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ABSTRACT 

STATISTICAL ANALYSIS AND DATA MINING OF MEDICARE PATIENTS 
WITH DIABETES 

Xiao Wang 

March 25, 2011 

The purpose of this dissertation is to find ways to decrease Medicare costs and to 

study health outcomes of diabetes patients as well as to investigate the influence of 

Medicare, part D since its introduction in 2006 using the CMS CCW ( Chronic 

Condition Data Warehouse) Data and the MEPS (Medical Expenditure Panel Survey) 

data. 

In this dissertation, we introduce pattern recognition analysis into the study of 

medical characteristics and demographic characteristics of the inpatients who have a 

higher readmission risk. We also broaden the cost-effectiveness analysis by including 

medical resources usage when investigating the effects of Medicare, part D. In addition, 

we apply several statistical linear models such as the generalized linear model and data 

mining techniques such as the neural network model to study the costs and outcomes of 

both inpatients and outpatients with diabetes in Medicare. Moreover, some descriptive 

statistics such as kernel density estimation and survival analysis are also employed. 

One important conclusion from these analyses is that only diseases and procedures, rather 

than age are key factors to inpatients' mortality rate. Another important discovery is that 
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at the influence of Medicare part 0, insulin is the most efficient oral anti-diabetes drug 

treatment and that the drug usage in 2006 is not as stable as that in 2005. We also find 

that the patients who are discharged to home or hospice are more likely to re-enter the 

hospital after discharge within 30 days. Two - way interaction effect analysis 

demonstrates that diabetes complications interact with each other, which makes 

healthcare costs and health outcomes different between a case with one complication and 

a case with two complications. Accordingly, we propose some useful suggestions. For 

instance, as for how to decrease Medicare payments for outpatients with diabetes, we 

suggest that the patients should often monitor their blood glucose level. We also 

recommend that inpatients with diabetes should pay more attention to their kidney 

disease, and use prevention to avoid such diseases to decrease the costs. 
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CHAPTER I 

INTRODUCTION 

As healthcare reform has passed and is now law, Medicare will come under more 

intense scrutiny in the healthcare industry. Diabetes is one of the most common chronic 

condition diseases and the 7th leading cause of death in America. It is necessary to study 

the patients with diabetes in the Medicare insurance program. Although there are many 

researchers who study such patients, few of them investigate those patients from a 

statistical or data mining perspective. That is why we choose statistical analysis and data 

mining of the Medicare beneficiaries with diabetes as the topic of this dissertation. 

The primary purpose of this research is to apply statistical knowledge and data 

mining algorithms to reduce the Medicare expenditures on diabetes beneficiaries, 

improve the health outcomes of patients as well as to investigate the influence of 

Medicare, part D since its introduction in 2006. In this chapter, we will briefly introduce 

the background of this research. First, we will present the objectives of this dissertation. 

Then we will review the previous research about diabetes patients within the Medicare 

population and describe our main contributions. Next, we will make some assumptions 

concerning the Medicare data. Then, we will introduce the basic concepts needed for this 

study, including the types of diabetes and their oral medication treatments, Medicare 

insurance and Medicare reform, the data sources and the medical codes. After we 

introduce the basic statistical methodologies used in this dissertation, we will introduce 



the outline for the rest of the chapters. 

1.1 Basic Objectives of Dissertation 

There are several objectives in this dissertation: 

• To see how to decrease Medicare reimbursements for both inpatients and 

outpatients. We try to find out the most important factors influencing Medicare 

payments through various statistical models and data mining algorithms such as 

the decision tree model; we also utilize multivariate analysis to find the directions 

of the relationships between the important predictors and the costs. In that way, 

we propose strategies to decrease Medicare payments. 

• To see how to improve health care quality and outcomes. How to reduce the 

mortality rate of patients and how to decrease the length of hospitalizations are 

two concerns in this dissertation. We mainly employ various kinds of predictive 

models to analyze how variables such as age, gender, and procedures affect the 

outcomes so that we can provide methods to improve health outcomes. 

• To investigate the influences of the Medicare drug plan since it became effective 

in 2006. We study the impacts through the usage of diabetes medications, the 

cost-effectiveness of the drugs and the medical resources utilization. 

1.2 Literature Review and Main Contributions 

1.2.1 Literature Review 

In most cases, patients with diabetes in the Medicare population are mostly 

studied by medical methods, but occasionally, quantitative methods are also utilized. 
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Traditionally, statistical analysis is applied in three ways: cost analysis, outcomes 

research and the study of the impacts of the implementation of Medicare, Part D. For cost 

analysis, researchers only utilized simple statistical models to analyze the relationship 

between the predictors and the dependent variables, costs. For example, Li et al. r I] 

applied a 2-stage, least-squares model to estimate the effects of the predictor on Medicare 

expenditures. Bhattacharyya et al. [2] employed a general linear regression model to 

identify principal cost drivers among the identified cohort to the managed care system. 

Herrin et al. [3] applied a hierarchical generalized linear model to analyze the relationship 

between the costs and physicians and the general practice for Medicare diabetes patients. 

For outcomes analysis, investigators employed basic statistical methods. For 

instance, Kuo et al. [4] utilized the two-tailed t-test statistics to analyze the trend of care 

practice and outcomes among the Medicare beneficiaries with diabetes. McBean et al. [5] 

applied at-test when measuring the differences between the year 1999 and the year 2001 

in diabetes care. 

In terms of Medicare part D, only a few researchers have touched this topic so far 

and they also used one basic statistical model for data analysis. For instance, Karaca et al. 

[6] applied a multiple regression model to analyze how this drug plan affects the 

beneficiaries' out-of -pocket costs. Another research group represented by Schmittdiel et 

al. [7] used multiple logistic regression models to create adjusted percentages of 

diabetes patients across demographic and health plan characteristics responding to the 

survey questions about the implementation of the Medicare, Part D. 

1.2.2 Main Contributions 

Just as mentioned above, although some researchers performed simple statistical 
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analyses when they studied diabetes patients in Medicare, no one has yet investigated 

those using data mining techniques. In this dissertation, we introduce the data mining 

principles into the study of diabetes patients and make several contributions. 

• Introduce pattern discovery into patients' demographic characteristics and 

diseases characteristics analysis. 

• Apply supervised machine learning, decision trees and neural networks to analyze 

health outcomes. 

• In cost effectiveness analysis, instead of comparing two drugs or two clinical trial 

methods, we compare differences of the two years for the same patients. 

• Introduce the quantitative methods into readmission risk analysis for diabetes 

inpatients in Medicare. 

1.3 Assumptions 

Although we will make different hypotheses for different statistical models, we 

also make some general assumptions in the entire dissertation. 

• In the dissertation, we are only concerned about type II diabetes patients in 

Medicare and when investigating the influence of Medicare, Part 0, the research 

subjects are restricted to those who join in the drug plan. 

• We do not consider the differences in severity of the diseases among the patients, 

and when we compare two years of cases, we assume that the diseases of the same 

patient will not become more severe in time. 

• We also assume that there are no differences in the costs and treatments among 

different geographic regions. 
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• We do not consider the discount rate for the QALY (Quality Adjusted Life Year) 

for different years. 

• When it refers to medications, we only consider the generic drugs and do not 

consider the brand name drugs. 

1.4 Basic Concepts 

1.4.1 Information about Diabetes, Its Types and Its Complications 

Diabetes mellitus, or diabetes, is a group of diseases characterized by high blood 

glucose levels that result from defects in the body's ability to produce or use insulin. It is 

a devastating disease that greatly impacts long-term care and is the i h greatest cause of 

death in the US. In recent years, diabetes has become a serious problem. According to the 

CDC (the Centers for Disease Control and Prevention) [8] 23.6 million children and 

adults had diabetes in the U.S.in 2007, and 12.2 million were over 60 years old. 

There are mainly three types of diabetes [9]. Type I diabetes is usually called 

juvenile diabetes since it is common in children and young adults. The cause for Type I 

diabetes is that the body does not produce insulin. Type II diabetes, the most common 

form of diabetes, occurs either because the body does not produce enough insulin or the 

cells ignore insulin. Another type of diabetes is gestational diabetes, which is common to 

pregnant women. However, this dissertation will only focus on type II diabetes in persons 

65 years of age and older. 

Diabetes can lead to many complications such as heart disease and renal failure, 

high blood pressure and anemia. Statistics carried out by the American Diabetes 

Association [10] showed that the probability of people with diabetes have heart diseases is 
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twice that of people without diabetes. Diabetes is the primary cause of end-stage renal 

disease. The CDC [8] states that approximately 60% to 70% of those with diabetes have 

mild to severe forms of nervous system damage, and severe forms of diabetic nerve 

disease are a major contributing cause of lower-extremity amputations. 

In addition, the co-morbidities often suffered by patients with diabetes can affect 

each other. For example, diabetes is the leading cause of renal failure. The National 

Institute of Diabetes and Digestive and Kidney Diseases study r II] showed that nearly 24 

million people in the United States have diabetes; the Annual Data Report supported by 

the United States Renal Data System [12] illustrated that nearly 180,000 persons are 

suffering renal failure due to diabetes. Diabetic nephropathy likely contributes to the 

development of anemia in diabetes patients. Anemia often develops early in the course of 

chronic kidney disease in patients with diabetes and also contributes to the high incidence 

of cardiovascular disease observed in diabetic patients. 

Each year, it takes a large amount of resources to treat diabetes and its 

complications, including organ dysfunctions and neurological disorders (Table 1.1) [13] . 

According to the American Diabetes Association riO], a total of $174 billion was 

expended on the treatment of diabetes in 2007; among the total medical expenditures 

($116 billion), 23% ($27 billion) was for diabetes care and 50 % ($58 billion) was for 

chronic diabetes-related complications. Therefore, it is fundamental to control diabetes. 

Among all the measures to control diabetes, blood glucose monitoring is the best. 

The Diabetes Control and Complications Trial funded by the National Institutes 

of Health reported in 1993 [14] that intensive glucose control prevents or delays the eye, 

nerve and kidney complications of type I diabetes (as cited in Glucose Control Cuts Risk 
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of Heart Disease in Type I Diabetes); and DCCTIEDIC study illustrated that 

intensive glucose control lowers the risk of heart disease and stroke by about 50 % in 

people with type I diabetes. However, renal failure treatment is expensive, since the 

expenditures for the treatment of this disease account for 30 % of the costs of the 

treatment of diabetes, so it is essential to find and examine the factors that impact renal 

failure in order to reduce the total charges of diabetes treatment. 

Table 1.1 Health Care Expenditures Attributed to Diabetes (in millions of dollars) 

Chronic Complications 

Setting Diabetes Neurological Peripheral Cardio- Renal Ophthalmic General Total 

vascular vascular conditions 

Hospital 1,535 3,115 2,719 20,790 3,285 36 23,473 58 ,344 

Physician ' s 2,899 382 382279 1,004 323 899 3,830 9,897 

Emergency 234 138 43 403 132 II 2,717 3,870 

Hospital 842 75 135 317 87 130 1,321 2,985 

Source: Table 12(Abridged) in Economic Costs of Diabetes in the U.S. in 2007 

Type II diabetes can be treated by oral medications [15]. The sulfonylureas such 

as glyburide, glipizide, and glimepiride are all generic medications, which make them 

inexpensive drugs for the management of Type II diabetes mellitus. Another class of 

medication that has a similar mechanism of action to the sulfonylurea medications is the 

meglintinides, including repaglinide (prandin) and neteglinide (starlix). Another drug 

class is alpha glucosidase inhibitors, such as precose. Metformin, the only biguanide, is 

recommended as a mainstay in therapy in patients with type II diabetes. When the above 

medications become ineffective, insulin should be used alone or combined with other 

drugs. 
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1.4.2 Medicare and Medicare Reform Related to Part D Plan 

Medicare is the voluntary health insurance for people of age 65 or older, under 

age 65 with certain disabilities, and any age with permanent kidney failure (called "End­

Stage Renal Disease"). It is required for any senior citizen on social security. It basically 

consists of four parts, Part A (Hospital Insurance), Part B (Medical Insurance), Part C 

(Medicare Advantage Plans) and Part D (The optional prescription drug program). Part D 

uses competing private plans to provide beneficiaries access to appropriate drug therapies. 

As of January 2008 [16], almost 90 % of Medicare enrollees had their prescription drugs 

covered by the part D plan or other creditable sources. In this dissertation, we will not 

study Medicare Advantage Plans because they are run by commercial insurance 

companies instead of CMS (Centers for Medicare and Medicaid Services). 

As the two acts, the Patient Protection and Affordable Care Act and the Health 

Care and Education Reconciliation Act of 20 I 0 were signed into law; several changes 

with the Medicare insurance program have taken effect since 2010. One of the significant 

changes is about the Medicare, part D coverage gap or 'donut hole' [17]: 

• In 2010, if the beneficiary's expenditures reached the donut hole and enter the gap, 

then slhe received a $250 rebate from Medicare. 

• From 2011 to 2020, if the enrollee's expenditures are in the gap, slhe will get a 

50% discount on the total cost of brand name drugs. 

• Medicare will phase in additional discounts on the cost of both brand name and 

generic drugs. 

• By 2010, the Medicare coverage gap would have been cancelled. Instead of 

paying 100 % of the costs during the gap, the beneficiaries only needed to 
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pay for 25 % of the costs. 

The Medicare drug plan was always a controversial issue since its introduction. 

This time, the amendments to the plan make it again a topic of concern. Instead of 

studying of the influences of cancelling the gap, we will investigate the influences 

regarding the implementation of the drug plan due to limited data information. 

1.4.3 Data Sources 

In this research, we utilize two kinds of data sets. One is the CMS CCW (Chronic 

Condition Data Warehouse) data [18] for the year 2004 and the other is the MEPS 

(Medical Expenditure Panel Survey) data [19] for the years 2005 and 2006. 

The CCW data are collected by CMS and provides researchers with Medicare 

beneficiary, claims, and assessment data linked by beneficiary across the continuum of 

care. Between the years 1999 to 2004, it covers a random 5% of the Medicare 

beneficiary population each year. In this research, we use three data files for the year 

2004, outpatienCbase_claims with 2,030,078 records and inpatients_base_claims with 

244,299 items. Since both of them do not cover demography information, the dataset, 

beneficiary _summary _file is needed. 

The MEPS data, collected by the Agency for Healthcare Research and Quality, 

is a class of survey data sets containing such information about medical services and 

employers across the United States. In order to compare the differences in 2005 and 

2006, we harness various kinds of data for these two years. They contain such 

information as office-based visits, outpatient visits, inpatients, prescription drugs and the 

full year consolidation. However, such data have some disadvantages. For instance, time 

information is incomplete. 
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1.4.4 Medical Codes 

Medical codes are very useful tools in medical billing and reimbursement. In this 

study, we will use HCPCS (Healthcare Common Procedure Coding System) codes [20], 

CPT (Current Procedural Terminology) codes [21] and ICD -9-CM (International 

Classification Diagnosis, Clinical Modification, 9th edition) codes [22]. 

HCPCS codes are utilized by CMS for explaining the claims for payments. There 

are two levels of HCPCS codes. Level I is comprised of CPT and Level II is a 

standardized coding system that is used primarily to identify products, supplies, and 

services not included in the CPT. 

CPT codes are numbers used to represent medical procedures and services under 

public and private health insurance programs. CPT codes are developed, maintained and 

copyrighted by the AMA (American Medical Association). As the practice of health care 

changes, new codes are developed for new services, current codes may be revised, and 

old, unused codes are discarded. 

ICD- 9-CM is an official system of codes used to stand for the diagnoses and 

procedures associated with hospital utilization. Those codes are overseen and modified 

by NCHS (the National Center for Health Statistics) and CMS. This system contains two 

kinds of codes; one code is for the diagnosis of diseases and the other is for diagnostic, 

surgical or therapeutic procedures. The common diagnostic ICD9-CM codes for diabetes 

are shown below [23]. 

250.00-250.03 Diabetes mellitus without mention of complication 

250.10-250.13 Diabetes with ketoacidosis 

250.20-250.23 Diabetes with hyperosmolarity 
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250.30-250.30 Diabetes with other coma 

250.40 -250.43 Diabetes with renal manifestations 

250.50 -250.53 Diabetes with ophthalmic manifestations 

250.60-250.63 Diabetes with neurological manifestations 

250.70-250.73 Diabetes with peripheral circulatory disorders 

250.80-250.83 Diabetes with other specified manifestations 

250.90- 250.93 Diabetes with unspecified complication 

1.5 Basic Statistical Methodology 

In this dissertation, several statistical methods and data mining algorithms are 

utilized. The descriptive statistics such as kernel density estimation are applied to study 

the distribution of the costs. The various kinds of statistical linear models such as the 

general linear model and the generalized linear model are used to examine the 

relationships between the predictors and the costs. Two-way interaction effect analysis is 

used to analyze the influence of one diabetes complication on another complication in 

costs and outcomes. The data mining algorithms such as the decision tree model and the 

neural network model are employed for health outcomes and health quality analyses. The 

survival model is utilized for our diabetes medication study. In addition, other theories 

such as cost-effectiveness analysis in health economics are also utilized in this 

dissertation. 

1.6 Outline 

The rest of the dissertation is organized as follows: Chapter II describes the data 
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processing. Chapters III- IV introduce statistical models and supervised / unsupervised 

machine learning. Chapters V-VI discuss Medicare costs and their influencing factors 

for both inpatients and outpatients with diabetes, outcomes and readmission 

risk factors of diabetic inpatients as well as 2-way interaction effects of diabetes 

complications on costs and outcomes. Chapter VII investigates how the Medicare, Part D 

program affects the usage and the cost effectiveness of diabetes medications. During the 

discussion of our research in chapters V - VII, several theories applied in the study such 

as survival analysis and cost-effectiveness analysis are also introduced. The last chapter 

summarizes the dissertation results and gives the conclusions. 
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CHAPTER II 

DATA PREPARATION AND PROCESSING 

Data preparation and processing is a key to successful analysis and accurate 

results. Before we develop a statistical model or perform data mining analysis, we need to 

preprocess the data to get them ready for study. In this chapter, we will briefly discuss 

what techniques are utilized for data processing; that is, data validation, merging data, 

data reduction, data transformation and some SAS functions used for data processing. 

2.1 Data Validation 

During the data validation (a.k.a. data cleaning), several things needed to be 

checked: whether the information such as the diagnosis code is correct and whether the 

variable type is correct. If some problem exists, then it needs to be dealt with by some 

measure. 

2.1.1 Dealing with Missing Values 

It is very common that there are missing values in a large-size data set or a survey 

data and they are needed to be examined in most cases. There are three ways to process 

missing values: elimination, imputation and substitution. 

1. Elimination 
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Sometimes, if the missing values only account for a small percentage of the 

sample, then they can be deleted without any processing. However, this method may 

result in bias or inaccurate results if too many observations are eliminated. 

2. Imputation 

Imputation [24] is a prevailing approach of manipulating the missing values and 

there are several different methods for imputation according to the types of missing 

values. If the values are missing at random; that is to say, the probability of a missing 

value appearing in one variable is not related to the probability of existing missing values 

in another variable, then the values can be simply eliminated from the sample data. 

However, this method may result in unnecessary elimination. If the values are completely 

missing at random and can be judged in this way that the probability of missing values in 

one variable is unrelated to the value of the variable itself or to values of any other 

variable, then imputation is needed. One way to do this is MCMC (Markov Chain Monte 

Carlo), which creates multiple imputations by using simulations from a Bayesian 

prediction distribution for normal data. 

3. Substitution 

Substitution [25] is another approach of handling missing values. Sometimes, 

according to the characteristics and types of variables, the missing values can be replaced 

with some other values, such as the mode, the median, the mean, the maximum or the 

minimum of the variables. 

4. Our Approach 

In our research, only the third method works to some extent. When we perform 
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survival analysis about diabetes drug usage, considerable information about the day, the 

month and the year of the prescriptions in the MEPS data is missing. Therefore, we deal 

with missing values in this way: according to the rule of prescription of drugs, we set the 

missing values of the variable, DAY to the first day of the month and the missing values 

of the variable, YEAR to the year when the data were collected, but we eliminate an 

observation whose month information is missing. 

