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ABSTRACT

AN ISLAND-BASED APPROACH FOR RNA-SEQ DIFFERENTIAL

EXPRESSION ANALYSIS

Abdallah Eteleeb

April 6, 2015

High-throughput mRNA sequencing (also known as RNA-Seq) promises to be

the technique of choice for studying transcriptome profiles, offering several advan-

tages over old techniques such as microarrays. This technique provides the ability to

develop precise methodologies for a variety of RNA-Seq applications including gene

expression quantification, novel transcript and exon discovery, differential expression

(DE) and splice variant detection. The detection of significantly changing features

(e.g. genes, transcript isoforms, exons) in expression across biological samples is a

primary application of RNA-Seq. Uncovering which features are significantly differ-

entially expressed between samples can provide insight into their functions.

One major limitation with the majority of recently developed methods for

RNA-Seq differential expression is the dependency on annotated biological features

to detect expression differences across samples. This forces the identification of ex-

pression levels and the detection of significant changes to known genomic regions.

Thus, any significant changes occurring in unannotated regions will not be captured.

To overcome this limitation, we developed a novel segmentation approach,

Island-Based (IBSeq), for analyzing differential expression in RNA-Seq and targeted

sequencing (exome capture) data without specific knowledge of an isoform. IBSeq

vii



segmentation determines individual islands of expression based on windowed read

counts that can be compared across experimental conditions to determine differential

island expression. In order to detect differentially expressed features, the significance

of DE islands corresponding to each feature are combined using combined p-value

methods. We evaluated the performance of our approach by comparing it to a number

of existing gene DE methods using several benchmark MAQC RNA-Seq datasets.

Using the area under ROC curve (auROC) as a performance metric, results show

that IBSeq clearly outperforms all other methods compared.
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CHAPTER 1

INTRODUCTION

Over the past decade, next-generation sequencing (NGS) technologies have

developed rapidly, revolutionizing genome research and changing the landscape of

genetic studies. They have afforded researchers the ability to sequence known and

unknown mRNA transcripts that can be either coding or non-coding using RNA-Seq

and captureSeq methodologies. Using the captureSeq approach, Mercer et al. [104]

were able to expand by 12% the number of exonic structures that did not belong to

known models. This indicates the power of next-generation sequencing approaches

in providing novel information about the complexity of transcripts. Others have

used RNA-Seq to expand the knowledge of transcribed regions [57, 149], including

long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) [164, 165]. Perhaps

the most well-known of these studies was performed by the ENCODE Consortium

[37], which focused on understanding encoded elements within the human genome.

The GENCODE group relied heavily on RNA-Seq data to improve the accuracy of

protein-coding regions, pseudogenes, and noncoding regions in the human genome

[60, 65, 61].

The advent of RNA-Seq has enabled researchers and scientists to study the

transcriptome at an unprecedented rate and has lately become the standard technol-

ogy for transcriptome analysis. It is based on the direct sequencing of complemen-

tary DNA (cDNA) [109]. An RNA-Seq experiment starts with the extraction of total

RNA or a portion such as polyadenylated RNA [159]. The extracted RNA is then
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converted to a library of double stranded cDNA and sheared into small fragments.

In the next step, adapters are attached to one or both sides of each cDNA fragment.

Using next-generation sequencing platforms, each cDNA fragment is sequenced and

a short sequence (read) from one end of the fragment (single-end tag) or from both

ends (paired-end tag) is obtained. The obtained reads are mapped to the reference

genome or transcriptome to measure the abundance of each transcript.

1.1 Motivation

With the massive and complex datasets generated by next-generation sequenc-

ing techniques, there has been a significant effort during the last few years to develop

computational methods to draw meaningful findings from this data. As a result of

this effort, several methods have been developed to model RNA-Seq data and detect

for differential expression across biological samples. The majority of these methods

are based on parametric assumptions where discrete probability distributions such as

binomial, Poisson and negative binomial are used. For differential expression analysis,

most RNA-Seq approaches follow a similar workflow (Figure 1.1) where mapped reads

are summarized according to known biological features such as exons, transcripts, or

genes which restricts the mapping of read sequences to existing annotations. Thus,

reads that map to regions outside annotated features will not be captured even in well

annotated genomes (e.g. human and mouse) [116] and consequently changes in those

regions will be missed. Additionally, previously undetected cassette-based isoforms

will be ignored and summarized accordingly to known isoform annotations. While us-

ing known annotations allows for insightful analysis of how gene expression changes

in differing conditions, it also is limiting in understanding how the gene structure

itself might also change.
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Figure 1.1: RNA-Seq workflow for differential expression analysis. Figure adapted

from [97].

To illustrate this problem, Pickrell et al. [121] found about 15% of mapped

reads were located outside annotated exons in their Nigerian HapMap samples. Alicia

et al. [116] showed an example of transcripts that fall outside annotated exons for

the RNA binding protein 39 gene in LNCaP prostate cancer cells. Our own work,

highlighted in Figure 1.2, shows an expression level for microarray data that shows dif-

ferential expression outside of a known rat gene. This differential transcription would

be ignored by current analysis methods, even though it has been experimentally deter-

mined that this region is part of the upstream gene. Looking at the annotated mouse

homology, it can be inferred that the 3’ UTR extends into this region, even if there

is no support from the current rat annotation. Further analysis of this differentially

expressed transcript shows an association with axonal localization [59].

Furthermore, when detecting for gene DE, most current gene DE methods

summarize read counts on the gene level. However, given the fact that most genes

consist of multiple exons and the distribution of read counts in exons for a single

gene can be different [158], this may provide inaccurate results. Thus, if genes are

broken down into smaller regions, such as exons or even smaller fragments, and DE

analysis is performed on those regions, the significance of the overall region can be

determined using combined p-values which may improve the accuracy of detecting
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Figure 1.2: Illustration of regions missed by current annotations. The 3’ UTR region

has a significant change between samples T14 vs T0 and samples T7 vs T0. The

annotated mouse CaMK4 gene extends into this region. However, the corresponding

rat CaMK4 gene annotation terminates prior to the differentially expressed region,

which was subsequently verified to be part of the rat CaMK4 gene [59].

DE genes. Therefore, each region in the overall gene region will participate in the

computation of the overall gene significance based on its degree of importance which

ensures that regions in the gene are not treated equally.

1.2 Dissertation Contributions

In order to alleviate the issues resulting from dependence on annotations, a

novel Island-Based (IBSeq) approach is developed for RNA-Seq differential expression

analysis. In this approach (detailed in Chapter 5), the genome is split into small

fixed non-overlapping regions (windows). Those regions are then classified based

on their read count densities into high and low density regions. In the next step,
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adjacent regions with similar densities are merged together constructing larger regions

called islands. First, a per base count is computed for each sample using BEDTools

[125]. To construct regions, per-base read counts are summarized over a small fixed

window (10-50bp) to minimize small variance in coverage due to noise. Once regions

are constructed for the entire genome, regions are classified as high or low density

regions based on an average threshold calculated for each sample. For each sample,

high density islands are constructed by merging contiguous high density regions and

similarly for the low density islands. The constructed islands are then overlapped

and tested for differential expression (DE) across samples using Welch’s t-test (an

adaptation of Student’s t-test) or Wilcoxon test. Low density islands resulting from

the overlap are removed due to the lack of enough alignment to perform the DE test.

To detect which genetic features (e.g. genes) are differentially expressed be-

tween samples, the significance of DE islands that overlap with each feature is com-

bined using combined p-values methods (e.g. Fisher’s method). DE islands that

do not correspond to any feature are considered novel DE regions. Those regions

are annotated along with their closest features. To evaluate the performance of the

IBSeq approach, a comparison analysis is conducted to compare the approach with

a number of existing differential expression analysis methods using benchmark Mi-

croarray Quality Control (MAQC) RNA-Seq datasets. Using ROC curves and auROC

as performance metrics, results show that IBSeq outperforms all other methods as

illustrated by an increased auROC.

1.3 Dissertation Outline

The reminder of this dissertation is outlined as follows. Chapter 2 reviews the

basic concepts of molecular biology. It starts with a description of basic molecular

biology concepts such as cells, DNA, RNA, proteins, genes, and genomes. It also
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explains the Central Dogma of Molecular Biology and the process of protein synthe-

sis. This chapter also discusses the mechanism of alternative splicing and shows the

different types of alternative splicing events.

Chapter 3 gives a detailed overview of high-throughout next-generation se-

quencing technologies. It starts with reviewing first-generation sequencing techniques

including the Sanger and Maxam-Gilbert methods. Section 3.2 explains in detail the

next-generation sequencing techniques and gives a brief description of the widely

known sequencing platforms (e.g. Roche 454, Illumina, and SOLiD). It also provides

a brief description of NGS applications. Next-generation sequencing data format is

discussed in Section 3.4. The chapter ends with a brief review of genome assembly

and alignment and explains some of their algorithms.

Chapter 4 provides a detailed description of RNA-Seq Methodologies. It be-

gins with a brief review of the developmental milestones of transcriptome analysis

and discuss the different methods (e.g. Expressed Sequencing Tags, Serial Analysis

of Gene Expression, and Microarrays) applied in this realm. Section 4.3 deals in de-

tail with RNA-Seq methodologies. It discusses the RNA-Seq workflow and provides

detailed information about its applications such as transcript assembly, transcript

quantification, and differential expression. It also explains the current state-of-the-

art approaches for RNA-Seq analysis particularly in the area of differential expression

which is the main focus of this dissertation.

Chapter 5 describes IBSeq, an island-based approach for RNA-seq differential

expression analysis. This chapter discusses all aspects of the IBSeq approach. It

begins with a brief description of the current available methods for RNA-seq differ-

ential expression analysis and shows the limitations associated with them. Section

5.2 describes the IBSeq approach for performing differential expression using RNA-

Seq data and explains the design and implementation of the different steps in this
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approach. Section 5.3 reports the results of evaluating the performance of IBSeq by

comparing it with a number of current differential expression analysis methods using

publicly available benchmark RNA-Seq datasets. The chapter ends with a conclusion

presented in Section 5.4.

Chapter 6 presents a comparative study of different combined p-value methods

for gene differential expression using RNA-Seq data. Since IBSeq approach deter-

mines whether a feature (e.g. gene, exon) is significantly differentially expressed

or not between samples by combining the p-values of the regions corresponding to

that feature, this study is conducted in order to determine which combining p-values

method provides the best performance among the widely used methods. In this chap-

ter, six different combining p-value methods are compared using publicly available

RNA-Seq datasets. Section 6.2.1 describes the different combining methods consid-

ered in this study and Section 6.3 reports the results of this comparison. Section 6.4

concludes this chapter.

Chapter 7 is dedicated for discussions and conclusions and presents the poten-

tial future directions.
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CHAPTER 2

BIOLOGICAL BACKGROUND

2.1 Organisms and Cells

Cells are the basic unit of all living organisms on earth. They are the compo-

nents that make any thing alive and control the structures and functions of any unit

in all organisms. The size of cells may vary, but typical cell size may range between 1

(bacteria) and 100 (plant) micrometers [14]. Human bodies are made up of trillions

of cells with at least 200 distinct cell types. Organisms can be classified based on

their cell type into two main categories:

1. Single-cell: organisms made up of only one cell, such as bacteria and yeast,

are called single-celled or uni-cellular organisms.

2. Multi-cellular: organisms that consist of more than one cell are known as

multicellular organisms.

Organisms are called prokaryotes if they lack a cell nucleus (the place where DNA

is contained and protected) or any membrane-encased organelles, otherwise they are

known as eukaryotes. Unicellular organisms may be prokaryotic or eukaryotic. How-

ever, most prokaryotes are single cell organisms. Both prokaryotes and eukaryotes

cells have a protection barrier composed of a phospholipids and proteins called a

plasma membrane used to enclose the cytoplasm and protect the cell from the out-

side environment. It regulates the movement of materials into and out of the cell.
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One of the most important organelles in the cell structure are the ribosomes which

provide the machinery for protein synthesis. Figure 2.1 shows an example of typical

animal, bacteria, and plant cells structures.

Figure 2.1: Typical animal, bacteria, and plant cells [156]. Used with permission.

In multicellular organisms, cells are organized in tissues (group of cells) which

perform a specific function, and several tissues are organized to form organs.

2.2 Nucleic Acids

In all living organisms, genetic information is stored in two types of nucleic

acid molecules called deoxyribonucleic acid (DNA) and ribonucleic acid(RNA). These

molecules are used to carry genetic information in the cell and transmit it from one

generation to the next [134]. DNA and RNA molecules are polymers consisting of

four units: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) [69]. For

RNA, Thymine (T) is replaced by Uracil (U). These units are called nucleotides (also

known as bases) and consist of three main parts: sugar, phosphate group, and one

of the two bases (a purine or a pyrimidine) as shown in Figure 2.2. Since DNA is

organized in a double-helix, the nucleotide bases form a complementary pair where

Adenine is complementary to Thymine (or Uracil in the case of RNA) and Guanine is

complementary to Cytosine. Figure 2.3 shows an example of double-stranded DNA.
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Figure 2.2: The chemical structure of nucleotides [124].

Figure 2.3: DNA double helix [123].

2.3 Proteins

The fundamental components of all living things are proteins [69]. Besides

water, proteins are the most common substance in the cell where they take up to

20% of a eukaryotic cell’s weight [14]. They do most of the work in the cell and make

the life of all organisms possible. Proteins consist of one or more long chains called

polypeptides. Each polypeptide is made up of 20 different small subunits called amino

acids, linked together by peptide bounds into a single-linear chain. All 20 amino acids

have the same basic structure consisting of an amino group (NH2), carboxyl group
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(COOH), and a side-chain (R) attached to a central alpha carbon (C). Figure 2.4

shows the basic structure of an amino acid and how amino acids are linked together

by peptide bounds.

Figure 2.4: The chemical structure of amino acids and how they are linked [2].

The linear sequence of amino acids that make up a protein is the first level

of protein structure also known as the primary structure. This linear amino acid

sequence is derived from the corresponding nucleotide sequence of the messenger

RNA in a process called translation (discussed in the next section) during protein

synthesis.

2.4 Central Dogma of Molecular Biology

In 1958, Francis Crick used the term “Central Dogma” to describe the phenom-

ena that biological information flow occurs in only one direction, from DNA to RNA

to proteins. The Central Dogma of Molecular Biology states that once sequential

information gets into proteins, it can not get out again. This shows the one way flow

which indicates that once genetic information has passed to proteins, it cannot flow

back to nucleic acids. In 1970, Crick restated the phenomenon of the Central Dogma
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of Molecular Biology and described the information flow in nine possible transforms

(Figure 2.5) classified into three groups:

1. General transfers: DNA→ DNA, DNA→ RNA, and RNA→ Protein. These

transfers have strong evidence that they occur in all cells [29].

2. Special transfers: RNA→ RNA, RNA→ DNA, and DNA→ Protein. These

transfers may occur under some specific conditions such as in a laboratory or

in the case of some viruses [29].

3. Unknown transfers: Protein → Protein, Protein → RNA, and Protein →

DNA. These transfers are very unlikely to occur [29].

Figure 2.5: The Central Dogma of Molecular Biology [29]. Solid arrows represent

the general transfers and dotted arrows show the special transfers. Unknown transfers

are shown in red.

The general transfers describe the flow of information from one form to another

in three primary biological processes, DNA replication, transcription, and translation

as shown in Figure 2.6.

1. Replication is a process by which a cell makes an exact copy of its DNA molecule

prior to a cell division. Thus, every time the cell divides, the double strands

of the DNA is separated into single-stranded regions by an enzyme called DNA
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Figure 2.6: The journey of genetic information from DNA to protein. Image adapted

from [152].

Helicase. Each strand will serve as a template to form a new strand of comple-

mentary DNA resulting in two identical copies of the DNA molecule, each will

consist of an old strand and a new complementary strand as shown in Figure

2.7. The formation of the new strands is performed by enzymes called DNA

Figure 2.7: The DNA replication [33]

polymerase where they bind to the old single strands and begin synthesizing the

new complementary strands. Figure 2.8 shows an example of DNA replication.
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Figure 2.8: Example of DNA replication

2. Transcription is the process by which genetic information is transferred from

a portion of DNA to an RNA molecule called messenger RNA (mRNA). This

process is performed by an enzyme called RNA Polymerase that binds to a

region on the DNA called a promoter (a DNA region allowing RNA polymerase

and transcription factors to bind to initiate the transcription of a particular

gene) and starts making a copy of a complementary RNA sequence known as

the primary transcript or precursor mRNA (pre-mRNA). The pre-mRNA is

made up of introns and exons as shown in Figure 2.9. Exons are then joined

Figure 2.9: Protein synthesis process [43]
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together and introns are cut out to form a molecule called mature mRNA (see

Figure 2.9) in a process known as RNA splicing. Some protein transcription

factors bind in or next to the promoter initiating transcription by facilitating

the unwinding of the double stranded DNA to allow RNA polymerase to read

only one single strand DNA and create mRNA molecule. The transcription

process is terminated when RNA polymerase reaches the termination sequence.

RNA polymerase then releases the mRNA and detaches from the DNA.

3. Translation is the process by which messenger RNA (mRNA) is translated into

a linear chain of amino acids that forms proteins (Figures 2.6 and 2.9). This

process is performed by ribosomes (very large complexes of RNA and proteins)

with the help of several types of transfer RNA molecules (tRNA), all within the

cytoplasm. In mRNA, each three non-overlapping bases called a codon map to

a particular amino acid. Since there are four bases, 64 different combinations

or codons (43 = 64) can be formed constructing a genetic codon table known

as the genetic code. Figure 2.10 shows an example of codons and the genetic

code.

Figure 2.10: The genetic code. (Left) series of codons in a part of messenger RNA

(mRNA) molecule [45]; (Right) The genetic codon table representing the genetic code.
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Most of the 20 amino acids are encoded by more than one codon which in

general differs only in the last nucleotide. Three of these codons (UAA, UAG,

and UGA) are used to end the synthesis of a protein sequence and do not

encode for any amino acid (stop codons). In contrast, one codon (AUG) is

used to start the translation process (start codon) and codes for the amino acid

methionine (Met), the first amino acid in the polypeptide chain. Thus, the

purpose of the translation process is to map a sequence of codons to a sequence

of amino acids. The process starts by transporting mature mRNA out of the

nucleus to the cytoplasm. The ribosome then binds to the mRNA at the start

codon. As mRNA passes through the ribosome, the ribosome starts matching

anticodon sequences carried by the tRNA to the mRNA codon sequence forming

a polypeptide chain. This process continues until the ribosome reaches a stop

codon which ends the synthesis of the polypeptide chain and releases it.

2.5 Genes and Genomes

In all organisms, genetic information is stored in one or more replicable double-

stranded DNA molecules called chromosomes (Figure 2.11). Each chromosome is

made up of two copies of DNA molecule linked together. They contain genes, reg-

ulatory elements and other nucleotide sequences. The DNA molecules are wrapped

around proteins called histones resulting in a structure known as chromatin (Figure

2.11). Whereas prokaryotic cells have a single chromosome, eukaryotic cells have one

or more chromosomes. In a single human cell, there are 23 pairs of linear chromo-

somes, for a total of 46 chromosomes. Twenty-two of these pairs, called autosomes,

are similar in both males and females. The 23rd pair is the sex-determination system

and is referred to as the X and Y chromosomes. Females have two X chromosomes

in their cells, while males have both X and Y chromosomes.
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Figure 2.11: The structure of chromosomes [24].

Genome refers to the complete set of genetic information in an organism [69].

A gene is DNA segment located on a chromosome that has all required information

to make a gene-product(s), which can be protein or RNA. They are the basic units of

inheritance. Each chromosome contains thousands of genes. It was estimated by the

Human Genome Project that humans have between 20,000 and 25,000 genes [68].

2.6 Gene Expression and Alternative Splicing

2.6.1 Gene Expression

Gene expression is a process by which gene regions on a chromosome are tran-

scribed to RNA and, in most cases, translated to proteins as discussed in section 2.4

and shown in Figure 2.9. Every gene is composed of a set of two segments called

exons and introns. While exon segments end up coding for proteins in the coding

sequence (expressed sequence), intron segments do not code for proteins and there-
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fore represent the non-coding sequence. As discussed in section 2.4, the transcription

process first generates the primary transcripts which contain both exons and introns.

Next, RNA binding proteins called splicing factors initiate the splicing process in

which introns are spliced out at spliceosomes (a snRNA and protein complex that is

used to remove introns from a transcribed pre-mRNA) and exons are linked together

and transported to the ribosome for translation to proteins.

While thousands of genes are present in cells, not all genes are expressed at

once. At any particular time, only a small fraction of these genes are expressed.

In general, genes are said to be on (expressed) if their molecular product can be

synthesized or off (not expressed) if they cannot be. Thus, it is the role of cells to

determine which genes to turn on and which genes to turn off during any time. This

process is called gene regulation. For instance, a brain cell turns on genes that encode

brain proteins, but a muscle cell will leave those genes off. The measurement of

gene expression is determined by looking at how much a particular gene is expressed

within a cell or tissue. One approximate measure of gene expression is the amount of

mRNA produced by various genes in the cell. RNA gene expression analysis is useful

for cell function and differentiation studies that estimate which and when genes are

expressed and how much their expression changes across biological conditions. There

are several techniques for RNA gene expression analysis including Serial Analysis of

Gene Expression (SAGE), microarrays, and lately high-throughput mRNA sequencing

(RNA-Seq).

2.6.2 Alternative Splicing

Alternative splicing is the process by which pre-mRNA exons of a gene are

rejoined together in multiple ways producing different mRNA variants known as iso-

forms or splice variants during the RNA Splicing process. In the human genome for
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instance, current estimates suggest that more than 90% of the genes have multiple

protein isoforms [76]. The process of alternative splicing is shown in Figure 2.12.

Figure 2.12: Alternative splicing. One gene can produce multiple proteins [54].

When the primary transcript enters the spliceosome, the spliceosome recognizes

the sequence of exon-intron boundaries at regions known as the splice donor site GU

(in the 5’ direction) and splice acceptor site AG ( in the 3’ direction). Since those

two sequences are not sufficient for the spliceosome to recognize the existence of an

intron, another sequence called the branch site located 20-50 bases upstream of the

acceptor site is used. The splicesome also recognizes a region upstream 5’ from the

AG sequence and located about 5-40 bases before the 3’ end of the intron being spliced

known as polypyrimidine tract. This region is rich in pyrimidine nucleotides (C and

U). Figure 2.13 shows the regions involved in the splicing process.

The mechanism of splicing process shown in Figure 2.14 uses five small nuclear

ribonucleic-protein complexes (snRNAs) known as U1, U2, U4, U5, U6. It begins

when U1 binds to the splice site end at the 5’ direction making the branch site bind

to the G nucleotide at the donor site to form a phosphodiester linkage [19]. Then, U2

binds to the branch site sequence (denoted by A in Figure 2.14). In the next step, U4,
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Figure 2.13: Sequences involved in the RNA splicing. (Pu=A or G; Py=C or U)

[128].

