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ABSTRACT 

DATA MINING AND ANALYSIS OF LUNG CANCER DATA 

Guoxin Tang 

September 24,2010 

Lung cancer is the leading cause of cancer death in the United States and the 

world, with more than 1.3 million deaths worldwide per year. However, because 

of a lack of effective tools to diagnose Lung Cancer, more than half of all cases 

are diagnosed at an advanced stage, when surgical resection is unlikely to be 

feasible. The main purpose of this study is to examine the relationship between 

patient outcomes and conditions of the patients undergoing different treatments 

for lung cancer and to develop models to predict the mortality of lung cancer. 

This study will identify the demographic, finance, and clinical factors related to 

the diagnosis or mortality of Lung Cancer to help physicians and patients in their 

decision-making. 

We combined Text Miner and Cluster analysis to identify the claim data for Lung 

Cancer and to determine the category of diagnosis, treatment procedures and 

medication treatments for those patients. Moreover, the claims data were used to 

define severity level and treatment categories. Compared with using diagnosis 
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codes directly, the combination of text mining and cluster analysis is more 

efficient and captures more useful information for further analysis. In order to 

analyze the mortality of Lung Cancer, we also found that survival analysis is 

appropriate to preprocess the data for the relationship between a predictor 

variable of interest and the time of an event. The proportional hazard model 

examined the effects of different treatment clusters using a hazard ratio and the 

proportional effect of a treatment cluster (treatment procedure or medication 

treatment) may vary with time. A decision tree was built to generate rules for 

identifying high risk lung cancer cases among the regular inpatient population. 

Two primary data sets have been used in this study, the Nationwide Inpatient 

Sample (NIS) and the Thomson MedStat MarketScan data. Kernel density 

estimation was used for NIS to examine the relationship between Age, Length of 

stay, Diagnosis Categories, Total Cost and Lung Cancer by visualization. The 

Kaplan-Meier method and Cox proportional hazard model are used for the 

Medstat data to discover the relationship between the factors and the target 

variable for more detail. Time series and predictive modeling are used to predict 

the total cost for hospital decision making, the mortality of Lung cancer based on 

the historical data and to generate rules to identify the diagnosis of Lung cancer. 

Older patients are more likely to have lung cancers that would lead to a higher 

probability of longer stay and higher costs for the treatment. Within 7 defined 
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clusters of diagnosis for Lung Cancer, the malignant neoplasm of lobe, bronchus 

or lung is under higher risk. Age, length of stay, admit type, clusters of diagnosis, 

and clusters of treatment procedures and Major Diagnostic Categories (MDC) 

were identified as significant factors for the mortality of lung cancer. 

vii 



TABLE OF CONTENTS 

DEDICATION 

ACKNOWLEDGEMENT 

ABSTRACT 

LIST OF TABLES 

LIST OF FIGURES 

CHAPTER I INTRODUCTION 

CHAPTER II BACKGROUND 

2.1 Lung Cancer 

2.2 The Causes of Lung Cancer 

2.3 Diagnosis and Staging of Lung Cancer 

2.4 Treatment of Lung Cancer 

2.5 The distribution of Lung Cancer in US 

2.6 ICD9 Codes 

2.7 Summary 

CHAPTER III DATA MINING AND TEXT MINING 

3.1 Data Mining 

3.2 Data Mining Process 

3.3 Text Mining 

3.4 Dimension Reduction 

3.5 Clustering 

viii 

iii 

iv 

v 

XI 

xiii 

1 

5 

5 

7 

8 

14 

15 

16 

17 

19 

19 

20 

23 

25 

27 



3.6 Summary 29 

CHAPTER IV SURVIVAL ANALYSIS 31 

4.1 The History of Survival Analysis 31 

4.2 The Cumulative Distribution Function 31 

4.3 The Probability Density Function 32 

4.4 The Survival Function 32 

4.5 The Hazard Function 33 

4.6 Censoring 34 

4.7 The Kaplan-Meier Method 37 

4.8 Cox's Proportional hazard model 39 

4.9 Summary 42 

CHAPTER V TIME SERIES MODELS AND PREDICTIVE MODELS 43 

5.1 Time Series Models 43 

5.1.1 Autoregressive Model 44 

5.1.2 Autoregressive Moving Average Model 46 

5.1.3 Autoregressive Integrated Moving Average Model 47 

5.1.4 Model Identification 48 

5.2 Predictive Models 48 

5.2.1 Logistic Regression Model 49 

5.2.2 Decision Tree 51 

5.2.3 Neural Network 52 

5.3 Summary 55 

CHAPTER VI DATA ANALYSIS FOR THE NIS DATABASES 56 

6.1 Overview of NIS Data 56 

6.2 Data Preprocessing 59 

ix 



6.3 Data Visualization 

6.4 Time Series and Forecasting 

6.5 Logistic Regression Model for Mortality 

61 

72 

78 

6.6 Summary 85 

CHAPTER VII DATA ANALYSIS AND MODELING FOR MEDSTAT DATA 87 

7.1 MarketScan Database Overview 87 

7.2 Variables and Values 89 

7.3 Analysis of MarketScan Data 92 

7.4 Medication Analysis 98 

7.5 Survival Analysis 107 

7.5.1 Kaplan-Meier Method 109 

7.5.2 Cox Hazard Model 117 

7.6 Predictive Modeling 120 

7.7 Summary 126 

CHAPTER VIII METHODS COMPARISON AND CONCLUSION 129 

8.1 Methods Comparison 129 

8.2 Conclusion 136 

REFERENCE 139 

APPENDIX 144 

CURRICULUM VITAE 148 

x 



LIST OF TABLES 

Table Page 

2.1 Incidence and Mortality by Sex and Cancer site worldwide 2002 6 

6.1 The frequency of lung cancer 61 

6.2 Summary of Age, Gender, Length of Stay and Total Charge 62 

6.3 Cluster table for diagnosis strings 66 

6.4 Translation for the clusters 67 

6.5 Basic information about the data set 79 

6.6 Model fit statistics 80 

6.7 Summary of Stepwise Selection 82 

6.8 The analysis of MLEs 83 

6.9 The Association of Predicted Probabilities and Observed Responses 84 

7.1 List of variables in Inpatient admission tables 88 

7.2 Cluster table for procedure strings 95 

7.3 Translation for the clusters 96 

7.4 The top Medicines sorted by prescriptions 100 

7.5 The frequency for each Drug class 103 

7.6 Clusters for medication procedures 107 

7.7 Test of Equality over Strata of Sex 110 

7.8 Test of Equality over Strata of Age group 112 

7.9 Test of Equality over Strata of Admission Type 113 

xi 



7.10 Test of Equality over Strata of Treatment Clusters 

7.11 Hazard ratio for the mortality of lung cancer 

7.12 Model Choice with Misclassification Rate 

7.13 Fit statistics for model selection 

8.1 The ROC index for the models 

xii 

115 

119 

122 

125 

136 



LIST OF FIGURES 

Figure Page 

2.1 Lung Cancer Survival by Stage 13 

2.2 Age-adjusted lung cancer incidence rates by Area in Kentucky 16 

3.1 General data mining process 20 

3.2 The concept and technologies of Text Mining 24 

4.1 Right censoring 35 

4.2 The relationship between hazard and survival 40 

5.1 The diagram for multilayer feed-forward network 53 

6.1 The pie chart for the proportion of lung cancer 61 

6.2 The Kernel Density of Lung cancers by Age using KDE 64 

6.3 The Density of Lung cancer by LOS (Length of Stay) using KDE 64 

6.4 The density of Lung cancer by Total Charge using KDE 65 

6.5 Concept links for 1620, Malignant Neoplasm of Trachea 69 

6.6 Kernel Density Estimate for Total Charges by Clusters 71 

6.7 Kernel Density Estimate for Age by Clusters 71 

6.8 Kernel Density Estimate for Length of Stay by Clusters 72 

6.9 The trend of Total Charge from Jan 2000 to Dec 2004 73 

6.10 The means plots of Total charges by Los and Age 74 

6.11 Root Mean Square Error for different model used 75 

6.12 Prediction error autocorrelation plots and white noise 76 

xiii 



6.13 The forecast of Total Cost based on ARIMA model with Regressors 77 

6.14 ROC Curve 84 

7.1 The Kernel Density of Lung Cancer by Age using KDE 93 

7.2 The Density of Lung cancer by Days (Length of Stay) using KDE 94 

7.3 The density of Lung cancer by Total Charge using KDE 94 

7.4 Kernel Density Estimate for Total Charges by Clusters 97 

7.5 Kernel Density Estimate for Age by Clusters 97 

7.6 Kernel Density Estimate for Length of Stay by Clusters 98 

7.7 The distribution of Drug class 102 

7.8 Life Tables: Survivor Distribution Plot for Sex 111 

7.9 Life Tables: Survivor Distribution Plot for Age Group 112 

7.10 Life Tables: Survivor Distribution Plot for Admission Type 114 

7.11 Life Tables: Survivor Distribution Plot for Treatment clusters 116 

7.12 Predictive Modeling Process 121 

7.13 Roc Curve for model of lung cancer occurrence 122 

7.14 Decision Tree Results 123 

7.15 ROC curve for model selection 126 

8.1 The comparison of ROC curves 135 

xiv 



CHAPTER I INTRODUCTION 

Cancer researchers, clinicians and public notice are dedicated to develop or 

improve statistical models to predict the occurrence or the mortality of some 

cancers. Many risk prediction models have been developed for chronic disease 

since 1976[1]. People are more and more interested in the development of 

individual risk assessment methods of lung cancer, which also has been 

identified as an area of extraordinary opportunity by the National Cancer Institute. 

However, very few models have been developed to estimate the risk of lung 

cancer so far, in contrast to more prevalent modeling in the breast and certain 

other sites[2]. 

Cancer predictive models were applied to design, plan, and establish eligibility 

criteria for cancer intervention and screening trials that also have been used to 

identify individuals at high risk of cancer who may benefit from targeted 

screening or other interventions such as tamoxifen chemoprevention [3]. Cancer 

predictive models are also used to examine the population distribution, the cost 

and the impact of interventions. They are used in clinical decision making to help 

physicians and patients determine the current stage of the cancer and 

appropriate screening regimens, medication, and/or interventions [3]. 
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In addition, personalized medicine will play an important role in the treatment of 

Lung cancer in the next few years. Recent advances in drug development, 

pharmacogenomics, and the molecular characterization of tumors have brought 

the opportunity for individualized selection of treatment based on the 

characteristics of the patient and the tumor. As a genetic disease, it is useful to 

know how many genes are altered in solid tumors associated with Lung Cancer. 

With the advances in massively parallel sequencing technologies, new cancer 

genomes are being sequenced at an astonishing rate. As more cancer genomes 

are sequenced, it will be possible to identify new genes and key mutations [4] [5]. 

However, as Anirban Mahapatra mentioned, molecular characterization of lung 

cancer tumors will continue to be difficult because of the heterogeneity of the 

constituent cells [5]. 

The main purpose of this study is to investigate the relationship between the 

demographic factors, finance, clinical conditions and the diagnosis of Lung 

Cancer. Specific lung cancer risk prediction models based on available variables 

were developed, evaluated and used to predict the cost and mortality for the 

patients and to build rules for identifying diagnoses of Cancer, which will identify 

high-risk individuals and help the physician's clinical decision making. 

This research focuses on the Inpatient Sample (NIS) (inpatient claims only)[6] 

and Medstat MarketScan Databases (Inpatient, outpatient, and pharmacy claims) 

[7]. The NIS database includes five years of data, 2000- 2004, and about 8 
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million records for each year. The Thomson MedStat MarketScan data containing 

all patient claims for 40 million people followed for the years 2000-2001. We use 

publicly available data throughout this study. 

Each observation includes fifteen columns of Diagnosis codes and fifteen 

columns of Procedure codes in these data sets. One inpatient admission consists 

of one or more observations. It is possible that there are multiple admissions for 

one patient. Here, any diagnosis or procedure code can appear in anyone of the 

fifteen columns. In order to identify the claims for Lung cancer, we work with all 

fifteen columns to bring all of them into one column as a string of codes, using 

the CATX function, which concatenates character strings, removes leading and 

trailing blanks, and inserts separators. 

This dissertation is divided into nine chapters. In chapter 2, the background and 

current status of lung cancer in the world and USA will be explored as well as 

how Lung Cancer has been staged, which shows the severity level of the cancer 

and the survival rate for each stage. In chapters 3, 4, 5 and 6, we will give some 

background, concepts and theories for data mining, cluster analysis, survival 

analysis, time series and predictive modeling, respectively. In chapter 7, some 

methods mentioned above will be used to analyze the Nationwide Inpatient 

Sample (NIS) database. Lung Cancer claims data will be identified by using the 

Text Mining methodology and Kernel Density Estimation (KDE procedure), which 

was used to examine the relation of lung disease by Age, Length of Stay and 
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Total Charges. Then, cluster analysis will be used to define diagnosis categories. 

Furthermore, an ARIMA model with inflation rate as the dynamic regressor and a 

logistic regression model will be used to predict the cost and mortality of lung 

cancer, respectively. In chapter 8, survival analysis and predictive modeling will 

be applied to the Medstat MarketScan Databases and the four main treatment 

procedures will be defined. Also, a Cox Proportion Hazard Model gives us the 

hazard ratio of each variable to explain how it relates to the mortality of Lung 

Cancer. Then, Decision trees give us the rules for identifying Lung Cancer for 

reference and the Neural Network model is optimal for the prediction of the 

mortality of lung cancer. Chapter 9 concludes and summarizes all the findings. 
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CHAPTER II BACKGROUND 

2.1. Lung Cancer 

At the end of the 20th century, lung cancer had become the first worldwide 

cancer in deaths and the number is rising every year. Lung cancer was a rare 

disease at the beginning of that century. Table 2.1 shows the estimated number 

of cases and deaths for 26 different types of cancer in men and women together 

with the age, standardized incidence and mortality rates and the cumulative risk 

(%) between ages 0 and 64 during 2002. Lung cancer is the main cancer with 1.5 

million cases and 1.18 million deaths in the world yearly [8]. 

There were 1.35 million new cases of lung cancer, which was about 12.4% of all 

new cancers. Furthermore, at the beginning, more than half of the cases 

occurred in the developing countries of the world; now it is estimated that 69% 

were in developed countries since 1980. It is the most common cancer for men, 

with the highest rates observed in North America and Europe. For women, the 

incidence rates are lower compared to men (globally, the rate is 12.1 per 100,000 

women compared with 35.5 per 100,000 in men). The highest rates for women 

are in North America and Northern Europe. (D. Max Parkin, Freddie Bray, Global 

Cancer Statistics, 81) [8]. 
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Table 2.1 Incidence and Mortality by Sex and Cancer site worldwide, 2002 

Incidence Mortality 

Males Females Males Females 

Cases Cases Cumulative Deaths Cumulative Deaths Cumulative 

risk(age 0-64) riSk(age 0-64) risk(age 0-64) 

Oral Cavity 175,916 0.4 98,373 0.2 80,736 0.2 46,723 0.1 

Nasopharynx 55,796 0.1 24,247 0.1 34,913 0.1 15,419 0.0 

Other 106,219 0.3 24,077 0.1 67,964 0.2 16,029 00 

pharynx 

Esophagus 315,394 0.6 146,723 0.3 261,162 0.5 124,730 0.2 

Stomach 603,419 1.2 330,518 0.5 446,052 0.8 254,297 0.4 

Colon/rectum 550,465 0.9 472,687 0.7 278,446 0.4 250,532 0.3 

Liver 442,119 1.0 184,043 0.3 416,882 0.9 181,439 0.3 

Pancreas 124,841 0.2 107,465 0.1 119,544 0.2 107,479 0.1 

Larynx 139,230 0.3 20,011 0 78,629 0.2 11,327 0 

Lung 965,241 1.7 386,891 0.6 848,132 1.4 330,786 0.5 

Melanoma of 79,043 0.2 81,134 0.2 21,952 0 18,829 0 

Skin 

Breast 1,151,298 2.6 410,712 0.9 

Cervix uteri 493,243 1.3 273,505 0.7 

Corpus uteri 198,783 0.4 50,327 0.1 

Ovary 204,499 0.5 124,860 0.2 

Prostate 679,023 0.8 221,002 0.1 

Testis 48,613 0.1 8,878 0 

Kidney 129,223 0.3 79,257 0.1 62,696 0.1 39,199 0.1 

Bladder 273,858 0.4 82,699 0.1 108,310 0.1 36,699 0 

Brain,nervou 108,221 0.2 81,264 0.2 80,034 0.2 61,616 0.1 

s system 

Thyroid 37,424 0.1 103,589 0.2 11,297 0 24,078 0 

Non-Hodgkin 175,123 0.3 125,448 0.2 98,865 0.2 72,955 0.1 

lymphoma 

Hodgkin 38,218 0.1 24,111 0.1 14,460 0 8,352 0 

Disease 

Multiple 46,512 0.1 39,192 0.1 32,696 0.1 29,839 0 
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Incidence Mortality 

Males Females Males Females 

Cases Cases Cumulative Deaths Cumulative Deaths Cumulative 

risk(age 0-64) risk(age 0-64) risk(age 0-64) 

myeloma 

Leukemia 171,037 0.3 129,485 0.2 125,142 0.2 97,364 0.2 

2.2 The Causes of Lung Cancer 

The etiology of Lung cancer is still not completely clear, and a large amount of 

data show that lung cancer risk factors include smoking, asbestos, radon, arsenic, 

ionizing radiation, halogen alkene and polycyclic aromatic compounds, nickel, etc. 

Cigarette smoking is a well-established cause of lung cancer. Carcinogens are 

released when burning cigarettes. Long-term smoking can cause a phosphorus 

shape of bronchial epithelium cells, which leads to squamous cell carcinoma or 

undifferentiated small cell carcinoma. Among those patients who did not smoke, 

the adenocarcinoma are more common than lung cancer. In fact, an estimated 

87% of all lung cancers can be attributed to cigarette smoking alone [9]. Although 

smoking is by far the leading cause of lung cancer, the disease has several other 

causes. Lung cancers are still directly or indirectly related to tobacco use from 

cigars, pipes, and secondhand cigarette smoke, but several other risk factors act 

independently or synergistically with tobacco to cause lung cancer. Occupational 
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and environmental exposures, such as asbestos, arsenic, secondhand smoke, 

and radon also increase the risk of lung cancer. 

