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ABSTRACT 

PROBABILISTIC AND GEOMETRIC SHAPE BASED SEGMENTATION 

METHODS 

Melih S. AsIan 

April, 26, 2012 

Image segmentation is one of the most important problems in image pro

cessing, object recognition, computer vision, medical imaging, etc. In general, the 

objective of the segmentation is to partition the image into the meaningful areas 

using the existing (low level) information in the image and prior (high level) infor

mation which can be obtained using a number of features of an object. As stated 

in [1,2], the human vision system aims to extract and use as much information as 

possible in the image including but not limited to the intensity, possible motion 

of the object (in sequential images), spatial relations (interaction) as the existing 

information, and the shape of the object which is learnt from the experience as the 

prior information. The main objective of this dissertation is to couple the prior 

information with the existing information since the machine vision system cannot 

predict the prior information unless it is given. 

To label the image into meaningful areas, the chosen information is mod

elled to fit progressively in each of the regions by an optimization process. The 

intensity and spatial interaction (as the existing information) and shape (as the 

prior information) are modelled to obtain the optimum segmentation in this study. 

The intensity information is modelled using the Gaussian distribution. Spatial in-
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teraction that describes the relation between neighboring pixels/voxels is modeled 

by assuming that the pixel intensity depends on the intensities of the neighboring 

pixels. The shape model is obtained using occurrences of histogram of training 

shape pixels or voxels. The main objective is to capture the shape variation of the 

object of interest. Each pixel in the image will have three probabilities to be an ob

ject and a background class based on the intensity, spatial interaction, and shape 

models. These probabilistic values will guide the energy (cost) functionals in the 

optimization process. 

This dissertation proposes segmentation frameworks which has the follow

ing properties: i) original to solve some of the existing problems, ii) robust under 

various segmentation challenges, and iii) fast enough to be used in the real appli

cations. In this dissertation, the models are integrated into different methods to 

obtain the optimum segmentation: 1) variational (can be considered as the spa

tially continuous), and 2) statistical (can be considered as the spatially discrete) 

methods. 

The proposed segmentation frameworks start with obtaining the initial seg

mentation using the intensity / spatial interaction models. The shape model, which 

is obtained using the training shapes, is registered to the image domain. Finally, 

the optimal segmentation is obtained using the optimization of the energy func

tionals. Experiments show that the use of the shape prior improves considerably 

the accuracy of the alternative methods which use only existing or both informa

tion in the image. The proposed methods are tested on the synthetic and clinical 

images/shapes and they are shown to be robust under various noise levels, occlu

sions, and missing object information. Vertebral bodies (VBs) in clinical computed 

tomography (CT) are segmented using the proposed methods to help the bone 

mineral density measurements and fracture analysis in bones. Experimental re

sults show that the proposed solutions eliminate some of the existing problems in 

the VB segmentation. One of the most important contributions of this study is to 

offer a segmentation framework which can be suitable to the clinical works. 
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CHAPTER I 

INTRODUCTION 

Segmentation can be defined as partitioning the image into the meaning

ful areas using the existing (low level) information in the image and prior (high 

level) information which can be obtained using a number of features of an object. 

Figure 1 shows some examples of the segmentation of images into the meaningful 

areas. Figure 2 shows an example of horses in a background of a snowy ground. 

The human vision system aims to extract and use as much as possible information 

in the image [1,2]. The possible information includes the intensity, possible motion 

of the object (in sequential images), spatial relations (interaction) as the existing in

formation, and the shape of the object which is learnt from the experience as the 

prior information. The horses cannot be separated from the background using 

only the existing information in the image. After a while, the human visual sys

tem combines the existing information (such as intensity and spatial interaction) 

and prior information (such as shape) which is learnt from experience. However, 

the machine visual system cannot predict the prior information unless it is supple

mented. Hence, any prior cue can be specified beforehand to enhance the segmen

tation or to obtain the desired segmentation. If the prior information of the object 

is not given beforehand to the machine vision task, the segmentation method may 

not give desired results due to noise, occlusion, and missing information in the 

image. 

This dissertation deals with the coupling the existing (intensity, spatial in

teraction) and prior (shape) information to obtain the desired segmentation. The 

intensity information is modeled using the histogram of gray levels of the image. 

The model estimates the marginal density for each class. The spatial interaction in-

1 



FIGURE 1-Examples of the image segmentation into the meaningful areas. The 
blue color shows the contour of the desired segmentation region. 

FIGURE 2 - An image of horses in a background of partially snowy ground. (This 
image is ascribed to Bev Doolittle.) 
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FIGURE 3 - An example for the shape definition. The shape in the figure is a duck 
even the shape is translated, rotated, and scaled. 

Tra nsformation 

FIGURE 4 - An example for the shape registration. After the source and target 
shapes are registered, the shape variability is modeled. 

formation is modeled using the relationship between the neighboring pixels. The 

spatial interaction model assumes that the pixel intensity depends on the intensi

ties of the neighboring pixels. For the shape definition, mathematician and statis

tician D. G. Kendall writes: "All the geometrical information that remains when 

location, scale, and rotational effects are filtered out from an object." Hence, the 

shape information is modeled after the sample shapes are transformed into the 

reference space. Finally, the shape variability is modeled using the occurrences 

of the transformed shapes. Figures 3 shows the same shapes with different scale, 

rotation, and translation factors. Figure 4 shows an example of the registration 

process from the source to the target image/ shape. The following section presents 

problem statement. 
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A. Problem Statement 

This dissertation deals with object labeling using segmentation and regis

tration methods. The problem can be described as follows: Given an image, it 

is required to obtain/extract the region-of-interest (ROI) using the existing infor

mation in the image (such as the intensity, edge, curvature, and etc.) and prior 

information about the object/ shape. A labeling problem can be described in terms 

of a set of pixel and a set of labels. The description of each variables can be written 

as follows: Let 

• I be an n - D image (where I : Rn 
----t R and usually n = 2 or n = 3). 

• 0 c Rn be an image domain. 

• G = {O, ... ,Q - I} be a set of pixel intensity value where Q is the number of 

gray levels and Q E N+. For instance, for gray level image by 28, the set of 

pixel intensity value can be written as G = {O, ... ,255} where Q = 256. 

• £ = {O, ... , K - I} be a set of labels where K is the number of labels and 

K E N+. For instance, assume that the desired classes / regions are 4. Then, 

the set of labels can be written as £ = {a, L 2, 3} where K = 4. 

As given the descriptions above, the image can defined as 

I : 0 ----t G ,0 c Rn. (1) 

Labeling is assigning a label from the label set £ to each pixel in 0, and it 

can be shown as 

f : 0 ---t £. (2) 

In this dissertation, three pieces of information (intensity, spatial interaction, 

and shape) are modelled to obtain the optimum segmentation. The intensity infor

mation is modelled using the Gaussian distribution. The data is assumed to have 

two classes: background and object regions which are represented as "b" or" 0" and 
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"0" or" 1", respectively. The parameters of distributions (8 = /-lo, Clo ,1fo , /-lb, Clb,1fb for 

the mean, standard deviation, and prior probability, respectively) are estimated. 

Spatial interaction that describes the relation between pixels is modeled using a 

Markov-Gibbs random field (MGRF). This dissertation deals with the homoge

neous isotropic Potts model proposed by Geman et al. [3] which is similar to the 

Derin-Elliot model in [4]. The shape variability is described using a new proba

bilistic function. The shape models are obtained using histogram of occurrences of 

training shape pixels or voxels and formulated by new formulations. The objective 

is to capture the shape variation of the object of interest. Using the intensity, spa

tial interaction, and shape modelling, each pixel in the image will have intensity, 

spatial interaction, and shape based probabilities to be an object or a background 

class. 

The segmentation process can be achieved by minimizing an energy formu

lation which can be written as follows: 

E = E(I, Ishape, T, 8", w) (3) 

where 

• Ishape represents the shape prior, which is obtained using a number of training 

shapes and a chosen function, 

• T represents the required transformation matrix to embed the shape prior to 

the image domain, 

• 8 is the intensity model parameters, 

• , is the spatial interaction parameters, 

• w is the shape model parameters. 

In the energy optimization process, the parameters which should be esti

mated can be written in a formulation as: 

f*,8*,,*,w*,T*=arg min E. 
r.8,/',w,T 
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In this dissertation, the energy functionals are optimized using three dif

ferent approaches which have different advantages: i) the level sets which uses 

the gradient descent and simplex optimizations, ii) the iterated conditional modes 

(leM), and iii) Graph cuts. The detailed descriptions will be given in the following 

chapters. 

Overall, in the shape based segmentation, the following problems should 

be answered: 

• Determining the best/ appropriate model for each information. 

• Defining the shape transformation type (such as rigid, affine, or local types). 

• Defining a dissimilarity measure between two shapes (such as intensity dif

ference and etc.) and its formulation. 

• Estimating the shape transformation matrix. 

• Optimization type (such as gradient descent, simplex methods, and etc). 

This dissertation will address these problems. 

1. Energy Formulation Using Bayes' Rule 

Many image segmentation approaches are modeled in a probabilistic frame

work [1]. Given an image, the posterior probability is maximized using the Bayes' 

rule as follows: 

(f I I) = p(I I f)p(f) 
p p(I) , (5) 

where p(I I f) is a conditional distribution of the input image given the desired 

labeling, p(f) and p(I) are unconditional probability distributions of the desired 

labeling and the given image, respectively. Maximizing the conditional probability 

of desired labeling, f, given the image, I, is equivalent to minimizing its negative 

logarithm as shown follows: 

- log p( f I I) = - log p(I I f) - log p( f) + constant. (6) 
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Using the same idea, the conditional probability of desired labeling, f, given the 

image, I, and the prior shape information of the object, Ishape can be given as fol

lows: 

- log p( f I I, Ishape) =- log p(I I f) - log p( f) - log p(Ishape If, I) + constant. (7) 

Finally, the energy can be written in terms of the posterior probability as defined 

as follows: 

E = -log p(f I I, Ishape) ':::: -log p(I I f) - log p(f) - log p(Ishape I f, I). (8) 

Eq. 8 summarizes the main energy formulation which is being optimized in this 

dissertation. Note that each chapter has its own derivation of Eq. 8. 

B. Shape Representation 

Human anatomical structures such as spine bones, kidneys, livers, hearts, 

and eyes may have similar shapes [5]. These shapes usually do not differ greatly 

from one individual to another. There are many works which represent and model 

the shape variability. The objective of a shape representation is to describe the 

desired features of the shape of interest and serve the shape descriptor to be a 

good classifier to differentiate among all the shapes involved [6]. Also, the shape 

representation significantly affect the shape registration algorithm. In general, the 

shape representations methods can be folded into three categories: 

(a) Landmark based, 

(b) Contour (edge) based, and 

(c) Region based methods. 

This section briefly reviews these three shape representation and modeling 

categories. One of the most important studies for the landmark based shape rep

resentation and modeling is the active shape models (ASM) and active appearance 

models (AAM) proposed by Cootes et al. [7-9]. The active contour models method 

is a contour (edge) based method proposed by Kass et al [10]. This method is also 
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categorized as the explicit shape representation which requires parameterizations 

of the contour. Also, Fourier descriptors, shape signatures, wavelet descriptors are 

some of the contour based shape representations. Landmark and contour based 

representations, which can be called as the explicit shape representation, suffer 

when applied to shape modeling since they do not allow the shape to undergo 

topological changes. Also, these representations requires point-wise correspon

dence between training shapes. 

This dissertation represents shapes using the regions based methods. Me

dial axis, convex hull, and level sets representations are some of the region based 

shape representations. The shape representation using the level sets method [11] 

is known as the implicit representation which does not need contour parameter

izations and does handle the topological changes of shapes. Leventon et al. [12], 

Rousson et al. [13] and Tsai et al. [14], Abdelmumin [5] proposed shape models 

which are obtained using a signed distance function (SDF) of the training data. 

Eigenmodes of implicit shape representations are used to model the shape vari

ability. Their method does not require point correspondences. Their shape model 

is obtained using a coefficient of each training shape. Cremers [15] et al. proposed 

a simultaneous kernel shape based segmentation algorithm with a dissimilarity 

measure and statistical shape priors. This method is validated using various im

age sets in which objects are tracked successfully. For more information about the 

shape representation and modeling, refer to [16-18]. In this dissertation, the object 

shape variability is analyzed using probabilistic models which guide the energy 

optimiza tion. 

c. Shape Based Segmentation 

Shape based segmentation has been handled in different manners in many 

applications like segmentation, shape recognition, and tracking. Shape based seg

mentation can be defined as the integrating the prior shape model into the seg-
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FIGURE 5-An example segmentation with coupling the existing and prior infor
mation. The gray level image has problems such as noise and occlusion. The 
intensity modeling is no~ enough only to solve the noise and occlusion problems. 
The spatial interaction coupling with the intensity information is able to solve the 
noise but not the occlusion problem. Shape modeling coupling with the existing 
information is able to solve both the noise and occlusion problems. 

mentation via shape registration process. In this matter, the prior shape model is 

obtained in advance using a number of training shapes of the object of interest. 

Figures 5 and 6 show example segmentations using the existing and prior 

information when images have noise, missing information, and occlusion prob-

lems. Traditional approaches such as thresholding [19- 22] using only the gray 

level information will not work to solve the noise problem. Edge-and-contour 

based variational methods [10,11,23-25] and spatially discrete optimization meth

ods [26-29] using only the existing information (intensity and/ or spatial interac

tion) may work well to solve the noise problem. However, these methods will 

not be able to obtain desired segmentation when there is occlusion problem in the 

image. To solve the possible problems in the image, the shape prior information 
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FIGURE 6-Examples of the image segmentation into the meaningful areas when 
the image has occlusion, missing information, and noise problems. The blue color 
shows the contour of the desired segmentation region. 
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is integrated in the segmentation process. Refer to [1,2,5,7,9,12-15,30-44] for 

publication of the shape based segmentation methods. 

D. Shape/Image Registration 

Registration is the important method for shape-based segmentation, shape 

recognition, tracking, feature extraction, image measurements, and image display. 

Shape registration can be defined as the process of aligning two images of a scene [5, 

45]. Image registration requires transformations, which are mappings of points 

from the source (reference) image to the target (sensed) image [46]. The registration 

problem is formulated such that a transformation that moves a point from a given 

source image to another target image according to some dissimilarity measure, 

needs to be estimated [47]. The dissimilarity measure can be defined according to 

either the curve or to the entire region enclosed by the curve. Figures 7 shows an 

example of the registration process from the source to the target image/ shape. The 

source and target images and transformation can be defined as follows: 

• Source (Is): Image which is kept unchanged and is used as a reference. This 

image can be written as a function Is : R2 ----) R for \/x E Os. 

• Target (It): Image which is geometrically transformed to the source image. 

This image can be written as a function It : R2 ----) R for \/y E Ot. 

• Transformation (T): The function is used to warp the target image to take 

the geometry of the reference image [45]. The transformation can be written 

as a function T : R2 ----) R2 which is applied to a point x in Is to produce a 

transformed point which is calculated as X = T(x). The registration error is 

calculated as T(x) - y for each transformed pixel. 

Steps in the registration can be categorized in 5 different ways such as: 

i) Preprocessing: Image smoothing, deblurring, edge sharpening, edge detection, 

and etc. 
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FIGURE 7 - Registration example of a point from the source to the target image. 

ii) Feature selection: Points, lines, regions and etc. from an the source and target 

image. 

iii) Feature correspondence: The correspondence between two images. 

iv) The transformation functions: Affine, rigid, projective, curved and etc. 

v) Resampling: Transformed image should be resampled in the new image do

main. 

In general, there are three categories of the registration methods: rigid, 

affine, and elastic transformation. In literature the rigid and affine transforma

tions are classified as global transformations and elastic transformations are as 

local transformation [48] . A transformation is global if it is applied to the entire 

image. A transformation is local if it is a composition of two or more transforma

tions determined on different domains (sub-images) of the image . 

• A rigid body transformation is the most fundamental transformation and is 

useful especially when correcting misalignment in the scanner. This transfor

mation allows only translation and rotations, and preserves all lengths and 

angles in an image . 

• An affine transformation allows translation, rotation, and scaling. Some au

thors defined the affine transformation as the rigid transformation plus scal

ing. Affine transformations involving shearing (projection) are called projec

tive transformation. An affine transformation will map lines and planes into 

lines and planes but does not preserve length and angles. 
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• An elastic transformation allows local translation, rotation, and scaling, and 

it has more number of parameters than affine transformations. It can map 

straight lines into curves. An elastic registration is also called as a non-linear 

or curved transformation. This transformation allows different regions to be 

transformed independently. 

A global transformation is used to register Is to It with scale, rotation, and 

translation parameters. For the 20 case, assume that the transformation has scal

ing, rotation, and translation components represented as follows: 

- r Sx 0 1 - r cos(B) - sin(B) 1 - t S - ) R - ) 'fr - [tX) ty] . 
o Sy sin( B) cos( B) 

(9) 

The transformation will be in the form: 

T(x) = X = SRx + 'fr. (10) 

This dissertation uses the global registration (more specifically affine trans

formation) using the signed distance function which is widely used in the registra

tion methods and shape models and point correspondence. 

E. Related Works 

The motivation and contribution of this dissertation can be folded in three 

sections: 1) Variational (Spatially continuous) method. 2) Statistical (spatially dis

crete) method. 3) Algorithms on vertebral body segmentation. The following sec-

tions overview related works. The weaknesses of existing are addressed in the 

following three subsections. (It should be notes that the material in each subsec

tion will be revisited in the related chapter.) 
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1. Variational (Spatially Continuous Methods) Approach 

Variational approaches segment shapes through an energy minimization 

framework that controls the evolution of an implicit/ explicit contour / surface. The 

active contour models proposed by Kass et al. [10] and level sets proposed by Os

her and Sethian [11] are the most important variational methods in the literature. 

The active contour models minimizing the energy formulation using the explicit 

shape representation which requires parameterizations of the contour. As dis

cussed already explicit shape representations suffer when applied to shape mod

eling since they do not allow the shape to undergo topological changes. 

The level sets method is one of the efficient and accurate method in the 

segmentation despite it is fact that it has still some disadvantages which will be 

discussed in this dissertation. The level sets method has also been used in the 

shape-based segmentation problem. The implicit shape representation which does 

not need contour parameterizations and does handle the topological changes of 

shapes is used. In this area, embedding the shape model into the image domain 

is the key issue and depends on the registration of the given shape to the image. 

Paragios et al. [47] firstly proposed a global and local registration method using the 

implicit representation (the signed distance function) of target and source shapes. 

Their method does not require point correspondences which is very important con

tribution in the automatic shape registration field. 

The related works can be listed as follows: 

• The level sets formulations, which are based on only the intensity and/or 

edge information (such as what Chen-Vase [23], Li et al. [25], Gao et al. [49] 

proposed) fail when the image has noise or the object has various missing 

parts and occlusions . 

• In the shape registration methods, the dissimilarity measures proposed by 

Paragios et al. [47], Rousson et al. [13], Tsai et al. [14], and Huang et al. [31], 
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and etc. have limitations to capture the object-of-interest if the source and 

target shapes have inhomogeneous scale differences. Limited shape model 

embedding transformation (homogeneous scales) is used. 

