not conducive to locating former settlement 

sites. However if iron analysis is conducted in areas with high phosphate concentration 

or areas suspected of human habitation, valuable information about cultural practices is 

gained. For example, Terry et al. (2000) studied a Late Classic Mayan society in 

Aguateca, Guatemala by comparing the concentration of iron in specific sections of 

houses to the iron concentration at an off-site location. The analysis revealed several hot 

spots of iron, which indicates the area was used for the preparation of pigments and dyes. 

29 



Terry et al. also discovered high concentrations of iron outside of the kitchen area. The 

accumulation of iron is believed to be the result of guards sharpening their machetes. It 

has been suggested that the butchering of animals leads to increased iron concentrations. 

However, the accumulation of iron from blood is not yet supported by chemical analysis 

(Cook et al. 2006). 

Iron is just one example of the many elements that can be detected through 

UV /Vis analysis while onsite. Archaeologists and chemists must determine additional 

elements and ions that have archaeological relevance and can be detected efficiently 

using the portable spectrometer. Increasing the applications of the portable UV /Vis 

allows a more thorough analysis of the archaeological site in a timely and efficient 

manner. 

1.8 Conclusions 

Soil phosphate analysis has proven to be an important archaeological technique for 

delineating large archaeological sites and aiding the determination of intra-site usage. 

However, the quantitative analysis of phosphate is usually confined to a laboratory 

setting. In order to fully recognize the potential of phosphate analysis, the following 

objectives must be met: 

1. Procedures for the extraction of phosphate from soil and the analysis of 

phosphate must be modified to increase the efficiency, portability and ease of 

use. 

2. Arsenate is a chemical analogue of phosphate and interferes with phosphate 

detection methods. Due to both historic and modem anthropogenic activities 

elevated concentrations may be found in certain soils. Therefore an arsenate 
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reduction method is necessary to ensure accurate phosphate analysis III 

contaminated soils. 

3. Many elements, such as iron, can be detected through UVNis spectroscopy. 

Increasing the number of detectable elements allows for a more thorough 

analysis of the excavation site. Thus, it is important to develop in-stride 

methods for the detection of additional archaeologically relevant elements. 
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2 

SOIL PREPARATION AND EXTRACTION 

2.1 Introduction 

Malachite green phosphate analysis cannot be preformed on the soil directly 

without preliminary physical and chemical preparation. First, the water and organic 

debris is removed from the soil, and then phosphate is extracted from the soil usmg 

chemical reagents. 

The recommended process for physical soil preparation IS lengthy and not 

conducive for fieldwork. Ideally, soil is air dried in laboratories at room temperature. 

The time required for the drying process is dependent on the amount of moisture in the 

soil, ambient humidity, as well as the properties of soil. For example, clay soils high in 

organic content have lengthy drying periods when compared to sandy soils. Though 

heating the soil sample can expedite the drying process, heating the sample to 

temperatures above 40°C is inadvisable (Eliason, 1998). At elevated temperatures the 

chemical properties of the soil are altered and soil minerals -such as K, N, and organic P 

- become fixated or released. These changes lead to inaccurate results in the elemental 

analysis and thus oven drying is not commonly employed. 

The soil drying process must be altered in order for the Mehlich3 method to be 

integrated into a large-scale soil analysis. One possible solution is to forgo the drying 

process. This is potentially problematic as the introduction of water mass from the "wee' 
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soil may introduce error to the calculation of phosphate and potentially yield low 

concentrations of calculated phosphate. 

Several methods have been created for phosphorus extraction In order to 

specifically accommodate the diverse characteristics of soiL Accordingly, many field­

viable soil extraction reagents are limited to small pH ranges or unique soil properties­

such as texture and phosphorus type. Situation specific extraction methods are generally 

incompatible with a broad range of archaeological sites containing diverse soiL Soils that 

have properties which deviate from the specifications of the selected extraction method 

will not be fully extracted and result in lower phosphate concentrations when analyzed. 

Therefore, in order to ensure accurate analysis, a versatile extraction method must be 

utilized. 

2.2 Extraction Methods 

The Mehlich3 method is an exception to the situation specific extraction. The 

extracting reagent is composed of N~F, NH4N03, glacial CH3COOH and HN03 . The 

combination of chemicals allows the extraction of available phosphorus from a variety of 

soil types and textures over a broad pH range without sacrificing the amount of extracted 

phosphorus. In fact, the Mehlich3 method extracts more available phosphorus than other 

methods with comparable methodology. For example, in acidic and neutral soils 

Mehlich3 phosphorus is 4% more than Bray PI phosphorus (Mehlich, 1984). Mehlich3 

phosphorus in calcareous soils is notably higher than Olsen phosphorus. It has been 

reported to extract up to 12% more phosphorus than the Olsen method (Maiti and Das, 

2007). As a result of the versatility and ease use of this extracting reagent, the Mehlich3 

method has been widely adopted by soil scientists for use in the United States. 
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Acid digestion methods are considered to be universal extracting reagents and 

can be used regardless of soil properties. Strong acids, such as HCI04, H2S04 and HC1, 

are used to remove phosphate from soil regardless of soil properties. These methods are 

widely used throughout the field of soil analysis because they are capable of extracting 

many soil chemical components and can be used for a variety of applications. 

The percholoric acid method described by Olsen et al. (1982) uses 60% HCI04 

to extract both inorganic and organic phosphorus from soiL In order to achieve complete 

digestion of the soil, the acid and soil mixture is heated on a hot plate to a temperature 

just below the boiling point. This process must be performed in a hood to prevent 

exposure to toxic HCI04 fumes. The sample is heated until the insoluble material 

becomes white, which typically requires 40 minutes. The solution is diluted with 

distilled water once it has cooled. After the insoluble material settles to the bottom of the 

flask the solution can be analyzed to determine total soil phosphate. 

Acid digestion methods that have been used in archaeological studies included 

the sulfuric acid and the hydrochloric acid methods. Hassan et al. (1981) used 7.SN 

H2S04 for the digestion, and the complete process requires 30 minutes. Cavanagh et 

al. (1988) used HCl to remove phosphorus from soiL The soil samples were heated in a 

stearn bath for an hour digestion. The stearn bath heating is not found in all HCl 

digestion procedures. Other published methods boil the soil and HCl mixture while 

others omit heating the sample during the digestion period. 

Acid digestion methods are limited to laboratory analysis because of the 

hazardous nature of the concentrated acids. However the methodolob'Y of the Mehlich3 

can easily be integrated into on-site phosphate analysis. This method does not require 
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cumbersome equipment or extensive glassware. Also, it uses a small volume of a non­

hazardous extracting reagent and the extracted soil is the only waste produced. Most 

importantly, the Mehlich3 method requires only five minutes for extraction. The limited 

time is well suited for archaeological surveys that analyze large numbers of soil samples. 

Despite the many advantages, the Mehlich3 method is limited by the soil preparation 

process. 

2.3 Reagents 

The Mehlich3 extracting reagent was prepared following the procedure outlined 

by A. Mehlich (1984) with one exception - EDTA was omitted from the stock solution. 

A stock solution of 3.75xlO-2 M NH~ was prepareded in deionized water. The 

extraction solution was prepared by dissolving 20.0 g of NH4N03 in approximately 800 

ml of water. 40 ml of stock solution, 11.5 mL of glacial acetic acid, and 0.840 ml of 

concentrated nitric acid were added. The solution was mixed thoroughly and brought to a 

final volume of 1 L. 

The Olsen extracting agent was prepared following the procedure explained by 

Olsen and Sommers (1982). The solution contains 15 mL of 1 M NHJ< solution and 25 

mL of 0.5 M HeI. The extracting reagent is brought to a final volume of 500 mL using 

DI water. 

Phosphate concentration of the extracted soil was detennined using the malachite 

green method of phosphate analysis. Reagent 1, a 3. Ox 10-4 M malachite green solution, 

was prepared from malachite green oxalate. 350 mg of 89% Partially hydrolized 

polyvinyl alcohol were dissolved before the malachite green was added in order to 

prevent the precipitation of the dye. Reagent 2, 6.9xlO-3 M (NH4)6M07024 4H20) 
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solution, was prepared in 3 M H2S04 . Further details on the malachite green method for 

phosphate determination are presented in Chapter 3. 

Extracting efficacy was determined using soil collected from the Blue Ridge 

Center for Environmental Stewardship (BRCES) in Loudon County, Virginia. 

2.4 Laboratory Preparation and Extraction 

In the laboratory, moisture was removed from the soil by heating the samples to 

temperatures between 40 and 70°C for several hours in an oven. After the samples 

cooled and returned to room temperature, the soil was filtered using a metal screen to 

remove large organic debris and rock. The soil was crushed using a mortar and pestle 

and filtered with a metal screen. A sample prepared following this process can be stored 

indefinitely provided it remains in a dry environment (Jones, 2001). Therefore, Loudoun 

County soil samples that were not immediately extracted were stored in glass vials for 

later use. 

Extracting solution was added to the dried soil samples using a 10: 1 extractant 

volume to soil mass ratio as recommended by Jones (2001). The volume/mass ratio is a 

variation from the original Mehlich3 procedure, which used a 10: 1 volumetric ratio. 

Both ratio methods are acceptable provided the ratio is used consistently throughout the 

samples. Following the addition of the extracting reagent, the sample was shaken for five 

minutes to ensure proper mixing and maximum extraction of phosphate. The samples are 

highly turbid after the 5 minute shaking period and must be filtered to prevent 

inaccuracies during phosphate analysis. The soil was removed from the extractant using 

syringe filtration. The syringe filtration system is shown in Figure 2-1. Syringe filtration 
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was used over the traditional gravity filtration in order to decrease the time required for 

extraction. The pressurized filtration system allowed this step to be complete in under a 

minute for most soil samples, with typical filtration times around 10-\5 seconds. This is 

a significant improvement over gravity filtration, which takes up to an hour depending on 

the soil properties. The filtrate was kept and used for malachite green phosphate analysis . 

.. 
" 

PressulI'i:zed 
filtratfQ'n 

Syringe Filter 

Figure 2-1: Syringe filtration of soil and extractant mixture. The solution In the 
collection vial is tree of small soil particles and ready for phosphate analysis. 

2.4.1 Comparison of Extraction Methods 

A large quantity of soil was sampled from the BReES land in a forested area 

free of human influence and was prepared following the procedure described above. The 
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soil was stored in a desiccator to ensure the dried sample remained free of moisture. 

From here forward, this sample is referred to as the "bulk sample". The phosphoms in 

the bulk sample was extracted using seven different methods used in archaeological 

surveys or soil analysis (HCI04, H2S04, HCI at several temperatures, Olsen and 

Mehlich3) to determine the accuracy of Mehlich3 extractions. The solution containing 

the extracted phosphate for each method was analyzed using the malachite green method. 

The results of the phosphate analysis are shown in Table 2-1. 

