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ABSTRACT 

 

AUGMENTATION OF RAS-INDUCED CELL TRANSFORMATION: 

A NEW ROLE FOR MIR-200A IN MALIGNANCY 

 

Lindsey Erin Becker 

April 2, 2014 

 

Cancer is a multistep disease that begins with malignant cell transformation and 

frequently culminates in metastasis and death.  MicroRNAs (miRNAs) are small 

regulatory 21-25-nt RNA molecules and are frequently deregulated in cancer.  The 

majority of miRNAs are estimated to be co-expressed with neighboring miRNAs as 

clusters. Many miRNA clusters coordinately regulate multiple members of cellular 

signaling pathways or protein interaction networks.  miR-200a is a member of the miR-

200 family, which are known to be strong inhibitors of the epithelial to mesenchymal 

transition.  As such, the tumor suppressive role of miR-200a in oncogenesis has been well 

studied; however, recent studies have found a proliferative role for this miRNA as well as 

a pro-metastatic role in the later steps of cancer progression. In this study, we employed a 

biphasic approach to determine miRNA involvement in malignant cell transformation. 

First, we screened 366 human miRNA minigenes to determine their effects on the four 

major cancer signaling pathways culminating in AP-1, NF-κB, c-Myc, or p53 
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transcriptional activity. The second phase of this study was an epithelial cell screening 

assay to determine the ability of miRNAs to transform epithelial cells. In our miRNA 

cluster profiling study, we found that miR-200a down-regulates p53 activity.  miR-200a 

was demonstrated to directly target p53, reduce protein levels, and inhibit apoptosis. We 

also found that miR-200a enhances Ras-mediated transformation of MCF10A cells.  

Furthermore, miR-200a transforms MCF10A cells and induces tumorigenesis in 

immunocompromised mice by cooperating with a Ras mutant that activates the RalGEF 

effector pathway. These results demonstrate a role for miR-200a in malignant 

transformation and reveal a specific cellular environment in which miR-200a acts as an 

oncomiR rather than a tumor suppressor by cooperating with oncogene activation in the 

classical two hit model of cell transformation.  
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CHAPTER I 

INTRODUCTION: CANCER AND MICRORNAS 

Cancer Statistics and Cancer Progression 

One in three Americans will be diagnosed with cancer in his or her lifetime.  In 

2013, an estimated 1.6 million new cases of cancer were diagnosed, and over half a 

million Americans died of cancer.  It is the number two leading cause of death in the 

United States, accounting for nearly one in every four deaths.  The most frequently 

occurring cancers in men are prostate, lung, and bladder.  In women, the most frequently 

occurring cancers are those arising in the breast, digestive system, and respiratory system.  

In both men and women combined, lung cancer was responsible for 159,480 deaths in 

2013, over a third of all cancer related deaths.  The second most deadly cancers in men 

and women are prostate and breast, respectively.  Colon cancer claims the third most 

lives for both sexes.  Despite these grim numbers, cancer death rates are declining in both 

sexes [1].  In 2009 alone, 152,900 cancer related deaths were avoided, thanks in part to 

advances in treatment efficacy.  Even more important, however, are advances in detecting 

and diagnosing cancer at early, more treatable stages [2,3].   

There are multiple forms of cancer, classified by the cell type from which they 

arise.  The five most common types of cancer—breast, prostate, lung, colon, and 
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bladder—are examples of carcinomas, or cancers arising from epithelial cells. 

Carcinomas are the most common form of cancer. 

Cancer is comprised of a progressive series of steps, beginning with malignant 

cell transformation, which leads to primary tumor formation.  Vascularization of the 

tumor occurs to allow survival and growth.  Tumor cells become invasive and motile by 

undergoing an epithelial to mesenchymal transition (EMT).  During this process, 

epithelial cells, once constrained by the necessity of cell:cell and cell:basement 

membrane contacts for survival, experience changes in gene expression that result in an 

elongated, mesenchymal phenotype and the ability to migrate and invade local stroma 

[4].  This mobile, mesenchymal phenotype also allows for subsequent intravasation of 

invasive cancer cells into the blood stream, allowing them to circulate throughout the 

body. Circulating cancer cells will then extravasate from the blood stream to colonize 

new sites on distal tissues.  New studies have shown the importance of the reversal of 

EMT, the mesenchymal to epithelial transition (MET), in metastatic colonization at distal 

sites [5-7].  By developing a more stable epithelial phenotype, cells that were once 

mobile and invasive acquire the characteristics necessary for formation of a secondary 

metastatic tumor.  It is rarely the primary tumor that is responsible for cancer mortalities, 

but rather the late stage metastatic disease that accounts for over 90% of cancer related 

deaths [8-10].  The study of the very first step of cancer progression—cell 

transformation—is thus crucial to provide the means for diagnosing and treating cancer 

before progression to the deadly metastatic stage. 
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Malignant Cell Transformation 

Malignant cell transformation occurs when a normal somatic cell develops the 

ability to proliferate indefinitely and escape the cell cycle control checkpoints and 

apoptotic signaling that normally eliminate cells with hyper-activated proliferative 

signaling pathways [11].  Cells that acquire this unrestrained proliferation phenotype in 

vivo can develop into a tumor.  In 2000, Robert Weinberg elegantly described the 

Hallmarks of Cancer, identifying the six abilities acquired by cancer cells that allow them 

to form tumors, induce angiogenesis, and metastasize [12].  Four of these six hallmarks 

pertain specifically to cell transformation:  sustaining proliferative signaling, resisting 

cell death, evading growth suppressors, and enabling replicative immortality.  More 

recently, Weinberg updated these hallmarks to include four new emerging hallmarks of 

cancer: dysregulating cellular energetics, avoiding immune destruction, genome 

instability and mutation, and tumor-promoting inflammation.  Genome instability and 

mutation influences the genetic changes that induce malignant cell transformation, and so 

they will be discussed within the context of the four hallmarks of transformation. 

Sustaining Proliferative Signaling 

Normal somatic cells receive external and internal signals throughout their normal 

lifespans that regulate proliferation.  During development, mitogenic stimuli signal 

differentiated cells to proliferate into a specified organ, and then proliferation ceases.  

Under normal conditions, homeostasis of the cells, and thus the organ itself is maintained 

via cell:cell signals, cell:basement membrane signals, as well as various paracrine and 

endocrine signals in the entire organism.  While much of the homeostatic cell:cell 
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signaling under normal conditions is not completely understood, proliferative signals in 

cancer progression are well studied.  The crux of the hallmark of sustaining proliferative 

signaling relies on the propagation of  cell signaling pathways that result in proliferation 

despite a lack of actual proliferative stimuli. 

Activation of mitogenic downstream signaling pathways; a focus on Ras 

Unrestrained proliferation can occur through multiple mechanisms; however, a 

common feature of hyper-proliferative cancer cells is the activation of downstream 

components of mitogenic signaling pathways.  A potent example is the classical 

oncogene, Ras.  Ras is the most frequently mutated gene in pancreatic cancer and its 

associated preneoplastic lesions; it is known to stimulate cell proliferation and contribute 

to the induction of pancreatic cancer [13]. 

Ras activation occurs in response to growth factor signaling.  Growth factors bind 

receptor tyrosine kinases, which become activated and recruit the guanine nucleotide 

exchange factor, SOS, to the plasma membrane where it facilitates the exchange of Ras-

bound GDP to GTP [14-16].  Binding of GTP induces a conformational change in Ras to 

its active state, allowing it to bind its potent downstream effectors at the plasma 

membrane where they are then activated.  The three main effectors in the Ras signaling 

pathway are PI3K, RalGEF, and Raf [17-19].  Stimulation of these pathways activates 

Akt signaling, Jnk/AP-1 transcriptional activity, and the MAP kinase cascade, 

respectively.  Ras-mediated activation of multiple cell signaling pathways is tightly 

regulated by GTPase activating protein, which stimulates the inherent GTPase activity of 
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Ras shortly after Ras becomes activated.  The resulting hydrolysis of GTP to GDP returns 

Ras to its inactive form, shutting off the signaling cascade [17,20].   

Normal human Ras is a protooncogene, which is a broad class of genes that 

control growth or proliferation and, if dysregulated, can cause cancer.  The most well 

studied mutation of Ras is a G12V mutation where glycine 12 is mutated to valine [21].  

This amino acid change ablates the GTPase activity of Ras, regardless of the presence of 

GTPase activating protein.  Loss of GTPase activity causes constitutive Ras activation, 

and thus continual stimulation of downstream proliferative signaling pathways, thereby 

effectuating its conversion from protooncogene to full-fledged oncogene.   

In addition to mutations in Ras itself, components of its downstream effector 

pathways may also be mutated to lead to excessively high levels of proliferative 

signaling.  Amplification of Akt has been documented in pancreatic, colon, breast, 

endometrial, and ovarian cancers [22].  Akt has a wide variety of targets that it 

phosphorylates including Mdm2, an inhibitor of p53; Raf, an upstream component of 

Map kinase signaling; and mTOR, a signaling protein responsible for angiogenesis as 

well as upregulation of cell cycle progression genes like c-Myc [23-26].  Akt can also 

phosphorylate targets to inhibit their activity, for example, Caspase-9, an apoptotic 

effector protein, and p21, an inhibitor of cell cycle progression [27,28].  The crucial 

element of the oncogenic activity resulting from activating mutations in, or amplification 

of, genes like Ras and Akt is the lack of dependence on growth factor signaling to induce 

activity.  In other words, the cell continually propagates signals to proliferate despite a 

lack of normal upstream proliferative stimuli. 
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Disruption of proliferation-regulating pathways 

In addition to over-activation of proliferative signaling, e.g. the activating G12V 

Ras mutation or amplification of Akt described above, loss-of-function of regulatory 

members of proliferative signaling pathways can lead to sustained proliferative signaling 

and induction of cancer.  These regulatory proteins are generally known as tumor 

suppressors due to their role in inhibiting cellular processes that, if left unchecked, can 

induce malignant cell transformation or contribute to cancer progression.  The tumor 

suppressor Phosphatase and Tensin Homolog (Pten) is a potent regulator of the PI3K/Akt 

activation pathway.  PI3K signaling is stimulated when Ras is activated [29].  After being 

recruited to the plasma membrane, it phosphorylates Phosphatidylinositol 4,5-

bisphosphate (PIP2) to form phosphatidylinositol (3,4,5)-trisphosphate (PIP3).  PIP3 

serves as a docking site for Phosphoinositide-dependent Kinase 1 (PDK1) which 

phosphorylates Akt on threonine 308 to serve as its initial activation step [30].  Pten is a 

phosphatase that dephosphorylates PIP3 to PIP2, blocking the recruitment of PDK1 to the 

plasma membrane and ultimately inhibiting the activation of Akt.  Pten mutations and 

loss of heterozygosity have been found in brain, prostate, breast, ovarian and pancreatic 

cancers [22].  Loss of this kind of regulatory mechanism also allows for inappropriate 

proliferative signaling.  

Senescence 

A natural barrier to malignant cell transformation is oncogene-induced 

senescence.  Senescent cells are characterized by lack of proliferation, lack of response to 

growth factors, and an enlarged, flattened morphology.  Induction of this phenotype can 

http://en.wikipedia.org/wiki/Phosphatidylinositol_%283,4,5%29-trisphosphate
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occur in response to direct DNA damage or in response to oncogene activation [31].  

Cells with activated oncogenes stimulate proliferative downstream signaling that induces 

DNA replication at inappropriately high levels, which triggers a DNA damage response 

that signals the cell to undergo senescence [32].  When Ras is constitutively activated in 

cancer, its effector, Raf, initiates the Map kinase signaling cascade.  Map kinase signaling 

is potently mitogenic, and is particularly responsible for inappropriately high levels of 

DNA replication [33-35].  The prodigious number of replication forks during oncogene-

induced hyper-replication induces a DNA damage response through the ATM pathway, 

which ultimately up-regulates p53 activity [32,36].  The transcriptional target of p53, 

p21WAF1/CIP1, is induced when p53 levels are increased in response to DNA damage, and 

it inhibits the activity of Cyclin-Dependent Kinases (CDKs) which phosphorylate 

Retinoblastoma protein (Rb).  Phosphorylated Rb sequesters the transcription factor E2F, 

blocking its ability to promote progression through the cell cycle from G1 to S phase 

[37].  Other cell cycle arresting pathways converge, and ultimately, if the cell fails to 

repair the damage that initially induced the DNA damage response, the cell will 

permanently withdraw from the cell cycle and become senescent [37,38].   

 Senescence induction as a means of protection from oncogene activation is a first 

line of defense against allowing malignant cell transformation to occur, but it is also a 

dynamic process that continues throughout tumor formation [39].   By working to prevent 

the consecutive steps of cancer progression that lead to metastasis and death, senescence 

within existing tumors can continue to protect against more severely damaging effects of 

cancer [8,40]. 
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Resisting Cell Death 

Organized cell death, or apoptosis, is the process by which a cell systematically 

disassembles itself to be digested by surrounding cells and specialized phagocytes.  It is 

characterized by chromatin condensation and membrane blebbing, and is carried out by 

Caspase proteins.  Caspases are thiol proteases that are present in the cell as inactive pro-

caspases that are autolytically cleaved to form their active Caspase form in response to 

apoptotic signaling.  Once active, these proteases cleave structural proteins and other 

important cell components.  Apoptosis is necessary during normal development to 

eliminate extraneous cells.  For example, the cells between a developing mammal’s 

phalanges undergo apoptosis to allow for formation of individual digits.  Apoptosis is 

also important for the elimination of cells that pose a threat to the organism, e.g. cells 

with the potential to become cancerous.  Cells of this nature are typically cells that have 

excessive levels of DNA damage or mutations that either activate proto-oncogenes or 

down-regulate tumor suppressors.  

Apoptosis 

Apoptosis is exacted through two pathways: an intrinsic or mitochondrial pathway 

and an extrinsic pathway induced by death ligands binding to cell surface receptors. Both 

pathways ultimately result in the activation of effector Caspases, which are thiol 

proteases that cleave after aspartic acid residues. These apoptotic-specific proteases 

cleave structural proteins, signal transducers, regulators of transcription, repair factors, 

and many other targets within the cell. The apoptotic cell also prepares itself for 

phagocytosis by actively flipping phospholipids, specifically phosphatidyl serine, from 



9 
 

the inner to the outer leaflet of the cell membrane, creating a signal for phagocytosis of 

the disassembled cell by macrophages [41].   

 Genes upregulated by p53 in response to DNA damage include Puma and Noxa.  

These proteins are pro-apoptotic BH3 domain-containing Bcl-2 family members that 

exert their effects by antagonistically binding anti-apoptotic Bcl-2 family members, 

causing the release of BH123 family members such as Bax, another p53 transcriptional 

target.  Release of Bax allows for its oligomierization and translocation to the 

mitochondrial outer membrane, where it causes permeabilization of the outer membrane 

and release of Cytochrome C.  Cytochrome C is an important second messenger that 

binds and activates the adapter protein Apaf-1.  Apaf-1 binds procaspase 9 and forms 

aggregates, allowing for autolytic cleavage to the active form of Caspase 9.  Activation of 

Caspase 9 triggers a Caspase cascade that leads to activation of more Caspase proteins, 

which can then begin degrading structural proteins to prepare the cell for phagocytosis.  

This tightly regulated mechanism of cell death is necessary for maintenance of healthy 

tissue, and loss of this crucial process contributes to cell transformation and the 

persistence of cells with dangerous mutations. 

 Cancer cells frequently harbor dysregulated apoptotic machinery.  An example is 

the translocation of anti-apoptotic Bcl-2 to an immunoglobulin locus causing 

upregulation of Bcl-2 expression, and promotion of cell survival in follicular lymphoma 

[42].  In addition, p53 is mutated in nearly half of all cancers [43,44], and its loss of 

function contributes to the survival of cancer cells. 
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DNA Damage Response 

 DNA damage is caused by endogenous and exogenous insults to the cell.  

Endogenous causes of DNA damage include reactive oxygen species and replication fork 

collapse.  Exogenous sources of DNA damage range from radiation i.e. UV light, to 

chemical mutagens, to viruses.  DNA damage includes the formation or addition of bulky 

adducts such as the thymidine dimers caused by excessive UV light and breakage of 

DNA strands [45].  The most deleterious form of this is the double stranded break (DSB) 

[46]. 

When a cell acquires DNA damage, several mechanisms are activated to allow for 

repair.  The first signal relayed is that of the presence of DNA damage such as a DSB.  In 

response to this form of damage, normally supercoiled DNA relaxes [45].  This change in 

chromatin structure initiates the recruitment of Poly-ADP-ribose Polymerase (PARP) 

proteins and binding of kinases such as Ataxia-Telangiectasia Mutated (ATM) and DNA-

PK to the break site in order to modify histones.  Histone modifications include covalent 

linkage of Poly-ADP-ribose (PAR) chains by PARP proteins and phosphorylation of 

lysines by ATM and DNA-dependent protein kinase (DNA-PK).  The presence of PAR 

chains stops replication and transcription in the area of the DSB, and phosphorylated 

histones recruit DNA damage response proteins such as p53 and BRCA1 [47].  BRCA1 

is a well-studied tumor suppressor, recognized largely for its mutation in familial breast 

cancer [48].  The transcription factor and tumor suppressor p53 has long been known as 

the guardian of the genome. Its functions are well studied and include transcriptional 

upregulation of proapoptotic genes [49]. p53 is maintained at low basal levels in the cell 

by its inhibitory protein, Mdm2, which inhibits p53 function by acting as an ubiquitin 
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ligase to target p53 for proteasomal degradation as well as by binding to and blocking the 

DNA binding domain of p53, inhibiting its activity as a transcription factor [50]. Upon 

detection of DNA damage, DNA-PK and ATM bind the DSB and phosphorylate histone 

H2AX [51].  This DSB-detection signal recruits p53, which is then phosphorylated on its 

N-terminus at serine 15 by DNA-PK or ATM.   Phosphorylation at this site blocks 

inhibition by Mdm2 and promotes binding to p53 response elements in the promoter 

regions of proapoptotic genes [41,52,53]. 