2.1.2 SAS Functions for Data Cleaning 

1. Characteristic Functions 

In our study, we utilize SAS characteristic functions to remove trailing blanks 

before and after the nominal variables and to find certain letters in a string. The functions 

[261 that we apply include LEFT, TRIM and TRANSLATE. For example, consider what 

we do using the prescription drugs data. 

/*To replace '_' with a blank in the names, removes the 
trailing blanks from theright-hand side of a variable value 
and left justifies the variable value*/ 

NRXNAME=TRANSLATE(LEFT(TRIM(NRXNAME)), '_',' '); 

LEFT (TRIM(CONCAT[I] )); END; RUN; 

2. Date Functions 

We utilized the MDY function to return a date value from the numeric values for 

month, day and year into a SAS date value. For instance, in our project about prescription 

drugs usage, we use the following code to combine the three variables, DAY, MONTH 

and YEAR into one variable, DATE. 

DATE = MDY (RXMM, RXDD, RXYY); 
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2.2 Merging Data 

None of our data contains all the information we need; therefore, we have to 

merge different data files into one file before our analysis. The tools for merging data are 

SAS Enterprise Guide, the Base SAS data step and SAS SQL. 

2.2.1 SAS Enterprise Guide 

This is a user-interface-design SAS module in which we only need to click some 

buttons, and then we can merge the different data sets together. For example, in the 

project to discuss how to reduce the Medicare reimbursements for outpatients, we click 

Filter and Query->Add table to join columns from revenue and beneficiary data sets to 

generate another new data set containing beneficiary ID, HCPCS codes, total charges, 

and so on. 

2.2.2 Base SAS Data Step 

Base SAS is the most commonly utilized method of merging data among the SAS 

users. We employ it for data combination in several analyses. For instance, in analyzing 

the outcomes of diabetes outpatients, we used the following SAS code: 

PRoe SORT DATA=SASUSER.IPCLUS; BY_CLUSTER_ ; 

PROe SORT DATA= SASUSER.IPTCHDEM; BY _CLUSTER_; 

DATA SASUSER.IPKDETCHDEM; 

MERGE SASUSER.IPCLUSTER SASUSER.IPTCHDEM; BY _CLUSTER_; 

2.2.3 SAS SQL 

SAS SQL has some advantages over the base SAS data step; for one thing, before 

merging the data by their common variables, we do not need to sort each data set by their 

common variables. For another, the names of the common variables in different data sets 
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are not required to be the same. Consider a cost-effectiveness analysis of the diabetes 

medications; for example, we can apply an SQL conditional inner join to merge the data. 

/*Combine the life table and 2006 Medicare part 0 
beneficiary table */ 

PROC SQL; 

CREATE TABLE SASUSER.LE06 AS 

SELECT * 

FROM SASUSER.LIFETABLEl AS LT, 

SASUSER.BCHWLQ06 AS BC 

WHERE LT.AGE=BC.AGE06X; 

QUIT ; 

2.3 Data Reduction 

After we get the different data sets into one data set, we need to reduce the data 

size, if possible. There are several approaches: (1) sampling and partitioning (2) principal 

component analysis (3) factor analysis (4) observations or variables selection. 

2.3.1 Sampling and Partitioning 

1. Sampling 

There are mainly three types of data sampling methods [271: (I) simple random 

sampling (2) stratified random sampling (3) cluster sampling. 

(1) Simple random sampling: A sample is selected in such a way that every possible 

sample of the same size is equally likely to be chosen. We can realize this through 

clicking the Random Sampling button in SAS Enterprise Guide by choosing either the 

number of observations or a percentage of the sample. We can also perform random 

sampling through the SAS SURVEYS ELECT procedure. 
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(2) Stratified random sampling: This sample can be obtained by separating the population 

into mutually exclusive strata, and then drawing simple random samples from each 

stratum. When we discuss the relationships between other diseases and renal failure, we 

need to use this method to guarantee that all the rare occurrence events of renal failure are 

selected in the large data set. We realize this through setting the sample node in 

Enterprise Miner in this way [28]: set sample method to stratify, stratified criterion to 

level based, and level selection to rarest level. 

(3) Cluster sampling: This can be obtained by dividing the data into several groups or 

clusters of elements. When we compare the differences between the different diagnosis 

procedures in Medicare payments, we first cluster the procedures into several groups. 

2. Partitioning 

Before we build a predictive model in SAS Enterprise Miner, we often use the 

Partition node to divide the sample into three smaller data sets: training, validation and 

testing [29]. The training set is used to build a model. The validation data set is utilized to 

ensure a model of good fit while the testing data set is applied for comparison to find an 

optimal model. 

2.3.2 Principal Component Analysis and Factor Analysis 

Although principal component analysis and factor analysis are very popular 

approaches, we apply neither of them in our analyses due to a very large data size. 

Instead, we utilize sampling and clustering to reduce the sample size. 

2.3.3 Observations or Variables Selection 

Sometimes, not all the observations meet our requirements, or some variables 
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have nothing to do with our predicted targets; therefore, we need to select observations or 

variables. One method is to apply the KEEP or DROP statements and the following SAS 

code demonstrates how to use them: 

DATA SASUSER.IPCLUS(KEEP=_CLUSTER __ FREQ_ 
CLUS_DESC) ; 

SET EMST.TEXT_CLUSTER; 

In order to avoid duplicate observations, we can apply NODUPKEY: 

RMSSTD 

PROC SORT DATA=SASUSER.COM06 OUT=SASUSER.NREP06 NODUPKEY; 

BY DUPERSID DATE DATEI DATE2; RUN; 

Another method to select observations (a.k.a. rows in SQL) and variables (a.k.a. columns 

in SQL) is SQL conditional selection: 

/*To sort out the diabetes patients*/ 

PROC SQL; 

CREATE TABLE SASUSER.OBDIA05 AS 

SELECT tl.DUPERSID, tl.OBICDlX, tl.OBICD2X, tl.OBICD3X, 

tl.OBICD4X 

FROM SASUSER.FILTER_FOR_QUERY_FOR_FILTER_FOR_ AS tl 

WHERE tl.OBICDlX = '250' OR tl.OBICD2X = '250' OR 

tl.OBICD3X = '250' OR tl.OBICD4X = '250'; QUIT; 

2.4 Data Transformation 

The dominant method of transformations is the Box-Cox transformation [25], 

which attempts to transform a continuous variable into an almost normal distribution. 

This is achieved by mapping the values using the following set of transformations: 
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{

y A -1 
(A) _I - whenA *- 0 

Yi = A 
10g(Yi )whenA = 0 

(2.1) 

where A is the transformation parameter, and Yi is a continuous variable that needs to be 

transformed. What we use data transformation for is to define dummy variables. 

Sometimes, or defining procedures to new variables, we use 0-1 indicator functions and 

the SAS code is shown below to get the new data shown in Figure 2.1. 

IF(Recode_ICD9 EQ: '25000') 

THEN R25000=1; 

ELSE R25000=0; 

~ fU(IDI$ RftGIlt._11l9tli roUNT ,~ PfRCfNT ,~ R25000 i 
NWWvE I other 

I 

16 100 -iV'flWvE 42731 625 
NWWvE V5861 6.25 
NWWvE other 14 87.5 
NMNvE 42731 6.25 
NWWvE V5861 1 6.25 
NWWvE other 14 875 

·~~~~N~t 0ht! 1.~ 1m 

0lWNvE 2859 6.25 
I/INvWvE 5990 6.25 
IWf'NvE other 14 87.5 

R4019 i R585 i RV5861 

Figure2. 1. Newly-defined Variables 

2.5 Other SAS Functions 

i R2n4 ~ R42731 

Besides what was discussed above, we also apply some base SAS functions to 

process the data sets. For instance, when we want to define a string containing all 

possible diagnosis codes, we use the CATX statement, which concatenates character 

strings, removes leading and trailing blanks, and inserts separators. The code is [26]: 

DIAGNOSIS=CATX(' ',ICD9_DGNS_CDl, ICD9_DGNS_CD2, ICD9_DGNS_CD3 
, ICD9_DGNS_CD4,ICD9_DGNS_CD5,ICD9_DGNS_CD6,ICD9_DGNS_CD7,IC 
D9_DGNS_CD8, ICD9_DGNS_CD9, ICD9_DGNS_CDIO, ICD9_DGNS_CDI 1,ICD 
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9_DGNS_CD12, ICD9_DGNS_CD13, ICD9_DGNS_CD14,ICD9_DGNS_CD 15,IC 
D9_DGNS_CD16) ; 

When we want to convert all the values of a variable into observations, we utilize 

the TRANSPOSE function and the code is shown below [26]: 

PROC TRANSPOSE DATA=SASUSER.SORTMR06 OUT=SASUSER.TRANMR06 

PREFIX=MED_; VAR NRXNAME; BY DUPERSID; RUN; 

If we want to calculate the differences between different dates, we apply the 

DATDIF functions: 

DAYS=DATDIF (SDATE, EDATE, 'ACT/ACT'); 

In this chapter, we briefly discussed our approaches of processing the data and we 

will elaborate them in detail in the later application chapters. The process of data 

preparation contains more contents than what we introduced above. For example, it also 

covers exploratory data analysis such as the sample mean analysis or a frequency count 

study. We also utilize SAS to process the data during our study. Other preprocessing will 

be discussed in later chapters. 
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CHAPTER III 

STATISTICAL LINEAR MODELS 

Statistical models and the statistical methods associated with them are versatile 

and robust. There are mainly two kinds of statistical models, one is the linear model, 

which is simple and widely used and the other is the non-linear model. In spite of the 

availability of highly innovative tools in statistics, the main tool of researchers remains 

the linear model, which involves the simplest and seemingly most restrictive statistical 

properties of independence, normality, constancy of variance and linearity. It can be 

divided into several subgroups. (1) the general linear model, including the general linear 

univariate model (ANOV A), the general linear multivariate model (MANOV A), the 

regression model; (2) the generalized linear model, including the generalized 

univariate/multivariate model; (3) the linear mixed model. The general linear model and 

the logistic regression model can be thought of as special cases of the generalized model. 

3.1 The General Linear Model 

The general linear models are a class of linear models, and they can be 

represented by the general linear regression model and ANOV A (Analysis of Variance). 

As for the regression model, there are three subgroups, the simple linear regression model, 

the multiple linear regression model and the logistic regression model. 
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3.1.1 The Multiple Linear Regression Model 

The regression model [30] is the oldest and most used model. It is also the most 

understood model in terms of performance, mathematics, and diagnostic measures for 

model quality and goodness of fit. The regression model has been applied to a very wide 

range of problems in healthcare, finance or medical fields. 

1. Assumptions 

Understanding of the assumptions of a model is the key to successfully build a 

model. The following are the assumptions for the multiple linear model: 

• The relationship between the response variables and the predictors is linear. 

• 

v .1 

Y2 The response vector y = is mutually independent, and the variance of 
nxl 

Yll 

each element of the vector is cr2
, which is fixed and unknown. 

• The parameter vector {3pxl = is fixed and unknown. 

• 

{3,,-1 

£1 

£2 
The elements of the error vector £ = 

lOll 

have the characteristics: (I) The 

elements of the vector are independent from each other and identically distributed. 

(2) The expectation of each element: E(£;) = 0; (3) The variance of each 

element, var(£J = (72, where i=1,2, ... n; (4) cov(£; ,£) = 0 if i "* j. 
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2. Expressions 

The matrix formulation of the linear multiple regression model is shown below 

y = Xf3+£ 

where y, /3, E: are as mentioned above, and the vector X = (I 

is the design matrix and I = (l, 1, ... 1) T. 

3. Model Development 

(3.1) 

In developing the model, predictors and the response variables are chosen and the 

choice of algorithms to be applied is also considered. However, model development 

belongs to the application of the model; we will discuss it in detail when presenting our 

analyses. In the following model theories discussion, we will also postpone a discussion 

of our analyses. 

4. Assumption Diagnostics 

The examination of basic assumptions is a fundamental procedure in building a 

model and it is even more important than developing models themselves. The first thing 

we need to do is to examine whether the model meets the assumptions. If a model does 

not meet the basic requirements, then the model building is a failure. There are several 

criteria that are used to check whether the assumptions are met. 

I. Independence Test 

The primary method of testing the independence of the response variables is the 

Durbin-Watson statistic [31]. The test statistic can be written as: 
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~)ei -eH )2 
d = -'-.i=.....:2'-----___ _ 

(3.2) 

In the above expression, ei = Yi - Yi is the residual of individual i, which is the 

difference of the observed and predicted values of the response variable for individual i. 

The value of d is always between 0 and 4. If d = 2, it indicates that the model meets the 

independence requirement and it also indicates that no autocorrelation exists. 

II. Normality Test 

There are three common measures to examine whether the residuals follow 

normal distributions: (1) S-W (Shapiro - Wilk) test, (2) K-S (Kolmogorov - Smirnov) 

test, (3) A-D (Anderson- Darling) test. 

(1) S - W test [32]: The test can be conducted through a W statistic and it can be 

calculated as follows: 

( fa,xu))' 
W = --,---I =_1 __ --'---

11 

~)Xi _X)2 
i=1 

In the above expression, XI, X2 ... Xn represent a random sample that follows a normal 

distribution; x stands for the mean of the sample; X( 1), •• , X(n) are an ordered sample; 

(3.3) 

aI, ... all are constants generated from the means, variances and co-variances of the order 

statistics of a sample of size n from a normal distribution; to be specific, they can be 

calculated in this way: 
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(3.4) 

where E= (El, .. , En ) T and the E/ s are the expected values of the order statistics of the 

random sample and V is the covariance matrix of the order statistics. Whether the sample 

meets normality can be judged by the value of W. The value of W is between 0 and 1. 

Small values of W indicate that the sample does not follow a normal distribution, while 

the value of close to 1 means normality. 

(2) K-S test [33]: This test can be realized through calculating a D-statistic and the 

process is shown below. 

Test hypothesis: Ho: The sample follows a normal distribution 

Ha: The sample does not follow a normal distribution 

The D-statistic is defined as follows: 

(3.5) 
x 

in which Dn is the largest vertical distance between the distribution function F(x) and the 

empirical distribution function Fn(x); the empirical distribution function is defined as: 

I n 

F,,(x)=-Llx<t 
n i=1 ,_. 

(3.6) 

where the xli;' s are ordered statistics, I <. is an indicator function, and its expression is 
\,_.\ 

shown below: 

1 'f < I - { ( Xi - X X,"" -
o otherwise 

(3.7) 

The criterion of judging whether the sample follows a normal distribution is based on the 
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value of the D-statistic. If the value of D is greater than the critical value, then the sample 

does not follow a normal distribution. 

(3) A- D test [32]: In the Anderson- Darling test, the statistic A is calculated and its 

expression is shown below: 

A2 = - n- S (3.8) 

where F is the cumulative distribution function and the variable S is defined in this way: 

11 2i I 
S = L---[logF(Yi)+log(l-F(YI1+,_i)] 

i~1 n 
(3.9) 

If the value of A is smaller than the critical value, then the sample follows a normal 

distribution. 

If the model's requirements are met, then the fitness of the model is another vital 

thing needed to be checked. 

III. Autocorrelation Diagnostics 

In statistics, the autocorrelation [34] describes the correlation between values of a 

random process at different points in time and it can be defined as in (3.10). 

Autocorrelation of the error terms often occur in time series data. 

R(i, j) = E(xi -J.1)(x j - J.1) 
(Yi(Yj 

In the above expression, if R( i,j) is well defined, then its values should lie in [-1,1]. 

(3.10) 

x, J.1, (Y represent the value, the mean and the standard deviance, and i, j stand for two 

different time points. The measure to examine the existence of the autocorrelation is the 

Durbin-Watson statistic [31]. The basic rule is to compare the values of d to the lower 

level dL.a and the upper level dU,a of the critical values at the significance a. 

27 



IV. Multicollinearity Diagnostics 

Multicollinearity exists when the samples are not independent from each other. 

The statistic, VIF (Variance Inflation Factor) [35], can be employed to test for it. The 

variable VIP can be defined in (3.11). 

1 
VIF=-­

l-R~ 
(3.11 ) 

where R2 is the model variance, defined in (3.12), in which n is the sample size (a.k.a. 

the number of observations), k is the number of predictors (a.k.a. the number of 

coefficients) and the expression of I _R2 is tolerance. 

i=i 

R" = __ -,-,-k __ (3.12) 

i=i 

n-k+l 

A high value of VIF indicates the existence of multicollinearity and a value greater than 

10 means a serious problem. 

V. Outlier Diagnostic 

Outlier detection is also an important step to test whether the mode is good or not. 

There are mainly four statistics [351 : (1) Leverage (2) Studentized deleted residual 

(3) Dffits-statistic (4) Cook' D statistic. 

(1) Leverage: It is called the hat diagonal, which is used to detect outliers among the 

predictor variables. If we write a prediction model into matrix form as: 

(3.13) 

and if we use the least squares approach to get the minimizer with respect to coefficients 
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[3, we get /J and then we get the expression of the hat matrix H defined in (3.14). 

(3.14) 

The leverage, hii' is the ith diagonal element of the hat matrix. As a rule of thumb, any 

observation with an h ii that meets the following inequality (3.15) is considered as a 

leverage point and it has the potential to change the model. For a small sample, the 

criterion is changed to an inequality (3.16). 

h>2 k + 1 
II 

n (3.15) 

h >3 k + 1 
II -

(3.16) 

n 

In (3.15) and (3.16), n is the number of response variables and k+l is the number of 

coefficients, [30.fJ1 .... [3k . The observation with the largest hii can be said to have the most 

extreme predictor variables, while the observation with the smallest hii values might be 

said to be the most typical. 

(2) Studentized deleted residual: This residual is another useful tool to detect extreme 

values of the observations and it can be calcuated as the same way for the standardized 

residual (a.k.a. studentized residual), except without considering the /h observation. The 

expression for the residual ti can be written as: 

(3.17) 

where ei is the residual for the i1h observation; MSE(i) is the mean squared error for the 

regression model given that the t" observation is left out; hii is a leverage. If the 

value ti of an observation is greater than 2, then the observation is probably an outlier. 
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(3) Dffits statistic [36]: Although some potential outliers may be detected by the above 

two criteria, they may not affect the model. On the contrary, the DFFITs statistic can find 

the outliers that actually have influence on the model. The statistic can be expressed as: 

I 

DFF =t(~)2 
I I I-h 

11 

(3.18) 

The observation whose DFFi meets the following inequality will be thought to be 

influential. 

[k+l 
D F F; > 2~ -----;;--n- (3.19) 

Here, k and n have the same meaning as the above. 

(4) Cook' D statistic: This is the most often used criterion for outlier detection. Its 

expression is shown below and the signs in it have the same meaning as above. 

(3.20) 

Typically, if the value of Di is greater than 2, the observation should be investigated. 

Through I - V, we discussed methods and criteria to examine whether the 

assumptions of a model are met and we will utilize them for model diagnostics before 

developing our models. 

5. Model Evaluation [35J 

I. Significance Test 

R2 and Adjusted-R2 are used to study the magnitude of effects. If both the 

predictors and the response variables are continuous variables, then R2 will be a good 

measure to demonstrate that the proportion of the variation in the dependent variable is 
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accounted for by the explanatory variables. The rule is that the value of R2 varies from 0 

to I, and the higher the value, the greater the effect. The definition of R2 is displayed in 

(3.12). Unlike R2, the adjusted R2 (3.21) increases only if the new term improves the 

model more than would be expected by chance and it can be defined as: 

R2 = 1- (1- R2) n -I 
adjusted k 1 n- - (3.21) 

The F- test is often used for a model significance check (a.k.a. overall fit of the model) 

and it can be calculated as: 

k 
F1k,n-k-IJ = -1---""-R--=-2-

n - k-I (3.22) 

II. Goodness Test 

One useful tool to check whether the model is good is the root MSE [37] and it 

can be defined in this way: 

n 

"(V_ yA)2 
~.I I 

RMSE= i=1 

n-2 
(3.23) 

Since the RMSE is a frequently-used measure of the differences between values predicted 

by a model and the values actually observed from the parameter being estimated, the 

smaller the value, the better the model. 

