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ABSTRACT 

ASYMPTOTICS AND CONFIDENCE ESTIMATION IN 
SEGMENTED REGRESSION MODELS 

Rebekah Ann Robinson 

May 11, 2012 

Standard regularity assumptions for regression models are not satisfied in 

segmented regression models with an unknown change point, and consequently stan-

dard asymptotic results and inferential methods for confidence estimation are not 

applicable. This dissertation considers a clustered segmented regression model with 

a continuity constraint and considers estimators of the model parameters based on 

the likelihood principle. The strong consistency of the maximum likelihood esti-

mators is established. To consider the asymptotic distribution, two cases must be 

considered. Case 1 occurs when the true change point occurs between two of the 

observation times, while Case 2 occurs when the true change point occurs at one of 

the observation times. In each case, the asymptotic distribution of relevant estima-

tors is derived. These results are used to develop a new comprehensive algorithm 

for constructing a confidence interval for the change point parameter which works 

for both cases using all available data in determining the confidence bounds. This 

algorithm is compared to an existing method known as the removal algorithm. A 

slight modification to the comprehensive algorithm is also considered. Finally, these 

methods for obtaining confidence intervals are compared by simulation studies and 

applied to a real data set. 
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CHAPTER 1 

INTRODUCTION 

This chapter provides an introduction to change point models, a literature 

review regarding the topic, and a detailed explanation of the intention of this dis-

sertation. 

1.1 Change point models 

VVhether approximating the point at which an economic policy decision af-

fects the market value of a company or determining the time at which an athlete's 

body no longer maximizes metabolic burn of energy, change point analysis is invalu-

able in the modern world. Change point problems take a standard model and allow 

a parameter to change at an unknown time, namely, the change point. The classical 

change point model consists of data following a distribution with parameter 00 up 

until some time T, whereafter the parameter changes to 01 . The primary focus of 

such a model is the estimation of the location of the change point T. It is also of 

interest to estimate the magnitude of the change. i.e., the pre-change parameter, 00 , 

and the post-change parameter, 01 . The model can be stated as follows. Observe 

for j = 1, ... ,T 

for j = T + 1, ... , n. 

The most primitive way of locating a change point is to simply view the data and 

visuall approximate the location of a change. Such a method of approximation is 
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imprecise and has little applicability. Change point analysis is highly applicable 

in various fields and thus, developing better methods to approximate these mod

els has been receiving considerable attention since the 1950s. In the health field, 

change point problems are popular as tools to model disease trends and mortality 

rates. In economics, change point problems are useful as a means to investigate 

whether an economic variable, such as the stock market, borrowing and lending 

behavior, or a change in government policy, has experienced a structural change. In 

manufacturing, change point analysis can facilitate quality control measures: man

ufacturers desire rapid detection of deteriorations in the quality of the good they 

are producing. Finally, in the midst of current debates on global warming, change 

point problems are useful in modeling weather patterns. 

Change point problems date back to Page (1954). His emphasis was primarily 

on applications to industry and he proposed various process inspection schemes to 

detect deteriorations in quality of continuous mass production. One such sequential 

inspection scheme that was mentioned in some detail was the use of control charts. 

If a sample point falls outside the pre-determined control limits (or a specified pro

portion falls outside of the warning lines) on such a chart, the process is deemed out 

of control. He considered average run length as a means to measure performance of 

an inspection scheme. Average run length is the expected number of items sampled 

before intervention of the process is taken. Lai (1995) added to the work of Page 

(1954) by unifying the theory of sequential changepoint detection. He considered 

both a moving average and a CUSUM inspection scheme in comparison with the 

average run length. 

2 



1.2 Segmented regression models 

A segmented regression model is a standard linear regression model where 

the coefficient values change at an unknown time. In the context of regression, the 

estimation of the location of the change point and the pre-change and post-change 

regression coefficients are of interest. \Vhile this is the main goal, there are distinc-

tions between the types of models that have been previously considered. 

One very important distinction is whether the change is assumed to be con-

tinuous or abrupt. Specifically, suppose that there is no continuity constraint im-

posed on the model, i.e., there is an abrupt change. Such a model can be stated as 

having n data points (U1' Y1), ... , (un, Yn) observed where the values of the explana-

tory variables are U1 :::; ... :::; 'Un and the independent responses are 

{ 

N(W01 + W02 U j, (}5) for i = 1, ... ,ko 
Yi rv 

.Af(W03 + W04Uj. (}5) for i = ko + 1. ... ,n. 

In this case, the unknown change, ko E {1. ... , n}, is not identifiable between 

observations. In other words, the change can only occur at an observation. The 

intercept for each phase is W01 and W03. respectively, and the respective slope for 

each phase is W02 and W04. 

This can be compared to a segmented regression model with a continuity 

constraint. Observe (U1. yt}, ... , (un, Yn), where U1 :::; ... :::; Un and 

Here, x+ = max{O. x}. The unknown changepoint parameter. TO E (U1' Un), can 

be identified either at or between observations. In this modeL Qo is the unknown 

intercept, /30 is the unknown slope, and 60 is the unknown change in slope after TO. 

There are also differences in the methods used to estimate the parameters, 

I.e., maximum likelihood, least squares, Bayesian, nonparametric, etc. The as-

sumption about the error terms differs between models as well. Another important 
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distinction is in the number of change points being considered. The A~dOC (at 

most one change) model has received considerable attention in the past, while the 

multiple change point model has recently become of more interest. It is important 

to note whether the number of changes is known and just the location is to be esti

mated or if it is of interest to also estimate the number of changes. These different 

features of the model lend themselves to various research done on the topic. 

The abrupt change model was studied by Quandt (1958), Bai (1997), Bai 

and Perron (1998), and Chong (2001). Quandt (1958) considered a two-phase linear 

model with exactly one change. He assumed the regression lines on either side of the 

change did not necessarily meet. He proposed estimating the change point sequen

tially by dividing the data at each observation and estimating separate regression 

lines for each division. The change point estimate was the observation whose divi

sion maximized the likelihood function. Quandt was also the first to suggest using 

a hypothesis test to determine whether or not a change had even occurred. Bai 

(1997) and Bai and Perron (1998). on the other hand, considered multiple change 

point models with no continuity constraint. Bai (1997) proposed a procedure for 

sequentially (one-by-one) estimating the changes. This was done by first treating 

the model as if it had only one change and estimating it by minimizing the sum 

of squares function. Then. the sample was divided at the estimated change and a 

break was estimated in each of the subsamples. Bai also derived the asymptotic 

distribution of the change points using a "repartition" method. Bai and Perron 

(1998) discussed different ways to incorporate hypothesis testing into the idea of 

sequential detection of multiple change points. Chong (2001) applied hypothesis 

testing and sample-splitting to a model with an unknown number of changes. 

Sylwester (1965) and Hudson (1966) were among the first to consider a broken 

line model with a continuity constraint. Sylwester (1965) dealt primarily with .MLE 

for a two-phase linear regression model assuming equally spaced observations in the 
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interval [0, 1], assuming the errors were independent normal random variables with 

mean 0 and constant variance. Sylwester's broken line model had constant slope 

before the change and zero slope after the change. He derived the MLE's for the 

parameters of the model and proposed a "pseudo-problem" to derive the asymptotic 

normality of the estimators. In the "pseudo-problem", a decreasing interval around 

the true change was deleted, which enabled the asymptotic normality to be derived 

for the "pseudo" estimates. By showing that the the MLE's and the pseudo-~ILE's 

have the same asymptotic distribution, he was able to discuss the asymptotics of 

the MLE's for this particular model. Feder (1975) extended the idea of using a 

"pseudo-problem" to derive asymptotic normality to a more general model. 

Hudson (1966) added to Quandfs (1958) model by giving an iterative method 

for estimating the intersection point of two regression lines using LSE. Hinkley 

(1971) then extended Hudson's idea to derive the asymptotic normality of the 

~ILE's. Kiichenhoff (1997) proposed estimation methods for generalized linear mod

els with change points. Liu, \Vu, and Zidek (1997) dealt with segmented multivariate 

regression and discussed adding a penalty term to the unknown number of changes 

in a multiple change model to prevent overfitting the model. 

1.3 Clustered segmented regression model 

The special case of a linear segmented regression model that will be consid

ered in detail in this dissertation is a clustered segmented regression model. Consider 

the model with m observations at each of IV unique observation points. Given a 

fixed Nand mN = n, the random variables 

Ylj rv N(Qo + BOUi + 60 (Ui - To)+,0"6) 

are independent fori = 1, ... ,N and j = L ... ,m. Assume that -oc < Ul < ... < 
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UN <X. Let 80 = (eto, 80,60, Tof be the vector of true values of the parameters, 

where TO is the unknown changepoint parameter in (Ul' UN), ao is the unknown 

intercept, 8o is the unknown slope coefficient, and 60 is the change in slope after TO. 

Gill, et. al (2009) considered a similar clustered change point model with 

an unknown change. The focus was on clustered logistic changepoint regression, 

the MLE's of the model's parameters, the consistency and asymptotics of the esti

mators, and the behavior of the bootstrap method for confidence estimation. The 

bounds of the confidence intervals were shown to be consistent if the true change 

was located between two observations but not if the true change was located at an 

observation. A removal algorithm was described to dealt with the latter case. 

This dissertation is organized as follows. In Chapter 2, the MLE's are de

rived for three types of segmented regression models; a one change abrupt model, a 

one change model with a continuity constraint. and a one change clustered model 

with a continuity constraint. The rest of the dissertation deals only with the one 

change clustered model with a continuity constraint. Next, the consistency and 

asymptotiC' normality of the MLE's are discussed in Chapter 3. Chapter 4 describes 

two different algorithms used in confidence estimation of the change point. The 

removal algorithm from GilL et. al (2009) is described along with the comprehen

sive algorithm that I have written. Strengths and weaknesses for the comprehensive 

algorithm are discussed and an alternative idea is suggested to fix the weaknesses of 

the comprehensive algorithm. Chapter 5 compares the methods discussed in Chap

ter 4. Simulation results and an example are also included in Chapter 5. Some of 

the major proofs and results in Chapter 4 are located in the Appendix. 
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CHAPTER 2 

MAXIMUM LIKELIHOOD ESTIMATION 

The general method of maximum likelihood estimation will be used to derive 

the estimates for the parameters in the models described in Chapter 1. The idea 

behind maximum likelihood estimation is to choose the unknown parameter values 

in a way that maximizes the probability of getting the sample values. 

DEFINITION 2.1. Let 1:1, ... ,Xn be a random sample of observed values of a ran

dom variable X with unknown parameter O. The likelihood function is given by 

L(O) = f(x; 0) where f(x; 0) is the joint probability density of the sample. 

