
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2007 

YMAGE : a resource for real-time sharing of high resolution digital YMAGE : a resource for real-time sharing of high resolution digital 

images. images. 

Yetu A. Yachim 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

Recommended Citation Recommended Citation 
Yachim, Yetu A., "YMAGE : a resource for real-time sharing of high resolution digital images." (2007). 
Electronic Theses and Dissertations. Paper 1610. 
https://doi.org/10.18297/etd/1610 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional 
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator 
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who 
has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1610
mailto:thinkir@louisville.edu


 
 
 
 
 

YMAGE: A RESOURCE FOR REAL-TIME SHARING OF HIGH RESOLUTION 

DIGITAL IMAGES 

 
 
 
 
 
 

By 
 

Yetu A. Yachim 
B.S., University of Louisville, 2006 

 
 
 
 
 

A Thesis 
Submitted to the Faculty of the 

University of Louisville 
J.B. Speed School of Engineering 

in Partial Fulfillment of the Requirements 
for the Professional Degree 

 
 
 
 
 

MASTER OF ENGINEERING 
 
 
 
 

Department of Computer Engineering and Computer Science 
 
 
 

May 2007





 
 

YMAGE: A RESOURCE FOR REAL-TIME SHARING OF HIGH RESOLUTION 

DIGITAL IMAGES 

 
 
 
 

Submitted by:__________________________________ 
Yetu A. Yachim 

 
 
 

A Thesis Approved On 
 
 
 

___________________________________ 
(Date) 

 
 
 
 

by the Following Reading and Examination Committee: 
 
 
 

___________________________________ 
Dr. Eric C. Rouchka, Thesis Director 

 
 
 

___________________________________ 
Dr. Dar-jen Chang 

 
 
 

___________________________________ 
Dr. Hichem Frigui 

 
 
 

___________________________________ 
Dr. R. Eric Berson 

 

 ii



 
 

 iii



 
 
 
 
 

ACKNOWLEDGEMENTS 
 
 

I am indebted to those who have provided me with the 

technical knowledge and resources needed to complete this 

project: Dr. Eric Rouchka, Dr. Dar-jen Chang, and Dr. 

Hichem Frigui. To the friends, students and faculty alike, 

who have helped me through the Speed School undergraduate 

program I give many thanks. And, to my parents, without 

whose support I would not have realized any of my 

achievements, I offer my deepest gratitude. 

 iv



 
 
 
 
 

ABSTRACT 
 
 

Digital images have primarily been viewed using 

desktop applications. These types of programs attempt to 

load all of an image’s graphical data into memory in order 

to display the image in its entirety. The method is 

effective for images that are relatively small, but for 

large, high-resolution images, this tends to be slow and 

resource-exhaustive. Coupled with degraded system 

performance are the issues of storage and image access. 

Some newer programs make efforts to mitigate these 

problems, but few do so satisfactorily. The Ymage System 

was designed as an alternative to conventional approaches 

for managing and viewing images. The system provides high 

accessibility to data while minimizing demands on the 

machine from which the image is viewed. The design 

accomplishes these objectives and even the initial, low-

performance implementation presented here can compete with 

existing systems. Further, it appears that the flexibility 

of the design lends itself to use for non-visual 

applications such as distributed image processing. It is 

possible that development of the Ymage System could make a 

 v



significant impact on the approach to the development of 

image-handling software in the future. 

 vi



TABLE OF CONTENTS 

 

APPROVAL PAGE............................................ ii 
ACKNOWLEDGEMENTS......................................... iv 
ABSTRACT.................................................. v 
LIST OF TABLES......................................... viii 
LIST OF FIGURES.......................................... ix 
I.   INTRODUCTION......................................... 1 

 A. Digital Images.................................... 2
 1. Image File Storage............................. 3
 2. Image File Retrieval........................... 6

 B. Applications of Digital Images.................... 6
II.  EXISTING SOFTWARE................................... 10 

 A. Standalone/Desktop Model......................... 10
 1. Picasa™....................................... 11
 2. ImageQuery.................................... 14
 3. Photo Organizer Deluxe........................ 16

 B. Client-Server Model.............................. 18
 1. NASA World Wind............................... 19
 2. Zoomify....................................... 20

III. THE YMAGE SYSTEM.................................... 22 
 A. System Architecture.............................. 24

 1. Data Storage Component........................ 25
 2. Data Access Component......................... 26
 3. Visualization Component....................... 28

 B. Implementation................................... 28
 1. Development Environment and Tools............. 29
 2. Data Storage using PostgreSQL................. 31
 3. Apache HTTP for Data Access................... 34
 4. Java Applet Viewer............................ 40

 C. Evaluation and Possible Improvements............. 43
IV.  RESULTS............................................. 47 
V.   CONCLUSION.......................................... 51 
VI.  REFERENCES.......................................... 54 
APPENDIX A – IMAGE SUBDIVISION PROCESS................... 56 
APPENDIX B – IMAGES TESTED............................... 58 
VITA..................................................... 61 

 

 vii



 
 
 
 
 

LIST OF TABLES 
 

 
TABLE I   – Image Upload Process......................... 36 

TABLE II  – Images Tested................................ 47 

TABLE III – Desktop Application Load Times............... 48 

TABLE IV  – Ymage System Test Results.................... 49 

TABLE V   – Zoomifyer EZ™ Test Results................... 50 

 

 viii



 
 
 
 
 

LIST OF FIGURES 
 

 
FIGURE 1 – Picasa™, Searching for Images................. 11 

FIGURE 2 – Viewing a Large Image in Picasa™.............. 12 

FIGURE 3 – Picasa™ Image Upload Failure.................. 13 

FIGURE 4 – ImageQuery, Searching for Images by Metadata.. 15 

FIGURE 5 – Photo Organizer, Database Designer............ 17 

FIGURE 6 – Photo Organizer, Organizing Program........... 18 

FIGURE 7 – NASA World Wind............................... 20 

FIGURE 8 – Zoomifyer EZ™, Embedded Adobe® Flash Viewer... 21 

FIGURE 9 – The Composition of an Ymage................... 22 

FIGURE 10 – Client-Server Design of the Ymage System..... 24 

FIGURE 11 – The Role of the Data Access Component........ 27 

FIGURE 12 – Data Storage Schema.......................... 31 

FIGURE 13 – Java Applet Visualization Component.......... 41 

 

 ix



 
 
 
 
 

I. INTRODUCTION 
 
 

The use of digital images has become critical in 

many areas. In medicine, for example, there is heavy 

reliance on digital imagery for diagnosing physical health 

problems. To be of any use, these images must be very 

detailed, but this presents issues. Detailed images require 

a great deal of storage space and a management system that 

can handle large files. Given the satisfaction of these 

requirements, there is also the problem of viewing the 

image. Traditional visualization and manipulation programs 

seem to target relatively small images, so using them on 

larger files results in a significant reduction of system 

performance. It is also rare for these programs to provide 

a means of accessing images that reside in the storage 

devices of systems on which they are not immediately 

running. The development of a system that effectively 

handles the storage, access, and viewing problems described 

would be of great value to the many disciplines that rely 

on digital imagery. The aim of this project was to design a 

system that facilitates the use of large images by 

efficiently managing image storage, retrieval, and display. 