• Active appearance models method, which was originally proposed by Cootes 

et al. [9], has been used in many applications. However, the shape model 

should be initialized very close to the object-of-interest for the originally pro

posed method. It should be noted that there have been improvements on 

AAM to eliminate the dependency on the shape initialization. rn this disser

tation, the originally proposed AAM method is referred. 

2. Statistical (Spatially Discrete) Approach 

Although the spatially continuous methods work very well, they usually 

take higher execution time to obtain the optimum segmentation than some of spa

tially discrete optimization methods such as iterated conditional modes (rCM) and 

graph cuts. The related works can be listed as follows: 

• The original rCM method is a local optimization technique as proved in [50]. 

Also, rCM optimization without shape model fails if the object interest has 

missing information and occlusions. 

• Graph cuts, proposed by Boykov et al. [29], is very powerful and fast energy 

minimization approach. In this method, each edge of the graph, which con

nects neighboring pixels in the image and connects the pixels with terminals 

(or labels), should be assigned a cost or a penalty term. Often, the penalty 

term is estimated using simple functions that are inversely proportional to 

the gray scale difference between the two pixels and their distance, and one 

may need to adapt the optimum cost coefficient to obtain a desired segmen

tation. 
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3. Algorithms on Vertebral Body Segmentation 

The previously reported methods can be categorized as fully automatic, and 

semi-automatic (with manual interactions). In this work, a segmentation method 

with a semi/fully-automatic option is proposed. The related works and contribu

tions can be listed as follows: 

• In one of the semi-automatic works, Mastmeyer et al. [51] proposed a hier

archical segmentation approach only for the lumbar spine bone. Such works 

are restricted to the specific regions of spine bone column as such lumbar, 

thoracic, and others. 

• Klinder et al. [36] proposed a fully automatic solution for detecting, identify

ing, and segmenting vertebrae in CT images. The authors reported that the 

execution time for 12 vertebrae identification was 2192 seconds (36.5 min) 

on average. Also, Mastmeyer et al. [51] reported that complete analysis of 

3 vertebrae took approximately 10 minutes in 2006 on a high standard PC 

system. 

• The methods proposed by Yao et al. [52], and Klinder et al. do not extract 

the spinous/spinal processes,pedicles, ribs, ant other anatomical bones from 

the VB. In other works, such as [51], spinal processes are eliminated with an 

additional high execution time. 

• In CT spinal images, different partial regions are scanned. For instance, some 

CT data have only 4-5 thorocic VBs, some of them have 2-3 lumbar VBs, and 

etc. A framework which is dependent of the identification of VBs in a dataset 

can cause high execution time. 

16 



F. Contributions of this Dissertation 

This section overviews the contributions of the dissertation specifically. It 

should be noted that the material in each subsection will be revisited in the related 

chapter. The contributions of this dissertation can be listed as follows: 

• This dissertation solves problems caused by noise, occlusion, and missing 

information of the object by integrating the prior shape information. 

• In this dissertation, the conventional shape based segmentation results are 

enhanced by proposing a new probabilistic shape models and a new energy 

functional to be minimized. The shape variations are modelled using a prob

abilistic functions. The proposed method is tested on the synthetic and clin

ical images/shapes and it is shown to be robust under various noise levels, 

occlusions, and missing object information. 

• The proposed shape based segmentation methods are less variant to the ini

tialization. 

• To optimize the energy functional, the original ICM method, which was orig

inally proposed by Besag [53], is extended by integrating the shape prior. 

With integrating the shape model to the original ICM method, possible lo

cal minimums of the energy functional are eliminated as much as possible, 

and enhance the results. Also, similar framework using graph cuts energy 

minimization is tested in this study. 

• One of the most important contributions of this study is to offer a segmenta

tion framework which can be suitable to the clinical works with acceptable 

results. If the proposed method in this dissertation is compared most pub

lished bone segmentation methods (such as in [36,51,54]), the large execution 

time is reduced effectively. 

• Many works are restricted to the specific regions of spine bone column as 
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such lumbar, thoracic, and others. In this dissertation, there is no any region 

restriction, and the proposed framework is processed on different regions. 

• The proposed framework and the new probabilistic shape model extract the 

spinal processes and ribs which should not be included in the bone mineral 

density measurements. 

• This work is not dependent on any identification step thanks to the new uni

versal shape model and its embedding step. 

G. Dissertation Organization 

This dissertation has 4 more chapters as follows: 

Chapter II presents mathematical background of the level sets method which 

has been used for segmentation and registration algorithms in the literature. In this 

chapter, a new probabilistic shape based segmentation method is proposed and 

tested on various synthetic and clinical images with occlusions, missing informa

tion, and noise. The proposed method is a generic method which can be suitable 

to segment any object in the image. 

Chapter III introduces a new shape based iterated ICM method. The pro

posed method is a specific segmentation method which is fully focused on the 

vertebral body segmentation. In this chapter, some of drawbacks existing in the 

vertebral body segmentation are solved with a new statistical framework. 

Chapter IV presents an extension study of previously published method. 

In [55,80], the shape model is assumed to be registered in advance. In this dis

sertation, the probabilistic shape model is registered automatically to the image 

domain. 

Chapter V summarizes the main component of the proposed works and 

presents possible future improvements. 
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CHAPTER II 

A PROBABILISTIC SHAPE-BASED SEGMENTATION METHOD USING 
LEVEL SETS 

In this chapter, a new dynamic and probabilistic shape based segmentation 

method using level sets method is proposed. The shape prior is coupled with the 

intensity information in this chapter. In the first phase, the intensity based segmen

tation is obtained using a basic statistical level set method. In the second phase, 

in which this work's contribution lies, the shape model is constructed using the 

implicit representation of the training shapes. The resulting probability density 

functions are used to embed the shape model into the image domain with a new 

energy functional. The proposed method's invariance to parameter initialization is 

evaluated through validation. Various synthetic and clinical shape segmentation 

examples are illustrated. Experiments show that the proposed algorithm over-

comes segmentation challenges, and is robust under various noise levels, severe 

occlusions, and missing information. 

A. General Level Sets Formulation and Derivation 

The level sets formulation was first introduced by Osher and Sethian [11]. 

Topology changes like merging and splitting, are handled naturally without the 

need of parametrization. This section mainly focuses on the general level sets for

mulation 

Given a curve C, it can be embedded into a higher dimension function ¢ as 

C = {x: ¢(x) = o}. Then the curve is defined as the zero level of the implicit func

tion. If the time t is added to the function, curve evolution function is changed to 

¢ = ¢(x, t). Topology changes, such as merging or splitting, are almost impossible 
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to be handled by the conventional explicit deformable models. However, topol

ogy changes can be tracked naturally by implicit level sets. The surface function 

¢ evolves with the time and the evolution front is always represented as the zero 

level. The following equation can be written as a general description: 

¢(x, t) = O. (11) 

Taking derivative on both sides of the above equation, it leads to: 

a¢(x,t) 
a = o. t 

(12) 

In terms of chain rule, the above equation can be written as follows: 

a¢ acb ax 
-+--e- =0. 
at ax at 

(13) 

Eq. 13 can be written as follows: 

cbt + V ¢ e B = O. (14) 

where V ¢ represents the gradient of ¢ and B represents the velocity vector which 

is defined as B = ~~. The velocity vector contains the tangent and normal vectors 
---t ---t 

as B = BTT + BNN resulting the following formulation: 

(15) 

By the definition, the normal vector of the evolving function can be written as 

N = I~:I' Then substituting for V ¢ = IV ¢I N gives the following: 

(16) 

Since the multiplication of the normal and tangent lines produces 0, the formula

tion can be written as follows: 

(17) 

In the iterative process of the level sets, the curve evolution can be obtained using 

the following formulations as follows: 

(18) 
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since (Pt = ¢(t+~;-¢(t). Then, multiply each components by 6t, 

¢(t + 6t) - ¢(t) + 6tBN IV<b1 = 0, (19) 

Finally the next evolution of ¢ is obtained as follows: 

¢(t + 6t) = ¢(t) - 6tBN IV<b1 = 0, (20) 

In the literature, the final level sets formulation is defined as follows: 

¢(t + 6t) = ¢(t) - FIV¢16t = 0. (21) 

In the literature, there has been various methods to model the speed function, F. 

In this dissertation, a new method which is integrating the intensity and prior 

shape information is proposed. The next section describes the proposed level sets 

formulation. 

B. Related Works 

Shape based segmentation is an important and complex problem in com

puter vision, computer graphics and medical imaging. It has been handled us

ing different methods in many applications like segmentation, shape recognition, 

and tracking. Segmentation using only image intensity may fail in the presence 

of strong noise and partial occlusions. Therefore, a prior shape is necessary to 

enhance the segmentation results. 

Level sets method has been used previously in the shape based segmenta

tion problem. Paragios et al. [47] firstly proposed a global and local registration 

method using signed distance function (SDF) of target and source images/shapes. 

They seek a transformation that creates pixel-wise intensity correspondences be

tween the source and the target shape representations. The registration parameters 

are obtained using the gradient descent optimization. Their method is tested with 

partial occlusions, local deformations, and random motion between the source and 
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target. To guarantee stability, the numerical method requires a small time step 

which results in high execution time as the authors agreed. 

In [31] the distance function is used to implicitly represent open/closed 

shapes (structures). The images of distance functions are registered using the mu

tual information approach. The signed distance function is used for closed shapes, 

whereas open structures are represented by using only the distance transform 

without any sign. In addition to global registration, they used a b-spline based 

incremental Free Form Deformation (IFFD) to minimize a dissimilarity measure. 

The local registration is used to obtain smooth, continuous, and one-to-one corre

spondences. 

Tsai et al. [14] proposed a new shape model which is obtained using a signed 

distance function of the training data. Eigenmodes of implicit shape representa

tions are used to model the shape variability. Their method does not require point 

correspondences. They proposed a new shape prior which was obtained using 

a coefficient of each training shape. The shape model described in their paper is 

used to register the shape model globally to the object of interest. 

Taron et al. [32] proposed an invariant representation of shapes, and com

puting uncertainties on the registration process. Also, in this study the shape is 

represented implicitly. They proposed a novel dimensionality reduction technique 

to lower the cost of the density estimate computation of kernel based shape model. 

Cremers et al. [15] proposed a simultaneous kernel shape based segmen

tation algorithm with a dissimilarity measure and statistical shape priors. This 

method is validated using various image sets which objects are tracked success

fully. However, parameter optimization of the shape priors may have high execu

tion time if the training set is large. 

Mahmoodi [56] proposed a shape-based active contours for fast video seg

mentation. Their level sets implement is based on Mumford-Shah [57] and Chan

Vese [23] methods. They compared their method with only intensity based seg

mentation method. 
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Gao et al. [58] proposed a method to segment prostate magnetic resonance 

(MR) imagery. To model the large variations of prostate shapes, they used point 

clouds to represents training shapes. 

Zhu et al. [59] proposed a shape and temporal based segmentation algo

rithm for cardiac MR imagery. They developed a subject-specific dynamical model 

that handles temporal dynamics and inter-subject variability and deformation. 

They modelled the temporal dynamics of a cardiac sequence. Their method is 

eligible to model the motion in patient imaging. 

Heckel et al. [60] discussed variational interpolation for segmentation of 

medical images with respect to applications in tumor and liver segmentation from 

CT scans. However, interpolation methods are still time consuming and they have 

high computational cost as the authors documented. Mahdavi et al. [38] proposed 

a semi-automatic segmentation for prostate interventions. In this method manual 

initialization of the shape priors makes use of the physicians experience. Schmid 

et al. [39] proposed a new statistical shape models for MRI bone segmentation. 

They devised an initialization of deformable models for the challenging hip joint 

MRI images. Tsechpenakis and Chatzis [40] proposed a probabilistic shape and 

appearance-based segmentation method using deformable models. Gao et al. [49] 

proposed a relay level sets method for segmentation. 

Yan et al. [41] proposed a local shape models for segmentation of ultrasound 

prostate images. They proposed a new energy functional which has three terms: 

i) the first energy attracts the contour toward the prostate boundary, ii) the second 

energy preserves the geometric shape of the contour during deformation by ap

plying the constraints of continuity and curvature, iii) the third term applies the 

shape constraint derived from a priori shape statistics to the segmented contour. 

They applied their algorithm on ultrasound prostate images. 

Saha et al. [42] proposed an osteophyte segmentation method using a partial 

shape model. They proposed a method primarily based on the active shape model 

(ASM). Their objective is to solve a common challenge when a diseased bone shape 
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is significantly altered at regions with osteophyte. Osteophytes are segmented by 

subtracting partial-ASM-derived shape from the overall diseased shape. 

Pu et al. [43] proposed a shape analysis strategy termed "break-and-repair" 

to overcome segmentation challenges such as various organ diseases, image noise 

or uncertainties. The basic idea is to remove problematic regions and then estimate 

a smooth surface by representing the remaining regions. They used the principle 

curvature analysis to identify and remove the problematic regions. The perfor

mance of their method was tested on CT lung images. 

Feulner et al. [44] proposed a probabilistic model for automatic segmenta

tion of the esophagus in 3D CT images. The shape model is incorporated using a 

Markov chain model. The model is nonrigidly deformed to fit the boundary of an 

object. 

Shen et al. [61] proposed an active volume models (A VMs) for object bound-

ary extraction. The dynamic model includes a deformed curve or surface repre

senting a shape, a volumetric appearance statistics, and an embedded object/background 

classifier. Compared with active contours and active shape/ appearance models, 

the AVM is a generative object modelling that does not require offline training but 

generates useful appearance priors about the object. 

Dawoud [62] proposed a shape based lung segmentation in chest radio

graphs. Their approach is based on integrating the shape model into intensity 

based thresholding in an iterative framework. 

Lee at al. [63] proposed an automatic segmentation of the lumbar pedicle in 

CT images to help spinal fusion surgery. Their objective is to help spinal fusion 

process which requires pedicle screw placement. They emphasized the segmen

tation challenges of spine bones in CT images due to weak edges and boundary 

discontinuities. 
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C. Contribution of This Study 

In this work, a new dynamic and probabilistic shape model which i$ re

constructed using implicit representation of shapes. New shape based probability 

density functions are proposed to enhance the conventional global registration en

ergy functionals. Second, a new probabilistic dissimilarity measure on the space 

of level set function is proposed. With this proposed method, the conventional 

global registration results are enhanced, and hence better shape-based segmenta

tion results are obtained. More specifically the motivation and contribution of this 

chapter can be written as follows: 

i.) The level sets formulations, which are based on only the intensity and/ or 

edge information (such as what Chen-Vase [23], Li et al. [25], Gao et al. [49] pro

posed) fail when the image has noise or the object has various missing parts and 

occlusions. This dissertation solves common problems with integrating the prior 

shape information. 

ii.) In the shape registration methods, the dissimilarity measures proposed 

by Paragios et al. [47], Rousson et al. [13], Tsai et al. [14], and Huang et al. [31], 

and etc. have limitations to capture the object-of-interest if the source and target 

shapes have inhomogeneous scale differences. Limited shape model embedding 

transformation (homogeneous scales) is used. In this dissertation, the geometrical 

scaling is proposed as an approximation, since the signed distance function (SDF) 

is not invariant to inhomogeneous scaling. The proposed approximation may not 

be enough to perfectly align the shapes. Hence, the other shape probability density 

function (PDF) term, which will be explained in detail in the following section, is 

required. The shape variations are modelled using a probabilistic functions. New 

probabilistic shape models are proposed to enhance the conventional shape based 

segmentation results. 

iii.) Active appearance models method, which was originally proposed by 

Cootes et al. [9], has been used in many applications. However, the shape model 
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should be initialized very close to the object-of-interest for the originally proposed 

method. It should be noted that there have been improvements on AAM to elimi

nate the dependency on the shape initialization. In this dissertation, the originally 

proposed AAM method is referred. 

D. Method 

In this work, two energy functionals are proposed to be minimized as pub

lished in [30]. The first functional is to extract object regions using image intensities 

only with a statistical level set evolution as described in [24]. This step is needed to 

obtain the image feature to be used in the shape registration process. The second 

functional depends on the dissimilarity measure between the shape model and the 

resulting contour which is obtained in the first phase. The weighting coefficients 

of the dynamic shape model and transformation matrix are estimated using the 

simplex optimization method. The proposed methods are described in the fol

lowing three sections: i) Shape model reconstruction, and ii) initial segmentation 

using only intensity model, and iii) proposed shape model registration process. 

The proposed framework is shown in Figure 8. 

1. Shape Model Reconstruction 

a. Shape Representation In this work, the shape is represented using the 

signed distance function which is used firstly in registration by Paragios et al. [47]. 

Let I : [2 -+ R be an n -- D image usually n = 2 or n = 3, rP : [2 -+ R be a function 

that refers to a distance function representation for a given shape/ contour S where 

[2 c Rn be an image domain which is bounded. The shape can be represented as 

follows: 

0, (xoy) E S 

rPs(x,y):= -ED((x,y),S) > 0. (x,y) E Rs 

+ED((x, y), S) < 0, (x, y) E n - [Rsl 
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FIGURE 8-The general framework is shown. The steps can listed as follows: 1) 
Obtain shape projections to define the shape variability. 2) The intensity based 
segmentation. The yellow contour shows the automatic segmentation region. 3) 
The shape based segmentation with iterative shape reconstruction. 

(a) (b) (c) 

FIGURE 9 - An example representation of signed distance function. (a) A vertebral 
body (VB) shape, (b) signed distance function as an image intensity representation, 
(c) level set representation of SDF. 
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where Rs represents the inside region of the shape S. Let (71" v) represents an pixel 

location on S. For V(x, y) E cP, the distance between any (x, y) point and its nearest 

surface point can be calculated as follows: 

ED((x, y), S) = min J(71, - x)2 + (v - y)2. 
(u,v)ES 

(23) 

Figure 9 shows an example of a shape representation using the distance 

function. 

b. Principle Component Analysis (PCA) on the Training Shapes (Offline) In 

this step, the objective is to globally obtain the most important information of 

training shapes. Let the training set consists of a set of aligned training shapes 

{C1 , ... ,C z}; with SDFs {¢L ... ) ¢~}. An example is shown in Figure 43. Us

ing the technique developed in [12], the mean level set function of the training 

shapes is obtained, cPu, as the average of these Z signed distance functions, cPu = 
~t 

(ljZ) L cPi . To extract the shape variabilities, cPM is substracted from each of the 

training SDFs. The obtained mean-offset functions can be represented as {¢i, ... , ¢~}. 

These new functions are used to measure the variabilities of the training shapes. 

The shape variability matrix W is defined as W = [¢i, ... , ¢H It should be 

noted that, ¢~ is the vector representation of cPl. Let Ai be each eigenvalue of the 

shape variability matrix V = ~WTW. To retrain T percent of the variation in the 

training set, K modes can be chosen satisfying 

(24) 

The projected training shapes is obtained as follows: 

(25) 

where U is the matrix which contains K number of eigenvectors, and b is the set 

of model parameters which can be described as 

b{i,h} = hv>:, (26) 
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where i = {I, ... , K}, h = {-O', ... , O'}, and 0' is a constant which can be chosen 

arbitrarily. 