Other signal cascades involve activation of cell cycle check point proteins and 

DNA repair enzymes to arrest the cell cycle to allow time for appropriate repair of 

damaged DNA.  Repair of DSBs can occur through two pathways: Homologous repair 

(HR), and Non-homologous end joining (NHEJ).  NHEJ frequently introduces errors, and 

in the case of multiple DSBs, may lead to fusion of nonhomologous chromosomes.  Once 

the cell repairs a DSB, the checkpoint machinery is deactivated, and the cell is once again 

allowed to progress through the cell cycle [54].  Newly introduced errors that were not 

corrected become mutations that can have deleterious effects such as deactivation of 

tumor suppressors like p53 and other pro-apoptotic genes, up-regulation of oncogenes, 

and other gross changes to the cell’s morphology and metabolism. 

Oncogene Activation 

Propagation of genetic errors such as point mutations, gene amplifications, and 

chromosomal translocations can lead to disruptions in gene expression and/or gene 

function.  A potent example is the proto-oncogene Myc, which is the most frequently 

amplified oncogene in human cancers and whose translocation was first discovered as the 
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driving force in Burkitt Lymphoma [55-57].  Myc is a tightly regulated transcription 

factor whose target genes include ODC and Gadd45α, both of which are implicated in c-

Myc driven proliferation [58].  Low levels of Myc activity are tolerated in the cell and act 

as a signal to grow and proliferate; however, high levels of Myc activity trigger activity 

of Arf, a tumor suppressor that induces cell cycle arrest via p53 and can ultimately lead to 

apoptosis [59,60].  In this way, the strongly oncogenic signaling of Myc is quelled before 

out of control proliferation occurs.  Other proto-oncogenes also induce apoptosis as a 

safety mechanism if their signaling or activity becomes abnormally high. 

 Overall, loss of the apoptotic response allows cells to acquire and propagate 

mutations that would normally induce the DNA damage response pathway and lead to 

apoptosis.  Propagated mutations that activate oncogenes result in unrestrained 

proliferation or growth, which are normally controlled by feedback mechanisms that 

detect such inappropriate signaling levels and induce apoptosis.  Loss of apoptotic 

pathway components then results in unimpeded cell survival. 

Evading Growth Suppressors 

 As established earlier, malignant cell transformation depends on loss of tumor 

suppressors that induce apoptosis, arrest the cell cycle, or regulate proliferative signaling.  

These include p53, Rb, and Pten, respectively, demonstrating the significant overlap of 

Weinberg’s Hallmarks of Cancer within the malignant cell transformation.  Impediments 

to unrestricted cell survival and proliferation are frequently lost or mutated in cancer, and 

their mechanisms are well studied; however, more intricate processes of cell growth 

suppression exist including contact inhibition and differentiation. 
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Contact Inhibition 

 Non-transformed cells, when grown in culture, will experience a slowing of 

proliferation as they reach confluence.  This phenomenon was first discovered in the 

1960s when cells were first being experimentally cultured in laboratories, and was termed 

the Hayflick phenomenon.  It has recently been studied more extensively, however it is 

not completely understood, and its relevance in vivo is not completely established [31].  

What has been deduced is that cells, particularly epithelial cells, experience growth 

inhibition with respect to adjacent cells.  The cell signaling pathways responsible for this 

are not fully known, but it has been shown under various conditions and with multiple 

cell types that non-transformed cells will grow into a single-layered sheet of cells in vitro, 

mimicking the single epithelial layer seen in vivo such as in the intestinal wall or luminal 

mammary gland ducts [12].  The physical touching of the cells relays signals, most likely 

through cell:cell junctions and extracellular structural proteins, that inhibit proliferation.  

A distinct feature of transformed cells is their ability to proliferate despite the growth 

inhibitory signals being relayed by their contact with other cells.  The result of avoiding 

these particular growth suppressing signals is a mound of cells that are continuously 

proliferating, or, in vivo, a tumor.   

 A second form of growth control occurs when cells lose cell:basement membrane 

contacts.  This specific form of apoptosis is called anoikis, and is responsible for the 

organized cell death of cells that lose such crucial structural contacts [61].  A hallmark of 

cancer cells is their ability to either escape the constraints of normal tissue structures, or 
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to degrade and invade the basement membrane.  This invasive and migratory ability is 

coupled to the ability to evade the growth-suppressing signals that would induce anoikis 

in response to loss of these structural contacts [62].   

Enabling Replicative Immortality 

Telomeres 

Telomeres are protein-DNA complexes that protect the ends of linear 

chromosomes from being targeted by DNA damage-repair machinery.  They consist of a 

double stranded (DS) stretch of tandem TTAGGG repeats that terminates in a single 

stranded (SS) G-rich 3’ overhang.  Telomere associated proteins such as the Shelterin 

complex coat this SS region to prevent its recognition as DNA damage.  Telomeric 

proteins also aid in the formation of complex structures such as G-quadruplexes and T-

loops that cap the end of the chromosome, further disguising the chromosome end from 

being recognized as DNA damage [63].  Replication of telomeres is a complex and 

important process.  Coordinating the removal of this plethora of proteins with 

dismantling the complex structures within the telomere is a finely tuned process that 

serves to maintain the delicate balance between a healthy cell and a prematurely 

senescing cell.  Replication also poses a significant challenge to telomeres because with 

each round of replication, DNA on the end of the chromosome is lost, due to the inability 

of the replication machinery to replace RNA primers with DNA on the lagging strand.  

Aberrant replication can lead to fork pausing and unreplicated telomeres which cause 

premature senescence and cell death.  Loss of telomere-associated proteins can lead to 

severe physiological defects such as the premature aging seen in Werner syndrome.  The 
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leading strand of the telomere, however, does not experience this shortening due to 

Okazaki fragmentation.  Instead, DNA polymerase replicates off the end of the telomere, 

leaving behind a blunt end in need of resectioning by an endonuclease to form the 

classical 3’ overhang necessary for proper telomere function.  Several reports suggest that 

this nucleolytic activity is performed by Apollo, a nuclease found both at telomeres and 

double stranded breaks (DSBs).  The function of Apollo requires stimulation by the 

multifunctional protein, Trf2.   

Trf2 is a conserved telomeric protein with a wide repertoire of functions.  It is a 

member of the Shelterin complex that helps disguise the telomere from being recognized 

as DNA damage, and it functions in the formation and stabilization of the t-loop that 

buries the single stranded 3’ overhang within the double stranded portion of the telomere.  

Trf2 also recruits Apollo [64], whose endonuclease activity is stimulated by Trf2 both to 

relieve topological stress during replication [65] and to resection the blunt end of the 

leading strand telomere into a 3’ overhang directly following replication [66,67].  

Notably, Apollo’s interaction with Trf2 at this significant structure is necessary to 

prevent major telomere dysfunction [67]. Trf2 has also been recently implicated by 

various sources in the recognition and repair of DSBs in response to various forms of 

damaging radiation [68-70].  Trf2 is rapidly phosphorylated in response to DSBs. This 

phosphorylation has proved necessary for both the transient recruitment of Trf2 to these 

DSBs and the initiation of DNA repair [70].  Interestingly, in times of telomere crisis, or 

during the alternative lengthening of telomeres (ALT) pathway, phosphorylated Trf2 has 

been shown to localize to the telomere [70].  This discovery is not unexpected because 

many DNA damage-related proteins and telomeric proteins have been found to function 



16 
 

within both contexts [69,71,72].  Apollo is also recruited to DSBs and interacts with 

ATM [73], a crucial signal transducer in the DNA damage recognition pathway that leads 

to non-homologous end joining (NHEJ). Trf2 is proposed to hold ATM inactive at 

telomeres and DSBs.  Although controversial, it has been shown that ATM may mediate 

phosphorylation of Trf2 in response to DNA damage [68,70,74].   

The presence of the telomere protects important genomic DNA from this loss, but 

overall, this shortening of telomeres is part of the aging of the cell and eventually results 

in naturally occurring senescence.  With each round of cell division, a cell must replicate 

its DNA before separating into daughter cells.  The DNA polymerase enzyme responsible 

for replicating the genome is not able to fully replicate the ends of eukaryotic linear 

chromosomes, and so with each round of cell division, small amounts of DNA remain un-

replicated and are lost.  The ends of chromosomes thus are comprised of several 

kilobases of telomeric G-rich repetitive sequence.  Cells are protected from the loss of 

valuable genomic coding sequence DNA by telomeres because the repetitive telomeric 

sequences do not contain genes, and telomere shortening during cell division serves as an 

internal clock that senses when the telomeres have become too short for safe replication 

and stops the cell from replicating.  Because of the “internal clock” function of telomeres, 

they are thought to play an integral role in the aging process.  It is notable that the 

proteins required for maintenance of the cell’s “internal clock” also function within the 

DNA repair pathway, highlighting the complexity and overlap of Weinberg’s defined 

hallmarks. 

An enzyme complex called Telomerase is specifically required for synthesis of 

telomeric sequence, and in normal cells, this enzyme is not fully expressed.  Telomerase 
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is comprised, minimally, of two subunits: TERT, a reverse transcriptase enzyme, and 

TER, a large RNA subunit.  A portion of TER contains the sequence specific template 

utilized by TERT for adding nucleotides to uncapped telomeres.  This sequence is small, 

compared to the rest of the RNA strand, which is large, and whose sequence is largely 

divergent between species.  Phylogenetic studies have, however, determined the 

conserved secondary structure of this RNA subunit, which has been determined to assist 

in the protein interactions required for Telomerase holoenzyme recruitment to the 

telomere, as well as further recruitment of other interacting proteins.  In vitro, these two 

subunits are all that are required for Telomerase reverse transcriptional activity; however, 

in vivo, other interacting proteins, such as RNA binding proteins and DNA binding 

proteins involved in recruitment and stabilization of the Telomerase:telomere interaction, 

are necessary for the enzyme’s functionality.  Telomerase is, in general, not active or 

expressed in adult somatic cells; however, certain cell types such as highly proliferative 

germ line cells, smooth muscle cells, and certain lymphocytes, retain Telomerase 

functionality.  In these cells, Telomerase activity and telomere length are maintained by a 

phenotypic switch between capped and uncapped states of the telomere.  As telomeres are 

replicated, they become progressively shorter; however, telomere binding proteins such 

as Apollo, Trf2, and other members of the Shelterin complex vivaciously coat the 

telomere and help induce the secondary structures that telomeres form, e.g. T-loops.  The 

coating action of telomere-associated proteins complements the telomeric DNA 

secondary structures, forming a protective cap on the chromosome’s end.  This cap 

prevents recognition of the DNA ends as DSBs, but also regulates Telomerase activity.  

Capped chromosomes are less likely to be extended by Telomerase, however, as 
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replicating cells’ telomeres are progressively shortened, they are less likely, and less able 

to form protective caps, allowing for extension by Telomerase.  By switching between 

two forms—capped and uncapped—telomeres are maintained within upper and lower 

length limits in Telomerase-positive cells.  This regulation is crucial to avoid hyper-

extension of telomeres as well as recognition of telomeres as DSBs, both of which are 

implicated in cancer.  

Studies have shown that Telomerase is frequently reactivated in human cancer by 

various mechanisms.  Some reports show that Myc hyper-activation can induce TERT 

expression, and it is one of the genetic changes found necessary by Weinberg’s lab for 

oncogene cooperation-induced malignant cell transformation of human cells.  Another 

important mechanism of Telomerase reactivation in cancer cells is the re-activation of a 

telomere maintenance program in order to bypass telomere damage-induced crisis and 

senescence.  Rapidly dividing cells frequently incur DNA damage due to the plethora of 

replication forks that overwhelm the cell.  Even more problematic during replication is 

the process of dismantling the precarious secondary structures and intricate protein-DNA 

complexes that cap the ends of the chromosomes.  This process can pose problems during 

normal replication, but during the rapid proliferation seen in cancer, this invariably leads 

to damaged chromosomes.  These telomere damage-induced foci (TIF) trigger a p53 and 

Rb dependent DNA damage response, but the massive influx of DNA damage typically 

overwhelms the cell and induces crisis.  Crisis is comprised of misguided attempts by the 

DNA repair machinery to repair the linear ends of chromosomes, having recognized them 

as DSB.  The end result is more damage as telomeres become fused and chromosomes 

break.  This cycle overwhelms the cell and eventually causes senescence.  In the absence 
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of p53 activity or intact DNA damage response pathways, or perhaps even due to the loss 

of such pathways during crisis, a cell will survive crisis and propagate its gross genetic 

damage as mutations.  A crucial component of this is the re-activation of telomere 

maintenance machinery.  This almost always involves the re-expression of TERT.  The 

mechanisms of Telomerase reactivation are not fully known, but promoter mutations 

have been found in many cancers, including thyroid, central nervous system and skin 

cancers, glioblastoma, and over half of bladder cancers [75].  By establishing a telomere 

maintenance program, the cell is able to avoid normal cellular lifespan limits, i.e. achieve 

immortality.  Immortality is one of the first steps in malignant cell transformation, and 

expressing Telomerase is crucial in this immortalization process.  However, primary 

mouse embryonic fibroblasts MEFs, which express Telomerase, will not grow 

indefinitely in culture; p53KO MEFs will, indicating that while Telomerase function is 

involved in malignant cell transformation, it is a component of a complex, dastardly 

process.  It is notable that rodents constitutively express Telomerase, making their cells 

easier to indefinitely culture in vitro, but presenting a major difference when studying 

malignant cell transformation in rodent models.  

Oncogene Cooperation 

Weinberg’s hallmarks of cancer indicate the multiple processes that occur in 

cancer, or, with respect to the specific four described above, malignant cell 

transformation.  In molecular biology terms, the requirement of multiple processes to 

induce cell transformation translates to changes in cell signaling pathways, either by up-

regulation of proto-oncogene activity, or loss of either function or expression of tumor 

suppressors.  Although certain proteins, for example Ras, can activate multiple 
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downstream effector pathways, multiple genetic changes are required for cell 

transformation.   

Historically this was attributed to viral oncogenes that stimulated Telomerase 

activity, inhibited apoptotic and senescence-inducing machinery, and stimulated 

proliferation [76-78].  However, Weinberg’s landmark paper in 1983 demonstrated the 

requirement of two oncogenic hits to transform primary fibroblasts, and in so doing, 

described for the first time the synergistic effect of Ras and Myc signaling to induce cell 

proliferation without triggering apoptosis or senescence, which occurs when each 

oncogene is over-expressed individually [79].  Cooperation of Ras and Myc coselects for 

loss of p53 function.  Dysregulation of Ras and c-Myc signaling delineates a classical 

paradigm of oncogene cooperation, and continued activation of both of these pathways 

allows cells to bypass senescence, escape apoptosis, and enter into a malignant, 

hyperproliferative state [79,80].   

In 2005, Boehm et al. delineated the nonviral genes necessary for human cell 

transformation [81].  While Ras and c-Myc transform primary rodent cells, which express 

Telomerase, human cells maintain more stringent checkpoints and require reactivation of 

Telomerase, as well as loss of function of tumor suppressors.  The specific changes in 

human cellular pathways originally identified are activation of Ras, Myc, and TERT, 

along with the loss of function of p53, Retinoblastoma protein, and PTEN [81].  All of 

these combine to allow replicative immortality, hyperproliferation, and deactivation of 

cell cycle checkpoints that would not under normal circumstances allow propagation of 

genetic mutations that drive cell transformation [81-83].  The specific mutations 

necessary to transform human cells is more complicated than in rodent cells, but the 
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ultimate result for both is the survival of cells that are no longer governed by pathways 

that regulate survival and proliferation.  Such unrestrained cells are then able to form a 

tumor. 

MicroRNAs  

History 

MicroRNAs (miRNAs) are an abundant class of regulatory noncoding RNAs that 

regulate thousands of genes across a vast array of signaling networks and cellular 

functions [84].  The first miRNAs discovered were lin-4 and let-7 in C. Elegans [85,86].  

These miRNAs were found to be expressed temporally and play crucial roles in 

development.  The field expanded to the cornucopia of small regulatory RNAs that it is 

today with over 2500 mature miRNAs identified in humans alone.  As research 

progresses, it has become clear that miRNAs are key regulators in all major cellular 

processes. 

Genomic Location and Biogenesis 

 miRNAs are present in introns within coding or non-coding transcribed units, or 

as exons, i.e. independent genes.  miRNAs may be present as single autonomous miRNA 

genes; however, over half of human miRNAs are present as miRNA clusters that are co-

expressed as polycistronic units [87].  Members of miRNA clusters frequently target 

similar or related genes, culminating in an increased overall effect on a single pathway or 

protein complex, rather than broad, unrelated targeting by multiple miRNAs [88-91].  

Many miRNA clusters occur because of gene amplifications or insertions, resulting in 
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multiple copies of identical or similar sequences [92,93].  This in turn results in nearly 

identical targeting patterns.  Similarly, related mRNAs harboring binding sites 

corresponding to the same miRNA or miRNAs indicates a coordinated mechanism of 

gene regulation [94]. 

The majority of miRNAs are processed from introns of mRNA.  Experimental 

evidence shows that processing of miRNAs need not occur only after splicing out of the 

intron, and that miRNA processing does not affect mature mRNA assembly [95].  