 1



 
A. Digital Images 

Digital images are numerical representations of 

visual information [1]. They can be formed by capturing and 

digitizing naturally existing visual data, or by generating 

digital data using computer programs. Digitizing an image 

involves mapping visual data points to discrete numerical 

values on cells of a digital grid. These grid cells are 

called picture elements, or pixels and the collection of 

adjacent pixels, each representing a different point, 

composes an entire digital image. How closely the image 

resembles the original visual data depends on pixel density 

and pixel depth. The former is a measure of how many pixels 

represent a fixed visual region; the latter describes the 

possible variability between pixels. As pixel depth and 

pixel density increase, so does the quality of the image, 

but the higher the image quality, the greater the amount of 

space required to store the image. Herein lies the image 

quality versus image size trade-off. The dilemma has 

produced man different file formats, each attempting to 

provide the right balance for particular use of images [2]. 

Since systems that deal with digital images must inevitably 

deal with files, it is important to look into the factors 

involved in the storage and retrieval of image files. 

 2



1. Image File Storage 

Digital images contain several key components. The 

most important is the graphical data set which represents 

the true visual data; it can be in raster, geometric, or 

latent forms. Raster and geometric data have direct visual 

mappings and so they can be immediately rendered on a 

display device; latent data requires transformation into 

one of the other forms before rendering. In addition to the 

graphical data, image files usually contain self-describing 

information in the form of signatures, or magic numbers, 

and version numbers. Metadata and non-graphical data may 

also be present in the file, but these are dependent on the 

specific file format and the program used to generate it.  

The data contained in an image file must be ordered 

in some fashion. The arrangement of data can be chosen to 

maximize retrieval efficiency. To achieve this, metadata 

should be at the beginning of a the file, followed by the 

file identification, then graphical data which can be 

preceded or succeeded by the non-graphical data [2]. The 

placement of metadata first provides the file reader with 

any important information upfront that may influence the 

way in which the file is used and prevent unnecessary 

traversal through the remaining data. Since an 

understanding of the file’s structuring of graphical and 

 3



non-graphical data is vital to reading it effectively, the 

identification should follow the metadata. It would also be 

reasonable to keep the graphical and non-graphical data in 

independent, contiguous blocks. This would eliminate the 

need to skip about the file in search of these data. Though 

this structuring would provide the most benefit in terms of 

ease and flexibility of reading, not all image files are 

organized in this way [2]. 

Regardless of data order, the contents of image 

files need to be present in some form. Various encoding 

schemes are used for this purpose. Text encoding represents 

a data set in human-readable form that can be manipulated 

directly with simple text-editors. This encoding scheme 

usually yields very large files and requires a lot of 

processing before the display of the image is possible so 

it is not often used when storage space requires 

consideration. Character encoding presents data in a form 

that replaces equivalent text-encoding blocks with shorter 

data codes. This saves space, but reading this data 

requires software that understands these codes. Displaying 

images encoded in this way also requires processing. Binary 

encoding saves space and can be rendered directly, but the 

data is specific to a particular hardware platform and 

manipulating data of this type also requires special 

 4



software. With all three encoding schemes, there are trade-

offs usually between storage space and retrieval time. The 

application to which an image will be put dictates the 

selection. 

 Image data sets are often transformed to reduce the 

amount of space required for storage; this transformation 

is called compression. Several techniques are used to 

compress images [2]. Since the visual data that images 

represent are not random, analysis of an image can reveal 

features or patterns. One compression strategy involves 

exploiting these patterns by replacing them with succinct 

representations. This is particularly effective when 

features repeat throughout an image. Sometimes the data set 

that represents the image is too descriptive. In these 

cases, the precision of the image can be reduced by 

eliminating superfluous detail without losing any 

significant information; this is a reduction in image 

resolution. Yet another compression method reduces the 

number of bits needed for representing the values in the 

data set and is the same as minimizing pixel depth. It is 

possible to reduce image precision and the number of 

available pixel values (colors) for display purposes 

because the eye “adapts to a certain intensity level for a 

given field of view” [1] and does not differentiate values 

 5



that are similar. Many applications require very high 

quality images which, as mentioned above, require large raw 

storage space. To make the storage of these images 

practical, compression is an imperative. 

2. Image File Retrieval 

The retrieval of image data from a file is, in 

theory, relatively easy. For data that is logically 

structured, the process involves opening a stream to the 

file, obtaining the metadata and format identification 

information, and then reading the desired data. 

For unstructured files that cannot be randomly 

accessed, the reading process may require traversal of a 

significant portion of the file before reaching the 

required data. Once this data is reached, transformations 

may also be needed before the image can be rendered. These 

transformations may include decompression, decoding, and 

rasterization. After extracting and processing the image 

data, it can be sent to a display device, such as a monitor 

for visual presentation. 

   
B. Applications of Digital Images 

The significance of the digital image is clear from 

its widespread and varied uses. Images can be used to 

 6



represent many different types of data and are heavily 

relied upon to help identify and solve different problems. 

Digital images are commonly used like their analog 

counterparts for simple display purposes. They can be 

acquired through photography, generated with the aide of 

software, or scanned from film. Their visual appeal makes 

them useful for advertisements, art galleries, educational 

and instructive media, online consumer catalogs, and other 

non-analytical purposes. 

A relatively recent use of digital images has been 

in the area of document storage. The representation of 

textual documents in digital image form is a useful way to 

preserve the contents of deteriorating analog documents. 

Not long ago, Google began an initiative to scan library 

books and these scans to a collection of searchable digital 

content [3]. Optical character recognition (OCR) technology 

provides the option of converting these images to texts for 

textual analysis purposes. The combination of visual detail 

without loss of textual information makes images useful for 

representing documents. 

The true power of images lies in the analytical uses 

to which they can be put. The medical field makes extensive 

use of digital imagery in this way. Images produced by 

radiologists capture physical properties of the human 

 7



anatomy through X ray, ultrasound, magnetic resonance, and 

positron emission [4]. These images can be analyzed 

visually or computationally to investigate anatomical 

features and physiological functions. The information 

gathered from the analysis of these images is relied upon 

for diagnosing health problems and possible treatments. 

Other scientists also use digital image. Geologists, 

for example, employ digital imaging to study the Earth. 

Data that they collect from seismic surveys (a sound 

reflection technique) can be compiled to describe 

geological formations digitally [5]. The physical 

attributes of an area can be determined and used for 

various studies and commercial purposes, such as land 

changes over time that may determine safe building areas or 

profitable oil-drilling sites. 

Remote sensing, or satellite imagery, is an area in 

which one of the earliest applications of digital imaging 

was made. Satellite images capture surface and atmospheric 

information from space with reflective wave methods. A 

great number of images are captured and the data available 

in these images can be coupled with other information, such 

as geological data, to reveal geospatial details. 

 Digital imagery is an integral part of many existing 

disciplines and advances will naturally prove them relevant 

 8



to emerging fields. The significance of digital images 

provides sufficient motivation to investigate how they can 

be better managed and more effectively used. 

 9



 
 
 
 
 

II. EXISTING SOFTWARE 
 
 

The uses described in the previous section show that 

digital images are very important. Their varied uses attest 

to their flexibility as a medium of data representation. 

Though the problems that they help to identify and solve 

may require different analytical approaches, applications 

that deal with digital images share the common problem of 

file retention and access. Of the many programs written to 

deal with images, few adequately address the fundamental 

issues of storage and retrieval. The following sections 

examine some programs that do attempt to handle these 

issues. 

    
A. Standalone/Desktop Model 

 
The standalone model is common for applications that 

act on local data. Programs in this category are either fed 

the location of data or conduct searches for image data on 

local media. These programs usually do not address storage; 

rather, the focus is on organizing and presenting data in 

an organized form which differs from that of the window 

 10



manager. Picasa™, ImageQuery, and Photo Organizer Deluxe 

are three examples. 