The new SDF of training shapes are represented as {¢i, ... , ¢~} instead of 

{¢h,h}"'" ¢{K,h}} where N is the multiplication of K and standard deviation in 

eigenvalues (the number of elements in h). Also, the number of K and standard 

deviation in eigenvalues can be selected by trail-and-error. The shape model is 

required to capture the variations in the training set. In this study, it is accepted 

that 0' = 3 which means that h = {-3, -2, -1,0,1,2, 3}, and K = 4. These number 

are chosen to obtain the shape variability well. 

An example projections of training images are shown in Figures 11-12. Fig

ure 11 shows obtained projections of 80 training images with respect to four modes 

(shown in each row). The representation of shape projection is shown in Figure 12. 

In this figure, the representation of only the 1st projection component (p.c.s) is 

shown. The shape variation of the first and fourth p.c.s is shown in 13. The shape 

variation decreases from the first to the fourth (or last) p.c. respectively. Hence, 

selection of 'K' value with Eq. 24 helps to capture the necessary shape variation 

with minimum information. 

c. The Dynamic Shape Based Probability Density Function The weighted 

shape model is considered to be a weighted sum of the transformed signed dis

tance maps as follows: 
N 

¢p = L Wj¢~, (27) 
j=I 

where ¢; represents the map of the training shapes marked by t after the peA 

method. Shape weighting coefficient vector is represented as w = [WI, ... , WN]T. 

By varying these weights, ¢p can cover all values of the projected training distance 

maps, hence, the shape model changes according to all of the given shapes and 

weights. 

In this study, a new probabilistic and dynamic shape model is synthesized 

using the first four p.c. as described in ILD.1.b. Two shape probability density 
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II II • • • • • • • 

FIGURE 10-The training VB images. In this experiment, 80 VB shapes which are 
obtained from 20 different patients and different regions (such as cervical, thoracic, 
and lumbar spine bone sections) are used. These images are processed using the 
PCA method to obtain most important projections which are enough to represent 
the shape variation in the vertebral body . 

• 
• • • • 

(a) (b) (c) (d) (e) 

FIGURE 11-Projections of 80 training VB shapes shown in Figure 43. First to last 
rows (from i = 1 to i = 4) correspond to the projected shapes of the first to fourth 
strongest eigenvector representation. Projected shapes with corresponding eigen
values are shown in (a )cP{i,-3} = cPM+ Ub{i,-3}, (b) cPh,- l} = cPM+ Ub{i,- l}, (c) 
cP{i,O} = cPM + Ub{i,o} , (d) cP{i,l} = cPM + Ub{i, l}, and (e) cPh,3} = cPM + Ub{i,3}. 
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(a) (b) (c) (d) (e) 

FIGURE 12 - Implicit shape representation of 1st projections. Shapes with corre
sponding eigenvalues are shown in (a) 4>h,-3} ,(b) 4>h,- I} I (c) 4>h ,D} , (d) 4>h,l} I and 
(e) 4>h,3}' The first row shows the binary images. The second and third rows show 
the SDF shape representation in 2D and 3D, respectively. 

functions which represent the probability of i) the object (inside of a boundary) 

and ii) background regions (outside of a boundary) are obtained as follows: 

S( ) _ L~=1 wj l4>;(x) IH( -4>;(x)) 
Po x - Nt' 

L j=1 Wj l4>j(x) I 
(28) 

(29) 

where H(.) is the Heaviside step function as a smoothed differentiable version 

of the unit step function. This step is integrated to the registration step which is 

described in section ILD.3, hence the shape model is dynamically reconstructed in 

the registration process. 

Figure 14 shows the detailed description of the shape model where the 

shape weighting coefficients are normalized, i.e. w = {WI, . .. , WN} = {l iN, . .. , l iN }. 

The green color shows the background region which does not have any intersec

tion with any training shape. The blue color shows the object region which is the 
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1st p.c. 2nd p .e. 3rd p.e. 4th p.c. 

FIGURE 13-Sampling up to 3 standard deviations (from b {i,-3} to b {i,3}) along the 
first four principle components (p.c.) (where i = {I , 2, 3, 4} for the first four p.e.) 
from the mean for a set of jet airplane, number "four", and 80 training vertebral 
body (VB) shapes. 

32 



(i) 

(ii) 

(iii) 

(iv) 

Get airplane) (Number" 4") (Vertebral body) 

FIGURE 14-The shape models of each data that are used in the experiments. The 
green color shows the background region which does not have any intersection 
with any training shape. The blue color shows the object region which is the inter
section of all projected training shapes. (i) The gray color represents the variability 
region that can be described as the union of all projected training shapes minus the 
intersection of those shapes. In this variability region, the object and background 
probabilistic shapes are defined. (ii) The red color shows the average shape (¢p). 
(iii) The object (P~) and (iv) background (Pb ) shapes are modelled in the variability 
region which the pixel values are defined in (0 : 1). 
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0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.07 0.09 

0.00 0.00 0.01 0.01 0.02 0.03 O.OS 0.06 0.09 O.U 0.18 0.23 

0.00 0.01 0.01 0.03 O.OS 0.06 0.11 0.17 0.23 0.30 0.38 0.46 

0.00 0.01 0.04 0.08 0.11 0.17 0.26 0.37 0.45 0.54 0.61 0.69 

0.02 0.04 0.09 0.17 0.26 0.37 0.48 0.61 0.68 0.75 0.81 0.85 

0.03 0.10 0.19 0.35 0.48 0.61 0.72 0.80 0.85 0.88 0.92 0.94 

0.08 0.22 0.40 0.58 0.72 0.81 0.87 0.92 0.94 0.96 0.97 0.98 

0.20 0.41 0.64 0.79 0.88 0.92 0.95 0.97 0.98 0.99 0.99 0.99 

0.38 0.67 0.82 0.91 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00 

0.62 0.83 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.96 0.95 0.93 0.91 

1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.94 0.91 0.88 0.82 0.77 

1.00 0.99 0.99 0.97 0.95 0.94 0.890.830.77 0.700.62 0.54 

1.00 0.99 0.96 0.92 0.89 0.83 0.74 0.63 0.55 0.46 0.39 0.31 

0.98 0.96 0.91 0.83 0.74 0.63 0.52 0.39 0.32 0.25 0.19 0.15 

0.97 0.90 0.81 0.65 0.52 0.39 0.28 0.20 0.15 0.12 0.08 0.06 

0.92 0.78 0.60 0.42 0.28 0.19 0.13 0.08 0.06 0.04 0.03 0.02 
0.80 0.59 0.36 0.21 0.12 0.08 0.05 0.03 0.02 0.01 0.01 0.01 

0.62 033 0.18 0.09 0.04 0.03 0.02 0.01 0.00 0.00 0.00 0.00 
0.38 0.17 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.20 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.10 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FIGURE 15 - The constructed object (P~ in the first row) and background (pg in the 
second row) models. The red squares show the same location in both images. The 
numbers shown in the right side are the pixel information at each pixel x in the red 
square. 
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intersection of all projected training shapes. In (i), the gray color represents the 

variability region that can described as the union of all projected training shapes 

minus the intersection of those shapes. In this variability region, the object and 

background probabilistic shapes are defined. The red color, in (ii), shows the aver

age shape representation (4)p) for normalized values of w. This shape model is used 

to estimate the registration parameters using the proposed dissimilarity measure. 

The object (P~) and background (pi;) shapes are modelled in the variability region. 

These probability density functions (PDFs) are used to obtain the shape weight

ing coefficients and enhance the global registration results. It should be noted that 

4>pt p~, and pg are reconstructed at each registration iteration. An example of the 

probabilistic shape models in real values is shown in Figure 15. 

In the next section, the initial segmentation using only the intensity based 

segmentation is described. The shape model is to be embedded into the image 

domain. In the registration step, the shape model is embedded to the initially seg

mented region by minimizing the new energy function described in section II.D.3. 

2. Intensity Segmentation 

The level set segmentation framework contains a moving front, denoted by 

C, which is implicitly represented by the zero level of a higher dimensional func

tional, 4>, that is: C(t) = {x : 4>(x, t) = a}. It is assumed that the data to be seg

mented consists of two classes: object and background. Suppose that the intensity 

probability density function (pdf) within each of these two regions, denoted as p~ 

and Pb, can be modeled using a Gaussian probability distribution whose parame

ters are adaptively updated during the course of evolution of the level set function. 

The segmentation process starts by initializing the level set function as the signed 

distance function of a circle centered at a seed point(s) that is placed automatically 

using the Matched filter [64] or with manual annotation. Then, the statistical pa

rameters corresponding to the pdf for the object and background are estimated as 
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follows: 

In I(x)H( -¢f* (x))dO 
/-to= InH(-dJf*(x))dO ' 

In / (x)H( ¢f* (x) )dO 
/-tb = 

In H ( ¢f* (x) ) dO ' 
(30) 

2 In(I(x) - /-to)2H(-¢f*(X))dO 
ao = InH(-¢f*(x))dO ' 

(31) 

(32) 

where /-t, a, and 7r are the mean, standard deviation, and prior probability of the 

corresponding pdf [24]. Here, H(z) is the Heaviside step function as a smoothed 

differentiable version of the unit step function, and ¢ represents the signed dis

tance function of the evolving contour. Object and background regions are repre

sented by H( -¢) and H(¢), respectively. The pixel position, (x, y), is represented 

as (x). The intensity based energy term is modeled to maximize posterior proba

bility of each region as follows: 

Eintensity(¢f*) = -1 p;(I(x))H( -¢f* )dO -1 Pb(I(x))H(¢f* )dO + EL, (33) 
n n 

where L is the front length of the surface area and E is a constant between 0 and 1. 

The change of the level set function with time is calculated by the Euler-Lagrange 

with the gradient descent given as : 

8¢f* =: _ 8Eintensity = J(A-. *)[P1(I) _ 1(/)] + 
8t 8¢f* 'fIf 0 Pb EK" (34) 

where K, is the curvature of the evolving contour (or derivative of L) and J is the 

derivative of the Heaviside step function. By solving this gradient descent formu

lation, the initial segmented region (¢f*) is obtained as shown in Figure 75(c). In 

the next section, how the shape model is used is defined in Eqs. 27, 56, and 57 by 

minimizing the shape energy function (Eshape). 
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FIGURE 16 - An example of the initial labeling. (a) Original CT image, (b) de
tection of the VB region, (c) the initial labeling, f *, and (d) the SOF of the initial 
segmentation (f*) which is used in the registration phase. 
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3. Embedding Shape Model with the Image Domain 

After the object region is initially segmented, the shape model is embed

ded into this domain by minimizing the new energy functional. It should be 

noted that the shape representation used in this work changes the problem from 

a 2D/3D shape to higher dimensional vector representation. A transformation 

matrix, T, that gives pixelwise correspondences between the two shape represen

tations rPsource and rPtarget is required. The source and target shapes and transforma

tion can be defined as follows: 

• Source shape (rPp): Shape which is kept unchanged and is used as a 

reference. This shape can be written as a function rPp : R2 -. R for "Ix E Op-

• Target shape (rPr-): Shape which is geometrically transformed to the source 

shape. This information can be written as a function rPr* : R2 -. R for Vy E Or*. 

• Transformation (T): The function is used to warp the target image to re

form to the geometry of the reference image. The transformation can be written 

as a function T : R2 -. R2 which is applied to a point x in rPp to produce a trans

formed point which is calculated as X = T(x). 

In this study, an affine transformation, which allows translation, rotation, 

and scaling is used. Some authors defined the affine transformation as the rigid 

transformation plus scaling. Affine transformations involving shearing (projec

tion) are called projective transformation. The affine transformation will map lines 

and planes into lines and planes but does not preserve length and angles. The 

transformation is used to register rPp to rPr* with scale, rotation, and translation pa

rameters. For the 2D case, the transformation has scaling, rotation, and translation 

components are represented as follows: 

s = [ Sx 0 l' R = r cos(e) - sin(e) l' Tr = [tx, ty]t. (35) 
o Sy sin (e) cos(e) 
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The transformation will be in the form: 

T(x) = X = SRx + Tr (36) 

where X E ¢f' and x E ¢p. 

The proposed dissimilarity measure is 

(37) 

where p is the normalization constant which controls the relationship between the 

first and second terms which can be described as follows: 

E2 (w I ¢f.,p~:Ib) = -lp~(X)p~(x)H(-¢f.(X))df2 
!l 

- r Pt(x)p~(X)H(¢f' (X))df2. in 

(38) 

(39) 

The first term of the proposed energy formulation is the (sum-of-squared dis

tance) SSO of matched distances. ~istance changes anisotropically in x-y direc

tions. Thats why the geometric mean between Sx and Sy as an approximation is 

proposed, since the SOP is not invariant to inhomogeneous scaling. The first term 

helps to estimate the registration parameters (s" SY' e, tx, ty), iteratively. This ap

proximation may not be enough to perfectly align the shapes. Hence, it is needed 

to add the other shape PDP term. After the registration parameters are estimated 

the shape model, ¢P' and the projected training shapes, { ¢i .... , ¢~ }, are registered 

to the target domain using the affine transformation. Using this process, all prior 

shapes are transformed into the image domain and will be used to enhance global 

registration results. This also maximized the posterior probability with respect to 

shape object/background region. 
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When transforming the shape model into the image domain, a pixel inside 

the shape needs to have bigger object probability. At the same time, this pixel 

needs to have smaller background probability as well. So, the second term maxi

mizes the probability for object pixels to be correctly classified as internal points. 

The same will happen for the background points. This step helps to estimate the 

shape weighting coefficients (w = WI , ... 1 W N) and to refine the result of the first 

component more accurately. To minimize the second term, new probabilistic shape 

models are reconstructed based on estimated w at each iteration. After the opti

mum shape parameter w is found, CPP is updated and another general iteration 

begins. It should be noted that, in the general iterative process, each energy mini

mization step has its own iterative optimization. 

The registration and weighting parameters (SXl Sy) () t X ) ty) WI) ... ) WN) 

are computed to minimize Eshape using the NeIder-Mead simplex optimization 

method which was first proposed by NeIder and Mead [65] and proved using 

theoretical results by Lagarias et al [66]. The Nedler-Mead method aims to mini

mize a scalar-valued nonlinear function of n variables using function values, hence 

it is one of the direct search methods. For more information see [65,66]. 

E. Experiments and Discussion 

To assess the accuracy and robustness of the proposed framework, it is 

tested using clinical data sets as well as synthetic and phantom images. All algo

rithms are implemented on a PC with a 3Ghz AMD Athlon 64 X2 Dual processor, 

with 3GB RAM. First, the experimental results on synthetic images are described. 

Second, validation on European Spine Phantom (ESP) with various noise levels 

will be shown. Effect of initialization will be evaluated. Finally, the VB segmenta

tion results with different initializations are shown. 
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1. Experiments on Synthetic Shapes 

The initialization of the source shape is a very crucial step in the shape reg

istration process. If the initial position, scale, and rotation are far from the desired 

parameters, the resulting shape would not be acceptable. The parameter initial

ization effect on synthetic images are validated. Figure 17 shows results of shape 

based segmentation with different initialization. Shape registration results at each 

iteration with different initialization are shown. The first row shows the results 

when the source shape is initialized with e = 300 rotation degrees. The second 

row shows the results when the source shape is initialized with e = -300 rotation 

degrees and Sx = 1.2, Sy = 1.2 scaling factors. The third row shows the results 

when the source shape is initialized with Sx = 1.2, Sy = 1.2 scaling factors and 

tx = 20, ty = -20 translation factors. It should be noted that these initial parame

ters are chosen arbitrarily. 

Also, each component of Eq. 37 affects the segmentation results. Figures 18-

19 show different results using only the first as well as all components in this equa

tion respectively. As seen in the results, the first component is useful for an approx

imate transformation of the shape model. The second component of the proposed 

dissimilarity measure (Eq. 37) enhances the segmentation. Hence, the proposed 

dissimilarity measure is able to improve the global registration results. 

The proposed method is also validated with occlusions and missing infor

mation of shapes. Shape based segmentation is useful when the target shape has 

some occlusions and missing information. Figures 20 and 22 show results on syn

tectic jet airplane and number four images with some missing information and 

occlusions. Experimental results prove that the desired shape information is cap

tured. In these figures, the segmentation results using only intensity information 

are shown. The results show that occlusions and missing information mislead 

those methods based only on intensity model. Using the shape prior information 

the desired shapes are recovered. For each case the source shape is initialized with 
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transformation factors. 

The proposed method is compared with two closest works described in [14, 

47]. In these methods, the dissimilarity measures have limitations to capture the 

object-of-interest if the source and target shapes have inhomogeneous scale dif

ferences. Limited shape model embedding transformation (homogeneous scale) is 

used. Figures 23-25 show the results when the target shapes have (i) homogeneous, 

and (ii-iv) inhomogeneous scale differences. Because dissimilarity measures of two 

alternative methods discard a possible scale difference in x or y directions, they fail 

when the target shapes are scaled inhomogeneities in x-y directions. For instance, 

in (i) the target shape has scaling factors as Sx = 1, Sy = 1 which is homogeneous 

scaling difference. However, in (ii)-(iv), the scaling factors are Sx = 0.7, Sy = 1.3, 

Sx = 1.2, Sy = 0.7, and Sx = 0.4, Sy = 0.7 which are inhomogeneous scaling dif

ferences. Thats why the geometric mean between Sx and Sy as an approximation 

is proposed, since the SDF is not invariant to inhomogeneous scaling. The results 

prove that the proposed method overcomes the problems existing in two closest 

works. 