2.3. Diagnosis and Staging of Lung Cancer [10] 

There are no specific symptoms in the early stage of lung cancer, only for 

general respiratory diseases with symptoms such as cough, phlegm with blood, 

low fever, chest pain, etc, which are often ignored. Here, we list some symptoms 

that occur during advanced stages of lung cancer. 

a) The edema of face or neck. 

b) Hoarse voice, a common symptom. 

c) Difficulty in breathing. 

It easily causes metastases for Lung cancer. If it metastasizes to the brain, it 

would cause a persistent headache, which is not obviously different from ordinary 

tension headaches. If the cancer metastasizes to the bone, it will cause damage 

to the bone. The most difficult cancer metastasis is to the spine, which follows 

with back pain. 
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a) Methods of Diagnosis 

What method of diagnosis of suspected lung cancer should be applied depends 

on the type of lung cancer, the size and location of the primary tumor, the 

presence of metastasis, and the overall clinical status of the patient. 

In order to detect and diagnose lung cancer, the routine disease history and 

physical examination is the important first step, which might provide some signs 

of the cancer. The patient's symptoms that include observing possible indicators 

as discussed above could also carry information about the possibility of lung 

disease[9]. 

Here, we list the several available methods applied to detect lung disease 

(Information is from Thompson Cancer Survival Center) [9][10]. 

• Diagnostic Imaging 

The first step in determining whether a mass is cancer or benign is a 

diagnostic image . 

• X-Ray 

X-ray examination is the most common cancer diagnosis method. 

The X-ray examination can detect the position and size of the 

potential lung masses, but cannot determine if they are cancerous 

or benign. For early lung cancer cases, x-rays cannot detect small, 
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potential tumors, but can show a partial obstruction due to the 

bronchial emphysema, atelectasis or adjacent parts of the lesion. 

• CT Scan 

CT stands for computerized tomography scan, which is a series of 

X-rays combined by a computer in a cross-sectional view and can 

provide a more-detailed image of the lung compared with X-rays. It 

is performed with injected contrast material to highlight lung tissue 

and suspicious masses . 

• MRI 

Magnetic resonance imaging (or MRI) scans use magnetism, radio 

waves and computer image manipulation to produce an extremely 

detailed image without radiation. Compared to the CAT scan, there 

is no damage to the human body since an M~I does not use X-rays. 

The MRI can provide imaging for soft tissue based on multiple 

planes, which the CAT scan cannot match. There are many 

imaging methods and parameter selections for MRI that make more 

applications for the MRI. Changing the radio frequency of pulse, 

repetition of program and echo time will change the imaging. 

• Biopsies 

Biopsies are procedures where a small amount of a suspicious mass is 

removed for examination. There are three main types of biopsy for 

suspected lung masses(Thompson Cancer Survival Center) [9]: 
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• Surgical 

A surgical biopsy is a procedure of gaining a small sample of a 

suspected mass. For such purposes, the patient's chest needs to 

be opened, and then the sample is analyzed by a pathologist. 

• Bronchoscopy 

From the patient's mouth or nose, a bronchoscope is inserted to the 

suspected area, passed through the trachea and bronchial tubes. 

Through this method, the physician could examine the lung mass to 

determine the stage of lung cancer. Usually, there is a sampling 

device to gain a small sample of the suspected mass for analysis. 

• Needle Aspiration or Core Biopsy 

In needle aspiration, a thin needle is inserted into the suspected 

mass and a small sample was gained for analysis. 

• Sputum cytology 

In sputum cytology, the patient's sputum was examined by a pathologist 

under a microscope. The cancer cells can be found in most primary lung 

cancer patients' sputum. Therefore, the phlegm cytology is a simple and 

effective method for lung cancer diagnosis. 
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b) Lung Cancer Staging 

Lung Cancer Staging is the evaluation or measurement of the size and spread of 

a lung cancer. Different lung cancer treatments are used at various stages of the 

cancer. For example, the early stage of cancer can be treated surgically while 

higher stages of cancer use chemotherapy and radiation in a combined therapy. 

The treatment and prognosis of the patients with lung cancer in general may 

depend largely on the stage and cancer cell types. There are two main types of 

lung cancer cell by the size and appearance of the malignant cells. The stage 

systems for non-small cell lung carcinoma (NSCLC) and small-cell lung 

carcinoma (SCLC) are different. 

Lung cancer can be divided into four stages for NSCLC [9][11].(Thompson 

Cancer Survival Center) 

1) NSCLC stage I 

The cancer is small and it has not spread into any lymph nodes or any 

other part of the body. 

2) NSCLC stage /I 

The cancer is in the chest area. However, it has spread into some other 

areas such as the chest wall, the muscle under the lung, or the 

phrenic, or the layers that cover the heart. 
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3) NSCLC stage 11/ 

The cancer is still in the chest area, and the tumors are larger and more 

invasive. Furthermore, it has spread into lymph nodes on the opposite 

side of the chest. 

4) NSCLC stage IV 

The cancer has spread to other parts of the body, such as the liver, bones 

or has caused a fluid collection around the lung or heart that contains 

cancer cells. 

The following figure shows the two year relative survival rate for each stage we 

discussed above. 

Figure 2.1. Lung Cancer Survival by Stage [12] 
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2.4. Treatment of Lung Cancer 

Nowadays, there are several treatments for Lung Cancer as follows. 

• Surgery 

The most common treatment is Surgery. It could be used to remove those 

tumors for the patient in stages I and II. It also could be used for removal 

of a lung lobe or the entire lung. However, it is seldom used on small cell 

lung cancer because the disease has usually spread beyond the lung by 

the time it is detected and diagnosed. 

• Chemotherapy 

Chemotherapy is a chemical treatment which could be used for both the 

non-small cell and small cell lung cancers. 

• External Radiation Therapy 

CT is used to identify the location of the tumor, which could be applied 

before the treatment is scheduled or at the time of treatment. On 

subsequent visits, the tumor is radiated from different angles to maximize 

the dose delivered to the tumor with minimum impact on surrounding 

healthy tissue. 
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• Photodynamic therapy 

Photodynamic therapy is used for patients to limit side effects and to keep 

healthy lung tissue in the outpatient. However, it has not been used widely 

because it cannot penetrate deeply into the lung tissue. 

2.5. The distribution of Lung Cancer in US 

Lung cancer is a devastating disease. Not only is it the most common cancer in 

the United States and in Kentucky, it also claims more lives than any other 

cancer. 

Kentucky's lung cancer mortality rate is the highest of all states in the nation. The 

American Cancer Society estimated that in the year 2000, lung cancer accounted 

for 14% of all newly diagnosed cancers and 28% of all cancer deaths, killing 

more than 150,000 people. In Kentucky alone, more than 3,000 people die from 

lung cancer every year. 

Kentucky has distinct geographic and lifestyle regions (e.g., western Kentucky 

differs substantially from eastern Kentucky, just as the state's rural areas tend to 

differ from its urban ones). Each region has different lung cancer rates. Figure 

2.3 shows lung cancer incidence rates across Kentucky's 15 Area Development 

Districts for the period 1994-98. The highest rates are clustered in the Big Sandy, 

Kentucky River and Cumberland Valley Districts[13]. 
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Figure 2.2 Age-adjusted lung cancer incidence rates (cases per 100,000 people) 
by Area Development District in Kentucky, 1994 -98 (Source: Kentucky Cancer 
Registry) . Here, the color of light gray represents rates less than 80, the color of 
gray represents rates between 80 and 85.5, the color of light black represents 
rates between 85.5 and 90 and the black is the rate greater than 90 [13]. 

O'--___ --J 

2.6. ICD9 Codes 

The International Statistical Classification of Diseases and Related Health 

Problems (most commonly known by the abbreviation ICD) introduced the ICD9 

codes to classify diseases, also including a variety of signs, symptoms, abnormal 

findings, complaints, and so on. Every health condition can be assigned to a 

unique category with up to six characters . Such categories can include a set of 

similar diseases that can be converted to a diagnosis. 

The ICD 9 code of 162 means malignant neoplasm of trachea, bronchus, and 

lung. Below are all of the 4-digit codes associated with lung diseases [14]. : 
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162.0 Trachea (Cartilage of trachea, Mucosa of trachea). 

162.2 Main bronchus (Carina, Hilus of lung). 

162.3 Upper lobe, bronchus or lung. 

162.4 Middle lobe, bronchus or lung. 

162.5 Lower lobe, bronchus or lung. 

162.8 Other parts of bronchus or lung (Malignant neoplasm of contiguous or 

overlapping sites of bronchus or lung whose point of origin cannot be 

determined). 

162.9 Bronchus and lung, unspecified. 

The data sets we used to analyze in this paper all include ICD9 codes and DRG 

codes (Diagnosis-Related Group); however, DRG codes are based on ICD9 

diagnosis codes, procedure codes, some patient demographic factors and the 

presence of complications or co-morbidities. Hence, we just use the ICD9 code 

to identify the lung cancer population. 

2.7. Summary 

The most important reason that Lung cancer is the leading cause of cancer 

deaths is that the symptoms of lung cancer are very often lacking or occur only 

late in the course of the disease. The prognosis of Lung cancer patients is very 

dependent on how advanced their disease is and what type it is. Developing 

better methodologies for distinguishing between lung cancer and other lung 
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diseases or diagnosing early in the course of the disease will help us offer 

greater hope for patients. 

In this dissertation, we will examine the relationship between all the factors for 

the lung cancer population. Several clusters for diagnosis, treatment procedures 

and medications will be defined based on different severity levels. 
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CHAPTER III DATA MINING AND TEXT MINING 

3.1. Data Mining 

The purpose of this chapter is to introduce data mining and text mining concepts, 

the general data mining process, and the most commonly used data mining 

techniques. 

Data mining is one of the fastest growing fields developed with artificial 

intelligence and database technology in recent years. Its core function is to 

extract useful information from huge data sets or a data warehouse and to deal 

with various complex data. Data mining is the process of selecting data, 

exploring data and building models using vast data stores to uncover previously 

unknown patterns [15]. As advanced information processing technology, the 

distinction between data mining and traditional data analysis is that it is a data 

discovery process, and in most cases, there is no hypothesis or a premise 

condition. Data mining can be used for market analysis, risk analysis, defect 

analysis and management, and so on. 
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3.2 Data Mining Process 

Data mining is an iterative process that typically involves the following steps 

displayed in Figure 3.1, which also shows the phases of the Data Mining 

standard process[16] . 

Figure 3.1. General data mining process 

DATA MINING PROCESS 

I Business Goal r ····_· __ ·_·! 
i 

Data 
~···-····"·· ·· I Preprocessing , 

i 

/.. Model Development ~ ......... j 
\( Pattern Discovery 

: 

L; i 
r 1. Unsupervised: • Validation " ·'··"··'···-1 • PCA, FA, DCA, ... i 

2. SUpervised 
Interpretation MlR, lR, NN,Tree, .. 

Decision Making 

Step Identification of Problem and Defining the Business Goal 

Identification is the initial step in the modeling process. This step determines 

what the goal of the model will be. Usually, this step begins with an 

understanding of the nature of the problem and how a predictive model may aid 
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in solving the problem. The business goal is the main target of data mining, and 

determines the main direction and the process of data mining. With well-identified 

problems and a clear definition of the business goal, data mining will lead to 

measurable outcomes. 

Step Data Preprocessing 

Data processing is generally considered the most important and time intensive 

step in the modeling process. The variable data preprocessing and variable 

selection step involves selecting the appropriate variables to include in the model. 

That is, the key to successful data mining is to use the appropriate data where 

some methods are used to distinguish the valuable information to collect, 

eliminate redundant data, and reduce some of the noise or random variation in 

the data. Often, this step involves substantial data transformation in order to set 

up the data so that it is used in the model in the most effective manner. Generally, 

data processing should also include data cleaning and data preprocessing. This 

cleaning and preprocessing is defined as modeling data preparation, including 

data sampling and data transfer, and dealing with missing data. Sampling is 

applied in extremely large databases because it significantly reduces the model 

training time. Additional data are generally separated into several parts; some of 

the data are used to train the model, while others are used to test and to validate 

the model. Data conversion is used to guarantee the quality and availability of 

data. For example, for some predictive models, the data need to be discrete and 

normalized from continuous data. 
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Step Model Development! Pattern Discovery 

Many different types of data mining technology and modeling techniques, such 

as classification, clustering, regression, neural networks, and decision trees are 

employed to highlight previously hidden relationships amongst the data. 

a) Classification analysis: discovery of a predictive learning process 

that classifies important and relevant information into one of several 

predefined classes. 

b) Clustering analysis: Cluster analysis is a set of methodologies for 

automatic classification of samples into a number of groups using a 

measure of association, so that the samples in one group are 

similar and samples belonging to different groups are not similar 

[17] .. In the process, clustering analysis is to identify a finite group 

of clusters to describe the entire data. 

c) Time series analysis and forecasting: Time series analysis, similar 

to correlation analysis, whose purpose is to find the inner relation 

between data values, comprises methods that attempt to 

understand the underlying context of the data, measured typically 

at successive times, or to make predictions. 
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Step Model Validation 

Once the model is built using the training data sample, the model is subjected to 

validation by independent datasets, which is an important requirement in data 

mining. This step involves evaluating the model and deciding if the model was 

successful both in determining which variables are the predictors, and the degree 

of confidence in selecting the variable the model demonstrates. If multiple 

models were developed, the models are evaluated together and the best model 

is typically chosen. 

Step Interpretation and Decision Making 

Data mining models are used to help in decision making. Usually, the simple 

models are more interpretable; the results of the model are used to develop a 

series of "rules" used for decision-makingand specific techniques are needed to 

validate the results to interpret the high-dimensional models. 

3.3. Text Mining 

Text Mining is a technology for discovering and extracting information from a 

wide variety of unstructured text documents in a collection by uncovering any 

themes and concepts that are contained in the collection [18]. Text Mining 

consists of many technologies such as information retrieval and information 
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extraction, natural language processing and data mining technology. It is a 

multidisciplinary mixed area. It cooperates with information technology, text 

analysis, statistics, pattern recognition, data visualization, database technology 

and machine learning. 

Text mining can give a general understanding of the documents as shown in 

Figure 3.2. It has the following components: the bottom part represents the base 

areas of Text mining, including machine learning, mathematical statistics, and 

natural language processing. The middle part introduces the basic text mining 

technologies of text extraction, classification, clustering, text data compressing 

and processing. Based on those two parts, the top one is the application for text 

mining, including information access and discovery. Information access includes 

information retrieval, filtering, and reporting. Information discovery includes data 

analysis and data prediction. 

Figure 3.2 The concept and technologies of Text Mining [18]. 

Information access, Information discovery 

r r r r r 
Text Text Text Text data Text data 

Extraction Classification Clustering compressing Processing 

r r r r r 
Machine learning. statistics. natural language processing 
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In order to apply text mining methods, text needs to be broken into components 

such as words, phrases, multiword terms, entities, punctuation marks, and terms 

in foreign languages. Here, a multiword term is defined as a group of words to be 

processed as a single term and entities include items such as names, addresses, 

companies, and measurements [19]. 

3.4 Dimension Reduction 

Because text mining is always applied to extract useful information from 

unstructured text documents, which are multivariate, it is difficult and time­

consuming to use the entire data (including all the terms). A term-document 

frequency matrix is generated by paring the document collection. The rows and 

columns represent the terms and documents, respectively. Each entry of the 

matrix is the number of times that a term appears in a document. Dimension 

reduction will be necessary and applied to improve the model performance and 

efficiency with high dimensional data. Here, we introduce singular value 

decomposition, which will be used in this paper. 

Singular Value Decomposition (SVD) is a proven mathematical method that 

defines concepts by projecting each document into a reduced dimensional space. 

The more similar documents will be closer in the reduced space; on the other 

hand, the more dissimilar documents will be farther in the reduced space. This is 
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the main idea that SVD explains. The following is the mathematical definition for 

SVD. 

The SVD of matrix G, the sparse term-by-document frequency matrix having n 

documents and P terms, is defined by the equation [20]. 

where the columns of U are orthogonal eigenvectors of GG
1 

, the columns of V 

are orthogonal eigenvectors of GIG, and L is a diagonal matrix of singular 

values, which are the square roots of the eigenvalues of GG
I

. For SVD 

reduction, the matrix G consists of columns of V that correspond to the largest 

singular values. Rows of U are the number of terms and rows of V are the 

number of documents [19]. 

l' r 
To get the SVD values, we need to calculate V and L by using G G. 

and 

U = GJIL,-I 
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3.5 Clustering 

In order to use the clustering analysis, the documents need to be represented 

and reduced as concepts in multidimensional space. In classification, the 

category structure is known, and in cluster analysis, the category structure is 

unknown. The objective in this case is to discover a category structure based on 

the data (observations). 

There are two clustering techniques in Text Mining. One method uses a 

hierarchical clustering algorithm where each document is placed in a specific 

sub-tree. The other method uses the expectation-maximization (EM) algorithm, 

which approximates the observed distributions of values based on the 

combination of different distributions of different clusters. 

• The expectation-maximization (EM) algorithm for clustering [19] 

Assume there are k clusters with density functions J;, i = 1,2, .... k , and there are 

n variables in the data set. Then the mixture model probability density function at 

point x is: 

k 

P(x) = I w,/;(x I U"L,) 
,~I 

where w, is the proportion of data that belong to cluster i, and u, and L, are the 

mean vector and covariance matrix for cluster i . 
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For each cluster, the n dimensional Gaussian distribution is 

1 1 1-1 
f,(XIU"L,)= ~ exp(--(x-uJ (L,) (x-u,)) 

(2nf I L, I 2 

The expectation-maximization clustering is a process which has the following 

basic steps: 

1: Obtain initial parameter estimates. 

2: Apply the standard EM algorithm to find new clusters. 

3: Update parameter estimates. 

4. Repeat step 2 and 3 until the cluster membership stabilizes. 

For each observation x in the data set at iteration j , the parameter estimates of 

the standard EM algorithm are computed as follows [19]. 

1. Compute the membership probability of x in each cluster h = 1, ... , k . 

Wi .(' (x I uJ "J ) 
Wh(x) = h.lh h'~h 

I w/f,(x I u/ ,I: ) 

2. Update mixture model parameters for each cluster h = 1, ... , k . 

wh+ 1 
= I wh (x) 

L wi (x)x L wi (x)(x - ui+ 1 )(x - uti f 
j+1 x ~J+l = x 

U h = ~ ~------==-------------L wi (x) h L wi (x) 
x x 
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The iterative process stops if 

where Ii > 0, and 

The EM clustering algorithm computes the probabilities of clusters according to 

the probability distributions, instead of maximizing the difference in mean for the 

variables by assigning observations to clusters. And the EM algorithm could be 

used for categorical or continuous variables. 