1. Picasa™ 

Picasa™ is a Google application for organizing 

images [6]. In keeping with Google’s philosophy, Picasa™ 

searches local media for existing image files and presents 

the results in an organized fashion (see Figure 1). When 

images are found, thumbnails are created on-the-fly and 

cached in DB2 databases. Information about the files is 

saved to eliminate unnecessary future searches. Images that 

are imported into Picasa™ from external media such as CD’s 

and DVD’s are copied to the local hard drives. 

 
FIGURE 1 – Picasa™, Searching for Images 

 11



Along with file organizing, Picasa™ also provides 

visualization and image processing features. Clicking on a 

thumbnail triggers the display of a larger version of the 

image that can be cropped for export, more closely 

inspected by zooming, or otherwise manipulated. 

Documentation of its internals is not available, but it 

appears, from Figure 2, that Picasa™ loads only the part of 

an image is needed. This is likely to be a factor 

contributing to its high response times. 

 
FIGURE 2 – Viewing a Large Image in Picasa™ 

 
 Picasa™ also has the ability to upload images to 

storage systems that Google maintains. Options are 

available to reduce upload time and storage size by 

compression and resizing. Without these modifications, the 

 12



original images could be too large to store on the 

available space, as in the case demonstrated in Figure 3. 

It is unknown, here, whether Picasa™’s upload tool could 

not handle the size of that particular image or whether the 

problem was insufficient storage space. In either case, 

this exemplifies the size issue that must be considered 

when dealing with high resolution images. 

 
FIGURE 3 – Picasa™ Image Upload Failure 

 
Picasa™ is a useful tool for locating and viewing

mages 

of the data on the program and is problematic. Should the 

 

i that reside locally, but it is not ideal for several 

reasons. First, the organizational features are only on the 

surface. The implied structure of the data is not 

maintained outside of Picasa™. This introduces a dependency 

 13



program malfunction or become obsolete, the apparent 

organization of the data is not necessarily guaranteed. 

Second, Picasa™ only truly maintains images that are 

locally stored. While it permits uploads to its storage 

facilities, and thereby provides greater access to those 

images, it does not appear that there is any way of viewing 

the remote version of uploaded images through the client 

Picasa™ software; these must be viewed through other 

services that Google provides. Upload to non-Google systems 

is also only possible through email -- a medium not well 

suited for transferring large images. Furthermore, storage 

space on Google servers requires yearly payment for 

capacity greater than 1024 megabytes. And, third, although 

performance is reasonable when viewing large (about 100-

megabyte) images, there is still significant lag in 

responsiveness every time the image is viewed anew. At 

times, the lag is long enough to suggest that the 

application has frozen. These issues make Picasa™ 

inadequate for handling images of substantial size. 

2. ImageQuery 

ImageQuery was written by Armin Hanisch w
 

ith an 

retrieval [7]. ImageQuery takes SQL-like 

strings 

emphasis on 

and uses them to search the local file system. 

These queries can be written to find images by metadata 

 14



available in the file. ImageQuery neither handles image 

storage nor furthers the accessibility of image files, and 

only minimally addresses visualization. Searches return a 

set of thumbnails whose images can be viewed either with 

the internal viewer or an external program designated for 

the purpose. Figure 4 shows the results of a search and the 

specification of a query through the Query Wizard. 

 
FIGURE 4 – ImageQuery, Searching for Images by Metadata 

 
The program takes an interesting approach to file 

retrieval. Metadata in image files is underutilized and 

ImageQue

incentive to storing this data. A lack of the metadata’s 

ry appears to be one of the few applications that 

try to fully capitalize on it. The fact that so little of 

the data is ever used, however, provides a counter-

 15



availability in files then undermines the benefit that 

ImageQuery could provide. Consistent inclusion of metadata 

for files in storage would correct the problem. By adding a 

management component to enforce this inclusion, ImageQuery 

could be significantly improved. 

3. Photo Organizer Deluxe 

PrimaSoft’s Photo Organizer Deluxe is a commercial 

database-centered, image storage and organizing system [8]. 

rdependent programs. The first is 

a datab

iles in the 

database directly or inserting a reference entry that 

It is composed of two inte

ase designer that allows the development of a data 

storage scheme consisting of various field types (see 

Figure 5). The second program is an organizer and viewer 

that facilitates data entry and visualization.  

The designer is a flexible program that simplifies the 

process of describing how the data is to be organized. One 

notable feature is the option of storing image f

points to the file. Retaining image files directly in the 

database ensures that the data is present and organized as 

expected. The accompanying documentation warns, however, 

that the performance of the system may suffer if this 

option is used extensively [8]. This, and an inspection of 

system’s files, indicates that the database is not meant to 

handle files that are very large. It is also unclear 

 16



whether the data in the database is immediately accessible 

outside of the designer and organizer programs. 

 
FIGURE 5 – Photo Organizer, database designer 
(a) Available options include database and server maintenance. (b) GUI-
based database designing. 

 
Although Photo Organizer makes an effort to address 

the storage and retrieval issues, it does not do so 

 
(a) 

 
(b) 

satisfactorily. The developers of the system noted that 

there may be problems with large image files, but only 

mitigate the problem by allowing storage outside of the 

system. This undermines the management control that the 

database should have over the data. File and web database 

export features are also provided to increase accessibility 

to data. However, the first is impractical for large images 

and the second is only available at a fee. The system is 

 17



not ideal, but the idea of organizing images and 

accompanying data in a database may be the best approach to 

handling image storage and retrieval. 

 
FIGURE 6 – Photo Organizer, Organizing Program 

 
 

B. Client-Server Model 

The client-server model is used for applications 

that require a high degree of access to data by users in 

centrali

different places. It answers the access problem by 

zing data and providing a mechanism to respond to 

external requests. This section describes two programs that 

approach image storage and retrieval by using the client-

server model. 

 18



1. NASA World Wind 

World Wind is an open-source application developed 

g the entire Earth [9]. It downloads 

satellit

on demand could be 

by NASA for viewin

e data stored on Microsoft’s TerraServer database 

[10] and displays images for the areas being viewed. The 

client is designed for computers running Microsoft Windows. 

In Figure 7, World Wind is showing satellite images taken 

over Louisville, Kentucky and southern Indiana. Since the 

area is so large, the initial images are not detailed, but 

inward zooming reveals replaces these with images that 

represent the region in greater detail.  

 World Wind was written to handle geographical data, 

but its idea of loading parts of images 

applied to other large images. The benefits are apparent. 

If only one image of high detail were to represent the 

entire Earth, an unreasonable amount of time and client 

storage space would be required to view it. Dividing the 

image into separate parts allows clients to request only 

the parts of the image that they need; this saves time and 

space. 

 19



 
FIGURE 7 – NASA World Wind 
 
 

2. Zoomify 

Zoomify is a commercial system for viewing images 

[11] and is perhaps the system that best addresses the 

storage and retrieval needs of large images. Given an 

image, Zoomifyer EZ™ generates several thumbnails, divides 

each thumbnail into tiles, and compresses each tile. These 

tiles can then be viewed through an Adobe® Flash movie 

embedded in a web page. The details of this visualization 

element are unknown, but the behavior of the viewer 

suggests that the thumbnails are viewed as tile-groups and 

that zooming changes the tile-group in focus. Thumbnails 

that represent higher levels of detail are larger and 

consist of more tiles. During visualization, only the tiles 

 20



in view are downloaded; this maximizes performance by 

reducing the amount of data that must be transferred for a 

given tile-group. Figure 8 shows a “Zoomify-ed” image being 

viewed in a browser-embedded Flash movie. 