Intronic and Exonic miRNAs are transcribed by RNA Polymerase II, and exonic 

miRNAs are processed similarly to mRNA, in that they are capped with 5’meG and 

polyadenylated.  After miRNAs are transcribed, intra-strand regions of complementarity 

result in the formation of an imperfect hairpin loop (pri-miRNA). The functional miRNA 

sequence is present on the arm of this loop [87].  The biogenesis of this primary transcript 

is what differentiates miRNAs from other small interfering RNA within the RNA-

mediated gene silencing field.  Rather than cleavage into multiple small regulatory 

molecules, pri-miRNAs are “cropped” in the nucleus into small hairpin structures called 

pre-miRNAs. This cropping enzyme is known as the microprocessor, and is comprised of 

the class II Ribonuclease III enzyme, Drosha, and DGCR8, a double stranded RNA 

binding protein [96].  Cropping by the microprocessor complex is the initiating event of 

miRNA processing, as loss of these enzymes leads to accumulation of pri-miRNAs and 

reduced pre-miRNA levels.  Following microprocessor cropping, pre-miRNAs are 

exported to the cytoplasm via Exportin5/RanGTP [97].  Exportin5 is a nuclear transporter 

that exports pre-miRNAs in complex with RanGTP.  The entire complex is shuttled 

across the nuclear membrane to the cytoplasm where RanGAP stimulates hydrolysis of 
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GTP to GDP, and the pre-miRNA is released into the cytoplasm [98].  Once in the 

cytoplasm, they are cleaved by the class I Ribonuclease III, Dicer, to form imperfect 

duplexes.  The 3’ overhang of pri-miRNA is recognized by the PAZ domain of Dicer, 

and its catalytic RNAse III subunit cleaves the stem loop into a ~22 nt miRNA duplex.  

In general, the strand with the least stable 3’ end base pairing functions as the guide 

strand while the other strand, often annotated miR*, is degraded.  However, both the 

canonical guide strand as well as the star strand of several miRNAs have been shown to 

be functional.   

Mechanism 

To effect gene silencing, the guide strand is loaded into the RNA-induced 

silencing complex (RISC), which binds target mRNA 3’ Untranslated regions (UTRs) in 

a miRNA seed sequence-directed manner [84].  The RISC is a large enzyme complex 

whose major functional unit is Argonaute (Ago2).  Ago2 is a versatile enzyme involved 

in RNA-induced silencing.  Perfect complementarity between the silencing RNA and the 

mRNA directs mRNA strand cleavage.  This is always the case with siRNA, and 

occasionally with miRNA-mediated silencing.  The mechanism of gene silencing 

employed by miRNAs, however, revolves around translational repression, in which Ago2 

does not cleave target mRNA [84,99].  Indeed, most miRNA targets are not based on 

perfect base pairing; however, the perfect base pairing dictating mRNA cleavage is not a 

hard and fast rule.  Ago2 has recently been found to associate with P-bodies, and one 

potential mechanism of gene silencing may involve sequestering of RISC-associated 

mRNA in P-bodies to down-regulate protein expression [99].   
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The Argonaute complex is targeted to specific mRNA by base pairing between 

the miRNA and the 3’ UTR of the target mRNA [84].  Nucleotides 2-7 on the 5’ end of 

the miRNA are known as the seed sequence.  Complementarity between these bases and 

target mRNA 3’UTRs results in the specific targeting and regulation of those mRNA.  

Complementarity is rarely perfect, and binding sites vary in their affinities based on 

sequence complementarity, as well as the presence of an Adenosine within the mRNA 

UTR in line with the first nucleotide of the miRNA.  Canonical sites include the 7mer-

A1, in which there is perfect complementarity between the miRNA seed sequence and the 

mRNA, as well as an mRNA adenosine at the first nucleotide position; the 7mer-m8 site, 

in which there is perfect base pairing within the seven nucleotides of the seed sequence, 

as well as at the 8th nucleotide position, which is not included as part of the canonical 

seed sequence; and the 8mer site, in which there is perfect complementarity between the 

seed sequence and the 8th nucleotide, as well as an mRNA adenosine at position 1.  

Marginal binding sites are 6mers, in which there is complementarity between the miRNA 

seed sequence and the target mRNA, but no compensatory adenosine at position 1, and 

no match at the 8th nucleotide.  Similarly, other 6mers include complementarity at six 

contiguous bases that occur only partially within the seed sequence.  Targeting is also 

enhanced by compensatory complementarity that occurs several bases downstream of the 

seed sequence site.  This particularly enhances targeting when seed sequence 

complementarity contains one or more mismatched bases.  Canonical and marginal 

complementarity sites are summarized in Table 1.  
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Table 1.  Canonical and Marginal miRNA binding sites. Lower strand: miRNA 

Upper Strand: target mRNA.  ORF: Open reading frame, N: complementary 

nucleotide, NNNNNN: seed sequence, A: position 1 adenosine. 
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MicroRNAs in Cancer 

Because of their regulation of such crucial cell signaling pathways, dysregulation 

of miRNAs contributes to disease, for example cancer [100].  Just as protein coding 

genes become dysregulated in cancer [82,101], miRNA genes may also become 

aberrantly over expressed or silenced [100,102].  miRNAs within introns are subject to 

regulation by changes in the promoter controlling the host gene [95].  Other miRNAs 

expressed from the genome as independent transcripts may be epigenetically modified at 

their promoters to affect expression levels [100,103-107]. miRNAs are also subject to 

gene amplification and deletions [108,109]. 

By targeting one or more tumor suppressors, miRNAs can function as oncogenic 

miRNAs (oncomiRs) when aberrantly over-expressed.   miR-21 has emerged as a 

canonical example of an oncomiR.  miR-21 is up-regulated in nearly all epithelial cell-

derived solid tumors including breast, pancreas, lung, gastric, prostate, colon, head and 

neck, and esophageal cancers.  It is also reported to be up-regulated in hematological 

malignancies such as leukemia, lymphoma and multiple myeloma.  miR-21 is over-

expressed in glioblastoma, osteosarcoma, and spermatocytic seminoma.  Thus, miR-21 is, 

as yet, the only gene that is found to be overexpressed in all major classes of human 

cancers derived from epithelial cells, connective tissues, hematopoietic cells, or nervous 

cells.  Its target genes include regulators of apoptosis, cell cycle progression, growth 

factor signaling, and proliferation [41].  It has been found to directly target such well 

known tumor suppressors as Pten and Bcl2.  miR-21 overexpression in MCF-7 human 

breast cancer cells promotes colony formation by directly targeting the tumor suppressor 
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PDCD4 and suppressing its expression [110].  The role of miR-21 in cancer exemplifies 

the diverse targeting and dastardly effects of oncomiRs. 

In addition to dysregulation of single exonic miRNA genes, entire miRNA 

clusters may be dysregulated in cancer, for example the miR-17~92 cluster is frequently 

up-regulated in cancer, specifically, its genomic locus is amplified in diffuse large B-cell 

lymphoma [108].  It contains several homologous miRNAs that target pro-apoptotic 

genes such as p21 and Bim [100].  Dysregulation of this coordinated targeting of major 

cell signaling regulators contributes strongly to the progression of cancer.  Overall, the 

over-expression of oncogenic miRNAs leads to both the targeting and loss of tumor 

suppressive mechanisms.   

In contrast, miRNAs may function as tumor suppressors by targeting oncogenes 

and regulating their expression.  Tumor suppressor miRNAs are often down-regulated in 

cancer [100,102].  The let-7 family is a well-studied tumor suppressor miRNA family 

comprised of 12 miRNA family members.  These family members have been found to 

target and regulate expression of the proto-oncogenes Ras and Myc, as well as other 

oncogenic proteins such as CDK6 and Cyclin D, cementing its role as a tumor suppressor 

by regulating proliferation and crucial cell cycle promoting enzymes [100].  Expression 

of the let-7 miRNA family is frequently down-regulated in human lung cancer cases, 

which also exhibit higher levels of Ras expression [111].  This is in contrast to cancers 

that express mutated, constitutively active forms of Ras, strongly implicating 

involvement of let-7 family dysregulation in cancer pathogenesis.  Similarly, in 31-64% 

of medulloblastomas, the most common central nervous system tumor in children, Myc is 

over-expressed; however, the Myc gene is amplified in only 5-8% of medulloblastoma 
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cases.  The locus containing miR-33b is frequently lost in medulloblastoma, and miR-33b 

has been shown to directly target Myc and repress its expression in medulloblastoma cell 

lines [112].  These studies provide evidence for the involvement of miRNAs in regulation 

of proto-oncogenes, indicating their importance in homeostasis and, in turn, the role their 

dysregulation plays in human disease. 
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Figure 1.   The miR-200 family 

Figure 1.  The miR-200 family Upper: Genomic organization of miR-200 family.  

Lower: miR-200 family grouped by seed sequence 
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miR-200a  

miR-200a is a member of the miR-200 family.  This family is comprised of five 

members present in the genome as two clusters (Figure 1).  The first cluster is located on 

chromosome 1 at locus 1p36.33 and contains miR-200b, miR-200a, and miR-429.  The 

second cluster is located on chromosome 12 at locus 12p13.31 and contains miR-200c 

and miR-141.  miR-200a and miR-141 contain identical seed-region sequences of 

AACACUG, and miR-200b, miR-200c, and miR-429 contain identical seed sequences 

that differ from the other seed sequence by one nucleotide: AAUACUG.  Because of 

these shared seed sequences, miR-200a and miR-141 are predicted by targeting 

prediction algorithms to regulate the same genes.  While the entire family is frequently 

expressed together and demonstrated to regulate the same targets [113], both clusters do 

not always have identical functions [114]. 

Along with its family members, the first and most well studied function of miR-

200a is in maintenance of epithelial cell morphology through regulation of the pro-

mesenchymal Zeb transcription factors [115,116].  Zeb1 and Zeb2 directly bind the 

promoter of the epithelial marker E-cadherin to down-regulate its transcription.  

Likewise, Zeb1/2 directly bind the promoter and stimulate transcription of the 

mesenchymal marker Vimentin.  By regulating these pivotal transcription factors, miR-

200a promotes epithelial cell morphology, and inhibits the epithelial-mesenchymal 

transition (EMT).  EMT is the critical initiating step of metastasis and as such, is crucial 

in the progression from primary tumor to deadly metastasis [117].  As a potent regulator 

of this process, miR-200a is frequently an inhibitor of metastasis, and thus functions as a 

tumor suppressor [118,119].  Several studies in cancer cell lines and tumor samples 
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demonstrate the down-regulation of miR-200a in mesenchymal metastatic cells 

[105,120,121].   

Conversely, emerging studies show cancer cell populations and tumor samples 

that over-express miR-200a and rely on its over-expression for metastatic colonization, 

growth, and survival [5,62,122,123].  Many of these studies remain focused on EMT and 

suppose that maintenance of an epithelial-like morphology by the miR-200 family either 

accounts for heterogeneity of tumor cells [124], or promotes a reversal of EMT, allowing 

for metastatic colonization at sites distant from the primary tumor [123].  A study in an 

isogenic series of  breast cancer cell lines with increasing invasiveness and metastatic 

potential, demonstrated that the cell line that is able to fully invade, metastasize and 

colonize distant organs from the primary tumor site is the only cell line in the series that 

expresses the miR-200a family.  Targeting of Sec23 by the miR-200 family was 

demonstrated to affect the cells’ secretome and regulate the ability of these cells to 

invade.  The authors concluded that the miR-200a family promotes the ability to colonize 

distal sites during metastasis, a novel role for the miRNA family often regarded as a 

tumor suppressor.  The authors speculated that promotion of an epithelial phenotype is 

necessary for establishing metastatic tumors.  Another breast cancer cell line study 

demonstrated that an enhancer specific to the miR-200b~429 cluster, which also includes 

miR-200a, is responsible for high expression levels of miR-200a in epithelial breast 

cancer cells [107]. 

In pancreatic cancer cells, miR-200a has been shown to be hypomethylated and 

differentially over-expressed, along with its family member miR-200b [105].  

Meanwhile, its canonical target, Zeb1, was found to be hypermethylated and silenced, 
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indicating that the consequences of miR-200a overexpression in this pancreatic cancer 

model were occurring separately from its role in EMT inhibition via Zeb1 repression.  

miR-200a and miR-200b were also found at higher levels in the sera of pancreatic cancer 

patients, highlighting the importance of this miRNA in a clinical disease setting, as well 

as the potential use of miR-200a and its family members as biomarkers in disease. 

A miRNA expression analysis study revealed that miR-200a was expressed at 

levels higher in epithelial ovarian cancer samples than in benign cysts.  Further 

stratification revealed that miR-200a expression was associated with early stage tumors, 

and that late stage metastatic tumors expressed significantly lower levels of both miR-

200a and E-Cadherin [125].  Overexpression of miR-200a in earlier stages of cancer, 

rather than the metastatic steps associated with a mesenchymal phenotype, is consistent 

with both the established role of miR-200a in promoting an epithelial phenotype as well 

as the newer studies that demonstrate a role for miR-200a in proliferation and growth. 

Another novel target of miR-200a is Yap1, a key mediator in the Hippo signaling 

pathway, and a known regulator of anoikis [62].  miR-200a was found to directly target 

Yap1 in breast cancer cells, and overexpression of miR-200a resulted in anoikis 

resistance of human breast cancer cells in animal models.  By targeting such a crucial 

regulator of cell homeostasis, miR-200a was able to enhance metastatic potential of these 

breast cancer cells. 

 miR-200a has also been shown to up-regulate PI3K signaling and Akt activity by 

targeting Fog2, which binds and inhibits the regulatory subunit of PI3K [102].  This study 

demonstrates a role for miR-200a in promoting cellular growth, unrelated to its role in 
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maintenance of an epithelial phenotype.  miR-200a has a dichotomous role in the 

promotion and inhibition of different metastatic steps, and has an emerging role in 

cellular growth and survival.   

Hypothesis and Research Strategy 

Taken together, it is clear that miRNAs play crucial roles in cancer progression 

and are frequently dysregulated during all stages of oncogenesis.  It is crucial to study the 

molecular events that occur early in cancer progression in order to enhance detection and 

diagnostic techniques as well as to aid in cancer prevention.  To characterize specific 

miRNA roles in cancer initiation, the following hypothesis was proposed: 

MicroRNAs function as oncogenes in malignant cell transformation. 

In this study, a biphasic approach was employed to characterize the role of 

miRNAs in cancer initiation.  We first examined the role of miRNAs grouped according 

to genomic cluster in four major cancer signaling pathways: AP-1, NF-κB, c-Myc, and 

p53.  Our second step was to screen miRNAs for the ability to transform epithelial cells.   

In our first step, we found that miR-200a directly suppresses p53 and inhibits 

apoptosis.   In the second step, we found that miR-200a transforms immortalized rat 

epithelial RK3E cells, and, when expressed with Ras, miR-200a enhances transformation 

of immortalized human epithelial MCF10A cells.  Further characterization of the 

mechanism behind miR-200a’s ability to transform cells revealed that miR-200a 

cooperates with the RalGEF effector pathway of Ras to transform MCF10A cells and 
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induce tumorigenicity.  Taken together, these results reveal a new role for miR-200a in 

malignancy. 
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CHAPTER II 

A SYSTEMATIC SCREEN REVEALS MICRORNA CLUSTERS THAT 

SIGNIFICANTLY REGULATE FOUR MAJOR SIGNALING PATHWAYS. 

Chapter Overview 

MicroRNAs (miRNAs) are encoded in the genome as individual miRNA genes or 

as gene clusters transcribed as polycistronic units. About 50% of all miRNAs are 

estimated to be co-expressed with neighboring miRNAs. Recent studies have begun to 

illuminate the importance of the clustering of miRNAs from an evolutionary, as well as a 

functional standpoint. Many miRNA clusters coordinately regulate multiple members of 

cellular signaling pathways or protein interaction networks. This cooperative method of 

targeting could produce effects on an overall process that are much more dramatic than 

the smaller effects often associated with regulation by an individual miRNA. In this 

study, we screened 366 human miRNA minigenes to determine their effects on the major 

signaling pathways culminating in AP-1, NF-κB, c-Myc, or p53 transcriptional activity. 

By stratifying these data into miRNA clusters, this systematic screen provides 

experimental evidence for the combined effects of clustered miRNAs on these signaling 

pathways. We also verify p53 as a direct target of miR-200a. This study is the first to 

provide a panoramic view of miRNA clusters' effects on cellular pathways. 
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Introduction 

MicroRNAs (miRNAs) are small RNA molecules 20-25 nucleotides in length.  

Through complementary base pairing, miRNAs bind the 3' UTR of target mRNAs to 

post-transcriptionally down-regulate gene expression.  Originally discovered in C. 

elegans, the first miRNA was found to be a key regulator of development [87,126]; 

however, subsequent studies have revealed a myriad of roles for miRNAs in virtually all 

biological processes.  Studies highlighting the biological function of miRNAs have 

emerged alongside studies that reveal the detrimental effects of miRNA dysregulation 

[127].  Many miRNAs, when lost or over-expressed, become crucial players in the 

oncogenic process [128,129].  miRNAs may target a wide variety of genes, including 

those most closely associated with the processes of cancer development, particularly the 

hallmarks of cancer [41,82].  By inhibiting expression of tumor suppressors, miRNAs 

may function as oncogenes.  Conversely, miRNAs can also exhibit tumor suppressive 

properties by repressing oncogenes. 

miRNAs are transcribed and processed from intronic or intergenic regions, and 

may be transcribed as individual miRNA or as polycistronic transcripts (clusters) [87,95].  