3.6 Summary 

Data mining is a powerful technology to extract information from the huge 

potential of unknown and potentially useful information from large databases. 

With this strong analysis technique, the original raw data are changed into 

valuable information, which may provide a competitive advantage for the 

decision-makers. 

Text Mining uses unstructured textual information and examines it in an attempt 

to discover structure and implicit meanings hidden within the text. SAS Text 

Miner provides a rich suite of tools for discovering and extracting knowledge from 

text documents. It transforms textual data into a usable, intelligible format that 
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facilitates classifying documents, finding explicit relationships or associations 

between documents, and clustering documents into categories. 
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CHAPTER IV SURVIVAL ANALYSIS 

4.1. The History of Survival Analysis 

The origin of survival analysis can be traced back to several centuries ago. 

Based on the interest in reliability (or failure time) of military equipment, survival 

analysis developed quickly. At the end of World War II, these newly developed 

statistical methods quickly spread to industry from strict mortality data research 

to failure time research. With the development of survival analysis, 

nonparametric or semi-parametric methods took the place of parametric models 

in dealing with the clinical trials in medical research [21]. 

Next, we introduce several distribution functions in the following sections, which 

are the fundamental tools of survival analysis [22]. 

4.2. The Cumulative Distribution Function [23] 

Suppose a non-negative random variable T denotes the lifetimes of individuals in 

some population. The c.d.f of T, Fr (t), is defined by 

Fr (t) = Pr (T~ t). 
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For example, if T represents the age of first occurrence of a chronic disease, 

then Fr (t) is the distribution of age for the disease. In survival analysis, the 

complementary function is more commonly used, which is denoted as the 

survival distribution function discussed in the following sections. 

4.3. The Probability Density Function 

The p.d.f of T, fr(t), is defined by 

fr(t) = d(F;(t» 
dt 

Here, tr(t) is the absolute instantaneous rate of death (disease). 

4.4. The Survival Function 

The Survival function is the complementary function of the cumulative distribution 

function. Let T ~ 0 have a p.d.f fAt) and c.d.f Fr(t). Then, the survival function 

is denoted by the following form: 

Sdt) = P{T> t} = 1 - Fr(t) = fiT (x )dx 

Conversely, the pdf can be expressed as 

f.(t) = lim Pct ~ T < t + Ill) = dFy(t) = _ dSr(t) . 
I ill 40+ III dt dt 
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4.5. The Hazard Function 

The hazard function h-r(t), which is the relative failure (death) rate at time t is 

given by the following [24]: 

h C ) 
= 1· _P-,,-(t_:::;_T_<_t _+_6_t ,--I T_~~t) 

r t 1m 
"'1->0+ 6t 

= fr(t) 
1- Fr(t) 

= .f~(t) 
Sr(t) 

It is easily verified that hT(t) specifies the distribution of T, since 

hr (t) = _ dSr (I) / dt = _ d log(SrC t )) . 

SrCt) dt 

Integrating hr(u) over (O,t) gives the cumulative hazard function Hr(t): 

which is the inverse function of the exponential function. Thus, 

Hence, the p.d.' of T can be expressed as 

Note that H (00 ) = [h T (t) dt = 00 . 
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The relationship is clear between these functions. The p.d.f is the derivative of 

the c.d.f, and the c.d.fis the integral of the p.d.f. The survival function is simply 1 

minus the c.d.f, and the hazard function is simply the p.d.f divided by the survival 

function [25]. 

4.6. Censoring 

In order to apply survival analysis, the beginning and the end of the study need to 

be carefully defined. For example, for a complete observation in our lung cancer 

study, the survival time may begin on the day a patient is diagnosed with lung 

cancer and end when that patient dies because of the cancer. Here, this patient 

is an uncensored subject, where the event occurs during the time period of 

observation. In a data set, some observations end because of the occurrence of 

the event, and others have no event by the end of the observation period, which 

would be called censored observations. For example, the patient might be still 

alive after five years from lung cancer and do not know when he died or died due 

to an unrelated cause. Therefore, we need some techniques to deal with these 

observations due to different reasons. 

Right censoring is the most common method for dealing with incomplete data. A 

right censored subject is one that is no longer observed before the event 

occurrence. It allows subjects to contribute to the model until they are no longer 
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able to contribute (end of the study, or withdrawal), or they have an event. Figure 

4.1 gives us the basic information about the right censoring method. 

Let T;,~, ... ,Tn be independent and identically distributed n subjects with 

distribution function FT(t) in a study. Notice that some subjects have events early 

during the study period, some have events at the end of the study period and 

others have no event during the entire period. For example, for the patients with 

lung cancer, some died during the observation period and most of them are 

simply right censored at the end. Therefore, we terminate the study at a pre-

specified time t,. (for our case, the end of two years). 

Figure 4.1 Right censoring [24]. 

o 

Let Ie be denoted as the fixed censoring time [24]. Instead of observing the T; , 

we observe ~'Y2' ... 'Yn where 

. {T; r: = mmCT;,/J = 
Ie 
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A binary random variable 0 is used to denote if an event time is observed or 

censored, 

Note that (0 =0 and T::; Ie) implies that the event time was preciselyT = I" which 

occurs with zero probability if T is a continuous variable. 

With maximum likelihood estimation, the joint likelihood of the pair (Y ,0 ) could 

be calculated as follows. For y < tc , 

P(Y::; y) =P(T ::; y ) =F(y), 

and 

P( £5 = 1 I Y ::; y) = 1. 

Therefore, the likelihood for Y= y < Ie and is =1 is the density f(y). For y = Ie and 

is =0, the likelihood for this event is the probability 

pro =0, y = Ie )=P(T > IJ= S(tJ . 

Hence, the likelihood function for the n independent and identically distributed 

random pairs (Y"o,) is given by [24], 

n 

L = TIf(y, )0, S(tj-O, . 
,~I 
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4.7. The Kaplan-Meier method 

The Survival curve is the graph of the survival function S(t) based on time t. The 

Kaplan-Meier method can be used to estimate this curve from the observed 

survival times without the assumption of an underlying probability distribution [25]. 

Let tidenote an ordered observed value. The empirical survivor function (esf) , 

denoted by Sn (t), is defined to be 

Sn(t)= # of observation> t = # {t, > t} 
n n 

For each of n individuals, the pair (Y"J/) is denoted as follows 

Y, = min(I; , C, ) 

and 

The people at risk of an event at the beginning of the interval Y, are those people 

who survive (no event occurred) the previous interval Y,-l . 

Let R(t) denote the risk set just before time t and let 

= # no event (and not censored) just before Y(/) 
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d
i 

=# of event occurred at time Y(I) 

Pi = P(no event through Y, I no event at beginning Y,) 

= peT > Ye,l IT> Y(I-l)) 

q, =1- P, 

=P(event occurred in Y i I alive at the beginning Y , ). 

Recall the general multiplication rule for joint events A1 and Ai 

The survival function can be expressed as 

Set) = peT > t) 

Here, P1 is the proportion surviving the first period, P2 is the proportion surviving 

beyond the second period conditional on having survived up to the second period, 

and so on. 

The estimates of Pi and qi are 

~ d, 
q, =-

n, 
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and 

p, = 1- cJ, 

=1-~ 
n, 

n, -d, 
= 

n, 

The K-M estimator of the survivor function is 

Y(I) 

where Y(k) ~ t < Y(k+I)· 

4.8. Cox's proportional hazards model (Cox regression) [24][26] 

The Cox proportional hazard model is the most widely used method in survival 

analysis, especially in medical or clinical studies. It is an extension of the logistic 

regression model with conditions. For example, the baseline hazard function is 

equivalent to the intercept in the logistic regression. 

For the Cox proportional hazards model, the hazard function is 
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h(t I X) = ho(t)· ef3
x , 

where ho(t) is an unspecified baseline hazard function, which is estimated at the 

mean values of the variables. Here 

Then we have 

One of the advantages for the Cox hazard model is the non-parametric baseline 

function ho(t). Here, eP' is the hazards ratio, which is assumed constant with 

respect to time t, which is similar to the odds ratio in logistic regression. 

Figure 4.2. The relationship between hazard and survival [24] 

t h(t) 
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If the hazard ratio is less than one, then the ratio of corresponding survival 

probabilities is larger than one. Hence, the treatment group has a larger 

probability of survival at any given time t, after adjusting for the other covariates. 

For any (Proportion Hazard) PH model, the survival function at timet, given a set 

of predictors X is 

S(t I X) = exp( - S: h (u I X ) du ) 

= exp( -exp( PX) rho ( u ) du ) 

= (exp(- f; h 0 (u ) du ))exp( pX) 

=( So (I) ) exp( pX) 

where So(t) denotes the baseline survivor function. The p.d.f. at time t, given a 

set of predictors X is 

lCt I X) = ho(t) exp(pX) (So (t)) exp( pX). 

In Cox's model, there is no assumption about the distribution of the hazard 

except that it is assumed that the hazard ratio does not change over time. 
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4.9. Summary 

The survival curve describes the relationship between the probability of survival 

and time. The Kaplan- Meier method is used to estimate the survival curve from 

all of the observations available. Cox's proportional hazards modeling gives us 

the hazard ratio, which explains the risk of the event for a certain variable. No 

assumptions of parametric distribution for the survival time make Cox regression 

more attractive. Using the partial likelihood function makes the Cox regression 

model more flexible to examine the dependent variables. 

Survival analysis is appropriate for outcomes that occur during follow-up of 

patients. The outcome may be death or another event, such as the recurrence of 

disease in cancer, or a complication after implantation of a heart valve. 

We will be applying Kaplan-Meier method and Cox regression model to examine 

the relationship between the patient demographic factors, the diagnosis, 

treatment procedures and mortality of lung cancer. 
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CHAPTER V TIME SERIES MODELS AND PREDICTIVE MODELS 

5.1. Time Series Models 

A Time series is a set of measurements for a sequence of random events 

according to the time. It is a prediction method using historical time series to 

forecast the future value by statistical analysis and a mathematical model. 

The ordinary regression model is the foundation of time series analysis. The 

independent variables include the lag value from itself and other dependent 

variables, including their lag values. 

There are three basic models for Time Series Models: the autoregressive model 

(AR), moving average model (MA) and autoregressive moving average model 

(ARMA). When regular differencing is applied, The Autoregressive Integrated 

Moving Average Model (ARIMA) is a combined model together with AR and MA 

[27]. 

Let {Y" t ::0 O,± 1,±2, .... } be a time series and {£I' t = O,± 1,±2, ... } be the error (white 

noise) with mean zero and variance(T2, 
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E(&}) = (J2 (5.2) 

with the & 's uncorrelated with time, 

The lh autocovariance of ~ is 

= E(~ - Ut )(~-J -ut_) (5.4) 

where U t is the mean of Y t and fy y y is the joint density function of Y t , 
p I I'" I-I 

We also define the backward shift operator B here by B~ = ~-1 . We also have 

The backward difference operatorV' , is defined by 

V'~ = ~ - ~-1 = (1- B)Yt • (5.6) 

5.1.1 Autoregressive Model 

The basic assumption for time series models is that the data have an internal 

structure, such as autocorrelation, trend or seasonal variation, which is the 

forecasting methods' purpose. The AutoRegressive (AR) [28] model can be used 

to forecast future values. A pth-order autoregressive, AR(p), model is defined as 
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(5.7) 

where &[ is the prediction error, and (A "." ¢p are the unknown autoregressive 

coefficients. The order of the model tells how many lagged past values are 

included. The simplest AR model is the first-order AR(1). 

Here, AR(p) could be written as the following: 

(1 ~ ¢IB ~ ¢2B2 ~ .. , - ¢pBP)Y( = £( 

¢(B)~ = SI (5.8) 

An AR(p) process is covariance stationary if and only if all roots of its 

characteristic polynomial: 

(5.9) 

lie outside the unit circle. If y = 1 is a solution of the characteristic polynomial 

(5.6), then the process has a unit root. The presence of a unit root causes the 

autocovariances to vary over time. Therefore, for any models with autoregression 

or other stationary methods, the data need to be differenced at the first lag. The 

autoregression model can also be viewed as a special case of the multiple 

regression models, where the independent or predictor variables are the past 

values of the process itself. 
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5.1.2. Autoregressive Moving Average Model 

The moving average (MA) is a model in which the time series is regarded as a 

moving average (unevenly weighted) of a random shock series ct . The moving 

average model of order q, or MA(q) , is given by 

l'r = &/ - 81&/-1 - 82&/-2 - •.• - 8/:it _ q 

= (1- 8
J 
B - ... - 8qBq )£( 

= 8(B)£{ . (5.10) 

where {£t} satisfies (5.1), (5.2) and (5.3) and 8J! 82 , ••• , 8q are the unknown 

coefficients. 

If the parameters of moving average satisfy some certain conditions such that the 

model is invertible, there exists a duality between the moving average process 

and the autoregressive process, which is that the moving average model can be 

rewritten into an autoregressive form. 

Moreover, if combined with AR models, the moving average model and 

autoregressive model form a very powerful tool, the autoregressive moving 

average (ARMA) model. In the ARMA model, the current value of the time series 

Y{ is expressed linearly in terms of its past values and previous values of the 

white noise (error). 
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The autoregressive moving average model of order (p,q), or ARMA (p,q), is 

written as 

where the coefficients are the same as in (5.7) and (5.10). 

or, ARMA (p,q) could be written as in lag operator form: 

(l-¢I B -¢2 B2 - ... -¢pBP)Y, =(l-B1B-B2B 2 
- ••• -B"B'I)c,; 

that is, 

¢( B)Y, = B( B)c( . 

5.1.3. Autoregressive Integrated Moving Average Model 

In the 1970s, Box and Jenkins introduced a general model, autoregressive 

integrated moving average (ARIMA), which contains three parts, autoregressive, 

moving average, and differencing. Specifically, it has three types of parameters: 

the autoregressive parameters ((A " .. , rPp ), the number of differencing passes at 

lag 1 (d), and the moving average parameters (Bp ... , Bq). I n the notation 

introduced by Box and Jenkins, a series that needs to be differenced d times at 

lag 1 and afterwards has orders p and q of the AR and MA components, 

respectively, is denoted by ARIMA(p,d,q) and can be conveniently written as 
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(5.12) 

where the V' is backward difference operator, and B is the backward shift 

operator; that is, Bh Xt == Xt- h . Note that ARIMA(p, 0, q) is simply an ARMA(p, q) 

process. 

5.1.4. Model Identification 

Time series modeling of ARMA and related models proceed by a series of well­

defined steps. The first step of this process is model identification to specify the 

appropriate structure (AR, MA, ARMA or ARIMA) and the order of the model. 

The sample autocorrelation function (ACF) and the partial autocorrelation 

function (PACF) plots or a goodness-of-fit statistic or information criterion are 

used to identify or select the best model for prediction. In general, increasing the 

complexity of the model structure, for example, increasing the number of 

variables, just provides an artificial improvement of fitness. 

5.2 Predictive Models 

Multiple linear regression modeling and Logistic regression modeling are all 

regression methods. The difference between them is that the former is designed 

to predict an interval-valued target variable and the latter is designed to predict a 
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categorically-valued target variable. Regression modeling is used to examine the 

relationships between the input variables (independent variables) and the target 

variable (dependent variable) and to determine the best predictors for the target. 

In other words, the objective of regression analysis is to determine the optimal 

balance of choosing the model with the smallest error and the fewest number of 

parameters [29]. 

5.2.1. Logistic Regression Modeling 

Logistic regression models are used to predict the response variable by 

redefining the variable through the use of an indicator variable. Since the 

predicted value is used to estimate the probability of the target event and will not 

result in the desired interval in predicting the probabilities that must be between 

the interval of zero and one, the linear regression should not be applied to the 

categorical target variable[30][31]. 

The logistic regression model is a widely used statistical technique for binary 

medical outcomes. The model is flexible in that it can incorporate categorical and 

continuous predictors, non-linear transformations, and interaction terms. Many of 

the principles of traditional regression also apply for logistic regression. 

In order to obtain the best predictive performance, it is important that the model 

be correctly specified. Correct specification of the model involves selecting the 
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correct set of input variables in the model and the appropriate error distribution 

that matches the range of values of the target variable. However, in logistic 

regression modeling, it is also extremely important to select the correct link 

function that conforms to the range of values of the target variable. 

For k explanatory variables and i = 1,2, ... ,n observations, the model is 

(5.15) 

where p, is the probability for y, = 1. Here, log is the naturallogorithm, a is the 

intercept, and P, are the estimated regression coefficients. 

Unlike the usual linear regression model, there is no random white noise or error 

in the equation for the Logistic model, which does not mean that the model is 

deterministic because of the probabilistic relationship between p, and y,. 

We can solve the logit equation for p" 

p = exp(a + PIX,I + ... + PkX,k) 

, 1 + exp(a + PIX,I + ... + PkX,k) 

1 
(5.16) =--------------------
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5.2.2. Decision Tree 

The goal of decision tree modeling is to identify various target groups based on 

the values from a set of input variables to provide insight into the decision 

process. Each split is performed from the values of one of the input variables that 

best partitions the target values. For categorical target variables, the model is 

called a classification tree, in which the leaves that contain the target proportions 

can be interpreted as predicted probabilities or predicted proportions of the 

categorically-valued target variable. For interval-valued target variables, the 

model is called a regression tree, where the leaves that contain the target means 

can be interpreted as predicted values of the target variable[32]. 

The Standard Decision Tree Algorithms 

The AID, CHAID and CART methods are the most widely used algorithms for 

decision tree modeling [33]. 

Automatic Interaction Detection (AID) was used to fit trees to predict a 

quantitative variable. Stepwise splitting is the foundation of the algorithm. It 

begins with a single cluster and splits this cluster into two or more clusters based 

on some defined rules. Here, each variable is examined for splitting as follows 

[34] : 
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a) Sort all the n observations on the variable and examine all n-1 ways 

to split the cluster into two or more groups. 

b) Calculate the sum of squares about the mean of the cluster on the 

dependent variable for each possible split. 

c) Choose the best of the n-1 splits to represent the variable's 

contribution and repeat for all the variables. 

The CHi-squared Automatic Interaction Detector (CHAID) algorithm is only for 

categorically-valued input variables, and it cannot be used for ordinal-valued 

input variables. 

The Classification and Regression Tree (CART) method is based on statistically 

optimal splitting of the observations into pairs of smaller subgroups. The Gini 

index is used to measure the probability of a randomly selected element would 

be incorrectly labeled if it was randomly labeled based on the distribution of 

labels. Here CART uses the Gini index to measure the impurity at a node, and 

then choose the split to maximize the reduction in impurity [32]. 