3.1.2 Linear Logistic Regression Model 

The linear logistic regression model is a special case of the general linear 

regression model used when the response variable is dichotomous. Most of its 

characteristics are similar to those of the general regression model; therefore, we will 
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focus on its three unique parts in this section: analysis of the results, rare event and model 

selection. 

1. Expression 

The logistic regression model (a.k.a. logit model) [38] is used for prediction of the 

probability of occurrence of an event by fitting data to a logit function: 

log(-P-) = Po + pT X 
1- P 

where p is the probability and the odds ratio is expressed as: 

odd=~ 
1- P 

2 . Rare Event and Oversample 

(3.24) 

(3.25) 

Rare event: If a target variable appears in a fraction of less than 10% in a large 

data set, then it is a rare occurrence event. For instance, fraud rate and mortality rate are 

two rare events with two values, 0 and 1. 

Although the logistic regression model is a very useful model, there arise some 

problems when the model is applied in rare event data. Gary King et al.(2001) [39] 

demonstrated that the logistic regression model could greatly underestimate the 

probability of a rare occurrence event and they suggested that all the rare target variables 

should be included in the model to fix this problem. 

What Dr. King suggested is an approach of oversampling, in which a data set is 

stratified by the levels of a rare event variable and assigned different sample weights to 

different levels. We can compensate for oversampling in two ways, one method is to use 

the sample node in SAS Enterprise Miner as we mentioned in chapter 2 and another 
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method is to employ the surveyselect procedure in SAS/BASE, which we will discuss in 

chapter 6. 

3. Model Selection 

When developing the model, effect selection is often considered. The purpose of 

the selection is to choose the predictors that are significant to the response variable and 

the criteria for each selection vary from method to method. There are 3 main frequently-

utilized methods: (1) forward selection, (2) backward elimination, (3) stepwise selection. 

(1) Forward selection: In this method, at the beginning, only the intercepts and the first n 

explanatory effects are put into the model; then, another new effect significant at the level 

a is input into the model. The process will continue until all the remaining effects 

that are significant outside the model are imported. The criterion for the selected entry 

is the score X2 statistic defined as: 

(3.26) 

where the Ho: hypothesis is defined as follows; 1= a~~); L is the log likelihood 

function; PHD is the maximum likelihood estimation of the coefficient vector f3 under Ho: 

and HS is the hessian matrix defined in the form: 

a2 f(P) a2 f(P) a2 f(P) 
ap12 ap1ap2 ap1apk 

a2 f(P) a2 f(P) a2 f(P) 
H S = ap1ap2 ap; aP2apk (3.27) 

a2 f(P) a2 f(P) a2 f(P) 
apkapl apnap2 apk2 

In the above expression,f is a real-value function: f (XI ..... X n). 
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(2)Backward elimination: In this method, at the beginning, all the effects are fitted into 

the model; then, at each step, the least significant effect among those staying in the model 

will be removed. The process will not stop until all the remaining effects are significant. 

In this step, the results of the Wald test for individual parameters are examined. 

(3) Stepwise selection: The process of this method is a combination of the above two 

methods. At the beginning, only intercepts and n effects are in the model; then, another 

significant effect will enter into the model in each step. However, during the process, if 

some effect in the model becomes not significant, then it will be eliminated from the 

model. The process will continue until no new effect can be input into the model or no 

existing effect can be eliminated from the model. 

4. Model Convergence 

It is important to check whether the convergence criterion is met. The default 

criterion by SAS is the relative Hessian convergence criterion with tolerance number [40] 

and it can be expressed as follows: 

(3.28) 

where f(fJ) is the function with the k dimensional vector: fJ = [~I J; af(fJ) is the 
fJk afk (fJ) 

gradient (a.k.a. first derivative) of fk ( the objective function at iteration k) ; and Hk is the 

Hessian (a.k.a. second derivative) of the objective function at iteration k. The expression 

of the Hessian for the function f(fJ) is similar to the one shown in (3.27). 

5. Output Analysis 
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I. Model Fit Statistic 

Three criteria can be applied to examine the model fitness [40] (1) -2 Log L (Log 

Likelihood), (2) AIC (Akaike Information), (3) SC (Schwarz Bayesian Information). 

(l) -2 Log L: This is the most popular criterion used in hypothesis tests for nested models. 

In this case, OJm means the weight, f m means the frequency, Pm indicates the estimated 

probability of the event, n is the total number, m is the number of successful events; then 

for the mth event, the expression of the log likelihood for the binary target is: 

(3.29) 

(2) AIC: It is used for the comparison of non- nested models on the same sample and it 

can be calculated as: 

AIC = -2 LogL + 2 [(k -1) + s] (3.30) 

where k means the number of levels of the response variable and s stands for the number 

of input variables. 

(3)SC: It is another adjusted form of -2 Log L. The form of SC is shown below and the 

parameters have the same meaning as before: 

SC= - 2 Log L + «k-l) + s) * log Cf.jj) (3.31) 

II. Analysis of Maximum Likelihood Estimates 

There are two items in the output worthy of notice [401: 

Estimate: It explains how the input variables affect the dependent variable, given that the 

other predictors in the model are held constant. 

95% Wald Confidence Limits: This is the Wald Confidence Interval (CI) of individual 

odds ratio, given the other predictors is in the model. For a given predictor variable with a 
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level of 95% confidence, we say that we are 95% confident that upon repeated trials, 95% 

of the CI's would include the "true" popUlation odds ratio. 

3.2ANOVA 

Analysis of Variance is another popular tool among researchers. There are several 

ways to divide ANOV A into different types. According to the structure of the data, it can 

be divided into balanced and unbalanced ANOV A. According to the number of 

dependent variables, there are ANOVA and MANOV A. According to the number of 

predictors, there are one-way ANOV A (a.k.a. one-factor ANOV A), two-way ANOV A 

(two-factor ANOVA) and multi-factor ANOV A. In our analyses, we only study one 

response variable each time; therefore, we will not consider MANOV A, in which there 

are two or more dependent variables. ANOV A can be thought of as a special case of a 

linear model, and hence, it has many characteristics that a general linear model has. 

Besides, with only a slight exaggeration, a multi-factor analysis is very similar to a two­

way ANOV A. Therefore, in this section, we will focus on the special characteristics of a 

one-way ANOV A and two-way ANOV A. 

3.2.1 One-way ANOV A [41] 

There are two ways of parameterizing ANOV A; one is the cell means model 

while the other is the factor effects model. However, as the former is not as robust as the 

latter one; we only explain the factor effects model in this section. 

1. Assumption 

The basic purpose of a one-factor ANOVA is to compare whether there is a 
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difference between the means of the different groups. The assumptions of one-factor 

ANOV A and two-factor ANOV A are the same: 

• The population distributions should be normal, and have equal means . 

• Variances across all of the levels should be equal. 

2. Model Expression 

Y.=I1+a+£. 
I,j I I.} 

where the notations related will be explained below: 

N: total number of observations 

ni = 1,2, .. .r: number of levels of factor x 

nj =1,2, ... s: number of observations at each level i 

the mean for level i : 

the overall mean /-l : 

j=l 
11 
__ -

i-

nj 

~~Y. L.L. I,J 
i=l j=l 

11=--'-------
N 

the difference between the mean of the sample and the mean of x at level i, 

3. Hypothesis 

Ha: not all the fli are equal 

4. Logic of ANOVA 

(3.32) 

(3.33) 

(3.34) 

There are two important parameters in this analysis. One is the sum of squares, 

and the other is the F test. In this part, the notations have the same meanings as before. 
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(l) Sum of squares: The total sum of squares of the model can be divided into the sum of 

the among-group sum of squares and the within-group sum of squares: 

Among- group sum of squares: SSG = n) i a 2 
i (3.35) 

i=1 

o 
n 11 -

Within- group sum of squares: SSE = I I (Yi ,) - (ai + 11)) (3.36) 
i=1 j=1 

111 II, 

Total sum of squares: TSE = I I (Yi ,) - 11)2 = SSG + SSE (3.37) 
i=1 j=1 

(2) F test: The F-test is used for comparisons of the components of the total deviation and 

it can be defined as the ratio MSG/MSE (defined in 3.38 - 3.40) where the p value is the 

area of the tail outside the value given by the ratio. If it is small, then the significance 

level is larger than the p-value and so we can reject the null hypothesis; it indicates that 

the predictors are significant. A large F value indicates that there is more difference 

between groups than within groups. 

F=MSG 
MSE 

3.2.2 Two-way ANOVA [42] 

(3.38) 

(3.39) 

(3.40) 

A multi-factor ANOVA can be represented by the two-factor ANOVA; we will 

discuss the two-way analysis for simplicity. 

1. Hypothesis 
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Main effect of factor A : where (Ji = j1-j1i 

Ha: not all the j1i are equal 

Main effect of factor B: Ho: fLl =fL2 ="'=fL j where pj = j1-j1j 

Ha: not all the j1j are equal 

Interaction effect: where )'i.j = j1-j1j 

Ha: not all the j1(i,)) are equal 

2. Expression 

The expression for two-factor ANOV A is: 

fL) = fL + a + f3, + Y(, ') (I,j 1 I 1,1 
(3.41 ) 

3. Sums of Squares 

There are at least four types of sums of squares [40]. 

Type I sums of squares: This type of sums of squares is also called sequential sums of 

squares. It can be computed as the decrease in the error sum of squares when the effect is 

added to a model. Type I sums of squares are appropriate for balanced analyses of 

variance in which the effects are specified in proper order and for trend analysis where 

the powers for the quantitative factor are ordered from lowest to highest in the model 

statement. 

Type II sums of squares: Type II sums of squares can also be calculated by comparing 

the error sums of squares for subset models. It is the reduction in the SSE due to adding 

the effect to a model that contains all other effects except those being tested. 

Type III sums of squares: Type III sums of squares is also referred to as the partial 

sums of squares. Because they do not depend upon the order in which effects are 
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specified in the model, this type is more popular and useful than type I sums of squares. 

They can also be used for unbalanced designs. 

Type IV sums of squares: Type IV sums of squares are used for designs with missing 

cells. The results are not unique. 

3.3 The Generalized Linear Model 

The generalized linear models [431 are a class of linear models that includes the 

Poisson regression model and the gamma model, etc. The model uses a nonlinear link 

function to describe how the mean of a population is related to a linear predictor and 

allows the dependent variable to follow any distribution belonging to the exponential 

family of distributions (including many common distributions such as a normal 

distribution, an exponential distribution, a gamma distribution, etc.). With the 

introduction of GEEs (the generalized estimating equations) by Liang and Zeger [44], the 

correlated data also can be fit into a generalized linear model. Therefore, the generalized 

linear model can be used in more cases than the traditional linear model. 

3.3.1 Assumption 

The generalized linear model still assumes that the relationship between the 

predictors and the response variable is linear. However, it has its own different 

assumptions from the other linear models. 

• The distribution of the dependent variable is not necessarily a normal distribution. 

• The variance of the sample is constant for all observations. 

• The relationship between the mean of a sample and an input variable can be linked 

through a nonlinear link function. 
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3.3.2 Expression 

The linear component of this model is the same as the general linear model. If we 

use Yi to stand for an element of the response vector, J1i for the mean of Yi, 1 for the link 

function, which describes how J1i is related to Yi, V(J1i) is a variance function with respect 

to J1i, and 0" is the variance of Yi , then the expression for the model can be described as 

follows: 

Linear components: v = xTfJ 
- I I 

Link function: r(JlJ = x~ fJ 

Variance function: ()( v) = ¢V (JlJ 
- I 

Wi 

3.3.3 Link Function for Different Distributions 

(3.42) 

(3.43) 

(3.44) 

The link functions vary from distribution to distribution. The differences among 

these link functions are the range and scale of the probabilities they produce. 

1. The General Linear Model 

Distribution: normal: [ ( )2] 1 1 y-Jl 
f(y)=--exp -- --

.j2Jr() 2 () 
fore -00,+00) (3.45) 

Link function: identity: Y(Jl) = Jl (3.46) 

2. Logistic Regression 

Distribution: binomial: fer) = (: )Jl 1 

(1- Jl)'H, r = O,l,2, ... n (3.47) 

Link function: log itY(Jl) = loge ~) 
1- Jl (3.48) 
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3. Poisson Regression in Log-linear Model 

Distribution: Poisson: 

Link function: 

A,k e-'( 
f(k) = --,k = 0,1,2 ... 

k! 

log Y(j1) = 10g(j1) 

4. Gamma Model with Log Link 

Distribution: gamma fey) = _1 _( yv)V exp(- yv), y E (0,00) 
r(v)y j1 j1 

Link function: log Y(j1) = 10g(j1) 

3.3.4 Output Analysis [38, 41] 

1. Goodness of Fit 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

When evaluating the adequacy of the generalized liner model, one criterion, the 

deviance of the model is often used. The rule is that the deviance is compared with its 

asymptotic l with the same degree of freedom distribution to find the p-value; if the p-

value lies in a certain allowable range, then the model fits the sample well. 

2. Type I analysis & Type III analysis 

One fundamental application of the generalized linear model is to find out all the 

prominent predictors to the dependent variable. The importance of the variables can be 

measured by X2 
, which presents the difference in deviances of fitted log likelihoods 

between successive models. In other words, if the value of l for a variable is larger than 

those of the other variables, then this variable is the most important variable to the 

dependent variable. 
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I. Type I Analysis 

One special property of type I analysis is that its results depends on the order by 

which the independent variables are input into the model. The analysis can be run in this 

way such that at the beginning, only an intercept term is input into the model. In 

subsequent steps, one of the additional effects enters into the model. During each step, a 

likelihood ratio statistic is computed between successive pair of models. P-values are 

calculated based on the asymptotic distributions of the likelihood ratio statistics. By 

comparing the corresponding p-value for each variable to a significance level, we can 

judge whether a variable is significant in the model. 

II. Type III Analysis 

A Type III analysis does not depend on the order in which the terms for the model 

are specified. This analysis consists of specifying a model and calculating likelihood ratio 

statistics for type III contrasts for each term in the model. Under this analysis, a 

maximum likelihood statistic is calculated through constrained optimization under the 

condition that the Type III function of the parameters is equal to 0 and can be defined as 

below: 

LR = 2[L(/J) - L(P)] (3.53) 

in which /J is the unconstrained estimate, jJ is the constrained parameter estimate, with 

an asymptotic l distribution under the condition that the Type III function of the 

parameters is equal to 0, with degrees of freedom equal to the number of parameters 

associated with the effect. However, this analysis is time-consuming; it is recommended 

that the researcher reduce the sample size before applying it. 
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3.3.5 The Poisson Regression Model 

The Poisson regression model is another common linear model with a count 

variable as a response variable and it assumes that the dependent variable follows 

a Poisson distribution. 

1. Expression[45] 

The frequently- used expression for the Poisson regression model is: 

log(E(Y) = log(t) + /Y X (3.54) 

where log(t) is an offset. 

2. Adequacy of the model 

After developing a Poisson regression model, adequacy of the model is the first 

thing to check since overdispersion [46]often occurs in a Poisson regression model. 

Overdispersion occurs when there is more variability than a model is expected to have. 

Typically, if the deviance or Pearson's X2
, divided by the degrees of freedom, is 

greater than 1, then the model may be overdispersed. 

One approach of adjusting for overdispersion [47] derives from the theory of 

quasi likelihood and the basic idea is as follows: 

• Import a scale parameter <1>, then E(y) = f..l and Var (y) = <1>f..l; if <1> > I, then the 

• 

model is overdispersed. 

<i> = Pearsonz
2 

[45], where N is the number of sample cases and p is the number 
N-p 

of parameters. 

• <1> is unknown, and therefore, under this modification, the frequently-used method 
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called the Fisher-scoring procedure for the estimated covariance matrix is 

changed from (XT WTy 1 (standard error) to <l>(XT WTyl, where W= diag (WI, 

W2, ... WIl ). 

This adjustment will be further discussed later in chapter 6. 

3.4 The Generalized Linear Mixed Model 

The generalized linear mixed model [48] is a statistical model that extends the 

generalized linear model by incorporating a normally distributed random effect [49], 

which is an effect whose levels are assumed to be selected randomly. 

3.4.1 Assumptions 

• The relationship between the exploratory variables and the response variable is 

linear. Otherwise, a non-linear mixed model should be applied. 

• The random effect should follow a normal distribution; otherwise, a hierarchical 

linear mixed model will be employed. 

• The model cannot be used when the data are correlated. 

3.4.2 Expression 

The generalized linear mixed model can be defined in this way: 

y = Xf3+ZY+E (3.55) 

where X and Z are known design matrices, the error E - N(O,R); the random effect y 

-N(O,G), where G, R are variance matrices. The model has the following properties: 

• 1J=Xf3+Zy (3.56) 

is a linear predictor with combined fixed effects and random effects. 
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• E(yly) =r- 1 
(XP + Zy) = f.1 (3.57) 

r-1 
(.) is an inverse link function and its selection is typically based on the error 

distribution. 

• Var(y) = G (3.58) 

The variance function is used to model non-systematic variability. 

(3.59) 

where D is a diagonal matrix containing the variance functions and R means "R-side" 

random effect and Var(y / y) is the variance matrix in a model with only R-side random 

components. 

3.4.3 Estimation Method 

In the generalized linear mixed model, most estimation approaches also rest on 

some likelihood principle. To obtain maximum likelihood estimates, we should maximize 

the marginal likelihood shown below: 

t(P, y) = ff(yly)p(y)dy (3.60) 

3.4.4 Output Analysis 

1. Assumptions 

The generalized linear mixed model is a very complicated model and its output 

analysis varies in different sample data. In our later research, we will utilize it for a 

binary response variable, and hence we will focus on the logistic regression with random 

effects. In this case, there are n (=s +t) groups of subjects, two properties (PI. P2 ) and one 

eventy. Suppose that s subjects are randomly selected to have property land t subjects 
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have property 2. The purpose of the model is to compare the occurrence of the event for 

the two properties among different groups. Therefore, the event that a subject is chosen to 

have property 1 or 2 can be counted as fixed effects and the group effects are random 

effects. We define the following terms: 

• nil and ni2 represent the number of subjects reported to have property I or 2 and 

i stands for a group. 

• Pi! and Pi2 stand for the probability of the event occurring to property I or 2. 

and 

and 

• ri is a random effect such that Yillri - B( nil' Pil); Yi21ri - B(ni2 , Pi2). 

Pil _ 
log(--) - flo + fll + ri 

1- Pi! 

10g(1 Pi2 ) = flo + fl2 + Y 
- Pi2 

2. Fitness Evaluation 

(3.61) 

(3.62) 

Whether the model fits the sample can be judged through the fit statistics table, 

which has three criteria, pseudo-likelihood, generalized X2 and generalized l divided by 

its degrees of freedom. We consider the measure, X2 / OF. If its value is very close to I, 

then it indicates that the model fits the sample pretty well. 

3. Random Effects Prediction 

In order to predict the probability of the random effects, two methods are utilized; 

one uses prediction in the whole model, the other only rests on the fixed effects. In this 

procedure, two kinds of predictions of probabilities are generated for each observation 

(take one observation with property I for example) and they are shown below, 
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A I I E(. .) = A A 

Yz! Yz 1+ exp{- Po - p, - rJ (3.63) 

A ) I 
E(YiI = { A A}' 

1+ exp - Po - p, 
(3.64) 

3.5 Comments 

Each linear model discussed here has its own unique characteristics and has 

different applications. The logistic regression model is by far the most popular 

classification model, extending the techniques of the multiple regression model to 

research situations in which the outcome variable is categorical, especially for the target, 

which is a binary variable. However, for a rare occurrence of mortality, adjustments need 

to be made to the model. Analysis of Variance is often applied to compare the means of 

different sample data, no matter whether the sample is balanced or unbalanced. It is 

widely employed in sociology and psychology and so on. The generalized linear model 

extends the applications of the general linear model to a dependent variable following a 

non-normal distribution such as a gamma distribution or a Poison distribution as well as 

to the correlated data. Therefore, it is a popular research tool in the cost analysis, which 

often follows a gamma distribution and longitudinal analysis in the healthcare industry. 