Primary miRNA transcripts (pri-miRNA) are processed into imperfect stem-loop 

structures called pre-miRNAs by Drosha in the nucleus and then exported into the 

cytoplasm by Exportin V.  These pre-miRNAs are cleaved by Dicer to form mature 

miRNAs, which are then incorporated into the RNA-induced silencing complex (RISC).  

Imperfect complementary base-pairing between the miRNA and mRNA directs the RISC 

to the 3’ UTR of target mRNA.  This targeting leads to down-regulation of translation of 

the mRNA, and is often accompanied by a decrease in mRNA levels  [87]. 
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Nearly half of all miRNA genes are within 50 kilobases of another miRNA gene 

[88].  These clusters range from 2 miRNAs, for example miR-200c and miR-141, to as 

many as 46 miRNAs, as seen in the largest miRNA cluster in primates, Chromosome 19 

miRNA Cluster (C19MC) [88,130,131].  miRNAs within clusters frequently contain high 

sequence homology, particularly within the seed sequence, resulting in identical targets 

[5,123].  Recent evidence, however, points to clustered miRNAs that target different 

genes within a specific pathway or protein complex [89,132].  miRNAs are also predicted 

to target downstream effectors of cellular signaling pathways such as second messengers 

and transcription factors (TFs) more frequently than upstream ligands and receptors or 

housekeeping and structural genes [133].  TFs are key players in cell signaling pathways.  

By responding to a plethora of extra- or intra-cellular stimuli and regulating transcription 

of the many genes necessary for a cellular response, TFs act as crucial cell signaling 

hubs.  Dysregulation of major TFs is often a key event in oncogenesis [134].  Such TFs 

include AP-1, NF-κB, c-Myc, and p53 [57,135-137].  Many individual miRNAs target 

these pathways [138-141], but little data exists regarding the full effect of miRNA 

clusters.  While it is clear that miRNA clusters are frequently predicted to target specific 

cell signaling pathways, no experimental evidence based on systematic screening has 

been provided.  In this study, we intend to address these deficiencies by analyzing the 

role of 366 human miRNAs as clusters in these four major signaling pathways using an 

existing genetic library [142]. 
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Experimental Procedures 

miRNA Screen 

The method involves a published lentiviral-based miRNA genetic library that 

contains a large number of human miRNA minigenes [142].  To screen miRNAs that 

specifically target TFs of interest, we utilized luciferase constructs plus the miRNA 

library.  For instance, pTRF-p53-Luc (Systems Biosciences) contains a firefly luciferase 

gene (luc) under the control of a minimal CMV promoter.  This promoter is only 

activated when p53 binds to the p53-specific transcription response elements (TREs), 

eight tandem repeats of ACATGTCCCAACATGTTGTCG.  Similarly, TRE constructs 

for the other TFs are as follows:  pTRF-NF-κB-Luc: four repeats of GGGGACTTTCC; 

and pTRF-AP1-Luc: four repeats of TCCGGTGACTCAGTCAAGCG.  c-Myc activity 

was measured using an E2F2-Luc reporter vector consisting of the E2F2 promotor with 

four distinct E-boxes, CACGTG [143].  The parental vector, pSIF[142], substituted for 

the miRNA construct, serves as a normalization control for miRNA expression.  Rluc 

from pRL-TK (Promega) is used to normalize transfection efficiency and total protein 

synthesis.   

Cell Culture Experiments 

293T and H1299 cells (American Type Culture Collection, Manassas, VA) were 

cultured in DMEM media supplemented with 10% FBS and antibiotics at 37°C with 5% 

CO2.  Lipofectamine LTX (Invitrogen) was used for all transfections according to 

manufacturer’s instructions.  Luciferase assays were conducted using the Dual-Glo® 

Luciferase Assay System (Promega) 48 hours post-transfection in 96-well plates.  
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Relative Luciferse Units (RLU) were normalized to Renilla luciferase expression. The 

parental vector pSIF was used to normalize plate-to-plate variation. Apoptosis was 

measured using an ApoTarget™ Annexin-V FITC Apoptosis Kit (Invitrogen, Carlsbad, 

CA) as described previously [142].  Briefly, transfected cells were washed twice with 

PBS, resuspended in Annexin-V binding buffer, and then incubated in Annexin-V FITC 

and Propidium Iodide Buffer in the dark for 15 minutes at room temperature.  Stained 

cells were then analyzed on an LSR II flow cytometer (BD Biosciences) using FL1 

(FITC) and FL3 (PI) lines. Cell cycle was analyzed as described [144].  Experimental 

groups were analyzed in triplicate, and data represent three independent trials. 

Western Blot 

Total protein was isolated from cells in 6-well plates using M-PER mammalian 

protein extraction reagent (PIERCE, Rockford, IL). Protein concentration was measured 

using a BCA kit (PIERCE, Rockford, IL). 30-50 µg of protein were separated on 12% to 

15% Bis-Tris polyacrylamide gels (Bio-Rad, Hercules, CA) and then transferred to 

PVDF membranes (Bio-Rad). Protein membranes were incubated in blocking buffer (1× 

Tris-buffered saline, pH 7.5, 5% nonfat dried milk, 0.05% Tween 20)  for 2 hours at 

room temperature, followed by anti-p53 antibody (Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA), or anti-β-actin antibody (Sigma-Aldrich) overnight at 4 0C. The membranes 

were washed with 1× Tris-buffered saline containing 0.05% Tween 20, incubated with 

horseradish peroxidase-linked goat anti-mouse Ig (Santa Cruz) or goat anti-Rabbit Ig 

(Cell Signaling) for 1 hour at room temperature, washed, and visualized with the 

SuperSignal West Dura/ Femto Chemiluminescent Substrate kit (PIERCE).   
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Statistical Analysis 

Boxplots of the luciferase results for all clusters were plotted to show what the 

observations look like for each end point variable (AP-1, NF-κB, c-Myc, or p53).  For 

each end point, residual plots indicated that the observations with log-transformation are 

more likely to be normally distributed and have equal variances among different clusters. 

For each variable, one way analysis of variance (ANOVA) was applied to examine 

whether the observations at log-scale from different clusters are significantly different 

from the overall means at log scale. Residual plots indicated that the log-transformed 

responses are more likely to be normally distributed and have equal variances among 

different clusters.  The Fisher’s least significant difference tests were applied to examine 

which clusters are significantly different from the overall least square mean [145].  Based 

on the analytic results, we painted the boxplots red for the clusters with significantly high 

readings (observations), and green for the clusters with significantly low readings. The 

clusters with a pink diamond are significantly different from the overall mean (Figures 3-

6).     

Results 

miRNA Library Screening 

We used an established TF luciferase-based screen to determine miRNAs 

affecting pathways that regulate TF activity (Figure 2).  293T cells were transfected in 

triplicate with a plasmid containing a firefly luciferase gene under the control of a 
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minimal CMV promoter along with a second plasmid containing a member of our 

miRNA library [142]. Transcription response elements (TRE) corresponding to each TF 

were placed upstream of the promoter.  A third plasmid containing a Renilla luciferase 

gene driven by the HSV-TK promoter served as a normalization control.  Luciferase gene 

expression was measured with a luminometer to determine which miRNA expression 

resulted in inhibition or promotion of TF activity.  Luciferase expression was normalized 

to Renilla luciferase to yield Relative Luminescence Units (RLU) for each miRNA before 

being normalized to the parental vector.  This approach has been used to identify 

individual miRNAs in the p53, NF-κB, and c-MYC pathways [142,144,146].  To analyze 

the impact of miRNA clusters in reporter activities, mean RLU values for each cluster 

were calculated and normalized to the mean values of all miRNAs.  This allowed us to 

determine statistical significance of miRNA regulation of specific TFs when miRNA data 

were stratified into clusters compared to baseline overall miRNA effects.  For each TF, 

clusters with values significantly lower than the overall cluster mean were identified as 

down-regulators of the specified TFs.  Clusters with values significantly higher than the 

cluster mean were deemed up-regulators of the specified TF. 
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Figure 2: Schematic of luciferase-based microRNA screen.   

Figure 2:  Schematic of luciferase-based microRNA screen.  293T cells were co-

transfected with: 1) a vector containing a luciferase gene under control of regulatory 

elements recognized by AP-1, NF-kB, p53, or c-Myc; 2) a member of our microRNA 

library, and 3) a Renilla luciferase vector for normalization of luciferase values.  

Following transfection, cells were analyzed by luciferase assay to measure the effects 

of miRNA regulation of TF-driven luciferase expression. 

TRE: Transcription factor regulatory element, TF: Transcription factor, luc: luciferase, 

Rluc: Renilla luciferase, UTR: Untranslated region 
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AP-1 

Activating protein 1 (AP-1) is a dimeric TF consisting of Jun, Fos, or Activating 

TF (ATF).  Combinations of these subunits allow for hetero- and homo-dimerization, 

resulting in differing DNA recognition and functions of AP-1.  The TRE used in this 

screen is predominantly recognized by the cJun-cFos as well as cJun homodimers to a 

lesser extent [147,148].  AP-1 is activated in response to many signals such as stress, 

bacterial and viral infections, cytokines, growth factors, and oncogenic stimuli.  Post-

translational regulation occurs through interactions with other TFs, proteolytic turnover, 

and phosphorylation [147,149].  Data from the miRNA screen point to five miRNA 

clusters that yield an overall negative effect on AP-1 directed transcription (Figure 3 and 

Table 2).  These clusters may target genes that are upstream of the pathway directly 

regulating AP-1 turnover, or genes within signaling cascades that lead to AP-1 activation.  

Five clusters were found to have an activating effect on AP-1 transcriptional activity.  

One such noteworthy cluster is 10a~196a.  Studies have established a pro-proliferative 

role for this cluster in multiple cancers including pancreatic cancer and acute myeloid 

leukemia [150-152].  This role is consistent with our finding that it positively regulates 

activation of a TF known for its role in promoting proliferation, particularly in the 

context of cancer [147]. 
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  Figure 3. Boxplot showing logarithmic values of AP-1-mediated luciferase 

expression for microRNAs grouped according to cluster. 
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  Figure 3. Boxplot showing logarithmic values of AP-1-mediatedluciferase 

expression for microRNAs grouped according to cluster. Clusters that yielded 

values significantly different from the overall mean are marked with a pink diamond 

and annotated in Table 1. MicroRNA clusters that caused significant up-regulation of 

AP-1-driven luciferase gene expression are highlighted in red. MicroRNA clusters 

that down-regulated this expression are marked in green.  293T cells were transfected 

with the indicated miRNA in triplicate.  NC: non clustered miRNAs. 
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NF-κB 

NF-κB is a TF that consists of Rel protein dimers that bind κB sites in the 

promoters of target genes to regulate transcription.  The Rel family of proteins consists of 

five members: p100 and p105 which are proteolytically processed into p50 and p52, 

respectively, and RelA, RelB, and c-Rel, which do not require proteolytic processing.  

The TRE in this screen is specifically recognized by the heterodimer made up of p50 and 

RelA, which is the most abundant form of NF-κB in most cells.  This heterodimer is held 

inactive in the cytoplasm by inhibitors of κB (IκB) [139].  The classical pathway of NF-

κB activation is triggered by exposure to bacterial or viral infections and pro-

inflammatory cytokines such as TNF-α.  These signals go through the Toll-like receptor 

(TLR) to activate IκB kinases (IKK) which phosphorylate IκB, targeting it for ubiquitin-

mediated degradation.  NF-κB is released and translocates to the nucleus to promote 

transcription [139,153].  One of the major functions of NF-κB is inhibition of apoptosis, 

though its role in cancer development and progression is cell-type dependent.  

Suppression of NF-κB activation abrogates transcription of critical anti-apoptotic genes 

such as c-FIIP, cIAP1, cIAP2, and BCL-XL  [153].  This screen revealed seven clusters 

that negatively regulate NF-κB-mediated transcription (Figure 4 and Table 2).  Inhibition 

of NF-κB signaling implies a potential anti-inflammatory role for these clusters.  Five 

clusters were found to up-regulate NF-κB activity.  Among these is cluster 454~301a.  

miR-301a has recently been implicated as an NF-κB inducer in pancreatic cancer [142].  

Cluster 99b~125a was also found to up-regulate NF-κB activity.  A recent study found 

that miR-125a and miR-125b directly target TNFAIP3, a ubiquitin editing enzyme that 

negatively regulates NF-κB activity by disrupting the activation of IKK [120]. 
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  Figure 4. Boxplot showing logarithmic values of NF-κB-mediated luciferase 

expression for microRNAs grouped according to cluster. 
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  Figure 4. Boxplot showing logarithmic values of NF-κB-mediated luciferase 

expression for microRNAs grouped according to cluster. Clusters that yielded 

values significantly different from the overall mean are marked with a pink diamond 

and annotated in Table 1. MicroRNA clusters that caused significant up-regulation of 

NF-κB-driven luciferase gene expression are highlighted in red. MicroRNA clusters 

that down-regulated this expression are marked in green.  293T cells were transfected 

with the indicated miRNA in triplicate.  NC: non clustered miRNAs. 
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c-Myc 

c-Myc is a TF that heterodimerizes with Max to bind E-boxes within the 

promoters of its target genes [154].  It is a multifunctional protein that regulates a wide 

variety of cellular processes such as cell cycle progression, growth and metabolism, 

differentiation, and apoptosis [134].  Because of its function in positively regulating 

processes that contribute to tumorigenesis, Myc is a proto-oncogene.  Aberrant 

expression of Myc is seen in the majority of cancers, resulting from genomic 

amplification, or lack of negative regulatory pathways [154].  Our screen returned four 

miRNA clusters that down-regulate Myc-induced transcription (Figure 5 and Table 2).  

Notably, Cluster 512~519a negatively regulates Myc-mediated transcriptional activation.  

Also striking was up-regulation of Myc-mediated transcription by the entire miR-200 

family (Clusters 200c~141 and 200b~429).  In addition, we have confirmed miR-33b as a 

bona fide c-Myc regulator [146].  

 

 

 

 

 

 

 



50 
 

  Figure 5. Boxplot showing logarithmic values of c-Myc-mediated luciferase 

expression for microRNAs grouped according to cluster. 
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  Figure 5. Boxplot showing logarithmic values of c-Myc-mediated luciferase 

expression for microRNAs grouped according to cluster. Clusters that yielded 

values significantly different from the overall mean are marked with a pink diamond 

and annotated in Table 1. MicroRNA clusters that caused significant up-regulation of 

c-Myc-driven luciferase gene expression are highlighted in red. MicroRNA clusters 

that down-regulated this expression are marked in green.  293T cells were transfected 

with the indicated miRNA in triplicate.  NC: non clustered miRNAs. 
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p53 

p53 has long been known as the guardian of the genome.  Its transactivational 

functions are well studied and include induction of proapoptotic genes like Puma, Noxa, 

and Bax as well as cell cycle regulatory proteins such as p21 [49].  p53 is maintained at 

low basal levels in the cell by its inhibitory protein, Mdm2 [155].  Mdm2 inhibits p53 

function by acting as an ubiquitin ligase to target p53 for proteasomal degradation as well 

as by binding and blocking the DNA binding domain of p53, inhibiting its activity as a 

TF.  Upon detection of DNA damage, oncogene hyperactivation, or other cellular 

stresses, p53 is phosphorylated on its N-terminus, which blocks inhibition by Mdm2 and 

promotes its binding to p53 response elements.   In our screen, we found 7 miRNA 

clusters that significantly up-regulate p53-mediated luciferase expression (Figure 6 and 

Table 2).  Among these is Cluster512~519a, also known as C19MC.  Comprised of 46 

pre-miRNAs, it is the largest miRNA cluster conserved in primates.  It is an imprinted 

gene, and the paternal allele is expressed specifically in the placenta [130,156].  This 

tissue specificity is noteworthy in the context of its up-regulation of p53 activity.  