5.2.3. Neural Network 

There are many applications of neural networks to industrial applications, 

including predictions of occurrence or cost and target classification. In general, 
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neural networks have several layers with interconnected nodes where each node 

is determined by a non-linear function of the inputs. 

There are three types of nodes. The following Figure 5.1 shows the basic 

information of the feedforward neural network. The input unit represents the input 

variables, where each input variable has its own weights in the input layer. The 

hidden units perform an internal, nonlinear transformation and the output units 

generate the predicted values, and then compute the error that is the difference 

between the predicted values and the values of the output units in the output 

layer. 

Figure 5.1 The diagram for multilayer feed-forward network. 

The general Neural Network model is as following: 

(5.17) 

where 
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There are several general kinds of transfer functions commonly used: 

• Identity Function does not change the value of the inputs, which has the 

same range as the inputs. 

• Sigmoid Functions are S-shaped functions such as the logistic and 

hyperbolic tangent functions. 

• Softmax Function is a multiple logistic function. 

• Value Functions are bounded bell-shaped functions such as the Gaussian 
function. 

• Exponential Functions. 

In this paper, the transfer function is given by 

1 
I(x) = 1 -x 

+e 

A big drawback to neural network modeling is that it is very difficult to determine 

the contribution of the input variables to the target variable in the model. Unlike 

traditional regression parameter estimates, the weight estimates do not indicate 

the effect, magnitude or the rate of change in the relationship between the target 

variable and the input variables. 
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5.3 Summary 

Time series analysis is a prediction method using historical time series to 

forecast the future value by statistical analysis and mathematical models, which 

determines if the data taken over time has an internal structure (such as 

autocorrelation, trend or seasonal variation). A predictive model is made up of a 

number of predictors, which are variable factors that are likely to influence future 

behavior or results. These models can be used to help physicians and health 

policy makers in their decision-making on the screening and treatment of disease 

in high-risk patient groups. 
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CHAPTER VI DATA ANALYSIS FOR NIS DATABASE 

6.1 Overview of NIS Data 

The Nationwide Inpatient Sample (NIS) is a powerful database of hospital 

inpatient stays, which includes healthcare cost and utilization. It could be used to 

identify or analyze national trends in health care cost, utilization, quality, and 

outcomes by researchers or decision-makers. 

The NIS contains clinical and resource use information included in a typical 

discharge abstract, with safeguards to protect the privacy of individual patients, 

physicians, and hospitals (as required by data sources). The NIS can be 

weighted to produce national estimates. The new version of NIS contains 

severity adjustment data elements, such as APR-DRGs, APS-DRGs, Disease 

Staging, and AHRQ Co-morbidity Indicators. The Diagnosis and Procedure 

Groups Files are also added to the 2005 version of NIS. Access to the NIS is 

open to users who sign data use agreements. Uses are limited to research and 

aggregate statistical reporting. 
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The NIS is a uniform, multi-state database that promotes comparative studies of 

health care services and will support health care policy research on a variety of 

topics including: 

• Use and cost of hospital services 

• Medical practice variation 

• Health care cost inflation 

• Hospital financial distress 

• Analyses of States and communities 

• Medical treatment effectiveness 

• Quality of care 

• Impact of health policy changes 

• Access to care 

• Diffusion of medical technology 

• Utilization of health services by special populations. 

There is much clinical and nonclinical information for each hospital stay in NIS, 

such as: 

• Primary and secondary diagnoses 

• Primary and secondary procedures 

• Admission and discharge status 
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• Patient demographics (e.g., gender, age, race, median income for ZIP 

Code) 

• Expected payment source 

• Total charges 

• Length of stay 

• Hospital characteristics (e.g., ownership, size, teaching status). 

Some of the variables we will work with in the NIS data include patient 

demographics: 

• Age (in years) 

• Female (O=male, 1 =female) 

• Race(1 =White, 2=Black, 3=Hispanic, 4=Asian/Pacific Islander, 5=Native 

American, 6=Other) 

• ORG 

• Patient diagnoses in ICOg codes (OX1-0X15, fifteen columns) 

• Patient procedures in ICOg codes (PR1-PR15, fifteen columns) 

• TOTCHG (Total Charges) 

• LOS (Length of Stay) 

In order to work with these variables, there are some preprocessing issues, 

especially to work with 15 columns of diagnosis and procedure codes. 
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6.2 Data preprocessing 

The lung cancer data are from the NIS, and we had five years of data, 2000 to 

2004. Here, we first put all the five years of data into one data set and create a 

binary variable to label lung cancer according to diagnosis codes. In order to 

simplify the process of discovery, we first concatenate all 15 columns of variables 

into one text string using the CATX statement. This code put all possible 

diagnosis codes into one text string , and defined a second string containing all 

possible procedure codes using the CATX statement. 

To find those patients with Lung Cancer, the RXMATCH function was used. The 

RXMATCH looked for the initial code of '162' that found all patients with a 

diagnosis code related to lung disease. Because '162' can occur in other codes 

that are not related to lung cancer, such as '216.2', we use four digits of code 

rather than three to avoid catching '216.2'. The code used was the following: 

data nis . lungcancer nis OOto04 ; 

set nis . nis OOto04 ; 

lungcancer=O; 

diagnoses=catx( ' ' , dxl , dx2 , dx3 , dx4 , dxS , dx6 , dx7 , dxB , dx9 , 

dxlO , dxll , dx12 , dx13 , dx14 , dxlS) ; 

procedures=catx( ' ' , prl , pr2 , pr3 , pr4 , prS , pr6 , pr7 , prB , pr9 , 

prlO , prll , pr12 , pr13 , pr14 , prlS) ; 

if (rxmatch( ' 1620 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1621 ' , diagnoses» O) then lungcancer=l; 

59 



if (rxmatch( ' 1622 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1622 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1623 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1624 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1625 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1626 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1627 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1628 ' , diagnoses» O) then lungcancer=l; 

if (rxmatch( ' 1629 ' , diagnoses» O) then lungcancer=l; 

run ; 

Recall that the ICD 9 code of 162 means malignant neoplasm of trachea , 

bronchus, and lung . Below are all of the 4-digit codes associated with lung 

diseases: 

162.0 Trachea (Cartilage of trachea , Mucosa of trachea). 

162.2 Main bronchus (Carina , Hilus of lung) . 

162.3 Upper lobe, bronchus or lung . 

162.4 Middle lobe, bronchus or lung. 

162.5 Lower lobe, bronchus or lung . 

162.8 Other parts of bronchus or lung (Malignant neoplasm of contiguous or 

overlapping sites of bronchus or lung whose point of origin cannot be 

determined) . 

162.9 Bronchus and lung, unspecified . 
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6.3. Data Visualization 

There are a total of 40,363 observations for the five years of data related to lung 

disease out of 3,833,637 records. Note that approximately 1.04% of the inpatient 

population has a diagnosis of lung disease (shown in Table 6.1 and Figure 6.1). 

It is clear that lung cancer is a small sample of patients compared with the total 

size of the data set. 

Table 6.1 The frequency of lung cancer. 

The FREQ Procedure 

Cumulative 
lungcancer Frequency Percent Frequency 
- -

0 3833637 98.96 3833637 

1 40363 1 . 04 3874000 

Figure 6.1 The pie chart for the proportion of lung cancer 
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The data summary of some of the variables is given in Table 6.2. Note that the 

average age for a patient with lung cancer is about 68, about 21 years more than 

the average age for those without lung cancer. Males have a higher probability of 

having lung cancer compared with females. The patients with lung cancer have 

a higher probability of staying about 7 days in the hospital compared to those 

without lung cancer. Obviously, they also have higher costs. 

Table 6.2 Summary of Age, Gender, Length of Stay and Total Charge 

The MEANS Procedure 

lungcancer=O 

Variable Label Mean Std Dev Minimum Maximum N 
- - -- -----------.- ~-- - -----
AGE Age in years at admi ss i on 47 . 1301216 28 . 2108228 0 123 . 0000000 3831194 
FEMALE Indicator of sex 0. 5937489 0 .4 911326 0 1 . 0000000 3827 460 
LOS Length of stay (cleaned) 4. 5790612 6. 7308 461 0 365 . 0000000 3833334 
TOTCHG Total charges (c l eaned) 17227 . 54 32582 . 70 25 . 0000000 1000000 . 00 3720854 

lungcancer=1 

: 

Variable Label Mean Std Dev Minimum Maximum N 

'AGE Ag. i, y,a" at admi"1,, r67 ' 9667005 11. 3391793 1 . 0000000 105 . 0000000 40361 
FEMALE Indicator of sex 0 . 4484 31 4 0 . 4973397 0 1 . 0000000 4035 4 

I LOS Length of stay (cleaned) 7. 0992591 7 . 5899129 0 316 . 0000000 40359 
, TOTCHG Total charges (cleaned) 26425 . 10 3834 1. 29 40 . 0000000 1000000 . 00 39371 

Data visualization can be used to extract useful knowledge from large and 

complex datasets. The visualization can be used to build a narrative concerning 

the data . Kernel density estimation provides information about the entire 

population distribution rather than to rely on means and variances. Then, the 

Kernel Density Estimation (KDE procedure) was used to examine the lung 
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disease by Age, Length of Stay and Total Charges, which showed the 

relationships among these outcomes by using data visualization . 

First, we use PROC KDE to examine the variables in relationship to the data with 

kernel density. The main advantage of using kernel density estimation is that the 

graphs can be overlaid for more direct comparisons. For example, we consider 

the relationship of lung cancer to Age, Length of Stay and Costs. 

proc sort data=medstat . inpatientadm 

out=work . sortedinpatientadm; 

by lungcancer ; 

proc kde data=work . sor'tedinpatientadm; 

univar age/gridl=O gridu=lOO 

out=medstat . kdeinpatientadmage ; 

by lungcancer ; 

run ; 

proc kde data=work . sortedinpatientadm; 

univar day?/gridl=O gridu=500 

out=medstat . kdeinpatientadmdays ; 

by lungcancer ; 

run ; 

proc kde data=work . sortedinpatientadm; 

univar totpay/gridl=- lOOOOO gridu=300000 

out=medstat . kdeinpatientadmtotpay ; 

by lungcancer ; 

run ; 
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Figure 6.2 The Kernel Density of Lung cancers by Age using Kernel Density 
Estimation . 
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Note that the patients without lung cancer have a relatively constant likelihood of 

an inpatient event regardless of age (except for the interval of 0 to 20 and 60 to 

80 , where there is a slight change. However, patients with lung cancer increase 

inpatient events starting at age 38 , accelerating at age 45, and decreasing at age 

78. 

Figure 6.3 The Density of Lung Cancer by LOS (Length of Stay) using Kernel 
Density Estimation . 
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Those with lung cancer have a higher probability of a stay of 6 or more days, and 

a lower probability of staying 5 or fewer days compared to patients without lung 

cancer. 

Figure 6.4 The density of Lung Cancer by Total Charge using Kernel Density 
Estimation . 
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Note that there is an intersection point of costs for patients at around 19,000, 

indicating that there is a higher probability of higher cost if the patient has lung 

cancer. From the summary table, we know that the average cost for a patient 

with lung cancer is around 26,425. 

Next, we considered the diagnosis codes and examined more in-depth the types 

of complications that patients have in relation to lung cancer. Recall that there 

are 8,216 patients with a diagnosis of lung cancer for the year 2004. Patients can 

be represented in multiple categories. Since there is no ranking between patients 
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based on claims data, text mining can be used to determine clusters and classify 

the patients in those clusters based on the conditions from the claims. Here, Text 

Miner in Enterprise Miner was used to examine the data according to text strings 

of patient conditions. In order to perform text analysis on the lung cancer data, 

the Text Miner node in Enterprise Miner was used to examine the data according 

to text strings of patient conditions defined above. Cluster analysis was used to 

find the categories of documents. To define text clusters, we limit the number of 

terms to ten to describe clusters. We use the standard defaults of Expectation 

Maximization and Singular Value Decomposition . For example, the text analysis 

defined seven different clusters in the data that were given in Table 6.3. In order 

to compare outcomes by text clusters , we merge the cluster descriptions and the 

cluster numbers into the original dataset. We use kernel density estimation to 

make a comparison of age, length of stay and cost by clusters. 

Table 6.3 Cluster table for diagnosis strings. 

1 5990,486,2859 , 25000,42731 1236 0.15043816 ... 0.1259563 ... 

2 25000,41401,4280,412,41400 938 0.11416747 ... 0.1186902 ... 

3 1629,486,4280 , 42731,2765 1666 0.20277507 ... 0.1283921 ... 

4 3051,1623,5121,496,v1582 399 0.04856377 ... 0.1100431 ... 

5 311,1972,1622, 53081,3051 1387 0.16881694 ... 0.1285800 .. . 

6 1985,2768,1628,2765,1983 1641 O. 19973222 ... 0.1242998 ... 

7 3051 , v1582, 1961 , 1625 , 49121 949 0.11550632 ... 0.1240970 .. . 
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Table 6.4 shows the translations of these clusters . These code translations are 

provided at http://icd9cm.chrisendres.com/. 

Table 6.4 Translation for the clusters 

Cluster Description Label 

# 

1 Unspecified Urinary tract infection , Pneumonia , Diabetes and 

Unspecified Anemia , Diabetes mellitus without Heart 

mention of complication , Atrial fibrillation Problems 

2 Diabetes mellitus without mention of complication , Diabetes and 

Coronary atherosclerosis, Unspecified Congestive Heart 

heart failure, Old myocardial infarction Problems 

(CHF) 

3 Unspecified Bronchus and lung, Pneumonia , COPD and 

Unspecified Congestive heart failure, Atrial fibrillation , Heart 

Volume depletion problems 

4 Tobacco use disorder, Upper lobe, bronchus or lung, COPD and 

Iatrogenic pneumothorax, Chronic airway obstruction , smoking 

History of tobacco use 

5 Depressive disorder, Pleura, Main bronchus, Depression 

Esophageal reflux, Tobacco use disorder 

6 Secondary malignant neoplasm of Bone, bone Metastasizi ng 

marrow, Brain and spinal cord , Hypopotassemia, Cancer 
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Cluster Description Label 

# 

Malignant neoplasm of Other parts of bronchus or 

lung, 

7 Tobacco use disorder, History of tobacco use, COPD and 

Secondary and unspecified malignant neoplasm of cancer in the 

Intrathoracic lymph nodes, Malignant neoplasm of lymph nodes 

Lower lobe, bronchus or lung, Chronic bronchitis With 

(acute) exacerbation 

We want to examine the relationship between lung cancer and other diseases. 

The concept links could show how different terms are related in the documents. 

Hence, we use concept links of 1620; the links for 1622, 1623,1624,1625,1628 

and 1629 are similar. 
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Figure 6.5 Concept links for 1620, Malignant Neoplasm of Trachea 

Note that most of the links are to code 1618 (shown with the widest line), 

malignant neoplasm of other specified sites of larynx. The other large links are to 

5303 (Stricture and stenosis of esophagus) , v1 011 (Personal history of malignant 

neoplasm of Bronchus and lung), and 49390 (Asthma). 

Again , kernel density estimation was use to make a comparison of age, length of 

stay and cost by clusters . The code was the following : 

data emwsl . clusternis (keep=_cluster freq __ rmsstd 

clus_desc) ; 

set emwsl . text cluster ; 

run ; 

data emwsl . desccopynis (drop=_ svd_l - _svd_50 0 
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roll 1- roll 1000 probl - prob500) ; 

set emwsl . text documents ; 

run ; 

proc sort data=emwsl . clusternis ; 

by cluster ; 

proc sort data=emwsl.desccopynis ; 

by cluster ; 

data emwsl . nistextranks ; 

merge emwsl . clusternis emwsl . desccopynis ; 

run ; 

proc kde data=emwsl . nistextranks ; 

univar totchg/gridl=O gridu=100000 

out=emwsl . kdecostbycluster ; 

by cluster ; 

run ; 

proc kde data=emwsl . nistextranks ; 

univar age/gridl=O gridu=100 

out=emwsl . kdeagebycluster ; 

by cluster ; 

run ; 

proc kde data=emwsl . nistextranks ; 

univar los/gridl=O gridu=35 

out=emwsl . kdelosbycluster ; 

by cluster ; 

run ; 
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The average cost for cluster 6 is large compared to other clusters. There is no 

big difference between clusters 1, 2, 3 and 7, which mean that they have similar 

severity conditions. Cluster 5 has a slightly higher probability of a higher cost 

than cluster 4 (Figure 6.6) . 

Figure 6.6 Kernel Density Estimate for Total Charges by Clusters. 
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Figure 6.7 Kernel Density Estimate for Age by Clusters. 
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For the average age of each cluster, note that cluster 5 has the smallest average 

age, around 61 , compared to other clusters. Clusters 1, 4 and 6 have a similar 

average age of 70. Similarly, clusters 2, 3 and 7 have an average age of 75. 

Figure 6.8 Kernel Density Estimate for Length of Stay by Clusters. 
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Note that cluster 6 has a higher probability of a longer stay compared to the 

others. It would seem reasonable that patients at higher risk will stay longer and 

have higher cost. 

6.4. Time Series and Forecasting 

Next, we want to investigate and forecast the total costs of treatment on lung 

cancer to determine the future costs based on the inflation rate [35] with 

consideration of the patient outcomes and conditions of the patients undergoing 

different treatments to help the hospital build a good and effective financial 

system. 
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Consider Figure 6.9, for example, which shows the trend of the total cost for lung 

cancer over the period from January, 2000 to December, 2004 with 60 monthly 

average charges. For the 4-year period , the price increases from $20,000 in 

2000 to $32,000 in 2004. Time series analysis is an appropriate method for this 

purpose. 

Figure 6.9 The trend of Total Charge from Jan 2000 to Dec 2004. 
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Time series models were also used to analyze the Total Cost, Age, Length of 

Stay and Inflation Rate. We used some time series features in Enterprise Guide 

to create time series data. Here, we accumulated using the average. After 

accumulating, the number of records decreased to 60 with the time interval of 

month . The inflation rate data over the same period were collected from the 

website, inflationrate.com, and added to those monthly average data. Different 
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models were considered with or without the inflation rate. Enterprise Guide was 

used to create a SAS dataset. Then , Time Series models were used to examine 

the data. It made the information of price more visible with respect to date. 

Figure 6.10 The plots of Total Charges by Los and Age. 
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Note that there is an increasing trend for the mean of Total charges while Length 

of stay is approximately increasing . However, this trend is not very clear when 

the number of days is between 100 and 200 because of the insufficient data in 

this study. The plot of total charge and age shows that the amount of charges of 

patients with age from 50 to 80 is much higher than those of patients with age 

less than 45. There exists some relationship between them , which is not clear 

just by the information from these graphs. 