U5, and U6 complex binds to the 5’ splice site replacing the position of U1. U1 and

U4 are then displaced and U6 binds to U2 at the 5’ splice site and near the branch

site. In the final step, U5 binds to the exon sequences and the intron is removed.

Figure 2.14: Alternative splicing mechanism [36].

There are several types of alternative splicing events, some of which may occur

at the 5’ or 3’ untranslated regions (UTRs), others may occur at the coding regions.

Figure 2.15 shows an overview of possible alternative splicing events.
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Figure 2.15: Alternative splicing events [11].

• Exon Cassette (Exon skipping): in this type, one or more exons are included

or excluded from the final processed mRNA product. It is the most common

gene splicing in mammals. However, this type is extremely rare in prokaryotes.

• Alternative 5’ splice sites: in this type, two or more splice sites are recog-

nized at the 3’ end of an exon. The donor site (alternative 5’ splice junction) is

used, changing the 3’ boundary of the upstream exon. This type may account

for about 18.4% of alternative splicing events in eukaryotes [76].

• Alternative 3’ splice sites: like the alternative 5’ splice sites, alternative 3’

splice sites occurs when two or more splice sites are recognized at the 5’ end of

an exon. The acceptor site (alternative 3’ splice junction) is used, changing the

21



5’ boundary of the downstream exon. This type may account for about 7.9% of

alternative splicing events in eukaryotes [76].

• Intron retention: this type simply occurs when an intron remains in the final

mRNA transcript.

• Mutually exclusive exons: this type occurs when multiple cassette exons are

used in a mutually exclusive manner. Namely, one of two exons remains in the

mature mRNA but not both.

• Alternative promoter: this type usually occurs when two promoters are

available. A different promoter is used to generate different splice variants.

The exons of 5’ terminal of the processed mRNA can be switched to generate

alternative isoforms. The specific transcription factors of the cell determine

which promoter to use.

• Alternative polyadenylation sites (Poly A): similarly to alternative pro-

moter, this type occurs when 3’UTR exons of the processed mRNA are alter-

natively spliced producing alternative polyadenylation sites [19].

In addition to the above discussed events, there are other exon-related events

that may occur as well. These events are discussed below and shown in Figure 2.16.

Figure 2.16: Alternative exon events [19].
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• Exon extension: this event may occur when one or more exons are extended

by adding an additional sequence to a transcript producing a slightly modified

mRNA sequence.

• Exon truncation: this event may occur when a partial (not fully) of a cassette

exon is added to a mRNA sequence. This is usually done by removing either

3’or 5’ (sometimes both) producing different translated protein [19].

• Exon retention: this type of alternative splicing events may occur when ad-

ditional exons located in an intronic region are included in the final mRNA

sequence resulting in an altered translated protein.
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CHAPTER 3

NEXT-GENERATION SEQUENCING

3.1 First-Generation Sequencing Methods

Until 2004, the dominant technique for DNA sequencing was the one intro-

duced by Frederick Sanger in 1977 that bears his name. The Sanger method, also

known as dideoxy sequencing or chain termination, uses modified nucleotides called

dideoxynucleotides (ddNTPs) with the normal nucleotides (NTPs). Essentially, the

structure of dideoxynucleotides is the same as normal nucleotides except they con-

tain a hydrogen group on the 3 carbon instead of a hydroxyl group (OH) which act

as chain terminators. In this method, DNA samples are divided into four separate

sequencing reactions, each containing the single-stranded DNA to be sequenced, the

four normal deoxynucleotides (dATP, dGTP, dCTP and dTTP), DNA polymerase,

DNA primer, and one of the four radioactively or fluorescently labelled dideoxynu-

cleotides (ddATP, ddGTP, ddCTP and ddTTP). Since the dideoxynucleotides lack

the 3’-OH group required to form a phosphodiester bond between two nucleotides,

once dideoxynucleotides are incorporated, the process is halted, stopping any further

formation resulting in a collection of DNA fragments with different lengths. Each

fragment is terminated by the same dideoxynucleotide in each of the four reactions.

This collection of DNA fragments is then heat denatured and run on a gel elec-

trophoresis to separate fragments by size. Each reaction is run on one of four lanes

(A, T, G, and C), each with a different ddNTP. Thus, the lane containing the ddATP
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for instance will have only those fragments that terminate at an adenosine (A) and

the same for ddGTP which will have only fragments that all stop at guanine (G)

and so on. When all lane contents have been read across the gel, DNA bands are

visualized by exposing the gel to a UV light or X-ray film and the DNA sequence is

then read from the film. Figure 3.1 illustrates the workflow of Sanger method.

Figure 3.1: The workflow of Sanger sequencing method [73].

Another first-generation sequencing method was introduced by Maxam and

Gilbert in 1977 known as a chemical cleavage method. This method is based on

chemical modification of DNA and subsequent cleavage at specific bases. Like the

Sanger method, the DNA template is split into four reactions, G, A + G, C, and

C + T . In each reaction, the DNA fragment is radioactively labeled at the 5’ end

and chemically cleaved at one of the four nucleotides. Thus, purines (A+G) might

be depurinated by formic acid whereas pyrimidines (C+T) are methylated using

hydrazine. By using hot piperidine, the DNA fragments are then cut into a series
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of labeled fragments. In order to separate fragments by size, the fragments in the

four reactions are arranged side by side in a gel electrophoresis. In the next step,

fragments are visualized by exposing the gel to X-ray film for autoradiography which

generates a series of dark bands each corresponding to a radio labelled DNA fragment

[34]. Figure 3.2 describes the Maxam-Gilbert workflow.

Figure 3.2: Maxam-Gilbert method for DNA sequencing [103]

Although this method was accurate and more popular, it did not take hold as

the preferable sequencing technique due to the complexity and the extensive use of

toxic chemicals.

Since the automated Sanger method can only accurately sequence up to 1000bp,

researchers had to think of other methods that can sequence longer sequences. As a

result, a new method called shotgun sequencing (also known as shotgun cloning) was

developed. In this method, the DNA segment of interest is cut into smaller fragments

using restriction enzymes or mechanical shearing. Each fragment is sequenced indi-
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vidually and the sequences of these fragments are then reassembled based on sequence

overlaps into continuous sequence resulting in a complete DNA sequence (Figure 3.3).

The shotgun sequencing method was used to sequence the entire human genome by

the Human Genome Project (HGP).

Figure 3.3: (a) Description of Shotgun sequencing method. (b) To reduce the com-

plexity of normal shotgun sequencing resulting from the large sequences, a hierarchical

approach is used [26]. The genome is broken down into a set of large equal segments

with known order (clone-based methods) which are then sequenced using the normal

shotgun sequencing.

3.2 Next-Generation Sequencing Technologies

Due to the limitations associated with first-generation sequencing technologies

such as the inability to sequence large genomes in a reasonable time with an optimal

cost, there was a great demand to develop new techniques. As a result, new, fast,

inexpensive, and more accurate techniques known as Next-Generation Sequencing

(NGS) were introduced in 2004. Unlike the old sequencing techniques, which are

based on chain termination methodologies, the new techniques are based on parallel

sequencing. Thus, they are also known as Massively Parallel Sequencing Techniques.

NGS technologies share similar protocols to perform the sequencing process classified
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into three main steps, (1) template preparation, (2) sequencing and imaging, and (3)

data analysis [105]. Each technique has its own protocols to perform each step and

each generates a different type of data in the form of short sequences called reads.

With their ability to generate tens of millions of short sequences in a relatively

short time with a low cost, NGS technologies has expanded the frontiers of genomic

and transcriptomic research opening new avenues for genetic investigations. However,

they require long run times spanning from 8 hours to 10 days based on the platform

and the read type (single-end or paird-end) [99]. Several NGS platforms are commer-

cially available including Roche/454 GS FLX, Illumina/Solexa, Applied Biosystems

SOLiD (ABI) analyzer, Polonator G.007, Helicos/HeliScope, Pacific BioSciences/RS,

and IonTorrent. Each platform generates a different read length ranging from 35-

1000bp within a different run time and each has a different throughput. Table 3.1

shows a detailed description of each sequencing platform while Table 3.2 describes

the key applications used by each platform.

The first three platforms, Roche 454, Illumina, and SOLiD described in Table

3.1 are the most widely used sequencers dominating the sequencing market. He-

licos/Heliscope, and PacBio/RS are refereed to as next-next generation sequencing

platforms (or third-generation sequencing). In the next sections, a brief description

of each sequencing platform is given.

3.2.1 Roche/454 GS FLX Sequencer

The Roche 454 was introduced to the market in 2004 as the first next-generation

sequencing machine and is currently developed by 454 Life Sciences Corporation. The

sequencing technology of Roche 454 is based on the sequencing-by-synthesis technique

known as pyrosequencing [168]. This machine uses an emulsion PCR amplification

technique to make copies of the DNA templates [30] in which every DNA fragment is
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Table 3.1: Detailed information for current NGS platforms.

Sequencing Plat-
form

Amplification
Method

Read length
(bp)

Throughput
(run)

Technology

Roche/GS FLX+ emPCR Up to 1,000 700 Mb Pyrosequencing

Illumina/HiSeq
2500

Bridge-PCR 2x100 600 Gb Sequencing by
synthesis

ABI/SOLiD 5500xl emPCR 50-100bp >100 Gb Sequencing by
ligation

Polonator/G.007 emPCR 26 8-10 Gbp Sequencing by
ligation

Helicos/Heliscope No 25-55 21-35 Gb Single
Molecule
sequencing

PacBio RS No 1,000-10,000 13 Gb Single
Molecule
Real Time

IonTorrent/Proton No 100-200 10 Gb Semiconductor
sequencing

bound to a single bead. Each bead is isolated in oil micelles which contain emulsion

PCR reactants producing about one million copies of each DNA fragment [168, 30].

During the pyrosequencing process, four different nucleotides are flowed on a solid

surface containing a number of wells designed to hold the beads (each well can be

used to hold one bead), producing light from a reaction utilizing pyrophosphate gen-

erated when nucleotide incorporation occurs [30]. This process continues for a number

of cycles and the light for each incorporation is recorded for each bead [30]. Thus,

the intensity of the light recorded for a particular well indicates the number of in-

corporated nucleotides [169]. Initially, the Roche 454 Sequencer had a read length

of 100-150 bp, but the more recent, Roche GS FLX Titanium XL+ can produce an

average read length up to 1000 bp.
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Table 3.2: Key applications of NGS technologies.

Application Roche
454

Illumina
HiSeq

SOLiD
5500xl

Polonator
G.007

PacBio
RS

Ion
Torrent

Whole Genome
Sequencing

yes yes yes yes no small
genomes

Targeted Rese-
quencing

yes yes yes yes yes yes

De novo Se-
quencing

yes yes yes yes yes yes

Whole Tran-
scriptome Se-
quencing

yes yes yes yes no yes

miRNA Noncod-
ing RNA

yes yes yes yes no yes

Epigenetics
Gene Regulation

yes yes yes yes no yes

Metagenomics yes yes yes no no no

SNP Genotyp-
ing & CNV

yes yes yes yes yes no

3.2.2 Illumina/Solexa Genome Analyzer

The Illumina/Solexa Genome Analyzer is the most widely used sequencer

which was introduced to the market as the second NGS machine. Initially, the plat-

form was introduced by Solexa in 2006 which was later renamed as the Illumina

Genome Analyzer (GA) [30]. The sequencing technology of Illumina is based on a

sequencing-by-synthesis technique. Unlike Roche 454 which uses emulsion-PCR for

DNA template amplification, Illumina GA uses a technique called solid-phase ampli-

fication[105]. In this technique, all four nucleotides are added simultaneously along

with the DNA polymerase into oligo-primed cluster fragments in flow cell channels

[168] (8-channel sealed glass microfabricated device) which allows bridge amplification
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of those fragments producing multiple DNA copies (or clusters) [99] for sequencing.

As a result, a reverse complimentary copy of the template DNA is generated. The gen-

erated clusters are then imaged and the incorporation of the next cycle of nucleotides

are begun after chemically removing the 3’ blocked groups and the flurophores of the

next incorporation [30]. In the last step, the generated images are analyzed resulting

in a separate sequence for each cluster. Given the fact that a high percentage of

published papers use short read sequences produced by Illumina technology, Illumina

platforms are considered to be the most widely used sequencers. At present, the Il-

lumina HiSeq 2500 can produce 2 x 100 bp (pair-end reads) and has a throughput of

600 Gbp/run (see Table 3.1 for more details).

3.2.3 Applied Biosystems SOLiD Sequencer

The ABI SOLiD (Sequencing by Oligo Ligation and Detection) sequencer

was developed by Life Technologies and purchased by Applied Biosystems which

introduced it to the market in October 2006. The sequencing technology of ABI

SOLiD is based on a sequencing-by-ligation approach using emulsion-PCR with small

magnetic beads to amplify DNA fragments for sequencing [99, 168]. This technique

is similar to the one for Roche 454 except that SOLiD beads are much smaller than

Roche beads (1µm versus 28 µm) [30]. The SOLiD sequencer uses DNA ligase and

two-base-encoded probes to amplify fragments [105]. In this system, two slides are

used per run, each of which can be divided into four or eight data points. Thus, two

adjacent bases represents a single data point and each base is interrogated twice [30].

Four dyes are utilized by the two-base encoded probes to encode for 16 possible two

base combinations as shown in Figure 3.4.

The SOLiD instrument generates a different type of data known as colorspace

data based on the concept of the 2-base encoding technique explained above. Thus,
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Figure 3.4: Possible dinucleotides encoded by each color [99]

instead of using the normal nucleotide bases A, C, G, and T, SOLiD makes use of

the four colors shown in Figure 3.4. Since there are four bases, the four colors are

represented as 0, 1, 2, and 3 (blue=0, green=1, yellow=2, red=3) and the final se-

quence file contains only these numbers. In 2011, Applied Biosystems has introduced

the updated platform SOLiD 5500xl with its ability to generate up to 100 Gbp per

run with a read length of 50-100 bp.

3.2.4 Polonator G.007

Polonator G.007 is a new platform introduced to the market by Dover Systems

in collaboration with the Church Laboratory of Harvard Medical School. The plat-

form is based on the polony sequencing technology and uses a sequencing-by-ligation

technique using randomly arrayed, bead-based, emulsion-PCR for DNA amplification

[168]. The machine tends to be cheaper than other NGS machines and inexpensive

to operate. The read length of Polonator is 26bp and its throughput is 8-10Gbp per

run.
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3.2.5 Helicos Heliscope

The Helicos Heliscope was introduced in 2008 as the first single molecular se-

quencing technology which means that fluorescent nucleotides are added singly. It

is classified as the third-generation sequencing or next-next generation sequencing

platform developed by Helicos BioSciences Corporation. This platform has two char-

acteristics that do not exist with the next-generation sequencing platforms discussed

earlier. First, since this platform has the ability to sequence a single DNA molecule,

there is no need to perform any PCR amplification before sequencing which classi-

fies the platform as single-molecule real time (SMRT) [168]. This makes the Helicos

Heliscope free from any errors and biases that may occur at the amplification stage

which simplifies, eases, and speeds up the process of DNA preparation. Second, the

signal generated from hybridizing a particular nucleotide is recorded during the real

reaction time making this platform more capable of monitoring it [96]. The average

read length of this sequencer is 25-55bp. Although this platform has the advantages

of being free from DNA preparation errors, sensitivity can be a big issue [30].

3.2.6 Pacific BioSciences RS

The PacBio RS platform was developed by Pacific BioSciences Corporation and

introduced to the market in 2010 as one of the third-generation sequencing technolo-

gies. Like Helicos Heliscope, this platform uses single molecule real time sequencing

technology (SMRT) and does not require any PCR amplification before sequencing.

This platform performs and analyzes biochemical reactions at the individual molecule

level where nucleotides are added singly. This sequencer has several advantages in-

cluding high speed performance, fast sample preparation (from 4-6 hours instead of

days) [96], and producing an average read length of 10,000 bases which is longer than

any next-generation sequencer.
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3.2.7 Ion Torrent

Ion Torrent introduced its first sequencer (PGM) at the end of 2010. This

sequencer was developed by Life Technologies and uses semiconductor sequencing

technology. This technique works on the concept that when a nucleotide is incor-

porated into the DNA by a polymerase, a hydrogen ion (H+) is released. The Ion

Torrent sequencer can recognize the incorporation of a nucleotide by detecting and

measuring the change in pH [96]. In 2012, Ion Torrent introduced its second gen-

eration sequencing platform, The Proton. This sequencer is considered as the first

sequencing machine that does not require a fluorescent probe or any scanning materi-

als which make this sequencer fast, cheap, and small in size. The average read length

of the Ion Torrent Proton is 100-200 bp and the throughput is up to 10 Gb per run.

3.3 Applications of Next-Generation Sequencing Technologies

The introduction of NGS technologies has made it possible for variety of ge-

nomic research areas to utilize the low cost and large amount of data generated by

them. To date, these technologies have been comprehensively applied in a variety of

realms such as whole-genome sequencing, targeted resequencing, Small RNA sequenc-

ing, Epigenetics, and Metagenomics. Table 3.3 describes the common applications of

next-generation sequencing technologies in genomic research.

3.4 Next-Generation Sequencing Data

Raw sequence data from next-generation sequencing platforms discussed earlier

are stored in an NIH’s archive known as the Sequence Read Archive (SRA). It is

the primary archive of high-throughput sequencing data where short read sequences

are stored and made available to the research community. This has the advantage

of reproducing analyses and allowing for new discoveries. The SRA database has
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Table 3.3: Applications of NGS technologies [141, 169].

Category Examples of Applications

De novo genome sequencing Initial generation of large eukaryotic genomes.

Whole-genome sequencing Comprehensive polymorphisms and mutation
discovery.

Targeted genomic resequencing Discovery of mutations or polymorphisms.

Transcriptome sequencing Gene expression and quantification, alterna-
tive splicing, transcript annotation, discovery of
transcribed SNPs or somatic mutations.

Small RNA sequencing MircoRNA profiling.

Epigenetics Transcription factor with its direct targets, his-
tone modification profiling, DNA methylation.

Chromatin immunoprecipitation
sequencing (ChIP-Seq)

Genome wide mapping of protein-DNA
interactions.

Metagenomics Environmental genomics.

Personal genomes Possible usage in personalized medicine.

grown sharply since its first release. Figure 3.5 represents SRA database growth. In

addition to the raw NGS data, SRA now stores alignment information in the form of

read placements on a reference sequence. In this section, a detailed description of the

raw sequence data and alignment data is presented.

3.4.1 Raw Data (Short Reads) Format

Almost all next-generation sequencing platforms report short read sequences in

either Fasta [94, 119] or Fastq [25] format. However, Fastq has become quickly the

standard format for storing short read sequences. In this section, a brief description

of the two common data formats is given.
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Figure 3.5: SRA database growth. Figure taken from the NCBI website [145]

3.4.1.1 FASTA Format

FASTA format is a text-based format consisting of a single-line description

followed by multiple lines of sequence data. It is the simplest and earliest standard

format supported by early sequence search algorithms such as FASTA [94, 119] and

BLAST [1]. Each sequence in this format starts with an indicator “>” used to

distinguish the description line from the sequence data line. The word after the

indicator “>” is used as a sequence identifier and separated from the description by

a space. Figure 3.6 shows an example of this format.

Since FASTA format does not support quality values, quality values (when they

are required) are often reported in separate files as with the Roche 454 sequencer.

3.4.1.2 FASTQ Format

FASTQ format is another text-based format used to store short read sequences.

It has become the standard format for storing data from next generation sequencing
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Figure 3.6: Example of FASTA format.

platforms allowing the storage of both sequence and quality scores of each read. Each

sequence in FASTQ format consists of four lines. The first line begins with the symbol

@ indicating the beginning of a read sequence followed by a sequence identifier and

(optionally) a description. This line is used to identify the sequence and distinguishing

it from other sequences. The second line contains the actual sequence letters (bases).

The third line begins with the symbol ”+” and optionally followed by the same

sequence identifier. It is not required to have anything after the symbol ”+” but if

present, it must be the sequence identifier. The fourth line contains the quality scores

encoded for the sequence. This line should have the same length as the second line

indicating a quality score value for each base in the sequence. Figure 3.7 shows an

example of FASTQ format.

Quality score values (also known as a Phred or Q score) in FASTQ format

are integer values representing the probability P that the corresponding base call is

incorrect. They are generated based on a quality table (See Table 3.4) that uses

a number of quality predictor values. The scores are encoded by adding 33 to the

Phred score for Sanger and 64 for Illumina and then converted to an ASCII format.
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Figure 3.7: Example of FASTQ format.

However, Illumina has a different scale for quality scores using an offset of 64 instead

of 33. In order to compute the quality scores, two different equations have been in

use. The first one is the standard Sanger assessment approach (Phred+33) which

uses the following equation:

Q = −10 log10 P (P = 10
−Q
10 )

Thus, if a base were assigned a Phred quality score of 30, the probability this base

were called incorrectly is 1 in 1000 (see Table 3.4 for more examples) which means

that the accuracy of calling this base is 99.9%. A Phred score of 20 (99% chance

a base was called correctly) or above is considered a good score cutoff for inclusion

of next generation sequence data. The Illumina has a slightly different method of

calculating quality scores using the odds P/(1− P ) instead of the probability P .

Q = −10 log10
P

1− P

For storing raw data sequences, Illumina uses FASTQ format whereas Roche

454 uses SFF (Sequence Flowgram Format) format, a binary file containing sequence
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Table 3.4: Quality scores and base calling accuracy.

Phred Quality Score Probability of Incorrect Call Call Accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10000 99.99%

50 1 in 100000 99.999%

identifiers, sequences letters, base call quality values and other meta information all

together in one file. The nucleotide sequences and quality scores in SFF files can

be extracted into two files (using Roche sffinfo), a sequence file in FASTA format

(ends with .fna) and a quality file (ends with .qual). SOLiD produces data in color

space and the primary output is generated in two separate files, a reads file in csfasta

format (ends with .csfasta) and quality scores in a quality file (ends with .qual).

3.4.2 Sequence Alignment Format

Two sequence alignment data formats are typically used for NGS applications,

(1) Sequence Alignment/Map format (SAM) [89] and (2) Binary Alignment/Map

(BAM), the compressed binary version of SAM format. SAM format has become

the standard format for storing alignment data which is often converted into BAM

format to allow more efficient storage.

3.4.2.1 Sequence Alignment/Map (SAM) Format

SAM format is a tab-delimited text format consists of two sections, an optional

header section and an alignment section. All header section lines begin with the

symbol ”@”, used to distinguish header lines from alignment lines, followed by two-

letter record type code. Each line in the alignment section consists of 11 mandatory

fields representing one alignment hit. Figure 3.8 shows an example of a SAM file.
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Figure 3.8: Example of a SAM file.