The generalized linear mixed model can be applied for dichotomous, ordinal and nominal 

outcomes as well as ranked data. Therefore, it can be employed for assessing the trends in 

disease rates, modeling counts or predicting the probability of occurrence in time series. 

In this chapter, we briefly introduced the theories and methods related to our 

analyses, most of which are utilized to study one dependent variable. So far, we have 

only discussed cases when there exist linear relationships between the predictors and the 
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response variables. What if the relationship between the exploratory variables and the 

dependent variable is non-linear, or what if there is no specific predicted variable? In 

those cases, we will employ supervised/unsupervised machine learning, which we will 

introduce in the next chapter. 
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CHAPTER IV 

UNSUPERVISED /SUPERVISED MACHINE LEARNING 

Machine learning [50] is a subfield of data mining, and it was conceived in the 

early 1960's with the clear objective to design and develop algorithms and techniques that 

implement various types of learning, mechanisms capable of inducing knowledge from 

examples of data. Machine learning is widely applied to medical diagnosis, bio­

informatics and object recognition in computer vision and so on. According to the causal 

structure of the model, the learning can be divided into two types: 1. unsupervised 

learning, II. supervised learning. Unsupervised machine learning includes: 

• Cluster analysis (e.g. means, hierarchical algorithms) 

• Association rules (a.k.a. market basket analysis) 

• Collaborative filtering 

Supervised machine learning contains: 

• Classification trees (e.g. decision trees) 

• Regression analysis (including the logistic regression) 

• Neural networks 

• K-nearest neighbors 

• Rule induction 

• Support vector machine 

We have already discussed some of the algorithms listed above, such as the 

regression analysis in chapter III, and some of these algorithms we will not use in our 
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research. Therefore, in this section, we will elaborate on cluster analysis, association rule 

analysis, the decision tree model, the neural network model and rule induction. 

4.1 Unsupervised Machine Learning 

In unsupervised learning situations, all observations are assumed to be caused by 

latent variables and there is no distinction between the independent and the dependent 

variables. Although it does not have a target variable, it does have some purposes. 

Unsupervised learning is primarily composed of two techniques: cluster analysis and 

market basket analysis, which are often utilized in consumer market analysis or patients' 

medical conditions analysis. 

4.1.1 Cluster Analysis 

The purpose of clustering techniques is to detect similar subgroups among a large 

collection of cases and to assign the homogeneous observations into one cluster. The 

clusters are assigned a sequential sequence number to identify them in results reports. In 

most cases, it is performed to reduce sample size and to prepare for another analysis. The 

primary algorithms of clustering are k-means clustering, EM (Expectation Maximization) 

clustering and hierarchical clustering. 

1. K -means Clustering 

The k -means algorithm [24] is an old and simple method applied in cluster 

analysis. The process can be operated in this way: first, a fixed number of clusters, k is 

given; then, observations are assigned to those clusters so that the means across clusters 

are as terms different from each other as possible. The difference between observations is 
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measured in a distance measure such as Euclidean or Squared Euclidean. 

2. EM Clustering 

Expectation Maximization [51] is another algorithm for clustering and its goal is 

to find the most likely set of clusters for the observations. The basis of this approach is a 

body of statistical theory, called finite mixture, in which a set of probability distributions 

represent k clusters. The technique consists of two steps, E-step (estimation) and M-step 

(maximization). 

E-step: to compute the conditional expectation: 

Q(O;OU)) = Eo," (log L(O, y)1 Yo) 
(4.1 ) 

M-step: to find thee, which maximizes the expectation: 

A (1+1) A (TI 

o = arg max Q( 01 0 
e (4.2) 

These two steps are repeated until 

(4.3) 

where L (0, y) is a likelihood function, Q: e, (1)) is a conditional expectation, e is an 

unknown parameter and fJ U
) is the estimate of the unknown parameter at iteration t >0, 

and £ is a very small positive number. 

3. Hierarchical Clustering 

Hierarchical clustering [52] is another algorithm for clustering, in which Ward's 

method is utilized. We first defined several terminologies, error sum of squares, 

total sum of squares, T and R2 and they are shown in Equations (4.4) - (4.6). 
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Error Sum of Squares: (4.4) 

Total Sum of Squares: (4.5) 

2 T-8 R=-
r (4.6) 

In the above equations, X ijk denotes the value for the variable k in observation j belonging 

to cluster i; X
ik 

stands for the cluster mean for that variable; x, denotes the grand mean 

for that variable. Using Ward's method, the like units should be clustered together in each 

step; therefore, the error should be computed and minimized (or if the selection criterion 

is R2 instead, then it should be maximized) in each step. At the end of the process, a 

single large cluster of size n will be formed. The process starts with all sample units in n 

clusters of size 1. Then, the clusters or observations are combined in such a way to 

minimize the error or maximize R2. In that way, n-l clusters are formed in the first step, 

n-2 clusters are generated in the second step, and this process will not stop until all 

sample units are combined into one cluster. 

4. Comments 

We apply the last two methods of clustering. The merit of clustering analysis is 

that it is simple and easy to perform. It provides a quick way to explore the data structure 

without providing an explanation or interpretation, especially if the objects are classified 

into many groups. However, it cannot be used to predict either the relationships between 

different groups or the relationships between the predictors and the predicted variables. 
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4.1.2 Association Rule Analysis 

Association rule analysis [53], often referred to as market basket analysis, is used 

to investigate relationships or associations between specific values of categorical 

variables in large data sets. This technique can be used to uncover hidden patterns in 

large data sets, and hence, it is especially well suited for data mining. 

1. Basic Rule 

The goal of association rule analysis is to find subsets of variable values Sf, S2 .. S/I· 

such that the probability of each of the variables simultaneously assumes that a value 

within their respective subsets, 

(4.7) 

is relatively large. If we apply dummy variables, and Xi stands for a variable, xij is the /" 

observation of the variable Xi , i means a set of all items associated with the variable Xi, 

S( J) is the support of f, and t is the lower support bound; then the formulation of the rule 

IS: 

iEI iE! (4.8) 

and the purpose is to find all the item sets fm that meet the following condition: 

(4.9) 

2. Confidence, Support and Lift 

According to the rules, a high support item returned can be partitioned into 

two subsets, A and B such that 
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(4.10) 

If A is the antecedent, and B is the consequence, then the confidence can be defined in 

this way: given that event A occurs, the probability that B also happens is equal to 

P(BI A) = #of(A => B) 
#A 

(4.11) 

The support is defined as the ratio of the number of both events, A and B, appearing 

together compared to the number of total transactions: 

peA n B) = #of(A n B) 
# of all 

The lift can be written as the ratio of confidence and its expected confidence: 

peL) _ _ P_( B--,---iA_) 
- E(Bi A ) 

(4.12) 

(4.13) 

When studying the associations between items, the confidence, the support and the lift 

should be considered. The basic rule is that the higher the value of these three measures, 

the stronger the relations. 

3. Application 

Association rule analysis is one of the popular marketing strategies; many 

retailers utilize it to find potential customers and increase their response rate when they 

mail their product catalogs to their targeted customers. In our research, we apply it to 

medical procedures. For instance, we explore whether the patients receive procedures 

related to heart disease along with what additional procedures and treatments are also 

given to them. 
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4.2 Supervised Machine Learning 

Although unsupervised learning has some merits, it cannot be utilized for accurate 

prediction. Therefore, supervised learning algorithms are frequently used. In our research, 

we often employ the decision tree model, the neural network model, and the rule 

induction model. We then compare these models to find the optimal one. In this section, 

we will discuss these models. 

4.2.1 Decision Tree Model 

We can apply three algorithms to the decision tree model in SAS EM (Enterprise 

Miner 6.2): (1) the default tree methodology in EM, (2) CHAID (Chi-square automatic 

interaction detection), and (3) CART (Classification and regression tree). 

1. The Default Algorithm 

We first discuss the default methodology [52] for the decision tree model in SAS 

EM; it is a little different from the other two algorithms. The main idea of this approach 

can be explained in this way: 

• The split is based on some measures, either a node impurity measure or / test; 

the F test criteria, i.e. the p- value can also be utilized. 

• If the node has many observations, then a sample is used for the split search. 

• If the target is binary, nominal or ordinal, then the sample should be as balanced 

as possible. 

• If after consolidation, the number of possible splits is greater than the number 

specified, then a heuristic search is used. 

• At the beginning of the heuristic algorithm, each consolidated group of 
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observations is assigned to a different branch; then at each step, the two branches 

are merged; the process will not stop until no group can be assigned. 

2. CHAID Algorithm 

The algorithm, CHAID [541. applied in decision tree model building, was 

originally proposed by Kass in 1980. Although this method can be utilized for both a 

continuous dependent variable and a categorical target, here, we discuss the latter .The 

method consists of three steps: merging, splitting and stopping. 

Merging step: In this step, a significant value Umerge should be defined at the beginning; 

then, by the equations shown in (4.14) - (4.16), the variable X.2 and the p -value can be 

computed. If the significance (i.e., p-value) for a given pair of categories is larger than 

Umerge, then it will merge the respective predictor categories; otherwise, the adjusted p-

value will be computed using the equation displayed in (4.17). 

J I ( _(jJ)2 
X2 = II 'It) Ij 

j '=l i=l (fJ. Ij 

(4.14) 

where IJIj is the observed cell frequency, liJlj is the estimated expected cell frequency 

for cell (xn= i, Yn= j) and there are i categories of predictor X and j categories of the 

dependent variable Y. 

(4.15) 

(4.16) 
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where Xd follows a l distribution with degrees of freedom d = (1- 1 )(1- 1). The adjusted 

p-value is calculated as the p-value multiplied by fJ (defined in Equation (4.18)). Suppose 

that the total number categories of X is I, and after several merges, r classes are left. If 

2:'S: r < I, then 

Padjustea P * f3 (4.17) 

/3= f(-l)k (r-k)! 
k=JJ k!(r-k)! ( 4.18) 

Splitting step: In this step, the adjusted p-value of each predictor will be compared with 

the user-defined a,plit. If the adjusted p-value is not greater than the a'pIit, then its 

corresponding predictor is used for the split; otherwise, the node is the terminal one. 

Stopping step: The splitting step will continue until no more splits can be performed. 

During development, a tree with a binary target is generated by repeatedly using the 

above three steps on each node starting from the root node using the CHAID algorithm. 

3. CART Algorithm 

The Classification and regression tree methodology [24] was first introduced in 

1984 by UC Berkeley and Stanford researchers Leo Breiman et al. This algorithm can be 

implemented in two cases: the classification tree is used for a categorical predicted 

variable while the regression tree is used for a continuous predicted variable. The primary 

techniques included in this algorithm are how to select splits and how to prune a tree [49]. 

(1) Selecting Splits: The rule of thumb is that the split at each node will improve the 

predictive accuracy to the greatest extent. For classification trees, there are several 

impurity measures, including l, G2 or the Gini index (shown in (4.19)), among which the 
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Gini index is the most frequently used criterion, 

11 

Gini(S) = I Pi Pi = 1- I pJ 
)=1 (4.19) 

where S is a set containing n classes, and Pi is the relative frequency of class j in S. For 

regression trees, a least squares deviation is most frequently used. If N w (S) represents the 

weighted number of cases in node S, Wi is the value of the weighting variable for case 

i, Ii is the value of the frequency variable, Yi represents the value of the dependent 

variable, and yeS) is the weighted mean for node S, then a least squares deviation can be 

computed as: 

(4.20) 

(2) Pruning Trees: For the CART algorithm, it is more important to prune back to find 

the optimal tree than to find when to stop splitting. A tool called V-fold cross validation 

can be used to prune a tree, and the process can be addressed in the following way: 

• Partition the entire data set into V folders. 

• Train V folders on different combinations of V-I folds and estimate the error for 

the fold that is left out of the tree at each time. 

• Estimate tree accuracy based on the error measurements. 

• Find the design parameters to minimize the error. 

• Refit the tree using all of the data, the chosen parameters. 

4. Comments 

The CHAID algorithm can build non-binary trees, which makes it popular among 

market researchers while the CART algorithm is always building binary trees. One of the 
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characteristics of the decision tree model in SAS is that it can demonstrate the importance 

of the variables. A rule of thumb is that the level where a variable lies indicates its 

importance. The higher the level, the more vital the variable. In addition, compared to 

other methodologies, the decision tree model has three primary advantages. First, it is 

non-parametric and non linear and hence it does not require specifications of a data 

distribution. Moreover, it can automatically group the missing values into one category 

without preprocessing them. In addition, its output is easy to understand and interpret. 

Therefore, the decision tree model is a very popular tool for decision makers. 

4.2.2 Neural Network Model 

The neural network model [55], often simply called Neural Nets, originated from 

early understandings of the structure and function of the human brain. The type of the 

model that we utilize is MLP (Multilayer perceptron), and the algorithm is back 

propagation. In this section, we will focus on this algorithm and this type of neural 

network. 

1. Basic Rule 

Input 
la),cr 

llid-ticn 
lay"" 

()Ulput 
layer 

Figure 4.1. A Feed-forward Neural Networks 
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As figure 4.1 [55] demonstrates, the structure of an MLP consists of neurons 

organized in three layers: input layer, hidden layer and output layer. Weights Wu are 

assigned to each connection between the input neuron and the middle neuron, and 

between the middle neuron and the output neurons. With nonlinear transfer functions, 

hidden neurons can process complex information received from input neurons and then 

send processed information to output layer for further processing to generate outputs. The 

whole process of MLP can be described in the following way: 

Step 1: The inputs Xi are combined together to form a weighted sum of inputs and the 

weights Wi of connecting links. 

Step 2: A transformation is performed to convert the sum to an output via a transfer 

function/, and a transformation can be expressed in Equation (4.21). Among all transfer 

functions, the logistic function is the most popular one. 

(4.21) 

Step 3: Network output values are calculated and compared to the target values and the 

weights of the connections are changed to produce a better approximation to the desired 

output. The way of adjusting the weights is demonstrated in Equations (4.22). 

nell' old old dE 
Wij = Wij + .L\wij = Wi; + (-77a-) 

ij (4.22) 

in which E is the objective function and 77 is the learning rate which controls the size of 

the gradient descent step. 

Step 4: The above step will repeat until the output is ideal. 

2. Comments 
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Besides MLP, there are several other types of neural networks such as auto neural 

networks, linear networks, Bayesian networks, etc. A neural network can be thought of as 

a complicated combination of regression models, but it is a powerful classifier. It can 

handle problems with many parameters, and it tends to fit the training data well and thus 

has low bias. Therefore, in most cases, this model outperforms other models. If it is the 

optimal model, we should use another tool to express the information in an easily­

understood way. 

4.2.3 The Other Models 

1. Rule Induction 

Rule induction [29] is another tree-based algorithm for classification. It is mainly 

utilized to improve the classification ofrare events. Usually rules are expressions of the 

form: 

({(attribllte-I, vallie-I) and (attribllte-2, vallle-2) and· .. and (aftribllte-n, value-n) 

then (decision, value). 

Some rule induction systems induce more complex rules, in which values of attributes 

may be expressed by the negation of some values or by a value subset of the attribute 

domain. 

2. Memory-Based Reasoning 

MBR (Memory- Based Reasoning) [52] tries to mimic human behavior in an 

automatic way. MBR needs a distance measure to assign the dissimilarity of two 

observations and a combination function to combine the results from the neighboring 

points to achieve an answer. The distance measure is the k-nearest neighbor algorithm, in 
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which the k- nearest neighbors are determined by the Euclidean distance between an 

observation and the probe. By MBR means, it is easier to generate examples than to 

generate rules, and hence this method is very attracti ve. 

4.3 Data Mining Model Comparison 

After developing various models, several measures [56] can be used to find the 

optimal model, including the AIC (Akaike Information Criterion), the BIC criterion 

(Bayesian Information Criterion), the ROC (Receiver Operating Characteristic) curve, the 

Lift Chart and the misclassification rate, etc. We have already discussed the first two 

criteria in Chapter III, and hence we will introduce the other measures in this section. 

4.3.1 ROC Curve 

The ROC curve is a graph (shown in Figure 4.2, part of Figure 6.7) that measures 

the predictive accuracy of a model. In a Cartesian plane, the x-axis represents the false 

positive value (a.k.a. I-specificity) and the y-axis represents the sensitivity value. Each 

point in the curve corresponds to a particular cut-off. The model where the ROC curve is 

leftmost is the best model among the different models. 
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Figure 4.2. The ROC Curve 
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4.3.2 Lift Chart 

A lift chart (displayed in figure 4.3[56] ) is another graph criterion of measuring 

the predictive accuracy of models. The scored data set is sorted by the probabilities of the 

target event in descending order; observations are then grouped into deciles. For each 

decile, a lift chart can calculate the ratio between the result obtained with a model and the 

result obtained without a model that is based on randomly selected records. In the chart, it 

is represented by the horizontal base line. Lift charts show the percentage of positive 

response or the lift value on the vertical axis. If the distance between a curve and the 

base line is the greatest, then the model to which the curve corresponds is the best one. 
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Figure 4.3. The Lift Chart 

4.3.3 Misclassification Rate 

When comparing the models, we often utilized the misclassification rate. We 

divide the sample into decision regions Rill, for each class Ck • Misc1assification 

occurs if the input vector x belonging to C; is assigned to Cj , where i '* j , the 
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misclassification rate can be computed as: 

p", = I Jp(x,C)dx 
R· 

1 " 

(4.23) 

The optimal model should be the one whose misclassification rate is the minimum. 

Up to this point, we have discussed the basic data processing methodologies, 

basic concepts and the primary theories or algorithms that we will often use in our 

research. As we move into the chapters ahead, we will become immersed in studying 

diabetes outpatients and inpatients in the Medicare population without further discussing 

these theories and algorithms. 
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CHAPTER V 

COST ANALYSIS OF MEDICARE OUTPATIENTS 

WITH DIABETES 

Outpatients with diabetes use considerable Medicare resources, and hence it is 

essential to take measures to reduce the costs. The primary purpose of this chapter is to 

address this problem from prevention and medical services perspectives. We will first 

introduce some knowledge about descriptive statistics and correlation analysis; then we 

propose methods to decrease Medicare payments through analyses of claims data and 

data from revenue centers for outpatients. 

5.1 Descriptive Statistics 

Descriptive statistics [57] are used to quantitatively describe the basic features of 

the data in a study and they include four types: (l) measures of central tendency 

including the arithmetic mean, median and mode, etc.; (2) measures of dispersion such as 

the standard deviance; (3) measures of association such as odds ratio and correlations 

coefficients; (4) a non-parametric analysis such as kernel density estimation. In this 

section, we will talk about the last two types. 

5.1.1 Kernel Density Estimation 

In statistics, kernel density estimation [57] is a non-parametric way of estimating 

the probability density function of a random variable. For our research, we use the 
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univariate case. The kernel estimator for the univariate case can be defined as: 

1\ 1 II x-X. 
f(x;h)=-LK( ') 

nh ;=1 h (5.1) 

where XI, X 2, ... Xn are independent and identically distributed random variables; f is 

the density function; K stands for some known density function and h is a smoothing 

parameter called the bandwidth. As an illustration, given some data about a sample of a 

population, kernel density estimation makes it possible to extrapolate the data to the 

entire population. To better display the distribution, it is important to make sure that the 

smoothness of the graph is reasonable, which is decided by the bandwidth. One simple 

method to choose the optimal bandwidth is to find the minimum of the asymptotic mean 

integrated squared error (AMISE, defined below) with respect to h, 

R(K) 1 -4 4 " 
AMISE= --+-(jkh R(f (x)) 

nh 4 

where R(K)= jK
2
(x)dx. 