Method [P04t±S.D.3 

(JUg PI kg soil) 

HCI04 372 ± 10 

HCI/Steam 237 ± 8 

Hot H2SO4 226±5 

Hot HCI 146 ± 3 

HCI 93 ± 1 

Mehlich 3 8±0 

Olsen 7±0 
a n=3 

Table 2-1. A Comparison of the phosphate concentration resulting from different 
extraction methods shows Mehlich 3 phosphate is significantly lower than the phosphate 
of acid digestions. 

It is immediately obvious that the Mehlich3 extractable phosphate represents only 

a small fraction of the total phosphate extracted by the HCl04 method and is considerably 

lower than the H2S04 and HCl extractable phosphate. Though the data seem to eliminate 

Mehlich3 as an optimal extracting reagent, there are several important factors to consider. 

First, it is important to recognize that HCI04 method extracts both inorganic and 

organic phosphorus while Mehlich3 extracts only inorganic phosphorus. Thus, a portion 
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of the difference in extracted phosphorus can be attributed to the organic content, which 

represents 50-80% of the total phosphorus in soil (Cornforth). This is particularly 

important because organic phosphorus data is irrelevant to archaeological work. It enters 

the soil from the deeay of recent living organisms and does not have historical 

significance. 

Estimation of the organic phosphorus content narrows the large gap between 

strong acid digestion phosphorus and Mehlich3 phosphorus, but the discrepancy still 

remains. It is clear that Mehlich3 does not extract the total inorganic phosphate. 

However, this archaeological survey is concerned with relative phosphate rather than 

absolute phosphate. A relative analysis compares the phosphate concentrations of 

multiple soil samples from the site to assign distinctions of high, medium and low 

phosphate. Then the relative amounts of phosphate are used to create a gradated spot 

map and used to distinguish intra-site boundaries and usage. 

For a relative phosphate survey, Mehlich3 has several advantages over the other 

extraction methods. Recall the Mehlich3 soil digestion requires five minutes as opposed 

to the thirty-minute acid digestion analysis. This minimal time requirement allows for 

maximum efficiency when surveying expansive archaeological sites. Moreover, the 

Mehlich 3 method can be integrated seamlessly into fieldwork because it does not require 

additional instrumentation to heat the sample. Logistically, Mehlich3 is the more suitable 

choice for in-stride relative phosphate analysis. 

The Mehlich3 extract is more compatible with the malachite green method of 

analysis. The malachite green method is sensitive to changes in the pH of the solution. 

As Figure 2-2 shows, the intensity of the absorbance signal for molybdophosphate-
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malachite green is diminished at low pH. Mehlich3 extracts have a slightly acidic pH, 

but the pH is within the optimum range of2-5. 
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Figure 2-2: The absorbance of the malachite green and molybdophosphate complex is 
dependent on the sample pH. Maximum intensity occurs in samples with pH between 2 
and 5. 

Highly acid solutions with a pH below 2 show diminished absorbance at 630 nm 

and an increased absorbance at 460 nm. The shift in absorbance reflects the change in 

the dye structure. At a low pH the malachite green becomes protonated. which decreases 

the conjugation of the electrons. Accordingly, this form of the dye absorbs at a shorter 

wavelength than the highly conjugated green form. This form cannot efficiently bind 

phosphomolybdate. The HCl, HCl04, and H2S04 extracts required extensive dilution to 

obtain a pH suitable for phosphate analysis. These large dilutions require additional time 

and introduce error into the calculation of phosphate. 
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Unlike the acid digestion methods, in Mehlich3 extractions iron is not extracted 

from the soil (Jones, 2001). Although iron does not directly affect the malachite green 

method, it interferes with additional steps in soil analysis-such as the thiosulfate 

reduction of arsenate. A comparison of the extract solution color illustrates the variation 

in the amount of iron extracted (Figure 2-3). The more intense the yellow solution the 

more iron is present in the sample. Typically, the Mehlich3 phosphate extract is clear, 

whereas the phosphate extracts from the acid digestion methods are yellow indicating that 

iron (III) is present in the sample. The vibrant yellow extract solutions cannot be reduced 

with thiosulfate without an additional step to first remove the iron. 

! - -

Figure 2-3. The filtrates from the different extraction methods show a wide variation in 
color. The Mehlich3 extract (second from right) is clear indicating iron is not present. 
HCI04 and 2 M HCI extracts have high concentrations of iron (indicated by intense 
ye llow color). 
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2.4.2 Mehlich 3 Reproducibility 

Six soil samples were selected to represent various sample areas and soil 

composition. Three "on-site" samples (U028 and U026) and four "off-site" samples 

(471, 481, 493 and 511) from four different levels of sampling (A, B, Ll, LS) were 

chosen. Each sample was extracted three times and then each extract was analyzed for 

phosphate concentration. The average phosphate concentration for each extract was 

compared to determine the reproducibility associated with the Mehlich3 method of 

extraction. Table 2-2 shows the resulting phosphate concentrations and standard 

deviation for three extractions of the soil sample. 

Sample [P04]average ± S.Da 

~!:!M~ 
4718 144 ± 3 

4818 9±2 

493A 107 ± 4 

511A 41± 3 

U028L 1 388 ± 27 

U026L5 114 + 8 
an=3 

Table 2-2. Average phosphate concentration resulting from three Mehlich 3 laboratory 
extractions. The reproducibility for the extraction was acceptable for archaeological 
work. 

The deviation from the average phosphate concentration IS acceptable for 

archaeological purposes. The average relative standard deviation of the reported 

phosphate concentrations is 9%. A portion of the error in reproducibility can be 

attributed to the large-scale dilutions necessary for phosphate analysis. Certain soil 

samples, such as U028Ll, were diluted by a factor of 40 during phosphate analysis. 

Although the dilution was performed volumetrically, the dilution introduces error and 
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decreased reproducibility. However, since the phosphate concentrations are used for a 

relative analysis, the deviations from the mean do not impact the identification of high 

phosphate concentration and anthropogenic soils. For example, despite the uncertainty in 

the phosphate concentration of U028L I the sample can easily be identified as "high" 

concentration relative to the samples 493a and 511 a. 

The laboratory procedure for Mehlich3 extraction proved effective for soil 

samples from the archaeological site in Loudon County, Virginia. The oven drying 

process is ineffectual for field extraction and alternatives must be explored. 

2.5 In-stride Preparation and Extraction 

Soil extracted in the field was not dried during preparation in order to 

accommodate the time constraints of a dynamic, large-scale survey of the archaeological 

site. A significant amount of time was conserved by using the "wet" soil directly from 

the earth. In the field, a soil sample was taken such that it was free of rocks and organic 

debris, and then weighed without further preparation. 

Extraction reproducibility for the wet soil was examined following the Mehlich3 

extraction procedure described in section 2.3. The same six samples were extracted three 

times and the results are shown in Table 2-3. 

Sample [P041average ± S.Da 
(iJM) 

4718 131 ±4 
4818 2± 1 
493A 63 ± 0 
511A 17±1 
U028L.1 370± 20 
U026L;;;.;;;_5 ____ ----"-94..;..±~2 
a n-3 

Table 2-3: Average phosphate concentrations determined from three Mehlich3 
extractions of wet soils. 
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The reproducibility of the phosphate concentration of an individual extraction was 

comparable to the dry extractions. The deviation of the phosphate for the three 

extractions was slightly higher (\3%) but remains acceptable for archaeological 

fieldwork. Therefore, it was determined that the addition of water mass did not greatly 

alter extraction reproducibility for the purposes of relative analysis. On a given day the 

amount of water in the soil is uniform throughout the sample. It is important to remain 

aware of weather conditions as changes in precipitation may alter the day to day degree 

of water content. 

Undried soil samples contain a mass component that is exclusively water. 

Therefore, the total soil mass in 1.00 g of soil is actually somewhat lower depending on 

the water content, and it is expected that the concentration of phosphate in wet soils 

should be lower than phosphate concentration in dry soil. However, after comparing the 

phosphate concentrations derived from the wet and dry soils, it is clear there is a strong 

correlation between the field and laboratory methods (Figure 2-4.) 
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Figure 2-4. Phosphate concentrations calculated from wet and dry extractions show 
excellent correlation. 

The accuracy loss resulting form the wet extraction does not affect the assignment 

of high phosphate. Sample U028L 1 can still be assigned the classification of high 

phosphate relative to the wet extracted samples. However to ensure accurate analysis, the 

difference in extracted phosphate can be rectified by additional work in the field 

laboratory. The water content in a group of soil samples representing the survey area can 

be determined through oven drying. Then the percentage of water in the soil sample can 

be used to adjust the final calculation of phosphate concentration. 

For example, consider an extraction of 1.00 g of wet soil yields a calculated 

phosphate concentration of 250 /lM. Later in a field laboratory the soil is air-dried and it 
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is determined that the soil contained 17% water by mass. The error resulting from the 

water mass can easily be corrected for in the calculation of mg P kg -I soil as shown 

below. 

First, the actual mass of soil must be determined: 

mass dry = masswet - (masswet x %water) 

= 19 - (lg x 0.17) 

massdry = 0.83g 

Using the dry mass of soil extracted, the accurate concentration in mg P/kg soil can be 

determined. 

250XlO-6 MPO;-X(0.010L)X( 1molP )x(30,470m
g
p)x( 1 ) 

ImoIPO;- ImolP 8.3 x 10-4 kgSoil 

-9 mgP/ 
- 1.8 /kgSoil 

If the addition of water mass is not corrected, the concentration of P in the soil is 

76.1 mg P kg- I Soil. For soils that have low water content, such as the example provided 

above, correcting for water mass is not a great concern. If weather conditions change 

during the survey, samples should be corrected for water mass in order to ensure accurate 

analysis. In the case of soil samples collected from Loudon County, the error introduced 

by water is minimal and the soil drying step was eliminated. 
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2.6 Conclusions 

Mehlich3 is a suitable reagent for the extraction of phosphate in archaeological 

soil samples. The amount of phosphorus cannot be considered an accurate assessment 

of the total soil phosphorus. Rather, the data must be used for a relative analysis to aid 

in the assignment of areas with high, medium and low phosphorus. 

In order to increase the efficiency of a dynamic survey, the arduous soil drying 

process can be eliminated. Despite the added mass from water the wet soil extractions 

yield phosphate concentration results comparable to the laboratory preparation. The 

shortened preparation processes combined with a relative phosphate analysis are 

conducive to dynamic archaeological surveys. This type of analysis allows a greater 

number of soil extractions than traditional laboratory extraction methods. 
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3.1 Introduction 

3 

PHOSPHATE DETECTION 

Upon completion of the soil sample extraction process, the inorganic phosphate is 

typically analyzed using either colorimetric or spectrophotometric methods. The most 

sensitive and widely used detection methods for phosphate rely on the formation of the 

heteropolyacid phosphomolybdate in an acidic environment (Van Veldhoven and 

Mannaerts, 1986). After the macromolecule is formed, the phosphomolybdate is either 

reduced to the colored form or complexed with a cationic dye. 