Each data field in the header has an explicit field tag represented by two ASCII

characters. For example, the VN tag describes the File format version, SN represents

the sequence name, and ID represents unique read group identifier (a complete list

of those field tags can be found in SAM format specification [136]). The alignment

section consists of multiple lines, each having 11 mandatory fields (see Table 3.5)

representing one alignment hit. The fields must appear in the same order shown in

Table 3.5. The FLAG field in the alignment section is a bitwise flag. The meaning of

each bit is shown in Table 3.6.

SAM format has been accepted as the standard format for storing alignment

data by all alignment methods including those used by next-generation sequencing.

3.5 Genome Assembly and Alignment

The raw data generated by NGS machines are in the form of millions of short

sequences (reads). Prior to performing any analysis on this data and as a first step in
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Table 3.5: Alignment section fields in SAM format. Field 12 represents the optional

fields.

Col. Field Description

1 QNAME Query NAME (Query pair NAME if paired)

2 FLAG Bitwise FLAG

3 RNAME Reference sequence name

4 POS 1-based leftmost mapping POSition/coordinate of clipped sequence

5 MAPQ MAPping quality (Phred-scaled)

6 CIGAR Extended CIGAR string

7 MRNM Mate reference sequence NaMe (“=” if the same as <RNAME>)

8 MPOS 1-based leftmost Mate POSition

9 ISIZE Inferred insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALity (ASCII-33 gives the Phred base quality)

12 OPT Variable OPTional fields in the format TAG:VTYPE:VALUE

Table 3.6: The FLAG field in SAM format.

Flag Decimal Value Description

0X0001 1 The read is paired in sequencing

0X0002 2 The read is mapped in a proper pair

0X0004 4 The query sequence itself is unmapped

0X0008 8 The mate is unmapped

0X0010 16 Strand of the query (1 for reverse strand)

0X0020 32 Strand of the mate

0X0040 64 The read is the first read in a pair

0X0080 128 The read is the second read in a pair

0X0100 256 The alignment is nor primary

0X0200 512 The read fails platform/vendor quality checks

0X0400 1024 The read is either a PCR or an optical duplicate

any analysis, short read sequences need to be mapped back to a reference genome in

order to determine the locations from which they originate. This process, referred to

as a reference-based assembly, is performed assuming a reference genome is available.
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It is the preferable approach since it is fast, easy, and capable of determining the

locations of original sequence.

In cases where an organism does not have a reference genome, read sequences

can be de novo assembled in order to construct the original reference sequence. Since

read sequences are very short and large in number, this approach is more complicated

and difficult than the previous one.

3.5.1 Alignment

Alignment is the process of mapping a DNA sequence to its reference sequence

of origin to determine the most probable source location in the genome reference. It

usually reports the most likely sequence of origin either as an identical sequence (100%

match) or similar sequence (allowing a number of mismatch bases in the sequence

alignment) [72]. Figure 3.9 shows the principle of sequence alignment (for illustration

purposes, reads are represented by only 4bp length).

Figure 3.9: The concept of sequence alignment [72].

Several alignment algorithms have been developed in the last few years in-

cluding the traditional alignment algorithms BLAST [1] and BLAT [75]. The main

purpose of the BLAST and BLAT algorithms is to align DNA/protein sequences to

a library or database of sequences to find shared sequence homology. The BLAST

and BLAT tools tend to be efficient at aligning a small number of longer sequences.

However, for large amounts of short reads, BLAST and BLAT can be very slow and
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computationally expensive which make them impractical for mapping millions of short

reads to a reference genome. Consequently, there was a critical need to develop new

algorithms and tools to map NGS data in a fast and efficient manner. As a result, a

number of short read alignment approaches have been developed, most of which are

based on two approaches (explained below): (1) Hash-Based approach (also known

as Spaced-Seed Indexing) and (2) Burrows Wheeler Transform (BWT) approach.

3.5.1.1 Hash-Based Approach

Most of the initially designed alignment algorithms are based on a hash-table

approach [41]. The idea behind this method is to use a mapping function to map iden-

tified values called keys to their associated values through a special index. Alignment

algorithms have implemented this type of data structure to first index the sequences

and then associate them with read identifiers as shown in Figure 3.10.

Figure 3.10: The hash-based approach [41].

In this approach, the hash table is constructed using either the sequences reads

or the reference genome. If the table is constructed using the sequence reads, then

the reference genome is used to search the table and vise versa for the second case.

Examples of tools using this approach are shown in Table 3.7.
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Table 3.7: Examples of hash-based aligners [41].

Tool Hash-Table Construction Technique

MAQ [85] Based on read sequences

ELAND (Illumina) Based on read sequences

SOAP [84] Based on reference genome

MOSAIK [63] Based on reference genome

SHRiMP [135] Based on read sequences

ZOOM [93] Based on read sequences

BFAST [64] Based on reference genome

The hash table in this approach is usually implemented as spaced seeds in

which a read sequence is divided into four equal-sized subsequences called “seeds”.

The idea behind this is that if a read, as a whole, can be perfectly mapped to the

genome sequence, then all its seeds will mapped perfectly as well. On the other hand,

if there were a one mismatch of mapping the entire read, this one base difference

should fall within one of the seeds [155]. By using this technique to align the six

possible pairs of the seeds to the genome reference, one can be sure all read hits with

two mismatch are reported [41, 155] . Figure 3.11a shows the spaced seed indexing

methodology.

3.5.1.2 Burrows-Wheeler Transform (BWT) Approach

The Burrows-Wheeler transform (also known as Block-Sorting) is a technique

introduced by Michael Burrows and David Wheeler in 1994 for data compression. The

idea of this approach is based on character rotations and sorting. The transformation

of the input string is performed by rotating all string characters after appending a

special character to the end of the string. This character should be smaller than all

alphabets in the string. In the next step, resulted rotations are sorted in lexicograph-

ical order and the last column is taken as the output string, bwt(s). Figure 3.12
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Figure 3.11: Genome alignment techniques [41]. (a) Spaced seed indexing method.

Reference sequence positions are divided into equal-sized segments called “seeds”. Seeds

are then paired and stored in a look-up table. Each read sequence is also divided into 4

segments and the seed pairs are used as keys to search for the matching positions in the

reference sequence [155]. (b) Bowtie implementation of Burrows-Wheeler transform.

Reads are aligned base by base from right to left and all active locations are reported.

If no match position where the read might map is found, Bowtie backs up and make

substitution.

shows an example of this process. For the human genome, this method can be used

the same as in the example above. Figure 3.13 shows an example of creating a BWT

of 14-mer genomic sequence.
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Figure 3.12: Burrows-Wheeler transform process. The Burrows-Wheeler matrix T

is constructed as a matrix whose rows represent all possible rotations of T. The prop-

erty of reversible permutation of BWT(T) allows the original text to be reconstructed.

Note that the output string has many repeated characters which make it more easy to

compress.

Figure 3.13: Burrows-Wheeler transform for genomic sequence data [41].

Examples of tools using this approach include BOWTIE [79], BWA [86], and

SOAP2 [87]. These tools implement BWT technique using Ferragina-Manzini index

(FM-index) [39] data structure to align read sequences to the reference sequence. As

a fact, algorithms implementing BWT are much faster than hash-based algorithms.
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Since Bowtie is considered the most widely used algorithm for aligning NGS

data, a brief description of the tool is given below.

3.5.1.3 Bowtie

Bowtie [79], as defined by its developers, is an ultrafast, memory-efficient short

read aligner that align short DNA sequences (reads) to large genomes. The implemen-

tation of Bowtie is based on a Burrows-Wheeler transform indexing schema shown

in Figures 3.12 and 3.13. It uses an FM-index to build genome indices. Using this

transform, the entire human genome can be compressed and indexed into about 2.2

gigabytes (Bowtie 1) of memory (3.2 gigabytes for Bowtie2). Bowtie has the ability

to align 25 million of reads with length 35bp to the human reference genome in an ap-

proximately one CPU hour utilizing about 1.3 gigabytes of memory [79]. In order to

find the exact match hits, Bowtie uses BWT with the Ferragina-Manzini (FM) exact-

matching algorithm. Since this algorithm does not allow for mismatches and favors

high quality reads, Bowtie has extended it by introducing a novel approach to the FM

algorithm called a quality-aware backtracking [79]. To limit excessive backtracking,

Bowtie has introduced another extension called double indexing [79].

Bowtie uses BWT to align reads base by base to the transformed reference

genome starting from the end of the read (right to left) as shown in Figure 3.11b.

When a read is traversed, all matched locations to which the read might align are

reported. If no matched location is found in which the read might perfectly map,

Bowtie backtracks to the previous base and incorporates a base and restarts the search

[155]. Using this technique, Bowtie has proved to be one of the fastest alignment

algorithms (faster than the hash-based algorithm of MAQ by 30-fold [41]).
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3.5.2 Assembly

As discussed earlier, the reference-based assembly approach is the preferable

choice if the reference genome exists. However, in cases where the reference genome

is not available (de novo sequencing), the short DNA sequences (reads) must be

assembled to computationally reconstruct the original DNA sequence. In general,

assembly refers to the process of grouping short reads into contigs and contigs into

scaffolds (Figure 3.14), without using any prior knowledge of the genome. Contigs

and consensus sequences are built from multiple sequence alignment (overlapping

between reads) of short reads with no gaps. Scaffolds (or supercontigs) refers to an

ordered and oriented set of contigs separated by gaps. These gaps might be identified

by one or more ”N” where the consecutive number of N’s determines the gap length

[107]. The process of constructing scaffolds from contigs is called scaffolding.

Figure 3.14: Overview of genome assembly [51].

Several graph-based assembly algorithms have been developed for NGS data

which are classified into three main categories, (1) Greedy graph assembly, (2) Over-

lap/layout/consensus (OLC), and (3) De Brujin graphs (DBG) algorithms [107]. In

order to discuss and understand these approaches, a brief review of graph theory

concept should be given.
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3.5.2.1 Graphs and Graph Theory

A graph is a data structure representation composed of a set of nodes (vertices)

and a set of edges (arcs) between them. It is defined as G = (V, E) where V is the

set of nodes (vertices) and E is the set of edges (arcs). Each edge in the graph is

connected by a pair of nodes u and v and u,v ∈ V. A graph is called a directed (or

digraph) graph if the edges have a direction associated with them and undirected if

the edges have no direction. The directed edge that points to a node at the end

of the edge (sink node) is called the incoming edge for that node. Similarly, if the

node is the source node of the directed edge, the edge is called outgoing edge for that

node. The number of edges incident to a node v represents the degree of the node

and defined as deg(v). A sequence of directed edges e1, e2, ..., en such that each node

is adjacent to the next form a path P defined as P = ((v1,v2),(v2,v3),.....,(vk, vk+1)).

Thus, the number of edges in a graph path represents its length. A graph is called

connected if each pair of nodes can be joined by a path and disconnected otherwise.

If a path starts and ends with the same node, it is called a graph cycle. A cyclic

graph is defined as a graph containing at least one cycle whereas acyclic graph is a

graph that does not contain any cycle. A directed and acyclic graph is referred to as

a directed acyclic graph (DAG).

The sequences of short reads can be represented as an overlap graph where

nodes represent reads and edges represent the overlaps between reads [107]. Since

edges represent the overlaps, each path in the graph will represent a contig. This can

be performed using a k-mer graph (for a de Brujin graph) such that nodes represent

all equal-sized subsequences (k-mers) and edges represents the overlaps between the

subsequences by k-1 bases (Figure 3.15b). Alternatively, nodes can be used to implic-

itly represent the overlap between the subsequences by k-1 bases and edges represent

the subsequences [107] as shown in Figure 3.15c.
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Figure 3.15: A k-mer graph representation of a read sequence with k=4 [107]. The

path in the figure represents consensus sequence. The overlaps are computed by per-

forming a pairwise alignment between all reads

3.5.2.2 Greedy Graph Assembly

Among the simplest types of assembly algorithms is the greedy graph assembly.

In this approach, individual short reads are grouped together into contigs starting

with one read (or contig) and continually adding more overlapping reads (or contigs)

that have the best overlap until no more reads/contigs can be added [107, 122]. It is

a prefix-to-suffix overlap which means the prefix of one read overlaps with a sufficient

number of bases with suffix of another read. The best overlap in this context refers

to the reads with the highest overlap score determined by the number of matched

bases in the overlap. Examples of algorithms using greedy assembly strategy include

SSAKE [161], SHARCGS [35], and VCAKE [71].

3.5.2.3 Overlap/Layout/Consensus (OLC)

Th OLC approach uses the concept of an overlap graph in three steps, (1)

overlap, (2) layout, and (3) consensus.

1. Overlap: in this step, pairwise overlaps between read sequences are discovered

by comparing the reads to each other. This comparison is performed using a

heuristic seed and extend approach to find a set of k-mers across all reads and
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determine which reads share the k-mers. The set of k-mers will be then used

as a seed for the alignment between reads [107].

2. Layout: in the layout step, the overlap graph, discussed in step (1), is con-

structed so that an approximate layout of the read sequences can be given.

This graph is then analyzed to define the paths corresponding to fragments

in the genome being assembled. The final aim of this analysis is to define a

single path that includes all nodes such that a node is visited only one time.

This path will correspond to the reconstruction of the genome using all read

sequences [122].

3. Consensus: in the final step, consensus sequence is constructed using multiple

sequence alignment (MSA).

The OLC approach often used for assemblies designed based on the old Sanger

sequences. Examples of OLC algorithms are the Celera assembler [112], Arachne [8],

and CAP3 [67].

3.5.2.4 De Bruijn Graph (DBG)

De Bruijn graph assembly (or the Eulerian approach) is the most widely

adopted approach to assemble NGS short reads generated by Illumina and SOLiD. It

is also based on the concept of k-mer graphs discussed earlier. Generally, De Bruijn

graph is constructed as follows. To start, all reads are broken down into k-mers (sub-

sequences of length k) in which each node in the graph represent a k-mer of length

k-1 prefixes and suffixes of the original k-mer. Two nodes are connected by a directed

edge if (k-1)-suffix of the source node is a (k-1)-prefix of the sink node resulting in

an overlap of k-2 as shown in Figure 3.16.

The assembly problem in this context is equivalent to finding a path that

includes all edges in the graph [122]. This path, by which the program Euler assembler
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Figure 3.16: Example of de Bruijn graph assembly with k=4. The edges are labeled

with k-mers and nodes contain k-1 of the original k-mer.

[120] was known, is called a Eulerian path. It is a path in the graph traversing each

edge exactly once.

A number of assembly algorithms have been designed based on this approach

targeting specifically short read sequence data. Examples of these are Euler-SR [20,

21], ABySS [143], Allpaths [18], SOAPdenovo [88], and Velvet [167].
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CHAPTER 4

RNA-SEQ METHODOLOGIES

4.1 Transcriptome Analysis

Transcriptome refers to the set of all transcripts and their abundance in the cell

[159]. Generally, the term refers to the set of all RNA (mRNA, tRNA, rRNA, and non-

coding RNA) transcripts in a particular cell. By studying transcriptomics, different

genome-level functions can be identified, such as estimating when and where each

gene is expressed in the cell/tissue at a given time, detecting the amount of mRNAs

(RNA expression levels) in a particular cell (expression profiling), and discovering new

genes. Thus, one important goal of analyzing the whole transcriptome is to define and

catalogue the characteristics of all transcripts expressed in a particular cell (or tissue)

for a specific developmental stage [27]. Different techniques have been developed over

time for transcriptome analysis, starting with Northern blot analysis developed in

1977 leading to whole transcriptome sequencing with NGS in 2006. Figure 4.1 shows

the developmental milestones of transcriptome analysis.
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Figure 4.1: The developmental milestones of transcriptome analysis.

4.2 Transcriptome Analysis Techniques

4.2.1 Candidate Gene Approaches

4.2.1.1 Northern Blot

Northern blot was the first technique developed for transcriptome analysis by

James Alwine, David Kemp, and George Stark in 1977 to detect specific RNA (or

isolated mRNA) sequences for gene expression studies. The Northern blot procedure

starts with the extraction of mRNA from tissue samples or cells which is then purified.

The extracted mRNA is then size-separated by gel electrophoresis and separated RNA

samples are transferred to a nylon membrane. The RNA is detected in the final step

using an isotopic or non-isotopic labeled cDNA or RNA probe (Figure 4.2). The

throughput of this technique is quite low (detection of a few known transcripts) while

large amounts of input RNA is required [108].

4.2.1.2 Reverse Transcription Quantitative PCR (RT-qPCR)

Reverse transcription quantitative PCR (RT-qPCR) (also known as quantita-

tive real-time PCR or qRT-PCR) is one of the most popular techniques for accurately
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Figure 4.2: The Northern-blot procedure. [115].

measuring the mRNA level for a gene or locus proposed in 1989. It is used today

as means of validating RNA expression for a limited number of transcripts. This

technique requires the RNA to be converted into a more stable form called com-

plementary DNA (cDNA) using an enzyme called reverse transcriptase. Then PCR

amplification and probe hybridization is performed for the DNA molecule of interest.

To quantify the amount of mRNA template in the sample, the probe needs to be flu-

orescently labeled and the emission of this fluorescent label is recorded at each PCR

amplification step, allowing for a very accurate measurement of the original RNA. An

important step before performing any sample-to-sample comparison is to normalize

the output data generated from the RT-qPCR experiment. This technique has the

advantage of increasing the throughput and reducing the required amount of input

mRNA. However, RT-qPCR is not able to perform transcriptome-wide analysis, with

a throughput ranging on the order of hundreds of transcripts at a time [108].
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4.2.2 Sequencing-Based Approaches

4.2.2.1 Expressed Sequencing Tags (ESTs)

Expressed sequence tags (ESTs) are short DNA sequences (200 to 800 bases)

generated by sequencing the complementary DNA (cDNA) and used to determine

if a gene is expressed in a cell at a particular time. This process is performed by

sequencing 200-500 nucleotides from one or both ends of each cDNA creating 5’ESTs

and 3’ESTs (Figure 4.3). ESTs are then used to search genome databases (e.g.

GenBank, EMBL, and DDBJ) to find a matching sequence. Since ESTs are sequenced

from the transcribed regions, ESTs have been mainly used for discovering novel genes

and coding regions.

Figure 4.3: Overview of EST construction [9].

Since ESTs are a quick and inexpensive to construct, for a long time, this

method was the core method for gene transcript discovery. However, ESTs can be

error-prone, and do not typically cover the entirety of each transcript.
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4.2.2.2 Serial Analysis of Gene Expression (SAGE)

The SAGE method, developed by Dr. Victor Velculescu in 1995, was the first

tagged sequencing technique used for gene expression profiling. It was introduced as

an alternative method to microarrays for the detection of differentially expressed genes

by comparative analyses. This method was originally used for the investigation of

differentially expressed genes in colon cancer. Thus, a large number of SAGE studies

were focusing on cancer research. The general procedure of a SAGE experiment starts

with the isolation of mRNA from the input sample. From each mRNA fragment, a

small sequence (9-10 base pairs) called a SAGE tag is sequenced. These tags can be

serially analzyed and linked together to form a long chain. To identify the abundance

of each transcript, the number of times each a SAGE tag appears (called SAGE tag

number) is recorded. Figure 4.4 shows an overview of SAGE method.

Figure 4.4: Overview of SAGE method [138].
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Although SAGE can be superior to microarrays since it that does not require

any prior knowledge of isolated genes and it produces digital counts of transcript

abundance, the method had not been used as widely as microarrays [108].

4.2.2.3 Massively Parallel Signature Sequencing (MPSS)

MPSS was introduced by Sydney Brenner in 2000 for conducting in-depth

expression profiling. It can be used to analyze the expression level of all genes in

a sample by counting the number of individual mRNA molecules produced by each

gene [127]. Similar to SAGE and unlike microarrays, MPSS does not require any prior

knowledge of identified genes before performing an experiment. It generates digital

data by counting all mRNA molecules in a sample. This process is performed through

the generation of a 17-20 nucleotides signature sequence from each mRNA at a specific

site upstream from its poly(A) tail [127]. This sequence is called a “signature” which

is used to identify the mRNA molecule. Thus, measuring the expression level of any

gene means counting the number of “signatures” for a gene’s mRNA.

4.2.3 Microarray Technology

Despite its limitations, microarray technology is the most widely used tech-

nique for transcriptome analysis [109]. It has dominated gene expression studies for

the last 15 years. Microarray technology is a hybridization-based technique that al-

lows simultaneously the analysis of hundreds of samples and measures the expression

levels of tens of thousands of known genes. The microarray itself is made of a collec-

tion of microscopic DNA spots attached to a solid surface (usually glass or silicon).

Each DNA spot on the array contains picomoles of a specific single-stranded DNA se-

quence or oligonucleotide called a probe. A single microarray chip can have hundreds

of thousands of spots, each can contain millions of genomic DNA or short stretch of
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oligo-nucleotide strands that correspond to a particular gene. Microarrays are used in

several studies including detecting and measuring gene expression (the most popular

use where the expression of a set of genes in one condition (e.g. diseased) is compared

to the same set of genes in another condition (e.g. healthy)), microarray mutation

analysis (mainly for SNP detection), and comparative genomic hybridization, which

is used to assess genome content in different cells or closely related organisms.

There are two types of microarrays: (1) Spotted arrays (spotting the DNA

onto the surface) and (2) In-situ synthesised oligonucleotide arrays where oligos are

built up base-by-base on the surface. The DNA microarray can be classified in their

structures into three types: (I) Single channel arrays (Affymetrix gene chips), (II)

Multiple channel (dual color (cDNA) microarrays), and (III) Specialty approaches

(Bead arrays such as Lynx, Illumina).

The general procedure of a microarray experiment, described in Figure 4.5,

starts by extracting RNA molecules from the cell/tissue of interest. The extracted

RNA molecules are then reverse-transcribed into cDNA using an enzyme called re-

verse transcriptase. The produced cDNAs are labeled with different fluorescent dyes,

typically Cy3 and Cy5 (e.g. red for condition A and green for condition B) using

a two-channel approach (i.e. Illumina) or biotin for single channel microarrays (i.e.

Affymetrix). Once the cDNAs of the sample have been labeled, they are allowed to

hybridize onto the the same glass slide. Performing this step will cause the cDNA

sequence to hybridize to specific spots on the glass slide containing its complementary

sequence. To remove any extra hybridization solution (unbound probe), a washing

step is performed to make sure only the labeled target of interest is the actual one.