Enhanced apoptosis and increased p53 expression in the placenta during pregnancy are 

associated with fetal growth restriction, preeclampsia, intrauterine growth restriction, and 

HELPP syndrome [157,158].  Our screen implicates a role for this miRNA cluster within 

the tightly regulated process of developmental or pathological apoptosis.  Among the 5 

clusters that down-regulated p53-mediated luciferase expression is 200b~429, one of two 

clusters that comprise the miR-200 family (Figure 6 and Table 2).  The miR-200 family is 

largely known as tumor suppressive because of its inhibition of the epithelial-

mesenchymal transition (EMT) through direct targeting of Zeb1 and Zeb2 TFs [116,159].  
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Our data support an oncogenic role for this miR-200 family and we performed ensuing 

studies to examine the role of miR-200a in the p53 pathway (see below).  Cluster 

25~106b also significantly down-regulated p53 activity, and we noted that miR-25 has 

been verified to directly target p53 [144]. 
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  Figure 6. Boxplot showing logarithmic values of p53-mediated luciferase 

expression for microRNAs grouped according to cluster. 
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Figure 6. Boxplot showing logarithmic values of p53-mediated luciferase 

expression for microRNAs grouped according to cluster. Clusters that yielded 

values significantly different from the overall mean are marked with a pink diamond 

and annotated in Table 1. MicroRNA clusters that caused significant up-regulation of 

p53-driven luciferase gene expression are highlighted in red. MicroRNA clusters that 

down-regulated this expression are marked in green.  293T cells were transfected with 

the indicated miRNA in triplicate.  NC: non clustered miRNAs. 
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Inhibiting 

Clusters 

Difference 

from mean p-value 

Activating 

Clusters 

Difference 

from mean p-value 

AP-1 

Let7g~135a -0.78068 5.14E-03 512~519a 0.183747 1.78E-02 

125b~100 -0.65192 1.92E-02 217~216b 0.567326 4.14E-02 

34bc -0.59466 3.26E-02 10a~196a 0.596606 3.20E-02 

513~514 -0.3289 3.05E-02 454~301a 1.399706 3.86E-04 

339~329 -0.23763 3.22E-03 650 1.636268 3.57E-05 

NF-κB 

215~194 -1.17405 1.90E-04 99b~125a 0.822977 2.81E-03 

30bd -0.87412 9.13E-03 181cd 0.839874 1.22E-02 

125b~100 -0.75574 2.40E-02 192~194 1.167321 1.33E-02 

206~133b -0.74421 2.62E-02 650 1.262463 7.49E-03 

217~216b -0.68132 4.17E-03 454~301a 1.876999 7.89E-05 

513~514 -0.41319 2.39E-02       

c-Myc 

195~497 -0.66248 3.15E-02 17~92a 0.305999 1.74E-02 

193b~365 -0.54136 1.35E-02 23b~24 0.368437 4.00E-02 

512~519a -0.52607 8.16E-17 16~15a 0.432454 4.80E-02 

132~212 -0.52607 1.63E-02 200c~141 0.589838 1.08E-03 

      200b~429 0.312486 5.25E-03 

p53 

200b~429      -0.83273 6.44E-04 532~500     0.295012 2.61E-02 

30ec               -0.69189 4.46E-03 512~519a   0.444204 1.78E-10 

425~191         -0.61609 1.12E-02 99a~125b   0.522585 3.12E-02 

653~489         -0.56796 1.93E-02 296~298     0.712016 3.71E-02 

25~106b         -0.53544 7.25E-03 371~373     0.747797 2.14E-03 

      454~301a   0.766234 2.49E-02 

      650 0.877633 1.03E-02 

 

  

Table 2.  Top microRNA clusters that significantly modulate reporter expression. 
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miR-200a 

The miR-200 family is comprised of two clusters (Figure 1).  Cluster 200b~429 is 

located on chromosome 1 and contains miR-200a, miR-200b, and miR-429.  Cluster 

200c~141 is located on chromosome 12 and contains miR-200c and miR-141.  The most 

thoroughly studied function of the miR-200 family is inhibition of EMT.  EMT is 

characterized by cellular acquisition of mesenchymal morphology and phenotypes and is 

largely associated with tumor metastasis.  In particular, the TFs Zeb1 and Zeb2 are 

responsible for repressing transcription of E-cadherin and other epithelial markers to 

promote EMT [115,160].  The miR-200 family directly targets the 3' UTRs of Zeb1 and 

Zeb2 to inhibit their expression, and Zeb1 and Zeb2, on the other hand, bind the 

promoters of both miR-200 family clusters to reciprocally inhibit their transcription 

[124].  This miRNA family inhibits proliferation as well as EMT through its targeting of 

Zeb1 and Zeb2 [161].  Recently, however, new tumor-suppressor targets of the miR-200 

family have been discovered, suggesting this miRNA family may have a pro-proliferative 

function [5,102,162].  In addition, a recent study has investigated the miR-200 family’s 

promotion of an epithelial morphology in the context of a mesenchymal-epithelial 

transition, thus promoting metastatic colonization, and providing further evidence for an 

oncogenic role for this miRNA family [123].   

Our screen revealed a p53-suppressing role for cluster 200b~429, which contains 

miR-200a, miR-200b, and miR-429.  TargetScan predicts a miR-200a binding site in the 

3’ UTR of p53 (Figure 7A). This predicted target is conserved between humans and 

chimpanzees.  To determine direct targeting of p53 by miR-200a, a luciferase assay was 

performed using constructs with a wild type 3’ p53 UTR (WT) or a 3’ UTR with a 
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mutated miR-200a binding site (Mut) downstream of a luciferase reporter gene.  

Luciferase assay was performed to measure differential reporter expression resulting 

from this binding site mutation in p53-null H1299 cells (Figure 7B).  Compared to empty 

vector control, miR-200a caused a significant reduction in WT construct luciferase 

expression.  This reduction of expression was not seen in cells with the mutant 3’ UTR.   

This suggests that miR-200a directly targets the 3’ UTR of the human p53 gene.  Western 

blot was performed to determine the effects of miR-200a on p53 protein levels.  H1299 

cells were transfected with miR-200a or its empty vector control, and either p53 coding 

sequence with a wild type 3’ UTR (WT) or that with a mutated miR-200a binding site in 

its 3’ UTR (Mut). Compared to the control, miR-200a caused a significant down-

regulation of p53 protein levels in cells with a WT 3’ UTR, but not those with a Mut 3’ 

UTR (Figure 8A).  These results show that direct targeting of the p53 3’ UTR by miR-

200a down-regulates p53 at the protein level.  To determine the functional significance of 

p53 suppression by miR-200a, we analyzed apoptosis and cell cycle in response to miR-

200a over-expression in H1299 cells containing a p53 expression cassette with either WT 

or Mut 3’ UTR. We found that re-expression of p53 in H1299 cells led to significant cell 

apoptosis and cell cycle arrest at the G1 phase (G1 arrest) even in the absence of DNA 

damage (Figure 8B and 8C), in agreement with previous reports [163-165].    miR-200a 

significantly decreased apoptosis in H1299 cells with the WT p53 construct (Figure 8B).  

Apoptosis was unaffected in cells containing the Mut p53 construct.  In addition, G1 

arrest was also inhibited by miR-200a compared to the vector control (50.7% versus 60.1, 

P≤0.05) only when the exogenous p53 had a WT 3’ UTR (Figure 8C). Taken together, 

these results provide a new mechanism of oncogenic action for miR-200a.  By directly 
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targeting the 3’ UTR of p53, miR-200a down-regulates p53 protein expression, resulting 

in a significant reduction in apoptosis and G1 arrest. 
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Figure 7.  miR-200a directly targets the human p53 gene.  (A) Schematic 

representation of miR-200a: p53 3'UTR. Top: seed sequence base paring between 

miR-200a and the 3'UTR of p53 mRNA. Bottom: p53 constructs with the wild type 

miR-200a binding site (WT) or a mutated miR-200 binding site (Mut) in the 3'UTR. 

(B) A reporter assay to determine whether the p53 3'UTR is targeted by miR-200a. Y 

axis denotes relative luminescent units (luc/Rluc) in H1299 cells expressing WT or 

Mut p53 3'UTR constructs and miR-200a. 
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Figure 7. miR-200a directly targets the human p53 gene.   
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Figure 8.  miR-200a downregulates p53 protein expression and inhibits apoptosis.  

(A) Western blotting analyses of H1299 cell extracts. H1299 cells were transfected 

with miR-200a and WT or Mut p53 3’UTR constructs. (B) Apoptosis assay of H1299 

cells transfected as in C. E. Cell cycle analysis of H1299 cells transfected as in (C) The 

Y axis denotes events (the number of cells) and the X axis denotes the emitted 

fluorescent light of the DNA dye (PI), that is, DNA content. Values like indicate the 

percentages of cells in the G1 phase with standard error of the mean. *P≤0.05 with 

n=3. 

 

 

Figure 8.  miR-200a downregulates p53 protein expression and inhibits apoptosis. 
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Discussion 

Most miRNA studies revolve around finding novel targets of single miRNAs, yet 

half of all miRNAs are co-expressed as clusters [88].  Most of the miRNAs within 

clusters are likely to be transcribed as a whole unit, so these coexpressed miRNAs shall 

be investigated together for their biological and pathological function.  By stratifying our 

screen of miRNAs that target TF signaling pathways into miRNA clusters, we were able 

to collect data that describes the effects of an entire miRNA cluster on a signaling 

pathway culminating in regulation of a major TF.  Several mechanisms exist behind 

multiple coexpressed miRNAs regulating a wide variety of targets, thus the modus 

operandi of miRNA clusters is not fully understood.   Individual miRNAs are predicted 

to, and have been found to target a wide array of genes and affect multiple cellular 

functions [41,166].  Based solely on this, a miRNA cluster could potentially target any 

and all cell signaling pathways.  However, bioinformatics, as well as an increasing 

number of molecular biology approaches have parsed out a much more ordered pattern of 

target suppression by miRNA clusters [89-91,133].  miRNA clusters are predicted to 

target interacting members of protein complexes [89], multiple proteins within a single 

pathway or biological process [90,133], or multiple clustered miRNAs may 

simultaneously target and strongly repress a single key regulator of a pathway [167].  In 

this way, rather than the small scale fine tuning of hundreds of targets [87], a cluster 

would provide a large combinatorial impact on an entire biological process or pathway.  

In miRNA clusters comprised of closely related family members, for example both 

clusters of the miR-200 family or many members of C19MC, similar or same seed 

sequences provide a clear mechanism for multiple cluster members to target identical sets 
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of genes [123].  This combinatorial system of multiple clustered miRNAs regulating an 

entire system does not preclude the presence of a single major effector miRNA within a 

cluster regulating a specific pathway [90].  Xu and Wong propose this mechanism for 

cluster mmu-miR-183-96-182, which is predicted to control 12 signaling pathways.  miR-

96 is predicted to target the majority of the genes within these pathways, indicating it as 

the major effector miRNA of this cluster [90].  Cluster 17~92a, is a well-studied 

oncogenic cluster whose most oncogenic member, miR-19, has been experimentally 

validated as the most active player in the oncogenic process [168].  The 25~106b cluster, 

an ortholog of 17~92, significantly down-regulated p53 reporter activity.  We have 

verified that miR-25 directly targets the p53 gene [144].  It is noted that each miRNA in 

the 25~106b cluster is upregulated in multiple myeloma, a cancer with little p53 mutation 

[169]. miR-25 is the most significantly upregulated miRNA in multiple myeloma, and its 

expression is inversely correlated with p53 mRNA levels, suggesting that miR-21 

upregulation could be responsible for p53 inactivation in cancers without p53 mutation 

[144].  How other members of the 25~106b cluster upregulate p53 transactivational 

activities, however, remains elusive. Similarly, we have verified that miR-301a up-

regulates NF-κB by inhibiting Nkrf [142], yet the role of miR-454 (the other member of 

the 301a~454 cluster) in the NF-κB pathway needs further investigation.   

We experimentally pursued the down-regulation of p53 activity by cluster 

200b~429 and demonstrated the direct targeting of p53 by miR-200a. miR-200a and its 

orthologs, miR-200b, miR-200c, and miR-141 were first found tumor suppressors as they 

inhibit EMT through targeting Zeb1 and Zeb2 [115,116].  Recently, studies have begun 

investigating the role of miR-200a in the reverse process, mesenchymal-epithelial 
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transition, which enhances the metastatic potential of cancer cells [123].  Down-

regulation of p53 and subsequently apoptosis and G1 arrest by miR-200a illuminates a 

novel function for this miRNA.  This, coupled with emerging studies that show evidence 

for an oncogenic function for miR-200a and its family members [5,102,162], provides a 

strong foundation for the oncogenic potential of miR-200a.   

While our screen provides new, preliminary experimental data regarding the 

effects of miRNA clusters on TF pathways, there are several limitations that must be 

considered.  First, this screen was performed with a single cell line (293T), which does 

not account for any bias that may arise from tissue or cell-type specific targeting.  

Second, our screen may return false negatives or positives because other cellular changes 

may compromise the luciferase reading.  For example, miR-34c is a tumor suppressor, 

identified as such by its direct targeting and repression of c-Myc [168].  However, cluster 

34bc was not found in this screen to down-regulate c-Myc activity.  Finally, single 

transient transfections of miRNA-containing plasmids do not replicate endogenous 

miRNA levels, which may be subject to further regulation when the entire cluster is 

expressed.  This may bias the screen toward miRNAs that are expressed at low 

endogenous levels. These limitations can be mitigated by further experimental validation 

using multiple cell lines or performing miRNA inhibition experiments [144,146]. 

To summarize, this study provides a panoramic view of miRNA clusters’ effects 

on AP-1, NF-B, c-Myc, and p53 signaling pathways and will serve as a base for 

thoroughly interrogating the contribution of miRNAs in these pathways. 
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CHAPTER III 

THE ROLE OF MIR-200A IN MAMMALIAN EPITHELIAL CELL 

TRANSFORMATION 

Chapter Overview 

Cancer is a multistep disease that begins with malignant cell transformation and 

frequently culminates in metastasis and death.  MicroRNAs (miRNAs) are small 

regulatory 21-25-nt RNA molecules and are frequently dysregulated in cancer.  miR-200a 

is a member of the miR-200 family, which are known to be strong inhibitors of the 

epithelial to mesenchymal transition.  As such, the tumor suppressive role of miR-200a in 

oncogenesis has been well studied; however, recent studies have found a proliferative 

role for this miRNA as well as a pro-metastatic role in the later steps of cancer 

progression.  Little is known about the role of this miRNA in the early stages of cancer, 

namely, malignant cell transformation.  Here we show that miR-200a cooperates with 

Ras to enhance malignant transformation of immortalized mammary epithelial cells.  

Furthermore, miR-200a induces cell transformation and tumorigenesis in 

immunocompromised mice by cooperating with a Ras mutant that activates only the 

RalGEF effector pathway, but not Ras mutants activating PI3K or Raf effector pathways.  

This transformative ability is in accordance with miR-200a targeting Fog2 and p53 to 

activate Akt and directly repress p53 protein levels, respectively.  These results 

 



66 
 

demonstrate a role for miR-200a in malignant cell transformation and provide a specific 

cellular context where miR-200a acts as an oncomiR rather than a tumor suppressor by 

cooperating with an oncogene in the classical two-hit model of malignant cell 

transformation. 

Introduction 

Cancer is an often fatal disease that requires multiple steps to progress from a 

normal state to full phenotypic disease [1,170].  Cancer mortality, while comprising one 

quarter of all deaths in the United States, is declining, due largely to improvements in 

screening and detection.  Diagnosis of early stage cancer is strongly associated with 

better survival [1-3,171].  Thus it is crucial to understand the molecular events that occur 

early in this progressive disease.     

Malignant cell transformation is the initiating step of cancer progression [172].  

During this process, a cell must bypass senescence and avoid apoptosis, allowing for 

uncontrolled proliferation, which leads to formation of a primary tumor [12].  The hyper-

proliferative, anti-apoptotic phenotypes that arise during malignant cell transformation 

are conferred by genetic mutations and abnormalities that upregulate proto-oncogene 

activity and ablate tumor suppressor gene function [173].  The first oncogene/tumor 

suppressor combinations associated with cell transformation were investigated by in an 

attempt to delineate endogenous, non-viral proto-oncogenes [79,81].  The classical model 

of cell transformation identified the cooperation between the Ras and Myc oncogenes in 

selecting for a dominant-negative p53 tumor suppressor mutation and transforming 

primary rodent cells [81].  Numerous transforming oncogenes and tumor suppressor 
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mutations have been identified since these landmark studies [82], demonstrating the 

complexity of cancer initiation. 

Recently, noncoding RNAs, e.g. microRNAs (miRNAs), have garnered interest as 

potent mediators of malignant cell transformation and cancer progression [100,106,129]. 

miRNAs  are a regulatory class of small RNAs that bind the 3’ UTR of target mRNA to 

post-transcriptionally repress gene expression [84]. miRNAs are frequently dysregulated 

in cancer through altered epigenetic modifications, deletions, translocations, and 

amplifications [100,103]. The subsequent changes in expression patterns and/or function 

result in differential repression of target genes. By repressing expression of oncogenes or 

tumor suppressors, a miRNA may function as a tumor suppressor or oncogene, 

respectively [129]. 

Among miRNAs dysregulated in cancer, miR-200a has emerged as a key 

mediator of the oncogenic process, though its overall role during cancer progression is 

not clear.  Gene expression profiling reports that miR-200a is frequently down-regulated 

in cancer, including melanoma, breast, and nasopharyngeal cancers [118,119,121]. Its 

most well studied function is the suppression of Zeb1/2 transcription factors to inhibit the 

epithelial to mesenchymal transition (EMT) and promote a more stable, epithelial 

phenotype [115,124].  EMT is a crucial early step in the progression of transformed 

primary tumor cells into invasive metastatic cells that invade local stroma, travel through 

vasculature, and colonize distant sites in the body [4,174].  These metastases are 

responsible for the gross majority of cancer related deaths [171].  By blocking EMT and 

inhibiting metastasis, miR-200a functions as a tumor suppressor [116,124].   
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However, miR-200a has also been found to promote oncogenesis.  miR-200a is 

overexpressed in several cancers including endometrial, pancreatic, and ovarian cancers 

[105,175,176].  Our studies demonstrate a specific role for miR-200a in early cancer 

progression that may apply to such clinical cases. Recent studies show that mesenchymal 

to epithelial transition (MET), the reversal of EMT, is a later step in metastasis that 

allows motile, invasive cells to revert back to a stable epithelial phenotype more 

conducive to forming new metastatic tumors at distant sites [177].  By inducing an 

epithelial phenotype in this context, miR-200a promotes metastasis [5,123,178]. In 

addition to its involvement in EMT/MET, a limited number of studies have observed a 

hyper-proliferative role for miR-200a including stimulation of PI3K signaling in 

hepatocellular carcinoma cells and up-regulation of miR-200a in a rat model of 

hepatocellular carcinoma [102,179].  My recent study demonstrates the anti-apoptotic 

function of miR-200a due to its direct targeting of p53 [53] (Chapter 2).  In this study, we 

determined the effect of miR-200a overexpression on transformation of rodent cells and 

immortalized human MCF10a cells and characterized the underlying mechanism of the 

ability of miR-200a to cooperate with Ras to transform MCF10a cells.  