 
FIGURE 8 – Zoomifyer EZ™, Embedded Adobe® Flash Viewer 

 
The approach is successful and relatively well 

implemented, but some design issues are still apparent. 

Image and metadata are stored on a server as flat files and 

the viewer must reside on this server. The corruption of 

these files could prevent proper visualization. And, since 

these are just flat files, data maintenance (back-up, error 

correction, etc.) cannot easily handled. A more robust 

design with the ability to ensure the quality of the data 

over time would be an improvement. 

 21



 
 
 
 
 

III. THE YMAGE SYSTEM 
 
 

It appears that there does not yet exist a system 

that fully answers the demands of large digital image 

storage and retrieval, but from a study of current software 

such as system is possible. The programs examined in the 

previous sections present effective solutions to different 

parts of the problem. It is from these approaches and an 

understanding of their shortcomings that the Ymage System 

was designed. 

 
FIGURE 9 – The Composition of an Ymage 

Ymage 

 

 metadata  other data

Width, Height 
Number of Layers 
...etc. 

Annotation 
Links to other systems 
...etc. 

layer 0 
block 0,0 block 0,1 block 0,2 block 0,3 

block 1,0 block 1,1 block 1,2 block 1,3 

block 2,0 block 2,1 block 2,2 block 2,3 

block 3,0 block 3,1 block 3,2 block 3,3 

block 4,0 block 4,1 block 4,2 block 4,3 

layers 

layer 1 

block 0,0 block 0,1 

block 1,0 block 1,1 

block 2,0 block 2,1 ...

 

 22



At the heart of the design is an abstraction called 

the “ymage.” An ymage is the collection of data that 

describes the original image and any additional information 

that may relate to it. 

As illustrated in Figure 9, ymages contain layers, 

metadata, and “other data.” Metadata describe layers and 

their properties (such as width, height, the number of rows 

and columns, etc.) while “other data” is any supplementary 

information about an ymage (for example, annotation data). 

Layers are abstractions of the graphical data that 

represent scaled versions of the original image. Every 

ymage has at least one layer. The first (layer 0) 

represents the un-scaled original image; the second 

represents an image that is some factor smaller than the 

first; the third is that same factor smaller than the 

second, and so on. Every layer is divided into subsections 

called image blocks. For a given layer, all blocks are of 

equal dimensions but not necessarily the same dimensions as 

the blocks of other layers. Representing an image in this 

way ensures flexible access to information that describes 

it. 

 

 23



A. System Architecture 

The overall system consists of three components, one 

to address each of the three perceived problems (i.e. 

storage, retrieval, and visualization). The need for 

structured storage is satisfied by the Data Storage 

Component (DSC). Transfer and manipulation of image data is 

handled by the Data Access Component (DAC). The 

Visualization Component (VC) provides the logistics for 

accurate image and data display. Each of the components is 

a relatively independent subsystem; this modularity eases 

system maintenance and makes the system flexible. 

 

Data Storage Component

Data Access Component

Clients Running Visualization Software

Storage Request

Response

Storage

Download Request

Query

Data

FIGURE 10 – Client-Server Design of the Ymage System 
 

It is possible for modular systems to become 

inefficient if a clear protocol is not established. To 

reduce the likelihood of possible inefficiencies, 

communication paths between the different components are 

fixed and strictly enforced. As shown in Figure 10, client 

 24



software and the Data Storage Component only communicate 

with the Data Access Component which is at the center of 

communication. The DAC validates data entering storage and 

polices data requests made by the client. Enforcement of 

this communication scheme maximizes access to data without 

jeopardizing its integrity or laying undue burden on the 

DSC. 

1. Data Storage Component 

The purpose of the data storage system is to retain 

information about an ymage. This includes the graphical 

data that would be stored in the files. Since this 

component will not restrict the types of image files that 

it retains, there is no guarantee that the graphical data 

will be accompanied by the needed metadata, so this 

information is stored in separate records. Other desirable 

data as it relates to a stored image can be retained in 

this system as well (e.g. annotation and image ownership 

information). In addition to keeping all of the image-

related data in a structured manner, this subsystem 

provides flexible, direct access to its data. 

 The requirements of this component are consistent 

with the function of relational database management systems 

(DBMS). Since a DBMS stores data in customizable schemas, 

the structure of the data can be defined to the needs of 

 25



the Data Storage Component. Most DBMS's also provide a 

powerful data retrieval mechanism (e.g. SQL querying) that 

can answer requests and return data in forms that differ 

from the schema. Data backup and maintenance are also 

incentives to use them, and additional features of a 

specific DBMS may introduce other benefits. 

2. Data Access Component 
 

The Data Access subsystem is the middleware 

component responsible for connecting the Data Storage 

Component to the client applications; all data storage and 

retrieval must be are through this component. The process 

of data storage begins first with the transfer of data to 

the DAC. After this component completes an analysis of the 

data, all of the necessary processing is undertaken (i.e. 

subdivision and compression), then the data is forwarded to 

storage (see Figure 11). This serves as a means of 

validating data integrity and ensures that only data which 

has been analyzed and properly processed is retained. This 

subsystem also handles requests from clients for data that 

is already in storage. By mediating access to the storage 

component, this subsystem can reduce the work load of 

storage system by capturing request statistics and making 

optimization decisions based on that information. This has 

 26



the potential to speed up requests and overall system 

performance. 

 

 
 
 

Original 

☼ 

Image 

Visualization 
Applications 

☼ 

☼ 

☼ 

Data Access

Data Storage

Orig   inal 

Im   age 

Meta 
data 

Other 
data 

FIGURE 11 – The Role of the Data Access Component 
An image is sent to Data Access where it is processed, and sent to storage. 
Applications can then make requests for the data through this component 
which finds and returns it. 
 

Since the images targeted by the Ymage System are 

large both dimensionally and with regard to storage 

requirements, compressing and sub-dividing is necessary in 

order to make them usable. Integrated into the Data Access 

Component are the means of handling these processing needs. 

 In order to make requests of the storage system on 

behalf of the clients, this component must understand 

client requests. A simple mechanism consisting of a small 

vocabulary of commands was devised. When a request is 

handled, image files are returned without modification and 

non-graphical data is returned without unnecessary 

formatting. 

 27



3. Visualization Component 

The Visualization Component is responsible for 

displaying the ymage data. To accomplish this, the system 

makes requests for stored data through the Data Access 

Component and combines the results obtained. Since the 

interface between the data and this component requires only 

knowledge of the simple vocabulary of Data Access commands, 

developing different types of this component is possible. 

 
B. Implementation 

This first implementation focuses on proving the 

feasibility of the Ymage System and developing code that 

can be easily understood for further development. With the 

future in mind, consideration was given to restrictions 

that may be imposed by the use of proprietary software, so 

external code and binaries were chosen from open-source 

projects. Because this version was implemented to ensure 

functionality, it is not a full-fledged high-performance 

system; section C describes some possible improvements. 

Nonetheless, this implementation demonstrates the idea 

behind the design and shows the feasibility of developing 

the Ymage System. 

 28



1. Development Environment and Tools 

Cygwin is a Linux emulation environment for 

Microsoft Windows [12]. It provides access to much of the 

Linux API and allows the development and execution of Linux 

targeted software on machines running the Windows Operating 

System. It was chosen as the development environment for 

this implementation for two reasons. The first is that it 

increases the likelihood that code developed in this 

Windows platform would be portable to Linux. Cygwin was 

adopted, secondly, in order to leverage the wealth of 

available open-source development tools and libraries 

enjoyed by the Linux community, again, while guaranteeing 

that the code runs on the Windows platform. 