DEFINITION 2.2. The value of 0 that maximizes L(O) is referred to as the max

imum likelihood estimator of 0 and is denoted by iJ. This can be stated as 

iJ = maXe L( 0). 

The likelihood function, L(O), is a function ofthe parameter 0 for given sam

ple values. x, while the probability density (or distribution) function is a function of 

random variables X for a given value of the parameter. The method of maximum 

likelihood estimation chooses the value of the parameter that most likely produced 

the given observations x. 

2.1 Without continuity constraint 

A segmented regression model with no continuity constraint can be defined by 

observing a discrete set of data points (Ul' yr), ... , (lLn' Yn) such that lLi ::=; ... ::=; lLn 

and Yl, ... ,Yn are independent random variables such that 
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let !(YI ... ,Yn; ko, wo, (15) denote the joint density of YI, ... ,Yn' Using maximum 

likelihood estimation (MLE) and least squares estimation (LSE), 

parameters Wo = (WOI, W02, W03, (04)T, ko, and (15 can be estimated. The likelihood 

function is 

L(k, W, (12) = !(YI, ... , Yn; k, W, (12) 
n 

= II !(Yi; k, W, (12) 

i=l 

= ( 1 2)n exp [~~ (t(Yi - WI - W2Ui)2 + t (Yi - W3 - W4Ui?)]' 
~ i=l i=k+l 

The values of k, w, and (12 that maximize the likelihood function L(k, w, (12) will 

also maximize the log-likelihood function 

Since the sum of squares function for this model is 

k n 

Q(k, W) = I)Yi - WI - W2 Ui)2 + L (Yi - W3 - W4 Ui)2, 
i=l i=k+l 

the log-likelihood function can be re-written as 

Notice that maximizing l(k, w, (12) is equivalent to minimizing Q(k. w), so the MLE's 

for k and ware the same as the LSE"s for k and w. Letting y = (YI .... ,Ynf and 

letting Uk be the design matrix (for a fixed k) defined as 
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o 

o 0 1 Uk+l 

o 0 1 1tn 

the sum of squares function can be re-written in matrix form as 

Q(k,w) Ily - U kwI1 2 

(y - Ukwf(y - Ukw) 

To obtain the LSE of w (which is equivalent to the MLE of w), fix k and minimize 

Q(k, w) with respect to w. Then, the partial derivative with respect to w is aQ~~w) = 

- 2U[ y + 2U[U kW. Setting this equal to 0 and solving for w, the MLE ~h is 

obtained as follows. 

o 

U[y 

The MLE for 0"5 can be found similarly using the log-likelihood function. Holding 

k fixed, and using Wk, 

o 

Both Wk and a-~ are conditioned upon a fixed k. To estimate k, choose the value 
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of k that maximizes the profile likelihood function (or equivalently minimizes the 

profile sum of squares function). 

2.2 With continuity constraint 

Recall that a segmented regression model with a continuity constraint IS 

defined as follows. 0 bserve (u 1 , Y 1)' ... , ( Un' Yn) where U 1 ::; ... ::; Un and given 

that x+ = max{O, x}, the random variables 

are independent for i = 1, .... n. Similar to before, the log-likelihood function is 
n 

{(O, (]"2) = -~ In(21l"(]"2) - Q~8), ,,,here Q(O) = 'Z)Yi - J.Li(O))2 and 
i=1 

To obtain estimates for 00 = (ao. Bo. 60 , TO)T and (]"6, the log-likelihood function can 

be maximized, or equivalently. the sum of squares function, Q( 0), minimized. Since 

the true change in this modeL TO. is identified either at an observation or between 

two observations, both cases must be considered when finding the global minimizer 

ofQ(O). 

Suppose for every k = 1, .... n - 1, the restriction of T E (Uk, uk+d is made 

and estimates corresponding to that interval are searched for. Then, 

k n 

Qk(O) = I:(Yi - a - BuY + I: CYi - (0: - bT) - (B + b)Ui)2 
i=1 i=k+l 

k n 

I:Cyz -;";1 -;";2U i)2 + I: (Yi -;";3 -;";4Ui)2 
i=1 i=k+l 

10 



where WI = Q, W2 = (3, W3 = Q - 8T, and W4 = B + 8. Using this notation, define the 

kth super log-likelihood function as 

for any k = 1, ... ,n -1. Now, letting w = (Wl,W2,W3,W4f, it is useful to consider 

the function 

Q WI 

W(w) = 
(3 W2 

8 Wet -W2 

T 
Wl~W3 

W4-W2 

Letting 

1 71,1 0 0 

Yl 
1 Uk 0 0 

U k = and y = 
0 0 1 Uk+l 

Yn 

0 0 1 Un 

gives Qk(W) = Ily - U kw112. Then the LSE (MLE) for the restricted case when 

T E (Uk,Uk+d is Wk = (UrU k)~IUr y = (Wlk' W2k, W3k, W4k)T. By the invariance 

of the MLE, W(Wk) = ih = (ak,8k.Jk.Tkf is a local minimizer of Q as long as 

Tk E (Ub uk+d. So for every value of k = 2, ... , n - 1, ih is a local (and thus 

possibly global) minimizer of Q if Tk E (Uk, uk+d. 

~ote that if T = Ui for any i = 2, ... ,n - 1, the function Q is continuous 

but not differentiable at T. SO if the change occurs at an observation point, the 

minimizer of Q( Q,/3, 8, uA;) for k = 1. ... , n - 1 is computed using the design matrix 
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U #
k -

1 Ul 0 

1 Uk o 

value of k = 1, ... ,n -1, Q can be differentiated with respect to 0:, (3, and 8. Thus, 

. 1 f'· . b' Q(' # 6'# 1# ) f k - 2 1 IS t le vector 0 estImat01s to 0 tam O:k " k 'Uk' Uk or - .... , n - . 

Finally. the global minimizer, 0 = (&.8,5, if, of Q is obtained by evaluating 

Q at each of the local minimizers, Ok. as well as at each point (&t ,fJt, Jt, Uk) for 

k = 2 .... , n - 1. Then the ~ILE for 176 is found as before; &2 = Q~iJ). 

2.3 Clustered model 

Recall the clustered model as defined in Section 1.3. For fixed Nand mN = 

n. suppose that 

The estimators of 00 = (0:0.60.80, To)T and 176 can be found, as before. by maximiz-

ing the log-likelihood function 
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m 

where Q(O) is the sum of squares function. Let Yi = ~ LYij and 
i=l 

fli(O) = a + (3u t + 15(Ui - T)+ 

{ a + (3Ui if Ui ~ T 

(a - 15T) + ((3 + 15)Ui if Ui > T 

{ WI +W2Ui if Ui ~ T 

W3 + W4Ui if Ui > T 

fli( w). 

Then, the sum of squares function can be re-expressed as 

N m N m N 

Q(w) = L L(Yij - fli(W))2 = L L(Yij -Yi)2 + m L(Yi - fli(W))2 
i=1 j=1 i=l j=l i=l 

because Q(O) = Q(w). Since the second part of this equation is the only part that 

depends on the parameters, minimizing Q(w) is equivalent to minimizing Q(w) = 
N 

m L(Yi - fli(W))2. 
i=l 

Local minimizers of Q are found where T E (Ub uk+d for k = 1, ... , N - 1. 

Define fJ = (Y1, ... ,YN)T and the design matrix, 

1 U1 0 0 

o 
for any k = 1, .... N. 

o 0 1 Uk+l 

o 0 1 UN 

Then Qk(W) = mllfJ - Zkwl12 and the LSE for Wo is Wk = (Z[Zk)-lZ[fJ. As 

before, by the invariance property, ih = 1i'(Wk) is the MLE of 00 . Finally, holding 

k fixed the estimate for (72 is (j2 = Q(Wk) .. ,Ok n 
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CHAPTER 3 

ASYMPTOTIC RESULTS 

Now that the ~ILE of 80 has been derived, it is of interest to consider how 

'close' this estimator gets to the true parameter value as the sample size gets large. 

The following modes of convergence are used throughout this chapter 

DEFINITION 3.1. Almost sure convergence (convergence with probability one) 

A sequence of random variables {X n} converges almost surely (or, equivalently, 

converges with probability one) to the random variable X if 

P( lim X n = X) = 1. 
n--4x; 

This can be written as X n -+ a.s. X as n -+ x. 

DEFINITION 3.2. Convergence in distribution 

A sequence of random variables {X n} with cumulative distribution function Fn 

converges in distribution to a random variable X with cumulative distribution 

function F if 

lim Fn(x) = F(.r) 
n--4x; 

at every value x E lR. where F is continuous. This can be written as X n -+d X. 

The results in the remainder of this chapter utilize the following versions of 

standard theorems from probability theory described. for example, in Bilodeau and 

Brenner (1999) and van der Vaart (1998) . 
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THEOREM 3.1. Strong Law of Large Numbers (SLLN) 

Let {X n} be a sequence of independent and identically distributed (i. i. d.) random 

variables with E(X i ) = fL and finite covariance matrix. As the sample size, n, 

increases without bound, the sample mean converges almost surely to the expected 

value. In other words, X n ~a.s. fL as n ~ x. 

THEOREM 3.2. Central Limit Theorem 

Let {Xn} be a sequence of independent and identically distributed (i.i.d.) random 

variables with E(Xi ) = fL and var(X i ) = L. As n ~ x, n(Xn - fL) ~d Z as 

n ~ oc where Z '"" N(O, L). 

THEOREM 3.3. Continuous Mapping Theorem 

If 9 is a function from ]RP to ]Rq which is continuous at every point in a set C such 

that P( X E C) = 1, then the following results hold: 

1. X n. ~d X=} g(Xn) ~d g(X) 

2. X n ~a.s. X =} g(X n) ~a.s. g(X) 

3.1 Strong consistency of the MLE 

Consistency is one common criteria used to evaluate the goodness of an 

estimator. Since consistency depends on sample size, it is considered a large sample 

property. As the sample size gets large, i.e. approaches infinity, the values of a 

strongly consistent estimator approach the true value of a parameter in the sense 

that events where this convergence does not occur have probability zero. 

THEOREM 3.4. For the clustered segmented regression model with the continuity 

constraint, () ~ a.s ()o as m ~ x;. 

It is important to first discuss the motivation behind the proof for this the

orem. The assumption is made that the true change occurs in the kth interval, i.e., 
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TO E [Uk, uk+d. Based on this assumption, it can be shown that the MLE based on 

the kth interval, namely Wk.rn. is strongly consistent as the sample size gets large. 

);ote that the estimator is double indexed by k and m. The index k corresponds 

to the assumed interval used to find a local minimizer of Q. The estimator is also 

indexed by m to show its dependence on sample size. 