The inflation rate was selected as a dynamic regressor, specifying a denominator 

factor with a simple order of 1, which represents a shifting of the inflation rate by 
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one time unit, implying that the inflation rate leads the total cost by one month. 

Then , Age and Length of Stay were selected as regressors to predict the total 

cost. Since the actual data are increasing as shown in Figure 6.9, we added the 

linear trend in the model. ARIMA (3, 1, 0) and ARMA (2, 1) were selected as the 

seasonal model and error model , respectively. 

We applied all possible models on the data by switching values for p and d. Also , 

other models were applied in order to choose the best fit model for the data. We 

compared all models by looking at the Root Mean Square Error and R Square. 

All these diagnostic measures show that INFLATION[/D(1)]+LOS+LlNEAR 

TREAD +AGE+ARIMA(2,0, 1 )(3, 1 ,O)s is the best model for our data. Figure 6.11 

shows the list of models used. The smallest Root Mean Square Error is 1330.8. 

Figure 6.11 Root Mean Square Error for Different Models Used 
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Figure 6.12 Prediction Error Autocorrelation Plots and White Noise 
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The autocorrelation function (ACF) was used to examine the seasonality by 

calculating and plotting the residuals, which are the difference from each data 

point to the mean. The null hypothesis for the ACF is that each time series 

observation is not correlated to others. A criterion for ACF to test the 

autocorrelation is whether there are residuals that are greater than two standard 

deviations away from the mean, then it indicates the statistically significant 

autocorrelation [36] . The partial autocorrelation function (PACF) is also used to 

detect trends and seasonality. From Figure 6.12, all ACF and PACF lags fall 

below significant levels, which means that the autocorrelation has been 

eliminated. Thus, we conclude that this model is an adequate model based on 

the white noise check, autocorrelation plot and the smallest Root Mean Square 

Error. 

Figure 6.13 The forecast of Total Cost based on ARIMA model with Regressors. 
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Note that this model fits the data well. The predicted total charges for the next 12 

months will still keep increasing, averaged at $31,500. There was a large drop at 

the end of 2004, and the predicted charge after 2004 would increase to the 

highest level, and then decrease a little. 

6.5. Logistic Regression Model for Mortality 

Lung Cancer is the leading cause of cancer deaths in the world. Therefore, it will 

be helpful for decision-making to examine the relationship between the death and 

conditions of the patients undergoing different treatments. Results show that the 

mortality of lung cancer was highly related to Age, Length of stay, 7 clusters of 

diagnosis and 9 clusters of procedures, and we also found the Logistic model for 

the mortality caused by lung cancer. 

We filtered the patients who have lung diseases using the IC09 diagnosis codes. 

We used SAS Enterprise Guide and the CATX and RXMATCH statements along 

with other functions in several lines of code to get a summary of the codes 

defining Lung cancer. After preprocessing the data, we had 8216 patient records 

involving Lung cancer for 2004. 

Regression analysis can characterize the relationship between a response 

variable and one or more predictor variables. In linear regression, the response 
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variable is continuous. In logistic regression , the response variable is categorical. 

The Log istic regression model uses the predictor variables, which can be 

categorical or continuous, to predict the probability of specific outcomes. 

Here, we focus on the relationship between Death and demographic factors such 

as Age in years at admission, financial factors such as Total charges, Median 

household income for each patient, and other clinical conditions of the patients, 

Admission type, Elective versus non-elective admission , Length of stay, MDC 

(define what MDC represents) , diagnosis and treatment procedures. Here, the 

variable, Death, was selected as the Dependent variable , and Age, Los, Totchg 

and Zipinc_qrtl were continuous variables. The Atype, Elective, MDC, Cluster of 

diagnoses and Cluster of Procedures were chosen as classification variables. 

The following table 6.5 gave us some basic information about the data for this 

study. A Logistic regression model with Fisher's scoring optimization technique 

was used to determine the relationship between those above variables. 

Table 6.5 Basic information about the data set. 

Model Information 

Data Set WORK.SORTIEMPTABLESORTED 

Response Variable Death 

Number of Response Levels 2 

Model binary logit 

Optimization Technique Fisher's scoring 
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Number of Observations Read 8216 

Number of Observations Used 5382 

Response Profile 

Ordered Total 

Value Death Frequency 

1 0 4677 

2 1 705 

Probability modeled ;s Death=O. 

Note that there were in total 8216 patient records, 705 patients who died and 

2834 records deleted due to missing values for the response or explanatory 

variables. 

We evaluated the significance of all variables in the model by using the full model 

fitted method based on the variables we discussed above. 

Table 6.6 Model fit statistics. 

Model Fit Statistics 

Intercept 

Intercept and 

Criterion Only Covariates 

AIC 4181.322 3800.647 

SC 4187.913 3945 .645 

-2 Log L 4179.322 3756.647 
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Testing Global Null Hypothesis: BETA=O 

Test Chi-Square OF Pr > ChiSq 

Likelihood Ratio 422.6752 21 <.0001 

Score 408.8682 21 <.0001 

Wald 308.3719 21 <.0001 

Max-rescaled R-Square 0.1399 

In the model fit statistics table, the various criteria (-2 Log L, AIC, SC) were 

calculated based on the likelihood for fitting a model with intercepts only and for 

fitting a model with intercepts and explanatory variables. In the Testing Global 

Null Hypothesis table to test the null hypothesis that all regression coefficients 

are zero, all three tests rejected the null hypothesis. That is, the model is not a 

constant. Here, the Max_rescaled R-square is 0.1399. 
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Table 6.7 Summary of Stepwise Selection 

Summary of Stepwise Selection 

Number Score Variable 

Effect OF In Chi-Square Pr > ChiSq Label 

Step Entered 

1 diag_cluster 6 1 159.4608 <.0001 Cluster 10 of 

diagnosis code 

2 ASOURCE 4 2 83.2749 <.0001 Admission source 

(uniform) 

3 proc_cluster 8 3 89.1558 <.0001 Cluster 10 of 

treatment 

procedures 

4 TOTCHG 1 4 53.8284 <.0001 Total charges 

(cleaned) 

5 MOC 1 5 16.7903 <.0001 MOC in effect on 

discharge date 

6 ELECTIVE 1 6 10.7637 0.0010 Elective versus non-

elective admission 

Table 6.7 listed all the variables selected by the model with the stepwise 

selection method . The diag_cluster, Asource, proc_cluster, MDe, Totchg and 

Elective are significant at the 0.05 level in the model. 
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Table 6.8 The analysis of MLEs. 

Analysis of Maximum Likelihood Estimates 

Standard Wald 

Parameter OF Estimate Error Chi-Square Pr> ChiSq 

Intercept 1 1.9357 0.3593 29.0210 <.0001 

TOTCHG 1 -6.68E-6 1.095E-6 37.2430 <.0001 

MOC 1 0 .0435 0.0105 17.2773 <.0001 

ELECTIVE 0 1 0 .2013 0.0616 10.6943 0.0011 

ASOURCE 1 1 0 .6757 0.3375 4.0089 0 .0453 

ASOURCE 2 1 -0.4618 0.3565 1.6781 0.1952 

ASOURCE 3 1 0 .0307 0.4006 0.0059 0.9390 

ASOURCE 4 1 -1.0634 1.3078 0.6611 0.4162 

diag_cluster 1 1 -0.6393 0.1041 37.6921 <.0001 

diaLciuster 2 1 0 .1405 0.1379 1.0392 0.3080 

diaLciuster 3 1 -0.6772 0.0937 52.2909 <.0001 

diaLciuster 4 1 0.7874 0.3008 6.8515 0.0089 

dial_cluster 5 1 0.4506 0.1287 12.2636 0.0005 

diaLciuster 6 1 -0.4247 0.0988 18.4727 <.0001 

proc_cluster 1 1 -0.9494 0.1257 57.0031 <.0001 

proc_cluster 2 1 -0.7141 0.1379 26.8029 <.0001 

proc_cluster 3 1 1.3825 0.6410 4.6521 0.0310 

proc_cluster 4 1 -0.7717 0.1464 27.8022 <.0001 

proc_cluster 5 1 -0.4398 0.1557 7.9757 0.0047 

proc_cluster 6 1 -0.4277 0.1895 5.0950 0.0240 

proc_cluster 7 1 0 .2403 0.3119 0.5937 0.4410 

proc_cluster 8 1 1.9703 0.4172 22.3045 <.0001 
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Since these variables are categorical , in Table 6.8, we have the regression 

coefficients for all the variables to predict the dependent variable by the 

maximum likelihood method. 

Table 6.9 The Association of Predicted Probabilities and Observed Responses 

Association of Predicted Probabilities and Observed 

Percent Concordant 

Percent Discordant 

Percent Tied 

Pairs 

Figure 6.14 ROC Curve 
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Note that the area under the ROC curve is also given by the statistic c in the 

Association of Predicted Probabilities and Observed Responses table. In this 

study, the area under the ROC curve is 0.718. For model fitness, the closer the 

ROC plot is to the upper left corner (i.e. the area under the curve is close to 1), 

the more accurate of the model. However, since there are too many factors 

related to the patient's death for our study and lack of patient information, the 

logistic regression model is appropriate to predict the mortality of the lung cancer 

for this NIS database. 

6.6 Summary 

Kernel Density Estimation was used to compare graphs that can be overlaid to 

give us more information. Here, we might conclude that older patients are more 

likely to have lung cancers that would lead to a higher probability of longer stay 

and higher costs for the treatment procedure. With text analysis on the diagnosis 

codes and KDE, it shows that malignant neoplasm of lobe, bronchus or lung is of 

higher risk and has a higher cost compared to other lung cancers. 

The ARIMA model with ordinary and dynamic regressors was used to analyze the 

hospital's financial data. It provides the hospital with the ability to predict total 

charges of lung cancer based on previous costs. The ordinary and dynamic 

regressors model showed the effect of the length of stay and age on the 

predicted values of total charges. 
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Then, the Logistic model was used to examine the relationship between death 

and conditions of patients with lung diseases. In this paper, we just focused on 

Age in years at admission, Admission type, Admission source, Elective versus 

non-elective admission, Length of stay, Total charges, Median household income 

for patient MDe, and diagnosis and treatment procedures. By using the stepwise 

selection method with level 0.05, we removed Admission type, Age, LOS and 

Median household income for patient, which are not statistically significant. With 

this model, we could calculate the probability of death based on the given patient 

condition. 
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CHAPTER VII DATA ANALYSIS AND MODELING FOR MEDSTAT DATA 

7.1. MarketScan Database Overview 

The MarketScan Databases include the information about clinical utilization, 

costs, plans and membership across inpatient, outpatient, prescription drugs at 

member level and service level, which makes it possible for data analysis 

concerning outcomes. There are links between those tables such that the claims, 

drugs and patient information are on the same level. Historically, there are more 

than 500 million claims records available in the MarketScan Databases. 

The MarketScan Databases have the following tables: 

• Medical/surgical claims consisting of three tables: 

1. Inpatient Admissions Table (I) 

2. Inpatient Services Table (S) 

3. Outpatient Services Table (0) 

• Aggregated Populations Table (P) 

• Outpatient Pharmaceutical Claims Table(D) 

• Enrollment Summary Table (E) and Enrollment Detail Table (T) 
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Here we just introduce the inpatient table used in this study. 

Inpatient Admissions Table (I) 

The Inpatient Admissions Table contains the records with summarized 

information about each hospital admission case, which is combined by all of the 

associated service records. Contained in the cost information is the sum of all the 

services associated with the same admission case. The inpatient table also 

includes the principal procedure, principal diagnosis, Major Diagnostic Category 

(MDC), and Diagnosis Related Group (DRG), etc. The following table gives all 

the variables available in the admission table. We will specify those variables as 

the inputs for our analysis in later sections. 

Table 7.1. List of variables in Inpatient admission table. 

Name Long Name Name Long Name Name Long Name 
Date of 

ADMDATE Admission EESTATU Employment Status PROC2 Procedure 2 
Geographic Location 

ADMTYP Admission Type EGEOLOC Employee PROC3 Procedure 3 
Enrollee ID 

AGE AQe of Patient EIDGLAG Derivation FlaQ PROC4 Procedure 4 

AGEGRP Age Group EMPCTY County Employee PROC5 Procedure 5 
Case and Relation to 

CASEID Services Link EMPREL Employee PROC6 Procedure 6 
Zipcode Employee 3 

DATATYP Data Type EMPZIP Digit PROC7 Procedure 7 

DAYS Length of Stay ENRFLAG Enrollment Flag PROC8 Procedure 8 
Patient Birth 

DOBYR Year ENROLID Enrollee ID PROC9 Procedure 9 
Diagnosis 

DRG Related Group HOSPCTY County Hospital PROC10 Procedure 10 
Discharge 

DSTATUS Status HOSPPAY Payments Hospital PROC11 Procedure 11 
Zipcode Hospital 3 

DX1 Diagnosis 1 HOSPZIP Digit PROC12 Procedure 12 

DX2 Diagnosis 2 INDSTRY Industry PROC13 Procedure 13 
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Days from Prior 
DX3 Diagnosis 3 LASTADM Discharge PROC14 Procedure 14 

Major Diagnostic 
DX4 Diagnosis 4 MDC Category PROC15 Procedure 15 

Metropolitan 
DX5 DiagnOSis 5 MSA Statistical Area REGION Region 

Days to Next Cohort Drug 
DX6 Diagnosis 6 NEXTADM Admission RX Indicator 

Patient Indistinct Sequence 
DX? Diagnosis? PATFLAG Flag SEQNUM Number 

Gender of 
DX8 Diagnosis 8 PATID Patient ID SEX Patient 

DX9 Diagnosis 9 PDX Diagnosis Principal STATE State Hospital 
Physician Specialty Payments Net 

DX10 Diagnosis 10 PHYFLAG Coding Flag TOTNET Case 
Payments Total 

DX11 Diagnosis 11 PHYSID Physician ID TOT PAY Case 
Trim Flag 

DX12 Diagnosis 12 PHYSPAY Payments Physician TRIMLOS Length of Sta~ 
Trim Flag Per 

DX13 Diagnosis 13 PLANKEY Benefit Plan Link TRIMPDM Diem 
HospitallD 

DX14 Diagnosis 14 PLANTYP Plan Indicator UNIHOSP MDST 

DX15 Diagnosis 15 PPROC Procedure Principal VERSION Version 
MarketScan 

Employee National Weight 
EECLASS Classification PROC1 Procedure 1 WGTKEY Link 

Date Year 
YEAR Incurred 

7.2. Variables and their values 

The variable, DSTATUS, means Discharge Status, which is the status of the 

patient upon discharge from the hospital. The possible values are as follows: 

01: Discharged to home self-care 

02: Transfer to short-term hospital 

03: Transfer to SNF 

04: Transfer to ICF 

05: Transfer to other facility 
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06: Discharged home under care 

07: Left against medical advice 

08-19: Other alive status 

20-29: Died 

30-39: Not Yet dischargedlTransferred 

40-42: Other died status 

50: Discharged to home (from Hospice) 

51: Transfer to medical facility (from Hospice) 

61: Transferred to Medicare approved swing-bed 

71: Transfer/referred to other facility for outpatient services 

72: Transfer/referred to this facility for outpatient services 

99: Transfer, identified through Hospital 10 MOST change 

Missing: Invalid 

The variable DAYS means Length of Stay, which is the number of overnight 

stays for a hospital admission. 

The variable, AGEGRP, means Age Group, which is a value identifying the 

patient or members age group. The following are the possible values: 

1: 0-17 

2: 18-34 

3: 35-44 
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4: 45-54 

5: 55-64 

6: 65 and older 

The variable ADMTYP is Admission Type, which means the type of hospital 

admission with following values: 

1: Surgical 

2: Medical 

3: Maternity & Newborn 

4: Psych & Substance Abuse 

5: Unknown 

The variable SEX is the gender of patient with values: 

1: Male 

2: Female 

The variable, LASTADM, is the number of days between a patient's previous 

discharge and their current admission date. 

The variable, NEXTADM, is the number of days between a patient's current 

discharge and their next admission date. 
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The variable, MDC, represents the Major Diagnostic category, which is a set of 

Body-system or disease related groupings of clinical conditions, based on 

diagnosis codes. See Appendix A for the MDC values. 

The variable, REGION, is the Geographic Region of an employee's residence. 

1: Northeast 

2: North Central 

3: South 

4: West 

5: Unknown 

7.3. Analysis of MarketScan Data 

We next examine the lung cancer data from the Medstat MarketScan database, 

and we used two years of data, 2000 and 2001. Each year of data included 

medical and surgical claims, aggregated populations and enrollment information. 

Here, we consider inpatient cases first. There are a total of 4,718 observations 

for two years related to lung disease out of 800,000 records. Note that 

approximately 1.05% of the inpatient population has a diagnosis of lung disease. 

First, we use PROC KDE to examine the variables in relationship to the data 

using kernel density estimation. The main advantage of using kernel density 

92 



estimation is that the graphs can be overlayed for more direct comparisons. For 

example, we consider the relationship of lung cancer to Age, Length of Stay and 

Costs. 

Figure 7.1 The Kernel Density of Lung Cancer by Age using KDE. 
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The study was limited to The MarketScan Commercial population (who are 

covered by employer-sponsored private health insurance). Most of the members 

in this database are 65 or younger [37]. Note that the patients without lung 

diseases have a relatively constant likelihood of an inpatient event regardless of 

age (except for the interval of 0 to 20 and 60 to 80, where there is a slight change 

because of the population limitation). However, patients with lung diseases 

increase inpatient events starting at age 38, accelerating at age 45. We could not 

make any conclusions for those 65 or older because the available data contained 

only privately insured individuals instead of Medicare. 
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Figure 7.2. The Density of Lung cancer by Days (Length of Stay) using KDE 
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Those with lung diseases have a higher probability of a stay of 4 or more days, 

and a lower probability of staying 3 or fewer days compared to patients without 

lung diseases. 

Figure 7.3. The density of Lung cancer by Total Charge using KDE 
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Note that there is an intersection point of costs for patients at around 7,000, 

indicating that there is a higher probability of higher cost if the patient has lung 

disease. 

Next, we considered the procedure codes and examined more in-depth the types 

of treatments that patients have in relation to lung cancer. Recall that there are 

4,718 patients with a diagnosis of lung cancer. The procedures of treatment can 

be represented in multiple categories. Here, Text Miner in Enterprise Miner was 

used to examine the data according to text strings of treatment procedures. 