Since various components of the system were written 

in different programming languages, an integrated 

development tool that could support this with minimal 

overhead was needed. The open-source Eclipse SDK 3.2 was 

selected. In addition to providing pluggable modules for 

many languages, Eclipse simplifies development with visual 

aids and code-refactory tools that are invaluable for 

efficient development. 

Several independent libraries were used to perform 

tasks that varied from loading image files and handling 

database connectivity to managing memory allocation and 

 29



processing HTTP requests. The Developer’s Image Library 

(DevIL, formerly OpenIL) [13] was used for image file 

loading, manipulation, and saving. PostgreSQL’s libpq 

library [14] was used to handle the database connectivity. 

The Apache Portable Runtime Libraries (libapr and 

libaprutil) [15] provided platform independent 

implementations of memory management functions. Libapreq 

[15], another Apache Project library, provided a reliable 

means of managing HTTP request data. 

The availability of Cygwin packages containing some 

of these libraries made them very easy to use, but some 

needed to be built from source. All of the libraries listed 

above, were developed with portability in mind, so they 

supported the use of “make” and the GNU Autotools: 

autoconf, automake, and libtool [16]. The accessibility of 

these packages through Cygwin’s setup program made building 

and debugging the libraries relatively simple. 

The environment and tools chosen were a great aide 

in the implementation process. Many of the programs that 

were needed, and most of the libraries, are available as 

Cygwin packages which are easy to install and have been 

thoroughly tested. 

 30



2. Data Storage using PostgreSQL 

As previously mentioned, the Data Storage Component 

must provide a structured data retention mechanism that 

keeps data retrieval simple. Since relational database 

management systems are designed for this purpose, one was 

chosen to act as the storage component. 

 PostgreSQL is an open-source object-relational DBMS 

[14]. It is known for its platform independence, 

reliability, scalability, and compliance with existing 

standards. It was selected for these reasons and because of 

its ease of integration into the Cygwin environment.  

 
FIGURE 12 – Data Storage Schema 

 
A simple schema was designed to describe the 

structure and types of data that would be held by the 

storage system. The schema consists of four tables and some 

 31



stored procedures. The conceptual model behind the schema’s 

design focuses on the idea of an “ymage.” As mentioned 

before, this is an abstraction which consists of data that 

describes an image. 

Ymages in the data storage schema consist of several 

parts. The first is a description found in the ymage_desc 

table. This table has one entry per ymage and contains the 

name of the ymage, its owner, the number of layers it 

contains, and the width and height of the original image. 

The name is a unique identifier and primary key, so the 

ymage_name field of every entry must be different. 

Every ymage has one or more layers. A layer is an 

entity that corresponds to a scaled version of the original 

image. Layer-N is a copy of the original image with a size 

that is (½)N times that of the original. Layers are not 

explicitly described in the schema, but are nonetheless 

referenced for identification in the block_desc and 

ymage_block tables. 

Blocks are sub-images that, when arranged in the 

proper order, fully represent the visual aspect of the 

original image. Each individual block is part of a layer 

and is uniquely identifiable by combining the ymage’s name, 

layer, row, and column. The properties of any particular 

block are a function of the ymage and layer to which the 

 32



block belongs. The width and height of blocks belonging to 

a layer are the same, but may be different from those of 

other layers. The bounds of a block’s position (relative to 

other blocks) are also dependent on the layer to which the 

block belongs. The block_desc table holds information about 

each layer’s blocks: the dimensions of the graphical block 

data and size of the layer grid. The ymage_block table has 

the graphical data for each block in the “imagedata” field, 

the other fields identify the block. 

The remaining table, ymage_annot, holds annotation 

data. The location of the annotation (pos_x, pos_y) is 

given with respect to the dimensions in the ymage_desc 

table. The “user” field identifies the category or person 

who is associated with the annotation. The “annotation” 

field contains the information of interest. The remaining 

fields are referential and provide a means of linking the 

data to its respective ymage while ensuring the uniqueness 

of each record. 

Functions are included to ensure that changes in the 

table schema have a minimal impact on the Data Access 

Component. These functions are primarily for inserting 

into, and removing records from, the tables. The one 

exception is a utility function for determining the next 

 33



identification number for an insertion into the ymage_annot 

table. 

3. Apache HTTP for Data Access 

As with data storage, the Data Access Component 

requires a reliable, accessible, yet flexible 

implementation. Efficient file distribution capability is 

very important since this component will deal mostly with 

files. As possible implementation strategies were 

evaluated, it became apparent that the desired traits were 

already inherent in a class of software: web servers. 

 If a web server was to be used, however, it had to 

be customizable for the somewhat unorthodox purpose that it 

would serve. The Apache HTTP server appeared to be the 

suitable candidate. Its modularity and configurability 

meant that components which would be unnecessary or 

obstructive for the purposes of this component could be 

removed or replaced with those better suited to the needs 

of Data Access. Its open-source and platform independent 

nature suggested compliance with the development tools 

already selected. So the Apache web server (version 2.2) 

was chosen as the backbone on which the Data Access 

Component would be built. 

 None of the initially envisioned modifications to 

the server were required for this implementation. Instead, 

 34



a module was developed to run as part of the default 

configuration. The architecture of the Apache server is 

rather complicated, but in short it consists of a 

minimalist core which loads functionality onto itself 

dynamically at runtime [15]. This functionality takes the 

form of modules and can perform any tasks related to 

request processing. Some of those loaded by default handle 

a wide range of web server needs, from enforcing security 

to determining how to respond to requests for certain types 

of files. To convert Apache from a web server to the Data 

Access Component of the Ymage System, a custom module was 

written named “mod_ymage.” 

 The module was developed with a command/parameter 

structure in mind. File requests sent to the server are 

intercepted and extensions are checked against the string 

“ymg”. If the extension of the requested file matches 

“ymg”, mod_ymage takes control of the request and makes an 

attempt to service it, otherwise it signals to Apache that 

it does not wish to handle it and passes the request along 

to another module. In order to service the request, 

mod_ymage first has to determine what the request is 

asking; it does this by extracting, parsing, and analyzing 

the query string. It looks for a value with the key named 

“cmd”. If cmd is found, its value signifies the course of 

 35



action to take; if not found, mod_ymage responds to the 

request with a message explaining the problem. There are 

four “cmd” values (or simply commands) to which mod_ymage 

responds; these are UPLOAD, DOWNLOAD, GET, and ANNOTATE. 

They correspond to functions that can be applied to ymage 

data. 

 UPLOAD is interpreted as a desire to send an image 

file to the server for processing and submission to the 

Data Storage system. When this command is given, mod_ymage 

expects to find an accompanying image file that it can 

upload to a temporary location on the system’s local 

storage. If the file is not submitted as part of an HTTP 

POST request, mod_ymage rejects the command and returns a 

message indicating that the upload was not consistent with 

its expectations. 

When a file is uploaded, it is processed with the 

goal of dividing the image into layers and blocks then 

ultimately constructing an ymage for storage. The process 

involves several steps. 

TABLE I 

IMAGE UPLOAD PROCESS 

 

Step 1: Analysis 

 

Image blocks must all be of the same 

dimension as dictated by the schema, 

 36



so the image is evaluated and a simple 

algorithm is used to determine the 

best dimensions to use, given a 

target. The algorithm is described in 

Appendix A. This analysis is done on a 

per-layer basis since the dimensions 

of each layer are different. 

 

 

Step 2: Block 

Extraction 

 

With the block dimensions known, the 

original image is traversed and 

independent blocks are extracted and 

saved locally. This is done for each 

layer. Regardless of the original 

image file’s format, the extracted 

blocks are saved as JPEGs with 

parameters set for high compression. 