The first part of this proof shows that if the estimator is from the cor-

rect interval, then it is a strongly consistent estimator of the true parameter, i.e., 

Wk.m -ta.s Wo as m -t x. Next, it is established that among all of the local mini-

mizers of Q, for any I = 1, ... ,N - I, the estimator, Wl.m that minimizes the sum 

of squares is the estimator based on the correct intervaL i.e., Wk.rn. In other words, 

Q(WI. rn ) > Q(Wk.m) for any I =1= k. This means Wk = W. 

Putting this together, the estimator that globally minimizes Q is the estima-

tor based on the correctly specified interval and this estimator is strongly consistent. 

Finally. using the invariance property of the ~ILE, if W is a strongly consistent es

timator of WOo then iJ is a strongly consistent estimator of eo. 

Proof. Define F(l)(fJm'w) = aQ~~(w) = -2mZT(fJrn - ZIW), Since a~~~~,;,) exists 

and is positive definite, !!.:~l\ exists. Because it is differentiable, FIt) is a continuous 

function. Then, by continuity and the Strong Law of Large Numbers, 

1· F(kl(- , ) 1m Ym,Wk.m 
m-+x 

F (k)( l' , ) Mo. 1m Wk.m 
rn-+x 

with probability 1. By definition of LSK lim F(k)(fJrn' Wk.m) = lim 0 = 0 with 
rn-+x m-+x 

probability 1. Putting this together, Flk)(Mo, lim Wk.m) = 0 with probability 1. 
rn-+x 

As defined, ZkWO = Mo. Thus, F(k)(Mo,Wo) = -2mZIULo - ZkWO) = O. Now, 

F1k)(Mo. lim Wk.m) = FIA')(Mo. wo) with probability 1. Thus, lim Wk.m = Wo with 
m-+x rn-+x 

probability 1. Therefore. if TO E [Uk, Uk+lj, then Wk.m -ta.s Wo as m -tx. 

~ow assume without loss of generality. that I < k and TO t/:. [Ul, ul+d. Then, 
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IV m IV 

Q(k)(Wk.m) = L L(Yij - fhm)'2 + Tn LUhm - /-Li(Wk,m))2 and 
;=,1 j=1 i=1 

1'1 m N 

Q(l)(Wl.m) = L L(Yij -Yi,m)2 + Tn L(Yi.m - /-Li(Wl,m))2. 
i=1 j=1 i=1 
N m 

Since both sums contain L L (Yij - Yi.m)2, it is only necessary to compare 
i=1 j=1 

N N 

Q(k)(Wk,m) = Tn L(Yi,m - /-Li(Wk,m))2 and Q(l)(Wl,m) = Tn L(ikm - /-Li(Wl,m))2. 
i=1 i=1 

It has already been shown that if TO E [Uk, Uk+l], then Wk,m -7a.8 . Wo as Tn -7 00. 

By definition, /-Li (w j) is a continuous function because 

_ { WI + W2Ui if i :::; j 
/-Li(Wj) -

W3 + W4 Ui if i > j 

Then, by the Continuous l\Iapping Theorem, f.Li(Wk,m) -7a.s /-Li(WO) as 

Tn -7 ex; where /-Li(WO) =: /-LOi. Since Yil···· ,Yim are i.i.d with E(Yij) = /-LOi for all 

i = L ... ,]\l, the SLLN implies that Yi.m -7a.s /-LOi as Tn -7 00 for all i = 1, ... ,1V. 

Thus, L~:I(yi.m -/-Li(Wk.m))2 -7a.s 0 as Tn -7 00. This means that ~Q(k)(Wk,m) -7a.s 

o as Tn -7 00. 
.IV 

L(Yi,m - /-L(Wl.m))2. It can be shown that 
i=1 

~Q(l)(WI.m) is bounded away from 0, i.e., that ~Q(t)(WI,m) -+a.s C > 0 as Tn -7 00 

for some constant c. Note that 

II Ym - ZIWl. m 112 

II Ym - ZI(ZT ZI)-1 zTYm 112 

II (1 - Zl(ZT ZI)-1 zf)Ym 112 

II (1 - Hl)Ym 112 

where HI = Zt(ZT Zz)-1 zT is an 1V x N hat matrix of rank 4 which projects an 

N-dimensional vector onto the space spanned by the columns of Zl. Then, using 

the Continuous rvIapping Theorem and the fact that (1 - Hz) is not random, 
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It can be shown that /-Lo =I H//-Lo so that (1 - Hl)/-Lo =I O. Since Hl/-Lo is in the 

space spanned by the columns of Zl. 

Hl/-Lo = Zle = 

(e3 + e4uk) - (e3 + e4uk-d (e:3 + e4u k+d - (e3 + e4u k) -'----'---'----------'-- = e4 = . 
Uk - llk-1 Uk+1 - Uk 

B /-lOk - /-lo k-I 8../.. B - /-lO.k+ 1 - /-lok . . h d ut ' = . 0 r 0 + 00 =. . so /-Lo IS not m t e space spanne 
Uk - Uk-I Uk+l -Uk 

by the columns of Zl. D 

THEOREM 3.5. a~,m -+a.s 0"5 as m -+ x. 

Proof. The previously defined function Iti (w) can be written as 

(I) { Wil + W2l U i if i :::; I 
/-li (w) = . 

W31 + W41Ui if i > I 

For i = L ... , N, /-l;l) (w) : ]R4 -+ ]R is a continuous function. So the Continuous 

~lapping Theorem gives 

<;Iik) (w',m) --> a,' <1>;') (wo) ~ { = /-lOi 
W03 + W04 Ui if i > k 
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for i = L .... 1V as m ---t ex:;. It has been previously established that since Yil, .... Yim 

are i.i.d with E(Yij) = /lOi, the Strong Law of Large I\umbers implies 

fhm ---t a.s /lOi as m ---t ex 

E( 2) _ 2 2 Yij - (To + /lOi 

for i = L ... , N. The Strong Law of Large Numbers applied to the i.i.d random 

. bl 2 2' l' h vana es Yi1' ... 'Yim lmp les t at 
m 

1 ~ 2 2 2, m L Yij ---ta .s (To + /lOi as m ---t ::x 
j=1 

Q(kl(" ) 
for i = 1, ... ,N. Since o-~.m = :k,m , consider the following: 

N m N 

Q(k)(Wk.m) = L L(Yij - tkm)2 + m LU!i.m - ¢;k)(Wk.m))2 
i=1 j=1 i=1 

N m N 
~~( 2 2 - -2 )2+ ~(_(k)(A ))2 L L Y'j - YijYi.m + Yi.m m L Yi.m - <Pi Wk,m 
i=1 j=1 i=l 

N 

L [(Y;l -- 2Yi1 thm + Y?m) + ... + Cyfm - 2YimYi.m + Y;.m)] 
i=l 

N 

~(- (k)(. ))2 +m L Yi.m - 9i Wk,m 
i=1 

N 

L [(Y;1 + ... + Y;m) - 2/hm(Yil + ... + Yim) + mY;m] 
i=l 

N 
~(- --I..(k) ( • ))2 +m L Yi,m - lVi Wk.m 
i=1 

N m N 

L [LY;j - 2mY;m + mY;m] + m L(Yi.m - ¢;k)(Wk.m))2 
i=l j=1 i=l 
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N m N 

S 1 Q(k)( A ) _ , (1 ,2 -2) '(- (k)(, ))2 
0, m Wk,m - ~ m f:;: Yij - Yim + ~ Yi,m - Oi Wk,m ,~ow. define a 

continuous function 9 : IR3N ----7 IR such that 
N iIi 

, 2 , . 2 
g(X1.· ... X3}V) = L)Xi - xN+J + L .. )XN+i - X2N+i) . 

i=l i=l 

m 

Let Xl • .... X iIi correspond to ~ L Y~j for i = 1, ... , N. respectively, let x N +1 •... , X'2N 

j=l 

correspond to !h,m ... ,y,'\'.m, respectively. and let X2N+l, ... ,X3N correspond to 

A,(k) ( ') -i-.(k)( A) . 1 
'PI Wk.m,···, (j.JN Wk.m . respectIve y. 

m 

was established, ~ Lyli ----7a.s a6 + /-L~i' Yi.m ----7a .s /-LOi, and ¢;k\Wk.m) ----7 a .s Iloi as 
j=l 

m ----7 XI for i = 1, ... ,1'1. Since 9 is a continuous function. the Continuous rvIapping 

Theorem can be applied. Thus. as m ----7 XI, 

'2 Qk(Wk,m) a k .m = ----
n 

Qk(Wk.m) 

Nm 
1 ( 1 ~ 2 1 ~. 2 _ _ (k) A • (k) A ) 

N' 9 m ~Yij"'" m ~YSj.Y1m.·.· ·Yilim'¢j (Wk.m) ..... 9N (Wk.m) 
j=l j=1 

----7 a.s 
1 2 2 2 2 

1'1 . g( a 0 + /-LOI ..... a 0 + /-L01Y' Ilcn , ... , /-LON· /-LOl· ... , /-Los) 

,~ ( t (<76 + 1';;' - I'~) + t(l'~ -I'ii)) 
N 

,~r L a6 
i=1 

~ . 1V . a 2 
]V 0 

2 ao 

Th f '2 ') ere ore, ak.m ----7a.s aD as m ----7 XI. 

3.2 Asymptotic normality 

o 

~ow that strong consistency has been established. it is useful to consider 
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whether the estimator of interest, f, is aHymptotically normal, i.e., if the distribution 

of f near TO approaches a normal distribution as the sample size increases. This 

is a useful property for the estimator to have. Since the actual distribution of 

the estimator f is unknown, asymptotic normality suggests that as the sample size 

gets large, the distribution of the estimator can be approximated by the normal 

distribution. This allows the properties of the normal distribution to be used when 

working with f and large sample sizes. 

As has been the case when dealing with a segmented regression model with 

a continuity constraint. the asymptotic behavior of the least squares estimator. f, 

depends on the location of TO. For this rea'3on. the asymptotic normality will be 

dealt with in two cases. The first case is where the true change occurs between two 

observations and the second case is where the true change occurs at an observation. 

For both cases, define 

0: ~l 

3 
~'(w) = 

0)2 

<5 W4 - W2 

T 
.-I1-"-!3 

W-t-~2 

and 
b 

b - a L Ui 

V a .b = i=a+l 
b b 

L Ui L u2 
I 

i=a+l i=a+l 

The following standard result from prohability (see Basu. 1999 ) is also used for 

both cases. 