5.1.2 Pearson Correlation Analysis 

(5.2) 

Correlation analysis is a common method of studying the relations between two or 

more variables. The typical measure for the linear relationship analysis is the Pearson 

correlation coefficient. The Pearson Product-Moment Correlation coefficient r [58], 

simply called the Pearson coefficient gives information about the degree and the 

directions of how the two variables are related. Its computation is based on covariance 

and its value range is [-1,1]. The values ±l mean that there exists a perfect positive or 

negative linear relationship between the two variables; the intervals of [-1, - 0.75) or 

[0.75, 1) indicate a high degree of correlation; the intervals of [-.25,0) or (0, 0.25] 
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indicate a low degree of correlation; the value 0 means that there is no predictability. 

When it comes to the sample analysis, the sample coefficient R is seldom utilized; instead, 

R2 is frequently utilized to display the relationship between the dependent variable and 

the predictors. The formula for rand R are shown below. 

(5.3) 

~)(Xi - ~)(Yi - y)) 
R= i 

J'L)Xi - X)2 ~:CYi - y)2 
I I 

(5.4) 

In the above two formulas, cov (x,y) denotes the covariance; f.1" f.1" (j', 2 ,(j', 2 respectively 

represent the expectations and the variances of the variables x. y; x, y denote the sample 

mean of x and y. 

5.2 Cost Analysis using Data from Revenue Center 

In this section, we use data from the revenue center and demographic data for 

diabetes outpatients in Medicare from the CMS CCW data [181 to find ways to decrease 

the costs through the general linear model and the generalized linear model as well as 

Pearson correlation analysis. 

5.2.1 Kernel Density Estimation 

After using Filter and Query in SAS EG (Enterprise Guide) 4.1 to select the 

necessary variables and combine two data sets together, we perform KDE (kernel density 
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estimation) to see the differences in the costs among different races. The SAS code and 

the results are shown below: 

PROC SORT DATA=SASUSER.RANSAMPLE 

BY BENE_RACE_CD BENE_SEX_IDENT_CD ; 

PROC KDE DATA=SASUSER. SRANSAM ; 

OUT=SASUSER. SRANSAM ; 

UNIVAR REV_ CNTR_ TOT_ CHRG_AMT/ GRIDL=O GRIDU=1500 

METHOD=SNR OUT=SASUSER.KDECHAR ; RUN ; 

1)~ /rri. -.ale. 
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FigureS.I. KDE of Costs among Different Races (Male) 
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Figure 5.2. KDE of Costs among Different Races (Female) 

Figures 5.1 & 5.2 visualize the distributions of the costs; the densities of costs for 

males and females follow gamma distributions and all of them approach zero after 1500 

dollars. The costs of the whites have a higher probability of being lower compared to all 

other races. There exist differences between the males and the females; the densities 

arrive at the peak when the costs reach 50 dollars for males and 100 dollars for the 

females. 

5.2.2 Statistical Model Analysis 

We want to find the reasons for Medicare payments from diagnosis information 

utilizing the linear statistical models. Prior to analysis, we used the One-Way Frequency 

in SAS EG to find the top 20 procedures displayed in Table 5.1 [23]. 

70 



~ -~--------~ ------------------

Table 5.1 Top 20 HCPCS Codes 

82962 Glucose, blood by glucose monitoring device(s) cleared by the FDA specifically for home 

use 

2 GOOOI Routine venipuncture for collection of specimen(s) 

3 97110 Therapeutic procedure, therapeutic exercises to develop strength and endurance, range of 

motion and flexibility 

4 85025 Blood count; complete (CBC), automated (Hgb, Hct, RBC, WBC and platelet count) and 

automated differential WBC count 

5 85610 Prothrombin time; 

6 80048 Basic metabolic panel 

7 80053 Comprehensive metabolic panel 

8 83036 Hemoglobin; glycosylated (A I C) 

9 90999 Unlisted dialysis procedure, inpatient or outpatient 

10 97530 Therapeutic activities, direct (one-on-one) patient contact by the provider (use of dynamic 

activities to improve functional performance), 

11 Q4055 Injection, 

12 80061 Lipid panel 

13 97116 Therapeutic procedures ;gait training (includes stair climbing) 

14 97112 Therapeutic procedure,; neuromuscular reeducation of movement, balance, coordination, 

kinesthetic sense, posture, and/or proprioception for sitting and/or standing activities 

15 99212 Office or other outpatient visit for the evaluation and management of an established patient; 

Physicians typically spend 10 minutes face-to-face with the patient and/or family. 

16 93005 Electrocardiogram, routine ECG with at least 12 leads; tracing only, without interpretation 

and report 

17 99213 Office or other outpatient visit for the evaluation and management of an established patient 

physicians typically spend 15 minutes face-to-face with the patient and/or family. 

18 A4657 Syringe, with or without needle, each 

19 84443 Thyroid stimulating hormone (TSH) 

20 71020 Radiologic examination, chest, two views, frontal and lateral; 

Some of extracted 20 HCPCS codes are regular diabetes examination procedure 

such as A1C test (HCPCS: 83036) and some of them are procedures needed by diabetes 

complications such as an Electrocardiogram (HCPCS: 93005). The 20 codes are 

recorded as binary 0-1 indicator functions in 20 columns with SAS coding. We can use 
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Analyze->ANOV A->Linear Model with costs as the dependent variables; the newly-

generated 20 indicator variables were used as the class variables in the model. The results 

are given below: 

Table 5.2 Overall the General Linear Model Information 

R-Square CoefTVar RootMSE REV _CNTR_TOT_CHRG_AMT Mean 

0.033549 434.3811 1737.414 399.9746 

The r-square value is 3.3%, which means that 3% of the variability of the costs 

can be explained by the above 20 factors. Although this is a small number, it gives us an 

idea of what is significant. Table 5.3 shows that the 20 variables are significant to the 

costs. However, since the distributions of the costs are gamma distributions, we should 

also consider the generalized linear model with a gamma distribution. 

Table 5.3 Type III Sum of Squares 

Source DF Type III SS Mean Square F Value Pr>F 

Blood glucose monitoring I 144951012755 144951012755 48019.2 <.0001 

Routine venipuncture I 135540500264 135540500264 44901.7 <.0001 

Therapeutic exercises to develop strength and endurance I 76340503128 76340503128 25290.0 <.0001 

Blood count I 60850533348 60850533348 20158.5 <.0001 

Prothrombin time I 57263486670 57263486670 18970.2 <.0001 

Basic metabolic panel I 37054519078 37054519078 12275.4 <.0001 

tc=omprehensive metabolic panel I 30419948211 30419948211 10077.5 <.0001 

Hemoglobin; glycosylated I 37500526373 37500526373 12423.1 <.0001 

Unlisted dialysis procedure, I 417296629150 417296629150 138241 <.0001 

Therapeutic activities, direct patient contact by the I 34114806835 34114806835 11301.5 <.0001 

Injection I 169829929901 169829929901 56261.0 <.0001 

Lipid panel I 26676907909 26676907909 8837.49 <.0001 

Therapeutic procedure, gait training I 29359815777 29359815777 9726.28 <.0001 

Neuromuscular reeducation of movement, balance I 24582913341 24582913341 8143.79 <.0001 

office or other outpatient visit, typically 10 minutes I 20034618172 20034618172 6637.04 <.0001 

Electrocardiogram, (EGG) I 13816375074 13816375074 4577.07 <.0001 

Office or other outpatient visit, typically 15minutes I 17996085232 17996085232 5961.72 <.0001 

Syringe, I 20096703187 20096703187 6657.61 <.0001 

Thyroid stimulating hormone I 15385539003 15385539003 5096.90 <.0001 

Radiologic examination I 8767439243.1 8767439243.1 2904.47 <.0001 
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Table5.4 Criteria for Assessing Goodness of Fit 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value ValuelDF 

Deviance 9964 22374.1763 2.2455 

Scaled Deviance 9964 12474.8191 1.2520 

Pearson Chi-Square 9964 I 130667.2143 13.1139 

Scaled Pearson X2 9964 72854.0725 7.3117 
... --

Log Likelihood -63303.4243 

In Table 5.4, the value of deviance divided by degree is 2.25.The value shows the 

adequacy of this model, which means that the model fits the data reasonably well. In 

Table 5.5, all the p values are smaller than 0.0001, indicating that all 20 variables are 

statistically significant. The l value of 1070.13 for blood glucose monitoring represents 

twice the difference in log likelihoods between fitting a model with only an intercept and 

a model with an intercept and blood glucose monitoring. Similarly, every l value for 

each variable represents the differences in log likelihoods between successive models. 

The output shows that the X2 values for venipuncture and blood glucose monitoring are 

the highest among all the X2 values; therefore, we conclude that blood glucose monitoring 

and venipuncture have more important effects on the costs than any other treatments do. 

Table 5.5 Type I analysis 

LR Statistics For Type 1 Analysis 

Source 2 *LogLikelihood DF Chi-Square Pr> ChiSq 

Intercept -131538.88 

Blood glucose monitoring -130468.75 I 1070.13 <.0001 

Routine venipuncture -129441.88 I 1026.87 <.0001 

Therapeutic exercises -129197.95 I 243.93 <.0001 

Blood count -128915.08 I 282.87 <.0001 

Prothrombin time -128568.73 I 346.35 <.0001 
.•. .'---- --- -------:--

Basic metabolic panel -128424.85 I 143.88 <.0001 

Comprehensive metabolic panel -128315.64 I 109.21 <.0001 

Hemoglobin; glycosylated -128081.87 I 233.78 <.0001 

Unlisted dialysis procedure -127823.38 I 258.49 <.0001 

Therapeutic activities, direct patients contact by the -127633.20 I 190.18 <.0001 

Injection -127565.57 I 67.63 <.0001 

Lipid panel -127459.23 I 106.34 <.0001 
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LR Statistics For Type I Analysis 

Source 2*LogLikelihood DF Chi-Square Pr > ChiSq 

Therapeutic procedure, gait training -127263.69 I 195.55 <.0001 

Neuromuscular reeducation of movement, balance -127112.20 I 151.48 <.0001 

Office or other outpatient visit, typically 10 minutes -127004.16 I 108.04 <.0001 

Electrocardiogram, EGG -126952.54 I 51.62 <.0001 

Office or other outpatient visit, typically 15 minutes -126855.49 I 97.05 <.0001 

Syringe -126711.41 I 144.09 <.0001 

Thyroid stimulating hormone -126640.03 I 
-- -- --- ._- -.. ~---~ c---

<.0001 71.37 

Radiologic examination -126606.85 I 33.18 <.0001 

Table 5.6 Pearson Correlation 

Pearson Correlation Coefficients, N = 12158258 

coefficients 
Blood glucose monitoring -0.05110 «.0001) 

Routinevenipunctureforco llectionspeci men( s) -0.04919 «.0001 ) 

In Table 5.6, the negative correlation coefficients between the total charges and 

blood glucose monitoring and routine venipuncture indicate that if we increase the 

monitoring and routine venipuncture, we can decrease the total charges. 

5.3 Cost Analysis Using Claims Data 

5.3.1 Newly-generated Predictors 

In this section, we will analyze the relationships between the diagnosis and the 

costs of outpatients with diabetes using the Medicare claims data from the CMS CCW 

data warehouse [18]. In these data, diagnosed diseases or procedures appear in more than 

2 columns; therefore, we use the method in [59] to get them into one column. First, we 

use Filter and Query to select Claim ID and ICD9_DGNS_CDI to generate a new data 

set that contains two columns, and change the name ofICD9_DGNS_CDI to ICD9. It is 

the same for the left nine ICD9_DGNS_CDn and six ICD9_PRCDR_CD n to generate 16 

Tables. Then, we open one Table, and use Data - >Append Table; after that, the ICD9 
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Table (Figure 5.3) is generated. This is followed by Describe->One-way 

Frequencies to find the top 20 ICD9 codes as displayed in Table 5.7. 

~ CL .... 100 I.&- ICOo9 ·1 
11 .... ,...Vv-·...,-·,·'V"vA A A ···/E ! V5883 
2 v-v-v-v-·./"VvA A A ..... 'E V5883 
3 ."v .......... v-v-"v.-v. v A A i=c .... ···E 70:38 ' 

..... ........ v -y-...""-VvA A AV' t 7'947 
5 '-./"v-vv'v-VvA i=i AVtp 5,30 

6 v""'-V'-./"VvA A AV8 4 0'0 
,- v~vAA-A"""'B 2 5000 -0 v ...... --v-·/'-.' -VvA A AV8 25000 
9 v .. ·v.-....,r-./'v ........ '"vA A A · ...... B 7859 
110 -- ~~-.... ,r. .... '· .... ·A A RV7 2 5000 

1111 '-.I·\/ ..... l ·\ ... .-... .r. ..... · .... R A A ·· .. /p 2 962 0 

112 ............... ~ ..... vARR·Vp v'82 5 

113 ..... rv·-...rv..-yv ..... R R RVp 2 5000 
11 ..... v-...'........-...·..-yvv R R RVp 2 500' 
115 v-...""-"'f"V-vv A R R v ·v · V586 ' 

••••• • 0 .' ... .- ........ , . ..... - .. ... . .... .. ..... ' . 

Figure 5.3. ICD9 Table 

Table 5.7 Top 20 ICD9 Diagnosis Codes 

ICD9 Diagnosis Frequency Percent 

25000 Diabetes mellitus without complication type ii or unspecified type not 2264 8.90 
stated uncontrolled 

4019 Unspecified essenti al hypertension 135 1 5.31 

585 Chronic kidney di sease (ckd) 629 2.47 

V5861 Long-term (current) use of anticoagulants 509 2.00 

2724 Other and unspecified hyperlipidemia 508 2.00 
--- --

42731 Atrial fibrillati on 469 1.84 

2859 Anemia unspecified 452 1.78 

4280 Congesti ve heart failure unspecified 429 1.69 

V5869 Long-term (current) use of other medicat ions 402 1.58 

28521 Anemia in chroni c kidney disease 357 1.40 

4011 Benign essential hypertension 339 1.33 

2720 Pure hypercholesterolemia 3 14 1.23 

41400 Coronary atherosclerosis of unspecified type of vessel nati ve or graft 296 1.1 6 

25001 Diabetes mellitus without complication type i not stated as uncontrolled 244 0.96 

5990 Urinary tract infection site not specified 232 0.9 1 

2809 Iron defi ciency anemi a unspecified 230 0.90 

2449 Unspecified acquired hypothyroidism 225 0.88 

496 Chronic airway obstruction not elsewhere classified 2 10 0.83 

25002 Diabetes mellitus without complication type ii or unspecified type 203 0.80 

78079 Other malaise and fati gue 194 0.76 

Next, we process the data to get the data (Figure 5.4) ready for analysis. 
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Figure 5.4. Newly-generated Data for GLM 

5.3.2 Statistical Model Analysis 

After the assumptions diagnostics, the generalized linear model is developed, with 

the costs as the predicted variable and the newly-generated variables as the input 

variables. The results are given in the following Tables. 

Table 5.8 Overall Mode Information 

Model Information 

Data Set WORK.SORTIEMPTAB 

LESORTED 

Distribution Gamma 

Link Function Log 

Dependent Variable CLM_TOT_CHRG_AMT Claim Total Charge 
Amount 

Table 5.8 gives information about distribution of the response variable, the link 

function. In Table 5.9, the value of deviance divided by degree is 2.32, and the scaled 

deviance divided by degree is 1.26. These two parameters demonstrate the adequacy of 

this model, which means that the generalized linear model fits the data reasonably well. 

Table 5.9 Criteria for Assessing Goodness Fit 
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Criteria For Assessing Goodness Of Fit 

Criterion DF Value ValuelDF 

Deviance 9980 23196.7333 2.3243 

Scaled Deviance 9980 12550.5608 1.2576 

Pearson Chi-Square 9980 79786.4792 7.9946 

Scaled Pearson X2 9980 43168.3655 4.3255 

Log Likelihood -75829.4983 

Table 5.10 Type lAnai ysis 

LR Statistics For Type 1 Analysis 

Source 2*LogLike- DF Chi- Pr 
Square 

Intercept -154184.45 

R25000_Max Diabetes mellitus without complication type II or -154160.76 I 23.68 <.0001 
unspecified type uncontrolled 

R4019_Max Unspecified essential hypertension -154078.23 I 82.53 <.0001 

R585_Max Chronic kidney disease (ckd) -152265.81 I 1812.42 <.0001 

RV586 I_Max Long-term (current) use of anticoagulants -152018.52 I 247.29 <.0001 

R2724_Max Other and unspecified hyperlipidemia -151969.30 I 49.21 <.0001 

R4280_Max Congestive heart failure unspecified -151953.57 I 15.74 <.0001 

R4273 I_Max Atrial fibrillation -151889.81 I 63.76 <.0001 

RV5869_Max Long-term (current) use of other medications -151886.98 I 2.82 0.0929 
--_._.- ._----

R2859_Max Anemia unspecified -151880.30 I 6.69 0.0097 
---- ---- ._-----f--_ .. 

R4011_Max Benign essential hypertension -151782.39 I 97.91 <.0001 

R28521_Max Anemia in chronic kidney disease -151737.71 I 44.68 <.0001 

R2720_Max Pure hypercholesterolemia -151736.64 I 1.07 0.3014 

R41400_Max Coronary atherosclerosis of unspecified type of -151731.99 I 4.65 0.0311 
vessel native or graft 

R5990_Max Urinary tract infection site not specified -151731.98 I 0.01 0.9287 

R25001_Max Diabetes mellitus without complication type i not -151729.57 I 2.41 0.1203 
stated as uncontrolled 

R78079_Max Other malaise and fatigue -151729.57 0 0.00 

R2809_Max Iron deficiency anemia unspecified -151708.85 I 20.72 <.0001 
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LR Statistics For Type I Analysis 

Source 2*LogLike- DF 

R2449_Max Unspecified acquired hypothyroidism -151707.74 I 

R496_Max Chronic airway obstruction not elsewhere -151698.50 I 

classified 
R25002_Max Diabetes mellitus without complication type ii or -151659.00 I 

unspecified type uncontrolled 

Table 5.11 Variables Significant to the Model 
Diabetes mellitus without complication type II or unspecified 
type uncontrolled 

R585_Max 

RV5861_Max 

R42731_Max 

R2859_Max 

R4011_Max 

R28521_Max 

Unspecified essential hypertension 

Chronic kidney disease (ckd) 

Long-term (current) use of anticoagulants 

Other and unspecified hyperlipidemia 

Congestive heart failure unspecified 

Atrial fibrillation 

Anemia unspecified 

Benign essential hypertension 

Anemia in chronic kidney disease 

Chi-
Square 

1.11 

9.24 

39.50 

Coronary atherosclerosis of unspecified type of vessel native or 
graft 

R78079_Max 

R2809_Max 

Other malaise and fatigue 

Iron deficiency anemia unspecified 

Chronic airway obstruction not elsewhere classified 

Diabetes mellitus without complication type ii or unspecified 
type uncontrolled 

Type I analysis shows that the following factors (shown in Table 5.11) are 

Pr 

0.2922 

0.0024 

<.0001 

statistically significant to the model. Since the l value for chronic kidney disease ranks 

the first among all the values (shown in Table 5.1 0), kidney disease is the most important 

variable related to the costs. 
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Since chronic kidney disease has the most important effect on the costs and 

chronic kidney disease counts for a large percentage of renal failure, the logistic 

regression in Enterprise Miner will be used to analyze the relationships between renal 

failure and the other diseases vital to the costs. Before that, a binary variable, Renal is 

generated using 0-1 indicator functions. The following steps are conducted in Enterprise 

Miner. First, R (Renal Failure) is set as the target and the variables are set on binary level. 

Then, a sample node is added and connected to the data; and the Stratify Method is used, 

choosing Level Based as the stratified criterion and Rarest Level in the Level Based 

options. The results are as shown in Tables 5.12 - 5.15. 