Following hybridization, the spots are excited by a laser and scanned at appropriate

wavelengths to detect the different dyes [50]. The detected fluorescence is stored as

an image in a file (usually in tagged image format (.tiff)) for further analysis. The
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Figure 4.5: Microarray technology [81].

colors in the image represent the status of the gene in both conditions. Thus, when

a gene is expressed abundantly in the condition of interest (e.g. diseased) but not in

the control condition (e.g. healthy), the spot would appear as a red. In contrast, if a

gene was expressed at a higher level in the control, the spot would appear as a green.

In cases where a gene was expressed in both conditions, the spot would appear as a

yellow and as a black if it was not. The produced image in the last step is processed

and background and feature pixels are transformed into intensity values to quantify

the spots. Intensity values are combined into unique quantitative measures reflecting

the expression level of the gene deposited in a specific spot. In order to perform a

comparative analysis, signal intensities need to be normalized. Once miroarray data is

normalized, various differential expression analysis methods can be applied to detect

differentially expressed genes across conditions.

Despite its power of measuring the expression of thousands of genes, microarray

technology suffers from a number of limitations including:
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1. The technology requires the use of prior knowledge of the organism which make

it unable to detect novel transcripts.

2. The dynamic range of intensity levels is limited by the resolution of the scanner

used (typically 16-bits).

3. Since the data representing the expression level is derived from the hybridization

intensity, this data is noisy. [108].

4. There exists a likelihood of a cross-hybridization between mRNA sequences and

non-specific targets.

4.3 High-Throughput mRNA Sequencing (RNA-Seq)

The introduction of high-throughput sequencing technologies has revolution-

ized genome research in many areas including their applications to transcriptome pro-

filing studies. RNA-Seq (or Whole Transcriptome Shotgun Sequencing) refers to the

use of deep sequencing technologies for transcriptom analysis. The advent of RNA-Seq

has enabled researchers and scientists to study the transcriptome at an unprecedented

rate and has lately become the standard technology for transcriptomics. It is based on

the direct sequencing of complementary DNA (cDNA) using next-generation sequenc-

ing technologies [109]. RNA-Seq is proving to be the technique of choice for studying

transcriptome profiles offering several advantages over hybridization-based approaches

such as microarrays (Table 4.1), by providing the ability to detect known and novel

transcripts and to precisely measure transcript expression levels independent from

any prior knowledge of the genome sequence. Unlike microarrays, which generate

expression signal intensities, RNA-Seq generates quantitative expression read counts.

Thus, increasing read counts provides higher dynamic ranges at higher resolution,

which improves both sensitivity and quantitative accuracy. In addition, RNA-Seq
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makes it possible to access some transcriptome structures such as allele-specific ex-

pression, novel promoters, isoforms [116], alternative spliced variants, and sequence

variation (e.g. SNPs). RNA-Seq short reads (35-150 bases) provide information about

how two exons are connected, whereas long reads are useful for determining how mul-

tiple exons are connected [159]. Unlike microarrays, RNA-Seq has a low background

noise with high resolution. While microarrays offer resolution at the probe length,

RNA-Seq allows for a single base resolution. Such granularity allows for better de-

tection of splice variants. Furthermore, the ability to distinguish different isoforms

and different allelic expression is limited in microarrays but is high in RNA-Seq [159].

Also, the dynamic range for quantifying expression differences is limited to a few

hundred folds in microarrays, but can be nearly 10,000 fold with RNA-Seq data. One

key limitation for microarrays is the dependency on a reference genome. Although

RNA-Seq can take advantage of such an annotation, it also offers the ability for de

novo transcriptomics.

Table 4.1: Advantages of RNA-Seq over microarray technology.

Application RNA-Seq Microarray

Data Type Quantitative read counts Relative intensities

Technology High-throughput sequencing Hybridization

Resolution Single base From several to 100bp

Genome references Required in some cases Required

Dynamic range ∼10000-fold Few hundred-fold

Background noise Low High

RNA amount required Low High

Alternative splicing/novel
isoforms

Able to detect limited

Discover new genes Yes No
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4.3.1 RNA-Seq Workflow

The workflow of an RNA-Seq experiment is straightforward and generally starts

with the extraction of total RNA or a polyadenylated RNA.The extracted RNAs or

Poly(A) is then converted to a library of double stranded cDNA and sheared into

small fragments. In the next step, adapters are attached to one or both sides of each

cDNA fragment. Using next-generation sequencing platforms, each cDNA fragment

is sequenced and a short sequence (read) from one end of the fragment (single-end

tag) or from the two ends (paired-end tag) is obtained. Figure 4.6 shows the typical

RNA-Seq workflow. The obtained reads are then mapped to the reference genome

Figure 4.6: Workflow of RNA-Seq experiment.
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to measure the abundance of transcripts. If the reference genome was not available,

read sequences can be de novo assembled to construct the full set of transcripts and

estimate their abundance.

4.3.2 RNA-Seq Applications

RNA-Seq methodology has been applied to a variety of applications including

(I) transcriptome reconstruction, (II) transcript quantification, and (III) detection of

significant changes in the transcript expression levels across biological conditions. In

this section, a brief overview of each application is given.

4.3.2.1 Transcript Assembly

Transcriptome assembly, the foundation of transcriptome studies [101], is the

process of identifying the complete set of transcripts in the transcriptome. To perform

this task, RNA-Seq read sequences generated by NGS platforms need to be assembled

prior any further analysis. Three main methods were identified for transcriptome

assembly, (I) reference-based assembly (or ab initio), (II) de novo assembly, and (III)

combined assembly.

Reference-Based Assembly

Reconstructing the transcriptome in this method is built upon the available

reference genome, where read sequences in the first step are aligned directly to the

reference genome (Figure 4.7a) to determine their original locations using one of the

alignment tools mentioned in section 3.5. In the second step, a graph representing

all possible transcripts is built from the overlap between all reads (Figure 4.7b).

Transcripts are constructed in the final step by traversing the graph and defining

paths that, as a result, should correspond to transcripts. (Figure 4.7c) [101].
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Figure 2 | Overview of the reference-based transcriptome assembly strategy. The steps of the reference-based 
transcriptome strategy are shown using an example of a maize gene (GRMZM2G060216). a | Reads (grey) are first 
splice-aligned to a reference genome. b | A connectivity or splice graph is then constructed to represent all possible 
isoforms at a locus. c,d | Finally, alternative paths through the graph (blue, red, yellow and green) are followed to join 
compatible reads together into isoforms.

Applications. Reference-based transcriptome assembly 
is easier to perform for the simple transcriptomes of bac-
terial, archaeal and lower eukaryotic organisms, as these 
organisms have few introns and little alternative splicing. 
Transcription boundaries can be inferred from regions 
of contiguous read coverage in the genome even with-
out graph construction and traversal37,51,52. Alternative 
transcription start and stop sites can also be inferred 
based on the 5′ cap or poly(A) signals (if cap- or end-
specific experimental protocols are used)51,53. However, 
complications arise owing to the gene-dense nature of 

these genomes. Many genes overlap, resulting in adja-
cent genes being assembled into one transcript, even 
though they are not from a polycistronic RNA. Strand-
specific RNA-seq has successfully been used to separate 
adjacent overlapping genes from opposite strands in the 
genome51,52. Overlapping genes that are transcribed from 
the same strand and that also have comparable expres-
sion levels cannot easily be separated without using  
cap- or end-specific RNA-seq.

Plant and mammalian transcriptomes have complex 
alternative splicing patterns and are difficult to assemble 
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Figure 4.7: Overview of reference-based assembly method [101].

A variety of assembly algorithms have been developed using reference-based

assembly including G-Mo.R-Se (Gene Modeling using RNA-Seq) [31], Cufflinks

[154], and Scripture [55]. Whereas G-Mo.R-Se builds a de novo gene model based

on an exon identification approach, Cufflinks and Scripture use the concept of a

graph to assemble transcripts by using spliced reads (reads spanning exon-exon junc-

tions). In order to construct transcripts, both Cufflinks and Scripture apply similar

approaches to construct the graph, but differ in the traversing strategy. While Cuf-

flinks constructs an overlap graph based on the spliced alignment locations of the

reads, Scripture makes use of individual bases and all possible connections between

them (graph topology) to construct the graph.

There are a number of advantages associated with reference-based assembly

including its efficiency and sensitivity. Efficiency because assembly can be run on a
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small RNAs using parallel computing and sensitivity because of the ability to assemble

low abundance transcripts [101]. However, this method suffers from a few drawbacks.

For example, the reference genome quality may have a big impact on the assembly

process. Namely, if the reference genome contains a large number of mis-assemblies or

deletions, the assembly process will result in a mis-assembled transcriptome. Another

drawback is the errors resulting from the alignment process which will be carried over

to the assembly process as well. Last, since this method requires an organism reference

sequence, the method cannot be applied to organisms without a reference genome.

As an alternative, one may use a closely related species but the limitation with this

is that the assembly process will not be perfect and some transcripts from divergent

regions will be missed.

De novo Transcript Assembly

De novo assembly is a genome-independent method that does not require any

predefined reference genome. Thus, instead of mapping reads to the reference genome,

reads are directly used, based on their overlap, to construct transcripts. Assembly al-

gorithms such as Trans-ABySS [130], Rnnotator [102], Multiple-k [150], Trinity

[49], and Oases [137] assemble transcripts based on the construction of a De Bruijn

graph (discussed in section 3.5.2) but they differ slightly in the strategy for traversing

the graph. Once the De Bruijn graph is built, paths are traversed and false branch

points are trimmed resulting in paths that represent transcripts (Figure 4.8). The

advantage of this method is that it does not require a reference genome which means

it can be applied to organisms without a reference genome. Since it does use a ref-

erence sequence, this method is free from errors that may result from the alignment

process. In addition, the de novo assembly approach can be applied even with the

availability of a reference genome to reconstruct transcripts transcribed from missing
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Figure 3 | Overview of the de novo transcriptome assembly strategy.  
a | All substrings of length k (k-mers) are generated from each read.  
b | Each unique k‑mer is used to represent a node (or vertex) in the  
De Bruijn graph, and pairs of nodes are connected if shifting a k‑mer by 
one character creates an exact k–1 overlap between the two k‑mers. 
Note that for non-strand-specific RNA sequencing data sets, the reverse 
complement of each k‑mer will also be represented in the graph. Here, a 
simple example using 5‑mers is shown. The example illustrates a SNP or 

sequencing error (for example, A/T) and an example of an intron or a 
deletion. Single-nucleotide differences cause ‘bubbles’ of length k in the 
De Brujin graph, whereas introns or deletions introduce a shorter path in 
the graph. c,d | Chains of adjacent nodes in the graph are collapsed into 
a single node when the first node has an out degree of one and the 
second node has an in degree of one. Last, as in the reference-based 
approach, four alternative paths (blue, red, yellow and green) through the 
graph are chosen. e | The isoforms are then assembled.
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Figure 4.8: Overview of de novo transcript assembly [101]. (a) K-mers of length

k=5 are generated from each read. (b) A de Bruijn graph is constructed where nodes

represent k-mers and edges represent overlaps between them. (c) The de Bruijn is

collapsed by merging adjacent nodes into a single node. (d) The graph is traversed and

paths are defined where each path corresponds to a separate isoform. (e) Isoforms are

then assembled.
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regions in the genome assembly. However, as with any computational method, the

de novo assembly has a few drawbacks. First, it is difficult to distinguish between

sequence variations and sequencing errors which make it nontrivial to determine the

trade-off between sensitivity and complexity [44]. Second, sequencing errors increase

the complexity of the graph by producing branch points. Last, determining the k seed

length can be an issue which may affect the assembly process. For instance, a smaller

value of k will result in a large number of overlaps and therefore more complex graph

and vise versa. Thus, choosing k in most cases will depend on the coverage. For

example, a small value of k is preferable when the coverage is low since it increases

the number of overlapping nodes to the graph.

The Combined Method

This method as it says from its name combines the two previous methods,

reference-based assembly and de novo transcript assembly taking the advantages of

both methods. Two main strategies are possible for this method, align-then-assemble

or assemble-then-align as shown in Figure 4.9.

In the align-then-assemble approach, RNA-Seq reads are first aligned to the

reference genome accounting for possible splicing events. Then transcripts are recon-

structed from the spliced alignments. In the assemble-then-align approach in contrast,

first transcripts are assembled directly from the RNA-Seq reads and splice-aligned to

the genome to define exon and intron structure and variation between alternative

spliced transcripts [56].

4.3.2.2 Transcript Quantification

Another application of RNA-Seq is the estimation of transcripts expression

levels (relative mRNA quantities) at the gene and isoform levels. It is performed in
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Figure 4 | Alternative approaches for combined transcriptome assembly. The left choice depicts the align-then-
assemble strategy, in which reference-based assembly is followed by de novo assembly of reads that failed to align to 
the genome. The right choice depicts the assemble-then-align strategy, in which the reads are first de novo assembled 
and then scaffolded and extended using a reference genome. RNA sequencing (RNA-seq) reads are shown in red, and 
assembled transcripts are shown in orange.

Trans-spliced genes
Genes whose transcripts  
are created by the splicing 
together of two precursor 
mRNAs to form a single  
mature mRNA.

accurately from short reads. Cufflinks20 and Scripture16 
have been developed for efficiently reconstructing tran-
scripts from mammalian-sized data sets. A recent study 
showed that Cufflinks had a higher sensitivity and speci-
ficity than Scripture when detecting previously anno-
tated introns18. A comprehensive comparison of the 
performance of these programs is needed, however, as 
discussed in a later section. Also, it is not known how well 
these programs perform on polyploid plant transcrip-
tomes, in which different alleles from each subgenome  
need to be resolved.

Disadvantages. There are a few drawbacks to the  
reference-based strategy. The success of reference-based 
assemblers depends on the quality of the reference 
genome being used. Many genome assemblies, except 
those of a few model organisms, contain hundreds to 
thousands of misassemblies and large genomic dele-
tions54, which may lead to misassembled or partially 
assembled transcriptomes. Errors introduced by short-
read aligners are also carried over into the assembled 
transcripts. Spliced reads that span large introns can be 
missed because aligners often only search for introns that 
are smaller than a fixed length to reduce the required 
computational power. Also, aligners must successfully 

deal with reads that align equally well to multiple places 
in the genome. If these ‘multi-reads’ are excluded alto-
gether, then this will leave gaps in the reference-based 
assembly in regions that cannot be mapped uniquely. But 
if these reads are included by random assignment, then 
they could lead to the formation of transcripts from a 
region of the genome that has no transcription.

Reference-based transcriptome assembly is, of course, 
not possible without a reference genome. However, 
in some cases, it is possible to use the reference from 
a closely related species. The strawberry reference 
genome, for example, was used to assemble the raspberry 
transcriptome (J. Ward and C. Weber, Cornell Univ.,  
personal communication); however, in these appli-
cations, transcripts from divergent genomic regions 
would be missed. Last, reference-based approaches 
cannot easily assemble trans-spliced genes55. Detection 
of trans-spliced genes has been shown to be crucial for 
understanding the genetic pathways involved in some 
cancers56, such as prostate cancer57.

In summary, reference-based assembly is generally 
preferable for cases in which a high-quality reference 
genome already exists. From our experience, these 
methods are very accurate and sensitive, as they can 
assemble full-length transcripts at a sequencing depth 
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Figure 4.9: The combined method for transcriptome assembly. (Left) The align-

then-assemble approach (e.g. Cufflinks and Scripture). (Right) The assemble-then-

align approach (e.g. Trans-ABySS, Trinity, Oases, and others) [101].

two steps, (1) aligning RNA-Seq reads to the reference genome and (2) measuring

the abundances of genes and isoforms based on the read alignments generated in (1).

Different methods have been developed for transcript quantification which can be

categorized into two strategies, count-based methods and isoform-expression methods.

In count-based methods, all transcripts are assumed to have a single isoform

and reads are mapped uniquely to the transcripts (which is not always the case). In

its simplest form, count-based methods estimate isoform expression levels by count-

ing the number of uniquely mapped reads to a single isoform. Although this strategy

may work for some cases, it cannot be applied for genes with multiple isoforms. Thus,

the count-based method is appropriate for single isoform genes such as bacteria in

which alternative splicing does not occur [118]. However, due to alternative splicing

events in eukaryotic species where most genes have multiple isoforms, reads may map

to multiple isoforms resulting in an uncertainty of assigning reads to transcripts and
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estimate their expression levels. Because of its estimation bias and incorrect estima-

tion for alternative spliced genes [90], this method has a little use in the transcript

quantification realm and as result more complex methods have been developed to

handle those limitations.

The isoform-expression (or multi-read) methods have been developed to ad-

dress the issue of reads that map ambiguously to multiple isoforms and genes. Sev-

eral algorithms have implemented techniques such as generative models of RNA-Seq

reads, Poisson models, quadratic programming, and expectation-maximization (EM)

algorithms to estimate expression at both gene and isoform levels. Examples of these

are Cufflinks[154], ERANGE [109], RSEM [90], MISO [74], IsoEM [114], and rQuant

[12]. Most of these algorithms use a likelihood function to estimate isoform relative

abundances. Maximum likelihood estimate (MLE) is the term used to describe the

process of maximizing the likelihood function to infer isoform and gene expression

levels. All transcript quantification algorithms need to normalize read counts prior

to the quantification process in order to have accurate estimation results.

In their ERANGE package, Mortazavi et al. have proposed a multiread rescue

method by initially estimating gene abundances from normalized counts of unique

reads and use them to assign multireads to the most probable locations and re-

estimate the abundances based on the counts generated after the assignment. The

ERANGE reports transcript abundances in RPKM (Reads Per Kilobase of transcript

per Million mapped reads) (See Section 4.3.2.4 for more details about RPKM). Cuf-

flinks uses fractions of mapped reads to gene exons to estimate the relative expression

after normalizing for gene length. It uses fragment counts instead of read counts to

measure the abundance of transcripts by using FPKM (Fragment Per Kilobase of

exon per Million fragments mapped). To estimate the relative abundance of tran-

scripts, Cufflinks uses a generative statistical model of RNA-Seq to derive the likeli-
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hood for the abundances of a set of transcripts using a set of fragments. This model

is used in cases where fragments map to multiple transcripts by allowing probabilistic

deconvolution of RNA-Seq fragments densities [154].

Mixture-of-isoforms (MISO), a probabilistic framework, uses Bayesian infer-

ence to compute the probability that a read originated from a particular isoform. To

measure the abundance of a set of isoforms, MISO treats isoforms as a variable and

estimates a distribution over the values of this variable. The estimation process is per-

formed based on sampling where a set of techniques called Markov Chain Monte Carlo

(MCMC) is used. A more detailed description of the MISO framework can be found

in [74]. RSEM and IsoEM use similar models based on the well-known expectation-

maximization technique. RSEM does not require a reference genome, but it uses a set

of reference transcript sequences instead. These transcripts will be preprocessed and

used as a reference to which RNA-Seq reads will be aligned in order to estimate the

expression levels of transcripts and their credibility intervals (CI). RSEM estimates

maximum likelihood (ML) expression levels using expectation-maximization (EM)

algorithm. In addition to the computation of ML, RSEM computes 95% credibility

intervals and posterior mean estimate (PME) to measure the expression levels of each

gene and isoform [90] (refer to [90] for more details about RSEM).

IsoEM is a novel expectation-maximization (EM) algorithm for isoform fre-

quency estimation proposed by Nicolae et al. [114]. It takes the advantage of the

information provided by the distribution of insert sizes generated during the process

of library preparation. The E-step in IsoEM computes the expected number of reads

n(j) coming from isoform j with the assumption that isoform frequencies f(j) is cor-

rect based on weights wr,j (refer to [114] for how these weights are computed). In

the M-step, for each isoform j, a new value of the isoform frequency f(j) is set to

c(j)/(c(1)+c(2)+ ..+c(N) where c(j) denotes the normalized fragment coverage and
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N is the set of isoforms. For a detailed description of IsoEM model, refer to [114].

rQuant has implemented a different technique based on solving quadratic pro-

gramming and estimating different biases produced during the library preparation,

sequencing, and read mapping. The basic idea of rQuant is to minimize the deviation

of the observed read coverage from the expected coverage at each base by solving the

following optimization problem:

(w1, ...., wT ) = argmin
w1,...,wT≥0

∑
p∈P

(
Cp −

T∑
t=1

wtDt,p

)2

where T is the set of transcripts, w1, ...., wT are the transcript abundance estimates, P

is the set of genomic positions, Cp is the observed read coverage, and Dt,p is the read

density estimation for a transcript t at position p. If this model were used without

considering bias estimation then Dt,p = 1 in case transcript t is exonic at position p

and Dt,p = 0 otherwise. rQuant optimized the model by building a predictive model

for the density and finding parameters θ in which resulting read densities fit properly

to the observed read coverage. The optimized model is then defined as:

θ = argmin
θ

L∑
l=1

∑
p∈Pl

(
Cp −

T∑
t=1

wtDt,p(θ)

)2

+R(θ)

where L represents the number of loci, Pi denotes the set of positions for each locus,

Dt,p(θ) is the θ is the read density parametrized for each transcript t at position p,

and R(θ) is a regulatory term used to avoid model overfitting [12].

4.3.2.3 Differential Expression (DE) Analysis

One of the primary applications in RNA-Seq is the study of gene expression

profiling across experimental conditions. The number of reads that map to a gene

is a direct measure of its expression at the transcription level. Thus, the study of

determining which genes have changed significantly in terms of their RNA expression

across biological samples is referred to as differential expression analysis. This step

72



is essential in most RNA-Seq studies. Identifying which genes are differentially ex-

pressed (DE) between samples help researchers understand the functions of genes in

response to a given condition. In this section, we review the most recently developed

and widely used methods for differential expression analysis. We look at the different

statistical models each method uses to test for differential expression. Since a large

number of methods and tools have been developed in the last few years for DE analy-

sis, not all DE methods are discussed here, but instead, we put more emphasis on the

most widely used methods including DEGSeq [160], edgeR [132], DESeq [3], baySeq

[58], and Cuffdiff [154]. A comprehensive list of the DE methods can be found in

Table 4.2.

The detection of which genes have significant DE across samples requires the

use of statistical hypothesis tests to model RNA-Seq count data. For any DE anal-

ysis, three components should be considered: (1) normalization of read counts, (2)

statistical modeling of gene expression, and (3) testing for differential expression.

4.3.2.4 Normalization

In order to derive an accurate comparison within and between samples, nor-

malization is performed on read counts to adjust for sequencing depth variations and

other systematic technical variations which results in a comparable data across con-

ditions. Thus, to discover significant changes in expression, studies have shown that

normalization is an essential step in the analysis of differential expression. Several

normalization techniques have been proposed in the literature. Marioni et al. [100]

use the total read count (TC) to normalize read counts. This normalization method

divides transcript read count by the total number of reads as follows:
Xij

Nj

, where Xij

is the number of reads for gene i in sample j and Nj is the number of reads in sample

j (library size). Such an approach is equivalent to the total intensity normalization
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Table 4.2: List of common differential expression Analysis methods.