T T Cramer-Wold Criterion: A random vector X n ---td X iff b X n ---td b X for all 

b. 
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3.2.1 Case 1 

THEOREM 3.6. For the clustered segmented regression model with the continuity 

constraint, if TO E (Uk. Uk+ 1) for some k, then 

where 

:E= 
[ 

V-1 0 1 1,k 

o V;ll.:v 
and 

a - i:hjJk,4(WO) -- [ 1 
- 8w o - W04 -W02 

Notation: For any distributions A and B, A",-, B means that A and B have the 

same distribution. 

Proof. As previously defined, /-t{ = ZIWI for any I = 1, .... N. Then 

WI = (ZT Zd- 1 zT /-t. Define a function gJ/-t) = (ZTZ1)-1 zT /-t. Then. gk(/-tO) = 

Let b E lR.~ be any 4x1 vector. Since 9 is infinitely differentiable with respect 

to /-t. it can be represented with a Taylor series expansion. Letting f(/-t) = bTg(/-t) , 

yITn·bT (g(itk) -g(/-to)) = yITn. [\1 f (/-to)]T (itk - /-to) + v:: (itk - /-to) T [\12 f (j1,) j(itk - /-to)· 

where it lies somewhere on the line joining itA; and /-to and 
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Thus, [Vf(fLo)f =bT~ and [V2 f(fL)] = :tL[(Vf(fL)f] = :tL[bT~]. 
Letting G(fL) = ~ = (Z[Zk)-lZ[ gives 

:ji [b
T 
G(ji)] 

!!..-bT(ZT Z )-1 ZT 
EJji k k k 

0. 

By substitution back into the Taylor expansion. 

where bT G(fLo) is fixed and not random. The Central Limit Theorem implies 

where 

bTG(fLo)[vrn([Lk - flo)] -'td N(O, bT G(fLo)0"5(G(fLo)fb) 

N(o. 0"5bT GGTb) 

GGT (Z[ Zk)-l Z[ Zk(Z[ Zk)-l 

(Z[ Zk)-l 

[ (V ~1-1 (V k:n1-1 1 
~. 

It follows that 

bT vrn(g([Lk) - 9(fLo)) = bT G(fLO)[vrn([Lk - flo)] -'td N(o, bT a5(Z[ Zk)-lb) 

N(o, bT a5~b). 

The Cramer-vVold device implies vm(g([Lk) - 9(fLo)) -7d N(O,a6~). Therefore, 

by definition . ..;m(Wk.m -- wo) -'td N(O, a6~). Since T =~'k,4(W) = ~~=~=, the Delta 

~Iethod implies 
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which means 

o 

3.2.2 Case 2 

THEOREM 3.7. For the clustered segmented regression model with the continuity 

constraint, if TO = Uk for some k, then 

r=m ( [ T~,"-k I ] [ 1i1ioo ] ) V I/~. ---+d N(O. a6 (a*f :E* a*) 

where 
V-I 

I.k--I 0 V-I 
I k 0 

0 V-I V-I V V-I V-I 
:E*= 

k.N k.N k.k l.k k.N 

V- l 
l.k 

V-IV V-I 
l.k k.k LV 

V-I 
l.k 0 

0 V-I 
kJV 0 V-I 

k+l.N 

The proof for this theorem is similar to that of Theorem 3.6. except that the 

joint distribution of Tk-I and Tk must be dealt with for this case. 

Proof. Define a function g : IR'V ---+ IRs as 

Then. defining G(J,L) = a;lr gives 
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'\"ext, use a Taylor series expansion, the Central Limit Theorem, and the fact that 

o(bT g)2 _ . 
O/-LO/-LT - ° to wnte 

The Cramer-Wold device yields 

which implies 

yrnbT G(/LO)({Lm - /Lo) 

bTG(/Lo)[yrn({Lm - /Lo)] 

--+d N(O, bT G(/Lok6G (/LO)Tb) 

N(O, 176bT G(/Lo)G(/Lofb) 

N(O, 176bT~*b). 

The above argument is verified by showing that G(/Lo)G(/Lof = ~*. 

(ZLI Z"_l)-l (ZLI Zk_1)-1 ZL1Zk(Zr Zk)-l 

As in Theorem 3.6. the first and fourth elements of this matrix can be written as 

follows: 

[ 

V--1 0 1 l.k-1 

o Vk.~-
and 
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1 Ul 0 0 

1 1 0 0 

ZLI Z k 
111 Uk-I 0 0 1 Uk 0 0 

0 0 1 1 0 0 1 Uk+! 

0 0 Uk UN 

0 0 1 UN 

k-l 

k-l LUi 0 0 
i=1 

k-l k-l 

LUi L2 U , 0 0 
;=1 ;=1 

N 

1 Uk iV - k 
L U; 

i=k+l 
iii iii 

Uk U
2 
k L Ui L 

U
2 , 

/,=k+l ;=k+l 

Then. 
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I o 

V -IV V-IV 
k,1 .... ' k.k k.N k+1.:V 

V-I 0 
Lk 

V -- l V V-I V-I 
LV k.k Lk k.1V 

as follows; 

1 1 0 

ZTZk-l 
UI Uk 0 

0 0 1 

I) 0 Uk+l 

k-l 

It-I 2::= Ui 1 
i=l 

A'-l k-l 

)U 
"---' l 

2::=2 U i ILk 

i=l i=l 

0 () i\/ - It 

,'Ii 

0 () 2::= Ul 

i=k+l 

[ 

VLk-l V k .k ] 

o Vk+l. N 

and 

27 

o 

0 

0 

1 

UN 

Uk 

2 
Uk 

N 

2::= Ui 

i=k+l 
IV 

2::= U
2 
z 

i-k+l 

o 

V-I 
k+1.1V 

1 Ul 0 0 

1 Uk-l 0 0 

0 0 1 Uk 

0 0 1 UN 



[ 
V~k 0 1 [Vl.k-I V

k
.
k 1 [Vl,LI 0 1 

o v';lu' 0 Vk+l.N 0 Vk,~. 

V -I V-IV V-I I,k I,k k,k k,N 

o V -I 
k,N 

Thus, it follows that 

G(JLo)G(JLof 

V -I I:k-I 

0 

V-I 
l:k 

o 

o 

V-I 
k:S 

V-IV V-I I:k k:k k:N 

V -I 
ki\ 

V -I I:k 

v-I V V-I 
k:lV k:k l:k 

V-I 
I:k 

o 

o 

V-I 
k:N 

0 

V-l 
k+l:N 

= ~*. 

where ~* is the covariance matrix for the joint distribution of Wk-I and Wk. 

Finally. since 

the Delta l\Iethod implies 

1m (~( [ W~k [ 1 ) -t{ [ :: 1 ) ) -+d 

N ( 0 ~g ( V"{ [ :: ] ) r E' (v,; ([ :: ] ) ) ) 
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Thus. 

o 

29 



CHAPTER 4 

CONFIDENCE ESTIMATION 

In order to construct a confidence interval based on the asymptotic theory, 

we need to have an algorithm that works regardless of where TO is located. In other 

words, our algorithm should work for both 

Case 1: TO E (Uk, uk+d for some k = 2, ... , N - 2 and 

Case 2: TO = Uk for some k = 2, ... , N - 1. 

Before discussing the following algorithms, it must be shown that parame

ters can be replaced by consistent estimators in proofs and statements related to 

confidence estimation. In particular, since the true variance, 0"5. in the asymptotic 

theory described above is unknown, it is desirable to use the estimated variance, 

0-2 , in the construction of confidence intervals for the estimated changepoint. The 

following lemma allows this, i.e., it shows that parameters can be replaced by con

sistent estimators in regards to confidence estimation. 

Lemma 4.1. Suppose Tn is a consistent and asymptotically normal estimator of T. 

In other words, suppose Tn -7p T as n -7 00 and vin(Tn - T) -7d N(O, U) as n -7 00 

for some constant U. If Un is any consistent estimator of U, then 

Proof. Since Tn is consistent and asymptotically normal, the following hold: 

Tn -7p T as n -7 ex:; 

vin(Tn - T) -7d N(O, U) as n -7 ex:;. 
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Statement (4.2) implies that T;;{ -+d Z as n -+ Xl where Z is standard normal. 

Then, using Slutsky's Theorem and the Continuous ~lapping Theorem, 

fo(Tn ·- T) 

JUn 

Thus, ~ -+d N(O, 1) as n -+ ,Xl. 

JV fo(Tn - T) 
JV' JUn 

Z. 

o 

In regards to the clustered model, since 0-2 -+a.s. CJ6 as m -+ 00 by Theorem 

3.5, it follows that 0-2 -+p CJ6 as m -+ Xl, as convergence in probability is implied 

by almost sure convergence. Putting this together with Theorem 3.6 and Theorem 

3.7, confidence intervals for this model can be constructed using 0-2 in place of CJ6. 

4.1 Removal algorithm 

One way to deal with the two cases is to always force Case 1. So, regardless of 

whether TO is located at an observation (Case 2) or between t,vo observations (Case 

1). the removal algorithm deletes the appropriate observation to guarantee that TO 

is between two observations. Thus. for the purpose of confidence estimation, even if 

TO is truly at an observation, the removal of that observation forces TO between two 

observations. Then the calculations only require the use of asymptotic normality of 

Case 1, i.e., Theorem 3.6. 

The following removal algorithm gives a method for constructing a 100(1 -

0:)% confidence interval for the estimator of the change point. f. The advantage of 

the removal algorithm is that it works regardless of the location of the true change 

point, TO. In other words, it works for both Case 1 and Case 2. In particular, it 
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works for the case when TO = Uk for some k = 2 .... ,N -1 (Case 2) without dealing 

with the complicated joint distribution of Tk-l and h. The disadvantage of the 

removal algorithm is that by throwing away an observation, an increasing amount 

of data is lost. This affects the efficiency of the algorithm. 

Removal Algorithm 

• Compute 9. This is a consistent estimator of 8 0 , so if m is sufficiently large, 

T will be close to TO. 

• Let Uk by the observation point that is closest to T. Then for sufficiently large 

m, Uk will be the observation point that is closest to TO. 

• Remove the observations at Uk and re-compute the MLE of 80 , namely, 9-

• Compute the 100(1 - a)7c confidence interval, I l - o" based on Theorem 3.6: 

'-± V(o--)2 a7 I:-ii 
T Z!.! 

2 m 

where Za is the 100( 1 - a )th percentile of a standard normal distribution and 
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4.2 Comprehensive algorithm 

The advantage of this algorithm over the removal algorithm is that there is 

no loss of information and it works regardless of the location of the true change. The 

interval chosen for the estimator and confidence interval for each of the 9 scenarios 

stated below was based off intuition and the information that was gathered through 

simulation. 

• Set t he confidence level. 100 (1 - a) O/C. 

• Estimate Tusing LSE. Record an interval of adjacent observations times which 

contains T. 

