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ABSTRACT 

REGRESSION METHODS FOR SURVIVAL AND MULTI STATE MODELS 

Farida Mostajabi 

June 23, 2011 

A common research interest in medical, biological, and engineering research is 

determining whether certain independent variables are correlated with the survival or 

failure times. Standard statistical techniques cannot usually be applied for failure-time data 

due to the lack of complete data or in other word, due to censoring. From a statistical 

perspective, the study of time to event data is even more challenging when further 

complexities such as high dimensionality or multivariablity is added to the model. 

In this dissertation, we consider the predicating patient survival from proteomic 

profile of patient serum using matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) data of non-small cell lung cancer patients. Due to much larger dimension 

of features in a mass spectrum compared to the study sample size, traditional linear 

regression modeling of survival times with high number of proteomic features is not 

feasible. Hence, we consider latent factor and regularized/penalized methods for fitting 

such models in order to predict patient survival from the mass spectrometry features. 

Extensive numerical studies involving both simulated as well as real mass spectrometry 

data are used to compare four popular regression methods, namely, partial least squares 

(PLS), sparse partial least square (SPLS), least absolute shrinkage and selection operator 

(LASSO) and elastic net regularization, on processed spectra. Right censoring is handled 
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through a residual based multiple imputation. Overall, more complex methods such as the 

elastic net and SPLS result in better performances provided the operational parameters are 

chosen carefully via cross validation. For survival time prediction, we recommend using 

the elastic net based on a selected set of features. 

As a type of multivariate survival data, multistate models have a wide range of 

applications. Most of the existing regression approaches to analyze such data are based on 

parametric and semi-parametric procedures in which one should rely on specific model 

structures. In this dissertation, We construct non-parametric regression estimators of a 

number of temporal functions in a multistate system based on a univariate continuous 

baseline covariate. These estimators include state occupation probabilities, state entry, exit 

and waiting (sojourn) times distribution functions of a general progressive (e.g. acyclic) 

multistate model. The data are subject to right censoring and the censoring mechanism is 

explainable by observable co variates that could be time dependent. The resulting 

estimators are valid even if the multistate process is non-Markov. The performance of the 

estimators is studied using a detailed simulation. We illustrate our estimators using a data 

set on bone marrow transplant patients. Finally, some extension of the proposed methods 

to more general case with multivariate covariates are presented along with plans for 

future developments. 
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CHAPTER I 

INTRODUCTION 

A common research question in medical, biological, or engineering research is to 

determine whether or not certain independent variables are correlated with the survival or 

failure times. In general, regression models are used to study the conditional distribution 

of the dependent variable given the independent variables. In survival case, dependent 

variable is the failure time or time to event of interest such as death, development or 

progression of a disease and etc. 

Standard statistical techniques cannot usually be applied for failure-time data due 

to the lack of complete data or in other word, due to censoring issue. Censoring is a form 

of missing data problem arises in time to event data. The most common case of censoring 

is what is referred to as right censored data where the event time is known only to be 

greater than a certain time (e.g. lost to follow-up). The presence of censoring poses major 

challenges to regression modeling. 

The semi-parametric Cox proportional hazard regression model (Cox, 1972) was a 

breakthrough in developing a flexible method of regression for censored data. In a Cox 

model, the effect of an independent variable on the hazard rate is assumed to be 

multiplicative. Even though Cox model is very flexible, the proportional hazards 

assumption may not hold in all circumstances. The accelerated failure time (AFf) models 

are another class of regression models that can be an alternative to the Cox models (Wei, 

1992). The general AFf models are linear models for the logarithm or a known monotone 

transformation of the survival time (Kalbfleisch and Prentice, 1980). Supposed T denotes 



a time to certain event. The accelerated failure time (AFf) model is of the same form as 

usual linear regression model: 

log(T) = ti Z + E, 

where the error term E is independent of the p-dimensional covariate vector Z and its 

distribution is left unspecified. The results of AFf models are interpretable more easily 

than the proportional hazards model in certain applications. 

1.1. Survival Models with Increased Complexity 

From a statistical perspective, study of time to event data is even more challenging 

when further complexities such as multivariablity or high dimensionality are added to the 

model. In the next subsection, we focus on certain type of multivariable survival which is 

referred to multistate models. Afterward, we introduce the problem of high dimensionality 

that mostly arises in biomedical studies and the corresponding difficulties to predict 

survival times. 

1.1.1. Multistate Models 

Multistate models are certain type of multivariate survival data that are a natural 

extension of simple survival models. These models allow subjects to move through a 

succession of states and they are particularly useful for describing the complexities of 

disease processes in which each state corresponding to a certain health condition (e.g. 

alive and disease-free, alive with recurrence and dead). The resulting data contains 

information about the transition times and the states occupied. Transitions between states 

can be reversible or irreversible while states can be either absorbing or transient. An 

absorbing state is a state from which further transitions cannot occur while a transient 

state is a state that is not absorbing. Graphically, multi-state models may be illustrated 

using diagrams with boxes representing the states and with arrows between the states 
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representing the possible transitions. Approaches for traditional survival analysis may be 

viewed as a two-state model '0: alive, 1: dead' (see Figure 1.1). 

o 1 

Alive Dead 

Figure 1.1. A two-state Alive-Dead model 

Two key questions in the multistate models are: what is the probability that a 

subject is in a specific state at certain time point or what is the hazard (rate) that an 

individual moves from one state to another. To answer these equations, we should 

estimate the state occupation probabilities and transition hazards respectively. Distribution 

functions of state entry/exit and waiting times are also useful quantities. Beside estimation 

and hypothesis tests for these quantities, analysis of regression models where these 

quantities related to explanatory variables is of interest. 

As in survival analysis, empirical calculations of these quantities are not possible 

due to censoring issue. Application of parametric methods in multistate models developed 

over the last thirty years (Lagakos, 1976; Beck, 1979; Kay, 1982; Sacks & Chiang, 1977; 

Wu, 1982; Klein etal., 1984; Andersen & Keiding, 2002; Plevritis etal., 2007 and so on). 

Estimation at the individual level may be investigated through covariates. 

Regression models for multistate processes have traditionally been formulated in terms of 

the transition intensities of the model using the Cox model in a Markovian framework 

(Andersen et al., 1993). Shu and Klein (2005) discussed an application of the additive 

hazards models (Aalen, 1989; Lin & Ying, 1994) to multistate data assuming the 

Markovian structure. Andersen and Klein (2007) presented a general approach to the 

problem for the state occupation or transition probabilities in a multistate model directly 

based on pseudo-values from a jackknife statistic constructed from non-parametric 
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estimators for the probability in question. These pseudo-values were used as outcome 

variables in a generalized estimating equation to obtain estimates of model parameters. 

When proportional hazards models or additive hazards models are assumed to model 

covariate effects for the transition intensities then a model is induced for the state and 

transition probabilities. These models in most cases produce highly nonlinear and complex 

effects of the co variates on these probabilities that are difficult to interpret. Most of the 

excising methods are based on parametric and semi-parametric modeling of the transition 

hazards with Morkovian framework assumption. For a partial review of semi-parametric 

alternatives to the Cox models see Andersen and Keiding (2002). 

Generally speaking, while parametric and semi-parametric methods produce 

relatively precise inference for the effects of co variates under the correct model, their 

performance under incorrect model assumptions is questionable and they have their own 

shortcomings. Furthermore, in application it is an unapproachable task to determine which 

of the models to employ in analyzing a particular dataset. This is one convincing reason 

why a fully non-parametric approach is preferable even though such a formulation is often 

difficult with time to event data. The situation with multistate models that generalize the 

traditional survival setup is even more challenging and as such only a limited number of 

regression approaches exist to analyze such models. Nevertheless, only non-parametric 

answers represent truly empirical (or evidence based) calculations. They can at least serve 

as a guideline to the shape of the regression functions on certain marginal aspects of the 

system even if a semi-parametric or parametric calculation is ultimately performed.' 

Doksum and Yandell (1982) made similar points with compelling comparative illustrations 

of non-parametric calculations versus semi-parametric calculations using the well known 

Stanford heart transplant data. 

The number of papers dealing with non-parametric regression for multistate models 

is quite limited. Majority of them deal with the survival setup that can be regarded as the 

simplest multistate system. Beran (1981) studied a conditional Kaplan-Meier estimator 
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obtained with regression weights using either a nearest neighborhood approach or a kernel 

approach; also, see Doksum and Yandell (1982) who suggested using non-parametric 

methods for this problem. Theoretical properties of these estimators and their 

generalizations have been further studied by Dabrowska (1987, 1989), Li and Doss 

(1995), McKeague and Utikal (1990), Li and Datta (2001) etc. When proportional 

hazards models or additive hazards models are assumed to model covariate effects for the 

transition intensities, then a model is induced for the state and transition probabilities. 

These models in most cases produced highly nonlinear and complex effects of the 

co variates on these probabilities that were difficult to interpret Recently, Andersen et al. 

(2003) and Andersen and Klein (2006) studied the effect of covariates in a multistate 

model using a hybrid approach of combining some non-parametric calculation followed by 

semi-parametric ones. This approach, however, many not produce regression function 

estimators of the marginal quantities under study; furthermore, the theoretical modeling 

framework necessary for the validity of this approach is not very clear. 

Smoothing techniques are often used to produce non-parametric estimators. These 

offer useful alternatives to the non-parametric likelihood based approaches since a full 

likelihood specification in a multistate model is often difficult (and sometimes impossible 

without additional structural assumptions). There are various approaches to produce non

parametric smoothed estimates. The simplest and flexible methods are the kernel-based 

procedures (Nadaraya, 1964; Watson, 1964). A common difficulty with smoothing 

methods is the selection of the underlying tuning parameter that represents the smoothness 

of the estimators. As for example, an objective data based choices is needed to select the 

bandwidth in the kernel method. While various choice have been proposed often based on 

asymptotic consideration, a completely satisfactory solution to the problem of tuning 

parameter selection is still largely unavailable. 

As discussed earlier, development of fully non-parametric regression estimators of 

state occupation probabilities is of interest. Such inference procedures will be more robust 
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than their parametric and semi-parametric counterparts which generally rely on specific 

model structures. These types of unified and systematic methodological development do 

not currently exist for general multistate models. 

1.1.2. High Dimensional Data 

Another category of survival regression arises in biomedical research such as 

recently developed genomic and proteomic studies. These technologies are often used to 

identify genes and proteins that may have a functional role in specific phenotypes. From 

this prospective, one might be interested to model the relationship between the genes or 

features and survival outcome. This can be particularly challenging since the main 

characteristic of such data is that the number of covariates or features (genes or proteins) 

are considerably larger than the number of samples (individuals). Dimensionality is even 

much larger in proteomic studies. Hence classical survival methods such as Cox model 

cannot be applied directly and specific modifications are required. 

Many methods have been developed that are better suited for high-dimensional 

settings on the basis of Cox's proportional hazards regression (Pawitan et al., 2004; van 

Houwelingen et al., 2006; B!lIvelstad et al., 2007). Moreover, Li and Luan (2003) were 

investigated the L2 penalized estimation of the Cox model in the high-dimensional low

sample size settings and applied their method to relate the gene expression profile to 

survival data. One limitation of the L2 penalized estimation of the Cox model is that it uses 

all the genes in the prediction and does not provide a way of selecting relevant genes for 

prediction. Two years later, Gui & Li (2005) proposed to use the LI penalized estimation 

for the Cox model to select genes that are relevant to patients' survival. Tibshirani (2009) 

introduced Cox univariate shrinkage model in which the features are entered into the 

model based on the size of their Cox score statistics. This method assumes that the 

features are independent in each risk set. 
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On the other hand, semi-parametric estimation in the AFT model with an 

unspecified error distribution has been studied extensively in the literature. However, there 

are only few publications on employment of the AFT model in high dimensional setting. 

Huang et al. (2006) used the LASSO and the threshold-gradient-directed regularization 

along with AFT model for estimation and variable selection. Datta et al. (2007) 

considered predicting survival using AFT model along with PLS and LASSO. Engler et 

al. (2009) adapted the elastic net approach for variable selection both under the Cox 

proportional hazards model and under AFT model. Most of these studies adopted for 

application in micro array data. However, there is no such study that we are aware of in the 

context of proteomic study in which one is exposed with even more dimensionality. One 

clear example is Mass Spectrometry data. Before discussing the specific aims of our 

research, a brief review of Mass spectrometry technology is given. 

A proteome is the collection of proteins that make up a cell (or organism) under a 

specific set of conditions at a specific time. Studying the amount of each protein present at 

any time has become more important as scientists attempt to learn which proteins are 

involved in important cellular functions. Mass spectrometry (MS) is an emerging field of 

interest in biomedical research. It is basically used to visualize the distribution of proteins 

within a tissue sample or from bodily fluids such as urine, plasma, serum, etc. In contrast 

to traditional approaches that examine one or a few proteins at a time, this technology 

actually profile hundreds of proteins derived from the samples simultaneously. Only a 

small sample is needed to this end and results can be obtained in very short amount of 

time. 

The use of mass spectrometry as a diagnostic tool and identification of proteomic 

biological markers has risen extensively and has been demonstrated great promise in recent 

years. This has led to the discovery of a large number of proteins and protein profiles 

associated with various types of diseases. Early articles in this area include Stoeckli et al. 

(2001), Petricoin et al. (2002), Adam et al. (2002), Aebersold et al. (2003), Liotta et al. 
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(2003) and Rai et al. (2004). Mass spectrometry for the protein analysis consists of 

diverse platforms. Matrix-assisted laser desorption/ionization-time of flight (MALDI

TOF), and Surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass 

spectrometry are two basic forms of the technology, however the former technique is the 

most commonly applied technique to clinical and biological problems. The basic operating 

method of both technologies is similar. The biological samples (such as blood serum or 

plasma) first mixed with an energy absorbing matrix (EAM) which acts as a proton donor 

or acceptor. This mixture is crystallized onto a metal plate. In the SELDI technique, 

additional chemistry is added on the plate to unite specific classes of proteins. The mixture 

then subjected to pulse laser radiation. This causes the vaporization of the matrix crystals 

and produces ions which are directed into a flight tube through application of an electric 

field. The mass of an ion is measured by the time it takes to hit the detector located at the 

end of the tube. The time of flight is then converted to corresponding mass-to-charge 

values using a quadratic transformation. A typical proteomic experiment consists of the 

sequentially recorded numbers of ions strike the detector (intensity value) along with 

corresponding mass to charge ratio (m/z) which is typically a huge volume of data. The 

output of mass spectrometer which is referred to a spectrum are often displayed as a 

graph showing the relative abundance representing an unknown number of protein peaks 

associated with protein mass to charge ratios. The unit of mass to charge measurements is 

Dalton (D). 

A typical data set contains hundreds of spectra; each spectrum contains tens of 

thousands of intensity measurements representing an unknown number of protein peaks 

which are the key feature of interest. These measurements couple with substantial noise. 

The first attempt to analyze such data is to do some preprocessing steps to identify the 

locations of peaks and to quantify their sizes precisely. Several studies have shown that 

mistakes in the preprocessing of the data can bias the biological interpretation of the study. 

Sorace & Zhan (2003) showed that inadequate preprocessing has a negative effect on the 
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extraction of clinically useful information. Baseline correction, denoising, normalization, 

peak detection and peak alignment are among the most common preprocessing steps. 

Variety set of preprocessing approaches has been proposed in literature and it is still 

ongoing field of research. A comprehensive review of all the different possibilities for 

each preprocessing step is beyond the scope of this chapter. However, several· 

comparisons can be found in Cruz-Marcelo (2008) and Emanuele et al. (2009). 

As discussed earlier, one of the main challenges to deal with such data is the issue 

of high dimensionality in the context of regression modeling. In fact, the number of spectra 

available in such studies is considerably smaller than the length of the individual spectra 

(p 2: n). Including all the features in the predictive model introduces noise and is expected 

to poor predictive performance. In such cases, overfitting is also likely to happen. Hence, 

classical statistical approaches are not appropriate and special techniques such as variable 

selection or dimension reduction are required. Besides the high-dimensionality, the 

features are often highly correlated, which creates the problem of high collinearity. To deal 

with the problem of collinearity, the most widely used approach is the penalized partial 

likelihood. Some of the most common techniques for variable selection and dimension 

reduction are discussed below. 

Introduced by Herman Wold (1966), Partial Least Squares (PLS) regression is a 

technique that has been an alternative to ordinary least squares in high dimensional setting 

in several areas of scientific research. This method is particularly useful for constructing 

predictive models when the predictors are many and highly collinear. The general idea of 

PLS is to try to extract the latent factors that account for most of the variation in the 

response while modeling the response well. In order to specify latent variables, PLS 

iteratively finds weight vectors such that X space has the highest covariance with Y. 

There are several variants of the algorithms for obtaining the PLS estimators. Boulesteix 

& Strimmer (2007) reviewed both the theory underlying PLS as well as a host of 
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bioinformatics applications of PLS. They provide a systematic comparison of the PLS 

approaches currently employed. 

Sparse partial least squares (SPLS) developed by Chun et al. (2010) is another 

dimension reduction technique. This technique produces sparse linear combinations of the 

original predictors and achieves both dimension reduction and variable selection 

simultaneously. This is simply achieved by PLS regression using the selected variables. In 

fact, the number of SPLS latent components is limited by number of observations, but the 

actual number of variables that makes up the latent components can exceed n. 

Regularized and penalized methods are another group of techniques that has 

gained great popularity in recent years. Penalized estimation methods shrink the estimates 

of the regression coefficients towards zero relative to the maximum likelihood estimates. 

The purpose of this shrinkage is to prevent over- fitting arising due to either collinearity of 

the co variates or high-dimensionality. Least absolute shrinkage and selection operator 

(LASSO) was proposed by Tibshirani (1996). The LASSO is a penalized least squares 

method imposing an LI -penalty on the regression coefficients. The LASSO does both 

continuous shrinkage and automatic variable selection simultaneously and it has sparse 

representation. In the usual regression set-up, the LASSO minimizes the residual sum of 

squares subject to the sum of the absolute values of the coefficients being less than a 

constant (LI constraint). The LASSO estimator is the value that minimizes 
n P 

L(Yi - x~f3)2 + ALIf3jl, where A is the penalty parameter. The LI penalty causes the 
i=l j=l 

continuous shrinkage and variable selection simultaneously. Hence, it can be used to select 

a suitable set for the efficient prediction of a response variable method. 