Method Technique

DEGseq [160] MA-plots based method, assuming normal distribution for M | A.

edgeR [132] Exact test based on NB distribution.

DESeq [3] Exact test based on NB distribution.

baySeq [58] Empirical Bayesian method (compute posterior probabilities of models, based on Poisson or NB
distribution).

Cuffdiff [154] NB distribution to model the variance in fragment counts.

LRT [100] Likelihood ratio test based on Poisson model.

PoissonSeq [91] R package based on Poisson log-linear model.

GPseq [146] Likelihood ratio test for two-parameter generalized Poisson model.

NOISeq [151] Empirical approach to model the noise distribution of DE by contrasting fold-change differences (M)
and absolute expression differences (D) for all the features in samples within the same condition.

EBSeq [82] Empirical Bayesian approach that models a number of features observed in RNA-seq data.

SAMseq [92] Nonparametric approach for identifying DE in RNA-Seq data.

npSeq [92] Nonparametric approach for identifying DE in RNA-Seq data. Similar to SAMseq with only differ-
ence that npSeq uses symmetric cutoffs, while SAM uses asymmetric cutoffs.

NBPSeq [32] Negative Binomial (NB) models for two-group comparisons and regression inferences from RNA-
sequencing data.

ShrinkSeq [157] Bayes-empirical Bayes method that analyzes RNA-Seq data by estimating multiple shrinkage priors.
It supports a variety of count models such as NB mode.

TSPM [7] A Two-Stage Poisson Model for testing RNA-Seq data.

Limma [144] An R package that uses linear models for the analysis of gene expression data arising from microarray
or RNA-Seq technologies.

Alexa-Seq [52] A method to analyze RNA-Seq data to catalog transcripts and assess differential and alternative
expression of known and predicted mRNA isoforms in cells and tissues.

ASC [163] Empirical Bayes method to detect differential expression.

BBSeq [170] A method designed for the DE analysis of the RNA-Seq count data. The method incorporates two
approaches: (1) a simple beta-binomial generalized linear model, (2) mean-overdispersion model used
to capture the gene specific dispersion.

DiffSplice [66] An ab initio method for the detection of DE alternative splicing isoforms under different conditions
using RNA-seq reads.

QuasiSeq [98] An R package used to apply the QL (quasi-likelihood), QLShrink and QLSpline methods to quasi-
Poisson or quasi-negative binomial models for identifying DEGs in RNA-seq data.

BitSeq [47] A Bayesian approach for estimation of transcript expression level from RNA-seq experiments and
estimating differential expression (DE) between conditions.

MATS [140] A Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data.

Myrna [80] A cloud computing tool for calculating differential gene expression in large RNA-seq datasets. It
includes short read alignment with interval calculations, normalization, aggregation and statistical
modeling. It uses both parametric and non-parametric tests.

CEDER [158] An R package developed to detect DEGs using RNA-Seq by combining significance of exons within
a gene.

DEXSeq [4] An R package that finds differential exon usage based on RNA-Seq exon counts. It uses GLMs of
the NB distribution (NB-GLMs) to model exon counts.

SplicingCompass
[6]

A method to predict genes that are differentially spliced between two different conditions using
RNA-seq data. It uses geometric angles between the high dimensional vectors of exon read counts.

MISO [74] A probabilistic framework that quantiates the expression level of alternatively spliced genes from
RNA-Seq data, and identifies differentially regulated isoforms or exons across samples.
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procedure applied for microarrays. Similar to the TC method, Bullard et al. [16]

proposed a quantile normalization, borrowed from microarray technology, in which

the total counts is replaced by the upper quantile (UQ) of the counts. The main

concept of quantile normalization is to match the distribution of read counts in each

lane to a reference distribution defined in terms of median counts across sorted lanes.

Replacing the UQ by the median, another form of quantile-based normalization called

a median normalization is used. To correct for differences in library sizes and gene

length, Mortazavi et al. [109] introduced RPKM (Reads Per Kilobase of transcript

per Million mapped reads). The RPKM is defined as: RPKM = 109 × Cg
l(t)×N

,

where Cg is the number of reads mapped to gene g, l(t) is the length of transcript

t, and N is the total number of mappable reads in the sample. There are two cases

in this context to consider. In the first case when DE analysis is used to compare

genes within a sample (each gene is compared relative to other genes in the sample),

the length of the gene is important and should be considered for normalization to

avoid bias. This is clear since longer transcripts will by their nature have more read

counts. In this case, read counts should be normalized by gene length. RPKM has

been widely used to normalize read counts using both the library size and the gene

length. In the second case when DE analysis is applied to compare the expression

of the same genes in different samples, the gene length is not considered in the nor-

malization procedure. This is also clear since genes have the same lengths across

samples.

As an alternative to RPKM, Transcripts Per Million (TPM) [109] procedure

normalizes RNA-Seq data by dividing the number of reads of a transcript by the total

clone count of the sample multiplied by 106. Results using this method are reported

as reads/TPM for each sample. One of the limitations of TPM is the inability to

handle datasets marked with different RNA composition. Thus, another method
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called Trimmed Mean of M-values (TMM) was proposed by Robinson et al. [133]

as an attempt to remove RNA compositional bias. By estimating the relative RNA

production levels, TMM equates the overall expression levels of genes between samples

under the assumption that a large number of the genes are not differentially expressed.

To calculate the normalization scaling factor, this method uses a weighted trimmed

mean of the log ratios between two samples [133].

DE methods use different normalization procedures, some of which have im-

proved the procedures discussed above. For example, Marioni et al. use the TC

method; DEGSeq provides three choices for normalization, ’none’, ’median’, and

’loess’ (loess regression); Mortazavi et al. use RPKM; and Trapnell et al. imple-

ment a slightly modified version of RPKM called FPKM (Fragments Per Kilobase

of exon per Million mapped fragments) in their Cuffdiff method. R Bioconductor

packages such as edgeR, DESeq, and baySeq use different normalization approaches

as well. Whereas DESeq and baySeq use the library size, edgeR implements the

TMM method. DESeq uses the median of scaled counts (similar to the quantile nor-

malization) to estimate the normalization [78]. For each sample, the DESeq scaling

factor is computed for each gene as the median of the ratio of its read count over its

geometric mean across all samples [3, 126]. Using the assumption that most genes

are not DE, DESeq uses the median of ratios associated with each sample to obtain

the scaling factor. NOISeq, proposed by Tarazona et al. [151], uses several options

for normalization including TMM, RPKM, and UQ. Limma (Linear Models for Mi-

croarray Data) [144], an R package designed initially for DE analysis of microarray

data but lately adapted for RNA-Seq data, implements a quantile normalization ap-

proach. EBSeq [82] provides two choices for normalization, either by using the median

of scaled counts (used in DESeq) or a quantile normalization approach. PoissonSeq

[91] uses a normalization procedure which assumes a Poisson model for the data.
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4.3.2.5 Statistical Modeling of Gene Expression

The detection of which genes have changed significantly between biological

samples requires the use of statistical hypothesis tests to model count data from

RNA-Seq experiments. Currently, most statistical models are based on parametric

assumptions for modeling RNA-Seq data. Discrete probability distributions such as

binomial, Poisson, and negative binomial (NB) distributions have been used to model

RNA-Seq count data [78]. In RNA-Seq studies using a single source of RNA, the

distribution of counts across technical replicates for the majority of genes was indeed

Poisson [116, 78] in the form of f(n, y) =
(λne−λ)

n!
, where n is the number of read

counts and λ is the expected number of reads in each transcript [126]. Early methods

such as the Likelihood ratio test proposed by Marioni et al. [100], DEGSeq [160],

PoissionSeq, and Gpseq [146] have been developed to detect differentially expressed

genes based on this distribution. However, since the variance in this distribution is

equal to the mean, it suffers from the inability to capture biological variability within

RNA-Seq data [116, 78]. Given the fact that the variance of many genes is likely to

exceed the mean resulting in over-dispersion, Poisson-based analyses using biological

replicates will be prone to high false positive rates and therefore this distribution will

be impractical in this situation.

To address over-dispersion and account for biological variability, methods such

as edgeR, DESeq, baySeq, and Cuffdiff have been developed based on the negative

binomial distribution (NB) to model read counts. These methods address over-

dispersion by defining the relationship between the variance v and mean µ. For

example, edgeR and DESeq define this relationship as v = µ + αµ2, where α is the

dispersion factor. edgeR provides two options for α, a common dispersion (estimated

from all genes) and tagwise dispersion (estimated for individual genes) [132, 78, 42].

DESeq on the other hand estimates the dispersion parameter by using a combination
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of two terms for the variance, one to estimate the Poisson (the mean expression µ)

and the second is the raw variance of the gene used to model the biological expression

variability [3, 126]. Cuffdiff computes two variance models, i.e., one for single-isoform

genes and one for multi-isoform genes. For single-isoform genes, Cuffdiff computes

the expression variance similar to DESeq using NB distribution. When a gene has

multiple isoforms, Cuffdiff models over-dispersion by using the beta negative bino-

mial distribution [154]. BaySeq differs from the above three methods and implements

an empirical Bayesian model based on NB distribution. This model estimates the

prior probability parameters by bootstrapping from the data and then applies the

maximum likelihood method. PoissonSeq models RNA-Seq count data by using a

Poisson log-linear model. The mean µij in this model is defined as a log-linear model

logµij = logdi+ logβj +γjγi , where di is the library size of sample i, βj is the expres-

sion level of gene j, and γj is the correlation of gene j with condition γi [100, 91, 126].

γj = 0 if there is no association between gene j and γi, and γj 6= 0 otherwise.

4.3.2.6 Testing for Differential Expression

Once the parameters are estimated, statistical tests such as t-test, Wilcoxon

test, or Fisher’s exact test (FET) can applied on the normalized data to detect signif-

icant differentially expressed genes between samples. Both DESeq and edgeR use a

variation of the FET adopted for a negative binomial distribution. Cuffdiff compares

the log ratio of gene expression in two conditions against the log ratio of one condition

and calculates the test statistics as T =
E[log(y)]

V ar[log(y)]
, where y is the log ratio of the

normalized counts between the two conditions (Y =
FPKMa

FPKMb

). baySeq employs an

empirical Bayesian approach to determine DE between conditions. For every gene,

baySeq estimates two models, one model assumes the expression pattern is the same

and the second assumes the expression pattern is different across conditions. Thus,
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the posterior likelihood can be estimated using the prior estimates and the likelihood

of the distribution of the data to decide if a gene is differentially expressed. Pois-

sonSeq tests for DE by determining the significance of the correlation term Yj in the

linear model using a score statistic [126, 91]. The p-value is then derived using a chi -

square distribution since the score statistic is shown to follow this distribution. Other

DE methods use different statistical tests to test for DEGs. For example, limma uses

a moderated t-statistic test to derive the p-value.

4.3.2.7 Differential Expression Analysis Methods

In this section, a number of the most recently developed and widely used

methods for differential expression analysis are discussed as a related work of our

approach.

Cuffdiff

Cuffdiff is a Cufflinks module that aims to find significant changes in transcript

expression, splicing, coding output, and promoter use. It uses the Cufflinks transcript

quantification module to calculate transcript/gene expression levels and tests for sig-

nificant changes. The main input of Cuffdiff is the reference transcripts as a Gene

Transfer Format (GTF) file and two or more SAM (Sequence Alignment/Map) or

BAM (binary version of SAM) files containing fragment alignments for two or more

samples. The output of Cuffdiff is a set of several files containing changes in expres-

sion at the level of isoforms, primary transcripts, and genes. To test for DE, Cuffdiff

compares the log ratio of gene expression in two conditions against the log ratio of one

and calculates the test statistics. This ratio requires the knowledge of the variance of

the expression level in each condition which is calculated for a transcript’s expression

levels as follows:
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V ar[FPKMt] =

(
109

l̃(t)M

)2

(V ar[Xt])

where V ar[Xt] is the variance in the number of fragments coming from the transcripts

across replicates. Cuffdiff uses the negative binomial distribution (NB) to model the

variance in fragment counts across replicates and the square root of the Jensen-

Shannon (JS) divergence to quantify the changes in relative abundance. Thus, if we

have abundances p1, p2, ... ,pn, then the entropy of the discrete distribution p is

defined as:

H(p) = −
n∑
i=1

pilogpi

and the JS divergence between a set of m distributions p1, p2..., pm is defined as:

JS(p1, ..., pm) = H

(
p1 + ...+ pm

m

)
−
∑m

j=1H(pj)

m

Based on this JS divergence, Cuffdiff assigns p-values to the observed changes.

edgeR

The R Bioconductor package, edgeR was initially developed for SAGE but

since the methods are applicable to RNA-Seq, it has been also used for detecting

differential expression in RNA-Seq data. The edgeR is based on the negative binomial

distribution (NB) if data are over-dispersed. However, in cases where there is no

over-dispersion, the Poisson model is used. The edgeR count model is defined as:

Ygij ∼ NB(Mjpgi, φg), where Ygij represents the observed data for gene g in sample j

and experimental group i. The parameter Mj denotes the total number of reads in a

sample (library size) whereas the parameter pgi represents the relative abundance of

gene g in group i. φg is the dispersion parameter. In the case of over-dispersion, the

NB model is parameterized with the mean µgi = Mjpgi and variance v = µgi + µ2
giφg.

However, in the case of no over-dispersion (φg = 0), the NB model is reduced to

Poisson model. The main input to edgeR is a table of counts constructed as a matrix
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whose rows represent biological feature (e.g. genes, transcripts, or exons) and columns

represents different samples. The output is a list of differentially expressed genes.

DEGSeq

DEGSeq is another R Bioconductor package developed for RNA-Seq data.

The statistical model this package uses is based on a Poisson distribution. Two

novel methods have been proposed in this package, an MA-plot-based method with

random sampling and an MA-plot-based method with technical replicates where M

is the log ratio of the counts between two conditions for gene g and A is the average

of the log concentration of the gene in the two groups [42]. Along with those two

methods, three existing methods, Fisher’s exact test (FET), likelihood ratio test

(LRT), and samWrapper have been integrated into DEGSeq to identify differential

expressed genes. In the MA random sampling, RNA sequencing can be modeled as

a random sampling process where each read is sampled independently and uniformly

from every possible nucleotide in the sample. Thus, the number of reads coming from

a gene/transcript follows a binomial distribution, which can be approximated by a

Poisson distribution. With this assumption, DEGSeq is not applicable to data with

over-dispersion which limits its use for RNA-Seq analysis. The input of this package

is uniquely mapped reads, a gene annotation of the corresponding genome, and gene

expression counts for each sample. The output includes a text file containing the

gene expression values for the samples, p-values, and two kinds of q-values (adjusted

p-values) and an XHTML summary page.

DESeq

DESeq is an R Bioconductor package that analyzes RNA-Seq count data using

the negative binomial distribution and an estimator of the distribution’s variance.
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DESeq uses a similar statistical model to edgeR with a few extensions allowing for

more general data-driven relationships of variance and mean. Under the assumption of

a locally linear relationship between variance and mean expression levels, the variance

can be estimated using data with similar expression levels [78]. The input of DESeq

is a table of count data that reports for each sample the number of reads that have

been assigned to a gene. Thus, a table cell in the i -th and j -th column represents the

number of reads mapped to gene i in sample j. The output is a list of differentially

expressed genes with p-values and q-values. The NB distribution DESeq uses to

model count data is defined as: Kij ∼ (µij, σ
2
ij), where Kij denotes the read counts

for gene i in sample j. This model has two parameters, the mean µij and the variance

σ2
ij. These two parameters are often not known in advance and therefore have to be

estimated from the data. The mean µij can be defined as: µij = qi,ρ(j)sj, which is

the product of the expected read count (per gene and condition) qi,ρ(j) and size factor

sj which represents the coverage of library j. ρ(j) is the experimental condition of

sample j. In contrast, the variance is defined as:

σ2 = µij + s2
j .vi,ρ(j)︸ ︷︷ ︸

raw variance

where vi,ρ(j) is the per gene raw variance parameter. This parameter is assumed to

be a smooth function of qi,ρ and defined as: vi,ρ(j) = vp(qi,ρ(j)), which should allow

the pooling of data from genes with similar expression strength. To perform testing,

DESeq uses Fisher’s exact test (FET) on NB data. Thus, for two conditions A and B,

the null hypothesis for a given gene is that the counts of the two conditions are equal

(qiA = qiB). The test statistic is performed using FET and the p-values computed

using the following formula:

pi =

∑
a+b=kis

p(a,b)≤p(kiA,kiB)

p(a, b)

∑
a+b=kis

p(a, b)
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where kiA and kiB are the total read counts in each condition and kis = kiA + kiB.

Variables a and b denote the even probabilities for any pair of numbers a and b. For

more details about the computation methods of the above model, refer to DESeq in

the work of Anders and Huber [3].

baySeq

baySeq is an R Bioconductor package that assumes the data follows a negative

binomial distribution. baySeq differs from the above two packages in the strategy of

estimating significance by employing an empirical Bayesian approach to determine

differential expression across conditions. The baySeq approach starts by first boot-

strapping to estimate prior parameters from the data and then assessing posterior

likelihoods of the models by applying either maximum likelihood or quasi-likelihood

methods [42]. In general, the baySeq approach aims to identify the behavior of sam-

ples in terms of similarity and difference for each given model. Thus, for each gene

there will be two hypotheses either the expression pattern is the same or different

between two conditions. Under those two hypotheses, the posterior likelihood can

be estimated using the prior estimates and the likelihood of the distribution of the

data to decide if a gene is differentially expressed. The statistical models of bay-

Seq are based on both Poisson and NB distributions. The Poisson distribution is

defined as Ygij ∼ (Mjpgi) assuming that the prior pgi follows a gamma distribution

pgi ∼ Γ(αgi, βgi). The second model which is based on NB distribution is defined as

Ygij ∼ NB(Mjpgi, φg). The baySeq package accepts the table of read counts (similar

to DESeq, DEGSeq, and edgeR) assigned to each gene for each sample as an input

and reports a list of differentially expressed genes as an output.

83



CHAPTER 5

IBSEQ: AN ISLAND-BASED APPROACH FOR RNA-SEQ

DIFFERENTIAL EXPRESSION ANALYSIS

5.1 Introduction

As discussed in Chapter 4 Section 4.3.2.3, the main application of RNA-Seq

is the study of which genetic features are significantly differentially expressed across

biological samples. It has been the most extensively investigated application for

RNA-Seq studies. Uncovering which features are significantly differentially expressed

between samples can provide insight into their functions. With the large magnitude

of data generated by next-generation sequencing technologies, a significant effort has

been made during the past few years to develop computational approaches that can

accurately and quickly detect the significant change in expression across samples. The

majority of the developed methods have been designed based on parametric statistics

in which discrete probability distributions such as binomial, Poisson, and negative

binomial are used. Table 5.1 shows examples of the current differential expression

methods along with their statistical models. Refer to Sections 4.3.2.5-4.3.2.7 for more

details about these methods.

One major limitation with the majority of these methods is they rely on ge-

nomic annotation. Thus, in order to detect which features are DE between samples,

these methods usually require an annotation file (e.g. GTF/GFF, BED, or count

table). The major drawback with this limitation is that any reads aligned outside
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Table 5.1: Examples of current differential expression analysis methods.

Method Statistical Model

Cuffdiff Negative binomial distribution to model the variance in fragment
counts

edgeR Exact test based on negative binomial distribution

DESeq Exact test based on negative binomial distribution

LRT Likelihood ratio test based on Poisson model

Gpseq Likelihood ratio test for two-parameter generalized Poisson model

DEGseq MA-plots based methods, assuming normal distribution for M | A

baySeq Empirical Bayesian to compute posterior probabilities of models,
based on Poisson or negative binomial data distribution

the annotated genome will be discarded and any significant change occurring outside

annotated regions will not be captured.

In this Chapter, a novel Island-Based approach, IBSeq, is presented as an

attempt to alleviate the issues resulting from relying on genomic annotation.

5.2 IBSeq Overview

In an attempt to overcome the limitation mentioned above and detect expres-

sion differences in any genomic region regardless of whether a genomic annotation

is available, we developed a novel Island-Based approach, IBSeq. The general work-

flow of this approach is shown in Figure 5.1 while Figure 5.2 describes the input and

output of each step in the approach. Generally, the method begins by dividing the

genome into small, fixed, non-overlapping regions (windows) which are then classified

into high and low density regions based on their underlying read count. Contiguous

adjacent regions with similar densities are merged together to construct larger re-

gions called islands. Constructed island locations are then mapped between samples

in order to refine island boundaries and tested for differential expression. Features

(typically genes) overlapping a set of DE islands are tested for DE by using combined
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Figure 5.1: Workflow of the island-based approach.

p-value methods. DE islands that do not overlap with any features are considered

novel regions which are annotated along with their closest features.
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Figure 5.2: The input and output of IBSeq steps.

5.2.1 IBSeq Framework Steps

5.2.1.1 Compute Per Base Abundance

To generate per base abundance (Figure 5.2, step 1), aligned short read se-

quences (often in the form of SAM/BAM format) are first converted into BED for-

mat (a tab-delimited text file that defines a feature track). Each BED file for each

sample is split by chromosome and a per base count is computed for each chro-

mosome separately using BEDTools [125]. Thus, if sj represents sample j, then

Csj represents the complete set of per base counts separately for each chromosome

Csj = {Csj ,chr1, Csj ,chr2, ..., Csjchrk}, where Csj ,chr1 is the per base count for chromo-

some 1, Csj ,chr2 is the per base count for chromosome 2, and so on for each of the

k chromosomes. The purpose of computing per base counts for each chromosome

has two advantages: (1) the process is much faster than considering all chromosomes

simultaneously and (2) the approach will have more flexibility to work with specific

chromosomes in case differential expression analysis needs to be performed for a par-

ticular chromosome.
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5.2.1.2 Genome Partition and Region Classification

In step 2, region construction (or genome partition) begins by first summarizing

per-base read counts, generated in step 1, over a fixed window to minimize small

variance in coverage due to noise (Figure 5.2, step 2). The size of the window is

allowed to vary using smaller window sizes (10-60bp). Thus, for each sample sj, a set

of regions Rsj is constructed from the set of per base counts Csj for each chromosome.

Rsj = {Rsj ,chr1, Rsj ,chr2, ..., Rsjchrk}. Once the genome is split into windowed regions,

each region is classified as high or low density (density is based on the number of

reads in this context) using an average threshold t adapted from Zang et al. [166].

Thus, regions with read counts above or equal to the threshold t are classified as

high density regions and regions with read counts below the threshold are classified

as low density regions. The threshold t is sample specific and is defined based on a

user-defined p-value and the probability quantile function of the Poisson distribution

as an approximation for the expected number of reads:

∞∑
k=t

P (k, λ) ≤ p-value

where k is the number of reads in a window and λ represents the average number of

reads across all regions in the genome and calculated as λ = wSj/G, where w is the

region size, Sj is the total number of reads in experiment j, and G is the effective

genome length.