Experimental Procedures 

Cell Culture 

Rat kidney epithelial RK3E cells and human embryonic kidney 293T cells 

(American Type Culture Collection, Manassas, VA) were cultured in DMEM media 

supplemented with 10% FBS and antibiotics at 37°C with 5% CO2. Human mammary 

epithelial MCF10A cells were cultured in DMEM/F12 supplemented with 5% horse 
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serum, 20 ng/mL EGF (Invitrogen), 0.5 mg/mL Hydrocortisone (Sigma), 100 ng/mL 

Cholera Toxin (Sigma), 10 ug/mL Insulin (Humulin), and antibiotics at 37°C with 5% 

CO2.  

miRNA Screen 

RK3E cells were transfected using Lipofectamine LTX/Plus reagent according to 

manufacturer instructions with individual miRNAs from our laboratory’s miRNA library 

comprised of 366 human miRNA minigenes in the lentiviral PSIF vector [180].  After 48 

hrs, wells were visually inspected for three dimensional foci formation. 

Transfection and Viral Transduction 

Lipofectamine LTX-plus (Invitrogen) was used for all transfections according to 

manufacturer's instructions.  For lentivirus production, 293T cells were transiently co-

transfected, 24hrs post plating in 6-well plates, with 2µg of pSIF vector, or miRNA, 

1.4µg of pVGV-S and 0.7µg of pFIV-34N packing and expression vectors, respectively.  

Lentivirus-containing supernatant was collected after 48 hours, centrifuged to remove 

cellular debris, and supplemented with 8 µg/mL Polybrene (American Bioanalytical) 

before transducing target MCF10A or RK3E cells.  For retrovirus production, 3 µg of the 

retroviral vectors containing constitutively active RasG12V mutant (Addgene plasmid 

1768), c-Myc (Myc construct from Addgene plasmid 16011 cloned into plasmid 12269), 

p53dd (Addgene plasmid 9058), or RasG12V effector pathway mutants (Addgene 

plasmids 12274, 12275, 12276) [18] were transfected into Phoenix-Ampho cells, and 

virus collection and transduction were performed as for Lentivirus.  G418 (200 µg/mL), 

Puromycin (1 µg/mL), or Hygromycin (8 µg/mL) were used to select for positively 
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transduced cells.  Cells were transduced three timesmiR-200a expression levels, as 

measured by Taq-Man QRT-PCR expression assay (Invitrogen), ranged from a 5 to 15 

fold increase above vector control (Data not shown).     

Acini Formation in Matrigel 

Matrigel (Corning) was used to coat the well bottoms of a 12-well chamber slide 

(Ibidi).  5,000 positively drug-selected exponentially growing MCF10A cells suspended 

in 2% Matrigel were layered over top of the first Matrigel layer and allowed to grow 5 or 

14 days.  Acini were fixed with ethanol while still in Matrigel to prevent disruption of 

morphology, blocked with goat serum and incubated first with anti-E Cadherin or 

Cleaved caspase-3 antibodies (Cell Signaling) overnight at 4° and then Alexa488-coupled 

goat anti-rabbit secondary antibodies for 2 hrs room temperature.  Slides were visualized 

by confocal microscopy. 

Colony formation assay 

Six well plates were coated with a bottom layer of 0.5% noble agar (Sigma-

Aldrich) and 2000 RK3E or MCF10A cells were suspended in a top layer of 0.2% noble 

agar in triplicate. The cells were maintained at 37˚C in a humidified 5% CO2 atmosphere 

for two weeks. Fresh media was added at regular intervals to prevent the plates from 

drying out.  Resulting colonies were stained with 0.05% Crystal Violet and destained 

with water.  Colonies were counted and imaged using a dissection microscope coupled to 

a digital microscope imager (Celestron).  The experiment was performed three times, 

once for each level. 
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Cell Cycle Analysis 

For synchronization, MCF10A cells were progressively deprived of serum and 

growth factors over 24 hours, then stimulated with complete media for 18 hours.  Cells 

were collected by trypsinization and washed twice in 1X PBS. Cells were fixed in 1ml of 

ice-cold 70% ethanol at 4˚C overnight. Cells were then washed twice with 1X PBS and 

stained with a solution of 50 µg/ml Propidium Iodide, 100 µg/ml Ribonuclease A, and 

0.2% Triton X-100 diluted in PBS for 30 mins at 4˚C.  Flow cytometry was performed 

with a FACScan Flow Cytometer.  A minimum of 10,000 cells per sample were collected 

and the FACS files were analyzed using FlowJo software (Tree Star Inc.) for cell cycle 

analysis [28]. 

Cell Migration 

Transwell (Boyden) chambers (Invitrogen, Carlsbad, CA), with a pore size of 

8µm, were placed in triplicate into 12-well plates.  Complete MCF10A media, which 

served as a chemoattractant, was added to wells beneath the Transwell chamber.  D283 

cells (1×104) in low serum media were added to the Transwell chamber and the plates 

were then incubated at 37˚C in a humidified 5% CO2 atmosphere for 24 hrs. The cells 

were fixed with methanol for 10 mins and stained with 0.4% crystal violet for 2 hrs. Non-

migrated cells on the upper side of the filter were removed with a cotton swab, and the 

filter was mounted on microscope glass slides.  Slides were imaged using a dissection 

microscope coupled to a digital microscope imager (Celestron). 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0048474#pone.0048474-Kumar1
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Western Blot 

Total protein was isolated from cells in 6-well plates using RIPA (Cell Signaling). 

Protein concentration was measured using a BCA kit (Pierce). 30–50 µg of protein were 

separated on 12% to 15% Bis-Tris polyacrylamide gels (Bio-Rad) and then transferred to 

PVDF membranes (Bio-Rad). Protein membranes were incubated in blocking buffer (1× 

Tris-buffered saline, pH 7.5, 5% nonfat dried milk, 0.05% Tween 20) for 2 hours at room 

temperature, followed by phospho-p53, p53, PTEN, phospho-Akt, Akt, phospho-Erk, or 

Erk antibody (Cell Signaling), Fog2 antibody (Santa Cruz Biotechnology) or β-actin 

antibody (Sigma-Aldrich) overnight at 4°C. The membranes were washed with 1× Tris-

buffered saline containing 0.05% Tween 20, incubated with horseradish peroxidase-

linked goat anti-mouse Ig (Santa Cruz) or goat anti-Rabbit Ig (Cell Signaling) for 1 hour 

at room temperature, washed, and visualized with the SuperSignal West Dura 

Chemiluminescent Substrate kit (PIERCE). 

Mice 

Athymic male nude (Foxn1nu/Foxn1nu) mice (5 weeks old) were purchased from 

The Jackson Laboratory (Bar Harbor, ME) and maintained in the University of 

Louisville’s AAALAC-accredited animal facility. All animal studies were conducted in 

accordance with National Institutes of Health animal use guidelines, and a protocol 

approved by the University of Louisville’s Institutional Animal Care and Use Committee. 

Exponentially growing cells were harvested and injected subcutaneously (5.0x105 

cells/animal) into nude mice (six per group).  Each mouse was injected in each flank with 

MCF10A cells stably over-expressing a Ras effector mutant alone in one flank, and 
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MCF10A cells stably over-expressing the same Ras effector mutant in combination with 

miR-200a in the other flank.  Side of injection was randomized.  Tumor size was 

monitored once per week for 10 weeks before sacrificing.  Tumors were harvested and 

immediately formalin fixed.  Tumors were embedded in paraffin, and tissue sections were 

stained with hematoxylin and eosin. 

Statistical Analysis 

Colony formation data was analyzed by multivariate analysis of variance 

(MANOVA) with T tests post hoc to look for individual effects with standard errors 

corrected for multiple comparisons.  Cell proliferation data were analyzed by linear 

regression modeling with T tests post hoc to determine individual effects using standard 

errors corrected for multiple comparisons.  Cell Cycle Distribution was analyzed by 

generalized linear models comparing G1 to combined S/G2 phases with binomial 

response variables and parameters estimated by maximum likelihood.  Log odds ratios 

were further analyzed by T tests post hoc to evaluate individual effects using standard 

errors corrected for multiple comparisons.  
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Group 1 Group 2 colonies t value p value 

 vector miR-200a 3.33E-01 4.05E-02 4.84E-01 

 vector Ras 6.40E+01 7.77E+00 2.69E-07 *** 

vector cMyc 1.37E+01 1.66E+00 5.76E-02 

 vector p53dd 2.30E+01 2.79E+00 6.24E-03 ** 

vector Ras + cMyc 1.10E+01 1.89E+00 3.80E-02 * 

vector miR-200a + Ras 1.45E+02 1.24E+01 2.93E-10 *** 

vector miR-200a + cMyc -1.30E+01 -1.12E+00 8.60E-01 

 

vector 

miR-200a + 

p53dd -5.67E+00 -4.87E-01 6.84E-01 

 miR-200a miR-200a + Ras 2.09E+02 1.79E+01 8.86E-13 *** 

Ras miR-200a + Ras 1.45E+02 1.25E+01 2.82E-10 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

   

Table 3.  Statistical Analyses of colony formation in soft agar:  miR-200a, oncogenes. 

MCF10A cells stably overexpressing miR-200a alone or in combination with the 

indicated oncogenes. 

 

MCF10A COLONY FORMATION ASSAY - miR-200a + Oncogenes 

 

Coefficients: (1 not defined because of singularities) 

                  Estimat Error t value Pr(>|t|) 

(Intercept)      -1.023e-14  5.821e+00   0.000    1.000     

miR200a           3.333e-01  8.233e+00   0.040    0.968     

ras               6.400e+01  8.233e+00   7.774 3.68e-07 *** 

cmyc              1.367e+01  8.233e+00   1.660    0.114     

p53dd             2.300e+01  8.233e+00   2.794    0.012 *   

ras:cmyc         -6.667e+01  1.164e+01  -5.726 1.98e-05 *** 

miR200a:ras       1.447e+02  1.164e+01  12.425 2.87e-10 *** 

miR200a:cmyc     -1.300e+01  1.164e+01  -1.117    0.279     

miR200a:p53dd    -5.667e+00  1.164e+01  -0.487    0.632     
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Group 1 Group 2 colonies t value p 

value 

 

vector miR-200a 2.33E+00 2.18E-01 0.415  

vector E37G 5.67E+00 5.31E-01 0.301  

vector T35S 2.33E+00 2.18E-01 0.415  

vector Ras 1.16E+02 1.09E+01 0.000 *** 

vector Y40C 1.80E+01 1.69E+00 0.055  

vector miR-200a + E37G 4.33E+01 2.87E+00 0.005 ** 

vector miR-200a + T35S 9.33E+00 6.18E-01 0.272  

vector miR-200a + Y40C 2.33E+00 1.55E-01 0.440  

miR-200a + 

E37G 

miR-200a 4.90E+01 3.24E+00 0.002 ** 

miR-200a + 

E37G 

E37G 4.57E+01 3.02E+00 0.004 ** 

miR-200a + 

T35S 

miR-200a 1.17E+01 7.73E-01 0.225  

miR-200a + 

T35S 

T35S 1.17E+01 7.73E-01 0.225  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05    

 

Colony formation - miR-200a + Ras Effector Mutants 

 

Coefficients: (1 not defined because of singularities) 

                  Estimate Std. Error t value Pr(>|t|)     

(Intercept)     -1.641e-14  7.551e+00   0.000   1.0000     

miR200a          2.333e+00  1.068e+01   0.218   0.8295     

rase37g          5.667e+00  1.068e+01   0.531   0.6022     

rast35s          2.333e+00  1.068e+01   0.218   0.8295     

raswt            1.160e+02  1.068e+01  10.862 2.47e-09 *** 

rasy40c          1.800e+01  1.068e+01   1.685   0.1092     

miR200a:rase37g  4.333e+01  1.510e+01   2.869   0.0102 *   

miR200a:rast35s  9.333e+00  1.510e+01   0.618   0.5443     

miR200a:raswt           NA         NA      NA       NA     

miR200a:rasy40c  2.333e+00  1.510e+01   0.154   0.8789 

Table 4  Statistical Analyses of colony formation in soft agar: miR-200a, Ras mutants.  

MCF10A cells stably overexpressing miR-200a alone or in combination with the 

indicated Ras effector mutants. 
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Group 1 Group 2 Slope t value p value  

vector miR-200a 0.105455 3.052862 0.001939 *** 

vector Ras 0.13628 16.74201 0 *** 

vector miR-200a + Ras 0.014801 1.285814 0.102695 *** 

miR-200a + 

Ras 

miR-200a 0.009257 0.267985 0.394996  

miR-200a + 

Ras 

Ras -0.02157 -1.87369 0.96611  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05   

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell Proliferation Curve 

 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|)     

(Intercept)       0.116063   0.020842   5.569 1.54e-06 *** 

time              0.070912   0.006865  10.330 3.19e-13 *** 

time:miR200a      0.034543   0.008140   4.244 0.000115 *** 

time:ras          0.065368   0.008140   8.031 4.29e-10 *** 

time:miR200a:ras -0.056111   0.011511  -4.874 1.53e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.08805 on 43 degrees of freedom 

Multiple R-squared:  0.9309,    Adjusted R-squared:  0.9245  

F-statistic: 144.9 on 4 and 43 DF,  p-value: < 2.2e-16 

 

Table 5.  Statistical Analysis of Cell Proliferation Data.  MCF10A cells stably 

overexpressing miR-200a alone or in combination with Ras.  
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Group 1 Group 2 log odds 

estimate 

Fold Change z value p value 

vector miR-200a -0.22044 0.802165767 -9.1659 0.00003 

vector Ras -0.04985 0.95137212 -2.23643 0.01266 

vector cMyc -0.51718 0.596199462 -24.0214 0.00003 

vector p53dd -0.46435 0.628543526 -19.726 0.00003 

vector Ras + cMyc 2.7934 16.33646948 93.29993 0.99997 

vector miR-200a + 

Ras 

2.2798 9.774725269 70.16928 0.99997 

vector miR-200a + 

cMyc 

2.12701 8.389743937 67.73917 0.99997 

vector miR-200a + 

p53dd 

1.77622 5.907483872 53.82485 0.99997 

miR-200a 

+ Ras 

miR-200a 0.26847 1.307961738 8.263158 0.99997 

miR-200a 

+ Ras 

Ras 0.09788 1.102830438 3.012619 0.9987 

 

 

 

 

 

Table 6.  Statistical Analyses of Cell Cycle Data.  MCF10A cells stably 

overexpressing miR-200a alone or in combination with the indicated oncogenes. 

CELL CYCLE DATA 

 

Coefficients: (1 not defined because of singularities) 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)       0.98074    0.01762   55.66   <2e-16 *** 

miR200a          -1.20118    0.02405  -49.94   <2e-16 *** 

ras              -1.03059    0.02229  -46.23   <2e-16 *** 

cmyc             -1.49792    0.02153  -69.56   <2e-16 *** 

p53dd            -1.44509    0.02354  -61.40   <2e-16 *** 

ras:cmyc          1.81266    0.02994   60.53   <2e-16 *** 

miR200a:ras       1.29906    0.03249   39.99   <2e-16 *** 

miR200a:cmyc      1.14627    0.03140   36.51   <2e-16 *** 

miR200a:p53dd     0.79548    0.03300   24.10   <2e-16 *** 
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Results 

miR-200a transforms immortalized rat epithelial cells 

The RK3E cell line is an E1A-immortalized rat kidney epithelial cell line, whose 

defining characteristic is monolayer growth under normal conditions, and foci formation 

under transforming conditions such as Ras activation or Myc overexpression [181-183]. 

In order to determine the role of miRNAs in cell transformation, RK3E cells were 

transiently transfected with individual miRNAs from our library of 366 miRNA genes 

[180] and visually screened for foci formation (Figure 9A).  A construct expressing c-

Myc was used as a positive control [154]. Negative vector control-expressing cells 

formed no foci.  Of the 366 miRNAs screened miR-141 and let-7e formed about the same 

number of foci as c-MYC, and miR-200a formed more foci than c-Myc.  These three 

miRNAs were selected for an ensuing stringent cell transformation experiments.  We 

stably infected RK3E cells with lentivirus made from each of these three miRNAs or 

vector control and assayed them for anchorage-independent growth in soft agar.  All three 

miRNAs induced colony formation in soft agar (Figure 9B).   

In order to determine tumorigenicity of these miRNAs, RK3E cells stably 

expressing each of these miRNAs were subcutaneously injected into nu/nu mice.  Cells 

expressing miR-141 or miR-200a formed orthotopic subcutaneous tumors (Figure 10), 

but let-7e-expressing cells did not produce tumors (data not shown).  miR-200a and miR-

141 are family members with identical seed sequences, thus miR-200a alone was 

analyzed further.   
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To determine potential mechanisms underlying this cell transformation, we 

analyzed the expression of miR-200a target genes [102,184-186].  Consistent with the 

literature, Western blot analyses showed that in RK3E cells expressing miR-200a, the 

epithelial marker, E-cadherin, was up-regulated, and the mesenchymal marker, Vimentin, 

was down-regulated compared to vector control (Figure 11A).  Furthermore, expression 

of the negative regulators of the PI3K/Akt pathway, Fog2 and Pten, was down-regulated, 

concomitant with an increase in Akt phosphorylation (Figure 11B). 

We next determined whether miR-200a acts as a driving force in cell 

transformation. We employed the classical two-hit model of primary rodent cell 

transformation by combining miR-200a with Ras, c-Myc, or p53dd in mouse embryonic 

fibroblasts (MEFs).  miR-200a overexpression in MEFs induces an initial increase in 

proliferation; however, miR-200a expression alone, or in combination with either Ras or 

c-MYC was unable to transform MEFs (data not shown).  p53dd is known to immortalize 

MEFs, however miR-200a was unable to cooperate with this tumor suppressor mutation 

to transform these cells. Ras and Myc coexpression was able to transform primary MEFs.  