Recently, Efron et al. (2004) proposed the least angle regression (LARS) 

procedure for variable selection in the linear regression setting. The LARS selects 

predictors based on their correlation between the predictor and the current residuals. In 

this algorithm, one starts with the trivial model with all coefficients set at zero. Variables 
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are added one at a time that are most correlated with the residuals at the previous step. 

The number of variables to be included in the model corresponds to a selection of the 

tuning parameters. Efron (2004) further showed that LARS can be modified to provide 

solutions for LASSO. With this powerful algorithm, LASSO can be extended to perform 

subset selection in the high-dimension and low-sample settings. 

The Elastic net approach proposed by Zou et al. (2005) is newer regularization 

and variable selection method that combines L\ and L2 penalties. Such procedure tends to 

give a result with fewer regression coefficient set to zero in a pure L\ setting, and more 

shrinkage of the other coefficients. In this method, strongly correlated predictors tend to 

be in or out of the model together. The elastic net is particularly useful when the number 

of predictors is much bigger than the number of observations. Elastic net simultaneously 

does automatic variable selection and continuous shrinkage and has the ability to do 

grouped selection. The estimator minimizes. 
n P P 

I:(Yi - x~(3)2 + .A2I:/f3j/2 + .AII:/f3j/. 
i=l j=l j=l 

Although the methods discussed have been proved to be useful in the past when 

the number of covariates exceeds the number of observations, we are not aware of any 

study that considered extreme situations encountered in proteomic analysis. Thus, one of 

the main purposes is to study the performances of these methods when the sample size 

appears to be hopelessly small compared to the number of co variates. 

1.2. A Summary of the Dissertation 

The rest of this dissertation is organized as follows. In Chapter II, predicting 

survival times of patients with the proteomic profile of patient serum using matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) data of non-small cell 

lung cancer patients is considered. Extensive numerical studies involving both simulated 
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as well as real mass spectrometry data are used to compare four popular regression 

methods, namely, partial least squares (PLS), sparse partial least square (SPLS), least 

absolute shrinkage and selection operator (LASSO) and Elastic net regularization, on 

processed spectra. Right censoring is handled through a residual based mUltiple 

imputation. 

A novel non-parametric regression estimation approach of state occupation 

probabilities is laid out in Chapter III, using kernel estimators along with inverse 

probability of censoring reweighting. Regression functions are studied based on one 

covariate at a time.We also developed valid non-parametric estimators of entry/exit and 

waiting time distributions conditional on a given value of X. The global performance of 

these estimators are investigated using Monte Carlo simulations. The application to a 

bone marrow transplant data is provided. 

Chapter IV describes the methodology of non-parametric regression estimation of 

state occupation probability using kernel estimators including more than one covariate in 

regression function. We also developed non-parametric estimators of entry/exit time 

distributions conditional on a given value of X. The global performance of these 

estimators are investigated using Monte Carlo simulations. We conclude the dissertation 

with some concluding remarks and plans for my future research direction in Chapter V. 

It is my hope that this dissertation research significantly advances the area 

of survival prediction in Mass Spectrometry data as well as non-parametric regression for 

multistate models. 
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CHAPTER II 

PREDICTING PATIENT SURVIVAL FROM PROFILE USING MALDI-TOF 

MASS SPECTROMETRY DATA IN NON-SMALL CELL LUND CANCER 

PATIENTS 

2.1. Introduction 

In recent years, genomic and proteomic technologies have become a topic of 

central importance in biomedical studies. These technologies are often used to identify 

genes and proteins that may have a functional role for specific phenotypes. From this 

perspective, one might be interested to model the relationship between the genes or 

proteomic features and a clinical outcome. The use of mass spectrometry as a diagnostic 

tool and identification of proteomic biological markers has risen extensively and has 

demonstrated great promise in recent years. This has led to the discovery of a large 

number of proteins and protein profiles associated with various types of diseases (Stoeckli 

etal., 2001; Petricoin, 2002; Adametal., 2002; Ndukumetal., 2010; Aebersoldetal., 

2003; Liotta et al., 2003; Rai et at., 2004). 

In this chapter, our goal is to predict patient survival times from the proteomic 

features of the patient bodily fluids such as blood, plasma serum and so on using mass 

spectrometry. Mass spectrometry for the proteomic analysis consists of diverse platforms. 

Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) is one the basic 

forms of the technology. A typical data set contains hundreds of spectra; each spectrum 
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contains tens of thousands of intensity measurements representing an unknown number of 

protein/peptide peaks which are the key features of interest. Including all the features out 

of this platform in the predictive model of survival time introduces noise and is expected 

to have poor predictive performance. Generally speaking, even after some basic 

preprocessing and denoising such as peak detection (Atlas et al., 2009; Renard et al. 

2008; Jeffries,2005; Wolski et al., 2005), there are still hundreds or thousands of retained 

potentially important features which could be used for the predictive modeling. In such 

cases, over-fitting is a potential threat. Besides the high-dimensionality of the feature set, 

some of the features are often highly correlated. Thus, in order to predict patient survival 

using a predictive statistical model, one needs to consider careful dimension reduction and 

important feature selection on top of basic pre-processing of mass spectrometry data. 

Generally speaking, the high dimensional property of "-omics" data imposes some 

of the common challenges in the analysis of such data. High dimensional setting means 

that the number of variables (p) is considerably larger that the number of observations (n). 

Dimensionality is typically even much larger in proteomic studies (say as compared with 

gene expression studies). As a result, most traditional multivariate statistical methods are 

not applicable in this case; it is challenging to develop reliable regression models that can 

correctly predict future phenotypic outcomes out of these proteomic features. Further 

complexities arise when the outcome of interest is the patient survival time, which is often 

not fully observed due to right censoring. A number of early attempts, mostly in the 

genomic data setting, used some ad hoc dimension reduction methods and used the 

reduced set of co variates (e.g., principal components, meta-genes etc.) in a Cox's 

proportional hazards regression model (Pawitan et al., 2004; van Houwelingen et al., 

2006; Bovelstad et al., 2007). More recently, penalized regression version of Cox's 

model have been attempted to deal with high dimensional data (Lietal., 2003; Guietal., 

2(05). Cox's model with univariate shrinkages is another method in which the features are 

entered into the model based on the size of their Cox's score statistics (Tibshirani, 2009). 
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This method assumes that the features are independent which is clearly unrealistic in 

genetic and proteomic studies. In fact, the proportional hazards assumption of a Cox 

model (Cox, 1972) may be too simplistic for genomic and proteomic applications. 

On the other hand, semi-parametric estimation in the accelerated failure time 

(AFf, hereafter) model with an unspecified error distribution is often regarded as a more 

flexible alternative to the Cox model in survival analysis. However, there are only a 

handful of publications on employment of the AFf model in high dimensional data setting 

mostly using the micro array platforms. The LASSO and the threshold-gradient-directed 

regularization along with AFf model are applied for estimation and variable selection 

(Huang et al., 2006). Additionally, predicting survival time using AFf model along with 

PLS and LASSO is considered (Datta et al., 2007). The elastic net approach for variable 

selection both under the Cox's proportional hazards model and under the AFf model is 

adopted (Engler et al., 2009). Nevertheless, there is no such study using the AFf model 

that we are aware of in the context of proteomic data in which one is faced with even 

larger dimensionality of the original feature set. 

In this chapter, we compare the performances of four relatively recent latent factor 

and/or regularized/penalized regression techniques to fit an AFf model based on high 

dimensional regressors and to predict the patient survival using high dimensional mass 

spectrometry data. In the next section, we provide brief descriptions of this regression 

techniques. These methods are applied to analyze survival times generated from simulated 

mass spectra, as well as, two real mass spectrometry data sets on non-small cell lung 

cancer patients. In survival studies, an added complication due to right censoring is almost 

always present. Right censoring takes place when there are still surviving patients at the 

end of the study period. This was indeed the case with one of our two real proteomic data 

sets. We handle right censoring through a residual based multiple imputation scheme. 
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2.2. Materials and Methods 

The accelerated failure time (AFf) model is a flexible semi-parametric regression 

model that can be used to predict survival times of patients from patient level covariates 

(Kalbfleisch et al., 1980). In general, AFf models are linear models for the logarithm or a 

known monotone transformation of the survival time (or an event time) T. Most 

commonly, an accelerated failure time (AFf) model specifies logT = X T f3 + E, where f3 

is an unknown p x 1 parameter of interest associated with the proteomic features X and E 

is an unobservable independent random errors. The following latent factor and/or 

regularization techniques are used to fit the AFf model of Y = logT on the proteomic 

features X (intensity data corresponding to selected values) of patients. 

2.2.1. PLS and SPLS 

Introduced by Herman Wold (Wold, 1958), Partial Least Squares (PLS) 

regression is a predictive modeling technique that is applicable in high dimensional setting 

in several areas of scientific research. When the number of covariates is large compared to 

sample size and/or exhibit high collinearity, the standard multiple linear regression fit by 

ordinary least squares is inapplicable or inappropriate. PLS is particularly useful in such 

cases. PLS attempts to extract the latent factors that account for most of the variation in 

the response while avoiding over-fitting. Unlike principle component regression, both the 

response and the covariates are used to construct the latent components. There are several 

variants of the algorithm for obtaining the PLS estimators. Boulesteix & Strimmer (2007) 

reviewed both the theory underlying PLS as well as a host of bioinformatics applications 

of PLS. They provide a systematic comparison of the PLS approaches currently employed. 

Sparse partial least squares (SPLS) is a relatively recent technique that combines 

the latent factor approach with regularization (Chun et al., 2010). This technique 

produces sparse linear combinations of the original predictors and achieves both dimension 
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reduction and variable selection simultaneously. Like PLS, the number of SPLS latent 

components is limited by the number of observations but the actual number of variables 

that make up the latent components can exceed the sample size n. SPLS method deals 

with variable selection problem by incorporating the PLS technique into the LARS (least 

angle regression) algorithm imposing the Ll penalty controlled by a tuning parameter 

(Efron et al., 2004). 

2.2.2. LASSO and Elastic Net 

Regularized/penalized methods are another group of techniques that has gained 

great popularity in recent years. Penalized estimation methods shrink the estimates of the 

regression coefficients towards zero relative to the maximum likelihood estimates. The 

purpose of this shrinkage is to prevent over-fitting arising due to either collinearity of the 

co variates or high-dimensionality. Least absolute shrinkage and selection operator 

(LASSO) is a penalized least squares method imposing an Ll-penalty on the regression 

coefficients (Tibshirani, 1996). The LASSO does both continuous shrinkage and 

automatic variable selection simultaneously and it has sparse representation. In the usual 

regression set-up, the LASSO minimizes the residual sum of squares subject to the sum of 

the absolute values of the coefficients being less than a constant (Ll regularization). 

Equivalently, the LASSO estimator of the regression coefficients f3 is the value that 
n P 

minimizes 2:: (Yi - xr (3)2 + A2:: lf3jl, where A is a penalty parameter. As mentioned 
i=l j=l 

before, the least angle regression (LARS) procedure is another variable selection method 

in the linear regression setting (Efron et al., 2004a). The LARS selects predictors based 

on the correlation between the predictor and the current residuals. In this algorithm, one 

starts with the trivial model with all coefficients set at zero. Variables are added one at a 

time that are most correlated with the residuals at the previous step. The number of 

variables to be included in the model corresponds to a selection of the tuning parameters. 
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LARS can be modified to provide solutions for LASSO making it computationally 

efficient (Efron et al., 2004b). 

The elastic net approach is a newer regularization and variable selection method 

that combines Ll and L2 penalties (Zou et al., 2005). The estimator minimizes 
n p p 

L(Yi - xr /3)2 + A2L l/3jl2 + AIL l/3jl, where Al and A2 are two penalty parameters. 
i=l j=l j=l 

This procedure tends to produce a result with fewer regression coefficients set to zero 

than with a pure Ll regularization, and more shrinkage of the other coefficients. In this 

method, strongly correlated predictors tend to be in or out of the model together. The 

elastic net is particularly useful when the number of predictors is much larger than the 

number of observations. A rescaling of the fitted coefficient is also done to reduce 

"double shrinkage". A version of the LARS algorithm, called LARS-EN, is used to fit the 

elastic net regression where the Al parameter is controlled by the number of LARS steps. 

2.2.3. Treatment of Right Censored Observations 

Let {(~, Ci, Xi), i = 1, ... , n} be the survival times, the and the p-dimensional 

covariate vectors (intensity values of selected mJz channels) of n patients in the data set. 

We assume that the distribution of T given X follows an AFf model. Due to right 

censoring, the observed data consists of 

T{ = min(~, Ci ) is the right censored survival times and {ji = I(~ ::; Ci ) are the failure 

indicators. We propose to impute unobserved ~ (that are censored) from an appropriate 

conditional distribution to be estimated from the observed data. Our proposal has its root 

in Poor Man's Data Augmentation Algorithm (PMDA) (Wei etal., 1991). Our multiple 

imputation algorithm is an iterative algorithm that is described below. In this algorithm, L 

and m are a user defined integer parameters where L denotes the number of iterations 

and m denotes the number of data sets to be imputed in order to reduce the variability of 

the final answer. The steps involved to carry out the procedure are presented below. 
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Step 1: (a) Set j = 0 and fit the AFf model to the uncensored observations only using a 

regression technique of choice (i.e., one of the four methods described before). 

(b) Suppose the current estimate is ~(j), for j ~ o. 

Step 2: Calculate the Kaplan-Meier estimate S-;(j) of the marginal distribution of the 

model error E using the usual product limit formula from the residual vectors and the 

failure indicators {ei' 8d, where ei = 10g(Tn - xttP) , 1 ~ j ~ n. 

Step 3: Generate m new data sets such that in each data set 1 ~ k ~ m , an observed 

failure in the original data remains intact but each censored observation i in the original 

data is imputed (in the log scale) by adding the estimated regression function X{~(j) to an 

imputed model residual E~~) generated from the estimated distribution 8 E /8 E (ei) calculated 

in Step 2. 

Step 4: Fit the model on each new data set using a method of choice (e.g., each of the 

four regression methods described before) set to find the estimated regression parameter 
~(j) 

vectors f3 (k ) 

Step 5: Increase j by 1 and set ;3(j+l) = ~f~if); go to Step I(b) and repeat these 
k=l 

steps L times. 

We have used m = 10 and L = 5 in our calculation mostly to keep the computation 

time in check. 

2.2.4 Construction of Survival Curves 

Once a model is fit, we compute the survival function of the model error 

distributions 8 E using the Kaplan-Meier product limit formula from the residual vectors 

and the failure indicators {ei' 8d, where ei = log('ln - X{;3, 1 ~ j ~ n. Then the 

survival function of future patient with proteomic profile X* is given by 
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2.2.5. Simulated Data 

Coombes et al. (2005) developed a tool capable of simulating realistic mass 

spectra. Morris et al. (2005) used the proposed tool to simulate hundreds of proteomics 

data sets. The data sets are available at: 

http://bioinformatics.mdanderson.org/SupplementslDatasetslSimulations/index. 

We take the flfst 50 datasets from this collection each containing 100 spectra. The lists of 

true peaks (features) are also available. The data is given in two columns, with the first 

column containing the mass and the second column containing the intensity. We simulate 

our spectra by random resampling from these dataset. More precisely, we sample one 

spectrum at random from each dataset resulting in 50 total sample spectra. A pre

processing step of peak detection and alignment is performed using R software 

pkDACLASS. The package can be downloaded from 

http://cran.r-project.org/web/packages/pkDACLASS/index.html. There were p = 124 

aligned peaks and the corresponding intensity values are taken as the covariate vectors in 

the simulated AFT model. To simulate the survival times, we consider four different 

scenarios for the (3 coefficients. These are as follows: (i) {3j = exp{ - j} for 

1 ::; j ::; 124; (ii) {3j = 1/j for 1 ::; j ::; 124 ; (iii) for 1 ::; j ::; 10, {3j = j mod 5, if j 

mod 5 > 0, otherwise {3j = 5 and for 11::; j ::; 124, {3j = 0; (iv) (3j = 1 for 

1 ::; j ::; 124. Note that (i) and (ii) both represent situations when all the co-variables 

have positive but variable effects on survival; however, due to the exponential nature of 

the decaying coefficients, only the first few will have a real effect on survival in Scenario 

(i). Case (iv) denotes an extreme hypothetical scenario when all co variates have the same 

positive effect on survival. Presumably, (iii) denotes the most realistic scenario when the 

collection of co variates contains a large number of pure noise variables. In each case, the 

vector of coefficients is standardized for computational stability. A normal distribution is 
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used for generating the additive errors. In other words, log normally distributed failure 

times are considered. 

Next we added censoring to the simulated data. The censoring variable was taken 

to be log-normal. More precisely, C = exp{N(Co(1~ ,(12(1 + r))}, where various 

values of Co are chosen to control the censoring rate and where (12 = f3T Ex f3 is the 

variability in the regression model, where Ex = n-1E(Xi - X)(Xi - X{. We 

simulated three censoring rates: 0% (no censoring), 10% (low censoring) and 60% (high 

censoring). A value of r = 1 is used throughout the simulation which denotes a noise to 

signal ratio. 

For each design choice, the following measure is computed for checking the fit of 

the trained model: M S E F = E [ n:.' E 6, (y; - IOgT,')2] where nR = Eo, is the 

number of uncensored observations in a sample. Next, for each training data set, a test 

data set Yiew = log~new, 1 ::; i ::; n, of the same size is generated using the same design 

parameters. An AFT model is fit to the training data using each of the four methods and 

the fitted model is used with the design matrix of the test data to get predicted values 

y~ew = xr73, for 1::; i ::; n. The following measure is computed to determine the 

prediction accuracy: M S E P = E [ n~' E ( Y,"w - 17'=)2 ]. Each of these measures is 

computed by averaging these quantities over 100 Monte-Carlo replicates. 