• Using the location of T, locate the next closest interval. Denote these two 

adjacent intervals as (Uj, U)+I) for the left interval and (Uk, uk+d for the right 

interval. Note that j + 1 = k. 

• Compute Tj and Tk' the estimators based on splitting the data at the jth and 

kth intervals, respectively. 

• Compute the 100( l-a)9C confidence intervals based on both Tj and Tk' Denote 

these as Ca,j and C a .k . There are 9 different scenarios that can occur based 

on the location of the two confidence intervals. 

AI: C n .j C (Vj. Uk) and C>.,k C (Uj, Uk) 

A2: Cn,j C (Uk. uk+d and C>.,k C (Uk. uk+d 

Bl: Uk E Co.,] and Uk E Ca,k 

B2: Cn,j C (u). Uk) and Uk E Cn,k 

B3: Uk E Ca,j and Ca,k C (Uj. Uk) 

B4: Ca,j C (Uk,llk+d and Uk E Ca .k 
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• If scenario AI, B2, or B3 occurs, choose T = Tj and C = Ca.j . 

• If scenario A2, B4, or B5 occurs, choose T = Tk and C = Ca.k. 

• If scenario Bl or Cl occurs. choose the T and C based on which interval 

contains the ~ILE for TO. If ldih. 0-2
) > lj(8j .0-2

), then choose T = Tk and 

C = Ca.k. If lj(8j , 0-2
) > lk(8k, 0-2

), then choose T = Tj and C = Ca,j' 

• If scenario C2 occurs. then the ~ILE is neither Tj nor Tk because they fall 

outside of their respective intervals. For this decision, consider the super-log

likelihood functions. lj(Oj. cr2
) and lk(Ok, cr2

). If lj(8 j . 0-2
) > lk(8k, 0-2

), choose 

T = Tj and C = Ca.j . If lk(8k.0-2
) > lj(8j .0-2

), choose T = Tk and C = Ca.k. 

• P(TO E C) ---7 1- (} as m ---7 IX. 

The last part of this algorithm will be proved by cases, i.e., based on the location 

of TO. For Case 1, the position of TO must be considered. The following paragraphs 

provide a general outline of the proof. 

Suppose TO E (Ul' ul+d for some l = 2, .... IV - 2 with TO falling closer to 

Ul than to Ul+l' Then, Scenario A2 occurs wpI, Choose T = fz. By Theorem 3.6, 

y'rn( T - TO) ---7d N(O, cr6o.Tta) as m ---7 x. Let C = Ca,l = T ± Za/2 J 0'5:/:,ii. Then, 

P(TO E C) ---7 1- (} as m ---7 IX. 

On the other hand, for Case 1, suppose TO E (Ul. Ul+l) for some I = 2, ... ,1V -

2 with TO falling closer to U/+l than to Ul. Then, Scenario Al occurs wpI, Choose 

T = fz. By Theorem 3.6. y'rn( T - TO) ---7d N(O. cr607ta) as m ---7 IX. Let C = Ca.l = 

A . / (T2iiT tii () 
T ± Za/2y~' Then, P TO E C ---7 1 - (} as m ---7 00. 
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For Case 2, suppose that TO = UI for some 1 = 2 .... , N -1. Then, as m ---+ oc, 

P(TO E C) P(Uk E C) 

P ( (Uk E C) n (A 1 U ... U C2 )) 

P((ukEC)n Al)+",+P((ukEC)n C2) 

P((Uk E C)n(BIUB3UB4)) 

P((Uk E C)I(B1 U B3 U B4)) . P(B1 U B3 U B4) 

1· P(Bl U B3 U B4) 

P(Bl) + P(B3) + P(B4) 

---+ 1 - o. 

Since this is just an outline to show why this algorithm works, there are 

several pieces that need to be proved in order to use this idea. However, notice that 

regardless of the location of TO, this algorithm provides a way to construct a confi-

dence interval of the appropriate level using information regarding the 9 scenarios 

stated. It is useful to consider these 9 scenarios graphically in Figure 4.1. To form a 

graphical interpretation, it is helpful to rewrite the scenarios the following way. Let 

(Jj and (Jk denote the standard errors for the respective splits. Then. for sufficiently 

large m, 

Al: Ca,j C (Uj, Uk) and Ca.k C (Uj. Uk) =} 

(Uj + Z~ . (Jj) < fj < (Uk - Z~ . (Jj) and (Uj + z~ . (Jk) < fk < (Uk - z~ . (Jk) 

A2: Ca,j C (Uk, uk+d and Ca,k C (Uk, uk+d =} 

(Uk + ZQ . (JJ) < f J· < (Uk+l - ZQ . (JJ) and (Uk + ZQ . (Jk) < fk < (Uk+l - ZQ . (Jk) 
2 2 2 2 
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B2: Co:,j C CUj. Uk) and Uk E Co:.k =? 

CU]' + Z£ . a)) < fl' < (Uk - Z£ . a)) and (Uk - ZQ. . ak) < fk < (Uk - Z£ . ak) 
2 2' 2 2 

B3: Uk E CO:. j and Co:,k C (Uj, Uk) =? 

(Uk - Z% . aj) < fj < (Uk + Z% . aj) and (Uj + Z% . ak) < fk < (Uk - Z% . ad 

B4: Co:,j C (Uk, Uk+l) and Uk E Co:,k =? 

(Uk + Z%' aj) < fj < (Uk+l - Z% . aj) and (Uk - Z% . ak) < fk < (Uk + Z% . ak) 

B5: Uk E CO:,j and Co:,k C (Uk, Uk+d =? 

(Uk - Z% . aj) < f) < (Uk + Z% . aj) and (Uk + z~ . ak) < fk < (Uk+l - z~· ak) 

Cl: Co:,j C (Uj,Uk) and Co:,k C (Uk,Uk+d =? 

(Uj + Z% . OJ) < fj < (Uk - Z% . aj) and (Uk + z~ . ak) < fk < (Uk+l - Z% . ak) 

C2: Co:,j C (Uk,Uk+d and Co:.k C (Uj,Uk) =? 

(Uk + Z% . aj) < fj < (Uk+l - Z% . aj) and (Uj + z% . ak) < Tk < (Uk - Z% . ak) 
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Uk+1- Z(Jk ------------------

C1 85 A2 

82 B1 84 

Uk-Z(Jk ------------------

A1 83 C2 
Uj+Z(Jk ------------------

Figure 4.1: 9 Scenarios 

First. Case 1, where TO is located between two observations, will be considered. 

Lemma 4.2. If TO E (11l.11l+1) for some l = 2, ... , N - 2 with TO closer to 11l, 

then, based on the comprehensive algorithm, scenario A2 occurs with probability 1 

as m ---+ :x. 

Proof. See Appendix. o 
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Lemma 4.3. If TO E (UZ' uz+d for some l = 2, ... ,1\/ - 2 with TO closer to UZ+l, 

then, based on the compr'ehensive algorithm, scenario A 1 occurs with probability 1 

as m -t 00. 

Proof. See Appendix. o 

Lemma 4.4. If TO E (uz, uz+d for some l = 2, ... , N - 2 with TO = ~(uz +uz+d, then, 

based on the comprehensive algorithm, either scenario Alar scenario A2 occurs with 

probability 1 as m -t 00. 

Proof. See Appendix. o 

THEOREM 4.1. (Case 1): If TO E (uz, uz+d for some l = 2, ... , N - 2, then 

P( TO E C) -t 1 - 0: as m -tX. 

Proof. By Lemma 4.2, Lemma 4.3, and Lemma 4.4, depending on the exact position 

for TO in the interval (uz, uz+d, either scenario Ai or A2 occurs. Following the 

comprehensive algorithm for these two scenarios, choose T = TZ. By Theorem 3.6, 

Vm(T - TO) -td N(O, 0'6o?I:a) as m -t x. Then the choice of confidence interval, 

C = Ca.k = T ± Z% . Ja6:;ta yields P(TO E C) -+ 1- 0: as m -t 00. o 

THEOREM 4.2. If TO = Uz for some l = 2 .... ,1V - 1. then P( TO E C) -t 1 - 0: as 

m-tx. 
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Proof. As m -t OC, 

P(TO E e) = P(UI E C) 

P (Ul E en (A1 U A2 U B1 U B2 U B3 U B4 U B5 U C1 U C2 )) 

P(UI E en A1) + P(UI E en A2) + P(UI E C n B1) + P(UI E en B2) + 

P(Ul E en B3) + P(Ul E en B4) + P(UI E en B5) + P(UI E en C1) + 

P(UI E en C2) 

P(UI E en(B1UB3UB4)) 

P(UI E el(B1 U B3 U B4)) . P(B1 U B3 U B4) 

1· P(B1 U B3 U B4) 

P(B1) + P(B3) + P(B4) 

-t 1 - 0:. 

The calculation for P(B1) + P(B3) + P(B4) is based on the bivariate normal curve 

and is shown in detail in Appendix 8.1. o 
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CHAPTER 5 

SIMULATIONS AND APPLICATIONS 

5.1 Hybrid algorithm 

The comprehensive algorithm presented in Section 4.2 provides an efficient 

algorithm for obtaining a confidence interval for TO which makes logical choices for 

what to do based on the scenario. One important aspect of this algorithm is that 

it avoids the need to know the distribution of the overall MLE T. Depending on 

one's perspective, though, the comprehensive algorithm's procedure may not be 

ideal. Specifically, consider the decision for the confidence interval in scenario C2. 

From a logical perspective, it makes sense that Uk should not be in the confidence 

interval if it is not in Ca.) or Ca.k . This is also convenient since it makes it easy to 

select the endpoints of Ca .j and Ca .k in such a way that the confidence level of the 

comprehensive algorithm is 100( 1 - o:)o/c. 

On the other hand. consider this decision from a likelihood-based perspective. 

In scenario C2, Tj E (Uk, uk+d and Tk E (u), Ilk)' In this case, the continuity of the 

likelihood function implies that T = Uk. Thus. from a likelihood-based perspective, 

Uk should be in the confidence interval in scenario C2. 

Consider a revision to the comprehensive algorithm in a manner so that Uk is 

in the confidence interval in scenarios Bl. B3. B4, and C2 and it is not in the interval 

otherwise, and refer to such an algorithm as a hybrid algorithm. There are many 

ways that the endpoints for the confidence interval could be defined for scenario C2. 
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but choosing between the various ways goes beyond the scope of this discussion and 

the only important aspect of defining the interval for a hybrid algorithm is that Uk 

is in the interval. Proceeding as in Appendix 2.1. select z so that the probability of 

the shaded area in Figure 5.1 equals 1 - a when Case 2 is true (i.e., TO = Uk). 

u~_, -i 

i 

, 
u, ~ 

-~~---

u~ -ZG, 

.'-~ 

u~· 

Figure 5.1: Shaded region for hybrid algorithm. 