2. Experiments on Vertebral Body Images 

In the experiments, the proposed method is tested on clinical CT images 

to segment vertebral bodies (VBs) as well as synthetic images. The vertebra con

sists of the VB and spinal processes. (See Figure 26 for the region of interest). The 

vertebral BMD measurements and fracture analysis are restricted to the vertebral 

bodies. Spinal processes and ribs should not be included in the BMD measure

ments. As seen in the images, the VB segmentation is not an easy task and VBs 

need to be separated from the ribs and spinal processes which have similar gray 

level information. 

a. Validation Using the Phantom In the experiments, the ESP, which is an 

accepted standard for quality control [68] in bone densitometry, is used to validate 
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FIGURE 17 -Shape based segmentation results on another subject at each iteration 
with different initialization. The results at each iteration are shown in (a)-(d). (First 
row) The source shape is initialized with e = 300 rotation degrees. (Second row) 
The source shape is initialized with e = -300 rotation degrees and Sx = 1.2, Sy = 
1.2 scaling factors . (Third row) The source shape is initialized with Sx = 1.2, Sy = 
1.2 scaling factors and tx = 20, ty = -20 translation factors. 
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(a: Initialization) (b: 1st term of Eq. 37) (c: All terms of Eq. 37) 

FIGURE 18-Example 1: The effects of each component of Eq. 37 on different jet 
shapes with different initializations. (a) The initialization of the shape model. (b) 
The results using only the first term. (c-Proposed) The result using all terms. 
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(a: Initialization) (b: 1st term of Eq. 37) (c: All terms of Eq. 37) 

FIGURE 19-Example 2: The effects of each component of Eq. 37 on a jet shape 
with different initializations. (a) The initialization of the shape model. (b) The 
results using only the first term. (c-Proposed) The result using all terms. 
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(a: Intensity) (b: Initialization) (c: 1st term of Eq. 37) (d: All terms of Eq. 37) 

FIGURE 20 - Example 3: Segmentation results of a synthetic jet airplane images 
with different missing information and initializations. (a) The only intensity based 
segmentation results. (b) Different shape model initialization. (c) The results using 
only the first term of Eq. 37. (d) The segmentation of the proposed method (the 
red and yellow colors show the contour of the ground truth shape region, and the 
contour of the automatically segmented region, respectively). 
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(a: Intensity) (b: Initialization) (c: 1st term of Eq. 37) (d: All terms of Eq. 37) 

FIGURE 21- Example 4: Segmentation results of a synthetic jet airplane images 
with different missing information and initializations. (a) The only intensity based 
segmentation results. (b) Different shape model initialization. (c) The results using 
only the first term of Eq. 37. (d) The segmentation of the proposed method (the 
red and yellow colors show the contour of the ground truth shape region, and the 
contour of the automatically segmented region, respectively). 
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(a: Image) (a: Intensity) (b: Initialization) (d: Proposed) 

FIGURE 22 - Example 5: (number" 4//): Segmentation results on a synthetic num
ber //4// with occlusions and different shape initializations. (a) The image with 
occlusions. (b) The segmentation results using only intensity information. (c) Dif
ferent shape model initializations. (d-Proposed) The result of the proposed method 
(the red and yellow colors show the contour of the ground truth shape region, and 
the contour of the automatically segmented region, respectively). 
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(i) 

(ii) 

(iii) 

(iv) 

(a) (b- [67]) (c- [14]) (d-Proposed) 

FIGURE 23-Example comparison 1: Comparison with two closest works de
scribed in [14,67]. Testing shapes with (i) homogeneous and (ii-iv) inhomogeneous 
scaling factors. (i) Sx = 1.0, Sy = 1.0, (ii) Sx = 0.7 Sy = 1.3, (iii) Sx = 1.2, Sy = 0.7, 
(iv) Sx = 0.4, Sy = 0.7. (The red and yellow colors show the contour of the ground 
truth shape region, and the contour of the automatically segmented region, respec
tively). 
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(i) 

(ii) 

(iii) 

(iv) 

(a) (b- [67]) (c- [14]) (d-Proposed) 

FIGURE 24-Example comparison 2: Comparison with two closest works de
scribed in [14,67]. Testing shapes with (i) homogeneous and (ii-iv) inhomogeneous 
scaling factors. (i) Sx = l.O, Sy = 1.0, (ii) Sx = 0.7sy = l.3, (iii) Sx = 1.2, Sy = 0.7, 
(iv) Sx = 0.4, Sy = 0.7 (the red and yellow colors show the contour of the ground 
truth shape region, and the contour of the automatically segmented region, respec
tively) . 
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(i) 

(ii) 

(iii) 

(iv) 

(a) (b- [67]) (c- [14]) (d-Proposed) 

FIGURE 25 - Example comparison 3: Comparison with two closest works de
scribed in [14,67]. Testing shapes with (i) homogeneous and (ii-iv) inhomogeneous 
scaling factors. (i) Sx = 1.0, Sy = 1.0, (ii) Sx = 0.7 Sy = 1.3, (iii) Sx = 1.2, Sy = 0.7, 
(iv) Sx = 0.4, Sy = 0.7 (the red and yellow colors show the contour of the ground 
truth shape region, and the contour of the automatically segmented region, respec
tively). 
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(a) (b) 

FIGURE 26-(a) A vertebra in an axial CT. (b) Regions of the vertebra: The blue 
color shows the VB region which is the region of interest to be segmented. Spinal 
processes and ribs which should not be included in the BMD measurements are 
shown. As seen in the figure, the separation of the ribs and processes are not an 
easy task. This problem is solved by the proposed method. 

the segmentation algorithms. To assess the proposed method under various chal

lenges, a zero mean Gaussian noise with different variance a; values (from 0 to 

0.5) was added to the CT images. 

To compare the proposed method with another alternative, VBs are subse

quently segmented using the active appearance model (AAM) [9] . Segmentation 

accuracy is measured for each method using the ground truths (expert segmenta

tion). To evaluate the results, the percentage segmentation accuracy (A) is calcu

lated as follows: 

A% = 100 * (number of correctly segmented pixels). 
Total number of VB voxels . 

(40) 

The proposed algorithm is tested on 12 ESP slices. The segmentation ac

curacy is shown in Table 1. The segmentation results on the ESP are shown in 

Fig 27. The results show that the proposed method is robust under various noise 

levels and segmentation challenges. In the next section, the algorithm is tested on 

clinical CT images to segment vertebral bodies. 
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(a) (b) (c) (d) 

FIGURE 27 -Segmentation results of an ESP CT slice with (a) no noise, noise vari
ances (b) a~=O. l, (c) a~=0.25, and (d) a~=O.5. The first row shows the original im
ages. The second and third row show the results of the AAM and the proposed 
method, respectively. The yellow color shows the contour of the segmented re
gion. As seen in the figure, the proposed method is robust under various noise 
levels. 

TABLE 1 
AVERAG.E SEGMENTATION ACCURACY OF THE PROPOSED VB 

SEGMENTATION ON 252 CT IMAGES (INCLUDING 12 ESP IMAGES). THE 
SIZE OF EACH IMAGE IS 512X512 (AFTER EACH VB IS DETECTED, THE SIZE 

IS REDUCED TO 120X120). 

a2 = 0 n a~ = 0.1 a~ = 0.25 a~ = 0.5 sec./slice 

Intensity based, % 72.4 69.5 65.2 59.2 5.6 

AAM [9], % 87.2 86.5 83.1 81.4 7.2 

Proposed, % 92.24 91.12 90.67 89.24 11.1 
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b. Experimental Results on VB The clinical data sets were scanned at 

120kV and 2.5mm slice thickness. In this experiment, 240 testing CT slices (to

tals to 15 VBs) which are obtained from 13 different patients and different spine 

bone regions (i.e. lumbar, thoracic, and etc.) are tested. The objective is to segment 

the VB region correctly. 

First, the results on shape registration with different initialization are shown. 

Figures 28-30 show the segmentation results of the proposed framework with dif

ferent scaling, translation, and rotation initializations. Using the shape model, the 

spinal processes are eliminated automatically without any computational cost and 

execution time. This contribution is very important for the BMD measurements 

which are restricted to the VBs. 

Figure 31 shows the segmentation results of the proposed and AAM meth

ods with different shape model initialization. This test proves that the proposed 

method is robust under different shape initialization. AAM results show that when 

the shape model is initialized close enough to the object, the results are acceptable. 

However, when the shape model is initialized slightly far away from the object, 

the AAM method fails to capture the object of interest. Also, 3D results of segmen

tation results are shown in Figure 32. 

F. Conclusion 

A new shape based segmentation method is proposed by minimizing new 

dissimilarity measures using the dynamic and probabilistic shape model. Two en

ergy terms are proposed to be minimized: i) intensity and ii) shape terms. The con

tribution is mainly on the second energy term. The algorithm is tested on synthetic 

images, the ESP with various noise levels, and clinical CT images. The method 

is validated with different shape initialization parameters, target shapes/images 

with occlusions or missing information, and noise. The effects of each term in the 

dissimilarity measure are analyzed. Experiments on the data sets show that the 
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(a) (b) (c) 

FIGURE 28-Segmentation results of clinical CT images. (a) Only intensity based 
segmentation results. (b) Different initialization of the shape model. (c) The pro
posed segmentation results (the red color shows the contour of the ground truth 
shape region, the yellow color shows the contour of the automatically segmented 
region). 
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(a) (b) (c) 

FIGURE 29-Segmentation results of clinical CT images. (a) Only intensity based 
segmentation results. (b) Different initialization of the shape model. (c) The pro
posed segmentation results (the red color shows the contour of the ground truth 
shape region, the yellow color shows the contour of the automatically segmented 
region). 
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FIGURE 30-Segmentation results of clinical CT images. (a) Only intensity based 
segmentation results. (b) Different initialization of the shape model. (c) The pro
posed segmentation results (the red color shows the contour of the ground truth 
shape region, the yellow color shows the contour of the automatically segmented 
region). 
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(a-Initialization) (b- [9]) (c-Proposed) 

FIGURE 31-Segmentation results on the clinical VB images with various shape 
initializations. In this figure, i) shows the shape initialization, ii) the results of 
AAM [9] when the shape model is initialized at the same location as shown in 
(i), and iii) shows the proposed segmentation results. (The red and yellow colors 
show the contour of the ground truth of objects and the contour of the segmented 
region, respectively.) 

58 



(a) (b) (c) 

FIGURE 32-3D result of the segmentation results. (a) 3D CT data before the seg
mentation. (b)-(c) The segmentation results on different views. As seen in the 
figure, the proposed method is able to extract the spinal processes, ribs, and other 
surrounding soft tissues. It should be noted that adjacent VBs are assumed to be 
separated in advance. 
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proposed segmentation approach is very accurate and robust under different im

age conditions. Also, the proposed framework is able to improve the global shape 

registration results. Using the shape prior, the proposed method is able to extract 

the spinal processes. 
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CHAPTER III 

STATISTICAL SHAPE BASED SEGMENTATION OF VERTEBRAL BODIES 

This chapter describes the proposed method to solve existing drawbacks on 

spinal bone segmentation publications. 

A. Spinal Bone Anatomy and Osteoporosis 

1. Anatomy of the Spine Column 

There are five sections of the spinal column including the cervical (7 VBs), 

thoracic (12 VBs), lumbar (5 VBs), sacral (5 VBs), and coccyx (3-5 fused VBs) as 

shown in Figure 33. The VB consists of cortical and trabecular regions. Cortical 

and trabecular bones form 70-80% and 20-30% of bone mass, respectively. Approx

imately 25% of the trabecular bone volume is bone tissue and 75% is bone marrow 

and fat. This proportion changes between different parts of the skeleton. Bone 

marrow has stroma, myeloid tissue, fat cells, blood vessels, sinusoids and some 

lymphatic tissue. The ratio between bone tissue and bone marrow also decreases 

with osteoporosis [69]. 

2. What is osteoporosis? 

Osteoporosis is a bone disease characterized by a reduction in bone mass, 

resulting in an increased risk of fractures [69]. Figures 34 and 35 show some ex

ample views of healthy, osteopenia, and osteoporosis bones. With osteoporosis, a 

subject's bone tissue has less than the normal proportion amount of calcium. The 
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FIGURE 33-The sagittal view of the spine column. There are five regions of the 
spine column: cervical, thoracic, lumbar, sacrum, and coccyx. 
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FIGURE 34 - Differences of the healthy and osteoporosis bone. (This image is 
adopted from [72] .) 

additional space is filled with fat. The ratio between the bone tissue and bone mar

row is decreasing [69]. Low bone mass and osteoporosis occur more frequently in 

women. The bone begins loosing its weight and calcium soon after menopause. 

Without diagnosis and prevention, a woman can lose 20%-30% of her bone mass 

during the first 10 years of menopause [70]. 

Based on the Surgeon General report [71], there were approximately 10 mil

lion people over age 50 with osteoporosis and an additional 34 million with low 

bone mass or osteopenia in the United States in 2002. Unfortunately, the total num

ber is expected to be increased to 61.4 million in 2020 as shown in Fig 36. These 

changes could cause the number of vertebrae, hip, and wrest fractures to increase 

rapidly by 2040 [71]. Example view of fractures is shown in Fig 37. It should be 

noted that 50% from all osteoporotic fractures are vertebral [37] . 

Some of the reasons of low bone mass and osteoporosis are poor nutrition, 

lack of exercise, decreased sex hormones, calcium and vitamin D deficiency, loss 

of ability to reproduce bone cell with age, other diseases and disorders. 
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(a) (b) (c) 

FIGURE 35-Three different bone tissues. (a) Healthy, (b) osteopenia, and (c) os
teoporosis bones. (These images are adopted from [73].) 
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FIGURE 36 - Based on the Surgeon general report (a) shows the current and esti
mated the number of people having low bone mass in 2002, 2010, and 2020, and (b) 
shows several consequences of having low bone mass. (These images are adopted 
from [74]). 
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FIGURE 37 -(a) Low bone mass (osteopenia) and osteoporosis cause severe frac
tures on vertebrae, hip, and wrist. (b) With increasing age, the incident of vertebral 
fractures are higher than the incidents of hip and wrist. (These images are adopted 
from [74] and [75], respectively). 

3. How to Diagnose Osteoporosis 

Doctors need the bone mineral density (BMD) measurements of vertebral 

bones in order to diagnose and treat osteoporosis. The BMD measurements re

main the 'gold standard' test for an osteoporosis diagnosis. The BMD measure

ments are strong predictors of fracture risk. In the Surgeon General report, it is 

strongly stated that the relationship between the BMD score and future fracture 

is stronger than the relationship between cholesterol and heart attack [71] . The 

BMD measurements are also used to assess bone changes in treated and untreated 

individuals for monitoring drug therapies. 

B. Introduction 

Osteoporosis is a bone disease characterized by a reduction in bone mass, 

resulting in an increased risk of fractures. Doctors need the BMD measurements 

of vertebral bodies (VBs) in order to diagnose and treat osteoporosis. The verte-
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(i) 

(ii) 

FIGURE 38 - More examples for the VB region definition. i) The original CT im
ages show different vertebrae. ii) The blue contour shows vertebral body which 
is the region of interest. VBs are required to be separated from the ribs and spinal 
processes which have similar gray level information. 

bra of the spine bone consists of the vertebral body, spinous process, transverse 

processes, articular processes, lamina, pedicles, and ribs. The VB region of in

terest examples are shown in Figure 38. Spinous process, transverse processes, 

articular processes, lamina, pedicles, and ribs should not be included in the BMD 

measurements since the BMD measurements are restricted to the VBs. As seen in 

the images, the VB segmentation is not an easy task since the ribs and processes 

have similar gray level information. The general objective is to segment the VBs 

correctly and increase the accuracy of the BMD measurements and fracture anal-

ysis. In this study volumetric computed tomography (CT) images of the VBs are 

used in the experiments. 

Segmentation is an important method for feature extraction, image mea

surements, image registration, and image display. Segmentation has been used in 

many applications such as surgery simulations, measuring tumor volume, auto-

mated classification of blood cells, studying brain development. There have been 

many important segmentation works which should be reviewed. However, the re

vision of the different segmentation methods will not be reviewed since the aim of 

this work is to focus on the VB segmentation. In this section, the most important 

published works on spine bone segmentation are reviewed. The advantages and 

disadvantages of the existing methods are discussed. 
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There are limited publications on spine bone segmentation and analysis. 

The previously reported methods can be categorized as 

• fully automatic, 

• semi-automatic (with manual interactions), 

Semi-automatic algorithms may have manual interactions. With manual 

interactions, user(s) have been able to detect, identify, and sometimes segment 

the adjacent VBs and spinal cord. There are few fully automatic methods in the 

scientific literature. These are theoretically correct and useful. However, they take 

high computational cost or execution time. 

For instance, Kang et al. [76] proposed a 3D segmentation method for skele

tal structures from CT data. Their method is a multi-step method that starts with 

a three dimensional region growing step using local adaptive thresholds, followed 

by a closing of boundary discontinuities and then an anatomically-oriented bound

ary adjustment. Applications of this method to various anatomical bony structures 

were presented and the segmentation accuracy was determined using the Euro

pean Spine Phantom (ESP) [68]. 

Mastmeyer et al. [51] presented a hierarchical segmentation approach only 

for the lumbar spine in order to measure the bone mineral density. The detec

tion vertebrae is carried out manually. The adjacent VBs are separated using a 

histogram information. Then, a two step segmentation using a deformable mesh 

followed by adaptive volume growing operations are employed in the segmenta

tion. After the segmentation of the vertebra, the spinal processes are eliminated 

using morphological operations. The authors conducted a performance analysis 

using two phantoms: a digital phantom based on an expert manual segmenta

tion and the ESP. The authors reported that complete analysis of three vertebrae 

took approximately 10 minutes in 2006 on a high standard computer system. This 

timing is far from the real time required for clinical applications but it is a huge 

improvement compared to the timing of 1 - 2h reported in [54]. 

Klinder et al. [36] proposed an automatic solution for detecting, identifying, 
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and segmenting vertebrae in CT images. They used a prior knowledge through 

the use of various kinds of models covering shape, gradient, and appearance in

formation. Their method was designed to take an arbitrary CT image such as 

head-neck, thorax, lumbar, or whole spine as input. The major contribution of 

this work is the automated vertebrae identification. Their vertebrae identification 

rate was approximately 70% on 64 CT data sets. The shapes of neighboring verte

brae are generally very similar. Therefore an automatic identification is generally 

difficult to obtain. In the identification step, appearance models are rigidly regis

tered to the detected candidates. This step is carried out for all testing vertebrae 

and the similarity measure is evaluated. The average similarity value is calculated 

to avoid mis-detection of vertebrae. Finally, triangulated shape models of the indi

vidual vertebra are adapted. Although, their method is comprehensive and yields 

an overall final mean error of 1.12 mm, the framework may not be used in clini

cal works as the authors stated. The authors reported that the execution time for 

12 vertebrae identification was 2192 seconds (36.5 min) on average. Also, in this 

study the VB and processes were not separated. As mentioned above, the spinal 

processes should not be included in the BMD measurement. 

Kim et al. [77] proposed an automatic vertebra segmentation in CT data. 3D 

fences that separate adjacent vertebrae are used. The method extracts the spinal 

cord and discs automatically. 3D fences separating adjacent vertebrae are gener

ated at each intervertebral disc by a deformable model using 3D valley informa

tion. The final segmentation is obtained using a seed region growing method. In 

this work, the average execution time to segment a vertebra was not reported. 

Yao et al. [52] proposed another segmentation method using the watershed 

algorithm. In this method they initially locate and extract the spine region using a 

simple threshold. Then the watershed algorithm is used to extract the spinal cord. 

Multiple spinal cord (canal) candidates may exist in one slice. They proposed a 

directed graph search to find the spinal cord. Finally, a four-part vertebra model is 

applied to segment the vertebral body. The model consists of the vertebral body, 
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spinous process, and left and right transverse process. Also, in this study there 

was no work to separate the VB and spinal processes. Other techniques have been 

developed to segment bone structures and can be found for instance in [78,79] and 

the references therein. 