Cluster analysis was used to find the categories of documents. For example, the 

text analysis defined four different clusters in the data that are given in Table 7.2. 

Table 7.2. Cluster table for procedure strings. 

99238 , 99232 , 99222 , 99231 , 71 
538 0.11403136 ... 0.09371 22 ... 020 

2 
88305 , 36620 ,88331,32480 ,88 

1263 0.26769817 ... 0.1315167 .. . 309 

3 
71260 , 99238, 99223, 99231 ,99 

2431 0.51526070 ... 0.1325482 ... 233 

4 
93320,93325,93307,93010 ,99 

486 0.10300974 .. . 0.1186490 .. . 254 

The following Table 7.3 shows the translations of these clusters by using the 

CPT codes. 
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Table 7.3 Translation for the clusters 

Cluster # Description Label 

1 Initial and subsequent hospital care, Screening by Scan 

Radiologic examination, chest, two views, (X-Ray or Other) 

frontal and lateral 

2 Level IV and VI- Surgical pathology, gross Biopsy Examination 

and microscopic examination, Pathology 

consultation during surgery; first tissue 

block, with frozen section(s), single 

specimen 

3 Initial and subsequent hospital care, MRI 

Computed tomography, thorax; with 

contrast material(s) 

4 Doppler echocardiography, Inpatient Doppler 

consultation for a new or established 

patient 

According to the results of the NIS data, cluster 6, Secondary malignant 

neoplasm of Bone, bone marrow, Brain, is related to Biopsy Examination, with a 

higher average cost. Cluster 4, COPD and smoking, are related to Screening by 

Scan (X-Ray or Other). 

Again, kernel density estimation was used to make a comparison of age, length 

of stay and cost by clusters. The average cost for cluster 2 is greater compared 

to other clusters. There is no big difference between clusters 3 and 4, which 

means that they have similar severity conditions. Cluster 1 has a slightly higher 

probability of a lower cost than other clusters (Figure 7.4). 
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Figure 7.4 Kernel Density Estimate for Total Charges by Clusters. 
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Figure 7.5 Kernel Density Estimate for Age by Clusters. 
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For the average age of each cluster, note that all four clusters have similar 

shapes, which indicates that the average age for each cluster is 60. 
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Figure 7.6 Kernel Density Estimate for Length of Stay by Clusters. 
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Note that clusters 2 and 4 have a higher probability of a longer stay compared to 

the others. It would seem reasonable that patients at higher risk will stay longer 

and have higher cost. 

7.4 Medication 

The purpose of this section is to investigate top medications for lung cancer 

based on the Medstat lung cancer population. Based on the medication 

information , we examined the relationship between the medication and the 

mortality. In the Medstat database we have, the prescription data are available in 

ten different data files. We need to filter the data for the medications to study the 

treatment of lung cancer. 
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In the available data set, there are two variables specifying the drug used in the 

treatment, the NOC number (NOCNUM) and the generic product 10 (GENERIO). 

The converter for NOC numbers is available at the FDA website [38]. For each 

drug, there are multiple NOC numbers due to their dosage and type, and a few 

Generic product 10 values. Therefore, it is faster and more general to use generic 

IDs. We found the Generic IDs (names) of each drug using NOC numbers as well 

as the drug class defined. Those ten data sets were filtered by the lung cancer 

population at the beginning to reduce the process time and then were appended 

as one table at the end. 

We combined all datasets resulting from the above procedure to have one file 

containing all RX data for our study. We use programming similar to what we 

used for procedures, but this time for antibiotic so as to follow the antibiotics 

prescribed for each patient with the date. In other words, we have a one-to-many 

relationship between patients and their prescriptions. 

As a result, we have information about patients with lung cancer, including their 

procedures and prescriptions in the same dataset. In this section, we will focus 

on medication, so we only keep the drug column of the joined table with patient 

IDs. 
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Table 7.4 The top Medicines sorted by prescriptions. 

Cumulative 
Generic Name Drug Class Prescriptions Percent Percent 
Dexamethasone STEROIDS 2428 2.19 2.19 

PAIN MGMT -
Hydrocodone/Acetaminophen NARCOTIC 1806 1.63 3.82 
Levofloxacin ANTIBIOTICS 1800 1.62 5.45 
Oxycodone wI PAIN MGMT-
Acetaminophen NARCOTIC 1679 1.52 6.96 

MENTAL HEALTH 
Prochlorperazine Maleate - MISC 1631 1.47 8.44 

PAIN MGMT -
Propoxyphene-N wI APAP NARCOTIC 1397 1.26 9.7 

MENTAL HLTH -
Lorazepam ANXTY 1279 1.15 10.85 
Azithromycin ANTIBIOTICS 1200 1.08 11 .93 
Albuterollnhal Aerosol ASTHMA 1173 1.06 12.99 
Prednisone STEROIDS 1076 0.97 13.96 
Megestrol Acetate Susp CHEMOTHERAPY 1047 0.95 14.91 
Omeprazole Cap Delayed 
Release STOMACH - PPI 1036 0.94 15.84 
Famotidine STOMACH - H2 911 0.82 16.67 
Ipratropium-Albuterol Aerosol ASTHMA 862 0.78 17.45 
Cephalexin Cap ANTIBIOTICS 860 0.78 18.22 
Ciprofloxacin HCI ANTIBIOTICS 834 0.75 18.97 
Potassium Chloride NUTRITIONAL! 
Microencapsulated Crys CR VITAMIN 828 0.75 19.72 

The above top 17 medications already account for 19.72% used out of more than 

2000 medications. Below, we list some descriptions for some medications from 

the above table. 

1. Dexamethasone/ Prednisone tablets are used for the treatment of many 

different conditions, such as allergic disorders, or breathing disorders, 

which also prevent nausea and vomiting caused by the chemotherapy of 

cancer. 
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2. Hydrocodone is a narcotic pain-reliever and a cough suppressant and 

Acetaminophen is a non-narcotic analgesic (pain reliever) and antipyretic 

(fever reducer). 

3. Levofloxacin is a quinolone antibiotic used in lung or other area where 

infections are caused by certain bacteria. 

4. Oxycodone is used to treat moderate to severe pain. It is stronger than 

Hydrocodone. 

5. Prochlorperazine Maleate is used to treat severe nausea and vomiting 

from various causes such as anti-cancer treatment. 

6. Propoxyphene is a pain reliever. 

7. Lorazepam is used to reduce nervous tension. 

8. Azithromycinl Zithromax , as Levofloxacin , is used for the treatment of 

mild to moderate infections caused by certain bacteria. 

9. Inhalation Aerosol is used in chronic obstructive pulmonary disease 

(COPO), a type of lung disease leading to breathing difficulties. 

10. Megestrol Oral Suspension is used for weight loss caused by 

malignancies, systemic infections, and so on. 
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Figure 7.7 The distribution of Drug class 
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Note that the most commonly used drug classes of treatment for lung cancer are 

pain management-Narcotic, Antibiotics , Heart, Cough/Cold/Allergy, and so on. 

More details about the frequencies for each of the drug classes are listed in the 

following table. 
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Table 7.5 The frequency for each Drug class 

Drug Class Frequency 
PAIN MGMT - NARCOTIC 16047 
ANTIBIOTICS 11186 
HEART 10485 
COUGHI COLDI ALLERGY 7405 
ASTHMA 6140 
STEROIDS 6049 
STOMACHI GASTRO 5180 
MENTAL HEALTH - MISC 5073 
MENTAL HL TH - ANXTY 4349 
MENTALHLTH/DEPRESS 3275 
ANTI-INFECTIVES 2993 
DERMATOLOGY-OTHER 2966 
EYE/EAR/MOUTHfTH ROA T 2874 
STOMACH - PPI 2542 
STOMACH - H2 2211 
BLOOD THINNERS 2169 
PAIN MGMT - NON NARC 2029 
NUTRITIONAL! VITAMIN 1846 
ANTICONVULSANTS 1825 
BLOOD AGENTS 1723 
PRODUCTSI SUPPLIES 1660 
CHEMOTHERAPY 1644 
DIABETES 1532 
HORMONE THERAPY 1453 
CHOLESTEROL 1399 
PAIN MGMT - COX 2'S 1303 
MUSCLEI BONE 961 
THYROID 721 
GENITOURINARY 696 
TEST SUPPLIES 625 
OSTEOPOROSIS 320 
DIABETIC SUPPLIES 222 
IMPOTENCE 211 
MENTAL HLTHI STIMU 134 
PAIN MGMT - MIGRAINE 102 
DERMATOLOGY-ACNE 98 
MISC - NEUROLOGY 82 
IMMUNE SUPPRESSANTS 78 
CONTRACEPTIVES 50 
MISC - ENDOCRINE 19 
ANTISEPTIC SUPPLIES 13 
MISC - RESPIRATORY 12 
MISC - BIOLOGICALS 5 
ANTIDOTES 1 
MUL TIPLE SCLEROSIS 1 
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As we see, there are many patients treated with pain management and 

antibiotics, in addition to what was recommended in the literature for 

Chemotherapy. 

Next, we will examine the medication treatment for lung cancer for each record . 

However, there are multiple medication treatments for each case. Some occur 

during the inpatient period and others occur during the follow up period. Hence, 

we need to combine all the medications together that are related to the same 

case. That is, we will have one column with all the medication procedures for 

certain cases. The following codes will perform this purpose. 

proc sql ; 

create table inp sur modell as 

select distinct a . * , b . ndcnum , b . generid , b . svcdate 

from medstat . rs2 as a 

left join inp_sur_model as b 

on (a . caseid=b . caseid and a . admdate=b . admdate) ; 

quit ; 

proc sql ; 

create table ndccode as 

select distinct ndcnum 

from medstat . inp_sur_mode l l ; 

quit ; 

proc sql ; 

create able gpi as 

select distinct a . * , b . gennam 

from ndccode as a 

left join medstat . inp sur drug class as b 
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on (a . ndcnum=b . ndcnum) ; 

quit ; 

proc sql ; 

create table inp_sur mode12 as 

select distinct a . caseid , a . admdate , b . gennam 

from medstat . inp_sur_modell as a 

left join gpi as b 

on (a.ndcnum=b . ndcnum) ; 

quit ; 

proc sort data=inp_sur_mode12 ; 

by caseid admdate ; 

run ; 

proc Transpose 

data=inp_sur_mode12 

out=tran_p (drop=_name 

prefix=proc ; 

var gennam ; 

by caseid admdate ; 

run ; 

label ) 

data concat_p ( keep= caseid admdate gennam ) ; 

length gennam $32000 ; 

set tran_p ; 

array rxconcat_p {*} proc : 

gennam left( trim( proc_l )) 

do i = 2 to dim( rxconcat_p ) 

gennam left( trim( gennam)) I I 

end 

run 

proc sql ; 

I I left(trim( rxconcat_p[iJ )) 

selec max( length ( gennam )) into : gennam_LEN from 

concat_p 

quit ; 

data concat_pl 

105 



length gennam $ &gennam_LEN 

set concat_p 

run 

proc sql ; 

create table inp_sur mode13 as 

select distinct * 

from medstat . inp_sur_modell (drop=ndcnum generid svcdate) ; 

quit ; 

proc sql ; 

create table inp sur mode14 as 

sel ct distinct a . * , b . gennam 

from inp_sur_mode13 as a 

left join concat_pl as b 

on (a.caseid=b . caseid and a . admdate=b . admdate) ; 

quit ; 

Here, three medication clusters were obtained based on the medication 

procedures by using text mining techniques. The clusters are shown in Table 7.6. 

Note that the first cluster is related to Acetaminophen and Oxycodone used for 

pain reliever category. The second cluster is about the medication of 

Dexamethasone, Prochlorperazine Maleate, which is used for preventing nausea 

and vomiting caused by cancer chemotherapy. The last cluster is Morphine, 

Albuterol and Fentanyl Patch for pain relief and breathing problems. 
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Table 7.6 Clusters for medication procedures. 

sodium, delayed, mg, acetamino 
1 phen, oxycodone, wi, re lease, cr 3086 0.65132967... 0.1217083 ... 

, cap, tab 

dexamethasone, + delay, sodium 
, hydrocodone-acetaminophen, h 

2 cl, release, mg , cap, +tab , male 848 0.17897847 ... 0.1041322 ... 

ate 

su lfate, cap, soln, morphine, mc 
3 g/hr, mg, aerosol, albuterol, fenl a 804 0.16969185... 0.1328564 ... 

ny l, pal ch 

7.5. Survival Analysis 

The typical goal in survival analysis is to characterize the distribution of survival 

time for a given population, to compare th is survival time among different groups, 

or to study the relationship between the survival time and some concomitant 

variables [39]. 

The data set analyzed in this study contains the survival times of patients with 

lung cancer diagnosed. Here, the survival time is defined as the time from the 

admission date to death. The event of interest is mortality by lung cancer, and 

interest lies in whether the survival distributions differ between the different 

factors. 

Here, we define the Discharge status by using the following code. 
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data MEDSTAT . inp sur_analysis (compress=yes) ; 

set MEDSTAT . INP ADM TIME ; 

Status=O; 

if dstatus=20 or dstatus=42 then Status=l; 

else if dstatus= " then status= 2; 

else status=O; 

run ; 

Note that the patient dies if the status variable is 1. Values 0 and 2 indicate that 

the patient does not die or has a missing value, respectively. Then , we use the 

following code to generate the survival time , so that we can use survival analysis 

to examine the data . 

proc sql ; 

create table inp_sur_analysisl(compress=yes) 

as select distinct a . * , b . death_date 

from inp sur_analysis as a 

left join (select distinct caseid , admdate , max (dischgdate) as 

death_date format =mmddyy l O. O 

from inp sur_analysis 

where status=l 

group by caseid, admdate) as b 

on (a.caseid=b . caseid and a . admdate=b . admdate) ; 

quit ; 

PROC SQL ; 

CREATE TABLE MEDSTAT . inp sur analysis cluster AS SELECT distinct 

B.* , A. cluster_ 

FROM inp_sur_analysisl AS B 

INNER JOIN MEDSTAT . medtextranks AS A ON (A . caseid B. caseid) ; 

QUIT ; 

data inp_surl ; 

sa MEDSTAT . inp_sur_analysis cluster; 

if status=l then time=death date - admdate ; 
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if status ne 1 then time= '31dec2002'd-admdate ; 

run ; 

The time variable is defined as the days during which the patient was under 

observation until the event or the end of the study period , which may be either a 

death or a censoring. 

7.5.1 Kaplan-Meier method 

There are two methods to produce estimates of survival functions, the Kaplan­

Meier method and the life-table. The former is based on actual survival time, 

which is more suitable for smaller data sets with precisely measured event times 

and the latter is a time interval grouped by survival time, which is better for large 

data sets [27]. Another important advantage of the Kaplan-Meier method is that it 

considers the censored data from the sample before the event occurred. 

In our research , there are 4,718 patients with a diagnosis of lung cancer and the 

survival time is defined as the time from the admission date to death. The data 

set contains the following variables : Time, Status, Sex, Admtyp, Agegrp , Age, 

Days, Previous admission within 6 months, 4 clusters based on procedures 

codes and so on . The Time is used as survival time in days, and the Status 

variable has the value 1 for uncensored observations and 0, 2 for censored 

observations. The other variables have the values listed above. Therefore, the 
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Kaplan-Meier method and right censored method are used to examine the 

distribution of the survival time with different strata variables. 

Table 7.7 Test of Equality over Strata of Sex 

Test of Equality over Strata 

Test Chi-Square OF Pr >Chi-Square 

Log-Rank 0.9971 1 0 .3180 

Wilcoxon 0.9787 1 0.3225 

-2Log(LR) 0.8159 1 0 .3664 

This table contains rank and likelihood-based statistics for testing the 

homogeneity of survivor functions across strata . The rank tests for homogeneity 

indicate that there is no significant difference between male and female (P values 

are more than 0.3) . 
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Figure 7.8. Life Tables: Survivor Distribution Plot for Sex 
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Figure 7.7 displays the survivor function against time for each gender, where 

SDF 1 was the survivor distribution function for male and SDF 2 was the function 

for female. There is no significant difference between them at the beginning , 

which is in accord with a Test of Equality. The gap between the two curves 

distinguishes between the survivals distributions after survival time of 13, where 

the curve for Male decreases after the curve for Female. The difference in 

displayed survival curves reinforces the conclusions that female patients live 

longer than males. 
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Table 7.8. Test of Equality over Strata of Age group 

Test of Equality over Strata 

Test Chi-Square OF Pr >Chi-Square 

Log-Rank 11.9045 5 0.0361 

Wilcoxon 11.9283 5 0.0358 

-2Log(LR) 12.3412 5 0.0304 

Note that the rank tests for homogeneity indicate that the Age group is significant 

of mortality by lung cancer. 

Figure 7.9. Life Tables: Survivor Distribution Plot for Age Group 

Survival Distribution Function 
1.000 

0.972 

0.944 

0.916 

0.888 

0.860 L,------.-------.------r-----r----~ 
o 16 32 48 64 80 

Survival Time 

- 1: SDF 1 - 1: SDF 2 - 1: SDF 3 1: SDF 4 - 1: SDF 5 - 1: SDF 6 

112 



Note that it is clear that the six age groups were divided into two categories. 

Patients with age from 1 to 34 belong to the first category with very low mortality, 

and those with age 35 or more belong to the second category, which has a 

higher probability of death. Furthermore, the probability of survival for patients at 

age 65 or older decreases quickly from 0.888 after 10 days. 

Table 7.9. Test of Equality over Strata of Admission Type 

Test of Equality over Strata 

Test Chi-Square OF Pr >Chi-Square 

Log-Rank 68.3726 4 <.0001 

Wilcoxon 69.7864 4 <.0001 

-2Log(LR)* 83 .1681 4 <.0001 

All three tests show a significant difference between the admission types (Type 

of hospital admission: Surgical , Medical , Maternity & Newborn , Psych & 

Substance Abuse, or Unknown) (p- values are less than 0.001) . It shows that the 

admission type is an indicator for the mortality of lung cancer. From the following 

figure, we will see which admission is more closely associated with mortality. 
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Figure 7.10. Life Tables: Survivor Distribution Plot for Admission Type 

Survival Distribution Function 
1.000 

0.982 

0.965 

0.947 

0.929 

0.912 l.----,___---===::;:::====~,___---.__---..,J 
o 16 32 48 64 80 

Survival Time 

- 1: SDF 1 - 1: SDF 2 - 1: SDF 3 1: SDF 4 - 1: SDF 5 

Note that there is no death among patients registered as Maternity & Newborn 

and Psych & Substance Abuse. During the first 16 days, the probabilities of 

survival for patients registered as Surgical type and Medical type decrease to 

0.98 and 0.92, respectively. 