Metadata is collected during this step 

as well. 

 

 

Step 3: Data Storage 

 

 

With all of the required data 

retrieved, an ymage can be 

constructed. An entry is placed in the 

ymage_desc table as a reference to the 

new ymage; the ymage_name field is 

populated with the file request (i.e. 

the string preceding “.ymg” in the 

HTTP request). All image blocks and 

metadata are then sent to the database 

server. 

 

 37



A message indicating completion is returned upon 

success of all three steps. An appropriate failure message 

is returned otherwise. 

Image blocks that reside in the Data Storage 

Component are retrieved with the DOWNLOAD command. 

Parameters are passed in order to identify the desired 

block; these parameters are “layer”, “row”, and “column”. 

Their values correspond to those in the ymage_block table 

and are submitted in the query string as key-value pairs. 

Mod_ymage queries the data in storage with these parameters 

and if the specified image block is found, a file 

representing the block is returned in response. A message 

indicating failure to find the data is returned otherwise. 

 Non-graphical data is obtained using the GET 

command. The “item” parameter must be specified with this 

command; it takes one of three values: YMAGELIST, METADATA, 

and ANNOTATION. Specifying YMAGELIST causes a comma-

delimited list of ymage names from the ymage_desc table to 

be returned. Use of METADATA indicates a request for 

information from either the ymage_desc, block_desc, or 

ymage_annot tables. To select which of these three, the 

“schema” parameter must be assigned a value. When “schema” 

is has the value “YMAGE”, the “width”, “height”, and 

“num_layers” values from the ymage_desc table are returned 

 38



in semicolon-delimited list of key-value pairs. When 

“schema” is assigned the value “BLOCK”, “width”, “height”, 

“num_rows”, and “num_columns” are returned from the 

block_desc table in the same format. Assigning “schema” the 

value of “ANNOTATION_USER” returns a comma-delimited list 

of unique annot_user values. Assigning “schema” the value 

“ANNOTATION” retrieves the values from the “annotation” 

field of the ymage_annot table for a given user. This 

“schema” parameter must be accompanied by the “user” 

parameter to indicate which data set is desired. The 

response returned is a newline-delimited list of annotation 

records. Each record contains the location of the 

annotation as “x” and “y” key-value pairs separated by 

“||”. The content of the “annotation” field of the 

ymage_annot table is the last item in the returned string.  

The last command, ANNOTATE, is used to request the 

placement of annotation data into the ymage_annot table. 

This command requires the inclusion of additional 

parameters, “x”, “y”, and “user”, which correspond to the 

pos_x, pos_y, and annot_user fields in the ymage_annot 

table, respectively. The command must be sent as an HTTP 

POST with the annotation data in the body of the request 

under the name “annotation”. Correct specification of 

parameters results in the placement of the data onto the 

 39



database and a message indicating success. Failure to 

include any of the required parameters for this and all 

other commands causes mod_ymage to return a message 

indicating the missing parameter. 

The Data Access Component’s simplicity and use of 

the HTTP protocol makes it possible for different clients 

to be developed that use it. A web browser, for example, 

can be used to request data from the system and in fact, 

much of the system’s debugging was done in this way before 

a viewing program was implemented. Future clients can be 

developed with new technologies and without the need to 

modify the Data Access Component; these clients only 

require the ability to make HTTP requests and interpret the 

results. 

4. Java Applet Viewer 

Many different approaches can be taken with respect 

to the Visualization Component. Initially, a Mozilla 

Firefox plug-in was developed for the purpose. It fulfilled 

the basic needs, but when experimentation with more 

advanced functionality was desired, it became more 

practical to use Java. The applet that was implemented is 

capable of using all of the features of the Data Access 

Component and behaves like a black box, hiding the image 

request details behind a graphical user interface. 

 40



 

  
(a) layer 4 
 

(b) layer 3 

  
(c) layer 2 (d) layer 1 

FIGURE 13 – Java Applet Visualization Component 
Zooming in from the layer with the least detail (a) up through layers of 
greater detail. 

 
The applet sends HTTP requests to the Apache Data 

Access Component and updates widgets with the data that it 

receives. To view an image, the URL of the a server running 

mod_ymage is entered and a list of available ymages is 

requested. The returned list is converted into a set of 

menu options from which an ymage name can be selected. 

Clicking on one of these menu items initiates the download 

and display of graphical data. To maximize the efficiency 

of viewing the ymage, display begins at the highest layer, 

i.e. the one which consists of a single image block. As the 

 41



user zooms into the image, the applet determines whether to 

move to the next layer and initiate download requests for 

new image blocks or to resize the blocks that it already 

has. Figure 13 shows the applet displaying an image as the 

user starts from the layer with least detail (a) that the 

layer of most detail (d). When a layer is reached that is 

composed of more than one image block, the applet 

identifies which blocks are within the view port and 

downloads for display. Dragging the view port changes the 

visible region and image blocks which have not been 

downloaded are requested for subsequent display. 

Upload features are also available in this applet. 

An image file can be located on the user’s local file 

system and previewed before upload. The preview image is a 

sub-sampled version of the original obtained using Java’s 

Image I/O API. While previewing, a rectangular region of 

the image can be selected for upload, should the whole 

image not be wanted. 

 The applet is independent of any particular Data 

Access server, so it can be used to view ymages from any 

server that runs an Ymage System Data Access Component. 

This flexibility can be attributed to the modularity of the 

overall system and maximizes data accessibility.  

 

 42



C. Evaluation and Possible Improvements 

The implementation presented here is rather 

rudimentary. It is a model of how the system should 

generally work. As such, it does not fully exploit the 

strengths of the design. Improvements can be made to each 

subsystem in order for real performance gains to be 

realized. 

 Improvements can be made with respect to the Data 

Storage Component. Since PostgreSQL was available as a 

Cygwin binary package and other well known contenders such 

as MySQL were not, the former was selected partly out of 

convenience. Past studies [17] and current discussion have 

credited MySQL with being a faster relational database 

system and so an improvement in performance may be achieved 

in electing to use it. The schema used for this 

implementation would require only minor changes to ensure 

compliance with MySQL. As the performance degradation of 

this component becomes less of an issue, the schema can be 

expanded to more properly address security and data 

ownership concerns, system protocol enforcement, and 

inclusion of a greater assortment of data. 

 The Data Access Component is critical to the 

system’s overall performance since all data and requests 

are channeled through it. Improvements can be made to this 

 43



component by exploiting the features and tweaking the 

operation of the Apache web server. Eliminating all modules 

that service demands inconsistent with the needs of the 

system and the hardware on which it is running would be 

likely to reduce overhead. Some of the modules that are 

loaded by default handle directory authorization, executing 

CGI scripts, and web authoring. These are not necessary for 

the Data Access to function. Along with removing such 

modules, a reduction in the number of database transactions 

by caching highly demanded data would also boost 

performance. The current implementation of this subsystem 

really consists of a web server with the ability to carry 

out functions consistent with the Ymage System. The 

ultimate goal is to develop this component enough that it 

becomes a subsystem wholly dedicated to the servicing of 

the overall systems demands. 

 Improvements of the Visualization Component could be 

made by adopting the modularity that is apparent on the 

overall system level. Graphical display should be the sole 

purpose of the Visualization Component; in this way, the 

focus can be maintained on image quality. Optimizations 

could come in the form of using technologies which are 

better suited to fast, high-quality distributed 

visualization. Image uploads should be implemented in a 

 44



client branch of the Data Access Component and eliminate 

the need to integrate visual demands with file transfer 

logistics. 