Table 5.12 Misclassification Rate 

TARGET Fit Statistic Label Train Validation Test 

R_Max Misclassification Rate 0.38596491 NaN NaN 

Table 5.13 Type 3 Analysis of Effects 

Effect D Wald Pr> 
F ChiSq ChiSq 

Unspecified acquired hypothyroidism I 0.028 0.866 

Diabetes mellitus without complication type ii or I 1.131 0.288 
unspecified type not stated as uncontrolled 

Diabetes mellitus without complication type i not I 0.360 0.548 
stated as uncontrolled 

Diabetes mellitus without complication type ii or I 0.027 0.868 
unspecified tvpe uncontrolled 

Anemia unspecified I 4.708 0.030 

Benign essential hypertension I 0.264 0.607 

Coronary atherosclerosis of unspecified type of vessel I 0.012 0.910 
native or graft 

Atrial fibrillation I 0.151 0.697 

Congestive heart failure unspecified I 0.226 0.634 

Chronic airway obstruction not elsewhere classified I 0.562 0.453 

Chronic kidney disease (ckd) I 0.428 0.513 

Urinary tract infection site not specified I 2.596 0.107 

Long-term (current) use of anticoagulants I O.fXl 0.929 

Long-term (current) use of other medications I 0.015 0.902 
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------- -------------

The misclassification rate in Table 5.12 is 0.386, which is accepted. The results in 

Table 5.13 indicate that only unspecified anemia is significant to renal failure as only its 

p-value in the Type 3 analysis is less than 0.05 out of the 15 diseases that are considered 

for renal failure. The odds ratio for Anemia in Table 5.14 shows that if the diagnosis is 

not anemia, then the chance that it is related to renal failure is only 9 % of the probability 

that it is Anemia. Hence, Anemia has the most prominent relationship to renal failure. 

Table 5.14 Odds Ratio Estimates 

Effect Diagnosis Point 
Estimat 

R2449 _Max 0 vs I Unspecified acquired hypothyroidism 0.745 

R25000_Max 0 vsl Diabetes mellitus without 2.057 
complication type ii or unspecified 

R25001 Max 0 vsl Diabetes mellitus without 0.602 -
complication type i not stated as 

R25002_Max 0 vs I Diabetes mellitus without 0.840 

complication type ii or unspecified 

R2859 _Max 0 vs I Anemia unspecified 0.093 

R4011 - Max 0 vs I Benign essential hypertension 0.562 

R41400_Max 0 vs I Coronary atherosclerosis of 1.145 
unspecified type of vessel native or 

R4273 1 Max 0 vsl Atrial fibrillation 1.551 -

R4280_Max 0 vs I Congestive heart failure unspecified 0.704 

R496_Max o vs I Chronic airway obstruction not 0.402 
elsewhere classified 

R585_Max ° vs I Chronic kidney disease (ckd) 0.626 

R5990_Max 0 vs I Urinary tract infection site not 0.121 

specified 
RV5861 - Max 0 vsl Long-term (current) use of 1.139 

anticoagulants 

RV5869_Max 0 vsl Long-term (current) use of other 0.794 

medications 
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Table 5.15 Event Classification Table 

Data Role Target False Negative True False Positive True Positive 
Ne.l(ative 

Train R_Max 32 45 12 25 

Table 5.15 shows that the false negative rate is 32 %, which means that it is 32% 

likely for the model to predict that renal failure is not occurring when it in fact is; the 

false positive rate is 12, which means that it is only 12 % likely to predict the diagnosis of 

renal failure when it actually does not occur. Since a false negative is more critical than a 

false positive, the model is fairly good. 

Just as the results show, the model probably needs improving; hence, it is 

necessary to utilize another model to analyze the relationship. Next, we utilized the 

generalized linear mixed model, in which the GLIMMIX procedure in SAS can be used, 

selecting Renal as the response variable, which is a binary variable; selecting Ane 

(Anemia), Hea (Heart disease) and Unctrl (Uncontrolled diabetes) as the classification 

variables; analyzing Ane and Hea in the fixed effects while analyzing Unctrl in the 

random effects. The least-squares means for Ane and Hea are also used. The following 

SAS code is used. 

PROC GLIMIX DATA=SASUSER.RENAL; 

CLASS HEA ANE UNCTRL; 

MODEL RENAL=ANE HEA/DIST=BINARY LINK=LOGIT; 

LSMEANS ANE HEAl; 

RANDOM UNCTRL; RUN; 

The model results of this analysis are shown in Table 5.16. In Table 5.17, the first 

two measures indicate that the model is statistically significant; and the third one 

demonstrates that the model fits the dataset very well. 
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Table 5.16 Overall Information 

Model Information 

Data Set SASUSER.RMIXW 
-----

Response Variable Renal 

Response Distribution Binary 

Link Function Logit 

Variance Function Default 

Variance Matrix Not blocked 

Estimation Technique Residual PL 

Degrees of Freedom Method Containment 

Table 5.17 Fit Statistics 

Fit Statistics 
------ -

-2 Res Log Pseudo-Likelihood 180738.80 

Generalized Chi-Square 110055.61 

Gener. Chi-Square / DF 11.01 

Covariance Parameter Estimates 

CovParm Estimate Standard Error 
------

Unctrl 8.21 E-22 

Table 5.18 Type 3 Analysis for Fixed Effects 

Type III Tests of Fixed Effects 

Effect NumDF DenDF F Value Pr>F 

Ane 1 9996 3.68 0.0551 
------ t------ ---- ---------

Hea 1 9996 6.77 0.0093 

Table 5.19 Least -square Means Analysis 

Ane Least Squares Means 

Ane Estimate Standard DF t Value Pr> It I 

0 4.7986 0.2116 999 22.67 <.0001 

1 4.0978 0.3677 999 11.14 <.0001 

Hea Least Squares Means 

Hea Estimate Standard DF t Value Pr> It I 
--------1-------I--
0 4.9771 0.1895 999 26.26 <.0001 

1 3.9192 0.4000 999 9.80 <.0001 

82 



Table 5.17 lists the covariance parameter estimates for a random variable. The 

variance for Unctrl is rather small and so the variable is significant to the model. The 

output in the Type 3 analysis (TableS. 18) shows that both anemia and heart disease are 

significant to the model. Table 5.19 lists the information about the least-square means. 

The output shows that the estimate mean for anemia is 4.0978 and the standard error is 

0.3677, while the value for heart disease is 3.9192 and its standard error is 0.4. 

Therefore, the two diseases are almost equally important to renal failure. 

5.4 Conclusion 

After this analysis, we can draw the conclusions that in order to decrease 

Medicare costs, we should often monitor blood glucose level of diabetes outpatients and 

we also should emphasize diabetes prevention. In addition, chronic kidney disease 

affects the charges the most. Finally, we should monitor heart disease and anemia of the 

diabetic outpatients with renal failure. 

In this chapter, we focus on outpatients with diabetes in the Medicare population; 

in next chapter, we will study inpatients with diabetes. 
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CHAPTER VI 

COST ANALYSIS AND OUTCOMES RESEARCH FOR 

MEDICARE INPATIENTS WITH DIABETES 

In the previous chapter, we conducted a cost analysis of diabetes outpatients in 

Medicare. The analyses of inpatients encompass more than those of outpatients. In this 

chapter, based on the inpatient claims data and demographic data from the CMS CCW 

data[ 18], we will start a cost analysis among different races or different complications of 

diabetes; then, we will perform association rule analysis of different procedures. Next, we 

will use various kinds of supervised learning algorithms to study the outcomes and a 

readmission analysis of inpatients and we will end up with two-way interaction effects 

analysis of diabetes complications. 

6.1 Cost Analysis 

6.1.1 Inpatient Costs among Different Races 

At the beginning, we study the general cost distributions among different races 

using kernel density estimation (Figure 6.1). Before the value of 40,000 dollars occurs, 

North American natives> Whites> Blacks> Hispanics in terms of densities for costs, and 

all of them spend more than Asians; while after that point, Asians cost more than the 

other races. 
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Figure 6.1. KDE of Total Charges among Different Races 

6.1.2 Costs among Different Diagnosed Diseases 

In this section, we want to see how different groups of diagnoses affect the costs. 

Before that, we define a string containing all possible diagnosis codes using the CATX 

statement in SAS. 

0.1284052 

0.0362 0.0988086 ... 

0 .1828 0.1266924 ... 

1276 0.1276 0.1260251 .. 

1515 0.1515 0.1 

790 0.079 0.1176632 

Figure 6.2. Clusters of Diagnoses 
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After conducting clustering analysis with the E-M algorithm using SAS Text 

Miner, we get the results displayed in Figure 6.2. To view how the groups of diagnoses 

affect the total charges, we perform kernel density estimation. 

Cluster 
number 

2 

3 

4 

5 

6 

7 

8 

9 

Table 6.1 Translations for the Clusters 

Diagnoses 

Unspecified Obesity, Schizoaffective disorder, Diabetes 
mellitus without mention of complication, Tobacco use 
disorder, Other and unspecified hyperlipidemia 

Old myocardial infarction, Of native coronary artery, 
Aortocoronary bypass status, Of unspecified type of vessel 
or native or graft, Percutaneous transluminal coronary 
angioplasty status 

Other and unspecified angina pectoris, Other specified 
cardiac dysrhythmias, Other persistent mental disorders due 
to conditions classified elsewhere, Of native coronary artery, 
Pure hypercholesterolemia 

Unspecified Essential hypertension, Diabetes mellitus 
without mention of complication, Unspecified 
hypothyroidism, Osteoarthrosis which unspecified whether 
generalized or localized, Depressive disorder 

Diabetes with neurological manifestations, Background 
diabetic retinopathy, Diabetes with ophthalmic 
manifestations, Diabetes with ophthalmic manifestations, 
Other and unspecified hyperlipidemia 

Unspecified Acute renal failure, unspecified Congestive 
heart failure, Obstructive chronic bronchitis with 
exacerbation, Unspecified Hypertensive chronic kidney 
disease, Pneumonia 

Mitral valve disorders, Diabetes mellitus without mention of 
complication, unspecified Congestive heart failure, Other 
primary cardiomyopathies, Atrial fibrillation, 

Alzheimer's disease, Urinary tract infection, unspecified 
Anemia, Volume depletion, Pneumonia 

Diabetes mellitus without mention of complication, 
Esophageal reflux, Other and unspecified hyperlipidemia, 
Unspecified Essential hypertension, Pure 
hypercholesterolemia 
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Figure 6.3. KDE of Total Charges for Diabetic Inpatients by Clusters (Male) 
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Figure 6.4. KDE of Total Charges for Diabetic Inpatients by Clusters (Female) 

Figures 6.3 and 6.4 demonstrate that the distributions of the costs for male 

inpatients are different from the ones for females. The clusters yield the relationships in 

terms of ordering. For males, before the first cutpoint occurs at 19,200 dollars, in terms of 

density, cluster #5 is much greater than the other clusters; between the cutpoints of 

19,200 dollars and 33,000 dollars, the ordering of estimated density is 1,4, 5,9>2,3>6, 7, 
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8. After 33,000 dollars, there are no differences among all clusters. The graph for female 

inpatients shows the costs in terms of ordering is 9>5>2>1,3>7,8>4,6 before the first 

cutpoint of 10,650 occurs. 

6.1.3 Cost Distributions among Organ Diseases 

The previous analysis indicates that diabetes has many complications such as 

heart disease or renal failure. We will demonstrate the expenditures on these organ 

diseases shown in Figure 6.4. Before that, we need to generate a new variable, ORGAN 

with the following SAS code: 

DATA SASUSER.IPORGAN (KEEP=CLM_CD CLM_TOTO_CHRG_AMT 
DIAGNOSES HEA KID OCULO NEU); SET SASUSER.IPCLAIMDEMO; 

HEA=Oi KID=Oi OCULO=Oi NEU=O; 

DIAGNOSES= CAT X ( , , , ICD9_DGNS_CDl, ... ICD9_DGNS_CD16); 

IF(RXMATCH('4280',DIAGNOSES»0)THEN HEA=l; 

IF (RXMATCH ( , 4254' , DIAGNOSES) >0) THEN HEA=l; ... 

DATA SASUSER.ORGAN; SET SASUSER.IPORGAN; 

IF HEA=l THEN ORGAN=li IF KID=l THEN ORGAN=2; IF OCULO=l 
THEN ORGAN=3i IF NEU=l THEN ORGAN=4i RUN; 

The graphs in Figure 6.5 indicate that before the costs reach the value of 9,900 

dollars, the cost with heart disease, the cost with ophthalmic diseases and the cost with 

neurological disorders have almost the same probability, which is much higher than the 

cost without any of the organ diseases; the probability for the cost with kidney disease is 

the smallest. However, after the cutpoint at 34,350 dollars, the density of the cost with 

kidney disease is higher than any other densities. It shows that kidney disease has the 

highest probability of the highest cost while neurological disorders have the highest 

probability of lowest cost with heart disease and ophthalmic diseases having similar 

probabilities as neurological disorders. 
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Figure 6.5. Costs by Different Organ Diseases 

6.2 Outcomes Research 

6.2.1 Association Rule Analysis of Procedures 

Before we study the outcomes of inpatients, we conduct market basket analysis of 

various procedures and the results are displayed below. Figure 6.6 shows all the major 

connections between different procedures. The procedures shown in table 6.2 are 

important, since all of the rectangular boxes representing those procedures are bigger 

than the others. Among the procedures, five of them are used for cardiac di sease and one 

is related to hematic disease, which form 6 centers of the diagram; they are marked with 

an asterisk, '*' in Table 6.2. 
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Colonoscopy In itial insertion ... atrium and 
ventricle; Initial insertion of dual­
chamber device 

Code 
3601* 
3607* 
3722* 
3772 
3783 
3893 
3895 
3995 
4516 
4523 

Continuous ... ventilation 

Transfusion of packed cells 

8856 & 8853 & 3601 
8858 &3607 &36018856&3722 &360t8858 &3722 &3607 

Figure 6.6. Associations of Procedures 

Table 6.2 Translations for Important Procedures 
Procedure 
Single vessel percutaneous translurninal coronary angioplasty 
Insertion of drug-eluting coronary artery stent(s) 
Left heart cardiac catheterization 
Initial insertion of transvenous leads [electrodes] into atrium and 
Initial insertion of dual-chamber device 
Venous catheterization, not elsewhere classified 

Venous catheterization for renal dialysis 
Hemodialysis 
Esophagogastroduodenoscopy [EGD] with closed biopsy 

Colonoscopy 
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Code Procedure 
8853* Angiocardiography of left heart structures 
8856* Coronary arteriography using two catheters 

9339 Other physical therapy 

9383 Occupational therapy 

9604 Insertion of endotracheal tube 

9671 Continuous invasive mechanical ventilation for less than 96 consecutive 

9672 Continuous invasive mechanical ventilation for 96 consecutive hours or 

9904 Transfusion of packed cells 

9920 Injection or infusion of platelet inhibitor 

Table 6.3 Confidence and Lift for Rules 
Rules Confidence Lift 

(%) 
Initial insertion ... atrium and ventricle==> Initial insertion of dual-chamber device 100 73.22 

Initial insertion of dual-chamber device==> Initial insertion ... atrium and ventricle 97.28 73.22 

Angiocardiography of left heart structures ==> Coronary arteriography 94.17 9.38 

Left heart cardiac catheterization==> Coronary arteriography 
89.92 8.96 

Angiocardiography of left heart structures==> Left heart cardiac catheterization 89.24 9.56 

Coronary arteriography==> Left heart cardiac catheterization 83.64 8.96 

Hem dialysis== > Venous catheterization for renal dialysis 79.61 7.41 

Insertion of drug-eluting coronary artery stent(s)==> Single ... coronary angioplasty 78.68 18.37 

Left heart cardiac catheterization==> Angiocardiography 78.66 9.56 

Coronary arteriography==> Angiocardiography of left heart structures 77.21 9.38 

Insertion of drug-eluting coronary artery stent(s)==> Coronary arteriography 77.16 7.08 

Occupational therapy==> Other physical therapy 77.08 43.06 

Other physical therapy==> Occupational therapy 76.29 43.06 

Continuous invasive mechanical ventilation==> Colonoscopy 
74.27 14.74 

Injection or infusion==> Coronary arteriography 73.27 7.28 
Single ... coronary angioplasty==> Coronary arteriography 

72.84 7.26 
Insertion of drug-eluting coronary artery stent(s)==> Left heart cardiac 
catheterization 71.07 7.61 
Single ... coronary angioplasty==> Left heart cardiac catheterization 68.10 7.29 
Single ... coronary angioplasty==> Insertion of drug-eluting coronary artery stent(s) 

66.81 18.37 
Injection or infusion==> Left heart cardiac catheterization 

64.36 6.89 
Continuous invasive mechanical ventilation more than 96 hour==> Insertion of 
endotracheal tube 63.25 12.55 
Continuous invasive mechanical ventilation more than 96 hour==>Continuous 
invasive mechanical ventilation 56.04 14.74 
Single ... coronary angioplasty==> Angiocardiography of left heart structures 

55.60 6.75 
Insertion of drug-eluting coronary artery stent(s)==> Angiocardiography 

55.33 6.72 
Insertion of endotracheal tube==> Continuous invasive mechanical ventilation more 
than 96 hour 38.46 12.55 
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Table 6.3 just shows the important and meaningful rules; the combination cases 

are not considered. The initial insertion of trans venous leads [electrodes 1 into the atrium 

and ventricle will be used given that the procedure, initial insertion of dual-chamber 

device will be subsequently used. The lift value for this rule is 73.22, which indicates that 

the association between these two separate procedures is strong. For the same reason, the 

relationship between occupational therapy and other physical therapy is also strong. The 

confidence values are higher for the other rules in the table, which indicate that it is very 

likely that subsequent procedures will be used if the antecedent procedure is used, since 

all the left confident values are high. 

6.2.2 Mortality Prediction of Diabetes Inpatients 

One of dominant issues in outcomes research is about mortality. In this section, 

we use various kinds of supervised learning approaches shown in Figure 6.7 with 

mortality as the targeted variable; Age, Gender, Diagnosis Procedures and Diagnosis 

Procedures are identified as the input variables. To predict mortality, we use the 

regression model, the Dmine Regression model, the Neural Network model, the Auto 

Neural model, the Decision Tree model, the MBR model, the Rule Induction model and 

the Model Comparison model; and these nodes are shown in Figure 6.7. Table 6.4 shows 

that the Model Comparison node identifies the decision tree as the optimal model based 

on misclassification rates. 

The ROC maps in Figure 6.8 show that for all three data subsets: Train, Validate 

and Test, there are no big differences in accuracy among the various models. According 

to the lift curves, we can find the patients at highest risk of dying. Figure 6.9 

demonstrates that except for the MBR node, there are no differences among the other 
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nodes in terms of the prediction of mortality. In the train set, validate set and test set, 

40 % of beneficiary records have a higher level of prediction than just chance. 

1m::: -: ---tl= .... ~~~:ss~ . ::: : ~---- - - -
IPPREMORT.A.L Samp le 

Rule Induction 

Figure 6.7. Predictive Models Diagram 
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AutoNeural 12427.21 0.26 0.26 0.26 0.5 0.5 0.5 
DmineReg NaN 0.18 0.18 0.18 0.26 0.26 0.26 

MBR -7091.33 0.22 0.25 0.25 0.36 0.43 0.43 
Neural 9159.41 0.18 0.18 0.18 0.27 0.27 0.27 

Reg 9083.04 0.18 0.18 0.18 0.27 0.27 0.26 
Rule NaN NaN NaN NaN 0.26 0.26 0.26 

Y Tree NaN 0.18 0.19 0.18 0.26 0.26 0.26 
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Table 6.5 Variable Importance in Tree Targeting at Mortality 
NAME IMPORTANCE VIMPORTANCE RATIO 

PROCLUSTER 
DIACLUSTER 

Age 
Utili zation Day Count 

Total Charge 

1.0000 
0.7254 
0.3845 
0.3364 
0.2466 

94 

1.0000 
0.6807 
0.3993 
0.3464 
0.2528 

1.0000 
0.9384 
1.0386 
1.0297 
1.0252 
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Results in Table 6.5 demonstrate that the order of importance in the levels is 

procedures> diagnoses >age > days of staying in the hospital> total charges. The tree 

diagram in Figure 6.10 displays how the input variables affect mortality; the first segment 

is divided on the procedure cluster, indicating that procedures are essential to mortality; 

the next split is based upon the diagnosis cluster. The followin g split criteria vary from 

the left side to the right side. Age has no relation to mortality related to the procedure 

cluster #5 (endotracheal tube and catheterization) and #7 (Some heart operations); for the 

procedure cluster 1 and cluster3 , age is also an important factor. Before the age of 82.5, 

both total charges and utilization day count should be considered, while after th at, only 

utilization day count should be focused on. 
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Figure 6.10. Tree Diagram Aiming at Mortality 
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6.3 Readmission Analysis 

Under the current economic circumstances, medical care providers have become 

concerned about readmission rates. In this section, we attempt to find the diabetes 

patients who have higher risks of readmission using Medicare inpatient claims data from 

the CMS CCW data [18]. We first introduce the definition of readmission by CMS; then, 

we use SAS SQL to get the inpatients who re-enter the hospital after discharge within 30 

days and the most frequent diseases and procedures for these patients; before we perform 

supervised learning, we conduct pattern recognition analysis. 