AsIan et al. proposed various methods to segment VBs in [27,34,80,81] 

which can be considered as progressive VB segmentation studies. In [27], the shape 

model was not used and it was assumed that the detection rate of VBs was very ac

curate for cropping the pedicles automatically. In [80], a probabilistic shape model 

was introduced in addition to the intensity and spatial interaction information to 

enhance the results. However, the shape model was assumed to be registered to 

the object of interest manually. In [34,81], the probabilistic shape model was auto

matically embedded into the image domain and they appeared to be more realistic 

experiments. In [34], the shape model was registered into the image domain using 

the gradient descent approach which requires very high execution time, and hence 

is not suitable in clinical cases. In this dissertation, the automatic shape registra

tion method described in [81] which is faster than the gradient descent methods, 

is used. However, the level sets method in [81] needs manual initialization and 

was validated on a limited number of data sets. Other techniques have been de

veloped to segment bone structures and can be found for instance in [78,79] and 

the references therein. 

There are difficult segmentation challenges in spine CT images as shown 

in Figures 39-40. These include inner boundaries, osteophytes, bone degenerative 

disease, double boundary, and weak edges of spine bones. Also, exposure levels 

(X-ray tube amperage and peak kilovoltage), slice thickness, and volume of interest 

(VOl) affect the resolution of CT images. Higher exposure levels, bigger VOl, and 

smaller slice thickness produce a higher signal-to-noise ratio (SNR) as shown in 

Figure 41 (a). However, optimum parameters of image modalities may not be 

used in order to limit the radiation dose which is applied to a patient as shown 

in Figure 41 (b). As a result, segmentation methods should be robust to various 
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image conditions. To overcome these problems, the volume gray level information, 

spatial relationships of voxels, and shape prior information are used in this work. 

In some CT images the separation of VBs is very difficult and algorithms 

may not be robust on images with high slice thickness and/ or noise levels and/ or 

bone degeneration diseases. The objective of this project is to obtain an algorithm 

which user(s) may select manual points in the VB separation stage only if the au

tomated process fails. Otherwise, the process is entirely automated. In this study, 

the dependency on the automatic VB identification step in [36] which requires the 

registration of model shapes which were constructed for each spinal bone region 

(i.e. lumbar, thoracic, and etc.), and therefore the identification step costs huge 

execution time is not required. 

In this dissertation, the objective is to eliminate the aforementioned prob

lems as follows: i) The shape model is embedded into the image domain automat

ically (without any user interaction) and is faster than gradient descent methods, 

ii) the proposed method is validated using a higher number of data sets, iii) the 

proposed shape model is a universal shape information which works for any area 

of the spinal region such as thoracic, lumbar and etc. Hence, the proposed method 

does not need the VB identification process which requires very high execution 

time as in [36]. iv) the large execution time for the vertebra segmentation is re

duced when compared with existing methods. 

To overcome these problems, the volume gray level information, spatial re

lationships of voxels, and shape prior information are used in this dissertation. The 

objective is to eliminate the above problems as follows: i) The shape model is em

bedded into the image domain automatically (without any user interaction) and 

the registration is faster than gradient descent methods, ii) the proposed method 

is validated using a higher number of data sets respect to [34,81], iii) the proposed 

shape model is a universal shape information which works for any area of the 

spinal region such as thoracic, lumbar and etc. Hence, the proposed method, in 

this dissertation, does not need the VB identification process which requires very 
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(a) (b) (c) (d) 

FIGURE 39 - Typical challenges for vertebrae segmentation. (a) Inner boundaries. 
(b) Osteophytes. (c) Bone degenerative disease. (d) Double boundary. 

FIGURE 40-More challenges on sagittal and coronal axes such as weak bone 
edges, osteophytes, and low resolution (from the left column to the right column, 
respectively) . 

high execution time. iv) Direct comparison with other methods would be diffi

cult since previous works and this work have common and different objectives 

as a brief and relative comparison will be given on the experimental section. It 

should be noted that the computer systems reported on related publications are 

older than computer system specification in this work. However, the proposed 

framework completes the VB segmentation in very low execution time when com

pared with reports on the existing methods. vi) In some CT images the separation 

of VBs is very difficult and algorithms may not be robust on images with high slice 

thickness and/ or noise levels and/ or bone degeneration diseases. The objective of 

this work is to obtain an algorithm which user(s) may select manual points only in 

the VB separation stage. 
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(a) 

(b) 

FIGURE 41-Two different CT data sets. (a) The resolution is good, hence separa
tion and segmentation of a VB is straightforward. (b) The resolution is low which 
makes the separation and segmentation of a VB difficult. 

C. Motivation 

The objective of this chapter is to propose a framework which has the fol

lowing features: 

• Original: To solve the VB segmentation problem with a new shape based 

segmentation method. 

• Robust: The proposed method works under various segmentation challenges. 

• Fast: The proposed algorithm can be used in clinical applications where 

quick results are necessary. 

D. Contribution of this Study 

The contributions can be listed as follows: 

• The proposed framework and the new probabilistic shape model extract the 

spinal processes and ribs which should not be included in the bone mineral 

density measurements. In other works, such as [51], processes were elimi

nated with an additional high execution time. 
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• Most of other works are restricted to the specific regions of spine bone col

umn as such lumbar, thoracic, and others. In this study, there is no region 

restriction, and the proposed framework is processed on different regions. 

• If the results of the proposed method is compared with most important pub

lished bone segmentation methods, the large execution process time is re

duced (such as in [36,51,54]). 

• In CT spinal images, different partial regions are scanned. For instance, some 

CT data have only 4-5 thorocic VBs, some of them have 2-3 lumbar VBs, and 

etc. A framework which is dependent of the identification of VBs in a dataset 

can cause high execution time. This study is not dependent on any identifi

cation step thanks to the proposed shape model and its embedding step. 

E. Overview of Intensity, Spatial Interaction, and Shape Models 

In this dissertation, three pieces of information (intensity, spatial interaction, 

and shape) are modelled to obtain the optimum segmentation. It should be noted 

that the data is assumed to have two classes: background and object regions which 

are represented as "b" or "0" and" 0" or "1", respectively. The intensity informa

tion is modelled using the Gaussian distribution. The parameters of distributions 

(8 = !La, 0"0' 7ro , !Lb, O"b, trb for the mean, standard deviation, and prior probability, re

spectively) are estimated using the expectation-maximization (EM) method in [21] 

and [20]. Spatial interaction that describes the relation between pixels/voxels is 

modeled using a Markov-Gibbs random field (MGRF). To do this, the image is 

realized as a stochactic process on a random field. The MGRF models capture 

the spatial textural information in an image by assuming that the pixel intensity 

depends on the intensities of the neighboring pixels. This work deals with the ho

mogeneous isotropic Potts model proposed by Geman et al. [3] which is similar to 

Derin-Elliot model in [4]. The shape variability is described using new probabilis-
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tic functions to be used as a prior information. The shape model is obtained using 

histogram of occurrences of training shape pixels or voxels. The main objective is 

to capture the shape variation of the object of interest. Using the intensity, spatial 

interaction, and shape modelling, each pixel in the image will have probabilities 

(for each information) to be an object and a background class. 

In this section, the problem formulation is explained. Let I and d repre

sent the input volume and the probabilistic shape model, respectively. To use a 

shape prior in the segmentation process, I and d are required to be registered. In 

the registration process, I and d will be the source and target information, respec

tively. In this method, the objective is to find the desired labeling, f, with required 

transformation matrix, T to maximize p(f I T, I, d). 

The desired labeling, required transformation, input image, and probabilis

tic shape model, can be given by a conditional distribution using Bayes' rule as 

p(f I T, I, d) ex p(I I f)p(f)p(d I f, T) (41) 

where p(I I f) is a conditional distribution of the input image given the desired 

labeling, p(f) is an unconditional probability distribution of the desired labeling, 

and p(d I f, T) is a conditional distribution of the shape model given the desired 

labeling and estimated transformation. The Bayesian MAP estimate of the map f 

can be written as 

f* = arg max L(I, d, L T). 
f 

The objective is to maximize the log-likelihood function 

L(I, d, f, T) = logp(I I f) + logp(f) + logp(d I f, T). 

(42) 

(43) 

In this study, the Iterated conditional modes (ICM) method, which was originally 

proposed by Besag [53], is extended into a new form by integrating the shape 

model to maximize Eq. 43. 

a. Intensity Model To obtain a good intensity model, the conditional 

probability distribution, p(I I f), of the original image is estimated. The intensity 
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information is modelled using the Gaussian distribution. The Gaussian function 

can be written as 

p(1 I f = i) = 1 exp( _ (I - Pi? ) 
J27ra; 2a; (44) 

The parameters of distributions (Pi: ai) are estimated using the expectation-maximization 

(EM) method in [21] and [20] where i = "0" and i = "1" represent 'background' 

and' object' classes, respectively. 

b. Spatial Interaction Model Spatial interaction helps correcting errors 

and recovering missing information in the image labeling problem [26]. Stochastic 

process on a random field is used to realize the image [82]. In this study, the un

conditional probability distribution of the desired map (labeling), p(f), is obtained. 

To estimate p(f), the Gibbs distribution is used. The Gibbs distribution takes the 

following form 
1 U(f) 

p(f) = -exp(--) 
Z T 

(45) 

where 

'"' U(f) Z = ~exp(-T) (46) 
JEF 

is a normalizing constant called the partition function, T is a control parameter 

called the temperature which is assumed to be 1 unless otherwise stated, and U(f) 

is the Gibss energy function. The energy is a sum of clique functions Ve (f) over all 

possible cliques C as 

U(f) = L Ve(f). (47) 
eEC 

A clique is a set of sites in which all pairs of sites are neighbors. The clique poten

tials can be defined by 

{

Ie 
Vc(J) = 

-Ie otherwise, 

if all sites on C have the same label 
(48) 

where Ie is the potential for type-c cliques. In this proposed method, the Potts 

model [3] which is similar to Derin-Elliot model [4] is used. This model uses the 

potentials of the Potts model describing the spatial pairwise interaction between 
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two neighboring pixels. In this method, "Ie is estimated using the method proposed 

by Ali et al. in [83]. For detailed information, see Appendix 1. 

c. Shape Model Human anatomical structures such as spine bones, kid-

neys, livers, hearts, and eyes may have similar shapes. These shapes usually do 

not differ greatly from one individual to another. There are many works which an

alyze the shape variability. Cootes et al. [8] proposed effective approach using 

principle component analysis (PCA). Abdelmumin [5] proposed another shape 

based segmentation method using the Level sets algorithm. Tsai et al. [14] pro

posed a shape model which is obtained using a signed distance function of the 

training data. Eigenmodes of implicit shape representations are used to model the 

shape variability. Their method does not require point correspondences. Their 

shape model is obtained using a coefficient of each training shape. Cremers [15] 

et al. proposed a simultaneous kernel shape based segmentation algorithm with 

a dissimilarity measure and statistical shape priors. This method is validated us

ing various image sets in which objects are tracked successfully. Most published 

works are theoretically valuable. However, parameter optimization of the shape 

priors may take high execution time if the training set is large. Also, the optimiza

tion methods used in shape registration, such as the gradient descent, takes high 

execution time. In the proposed work, the vertebral body shape variability is ana

lyzed using a probabilistic model. More information about the construction of the 

shape model and how it is used are discussed in Section III.F. 

F. Proposed Framework 

The proposed framework steps are described in Algorithm HLF as follows: 

The overall segmentation framework is shown in Figure 42. In the next 

sections, data information and each steps are described in detail. 
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Algorithm 1 Proposed framework 
A (Training)): 80 training VB shapes are used to obtain the new probabilistic shape 

model. In this step, manually segmented VB shape which are obtained from 20 dif

ferent patients and different regions (such as cervical, thoracic, and lumbar spine 

bone sections) are used. Algorithm III.F.2.a (below) shows the steps of the training 

stage. 

B) Spinal cord extraction (Pre-processing): In this process, the Matched filter is 

used to detect the spinal cord. This step roughly extracts the ribs and spinal pro

cesses. Also, the data size is reduced to 120x120xZ from 512x512xZ where Z is the 

number of slices. This step reduces the execution time of the segmentation process. 

The output of this phase is used in the following steps. 

C) Separation ofVBs (Pre-processing): In this step, two choices are given for the 

user(s)-i )manual selection of disk to obtain each VB in a data sets, ii) fully auto

matic VB separation using the histogram based information. It should be noted all 

steps of the framework are fully automated except this step. 

D) Segmentation: In this work, three models are used to segment VBs as briefly 

described in Section III.E: The intensity, spatial interaction, and shape models.The 

following 'While' loop is processed for the segmentation. 

While j < Nslices do (Nslices: the number of slices. ) 

1) The initial segmentation using the ICM method which integrates the inten

sity and spatial interaction information. Using the EM algorithm, p(Ilf = 0) and 

p(Ilf = 1) are estimated; and p(f = 0) and p(f = 1) are estimated using the MGRF 

modeling. Then ICM method is used to select the optimum labeling which maxi

mizes logp(Ilf) + logp(f). 

2) The shape model is registered to the initially segmented region. 

3) Final segmentation is carried out using the ICM which maximizes log p(Ilf) + 

logp(f) + logp(d I f, T). Algorithm III.F.5.c describes the optimization of three 

models. 

End While 
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FIGURE 42 - The general segmentation framework. (Prior to this framework, it is 
required to obtain the shape model). In the first phase, the spinal cord is extracted, 
processes, and ribs roughly using the Matched filter. Also, the data size is reduced 
to minimize the execution time. In the second phase, the VBs are separated with 
two choices: i) manual, ii) automatic. In the third phase, a new shape based ICM 
method is proposed to segment the VBs. 
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1. CT Data Information 

The training and testing images were acquired from GE LightSpeed VCT, 

Toshiba Aquilion, and Imatron C-150 CT scanners with an in-plane resolution 

range of 0.63 - 0.98 mm and a slice thickness of 0.63 - 3.00 mm. For the train

ing stage, 80 VB cross-sections (34 thoracic, 34 lumbar, 12 cervical) are used. These 

VBs are selected form 10 healthy and 10 with low bone mass patients. The more 

information about the testing CT data sets will be given in the experimental sec-

tion. 

2. Shape Model Construction (Training) 

a. The Registration DETraining Shapes In this step, the shape is described 

using the same representation as described in Chapter II. The training set con

sists of VB shapes, {C1 , ... , CN }, as shown in Figure 43; with the signed distance 

functions {4>1,"" 4>N}' Any pixel in this shape representation is shown as x. The 

registration of all training shapes is done using the similar approach described 

in [15] and used in [81] as follows: 

i) First, the average of the position factor (/1,) and scale factor (o") are obtained using 

the following equations 

L;' 1 Ln xH( -¢,(x)) 
L~l Ln H(-¢,(x)) 

where H ( .) is the Heaviside step function. 

L;:l Ln yH(-¢,(x)) ] T 

L'=l Ln H(-¢,(x)) 
(49) 

(50) 

ii) A global transformation is used to register training shapes with scale 

and translation parameters. The transformation has scaling, S, and translation 

components Tr. Obtain the transformation parameters (tx, ty, Sx, Sy) for each 
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training shape, ¢, as 

Tr = [tx ty ] T 

s= [~ ~, 1 

[ 
La xH( -<P(x)) 

J1x - La H( -¢(x)) 

[ 
a~ J LQ(X-Ilx )2H( -q,(x» 

La H(-q,(x» 

0 

(51) 

0 

r a~ 

LrJ(Y_Il~)2H( -q,(x» 
La H( q,(x)) 

(52) 

iii) The transformation will be in the form T(x) = X = Sx + Tr, where X is 

the transformed point of x. 

Note: In 20 case, the rotation parameter for the VB shape registration is not neces

sary since VB shape does not show important variation in different rotation. 

Algorithm 2 Training stage (Obtaining Probabilistic Shape Model) 
1. Segment training images manually. 

2. Align segmented images. 

3. Generate shape variation. Intersection of training shape is accepted as an ob

ject volume. The rest of the volume is accepted as variability volume except the 

background region. 

4. Obtain the probabilities of the object and background in the variability volume 

of the shape model. This step will be explained more in Section III.F.2.b. 

b. Shape Modeling A new probabilistic shape model is formed using the 

training shapes as shown in Figure 43(a). All registered training shapes are com

bined as shown in Figure 43(b). The shape prior represented as R = 0 U B U V is 

generated. The proposed shape model functions are defined as follows: 

N 

0= nH(-¢i), (53) 
;=1 

N 

B = nH(¢;). (54) 
1=1 

N N 

V = U H(-¢;) - n H(-¢i)' (55) 
;=1 ;=1 
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(a) (b) 

. 
FIGURE 43-(a)The training VB images. In this experiment, 80 VB shapes which 
are obtained from 20 different patients and different regions (such as cervical, tho-
racic, and lumbar spine bone sections) are proposed. (b) The average shape of all 
training VB images. The darker color represents the higher object probability. 

where (M represents any training shape. Figure 44 shows the detailed description 

of the shape models. The green color shows the background region (B) which does 

not have any intersection with any training shape. The blue color shows the object 

region (0) which is the intersection of all training shapes. In (a), the gray color rep

resents the variability region (V) that can be described as the union of all projected 

training shapes subtracted by the intersection of those shapes. In this variability 

region, the object and background probabilistic shapes are modeled. The red color, 

in (b), shows the outer contour of the variability region, and it is represented as (J). 

In the registration step, the shape model is embedded to the initially segmented re

gion. J is used to estimate the registration parameters. The object (P( d I f = 1)) 

and background (P( d I f = 0)) probabilistic models are defined in the variability 

region. The probabilistic shape models are defined as follows: 

• If x E 0, then p(dx I Ix = 1) = 1 and p(dx I Ix = 0) = 0 
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(a) (b) 

(c) (d) 

FIGURE 44 - The shape model. The green color shows the background region 
which does not have any intersection with any training shape. The blue color 
shows the object region which is the intersection of all training shapes. (a) The 
gray color represents the variability region that can be described as the union of 
all projected training shapes subtracted by the intersection of those shapes. In 
this variability region, the object and background probabilistic shapes are defined. 
(b) The red color shows the outer contour of the variability region. (c) The ob
ject (P(d I f = 1)) and (d) background (P(d I f = 0)) shapes are modelled in the 
variability region in which the pixel values are defined in (0 : 1). 
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FIGURE 45 - The shape model is shown in 3D (when propagating 2D shape model 
into 3~). The outer volume represents the variability region, the inner volume rep
resents the object region. 

• if x E B, then p(dx I Ix = 1) = 0 and p(dx I Ix = 0) = 1 

• if x E V, then 

(56) 

(57) 

3D representation of the shape model is shown in Figure 45. It should be noted 

that Eqs. 56 and 57 represents the probability value at each pixel, x. 