 In addition to modifying the components, it is 

possible to improve performance by taking different 

approaches algorithmically; this is especially true for 

storage. The JPEG compression scheme used for saving image 

blocks reduces storage size considerably for any given 

layer, but still more space savings can be realized. The 

true difference between any two layers is the amount of 

detail present, all other information is redundant. Storage 

size can be reduced by saving a low-detail version of the 

original image and the differences (errors) between 

consecutive layers; this is the same as generating a 

Laplacian Pyramid [18]. The scaled images from which the 

layers are presently derived would serve as target images 

used to determine error values which could be saved in the 

place of the image blocks. Retrieving the image for a given 

layer would require the low-detail image to be super-

sampled up to the size of the desired layer and adding 

error values for all layers between the super-sampled and 

the desired one. Since the exact error is known, the 

original image at the given layer can be obtained 

precisely. The errors at each layer can also be compressed 

 45



to further reduce storage space. The drawback with this 

approach is the demand placed on the Visualization 

Component which must now process the image before 

displaying it. However, even this cost is likely to be low 

since less data will need to be requested for any given 

layer and, once obtained, can be reused for the display of 

subsequent layers. 

 For the practical purposes to which a system built 

from this architecture will be put, these changes would 

substantially improve usability. As a model, the present 

implementation demonstrates the possibilities of the design 

and is a respectable starting place for development of more 

rigorous software. 

 46



 
 
 
 
 

IV. RESULTS 
 
 

Comparisons of the Ymage System (as implemented in 

this project) show that it is a more practical option most 

of the time than other commonly used digital image viewing 

software. 

TABLE II 

IMAGES TESTED 

Ref # Image Name Size Width Height 

1 P0-SC-QGFR146-Grina.tif 27.4 MB 4000 px 2400 px 

2 P0-SC-QGFR142-Grm1.tif 30.1 MB 3900 px 2700 px 

3 BDM-P14-1-0009-HT559.tif 76.9 MB 4800 px 5600 px 

4 BDNF-P12-1-0009-HT559.tif 98.9 MB 7200 px 4800 px 

5 wt-E13-5-Brain-QGF033-HT551.tif 251 MB 15400 px 17100 px 

See Appendix B for images 

 

Images from brain and retinal scans were used to 

test desktop applications, Zoomifyer EZ™, and the Ymage 

System. Table II lists the images and their properties. One 

important metric in determining how useful a program is for 

displaying an image is the time that it requires to do so. 

Load times are the time from when the program begins 

displaying a region to when all of the data for that region 

have been loaded and are visible. The load times of the 

 47



desktop applications are compared in Table III. Though 

Picasa™ out-performed the others for images ranging from 27 

to 99 megabytes, it failed to load the 251 megabyte image 

at its highest resolution within the practical time limit 

of 10 minutes. The other programs loaded the images within 

a reasonable time, but this was at the price of a 

significant performance reduction to all programs running 

on the computer*. 

 

TABLE III  

DESKTOP APPLICATION LOAD TIMES 

Image Adobe Photoshop® CS2 GIMP2 Google Picasa2™ 

1 2 sec 3 sec <1 sec 

2 2 sec 3 sec 1 sec 

3 6 sec 18 sec 2 sec 

4 2 sec 33 sec 3 sec 

5 21 sec 4 min 54 sec >10 min 

 

Load times of the Ymage System were comparable, if 

not better than those of the desktop programs. However, 

improvements in load time were at the cost of segmentation 

and upload overhead (see Table IV). Although the combined 

segmentation and upload times for the Ymage System are 

significantly longer than desktop application load times, 

                                                 
* Tests were conducted on a Dual AMD Athlon™ MP 2200+ (1.86 GHz processors) machine with 
1GByte of PC2100 DDR RAM running Windows XP Professional with Service Pack 2. 

 48



this cost must only be endured once and compensation is 

made in storage space savings. 

 

TABLE IV  

YMAGE SYSTEM TEST RESULTS 

Image Segmentation 
Time 

Seg + 
Upload  

Post-Seg 
Size 

Num of 
Layers 

Num of 
Blocks 

Load 
Time 

1 5 sec 25 sec 2.17 MB 4 129 2 sec 

2 6 sec 26 sec 2.78 MB 4 135 1 sec 

3 16 sec 49 sec 4.39 MB 5 590 2 sec 

4 31 sec 1 min 32 
sec 7.20 MB 5 366 1 sec 

5 6min 59sec 13 min 54 
sec 64.6 MB 7 5190 1 sec 

 

 Zoomifyer EZ™ outperformed this implementation of 

the Ymage System with apparent load times of under one 

second for all images tested (see Table V). Greater storage 

savings were also realized with Zoomifyer EZ™ than with the 

Ymage System. Upload time to the web server for the former 

could not be accurately measured as there were several 

different, yet equally feasible, methods for completing the 

task; these times could be considered proportional to the 

size of the original image files.  

 49



TABLE V  

ZOOMIFYER EZ™ TEST RESULTS 

Image Segmentation 
Time Post-Seg Size Load Time 

1 12 sec 1.86 MB <1 sec 

2 10 sec 2.37 MB <1 sec 

3 23 sec 3.63 MB <1 sec 

4 32 sec 6.06 MB <1 sec 

5 4min 58sec 51.2 MB <1 sec 

 

 50



 
 
 
 
 

V. CONCLUSION 
 
 

The storage, retrieval, and visualization problems 

associated with the practical use of large, high resolution 

digital images can be resolved using a flexible, modular 

system design. Furthermore, there is sufficient open 

source-code to meet the requirements without the need of 

commercial software. 

 Conventional methods employed by the standalone 

applications proved to be inadequate for several reasons. 

First, the load times increased in proportion to image 

size. For images that are very large, the delay between the 

time an image was requested and the time it became visible 

was unreasonably long. And, second, the demand on system 

resources, in the form of storage space, system memory, and 

CPU use, rendered the viewing process and the computer 

unworkable. The time issue cannot be completely avoided; a 

great deal of data requires time to be processed. In the 

standalone applications this processing delay was observed 

every time the image was requested. With the Ymage System 

and Zoomifyer EZ™, there was a greater processing time 

realized, but it was only manifested once per image. During 

 51



this time machine performance was affected to some degree; 

however, subsequent requests for the image were almost 

instantaneous regardless of image size. The reduction of 

required storage space also favored the Ymage System and 

Zoomifyer EZ™ over the client applications. It is apparent 

that the way in which these two approach image storage and 

retrieval are an improvement to the approaches taken by the 

standalone programs. 

 The Ymage System performed comparably to Zoomifyer 

EZ™. This was surprising since the implementation of the 

former was not completed with much focus on performance 

optimization. Making use of the operational exploits 

described in the “Evaluation and Possible Improvements” 

section could potentially improve the Ymage System enough 

to ultimately equal Zoomifyer EZ™ in performance. The 

difference between the two systems would then be in data 

storage where the organization and maintainability of data 

in the Ymage System is an improvement over the other 

system. 

The modularity of the Ymage System affords itself 

well to other applications. Since data retrieval in the 

system is independent of the Visualization Component, the 

system is extensible for non-visual functions. One 

interesting use would be for distributed image processing. 

 52



Blocks could be obtained from different parts of an image 

by different machines and processed independently; the 

results could be combined later outside of the system or 

(with some modification to the Data Access Component) 

placed in Data Storage Component. The implications of 

organizing and providing access to image data as presented 

by the Ymage System has the potential to change the way in 

which images are viewed and manipulated. Novel approaches 

to image application design are sure to come from the 

options available through the architecture of this system. 