Taken together, these results suggest that other genetic pathways active in RK3E cells, 

but not in primary MEFs, are involved in miR-200a-mediated cell transformation and that 

miR-200a is not a strong transforming component of the classical two-hit murine model. 
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Figure 9.  miR-200a transforms RK3E cells. 

 

 

366 miRNAs A 

B 

vector let-7e 

miR-200a miR-141 

Figure 9.  miR-200a transforms RK3E cells.  (A)  Schematic of foci formation induced by transient 

transfection of individual miRNA from our library of 366 miRNA minigenes.  (B)  Phase contrast 

microscopy of 3-dimensional colonies formed in soft agar by RK3E cells stably overexpressing the 

indicated miRNAs.  Red arrowheads indicate colonies. 
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Figure 10. miR-200a induces tumorigenesis of RK3E cells in 

immunocompromised mice 

  miR-141                     miR-200a                   vector 

Figure 10.  miR-200a induces tumorigenesis of RK3E cells in 

immunocompromised mice.  Subcutaneous tumor formation of RK3E cells 

overexpressing the indicated miRNAs   
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   vector    miR-200a  

 vector      miR-200a   
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Figure 11.  miR-200a regulates EMT and stimulates Akt activity. 

Figure 11.  miR-200a regulates EMT and stimulates Akt activity.   

(A)  Western blot for the mesenchymal marker Vimentin and the epithelial marker, E. Cadherin in 

RK3E cells lenti-virally infected with miR-200a or empty vector control.  (B)  Western blot for 

members of the Akt activation pathway in RK3E cells. 
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miR-200a augments Ras transformation of immortalized human mammary 

epithelial cells. 

In order to determine the role of the proliferative effects of miR-200a in human 

cells, we chose the immortalized yet untransformed mammary epithelial cell line, 

MCF10A, from a patient with fibrocystic disease [187].  This cell line is readily 

transformed by overexpression of Ras or Myc, and normal morphology in three-

dimensional cell culture is disrupted by loss of p53 signaling [188-190].  Consistent with 

our efforts to determine oncogenic cooperativity, we stably infected this cell line with 

miR-200a alone, or in combination with Ras, c-MYC, or p53dd.  The Ras construct 

harbors a G12V mutation, rendering it constitutively active.  p53dd is a truncated form of 

the carboxy terminus of the p53 protein that binds wild type p53, resulting in a dominant 

negative repression of p53 function [191].  To test for transformation, cells were assayed 

for anchorage-independent growth in soft agar (Figure 12, 13).  miR-200a alone did not 

transform MCF10A cells.  When miR-200a was expressed in combination with c-Myc or 

p53dd, colony formation was not significantly increased compared with that of either 

oncogene alone.  However, colony formation increased more than three times in cells 

expressing miR-200a in combination with Ras than that in cells expressing Ras alone 

(Figure 13).  Coexpression of Ras and c-Myc induced colony formation, but surprisingly, 

their combined effects were not synergistic, that is, their combined effect did not show an 

increase greater than the addition of both oncogene’s individual effects.  MF10A cells 

expressing miR-200a at 5-fold, 10-fold, and 15-fold increases above vector control were 

transduced with empty vector or Ras, and assayed for colony formation.  There was no 

difference in the number of colonies formed in response to varying levels of miR-200a 
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expression (Data not shown).  Cells with a 10-fold increase in miR-200a expression were 

used for subsequent experiments. 

miR-200a synergizes with Ras to inhibit apoptosis. 

We next analyzed these cells for changes in cell cycle progression (Figure 14, 15).  

Compared to vector control, all experimental groups caused a decrease in G1 arrest.  

Consistent with its effects on colony formation, Ras and Myc coexpression had the 

smallest effect, decreasing G1 arrest from 70.93% to 55.52%.  Compared to p53dd  

alone, miR-200a in combination with p53dd  caused the greatest increase in cell cycle 

progression, decreasing G1 arrest from 38.48% to 28.88%.  Surprisingly, G1 arrest was 

unchanged between cells expressing Ras alone, and miR-200a in combination with Ras.  

Furthermore, compared to miR-200a alone, G1 arrest in cells expressing miR-200a 

combination with Ras increased from 43.83% to 50.15%.  Compared to cMyc alone, 

miR-200a with cMyc did not change G1 arrest levels. This indicates that induction of cell 

cycle progression is not responsible for the combinatorial effect between Ras and miR-

200a on cell transformation. We next generated a cell proliferation curve in order to 

compare growth rates of cells expressing miR-200a alone and cells expressing miR-200a 

in combination with Ras (Figure 16).  miR-200a alone and in combination with Ras 

significantly increased proliferation compared to vector control; however, miR-200a 

combined with Ras did not significantly increase proliferation compared to miR-200a 

alone.  Ras alone showed the greatest increase in proliferating cells.  This indicates that 

stimulation of proliferation is not responsible for the interactive effect between Ras and 

miR-200a, and that Ras is unable to enhance the proliferative function of miR-200a. 
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We next examined these cells for changes in migratory ability, a cancer hallmark, 

and a phenotype frequently regulated by miR-200a and its family members.  miR-200a 

decreased trans-well cell migration of MCF10A cells compared to vector control (Figure 

17).  Ras alone greatly increased cell migration above vector control.  Cells expressing 

Ras in combination with miR-200a also showed decreased migration compared to Ras 

alone; however, these cells formed dense, three-dimensional colonies before and after 

migrating.  Inhibition of cell migration is consistent with the literature and miR-200a’s 

established function in regulation of EMT [124,186]. 

 When seeded in Matrigel extracellular matrix, MCF10A cells grow to form 

polarized acinar structures with a distinct hollow lumen, which resembles normal breast 

tissue development [190].  To gain insight into the potential effects of the cooperation of 

miR-200a with Ras on cell growth and morphology in the context of acinar structure 

formation, we seeded cells in Matrigel, and analyzed three dimensional acinus formation 

by confocal microscopy (Figure 18).  Acini were examined for changes in three 

characteristics:  morphology, E-Cadherin expression, and cleaved Caspase-3 expression.  

Acini were stained for E-Cadherin to facilitate inspection of morphological and structural 

changes, as well as changes in E-Cadherin expression and subcellular localization (Figure 

19). Vector control cells formed regular spherical structures with hollow lumen.  Cells 

expressing miR-200a alone formed regular spherical structures, with and without regular 

lumen clearance.  Cells expressing Ras alone formed very irregular and lobular three 

dimensional structures with loosely packed cells and partial lumen clearance.  Cells 

expressing miR-200a in combination with Ras formed densely packed, slightly irregular 

spherical structures with no lumen clearance.  Notably, in acini expressing Ras alone, or 
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Ras with miR-200a, E-cadherin was localized diffusely in the cytoplasm, rather than at 

the plasma membrane.  This is consistent with studies showing disruption of normal 

adherens junctions in transformed cells, and sequestering of E-Cadherin away from the 

plasma membrane in the cytoplasm [192,193].  In order to determine whether the cause 

of the loss of lumen clearance in response to miR-200a expression was loss of apoptosis, 

we examined levels of cleaved Caspase-3 in matrigel-seeded cells allowed to grow as 

acini for 3 days (Figure 18).  Acini containing vector or miR-200a expressed high levels 

of cleaved Caspase-3 and showed normal lumen clearance.  This is in contrast to the loss 

of lumen clearance in acini expressing miR-200a after seven days (data not shown).  

Acini expressing Ras alone formed lobular structures at 3 days, and expressed lower 

levels of cleaved Caspase-3.  Acini structures expressing Ras in combination with miR-

200a showed tightly packed structures with no lumen clearance, and little to no cleaved 

Caspase-3. Taken together, these results indicate that miR-200a alone decreases lumen 

clearance by increasing proliferation without decreasing apoptosis (Figures 16 and 19); 

however, miR-200a synergizes with Ras to inhibit apoptosis as evidenced by the dramatic 

reduction of cleaved Caspase-3 (Figure 19). 
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Figure 12.  miR-200a augments Ras-induced malignant cellular transformation. 

Figure 12.  miR-200a augments Ras-induced malignant cellular transformation.   

Soft agar colony formation:  bright field microscopy of MCF10A cells stably infected with the 

indicated oncogenes alone (left panels) or in combination with miR-200a (right panels). 
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Figure 13.  miR-200a augments Ras-induced malignant cellular transformation-

quantification. 
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Figure 13.  miR-200a augments Ras-induced malignant cellular transformation. 

Quantification of soft agar colony formation in Figure 12; 2000 MCF10A cells stably 

infected with miR-200a and the indicated oncogenes were plated in triplicate.  The 

data represents means of three independent experiments +/- standard error.   

* p ≤ 0.05 compared to vector control, † p ≤ 0.05 compared to miR-200a,  

¥ p ≤ 0.05 compared to Ras.  
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miR-200a + p53dd 
Freq. G1  = 28.88 
Freq. S = 46.43 
Freq. G2  = 22.69 

p53dd 
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Figure 14.  miR-200a increases cell cycle progression, but not in combination with 

oncogenes. 

Figure 14.  miR-200a increases cell cycle progression, but not in combination with oncogenes.   

Representative histograms of cell cycle distributions of MCF10A cells infected with the indicated 

oncogenes alone or in combination with miR-200a. 
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Figure 15.  miR-200a increases cell cycle progression alone, not synergistically 

with oncogenes. 

Figure 15.  miR-200a increases cell cycle progression alone, not synergistically 

with Ras.  Quantification of cell cycle distribution in Figure 6; MCF10A cells infected 

with the indicated oncogenes alone or in combination with miR-200a. 

* p ≤ 0.05 compared to vector control, † p ≤ 0.05 compared to miR-200a,  

¥ p ≤ 0.05 compared to Ras.  P-values calculated for cell cycle progression out of G1 

phase. 
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Figure 16.  miR-200a mediated increase in proliferation is not enhanced by Ras. 
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Figure 16.  miR-200a mediated increase in proliferation is not enhanced by Ras.  

Cell proliferation curve of MCF10A cells infected with miR-200a, Ras, or miR-200a 

in combination with Ras.  Cell proliferation assayed by MTT assay.  Cells were plated 

in triplicate; data are means of three independent experiments +/- standard error. 

* p ≤ 0.05 compared to vector control, † p ≤ 0.05 compared to miR-200a,  

¥ p ≤ 0.05 compared to Ras.   
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Figure 17.  miR-200a inhibits cell migration. 

 

Figure 17.  miR-200a inhibits cell migration.  Transwell cell migration of MCF10A 

cells infected with miR-200a, Ras, or miR-200a in combination with Ras and stained 

with crystal violet. 
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Figure 18.  MCF10A cells form hollow acini in Matrigel 3 dimensional culture. 

 

Figure 18.  MCF10A cells form hollow acini in Matrigel 3 dimensional culture.  

Upper left:  Schematic of three dimensional acinus formed by MCF10A cells in 

Matrigel.  Black line indicates equatorial confocal plane of focus.  Upper right:  

Schematic of hollow lumen visualized by confocal microscopy focused at center line 

depicted in left diagram.  Lower:  representative image of acinar structures formed 

after 14 days in Matrigel by MCF10A stably infected with vector control. 
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Figure 19.  miR-200a cooperates with Ras to inhibit apoptosis. 
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  Figure 19.  miR-200a cooperates with Ras to inhibit apoptosis.  Three dimensional 

acinar formation after 5 days in Matrigel; MCF10A cells infected as indicated, stained 

for E-Cadherin (green, left panels) and cleaved Caspase-3 (red, right panels). 
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miR-200a cooperates with the RalGEF Ras effector pathway 

Ras activity results in the activation of a wide array of downstream signaling 

pathways; however, the three main effectors that are activated by Ras are Raf, PI3K, and 

RalGEF [29].  We made use of three Ras mutants to determine the mechanism behind 

miR-200a cooperating with Ras to increase MCF10A cell transformation.  The T35S 

point mutation allows for activation of only the Raf-Erk effector pathway; the Y40C 

point mutation allows for activation of only the PI3K effector pathway, and the E37G 

point mutation allows for activation of only the RalGEF effector pathway (Figure 20).  

We expressed miR-200a along with each of these individual effector pathway mutations 

to determine which pathway miR-200a specifically cooperates with and assayed them for 

anchorage-independent growth in soft agar (Figure 21, 22).  Compared to T35S alone, 

miR-200a in combination with T35S caused a small, but insignificant increase in colony 

formation.  miR-200a in combination with Y40C did not cause an increase in colony 

formation compared to Y40C alone.  miR-200a caused a significant ten-fold increase in 

cells expressing both E37G and miR-200a compared to cells expressing E37G alone.  

Notably, un-mutated Ras formed more colonies than any of the effector mutants alone or 

combined with miR-200a, indicating that while miR-200a synergizes with the E37G 

mutant to enhance cell transformation, these two hits do not completely recapitulate the 

full effect of Ras. 

We next analyzed MCF10A cells expressing Ras effector mutants alone or in 

combination with miR-200a for changes in cell cycle progression (Figure 23).  T35S 

significantly decreased G1 phase arrest, but when miR-200a was added, the effect was 

ablated.  Y40C alone, or in combination with miR-200a did not show any change in cell 
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cycle progression, consistent with the lack of effect on colony formation.  E37G alone 

induced a modest but significant increase in G1 phase arrest.  However, E37G in 

combination with miR-200a significantly decreased G1 phase arrest, compared to both 

vector control and E37G alone, indicating that miR-200a induction of cell cycle 

progression contributes to its cooperation with RalGEF signaling in cell transformation. 

 We next analyzed the three dimensional growth in Matrigel of MCF10A cells 

expressing E37G or T35S Ras effector mutants alone and in combination with miR-200a 

to determine changes in structure and apoptosis (Figure 24).  Cells expressing E37G Ras 

mutant alone formed regular, round acini with hollow lumen, but had lower levels of 

cleaved Caspase-3 than the vector control (Figure 19,24).  When miR-200a was added, 

cells expressing E37G Ras mutant formed large, irregularly shaped structures with tightly 

packed cells and diffuse E-Cadherin staining; punctate cleaved Caspase-3 was visible 

throughout the structures, along with apoptotic cells; however, no lumen clearance was 

observed, similar to Ras alone.   Cells expressing T35S Ras mutant alone formed regular 

spherical acini with strong plasma membrane localization of E-Cadherin; cleaved 

Caspase-3 staining showed uncompromised apoptosis levels in these acinar structures, 

however, no lumen clearance was observed, possibly due to slower growth.  Cells 

expressing T35S in combination with miR-200a formed irregular acinar structures, most 

without lumen clearance; structures that did exhibit lumen clearance were part of larger, 

lobular structures, indicating irregular growth despite lumen clearance; plasma membrane 

localization of E-Cadherin was retained, and structures showed low levels of cleaved 

Caspase-3 staining.   
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These results indicate that miR-200a cooperates with E37G mutant to disrupt 

acinar growth; however, the change in acinar structure is likely due to increased 

proliferation rather than a change in apoptosis compared to E37G alone.  These effects 

were not seen when miR-200a was added to T35S, demonstrating that miR-200a does not 

cooperate with or enhance the effects of Raf signaling on acinar morphology.  Taken 

together, this strongly implicates physiological significance for the interaction between 

miR-200a and E37G.  
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Figure 20.  Ras effector pathways. 

Figure 20.  Ras effector pathways.  Schematic of the 3 main effector pathways of 

Ras.  Indicated on the leftmost arrows are the activating point mutations that allow for 

activation of only that pathway.   
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Figure 21.  miR-200a cooperates with the RalGEF pathway to increase cell 

transformation. 
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  Figure 21.  miR-200a cooperates with the RalGEF pathway to increase cell 

transformation.  Soft agar colony formation assay of MCF10A cells stably infected 

with the indicated Ras effector mutants alone (left panels) or in combination with 

miR-200a (right panels) compared to constitutively activated Ras (bottom left panel).   
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Figure 22.  miR-200a cooperates with RalGEF pathway activation.   

Figure 22.  miR-200a cooperates with RalGEF pathway activation.  Quantification 

of soft agar colony formation in Figure 13; MCF10A cells stably infected with miR-

200a alone or in combination with the indicated Ras effector pathway mutants.  Cells 

were plated in triplicate.  Data represent means of three independent experiments +/- 

standard error. 

* p ≤ 0.05 compared to vector control, † p ≤ 0.05 compared to miR-200a,  

€ p ≤ 0.05 compared to E37G.   
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 Figure 23.  miR-200a cooperates with the RalGEF pathway to induce cell cycle 

progression.   
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Figure 23.  miR-200a cooperates with the RalGEF pathway to induce cell cycle 

progression.   Cell cycle distribution analyzed by flow cytometry; MCF10A cells 

infected with the indicated oncogenes alone or in combination with miR-200a. 

* p ≤ 0.05 compared to vector control, € compared to E37G.  P-values calculated for 

cell cycle progression out of G1 phase. 
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Figure 24.  miR-200a cooperates with RalGEF signaling to disrupt acinar growth. 
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  Figure 24.  miR-200a cooperates with RalGEF signaling to inhibit apoptosis and 

induce proliferation.  Three dimensional acinar formation after five days in Matrigel; 

MCF10A cells infected as indicated, stained for E-Cadherin (green, left panels) and 

cleaved Caspase-3 (red, right panels). 
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miR-200a stimulates Akt and suppresses p53. 

To further elucidate the mechanism of miR-200a in malignant cell transformation, 

we analyzed MCF10A cells either transiently (Figure 25A) or stably (Figure 25B) over-

expressing miR-200a for known targets as well as potential downstream effectors.  