The reduction of phosphomolybdate results in the formation of molybdenum blue. 

The absorbance of the reduced phosphomolybdate can be correlated to the amount of 

phosphate in the solution. Originally, stannous chloride, tin and ascorbic acid were used 

as reducing agents (Broberg and Petterson, 1988; Murphy and Riley, 1962; Rao et al. 

1997). Ascorbic acid was found to be the best reducing agent, although color 

development was slow. Murphy and Riley (1962) improved the ascorbic acid method by 

catalyzing the formation of molybdenum blue using antimony. 

Alternatively, a cationic dye can be used to form an ion associated complex with 

the phosphomolybdate. 

Several different types of dyes (such as 

ethyl violet, malachite green, methyl green, and methylene blue) have successfully been 
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used to detect phosphate (Broberg and Petterson, 1988; Motimizu et af. 1983; Murphy 

and Riley, 1962; Rao et al. 1997; Van Veldhoven et al. 1986;). Motomizu et al. (1983) 

determined malachite green was the most suitable dye for phosphate analysis because it 

did not form a precipitate as readily as the other dyes. Motomizu et at. also noted "the 

coloration [of malachite green] was the best of all dyes examined". 

Both the ascorbic acid and the malachite green method are widely accepted by the 

soil science community, but the malachite green has several advantages. The malachite 

green method is at least four times more sensitive then the ascorbic acid method (Rao et 

al. 1997). The increase in sensitivity is attributed to the higher absorption coefficient of 

malachite green. Furthermore, the malachite green method is acknowledged as the more 

precise and accurate method, particularly when analyzing soils with low levels of 

phosphate (Broberg and Petterson, 1988; Rao et af. 1997). For these reasons, the 

malachite green method was selected for in-situ phosphate analysis of archaeological soil 

samples. 

Malachite green has three different forms (Figure 3-1). The yellow, protonated 

form is found in solutions with pH below 2, and the green form dominates at a pH above 

neutral. In slightly acidic environments both forms are found in nearly equal amounts. A 

colorless form results from the reduction of the dye. 

clear 

Figure 3-1: The structures of malachite green. 
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Each form of malachite green has a unique absorbance spectrum (Figure 3-3). 

The reduced form is colorless and therefore shows no absorbance in the visible range. 

The natural green form of malachite green displays two peaks: a small peak at 425 nm 

and a more prominent peak absorbing at a maximum near 630 nm. The yellow form 

absorbs strongly around 450 nm. 

10 

08 

'" u 
c 06 
'" D a 
~ 
D « 0 4 

02 

00 

450 500 550 600 
WavereOJth (nm) 

- IoJ\ al¥~Me Green 
- Prolonaled tollaiachrte C-,reert 

700 

Figure 3-3: The absorbance spectra of the green and yellow forms of malachite green. 
Leuco-malachite green does not produce an absorbance spectrum. 

Both the yellow and green forms are capable of forming a complex with 

phosphomolybdate. However, the yellow form displays a very mild propensity for 

bonding to the phosphomolybdate. The absorbance resulting from this complex is 

considered negligible compared to the absorbance from the green form. Since the 

phosphate concentration correlates with the green form, the absorbance is monitored in 

the 600-700 nm range. 
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Sulnlric acid is used to reduce all unbound dye molecules to the colorless leuco 

form. This reduction process requires thirty minutes or longer to reach completion 

(Broberg and Petterson, 1988; Motomizu et al. 1983; Rao et al. 1997). The absorbance 

of the solution after this time period can be attributed solely to the phosphate-bound dye 

and the concentration can be determined. 

Although the reagents in th{~ malachite green method are more suitable for in-situ 

analysis than the ascorbic acid method, the thirty-minute development time is impractical 

for a large site where hundreds of soil samples are generated. The lengthy development 

time must be decreased before it can be incorporated into a large-scale survey. Kinetic 

studies in our laboratory have proven that the phosphate development time can be 

shortened significantly to three minutes. Further studies showed that by utilizing dual 

absorbance measurements, the analysis can occur instantaneously. 

3.2 Reagents and Instrum{~ntation 

A stock solution of 3. Ox 1 0-4 M malachite green solution was prepared from 

malachite green oxalate. 350 mg of 89% partially hydrolized PVA was dissolved in 

80mL of water. The addition of PV A prevents the malachite green from precipitating 

(Broberg and Petterson, 1988; Van Veldhoven et al. 1986). Next, 35 mg of malachite 

green were added. Vigorous stirring ensured all malachite green was dissolved. 

A 6.9xlO-3 M Ammonium Heptamolybdate solution was prepared by dissolving 

0.857 g of(N14)~07024·4H20 in 60 mL of3 M H2S04 and brought to a final volume of 

1 00 m L with water. 
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Stock solutions of phosphate were prepared from KH2P04 (Aldrich, 99%), 

without further purification. Working solutions were prepared by volumetric dilution. 

Absorbance measurements were obtained using an Ocean Optics fiber optic 

spectrometer for all absorbance measurements. A] 0 mm pathlength cuvette was used. 

Absorbance of the green fonn of malachite green was monitored 630 nm. The 

absorbance of the protonated, yellow fonn was monitored at 473 nm. 473 nm was 

chosen in order to avoid interference from the 450 nm peak of the green form. 

3.3 Three Minute Phosphate Analysis 

Established malachite green analysis methods utilize one developing solution 

containing all three of the necessary components (malachite green, molybdate, and 

sulfuric acid) (Rao et al. 1997; Van Veldhoven et al. 1986). This "premixed" solution 

has a low pH as a result of the addition of sulfuric acid, which implies malachite green 

will not exist in the natural green form.. Instead after the solutions are mixed, there is a 

shift to the yellow, protonated form and the partial reduction of malachite green to the 

colorless fonn. The absorbance spectrum confinns the premixed developing reagent 

contains the yellow form, not the green form. (Figure 3-3). 
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Figure 3-3: The absorbance spectrum of the premixed developing reagent shows that 
malachite green is present predominantly in its protonated form. 

After approximately 10 minutes, the premixed solution reaches an equil ibrium 

state between protonated malachite green (HMO) and the reduced leucomalachite green 

(LMO) by way of malachite green (MO). 

HMO!:; MO !:; LMO 

When the mixtw'c is added to a phosphate solution, phosphomolybdate is formed . 

The phosphomolybdate loosely associates with LMO and is then oxidized to the green 

form. The intensity of the green color is dependent on the rate of oxidation or the LMO 

and phospho molybdate complex. 

_ dOreen = k[LMGPMoJ 
dl 

(3-1) 
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Only bound LMO molecules are oxidized back to the colored MO torm and 

therefore, the rate of color formation is depcndent on the phosphate concentratioll. 

This complex process results in an asymptotic rise in absorbance over time as 

leucomalachite green binds to phosphomolybdate and oxidizes to the more stable colored 

form (Figurc 3-4). 
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Figure 3-4: Kinetic analysis of the two methods of developing reagent addition. The 
premixed solution (0,0) displays an asymptotic increase in absorbance. The non­
premixed solutions (0,0 ) displays an exponential decay in absorbance. 

The process can be simpliJied if the malachite green is added separately from the 

sulfuric acid. If the malachite green is kept separate from the sulfuric acid it exists as 

MO and HMO. After the malachite green is added to phosphate solution, loose 

association complexes are formed between the MO and phosphate ion (MOP). Thc 
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fonnation of the MOP is essentially instantaneous. The total malachite green available 

(MOo) is divided into MG and MGP: 

The molybdate and reducing agent are added as a separate solution. The 

molybdate entraps the association complex while the sulfuric acid reduces the unbound 

MG. The rate of the color development is dependent on the reduction of the unbound 

malchite green. 

Or 

d[MG] k[MG] 
dt 

d[MG] k([MG] -[MGPD 
dt 0 

(3-3) 

(3-4) 

MGP is equal to the concentration of phosphate, and MO can be considered 

[P04]. Therefore, 

_ d[MG] = k([MG] _ [PO D 
dt 0 4 

(3-5) 

In the case of the separate addition of the solutions, the malachite green is in 

excess of the phosphate. The concentration of MGP is relatively small and can be 

neglected. The reduction of the unbound malachite green is effectively independent of 

the concentration of phosphate. 

Separate addition of the developing reagents results in the exponential decay of 

the 630 run absorbance over time (Figure 3-6). A relatively constant absorbance 

coefficient is achieved after approximately twenty minutes. However, a reproducible 

fraction of free malachite green is reduced after a given period of time. Therefore, an 
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unknown sample of phosphate may be evaluated before the reaction reaches completion. 

In this manner, the development process can be shortened without loss in correlation or 

linearity of the phosphate analysis. 

The validity of a shortened development time was examined by creating two 

calibrations using phosphate standards. 3 mL of phosphate solution were analyzed by 

adding 0.3 mL of the malachite green reagent and 0.3 mL of the sulfuric acid and 

molybdate solution. The absorbance was measured after 3 minutes and again after one 

hour. The 3 minute development time was selected after observing it as a point where the 

absorbance decay became less rapid, thereby providing an early time at which small 

timing errors would introduce a lesser degree of accuracy problems. The I hour time 

period was selected for comparison and was sufficient to ensure the reduction process of 

malachite green was complete. 

The calibrations are shown in Figure 3-5. It is immediately obvious that the 

absorbance at 3 minutes is higher than the absorbance at one hour. This can be attributed 

to the incomplete reduction of unbound malachite green. However, the increased 

absorbance did not affect the linearity and correlation of the 3-minute calibration. The 3-

minute calibration line has a regression value of 0.996 and a slope of 0.071, which is 

comparable to I-hour method (0.996 and 0.079 respectively). The parallel slopes 

indicate the shortened time period does not lead to a loss of sensitivity in the detection. 

The 3 minute readings are slightly less precise than those taken after an hour. The 

average relative standard deviation of 3-minute readings is 0.07 as opposed to 0.01 for 1-

hour measurements. The shortened method is sensitive to alterations in the data 
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acquisition time because the reduction process is incomplete. Thus, a delay of several 

seconds causes a lower absorbance measurement and in turn a decrease in precision. 
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Figure 3-5: A comparison of 3 minute and I hour development shows the shortened 
analysis time does not lead to a significant loss in precision, correlation or sensitivity. 

Despite the small loss in precision, the 3 minute development time is ideal for an 

archaeological survey. It is important to remember the archaeological analysis is 

concerned with relative phosphatc and the small increase in deviation does not affect the 

assignment of "high" and "low" phosphate. The error can be corrected by analyzing 

additional samples at a later time. 
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3.4 Instantaneous Dual Absorbance Analysis 

The 3-minute procedure was employed for the field studies in Loudoun Co. and 

for all initial studies. I'urther kinetic studies of the development process led to an 

addit ional shortening of the acquisition time. 