3. Spine Cord Extraction 

As a pre-processing step, the spinal cord is extracted using the Matched 

filter. This process helps to remove the spinal processes roughly; hence the shape 
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model will be registered to the image domain easily. In the first step, the Matched 

filter (MF) [64,84,85] is employed to detect the VB automatically. This procedure 

eliminates the user interaction and improves the segmentation accuracy. Let f (x, y) 

and g(x, y) be template and test images, respectively. To compare the two images 

for various possible shifts TI and Ty, one can compute the cross-correlation c( TI , Ty) 

as 

C(TI' Ty) = J J g(x, y)f(x - TI , Y - Ty)dxdy, (58) 

where the limits of integration are dependent on g(x, y). The Eq. 58 can also be 

written as 

J J G(JI' fy)F*(J,., fy) exp (j27r (JXTI + fyTy))dfIdfy 

FT- 1 (G(JI' fy)F* (Jx, fy)), (59) 

where G(Jx, fy) and F(JT' fy) are the 2-D FTs of g(x, y) and f(x, y), respectively 

with fx and fy denoting the spatial frequencies. The test image g(x, y) is filtered 

by H(Jx, fy) = F*(Jx, fy) to produce the output C(Tx, Ty). Hence, H(Jx, fy) is the 

correlation filter which is the complex conjugate of the 2-D FT of the reference 

image f(:r, y). Figure 46(a) shows the reference image used in the Matched filter. 

Some examples of the VB detection are shown in Figures 46(b-d). The Matched 

filter is tested using 4000 clinical CT images. The detection accuracy for the VB 

region is 97.2%. The detection accuracy is increased to around 100% by smoothing 

all detected points of a dataset in the z-axis. 

To extract the spinal processes and ribs roughly, some simple steps are fol

lowed as shown in Figure 47. These steps are required to: i) extract the spinal pro

cesses and ribs roughly, ii) crop the ROI minimize the execution time. Figures 48-50 

show different examples of this stage in the sagittal view. 
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(a) 

(b) (c) (d) 

FIGURE 46-(a) The template used for the Matched filter, (b-d) a few images of 
automatic VB detection. The green line shows the detection of VB region. 

4. Vertebrae Separation 

This process is required in the proposed framework hence the shape model 

is registered to each VB in an easy way. In this process, two methods are suggested 

to separate each vertebrae. The first suggestion is the manual separation, and the 

second one is the previously proposed automatic framework [86] as shown in Fig

ure 51. The advantage of automatic separation is to eliminate user interaction(s) . 

However, there are two disadvantages: i) increased error, ii) current methods in 

the literature have higher execution time respect to the manual methods. 

To give the user his own choice, two methods are described. 

a. Manual After the spinal cord, processes, and ribs are extracted roughly, 

we need to separate adjacent VBs in order to embed the shape model to the im

age domain. In the manual separation, simple manual annotations are needed to 

specify the cut-points of VBs. For instance, if there are three VBs in the dataset, 

six points are annotated on the image. In the experiments, the average execution 

time to separate 12 adjacent VBs is 18 seconds. This timing may still not be op

timum one, however, with manual annotations there should not be any possible 
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FIGURE 47 -In the first step, the MF is run on each slice of the 3D data. The output 
of this process is the detected points of each CT slices as shown with the blue dot. 
After the center points are detected, a mask is used to refine the data to specify the 
region of interest (ROI). In the mask, it is accepted that a = 50, b = 60, and c = 20. 
Any user can change these values. But the user should be careful to extract the 
spinal processes and ribs roughly. Then, another mask can be used to crop the ROI 
using the average center points (the red color) of all slices of 3D data. d = 60 is 
accepted to capture the VB region. 
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(i) 

(ii) 

(iii) 

(iv) 

FIGURE 48- The extraction of the spinal cord on a data set (Example-I). (i) Sagittal 
view of each data. (ii) The detected VB region. (iii) The refined data to extract the 
spinal processes and ribs. (iv) The cropped data to reduce the size of the image. 
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(i) 

(ii) 

(iii) 

(iv) 

FIGURE 49 - The extraction of the spinal cord on a data set (Example-3). (i) Sagittal 
view of each data. (ii) The detected VB region. (iii) The refined data to extract the 
spinal processes and ribs. (iv) The cropped data to reduce the size of the image. 
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(i) 

(ii) 

(iii) 

(iv) 

FIGURE 50 - The extraction of the spinal cord on a data set (Example-5). (i) Sagittal 
view of each data. (ii) The detected VB region. (iii) The refined data to extract the 
spinal processes and ribs. (iv) The cropped data to reduce the size of the image. 
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(a) (b) (c) 

FIGURE 51-The separation of each VB in a data set. Two choices are given to the 
user: The Manual and automatic options. Each option has its own advantages and 
disadvantages which are described the section. (a) An image which has 3 adjacent 
VBs. (b) The manual separation process with 6 points selected by a user. (c) The 
automatic separation method which was proposed by AsIan et al. in [86]. 

data loss. In the next section, the automated separation process, which AsIan et al. 

previously published in [86], is described. It should be noted that segmentation 

accuracy is measured when the VBs are separated manually. 

b. Automatic In this section, a 3D framework to separate vertebral bones 

in CT images without any user intervention [86] is used. To separate the VBs, the 

previously developed approach based on four points automatically placed on cor

tical shell is used. An example of separation and segmentation of a VB is shown 

in Figure 51(c). After the spinal cord is extracted; the approximate centerline of VB 

column is obtained. These seeds are placed using the relatively higher gray level 

intensity values of the cortex region. 

Next, the histogram for a neighborhood around each seed is obtained. The 

histogram represents the number of voxels whose intensity values are above 200 

Hounsfield Unit (HU). This value is obtained empirically. Vertical boundaries of 

a VB show higher gray level intensity than inner region of the VB and disks. fig

ure 51(c) shows histograms (the red line), and thresholds (the black line). To search 

vertical limits of the VB, the following adaptive threshold equation is used as fol

lows: 

T H = f.l(A) + K, * [max(A) - f.l (A)], (60) 

90 



(a) (b) (c) 

FIGURE 52 - The separation of the VB region. (a) 3D view of three adjacent VB, (b) 
automated placement of four seeds on cortical bone and disc, (c) separation of VB 
shown with red color. 

where K, = 0.3 which is derived from experiments by trial-and-error, where A rep

resents each histogram vector with the red line as shown in Fig 51 (c), max(A) and 

f.L (A) are the maximum and average values in the histogram vector. 

In the separation step, 30 patients which totals to 117 VBs are used. The 

results can be classified as in [77]. There are five respective categories as described 

below. 

• Excellent: The VB is successfully separated without any misclassification. 

Vertical limits are correctly obtained. 

• Good: The VB is separated with small parts of adjacent disk or VB. Around 

90% or vertical limits are correctly obtained. 

• Bad: The VB is separated, however noticeable parts of it are missed. Around 

70 - 90% of vertical limits are correctly obtained. 

• Poor: Large portions of anatomical structure of VB are missed. Around 50 -

70% of vertical limits are correctly obtained. 

• Fail: The VB is not separated due to challenges. 
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Threshold 
Threshold 

Threshold 

FIGURE 53 - The VB separation: The green volume shows the four four seeds. The 
red lines correspond to the number of voxels whose gray level are bigger than 200 
HU. The black lines correspond to the threshold written in Eg. 60. 

The proposed method produced about 85% successful separation results, 

if excellent and good grades are considered. Hence, 15% separation results were 

considered as fair, bad, or fail. 

5. Segmentation 

Intensity and interaction models may not be enough to obtain optimum seg

mentation. To segment the VB, a new shape based iterated conditional modes 

method which integrates the models of the intensity, spatial interaction, and shape 

prior information is proposed. The proposed method presents several advantages 

which can be written as: i) the probabilistic shape model is automatically regis

tered to the testing image, hence manual interaction is eliminated, ii) the registra

tion benefits from the segmented region to be used in the shape representation, 

and iii) the probabilistic shape model refines the initial segmentation result using 

the registered variability volume. 

The segmentation part has following steps: 1) initial segmentation using 

only int~nsity and spatial interaction information (this step is needed to obtain the 
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feature correspondence between the image domain and shape model), 2) shape 

model registration, and 3) the final segmentation using three models. 

a. Initial Segmentation To estimate the initial labeling f*, the ICM method 

which integrates the intensity and spatial interaction information is used. The 

same method described in Section III.F.5.c (without shape prior) is used. It should 

be noted that the shape model has not been used in this process. The initial seg

mented region is used to obtain the SOF representation which is required in the 

registration process. An example of the initial labeling is shown in Fig 54. The 

method has acceptable results, because a relatively large amount of pedicles and 

ribs are separated from the vertebral body. It should be noted that there may still 

some portion of pedicles and ribs which could not be separated. Between Fig

ure 54(c) and (d), there is a shape registration process which is shown in Figures 55-

56. 

b. Embedding the Shape Model To use the shape prior in the segmenta

tion process, f* and the shape prior are required to be registered. The shape model 

has a variability region as shown in Figure 44(a). The outer contour is represented 

as J. In the registration process, J and f* will be the source and target information, 

respectively. The registration step is done in 20 slice by slice since the shape model 

can deform locally independently from other slices. This approach gives deforma

tion flexibility between each slices which stocks in z-axis. The transformation has 

four parameters such as sx, Sy (for scale, S), and t x, ty (for translation, Tr). It should 

be noted that the rotation is not necessary in the method since the registration is 

done slice by slice; and the VB does not show important rotational variation in the 

axial axes. Let us define the transformation result by (3 that is obtained by applying 

a transformation T to a given contour / surface 0:. In this case, .6 and 0: correspond 

to f* and J, respectively. The transformation can be written for any point X in the 

space as T(x) = X = Sx + Tr. Now consider x E ¢>J and X E ¢>f*. To register the 

shape model to the image domain, the similar approach is followed as described 

in Section III.F.2.a. 
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The registration of the shape model and testing image is done as follows: 

i) First, the average of the position factor (fl/*) and scale factor ((Jf*) are obtained 

using the following equations 

f* 
(J 

rPJ, as 

f* _ [ f* 
fL - fLx 

f*] [LnXH(-q,f*(X)) 
fLy Ln H(-q,f*(x)) 

LnyH(-q,f*(x)) ]T 
Ln H( -q,f* (x)) 

(61) 

(62) 

ii) Obtain the transformation parameters (tX) t y, sx, Sy) for the shape model, 

'Ir= [ tx ty r [ f*_LoxH(-q,J(x)) 
fLx LnH(-q,J(x)) 

f* Lo yH(-q,J(x)) 
fLy - Ln H( -q,J(X)) 

]T (63) 

f* 
u. 0 

r [ s; ~, 1 
J L(l(X-llr )2H( -<P!(x)) 

s= Ln H( <pJ(X)) (64) 
f* 

0 S - u~ 
y-

Ln(Y-llr )2H(-<PJ(x)) 

tn H( <pJ(X)) 

iii) Transform each point x E 0 to the new point X. Hence, the shape model 

is registered to the image domain. 

iv)The new probabilistic function at each pixel is p(dx I Ix) = p(dx I Ix, T). 

Hence, the new transformed pixels will have the same probabilistic value with cor

responding pixels. An example of the registration and final segmentation results 

are shown in Figures 55-56. 

c. Final Energy Minimization Using Three Models: Intensity, Spatial Interac

tion, and Shape As described in Section lILE, three probabilistic models are used. 

Before this step, the followings are obtained already i) the initial labeling f* that 

maximizes p(I I f*), ii) the MGRF model for p(f*), and iii) the transformed shape 

prior to maximize p(d I f*, T). It should be noted that the transformation step is 

not an iterative process, and there is a unique solution for a given initial segmen

tation and shape model. Now, the objective is to optimize the following equation 

to maximize the likelihood energy functional. 
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(a) (b) (c) (d) (e) 

FIGURE 54-An example of the initial labeling. (a) Original CT images, (b) detection of 
the VB region and refinement, (c) the cropped VB region, (d) the initial labeling, f * using 
only the intensity and spatial interaction models, and (e) the final segmentation using three 
models. 
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(i) 

(ii) 

(iii) 

(iv) 

(sagittal) (coronal) (axial) 

FIGURE 55 - Embedding the shape model to the image domain and the final seg
mentation. (i) A CT data after the extraction of spinal cord. (ii) Shape model ini
tialization (the blue color show the outer surface of the variability region J). The 
contour J is placed equally in every slice using the obtained ROI. (iii) Embedding 
the shape model to the image domain. (iv) Final segmentation using three models: 
The intensity, spatial interaction, and shape information. Images and results are 
shown in the (a) sagittal, (b) coronal, and (c) axial views. 
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(i) 

(ii) 

(iii) 

(iv) 

(sagittal) (coronal) (axial) 

FIGURE 56 - Embedding the shape model to the image domain and the final seg
mentation. (i) A CT data after the extraction of spinal cord. (ii) Shape model ini
tialization (the blue color show the outer surface of the variability region J). The 
contour J is placed equally in every slice using the obtained ROI. (iii) Embedding 
the shape model to the image domain. (iv) Final segmentation using three models: 
The intensity, spatial interaction, and shape information. Images and results are 
shown in the (a) sagittal, (b) coronal, and (c) axial views. 
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Algorithm 3 Optimization of Three Models 

1. While i < Niter do 

2. For all X E f2 do 

3. Update Ix by the value of Ix which maximizes 

logp(/x I Ix) + logp(Jx) + logp(dx I Ix) 

4. End for 

5. Increase i 

6. End while 

Note: It should be noted that X = Sx + 'fr is any transformed pixel,and f2 is the 

pixel domain in the image. 

L(I, d, f, T) = logp(1 I f) + logp(f) + logp(d I f, T). (65) 

Algorithm III.F.5.c shows the proposed segmentation process using a new ICM 

method. 

C. Experiments and Results 

1. CT Data Information 

For the testing stage, 18 patient data sets, of which 10 are from female ('F') 

and 8 are from male ('M'), and a phantom are examined in this study. There are 

16- 96 axial slices with 512x512 voxels. The proposed algorithm is tested on 932 CT 

slices/66 VBs which are obtained from different spine bone regions (i.e. lumbar, 

thoracic, and etc.). In the datasets, the number of visible VBs changes from 2 - 8. 

The data sets are also categorized as 'healthy' (H) and 'with low bone mass' (L) 

with respect to their calcium absorbtion. The experiments are run on 7 'H' and 11 
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Reference Test 

FP 

TN 

FIGURE 57 - In the segmentation quality measurements, there are 4 regions to be 
considered as: True positive (TP), false positive (FP), true negative (TN), and false 
negative (FN). The reference and test regions represent the ground truth and auto
matic segmented regions. 

'L' data sets. The ages of the test subjects varies between 38 - 76 years with an 

average age of 61.3 years with 12.2 years standard deviation. 

2. Segmentation Measurements 

Figure 57 shows the region of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN). In this figure, the reference region repre

sents the ground tru th which is verified by a radiologist. The test region repre

sents the automated segmented region. For the ESP, the segmentation quality is 

measured using the Jaccard distance whereas for the clinical data sets, the segmen

tation quality is measured using four difference formulations. The measurements 

can be defined as follows: 
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TP+TN 
ACCURACY (%) = 100 * TP + FP + FN + TN 

TP 
PRECISION (%) = 100 * TP + FP 

TP 
JARRARD COEFFICIENT (%) = 100 * TP + FN + FP 

2TP 
DICE'S COEFFICIENT (%) = 100 * 2TP + FP + FN 

3. Validation Using the Phantom 

(66) 

(67) 

(68) 

(69) 

In the experiments, the ESP, which is an accepted standard for quality con

trol [68] in bone densitometry, is used to validate the segmentation algorithms. 

Because clinical CT images have gray level inhomogeneity, noise, and weak edges 

in some slices, the ESP was scanned with the same problems to validate the robust

ness of any method. CT images may have various noise and image uncertainties. 

Image noise is related to the numbers of x-ray photons absorbed by each small 

area of the image [87]. The higher exposure levels result in a better image, and 

less image noise, but more radiation is absorbed by a patient. Hence, segmenta

tion methods should be robust to various image conditions. It is assumed that 

CT images may have random noise. To assess the proposed method under vari

ous challenges, Gaussian noise with a zero mean and different variance a~ values 

(from 0 to 0.5) is added to the CT images. The segmentation accuracy is measured 

for each method using the ground truths. The proposed method is compared with 

other three alternatives which can be represented as follows: AI: Active appear

ance method described in [9], A2: Level sets method described in [25], and A3: 

Shape based level sets method described in [81]. 

1 All algorithms are run on a PC with a 3Ghz AMD Athlon 64 X2 Dual processor with 3GB RAM. 
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The segmentation results and the average accuracy on the ESP (when the 

initialization is optimal) are shown in Figure 58 and Figure 60, respectively. In this 

test, the initial point is chosen at the center of the object of interest. The elapsed 

time l to segment 12 ESP images is 136.2 seconds for AI, 194 seconds for A2 (with 

3D-pixel radius seed size) ,248 seconds for A3 (with 3D-pixel radius seed size) and 

12.8 seconds for the proposed method (without the detection and VB separation 

parts). It should be noted that the all results are obtained until each method reaches 

its possible convergence stage. The results show that the proposed method is ro

bust under various noise levels as well as faster than other famous alternatives. 

The initialization effect is also validated in this experiments. It should be noted 

that AI- A3 need perfect manual initializations. However, the method is almost in

dependent of the initialization (which is usually required in the registration step). 

The segmentation results and the accuracy on the ESP (when the initialization is 

not optimal) are shown in Figure59 and Figure61, respectively. In this figures, the 

initial point is chosen not close to the center point of the object of interest. It's 

clear that the proposed method performance is almost constant with different ini

tial points. On the contrary, the alternative methods are severely suffering from 

performance degradation. 

The effect of each model is validated as shown in Figure62. In the figure, 

the results which are based on ii) only the intensity model, iii) intensity and spa

tial interaction, iv) intensity, spatial interaction, and shape models are shown. The 

intensity based approach is not robust under various noise levels. After the spa

tial interaction model is used, the segmentation is getting better and most of the 

noise is eliminated. However, there are still missing information and some noise 

using the two models. With the proposed approach much better results are ob

tained compared with other models. The segmentation accuracy with respect to 

the various noise levels is shown in Figure 63. 
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(i) 

(ii) 

(iii) 

(iv) 

(v) 

(a) (b) (c) (d) 

FIGURE 58-Good Initialization: Segmentation comparison under (a) no noise, 
noise variances (b) a~=O. l , (c) a~=O.25, and (d) a~=O.5 . (i) Initialization. The results 
of (ii) AI, (iii) A2, (iv) A3 and (v) the proposed method. (The red and yellow colors 
show the contour of the ground truths and segmented regions, respectively.) 
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(i) 

(ii) 

(iii) 

(iv) 

(v) 

(a) (b) (c) (d) 

FIGURE 59 - Worse Initialization: Segmentation comparison under (a) no noise, 
noise variances (b) a; =O.l, (c) a; =0.25, and (d) a; =O.5. (i) Initialization. The results 
of (ii) AI, (iii) A2, (iv) A3 and (v) the proposed method. (The red and yellow colors 
show the contour of the ground truths and segmented regions, respectively.) 
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FIGURE 60 - Average segmentation accuracy of the VB segmentation on 12 CT im
ages (ESP) with respect to the various noise levels. 
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FIGURE 61-The effect of the initialization on the segmentation accuracy of 12 CT 
images (ESP) using A1, A3, and the proposed. Xo and Yo represent the initial point 
in the X-direction and Y-direction respectively w.r.t the center of the object. 
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(i) 

(ii) 

(iii) 

(iv-Proposed) 

(a) (b) (c) (d) 

FIGURE 62-Segmentation results of an ESP CT slice with (a) no noise, noise vari
ances (b) a~=O.l, (c) a~=0.25, and (d) a~=O.5 . (i) The original gray level image with 
various noise levels. The results of (ii) only the intensity based segmentation, (iii) 
the initial segmentation f * based on the intensity and spatial interaction models, 
(iv) proposed method integrating three models (intensity, interaction, and shape) . 
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FIGURE 63 - Average segmentation accuracy of the VB segmentation method on 12 ESP 
CT images . The size of each image is 512x512. (After each VB is detected, the size is 
reduced to 120x120). 
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4. Results on Clinical CT Images 

In this study, different type of data sets are used. Classification of data sets 

are categorized into three groups as shown in Table 2. Classification is based on 

6 features. Slice thickness, resolution, spine column region (shape), fractures, dis

eases, and spine bone edges are main factors of the classification. Class A is the 

best data sets which can be segmented and analyzed easily. Data sets which are 

classified in class C have serious problems such as diseases, fractures, weak spine 

edges, and low resolution. Data sets in class B have some problems but they are 

better than data sets in class C. Categorization could help to analyze the results 

separately. 