6.3.1 Medicare Readmission 

When defining readmission, different researchers give different definitions. CMS 

defines readmission as the re-entry to the hospital after discharge within 30 days and 

considers it as an important measure of poor quality health care. One report from the 

Atlantic Information Services, Inc. [60] demonstrates that almost 18 % of Medicare 

patients are readmitted within 30 days of discharge and 13% of the readmissions ($12 

billion worth) can be avoided if the correct treatments are provided. Medical providers 

are currently facing pressure to reduce the readmission rate while improving care quality. 

It is with this motivation that we evaluate the readmission risk of diabetic patients. We 

study three kinds of risk factors influencing readmission rates, (1) patient demographic 

information including age, gender, and race; (2) patient disease characteristics such as 

common co-morbidities and procedures for diabetes; (3) medical resources usage such as 

length of hospitalization and discharge locations. 

6.3.2 Data Processing to Find Readmission Inpatients 

In the process of conditionally inner joining the two tables, observations are 

96 



grouped by patient ID and dates; each group having the property that the differences 

between the discharge date and the readmission date is less than 30 days. The code is: 

PRoe SQL; CREATE TABLE SASUSER . AD AS 

SELECT Tl .BENE_ID , Tl . CLM_ADMSN_DT ,T l . NCH_BENE_DSCHRG_DT , 

DATDIF(Tl . NCH_BENE_DS CHRG_DT , MIN(T2 . CLM_ADMSN_DT) , ' ACT/ACT ') 
AS DATEDIF , MIN (T2 . CLM_ ADMSN_DT) FORMAT=DATE9 . AS MINAD 
FROM SASUSER . QRDM2010 AS T1 

INNER JOIN SASUSER . QRDM2010 AS T2 

ON Tl . BENE ID=T2 . BENE 10 AND 
Tl . CLM_ADMSN_DT<T 2 . CLM_ ADMSN_DT AND 
T2 . CLM_ADMSN_DT>Tl . NCH_BENE DSCHRG_DT 

WHERE Tl . NCH_BENE DSCHRG_DT IS NOT NULL AND Tl . CLM_ADMSN_DT 
IS NOT NULL GROUP BY 
Tl . BENE_ID , Tl . CLM_ADMSN_DT , Tl.NCH_BENE_DSCHRG_DT 

HAVING DATDIF (T l .NCH_BENE_DSCHRG_DT, MIN(T2 . CLM_ ADMSN_DT ) 

, ' ACT/ACT ') <=30 ORDER BY DATEDIF i QUITi 

6.3.3 Pattern Recognition 

We first conduct pattern recognition analysis using the cluster node in Enterprise 

Miner with the hierarchical clustering algorithm. 
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Figure 6.11 . Demographic Characteristics of Patients with Cardiovascular Disease 
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Figure 6.14. Demographic Characteristics of Patients Having Cardiovascular Procedure 

Some results shown in Figures 6.11 - 6.14 gi ve us a rough description of the 

inpatients. The patients are segmented by 5 age groups. In Figure 6.11, the x-axis, the y-

axis and the z- axis stand for CVD (Cardiovascular Disease), gender and admission 

frequency respectively. It is the same for the other graphs. Generally, as Figures 6.11-

6.12 and 6.14 demonstrate, there is no obvious difference in frequency of hospitalization 

in different age groups for those patients who have cardiovascular disease or renal 

disease or have procedures related to these diseases. However, the patients who have 

heart disease are more likely to be admitted to the hospital than those who do not and this 

difference can be seen in the axis representing CVD in Figure 6.11. Figure 6.14 indicates 

that the male patients who receive heart procedures have a higher possibility of 

readmission compared to female patients. When comparing Figures 6.11- 6.12 to Figure 

6.13, we can also conclude that in most cases, the patients with cardiovascular 

disease or kidney disease have a higher risk of readmission after discharge compared 
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to those with other diseases such as digestive disorder. 

6.3.4 Supervised Learning with Readmission as the Target 

In the following analysis, we need a more accurate estimate of the readmission 

risk; then, we will perform supervised learning. First, we combine the patients who 

readmitted to the hospital with the other inpatients and define a new variable, RA for 

readmission risk. 

Next, we utilize the code displayed below to find out the top 20 most frequent 

procedure codes for the patients readmitted and apply a similar method to get the top 20 

diagnosis disease codes. The most common co-morbidities are heart disease, kidney 

disease, digestive disorder and respiratory disease and the most frequent procedures are 

those related to the above diseases. Therefore, we apply the CATX, 0-1 indicator and 

RXMATCH functions to define the new predictors such as CVD (Cardiovascular disease) 

and PKD (Procedures related to kidney diseases) with the SAS code: 

/*put all procedures into one column*/ 

PROC SQL;CREATE TABLE SASUSER.PR004 AS 

SELECT BENE_ID, ICD9_PRCDR_CDl AS PRO FROM SASUSER.RD04 

WHERE ICD9_PRCDR_CDl IS NOT NULL UNION 

SELECT BENE_ID, ICD9_PRCDR_CD2 AS PRO FROM SASUSR.RD04 

WHERE ICD9 PRCDR_CD2 IS NOT NULL ... 

/*find the freq of procedures*/ 

CREATE TABLE SASUSER.COUNT AS 

SELECT PRO, COUNT(*) AS C FROM SASUSER.PR004 

GROUP BY PRO ORDER BY C DESCEDING; QUIT; 

For a precise prediction, we utilize the variable selection node in SAS Enterprise 

Miner 6.2 to select the prominent input variables by R2 shown in Figure 6.15. 

Considering the large data sample, we choose the variables with R2 greater than 0.1 and 
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they are patient discharge location, Medicare status, diabetes, kidney disease, length of 

stay in the hospital, respiratory disease and procedures related to kidney dysfunctions. 
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Figure 6.16. Various Predictive Models 
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Now, we can use different models such as the decision tree models (with the 
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default method or with the CHArD algorithm), the logistic regression model and the 

neural network model to predict readmission risk. Figure 6.16 shows the process flow. 

Table 6.6 Important Variables to Readmission Estimation 

Variable name Number of splitting rules Importance 

Discharge places 

Medciare status 

Diabetes 

Length of hospitalization 

Kidney disease 

Respiratory di sease 

Procedures related to kidney diseases 

2 

3 

o 

&1.51.. 
I 

0.74 

0.48 

0.41 

0.33 

0.22 

o 

Discharge place code 0 I :home; 02: short term general hospital ; 03:skilled nursing facility; 06:home 
health service; 30: still patient; 51 hospice - certified medical facility ;62: inpatient rehab facility; 
63:Medicare certified long term care hospital. 

Figure 6.17. Tree Diagram with CHAID for Readmission 
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The model comparison node chooses the decision model with the CHAID 

algorithm as the optimal model. The outputs shown in Table 6.6 demonstrate that patient 

discharge places, patient status (old or old with end stage renal failure), LOS (length of 

stay in the hospital), kidney disease and respiratory disease are key factors to predict 

readmission rate. In the above tree diagram (shown in Figure 6.17), such organizations as 

a short term hospital, a skilled nursing facility and a Medicare-certified long term care 

hospital can provide professional medical services while the other organizations do 

not. The diagram indicates that the inpatients who are discharged to home or hospice 

have a higher readmission rate than other patients. 

6.4 Two - way Interaction Effects of Diabetes Complications 

In the previous sections, we discussed the key factors to costs and outcomes 

without considering the interactions between each factor. In this section, we will analyze 

the two-way interaction effects of diabetes complications such as cardiovascular disease 

and hypertension on Medicare expenditures and health outcomes such as frequency and 

length of hospitalization. For two factors, A and B, two - way interaction effect analysis 

reflects whether a level of effect of factor A is influenced by a level of effect of factor B. 

An interaction plot can simply and vividly demonstrate the interaction, but in most cases, 

these interactions need statistical demonstration. 

6.4.1 Data Processing 

In order to get the data ready for our analysis, we process the data in the following 

steps. 

• Conditionally inner join the two data sets, inpatient claims data and beneficiary 
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demography data by beneficiary ID. 

• Use random sampling to reduce the data size from 244,299 records to 40,000 

claims. 

• Use the proc means procedure to get the average costs, average days in the 

hospital and total times of entering the hospital for each beneficiary ID (Each 

patient in Medicare has hislher own unique beneficiary ID). 

• Utilize the CATX function, RXMA TCH function and 0-1 indicator functions to 

generate binary variables, common diabetes complications and they are Hea 

(Heart disease), Kid (Kidney disease), Eye (Eye disease), Neu (Neurologic 

disease) and Hyper (Hypertension). 

• When we develop the logistic regression model to predict mortality, we apply 

overs ample to guarantee that all the observations of mortality are included in the 

sample and we use the following SAS code: 

PROC SORT DATA=SASUSER.INTERACTIONNEW OUT=SASUSER.LOGISTIC; 
BY STATUS; RUN; 

PROC SURVEYSELECT DATA=SASUSER.LOGISTIC 
OUT=SASUSER.OVERSAMPLE 

SEED = 39585784 SAMPSIZE = 1256; 

STRATA STATUS; RUN; 

Now we get what we want and we can perform our analysis in the following 
sections. 

6.4.2 Two - way Interaction Effects of Diabetes Complications on Cost 

We start our study with cost analysis. In order to examine whether there exist 

significant two-way interaction effects between diabetes complications, we firstly plot 

interaction effects on Medicare payments. We use the following SAS code and the 
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similar codes for the other interaction effects plots .The variables are explained in 

Table 6.7. 

PRoe SORT DATA=SASUSER.INTERACTIONNEW OUT=SASUSER.NEW1; 

BY HEA_MAX HYPER_MAX; RUN; 

PROe MEANS DATA=SASUSER.NEW1; 

VAR CLM_PMT_AMT_MEAN; BY HEA_MAX HYPER_MAX; 

OUTPUT OUT=SASUSER.NEW2 MEAN=CLM_PMT_AMT_MEAN;RUN; 

SYMBOL VALUE=DOT I=JOIN;PROe GPLOT DATA=SASUSER.NEW2; 

PLOT CLM_PMT_AMT_MEAN * HEA_MAX = HYPER_MAX; RUN; 

Table 6.7 Explanations for Variables 

Variable 

CLM]MT_AMT_MEAN 

HEA_MAX 

HYPER_MAX 

OCULO_MAX 

NEU_MAX 

Explanation 

A verage payments for each patient 

Heart disease 

Hypertension 

Eye disease 

Neurological disease 

An interaction effect plot gives a general estimation whether an interaction effect 

is significant and how the two different factors influence each other. The rule [611 is that 

if the two lines (representing the two levels of one factor) do not cross and are not 

parallel to each other, then the effect is significant. The difference of two levels of one 

factor indicates the main effect of the other factor. If the two lines interact with each 

other, the interaction effect is still significant, but the main effect should not be 

considered. 

To be specific, let us look at the plots in Figure 6.18. These plots demonstrate 

some interactions between different diseases with Medicare payments as a response 

variable and they are significant according to the stated rule. Consider kidney disease, for 
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example; its interaction effect with a neurological disorder is significant and for diabetes 

inpatients with kidney disease, there is a big difference on their costs between the case 

when they have a neurological disorder and the case when they do not. 
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However, the above plots just provide a basic idea; we need to use statistical 

models to further prove the significance of the interaction effects. We input the variables 

listed in Table 6.7 and their two-way interaction as predictors into the generalized linear 

model with a gamma distribution and use Medicare payments as the response variable, 

then we get the type III analysis results shown in Table 6.8. The table shows that without 

considering main effects, only these interaction effects are significant in the model of 

Medicare payments and they are: interaction between heart disease and kidney disease, 

interaction between heart disease and hypertension, interaction between kidney disease 

and neurological disease, interaction between kidney disease and hypertension, 

interaction between eye disease and neurological disease, and interaction between eye 

disease and hypertension since all of their p-values are smaller than the significance level 

0.05. 

Table 6.8 Type 3 Analysis for Interaction Effects(Cost) 

Wald Statistics For Type 3 Analysis 

Source DF; Chi·Square Pr> ChiSq 

Hea_Max*Kid_Max 1 22.64 <.0001 

Hea_Max*hyper_Max 1 i 
I 

25.86 <.0001 

Kid_Max*Neu_Max 11 17.96 <.0001 

Kid_Max*hyper_Max 1 ! 10.66 0.0011 

Oculo_Max*Neu_Max 1 7.76 0.0053 
r-- "~~-------c--- ------ ~~ ~-

Oculo_Max*hyper _Max I. 12.11 0.0005 

6.4.3 Two - way Interaction Effects on Length of Hospitalization 

In this section, we discuss the influence on length of stay (LOS) in the hospital. 

From this section on, we will directly investigate the effects with statistical models 

without demonstrating interaction plots. Because LOS also follows a gamma distribution 
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and has similar properties to Medicare payments, we use the generalized model with a 

gamma distribution. Table 6.9 displays the significant interaction effects. It demonstrates 

that for patients with other complications, the fact that they have kidney disease or not 

makes their LOS different. This conclusion is also true for hypertension. 

Table 6.9 Type 3 Analysis for Interaction Effects (LOS) 

LR Statistics For Type 3 Analysis 

Source DF Chi-Square Pr> ChiSq 

Hea_~ax*hyper-~ax 1 38.37 <.0001 

Kid_~ax*Oculo_~ax 1 3.99 0.0458 

Kid_~ax*Neu_~ax 1 11.03 0.0009 
--- f------ -----~---

Kid_~ax*hyper-~ax 1 3.88 0.0487 

Neu_~ax*hyper-~ax 1 8.40 0.0038 

Oculo_~ax*hyper_~ax 1 10.55 0.0012 

6.4.4 Two - way Interaction Effects on Frequency of Hospitalization 

In this section we will discuss the interaction effects on frequency of 

hospitalization, i.e., the average times of hospital stay for each patient. Since the 

frequency is a count variable, we assume that it follows a Poisson distribution. Therefore, 

we apply a Poisson regression model for our analysis. In order to adjust the over-fitting of 

this model, we set "scale = Pearson" and the SAS code is shown below. 

PROC GENMOD DATA=SASUSER.INTERACTIONNEW; 

CLASS Hea~Max Kid~Max Oculo~Max Neu~Max hyper~Max; 

MODEL COUNT= Hea~Max*Kid~Max ... hyper~Max/ 

LINK=LOG 

DIST=POISSON 

SCALE=PEARSON 

TYPE3; 

LSMEANS Hea~Max*Kid~Max ... / ALPHA=O. 05; RUN; 
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The scaled deviance and the scaled Pearson X 2 (Table 6.10) indicates that the 

model fit the data relatively well. Table 6.11 (Only significant interaction effects left in 

this table) demonstrates that for the patients with other diseases, there is a big difference 

in the frequency of being admitted to the hospital between the patients who have heart 

disease and those who do not. 

Table 6.10 Goodness Fit of Poisson Regression model 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value ValuelDF 

Deviance 34E3 4517.0538 0.1327 
~- --

Scaled Deviance 34E3 26557.3993 0.7803 

Pearson Chi-Square 34E3 5788.5522 0.1701 

Scaled Pearson X2 34E3 34033.0000 1.0000 

Table 6.11 Type 3 Analysis for Interaction Effects (Frequency) 

LR Statistics For Type 3 Analysis 

Source NumDF DenDF F Value Pr>F Chi-Square Pr> ChiSq 

Hea_Max*Kid_Max I 34033 34.45 <.0001 34.45 <.0001 

Hea_Max*Oculo_Max I 34033 7.79 I 0.0052 7.79 0.0052 

Hea_Max*Neu_Max I 34033 6.99 0.0082 6.99 0.0082 

Hea_Max*hyper_Max I 34033 50.57 <.0001 50.57 <.0001 

Kid_Max*Neu_Max I 34033 24.67 
I 

<.0001 24.67 <.0001 
, 

Kid_Max*hyper_Max I 34033 121.91 i <.0001 121.91 <.0001 

6.4.5 Two - way Interaction Effects on Mortality 

In the last section of two-way interaction effects, we will analyze the effects on 

the mortality of inpatients with diabetes. Mortality is a rare occurrence event because the 

patients who are dead only account for 4.5% in the whole inpatient population. Hence, in 

order to get an objective result, we need to overs ample those patients. We stratify 
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STATUS into two classes, dead or alive; then, we sort the data by STATUS and perform 

stratified sampling, setting sample size to be 1256 (the total number of the deaths in a 

sample with a size of 40,000 claims) and selecting the same number of patients alive. The 

code is shown below. 

PROC SORT DATA=SASUSER.INTERACTIONNEW OUT=SASUSER.LOGISTIC; 

BY STATUS; RUN; 

PROC SURVEYSELECT DATA=SASUSER.LOGISTIC 
OUT=SASUSER.OVERSAMPLE 

SEED = 39585784 SAMPSIZE = 1256; 

STRATA STATUS; RUN; 

Once we get the data ready, we perform logistic regression analysis with the 

binary variable, STATUS as the dependent variable and the stepwise selection method to 

choose the best model. The selection process only proceeds to the second step and then 

stops, since no effect in the model can be removed and no additional new effect meets the 

requirement of entering the model. The R-square of this model is 13 %; considering the 

large data size, it is a reasonable fit, but it still means that 87% of the variability in the 

outcome variable remains unaccounted for. Table 6.13 demonstrates that the two -way 

interaction effects between heart disease and kidney disease or the interaction effects 

between neurological disease and hypertension are significant in the model. 

Table 6.12 R-square for Logistic Regression Model 

Table 6.13 Type 3 Analysis for Interaction Effects (Mortality) 

Type 3 Analysis of Effects 

Wald 
Effect DF Chi-Square Pr> ChiSq 

Hea_Max*Kid_Max I 14.9807 0.0001 

Neu_Max*hyper_Max I 7.9346 0.0048 
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6.5 Conclusion 

Cost analysis of inpatients shows that many organ diseases and neurological 

disorders indeed have decisive effects on the costs of inpatients with diabetes: heart 

disease, eye disease and nervous system diseases raise the inpatients costs. The results 

demonstrate that under a threshold amount of costs, kidney disease does not impact the 

expenditures of inpatients as much as the other organ diseases do; however, as the costs 

increase, the effects of kidney disease become more and more important. Hence, all 

inpatients with diabetes should pay more attention to kidney disease, and use prevention 

to avoid such diseases to decrease the costs. 

Outcomes research demonstrates that among the various procedures, the ones 

utilized for cardiac disease treatments are related to many different procedures. 

Association analysis also shows that hemodialysis is strongly related to venous 

catheterization for renal dialysis. Another discovery is that the procedures and the 

diagnoses are decisive to predicting mortality, which is contrary to widely held belief. 

Through this readmission study, we can conclude that the following kinds of the 

Medicare diabetic inpatients have a high risk of readmission, those who have 

cardiovascular disease, kidney disease or those male patients who receive procedures 

related to heart disease or those who do not get professional medical care after discharge. 

Therefore, in order to decrease readmission risk, we should take greater care of these 

kinds of patients. This care might need to include a higher level of reimbursement from 

Medicare. 