When the malachite green reagents are added to a phosphate solution separately, 

the absorbance profile is composed of two peaks resulting from both malachite green and 

protonated malachi te green (Figure 3-8). The two peaks have maximum absorbance 

coefficients at 450 nm and 630 nm. 
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Figure 3-6: The spectra of two dif1erent phosphate concentrations show absorbance at 
450 nm and 630 nm. Absorbance at both peaks is dependent on phosphate concentration. 

It is clear from Figure 3-6 that the absorbance of both peaks is dependent on 

phosphate concentration. At high phosphate concentrations, the peak at 630 nm is more 
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intense than the peak at 450 run. At lower concentrations, the reverse is true. The shift 

from the yellow form to the green is controlled by the concentration of phosphate since 

bound malachite green is removed from the yellow/green equilibrium equation. When 

malachite green binds phosphomolybdate the yellow/green equilibrium shifts to produce 

the green form. As the phosphate concentration increases the yellow/green equilibrium 

shifts to produce more green form and the intensity of the 630 nm peak increases. Since 

the intensity of both peaks is controlled by phosphate, the difference between the 

absorbance coefficients can be used for phosphate determination. Recall from Figure 3-3 

that malachite green has a small peak in the 400 run-450 nm range, thus accurate 

absorbance measurements cannot be obtained. Instead, the absorbance of the protonated 

form is measured at 473 nm where the malachite green exhibits a window of low 

absorbance. 

To understand how dual absorbance can be used to determine the phosphate 

concentration, it is important to understand each absorbance individually. Malachite 

green analysis conforms to Beer's law and therefore the absorbance from the protonated 

malachite green is: 

(3-6) 

The rate of formation ofHMG can be written as: 

(3-7) 

Which can be rearranged: 

(3-8) 

Or, 
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HMG=[MG]K 1 (3-9) 

where KI = [H+]. 
Ka 

Equation 3-9 can be combined with Equation 3-8 to give: 

(3-10) 

Recall that the absorbance at 630 nm is written as: 

d[ MG] k([ MG ] - [MGP]) 
dt 0 

(3-11 ) 

The difference between the two absorption coefficients can be used to determine the 

phosphate concentration. 

Equation 12 can be rearranged: 

Recall that: 

[MG ] = [MGo]-[HMG]-[MGP] 

[HMG}=[MG}K and therefore: 

[MG ] = [MGo]-[MG]K1 -[MGP] 

Equation 3-15 can be rearranged: 

[MG ](1 +KI) = [MGo]-[MGP] 

Thus, the [MG] can be written: 

[MG ] = [MGo]-[MGP] 
(1 + KI) 

Equation 3-17 can be substituted into equation 3-13 to give: 
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(3-12) 

(3-13) 

(3-14) 

(3-15) 

(3-16) 

(3-17) 



(3-18) 

Equation 3-18 is rearranged to: 

(3-19) 

The [MGP] can be isolated from the equation: 

(3-20) 

Equation 3-20 is in the form of y = mx+b where [MGPj= x, A630 - Am = y, 

A630 and A473 and the concentration of phosphate is linear. The relationship between the 

absorbance difference and phosphate concentration can be calibrated and used to 

determine the concentration of unknown phosphate solutions. 

Kinetic analysis shows that for a given concentration, the absorbance difference 

between the two peaks is relatively constant (Figure 3-7). Therefore, the analysis time 

can be shortened to an instantaneous data acquisition provided the difference between the 

peaks correlates with phosphate concentration. 
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Figure 3-7: The difference in the absorbance at 473nm and 630nm is constant throughout 
the absorbance decay of malachite green. 

The absorbance coefficients were obtained at 473 nm and 630 nm for phosphate 

standards ranging from 1-20 f.tM. Both measurements showed excellent linearity. Most 

significantly, the difference between the absorbance at 630 nm and 473 nm displayed 

excellent correlation with the concentration of phosphate (Figure 3-8). 
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Figure: 3-8: Absorbance coefficients at 473nm ( . ,.) also scale linearly with phosphate 
concentration. Inset: The difference between the absorbance measurements shows 
excellent correlation with phosphate concentration. Instant calibration (black) is 
comparable to 3 minute calibration (red). 

While the absorbance coefficients obtained instantaneously are lower and show 

less precision, the difference between the absorbance used for the calibration proved to be 

as precise as the 3 minute calibration. The slope of the instantaneous calibration is 

comparable to the slope of 3 minutes (0.0842 and 0.830 respectively) indicating this 

truncated time scale does not lead to a loss in sensitivity. 
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3.5 Conclusions 

The malachite green phosphate analysis is ideally suited for archaeological 

prospectation. The method can easily be incorporated into in-stride analysis of remote 

locations because a limited amount of equipment is required for analysis and the 

developing reagents are robust. The instantaneous and the 3-minute method produced 

accurate quantitative results and allow for a more efficient survey of large sites than the 

methods previously published. However in order for the malachite green method to fully 

be integrated into soil analysis and to ensure the accuracy of the results, studies must be 

conducted to examine interferons to this method. 
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4.1 Introduction 

4 

ARSENATE REDUCTION 

It is imperative to examine potential interfering ions to the malachite green 

method in order to ensure the versatility of the phosphate analysis technique. A search of 

current literature reveals arsenate as an interferon to both the malachite green method and 

the molybdenum blue method of phosphate analysis (Carvalho et al. 1998; Dasgupta et 

al. 2002; Goulden and Brooksbank, 1974; Johnson, 1971; Linge and Oldham, 2001). In 

the case of malachite green, arsenate forms a complex with molybdate and then binds to 

malachite green. The formation of the arsenomolybdate and malachite green aggregate 

increases the absorbance, which in turn leads to inaccurate calculation of phosphate 

concentration. The molybdoarsenate complex is well studied and it is established that the 

reduced form of arsenate - arsenite - does not complex with molybdate (Carvalho et 

al. 1998; Dasgupta et al. 2002; Goulden and Brooksbank, 1974; Johnson, 1971; Linge 

and Oldham, 2001). 

At 630 nm the molar absorptivity of arsenomolybdate-malachite green aggregate 

is between 1.80x105 M-1cm-1 and 2.9x105 M-1cm-1 (Matsubara et al. 1987; Takamura, 

1992; Wang, 1993). This range coincides with the molar absorptivity of the 

phosphomolybdate-malachite green aggregate for the same wavelength (2.6x105 M-1cm-1 
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- 2.9xl 05 M-1cm-1) (Matsubara et al. 1994; Takamura, 1992; Wang, 1993). The overlap 

in absorption coefficient indicates that arsenate interferes with the phosphate analysis. 

The interference is clearly seen by comparing the spectrum produced by an 

arsenate and a phosphate solution (Figure 4-1). Both ions form aggregates with 

malachite green and produce spectra that are nearly indistinguishable between 500-700 

llffi. 

- [ PO/J = ~M 
- IAs{V)J ::: f;y:M 

I. 

02 

, 
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Figure 4-1: Both the phosphomolybdate-malachite green and arsenomolybdate-malachite 
green complexes have a maximum absorbance at 630 llffi. 

As a result of the similarities of the absorbance of phosphomolybdate-malachite 

green and the arsenomolybdate complexes, when arsenate is added to a phosphate 

solution the total absorbance due to bound malachite green increases (Figure 4-2). 
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Figure 4-2: As(V) increases the absorbance and causes inaccuracies in phosphate 
concentration calculation. [pO/-] was calculated using the phosphate only calibration. 

It is clear from Figure 4-2 that the presence of arsenate will result in inaccurate 

phosphate analysis. The error is even more significant in archaeological soil extracts, 

which are often diluted by factors of fifty or greater. The dilution amplifies the error in 

the final calculation of phosphate. For example, if the sample shown above in Figure 4-2 

spiked is scaled for a dilution of 50, the final phosphate concentration of the spiked 

sample is 520 f1M; as opposed to the accurate concentration of 235 f1M . When compared 

with other samples for a large site, the over estimation may result in a mislabeling of 

"high" phosphate concentration and result in the false identification of an anthropic soil. 

Therefore, for accurate phosphate analysis, the arsenate interference must be eliminated. 
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Although arsenate is not a species typically found in soil as a major component, it 

is possible for this ion to interfere with soil phosphate analysis. The interference does not 

result from the native As(V) since native concentrations are low. Rather, the interference 

results from the addition of As from anthropogenic activities such as mining, disposal of 

industrial waste and use of pesticides. For example, As concentrations in the vicinity of a 

mining area have been reported as 27,000 mg kg-1 of soil (Frank, 2005). An arsenic 

concentration of this magnitude undoubtedly interferes with the malachite green method. 

Soil samples tainted with arsenic must be treated with an arsenate reducing agent 

to ensure accurate phosphate analysis. Thiosulfate and L-Cysteine have been employed 

in the literature for arsenate reduction in soil and water samples. The methodology used 

for both reducing agents varies greatly between authors (Carvalho et af. 1998; Dasgupta 

et af. 2002; Goulden and Brooksbank, 1974; Johnson, 1971; Linge and Oldham, 2001). 

Table 4-1 gives a brief overview of the most important aspects of the procedures for both 

reagents. 

Reducing 
Phosphate 

Pre-reduction 
Additional 

Analysis Reagents/ Reference 
reagents 

Method 
Time (minutes) 

condsiderations 

Thiosulfate 
Ascorbic 

8 Metabisulfite 
Goulden and 

Acid Brooksbank,1974 

Thiosulfate 
Ascorbic 

15 Metabisulfite Johnson, 1971 
Acid 

Sulfite 
Malachite 

60 
Linge and Oldham, 

Green 2001 

L-Cysteine 
Ascorbic 

5 
Heat Sample to Carvalho et al ., 

Acid 80°C 1998 

L-Cysteine 
Ascorbic 

5 
Heat Sample to Dasgupta et al., 

Acid 75°C 2002 

Table 4-1: Summary of arsenate reduction methods 
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The methods listed in the above table are suitable for laboratory analysis but are 

non-optimal for in-stride analysis. For example although the 5-minute pre-reduction time 

required for L-Cysteine is ideal for large-scale archaeological surveys, the sample must 

be heated. This requirement is not conducive for fieldwork in remote locations. If the 

temperature is not elevated above room temperature, L-Cysteine requires an hour to 

completely reduce As(V), which also overly time-consuming. 

The time requirement of thiosulfate pre-reduction is appropriate for a large scale, 

in-situ phosphate prospection. However, this technique is often cited as creating 

additional interference to phosphate analysis. In acidic solutions, thiosulfate decomposes 

to form colloidal sulfur. The colloid increases the turbidity of the sample and interferes 

with the absorbance measurements of the solution (Carvalho et al. 1998; Goulden and 

Brooksbank, 1974; Johnson, 1971; Linge and Oldham, 2001). Linge et al. (2001) 

combined the thiosulfate method of reduction with the malachite green phosphate 

analysis, and found that colloidal sulfur formed immediately upon the addition of 

malachite green. Subsequently, the group eliminated the possibility of using thiosulfate 

in combination with malachite green. 