2.2.6. Netherlands Non-small Cell Lung Cancer Data 

We use the data set reported in Voortman etal. (2009) The MALDI-TOF-MS 

dataset of serum samples of 27 patients with advanced non-small cell lung cancer 

(NSCLC), treated with chemotherapy and Bortezomib were obtained. Serum spectra of 

these patients are available at three time points: pre-treatment (preTx), after two cycles of 

treatment (post-2) and at the end of treatment (EOT). For each patient, there is an 
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associated progression-free survival (PFS) recorded in days. No censoring exists in this 

data. The range of observed survival time in this data set is 27 days to 601 days. 

We take EOT samples along with PFS values as major information for further 

analysis. Two samples are excluded due to missing EOT serum spectrum. Each spectrum 

consisted features with mass range of 800-4000 Dalton (Da) with the corresponding 

intensities. 

Raw mass spectra generally have systematic variations between spectra caused by 

sample degradation over time which is the case for our data. It is necessary to align 

spectra so that characteristic features occur at the same time in all spectra. For this 

purpose, we binned the rnIz ratios to the nearest 0.05 Da, and averaged over the intensity 

values with the same rnIz value. 

Next, we follow the standardization and denoising algorithms proposed by Satten 

et al. (2004) with slight modification. In this method, each spectrum is standardized using 

information from that spectrum only. The spectra are centered using a local estimate of the 

median and standardized using a local estimate of the interquartile range. Let mi denote 

the rnIz ratios with the corresponding intensities Xi. The spectrum is standardized by 

replacing each intensity value with x z* = Q ~(~~~mi)(m)' where Qa(mi) is a local 
0.7;) m t 0.25 t 

estimate of the a - th quantile of spectral intensities at rnIz ratios near mi. The final step 

is to denoise spectra which are still a mixture of noise and signal. In fact, denoising 

ensures that the features used in analysis correspond to real peak. Following Satten et al., 

first we need to estimate the noise scale for a given spectrum. The sample root mean 

square & of the negative values of x* (m) can serve as an estimate of the standard 

deviation of the noise distribution a. The hard thresholding criterion to denoise the 

standardized spectrum IS to replace a standardized intensity x* (m) by 

x*(m)I(x*(m) ~ 6&), where Idenotes an indicator function. The threshold of 6& as a 

cutoff to eliminate normally distributed noise is a conservative choice. 
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All 25 spectra are standardized and denoised as described above. In order to retain 

the true signals from the denoised spectra to build a predictive model, three different 

approaches are employed. First, the intersection rule, in which only the features with 

nonzero standardized intensities in all spectra are maintained in the denoised samples. This 

gives total number of 995 m/z values, denoted X (1) in the rest of the paper. In the second 

approach, the features with more than five zero values are removed from all spectra. A 

total of 4652 features X(2) are resulted using this method. Applying the union rule, 

features with at least one nonzero value in all 25 spectra are retained as signal in the 

sample spectra; we obtain a feature set X(3) of 8184 m/z ratios to be used in a predictive 

model building. 

In our analysis, we use each of the resulting feature sets X(l), X(2) and X(3) in 

an AFT model to determine the relationship between progression free survival time (in 

days) and proteomic features for the 25 cancer samples. As mentioned before, four 

methods of modeling fitting PLS, SPLS, LASSO and elastic net are implemented with 

each feature set. 

Estimation of model fit, prediction error and selection of tuning parameters are 

carried out by leave-one-out cross validation on the data. We compared the performance 

of these methods by computing their estimated mean-squared error of prediction 

(E M S E P) which is minimized with respect to the selected values of the tuning 

(operational) parameters in a regression method. Unlike the simulated data, the EMSEP 
n ~ 

here is computed by leave-one out cross validation, EMS E P = n -1 E (Y -i - Yi )2, 
i=l 

where Y -i is calculated by first fitting the model on the sample values other than the ith 

sample unit and predicting the ith value using the fitted model with the covariate Xi. 

We have investigated the performance of EMSEP and its minimizer (wrt the tuning 

parameter such as the number of PLS terms or the number of LASSO steps) in the 

simulation settings of the earlier subsection. We found that the median of the data based 
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minimizers remain close to the true minimizers of the corresponding M S E P; also the 

values of the mean squared prediction error at the median is close to the overall minimum. 

These are reported in Table 2.1. 

SPLS regression has two key tuning parameters: the thresholding parameter (A) 

and number of hidden components (K). Following the guidelines given in Chun et al., 

cross validation is computed over the grid of K = 1, 2, .. ,20 and A = 0.1,0.2, ... ,0.9. 

There are two tuning parameters in the elastic net as well. These are the penalty terms Al 

andA2. We selected a grid of values for A2=0.01, 0.1,1 10 and 100. For each A2, the 

entire solution path is produced and optimum number of steps is chosen (which is 

equivalent to choosing ). LASSO is a special case of the elastic net with A2=0. 

2.2.7. Milan Non-small Cell Lung Cancer Data 

This NSCLC data set was collected in Milan, Italy and was originally analyzed by 

Taguchi et al. (2007). There were three training cohorts with NSCLC who were treated 

systemically with efitinib and from whom sera had been collected before treatment. 

We only considered the first training cohort collected from Scientific Institute 

Hospital San Raffaele, Milan, Italy (n = 70). Mass spectra for the training samples were 

generated independently from both Vanderbilt University (VU) and University of 

Colorado at Denver and Health Sciences Center (UCDHSC). The Mass spectra obtained 

from VU are considered for our analysis. One patient without clinical outcome of survival 

is removed from the analysis. The range of observed survival time in this data set is 28 

days to 1169 days. 

We processed the baseline-adjusted spectra using standardization and denoising 

algorithm as described previously. Here we choose a less conservative threshold 4& to 

eliminate normally distributed noise since this choice maintained a reasonable number of 

features. Similar to the earlier analysis, three different approaches are employed: the 

intersection rule, the features with at least five non-zero values are retained and union rule 
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to produce the feature sets after standardization and denoising, denotedZ(l), Z(2) and 

Z(3), with sizes 104,3051 and 4816, respectively. 

This data set has 12 (17.3%) right censored observation. We apply the multiple 

imputation algorithm described before to handle censoring. The definitions of the 

estimated mean squared errors for fit and prediction are adjusted to reflect the fact that 

only uncensored data are used for the comparison with the fitted values. To this end, we 
. n n 

use EM 5 E F = n R I 2: 8i (}\ - Yi)2 with n R = 2: 8i (recall that 8i are the true failure 
i=l i=l 

n.-.. --c 
indicators) and EM5EP = n- I 2:8i (Yi ,_ - Yi )2/5 (Tic -), where 5c denotes the 

i=l 

survival function of the censoring random variable C. It can be estimated, under the 

assumption that C is independent of (T, Xl, ... , Xp), by the Kaplan-Meier estimator of 

the survival function with the roles of 8 and 1 - 8 switched. 

2.3. Results 

2.3.1. Simulated Data 

The four methods fit the uncensored part of the data very well and the MSEF 

decreases with increasing number of components or steps in the four methods. We include 

the values of Scenario (ii) in Table 2.2; the conclusions were similar in all cases. 

An important aspect of the performances of the four methods is reflected by the 

mean squared error of prediction, MSEP. MSEP is plotted as a function of either the 

number of hidden components or the number of LARS steps with different level of 

censoring; for clarity of presentation, we fix the other tunning parameter for methods 

involving two tunning parameters (only two values are selected for each such plot to avoid 

over-crowding). In each case we also plot the horizontal line y = (1 + r) for 

benchmarking, where 1 + r is the (constant) theoretical value of MSEP had we used no 

covariates. Recall that r = 1 was used in all cases. Thus a value of MSEP below 2 will 

indicate some predictive power of the model of survival on proteomic data. 
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Figures 2.1 to 2.4 display the results for Scenario (i) to Scenario (iv). The 

performance of PLS has been marginal in Scenarios (i), (ii) and (iv) compared to the no 

covariate model, especially, with larger number of components. However, in the fourth 

scenario PLS clearly outperforms the no covariate model. This scenario corresponds to 

the situation when all co variates are contributing to the regression function. On the other 

hand, the MSEP of LASSO, elastic net and SPLS appear to be smaller than (1 + r) in all 

uncensored cases. In Scenario (iii), where only ahandful of covariates contribute to the 

model, elastic net performs better than other methods. In Scenario (i) and (ii) , LASSO 

and elastic net performance are quite similar. The elastic net results appear to be more 

stable than SPLS. However, SPLS performance is better than PLS in nearly all scenarios. 

In all cases, increasing the level of censoring decreases the performance of the 

methods (i.e., increased MSEP) which is to be expected. In some cases the performance of 
" 

some methods is marginal compared to the model with no covariate with lower level of 

censoring. The clear examples of such cases are elastic net Scenarios (i), (ii) and (iii), 

LASSO Scenario (i) and (iv), SPLS Scenario (i), (ii) and (iv). The performance of 

elastic net in Scenario (i v) with higher level censoring is still better than the model with no 

covariate. 

In Scenario (ii), SPLS with smail number of hidden components performs well 

even in the censored case. In this scenario, almost all the features contribute to the model 

but contributions are not equal. Overall, correct choice of the proper tuning parameters 

seems to be important for decent predictive ability of the model. 
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Figure 2.1. Mean squared error of prediction (MSEP) in a simulated model with p = 124 

features where the regression coefficients are given by {3j = exp { - j} for 1 ::s; j ::s; 124. 

The sample size was n = 50_ The horizontal line indicates the prediction error of a model 

that does not use any proteornic features as covariates. 
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Figure 2.2. Mean squared error of prediction (MSEP) in a simulated model with p = 124 

features where the regression coefficients are given by {3j = l/j for 1 :S j :S 124. The 

sample size was n = 50. The horizontal line indicates the prediction error of a model that 

does not use any proteornic features as co variates 
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Figure 2.3. Mean squared error of prediction (MSEP) in a simulated model with p = 124 

features where the regression coefficients are given by {3j = j mod 5, if j mod 5 > 0, 
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n = 50. The horizontal line indicates the prediction error of a model that does not use any 
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29 



a.. 
w 
C/) 

~ .... g 
W 
c 
a 
~ 

~ 
a.. 

a.. 
w 
C/) 

~ .... g 
W 
c 
a n 
'6 
~ 
a.. 

SPLS-Scenario (iv) 

- No Cencoring Lambda=0.6 
LO - -- 10% Censoring Lambda=O.6 

- - 60% Censoring Lambda=0.6 
'<t - -- No Cencoring Lambda=0.8 

10% Censoring Lambda=0.8 / _ 

C') - - 60~Q..9~~_~~b.9_a~~;.,"", :,: -:::-:--
.:;' / , __ _ r:-.":,: _:.... __ . ",,, • • __ ---

/" ,-' ---- - -N -

a -L-~r----r----'-----r----'~ 
I I I I I 

2 4 6 8 10 

Number of Components 

Elastic Net-Scenario (iv) 

- No Cencoring Lambda2=0.1 
LO - - - 10% Censoring Lambda2=0.1 

- 60% Censoring Lambda2=0.1 
'<t - - - No Cencoring Lambda2=1 

10% Censoring Lambda2=1 
C') - - 60% Censoring Lambda2=1 

a -L--r---,----r---,----r---,~ 
I I I I I I 

1 0 20 30 40 50 60 

Number of Steps 

a.. 
w 
C/) 

~ .... 
g 
W 
c 
a 
~ 
~ 
a.. 

a.. 
w 
C/) 

~ .... g 
W 
c 
a :g 
~ 
a.. 

PLS-Scenario (iv) 

LO - - No Cencoring 
10% Censoring 

'<t - . - 60% Censoring 

C') -

_ -. -.;-".:-::::-::. -- -- ---
-- :-.. -:-. -~ --. -.:-,-.-

- - ~ 

a -L-'---r--'r--.--'---.--'~ 
I I I I I I I 

2 4 6 8 10 12 14 

Number of Components 

LASSO-Scenario (iv) 

LO - - No Cencoring 
10% Censoring 

'<t - - - 60% Censoring 

C') -

N 
~,-----------,-----

-

a -L--r---,----r---,----r--~ 
I I I I I I 

1 0 20 30 40 50 60 

Number of Steps 

Figure 2.4. Mean squared error of prediction (MSEP) in a simulated model with p = 124 

features where the regression coefficients are given by {3j = 1 for 1 ~ j ~ 124, The 

sample size was n = 50_ The horizontal line indicates the prediction error of a model that 

does not use any proteomic features as covariates_ 
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Table 2.1. Median values of the optimum number of steps or number of components 

based on minimization of EMSEP for 100 simulated samples and the corresponding true 

optimum value minimizing MSEP. The same four scenarios as in the Section 2.2 were 

considered without any censoring. 

SPLS( lambda=0.6) PLS Elastic Net LASSO 
# of Components # of Steps 

Median of True Median of True Median of True Median of True 
Estimates optimum Estimates optimum Estimates optimum Estimates optimum 

Scenario (i) 2 2 3 3 22 20 24 20 
Scenario (ii) 2 2 2 1 76 60 26 20 
Scenario (iii) 2 1 2.5 1 41 40 13.5 10 
Scenario (iv) 2 1 4.5 3 40 40 22 20 

Table 2.2. Mean squared error of fit (MSEF) in a simulated model with p= 124 features 

where the regression coefficients are given by f3j = 1/ j for 1 S j S 124. The sample size 

was n=50 

jLensoring LASSO MSEF Elastic Net MSEF SPLS MSEF PLS MSEF 
rate #ofsteps # of steps # of components # of components 

5 0.73 5 0.77 1 0.57 1 1.33 
10 0.48 10 0.51 2 0.19 3 1.13 

0% 20 0.20 20 0.24 3 0.05 5 0.81 
40 0.02 40 0.05 5 0.004 10 0.10 
60 6e-4 60 0.01 10 2e-6 15 0.04 
5 1.09 5 0.96 1 0.67 1 1.57 
10 0.73 10 0.62 2 0.58 3 1.31 

10% 20 0.44 20 0.39 3 0.46 5 1.02 
40 0.10 40 0.11 5 0.25 10 0.24 
60 0.01 60 0.08 10 0.06 15 0.09 
5 1.22 5 1.09 1 0.89 1 1.72 
10 0.86 10 0.83 2 0.72 3 1.41 

60% 20 0.52 20 0.44 3 0.65 5 1.13 
40 0.14 40 0.14 5 0.42 10 0.31 
60 0.04 60 0.10 10 0.10 15 0.11 
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2.3.2. Netherlands NSCLC Data 

Table 2.3 shows the measure of prediction for Netherlands NSCLC data. As 

mentioned earlier, X(l), X(2) andX(3) each has 995, 4652 and 8184 features 

respectively. As the number of features increase, LASSO and elastic net performs better 

in terms of prediction error. However, this is not the case for PLS and SPLS. Comparing 

LASSO and elastic net, the elastic net has smaller prediction error in all three cases. 

Moreover, SPLS performs better than the PLS method. Overall, elastic net and SPLS 

outperform PLS and LASSO. The smallest prediction error corresponds to using elastic 

net. SPLS performs better than elastic net with higher number of features in X(2) and 

X(3). 

Table 2.3. Estimated mean squared error of prediction (EMSEP) for the Netherlands, 

NSCLC data. Three feature selection methods are tested; X(l) has 995 features, X(2) 
has 4652 features and X(3) has 8148 features. In each case, the minimum EMSEP 

value over the operational parameters is reported for each regression method (predictive 

model). 

Method! Feature selection EMSEP 
X(l) 0.43 

LASSO X(2) 0.65 
X(3) 0.91 
X(l) 0.06 

Elastic Net X(2) 0.41 
X(3) 0.68 
X(l) 0.68 

PLS X(2) 0.68 
X(3) 0.54 
X(l) 0.56 

SPLS X(2) 0.31 
X(3) 0.52 
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2.3.3. Milan NSCLC Data 

Table 2.4 displays the measure of prediction for MilanNSCLC data. Here the 

number of features in corresponding to the three sets of co variates Z(l), Z(2) and Z(3) 

are 104, 3051 and 4816 respectively. As can be seen from the table, the prediction error 

Z (1) for has the smallest value using elastic net and the largest using PLS. This is true for 

Z(2) as well. However, for Z(3) SPLS has the smallest value. Overall, elastic net 

outperforms LASSO and SPLS outperforms PLS. Except for Z (3) that has larger number 

of co variates, elastic net results are better than SPLS. 

We plot the predicted survival curves of a number of hypothetical patients with 

similar proteornic profiles Z(l) as in the Milan NSCLC Data using the two best methods 

(namely SPLS and elastic net). The result is displayed in Figure 2.5. The elastic net is 

producing slightly tighter results although SPLS exhibits greater consistency with the 

range of observed survival times in the data set. Table 2.5 includes results on the measures 

of fit, EMSEF for the Milan NSCLC data over selected choices of "number of 

components" in PLS and SPLS with fixed >. = 0.3 and "number of steps" in LASSO and 

elastic net with fixed >'2 = 0.3. Both PLS and SPLS fit the uncensored part of the data 

quite well and the EMS E F decreases rapidly with increasing number of PLS/SPLS 

terms. The same holds for LASSO and elastic net as well although, generally speaking, the 

EMS E F decreases relatively slowly with increasing number of steps in elastic net and 

LASSO. Larger feature sets improve the fit in PLS and SPLS. However, this is generally 

not the case for LASSO and elastic net. Z(2) has smaller values of measure of fit using 

LASSO and elastic net compared to Z(l) andZ(3). 

33 



Table 2.4. Estimated mean squared error of prediction (EMS E P) for the Milan, NSCLC 

data. Three feature selection methods are tested; Z(l) has 104 features, Z(2) has 3051 

features and X(3) has 4816 features. In each case, the minimum EM SEP value over the 

operational parameters is reported for each regression method (predictive model). 

Method! Feature selection EMSEP 
Z(l) 0.14 

LASSO Z(2) 0.58 
Z(3) 1.14 
Z(l) 0.09 

Elastic Net Z(2) 0.19 
Z(3) 0.57 
Z(l) 1.42 

PLS Z(2) 1.80 
Z(3) 1.79 
Z(l) 0.32 

SPLS Z(2) 0.47 
Z(3) 0.34 
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Table 2.5. Estimated mean squared error of fit (EMSEF) for the Milan, NSCLC Data. 