Similar to RK3E cells, Fog2 expression is decreased in MCF10A cells expressing miR-

200a, accompanied by an increase in Akt phosphorylation.  However, the miR-200a 

target Pten is not down-regulated in MCF10A cells.  We also analyzed p53 levels in 

unchallenged and Doxorubicin-challenged MCF10A cells to determine the effect of miR-

200a in the apoptotic response.  In unchallenged cells, basal levels of p53 were 

unchanged between vector control and miR-200a expressing cells.  In response to 

Doxorubicin, p53 protein expression and phosphorylation increased in vector control 

cells, but not in cells expressing miR-200a.  Because of the involvement of miR-200a in 

the Akt pathway and its cooperation with the RalGEF pathway, we also analyzed protein 

expression and phosphorylation levels of Erk, the third Ras effector pathway.  In cells 

transiently expressing miR-200a, Erk expression and phosphorylation levels decreased 

compared to vector control; however, in cells stably expressing miR-200a, expression 

and phosphorylation levels of Erk were unchanged, indicating that miR-200a does not 

affect the Raf effector pathway of Ras. 
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Figure 25.  miR-200a stimulates Akt signaling and inhibits p53.   

Figure 25.  miR-200a stimulates Akt signaling and inhibits p53.  (A) Western Blot 

of MCF10A cells transiently transfected with miR-200a.  (B) Western Blot of 

MCF10A cells stably infected with miR-200a. 
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miR-200a synergizes with the RalGEF signaling pathway to induce tumorigenesis. 

We subcutaneously injected immunocompromised nude mice with MCF10A cells 

expressing miR-200a in combination with the T35S mutant, or with the E37G mutant and 

histologically analyzed resulting tumors [194].  MFC10A cells expressing miR-200a in 

combination with the E37G mutant were the only cells that formed subcutaneous tumors 

(Figure 26).    Transformed MCF10A cells recapitulate human proliferative mammary 

disease in subcutaneous tumors in nude mice [188]; thus we stained tumor sections with 

H&E and histologically examined them for abnormal tissue structures (Figure 27).  All 

tumors were vascularized, regardless of size (Figure 27A), and duct formation was either 

absent (Figure 27C) or severely abnormal (Figure 27B).  Defined structures of dense 

connective tissue were present with intermittent sections of loose connective tissue that 

infrequently contained small structures resembling ducts, but without regular epithelial 

lining (Figure 27B). The highly irregular tissue structure and loss of normal duct 

formation resembles the histology seen in invasive carcinoma of human mammary 

proliferative disease.  The severity of tissue architecture disruption indicates the strong 

potential of the interaction between miR-200a and the RalGEF pathway to contribute to 

cancer initiation and tumorigenesis.  
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Figure 26.  miR-200a cooperates with the RalGEF pathway to induce 

tumorigenesis in immunocompromised mice. 

Figure 26.  miR-200a cooperates with the RalGEF pathway to induce 

tumorigenesis in immunocompromised mice.  (A) Average tumor size after 10 

weeks in nude mice subcutaneously injected with the indicated Ras effector pathway 

mutants alone or in combination with miR-200a.  (B)  Representative images of tumor 

formation.  Each mouse was injected in each flank with MCF10A cells stably over-

expressing a Ras effector mutant alone in one flank, and MCF10A cells stably over-

expressing the same Ras effector mutant in combination with miR-200a in the other 

flank.  N=6 for each group. 
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Figure 27.  miR-200a cooperates with the RalGEF pathway to induce tumor 

pathology resembling invasive human proliferative breast disease. 
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  Figure 27.  miR-200a cooperates with the RalGEF pathway to induce tumor 

pathology resembling invasive human proliferative breast disease.   

A, B, C. Representative H&E staining of tumors formed by E37G+miR-200a 

MCF10A cells.  Tissue structures resembling human mammary histology are labeled 

as follows:  B:  blood vessel, L: Loose connective Tissue, D:  Dense connective tissue, 

Dt: Duct. 
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Discussion  

miR-200a and EMT 

miR-200a was originally studied as a tumor suppressor and inhibitor of migration 

and metastasis because of its inhibition of EMT.  We verified that this new oncogenic 

role of miR-200a occurs alongside upregulation of epithelial markers.  Consistent with 

this, cells overexpressing miR-200a alone or in combination with Ras showed decreased 

migration compared to vector control or Ras alone, respectively.  In nude mice, miR-200a 

synergizes with the RalGEF pathway to form subcutaneous tumors with histology that 

resembles invasive proliferative breast disease.  This is especially notable because miR-

200a has been reported to be a crucial player in the maintenance of epithelial cell 

polarity, particularly in the mammary gland [195].  The disruption of tissue structure by 

the combination of miR-200a over-expression with RalGEF signaling highlights the 

significance of this interactive effect. 

miR-200a, Fog2 and Proliferation 

Only recently has the oncogenic role of miR-200a in proliferation been studied.  It 

directly targets Fog2 and positively regulates cell growth [102].  Following this, more 

evidence has revealed the important role of the miR-200 family and Fog2 in regulating 

PI3K activity in the context of insulin signaling, indicating the significance of the miR-

200a/Fog2/PI3K axis in human health [196-199]. We have demonstrated that miR-200a 

transforms immortalized rat RK3E kidney epithelial cells and augments Ras 

transformation of immortalized human MCF10A cells.  This is consistent with a study by 

Zhao et al. demonstrating that activated PI3K complements Ras activation in 
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transformation of human mammary epithelial cells (HMECs) [200].  Our study shows 

that miR-200a overexpression decreases Fog2 expression and increases Akt 

phosphorylation as Fog2 is a negative regulator of PI3K activity.  Notably, PI3K/Akt 

signaling is one of the three main Ras-effector pathways, and we show that miR-200a 

augments Ras transformation of MCF10A cells.  More specifically, miR-200a 

complements the RalGEF/Jnk pathway to enhance colony formation in soft agar.  

miR-200a alone significantly increased cell proliferation and cell cycle 

progression.  Yet miR-200a in combination with Ras did not significantly increase cell 

proliferation or cell cycle progression out of G1 above that seen in cells overexpressing 

miR-200a alone.  Indeed, miR-200a in combination with Ras had a negative interaction 

effect on cell proliferation compared to Ras alone.  This indicates that stimulation of the 

pro-proliferative PI3K/Akt pathway is not responsible for the synergistic effect between 

Ras and miR-200a, indicating that Ras activates PI3K/Akt signaling to high levels that 

can not be further enhanced by miR-200a suppression of Fog2.  Conversely, miR-200a in 

combination with RalGEF signaling causes a significant decrease in G1 cell cycle arrest 

compared to RalGEF alone, indicating that miR-200a induction of cell cycle progression, 

rather than inhibition of apoptosis, is important for cooperation with RalGEF signaling. 

It is crucial to note that the phenotypic response to miR-200a overexpression in 

the context of Ras signaling may be cell- or tissue-type specific.  miR-200a has a well-

studied dichotomous role in cancer, and both its overexpression and down-regulation 

have been associated with increased tumorgenesis [105,119].  These studies 

demonstrating miR-200a’s contradictory functions emphasize the potential for tissue-

specific signaling and pathway interactions. 
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miR-200a, p53, and Inhibition of Apoptosis 

Supporting the synergy between Ras and miR-200a are the changes in acinar 

structure and intra-luminal apoptosis.  miR-200a alone did not decrease cleaved Caspase-

3 levels in the lumen of acini.  Although lumen formation was curtailed when Ras was 

expressed alone, cleaved Caspase-3 staining was not ablated, indicating that an increase 

in proliferation, rather than loss of apoptosis was responsible for the lack of lumen 

clearance in MCF10A-Ras acini.  However, when Ras and miR-200a were expressed 

together, cleaved Caspase-3 levels decreased dramatically, indicating that miR-200a 

synergizes with Ras to elicit inhibition of apoptosis.  Loss of apoptosis is mechanistically 

supported by western blot analyses showing down-regulation of p53 protein and 

phosphorylation levels by miR-200a in MCF10A cells.  miR-200a is known to directly 

target p53 and inhibit apoptosis [53], and expression of p53dd in MCF10A cells has been 

shown to inhibit apoptosis and cause an EMT-driven loss of normal acini formation 

including normal structure and lumen clearance [190].  However, miR-200a is a strong 

inhibitor of EMT, indicating that miR-200a disruption of p53 leading to reduced 

apoptosis is the dominant force in disrupting normal lumen clearance, not EMT.   

miR-200a Cooperates with RalGEF 

 The Raf-Erk effector pathway is considered largely responsible for Ras-

mediated transformation of murine cells [201,202]; however, differences exist between 

the transformation of human cells and rodent cells. The RalGEF effector pathway alone is 

able to recapitulate approximately 60% of Ras-induced transformation of human 

embryonic kidney cells, but was not able to induce tumorigenesis in vivo [203].  
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Consistent with this, our study shows that expression of the E37G mutant (activating the 

RalGEF effector pathway) alone in MCF10A cells was not able to induce tumorigenesis.  

However, we show that the combination of miR-200a over-expression and RalGEF 

pathway activation is enough to induce malignant cell transformation and subcutaneous 

tumor formation in vivo. This effect is not seen when miR-200a overexpression is 

combined with either mutants activating the PI3K pathway (Y40C mutant) or the Raf/Erk 

pathway (T35S mutant).  miR-200a overexpression alone was insufficient to induce 

colony formation or tumorigenesis, indicating that the combination of Akt activation and 

loss of p53 is not enough to effect transformation.  By cooperating with the RalGEF 

pathway to transform cells, miR-200a demonstrates that loss of p53 syngergizes with 

gain of Akt and RalGEF signaling to transform MCF10A cells.  This is consistent with a 

study showing transformation of human embryonic kidney cells by the cooperation of 

PI3K and RalGEF signaling with loss of p53 in a setting of Rb loss and telomerase gain 

of function [18].  Rangarajan et al. also reaffirm the importance of RalGEF signaling in 

human cell transformation compared to mouse cell transformation relying more heavily 

on the Raf effector pathway [18].    Overall, this shows that suppression of p53 and 

stimulation of Akt by miR-200a is enough to transform immortalized Rat cells, but not 

immortalized human cells; however, the addition of RalGEF signaling enables miR-200a 

to transform immortalized human MCF10A cells and induce tumorigenesis. 

In summary, our results show that miR-200a enhances Ras-mediated 

transformation of human cells.  This is the first study that delineates miR-200a’s function 

in malignant cell transformation.  We also show that miR-200a synergizes with the 

RalGEF-activating E37G Ras effector mutant to transform MCF10A cells and induce 
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tumorigenesis in vivo, providing mechanistic insight into the mechanism of action of this 

dichotomous miRNA.  By determining that cooperation with RalGEF is necessary for 

miR-200a-mediated cell transformation, we have illuminated a new, specific role for 

miR-200a in malignancy.  Furthermore, we anticipate that future studies examining the 

concomitant genetic changes occurring during malignant transformation will thoroughly 

reveal the role of miR-200a in cancer initiation and bespeak its prognostic potential.  
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

Cancer is a deadly disease that claims the lives of over half a million people every 

year in the United States.  Cancer is a progressive disease that begins with malignant cell 

transformation and culminates in metastasis.  It is critical to understand cancer initiation 

to aid in cancer prevention, and to develop methods to detect and diagnose early stages of 

cancer before deadly metastasis develops. 

 In this study, we employed a biphasic approach to determine miRNA involvement 

in malignant cell transformation.  The first step involved profiling our library of 366 

miRNAs to determine the role of miRNA clusters in four major cancer signaling 

pathways.  In this screen, we were able to provide a panoramic view of the effects of 

miRNAs on AP-1, NF-κB, p53, and c-Myc signaling.  In our miRNA cluster profiling 

study, we found that 200b~429, which includes miR-200a, down-regulates p53 activity.  

miR-200a was demonstrated to directly target p53, reduce protein levels, and inhibit 

apoptosis.  These results provide a strong foundation for the study of miR-200a as an 

oncomiR.  miRNA clusters frequently function via cooperative targeting that involves 

cluster members suppressing different effectors of the same signaling pathway, or 

multiple subunits of a protein complex in order to produce a larger regulatory effect.  
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Given miR-200a’s role in p53 suppression, it is likely that the entire 200b~429 cluster, as 

well as its family cluster 200c~141, plays a role in regulating apoptosis. 

 The second phase of this study was an epithelial cell screening assay to determine 

the ability of miRNAs to transform epithelial cells.  The immortalized RK3E cell line in 

particular was employed because of its growth as a monolayer that becomes three 

dimensional foci formation upon transformation with an oncogene.  From this assay, we 

found that miR-200a transforms RK3E cells.  We further characterized the transformative 

potential of miR-200a in the untransformed, immortalized human MCF10A cell line.  We 

found that miR-200a enhances Ras-mediated transformation of this cell line.  These 

results are consistent with a study that shows that knockdown of the high endogenous 

miR-200a levels in MCF7 breast cancer cells reduces soft agar colony formation [62].  

Mechanistic studies showed that miR-200a suppresses p53 protein levels and 

phosphorylation, as well as Fog2 protein levels.  Fog2 is a direct target of miR-200a and 

a negative regulator of PI3K activity.  miR-200a overexpression increased proliferation 

and cell cycle progression, but when Ras was added, we did not see a combinatorial 

effect.  This indicates that the anti-apoptotic signaling mediated by miR-200a suppression 

of p53 is responsible for enhancing Ras-induced transformation. This enhancement of 

Ras-mediated cell transformation implicates a potential role for miR-200a in Ras-driven 

malignancies, for example pancreatic cancer.  Further characterization of the mechasnism 

of action of miR-200a showed that miR-200a cooperates with the RalGEF effector 

pathway of Ras to induce soft agar colony formation and tumorigenesis in 

immunocompromised mice.  Inability of miR-200a to transform immortalized human 

MCF10A cells indicates that miR-200a stimulation of Akt activity and suppression of 
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p53 is not enough to transform MCF10A cells; however, the addition of RalGEF 

signaling in this setting induces transformation.  These results demonstrate a role for 

miR-200a in malignant cell transformation and provide a specific cellular context where 

miR-200a acts as an oncomiR rather than a tumor suppressor.  

In summary, this work reveals a new role for miR-200a in malignancy.  We show 

that miR-200a transforms immortalized rat RK3E cells, and when over-expressed with 

Ras, it transforms immortalized human MCF10A cells.  Taken together, these results 

indicate that miR-200a is pro-oncogenic.  We also show that miR-200a transforms 

MCF10A cells by cooperating with RalGEF pathway activation, but not activation of the 

PI3K/Akt or Raf/Erk pathways, which are the other two main effectors of Ras.  This 

transformative ability underscores the importance of miR-200a in the Akt and p53 

pathways.  Our results highlight the importance of the specific cellular environment when 

characterizing the function of miR-200a.  In particular, it is crucial to evaluate miR-200a 

expression within the setting of concomitant genetic changes occurring during malignant 

transformation. 

Future Directions 

miR-200 family 

This study focuses on the transforming ability of a single miRNA, miR-200a, 

which exists both as a member of a miRNA cluster, as well as a member of a five-

membered miRNA family.  Future studies focusing on the individual effects of miR-200 

family members will provide insight into the function of this family, and studies in which 

the miR-200 family is expressed at disease-relevant levels or ratios will provide an 
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understanding of the dysregulation of this entire family, as well as its individual 

members, within the context of cell transformation.   

Noncoding RNAs 

 The field of noncoding RNAs is rapidly expanding to encompass lncRNAs, 

piRNAs, ceRNAs…the list continues ad nauseam.  These novel regulators provide 

insight into the control of miRNA-based gene silencing.  For example, ceRNAs, or 

competing endogenous RNAs, are highly abundant mRNAs that act as miRNA sponges, 

titrating potent miRNAs out of the pool of gene regulators, thereby unsilencing miRNA 

targets while the ceRNAs themselves experience insignificant downregulation by these 

targeted miRNAs.  The presence of ceRNAs provides another level of cell context in 

which miR-200a is functioning.   

Global gene expression effects 

MicroRNA studies initially began as a race to discover as many new direct 

miRNA targets as possible without follow-up experiments to determine physiological 

relevance.  As studies have progressed, it has become clear that miRNA effects are likely 

not due to targeting one single gene, as miRNAs have the potential to 1) target multiple 

genes at once and 2) be regulated by their own targeting mechanism e.g. by ceRNAs.  

Thus it is crucial to view the “one target per miRNA” perspective with caution, and 

future studies should take a more global approach to profile changes in gene expression 

in response to changes in miRNA levels.  This study identifies p53 and Fog2 as key 

targets of miR-200a in the context of cell transformation; however, it is highly probable 

that miR-200a targets a plethora of genes to regulate multiple signaling pathways.  This 
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view is further complicated by the need to characterize the combined effects of the entire 

miR-200 family. 

Clinical Relevance 

Because of the dichotomous role of miR-200a in cancer initiation, progression, 

and metastasis, it has the potential to serve as a context-specific biomarker for staging 

cancer diagnoses or providing prognostic information.  For example, early stage 

carcinomas overexpressing miR-200a alone may be less aggressive than tumors 

overexpressing miR-200a in the setting of constitutive Ras activation, or increased 

RalGEF signaling.   

In particular, changes in expression—both elevations and decreases—of miR-

200a are frequently implicated in breast cancer, providing an array of evidence for the 

contradictory role of mir-200a in cancer.  Future studies focused on miR-200a expression 

in breast cancer tumor samples stratified into cohorts based on prognosis, survival, and 

estrogen and progesterone receptor status will provide significant insight into the specific 

contexts in which miR-200a inhibits or contributes to cancer initiation and progression. 

Understanding the prognostic potential of this miRNA, and by extension the entire miR-

200 family, would provide clinicians with the tools to better diagnose and treat cancer 

based on the personalized molecular profiles of patients. 
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