5.2.1.3 Island Construction

In the island construction process, preliminary islands (or pre-islands) are con-

structed for each sample by merging contiguous regions with similar densities. High

density pre-islands are constructed from adjacent high density regions and similarly

low density pre-islands are constructed from adjacent low density regions (Figure 5.2,

step 3). Generally, the high density pre-islands are constructed from the set of the
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high density regions Rhigh,sj and low density pre-islands are constructed from the low

density regions Rlow,sj . Thus, the complete set of pre-islands in sample sj is defined

as:

Isj = {Isj ,chr1, Isj ,chr2, ..., Isj ,chrk}

The low density regions denote the start and end points for individual high density

pre-islands. Each high density pre-island is allowed to include a number of low density

regions based on a pre-defined cost threshold c (or gap size). Figure 5.3 shows an

example where one low density region is allowed in a given pre-island.

Figure 5.3: Illustration of pre-island definition [166]. Regions are shown as genome

coordinates along the x-axis with each bar representing one region. The y-axis denotes

the read count for each region. The orange bar denotes the constructed islands using

a threshold t = 5 (red line) and a gap size 1. The blue boxes show low density regions

included in that pre-island.

5.2.2 Island Differential Expression Testing

The primary goal of island DE testing is to test the null hypothesis H0 that

an island has the same expression level between samples versus the alternative hy-

pothesis H1 that an island has a significant difference between samples. In order to

perform this test, constructed pre-islands are overlapped between each two samples
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(pairwise comparison) and split into smaller islands where the start and stop loca-

tions are different as shown in Figure 5.4. Each island then comprises an overlapping

Sample 1

Sample 2

Pre-island 1 Pre-island 2

Pre-island 1 Pre-island 2

Overlapping 
regions (islands)

Island 1 Island 2 Island 3
“N” islands

“N” pre-islands

“N” pre-islands

Figure 5.4: Illustration of overlapping islands between samples. The overlapping

region (island) has to correspond to a high density pre-island in at least one sample

to be considered for the DE test. Overlapping regions constructed from low density

pre-islands in both samples are removed and not considered for the DE test.

region between the two samples that can be subsequently tested for differential ex-

pression between conditions using statistical tests such as a parametric t-test or a

non-parametric Wilcoxon test (Figure 5.2, step 4). Islands constructed from low den-

sity pre-islands across samples are removed and only islands constructed from high

density pre-islands in at least one sample are kept. To conduct an accurate compar-

ison, read counts are first normalized based on the total number of mapped reads

in each sample. We call this normalization method Islands Per Million (IPM) (an

adaptation form of the well-known method transcripts per million (TPM)). The IPM

method is defined as:

IPM =
Kij

Mj

× 106

where Kij is the read counts of island i in sample j and Mj is the total number of

mapped reads for sample j. Since islands tested for DE have the same length, it is not

needed to include the island length in the normalization computation. To test for DE

islands across the two samples, two statistical tests Welch’s t-test and Wilcoxon test

are used on the normalized IPM values. The Welch’s t-test is an adaptation of the
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well-known Student’s t-test in which the test assumes the two samples have unequal

variances. The test statistic, T , and degrees of freedom are defined as:

t =
X1 −X2√
s21
N1

+
s22
N2

, df =
(
s21
N1

+
s22
N2

)2

s41
N2

1 (N1−1)
+

s42
N2

2 (N2−1)

where X i represents the ith island mean, s2
i represents the ith island variance, and

Ni represents the ith island size. As an alternative to the parametric Welch’s t-test,

we also perform a nonparametric Wilcoxon Rank-Sum test (also known as Mann-

Whitney U test). The Wilcoxon test is based on the ranks of the observations and

not the raw data. The test-statistic, T , is calculated as the sum of ranks in the smaller

group. To understand this test, suppose that N1i, ..., Nni represents the read counts

of islands i in n samples. If Rij(N) is the rank of all counts Nij, the Wilcoxon test

statistic, T then is defined as:

Ti =
∑
Rij(N)− n1(n1+1)

2

where N = n1 + n2 and n1 is the length of the island in the first sample.

5.2.3 Combined Significance of DE Islands

To detect which genetic features (e.g. genes) are differentially expressed be-

tween samples, the significance of DE islands that overlap with each feature is com-

bined using combined p-values methods (e.g. Fisher’s method). DE islands that do

not correspond to any feature are considered novel DE regions. Those regions are

annotated along with their closest features. In IBSeq, six combined p-value methods,

shown in Table 5.2 and detailed in Chapter 6, are implemented.

5.2.4 IBSeq Algorithm

The IBSeq approach as described above consists of a number of steps to perform

the differential expression analysis. From the computer science perspective, these
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Table 5.2: Combined p-value methods implemented in IBSeq.

Method Description

Fisher’s [40] χ2
F = −2

k∑
i=1

ln(pi). If the null hypothesis H0 is true for

all k tests, χ2
F will have a chi -squared distribution with 2k

degrees of freedom.

Z-transform [148, 95] Z =
∑k

i=1 Zi√
k

. If the null hypothesis H0 is true for all k tests,
Z will have a standard normal distribution.

Weighted Z-Test [110] Zw =
∑k

i=1 wiZi√∑k
i=1 w

2
i

. Generalized form of the Z-transform

method.

Minimum P-value [153] P = 1− (1− p[1]))
n. if p[1] is the minimum of p1, p2, . . . pn,

then p[1] has a beta distribution with parameters 1 and n
in case H0 is true for all n tests.

Logit [111] Each p-value is transformed to a logit, ln( P
1−P ).

T = −
k∑
i=1

ln( Pi

1−Pi
). Under H0, T is logically equivalent

to:
√

kπ2(5k+2)
3(5k+4)

and has standard t-distribution with 5k+ 4

degrees of freedom.

Weighted-Sum P =
∑k

i=1 lipi∑k
i=1 li

, where p is the p-value and l is the island

length.

steps are the algorithm processes needed to perform a task which can be represented

as a flowchart (Figure 5.5). The corresponding pseudocode of the IBSeq algorithm

flowchart is depicted in Algorithm 1.

5.3 Experimental Results

In order to examine the performance of the IBSeq approach, we conducted a

gene differential expression analysis using available RNA-Seq data described below.

To evalaute its performance, the IBSeq was compared to a number of current gene

DE methods including Cuffdiff, DESeq, and edgeR. Although we have implemented
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Figure 5.5: The flowchart of IBSeq algorithm.
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Algorithm 1 IBSeq Algorithm

Input: set of aligned RNA-Seq reads A for m replicates R in n samples S

A = {{As1,1 , .., As1,m}, {As2,1 , .., As2,m}, ....., {Asn,1}, .., {Asn,m}}
Output: set of differentially expressed islands I across samples.

set of known differential expression features F across samples S

set of novel differential expression regions N across samples S

1: while T 6= ∅ do

2: for each sample si ∈ S do

3: for each replicate rj ∈ R belong to Si do

4: convert alignment SAM file asirj into BAM bsirj
5: convert BAM bsirj into BED dsirj and split dsirj by chromosomes

6: compute per base count set Csirj for replicate rj ∈ Si from BED file dsirj
Csirj = {Csirj ,chr1, Csirj ,chr2, ..., Csirjchrk}

7: construct a set of regions Gsirj for replicate rj ∈ Si from Csirj
Gsirj = {Gsirj ,chr1, Gsirj ,chr2, ..., Gsirjchrk}

8: end for

9: combine replicate files r ∈ Si → Gsi

10: construct a set of islands Isi for sample Si from Gsi

Isi = {Isi,chr1, Isi,chr2, ..., Isi,chrk}
11: end for

12: /* Test for DE islands between N conditions (for each pair si, sj ∈ S) */

13: for i ← 1 to N do

14: for j ← 1 to N do

15: overlap the set of islands Isi , Isj between si, sj
16: fetch read counts for each overlapped region from Gi, Gj

17: test for DE islands between si, sj (IDE ← IDE(si,sj))

18: end for

19: end for

20: /* combine the significance of each comparison */

21: for each comparison si, sj do

22: overlap IDE with annotation GTF/BED and computer overall significance

for each feature F

23: compute novel DE regions Gnovel(si,sj)

24: end for

25: end while

six combined p-value methods, only Fisher’s method was used in this analysis since

the aim is to compare the performance of the IBSeq to the current methods. Chapter

6 discusses the IBSeq performance using the six combined p-value methods.
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5.3.1 Datasets

5.3.1.1 MAQC Datasets

To test the performance of the IBSeq, two datasets related to the MicroArray

Quality Control (MAQC) Project [142] were obtained. The experiments in the two

datasets analyze two biological samples: Ambion’s human brain reference (Brain) and

Stratagene’s human universal reference RNA (UHR) [16]. In both datasets, the two

samples were prepared using one library preparation and sequenced in seven lanes

and two flow-cells using an Illumina Genome Analyzer II (GAIIx). The first dataset

was sequenced with RNA-Seq reads of length 35bp with only one biological replicate

[16]. This dataset was obtained from NCBI’s Sequence Read Archive (SRA) with

Accession IDs: SRX016359 and SRX016367 for Brain and UHR respectively. The

second dataset was sequenced with 50bp RNA-Seq read length with one biological

replicate [113]. This dataset was obtained from SRA with Accession IDs: SRX027129

and SRX027130 for Brain and UHR respectively.

5.3.1.2 qRT-PCR Datasets

As part of the MAQC project, 1044 genes were selected to be assayed by

qRT-PCR. The expression of those genes were quantitatively measured for Brain

and UHR samples using TaqMan Gene Expression Assay [16, 158]. This data is

used as a “gold-standard” to evaluate the performance of IBSeq for detecting DEGs

obtained from Gene Expression Omnibus (GEO) with series ID GSE5350. Four repli-

cates were obtained for Brain (GSM129638-GSM129641) and four replicates for UHR

(GSM129642-GSM129645). We removed genes whose identifiers are not present in

RefSeq resulting in a total of 1033 genes. We follow Bullard et al. [16] and Wan et

al. [158] for processing this data and compute the expression level of each gene for
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each replicate. Thus, for gene i at replicate j, the expression is defined as:

Yi,j =
log2(∆Ci,j)

log2(e)

where ∆Ci,j = Ci,POLR2A − Ci,j denotes the original qRT-PCR expression (C is the

normalized threshold cycle number and POLR2A is the reference gene). This was

done to transform the original expressions, which are in log base-2, to the natural

logarithmic scale. The log-fold change is then defined as the difference of average

across the four replicates Y UHR,j−Y Brain,j. To define the DE genes (positive set) and

non-DE genes (negative set), genes with absolute log-fold change > 2 are considered

DE genes and genes with absolute log-fold change < 0.2 are considered as non-DE

genes. Out of 1033 genes, 309 genes fall in the positive set (true positives TP) and 174

genes in the negative set (true negatives TN). Genes with absolute log-fold change

> 0.2 and < 2 are discarded and not used in this study.

5.3.2 Evaluation of IBSeq Approach for Detecting DEGs

To test the performance of the IBSeq, the Receiver Operating Characteristic

(ROC) is used to evaluate the relationship between sensitivity (true positive rate)

and specificity (false positive rate). We evaluate the results of the IBSeq approach

for detecting DEGs by comparing it to three widely used methods: Cuffdiff, DESeq,

and edgeR. For each method, the p-value is used to determine which genes are DE

and which ones are not. Thus, for a given p-value threshold, we consider genes

with p-values smaller than or equal to the threshold as DE genes and genes with

p-values greater than the threshold are non-DE genes. Using the qRT-PCR data as a

“gold-standard”, the predicted results are compared to the set of 483 genes generated

in Section 5.3.1.2 and true positive rate (TPR) and false positive rate (FPR) are

calculated. These two measures are computed as follows:

TPR =
TP

TP + FN
, FPR =

TN

TN + FP
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where TP denotes the true positive, FN is the false negative, and TN is the true

negative sets. Using this information, we generate ROC curves for all methods based

on different p-value cutpoints using both datasets I and II. We use the area under the

ROC curve (AUC) calculated using the trapezoidal rule to measure the accuracy of

each method and evaluate the performance for detecting DEGs.

5.3.3 Construct Islands and Test for DE Islands

To construct islands, short read sequences of the two samples Brain and UHR

in each dataset were first mapped to reference genome (hg19) using Bowtie [79] with

the default parameters allowing for two mismatches. To construct regions, we applied

a window of size 30bp. To classify regions, the average thresholds for the two samples

were computed using a p-value of 0.05 resulting in t = 3 for both samples. Thus,

regions with read count above or equal to 3 reads were classified as high density

regions and regions with read counts below 3 reads were classified as low density

regions. Using t = 3 and c = 1 (c is the gap size), islands were constructed for Brain

and UHR samples for each dataset. Table 5.3 shows detailed information about the

constructed islands for each sample in the two datasets.

Table 5.3 indicates that the average length of low density islands is much larger

than the average length of high density islands which agrees with the fact that a large

portion of the human genome (about 98%) is non-coding and only about 2% is coding

regions. Thus, the coding regions (transcribed regions) should fall within high density

islands. To test for DE islands, two statistical tests Welch’s t-test and Wilcoxon test

were applied to compute the test statistics T and the p-values.
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Table 5.3: Detailed information of constructed islands.

Dataset I

Sample Number of Islands Average Island Length

High Low High Low

Brain 389,376 389,399 78.4487 3896.63

UHR 391,680 391,703 80.0481 3871.65

Dataset II

Sample Number of Islands Average Island Length

High Low High Low

Brain 465,298 465,321 86.0159 3240.47

UHR 446,156 446,179 87.2413 3381.96

5.3.4 Combined Significance of DE Islands

Since all the methods being compared report results at the gene level, an overall

p-value for a gene needs to be generated from the island p-values. Therefore, the p-

values of the islands overlapping with each gene are combined using Fisher’s method

[40]. Fisher’s method computes the overall p-value p by combining the significance of

multiple tests using the formula:

−2
k∑
i=1

ln(pi) = χ2
2k,p

where pi is the p-value of the ith island and k is the number of islands tested. Thus, if

none of the islands are DE, the p-values pi are independent and uniformly distributed

on the unit interval pi ∼ U(0, 1) which indicates the null hypothesis H0 is true. Hence,

χ2
2k,p denotes the upper p point of the probability of a chi-squared distribution with

2k degrees of freedom [158, 28, 62].

98



5.3.5 Evaluation and Comparison

The performance of IBSeq approach was evaluated using the benchmark RNA-

Seq datasets for the Brain and UHR samples. The portion of the qRT-PCR data that

we selected in Section 5.3.1.2 with 309 genes in the positive set (true DE) and 174

genes in the negative set (true non-DE) was used to compare the results of the IBSeq

to the other DE methods. Since our approach is based on combining the p-values of

islands overlapping with the genes, for all methods, the p-value was used as a measure

of significance in this study.

When we computed the overall p-values for the two sets of genes, using dataset

I, for the true DE set with 309 genes, nine genes were missing (none of the islands

overlapped with those genes) and 22 genes were missing from the true non-DE set

with 174 genes. Per base counts for each of these missing genes were checked and it

was determined they have low counts and consequently their corresponding islands

were classified as low density and therefore were removed. To verify this conclusion,

we compared the counts in Cuffdiff and in the DESeq and edgeR count table. We

found a strong agreement between our approach and the other methods in terms of

low read counts. For instance, Cuffdiff reported that out of the 9 missing genes, 8

genes were not tested (NOTEST) indicating there were too few counts to perform a

significance test and similarly out of 22 missing genes, 20 were not tested for the same

reason. Giving this strong evidence these genes are not DE between the two samples,

they were treated as non-DE genes and counted as false negatives (FN) for the nine

missing genes and as true negatives (TN) for the 22 genes. Similarly with dataset II,

8 genes were missing in the positive set and 25 genes were missing in the negative

set due to low counts. Results from Cuffdiff supported our approach in that Cuffdiff

described all those genes as NOTEST which indicate the low counts. We performed

the same filtering for dataset II and included those genes in the false negative set
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and true negative set in the calculation of true positive and false positive rates. In

order to compare IBSeq with other existing DE methods, we performed differential

expression analysis for the same MAQC datasets (I and II) using Cuffdiff, DESeq,

and edgeR and computed the p-values for the set of 483 (309+174) genes. With the

exception of Cuffdiff, the differential expression analysis of DESeq and edgeR were

performed using the same count table of all genes annotated in RefSeq. This count

table was generated using htseq-count version 0.5.4p1 [5] with the same RefSeq

GTF file downloaded from the UCSC genome browser.

For the set of 483 genes, first we looked at the p-value distribution (Figure 5.6)

generated by each method using dataset I and dataset II. Using a p-value cutoff ≤

0.05 (5%), we could observe that our approach performs well in detecting the true DE

genes whereas it performs slightly worse in detecting the true non-DE genes. This is

illustrated in Figure 5.6 where the p-value histograms of the IBSeq is highly skewed

to 0 indicating that a large number of true DE genes will be detected (giving the fact

that approximately 65% of the gene set falls in the positive set). Since this histogram

is slightly skewed far from 0, there is a high possibility that the IBSeq approach will

not perform well in detecting true non-DE genes. In contrast, the p-value histograms

of Cuffdiff, DESeq, and edgeR were not as highly skewed to 0 as the IBSeq approach

indicating the likelihood of not performing well in detecting true DE genes. However,

the histograms show a moderate shift toward 1 meaning those methods will perform

well in detecting true non-DE genes.

Although Cuffdiff, DESeq, and edgeR did not perform well in detecting true

DE genes, they were excellent in detecting almost the complete set of the true non-

DE genes with 172, 173, 171, respectively out of 174. Table 5.4 shows the number

of true positive (TP) and true negative (TN) genes detected by each method using a

p-value ≤ 0.05 and Figure 5.7 shows the bar graph of those numbers.
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Figure 5.6: The distribution of p-values for the four methods (IB=IBSeq).

Table 5.4: Number of true DE and true non-DE genes found by each method using

p-value ≤ 0.05.

Method TP(D I) TP(D II) TN(D I) TN(D II)

IBSeq TTest 282 291 113 80

IBSeq Wilcoxon 269 280 149 128

Cuffdiff 190 176 172 173

DESeq 136 134 173 173

edgeR 193 185 171 172

Table 5.4 indicates that the IBSeq approach performs well in detecting TP

genes whereas Cuffdiff, DESeq, and edgeR were much better in detecting the TN

genes. As we see in Table 5.4 and Figure 5.7, the IBSeq approach was not able to

detect a high number of true non-DE genes like other methods. DESeq and edgeR

performed similarly since both methods use similar statistical tests (a form of Fisher’s

exact test) and both model read counts by using a negative binomial distribution
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Figure 5.7: Number of DE and non-DE genes detected by each method using p-value

≤ 0.05.

(NB). According to the DESeq documentation, DESeq is conservative in detecting

DE genes. Thus, it is of no surprise we do not see a large number of true DE

genes detected by DESeq. To plot the ROC curves for the four methods, we set

different thresholds of the p-values and calculated the true positive rate (TPR) and

false positive rate (FPR) for each method. Generally, a method that performs better

will give a ROC curve with higher TPR than other methods with the same value of

FPR. We computed the AUC and use it as a measure to compare the performance

of each method. Figure 5.8 shows the ROC curves of the four methods on the two

MAQC datasets.

Looking at the AUC of each method in Figure 5.8, it is clear the two versions

of our approach (t-test and Wilcoxon) outperform other methods in both datasets.

IBSeq using the Wilcoxon test performed the best among the four methods with AUC
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Figure 5.8: The ROC curves for the four methods using MAQC datasets.

= 0.897 for dataset I and AUC= 0.908 for dataset II. Similarly, IBSeq using Welch’s

t-test performs well in both datasets with AUC = 0.895 for dataset I and AUC =

0.871 for dataset II. Cuffdiff performed better than DESeq and edgeR but not as well

as IBSeq.

We further looked at the number of differentially expressed genes shared be-

tween each pair of methods (Table 5.5) for both datasets. This gives an indication

on the level of agreement between methods in detecting the true DE genes. Table 5.5

indicates a strong agreement in detecting true DE genes between the two versions of

IBSeq. Compared to other methods, both versions of IBSeq were able to detect almost

all true DE genes detected by other methods for the two datasets. For instance, out

of 190 true DE genes detected by CuffDiff, the IBSeq approach was able to detect 183

and 178 respectively for the two versions in the first dataset. In the second dataset,

the number is even higher as shown in Table 5.5. The same observation is applied for

DESeq and edgeR where almost all true DE genes detected by those methods were
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Table 5.5: Number of shared true DE genes detected by each method using p-value ≤

0.05. The diagonal represents the numbers of true DE genes detected by each method.

Dataset I

IBSeq TTest IBSeq Wilc. Cuffdiff DESeq edgeR

IBSeq TTest 282 268 183 135 186

IBSeq Wilc. 269 178 132 180

Cuffdiff 190 123 165

DESeq 136 136

edgeR 193

Dataset II

IBSeq TTest IBSeq Wilc. Cuffdiff DESeq edgeR

IBSeq TTest 291 279 173 134 181

IBSeq Wilc. 280 170 131 178

Cuffdiff 176 118 154

DESeq 134 134

edgeR 185

also detected by our approach. This indicates the set of DE genes found by the IBSeq

contains a large number of DE genes found by other methods. To look at the overlap

between all methods and determine the number of true DE genes and true non-DE

gene shared between all methods, Figures 5.9 and 5.10 depicts the complete overlap

between the number of TP and TN genes detected by each method.

One caveat with the choice of the MAQC datasets is the ratio of DE to non-

DE genes is skewed in comparison to typical datasets where it might be expected

that only 5-10% of the genes are differentially expressed. These datasets were chosen

for comparative purposes since they contain experimental validation for differentially

expressed genes. That being said, we have also applied the IBSeq approach to whole

transcriptome RNA-Seq data as well (results not shown) for the datasets discussed

in Chapter 1 Figure 1.2. Initial results suggest a similar performance to the MAQC
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data with the majority of novel islands detected within or in close proximity to known

transcribed regions.

(a) TP for Dataset I (b) TP for Dataset II

Figure 5.9: Overlap between true DE genes found by each method.