Three feature selection methods are tested; Z (1) has 104 features, Z(2) has 3051 features 

and Z (3) has 4818 features. 

Feature set LASSO EMSEF Elast. Net EMSEF SPLS EMSEF PLS EMSEF 
# of Steps # of Steps #ofComp. #ofComp. 

1 2.4 1 1.02 1 1.34 
2 2.1 2 0.01 1 0.89 2 1.27 
3 1.91 3 8e~3 2 0.42 3 0.69 
4 1.05 4 5e~3 3 0.07 4 0.12 
5 0.65 5 4e~3 4 3e~3 5 0.08 
10 0.42 10 3e~4 5 1e~3 6 0.01 

Z(l) 15 0.12 15 2e~4 6 5e~4 7 4e~3 

20 0.07 20 1e~4 7 6e~'; 8 2e~3 

25 0.05 25 4e~5 8 2e~7 9 3e~6 

35 7e~3 35 3e~5 10 1e~8 10 1e~16 

50 3e~3 50 2e 
, 

12 3e~1O 25 2e~19 

75 5e~4 75 1e~6 15 4e~12 20 4e~21 

100 2e~4 100 7e~6 30 2e~23 

1 0.91 1 0.97 1 l.U;! 

2 0.70 2 0.93 1 0.77 2 0.87 
3 0.67 3 0.72 2 0.28 3 0.79 
4 0.41 4 0.71 3 0.01 4 0.12 
5 0.23 5 0.62 4 1e~3 5 7e~3 

10 0.08 10 0.36 5 4e~4 6 8e~4 

Z(2) 15 0.02 15 0.21 6 2e~'; 7 5e~'; 

20 0.01 20 0.12 7 3e~6 8 1e~'; 

25 ge~3 25 0.07 8 5e~8 9 4e~7 

35 6e~3 35 0.01 10 3e~9 10 3e~18 

50 2e~3 50 8e~3 12 2e~12 15 3e~23 

75 1e~3 75 1e~3 15 7e~14 20 2e~2.; 

100 28e~4 100 3e~4 30 3e~26 

1 2.02 1 1.48 1 0.20 
2 1.72 2 1.30 1 0.32 2 0.19 
3 1.32 3 1.04 2 0.17 3 0.14 
4 1.08 4 0.88 3 0.05 4 3c3 

5 0.98 5 0.76 4 1e~4 5 2e~3 

10 0.81 10 0.57 5 2e~·5 6 2e~3 

Z(3) 15 0.70 15 0.31 6 3e~6 7 6e~4 

20 0.36 20 0.12 7 1e~7 8 3e~5 

25 0.29 25 0.01 8 2c9 9 1e~6 

35 0.18 35 4e~3 10 5e~1O 10 7e~8 

50 0.05 50 1e~3 12 4e~13 15 ge~28 

75 0.01 75 3e~4 15 3e~15 20 4e~28 

100 3e~3 100 3e~'; 30 2e~28 
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Figure 2.5. Estimated survival curves of patients with the same proteomic profiles as in 

Milan NSCLC Data. 
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Figure 2.6. Observed versus fitted values in Milan NSCLC Data using the two best 

methods and feature set Z (1). The optimal values of the tuning parameters as in Table 2.4 

are used. 
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2.4. Discussion 

For proper choices of the operational parameters, all four methods PLS, SPLS, 

LASSO and elastic net showed promise in predicting survival with large number of 

features versus limited sample size. It is likely that majority of features are not related to 

survival as only small number of features contributed the most to the regression models 

fitted. Based on our simulation study, elastic net outperforms LASSO and SPLS seems to 

be more effective than PLS when indeed there are large numbers of extraneous covariates. 

The proposed mUltiple imputation algorithm seems to be an appropriate way to handle 

censored data. 

The performance of the four aforementioned regression methods are also 

compared on two real data examples; Netherlands NSCLC data and Milan NSCLC data. 

The prediction performance of all methods had similar trend in two data analyses and 

confirms results obtained in simulation. From Tables 2.3 and 2.4 for the analysis of these 

two datasets, we can conClude that SPLS is the· best method when the number of 

covariates (features) is large since it outperforms LASSO and elastic net in terms of 

prediction error in these cases. It also outperforms PLS as not all the co variates contribute 

to the prediction in a significant manner and some sparsity is useful. However, for future 

survival prediction, the elastic net method with the filtered set of features that are present 

in all pre-processed training samples appears to be the best overall. The minimum 

prediction errors reported in Table 2.3 and 2.4 are somewhat optimistic since the optimal 

tuning parameters are also determined from the minimum prediction errors estimated from 

the training data. 

One issue in using predictive models based on mass spectrometry profiles is that 

mUltiple runs of the mass spectrometer may produce spectra with slightly different set of 

mlz values. We have applied a simple strategy based of binning to deal with this after 

preprocessing of the raw spectra (which involve baseline correction, monoisotopic peak 
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detection or statistical peak detection via normalization and denoising). Of course, similar 

pre-processing and binning steps need to be implemented to a future sample to extract the 

comparable set of features which are then fed into the predictive model. Although it is not 

strictly necessary to interpret these features for model building, such an identification step 

may lead to greater confidence to the quality of the features used for survival prediction. 

We have attempted some preliminary investigations for the Milan NSCLC data using use 

peptide mass fingerprinting and identified three proteins that may play some role in cancer 

as well as the survival process. 

2.4.1. Feature Identification 

Once an AFf model is fit to the test data using any of these methods, estimates of 

survival probabilities for a future patient with a given proteomic profile can be obtained. 

Although it was not the primary purpose of this chapter to identify the features and the 

corresponding proteins used for survival prediction, we performed a preliminary 

investigation in this direction. We illustrate this with the Milan NSCLC Data using the 

smallest collection of 104 features represented as Z(l) in Table 2.4. We use peptide mass 

fingerprinting for MALDI data to identify the proteins. We used Aldnte 

(http://www.expasy.orgl tools/aldentel) as the search engine with the following search 

parameters: (a) molecular mass range taken to be 6 - 30 kDa; (b) fixed modification of 

cystine residues by carboxy-amidomethylation; (c) variable oxidation modification of 

methionine (d) no restriction was placed on isoelectric point; and (e) species selected 

were Homo Sepians. Some top-scoring identified protein candidates from many spectra 

included the proteins 075157 (T22D2_HUMAN (V _2) Isoform 2 of TSC22 domain 

family protein, 76 kDa), 075157 (T22D2_HUMAN (C_l) TSC22 domain family protein, 

79 kDa) and Ql4671 (PUMLHUMAN (C_l) Pumilio homolog 1, 126 kDa). 

Two of the three top scoring proteins belong to TSC22 anti-apoptotic family of 

proteins. TSC22 is assumed to act as a negative growth regulator and tumor suppressor 
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(Gluderer et at., 2004). TSC- 22 protein prevents yeast cell death due to a variety of 

apoptotic stimuli and also promotes cell survival in yeast (Khouri et at., 2008). Moreover, 

TSC-22 belongs to a family of putative transcription factors encoded by four distinct loci 

in mammals. Q 14671 is a PUMILIO-l family of proteins. This family of proteins has been 

implicated in skin and epithelial cancer (Dazard et at., 2003). So in a nutshell, these three 

proteins seem to play some role in cancer as well as the survival process. 
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CHAPTER III 

NON-PARAMTERIC REGRESSION OF STATE OCCUPATION, ENTRY, EXIT 

AND WAITING TIMES WITH MULTISTATE RIGHT CENSORED DATA 

3.1. Introduction 

Multistate models are natural extensions of simple survival models that can be used 

to describe various types of event times. These models allow subjects to move through a 

succession of states and they are particularly useful for describing the complexities of 

disease processes in which each state corresponding to a certain health condition (e.g. 

alive and disease free, alive with recurrence and dead). The resulting data contains 

information about the transition times and the states occupied. Transitions between states 

can be reversible or irreversible while states can be either absorbing or transient. An 

absorbing state is a state from which further transitions cannot occur while a transient 

state is a state that is not absorbing. Multistate models may consist of various levels of 

complexities where individuals can pass through multiple transient states before entering a 

number of possible absorbing states. Graphically, multistate models may be illustrated 

using diagrams with boxes representing the states and with arrows between the states 

representing the possible transitions. 

State occupation probability, which is the probability that a subject be in a specific 

state at certain time point, is an important quantity in study of multistate models. Another 

important quantity is the state transition intensity (or transitional hazard) which is the 
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hazard (rate) that an individual moves from one state to another. They are functions of 

time, similar to the survival function in survival analysis. Distribution functions for the 

state entry and exit times are also of interest and so are that of state waiting times 

(sometimes referred to as the sojourn times). Estimators of these quantities have been 

proposed in the recent past under a variety of parametric and non-parametric assumptions, 

as well as, structural assumptions on the system such as progressive, Markov, semi

Markov and so on (Aalen, 1976; 1978; Aalen & Johansen, 1978; Datta & Satten, 2000; 

2001; 2002; Aalen et al., 2001; Satten & Datta 2002 etc.). Aalen and Johansen (1978) 

gave a method for calculating transition hazard and state occupation probabilities for 

Markov models starting from the Nelson-Aalen estimators of integrated transition hazards 

when data are subject to independent censoring. Datta and Satten (2001) showed that 

these estimators remain consistent even when the underlying model is non-Markovian; the 

same is not true, however, for the corresponding estimated bivarite (in time) transition 

probability matrix obtained by product integration (Meira-Machado et ai., 2006). They 

also extended their work and presented estimators using data that are subject to dependent 

right censoring (Datta & Satten, 2002). Their estimator of the integrated transition hazard 

matrix has a Nelson-Aalen form, where each of the counting processes, counting the 

number of transitions between states and the risk sets of leaving the states has an IPCW 

(Inverse Probability of Censoring Weighted) form. Non-parametric estimation of waiting 

times was undertaken in Lin et al. (1999) for the very special case of a progressive model 

with no branching. Satten and Datta (2002) also provided non-parametric estimates of 

waiting time distributions under dependent censoring using additive hazard model. Beside 

estimation in a marginal model, there is considerable appeal in developing methods for 

conditional distribution (e.g., regression) of these quantities relating them to number of 

covariates. 

Majority of studies in the context of non-parametric regression of time to event 

data deal with the survival setup. One of the earliest theoretical studies can be traced back 
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to Beran (1981) who studied a conditional Kaplan-Meier estimator (and also its quantile 

function) using local estimator obtained with regression weights using either a nearest 

neighborhood approach or a kernel approach. Theoretical properties of these estimators 

and their generalizations have been further studied by Dabrowska (1987; 1989; 1992 b), 

Li and Doss (1995), McKeague and Utikal (1990), Li and Datta (2001) and others. 

Additive non-parametric regression models for the hazard rate function were considered 

by Aalen (1980; 1989). Recently, Andersen and Keiding (2002) and Andersen and Klein 

(2007) studied the effects of covariates in a multistate model using a hybrid approach of 

combining some non-parametric calculation followed by semi-parametric ones. This 

approach, however, may not produce regression function estimators of the marginal 

quantities under study; furthermore, the theoretical modeling framework necessary for the 

validity of this approach is not very clear. The smoothing techniques offer useful 

alternatives to the non-parametric likelihood based approaches since a full likelihood 

specification in a multistate model is often difficult (and sometimes impossible without 

additional structural assumptions). There are various approaches to produce non

parametric smoothed estimates. The simplest and flexible methods are the kernel-based 

procedures (Anderson and Keiding, 2002; Nadaraya, 1964). 

In this chapter, we extend the Beran estimator and develop methods for non

parametric regressions of the state occupation probabilities, the entry/exit and waiting time 

distributions in a multistate model. Throughout the chapter, we assume the framework of 

right censored transition times; however no structural assumptions on the multistate 

system (e.g., a Markov or a semi-Markov model) are being made. The form of the 

censoring hazard is fairly general - in particular, it may be controlled by some additional 

co variates that are observable. Thus, the proposed treatment is more general than the 

usual notion of "independent censoring" in regression models for survival data. The 

purpose here is to study the regression functions based on one continuous covariate at a 

time. 
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The rest of the chapter is organized as follows. The next section of the chapter 

introduces our proposed non-parametric estimation of state occupation probabilities, 

integrated hazard, entry/exit, and waiting time distributions. Result of simulation studies 

for our estimators are given in Section 3.3. Section 3.4 contains an analysis of a bone 

marrow transplant data. Finally, Section 3.5 contains some concluding remarks. 

3.2. The Non-parametric Regression Estimators 

3.2.1. Notation and Convention 

Consider a time continuous, multistate process S = {S(t) : t 2: O}, where t 

denotes time and S(t) denotes the state occupied at time t. Let S(t - ) = lims--tt __ S(s) 

be the state occupied just before time t. A finite state space X = {O, 1, ... , M} is assumed 

for the process. Under the marginal model, it is assumed that the multistate processes for 

n individuals Si = {Si(t) : t 2: O}, 1 SiS n, are independent and identical (i.i.d., 

hereafter) realizations of S. We assume that the model is progressive (e.g., acyclic) and 

thus a given state j is entered at most once by an individual. We can define the state entry 

and exit times by Ui = inf{t: S(t) = j} and Vi = sup{t: t > Ui,S(t) = j}. We take 

by convention, Ui = 00, if state j is never entered and Vi = 00, if either state j is never 

entered or j is an absorbing state (in which case it is never left). The state waiting time 

can be defined as Wi = Vi - Ui , when Ui < 00. The (marginal) state entry, exit and 

waiting time distributions will be denoted by F i (t) = Pr{ U i S t lUi < oo}, 

Gi(t) = Pr{Vi S tlUi < oo} and Hi(t) = Pr{Wi S tlUi < oo}, respectively. Also, 

let pj{ t) = Pr{ S (t) = j} be the probability that a typical individual will be at state j at 

time t. In this chapter, we study the effects of a fixed (i.e., baseline) covariate X on 

various functions of time, O(tlx),related to the multistate system. Thus, Fi(tlx)will 

denote the regression function Pr{Ui S tlUi < 00, X = x} and so on. To this end, we 

assume the random regressor model that {Si, Xi} are i.i.d., for 1 SiS n. 
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Assume that the data are subject to right censoring and hence not all the transition 

times are observed. For individual i, let C i be the (right) censoring time for individual i. 

Dependent censoring will occur if there are covariables Z = Z(t) that affect both the 

hazards of future transitions and of being censored. For non-Markov models, future 

transitions and the censoring hazard may also depend on the past history of the process. 

We assume we have observations on a covariate process Z that explains the dependence 

between transition and the censoring mechanism such that, conditional on the values of Z 

previous to the current time, future transitions and censoring events behave independently. 

Let ~* be the last transition for individual i (in the uncensored experiment) and 

~ = min(~*, Ci ) be the time for the last event in the censored experiment. We assume 

that the censoring mechanism satisfies 

where 

Ac(tl.) = ~t--->OPr(Ci E [t,t+dt)l~ ~ t,.), 

and Zi (t) = 0-( {Zi (s) : 0 ~ s < t}). Without loss of generality, we assume that the 

collection Z contains X whose effect we plan to study. 

3.2.2. Integrated Transition Hazard 

For states j i- j', let ajj(tlx) be the local (i.e., given X = x) transition hazard of 

the original (uncensored) chain from state j to j', defined as 

ajj(tlx) = lim Pr{S(s) = j' for some s E [t, t + dt)IS(t - ) = j, X = x }/dt, 
dtlO 

where, recall that Set - ) denotes the state occupied just before time t. Let Njj be the 
n 

counting process with jumps given by L1Njj (t) = 'LJ(Si(t - ) = j, Si(t) = j'). Also, let 
i=l 

n 

}j (t) = 'LJ (Si (t - ) = j) be the number of individuals at state j just before time t. 
i=l 
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Note that by Fubini's theorem 

so that ajj (tlx )dt counts the limiting number of j to j' transitions made by an individual 

with covariate X = x, in the interval [t,t+dt) and ajjl(tlx) denotes a local version of a 

'partially conditional transition rate' of Pepe and Cai (1993). The local cumulative 

(integrated) transition hazard matrix is given by A(· Ix) = {Ajj'( . Ix)}, with 

Ajj(tlx) = J;ajj(slx)dsforj =1= j'withajj(tlx) = - Eajj(tlx). 
Hj 

To develop non-parametric estimators conditional on a given value of X, we adopt 

the method proposed by Datta and Satten (2002) in estimating the marginal transition 

hazard. In their treatment, the estimator of the integrated transition hazard matrix has a 

Nelson-Aalen form. They estimate the two processes Nj/ and Yj separately using the 

principle of inverse probability of censoring weights rather than ratio. The reason for using 

such reweighting approach is that when the data are right censored, the processes Y and 

N cannot be calculated based on the observed data alone. For the regression case, we 

propose using kernel estimators similar to the method by Beran (1981) along with IPCW 

estimation techniques in Datta and Satten leading to our final estimators. This way, we 

introduce local versions of counting and "number at risk" processes through kernel 

smoothing to give higher weights to individuals with X covariate values close to the given 

value x. 

As described in the previous paragraph, we let 

and 

(3.2) 
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where ¢ is a density kernel, h = h(n) lOis a bandwidth sequences, ¢h = h-1¢(./h), and 

Ki(t) is an estimate of Ki(t) = I1[l - >'c(tIZi (s))dsJ. Note that the indicator terms in 
s~t 

the summands are calculable based on the observed (e.g., right censored) multistate data. 

Finally, a non-parametric regression estimator of integrated transition hazard is obtained 

by 

with Jj{u,x) = 1(Yj(u,x) > 0). 

j=!=/ 
j = /, 

In general, Ki(t) does not have a survival function interpretation unless all theZi 

are baseline co variates. A flexible model is recommended in practice for estimating Ki and 

obtaining K i. This will be discussed later in the chapter. 

3.2.3. State Occupation Probabilities 

Non-parametric estimation of state occupation probabilities when data are subject 

to dependent censoring was undertaken in Datta and Satten (2002). We present a brief 

description of their estimators for the sake of completeness. 