Utilizing the published methodology, neither reduction method is suitable for in­

stride malachite green phosphate analysis. The compatibility of both methods with the 

malachite green must be investigated. Before L-Cysteine can be integrated into 

fieldwork, the reduction time must be shortened. The thiosulfate method must be altered 

such that colloidal sulfur does not form when the malachite green method is used. To 

accomplish these goals, a series of methodological modification trials were conducted. 
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4.2 Reagents 

Stock solutions of phosphate and arsenate were prepared from KH2P04 (Aldrich, 

99%) and Na2HAs04 (Aldrich, 98%), respectively, without further purification. Working 

solutions were prepared by volumetric dilution. 

A 250 mM L-Cysteine (Aldrich, 97%) reducing agent was prepared daily in 0.3 M 

HCI. For thiosulfate reduction, a stock solution of 20 mM thiosulfate was prepared from 

Na2S203 (Aldrich, 99%). 

4.3 Kinetic Effects of Arsenate on Phosphate Analysis 

Although the phosphate and As(V) complexes have indistinguishable absorbance 

spectra, kinetic analysis shows that these two species behave differently after the addition 

of malachite green reagents (Figure 4-3). 
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Figure 4-3: A comparison of the kinetics at 630nm of As(V), phosphate, and mixed 
solutions shows differing absorbance decays during the malachite green development 
process. Linear decays (inset) confirm the reduction process of malachite green is altered 
in the presence of As(V). 

In an As(V) solution the first several seconds are characterized by a rapid increase 

in absorbance resulting from a shift in the form of malachite green upon addition to the 

As(V) solution. When the malachite green solution is added to the As(V), a small 

fraction of the dye is converted to the yellow form. The increase in absorbance is the 

result of the shift back to the green form of malachite green. The rapid shift back to 

malachite green causes a steep decline in absorbance for the first minute of the 473 nm 

decay (Figure 4-4). 
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Figure 4-4: The absorbance decay of As(V) and phosphate solutions displays a rapid 
decrease in absorbance for the first minute as the yellow malachite green is converted to 
the green form. Linear kinetic decays (inset) confirm the change in reduction rate of the 
unbound malachite green at 473 nm in solutions containing both As(V) and phosphate. 

Despite the initial disparity, analysis of the linear kinetic decay shows that the 

reduction of the unbound malachite green in an As(V) solution is comparable to a 

phosphate only solution. Solutions containing both As(V) and phosphate also exhibit an 

increase in initial absorbance. Again, the increase occurs as the protonated malachite 

green converts back to the green form. In the case of the mixed solution, the reduction of 

the unbound malachite green is affected. The slope of the linear absorbance decay for a 
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mixed solution differs from the phosphate only solution, which indicates the rate has been 

altered by the presence of As(V). The rapid rise in absorbance is evidence that the 

reduction kinetics are atypical and serves as a means of alerting the experimenter that an 

interferon is present. However in order to ensure accurate calculated phosphate 

concentration, As(V) must be reduced to As(III). 

4.4 L-Cysteine Reduction of Arsenate 

In the published methods, the concentration of L-Cysteine varies greatly with 

respect to the concentration of As(V). The concentration of L-Cysteine must be carefully 

determined because it is known that excessive amounts of L-Cysteine hinder the 

reduction process. For this work, the amount of L-Cysteine was varied in order to 

determine the optimal concentration for reduction of solutions containing 26 ~lM As(V). 

Before the solution was analyzed with malachite green, it was allowed to stand for one 

hour to ensure complete reduction (Figure 4-5). 
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Figure 4-5: Standards containing 26 /lM As(V) were reduced with varied concentrations 
of L-Cysteine. Samples with a final L-Cysteine concentration between 48.5 mM - 65 
mM showed greatest reduction in signal. 

As(III) is incapable of forming the complex with malachite green that absorbs at 

630 nm. Therefore, solutions displaying low absorbance values have the greatest 

reduction of As(V). The lowest absorbance occurred in solutions with a final L-Cysteine 

concentration between 48.5 mM and 65 mM, which indicates this concentration range is 

ideal for reduction of As(V). To achieve a final concentration of 62 mM L-Cysteine, 1 

mL of 25 mM stock solution added to 3 mL of sample. 

As should be evident from previous discussions, an hour-long reduction period is 

unsuitable for a large-scale field survey. In order to gain an understanding of the time 

requirements of L-Cysteine reduction, 10 /lM As(V) solutions were reduced, and the time 

allotted for reduction was varied (Figure 4-6). Reduction times greater than 20 minutes 

did not consistently show a large increase in the reduction of the arsenate signal. Again, 
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it is important to remember that for an archaeological survey, the slight inaccuracies 

caused by incomplete reduction do not justifY an additional 40 minutes for complete 

reduction. 
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Figure 4-6: Time dependence of L-Cysteine reduction. A solution of 5 !-!M P04-3 and 10 
!-!M As(V)was reduced for varied amount time. 20 minute reduction completely reduced 
As(V). 

Kinetic analysis showed that although the absorbance is lowered by treatment 

with L-Cysteine, the development of malachite green is unaffected (Figure 4-7). Both the 

unreduced and reduced solutions display similar absorbance decays over the 30 minute 

time period. The slopes of the linear absorbance decays are parallel indicating that the 

rate of the reduction of the unbound malachite green is unchanged. 
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Figure 4-7: Kinetic analysis at 630 nm shows that pre-reduction with L-Cysteine does 
not alter the absorbance decay. The slopes of the linear decays (inset) are parallel 
indicating the reduction rate of unbound malachite green is not affected. 

The L-Cysteine method was used on phosphate standards to create a calibration 

(Figure 4-8). The resulting calibration implies that reduction with L-Cysteine does not 

result in decreased sensitivity or diminished reproducibility. The resulting absorbance 

data show excellent correlation with phosphate concentration and the resulting regression 

value is 0.999. The slope of the L-Cysteine calibration is 0.0585, which is in agreement 

with the slope of the calibration of a standard development (0.0656). The deviations in 

absorbance measurements are consistent with the deviations associated with samples that 
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are unreduced. L-Cysteine can be used in combination with malachite green analysis 

without adversely affecting the phosphate calculation. 
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Figure 4-8: L-Cysteine pre-reduction does not lead to a decrease in sensitivity and 
reproducibility, or diminished correlation. 

4.5 Thiosulfate Reduction of Arsenate 

For thiosulfate reduction, 3 mL of standard solution were mixed with 0.5 mL of 

0.45 M H2S04 and 0.3 mL of 20 mM sodium thiosulfate. The concentration of sodium 

thiosulfate is consistent with the concentration range of the previously published methods 

(Goulden and Brooksbank, 1974; Johnson, 1971). However, the molarity of the sulfuric 

acid is significantly lower to accommodate the pH sensitive malachite green 

development. The lower concentration of sulfuric acid also decreases the impact of 

environmental contamination in the event of a spill during in-stride analysis. Unlike the 
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published methods, metabisulfite was not added to the reducing reagents to prevent the 

precipitation of colloidal sulfur. Although metabisulfite was not included, evidence of 

colloidal sulfur and interference to the absorbance were not observed during the period of 

reduction or phosphate analysis. The lack of colloidal sulfur can be attributed to both the 

decrease in the concentration of sulfuric acid and the truncated time of the malachite 

green development. As the acidity of the solution increases, the formation of sulfur 

increases. In this case, the reduced samples do not become visibly turbid until an hour 

after 0.45 M H2S04 and 20 mM sodium thiosulfate are added. Therefore, because the 

absorbance is recorded a maximum of 3 minutes after the addition of malachite green the 

signal is not affected 

In the literature, the time allotted for reduction varied from 8 minutes to one hour. 

Reducing agents were added to a 10 !AM As(V) solution and the time delay before adding 

the malachite green reagents was varied in order to determine the optimal reduction time 

(Figure 4-9). 

A 5-minute delay greatly decreased the absorbance when compared to the 

absorbance of solutions with instantaneous addition of developing reagents. Delay times 

greater than 5 minutes did not show a significant decrease in absorbance. Although the 

reduction is not complete at 5 minutes, for archaeological purposes the slight inaccuracies 

introduced do not justify the additional 25 minutes. The short.er reduction period allows 

the analysis of a greater number of samples and is well suited for large-scale surveys. 

Complete reduction is achieved after 10 minutes. The reduction period can be extended 

to 10 minutes if accuracy is the primary concern as opposed to time. 
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Figure 4-9: The delay time was varied to determine the time required to reduce a 10 /lM 
As(V) solution with thiosulfate. A 5 minute delay time sufficiently reduced the 
interference of As(V). 

The previously published methods also have differing methodology for the 

addition of the reducing reagents. Goulden and Brooksbank. (1974) add the sulfuric acid 

and the thiosulfate to the arsenate solution separately. Johnson (1971) premixes the 

sulfuric acid and thiosulfate before addition to the arsenate solution. To determine which 

methodology was more suitable, standard solutions of phosphate- ranging from 0 /lM-

17 /lM- were treated with thiosulfate and sulfuric acid added separately and as a pre-

mixed solution. When the thiosulfate and sulfuric acid reducing reagents were added 

separately, there was an increased correlation in the calibration over the standards treated 

with premixed reagents (Figure 4-10). Premixed reagents have a regression value of 

0.897, whereas the separate addition ofthe reagents increased the regression to 0.992. 
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Figure 4-10: A calibration made by separate addition of thiosulfate reducing reagents 
shows an increase correlation. The regression values are 0.992 and 0.897 respectively. 

The increased correlation between absorbance and concentration supports 

separate addition of the reagents. It is also noteworthy that the pre-mixed solution is only 

stable for 24 hours. If sodium thiosulfate and sulfuric acid are kept separate the solutions 

are stable indefinitely, which is ideal for archaeological surveys in remote locations. 

Kinetic analysis at 630 11m shows that thiosulfate pre-reduction alters the 

development of malachite green (Figure 4-1 I). 
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Figure 4-11: Kinetic Analysis of Thiosulfate Pre-reduction at 630nm. Standard solution 
of IOIlM phosphate pre-reduced with thiosulfate shows altered malachite green 
development. (Inset) Dissimilarities in slope of linear kinetic decay confirm there is a 
change in reduction process of malachite green. 

In the case of pre-reduced samples, there is an increase in absorbance rather than 

a decrease for the first minute of development. Also, the linear kinetic decay of the pre-

reduced solution has a noticeably different slope than that of the unreduced solution. It 

can be concluded the incorporation of thiosulfate pre-reduction slows the rate of 

reduction of the unbound malachite green. 