Specifically, the goal is to find z such that Iz = 1 - a where 

It is the case that z E (ze;, Ze;/2) since Izc> < 1 - a, 1 Za/2 > 1 - a and Iz is increasing 

in z. There are no standard functions available in statistical software packages 

to compute this, so a numerical method to obtain z is needed. In this case, the 

secant method described in ]'vIathews (1987) provides a simple and computationally 

efficient method of determining z. 

41 



The secant method iteratively searches for the solution to the equation Iz = 

1 - Q. The method proceeds as follows. 

1. Specify the tolerance E (some small positive number). 

2. Set Za = Zo: and Zb = Zo:/2' 

4. Compute I z . 

5. If Iz < 1 - a - E, then set Za = Z and go back to step 3. 

6. If Iz > 1 - a + E, then set Zb = Z and go back to step 3. 

7. If lIz - (1 - a)1 :::::; E, then the secant method has converged. Use z. 

However, care must be taken to design the hybrid algorithm so that the 

asymptotic confidence level is correct regardless of the case. To create an algorithm 

that will also work in Case 1. consider the two-step procedure described below. 

1. Determine the scenario based on z = Za/2' 

2. If scenario B1, B3. B4, or C2 occurs, then recompute z based on the hybrid 

algorithm and use the resulting confidence interval. 

This two step procedure works because. in case 1, none of the scenarios mentioned 

in step 2 will occur so that the same result is obtained as if the comprehensive 

algorithm had been used, while in case 2, the level is adjusted to include C2 in the 

region that would lead to Uk being in the confidence interval. 

EXA~lPLE 1. Consider the data set in Table 5.1 to illustrate the secant method 

and the hybrid algorithm. 
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-~~ 
2 3 4 5 6 

Y: .9010 .8004 .6987 .6505 .6000 .5502 

m = 100000 L~=l L7=1 Cl)ij - Yi)2 = 96086.9604 

Table 5.1: Data set for Example 1. 

First, compute the ~ILE T = 3 to determine j = 2 and k = 3. To determine 

the initial scenario, compute confidence intervals C.05 ,2 = (2.894079,3.127490) and 

C.05 ,3 = (2.880648,3.054646). Since U3 = 3 is in both intervals, this is scenario B1 

and thus according to the hybrid algorithm, Z must be recomputed. Then the value 

Z = 1.959905 is determined by the secant method with £ = 10-6 as shown in Table 

5.2. 

Iteration Za Z Zb Iza I z IZb 

0 1.644854 1.959964 0.9000854 0.9500074 

1 1.644854 1.959917 1.959964 0.9000854 0.9500019 0.9500074 

2 1.644854 1.959905 1.959917 0.9000854 0.9500005 0.9500019 

Table 5.2: Secant method for choosing z in the hybrid algorithm for Example 1. 

Using this new value of z, compute 2(1- <1>-l(Z)) = 0.05000692 and redeter-

mine the scenario by computing the confidence intervals 

C.05000692.2 = (2.894083,3.127486) and C.O,5000692,3 = (2.880650,3.054644). Since 

U3 = 3 is still in both intervals, this is still scenario B1 and a hybrid algorithm will 

conclude that 3 is in the confidence interval. 

5.2 Comparison of confidence estimation methods 

The three algorithms presented in this dissertation can be compared numer-

ically by simulation using the statistical software R. The following tables give the 

results for running 250,000 simulations for varying values of m. Letting N = 10, 
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0:0 = 1, /30 = -0.1, 50 = 0.05, and (To = 0.4. the three algorithms can be compared 

for Case 1 by letting TO == 5.5. Table 5.3 displays the results for using the removal 

algorithm for Case 1. Table 5.4 displays the results for using the comprehensive 

algorithm for Case 1. 

The second columns of Table 5.3 and Table 5.4 give the estimated probabil

ity that the confidence interval will contain the true value of the change point. All 

values in both tables are close to .95 and therefore support the asymptotic results 

obtained in Chapter 4 regarding the coverage probabilities. 

~ote that there is a difference in the third and fourth columns of these tables. 

The third column reports the average width of every confidence interval computed. 

The fourth column only reports the average width of those confidence intervals 

that actually contain the true change. These are the important widths to consider 

because it is of more importance to compare the average width of the "correct" 

confidence intervals between the different algorithms. However, regardless of which 

column is used to assess the performance of the algorithms. the comprehensive 

algorithm outperforms the removal algorithm. Specifically. the width of the 95% 

confidence intervals obtained by the comprehensive algorithm are roughly 76% of 

the width of the corresponding intervals for the removal algorithm. 

The results for using the hybrid algorithm are displayed in Table 5.6. Table 

5.5 and Table 5.7 show the number of times each of the 9 scenarios occur for each 

value of m. 
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m ?(TO E C.95 ) avg width of C.9.5 I avg width of C.95 given TO E C.95 

104 0.943096 0.528222600 0.537994700 

105 0.946724 0.167653200 0.166318700 

106 0.949276 0.053121820 0.053209200 

107 0.949032 0.016809240 0.016796630 

108 0.950064 0.005316718 0.005316825 

Table 5.3: Removal algorithm: Case 1 

m p( TO E C.95 ) avg width of C.95 avg width of C.95 given TO E C. 95 

104 0.950204 0.403635700 0.419388000 

105 0.949908 0.127400400 0.126725300 

106 0.950468 0.040283140 0.040158530 

107 0.950076 0.012738230 0.012730330 

108 0.949984 0.004028191 0.004028782 

Table 5.4: Comprehensive algorithm: Case 1 

, 

m Al A2 B1 B2 B3 B4 B5 Cl C2 

104 46870 46811 1047 77757 41 43 77395 12 0 

105 124692 125308 0 0 0 0 0 0 0 

106 125044 124956 0 0 0 0 0 0 0 

107 124739 125261 0 0 0 0 0 0 0 

108 125087 124913 0 0 0 0 0 0 0 

Table 5.5: Results for 9 scenarios - Comprehensive algorithm: Case 1 
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m 

104 

105 

106 

107 

108 

m p( TO E C.95 ) I avg width of C.g!) given TO E e.95 

0.950204 

0.949908 

0.950468 

0.419388000 

0.126725300 

0.040158530 

0.012730330 

0.004028782 ~
07 0.950076 

108 0.949984 
------~------------------------~ 

Table 5.6: Hybrid algorithm: Case 1 

Al A2 B1 B2 B3 B4 B5 C1 

46870 46811 1047 77757 41 43 77395 12 

124692 125308 0 0 0 0 0 i 0 

125044 124956 0 0 0 0 0 0 

124739 125261 0 0 0 0 0 0 

125087 124913 0 0 0 0 0 0 

C2 

0 

0 

0 

0 

0 

Table 5.7: Results for 9 scenarios - Hybrid algorithm: Case 1 

Again, letting 1\' = 10. Go = 1. 30 = -0.1. So = 0.05, and (}o = 0.4. the three 

algorithms can be compared for Case 2 by letting TO = 5. Table 5.8 displays the 

results for using the removal algorithm for Case 2. Table 5.9 displays the results 

for using the comprehensive algorithm for Case 2. The results for using the hybrid 

algorithm are displayed in Table 5.11. Table 5.10 and Table 5.12 show the number 

of times each of the 9 scenarios occur for each value of m. 

Again. the second columns of Table 5.8 and Table 5.9 give the estimated 

probability that the confidence interval will contain the true value of the change 

point and all values in both tables are close to .95. The third and fourth columns 

show that the comprehensive algorithm outperforms the removal algorithm. This 

time, the width of the 9.5% confidence intervals obtained by the comprehensive al-
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gorithm are roughly 85% of the width of the corresponding intervals for the removal 

algorithm. 

m ?(TO E C.95 ) avg width of C95 avg width of C.95 given TO E C.95 

104 0.951260 0.50717800 0.50504350 

105 0.950500 0.15994730 0.15971700 

106 0.949924 0.05056696 0.05063142 

107 0.949780 0.01599036 0.01599157 

108 0.950076 0.005056557 0.00505168 

Table 5.8: Removal algorithm: Case 2 

m ?(TO E C.95 ) avg width of C95 avg width of C 95 given TO E C.95 

104 0.944996 0.427455500 0.444053500 

105 0.948264 0.135069600 0.129316500 

106 0.949560 0.042733470 0.041056020 

107 0.949652 0.013516740 0.014105450 

108 0.950200 0.004274465 0.004456335 

Table 5.9: Comprehensive algorithm: Case 2 

m Al A2 B1 B2 B3 B4 B5 C1 C2 

104 985 866 227363 6226 4721 4165 5672 1 1 

105 969 889 227012 5567 5149 4905 5502 5 2 

106 906 955 226737 5387 5340 5313 5355 4 3 

107 905 937 226654 5322 5502 5257 5415 5 3 

108 938 980 226952 5306 5254 5344 5217 4 5 

Table 5.10: Results for 9 scenarios - Comprehensive algorithm: Case 2 
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Tn F( TO E G.95) 

104 0.945000 

105 0.948272 

106 0.949572 

107 0.949664 

108 0.950220 

Table 5.11: Hybrid algorithm: Case 2 

Tn Al A2 Bl B2 B3 B4 B5 Cl C2 

104 985 866 227363 6226 4721 4165 5672 1 1 

105 969 889 227012 5567 5149 4905 5502 5 2 

106 906 955 226737 5387 5340 5313 5355 4 3 

107 905 937 226654 5322 5502 5257 5415 5 3 

108 938 980 226952 5306 5254 5344 5217 4 5 

Table 5.12: Results for 9 scenarios - Hybrid algorithm: Case 2 

5.3 Real data examples 

Data that was obtained from the GSS (General Social Surveys) database, 

Smith. et a1. (1972-2010), will be used to provide an example of the ideas presented 

in this dissertation. The independent variables that were used from this survey 

are the years 1972-2010. The response variable used from this survey was the 

highest grade of schooling, 0-20, for which the respondent's mother received credit. 

Starting in 1994, data was only obtained every other year. Three other years are 

unrepresented in this dataset; 1979. 1981, and 1992. There are 1156 responses for 

every represented year for a total of 32,368 responses. The scatterplot of the raw 

data is shown in Figure 5.2 and the scatterplot of the average education level for 
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each year is shown in Figure 5.3 below. 
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Figure 5.2: Scatterplot of mother's education data. 
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Figure 5.3: Scatterplot of average mother's education data. 

vVhen the data is assumed to have one change and fit to a clustered segmented 

regression model assuming a continuity constraint as described in Section 2.3, the 

resulting segmented regression lines are shown below in Figure 5.4. 
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Figure 5.4: Segmented regression line 

Using the removal algorithm on this data results in the removal ofu22 = 1998. 