(a) TN for dataset I (b) TN for dataset II

Figure 5.10: Overlap between true non-DE genes found by each method.
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5.4 Conclusion

In this Chapter, we presented a novel approach for detecting differential ex-

pression in genome regions that does not rely on genomic annotations. The key

idea of this approach is the segmentation methodology in which individual islands

of expression are constructed based on windowed read counts and compared across

experimental conditions to determine differential island expression. We illustrated

how this approach is used to detect differences in expression without requiring any

prior knowledge of isoforms where the only input to this approach is the raw data

(short read sequences). To assess the performance of our method, we conducted a

differential expression analysis using two benchmark MAQC RNA-Seq datasets. To

detect DEGs, Fisher’s method for combining the significance of multiple tests was

used. The performance of IBSeq approach was evaluated by comparing its results

to three widely used methods for differential expression analysis. IBSeq was able to

detect a high number of true DE genes using p-value ≤ 0.05 and performed the best

among the four methods based on ROC analysis. However, in detecting the true

non-DE genes, IBSeq did not perform as well as expected. Although the approach

has detected a reasonable number of the true non-DE genes, it was not as high as

the other methods considered. Considering the results obtained, IBSeq performs well

in terms of detecting true positives. However, it still leaves room for improvement in

detecting true non-DE genes which is intensively discussed in Chapter 7.
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CHAPTER 6

COMBINING THE SIGNIFICANCE OF GENOMIC

REGIONS - A COMPARATIVE STUDY

6.1 Introduction

One of the motivations of developing the IBSeq approach is that summarizing

read counts on the gene level tend to result in inaccurate detections since most genes

consist of multiple exons and therefore the distribution of read counts in exons for a

single gene can be different [158]. By taking into account the significance of different

regions in the gene, IBSeq can break down the gene region (or any genetic feature)

into multiple small regions and test for differential expression across those regions.

Then for each gene, we combine the significance of genomic regions overlapping with

that gene using well-known combined p-value methods. Figure 6.1 describes this

process. By doing that, each region in the overall gene region will participate in the

Gene 1  Gene 2  
Intergenic region5' 5'3' 3'

 P-value P-value P-value P-value

Combined P-
value

 P-value P-value P-value

Combined P-
value

 P-value  P-value

Islands with P-values 

Genome 

Overall p-value computed 
by combining Islands p-
values using combining p-
values methods.  

Figure 6.1: Example of combining p-values from multiple genome regions.
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computation of the overall gene significance based on its degree of importance. This

will ensure that regions in the gene will not be treated equally.

The concept of combining significance (p-values) from multiple tests has been

intensively discussed in meta-analysis techniques from different fields. In biological

experiments for instance, these approaches have been used to integrate results from

multiple studies to detect which genes (or any genetic features) are differentially

expressed across samples. As an example, Chapman and Whittaker [22] used several

combined methods to integrate results of multiple single nucleotide polymorphisms

(SNPs) tests in a gene or region. In differential expression analysis using microarrays,

the technique has been used to combine p-values from probe level tests of significance.

Hess et al. [62] proposed using Fisher’s method to combine the significance of probe

level tests to identify DE genes using Affymetrix arrays. Li and Tseng [83] proposed

an adaptively weighted statistics method to combine multiple genomic studies for

detecting differentially expressed genes.

Since IBSeq is based on combining the significance of islands corresponding

to each feature, to determine the performance of the implemented combined p-value

methods, we conducted a comparative analysis study to compare six combined p-

value methods using publicly available RNA-Seq datasets. The framework applied

here is similar to the one in microarray studies where specific methods are used

to combine the significance of probe sets for individual genes. Similarly, we used

combined p-value methods to aggregate the significance of islands corresponding to a

chromosomal region (e.g. gene, exon, transcript) as shown in Figure 6.1.

In this chapter, we present the results of this study. We first applied IBSeq

to test for island differential expression and compute the p-values for each “island”

using four MAQC datasets [16, 142, 113] and Marioni’s liver and kidney dataset [100].

In the next step, the significance of islands corresponding to each gene is combined
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using six p-value methods: Fisher’s, [40], Stouffer’s Z-transform [148], Weighted z-test

[110, 95], Minimum p-value [153], Logit [111], and Weighted-sum. To evaluate the

performance of each method, ROC curves were generated for each MAQC dataset

and auROC was used as a performance metric. On the liver and kidney dataset,

we evaluated the performance of each method by looking at the number of detected

genes that overlap with the original results presented in Marioni’s paper [100].

6.2 Methods

6.2.1 Combined P-value Methods

IBSeq was first applied to test for differentially expressed islands. We first

tested the null hypothesis H0 that an island has the same expression level across

samples versus the alternative hypothesis H1 that an island has a significant difference

between samples. As a result, for each island, a test statistic t and p-value p were

computed. To detect which genes were differentially expressed between samples, the

p-value of the islands overlapping with each gene in the annotation were combined

using six combined p-value methods. The use of combined p-value methods is based

on the assumption that p-values p1, p2, . . . , pn are independent for given samples [158].

In this study, six combined p-value methods (Table 5.2), Fisher’s, Stouffer’s

z-score, Weighted z-test, Minimum p-value, Logit, and Weighted-sum were used.

The first five methods are widely used methods for combining the significance from

multiple tests. The sixth method (the Weighted-sum) is our proposed method.

6.2.1.1 Fisher’s Method

Fisher’s method [40] combines the significance by using p-values from k inde-

pendent tests using the test statistic:
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χ2
F = −2

k∑
i=1

ln(pi)

where pi is the p-value of the ith island and k is the number of islands corresponding

to the tested gene. Thus, when none of the islands corresponding to a specific gene

are DE indicating the null hypothesis H0 is true for all k islands, the test statistic χ2
F

will have a chi-squared distribution with 2k degrees of freedom [162].

6.2.1.2 Z-transform Method

The Z-transform method (sometimes called Stouffer’s Z-Score, z-test, or Nor-

mal test) [148, 95] was proposed by Stouffer et al. in 1949. In this method, p-values

are first transformed to z-values Zi = Φ−1(1−pi) where Φ is the cumulative distribu-

tion function of standard normal distribution [23]. The Zi values are then combined

using:

Z =

∑k
i=1 Zi√
k

Therefore, when none of the islands corresponding to a specific gene are DE (H0 is

true for all k islands), Z will have a standard normal distribution [158].

6.2.1.3 Weighted z-test

The Weighted z-test [110] is a generalized form of the Z-transform method

explained above proposed by Mosteller and Brush [110] in 1954 and Liptak [95] in

1958. In this method, a nonnegative weight w is assigned to each z-value. The

weighted Zw is then computed using:

Zw =

∑k
i=1 wiZi√∑k
i=1 w

2
i

If the weights of all tests are equal, this method is reduced to the Z-transform method.

Similar to Z-transform, if none of the islands within a specific gene are DE, then Zw
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still has a standard normal distribution. Determining appropriate weights is an open

issue. However, it has been shown that the sample size of each test can be used as

the weight [95, 158]. Thus, we chose the square root of the length of each island li to

be the weight assigned (wi =
√
li).

6.2.1.4 Minimum p-value Method

The minimum p-value statistic [153] is another method for combining p-values

proposed by Tippett in 1931. In this method, if p[1] is the minimum of p1, p2, . . . pn,

then p[1] has a beta distribution with parameters 1 and n in case none of the islands

corresponding to a specific gene are DE [153, 158]. Tippett’s test procedure using the

smallest P[1] is computed as follows:

p = 1− (1− p[1]))
n

He suggested that the combined null hypothesis H0 should be rejected at level α if

p[1] < 1− (1− α)
1
n .

6.2.1.5 Logit Method

The logit test [111] was proposed by Mudholkar and George in 1979. Each

p-value in this method is transformed to a logit, ln( P
1−P ) and the combined logits are

computed using a statistic:

T = −
k∑
i=1

ln(
Pi

1− Pi
)

Under the null hypothesis H0, Mudholkar and George showed that T is logically

equivalent to: √
kπ2(5k + 2)

3(5k + 4)

and has standard Student’s t-distribution with 5k + 4 degrees of freedom.
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6.2.1.6 Weighted-sum Method

The Weighted-sum is a method we propose in this study. In this method,

we simply multiply each p-value p by the island length l and divide the total of

multiplications by the total length of all islands. Thus, if l1, l2, . . . , lk represents

the islands lengths corresponding to a specific gene and p1, p2, . . . pk are the island

p-values, then the combined p-value is:

P =

∑k
i=1 lipi∑k
i=1 li

6.2.2 Datasets

In this study, five publicly available RNA-Seq datasets were obtained from

NCBI’s Sequence Read Archive (SRA). Among those, four datasets are related to

the MicroArray Quality Control Project [16, 142, 113] and the fifth dataset is the

widely used Marioni liver and kidney dataset [100]. All datasets are single-end reads

generated by Illumina GA/GAII . A summary of the datasets used in this study is

shown in Table 6.1.

Table 6.1: Summary of RNA-Seq datasets used in this study.

Dataset Acession Number (SRA) Read Length Total Reads

MAQC2 [16] SRX016359 35bp 81,250,500
SRX016367 35bp 92,524,365

MAQC2 [113] SRX027129 50bp 53,238,798
SRX027130 50bp 59,561,348

MAQC2 [16] SRX016366 35bp 81,250,481
SRX016368 35bp 92,524,400

MAQC3-UHR [16] SRX016369-SRX016372 35bp 183,797,505

Liver and kidney [100] SRX000571 36bp 69,618,202
SRX000605 36bp 66,404,506
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6.2.2.1 MAQC Datasets

The experiments in the four MAQC datasets analyze two biological samples:

(1) Ambion’s human brain reference (Brain) and (2) Stratagene’s human univer-

sal reference RNA (UHR). In MAQC2, each sample was prepared using one library

preparation and sequenced on seven lanes (7 technical replicates each) on two flow-

cells using an Illumina Genome Analyzer II (GAIIx). In the MAQC3 dataset, four

different UHR library preparations were sequenced on 14 lanes and distributed across

two flow cells [16].

We used the same qRT-PCR datasets described in Chapter 5 Section 5.3.1.2 as

a ”gold-standard” to evaluate the performance of the six combined p-value methods

with a slight change of selecting the genes. Since all genes in this dataset were

classified as present (P) if they were detected above threshold and absent (A) if they

were not, only genes with a ”P” flag across the four replicates of each sample were

used in this study. We also removed genes that do not correspond to unique RefSeq

identifiers. The expression level of each gene was computed the same as we did in

Section 5.3.1.2. As a result, 313 genes fall in the true DE set and 128 in the true

non-DE set. Genes with absolute log-fold change > 0.2 and < 2 are discarded and

not used in this study.

6.2.2.2 Marioni’s Liver and Kidney Dataset

This data, generated by Marioni et al. [100], is widely used for evaluating the

performance of RNA-Seq developed approaches. The goal of Marioni’s study was to

assess the technical variance within and between runs by estimating gene expression

differences between human liver and kidney RNA samples using multiple technical

replicates. Each sample was sequenced in seven lanes distributed across two runs

of the machine and two different cDNA concentrations (1.5pM, 3pM) using an Illu-

113



mina Genome Analyzer. Only data sequenced at 3pM (five lanes per sample) cDNA

concentration was used in this study. Table 6.1 shows more information about this

data. The raw data for both liver and kidney along with 17,708 Ensembl transcripts,

mapped with the array probes, were obtained. Ensembl transcripts that are expired

or do not exist in the most current annotation version were removed resulting in

17,001 Ensembl transcripts. To improve the quality of this data, raw 36bp reads were

trimmed to 32bp before mapping as advised by the authors.

6.2.3 Differential Expression

The IBSeq approach was used to detect DEGs between the two samples for

each dataset. First, all raw sequencing reads in the five datasets were mapped to

the indexed reference genome (hg19) using Bowtie version 1.0.1 [79] with the default

parameters allowing for two mismatches, given that individual reads are ≤ 50 bp.

Note that in instances with longer reads, Bowtie2 provide a more optimal approach.

We applied Bowtie2 as well with no significant differences (results not shown). For

each dataset, the SAM alignment files resulting from mapping were converted into

BAM format and fed into the IBSeq for island differential expression. The IBSeq was

then used to test for island DE between the two samples (Brain and UHR for MAQC

data and liver and kidney for Marioni) in each dataset with the following parameters:

--window 35 --t-pvalue 0.05 --p-value 0.05 --gap 1

where --window is the window size, --t-pvalue is the p-value used to calculate the

classification threshold, --p-value is the p-value for determining significant differen-

tial expression, and --gap is the gap size.

To detect for gene DE, the p-values for islands corresponding to each gene in

the annotation files were combined using the six combined p-value methods described

in Section 6.2.1. For the MAQC datasets, the portion of qRT-PCR data we selected
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in Section 6.2.2.1 with 313 genes in the true DE set and 128 in the true non-DE was

used to compute the overall significance of each gene. For liver and kidney data, the

Ensembl transcripts with 17,001 genes used in the original paper were used to detect

for gene DE. The motivation for using the same Ensembl transcripts was to be able

to conduct a valid comparison with the results of the original paper and assess the

performance of each combined method.

6.3 Results

6.3.1 Results from Liver and Kidney

We evaluated the performance of the combined p-value methods using the

liver and kidney dataset. As suggested by the authors to improve the data quality,

four bases of each read sequence were trimmed resulting in a total of 32bp for each

read. Even with trimming, the alignment rate for the two samples were not as good as

expected with 57 % and 59 % for liver and kidney respectively. This low alignment was

also reported in the original paper. Marioni [100] has conducted a gene differential

expression analysis between the two samples using multiple sequencing replicates

generated by Illumina GA and compared the results to Affymetrix arrays results

using the same RNA samples. In their study, a set of 17,708 probe sets mapping

uniquely to 17,708 genes (out of 32,000) obtained from Ensembl database v.48 were

identified. By comparing five lanes of each sample, they identified 11,493 DE genes

at FDR 0.1% from the Illumina sequencing data and 8,113 (81% of those were also

detected from the Illumina) from the Affymetrix arrays. Given the fact that the

alignment rate is low for the two samples, in our opinion, these numbers seem too

large. however, our motivation of using this data is that it is widely used and has

detailed information about the expressions in both Illumina and Affymetrix. To

compare our results with the results presented in the paper, we first used IBSeq to
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compare the two samples and compute the overall p-value for the 17,001 (700 genes

were eliminated from the set because of their expiration in the database) genes in the

Ensembl transcripts using the six combined p-value methods. Table 6.2 shows the

number of differentially expressed genes detected by each method and the number of

overlapping genes with both Illumina and Affymetrix results using p-value < 0.001.

Weighted-sum was eliminated from this analysis due to its poor performance.

Table 6.2: Differentially expressed genes detected by each method using p-value <

0.001. Overlap column represents the overlap with both Illumina and Affymetrix re-

sults. The Overlap(%) column indicates the percentage of overlap out of the detected

genes.

Method DE Genes Overlap Overlap(%) Novel

Marioni Affymetrix 7942 N/A N/A N/A

Marioni Illumina 10133 N/A N/A N/A

Fisher’s 3734 2891 77% 843

Z-transform 1911 1464 76% 447

Weighted z-test 4733 3649 77% 1084

Minimum p-value 2414 1882 77% 532

Logit 2541 1951 76% 590

As expected, the Weighted z-test method performed the best with the highest

number of detected genes and highest overlap with Illumina and Affymetrix results

outperforming Fisher’s method. This supports the argument of Chen [23] that the

weighted z-test is superior to both Z-transform and Fisher’s method. The minimum

p-value and logit methods perform very similar with a slight improvement for logit.

Z-transform on the other hand did not perform as well as the others. To enhance

our conclusions and look at the performance of another approach, we ran Cuffdiff

[154] on the same data. Cuffdiff only detected 302 genes. Of those, 207 (68%) were

also detected by the other methods. Venn diagrams (Figure 6.2) show the overlap
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between each combined p-value method and Marionni Illumina, Marioni Affymetrix,

and Cuffdiff.

To see if the novel genes detected by each combined p-value method (Table

6.2, column 5) may have differential alternative splicing events between the two sam-

ples, we conducted an alternative expression analysis of liver and kidney using MISO

(Mixture of Isoforms) [74]. As a result, 701 mutually exclusive exons (MXE) DE

events were identified. To determine whether the novel detected genes are differen-

tially spliced genes between the two samples, the 701 identified events were overlapped

with the novel genes detected by each method. Table 6.3 shows the number of genes

determined to be differentially spliced genes among the novel genes detected by each

method.

Table 6.3: Differentially spliced genes for each method.

Method Novel Genes Differentially Spliced Genes

Fisher’s 843 146

Z-transform 447 54

Weighted z-test 1084 148

Minimum p-value 532 98

Logit 590 102

6.3.2 Results from MAQC Datasets

Next, using the four MAQC datasets along with qRT-PCR data, we evaluated

the performance of the six combined p-value methods. For each dataset, we conducted

a comparison analysis between the Brain and UHR samples. Using IBSeq, the islands

for the two samples in each dataset were tested and a p-value was computed for each.

Using the qRT-PCR data with 313 genes in the true DE set and 128 in the true

non-DE set as a ”gold-standard”, each method was evaluated based on the number
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(a) Fisher’s (b) Z-transform

(c) Weighted z-test (d) Minimum p-value

(e) Logit

Figure 6.2: Overlap between the number of genes detected by each combined p-value

method and Marioni’s and Cuffdiff results.
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of truly detected genes in both sets. Figure 6.3 shows bar plots for the true detection

of each method for the four MAQC datasets.
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(b) True non-DE Genes

Figure 6.3: Number of true DE and true non-DE genes detected by each method for

the four MAQC datasets using p-value < 0.05.

As shown in Figure 6.3a, all compared methods except the Weighted-sum per-

formed similarly in detecting the true DE genes for the four datasets with a slight

outperformance by the Weighted z-test method. Out of 313 genes (the true DE set

selected in Section 6.2.2.1), the five methods were able to detect between 89%-94%

(280-295 genes) in the four datasets. In contrast, the Weighted-sum was too con-

servative and performed poorly with only 84, 98, 84, 107 true DE detected genes

respectively. For detecting the true non-DE genes, Figure 6.3b shows a clear outper-

formance by the Weighted-sum method over the other methods. Out of 128 genes (the

true non-DE set), the method was able to detect between 97%-99% (125-127 genes)

in the four datasets. Surprisingly, the Weighted z-test and Fisher’s method, which

performed the best in detecting the true DE genes, did not perform as well in non-DE
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detection. The Z-transform method had a better performance and outperforms the

Weighted z-test and Fisher’s method.

We then looked at the Receiver Operating Characteristic (ROC) to evaluate

the relationship between sensitivity (TPR) and specificity (FPR) of each method.

By using different p-value thresholds, we computed the true positive rate (TPR) and

false positive rate (FPR) for each method in the four datasets. Thus, genes with p-

values smaller than a given threshold are considered DE genes and genes with p-values

greater than or equal to the threshold are considered non-DE genes. For each dataset,

ROC curves (Figure 6.4) were generated for the six methods using different p-value

cutpoints. The area under the ROC curve (AUC), shown in each plot and calculated

using the trapezoidal rule, was used to measure the accuracy of each method and

evaluate the performance for detecting DE genes.

As shown in Figure 6.4, the ROC curves show a similar performance for each

of the six methods. By looking at the AUC of each method (Table 6.4), we observe

that the performance was similar with a slight advantage of a certain method in each

dataset. That outperformance was not significant enough to conclude that a spe-

cific method is the best among others. For example, in dataset 1, the logit method

performed better than others with an AUC of 0.867. The performance of Fisher’s

method and Weighted-sum was very similar to the logit method with an AUC of

0.842 and 0.848, respectively. In dataset 2, Weighted-sum along with Fisher’s per-

formed the best with an AUC of 0.835 and 0.831 respectively, outperforming the

Z-transform slightly. For dataset 3, the performance of Weighted-sum was still the

best with an AUC 0.858, outperforming the Z-transform (AUC=0.837) and logit

(AUC=0.830). Finally, for dataset 4, Z-transform performed the best with an AUC

of 0.828. Therefore, the compared methods performed similarly with a slight advan-

tage to the Weighted-sum method.
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Figure 6.4: ROC curves for the six combined p-value methods on the MAQC datasets.

Table 6.4: AUC for each method on the four MAQC datasets.

Methods Dataset 1 Dataset 2 Dataset 3 Dataset 4

Fisher’s 0.842 0.831 0.824 0.806

Z-transform 0.815 0.823 0.837 0.828

Weighted z-test 0.832 0.818 0.824 0.790

Minimum p-value 0.829 0.806 0.827 0.763

Logit 0.867 0.815 0.830 0.814

Weighted-sum 0.848 0.835 0.858 0.812
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6.4 Conclusion

In this comparative study, the performance of a number of combined p-value

methods on RNA-Seq data were assessed. Using five publicly available RNA-Seq

datasets, we compared the ability of six combined p-value methods: (1) Fisher’s, (2)

Z-transform, (3) Weighted z-test, (4) Minimum p-value, (5) Logit, and (6) Weighted-

sum methods for detecting differentially expressed genes. Applying the six methods

on MAQC datasets shows a similar performance for detecting the true DE genes with

an exception of the Weighted-sum method’s poor performance. Only the Weighted z-

test slightly outperformed the other methods. In contrast, the Weighted-sum method

performed the best in detecting the true non-DE, clearly outperforming the other

methods. When looking at the AUC in Figure 6.4, we see that the Weighted-sum

method was at or near the best performance. Unexpectedly, the Weighted z-test did

not perform as well as Fisher’s, Z-transform, and logit methods. However, with the

liver and kidney dataset, the Weighted z-test has performed the best among others

and has reported the highest number of detected genes and overlap with Marioni

Illumina and Affymetrix results.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

In this dissertation, a novel Island-Based approach, IBSeq, for RNA-Seq differ-

ential expression analysis was developed as an attempt to mitigate some of the limita-

tions associated with the current state of the art DE methods. IBSeq was developed

in a way that no prior information of transcripts is needed and only raw data (short

read sequences) is required. However, with IBSeq, we still have the option of using

the annotation if needed. The core process in the IBSeq is the segmentation method-

ology where individual genomic regions (islands) of expression are constructed based

on windowed read counts and compared across biological conditions to determine

differential island expression. To determine if biological features are significantly dif-

ferentially expressed across samples, the significance of islands corresponding to each

feature are combined using six combined p-value methods. We presented a detailed

description of this approach and illustrated how IBSeq is used to detect differences

in expression without requiring any form of annotation. To assess the performance of

this approach, we conducted a gene differential expression analysis and compared the

results to a number of current DE methods using several publicly available benchmark

RNA-Seq datasets. Using ROC curves and the area under the ROC curve (AUC) as

performance metrics, IBSeq was able to perform better than other methods partic-

ularly detection of true DE events. However, in detecting the true non-DE genes,

IBSeq did not perform as well as the other methods, generating more false positive

detections (type I error). This has led us to conduct more investigation and look for

123



possible improvements. Examples of these investigations (presented below) are the

parameters determination and further island segmentation.

7.1 Parameters-Determination Analysis

Since IBSeq is based on the use of several parameters and thresholds, the

detection accuracy will consequently be based on the values of those parameters.

Thus, choosing the optimal values would provide the best performance. Examples of

IBSeq parameters that need more investigation are:

1. The window size used for splitting the genome.

2. The p-value used for computing the classification threshold used to classify

genome regions into high and low density regions.