The change in behavior occurs because the malachite green is reduced 

immediately after it is added to the reduced solution. The luecomalachite green 
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associates with phosphate and is then oxidized back to the green form , and as a result 

there is a rapid rise in the 630 nm absorbance. Figure 4-12 shows that the absorbance at 

473 run is also altcred during the initial moments of development. There is a change in 

the rate, which indicates that the yellow/green equilibrium is also affected by the 
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Figure 4-12: Kinetic analysis of thiosulfate pre-reduction at 473 11m show the yellow 
fonn of malachite grcen is altered by the additional H2S04• 

Although the development of malachite green is altered by the addition of 

thiosulfate reagents, a calibration was created using phosphate standards pre-reduced 

with thiosulfate. Figure 4-13 shows the resulting calibration has excellent correlation (r = 

0.999) and precision. The slope of the reduced phosphate solutions is slight ly less that 
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the untreated calibration (0.0527 and 0.0665, respectively), which indicates a slight loss 

in sensitivity. The minimal loss is acceptable within the confines of a relative phosphate 

survey. Sodium thiosulfate displays excellent potential for archaeological fieldwork 

because it effectively reduces As(V) to As(lIl) within 5 minutes. 
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Figure 4-13: Thiosulfate pre"reduction docs not lead to a decrcase ill sensitivity and 
reproducibility, or diminished correlation. 

4.6 Comparison of Reducing Agent Efficacy 

Both thiosulfate and L-Cysteine showed great promise as reducing agents for 

As(V) in initial studies. Before utilizing either reduction method on soil samples from 

Loudon County, additional studies were conducted on solutions containing both 
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phosphate and arsenate. Using solutions with known concentrations of phosphate and 

As(V) allowed for a more accurate determination reducing agent efficacy. 

Standard samples were created at several phosphate and arsenate concentrations 

and reduced using both methods. To control for errors resulting from inaccuracies in the 

phosphate solution, phosphate only samples were developed before additional arsenate 

was added. The samples were analyzed and the phosphate concentration was calculated 

using the calibration coordinating to each method (Table 4-2). 

The addition of As(V) to solutions containing phosphate caused a positive bias in 

calculated phosphate concentration. The 5 ~lM As(V) caused an additive increase in the 

phosphate concentration. The addition of 10 ~M As(V) resulted in lower than expected 

calculated phosphate concentration. However, the absorbance measurements of the 10 

~tM solutions neared the upper limit of detection, which is likely the result of approaching 

the upper limit of the detection range. Phosphate solutions with concentrations greater 

than 18 ~tM do not show increased absorbance coefficients that follow the linear trend. 

Instead the coefficients reach an asymptote and the accurate concentration cannot be 

calculated. Addition of 1 0 ~M As(V) to 1 0 ~M phosphate does not produce an additive 

increase because it is above the upper limit of detection. 

Regardless of the concentration of As(V) added, the interference was 

successfully eliminated using both thiosulfate and L-Cysteine. Solutions that did not 

have interference from As(V) still produced accurate concentrations of phosphate even 

after pre-reduction. Both reducing agents produced accurate calculated phosphate 

concentrations without introducing high degrees of uncertainty and are therefore highly 

compatible with the three-minute malachite green analysis. 
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(As(V)] [POd (llL\1) [POol] (fLM) tp0 4] (JL\1) 

(f.L\1) Unreduced Thiosulfate l-Cystcinc 

[PO.I=Of.L\t 

O· 0.08+1.28 0.05+0.03 0.97+0.22 

5" 4.36+0.23 -1.38+0.18 0.67+0.10 
10;' 8.70+1.0 -1.l3+O.1 1.2]+0.56 

IPO.,I=Slllf 

0' 6.50+0.66 8.49+0.15 6.70+0.36 

So 10.15+0.13 4.30+0.40 5.64+0.05 

lOb 13.84+0.49 4.38+0.40 5.53+0.11 

IPO.J=10v.M 
O~ 10.02+0.04 10.74+0.38 9.58+0.58 

Sf' 16.17+0.46 10.18+0.05 10.63+0.12 

1010 17.09+0.31 10.07+0.13 10.9+0.17 
Mean+S.D . . 
D-~2 

DC"3 

Table 4-2: A comparison of the reduction efficiency of both thiosulfate and L-Cysteine 
shows that both reducing agents are capable of removing the interference of As(V). 

4.7 Reducing Agent Compatibility with Dual Absorbance Phosphate 
Analysis 

As discussed in Chapter 3, the phosphate analysis method was improved by 

utilizing dual wavelength absorbance measurements. As a result of the changes in data 

acquisition time and the addition of an absorbance measurement at 473 nm, the 

compatibility of thiosulfate and L-Cysteine with the analysis method had to be re-

examined. 

Solutions of various phosphate concentrations were prepared and treated using the 

thiosulfate method. The absorbance was measured instantaneously at 473 nm and 630 

nm. The results were compared to absorbance measurements at 3 minutes (Figure 4-14). 
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Figure 4- 14: Instantaneous absorbance measurements of thiosulfate reduced solutions 
are significantly different from those taken after 3 minutes. The instantaneous difference 
calibration (inset) has a limited slope and cannot be used for phosphate calculation. 

The thiosulfate treated solutions displayed dramatically different instantaneous 

absorbance behavior, This result was anticipated based on the kinetics of thiosulfate-

treated solutions at 630 11111 . Recall that thiosulfate-treated solutions have an increase in 

absorbance at 630 11111 and do not reach the maximum absorbance until after 2 minutes. 

Accordingly as Figure 4 .. 14 shows, the initial absorbance at 630 nm is relatively constant 

regardless of phosphate concentration. The instant absorbance at 473 nm is also 

unchanging and thus a useful calibration cannot be created using the difference between 

the absorbance measurements. As a result, thiosulfate reduction cannot be used in 

combination with instantaneous, dual absorbance phosphate analysis. 
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The experiment was repeated using the L-Cystcine method (Figure 4-15). The 

630 nm absorbance is less sensitive to changes in phosphate concentration while the 473 

nm absorbance is more sensitive to changes in phosphate concentration. However, thc 

calibration created ITom the instantaneous difference in absorbance is nearly parallel to 

the instantaneous 3-minute calibration (slope: 0.0575 and 0.0667 respectively). 
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Figure 4-15: Instantaneous absorbance mcasurements of L-Cysteine solutions do not 
follow the same trends as 3min. absorbance. The slope of the difference calibration 
(Inset) created for instantaneous measurement is comparable to the slope at 3 minutes. 
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In order to determine the efficacy of L-Cysteine with instantaneous measurements, 

solutions with known concentrations of phosphate and As(V) were reduced. The 

samples were analyzed in triplicate and the phosphate concentration was calculated 

using the calibration coordinating to each method (Table 4-3). 

[As(V)] [P04] (~M) [P04] (~M) 

(~M) Unreduced L-Cysteine 

[P04]=0~M 

0 2.0±0.5 2.l±0.6 
5 6.4±0.3 1.0±1.7 
10 8.8±0.5 2.9±O.l 

[P04]=5~M 

0 7.l±0.1 7.6±0.6 
5 11.4±O.l 6.5±0.4 
10 14.0±.2 5.8±O.l 

[P04]=10~M 

0 11.2±0.1 13.8±0.4 
5 15.2±0.5 12.26±0.7 
10 18.5±0.5 13.4±0.4 

mean ±S.D. (n=3) 

Table 4-3: L-Cysteine pre-reduction does not significantly affect the accuracy or 
reproducibility of phosphate analysis using the instantaneous, dual absorbance method. 

It is clear from Table 4-3 that the presence of As(V) diminishes the accuracy of 

phosphate analysis using the instantaneous, dual absorbance method The instantaneous 

calculated phosphate concentrations are similar to the concentrations calculated after 3-

minutes. For example, the calculated phosphate is approximately 5 ~M higher than 

expected in phosphate solutions containing 5 ~M As(V). This behavior is identical to 

three minute development, which implies the change in data acquisition time did not 

diminish the interference of As(V). 
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Pre-reduction with L-Cysteine adequately reduced As(V) to As(lIl) and yielded a 

more accurate phosphate analysis. The instantaneous phosphate concentrations are less 

accurate than those calculated after 3 minutes. However, the resulting data is suitable for 

archaeological work and L-Cysteine can be used with the instantaneous development 

method. 

4.8 Conclusions 

Thiosulfate and L-Cysteine are suitable reagents for the reduction of As(V) in a 

laboratory setting. Both display excellent compatibility with 3-minute malachite green 

analysis. I.-Cysteine is a non-optimal reagent for in-stride analysis. The 20 minute 

reduction time at room temperature - though an improvement upon existing procedures 

-is not conducive to a large-scale field survey. Further kinetic studies may provide 

insight to a decrease in L-Cysteine reduction time. 

The limited reduction time and stable reagents of the thiosulfate method are ideal 

for large scale, remote field surveys. However, this method is not compatible with 

instantaneous malachite green analysis. The 8 minute reduction and phosphate analysis 

is still significantly faster than any spectrophotometric phosphate analysis method 

previously published. Additional kinetic studies of the thiosulfate and malachite green 

may lead to an analysis time under 3 minutes. 
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5 

SOIL ANALYSIS 

5.1 Introduction 

While the initial laboratory studies concerning phosphate extraction and analysis 

yielded positive results, the ultimate goal is to produce methods that are field viable. The 

adapted soil preparation and extraction methods and the three minute analysis procedure 

were incorporated into the University of Louisville and Millsaps College "Field methods 

in Archaeology" course. This hands-on course allows students to learn archaeological 

methods at a field school conducted in Loudoun County, Virginia and provided an 

excellent opportunity for effectiveness of our methods to be examined. 

The field school took place at the Blue Ridge Center for Environmental 

Stewardship (BRCES) preservation land trust in the Waters Community in Loudoun 

County, Virginia (Figure 5-1). 
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Figure 5-1: The Blue Ridge Center for Environmental Stewardship located in Loudoun 
Co. Virginia. Current BRCES boundaries are shown in blue and 19th century boundaries 
of land parcels are shown in black. 

The 364 hectares of land have been sanctioned for biological and archaeological 

investigation. The land has a rich history, as it was originally a settlement site for 

eighteenth-century European settlers. The land was owned by the Fairfax family and was 

leased as independent farmsteads. An "open-country" neighborhood was established 

containing farmsteads from as early as 1740. Later, in the nineteenth-century, the Fairfax 

family sold the land as ten separate parcels. The land was subdivided at a later date, and 

records indicate the community may have contained twenty or more families. Of the 

original structures, the remains of only six homes have been located (Rypkema et al. 

2007). 

The identification of the additional sites has been difficult for several reasons. 