  

 53



 
 
 
 

VI. REFERENCES 
 
 

[1]  Jan Teuber, Digital Image Processing. New York, NY: 
Prentice Hall International (UK) Ltd., 1993. 

[2]  C.Wayne Brown and Barry J.Shepherd, Graphics File 
Formats. Greenwich, CT: Manning Publications Co., 1995. 

[3]  Michael Miller, "Using Google Book Search," in 
Googlepedia: The Ultimate Google Resource Que, 2006, pp. 
475-479. 

[4]  Paul Suetens, Fundaments of Medical Imaging. 
Cambridge, UK: Cambridge University Press, 2002. 

[5]   Image Databases: Search and Retrieval of Digital 
Imagery. New York: John Wiley & Sons, Inc., 2002. 

[6]  Michael Miller, "Using Picasa," in Googlepedia: The 
Ultimate Google Resource Que, 2006, pp. 585-601. 

[7]  Armin Hanisch, "ImageQuery 1.4.4," Webpage. 
[Online]. Available: 
http://www.arminhanisch.de/software/imagequery_en.html

[8]  PrimaSoft, "Photo, Picture Organizer Deluxe, v2.7," 
Webpage. [Online]. Available: 
http://www.primasoft.com/deluxeprg/photo_organizer_delux
e.htm

[9]  Randolph Kim, "Learning Technologies, World Wind 
1.4," Webpage. [Online]. Available: 
http://worldwind.arc.nasa.gov/

[10]  Microsoft, "TerraServer-USA," Webpage. [Online]. 
Available: http://terraserver.microsoft.com/

[11]  Zoomify Inc., "Zoomable web images!," Webpage. 
[Online]. Available: http://zoomify.com/

[12]  Ed Bradford and Lou Mauget, Linux and Windows 
Interoperability Guide Prentice Hall, 2001, pp. 109-120. 

 54

http://www.arminhanisch.de/software/imagequery_en.html
http://www.primasoft.com/deluxeprg/photo_organizer_deluxe.htm
http://www.primasoft.com/deluxeprg/photo_organizer_deluxe.htm
http://worldwind.arc.nasa.gov/
http://terraserver.microsoft.com/
http://zoomify.com/


[13]  Meloni Dario, "DevIL: A full featured cross-platform 
Image Library," Webpage. [Online]. Available: 
http://openil.sourceforge.net/

[14]  Jeff Perkins, Postgresql Muska & Lipman/Premier-
Trade, 2007. 

[15]   "Apache HTTP Server Project," Webpage. [Online]. 
Available: http://httpd.apache.org/

[16]  Gary V.Vaughan, Ben Elliston, Tom Tromey, and Ian 
Lance Taylor, GNU Autoconf, Automake, and Libtool. 
Indianapolis, IN: New Riders Publishing, 2001. 

[17]  Fermi National Accelerator Laboratory, Computing 
Division, "PostgreSQL versus MySQL," Webpage. [Online]. 
Available: http://www-
css.fnal.gov/dsg/external/freeware/pgsql-vs-mysql.html

[18]  Peter J.Burt and Edward H.Adelson, "The Laplacian 
Pyramid as a Compact Image Code," IEEE Transactions on 
Communications, vol. 34, no. 4, pp. 532-540, Apr.1983. 

 
 

 55

http://openil.sourceforge.net/
http://httpd.apache.org/
http://www-css.fnal.gov/dsg/external/freeware/pgsql-vs-mysql.html
http://www-css.fnal.gov/dsg/external/freeware/pgsql-vs-mysql.html


 
 
 
 
 

APPENDIX A 
 
 

A.1 Image Subdivision Process 

 

 56



A.2 Algorithm for Computing Image Block Dimensions 

Find Largest of 
First 30 Prime 
Numbers that 

Divides Dimension 
Evenly

Prime Number 
Found

Subtract 1 Pixel 
From Dimension Divide Dimension

No Yes

Image Dimension Target Dimension

Image Dimension 
Greater Than 

Target Dimension

Yes

Done No

 

 57



 
 
 
 
 

APPENDIX B 
 

Images Tested 

 

 

 

1. P0-SC-QGFR146-Grina.tif 

[4000 by 2400 pixels, 27.4MB] 

 58



 

2. P0-SC-QGFR142-Grm1.tif 

[3900 by 2700 pixels, 30.1MB] 

 

3. BDM-P14-1-0009-HT559.tif 

[4800 by 5600 pixels, 76.9MB] 

 59



 

 

4. BDNF-P12-1-0009-HT559.tif 

[7200 by 4800 pixels, 98.9MB] 

 

5. wt-E13-5-Brain-QGF033-HT551.tif 

[15400 by 17100 pixels, 251MB] 

 60



 
 
 
 
 

VITA 
 
 

Yetu Yachim 
4925 Charm Oak Dr. 
Jefferson City, MO 65109 
 
Phone: (573) 821-0742 
Email: yetu.yachim@louisville.edu
 yetu.yachim@gmail.com
 
EDUCATION 
 
 Master of Engineering, Expected: May 2007 

Computer Science and Engineering 
 University of Louisville 
 GPA: 3.769 / 4.000 
 
 Bachelor of Science, December 2006 

Computer Science and Engineering 
 University of Louisville 
 GPA: 3.783 / 4.000 
 
SIGNIFICANT COURSEWORK 
 

Microcomputer Design 
Simulation of Discrete Systems 

 Design of Computer Algorithms 
 Computer Graphics 
 
EXPERIENCE 
 
 University of Louisville CECS Department 
 Belknap Campus, Louisville, Kentucky 
 October 2006 – April 2007 
 Graduate Thesis Project 
  
 Marathon Oil Corporation 
 Office Building, Findlay, Ohio 
 May 2005 – August 2005 
 Web Developer and Mainframe Programmer 
 

 61

mailto:yetu.yachim@louisville.edu
mailto:yetu.yachim@gmail.com


 Marathon Ashland Petroleum, LLC. 
 Main Headquarters, Findlay, Ohio 
 August 2004 – December 2004 
 Applications Developer 
 
 Marathon Ashland Petroleum, LLC. 
 Texas Refining Division, Texas City, Texas 
 January 2004 – May 2004 
 Web Developer and Tier II Support 
 
ORGANIZATIONS 
  

Tau Beta Pi 
National Society of Black Engineers (2006 VP) 

 Society of Porter Scholars 
 Association of Black Students (Web Developer) 
 
HONORS 
  
 Woodford R. Porter, Sr. Scholarship 
 National Dean’s List (2002 – 2006) 
 CECS Outstanding Undergraduate Award (Spring 2006) 
 NSBE Outstanding Member Award (2006) 
  
 

 62


	YMAGE : a resource for real-time sharing of high resolution digital images.
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	I. INTRODUCTION
	A. Digital Images
	1. Image File Storage
	2. Image File Retrieval

	B. Applications of Digital Images

	II. EXISTING SOFTWARE
	A. Standalone/Desktop Model
	1. Picasa™
	2. ImageQuery
	3. Photo Organizer Deluxe

	B. Client-Server Model
	1. NASA World Wind
	2. Zoomify


	III. THE YMAGE SYSTEM
	A. System Architecture
	1. Data Storage Component
	2. Data Access Component
	3. Visualization Component

	B. Implementation
	1. Development Environment and Tools
	2. Data Storage using PostgreSQL
	3. Apache HTTP for Data Access
	4. Java Applet Viewer

	C. Evaluation and Possible Improvements

	IV. RESULTS
	V. CONCLUSION
	APPENDIX A
	APPENDIX B
	 
	VITA