Then the re-computed estimator for the change point is T = 1997.405 and the 95% 

confidence interval is C = (1997.392.1997.418). The length of Cis 0.02609835. 

If the comprehensive algorithm is used instead. the jth interval is found to be 

(U21. U22) = (1996, 1998) and the kth interval is found to be (U22. U23) = (1998,2000). 

The jth and kth change point estimators are T21 = 1998.208 and T22 = 1997.185, 

respectively. The 95% confidence intervals associated with these estimators are 

C.05.21 = (1998.199,1998.217) and C.05 ,22 = (1997.172.1997.198), respectively. This 

is an example of scenario C2. Following the comprehensive algorithm. the decision 

on what estimator and confidence interval to use will be based off which super 

log-likelihood function is the greatest. Since Qj(02d = 0.3530153 and Qk(022) = 

0.3486604, then l21 (0 21 , ;;-2) < l22( 022 . ;;-2). This means that the estimator that is 

chosen using the comprehensive algorithm is 7- = 7-22 = 1997.185 and the confidence 

interval that will be used is C = C.05.22 = (1997.172.1997.198). Here, the length of 

C is 0.02609835. 
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APPENDIX 

A.I Proof for Lemma 4.2 

Assume TO E (UI' ul+d for some I = 2, ... ,N - 2 with TO closer to UI. To be 

consistent with the comprehensive algorithm, let I = k. Let T = Tk be the estimator 

based on splitting at the kth observation and T = Tj be the estimator based on 

splitting at the jth observation. 

First, consider splitting the data at the kth observation. This means the 

observations on the left side are {UI' ... , Uk} and the observations on the right side 

are {Uk+ 1, ... , U lV }. The estimates for the intercept and slope of the regression line 

fit through the data on the left are WI and W2. respectively. Likewise. W3 and W4 

are the estimates for the respective intercept and slope for the right side. The 

point where these two lines cross gives the estimate for the change point. Thus, the 

change point estimator based on this split is found as follows: 

T 

W3 - WI 

W3 - WI 

W2 -W4 

Strong consistency gives T ---7a .s . TO as m ---7 x. So for sufficiently large m, it is the 

case that T E (Uk. Uk+d wpl and Ca .k C (Uk,Uk+d wpl. 

If the data is split at the jth observation, the left side consists of {Ul' ... , Uj} 

and the right side is {Uk, ... , UN}. Since the left side is specified the same as it was 

when the data was split at the kth observation, the respective estimates WI and 0.;2 
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for the intercept and slope on the left are strongly consistent: that is, WI ---Ta.s. WOl 

and W2 ---Ta .s . W02 as Tn ---T cx::. However, since TO E (Uk. uk+d, the kth observation 

truly follows the trend of the left side so including the kth observation on the right 

makes the right side mis-specified. This changes the estimates for the intercept and 

slope, namely, W3 and W4' The change point estimator based on this split is found 

similar to before. Let 

T 

Here, strong consistency does not guarantee that T E (Uk, Uk+d or that Ca,j C 

( Uk, Uk+ 1)' This must be established in a different way. The following argument 

justifies why Uk < T < TO wpl which implies that Ca,j C (Uk, Uk+l) as Tn ---T 00. 

In order to compare the right side parameter estimates for the different splits, 

define 

The estimates based on splitting at the kth observation are found by 
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WR = (UfU2)-lUffh· Splitting at the jth observation gives 

WR (U~U R)-lU~YR 

(UiU1 + UfU2 )-1(UiYl + UfY2) 

[(UfU2 )((UfU2 )-lUiU1 + I)t1(UiYl + UfY2) 

C(UfU2 )-1(UiYl + UfY2) 

C(UfU2)-lUiYl + CWR 

where C = ((UfU2 )-lUiU1 + I)-I. The Sherman-Morrison-\Voodbury formula 

(Golub and Van Loan, 1996) can be used to rewrite C. 

Thus, WR can be simplified as follows. (See Appendix 1.1(a) for the detailed sim

plification. ) 

[::] [::] W3 + UkW4 - Yk 
]Ii 

A + L (Ui - Uk)2 

i=k+l 

]Ii 

L Ui(Ui - Uk) 

i=k+l 
N 

L(Uk-Ui) 

i=k+l 

]Ii N 

where A = det(UfU2 ) = (N - k) L u; - ( L Ui)2. 

i=k+l i=k+l 

It is important to note that A > O. This is due to the fact that ufu 2 is 

positive definite. By definition, ufu 2 is positive definite if, for any x E IR where 
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x =I=- O. x T (UfU2 )x > O. Let x = [X\ •. L2]T. Then, 

x
T ufu2x = (U2X)T(U2X) 

1 Uk+l [ :: ] r( 1 Uk+l 

[ ::]) ( 
1 UN 1 UN 

:Kote that x T (UfU2)x = 0 only if both elements of x are equal to O. Thus, 

x T (UfU 2)X > 0 for all nonzero x. This implies that A > O. 

For this case, the left side is correctly specified regardless of whether the 

split was at the jth or kth observation. Thus, the attention will be focused on 

how the regression line on the right changes depending on where the data is split. 

First. compare the fitted values at Uk from the right regression line to the actual 

observation, (Uk, Yk). 

Yk 0 1 +Ukc"'2 ~a.s. WOl + ukw 02 

Yk 0 3 + UkW4 ~a.s. w03 + ukw 04 
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Then, W R can be re-written as follows: 

W3 + UkW4 - fh 
W R - -~-t..-" ------"'--

A + L (Ui - Uk)2 

i=k+l 

i=k+l 

N 

L Ui(Ui - Uk) 

i=k+l 
N 

L (Uk - Ui) 

i=k+l 

N 

L Ui(Ui - Uk) 

i=k+l 
N 

L (Uk - Ui) 

i=k+l 

Yk = Yk(1 - c) + C' flk implies that Yk < Yk < flk or flk < Yk < Yk. Solving for c, 

'Without loss of generality, assume W02 < W04. (The argument is similar for W02 > 

wod Then Yk < Yk < r1k· By the Strong Law of Large Numbers, rh -ta.s . J.lO,i 

for i = 1, ... , N. Thus, when m is large. the values of Yi will be very close to 

/LO,i for all i. Figure A.I illustrates the means and the fitted values for the various 

regression lines. Based on the graph in Figure A.I. it is clear, geometrically. that 
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Fitted Values 

u 

Figure A.I: Illustration of fitted values from right regression line when m is large. 

Then, 

Yk - Yk 
< 1 

Yk - Yk 

Yk - Yk < Yk - Yk 

Yk < fh 

W3 + UkW4 < WI + UkW2 

W3 - Lv'I < P2 - W4)Uk 

(W3- Wl) > Uk 
W2 -W4 

T > Uk· 

Due to the nature of the regression line on the right, W3 +W4T < W3 +W4T. To clarify 

this, the assumption that Yk < Yk < fh means that there is a positive residual at Uk· 

By the nature of regression, in particular least squares, there must also be at least 

one negative residual on the right side. This must occur at Uk+l' (If the residual 

atuk+l was positive, then all of the residuals on the right would be positive. This 

would contradict the fact that this is a regression line.) This can be seen graphically 
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in Figure A.2 below. 

Residuals 

u 

Figure A.2: Illustration of residuals from right regression line based on jth split 

when m is large. 

Thus. the assumption that Yk < Yk < fik implies W3 + W4T < W3 + W4T. Using this, 

the following holds: 

Formally, we have 

T 

Now, it follows that 

Wl +W2T < 

WI -W3 < 

(~I - ~3) < W4 -W2 

(~3 - ~I) < W2 -W4 

T < 

W3 - WI 

W2 - W4 

W3 +W4T 

(W4 - W2)T 

T 

T 

T 

(W3 - wr) + (WI - wr) 
(W2 - W2) + (W2 - W4)" 
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Since 

we have 

C*W02 + (1 - C*)W04 

where 

Hence, 0..;2 - W4 ---ta.s. (1 - C*)(W02 - W04)' Also. it follows that 

So, we have 

T ---ta .s . 

sInce 

(1 - C) (W02 - W04) (TO -Uk) + uk(1 - C*)(W02 - W04) + 0 
0+ (1 - C*)(W02 - W04) 
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Putting this all together. Uk < T < TO wpl as m ---+ x. The same argument can be 

reversed for the assumption that W02 > W04. Either way, the conclusion is the same, 

i.e .. that T E (Uk, TO) wpl as m ---+ x. 

To summarize this argument, if TO E (Ut, UZ+l) for any I = 2, ... , N - 2 with 

TO closer to Ut. then for sufficiently large m, 

A d A 2 2 
T ---+a.s TO an (J ---+a.s. (Jo as m ---+ x 

~ 
=* T E (Uk. uk+d and V ~ ---+ 0 

=* Co.. k C (Uk,Uk+l) 

and 

Yk is between ih and fh wpl as m ---+ ClC =* Uk < T < TO 

Thus, Scenario A2 occurs. 

A.2 Proof for Lemma 4.3 

This argument is similar to that for Lemma 4.2. However. in this case. the 

left side of the data is mis-specified if the split occurs at the wrong observation. 

The rest of the argument can be followed similarly to show that if TO E (Ut, UZ+ 1) for 

any I = 2, .... N - 2 with TO closer to lLZ+l. then for sufficiently large m, Scenario 

Aloccurs. 

A.3 Proof for Lemma 4.4 

This argument is similar to that for Lemma 4.2 and Lemma 4.3. In this case, 

it is random which side is mis-specified. If Tn is sufficiently large, then Scenario Al 

occurs when the left side is mis-specified. while Scenario A2 occurs when the right 

side is mis-specified. 
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A.l(a): Simplification of WR 

N N N 

iV-A; L Ui L u2 
L 

UrU2 = i=k+l '* (UrU'2)-l = ~ i=k+l 
N N N 

i=k+l 

L Ui L u2 
L 

i=k+l i=k+l 

(U'[Uz)-1Uf U 1 _ 1 

d - A+L~k+1(Ui-U.k)2 

1- (U'[U2)-IU[U1 _ 1 

d - A+I:;"=k_l(U,-Uk)2 

N 

L u2 
! 