From what we discussed above, we defined four clusters according to the 

treatment procedure for lung cancer. They were: Cluster 1: Screening by Scan 

(X-Ray or Other) , Cluster 2: Biopsy Examination , Cluster 3: MRI and Cluster 4: 

Doppler. We examined the relationship between the treatment categories and 

mortality. First, we extracted the cluster information from the data set we used to 

define the clusters and merged it with the adjusted admission table using the 

following code. 
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PRoe SQL ; 

CREATE TABLE MEDSTAT.inp_sur_analysis_cluster AS SELECT distinct 

B. DOBYR , B. ADMDATE FORMAT=MMDDYY10 . , B . AGE , B. CASEID , B. DAYS , 

B . DRG , B. TOTNET , B. TOTPAY , B.ADMTYP , B . DSTATUS , B . PATID , B. SEX , 

B. lungcancer , B. diagnoses , B. procedures , B. AGEGRP , A. _cluster_ , 

B. time , B. status 

FROM medstat . inp_sur_analysis AS B 

INNER JOIN MEDSTAT.medtextranks AS A ON (A . caseid 

B. caseid) ; 

QUIT ; 

Table 7.10. Test of Equality over Strata of Treatment Clusters 

Test of Equality over Strata 

Test Chi-Square OF Pr >Chi-Square 

Log-Rank 66.8540 3 <.0001 

Wilcoxon 65.2475 3 <.0001 

-2Log(LR) 67.3901 3 <.0001 

Again , all three tests show a significant difference between the clusters (p­

values are less than 0.001). Different clusters are related to different mortality 

rates of lung cancer. 
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Figure 7.11. Life Tables: Survivor Distribution Plot for Treatment clusters 
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Because these clusters were based on the treatment procedures, they indicated 

the severity level of the patient condition. Note that cluster 4 has a higher 

probability of mortality than the other three clusters , with a survival rate of 0.86 at 

the first 60 days. The survival rates for clusters 1, 2 and 3 are 0.92, 0.97 and 

0.93, respectively. Furthermore, these four clusters might be divided into three 

categories. Clusters 1 and 3 have a similar survivor distribution according to 

survival time. The gaps between the categories become much clearer after 25 

days. 

116 



7.5.2 Cox Proportional Hazard Model [34] 

Survival analysis is appropriate for outcomes that occur during follow-up of 

patients, such as death because of cancer or recurrence of disease in cancer. In 

medical studies, the Cox proportional hazard model is the most often used 

method. 

We used the following code to create some binary variables, including Admit type, 

Region , Discharge status, and clusters of treatment procedures. 

data medstat . inp_sur ; 

set inp_surl ; typ_surg=O; typ_med=O; typ_oth= O; prev_adm_180=0; 

readm_90=0; Region_NE= O; Region_NC= O; Region_S=O; 

egion_W= O; Region_un=O; 

Dischg_home=O; dischg_transfer=O; 

dischg_died=O; dischg_oth=O; age_grpl=O; age_grp2=0; 

age_grp3=0; age_grp4=0 ; age_grp5=0; age_grp6=0; 

cluster_Screening=O; cluster_Biopsy=O; luster MRI=O; 

cluster_Doppler=O; 

cluster oth=O; 

if admtyp= ' l ' then typ_surg=l; 

else if admtyp= ' 2 , then typ_med=l; 

else typ_oth=l; 

if lastadm le 185 and lastadm gt 0 then prev_adm_180=1; 

if nextadm le 90 and nextadm gt 0 then readm 90=1; 

if region= ' l ' then region_NE=l; 

else if region= ' 2 ' then region_NC=l; 
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else if region= ' 3 ' then region_S=l; 

else if region= ' 4 ' then region_W=l; 

else region_un=l; 

if dstatus in ( ' 0 1 ' , ' 06 ' , ' 50 ' ) then Dischg_home=l; 

else if dstatus in 

( ' 02 ' , ' 03 ' , ' 04 ' , ' 05 ' /* , ' 51 ', ' 61 ', ' 71 ', ' 72 ', ' 99 ' */ ) then 

dischg transfer=l; 

else if dstatus in 

( ' 20 ' , ' 21 ' , ' 22 ' , ' 23 ' , ' 24 ' , ' 25 ' , ' 26 ' , ' 27 ' , ' 28 ' , ' 29 ' ) then 

dischg_died=l; 

else dischg oth=l; -

if age ge 0 and age le 17 then age grp1=1; -

else if age ge 18 and age le 34 then age grp2=1; 

else if age ge 35 and age le 44 then age grp3=1; 

else if age ge 45 and age le 54 then age grp4=1; 

else if age ge 55 and age le 64 then age grp5=1; 
-

else age grp6=1; 

if cluster =1 then cluster Screening=l; -

else if cluster =2 then cluster_Biopsy=l; 

else if cluster =3 then cluster MRI=l; 

else if cluster =4 then cluster Doppler=l; 

else cluster oth=l; 

run ; 
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Table 7.11 . Hazard ratio for the mortality of lung cancer. 

Analysis of Maximum Likelihood Estimates 

95% Hazard 

Ratio 

Parameter Standard Hazard Confidence 

Variable OF Estimate Error Chi-Square Pr > ChiSq Ratio Limits 

typ_oth 1 -12.51181 362.8222 0.0012 0.9725 0.000 0.000 2.52E30 

1 3 

typ_med 1 1.09393 0.17066 41.0861 <.0001 2.986 2.137 4.172 

typ_surg 0 0 

age.....8rpl 1 -12.75666 1520 0.0001 0.9933 0.000 0.000 

age....Brp2 1 -13.31160 401.8727 0.0011 0.9736 0.000 0 .000 

3 

age.....8rp4 1 -0.20518 0.25797 0.6326 0.4264 0.815 0.491 1.350 

age.....8rp5 1 -0.30263 0.24120 1.5742 0 .2096 0.739 0.461 1.185 

age.....8rp6 1 0.48064 0.38189 1.5840 0.2082 1.617 0.765 3.418 

age.....8rp3 0 0 

cluster_Biopsy 1 -0.33550 0.23919 1.9674 0.1607 0.715 0.447 1.143 

cluster_MRI 1 -0.20162 0 .17630 1.3078 0.2528 0 .817 0.579 1.155 

cluster_Doppler 1 0.71388 0.20039 12.6917 0.0004 2.042 1.379 3.024 

cluster_Screening 0 0 

prev_adm_180 1 -0.22023 0.16741 1.7305 0 .1883 0.802 0.578 1.114 

In the Cox proportional hazards model , the effects of the covariates are to act 

multiplicatively on the hazard of the survival time. From Output Table 7.11, the 

hazard ratio estimate for prev_adm_1BO is 0.802, meaning that the existence of 

previous admissions will shrink the hazard rate by 1-(0.802)=20%. For a CLASS 

variable parameter, the hazard ratio is the ratio of the hazard rates between the 

given category and the reference category. The hazard rate of 
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AdmitType=Medical is 299% that of AdmitType=Surgical, and the hazard rate of 

AdmitType=other is 0% that of AdmitType=Surgical. Similarly, the hazard rate of 

Cluster= Doppler is 200% that of Cluster=Screening; the hazard rate of Cluster= 

Biopsy is 72% that of Cluster=Screening and the hazard rate of Cluster= MRI is 

82% that of Cluster=Screening. 

From what we discussed above, the outcome of the Hazard Ratio analysis is 

consistent with the Kaplan-Meier method. 

7.6. Predictive Modeling 

Next, we want to estimate the probability of the occurrence of lung cancer based 

on patient age, gender, clinical conditions, days of stay and total charge by using 

modeling techniques. Since lung cancer remains a rare occurrence, we use 

stratification as the sampling method and the sample proportion is 50/50. Figure 

7.12 shows the predictive modeling process for Decision Tree, Regression and 

Neural Network in Enterprise Miner. 
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Figure 7.12. Predictive Modeling Process 

o 0 0 

o 

Comparison 
o 0 0 

Regression 

Here, the model comparison node is used to compare the results of all the 

models to determine which model gives the most accurate or least costly results . 

Table 7.12 shows the model choice using the 50/50 proportion, stratified 

sampling and the misclassification rate. 
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Table 7.12. Model Choice with Misclassification Rate 

Fit Statistics 

Model selection based on VMISC -

Train: Valid: Train: Train: Valid: 
Valid: Average Average AkaiJ1.e 's Train: Train: Valid: Kolmogorov- Kolmogorov-

Selected Kodel Kisclassification Squared Squared Information Kisclassification Roc Roc Smimov Smimov 
Kodel Node Rate. Error. Error. Criterion. Rate. Index Index Statistic Statistic 

Neural 0.49293 0.27991 0.28055 10339.33 0.49289 0.53339 ~ 0.05480 0.04523 
Reg 0.49576 0.27965 0.28138 10045.65 0.49273 0.53142 ~ 0.05268 0.04170 

Y Tree 0. 14170 0.11757 0.11134 0.15123 0.88818 0.89874 0.69755 0.71661 

Note that the Decision Tree is optimal with a 14.2% misclassification rate in the 

testing set. The ROC index for the Model Tree is 0.90 when it is 0.52 for the 

Neural Network and Regression models. Figures 7.13 and 7.14 give us the 

details of the Roc Curve and Decision Tree. 

Figure 7.13. Roc Curve for model of Lung Cancer Occurrence. 
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Figure 7.14. Decision Tree Results 
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Note that the Major Diagnostic Category is the first major predictor based on 

diagnosis with the Respiratory System or the Blood , Blood Forming Organs, and 

Immunological Disorders. The next split is based on the Age of the Patient at 
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39.5 years old. With these two splits, we have reached 88% of the lung cancer 

cases with 1276 records. Here, a patient more than 40 years old is at higher risk 

of lung cancer compared to those less than 40 with the same diagnosis of 

Respiratory. The decision tree clearly shows that Major Diagnostic Category, Age 

of Patient and Length of Stay are the leading predictors of lung cancer diagnosis. 

Next, we used several predictive models (Decision tree, Logistic regression and 

Neural Network) to analyze the mortality of lung cancer based on what we 

discussed above. Here, we list all the variables used in the model process as 

follows, 

1. Length of stay 

2. Age 

3. Admit type 

4. MDC code 

5. Medication treatment Clusters 

6. Previous Admission 

7. Treatment procedure Clusters 

8. Total Cost 

9. Patient location 

10. Diagnosis Clusters 

11.Gender 

12. Target variable: Death 
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First, we split the data into three sets with proportion of 40/30/30, training, 

validation and test sets. For the Neural network, there are three hidden units; 

multilayer preceptron architecture is used and the misclassification rate is 

selected as the model selection criteria. Also, the logistic regression model is 

used to compare with the Neural Network model. Again, the following table and 

figure show us the outcomes. 

Table 7.13 Fit statistics for model selection 

Fit Ste.tistics 

!odel selection based on JlIISC -
Train: Valid: Test: Train: 

Test: AveuQe Averaqe Aveuqe Akaike '! Train: Valid: Train: Valid: Test: 
Selected Hodel Hisclal3lfication Squmd Squmd Squmd Inforlatlon ~i!clmHicatlon HUclassificatlon Roc Roc Roc 
Model Hode Rate Erm Error Error Critmon, Rate Rate Index Index Index 

Heura12 0,066011 0,055312 0,055640 0,059416 ll24,56 0,064916 0,065441 0,79730 0,76607 0,76961 
Req2 0.066011 0,057090 0,057614 0,059712 621.16 0, 064448 0,064743 0.74936 0,13545 0.72742 
Tm2 0.0660l! 0,060294 0,060552 0,061656 0,064448 0,064743 0,50000 0,50000 0,50000 

Valid: Test: Tuin: Bin-Based Valid: Bin-Based Test: Bin-Based 
Kol1oqorov- Kolloqorov- Two-Way Two-Yay Two-hlay Train: Valld: Train: 

Slunov SlimoY Kollogorov-Saimov Kol1oqolov-Smirnov Kolloqorov-Saimov Valid: Tram: Valid: Percent Percent Capture 
StatistlC Statistic Statistic Statlstic Ste.timc Gam Lift Lift Response Response Response R 

0,42143 0,44558 0,47399 0,40909 0,42941 )79,348 4,42623 4,79346 26,5261 31.0345 22,1311 
0,40898 0,45182 0,43462 0,39156 0,43479 236,556 3,26669 3,36556 21.0531 21.1B97 16,3334 
0,00000 0,00000 0,00000 0,00000 0,00000 0,000 1,00000 1.00000 6,4446 6,4743 5,0000 
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Figure 7.15 ROC curve for model selection 
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Note that the Neural Network won this time with a testing ROC of 77%. At the 

cutoff point of 0.07, we have an overall classification rate of 72% for the test data 

set (65 true positives out of 94 positive events) . With the above 11 variables , the 

neural network model will generate a probability of mortality for each patient with 

lung cancer under different treatments. 

7. 7 Summary 

Relatively few models have been developed to estimate lung cancer risk. 

Previous lung cancer risk prediction models have tended to focus on smoking 

characteristics , sex, and age. In 2003, Peter B. Bach and Michael W. Kattan 
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developed a lung cancer risk prediction model based on the Carotene and 

Retinol Efficacy Trial (CARET), a large, randomized trial of lung cancer 

prevention. This model used smoking history data of retinol and carotene in 

heavy smokers and asbestos-exposed individuals, which was applicable to 

smokers between 50 and 75 years of age, who are or were heavy smokers (10-

60 cigarettes per day for 25 - 60 years). In 2007, to extend the work of Bach and 

Kattan and to include additional risk factors beyond smoking history and 

asbestos exposure, Margaret Spitz developed a risk prediction model for lung 

cancer using epidemiologic data for assessing lung cancer risk with a minimal 

number of risk predictors. In 2008, a logistic regression model was developed by 

Jennifer Beane and Paola Sebastiani using the biomarker, clinical factors, and 

these data combined were tested using the independent set of patients with non­

diagnostic bronchoscopies. Most of these models are constructed using smoking 

history data and clinical data to predict the occurrence of lung cancer. Our 

models are constructed based on demographic data and clinical factors, such as 

treatment procedures and medication treatments, to identify the lung cancer and 

to determine the mortality under different treatments. 

Based on text analysis on the diagnOSis codes and KDE, the relationships 

between the variables and the target, Lung Cancer, were examined. With the 

Kaplan-Meier method, Age, Admission Type and Procedure clusters are used to 

identify the significant factors for the diagnosis of Lung Cancer. The Cox Hazard 

Proportion Model yields the detail of the relationships by the hazard ratio of the 
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contribution of each variable to the target. Then, predictive modeling was used to 

investigate the rules between the variables and the target. Based on the tests 

and the ROC curve, the Decision tree is selected as the optimal model to predict 

the occurrence of lung cancer, and the Neural Network model is the optimal 

model to predict the death because of lung cancer with different treatments. 

128 



CHAPTER VIII CONCLUSION 

8.1 Methods Comparison 

Since the first risk predictive model for chronic disease was developed in 1976, 

many models have been developed to predict the occurrence of a disease or the 

mortality of patients. However, relatively few models have been developed to 

predict the risk of Lung Cancer in past years. Moreover, the previous predictive 

models for lung cancer focused on smoking characteristics, sex, and age. 

As far as Lung Cancer is concerned, F L Rice and R Park analyzed the relation 

between mortality from Lung Cancer and cumulative crystalline silica exposure 

with Poisson regression and Cox's proportional hazards models. In their paper, 

several model forms for Poisson regression were evaluated: Log linear, Log 

square root, Log quadratic, Power, Linear relative rate, Shape (a) and Additive 

excess rate. The Cox's hazards models were applied as alternative methods to 

examine the relationship. They got very similar results from these methods, 

which show a significant exposure-response relation between the mortality from 

Lung Cancer and the silica exposure [40]. 
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During 2002, F. D. K. Liddell and B.G. Armstrong analyzed the effects on Lung 

Cancer of cigarette smoking and exposure in Quebec Chrysotile miners and 

millers by using principal components analysis and linear and log-linear models. 

A standardized mortality ratio (SMR) was defined by the number of lung cancer 

deaths observed and the numbers of expected in the subdivision. The SMR is 

the dependent variable for the linear and log-linear models. 

In 2003, a predictive model was developed by Peter B. Bach and Michael W. 

Kattan to estimate the risk of Lung Cancer using the data from the Carotene and 

Retinol Efficacy Trial (CARET), which is a large and randomized trial of lung 

cancer prevention [2]. In their research, smoking history data of retinol and 

carotene in heavy smokers and asbestos-exposed individuals were used to train 

and validate the model that was applicable to heavy smokers at the age of 50 or 

older only. Two 1-year models were developed with similar methods and 

predictors to predict the probability of occurrence of lung cancer and the mortality 

without having been diagnosed with lung cancer. The Cox proportional hazards 

regression models were used to examine the relationship between the 

occurrence of Lung Cancer and the predictors. However, Bach's lung cancer risk 

model was only focused on seniors with a smoking history and was not able to 

distinguish the different histological types of Lung Cancer. 

Then, in 2007, to extend the work of Bach and Kattan, Margaret Spitz developed 

a risk prediction model for Lung Cancer using epidemiologic data for assessing 
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lung cancer risk with a minimal number of risk predictors [41]. In her research, 

Spitz also collected patients' demographic information, medical history (including 

physical conditions), and family history of cancer besides smoking history. In the 

article, the multivariable logistic regression model with backward selection was 

used to estimate the risk of lung cancer. The classification and regression tree 

(CART) methods were used to evaluate the higher order interactions in the 

training sets. However, the limitation for Margaret's work is that the data were 

derived from a single large case control study; that is, the case patients were 

recruited from a single tertiary cancer center and the control group was not 

population based. Then, Spitz expanded her work by adding two markers of DNA 

repair capacity in 2008. Again, multivariable logistic models were constructed to 

estimate the individual risk of Lung Cancer. As a conclusion of this article, the 

biomarker assays improved the sensitivity of the models over epidemiologic and 

clinical data only. 

Meantime, a novel data mining technique, Backward-Chaining Rule Induction 

(BCRI), was introduced by Mary E. Edgerton, Douglas H. Fisher for Gene 

Networks relevant to poor prognosis in Lung Caner. BCRI was embedded in a 

semi-supervised approach, C4.5, which is a method for learning decision trees. 

In their paper, C45W-BCRI (Wrapper-based implementation of BCRI with C4.5) 

was applied to generate the rules to estimate the long versus short survival 

periods for Lung Cancer. Seventeen rules were generated with gene interactions 
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out of 19 molecular species, and 12 were associated with Neoplasia in general 

and 5 for Lung Cancer [42]. 