As mentioned above, the proposed algorithm is tested on 932 CT slices/66 

VBs which are obtained from 18 (7 Hand 11 L) different patients and different 

spine bone regions (i.e. lumbar, thoracic, and etc.). The segmentation accuracy is 

given with respect to the health condition of bone ('H', 'L', and 'H+L'), and the 

classification criteria (Class A, B, and C). Table 3 shows the quality measurement 

results of the proposed segmentation method. The four different measurements 

are given to be judged fairly. 

As can be interpreted from the results in the table, the Jaccard coefficient 

gives the lowest quality score respect to the others. Also, the accuracy gives the 

highest quality score respect to the other measurements. By using this informa

tion, the proposed segmentation reaches the scores of 'Jaccard coefficient' 87.6%, 

83.0%, and 85.0% for 'H', 'L', and 'H+L', respectively. The same measurements 

gives 87.7%,86.9%, and 80.3% for classes A, B, and C, respectively. The proposed 

method reaches the scores of 'accuracy' measurement 98.2%, 97.9%, and 97.6% for 

'H', 'L', and 'H+L', respectively. The same measurements gives 99.0%, 98.7%, and 

98.0% for classes A, B, and C, respectively. 

Figure 64 shows the shape model registration and final segmentation result 

on end-plate slices of VBs. The proposed method is able to segment end-plate slices 
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TABLE 2 
CLASSIFICATION OF CLINICAL DATA SETS USED IN THE EXPERIMENTS: 

THERE ARE TOTALLY 18 DATA SETS IN THE DATA BASE. CLASS A, B, AND 
C HAVE 7,5, AND 6 DATA SETS, RESPECTIVELY. 

Class A Class B Class C 

Slice thick- Usually Usually 2':2.5mm, but Usually2':3.00mm, 

ness <2.5mm may be <2.5mm but can be smaller if 

disease exists 

Resolution High Usually low Lower 

Shape Straight Straight/Curvy Usually curvy but it 

can be straight 

Bone degen- No May have disease May have disease 

eration or 

osteophyte 

Fracture No No serious fracture May have serious 

fractures 

Edge Strong Strong/Weak Usually weak 

Note: Optimum This class has some This class has very 

data problems serious problems 
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(i) 

(ii) 

FIGURE 64- The shape registration process and segmentation results of end-plate 
slices of VBs. (i) The shape model is registered to the initial segmented region. 
The blue color shows the contour of the registered variability region, J. (ii) Final 
segmentation results. The yellow color shows the contour of the segmented region. 

thanks to the shape embedding process although the shape model is obtained us

ing the full view of VB slices. The unnecessary regions such as ribs and processes 

are extracted as much as possible using the shape model. Figure 65 shows some of 

the segmentation examples in axial view. 

It should be noted that VBs were manually separated in this test. The frame

work take 167.2 seconds (less than three minutes) to segment 12 VBs. It should be 

noted that the number of slices affects the execution time. For the 2D /3D frame-

TABLE 3 
SEGMENTATION RESULTS OF EACH DATA CLASS BASED ON DIFFERENT 

MEASURES. (THE MEASUREMENTS ARE BASED ON DATA SETS WITH 
120x120xZ SIZE WHERE Z REPRESENTS NUMBER OF SLICES.) 

'H' 'L' 'H+L' Class A Class B Class C 

Accuracy,% 98.2 97.9 97.6 99.0 98.7 98.0 

Precision, % 91.1 86.6 88.6 90.9 89.9 84.4 

Jaccard coefficient,% 87.6 83.0 85.0 87.7 86.9 80.3 

Dice's coefficient, % 93.1 90.4 91.5 93.8 92.9 89.0 
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FIGURE 65 - Some of segmentation results are shown in the axial view. The yellow 
color shows the contour of the segmented region. 

F1 

[36] No 

[51] Yes 

Proposed Optional 

TABLE 4 
RELATIVE COMPARISON 

F2 F3 F4 

> 36.S No Yes 

> 36 Yes No 

< 3 Yes No 

FS F6 

All No 

Specific Yes 

All No 

work, the execution time is related to the number of slices in the image. Some 

experimental images of 3D results are shown on coronal and sagittal views in Fig-

ure 69. 

The proposed framework is compared with two of very important spinal 

bone related publications using features of each method. The features can be de

scribed as follows: F1: User interactions, F2: Execution time (minutes) to run all 

steps respect to segment 12VBs, F3: Extraction of spinal processes, F4: Vertebra 

identification, F5: Suitability to all or specific location of spinal column (such as 

thorocic, lumbar, and etc.), F6: The BMD measurements. Since the direct compar-
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(a) (b) 

(c) (d) 

FIGURE 66 - The shape embedding and final segmentation results are shown in 
3D views. (a) A CT data is shown in the sagittal axis (without the refinement). 
(b) The initial location of the shape models. 20 shape models are propagated in 
z-axis to form 3D models. The blue color (outer volume) shows the variability 
region, whereas the yellow color (inner volume) represents the object region. (c) 
The shape model after registration. (d) The final segmentation results using the 
three models. 
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(a) (b) 

(c) (d) 

FIGURE 67 - The shape embedding and final segmentation results are shown in 
3D views. (a) A CT data is shown in the sagittal axis (without the refinement). 
(b) The initial location of the shape models. 2D shape models are propagated in 
z-axis to form 3D models. The blue color (outer volume) shows the variability 
region, whereas the yellow color (inner volume) represents the object region. (c) 
The shape model after registration. (d) The final segmentation results using the 
three models. 
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(a) (b) 

(c) (d) 

FIGURE 68 - The shape embedding and final segmentation results are shown in 
3D views. (a) A CT data is shown in the sagittal axis (without the refinement) . 
(b) The initial location of the shape models. 2D shape models are propagated in 
z-axis to form 3D models. The blue color (outer volume) shows the variability 
region, whereas the yellow color (inner volume) represents the object region. (c) 
The shape model after registration. (d) The final segmentation results using the 
three models. 
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FIGURE 69-Some segmentation results examples on coronal (the first row) and 
sagittal (the second row) views of 3D segmentation. 

TABLES 
AVERAGE EXECUTION TIME OF THE FRAMEWORK: THE AVERAGE TIME 

CALCULATION IS BASED ON 12 VBS/96 CT SLICES.) 

Framework Stages Execution Time, sees. 

Spinal Cord Extraction 15.7 

VB Separation 18 (manual) / 45 (automatic) 

Initial Segmentation 54.1 

Shape Registration 32.6 

Final Segmentation 46.8 

Total 167.2 (when manual VB separation is considered) 
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TABLE 6 
COMPARISON OF TWO PROPOSED METHODS DESCRIBED IN CHAPTER 2 

AND 3 

Features Chapter 2 Chapter 3 

Application Generic Only the VB region 

Shape coefficients Yes No 

Shape registration process Iterative Direct 

Dice's Coefficient 93.1% 91.5% 

Average execution time (min/96 Ct slices) rv 9 minutes rv 3 minutes 

ison with these two methods are very difficult, each feature is compared as shown 

in Table 4. Although the results are obtained using difference computer system for 

each method, the most important contribution of this work is to segment VBs in 

very low execution times with the acceptable segmentation accuracy. This disser

tation claims that the proposed method can be applied in real time clinical studies. 

Table 6 shows the comparison of two proposed methods described in Chapters 2 

and 3. 

H. Discussion and Conclusion 

In this work, a framework which is robust under segmentation challenges, 

appropriate for a clinical workflow, and has theoretical novelty is proposed. This 

work is validated with various noise levels and compared with three alternative 

methods. The segmentation quality is measured on controlled data sets (classified 

as 'H', 'L', Class A, Class B, and Class C). To transfer the developed software into 

the clinical usage, more experiments on much more data sets are necessary. 

One of the most important contributions of this study is to offer a segmenta

tion framework which can be suitable to the clinical works with acceptable results. 

The proposed method completes the VB segmentation in very low execution time. 
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It should be noted that any parallel programming or graphical acceleration option 

were not used in this work. However, if needed, the execution time can be reduced 

using such methods. 

The gradient descent method to minimize the energy formulation is mostly 

used in the shape registration algorithms. However, this method is dependent on 

the initialization and it takes much longer to execute. Also, there are other pos

sible registration methods such as procrustes algorithm, which is fast; however, 

it needs manual or automatic control points. In this dissertation, a faster shape 

registration method is used. The registration step is done slice by slice, hence the 

shape model can deform independently in 3D data sets. This approach gives de

formation flexibility between slices. 3D shape registration was refrained to avoid 

the higher execution time since the rotation parameters should be estimated in 3D 

case. 

Some shape models have weighting coefficients such as in [5,14]. Using 

the shape coefficients, the shape model can be dynamically updated during the 

shape registration and segmentation optimization process. However, updating 

the shape weighting coefficients adds very high execution time which may not 

be accepted in clinical applications. In the proposed method, each training shape 

affects equally to form the shape model. Also, it should be noted that the end-plate 

slices are segmented successfully thanks to the shape registration process although 

the shape model is obtained using in-plane slices. 

The final segmentation is done using the iterated conditional modes. A new 

shape constraint is added to the conventional ICM method to enhance the results. 

The implementation is fast and not dependent on the tuning the parameters of the 

spatial interaction. In some cases, small portions of spinal processes and ribs are 

segmented erroneously. Future work can be including to investigate to reduce the 

misclassifica tions. 

Possible works to estimate how the segmentation quality affect the BMD 

measurements and fracture analysis can be analyzed. To assist the VB fracture 
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analysis, an automated point correspondence detection algorithm, such as scale

invariant feature transform (SIFT), can be tested to detect the VB height changes. 

In this problem, the corresponding points on the same patient, which is scanned at 

specific time intervals, should be detected successfully. 
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CHAPTER IV 

EXTENSION STUDY OF SEGMENTATION USING GRAPH CUTS 

In this chapter, an extension study of previously published [55] shape based 

graph cuts method is described. In [55], the probabilistic shape model was as

sumed to be registered in advance the segmentation process. In this chapter, the 

probabilistic shape model is automatically embedded to the image domain as pro

posed in [34]. 

The proposed framework has five phases: i) Shape model reconstruction, ii) 

the detection of the VB using the Matched filter, iii) initial segmentation using the 

intensity and spatial interaction models, iv) the registration of the shape prior and 

initially segmented image by matching a vector distance function (VDF), and v) 

final segmentation using graph cuts which integrates intensity, spatial interaction 

and shape prior. Figure 70 shows effects of each model on the segmentation. 

A. Method 

In this work, a 3D shape based segmentation method is proposed. To use 

the shape prior in the segmentation process, I and the shape prior are needed to be 

registered, as will be explained in section IV.A.2. Let d represent the probabilistic 

shape model. It should be noted that the shape model is obtained using training 

images registered to the ESP which can be represented as J. In the registration 

process, J and I will be the source and target information, respectively. In this 

method, the objective is to find the desired labeling, f using the transformation 

matrix, T. The overall segmentation framework is given in Algorithm 1. Figure 71 

shows the steps of the proposed framework. There are two stages: training (offline) 
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20 results 3D results 

CT Images ---+ 

~ 
The Matched filter and 

alignment 

~ 

(a) 
Segmentation using 

only the intensity model 

~ 

Segmentation using the 

(b) intensity and spatial 
interaction models 

~ 
Segmentation using the 

(c) intensity, spatial interaction, ---+ 
and shape models 

FIGURE 70 - Effects of each information is shown in 2D /3D example. The Matched 
filter is employed to detect the VB region. (a) The segmentation result if only the 
intensity model is used. (b) The segmentation result if the intensity and spatial 
interaction models are used. (c) The segmentation result if the intensity, spatial 
interaction, and shape models are used. This is the proposed framework. 
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and testing (online) stages as described below. 

Algorithm 4 Proposed framework 
Given: The input image (I as the target information), the ESP (J as a source infor

mation), the probabilistic 3D shape model (d). 

Objective : To obtain the desired labeling (f) using the required transformation 

matrix (T). 

O. Obtain the probabilistic shape model (offline). 

1. The automatic detection of the VB region using the Matched filter. 

2. Obtain the initial segmentation using graph cuts which integrates the intensity 

and spatial interaction models. 

3. Register the shape prior to the initially segmented image by matching the VDF. 

4. Final segmentation using graph cuts which integrates the intensity, spatial inter

action, and shape prior models. 

a. 3D Shape Model Construction (Offline): The 3D shape model of the VB 

is obtained from a training set of CT data. First, VBs are manually segmented 

(under supervision an expert). Then the segmented VBs are aligned using 2D reg

istration. The aligned training images are shown in Figure 72. Finally, a shape 

volume represented as Ps = 0 U 8 U V is generated. The white color represents 

the object or the VB (0), the black color represents the background (8), and the 

gray color represents the variability volume (V). Some example views of 3D shape 

prior (Ps ) are shown in Figure 73. Algorithm 5 lists the steps of the probabilistic 

shape model reconstruction. 

To model the shape variations in the variability volume V, the distance 

probabilistic model is used. The distance probabilistic model describes the object 

(and background) in the variability volume as a function of the normal distance 

dp = minllp - cll (where c E C ov) from a pixel p E V to the VB/variability surface 

C ov . Each set of pixels located at an equal distance dp from C ov constitutes an 

iso-surface C dp for C ov . To estimate the marginal density of the VB, it is assumed 
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Generate Shape Shape I 
Variation I 

FIGURE 71- Segmentation framework. There are two parts: Offline stage is the 
training step to obtain the 3D shape prior and probabilistic model. Online stage is 
the testing step to segment a clinical CT data. 

Algorithm 5 Probabilistic 3D Shape Model Reconstruction (More Detailed) 
1. Segment training images manually. 

2. Align segmented images as described in the previous chapters. 

3. Generate the shape volume Ps = 0 U B U V. 0 represents the object volume, V 

represents the variability volume, and B represents the background volume. 

4. Generate the distance probabilistic model in V. 

4.(a) Obtain the VB/variability surface Cov which corresponds to the outer 

surface of the object volume, O. 

4.(b) Obtain iso-surfaces, Cdp ' in V as a function of the normal distance dp = 

min llp - ell (where e E Cov) from a pixel p E V to the VB/variability surface Cov. 

There are several iso-surfaces located at an equal distance dp from Cov. 

4.(e) Obtain the probability of an iso-surface to be the object. This step is done 

by counting the number of object pixels of training set on each iso-surface (Follow 

Eqs. 70-72). 

4.(d) Obtain the probability of an iso-surface to be the background. This step 

is done by counting the number of background pixels of training set on each iso-

surface (Follow Eqs. 73-75). 
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FIGURE 72-0btaining the shape prior volume. {VBl,. .. ,VBn} training CT slices 
of different data sets. (n represents the number of training data). The last column 
shows the shape prior slices with variability volume. 

that each iso-surface C dp is a normally propagated wave from C ov as shown in 

Figure 74. The probability of an iso-surface to be an object decays exponentially as 

the discrete dp increases. The VB distance histogram is estimated as follows. The 

histogram entity of the object region at distance dp is defined as 

M K 

h(dp I 0) = L L L 8(pE Oie ) (70) 
i= 1 e=1 pE C dp 

where the indicator function 8(A ) equals 1 when the condition A is true, and zero 

otherwise, M is the number of training data sets, K is the number of CT slices of 

each data set, and Oa is the VB volume. The distance, dp! is changed until the 

whole distance domain in the variability volume is covered. In pixel wise, this 

process can be done by obtaining the outer edge of the previous iso-surface. Then, 

the histogram is multiplied with shape prior value which is defined as follows: 

1 
?fa = MIVI L 8(p E O). 

pEV 

(71) 

The distance marginal density of the object region is calculated as 

(d I f = 1) = h(dp I 0) ?fa 
p p p MICdp l . (72) 

The same scenario is repeated to obtain the marginal density of the back

ground. The histogram entity of the background region at distance dp is defined 
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(a) (b) 

• 

(c) (d) 

FIGURE 73- Views of the 3D shape prior. The inner volume (the green color) 
shows the object volume 0 , the outer volume (the yellow color) shows the vari
ability volume V. In (c) and (d) the variability volume is represented with several 
iso-surfaces. 
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FIGURE 74-(a-b) The 3D shape prior with object (the green color) and variability 
(iso-surfaces) volume. The green color represents the object volume, 0, the surface 
of the object volume represents the object/variability surface, C ov, the waves rep
resent the iso-surfaces, C dp ' (c) The probability of the object and background in the 
variability volume, V, respect to each iso-surface, Cdp . 

as 
M K 

h(dp I B) = 2:: 2:: 2:: 8(p E Bit ) (73) 
i = l (= 1 pEC dp 

where Bit is the background region. Then, the histogram is multiplied with shape 

prior value which is defined as follows : 

1 
7rs = MIVI 2:: 8(p E B). 

pEV 

(74) 

The distance marginal density of the background region is calculated as 

(d I f = 0) = h( dp I B) 7rS. 
P p p MI Cdpl 

(75) 

An example of the distance marginal densities of the object and background 

region is shown in Figure 74 (c). The next section explains the testing segmentation 

stage. 

1. Initial Segmentation 

In the first step of the segmentation, the Matched filter [64] is employed to 

detect the VB region automatically. To estimate the initial labeling f *, the graph 
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(a) (b) (c) (d) 

FIGURE 75-An example of the initial labeling. (a) Original CT image, (b) detection of 
the VB region, (c) the initial labeling, f *, and (d) the VDF of the initial segmentation which 
is used in the registration phase (11)1) . Red color shows the zero level contour. 

cuts which integrates the linear combination of gaussian (LeG) and MGRF model 

is used. The same method described in section IV. A. 3 is used. It should be noted 

that the shape model is not used in this process. Initially segmented region is used 

to obtain the VDF which is required in the registration process. An example of the 

initial labeling is shown in Fig 75. 