(UTU )-lUT- 1 i=k+l 
2 2 1 Yl = It ,'Ii 

- L U 1, 

i=k+l 

N 

L u~ 
i=k+l 

N 

-

- L Ui 

i=k+l 

L Ui 

i=k+l 

i=k+l 

N-A; 

N I"i 

N-A; 

L U,( Ui - Uk) L UklLi( Ui - Uk) 

i=k+l 

L (Uk - Ui) 

i=k+l 

,'IV 

i=k+l 
N 

L lLk(Uk - ud 
i=k+l 

N 

A + L Uk(Uk - Ui) 

i=k+L 

L UklLi(lLi - Uk) 

i=k+l 
N 

- L (Uk - lli) 
i=k+l 

N 

L U; 

N 

A + L Ui (Ui - ud 
i=k+l 

N 

L Ui( Ui - Uk) 

[ '~k ] 

i=k+l fJ - 11k i=k+l 
k - A N 

N-A; L (Uk - Ui) 

i=k+l 
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i=k+l 
N 

L Ui(Ui - Uk) 

d (UTU2)-IUJUl A _ (' A + A) i=k+l an d W R - ,W3 UkW 4 N 

L (Uk - Ui) 

l=k+l 

N 

L Ui(Ui - Uk) 

i=k+l 
N 

L (Uk - Ui) 

i=k+l 

B.1 Bivariate Normal Calculation for Theorem 4.2 

Suppose that TO = Ul for some I = L ... , N. To be consistent with the 

statement of the comprehensive algorithm, let I = k. Then, as m -7 00, the 

asymptotic normality is described in Theorem 3.7 as 

P(Bl) 

P(B3) 

P(B4) 

Graphically, these probabilities are thE' same as the volume under the bivariate 

normal curve for the shaded regions shown in Figure B.3. 
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, , 
tj versus tk 

UII-I - lOIl ------------- -- ---t-----t----- ---j-----j ... ---- ... ---.. -- - . 

Uk+ ZO'~ - _._-------- ---- t-----

Uk- lO'k ..• .. • _------ - - .. -1-----

Figure B.3: Shaded regions for integration. 

Since the 9 regions shown in the graph above are the only possibilities for the 

location of the estimators, the volume of the bivariate normal curve over all 9 

regions is equal to 1. Let PI be the volume over the regions Bl , B3, B4, and Cl 

and let P2 be the volume over the region C1. Thus, the region of interest is PI -- P2, 

which can be calculated using a series of transformations and rotations of the curve. 

For the sake of simplicity, denote Zf! = z. Then, PI and P2 are equal to the following 
2 

integrals, respectively. 

The first transformation will be made by letting Xl = fj~TO and X2 = fk~TO. Then, 

dXI = ;j dfj and dX2 = ;1< dfk · The limits of integration for PI are transformed as 

follows: 

::::} --z < Xl < 00 
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=} -00 < X2 < z 

The limits of integration for P2 can be found similarly and the integrals can be 

rewritten as follows. 

PI 

P2 

This can be visualized by the graph shown in Figure EA. 

Figure B.4: First transformation 

The distribution for Xl and X2 can be found as follows: 

E (x ) = E ( Tj - TO) = .l.. E ( f:) - Ill. = Ill. - Ill. = 0 
I (Tj (Tj J (Tj (Tj (Tj 

Similarly, E(X2) = 0 and var(x2) = 1. Since Xl and X2 are not independent , 
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Thus, X rv N(O, :E), where Since I:EI = 1 - p2 => 1:EII/2 = ~ and [pI PI]. 

[ ~p -:] ~ 

[~p ~p][::] 

[ :: ] 
then PI and P2 can be re-written as follows. 

In order to make the second transformation in the form of a rotation, the eigenvalues 

and eigenvectors of :E must be found. The eigenvalues are found by the following 

calculation. 

I:E - ),11 0 

1-), p 
0 

p 1-), 

(1 - ).)2 -l 0 

).2 _ 2), + (1 _ p)2 0 
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The eigenvector corresponding to the first eigenvalue, 1 + p, can be found by con-

sidering 

This implies that VI = V2· SO for any constant c E lR, the eigenvector corresponding 

to the first eigenvalue is e [ : ]. Similarly. the eigenvector corresponding to the 

second eigenvalue. 1 - p, is found by considering 

which implies that VI = - V2. The eigenvector that corresponds to the second 

eigenvalue is e [ ~ 1 
] for any constant c E 1Il'.. 

This is used to find the Singular Value Decomposition (SVD) of~. Letting 
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and D = [ 1 + pol' the SVD is ~ = U DUT because 
o 1- P 

~ [ 1 + P 

2 l+p 

= l:. 

Using the fact the D is diagonal and U is orthogonaL ~ can be written as 

where ~1/2 = U Dl/2UT . Finally, the second transformation can be made by letting 
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W = D-l
/
2U T X. This means that W '"" N(O. I) because 

E(W) 

Var(W) 

Dl/2UT E(X) = 0 

(D-l/2UT)Var(X)(D-l/2UTf 

UT~-1/2~1/2~1/2~-1/2U 

I. 

This transformation is useful because the integrand is now f( U'l, U'2) = 2~e-!(wr+w~). 

The region of integration is transformed as follows. It can easily be seen that 

W D- l / 2U T X 

[ WI ] 
1 [7 0 

][ ~l :][::] 1['2 v'2 1 
vr=P 

1 [ -:: ~:+p ] [ :: ] v'2 
vr=P 

[ x,+m ] 

V:2V:: 
v'2Jl-p 

However, the transformation for the region of integration, PI - P2, is more com-

plicated than before. First. consider mapping the region PI from the X -plane to 

the W-plane by letting Xl = t for t ~ -z and let X2 = s for s ~ z. Then, 

Vt ~ -z Vs ~ Z, IL'l = A:fi+p and 1['2 = v'2s~. For a fixed value of s, it is useful 

to map all points t ~ --z from the X-plane to the W-plane. To visualize how 

these points will map to the new plane, consider in detail how two such points are 

mapped for a fixed value of s. 
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For example, fix s = z. Then, WI = A:jITp and W2 = V2z~. Then the value 

t = -z gives WI = 0 and W2 = ~. This means that the point (Xl = -Z, X2 = z) 

in the X-plane maps to (WI = 0, W2 = ~) in the W-plane. To map a second 

point for this fixed value of s, let t = z. Then, the point (z, z) in the X-plane maps 

to the point (Jfip, 0) in the W-plane. Consider the visualization of this in Figures 

B.5(a) and B.5(b) shown below. 

x, vefSUS X2 

x,o----------- w, J 

(a) 

w, versus W2 

o 
w, 

(b) 

Figure 8.5: (a) original image in X-plane (b) transformed image in W-plane 

:\ow. if s = -z, the mapping of the following two points from the X-plane to the 

W-plane, respectively, can be found similarly. 

(-z,z) maps to 

(z, -z) maps to 

(-0 0) 
vl+p' 

(0 -zV2) 
, y'"f=p 

This can be seen visually in Figures B.6(a) and B.6(b) below. 
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Xl versus X2 WI versus W2 

->i2 
, ~ -,,-' ,.I-p 

',0 W, O 
, 

, 

J '. 

->i2 
~-

I 
, I-p 

, , 
->i2 0 >i2 

" r,:; W, J;:p 

(a) (b) 

Figure R6: (a) original image in X-plane (b) transformed image in W-plane 

Consider doing this for all values of s :::; z. Then, the transformation of region Pl is 

shown in Figures B.7(a) and R7(b) below. 

X, versus X2 

" 

" 

-l ~ 

" 
(a) (b) 

Figure R7: (a) original Pl in X-plane (b) original Pl in W-plane 

The same method can be used to transform the region P2. The region of integration, 

Pl - P2 , is shown shaded in Figures B.8(a) and R8(b) . 
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Xl versus X2 

X,o 

XI 

(a) 

W, o---

o 
WI 

(b) 

Figure B.8: (a) PI - P2 in X-plane (b) PI - P2 in W-plane 

Letting r = Ifi!p, s = Jih , and t = J{:p, the labeled lines in figure B.8(b) can 

be written in the following way. 

Line 1 : WI 

Line 2 : WI 

Line 3 : WI 

Line 4: Wl 

Now the integrals can be simplified as shown below. 

Pl 

P2 = 
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j x, l-rw2+s 1 
Substituting back to V = W gives P2 = - -2 e!(w;+w?)dwI du'2' 

t rW2- s 7r 
This 

means PI - P2 is equal to the following. 

where <P is the CDF (cumulative distribution function) of the standard normal 

distribution. Thus. PI - P2 = 1 - 2[ where [ = IX <P'(W2)<P(rw2 - s)dw2. The 
. x 

integral [ will be considered in more detail by substituting the original values back 

in for rand s. 

I 

The integral, I, is the volume of the bivariate normal curve above the shaded region 

shown below in Figure B.9. 
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~
-p z,{2 

W2* -Wl+~ 
1 +p ; 1 + p 

Figure B.g: Region of integration for I. 

To transform the region of integration shown in Figure B.9, consider U AW 

where 

- cosO l' 
sinO 

using 0 as the angle between the wl-axis and the line W2 = Ifi!pWl + Jfk . This 

is shown in Figure B.lO below. 

Figure B.lO: Angle O. 
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Then, A can be simplified as follows. 

A=~[JI+P J1=P 
Now, it can be shown that U rv N(O, I) because E(U) = A· E(W) = 0 and 

Var(U) = AVar(W)AT = AAT 

t [ JI+P J1=P -J1=P] [ JI+P J1=P] 
JI+P -J1=P JI+P 

= ~[2 0] 
2 0 2 

= I. 

Since [Ul] = ~ [ U'l vT+P - W2 J1=P]. the transformation can be made 
U2 2 U'1 J1=P + W2 JI+P . 

from the W-plane to the U-plane similar to what was done before. To form the 

region of integration, I, shown in Figure B.9. let WI = t for oc < t < oc and 

U'2 = ~.t+8 for 8 ~ ;fh. By substitution. for t E (-oc, oc) and 8 E [;fh. oc), 

_JI-P '8 

2 

J2 FP V 1=P' t+ V ~-2-' 8 

The shaded region, E, shown in Figure B.9 can be mapped to the U-plane by 

considering how the line U'2 = ~. t + 8 is mapped for a fixed value of 8 E 

(;fh, oc) as t ranges from -x to oc. tor example, fix.5 = ;fh. Then, 

-z 

J 2 ·t+z 
I-p 

As t ranges from -oc to x, HI is fixed at -z and U2 takes on all values from -:)C 

to x. So the line W2 = ~. t + ;fh in the W-plane is mapped to the vertical 
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line , UI = Z, in the U-plane. This can be done for all values of s E [~ , (0). This 

maps the region I from the W-plane to the U-plane as shown in Figures B.ll(a) 

and B.ll(b) below. 

o 
w, 

(a) 

UI versus ll2 

o 
u, 

(b) 

Figure B.ll : (a) I in W-plane (b) I in U-plane 

Then, the integral I can be calculated as follows . 

I = 

2 

Finally, substituting this value for I into the equation we have for PI - P2 gives 

PI - P2 1- 2I 

1-a. 
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