The Datta-Satten estimator P(s, t) of the transition probability matrix has an 

Aalen-lohanson form, and it is given by the product integral 

P(s, t) = II (1 + dA(u)), 
(s,tj 

where 1 is the identity matrix. This is a finite product taken over all distinct observed 

transition times. Finally, the Datta-Satten estimator Pj(t) of the marginal state j 

occupation probability at time t is given by 
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M~ 

~() ,",Yk(O+)~ (0 ) Pj t = ~ Pkj ,t. 
k=O n 

Thus, the marginal state occupation probability of state j is obtained by evaluating the 

product limit of transition hazards and averaging it with respect to the initial distribution 

of state occupation. 

The non-parametric regression estimation of these quantities can be obtained by 

localizing the calculation via kernel weights. In particular, the non-parametric regression 

estimator of the state occupation probabilities conditional on a given value of X = x, 

pj(tlx) = Pr{S(t) = jlX = x}, is given by 

where P(O, tlx) is the kjth element of the matrix P(O, tlx) = n (I + dA(ulx)) obtained 
(O,tl 

by product integration of the matrix A(t) defined in the previous section and 
~ ~ n 
Yk(tlx) = Yk(t, x)/ {n-1 ~ ¢h(Xi - x)}. 

i=l 

3.2.4. State Entry and Exit Distributions 

For this section, we assume that the multistate system is progressive (e.g., it does 

not contain a cycle) so that a given state is entered at most once. Recall that for any state 

j> 0, Uj is the entry time for statej amongst individuals who ever enter statej. Let Fj 

denote the corresponding distribution function conditional on X = x, 

Fj(tlx) = P{Uj S tlUj < 00, X = x}, 

where we take FO(tlx) = I, for all x and t. Let sj is the collection of all states which 

proceed state j in the progressive model. Then estimators of entry time distributions of 
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state j is given by 

L Pk(tlx) 
Fj (tlx) = _k_E_{J_"}U_S_~ ___ , 

L Pdoolx ) 
kE{j}USj 

where Pdoolx) = limPk(tlx). 
t---+oc 

Analogous to above, V j is the exit time for state j of individuals who will ever 

enter state j. Let Gj denote the corresponding distribution function conditional on 

X=x, 

where we take Gj(tlx) = 0, for all xand t, if j is a terminal node (e.g., an absorbing 

state). For a transient state j, 8j 
(t I x ) is taken to be the sum of estimated state 

occupation probabilities of all states that proceed state j in the progressive system 

normalized by sum of probabilities of ever entering state j. Another option for calculating 

the exit distribution function will be to take the normalized sum of estimated state 

occupation probabilities of all states that come after state j. The former method seems to 

be more appropriate approach since all individuals who entered state j may not leave the 

state j by the end of study. Hence, excluding these individuals in normalization process is 

not suitable. Mathematically speaking, the estimated state exit time distribution is given 

by 

3.2.5. State Waiting Time Distributions 

In order to calculate waiting time distributions, a different form of reweighting 

similar to the one proposed in Satten and Datta (2002) is necessary for handling 

48 



censoring, since waiting times are measured from state entry whereas right censoring is 

measured in calendar time. Once again, assume that a transient state j can be entered at 

most once. The local estimated counting processes for waiting time in a given state j is a 

jump process with jump size equal to 

which can be computed based on the available right censored data since if C i ~ ~j then 

the state j waiting time W! is available. The inverse weighting factor is essentially the 

estimated conditional probability of the event {Ci ~ ~j}, given {~j, WI}. Next, the size 

of the" at risk" set of state j waiting time is estimated by 

~YW ( ) = ~ cPh (Xi - x)1 {t :::; W!, Ci ~ t + U!, U! < oo} 
J t,x L ~ J . 

i=l Ki((t + UJ - ) 

Note that, this quantity can be computed based on the available data and, in particular, an 

individual may contribute to the local "at risk" set even if its exit time is right censored. 

Finally, the regression estimator of state j waiting time distribution is obtained by a 

Kaplan-Meier type product limit formula using these two sets 

fjj(tlx) = 1- II (1- d~! (s,x) ). 
s-:::t Y j (s,x) 

3.2.6. Estimation of >"c 

In estimating the IPeW-weights, we apply a highly flexible and non-parametric 

additive regression model in which the regression coefficients are allowed to vary over 

time. 

Aalen's linear hazard model (1980; 1989) has a linear structure given by 

49 



.1 

Ac(tiZi (t)) = L !3k (t)Uik (t), 
k=O 

where UiO (t) == 1 and Uik (t) = fk (Zi (t)) for k = 1, ... , J are possibly time-dependent 

functions of the past history of the covariate process for subject i. The !3k(t) are 

(unknown) regression functions that measure the effect of respective covariate functions 

on the risk of censoring. Let 8i = I( Ci > I:*) be the indicator of whether the ith 

individual was ever censored. Define Ui(t) = (Uil(t), ... ,Uu(t));then Aalen's estimator 

has simple closed form given below: 

with 

n 

R(t) = LI(1i ~ t)Ui(t)ut (t). 
i=l 

Using this model, a correction for informative censoring can be obtained which is close to 

that achieved using the correct model for Ac(tlZi (t)). An important special case is when 

censormg depends on the current stage occupied which corresponds to the internal 

covariate 

3.3. Simulation Studies 

To illustrate the use of our estimators in a controlled setting, a number of Monte 

Carlo experiments were performed. We have based our simulations on a hypothetical 

progressive model with branches described by a five state system (Figure 3.1). In order to 

cover a variety of scenarios, three different simulation examples are presented below. 
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Figure 3.1. A five-state illness-death model 

3.3.1. Conditionally Semi-Markov Transition Times 

For each person, the single covariate X was generated from a normal distribution 

with mean parameter 5 and standard deviation parameter of 0.5. We assumed all 

individuals start in State 0 (well) at time zero, and may either progress to State 1 or State 

2. Each patient at State 0 had a 60% chance (controlled by a Bernoulli variable that is 

independent of the event times) of following the 0 ~ 1 arm and a 40% chance of 

following the 0 ~ 2 arm. Furthermore, patients who entered State 1, would subsequently 

reach States 3 or 4 with arm probabilities (controlled by another independent Bernoulli 

variable) 0.6 and 0.4, respectively. To generate the event times in a conditionally semi

Markov model, we used both lognormal and Weibull distributions. For lognormal 

simulations, the waiting times in State 0 were generated from a lognormal distribution 

with log-mean parameter 0 and log-scale parameter 0.5 and for individuals traversing the 

o ~ 1 arm, the State 1 waiting times were generated using another independent lognormal 

distribution with log-mean parameter 0 and log-scale parameter 1. For the Weibull 

simulations, the State 0 waiting times were generated from a Weibull distribution with 

shape parameter 2 and scale 1. For patients traversing the path 0 ~ 1, the state waiting 

times were obtained from another independent Weibull distribution with shape parameter 
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0.5 and scale 1. We assume that the simulated data are subject to dependent right 

censoring induced by the covariate X that affects both the transition and censoring times 

of an individual. In order to meet this assumption, the waiting times were multiplied by the 

person-specific frailty variable which was generated from normal distribution with mean 

parameter X / 5 and standard deviation parameter 0.1. The choice of the mean and the 

variance parameters of the normal distribution generating X guarantees that the frailty 

variable will have positive values with probability nearly 1. Censoring times were 

generated from the lognormal distribution with parameters f.-L = 0.5 and a 2 = 2. In order 

to make the censoring dependent on covariate X, the censoring times were multiplied by 

another frailty variable which were generated from normal distribution with mean 

parameter X /5 and standard deviation parameter 0.3. Note that, in this example, only an 

external covariate X affects the censoring mechanism. 

3.3.2. Conditionally Markov Transition Times 

A Markov model is based on the assumption that the transition intensities depend 

only on the calendar time and current state occupied. We generated the event times in a 

Markov setup as follows. Individuals started at State 0 at time zero; 60% of the study 

population at State 1 took the 0 -+ 1 path. The branch proportion was controlled by a 

Bernoulli variable independent of the transition times. There are two transition times need 

to be generated and both of them have a common hazard following either a Weibull 

distribution with shape parameter 1 and scale 0.5 or a lognormal distribution with log

mean parameter 0 and log-scale parameter 0.5. We randomly generated the first transition 

times Tl from each of these distributions and then multiplied them by the person-specific 

frailty variable which was generated from normal distribution with mean parameter X /5 

and standard deviation parameter 0.1. For individuals who ever traversed the State 1, the 

second transition times T2 were obtained by 
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where D(.) denoted the distribution function for the common hazard; D-1 (.) was the 

corresponding quantile function and R2 was a random number generated from uniform 

distribution [0,1] and independent of T1• The second transition times T2 were also 

multiplied by the person-specific frailty. Censoring times were generated from a uniform 

distribution ranging from time 0 to T*, the largest transition time generated. The censoring 

times were multiplied by another frailty variable which were generated from normal 

distribution with mean parameter X /5 and standard deviation parameter 0.3. Similar to 

previous example, only covariate X which is an external covariate affects censoring 

mechanism. 

3.3.3. Conditionally Markov Models with State Dependent Censoring 

In this simulation study, we let the censoring hazard, at time t differ among the 

subjects according to their current state occupation. That is, the covariate process Zi (t) 

that affects the censoring mechanism for subject i, consists only of the internal covariate of 

the state occupied at time t. 

Similar to the previous example, the state waiting times are generated as follows. 

Individuals started at State 0 at time zero; 60% of the study population at State 1 took the 

o -> 1 path. The branch proportion was controlled by a Bernoulli variable independent of 

the transition times. Transition times generated from a lognormal distribution log-mean 

parameter 0 and log-scale parameter 0.5. For individuals who made transition to the State 

1, the second transition times T2 were obtained by 

T2 = D-1 (D(TI) + R2{1 - D(T1 )}), 

where D ( .) denoted the distribution function for the common hazard; D-1 ( . ) was the 

corresponding quantile function and R2 was a random number generated from uniform 

distribution [0,1] and independent of T1• Censoring times for individuals in State 1 was 
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generated from a Weibull distribution with shape parameter 1.5 and scale 3. The second 

censoring time which belongs to those who made the transition to State 1 were generated 

independently from another Weibull distribution with shape parameter 2 and scale 3 

conditional on that the generated value be larger than the first transition time. 

The state occupation probabilities of described examples were estimated by the 

proportion of subjects observed in each state at time t in complete data. The smoothing 

step in each of the estimation processes was based on a common bandwidth selector and 

using normal kernels. The R package "KernSmooth" was used to this end (http://cran.r

project.org/doc/packages/KernSmooth.pdt). The bandwidth was taken as dpik, the data 

based bandwidth selector of Wand and Jones (1995). 

The non-parametric estimators for a sample of size 1000 and 10000 generated as 

above with given x = median of the covariate X. The estimators with sample size of 

10000 are used as benchmarks which were virtually identical to the empirical probabilities 

using the set of complete transition times (not shown in the plots). For the sake of space, 

we only provide limited number of figures in this chapter. The conclusions based on these 

figures are going to be the same for the rest. Figure 3.2 displays the state occupation 

probability results of conditional semi-Markov data with lognormal transition times. and 

state dependent censoring model respectively. The non-parametric regression estimates of 

state occupation probabilities in Weibull conditional Markov model with state dependent 

censoring is shown in Figure 3.3 

Overall, estimators for n = 1000 and n = 10000 are in good agreement, the later being 

virtually identical to the true empirical curves (not shown separately). 

54 



State 0 

a\ I 
I 

0 2 4 6 8 10 12 

time 

State 2 

o 2 4 6 8 10 12 

time 

State 4 

°Lc mm i ~ " . .-., .......... -_._----

~ .. -' ,'-
d :-

a a 
o I I 

o 2 4 6 8 10 12 

time 

State 1 

~~G a I 

0 2 

o 2 

4 6 

time 

State 3 

4 

N=10000 
N=1000 

6 

time 

I 
I 

8 10 12 

8 10 12 

Figure 3.2. The non-parametric regression estimates of state occupation probabilities in a 

five-state lognormal conditional semi-Markov model given the covariate X = 5 which was 

the median of the covariate distribution. 
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Figure 3.3. The non-parametric regression estimates of state occupation probabilities in a 

five-state, conditional Markov with state dependent censoring model Weibull conditional 

Markov model given the covariate X = 5 which was the median of the covariate 

distribution. 
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Next we assessed the global performance of the estimators by the Ll distance 

where O(x) and OE(X) denote respectively our proposed estimator of () and its empirical 

counterpart based on the complete data. Here, () is either a state occupation probability, a 

state entry time distribution function or a state exit time distribution function. The 

integrating measure in the definition of the Ll distance was taken to be the empirical 
n 

distribution function of true event times Fn(tlx) = n-1LI{1i :S tlx}; ~ = 0 means 
i=1 

that they are in a complete agreement on the support of the event times. We calculated ~ 

via Monte Carlo averaging with the replication size of 5000. The calculations were 

performed based on three given x values; covariate first quartile, median and third 

quartile, respectively. 

The Ll results of state occupation probabilities for conditional semi-Markov with 

Weibull and lognormal transition times are provided in Tables 3.1 and 3.2, respectively. 

Table 3.3 and 3.4 list the results for conditional Markov simulations with Weibull and log-

normal transition times. Table 3.5 gives the result of state dependent censoring example. 

For all five simulation settings, the Ll values decrease with increasing sample size. As the 

given x value gets away from the center of the covariate (X) , the L1 values increase. The 

absorbing states have smaller Ll errors than transient state in all models. The results for 

conditional semi-Markov and Markov setups are comparable indicating that these non-

parametric regression estimators work well regardless of any structural assumptions on 

the multistate system. 

The Ll calculation results for entry/exit time distributions with Weibull transition 

times in the conditional semi-Markov setup is given in Table 3.6. Similar to state 

occupation probability result, Ll values have a decreasing trend by increasing sample size. 
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A set of scatter plots corresponding to varIOUS simulation setting show an 

approximate linear relationship of the logarithms of the Ll distances with the logarithms 

of the sample size for each of these estimators suggesting that the Ll values converge to 

zero at the rate of n -b, for some b. The log mean Ll distance plots are listed in Figures 

3.4-3.8. 

58 



Table 3.1. The L1 distances between non-parametric regression estimators of state occupation probabilities based on right censored 

data and complete data in a five-state conditional semi-Markov Weibull model. The estimates are based on a Monte Carlo sample size 

of 5000; all standard errors were less than 0.09 

given x: First Quartile given x: Median given x: Third Quartile 
n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 

Po 0.017 0.009 0.007 0.003 0.015 0.007 0.006 0.002 0.016 0.008 0.006 0.003 

PI 0.200 0.094 0.066 0.023 0.197 0.091 0.064 0.021 0.198 0.092 0.065 0.024 

I 

I 

P2 
0.017 0.009 0.007 0.003 0.015 0.007 0.006 0.002 0.015 0.008 0.006 0.003 

I 

P3 0.021 0.012 0.009 0.004 0.019 0.010 0.008 0.004 0.019 0.011 0.008 0.004 I 

P4 0.018 0.010 0.008 0.004 0.015 0.008 0.006 0.003 0.015 0.009 0.007 0.004 
I 

0\ 
lrl 



Table 3.2. The L1 distances between non-parametric regression estimators of state occupation probabilities based on right censored 

data and complete data in a five-state conditional semi-Markov lognormal model. The estimates are based on a Monte Carlo sample 

size of 5000; all standard errors were less than 0.09 

given x: First Quartile given x: Median given x: Third Quartile 
n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 

Po 0.021 0.009 0.007 0.004 0.020 0.009 0.006 0.003 0.022 0.009 0.007 0.004 

PI 0.420 0.152 0.099 0.043 0.417 0.149 0.097 0.041 0.419 0.151 0.099 0.043 

P2 
0.016 0.008 0.006 0.003 0.014 0.007 0.005 0.002 0.016 0.008 0.006 0.003 

P3 0.014 0.007 0.005 0.002 0.012 0.006 0.004 0.001 0.015 0.005 0.005 0.002 

P4 0.011 0.005 0.004 0.002 0.010 0.004 0.003 0.001 0.011 0.005 0.004 0.002 
-- - -- o 

1.0 



Table 3.3. The L1 distances between non-parametric regression estimators of state occupation probabilities based on right censored 

data and complete data in a five-state conditional Markov Weibull model. The estimates are based on a Monte Carlo sample size of 

5000; all standard errors were less than 0.05 

given x: First Quartile given x: Median given x: Third Quartile 
n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n=5000' 

PI 0.023 0.009 0.006 0.003 0.022 0.008 0.005 0.002 0.023 0.009 0.006 0.003 I 

PI 0.142 0.045 0.029 0.012 0.141 0.044 0.028 0.011 0.0143 0.045 0.029 0.012 J 
P2 0.026 0.010 0.007 0.003 0.025 0.009 0.006 0.002 0.026 0.010 0.007 0.003 

P3 0.049 0.019 0.013 0.006 0.048 0.018 0.012 0.005 0.050 0.020 0.014 0.006 I 

P4 0.046 0.017 0.012 0.005 0.045 0.016 0.011 0.004 0.046 0.017 0.012 0.005 
I .... 