3. The number of low density regions included in the construction of high density

island (the gap size).

In order to improve the detection accuracy, a complete analysis to determine

the best value of each parameter is required. In this section, we present the analysis

we conducted to determine the best values for the three parameters mentioned above

using the same four MAQC RNA-Seq datasets described in Table 6.1 and the qRT-

PCR dataset described in Section 5.3.1.2.

7.1.1 Window Size Analysis

To determine the optimal window size for IBSeq, we performed a window-size

analysis using seven different window sizes, 10, 20, 30, 35, 50, 60, and 100. Figure

7.1 shows the ROC curves generated for this analysis.

Generally, the best window size is the one that detects a high number of truly

DE genes with fewer false positives. Therefore, using the four MAQC datasets, results
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Figure 7.1: ROC curves for different window sizes. The blue oval represents the region

that provides the best result.

show a window size in the range of 35-50bp (the blue oval region in Figure 7.1) works

best. This may indicate a correlation between the window size and the read length

since most NGS sequencers generate reads with a length close to this range.

7.1.2 Classification Threshold P -value Analysis

As discussed in Section 5.2, in order to compute the classification threshold to

classify regions into high or low density regions, the user needs to provide a p-value.

The computed threshold value will be based on this p-value. To determine what is

the best p-value, we conducted a similar analysis to the one for window size using the
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same MAQC datasets and seven different p-values, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,

and 0.5. Figure 7.2 shows for each MAQC dataset the true DE and non-DE genes

detected by IBSeq.
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Figure 7.2: True DE and true non-DE detections using different p-values.

Obviously, the best p-value is the one that generates a threshold that provides

the optimal trade-off between the true DE and true non-DE detections. This means

it should detect a high number of true DE genes without increasing the false positive

rate. From Figure 7.2, it is clear that a p-value of 0.05 provides the trade-off since

using a p-value above 0.05 does not provide significant improvement for detecting the

true DE but it does increase the false positive rate.
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7.1.3 Gap Size Analysis

In order to determine how many low density islands are included in the con-

struction of high density islands (the gap size), it is needed to run the IBSeq with

different gap sizes. Therefore, we conducted a gap size analysis using the same MAQC

datasets and five different gap sizes, 0, 1, 2, 3, and 4. Figure 7.3 shows the result of

this analysis.
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Figure 7.3: True DE and true non-DE detections using different gap sizes.

It is obvious from Figure 7.3 that the best result is generated when we do not

include any low density regions (the gap size is 0) in the construction of high density

islands. Once the gap size is increased (gap size >=1), we see a clear increase of the

false positive rate.
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7.2 Further Island Segmentation

Island segmentation produces a variety of island sizes, with some belonging to

a long category (2000-500,000 bases) while many others are small (< 2000 bases).

After performing several experiments, it is observed that one reason for having high

false positive rates is that long islands tend to overlap with more than one feature

(e.g. gene). In order to alleviate this issue, we performed further segmentation on all

islands exceeding 1000 bases.

The further segmentation algorithm uses the concept of standard deviation

(SD) σ as follows. First, σ is computed for the initial segment (the first 10 regions

in the island, R1-R10). Second, the read counts of the next region (the eleventh

region, R11) is compared to 2σ. If the region count is greater than 2σ and the

segment size is 10 (the segment should include at least 10 regions to be considered

for further segmentation), we construct a new island from the initial segment and

starts a new segment from R11. If the condition is not true, the region R11 is added

to the initial segment and a new σ is computed. This process continues until we

reach the last region in the island. Figure 7.4 shows the algorithm flowchart and

Algorithm 2 represents the corresponding pseudocode. To illustrate this process

further, Figure 7.5 shows an example of further island segmentation using a 30bp

window size. Applying this algorithm on the IBSeq approach using the same four

MAQC datasets, results show a significant improvement in reducing the false discovery

rate without effecting the true DE detections as shown in Figure 7.6.

Another important issue associated with IBSeq that needs more investigation

is the combined p-value method used to combine the significance of islands corre-

sponding to each feature. This process is very important since the final result of

detecting differentially expressed features between samples is based on the combined

p-value method used. To evaluate the performance of the six combined p-value meth-
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START

S = island size

N = set of islands in a given sample

island = 1

S > 1000?

While (island <= N)

island = island +1

R = number of regions in island
segment = {R1..R10}

SD =  segment standard deviation 
segment_size = 10

j = R11

Construct new island from 
“segment”

segment = jsegment = segment +  j

True

j <= R? island = island +1
Yes No
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No

j = j + 1
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STOP

j > 2*SD & 
segment_size >=10

No Yes

compute SD

Figure 7.4: Further segmentation algorithm flowchart.

ods, we conducted a comparative study presented in Chapter 6. As a result of this

study, we can conclude that the different combined p-value methods in general per-

form similarly. However, given the slight increase in performance of the Weighted

z-test method for detecting the true DE on MAQC data and the best performance

on liver and kidney data, we determined that it is important to assign weights to the

combined tests because of their significant effect on the process of combining indepen-
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Algorithm 2 Further Island Segmenation Algorithm

Input: a set of m islands I for n samples S

I = {{Is1,1 , .., Is1,m}, {Is2,1 , .., Is2,m}, ....., {Isn,1 , .., Isn,m}}
Output: A set of further segmented islands I across samples S.

1: while I 6= ∅ do

2: for each sample si ∈ S do

3: z ← Isi .size

4: if z > 1000bp then

5: R← number of regions in island Isi
6: segment = {R1..R10}
7: sd = standard deviation of segment

8: segSize ← 10

9: for i ← R11 to R do

10: if Ri > 2*sd and segSize >= 10 then

11: construct a new island from segment

12: segment = Ri

13: else

14: segment = segment + Ri

15: sd = sd of segment

16: end if

17: end for

18: else

19: continue

20: end if

21: end for

22: end while

dent tests. This conclusion has led researchers to propose extensions [48] to Fisher’s

method to include weights for the tests.

Each combined p-value method has its own advantages and drawbacks. For

instance, Fisher’s method suffers from a significant drawback in an asymmetric sen-

sitivity to small p-values compared to large p-values [162]. Other methods may have

this drawback as well. To handle this issue, we considered approaches to minimize the

influence of outliers. These approaches include (1) trimming p-values using a quan-

tile approach, and (2) capping individual p-values with a minimum p-value threshold.

Preliminary results suggest that only considering a median percentile provides marked
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segment = initial_segment;

SD = SD of initial_segment 

For  i= R11 to Island_length (R60)

{  

   If ((R11>(2*SD)) && (segment_size >=10))

   {       

      make a new segment from R1-R10;

  segment = {R11};

   }

   else 

   {

segment = segment + R11;

SD = SD of segment;

   }

}

If Island_length > 1000 bp

Segment further 

Figure 7.5: Further island segmentation example (w = 30 bp).
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Figure 7.6: The performance of further island segmentation algorithm.

improvements in reducing the false discovery rate (Figure 7.7) with a slight reduc-

tion in detecting true positives for the Fisher’s method. In contrast, thresholding

the p-value provides a minimal improvement reducing the false discovery rate by 4-6

genes.
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Figure 7.7: Improvement of detecting the true non-DE for Fisher’s method using

median percentile approach.

One of the key assumptions with the combined p-value methods investigated

in this study is that the p-values for a given sample (in this case, a gene) are inde-

pendent. However, since an individual gene is composed of several islands and their

expression (partially at the exon level) are likely to be correlated, at least in terms

of the biological results, their p-values are not strictly independent. Thus, methods

that can combine dependent p-values, such as Brown’s [15] and Kost’s [77] methods,

may yield more consistent results.

All of the combined p-value methods considered in this study provide a number

of false positive results (not shown). One potential reason for non-trivial false positive

rates is that the datasets used in this study look at DE at a whole transcript level.

However, by breaking up the transcripts into additional islands, it is possible to detect
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alternative splicing events, which are likely to make up a significant amount of the

false positive data. However, neither the MAQC project nor Marioni’s Liver and

Kidney dataset provide any validation of alternative isoforms, and therefore, this was

excluded from additional interrogation.

Although the main aim of this dissertation is to develop an RNA-Seq differen-

tial expression analysis method that provides a solution for the limitations associated

with the current methods, there are still other factors (we refer to them here as bioin-

formatics challenges) which may effect the results regardless of which DE method

is used. Thus, despite the advantages NGS technologies have brought to the -omics

community, particularly in the transcriptomic realm, a number of new challenges

have been introduced as well. Below, we list some of the challenges that have been

introduced to the RNA-Seq community (there may be other challenges in other areas

but since the focus of this dissertation work is limited to RNA-Seq, we focus only on

the challenges in this area).

1. Mapping Uncertainty: considering short read sequences, some reads will

map equally well to multiple locations on the reference genome which may effect

the analysis results. As an example, non-unique regions within genes (such as

domains or conserved family features) may show up as arbitrary under or over

represented due to mapping.

2. Transcriptome Reconstruction: as many eukaryotic genes can produce dif-

ferent transcripts that encode for different isoforms and considering the reads

are short, it is hard to determine which reads originate from which isoforms.

In addition, low expressed genes (genes represented by a few reads) will be, in

most cases, discarded and their transcripts will not be assembled. Furthermore,

identifying mature transcripts is a difficult task since some reads originate solely

from exons [44].
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3. Sequencing Depth: to detect and measure RNA-Seq transcripts, one needs

to decide on the sequencing depth. This is an issue of coverage versus cost.

To provide better expression estimate, more coverage, which requires more se-

quencing depth, is needed but this will result in more cost. Sequencing depth is

very important factor that needs more attention since additional reads results in

the identification of low-abundance regions or transcripts, and provides a more

accurate picture of the actual dynamic range of expressed transcripts.

7.3 Computational and Space Complexity

To measure the efficiency and feasibility of any computer algorithm, the com-

putational complexity in terms of time (the amount of time required to run the

algorithm) and space (the amount of memory required to run the algorithm) has to

be measured and estimated. This is critical in considering scalability, particularly

with the likelihood that the input size is large as the case with the next-generation

sequencing data IBSeq uses. Generally, a complexity analysis is based on counting

primitive operations an algorithm needs to perform. Thus, the number of steps IBSeq

takes as a function of the input size needs to be measured and assessed in terms of

its efficiency by measuring the upper bound amount of time and space required to

execute the algorithm. Please refer to Algorithm 1 and Figure 5.2 throughout this

discussion as they represent the IBSeq steps discussed here.

Let us first define the notations involved in this analysis as follows:

N : number of samples (range from 2-10).

M : number of replicates (range from 3-5).

Rnm: reads per file (range from 30-80 million).

Inm: number of pre-islands in sample n, replicate m.

G: genome size (∼ 3 billion base pairs).

L: read length (range from 35-100).

W : window size (range from 30-50bp).
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For most RNA-Seq studies, there will be a number of N samples where each

sample may have M replicates, R reads, and a genome of length G as an input. Note

that in most cases, the genome size is constant, on the order of 3 billion base pairs

(bp). While the sample size R and the genome length G may not be constants, for

most RNA-Seq projects, R will range from 30-80 million reads, while G is typically

around 3 billion base pairs (bp). Thus, in the worst case scenario (the upper bound

on algorithm performance), the mapping process will run in NM × (LR+ LG) time

depending on the number of reads R and therefore the upper bound time complexity

of this step is on the order of NM × L(R + G) or O(NM × L(R + G)). Given

that M ≈ N and L is a constant which can be discarded, the time complexity is

roughly O(N2(RG)). In addition, the genome length G can be discarded since it is

a constant in most cases as discussed above. Therefore, the time complexity of the

mapping process function is O(RN2). As for the space complexity, this step will be

roughly based on the genome size G. Although the mapping step is not part of IBSeq,

the computational and space complexity of this step is discussed here since it is an

essential process of any RNA-Seq analysis and it is assumed to be performed before

using IBSeq. Refer to [139] for a more in-depth discussion about mapping complexity.

The per base count step (step 1 of IBSeq) will run in (NM×G) time depending

only upon the genome size G. Similar to mapping, given that M ≈ N and G is a

constant, the time complexity of this step can be O(N2) (approximately quadratic

time). Similarly, the region construction process (step 2) will run in (NM × G/W )

time. Considering G and W are constants and can therefore be discarded and M ≈ N ,

the time complexity of this step is on the order of N2 or O(N2). The space complexity

of the two steps clearly depends on the genome size G. The island construction

process (step 3) will be treated the same as region construction step and will run in

(NM × G/W ) times. Given the constants G and W , the time complexity of island
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construction is also a quadratic on the order of N2 or O(N2).

In the second part of the IBSeq algorithm where all possible pairwise compar-

isons between the samples are performed to test for island differential expression (step

4), the process runs in I ×
(
NM(NM − 1)

2

)
time. The complexity function here is

I ×
(

1

2
(NM)2 − 1

2
NM

)
but since

1

2
NM is much smaller than

1

2
(NM)2 and has no

significant effect on the running time, this term can be discarded. In addition, we can

also discard the constant
1

2
since it takes a constant amount of time and insignificant

for the growth function. Therefore, the time complexity of this part in the worst case

scenario is on the order of I×(NM)2 or O(I(NM)2) which is a quadratic complexity.

This is clearly the larger than the time complexity of all other previous steps.

The last step which combines the significance of DE islands corresponding to

each feature (step 5) will run in the same time as step 4 with an order of O(I(NM)2)

with an additional parameter Csig which represents the complexity of the combined

p-value method used. Thus, the time complexity in this context will be O(I(NM)2×

Csig) where Csig represents steps in the combined p-value method used. Similar to the

previous steps, the space complexity of step 4 and 5 will be in most cases dependent

on the genome size.

Overall, the time complexity of IBSeq algorithm can be written as a total of

the time complexities of all steps as the following:

O(RN2)︸ ︷︷ ︸
preprocessing

+O(N2)︸ ︷︷ ︸
Step 1

+O(N2)︸ ︷︷ ︸
Step 2

+O(N2)︸ ︷︷ ︸
Step 3

+O(I(NM)2)︸ ︷︷ ︸
Step 4

+O(I(NM)2)× Csig︸ ︷︷ ︸
Step 5

preprocessing : mapping read sequences to the reference genome.

Step 1 : compute per-base count.

Step 2 : region construction.

Step 3 : island construction.

Step 4 : island differential expression.

Step 5 : combining the significance of islands.
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It is obvious that the time complexity of IBSeq is a summation of quadratic

complexities which shows a potential room for improvement. However, it can be

acceptable and feasible in our case because of two reasons: (1) most RNA-Seq studies

use a small number of samples N (due to sequencing cost), (2) since the number of

samples is a small (range from 2-10), the growth rate of the complexity will not grow

fast where it will start increasing only with larger values of N (e.g. N > 50). The

space complexity for almost all IBSeq steps will roughly be based upon the genome

size.

The complexity analysis discussed above is an asymptotic upper bound estima-

tion of IBSeq efficiency and does not indicate the actual performance of the algorithm.

In order to perform an actual measurement, IBSeq needs to be run using real data

and the amount of both CPU time and memory space required to perform each step

has to be recorded. Therefore, we performed an actual assessment of the IBSeq re-

quirements of time and space using four RNA-Seq datasets described in Table 7.1.

Table 7.1: Description of the datasets used in the complexity analysis.

Dataset # of Samples Read Length Total Reads Organism

MAQC2 [16] 2 35bp
hbr: 81,250,500

Humanuhr: 92,524,365

MAQC2 [113] 2 50bp
hbr: 53,238,798

Humanuhr: 59,561,348

Marioni’s data [100] 2 36bp
Liver: 69,618,202

HumanKidney: 66,404,506

Petruska’s data [59] 3 59bp
T0: 63,623,836 x 2

RatT7: 48,485,234 x 2
T14: 41,050,145 x 2

IBSeq was implemented using Perl version v5.14.2 and run on a Dell Alien-

ware Area-51 Gaming workstation with Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz
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(8 CPUs/4 cores) and 12 GB RAM. The CPU time and memory usage were recored

for each step. Table 7.2 shows the amount of time and space usage for each step of

the IBSeq algorithm while Figure 7.8 represents the corresponding charts.

Table 7.2: The amount of time and space recorded for each step in IBSeq using four

RNA-Seq datasets (D=Dataset).

Process
CPU Time (Minutes) Memory (Kilobytes)

D1 D2 D3 D4 D1 D2 D3 D4

Mapping 27 55 24 34.5 3613000 3369000 3530000 2664000

Per-base count 154 168 154 153 1902000 1902000 1902000 2045000

Region construction 99 101 99 92 7520 7516 7524 7524

Island construction 18 17 15 18 1453000 1452000 1455000 1357000

Island DE 82 56 138 52 3095000 3095000 3095000 3342000

Combine significance 165 135 219 115 14960 14820 15708 25648
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Figure 7.8: The amount of time and space utilized by each step in IBSeq using four

RNA-Seq datasets.

By looking at the charts above, it is clear that the island construction step

took the lowest running time which was expected since this step does not require
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intensive computations. In terms of memory utilization, the performance of this step

utilized only a small fraction of the memory (12%). Although the mapping step took

the second lowest running time, it utilized the largest space of memory ranging from

22%-30%. This was expected since this process needs to load the indexed reference

genome, which is usually in GBs, into the memory. In terms of the best process that

took the smallest memory space, the region construction step along with combining

the significance utilized the smallest space with only 0.1%. However, combining the

significance along with per base count step took the largest running time. Although

the running time for island DE process was small, it utilized the largest memory

space along with the mapping with 25% of the physical memory. In conclusion, it

is observed that the per base count and combining the significance processes require

the largest running time. This result is expected since the per base count is based on

the length of reference genome which is in most cases in the range of 3 billion bases.

Similarly, the computation of combining the significance of genetic features is based

on the number of annotated features which is usually large (ranging from 18000-

80000). In contrast, mapping and island DE processes require the largest memory

space. This observation is to be expected since the mapping process requires the

large reference genome index to be loaded into the memory. Similarly fo island DE,

in order to perform the DE test, we need to load the large region files into the memory

to extract all island counts. Therefore, these processes that take the largest running

time and largest memory space are considered for further optimization in order to

minimize the requirement of both time and space.

7.4 Future Directions

There are several exciting directions for future research inspired by this disser-

tation. In this chapter, we summarize briefly some of the potential research directions.
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7.4.1 Potential IBSeq Extensions

Since IBSeq is in its initial version, a number of potential extensions need to

be implemented in the near future to improve the efficiency and robustness including:

1. Alternative splicing detection: currently, IBSeq does not support the detection

of alternative splicing events. Since most genes composed of multiple exons

in eukaryotic have multiple isoforms, alternative splice detection is important

in order to understand subtle differences tha occur at a transcript level. As

an initial approach to detect alternative splicing events, transcripts could be

broken up into additional islands which are then stitched together to check for

expression differences between isoforms within the same gene.

2. Biological variation: IBSeq as for now is capable of detecting island differential

expression using technical replicates only. We plan in the future to adapt the

current statistical model in order to accommodate for the biological variation

of genetic features across biological replicates (IBSeq bio).

3. Visualization: the current form of IBSeq results is a tab-delimited file containing

all statistical and expression information which can be visualized on one of the

genome visualization tools such as UCSC genome browser, Integrative Genomics

Viewer (IGV), or GBrowse. In the future, we plan to develop a visualization

package adapted specifically for IBSeq results.

7.4.2 Combining the Significance of Islands

As discussed in Section 6.4, one of the major assumptions with the combined

p-value methods studied is that the p-values for a given sample (in this case a gene)

are independent. But since an individual gene is composed of several islands, there

is a strong likelihood of correlation between expression of islands and therefore their
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p-values are not strictly independent. In the future, we plan to consider methods that

can combine dependent p-values such as Brown’s [15] and Kost’s [77] which may yield

more consistent results. In addition, we also plan to continue exploring additional

weighted measures in order to provide realistic p-value combinations. Furthermore,

We hope to continue further analysis to look at the effects of each of the combined

p-value methods on alternative splice detection in the future.

7.4.3 Comparison to Transcriptome Assemblers

The main focus of this research was to extend the knowledge of differentially

expressed regions outside of known annotations. While this may be a fruitful ap-

proach for de novo transcriptome discovery, we have yet to compare it to de novo

transcriptome assemblers such as Trans-Abyss [130], Oases [137], or Trinity [49]. This

is due to the fact that our IBSeq approach as currently constructed is a mapping-

based methodology in contrast to these assembly-based methods. In the future, we

will consider an IBSeq-based methodology to de novo transcript assembly.

7.4.4 IBSeq Optimization

Since IBSeq consists of several steps, the amount of time and space required

to execute each step varies from one to another. For instance, the computation of per

base count step is very expensive in terms of both time and space since it needs to

compute the number of reads mapping to each position in the genome. To achieve a

drastic improvement in speed and reduce the running time of IBSeq algorithm, we plan

to implement a new version of IBSeq that can be run on one of the massively parallel

computing platforms such as the graphics processing unit (GPU) which provides

massively parallel computational power that assures the speed of algorithms. This

can be performed using CUDA (Compute Unified Device Architecture) C/C++ to
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program GPUs. Since the various steps of IBSeq are performed for each sample, steps

can run in parallel which is expected to speed up the algorithm in large magnitude.
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APPENDIX A

LIST OF ABBREVIATIONS

ABySS Assembly By Short Sequences

auROC Area under Receiver Operating Characteristic

BFAST Blat-like Fast Accurate Search Tool

BLAST Basic Local Alignment Search Tool

BLAT the BLAST-Like Alignment Tool

DAG Directed Acyclic Graph

DDBJ DNA Data Bank of Japan

DE Differential Expression

ELAND Efficient Large-Scale Alignment of Nucleotide Databases

EMBL European Molecular Biology Laboratory

emPCR Emulsion Polymerase Chain Reaction

ERANGE Enhanced Read Analysis of Gene Expression

GTF Gene Transfer Format

LRT Likelihood Ratio Test

MAQ Mapping and Assembly with Quality

MISO Mixture of Isoform

mRNA Messenger RNA

NGS Next Generation Sequencing

PCR Polymerase Chain Reaction

PGM Personal Genome Machine

ROC Receiver Operating Characteristic
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rRNA Ribosomal RNA

RSEM RNA-Seq by Expectation-Maximization

SAM Sequence Alignment/Map

SHARCGS SHort read Assembler Based on Robust Contig Extension for Genome

Sequencing

SHRiMP SHort Read Mapping Package

SMRT Single Molecule Teal Time

SNP Single Nucleotide Polymorphism

SOAP Short Oligonucleotide Alignment Program

SRA Sequence Read Archive

SSAKE The Short Sequence Assembly by K-mer Search and 3’ Read Extension

VCAKE Verified Consensus Assembly by K-mer Extension

ZOOM Zillions Of Oligos Mapped
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