Much of the land is now densely forested because only one parcel has been actively 

farmed in the last thirty years. Satellite photographs, often employed by archaeologists in 

survey of large areas, cannot be used to search for signs of prior habitation due to the 
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cover provided by forestation. The heavy forestation also makes the traditional "shovel 

testing" -in which holes are dug in 15-50 m intervals to search for artifacts- difficult, 

but not impossible. However, open country settlements of this time period are not known 

to leave a dense or wide population of artifacts. Shovel tests cover only a tiny percentage 

of a large site and examine small areas, and the probability of finding historic objects is 

low. For example in 2003 the Field Methods class conducted systematic shovel tests 

throughout a parcel of land believed to be the site of a farmstead belonging to Ebenezer 

Grubb. These efforts resulted in only one positive test, which produced a nail and a piece 

of glass. 

It is likely that the process of shovel testing in survey can be aided by an in-stride 

phosphate analysis. Similar to a shovel test, the phosphate content of soil is analyzed in 

50 m intervals. However unlike shovel tests, data gained from a phosphate test provide 

information that extends beyond the sampled soil if one considers the phosphate content 

of soil uniform for a set area. The phosphate analysis results in the creation of an 

archaeological "foot print", which can help to delineate the vast 71 hectare site in Loudon 

County believed to be the Grubbs parcel. The altered soil preparation and extraction 

methods as well as the three minute phosphate analysis procedure were incorporated into 

the 2005 Field Methods in Archaeology class to determine the effectiveness of a 

phosphate survey. 

5.2 Instrumentation and Reagents 

A sufficient amount of extracting solution and malachite green developing 

reagents were prepared before departing for the field school. All solutions were prepared 
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as described in Chapters 2 and 3. Recall from these chapters that both extraction and 

analysis require small volumes of reagent per soil sample. Only 10 mL of extracting 

solution are needed for 1 g of soil. OJ mL of malachite green and 0.3 mL of sulfuric acid 

and molybdate solution are required for analysis. Since these volumes are minimal, it is 

easy to carry the necessary amount of solution for a days worth of work throughout the 

site. 

Absorbance measurements were acquired using an Ocean Optics portable UV-

VIS spectrophotometer. The instrument is controlled by a Pocket PC and powered by a 

USB 2.0 linc connected to a portable power source. The portable spectrometer has an 

area of 137.7 cm2 and the hand held PC has an area of 94.3 em2
. This compact 

instrument was set up with case at each individual sampling site (Figure 5-2). 

Figure 5-2 Compact and portable UV -VIS spectrophotometer used for absorbance 
measurements on-site. 
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All the necessary glassware, reagents and tools for a days worth of sample 

analysis were stored in a fi eld "toolbox" (Figure 5-3). Items in the toolbox included: 

mesh screen and mortar and pestle for soil preparation, syringes and filters for filtration, 

glass vials, developing reagents, automatic pipettes, the UV -Vis spectrometer and waste 

container. The too lbox was portable and easily transported among the individual sites 

with in the survey. 

Power 
Supply 
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010_ 
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Lid. 

Figure 5-3: Portable toolbox used to transport all necessary items for phosphate analysis 
during the in-situ survey. 

5.3 In-stride Phosphate Analysis 

Shovel tests and phosphate analysis were conducted in 50 m intervals across the 

predicted Grubbs parcel and surrounding region. Soil extracted by the shovel test was 

sieved with 1/4 - inch metal screen to check for artifacts. Meanwhile, the phosphate 

concentrations were detem1ined for both the A (6 cm deep) and B (12 cm deep) horizons 
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of the shovel test hole. The B horizons were taken for comparison because they 

represented "sterile" soil unaffected by anthropogenic phosphate sources. A survey team 

composed of four people completed these tasks. Two people were responsible for the 

shovel test, one member focused on chemical analysis and the fourth member assisted 

wherever necessary. This procedure generated approximately 100 soil samples for 

phosphate analysis, and the phosphate level of each was determined before proceeding to 

the next location. 

In order to determine areas of "high" and "low" phosphate, nine off site areas 

were sampled to establish baseline concentrations of phosphate in the soil. Regions of 

predicted low phosphate were known to have been previously uninhabited, and were 

generally chosen for their location, for example on a slope under heavy brush. Soils from 

regions known to have undergone heavy use were sampled to represent the high areas. 

Soil was sampled from known historic house sites the: Demory House and the Derry 

House. These readings served to establish the "high" marker (Table 5-1). 

Phosphate 
10 8ite Description Concentration 

{!!M~ 
T801 8heep Pen, in use 520.6 

T802 Demory House, side yard 358.8 

T803 Field near office barn 24.8 

T804 Fill from Office construction 38.7 

T805 Young Forest on hillside, A level 16.2 

T806 Derry House back yard 179.4 

T807 Derry House back yard, B level 276.7 

TS08 Young Forest on hillside, A level 134.8 

TS09 Young Forest on hillside, B level 14.0 

Table 5-1:Nine areas were sampled for comparison purposes. Historic house sites were 
used to establish "high" concentrations of phosphate. 
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The establishment of high phosphate was unnecessary when comparing the all the 

phosphate data, When the data is considered as a whole via a contour map, areas of high 

phosphate can be readily identified, The accumulation of all phosphate levels permitted 

the creation of a gradated spot map (Figure 5- 4), 
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Figure 5-4: Spot map produced using phosphate concentrations determined from in­
stride analysis, High areas in central eastern region were ignored due to modern 
constmction interference, 

[n areas deemed to have a high phosphate concentration, additional shovel tests 

were conducted at 10m intervals to refine the grid, This process produced several 

artifact positive shovel tests, thus validating the phosphate testing, The upper northwest 

quadrant of the parcel was swept with a metal detector in an attempt to locate additional 

artifacts that may have been missed, Tn the event of a positive signal from the metal 
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detector, shovel tests were employed. In most cases, a nail or unidentifiable metal 

objects were uncovered. The coordinates of historic objects located by the metal detector 

were plotted on the gradated phosphate map, and the majority of the artifacts were in 

areas of high phosphate concentration (Figure 5·5). The correlation between phosphate 

and artifacts was high again confi rming the validity of phosphate testing. 
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Figure 5·5: Metal detector hits producing metal artifacts (red triangle) were for the most 
part in areas of heightened phosphate. 

102 



5.4 Additional Laboratory Soil Analysis 

Additional soil was taken from each test pit to be analyzed in a traditional 

laboratory. Every sample was dried and analyzed in triplicate usmg the 3 minute 

malachite green method. Again, when the data are reviewed as a whole definite spikes in 

phosphate can be identified. It is diflicult to compare the phosphate concentrations 

determined in the field with those determined in the laboratory because the data arises 

from separate soil extractions and analysis was performed on different instruments, which 

have slightly different calibration curves, and the preparation iis significantly more 

elaborate in the laboratory. However, while the actual magnitude of phosphate differs, 

the relative correlation remains. 

During the initial phosphate survey in Loudon County, phosphate levels were 

determined in the field using the malachite green method and in a field laboratory using a 

HACH colorimeter for comparison. The HACH phosphate analysis method is typically 

used for analyzing water samples. However, both Terry e( al. (2000) and Parnell e( al. 

(200 I) successfully utilized this portable colorometric technique for in field phosphate 

soil analysis. Many of the results in the field for both methods were in general agreeance. 

Several extracts contained an unknown interferon, which cause the sample to tum cloudy 

and grey. These samples could not be analyzed with HACH method. 

The soil preparation and extraction process for both the malachite green and the 

HACH analysis is the same. HACH phosphate analysis is preformed by adding a packet 

of PhosVer3 powder (composed of ascorbic acid and undisclosed reagents) to 10 mL of 

soil extract. The solution must be shaken for one minute and allowed to develop for 5 

minutes before analysis with the colorimeter. Six soils were selected to represent a wide 
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range of phosphate concentrations. The samples were extracted and then the phosphate 

concentration was determined by analY7ing the extracts in triplicate using both methods 

(Table 5-2). At low levels of phosphate both methods produce similar calculated 

concentrations for the representative sample. However as the concentration of phosphate 

increases, the HACH method becomes inaccurate and produces low calculated phosphate. 

The areas can still be identified as "'high" but the large inaccuracies undermine the goals 

of a quantitative analysis method. This under-calculation of phosphate was also observed 

in the field laboratory for samples with phosphate concentrations over 300 I-tM. The 

inaccuracy is likely the result of difficulty in dissolving all of the PhosVer3 powder used 

for HACH analysis. 

[PO/Lvg ±s.d. [P04
3-]avg ±s.d. Difference 

Sample (l-tM) (l-tM) Malachite (l-tM) 
Hach Green 

469a 620±9 873±36 253 
471a 447±26 608±55 161 
466a 389±30 428±2 39 
5I3a 123±11 117±4 6 
500a 90±6 lO4±6 [4 
492a 37±4 34±1 4 

Table 5-2: Comparison of phosphate levels determined using the commercially available 
HACH colorimeter and the malachite green method. Low levels of phosphate (under 
lOOI-tM) are in agreement. At high levels of phosphate, the HACH method produces 
inaccurate results. 

As(V) interference to the malachite green analysis method was not suspect until 

the survey of the Grubbs parcel was complete. All A level soil samples were extracted 

and analyzed using the 3 minute malachite green procedure. The samples were re-

extracted, reduced with thiosulfate and analyzed with malachite green. It is difficult to 
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determine if As(V) was present in the samples by comparing two separate extractions 

because of the error associated with multiple extractions (Figure 5-6). However, the 

graph below is significant as it shows that samples reduced with thiosulfate are still 

identified as "high". 
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Figu re 5-6: Phosphate concentrations determined after thiosulfate reduction were lower 
than those determined without reduction. However, it is difficult to determine if As(V) 
was present because data was obtained from separate extractions. 

Nine soil samples were selected to represent a variety of phosphate concentrations 

and soil types. The soils were extracted, analyzed using the 3 minute malachite green 

procedure and then reduced using the L-Cysteine method. In this case, a comparison can 

be made with minimal error since both phosphate concentrations were determined from 
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the same extracted solution (Figure 5-7). Soil samples 462a, 467a, and 471a show a 

signifi cant difference between the reduced and unreduced phosphate concentrations, 

indicating As(V) may have been present in these particular soils. It is possible that the 

arsenate was present in these soils since pesticides used between 1850-1940 often 

contained arsenic (fields, 1999; Robison, 2006). However overall , As(V) interference 

was not widespread throughout the site nor did it prevent the accurate labeling of soils as 

' high ' or 'low phosphate. 
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Figure 5-7: Soil reduced with L-Cysteine indicate As(V) may have been present in select 
soils. 
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The instantaneous, dual absorbance malachite green procedure was not developed 

until approximately a year after the survey of the BRCES land. Several soil samples 

representing a range of phosphate levels were selected to be analyzed using both the three 

minute and instantaneous procedures. Both methods produced similar levels of 

phosphate without loss in precision or accuracy indicating the instantaneous method can 

be used with confidence in the complex soil matrix (Table 5-3). 