\0 



Table 3.4. The L1 distances between non-parametric regression estimators of state occupation probabilities based on right censored 

data and complete data in a five-state conditional Markov lognormal model. The estimates are based on a Monte Carlo sample size of 

5000; all standard errors were less than 0.05 

given x: First Quartile given x: Median given x: Third Quartile 
n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 

Po 0.015 0.007 0.005 0.003 0.014 0.006 0.004 0.002 0.015 0.007 0.005 0.003 

PI 0.139 0.091 0.077 0.052 0.138 0.090 0.076 0.051 0.136 0.091 0.077 0.052 

Pz 0.014 0.006 0.004 0.002 0.013 0.005 0.003 0.001 0.014 0.006 0.004 0.002 

P3 0.016 0.008 0.007 0.005 0.015 0.007 0.006 0.004 0.016 0.008 0.007 0.005 

P4 ~01~_ 0.008 0.006 0.003 0.016 0.007 0.005 0.002 0.017 0.008 0.006 0.003 
_ .. - - ------_. - - .- - - - -- - - - C"l 
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Table 3.5. The Ll distances between non-parametric regression estimators of entry/exit time distributions based on right censored data 

and complete data in a five-state conditional semi-Markov Weibull model. The estimates are based on a Monte Carlo sample size of 

5000; all standard errors were less than 0.02 

given x: First Quartile given x: Median given x: Third Quartile 
n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 n = 1000 n = 5000 n = 100 n = 500 = 1000 n = 5000 

ExO 0.017 0.009 0.006 0.003 0.015 0.008 0.006 0.003 0.016 0.008 0.006 0.003 
En1 0.021 0.010 0.007 0.004 0.018 0.009 0.006 0.004 0.019 0.009 0.007 0.003 
Ex1 0.048 0.025 0.019 0.009 0.043 0.022 0.016 0.009 0.045 0.023 0.017 0.009 
En2 0.029 0.015 0.011 0.006 0.026 0.013 0.010 0.006 0.027 0.014 0.011 0.005 
En3 0.064 0.033 0.025 0.013 0.056 0.029 0.022 0.013 0.059 0.030 0.023 0.012 
En4 0.079 0.042 0.031 0.016 0.070 0.036 0.027 0.016 0.073 0.038 0.029 0.015 

-- '--- -- ---- ---

M 
10 



Table 3.6. The £1 distances between non-parametric regression estimators of state occupation probabilities based on right censored 

data and complete data in a conditional Markov state dependent censoring model. The estimates are based on a Monte Carlo sample 

size of 5000; all standard errors were less than 0.07 

given x: First Quartile given x: Median given x: Third Quartile 
n::::;: 100 n::::;: 500 n::::;: 1000 n::::;: 5000 n::::;: 100 n::::;: 500 n::::;: 1000 n::::;: 5000 n::::;: 100 n::::;: 500 n::::;: 1000 n::::;: 5000 

Po 0.013 0.006 0.005 0.003 0.012 0.006 0.004 0.002 0.013 0.005 0.005 0.003 

PI 0.172 0.082 0.063 0.036 0.171 0.081 0.061 0.034 0.173 0.083 0.063 0.037 

P2 
0.011 0.005 0.004 0.003 0.010 0.004 0.003 0.002 0.012 0.005 0.004 0.003 

P3 0.014 0.008 0.006 0.004 0.013 0.007 0.005 0.003 0.014 0.008 0.006 0.004 

P4 0.015 0.008 0.006 0.004 0.014 0.007 0.005 0.004 0.015 0.008 0.006 0.004 

, 

I 
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Figure 3.4. Plots of log L1 distances between non-parametric regression estimators of 

state occupation probabilities based on right censored data and complete data in a five

state Weibull conditional semi-Markov model given the covariate X = 5 which was the 

median of the covariate distribution. 
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Figure 3.5. Plots of log L1 distances between non-parametric regression estimators of 

state occupation probabilities based on right censored data and complete data in a five

state lognormal conditional s,emi-Markov model given the covariate X = 5 which was the 

median of the covariate distribution. 
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Figure 3.6. Plots of log L1 distances between non-parametric regression estimators of 

state occupation probabilities based on right censored data and complete data in a five

state Weibull conditional Markov model given the covariate X = 5 which was the median 

of the covariate distribution. 
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Figure 3.7. Plots of log L1 distances between non-parametric regression estimators of 

state occupation probabilities based on right censored data and complete data in a five

state lognormal conditional Markov model given the covariate X = 5 which was the 

median of the covariate distribution. 
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Figure 3.8. Plots of log L1 distances between non-parametric regression estimators of 

entry/exit distributions based on right censored data and complete data in a five-state 

lognormal conditional Markov model given the covariate X = 5 which was the median of 

the covariate distribution. 
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The global perfonnance of the proposed estimator of state waiting time distribution 

functions fjj was evaluated by calculating the mean absolute distance 

J ~j ~j 
~Wj: = E IH (tlx) - HE(tlx)ldFn,j(tlx), 

where the integrating measure in the above definition was taken to be the empirical 

distribution function of waiting times of those who entered the state j; i.e., 
n . 

Fn,j(tlx) = n-1I:I{W/ :S tlx}. We calculated ~Wj via Monte Carlo averaging with a 
i=l 

replication size of 5000. As before, the calculations were performed based on three given 

x values corresponding to the first quartile, median and third quartile, respectively, of the 

covariate distribution. The distribution function of single transient state; State 1 waiting 

times was estimated using our estimators and compared with the corresponding quantities 

for the complete data. The corresponding ~Wl values with lognonnal transition times in 

the conditional Markov setup are reported in Table 3.7. State 1 waiting time distribution 

plots in a conditional Markov setup with lognormal transition times are given in Figure 

3.9. The scatter plot of the logarithms of the L1 distances versus the logarithms of the 

sample size of waiting time distributions is given in Figure 3.10. The perfonnance of the 

estimator appears to be reasonable and improves with increasing sample size. 
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Figure 3.9. The non-parametric regression estimates of State 1 waiting time distribution 

in a five-state lognormal conditional Markov model given the covariate X = 5 which was 

the median of the covariate distribution. 
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Figure 3.10. Plot of log L1 distances between non-parametric regression estimators of 

State 1 waiting time distribution based on right censored data and complete data in a five

state lognormal conditional Markov model given the covariate X = 5 which was the 

median of the covariate distribution. 
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Table 3.7. The L1 distance between non-parametric regression estimators of State 1 

waiting time distributions based on right censored and complete data in a five-state 

conditional Markov lognormal model. The estimates are based on a Monte Carlo sample 

size of 5000; all standard errors were less than 0.04 

Sample size 
Covariate X equals 100 500 1000 5000 
First Quartile 0.068 0.033 0.023 0.009 
Median 0.067 0.032 0.021 0.008 
Third Quartile 0.068 0.034 0.022 0.009 
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3.4. Bone Marrow Transplant Example 

To illustrate our estimators using real data, we considered 137 cancer patients (80 

males and 57 females) wh~ underwent bone marrow transplant reported in Coplan et al. 

(1991). To study the clinical progression of these patients, we defined seven states. 

Patients enter State 2 if patients platelet levels return to normal before acute GVHD 

develops (State 3) or enter State 5 if acute GVHD develops before their platelet levels 

return to normal (State 6). The allowable transitions between states are shown in Figure 

3.11. In addition to the times to acute GVHD and platelet recovery, the information on 

times of death and relapse of the underlying disease as well as censoring were available. 

The observation time on each patient is considered as disease free survival time, measured 

in days from the time of transplantation to end of follow-up due to relapse, death or 

censoring. Three patients that developed chronic GVHD but not acute GVHD and the 

time of chronic GVHD was the last event for, were dropped from the analysis. It should 

be noted that, while State 7 would be an absorbing state, patients may remain in any state 

for an arbitrary length of time and do not necessarily all progress to State 7 by the end of 

the study period. The surviving patients at the end of the study were considered to be 

censored at the end of the study time. 
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Figure 3.11. Network of states used in the transplant data described in Section 3.5. 

Table 3.8 summarizes the observed transitions between these states. Diagonal 

elements in the table correspond to censored observations; off-diagonal elements count 

observed transitions, so, e.g., 32 patients relapsed after their platelet levels has returned to 

normal (i.e., moved from state 2 to state 4). The patient age at transplant ranged from 7 

years old to 52. We considered patient age as the single covariate in the regression 

analysis. 
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Table 3.S. Observed transitions in the bone marrow transplant data described in Section 

3.4 

To 
From 1 2 3 4 5 6 7 

1 0 114 0 3 7 0 10 
2 44 19 32 0 0 19 
3 9 3 0 0 7 
4 0 0 0 40 
5 0 1 3 3 
6 2 0 0 1 
7 80 

The estimated non-parametric state occupation probabilities of the various states 

are shown in Figure 3.12. For illustration, estimates are provided given the covariate, 

patient age, set at 20 and 40, respectively. Also, we have included "patient age" in the 

Aalen's regression model for the censoring hazard. For patients of both ages, we observe 

that the occupation probability of State 1, which is the initial state, decreases rapidly, 

while the occupation probabilities of transient states (States 2,3,4,5 and 6) have 

increasing trend at the beginning and decreasing at the end. State 7, which is an absorbing 

state has an increasing state occupation probability with time. The state occupation 

probabilities of States 4 and 6 reached zero as time progressed indicating that no patient 

remained at States 4 or 6 by the end of the study. In other words, no censoring 

observation was observed in these two states after the bone marrow transplantation. 

Platelet levels of great majority of the patients return to normal before experiencing acute 

GVHD (State 2). Then subsequently, the patients who exit State 2 more frequently 

experience relapse (State 4), death (State 7) or acute GVHD (State 3) respectively. 

Comparing the state occupation probabilities of patients at age 20 and 40, we 

observe a number of key differences. For instance, individuals who are at the age of 40 

and their platelet levels return to normal before experiencing acute GVHD (State 2), 
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tend to relapse (State 4) more than those who are at age 20, while patients at age 20 

experience acute GVHD after their platelet levels return to normal (State 3) with higher 

probability. Also, patients at age 40, experience death more quickly that those who are at 

age 20. Since we don't have enough patients at age 20 who experience acute GVHD 

before their platelet levels return to normal (State 5), and subsequently State 6, the 

comparison of state occupation probabilities of patients at age 20 and 40 for these two 

states is not informative. 

The non-parametric regression estimates of entry and exit times are shown in 

Figures 3.13-3.14 given the covariate, age, set at 20 and 40, respectively. About 80% of 

patients exit State 1 (bone marrow transplantation) after 40 days. Approximately 40% of 

individuals of age 40 versus 30% of patients of age 20 experience death five months after 

transplantation. For illustration purposes, the waiting time distributions of States 2, 3 and 

5 are also given in Figure 3.14. The probability that the patients who develop acute 

GVHD after experiencing normal platelet levels (State 3), relapse or die 16 months after 

transplantation is 93% at age 40 versus 45% at age 20. However, they do not experience 

transition out of State 3 after approximately 2 years in State 3, despite additional 5 years 

of follow-up. 

Next we considered a model that allows the hazard of censoring to vary between 

states in addition to the effect of external covariate "patient age". For this purpose, we 

examined the cumulative censoring hazard for non-absorbing states shown in Figure 3.16. 

We exclude state 1,4 and 6 from this plot since no censoring was observed in any of these 

states. The effect of censoring hazard on the contribution each subject makes to the 

weighted analysis can be seen in Figure 3.17, which plots Ki for each study participant. 

To compress the time scale, we numbered each event time (transition or censoring event) 

and plotted K i as a function of this integer time scale, which we refer to as time order. 

Upon a visual examination of Figure 3.17, we see that the K /s divide study participants 

into one of three groups. The first (characterized by having Ki > 0.9 at the 150th event 
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in Figure 3.17) corresponds to individuals whose last event happened before the first 

censoring time. The second (characterized by having 0.78 < Ki < 0.85 at the 155th 

event in figure 3.17) corresponds to individuals who experienced State 3. The third 

(characterized by having Ki < 0.7at the 150th event) as indicated by the lower curves in 

Figure 3. 17. 

The estimated state occupation probabilities, using the internal covariate of the 

state occupied at time t as well as "patient age" as the external covariate that affect the 

censoring mechanism for subject i shown in Figure 3.18. Waiting time distributions are 

also given in Figure 3.19. We see that the state occupation probabilities and waiting time 

distributions shown in Figure 3.18-3.19 differ very little from those given in Figures 3.12 

and 3.15 in which only the external covariate "patient age" is assumed to affect censoring 

mechanism. 
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Figure 3.12. The non-parametric regression estimates of state occupation probabilities for 

the transplant data given the covariate, patient age, set at 20 and 40, respectively. 
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Figure 3 .13. The non-parametric regression estimates of entry time distributions for 

transplant data described in Section 3.2.4 given the covariate, patient age, set at set at 20 

and 40, respectively. 
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Figure 3.14. The non-parametric regression estimates of exit time distributions for 

transplant data described in Section 3.2.4 given the covariate, patient age, set at set at 20 

and 40, respectively. 
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Figure 3 .15. The non-parametric regression estimates of waiting time distributions for 

transplant data described in Section 3.2.5 given the covariate, patient age, set at set at 20 

and 40, respectively. 
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Figure 3.16. Estimated cumulative hazard for being censored ill states 2, 3 and 5 for 

transplant data 
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Figure 3.17. Values for K i versus as integer index corresponding to the rank order of the 

event (transition or censoring) time for the transplant data 
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Figure 3.18. The non-parametric regression estimates of state occupation probabilities for 

the transplant data given the covariate, patient age, set at 20 and 40, respectively, using 

state dependent censoring model. 
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Figure 3.19. The non-parametric regression estimates of waiting time distributions for the 

transplant data given the covariate, patient age, set at 20 and 40, respectively, using state 

dependent censoring model. 

3.5. Discussion 

Past studies of multi state models under censored data have taken mostly 

parametric and semi-parametric approaches for estimating conditional state occupation 

probabilities. In this study, we considered a fairly broad class of multistate models which 

have a progressive structure. We developed valid non-parametric regression methods for 

the state occupation probabilities, the entry/exit and waiting time distributions given a 

univariate continuous covariate without additional structural assumption (e.g. Markov or 

semi-Markov). 

Overall, our estimates are based on local versions of the techniques developed by 

Satten and Datta (2002) for calculating marginal state occupation probabilities and state 

waiting time distributions, respectively, for multistate models when data are subject to 

86 



dependent censoring. Various estimated counting and size at risk processes are computed 

given a value x of X. This is achieved by the kernel smoothing technique of weighing the 

contributions of various individuals based on the closeness of their covariate values to x. 

In order to adjust for dependent censoring, a model for censoring mechanism must be 

specified; we have used Aalen's linear hazard model for this purpose. All observed 

counting and "number at risk" processes are given an inverse probability of censoring 

weighted form. 

Datta and Satten (2002) established consistency of their estimators under the 

general paradigm of non-Markov models. Local version of the estimators can be proved 

the same with shrinking the bandwidth to zero at the right rate. Based on the simulation 

studies, we may conclude that our non-parametric estimators are consistent for reasonably 

sized samples and they perform well. 

Three different simulation examples are considered. All studies are based on the 

time continuous five state model described in Figure 3.1 under dependent censoring. The 

first example is a conditionally semi-Markov model while the second one is conditionally 

Markov model. We let a univariate external covariate affects both the transition times as 

well as censoring hazard. In the third example, we let the censoring hazard at time t 

differs among the subjects according to their current state occupation which is an internal 

covariate process. Simulation results show satisfactory performance of our estimators of 

state occupation probabilities, entry and exit time as well as waiting time distributions. 

Formally, our approach requires that the censoring mechanism be correctly specified; in 

practice from the first two simulations, we have found that use of the Aalen's model allows 

successful estimation of state occupation probabilities, entry/exit and waiting time 

distributions and the results are robust to censoring misidentifications. In Section 3.4, we 

applied our method on real data. At first, we assumed only an external covariate affects 

the censoring processes. Then we extend the analysis by adding the state dependent 

censoring assumption to the model. 
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Overall, the methodologies presented here are implement able and produce 

reasonable answers. Unlike parametric and semi-parametric approaches, these non

parametric procedures don't rely on specific model structures and are more robust. 

Parametric estimators can be compared with the non-parametric counterparts to check for 

model violations. In other words, non-parametric estimators can be served as important 

benchmark under large enough sample size. 

It is possible to extend and study the effect of multiple covariates. We can use 

forms of additive model in order to avoid the curse of dimensionality in estimation of the 

various counting and size at risk processes described before. This should be even more 

attractive to medical researchers due to greater applicability to a wider class of data sets. 

The details of this approach will be explored in next chapter. 
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CHAPTER IV 

NON-PARAMTERIC REGRESSION OF STATE OCCUPATION, ENTRY AND 

EXIT TIMES WITH MULTISTATE DATA USING ADDITIVE MODELS 

4.1. Introduction 

As a type of multivariate survival data, multistate models have a wide range of 

applications in medical research. These models allow transition from the former state to 

the latter, say, from one state of disease to another. The resulting data contains 

information about the transition times and the states occupied. Example of the simplest 

multistate model is the traditional survival analysis with one transient state, 0: alive, and 

one absorbing state, 1: dead. 

State occupation probability, which is the probability that a subject be in a specific 

state at certain time point, is an important quantity in study of multistate models. Another 

important quantity is the state transition intensity (or transitional hazard) which is the 

hazard (rate) that an individual moves from one state to another. These time-dependent 

quantities can be related to the distribution functions of state entry and exit times, each of 

which may be of independent interest in time to event study. Estimators of these 

quantities have been proposed in the recent past under a variety of parametric and non

parametric assumptions as well as structural assumptions on the system (such as, 

progressive, Markov, semi-Markov etc). Aalen and Johansen (1978) gave a method 

for calculating transition hazard and state occupation probabilities for Markov models 

starting from the Nelson-Aalen estimators of integrated transition hazards when data are 
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subject to independent censoring. Datta and Satten (2001) showed that these estimators 

remain consistent even when the underlying model is non-Markovian. They also extended 

their work and presented estimators using data that are subject to dependent right 

censoring (Datta & Satten, 2002). Their estimator of the integrated transition hazard 

matrix has a Nelson-Aalen form, where each of the counting processes, counting the 

number of transitions between states and the risk sets of leaving the states have an IPCW 

(Inverse Probability of Censoring Weighted) form. Beside estimation in a marginal model, 

there is considerable appeal in developing methods for conditional distribution (e.g., 

regression) of these quantities relating them to number of covariates. 

Most of the existing regression methods in multistate context are based on 

parametric and semi-parametric modeling of the transition hazards (e.g., Satten et al., 

1998; Fine and Gray, 1999; Berhane and Weissfeld, 2003 etc.). Generally speaking, while 

such methods produce relatively precise inference for the effects of co variates under the 

correct model, their performance under incorrect model assumptions is questionable. This 

is one compelling reason why a fully non-parametric approach is preferable even though 

such a formulation is often difficult with time to event data. The situation with multistate 

models is even more challenging and as such only a limited number of regression 

approaches exist to analyze such models. 