2. Variational Registration Approach 

A vector distance function is used to represent contour and surfaces. In this 

section, the 2D transformation is discussed as the general case. The transformation 

has five parameters such as sx, Sy (for scale, S), e (for rotation, R), and tx, ty (for 

translation, Tr). Let us define the result by f3 that is obtained by applying a trans

formation A to a given contour / surface 0: . In this study, f3 and 0: correspond to I 

and J, respectively. The transformation can be written for any point x in the space 

as X = SRx + Tr. Assume that applying the transformation to the given point 

results in the pair of points X, Xo E [k Then it can be shown that 

(76) 

Since the vector representation is invariant to translation, the new vector can be 

obtained using rotation and scaling parameters. 

The objective is to find the global transformation between the two given 

images J and I minimizing a certain energy function based on some dissimilarity 
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measure. The objective is to find a transformation T that gives pixel-wise vector 

correspondences between the two image representations <I>J and <I>I. Abdelmu

nim [5] proposed that the vector dissimilarity measure can be used as 

(77) 

and the optimization energy function can be written as 

E(S, R, Tr) = 15t(<I>J, <I>drT rdO 
n 

(78) 

(79) 

The optimization of the given criterion can be done using the gradient descent 

method which can be written as 

(80) 

where S E {sx, Sy} and tT E {tx, ty}. For more information, see [5]. 

An example of the registration step is shown in Figure 76. 

3. Statistical Segmentation Approach 

After the shape prior is registered to the initially segmented region, the 

graph cuts method integrating the intensity, spatial interaction, and shape mod

els is used to obtain the final segmentation. In the graph cuts method, a VB 

(object) and surrounding organs (background) are represented using a gray level 

distribution models which are approximated by a linear combination of Gaus

sians (LeG) to better specify region borders between two classes (object and back

ground). Then a weighted undirected graph is created with vertices correspond

ing to the set of volume voxels p, and a set of edges connecting these vertices. 
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FIGURE 76 - The registration step. (a) The testing image (or initially segmented image) as 
shown with the pink color. The testing and 3D shape prior before and after the registration 
are shown in (b) and (c), respectively. Each row shows different views. 

Each edge is assigned a nonnegative weight. The graph also contains two special 

terminal vertices s (source) II VB", and t (sink) "background " . Consider a neigh

borhood system in P, which is represented by a set N of all unordered pairs {p , q} 

of neighboring voxels in P . Let L the set of labels {"O", "1"}, correspond to VB 

and background regions respectively. Labeling is a mapping from P to L, and the 

set of labeling is denoted by f = {h ,· . . ,fp, " . , fIPI} ' In other words, the label fp, 

which is assigned to the voxel pE P , segments it into VB or background region. 

Now the goal is to find the optimal segmentation, best labeling f, by minimizing 

the following energy function which combines region and boundary properties of 

segments as well as shape constraints. This function is defined as follows: 

(81) 
pEP pEP {p,q}EN 

S(fp) measures how much assigning a label fp to voxel p disagrees with the 

shape information. The shape penalty term is defined as S(fp) = - logp(dp lfp). 

The distance marginal density of each class is calculated as 

(d If) = h(dp I 0 , B) 7rO ,l3 

p p p ICdpl' (82) 

These densities can be computed using Eqs. 70-75. 

D(fp) measures how much assigning a label fp to voxel p disagrees with the 

voxel intensity, f p. Dp(fp) = - logp(Ip I fp) is formulated to represent the regional 
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properties of segments. To initially label the VB volume and to compute the data 

penalty term Dp(Jp), the modified EM [22] method is used to approximate the gray 

level marginal density of each class Jp , VB and background region, using a LCG 

with ct positive and Civ negative components as follows: 

ch c~ 

p(Ip I Jp) = L wt.rcp(Ip I et,r) - L wiv,ICP(IP I ejp,l)' (83) 
r=l 1=1 

where cp(. I e) is a Gaussian density with parameter e == (fL, a2
) with mean fL 

and variance a 2 • wt,r means the rth positive weight in class JP and wiv,1 means 
c+ 

the [th negative weight in class Jp. These weights have a restriction Lr~ wt,r -

ci 
LI=r Wiv.1 = l. 

V(Jp, Jq) is the pairwise interaction model which represents the penalty for 

the discontinuity between voxels p and q. The simplest model of spatial interaction 

is the MGRF with the nearest 6-neighborhood. Therefore, for this specific model 

the Gibbs potential", can be obtained analytically using the maximum likelihood 

estimator (MLE) for a generic MGRF in [26]. The Gibbs potential governing pair-

wise interaction is described as 

(84) 

In this equation, is the potential value specifying the Gibbs potential. The ap

proximate MLE of, is: 

}(2 ( 1 ) ,* ~ }( _ 1 Jneq(f) - }( (85) 

where }( = 2 is the number of classes in the volume and Jneq (f) denotes the relative 

frequency of the not equal labels in the voxel pairs. 

The graph cuts method [88] is used as a energy minimization tool in the ex

periments. The goal is to find the optimal segmentation, and best labeling f, by 

minimizing the following energy function in Eq. 81. To segment a VB, the volume 

is initially labeled based on its gray level probabilistic model. Initial segmenta

tion based on the LCG models is then iteratively refined by using MGRF with 
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analytically estimated potentials. In this step, the graph cuts is used as a global 

optimization algorithm to find the segmented data that minimize a certain energy 

function, which integrates the LCG, MGRF, and 3D shape model. To segment a 

VB volume, a 3D graph where each vertex in this graph represents a voxel in the 

VB volume is used. A sample graph is shown in Figure 78. Let 9 = {U, £"} be a 

graph with nonnegative edge weights where U and £" represent the set of vertices 

and edges, respectively. The weight of each edge is defined as shown in Table 7. A 

weighted undirected graph is created with vertices corresponding to the set of vol

ume voxels T, and a set of edges connecting these vertices. Each edge is assigned 

a nonnegative weight. The graph also contains two special terminal vertices s 

(source) "VB", and t (sink) "background". Consider a neighborhood system in T, 

which is represented by a set N of all unordered pairs {p, q} of neighboring voxels 

in T. Let.c the set of labels, {"a", "I"}, correspond to the background and VB re

gions, respectively. Finally, the optimal segmentation surface between the VB and 

its background is obtained by finding the minimum cost cut on this graph. The 

minimum cost cut is computed exactly in polynomial time for two terminal graph 

cuts with positive edges weights via sit Min-Cut/Max-Flow algorithm [88]. An 

example of the proposed segmentation is shown in Fig 77. (see [26,80,88] for more 

details). 

B. Experiments and Discussion 

The test results were achieved for 10 data sets of which the ground truths 

exist. The real data sets were scanned at 120kV and 1.0 - 3.0mm slice thickness. 

All algorithms are run on a PC 3Ghz AMD Athlon 64 X2 Dual, and 3GB RAM. All 

implementations are in C++. 

To compare the proposed method with other alternatives, VBs are subse

quently segmented using other alternative methods. Finally, segmentation accu

racy is measured for each method using the ground truths (expert segmentation). 

MI represents the proposed algorithm. The alternative methods used in the ex-
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FIGURE 77 -An overall segmentation steps with 2D/3D example. The Matched 
filter is employed to detect the VB region. Then, the initial segmentation using the 
LCG model is obtained. Finally the graph cuts method which integrates the LCG, 
MGRF, and shape probabilistic model is used to obtain the final segmentation. 

Edge 

{p,q} 

{s , p} 

{p, t} 

TABLE 7 
GRAPH WEIGHTS 

Weight 

'Y 

0 

- In[p(Ip I "I" )p(dp I "I" )] 

00 

0 

- In[p(Ip I "O" )p(dp l"O" )] 

0 

00 
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f p i' fq 

fp = fq 

pE U 

pE a 

pE B 

pE U 

pE a 

p E B 



a c 

g 

FIGURE 78 - An example of the graph 9 = {U , £}. All vertices represented as U = 
{source, sink, a, b, c, d, e, J, g, h, i}. p-vertices (pixels) are {a, .. . ,i}. i-vertices (terminals 
or labels) are source (s) and sink (t). £ is represented as lines connecting vertices. 
Lines connecting p-vertices to i-vertices represents t-links. Lines connecting each p
vertex with its neighboring p-vertices represent n-links. n-links are constructed for 
4-neighboring system. (In the graph, the pixel e represents p in the equations.) 
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Algorithm 6 Proposed VB segmentation framework 
Given: The input image, the ESP (J as a source information), the probabilistic 3D 

shape model (d). 

Objective : To obtain the desired labeling (f) using the required transformation 

matrix (T). 

1. Detect the VB region using [27] 

2. Obtain the initial segmentation (f*) using graph cuts which integrates the inten

sity and spatial interaction models only. 

3. Register the shape prior to the initially segmented image. J and f* will be the 

source and target information, respectively. After the transformation, the embed

ded shape model and its features are described as follows: 

• After each point x E Ps is transformed to the new point X, the shape model 

is registered to the image domain. New volumes anew, Bnew, and vnew are 

obtained. 

• The the object/variability surface is updated and named as Cae v . The dis

tance probabilistic model is obtained again as dr = min liT - cll ,from a 
rECC1Vw 

pixel T E vnew to the organ/variability surface C ov. 

• The new probabilistic distance functions at each pixel T E vnew is p( d r I I) = 

p(dp I I). Hence, new iso-surfaces at the same distance (dr = dp ) will have the 

same probabilistic distance value with the iso-surfaces which are obtained 

before the registration. An example of the registration step is shown in fig

ure 76. 

4. Compute the final segmentation (f) using shape based graph cuts. 
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TABLE 8 
ACCURACY AND TIME PERFORMANCE OF THE VB SEGMENTATION ON 10 DATA 

SETS. 

Ml (Proposed) M2 M3 M4 

Min. error, % 6.4 5.6 6.3 15.5 

Max. error, % 9.2 86.5 90.9 105.7 

Mean error, % 7.2 38.3 42.4 52.7 

Stand. dev.,% 1.2 28.8 30.9 32.5 

Average time,sec 34.1 8.3 41.5 8.9 

periments are represented as M2 (for the graph cuts method without shape prior 

information), M3 (for b-spline-based interpolation), and M4 (for statistical level 

sets). To evaluate the results, the percentage segmentation error is calculated as 

follows: 

o (Sa n Sm 
error 10 = 100 1 - US) 

Sa m 
(86) 

where Sm and Sa represent manually and automatically segmented volumes, re-

spectively. 

The statistical analysis of the proposed method is shown in Table 8. In this 

table, the results of the proposed segmentation method and three alternatives are 

shown. The average error of the VB segmentation on 10 clinical image sets is 7.2% 

for the proposed method. An example that shows 3D segmentation results of all 

tested methods for a clinical data set is shown in Fig 79. In this figure, the red color 

represents the misclassified voxels. 
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(M1 (Proposed)) (M2) 

(M3) (M4) 

FIGURE' 79 - 3D results of a clinical data set. (Ml) The result of the proposed method, 
(M2) results of graph cuts without shape prior, (M3) results of the Level sets, and (M4) 
results of the b-spline based interpolation. The red color shows the segmentation errors. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

This dissertation have presented image labeling using segmentation and 

registration methods with three pieces of information. More specifically, it fo

cused on the shape modeling, shape registration, and selecting the optimization 

method to obtain the optimum labeling. The energy functionals were optimized 

using three different approaches which have different advantages: i) the level sets 

which uses the gradient descent and simplex optimizations, ii) the iterated condi

tional modes (IeM), and iii) Graph cuts. 

A. What is Accomplished 

In general, the dissertation accomplished followings: 

• The proposed method solves the classical problems existing in the intensity

based frameworks. 

• The shape model is embedded into the image domain automatically without 

any user interaction and point correspondence. 

• The shape registration and hence the shape based segmentation results are 

greatly improved under various challenges as compared with the closest 

methods, which Paragios et al. [47], and Tsai et al. [14]. These methods have 

limitations to capture the object-of-interest if the source and target shapes 

have inhomogeneous scale differences. In this dissertation, the geometrical 

scaling is proposed as an approximation, since the SDP is not invariant to 

inhomogeneous scaling. New probabilistic shape models are proposed to 

enhance the conventional shape based segmentation results. 
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• The proposed methods are less variant to the shape initialization with respect 

to the some of methods such as [8,9,25,81]. 

• The original ICM method, which was originally proposed by Besag [53], is 

extended by integrating the shape prior. 

• The spinal processes, which is not required in the BMD measurements and 

fracture analysis, are eliminated using the shape prior. 

• In the proposed methods, there is no any region restriction, and the proposed 

framework is processed on different regions. 

• If the proposed method in the Chapter 3 is compared with most of the pub

lished bone segmentation methods (such as in [36,51,54]), the large execution 

time is reduced effectively. 

• The proposed methods are not dependent on any the VB identification step 

thanks to the new universal shape model and its embedding step. 

• An extension study of previously published method in [26] is extended in 

3D form and improved to work automatically. In [26] the shape model is 

assumed to be registered in advance. In this dissertation, the probabilistic 

shape model is registered automatically to the image domain as in [34]. 

B. Directions to Future Works 

Possible future works can be directed as follows: 

• In the literature, the segmentation is coupled with the pose estimation such 

as Sandhu et al. proposed [33]. They present a nonrigid approach to jointly 

solving the tasks of 2D-3D pose estimation from a 20 scene and 20 image 

segmentation. The proposed work in Chapter II can be upgraded using the 

similar idea. 
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• The proposed methods handle the VB segmentation problem successfully. 

However, the automated VB separation algorithm in Chapter III can be en

hanced to increase the accuracy. 

• To assist the VB fracture analysis, an automated point correspondence detec

tion algorithm, such as scale-invariant feature transform (SIFT), can be tested 

to detect the VB height changes. In this problem, the corresponding points 

on the same patient, which is scanned at specific time intervals, should be 

detected successfully. 

• A possible BMD measurements and improvements can be studied. The broad 

literature review is required for this study since there is no information on 

this issue in this dissertation. 

• The proposed shape based ICM method can be compared with other spa

tially discrete optimization methods such as simulated annealing, loopy be

lief propagation, graph cuts, and tree-reweighted message passing. One can 

read [50] for an example comparison. 
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APPENDIX I 

SPATIAL INTERACTION MODELLING USING MGRF 

1. Spatial Interaction Model 

Spatial interaction helps correcting errors and recovering missing informa

tion in the image labeling problem [26]. Dubes and Jain discussed many random 

field models. The objective is to estimate the optimum unconditional probability 

distribution of the desired map (labeling), p(f). In reality, the random field F is 

not directly observable in the experiment. The realized configuration of F, which 

is f based on the observation I, is need to be estimated based on the likelihood 

function p(I I f) [88]. 

Let N be a neighborhood system for o. It is defined as 

N = {M I Vi EO}. (87) 

Figure 80 shows orders of a neighboring system. In the first order system (4-

neighborhood system), every site (pixel) has four neighbors. In the second order 

system (8-neighborhood system), there are eight neighbors around the interior site, 

p. The numbers in Fig. 80 represents the order of neighboring sites. 

An MRF is characterized by its local property. Maximum-A-Posteriori (MAP) 

probability is one of the most popular statistical criteria in MRF labeling [89]. The 

MRF is defined as follows: 

Definition 1 (Markov Random Field). F is said to be a Markov random neld on 0 with 

respect to a neighboring system N if and only if positivity, markovianity, and homogeneity 

conditions are satisned: 
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FIGURE 80 - Order of the neighboring system . 
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FIGURE 81-Second order of the neighboring system. 

(b) (c) (d) 

(g) (h) (i) 

(e) 

FIGURE 82 - Cliques types of the second order neighborhood. 
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• p(F = f) > 0 (positivity) 

• p(F = Ii I F = In-{i}) = p(F = Ii I F = IN,) (markovianity) , where In-{i} stands 

for all pixels except i, and hv, = {Ii' I i' E Ni } denotes for the set of labels at the sites 

neighboring i. 

• p(F = In, I F = hi,) is same for all sites i (homogeneity) 

A GRF describes the joint distribution of pixel labels. The GRF is character

ized by its global property. The definition of the GRF is defined as follows: 

Definition 2 (Gibbs Random Field). F is said to be a Gibbs random field (GRF) on n 
with respect to a neighboring system N if and only if random variables in F obey a Gibbs 

distribution. 

A Gibbs distribution takes the following form 

1 U(f) 
p(f) = -exp(--) 

Z· T (88) 

where 

" U(f) Z = L..t exp( ---;y-) (89) 
JEF 

is a normalizing constant called the partition function, T is a control parameter 

called the temperature which is assumed to be 1 unless otherwise stated, and U (f) 

is the Gibss energy function. The energy is a sum of clique functions Vc (f) over all 

possible cliques C as 

(90) 
cEC 

A clique is a set of sites in which all pairs of sites are neighbors. There are K(2 2) 

discrete labels in the label set, L = {O, ... ,K -I}. A clique potential depends on the 

type" c" related to size, shape, and orientation of the clique. The clique potentials 

can be defined by 

{ 

(c 
Vc(J) = 

-(c otherwise 

if all sites on c have the same label 
(91) 
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where (c is the potential for type-c cliques. Using Derin-Elliott model [4], the clique 

potential can also be expressed as follows: 

otherwise 

where /0 represents the potential of single-size cliques as shown in the Figure 82(a), 

and Pr = {Pi, P2, P3, P4} represent the potentials of "two-site" cliques as shown in 

the Figure 82(b-e). Farag et al. [22] proposed an analytic method to estimate the 

parameter of a specific MGRF model. 

Theorem 1 (The Hammersler-Clifford theorem). The Hammersler-Clifford theorem 

(1971) states that F is an MRF on [2 with respect to N if and only if F is a GRF on 

[2 with respect to N. 

A proof that a GRF is an MRF is given as follows. In the proof, it is needed 

to find that P(Ji I fn-{i}) = P(Ji I fN'). 

Proof 1 (The Hammersler-Clifford theorem). Let p(f) be a Gibbs distribution on [2 with 

respect to N. Conditional probability can be written as 

(f I j
. ) - P(Ji, fn-{i}) _ p(f) 

p i !!-{i} - . (f ) - '" (f/) 
P n-{i} Df;E£ p 

(92) 

where f' = {il, ... ,fi-i, ii,·· . ,fm} is any set of random variables which agrees with fat 

all sites except possibly i. 

From Eq. 88, it can be written 

1 
p(f) = Zexp(- LVc(f)) (93) 

cEC 

which provides a formula for calculating the conditional probability P(Ji I fn-{ i})' Hence, 

using the Eqs. 92 and 93, the following equation can be written 

(94) 
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Let divide C into two set A and B with assuming A consists of cliques containing i, and B 

does not consist of cliques containing i. Then Eq. 94 can be written as 

[exp( - LCEA \I;, (f) )][exp( - LeES Ve(f))] 
(95) 

If \I;, (f) = \I;,(f/) for any clique c which does not contain i. Hence, exp( - LeEs Ve(f)) 

cancels from both numerator and denominator. Finally, the probability depends only on 

the potential of the cliques containing i 

(96) 

Eq. 96 indicates that the probability depends on labels at i ' s neighbors. This proves that a 

Gibbs random field is a Markov random field can be shown as 

exp( - LeEA \I;, (f)) 
(97) 
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