[Pot] ±S.D. [Pot] ±S.D. Difference 
Sample ID (!lM) (~tM) (~tM) 

Instant 3 minute 
466a 460±S 428±2 

,.,,..., 
),L 

471a 62l±31 608±55 13 

492a 3H:2 34±1 -2 
SOOa 96±1 104±6 -8 

Sl3a 117±8 117±4 0 

Table 5-3: Phosphate concentrations determined using the instantaneous, dual 
absorbance procedure do not result in a loss of accuracy or precision when compared to 
the three minute method. 

5.5 Conclusion 

Phosphate prospection of 71 hectares of the BRCES land proved to be a useful 

tool for the location of historical objects. Areas of high phosphate concentration were 

easily distinguished which aided in the excavation of several artifacts. The malachite 

green procedure is simple and can be performed by those with a limited chemical 

background. Training on the instrumentation and data interpretation are sufficient for 

those who perfonn the analysis. 
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Clearly, the truncated analysis times of both the 3 minute and instant phosphate 

analysis methods are a benefit over the longer analysis times of the HACH colorimeter 

and other analysis method when conducting a dynamic phosphate survey. Additionally, 

the malachite green method was used successfully on all the soil samples, unlike the 

HACH method, which was incapable of providing data in several cases. 

As a result of the increased versatility of the portable spectrophotometer, the 

initial start up costs for the malachite green method are increased. The UV/Vis 

spectrometer, hand held computer, and power supply cost approximately $2,500. The 

instrumentation cost represents the majority of the expense for conducting this method 

since the developing reagents can be obtained for approximately $150. The HACH 

colorimeter is approximately $300 and the continued cost of purchasing the developing 

packets. However, it is worth noting that the UV/Vis spectrometer provides significantly 

more information and can be used for many applications when compared to the 

colorimeter. 
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6 

FlJTURE DIRECTIONS AND CONCLUSIONS 

6.1 Future Directions 

Results from the phosphate prospection of the Grubbs parcel in Loudon County, 

Virginia successfully helped identify the abandoned settlement areas. While phosphate 

analysis is undeniably a useful tool for site delineation, several additional investigations 

must be conducted to examine the versatility of the malachite green analysis procedure. 

Consideration must be given to variations in extractable phosphorus resulting 

from seasonal changes. The changes in rainfall from season to season alters the soil pH. 

A change in the soil pH results in a change in the phosphorus fixation, which in tum 

affects the amount of extractable phosphorus. Variations, if any, can be ignored during a 

sholi term, relative analysis. However, for long-term archaeological surveys variations 

would prevent the comparison of data acquired from different periods. Currently our lab 

is investigating this potential problem by analyzing soil samples excavated on a month­

to-month basis from a remote location on the BRCES land. Preliminary results for soil 

sampled during October of 2006- January of 2007 show little variation in the phosphate 

extracted by the Mehlich3 procedure. Before definite conclusions can be drawn, results 

must be obtained for soil samples spanning the entire year. 

The interference of As(V) was eliminated by using thiosulfate and L-Cysteine 

However other components of soil, such as silicate, are capable of interfering with 
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malachite green analysis. The extent of the interface as well as methods for the 

elimination of the interference, must be studied in order to ensure accurate phosphate 

analysis. 

Investigating methods for the spectrophotometric detection of additional elements 

with archaeological significance is by far the most important future work. Expanding the 

number of elements that can be analyzed fully exploits the sophistication of the portable 

UV Nis spectrophotometer. Iron, for example, can easily be analyzed using thiocyanate. 

The spectrum of iron (III) thiocynate consists of one peak with a maximum absorbance of 

450 nm. The absorbance of FeSCN follows Beer's law for iron concentrations between 

250 !lM-1.2 mM. Ten soil samples from the Grubbs parcel were analyzed to determine 

the iron content (Table 6-1). The soil samples were extracted using 2 M H2S04 for thirty 

minutes in a steam bath. 0.6 mL of 60 mM KSCN in 0.1 M HCI were added to 3 mL of 

soil extract. The absorbance coeffecient was recorded immediately. 

Sample 10 
[Fe3+]±S.D. 

(mM) 
478a 12.90 ± 0.44 
479a 2.94 ± 1.13 
480a 16.02 ± 0.76 
481a ]0.67 ± 0.44 

482a 10.23 ± 0.64 
483a ]2.84 ± 0.85 
484a 15.31 ± 0.84 
485a ] 8.68 ± 1.42 
486a 9.69 ± 0.60 
488a 8.23 ± 0.43 
n=5 

Table 6-1: Iron concentration in 10 soil samples from Loudon County, Virginia. Overall, 
there is little variation in the concentration of iron. 
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With the exception of sample 479a, there was little variation in the iron content of 

these samples. Also, there was not a correlation between the iron content and the 

Mehlich III phosphate content of the soils (Figure 6-1). 
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Figure 6-1: A plot of the level of iron and level of phosphate in 7 soil samples from 
Loudoun County, Virginia do not display a correlation. 

Although valuable information was not gained by determining the iron levels in 

these soils, that does not eliminate the importance of iron analysis for other 

archaeological surveys. The minerals and elements that provide information of 

significance vary between civi lizations. For example, Terry e/ al. (2000) compared the 

concentration of iron in specific sections of houses to the iron concentration at an off-site 

location at an archacological site in Aguateca, Guatemala. Thc analysis reveled several 

hot spots of iron, which indicates the area was used for the preparation of pigments and 
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dyes. Terry et al. also discovered high concentrations of iron outside of the kitchen area. 

The accumulation of iron is believed to be the result of guards sharpening their machetes. 

Terry and coworkers are not alone in their approach of multi-elemental analysis of 

soil samples. Many other archaeologists have found success by identify the enrichment 

of elements such as lead, zinc, calcium, copper and nickel to name a few. In all cases the 

analysis was performed in a laboratory setting usually by means of ICP-MS. By 

determining the concentrations of these elements infield using UV Nis analysis 

adjustments can be made to the soil sampling grid, which results in a more efficient 

survey. In order to actualize the goal of in stride multi-elemental analysis new extraction 

methods and analysis procedures must be examined and modified to meet the 

requirements of in situ analysis. 

6.2 Conclusions 

Archaeological survey can be slow and unsuccessful since it can be difficult to 

determine the areas that were once settlement sites, especially when scanning over large 

regions. Many anthropogenic activities lead to chemical enrichment of the soil and thus 

soil analysis is useful for determining site boundaries. Inorganic phosphate is an 

excellent indicator of prior human habitation. Unlike traditional survey methods, such as 

shovel testing, the information gained through phosphate prospecting extends far beyond 

the sample site itself. Several archaeologists have employed soil phosphate extraction 

procedures and quantitative phosphate analysis methods. The methods utilized were not 

conducive to large-scale surveys because extraction and analysis procedures were long 

and complex. In order to expedite the process of analyzing a multitude of soil samples, 

qualitative methods, such as the spot test, were employed. The qualitative analysis 
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procedures are undesirable because results are often inaccurate and are subject to 

experimenter interpretation. 

For phosphate analysis to be incorporated into a large-scale survey, the soil 

preparation process was shortened. Rather than allowing the soil to air dry, soil is 

extracted wet. While the addition of water mass introduces error to the analysis method, 

the inaccuracies are corrected by adjusting the phosphate calculation based on the soil 

water mass. An adjustment is unnecessary if the data are considered relative rather than 

absolute. Of course, the surveyor must remain aware of the weather conditions during 

the survey since large changes in rainfall affect the accuracy of analysis. Comparative 

analysis of all phosphate concentrations allows the sample sites to be designated as high, 

low, or moderate phosphate. Additional sampling is conducted in the vicinity of the high 

areas, thereby increasing the probability of locating areas of prior habitation. 

The malachite green phosphate analysis procedure can be conducted 

instantaneously using the dual absorbance method or after 3 minutes if the absorbance is 

monitored at 630 nm. When combined with the shortened soil preparation procedures, 

analysis can be completed in less than 15 minutes, which allows phosphate analysis to be 

incorporated into large-scale archaeological surveys. 

In the presence of As(V), the malachite green analysis procedure produces 

inaccurate results. As(V) also forms an aggregate with a maximum absorbance at 630 

nm. Therefore the As(V) must be reduced to As(III), which is incapable of forming a 

complex with malachite green. Both L-Cysteine and thiosulfate are effective reducing 

agents for As(V). L-Cysteine is compatible with both phosphate analysis time scales, but 

the 20-minute reduction time is non-optimal for fieldwork. Thiosulfate requires 5 
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minutes for reduction and thus the method is suitable for large-scale surveys. However, 

the method can only be used in combination with the 3-minute analysis as a result of 

changes in development stemming from alterations to solution pH. During in-stride 

analysis, soil samples suspected of containing As(V) can be identified by the change in 

the development of malachite green. As(V) positive samples should be reduced with 

thiosulfate and developed using the 3-minute procedure. 

The soil extraction and phosphate analysis procedure were incorporated into a 

large-scale survey of Loudoun county Virginia. Approximately 100 soil samples were 

collected and analyzed for phosphate content. Each soil was labeled as high or low 

phosphate helped to illuminate areas that may have been homesteads. Several objects of 

historical significance were excavated from areas in proximity to soil deemed high, 

confirming the validity of phosphate testing. 

Although the procedures were successfully incorporated into the Loudoun County 

excavation, possible limitations can be identified. Many of the issues are inherent in all 

phosphate analysis methods. For example seasonal changes occurring during long-term 

excavations affect phosphate extraction from soil, which alter the accuracy of the 

assignment of high and low phosphate. A year-long study is currently in progress to 

examine the impact of seasonal changes on phosphate extraction. Changes in the soil 

type affect the extraction efficiency, and it is also difficult to assign high and low 

distinctions to large-scale sites with changing geographic features. In this case, the 

problem can be remedied by analyzing the data in sub-sections with similar soil features 

as opposed to examining the site as a whole. 
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The portable UV Nis spectrometer used with this method can monitor the full 

visible spectrum, and the potential to detect other ions is great. The soil analysis 

procedures can be adapted to meet the specific needs of each site by detecting other ions 

of significance, such as iron, to fully recognize the versatility of the instrument and soil 

analysis technique. 

The largest drawback by far is the cost incurred with these procedures. The 

greatest expense is associated with the portable spectrophotometer, battery pack and the 

hand held computer. These expenses are one time, and the continual costs of the analysis 

procedures are minimal. Once the equipment has been acquired the cost per sample is 

significantly smaller than the price of sending out samples for external analysis, and the 

results can be obtained in minutes rather than we,eks. 

Despite this drawback, the phosphate detection method explained in this work is 

ideal for dynamic phosphate prospection. Large sites, which can produce over a hundred 

soil samples, can be analyzed on-site efficiently to produce contour maps showing the 

relative amounts of phosphate. The immediate results allow archaeologists to adapt the 

survey and gather additional data in areas of high phosphate that may have otherwise 

been missed using traditional techniques. Ultimately, the phosphate contour map is a tool 

to be combined with other archaeological mdhods to determine boundary lines of 

expansive archaeological sites and delineate the individual structures within a site. 
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