In previous chapter, we developed methods for non-parametric regressions of the 

state occupation probabilities, the entry/exit and waiting time distributions in a multistate 

model based on a univariate continuous baseline covariate. No structural assumptions on 

the multistate system (e.g., a Markov or a semi-Markov model) were being made. The 

data were subject to right censoring and the censoring mechanism were explainable by 

observable covariates. We proposed using kernel estimators similar to the method 

proposed by Beran (1981) along with IPCW estimation techniques in Datta and Satten 

(2001) leading to our final estimators. This way we introduced local versions of counting 
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and "number at risk" processes through kernel smoothing to give higher weights to 

individuals with X covariate values close to the given value x. 

In this chapter, we are interested to extend the methodology discussed in previous 

chapter and study effect of multiple co variates on state occupation probabilities and 

entry/exit time distributions. This allows us to model multiple independent co variates 

simultaneously. Smoothing approach discussed in Chapter III is no longer valid for 

multivariate case. In order to avoid the so-called curse of dimensionality, we use forms of 

additive models to estimate the various counting and size at risk processes. To fit these 

models, we utilize the backfitting algorithm proposed by Hasti and Tibshirani (1990). 

Details of the procedure is given in Section 4.2. Note that, similar to the previous chapter, 

no structural assumptions on the multistate system (e.g., a Markov or a semi-Markov 

model) are being made. We only concider complete data where no censoring is involved. 

The rest of the chapter is organized as follows. The next section introduces our 

proposed non-parametric regression estimation of state occupation probabilities, 

integrated hazard, and entry/exit time distributions based on p covariates. Simulation 

studies are described in Section 4.3. Section 4.4 contains some concluding remarks. 

4.2. The Non-parametric Regression Estimators 

4.2.1. Notation and Convention 

Let S = {S(t) : t ~ O} be a time continuous, multistate process, where t denotes 

time and S(t) denotes the state occupied at time t. Consider a finite state space 

X = {O, 1, ... , M} for the process. Under the marginal model, it is assumed that the 

multistate processes for n individuals Si = {Si (t) : t ~ O}, 1 :S i :S n, are independent 

and identical (ij.d.). We also assume that the model is progressive (e.g., acyclic) and thus 

a given state j is entered at most once by an individual. Define the state entry and exit 

times by Uj = inf{t : S(t) = j} and V j = sup{ t : t > Uj
, S(t) = j}. Uj = 00, if state j 
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is never entered, and V j = 00, if either state j is never entered or j is an absorbing state 

(in which case it is never left). Also, let Pj(t) = Pr{S(t) = j} be the probability that a 

typical individual will be at state j at time t. In this chapter, we study the effects of a P

vector of time independent covariates X = (Xl, ... , Xp)' on various functions of time 

(}(tlxl, ... ,xp)related to the multistate system. Thus, Fj(tlxl,""Xp) will denote the 

regression function Pr{U j ::; tl U j < 00, X = (Xl, ... ,xp)} and so on. As before, we 

assume that {Si, Xi} are i.i.d., for 1 ::; i ::; n. 

4.2.2. Integrated Transition Hazard 

Let ajj (tlxl, ... , xp) be the local (i.e., given X = (Xl, ... , xp») transition hazard 

of the original (uncensored) chain from state j to j' (for states j =1= j'), defined as 

.. ( I ) -' Pr{S(s) =j'forsomes E [t,t+dt)IS(t-) =j,X= (XI, ... ,Xp)} 
a JJ, t Xl, ... , Xp - lim d 

dt~O t 

where Set - ) denotes the state occupied just before time t. Let Njj be the counting 
n 

process with jumps given by L1Njj (t) = ~I(Si(t - ) = j, Si(t) = j'). Define 
i=l 

b..Ni'jj = I(Si(t - ) = j, Si(t) = j'), i = 1, ... , n to be the indicator function whether 

the subject i made transition from state j to state j' at time t. Also, let 
n 

lj ( t) = ~ I (Si (t - ) = j) be the number of individuals at state j just before time t and 
i=l 

note that by Fubini's theorem 

so that ajj (tlxl, ... , xp) counts the limiting number of j to j' transitions made by an 

individual with covariate X = (Xl, ... , xp), in the interval [t,t+dt) and hence denotes a 

local version of a 'partially conditionaltransition rate' of Pepe and Cai (1993). The local 

cumulative (integrated) transition hazard matrix IS given by 
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A( ·IXl, , .. , xp) = {Ajj( 'IXl, ... , Xp)}, withAjj(tlxl, ... , xp) = J~ajj(SIXl' ... , xp)dsfor 

j =/: j' withajj(tlxl, ... , xp) = - Eajj(tlxl, ... , Xp). 
#j 

To develop our estimators, we follow the method proposed by Datta and 

Satten (2002) in estimating the transition hazard. In their treatment, the estimator of the 

integrated transition hazard matrix has a Nelson-Aalen form. They estimate the two 

processes NJ/ and Y j separately using the principle of inverse probability of censoring 

weights rather than ratio. 

To estimate Njj(tlxl, ... ,xp), the local counting process, we employ an additive 

model. Define I:::,.Ni,jj = I(Si(t - ) = j, Si(t) = j'), for i = 1, ... , nand j =/: j'. Put 

l(x,t)=E[n-lI:::,.Njj(t)IX=(Xl, ... ,xp)]for the regression function of 

I:::,.Njj(t) = E~=l I:::,.Ni,jj(t) on X. Hence, the model becomes 

n -1 I:::,. Njjl (t, Xl, ... , Xp) = I(Xl, ... , Xp, t) + tt,n, 

where the error term satisfy E[tt,nIX] = O. 

Here we consider a flexible approach to estimate the regression function I (x, t) 

through a model under which the effect of each covariate on the response is represented in 

an additive way. We assume the additive model 

where II ( . ,t), ... , Ip( . ,t) are one-dimensional functions, for each t. As a result, the 

model becomes 

To fit the additive model discussed above a back fitting algorithm can be applied. 

The backfitting algorithm is an iterative procedure to fit additive models in which each 

component is estimated by keeping the other components fixed at each step. It actually 

cycles through the co variates Xj (j = 1, ... , p), and estimates each Ij by applying local 
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smoothers to the partial residuals. These residuals are obtained by removing the estimated 

effects of the linear covariates. The algorithm iterates until convergence CHasti and 

Tibshirani, 1990). The steps involved to carry out the procedure are presented below. 

i) Set m = 0 and fkO) = 0, or any reasonable estimate. 

ii) Set m = m + 1. For k = 1, ... , p set 

fkm) (t, Xk) = S (n- l ~Njj (t) - Lf~m-I) (xs, t)IXk), 
s-I-k 

where S is a smoothing operator. 

iii) Repeat step (ii) until the changes in the!k between iterations are sufficiently small. 

Special care is required to ensure that all estimated values of ~Njj,(t, Xl, ... , Xp) are 

positive. One way to handle this is to project negative values to zero. Local kernel 

smoothers can be applied in backfitting algorithm steps. 

The "number at risk", Yj(tlxl, ... ,xp), can be calculated from estimated local counting 

process. This is possible by keeping track of individuals who are at specific state at time t. 

Thus, the "number at risk" for a transient state j at time tl can be simply obtained by 

Yj(tllxl' ... , xp) = L { ~N.j(tlxl' ... , xp) - ~Nj.(tlxl' ... , xp) }, 
t'5.tJ 

where~N.j(tlxl' ... , xp) = E ~Nkj(tlxl' ... , xp) and ~Nj.(tlxl' ... , xp) = 
k-l-j 

E ~Njk(tlxl' ... ,xp)' Here we assume that all individuals start at state 0 at time O. 
k-l-j 

Finally, the non-parametric estimator of integrated transition hazard is given by 
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j = j', 

4.2.3. State Occupation Probabilities 

The Datta-Satten (2002) estimator P ( 8, t) of the transition probability is given by 

the product integral 

P(8, t) = II (I + dA(u)), 
(s,t] 

where I is the identity matrix. This is a finite product taken over all distinct observed 

transition times. Finally, the Datta-Satten estimator Pj(t) of the occupation probability of 

state j at time t is given by 

M~ 

~ () ~ Yk(O + ) ~ (0 ) 
Pj t = ~ Pkj ,t, 

k=O n 

where M is the number of states and n is the sample size. In fact, the marginal state 

occupation probability of state j is obtained by evaluating the product limit of transition 

hazards and averaging it with respect to the initial distribution of state occupation. 

The non-parametric regression estimation of these quantities can be handled by 

introducing a local version and incorporating co variates. The non-parametric regression 

estimator of the state occupation probabilities conditional on given value of X, 

where IS the kjth element of the matrix 
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P(O, tlXl, ... , Xp) = IT (I + dA(ulxl, ... , xp)) obtained by product integration of the 
(O,t] 

matrix A(t) defined in previous section. 

4.2.4. State Entry and Exit Distributions 

Recall that for any state j > 0, U j is the entry time for state j amongst individuals 

who ever enter state j. Let pj denote the corresponding distribution function conditional 

onX= (Xl, ... ,Xp), 

where we take pO(tIXl, ... ,xp) = 1, for all t ~ O. Due to the progressive structure of the 

multistate system under consideration, any state (node) will be reached from the root node 

o by a unique path. Let Sj be the collection of all states j' =I- j such that state j appears on 

the path connecting state 0 and j'. In other words, sj is the collection of all states which 

proceeds state j in the progressive model. Then estimators of entry time distributions of 

state j is given by 

L Pk(tlxl, ... ,Xp) 
~j kE{j}US j 

P (tlxl, ... ,Xp) = -...:....:.....-~-----
L Pk(oolxl, ... ,Xp) 

kE{j}USj 

Analogous to above, vj is the exit time for state j of individuals who will ever 

enter state j. Let Gj denote the corresponding distribution function conditional on 

X= (Xl,""Xp), 

where we take Gj(tlxl, ... , xp) = 0 if j is a terminal node in the directed tree structure 

for all t ~ O. For a transient state j, C\tlxl, ... , xp) is taken to be the normalized sum of 
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estimated state occupation probabilities of all states that ever entered state j in the 

progressive system. Mathematically speaking, state exit time distribution is given by 

L i\ (tIXI, ... , xp) 
C\tlx) = _k.....;:E'-Sl_· _____ _ 

L l\(oolxI, ... ,xp ) 
kE{j}USj 

4.3. Simulation Studies 

We performed number of Monte Carlo experiments to evaluate the finite sample 

performance of the proposed methods. These simulations are based on complete data and 

no censoring is involved. We have based our simulations on a hypothetical five-state 

progressive model (Figure 4.1). 

1 3 

Living with Dead following 

1/ 
~ 

illness illness 
0 

Healthv 

~ 2 4 

Dead without 
Dead from other 

illness 
causes 

Figure 4.1. A five-state illness-death model 

4.3.1. Non-Markov Transition Times 

For each person, two co variates were generated. Xl was generated from a normal 

distribution with mean parameter 5 and standard deviation parameter of 0.5. X 2 was 

generated independently from another normal distribution with mean parameter 4 and 

standard deviation parameter of 0.6. We assumed all individuals start in State 0 (well) at 
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time zero, and may either progress to State t or State 2. Each patient at State 0 had a 

60% chance (controlled by a Bernoulli variable that is independent of the event times) of 

following the 0 -t 1 arm and a 40% chance of following the 0 -t 2 arm. Furthermore, 

patients who entered State 1, would subsequently reach States 3 or 4 with arms 

probabilities (controlled by another independent Bernoulli variable) 0.6 and 0.4, 

respectively. To generate the event times in a non-Markov model, we used both lognormal 

and Weibull distributions for the models. For lognormal simulations, the waiting times in 

State 0 were generated from lognormal distribution with log-mean parameter 0 and log

scale parameter 0.5 and for individuals traversing the 0 -t 1 arm, the State I waiting times 

were generated using another independent lognormal distribution with log-mean 

parameter 0 and log-scale parameter 1. The waiting times were multiplied by the person

specific frailty variable obtained from multiplication of two independent variables FI and 

F2 . FI generated from normal distribution with mean parameter Xd5 and standard 

deviation parameter 0.1 and F2 generated from normal distribution with mean parameter 

Xd 4 and standard deviation parameter 0.1. For the Weibull simulations, the State 0 

waiting times were generated from a Weibull distribution with shape parameter 2 and scale 

1. For patients traversing the path 0 -t 1, the state waiting times were obtained from 

another independent Weibull distribution with shape parameter 0.5 and scale t. 

The state occupation probabilities of described examples were estimated by the 

proportion of subjects observed in each state at time t. The smoothing step in the 

backfiuing algorithm was based on normal kernels and data-based bandwidth selector for 

each covariate. The R package "KernSmooth" was used to this end 

(hUp:/Icran.rproject.org/doc/packages/KernSmooth.pdf). The bandwidth was taken as 

dpik, the data-based bandwidth selector of Wand and Jones (1995). 

The empirical non-parametric estimators for a sample of size 100, 500, 1000 and 

5000 generated as above with given Xl = median of the covariate Xl and X2 = median 

of the covariate X 2 • The estimators with sample size of 5000 are used as benchmarks. 
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Figure 4.2 and 4.3 display the state occupation probability results of non-Markov data 

with Weibull and lognormal transition times respectively. Overall, as the sample size 

increases, the estimators get closer to the benchmark values, suggesting the appropriate 

large sample properties of the estimators. 
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Figure 4.2. The non-parametric regression estimates of state occupation probabilities in a 

five-state Weibull non-Markov model given Xl = median of the covariate Xl (generated 

from N(5, 0.5)) and X2 = median of the covariate X 2 (generated from N(4, 0.6)). 
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Figure 4.3. The non-parametric regression estimates of state occupation probabilities in a 

five-state lognormal non-Markov model given X l = median of the covariate X I (generated 

from N(5 , 0.5) ) and X2 = median of the covariate X 2 (generated from N(4 , 0.6)). 
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Figure 4.4. The non-parametric regression estimates of entry/exit times in a five-state 

Weibull non-Markov model given Xl = median of the covariate Xl (generated from 

N(5, 0.5)) and X2 = median of the covariate X2 (generated from N(4, 0.6)) . 
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We assessed the global performance of the estimators by the Ll distance 

where e (x) and e B (x) denote respectively our proposed estimator of () and its benchmark 

counterpart based on sample size of 5000. Here, () is either a state occupation probability, 

state entry time distribution function or a state exit time distribution, function. The 

integrating measure in the definition of the Ll distance was taken to be the distribution 
n 

function of event times Fn(tlx) = n-l L::I{1i ~ tlx}; ~ = 0 means that they are in a 
i=l 

complete agreement on the support ofthe event times. We calculated ~ via Monte Carlo 

averaging with the replication size of 1000. The calculations were performed based on 

Xl = median of the covariate Xl (generated from N(5, 0.5)) and X2 = median of the 

covariate X 2 (generated from N( 4,0.6)). 

The Ll results of state occupation probabilities for non-Markov with Weibull and 

lognormal transition times are provided in Tables 4.1 and 4.2, respectively. Tables 4.3 and 

4.4 list the results for entry and exit time distributions of Weibull and lognormal transition 

times. For all simulation settings, the Ll values decrease with increasing sample size. This 

is a good indicator that the estimators are consistent and converge to benchmark values 

for reasonably sized samples. 

103 



Table 4.1. The Ll distances' between non-parametric regression estimators of state 

occupation probabilities based on data with sample size 5000 (benchmark) and sample 

sizes 100, 500 and 1000 in a five-state non-Markov Weibull model. The estimates are 

based on a Monte Carlo sample size of 1000; all standard errors were less than 0.01 

n = 100 n = 500 n = 1000 

Po 0.015 0.010 0.006 

PI 0.008 0.005 0.003 

P2 0.021 0.010 0.009 

113 0.015 0.011 0.007 

P4 0.014 0.011 0.007 

Table 4.2. The Ll distances between non-parametric regression estimators of state 

occupation probabilities based on data with sample size 5000 (benchmark) and sample 

sizes 100, 500 and 1000 in a five-state non-Markov lognormal model. The estimates are 

based on a Monte Carlo sample size of 1000; all standard errors were less than 0.09 

n = 100 n = 500 n = 1000 

Po 0.029 0.019 0.017 

PI 0.014 0.007 0.005 

P2 0.040 0.018 0.013 

113 0.026 0.013 0.010 

P4 0.025 0.012 0.009 
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Table 4.3. The Ll distances between non-parametric regression estimators of entry/exit 

time distributions based on data with sample size 5000 (benchmark) and sample sizes 

100,500 and 1000 in a five-state non-Markov Weibull model. The estimates are based on 

a Monte Carlo sample size of 1000; all standard errors were less than 0.01 

n = 100 n = 500 n = 1000 
ExO 0.015 0.008 0.006 
Enl 0.022 0.011 0.009 
Exl 0.018 0.011 0.008 
En2 0.016 0.010 0.007 
En3 0.019 0.010 0.008 
En4 0.019 0.013 0.008 

Table 4.4. The Ll distances between non-parametric regression estimators of entry/exit 

time distributions based on data with sample size 5000 (benchmark) and sample sizes 

100,500 and 1000 in a five-state non-Markov lognormal model. The estimates are based 

on a Monte Carlo sample size of 1000; all standard errors were less than 0.02 

n = 100 n= 500 n = 1000 
ExO 0.029 0.019 0.017 
Enl 0.045 0.021 0.016 
Exl 0.030 0.017 0.014 
En2 0.031 0.019 0.015 
En3 0.032 0.018 0.016 
En4 0.032 0.018 0.016 

The following scatter plots show an approximate linear relationship of the logarithms of 

the Ll distances with the logarithms of the sample size for each of these estimators 

suggesting that the Ll values converge to zero at the rate of n -b, for some b. The log 

mean Ll distance plots are listed in Figures 4.5-4.8. 
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Figure 4.5. The log mean Ll distances of state occupation probabilities in a five-state 

Weibull non-Markov model given Xl = median of the covariate Xl (generated from 

N(5, 0.5)) and X2 = median of the covariate X 2 (generated from N(4, 0.6)). 
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Figure 4.6. The log mean L1 distances of state occupation probabilities in a five-state 

lognormal non-Markov model given Xl = median of the covariate Xl (generated from 

N(5, 0.5)) and X2 = median of the covariate X 2 (generated from N(4, 0.6)). 
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Figure 4.7. The log mean Ll distances of EntrylExit time distributions in a five-state 

Weibull non-Markov model given Xl = median of the covariate Xl (generated from 

N(5, 0.5)) and X2 = median of the covariate X 2 (generated from N(4, 0.6)). 
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Figure 4.8. The log mean Ll distances of EntrylExit time distributions in a five-state 

lognormal non-Markov model given Xl = median of the covariate Xl (generated from 

N(5, 0.5)) and X2 = median ofthe covariate X 2 (generated from N(4, 0.6)). 
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4.4. Discussion 

Past studies of multistate models under censored data have taken mostly 

parametric and semi-parametric approaches for estimating conditional state occupation 

probabilities. In this study, we considered a fairly broad class of multistate models which 

have a progressive structure. We developed fully non-parametric regression methods for 

the state occupation probabilities and the entry/exit time distributions without additional 

structural assumption (e.g. Markov or semi-Markov). In previous chapter we developed 

such estimators using univariate covariate. These estimators were constructed based on 

local version estimators of Datta and Satten (2002) give a method for calculating 

marginal state occupation probabilities and transition hazards for multistate models when 

data are subject to dependent censoring. In this chapter, we extended the previous study 

to be able to include two or more than two covariates in the regression model. This study 

is more attractive to medical researchers due to greater applicability to a wider class of 

data sets. In order to avoid the curse of dimensionality, we used additive models through 

application of backfitting algorithm in estimation of the various counting and size at risk 

processes described before. Kernel smoothers were employed in backfitting processes. 