In 2008, three logistic regression models were developed by Jennifer Beane and 

Paola Sebastiani using the biomarker, clinical factors, and these combined data 

were tested using the independent set of patients with non-diagnostic 

bronchoscopies [43]. The combined clinicogenomic model had better 

performance and got higher specificity and positive predictive value compared 

with the other models. 

Dursun Delen developed predictive models for survivability and variable 

explanation using Logistic Regression, Decision Trees, Artificial Neural Networks 

(ANN) and Support Vector Machines (SVMs) based on the data from the SEER 

Program of the National Cancer Institute during 2009. From their results, SVM 

models had the best performance, and the ANN models still performed better 

that other two modeling techniques [44]. 

As discussed above, several statistical model techniques were used to estimate 

the risk of Lung Cancer and smoking history was the most important predictor. 

Since the complexity of medical data, some information such as diagnosis, 

medication, or treatment procedures were not used to examine the relationship 

with the risk of Lung Cancer. 

132 



In this dissertation, we used Text mining to look for patterns and group patients 

with similar condition or similar treatments into the same clusters, creating new 

categorical variables for modeling. 

Medical data used in this dissertation are from a collection of claims for each 

patient. Each record includes the patient identification (Name and/or medical 

record), demographic information, clinical information, and cost information. 

Some information such as medication, diagnosis, and treatments are in textual 

format; some such as age, length of stay and costs are in numerical format. All of 

these characteristics make medical data analysis a challenging task. Krzysztof J. 

Cios and G. William Moore gave the major uniqueness of medical data in their 

article [45]. 

Medication, diagnosis, and treatments constitute the highest source of 

information about the patient in the data. Unfortunately, they cannot be used in 

the analysis as they stand. Hence, preprocessing of these variables is necessary 

to make them understandable by the models. Patients that have similar 

symptoms and diagnoses should have similar treatments, and can be grouped 

together according to these treatments. Therefore, text analysis was applied to 

allow those variables to be used with other techniques. 

We applied Text Miner with Cluster analysis to identify the claims data for Lung 

Cancer and to determine the category of diagnosis, treatment procedures and 
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medication treatments for those patients. Moreover, they were used to define 

severity level and treatment categories. Compared with using diagnosis codes 

directly, our method is more efficient and captures more useful information for 

further analysis. A decision tree was built to generate rules for identifying high 

risk lung cancer cases amongst the regular inpatient population. Decision trees 

provide interpretable decision rules and logic statements for a good 

understanding of the model. This model can then be used to predict the class to 

which an unseen object belongs by using an equivalent set of rules that are often 

easier to understand than the tree itself. 

In order to analyze the mortality of Lung Cancer, we also found that survival 

analysis is appropriate to preprocess the data for the relationship between a 

predictor variable of interest and the time of an event. The proportional hazard 

model examined the effects of different treatment clusters using the hazard ratio 

and the proportional effect of a treatment cluster (treatment procedure or 

medication treatment) that may vary with time. Several statistical models were 

developed based on demographic data and clinical factors, such as treatment 

procedures and medication treatments, to determine the mortality under different 

treatments. 

Among these techniques that were used for the analYSis of the dataset, the 

Polynomial Regression Model, Neural Network, Regression Model and Decision 
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Tree with the CHAID algorithm provided insight into the data. ROC curves were 

used to compare the performance of the models with or without diagnosis, 

medication and treatments. The models with clusters of diagnosis, medication 

and treatments generated by Text mining had better performance than the 

models excluding those variables (Figure 8.1). 

Figure 8.1 The comparison of ROC curves 

Data Role = TRAIN Data Role = VALIDATE Data Role = TE ST 
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0.8 0.8 0.8 
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1 - Specificity 1 - Specificity 1 - Specificity 

--Baseline --Neural Network (2) 
--Neural Network (No_clusters) --Regression (2) 
--Regression (Polynomial) --Regression (PoILno_clusters) 
--Decision Tree (CHAID) --DeCision Tree (CHAID_NO_Clusters) 

The models with text mining clusters, polynomial regression (purple) , Neural 

network (red) and Decision Tree (light blue) , have better performance than others, 

which were the top category in the graph. The models without the cluster 

variables, polynomial regression (green) , Neural network (dark blue) and 

Decision Tree (gray) , were in the middle of the graph. From the test dataset, it 

was clear that there was a significant difference in the area under the curves. 

The following table showed the detail about the difference of the ROC index. 

Table 8.1 The ROC index for the models 
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~II Fit Statistics f:lfOI(8] 
Sel8cted Ptectecess Model Model Oescription target rreet 
Model or Node Node Variable Roc Index 

Reg3 ~eg3 Regression (Polynomial) death u.772444 
Neural2 Neural2 Neural Network (2) death 0.769813 
Reg2 Reg2 Regression (2) death 0.727424 
Tree3 Tree3 Decision Tree (CHAID) death 0.7249 
Neural3 Neural3 Neural Network (No_clusters) death 0.892801 
Reg4 Reg4 Regression (Poly_no_clusters) death 0.886578 
Tree5 Tree5 Decision Tree (CHAID NO Clusters) death 0.817125 

<l l[ ~L,}JI [>1 

The differences with regard to the cluster variables were about 9%, 7%, and 11 % 

for Polynomial regression models, Neural Network and Decision trees with the 

CHAID algorithm, respectively. The information from diagnosis, medication and 

treatments improved the predictive capability of these models. 

8.2 Conclusion 

The main aim of this dissertation was to examine the relationships between the 

patient's conditions and the outcome of Lung cancer and to develop, evaluate 

and apply specific Lung cancer risk prediction models for the prediction of the 

cost and mortality of treatment, or developing rules for identifying the diagnosis of 

Cancer, which will help clinical decision-making or reduce cost. 

Two large databases, the National Inpatient Sample for the years of 2000 to 

2004 and the Thomson MedStat MarketScan data containing all patient claims 
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for 40 million people followed for the years 2000-2001 were used to examine our 

aim. 

The Kernel Density Estimation (KDE procedure) was used to examine the 

relationships between Lung cancer and Age, Length of Stay and Total Charges 

by using data visualization. With text analysis on the diagnosis codes and KDE, it 

shows that the malignant neoplasm of lobe, bronchus or lung is of higher risk and 

has a higher cost compared to other lung cancers. 

Text mining and cluster analysis were used to reduce a large number of patient 

condition codes into cluster categories with different severity levels based on 

diagnosis codes or treatment procedure codes. These categories were used to 

examine the relationship to the costs and mortality because of cancer. 

Based on the outcomes we discussed above, a Time series model and Logistic 

Model were applied. The ARIMA model with ordinary and dynamic regressors for 

the inflation rate was used to analyze the hospital's financial data. It provides the 

hospital with the ability to predict total charges of lung cancer based on previous 

costs. The ordinary and dynamic regressors model showed the effect of the 

length of stay and age on the predicted values of total charges. 

The Logistic model was used to examine the relationship between death and 

conditions of patients with lung diseases. In this paper, we just focused on Age in 

years at admission, Admission type, Elective versus non-elective admission, 
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Length of stay, Total charges, and Median household income for patient. By 

using the backward elimination method, we removed Admission type, Elective 

versus non-elective admission and Median household income for the patient, 

which are not statistically significant. Then we refit the data with Age, Los and 

Totchg effects that are all highly statistically significant. 

With the Kaplan-Meier method, Age, Admission Type and Procedure clusters 

from the Thomson MedStat MarketScan data are significant for the diagnosis of 

Lung Cancer. The Cox Hazard Proportion Model gave us the detail of the 

relationships by hazard ratio, the contribution of each variable to the target. Then, 

predictive modeling was used to investigate the rules between the variables and 

the target. Based on the tests and ROC curve, Decision tree and Neural Network 

models are selected as the optimal model for occurrence and mortality of lung 

cancer, respectively. 

Throughout our analysis, some significant factors for lung cancer are examined 

and diagnosis cluster, treatment procedure cluster and medication cluster are 

created based on the severity level of lung cancer. Specific lung cancer risk 

prediction models based on available variables were developed, evaluated and 

used to predict the cost and mortality for the patients and to build rules for 

identifying the diagnoses of Cancer, which will help the physician's clinical 

decision making (treatment procedure and medication), to identify high-risk 

individuals and to provide better care. 
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APPENDIX A. Sample Data Elements for National Inpatient Sample (NIS) 

Database (First 8 columns out of 129). 

1 . 
,2 04200010422807 475 

1 04200010425387 75 11 416 

04200010426467 64 10 82 

04200010472184 65 8 77 

04200010474234 68 82 

04200010474754 80 10 82 

04200010476154 65 10 82 
04200010478134 69 11 96 0 

10 042000101951 42 62 1 1 

11 04200010196032 74 82 12 ' 

12 04200010199022 65 121 7 

13 04200010199432 30 

14 04200010200712 65 277 

15 04200010201492 38 296 

16 04200010211662 69 226 11 

17 04200010219822 66 11 397 2 

18 04200010221252 83 10 127 

19 0420001022241 2 58 11 82 11 

20 04200010222482 67 12 76 12 

21 0420001022441 2 74 10 296 2 

22 04200010225932 78 12 296 

21 04200010228222 80 11 

24 04200010228262 64 11 

25 04200010177287 73 2 82 13 

26 04200010177667 48 82 0 

27 04200010177727 83 419 4 
I?R nmnnJ nJ 7R1 n7 ~~ R? 1n 
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APPENDIX B. List of qata variables for Thomson MarketScan Commercial 

Database 

Medical 
Information 
(Inpatient and Health Plan Financial Drug Enrollment 

Demographic Outpatient) Features Information Information Information 
Admission date Coordination of Total Generic Date of 

Patient ID and type benefits amount payments product ID enrollment 
Average 

Principal Deductible Net wholesale Member 
Age diagnosis code amount payments price days 

Discharge Copayment Payments Prescription Date of 
Gender status amount to physician drug payment disenrollment 
Employment 
status and Major 
classification diagnostic Payment Therapeutic 
(hourly, etc.) cateQory Plan type to hospital class 

Relationship of Principal Payments-
patient to procedure total Days 
beneficiary code admission supplied 

Secondary 
Geographic diagnosis 
location (state, codes (up to National drug 
ZIP Code) 14) code 

Secondary 
procedure 
codes (up to 

Industry 14) Refill number 
Therapeutic 

DRG group 
Length of stay 
Place of 
service 
Provider ID 
Quantity of 
services 
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APPENDIX C. Sample Data Elements for Thomson MarketScan Commercial 

Database (15 Diagnosis columns out of 82) . 

5750 2888 79431 57400 5752 27801 5122 71020 
0088 78900 2765 V718 99236 
4359 436 val0 43310 43311 43330 63600 3950 
5762 7824 78900 1579 53560 5689 5778 78652 7948 43260 71020 
1623 1991 51889 7866 1622 5128 5180 78652 1629 1961 V4589 1869 32480 32486 

0539 1623 1629 99222 71010 
6826 1629 7806 VlOll 99222 71020 
53531 53501 5789 5715 4513 99222 

10 78659 78650 78651 3089 99222 71010 

11 29633 V726 2469 80050 84436 

12 5401 5409 44970 4701 

13 42781 4279 4270 78600 42789 V4501 78906 7851 4271 .33208 3783 

H 4270 78609 3734 93526 

15 5600 78903 78906 78650 5609 7510 44120 00840 

16 2189 78930 6170 58551 6829 

17 64891 650 66331 7359 59409 

18 YJOOO 99431 99433 

19 56889 2189 5680 7842 78900 V7283 2118 2182 5459 51550 

20 78659 78650 99223 71010 

21 0389 25010 4449 485 505 51881 585 78009 78609 7906 9916 44422 4599 5939 25070 31625 3808 

22 99811 57510 2851 5601 74170 88304 

23 66411 650 V270 7569 59400 

2~ 29630 30440 

25 56969 56960 9974 V442 44314 00840 

26 29570 99223 90817 

27 29570 
2A ~q,7n 
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APPENDIX D. Sample Data Elements for Thomson MarketScan Commercial 

Database (15 Procedure columns out of 82) . 

63600 3950 70450 93010 71010 99222 99232 36215 36216 36217 75662 75671 75680 
43260 71020 74160 80048 80076 82140 82150 85023 85610 85730 99255 85025 99232 

32480 32486 36620 3874~ 39400 99252 01996 71010 80048 99255 71020 99233 99232 

99222 71010 99232 9923 0CQ48 

99222 71020 99232 99238 

4513 99222 99254 88305 99231 99238 

10 99222 71010 78465 99238 

11 80050 84436 84479 86592 

12 44970 4701 99254 

13 33208 3783 8951 99255 99233 99221 99232 93621 93623 00530 71010 99238 

14 3734 93526 93543 93545 93555 93556 93609 93651 99238 

15 44120 00840 4562 72194 74022 74170 88302 88307 99222 99233 99253 71020 71260 

1& 58551 6829 88305 

17 7359 59409 

18 99431 99433 

15 5459 51550 58140 71010 85025 86850 86900 86901 86922 88305 99251 99255 80049 

20 99223 71010 80049 82553 85025 93016 93018 99238 

21 31625 3808 70450 71010 88304 93010 99255 99291 99292 A0398 34201 36489 73590 

22 74170 88304 

23 7569 59400 85027 

24 
25 44314 00840 4641 

2& 99223 90817 

27 
28 y 

147 



EDUCATION: 

·2007-2010 

·2005-2007 

·2001-2004 

·1997-2001 

CURRICULUM VITAE 

Guoxin Tang 

Applied Mathematics (Data Mining and Statistics) , University 
of Louisville, PhD. 

Applied Mathematics, University of Louisville, M.A. 

Operations Research, Tianjin University, M.S. 

Applied Mathematics, Tianjin University, B.S. 

RESEARCH/WORK EXPERIENCE: 

·2009-

present Metrician , Clinical Outcomes and Data Acquisition ("CODA") in Humana. 

Inc. Develop statistical models and methodologies for inpatient 

readmission project to predict readmissions and provide expertise and 

assistance in implementing model results in ongoing business processes. 

·2008 Data Mining and Analysis of Lung Cancer for Thomson Medstat 

Marketscan data. The purpose is to investigate the relationship between 

conditions of lung cancer patients and patient outcomes for those 

undergoing different treatment procedures. Several clusters were defined 

based on the procedures of treatment, kernel density estimation was use 

to make a comparison of age, length of stay and cost by clusters and 

predictive models were used to examine the patient events of lung 

cancer. 

·2008 Analysis and Forecasting Total Costs for Lung Cancer. Lung Cancer data 

were extracted from the NIS by using CATX and RXMATCH functions; 

then, statistical models were established to examine the relationship 

between total charges and Age in years at admission , Diagnosis Related 

Group, Length of stay and Died during hospitalization . To forecast the 

costs for future, the appropriate ARIMA model was used with the inflation 

148 



rate, Age and length of stay as dynamic regressors to model the data which was 

more reliable and gave a trend of costs with more certainties . 

·2007 Analysis and Forecasting for the S&P Stock Price Index Monthly Average 

Data with Inflation Rate. To investigate and forecast the trend of the S&P 

100 index to determine the future price movement with consideration of 

the inflation rate, ARIMA model with the first difference based on the 

inflation rate as dynamic regressor gave us more accurate predictions. 

·2007 Text and Data Mining to Investigate Expenditures of Prescribed medicines. 

Text Miner and Concept links were used to examine combinations of 

medications used in relationship to patient therapeutics. We also used the 

linear model to examine the relationship between self cost and total cost, 

Medicare cost, Medicaid cost, private insurance. 

·2006 Data Mining to Investigate University Expectations of Work. Course syllabi 

from representative departments were collected to investigate variability 

in course requirements. Text Miner divided the 107 syllabi into 10 clusters. 

·2005-2008 Graduate Assistant, Mathematics Department, University of 

Louisville . 

·2004-2005 Lecturer, Mathematics Department, Tianjin University of Commerce. 

·2002-2004 The Study of Wavelet Transforms to Compress the Analytical data 

and Denoise (National Key Lab of Precision Measuring & Testing 

Techniques and Instruments). 

COMPUTER SKILLS: 

'SAS, SAS Enterprise Guide, Enterprise Miner, Text Miner. SAS is the main 

tool I used to analyze and model the data, with experience from 2006. 

·R, programming for the methods of Linear Models and Classification. 

·Microsoft Office 

PRESENTATIONS AND HONORS: 

·2008 Poster was selected to present at M2008 Data Mining Conference 

·2008 Paper was selected to present at 2008 Midwest SAS Users Group 

Conference, Honorable Mention, SAS Ambassador Program 

149 



·2008 Poster winner at F2008 Business Forecasting Conference, Analysis 

and Forecasting Total Costs for Lung Cancer Data with Inflation 

Rate 

·2008 Poster was selected to present at ISPOR conference 

·2008 Paper was selected to present at SAS Global Forum 2007 

Conference, Honorable Mention, SAS Ambassador Program 

·2007 Poster was selected to present at SESUG conference (Southeast 

SAS User's Group) 

·2007 Poster was selected to present at M2007 Data Mining Conference, 

Data Mining with Linear Model to Examine Expenditures of 

Prescribed medicines 

·2007 Fellowship winner in the National Policy Institute 

·2007 Poster winner at F2007 Business Forecasting Conference, Analysis 

and Forecasting for the S&P Stock Price Index Monthly Average: 

Data with Inflation Rate 

·2006 Poster winner at M2006 Data Mining Conference, Data Mining to 

Investigate University Expectations of Work 

·2004 Scholastic Honor: Excellent Student Cadre, Tianjin University 

PUBLICATIONS: 

'Tang , Guoxin , In Cases on Health Outcomes and Clinical Data Mining: 

Studies and Frameworks, Patricia Cerrito, editor, IGI Publishing 2010. 

'Tang , Guoxin , Data Mining and Analysis to Lung Disease Data , MWSUG 

2008 Proceedings. 

'Tang , Guoxin , Text and Data Mining to Investigate Expenditures of 

Prescribed medicines, Global Forum Proceedings 2008. 

'Tang , Guoxin , Data Mining to Investigate University Expectations of Work, 

SESUG Proceedings 2007. 

·Liu, Zeyi , Tang, Guoxin , Application of Wavelet Transform in Fundamental 

Study of Measurement of Blood Glucose concentration with Near-Infrared 

Spectroscopy, Transactions Of Tianjin University, vol.37 NO.6 Jun.2004. 

150 


	Data mining and analysis of lung cancer data.
	Recommended Citation

	tmp.1423685735.pdf.GiD3P