Two different simulation examples are considered. Both studies are based on the 

time continuous five state non-Markov model described in Figure 4.1. We also performed 

Monte Carlo simulations to calculate Ll distances between the empirical estimation values 

of benchmark (n = 5000) and smaller sample sizes (n = 100, n = 500 and n = 1000). 

The Ll values were calculated for state occupation probabilities and entry/exit time 

distributions. Based on the empirical results, we may conclude that these estimators 

produce reasonable answers and our non-parametric estimators are consistent for 

reasonably sized samples. 

The results presented in this chapter are based only on empirical values with no 

censoring. In Future, we need to incorporate censoring as well and study the performance 
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of models when true transition times are partially observed. Also, we need to apply the 

proposed methods on real data and demonstrate their practical application. 
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CHAPTER V 

EXTENSIONS AND FUTURE RESEARCH 

5.1. Non-parametric Regression Based on Current Status Data 

In chapter III, we focused on right censored data and developed non-parametric 

regression estimators of state occupation, as well as state entry, exit and waiting times 

distributions in a multistate model. Both numerical simulations and data applications 

proved that the methods proposed are reasonable and implementable. 

Our future research is to generalize these proposed procedures to more general 

case with current status multistate data obtained from a continuous random inspection 

time for each individual. Marginal non-parametric estimation for multistate current status 

data was undertaken in Datta and Sundaram (2006), Datta etal. (2009) and Lan and 

Datta (2010); the special case of competing risk models was investigated by Jewell et al. 

(2003) and Groenboom et al. (2008). Non-parametric regression for multistate current 

status data is absent in literature. 

As before, for an individual i and a time t 2': 0, Si (t) denotes the state the 

individual i is in, at time t; C i denotes the random time at which the individual i gets 

inspected. The censoring times and the state occupation process {Ci , Si (t), t 2': O} for the 

individuals are assumed to be independent and identically distributed. For simplicity of 

development, we will make the assumption of random censoring, which means C i is 

independent of {Si(t) : t 2': O}, given covariate X. We further assume that all transition 
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and censoring times are continuous and that the allowable transitions give rise to a 

directed tree structure, in which every state j can be reached from an initial state ° (the 

root node) by a unique path. 

S.LL State Occupation Probabilities 

Let Ujj denote the (unobserved) transition time of an individual from state j to j'. 

Let Njj' denote the counting process, counting the number of j to j' transitions in [0, t] 

with the complete data. By the laws of large numbers, 

n-1 Njj(t) £ n-1 ENjj(t) = P{Ujj ~ t} = njj(t), say. 

Consider the indicator function J(Ujj ~ C) of the event that the j to j' transition has 

taken place by time C. Then for any t ~ 0, 

E(J(Ujj ~ C)IC = t) = Pr{Ujj ~ t}. 

In order to compute the regression functions given X, we need to compute weighted 

versions of this estimated process where the weight corresponding to the ith observation 

is <Ph (x - Xi), where <Ph is a scaled kernel as in Chapter 3. 

Finally, the class of state occupation probabilities will be computed as before; 

however, the integrated conditional transition hazards are now calculated using new 

counting process and "at risk" set. The mathematical and computational details of the 

procedure need to be worked out. 

S.L2. State Entry and Exit Distributions 

Once we have the state occupation probabilities given the covariate X, the state 

entry and exit time distributions given X can be obtained using normalized sums as before. 
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5.1.3. State Waiting Time Distribution 

Calculation of state waiting time distribution with current status data poses 

additional difficulty since we can not directly regress the indicators of events involving the 

waiting times since the state entry times are also unknown. To solve this problem, we 

make additional structural assumptions (see, e.g., Datta et al., 2009) of a conditional 

Markov or a semi-Markov model given X. 

Under the Markov assumption, we could obtain the following identity 

Sj,waiting(tlx) = 100 

II (1 + dAj.(slx)dFj,entry(ulx), t ~ 0, 
o u<s<:::u+t 

where Ajo is integrate transition hazard out of state j, conditional on X = x. Using this 

and the quantities defined earlier we obtain a non-parametric regression of the state 

waiting time survival function 

~ 1OO

{ II ( dNjo(SIX))} ~ Sj,waiting(tlx) = 1 - ~ dFj,entry(ulx), t ~ o. 
o u<s<:::u+t Yj(slx) 

5.2. Regression Analysis of High Dimensional Data with Time Dependent 

Covariates 

In Chapter II, we discussed and compared performance of four different latent 

factor and regularized/penalized methods to handle predicting survival in high dimensional 

setting. We assumed that covariates are fixed and not changing with time. However, 

nature of survival regression lends itself easily to extensions that allows for co variates that 

change over time. 

Let Zi (t) denote the value of the covariate for subject i at time t. The use of the 

time-varying covariate model typically assumes that Zi (t) is available for all possible times. 

However, in practice we almost never observe Zi(t) continuously in time. Rather, we 
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commonly measure the covariate process at discrete times til, ti2, ... , tini' For example, in 

Netherlands Non-small Cell Lung Cancer data discussed in Section 2.2.6, serum spectra 

of the patients were available at three time points: pre-treatment (preTx), after two cycles 

of treatment (post-2) and at the end of treatment (EOT). It is common that these spectra 

change over time. 

One approach is to use penalized estimating equations on covariates at each time 

point to estimate the parameters and then take an appropriate average to get the final 

estimates. One such example is to take the weighted sum of the regression effects over all 

possible observation times. To handle the censoring observations, we can apply the 

multiple imputation algorithm proposed in Section 2.2.3. 

5.3. Non-parametric Regression Estimation of Multistate Models in High 

Dimensional Setting 

In Chapter IV, we considered developing non-parametric regression estimators of 

state occupation probabilities and entry/exit time distributions in multistate system based 

on multivariate continuous baseline covariate. We plan to examine the proposed method 

by incorporating censoring into the model. We would also like to conduct more number of 

simulations to cover variety of possible circumstances. Application to real data example is 

also of particular interest. 

An additional direction for future work is to combine the methods described in 

Chapter IV and II to apply fully non-parametric regression on high dimensional data. This 

is particularly important to handle multistate data in bioinformatic studies dealing with 

high dimensional data. Additive models have good statistical and computational behavior 

only when the number of variables, p, is not large relative to the sample size n. Hence, 

their usefulness is limited in the high dimensional setting. 

115 



In order to solve this problem, one possible approach is to start with a dimension 

reduction method such as Partial Least Squares (PLS) method. More precisely, in the first 

step by using PLS method, we find the optimal linear transition from the large number of 

original descriptors to a small number of latent variables. Next, the resulting latent 

variables are plugged into the additive regression model as additive components. 

This method is applied on Netherlands Non-small Cell Lung Cancer data discussed 

in Section 2.2.6 with 995 features (X(l) ) to get some preliminary result. We utilized PLS 

method and took the first component as a univariate covariate. Then, we calculated the 

conditional state occupation probabilities in a two-state survival model. We compared the 

state occupation probabilities given the median and the third quartile of the corresponding 

covariate. The results are displayed in Figure 5.1. 
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Figure 5.1. Conditional state occupation probability, given median and third quartile of 

the first component extracted from PLS applied on Netherlands NSCLC data 

We will work on the details of this method using multiple co variates in future. 
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APPENDIX 

Key R Programs for the Estimation of the Conditional Quantities in a Five-state Illness 
Death Model based on right censored data 

# Kernel Function 

library(KernSmooth) 
kf<-function(z,givenz,h) { 
n<-length(z) 
kern<-( 1/(n*h) )*dnorm( (givenz-z)/h) 
return(kern) 

# Estimation of k function using Aalen's linear model 

k.f< -function( data, U) 

UUT<-NULL 
for U in seq(length(U))) { 
UUT[Ull<-lapply(seq( dim(U[[ 1]])[ 1 D, function(i) 
{as.matrix(U[Ul] [i,])%*%as.matrix(t(U[[j]] [i,]))}) 

ID< -unique ( data$id) 
R<-lapply(seq(length(U», function(i) {NULL}) 

for U in seq(length(U))) { 
R[Ul] [[ 1 ]]<-UUT[Ull [[1]] 
for (i in (2:length(ID») {R[Ul][[i]]<-UUT[Ul][[i]]+R[Ul][[i-l]]) 

} 

R<-lapply(seq(length(U», function(i) {R[[i]][[length(lD)]]}) 

id.cen< -data[ data$cen. ind==O,l $id 
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RTJUT 1< -lapply( seq(length(id.cen», function(i) 
{ginv(R[[i]])%*%as.matrix(U.ind[[i]][id.cen[i],D} ) 

URTU<-lapply(seq(length(id.cen»,function(i) {NULL}) 

for U in seq(length(id.cen))) { 
URTU[[j]]<-sapply(seq(nrow(U[[1]]), function(i) {U[[j]][i,]%*%RTJUTJ[[j]]}) 

} 

URTU.mat<-matrix(unlist(URTU),nrow(U[[1]]),length(id.cen)) 

lambda.c<-apply(URTU .mat, 1,curnsum) 
c. time< -data[ data$cen.ind==O,] $t 
k.ind<-NULL 
for (i in seq(nrow(data») { 
k.ind[i]<-which.max(data$t[i]<=c.time) 

} 
LAMBDA<-NULL 
for (i in seq(nrow(data))) { 
LAMBDA[i]<-lambda.c[k.ind[i],data$id[i]] 
} 

k.hat<-exp( -LAMBDA) 
k.hat<-c(1,k.hat) 
k.hat < -k. hat [ -length(k.hat) ] 
retum(k.hat) 

# State occupation probability in a five-state illness-death model 

s.f<-function(data) { 
odata<-with(data, data[order(t),D 

ind 1 <-which( odata$stage== 1) 
ind2< -which( odata$stage==2) 
ind3<-which( odata$stage==3) 
ind4< -which( odata$stage==4) 

###### At risk set 
# state ° at risk set 
yO.ind<-which( c(ind 1 ,ind2,c 1 ind)==nrow( odata» 
yO.indk<-rep(O, nrow( odata» 
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if (length(yO.ind>O)) {yO.indk[(c(ind 1 ,ind2,odata$c 1 ind)+ 1)[ -yO.ind]]<--
1 *( odata$kern[ c(ind 1 ,ind2,odata$c 1 ind) [ -yO.ind]])} else 
{yO.indk[(c(indl ,ind2,odata$c 1ind)+ 1)]<--1 *(odata$kern[c(ind1 ,ind2,odata$c1 ind)])} 

odata$yO.k < -cumsum(yO.indk)+sum( odata$kern) 
odata$yO.k<-( odata$yO.k)/( odata$khat) 

# state 1 at risk set 

yl.indk<-rep(O, nrow(odata)) 
y1.ind<-which(ind l==nrow( odata)) 
if (length(y1.ind>0)) {y1.indk[(ind 1 + 1)[ -y1.indll<-1 *( odata$kern[(ind 1)[ -y1.ind]])} else 
{y1.indk[(indl + 1)]<-1 *(odata$kern[(ind1)])} 

y.1.ind<-which(c(ind3,ind4,odata$c2ind)==nrow(odata)) 

if(length(y. l.ind>O)){ y 1.indk [ ( c( ind3 ,ind4, odata$c2ind)+ 1 ) [ -y. 1.indll <--
1*( odata$kern[( c(ind3,ind4,odata$c2ind))[ -y.1.ind]])} else 
{y 1.indk[( c(ind3,ind4,odata$c2ind)+ I) ]<--1 *( odata$kern[( c(ind3,ind4,odata$c2ind))])} 
y1.k<-cumsum(y1.indk) 
odata$y1.k<-y1.k 
odata$y1.k<-(odata$y1.k)/(khat) 

# transition probability 

dn01.k<-dn02.k<-rep(0, nrow(odata)) 
dn13.k<-dn14.k<-rep(0, nrow(odata)) 
dnOl.k[ind 1 ]<-(1 *odata$kern[ind1 ])lkhat[ind 1] 
dn02.k[ind2]<-( 1 *odata$kern[ind2])lkhat[ind2] 
dn 13.k[ind3]<-( 1 *odata$kern[ind3])lkhat[ind3] 
dn 14.k[ind4]<-(1 *odata$kern[ind4 ])lkhat[ind4] 

odata$p01.k<-dn01.klodata$yO.k 
odata$p01.k[ which(odata$p01.k==Inf)]<-0 
odata$pO 1.k[is.na( odata$pO 1.k) ]<-0 

odata$p02.k<-dn02.klodata$yO.k 
odata$p02.k[ which( odata$p02.k==Inf) ]<-0 
odata$p02.k[is.na( odata$p02.k) ]<-0 

odata$pOO.k<-l-( odata$p01.k+odata$p02.k) 

odata$p 13.k<-dn 13.klodata$yl.k 
odata$p 13 .k[ which( odata$p 13.k==Inf) ]<-0 
odata$p 13.k[is.na( odata$p 13.k)]<-0 
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odata$p 14.k<-dn 14.klodata$yl.k 
odata$p 14.k[ which( odata$p 14.k==Int) ]<-0 
odata$p 14.k[is.na( odata$p 14.k)]<-0 

odata$p 11.k<-1-( odata$p 13.k+odata$p 14.k) 

final. data< -su bset( odata$cen.ind==O) 

#state occupation probabilities 
final.data$sO.k < -cumprod(final.data$pOO.k) 

s 1 p.k<-c( 1, final.data$sO.k)*c(final.data$pOl.k,O) 
sl.k<-numeric(length(slp.k)) 
for (i in 2:length(s1.k)) 

{ 
s l.k[ I ]<-s 1 p.k[l] 
s l.k[i]<-s 1 p.k[i]+(sl.k[i-l ]*c(final.data$p 11.k,0)[iD 

} 

final.data$s l.k<-s l.k[ -length(s l.k)] 

s2p.k<-c(0,final.data$sO.k)*c(final.data$p02.k, 0) 
final.data$s2.k<-cumsum(s2p.k) [-length(s2p.k)] 

s3p.k<-c(0,final.data$s l.k)*c(final.data$p 13.k, 0) 
final.data$s3.k<-cumsum(s3p.k)[ -length(s3p.k)] 

s4p.k<-c(0,final.data$s l.k)*c(final.data$p 14.k, 0) 
final.data$s4.k<-cumsum(s4p.k) [-length(s4p.k)] 

list (s 1 =final.data$s l.k,s2=final.data$s2.k, s3=final.data$s3.k,s4=final.data$s4.k) 

R program to calculate prediction error in fitting AFT model using Elastic net approach 

library( elastic net ) 

#Crossvalidation function 
el.cv.f<-function(y,x,lam,cen.ind) { 
logy<-Iog(y) 
or<-order(logy) 
Y<-logy[or] 
X<-x[or,] 
temp.enet <- enet(X, Y,Iambda=Iam) 
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n< -length(Y) 

Yhat <- predict(temp.enet,X) 
last <- dim(Yhat$fit)[2] 

yhatd <- matrix(O,n,last) 

for (d in seq(n)) #delete the dth data values 

Xd <- X[-d,] 
nd <- n-I 
Yd <- Y[-d] 
temp.enetd <- enet(Xd, Y d,lambda=lam) 
tempd<-predict(temp.enetd,newx=X[1 :2,]) 
lastd <- rnin(dim(tempd$fit)[2],last) 

if(d==I) { 
yhatd[ 1,1 : lastd] <-tempd$fit[ 1,1 :lastd] 

} 

if(d> I) 
tempd<-predict(temp.enetd,newx=X[c(d-l,d),]) 
yhatd[ d, 1 :lastd] <-tempd$fit[2, 1 :lastd] 

} 

#### Inverse Prob. of Censoring 
cc< - I-cen.ind 
ckm<-survfit(Surv(Y,cc)-I) 
tabk-table(y) 
freq<-NULL 
for U in seq(length(tabl))) {freqUl<-tabl[Ul]} 

KME2< -cbind( freq,ckm$surv) 
modf.KME<-NULL 
s<-matrix(NA,max(KME2[, 1 ])-1 ,nrow(KME2)) 
forU in seq(nrow(KME2))) 

{ 
if (KME2[j, I]> I) {s[ 1 :KME2[j, 1 ]-1 ,j]<-rep(KME2[j,2],(KME2[j, 1 ])-1)} 

} 

modf.KME<-rev(sort(c(s[!is.na(s)],KME2[,2]))) 
K<-c(l,modf.KME) 
K < -K[ -length(K)] 
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###MSEP 

MSEP <- rep(O,last) 
for (nt in 1 :last) { 
MSEP[nt] <- (l/n)*sum((cen.indlK)*(yhatd[,nt]-Y)"2) 

} 
opt.msep<-min(MSEP) 

Yhat <- predict(temp.enet,X)$fit 

###MSEF 
MSEF<-sapply(seq(ncol(Yhat», function(i) {sum( cen.ind*(Yhat[,i]
Yi)"2)/sum(cen.ind)} ) 

list( opt.msep=opt.msep,msef=MSEF) 
} 
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