Two-way interaction effect analysis is carried out to study the interaction effects 

between various diabetes complications on Medicare payments, length and frequency of 
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hospitalization and mortality. Results show that the most interaction effects are 

significant to costs, while only the interaction between heart disease and other diseases 

are significant to the frequency of hospitalization. Another discovery is that kidney 

disease or hypertension has an important influence on the other complications as for 

length of stay in the hospital. We also find that the interaction between heart disease and 

kidney disease has a decisive effect on mortality. 

We have finished studying outpatients and inpatients, and we will investigate the 

influence of Medicare, Part 0 on diabetes medications in chapter VII. 
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CHAPTER VII 

INFLUENCES OF MEDICARE, PART D 

Medicare, Part 0 is the optional prescription drug program. It uses competing 

private plans to provide beneficiaries access to appropriate drug therapies. In the recently 

approved healthcare law, the provisions about this plan were also amended. In this 

chapter, we will estimate the influences of Medicare, Part 0 since its implementation in 

2006 on diabetes medications from usage and cost-effectiveness perspectives as well as 

on diabetes beneficiaries' health status. Our analyses are based on the MEPS data [19], 

which cover information about physician visits, inpatients, prescription drugs and 

demographic information for the year 2005 and the year 2006. The chapter is organized 

as follows: first, the theories related to survival analysis and cost-effective analysis are 

introduced, then the impacts of Medicare, part 0 on the usage of diabetes medications are 

addressed; finally the influences on the cost-effectiveness of the drugs are presented. 

7.1 Basic Theories and Concepts 

7.1.1 Survival Analysis 

Survival analysis [62] is applied to study the occurrence and timing of events 

using statistical methods. It is very useful in studying the events in social and natural 

sciences, such as the onset of disease, births and death. In our research, we will utilize 

survival analysis to find the first switch of medication. 
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1. Censoring 

Censoring is an important element in survival analysis, which distinguishes this 

analysis from other statistical methods. Censoring can be counted as an incomplete 

observations issue and it has three forms: left censoring, right censoring and interval 

censoring and two types: type I censoring, type II censoring and random censoring as 

follows: 

• Left Censoring: An observation on a variable T is said to be left censored if Tis 

only known when it is smaller than a value fl. 

• Right Censoring: An observation on a variable T is said to be right censored if Tis 

only known when it is greater than a value f2. 

• Interval Censoring: An observation on a variable T is said to be interval censored 

if T is known when it belongs to the interval [f/, t2]. 

• Type I censoring occurs when the values fl. t2 are fixed. 

• Type II censoring occurs when observation is terminated after a pre-specified 

number of events have occurred. 

• Random censoring occurs when the time of censoring and the survi val 

time are independent. 

In our research, we employ left censoring and type I censoring to study drug 

usage. We set the end of one year as the censored time; and if some drug user does not 

switch the drug to another, then the drug is said to be left censored. 

2. Descriptions 

In this part, we discuss the two standard approaches of describing survival 

analysis: (l) survival function, (2) hazard function. 
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(1) Survival Function: It is defined as the probability that an individual survives longer 

than t, 

s(t) = peT > t) = 1- F(t) (7.1) 

in which F(t) is a cumulative distribution function of variable I. If the event of interest is 

a medicine switch, then the survivor function gives the probability that the drug remains 

to be used beyond time t. 

(2) Hazard Function: If a variable under survival analysis is continuous, then the hazard 

function is preferred and it is defined as: 

p(t ::; T ::; t + ~tlT ~ t) 
h(t) = lim-------'---

ru-.o ~t 
(7.2) 

The importance of this function lies in its interpretations. If the occurrence of an event 

can be repeatable, then the hazard gives an idea about the number of events per interval 

of time. For a non-repeatable event such as death, its reciprocal tells how much time is 

left before the event occurs. 

3. Estimation of Survival Functions 

The estimation of survival functions is a traditional approach including the KM 

(Kaplan- Meier) method and the life table method. Due to the large data set, we prefer the 

latter method, in which the survival estimate is obtained by calculating the conditional 

probabilities of surviving beyond time t, defined by 

i-I ;-1 

Set) = nO-qj) = nPj (7.3) 
j=1 j=1 

For each time interval i, I; is the start time, qi is the conditional probability of failure and 

Pi is the conditional probability of surviving to Ii or beyond that time. 
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7.1.2 Cost Effectiveness Analysis 

Policy makers want to spend fewer dollars while achieving greater treatment 

effects. Cost effectiveness analysis, a newly-emerged method in health economics or 

pharmacoeconomics, can help those people realize their goals. In this section, we will 

briefly introduce the essential concepts, theories and methods used in this methodology. 

1. Basic Concepts 

Before discussing the theories, several concepts [63, 64] should be considered. 

• Health Intervention: This can refer to a treatment, test, or primary prevention 

technique, which is used to improve patients' health status or decrease mortality. 

• Health Status: If we define a specific state of health, for instance, reducing pains, 

as a health state, then a health status is the sum of health states. Typically, there 

are six levels, from pretty healthy to dead shown in Table 7.1. 

• QAL Y (Quality-Adjusted Life Year): It is a measure to estimate quantity and 

quality of life generated by healthcare interventions. QAL Y can be calculated as 

follows: 

QALY = Weight of Health Status * Life Expectanc.v (7.4) 

In the above equation, weight of health status is defined by researchers. We 

define these weights in Table 7.1. Life expectancy is how many years left for a 

person before s/he dies and it can be looked up in a life table [65]. 

• ICER (Incremental Cost Effectiveness Ratio): It is the most frequently-used and 

most important element in health economics, which distinguishes it from other 

kinds of economics. It is typically defined as a ratio of difference in costs to 

differences in effects of interventions, shown in (7.5). 
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ICER= (costnew - coStold) / (effectnew - effectold) (7.5) 

leER indicates the additional costs required to generate one unit of effect. The 

effect is usually measured by QAL Y, and the cost is measured in currencies. 

leER is used to compare two treatments or two drugs on the same patients in 

clinical trials, but we apply it to compare two cases for the two years for the same 

drug treatment with the same patients. 

Table 7.1 Weights of Health Status 

Level of Health Status Weight 

Pretty Healthy 

Healthy 

Relatively Healthy 

III 

Severely III 

Dead 

2. Common Methodologies 

0.8 

0.6 

0.4 

0.2 

o 

In cost effectiveness analysis, two kinds of models [661 are often utilized. One is 

the decision tree model, different from what we discussed in the previous chapters. The 

tree model must first be split on two interventions, and then each intervention node is 

split into several sub-trees about costs and outcomes with corresponding probabilities. 

The other is a Markov model, assuming that there are finite numbers of defined health 

states, and at any time, each patient should be assigned to one health state. At the end of 

each state, the patients can be shifted from one state to another state with a certain 

probability. Another approach is one-way sensitivity analysis [67] , in which one variable 

is chosen to change values and the other variables are kept constant each time; the leER 

are calculated to see whether the parameter is sensitive or not. 
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3. Our Approach 

In part 2, we introduced several common methods; however, they are not suitable 

for our studies. Instead, we apply medical resources usage analysis. 

In the following section 7.2, we will investigate the impacts on diabetes 

medications using survival analysis; in section 7.3, we will examine the effects on the 

cost effectiveness of drugs and patient health. 

7.2 Impacts of Medicare, part D on the Usage of Diabetes Medications 

In this section, apart from survival analysis, we also perform summary statistics 

and kernel density estimation to understand the impacts better. 

7.2.1 Summary Statistics 

We use Summary Statistics to get the average Medicare payment and the average 

total payment. For comparison, the average Medicare payment in 2005 is expressed in 

2006 dollars with 2005 data inflated based on the CPI-U (Consumer Price Index for all 

Urban Consumers) for prescription drugs [68]. That is to say, once we get the mean 

values for the year 2005, we mUltiply them by the index 1.043. To demonstrate this 

conversion, we put an asterix on the right upper comer of '2005' in Table 7.2. 

Table 7.2 Average Overall Payment and Medicare Payment in 2005 & 2006 

Year Variable Mean N 

2005* SUM OF PAYMENTS 501.66 1759 
MEDICARE (IMPUTED) 20.58 1759 

2006 SUM OF PAYMENTS 558.11 1994 

MEDICARE (IMPUTED) 129.02 1994 
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05 Average Diabetes Medications 
Expectation 

06 Average Diabetes Medications 
Expenditures 

Figure 7.1. Pie Charts of Payments in 2005 &2006 

Table 7.2 and Figure 7.1 show that the average of total payments for the 

prescription increases approximately 12 % from the year 2005 to the year 2006, while the 

average Medicare payment in 2006 is 6 times as much as that in 2005 . The ratio of the 

average Medicare payment to the total expenditures also increases from 4 % to 23 %. 

Results demonstrate that the plan, Part D, indeed increases Medicare drug expenditures. 

7.2.2 Kernel Density Estimation among Diffe rent Clusters of Drugs 

Next, we want to see how Medicare payments are distributed among different 

groups of drugs. We compare Medicare payments in two cases , the general case and the 

Medicare case in which the beneficiaries join Medicare. We need to preprocess the data 

sets. First, we convert the variable, NRXNAME, into observations by the transpose 

procedure, the trim function, the translate function and the concatenation operator. The 

SAS code [26] is shown below. 

PROC SORT DATA=SASUSER.SMED06 OUT=SASUS ER . SORTMED06 ; 

BY DUPERSID NRXNAME; RUN; OPTIONS OBS=MAX ; 

DATA SASUSER. SORTMR06 ; SET SASUSER . SORTMED06 ; 

NRXNAME= TRANSLATE (LEFT (TRIM (NRXNAME) ), '_',' ' ) ; RUN ; 

PROC TRANSPOSE DATA=SASUSER . SORTMR06 OUT=SASUSER . TRANMR06 

PREF IX=MED_ ; VAR NRXNAME; BY DUPERSID ; RUN ; 
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DATA SASUSER . CONMR06 (KEEP= DUPERS1D SSNRXNAME) ; 

LENGTH SSNRXNAME $ 32767 ; SET SASUS ER . TRANMR 06 ; 

ARRAY CONCAT MED_ :; SSNRXNAME =LEFT(TR1M(MED_l )) ; 

DO 1=2 TO D1 M( CONCAT) ; SSNRXNAME=LEFT( TR1M (SSNRXNAME)) 
I I I I I I LEFT (TRIM (CONCAT[1] )) ; END; RUN; 

(1) General Case: 

After we get the clusters shown in Figures 7.2 & 7.3 using SAS Text Miner, each 

cluster is explained in Tables 7.3 & 7.4; we can do kernel density estimation on Medicare 

payments by clusters . 

. Clusters 

[O[ Descri~ive Terms l~[ Percentage l[ RMS std. 1 
'1 glyburide, rosigl~azone , precose, metformin, glyburide·metformin 271 0.154328018 ... 0.07"11406 ... 

2 glyburide·metformit\ + supply I ~ar lix, precose, prandin 493 0.280751708 ... 0.11 98462 ... 

3 insulin I piogl~azone, + supply I ~arlix , prandin 237 0.134965831 ... 0.0374267 ... 

4 metformin, glimepiride, tolazamide, prandin, rosigl~azone 494 0.281 321'184.. . 0.0838507... 

5 glipizide I rosigl~azone I precose I siarlix I metforrnin 261 0:148633257.. . 0.0693840 ... 

Figure7.2. Clusters of Drugs in 2005 
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· Clusters 

[O[ Descriptive Terms ) ~ [ Percentage )[ RMS std. 

1 glyburide·mejlormin I glimepiride I starlix I insulin I prandin 214 0:10896'1303 ... 0.2865909 ... 

2 + supply I glirnepiride 358 0.182281 059 ... 0.0148972 ... 

3 glyburide I rosiglrrazone I precose I glyburide·melformin I melformin 272 0.1 3849287'1 ... 0.0554535 ... 

4 insulin I + supply I starlix, precose, glyburide·melformin 228 0.1'1608961 3 ... 0.0484771 ... 

5 tolazamide, metformin, glimepiride, prandin, precose 61 '1 0.311 099796 ... 0.0897675 ... 

6 glipizide I rosiglrrazone I pioglrrazone I precose I melformin 28'1 0.143075356 ... 0.0510506 ... 

Figure 7.3. Clusters of Drugs in 2006 

Table7.3 Explanation for Clusters in 2005 

Cluster # Label 

Metformin , Glyburide and their combination 

2 Supplies 

3 Insulin, Supplies 

4 Metformin, Glimepiride 

5 Metformin, Glipizide 

Table 7.4 Explanation for Clusters in 2006 

Cluster# Label 

Insulin , Glyburide-metforrnin 

2 Supplies 

3 Glyburide, metformin and their combination 

4 Insulin , Supplies 

5 Metformin , Glimepiride 

6 Metformin , Glipizide 
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Figure 7.4. Kernel Density Estimation for Medicare in 2005 
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Figure 7.5. Kernel Density Estimation for Medicare in 2006 

700 800 

400 500 

Figure 7.4 demonstrates that most Medicare payments for diabetes medication 

are fewer than 200 dollars. For males, most costs of the drugs are lower than 50 dollars. 

The only exception is cluster 1, which indicates that Medicare pays more for metformin 

and glyburide, and their combination. For female patients, the densities of clusters #2 and 
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#4 are higher than those of the other clusters under 50 dollars; after that, the density of 

cluster 3 is the highest. Hence, female patients spend more on insulin and supplies. In 

2006, the ordering for males' expenditures is cluster# 2 > #5> #6>#1>#3 under 120 

dollars; after the threshold point, the densities for clusters #1 and #3 become higher than 

the others. Women spend much more on clusters #2 and # 5 of the drugs under 140 

dollars, indicating that metformin and supplies cost females more than the others do. 

Hence, most Medicare expenditures are on supplies, metformin and glyburide. 

(2) Medicare Case 

Figures 7.6 and 7.7 show that in 2006, with the Part D introduction into Medicare, 

the expenditures on drugs are greatly increased. The costs of the diabetes supplies, 

metformin and insulin remain higher than the other costs. 

Male: 

Density 
00025 .------------------, 

00020 

0.001 5 

00010 

0.0005 

0.0000 'r----,---,----,.--.----.,-----,J 
200 400 600 

Calculation 1 
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BOO 1000 1200 

Female: 

Density 

00030 

00025 

00020 

00015 
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0.0005 

00000 

200 400 600 
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Cluster 10 -2 - 3 

BOO 1000 1200 

Figure 7.6. Kernel Density Estimation of 2005 Medicare 
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Figure 7.7. Kernel Density Estimation of 2006 Medicare 

7.2.3 Association Analysis 

In this section, we use the association node in EM 5.2 to get the link graphs for 

relationship analysis of diabetes oral medications. In each graph, each square stands for a 

drug; those drugs which are connected to many different drugs form centers and are 

important in diabetes treatment. The link graphs are displayed in Figures 7.8-7.11. 

'\i""LI~H'UUH 

Figure 7.8. Link Graphs for the Drugs in 2005 (General Case) 
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Figure 7.9. Link Graphs for the Drugs in 2005 (Medicare Case) 

Figure 7.10. Link Graphs for the Drugs in 2006 (General Case) 

.UPP'UI!!i!I! .. tfe,,,,,n 

Figure7.ll. Link Graphs for the Drugs in 2006 (Medicare Case) 
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In this analysis, we also discuss the general case and the Medicare case. In 2005 

in general case (shown in Figure 7.8), diabetes supplies and metformin were two centers 

of the graphs. Insulin has a strong relationship to supplies, although it is not related to the 

other factors. Glyburide, and glipizide are also fundamental. When we study the 

beneficiaries who get their drugs paid by Medicare (shown in Figure 7.9), metformin 

becomes more prominent and it is strongly related to glyburide and glipizide. In 2006, the 

general case (displayed in Figure 7.1 0) remains almost the same except that the supplies 

are connected to the combination of insulin and metformin. In the Medicare case 

(displayed in Figure 7.11), there are fewer connections between different drugs. Figure 

7.11 indicates that if insulin is prescribed, then the supplies are very likely to be 

prescribed, too. Also, once the combinations of the supplies with glyburide are used, then 

metformin will probably be utilized. 

7.2.4 Survival Analysis 

Finally, we perform survival analysis by the life test procedure. For a better 

comparison, we also need physician visit information in 2005. For the year 2006, we 

process the missing time information using the following SAS code and then sort out the 

records for the year 2006 to get the data set shown in Figure 7.12. 

PROC SQL; 

CREATE TABLE SASUSER.SMRS06 AS SELECT SRSMED06.DUPERSID, 

SRSMED06.RNRXNAME, (( CASE WHEN -1 = SRSMED06.RXBEGDD THEN 1 

WHEN -8 = SRSMED06.RXBEGDD THEN 1 WHEN -9 = 
SRSMED06.RXBEGDD THEN 1 ELSE SRSMED06.RXBEGDD END)) AS 
RXDD, 

((CASE WHEN -1 = SRSMED06.RXBEGMM THEN. WHEN -8 = 

SRSMED06.RXBEGMM THEN. WHEN -9 = SRSMED06.RXBEGMM THEN. 
ELSE SRSMED06.RXBEGMM END)) AS RXMM, 
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(( CASE WHEN - 1 = SRSMED06 . RXBEGYRX THEN 2006 WHEN -14 = 
SRSMED 06 . RXBEGYRX THEN 2006 WHEN - 7 = SRSMED06 . RXBEGYRX 
THEN 2006 WH EN -8 = SRSMED06 . RXBEGYRX THEN 2006 WHEN -9 
SRSMED06 .RXBE GYRX THE N 2006 ELSE SRSMED06 . RXBEGYRX END )) AS 
RXYY 

FROM SASUSER . SRSMED06 AS SRSME D06 WHERE CALCULATED RXYY = 
2006 i QUIT i 

Next, we suppress the data by removi ng the repeated information and the SAS 

code is as follows: 

1 
2 
3 .. 
5 
S 
7 
8 
9 

10 

PROC SORT DATA=SASUS ER . SMRS06 OUT=SASUS ER . UNISMRS06 
NODUPKEYi BY DUPERSID SSNRXNAMEi RUN i 

DUPEASID SSNRXNAME RXDD RXMM 

30078019 
" 3012101 2 GLiPIZID E 

3014901 0 METFORMIN 
." .~. 

30177026 GLiPIZIDE 27 12 
. .. . ... -....... -.. 

30177026 · METFORMIN 27 n 
., .. ~. '·1· 

30180024 · GLYBURIDE 1 . 
.. . ... 

3019201 2 · METFORMIN 20: 
30206025 GLi MEPIRIDE 1 .. , _ .. , ~ 

30217015 · GLYBURIDE 1 : 2 .... " .... .c. 

3030001 3 · METFORMIN 30· 8: 

Figure 7.12. Diabetes Medication in 2006 

RXYY 
2006 
2006 
2006 
2006 
2006 
2006 
2006 
2006 
2006 
2006 

Next, we convert the date into a SAS date by using the MDY function, transpose 

the data by NRXNAME and DATE and finally merge the two new data sets to get the 

data displayed in Figure 7.13. 

DATU 

2 301 2101 2 GLiPIZIDE 

3 30149010 DATE METFORMIN 
4 30177026 DATE GLiPIZIDE MET FORM IN 17162 17162 
5 30180024 DATE GLYBURIDE 
6 30192012 DATE METFORMIN 16821 
1 30206025 DATE GLiMEPIRIDE 

8 30217015 DATE GLYBURIDE 16833 
9 30300013 DATE METFORMIN 17043 
10 30363015 DATE GLiPIZIDE 

Figure 7.13 . Analysis Data in 2006 
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Next, we search for the first switching of the drugs and define the variable, 

STATUS. During the analysis, we make some assumptions: 

• When we use an array statement, we assume the missing date to be the end of the 

year 2006 and also we convert it into a SAS date. 

• If the drug is continued during the survi val time, then it is censored and the value 

of STATUS is 0; otherwise, the value of STATUS is 1. 

• If CHMED is equal to the drug, it means the drug is switched to another drug; in 

other words, it is not censored. 

• Due to a lack of information, we set the start date equal to the beginning of the 

year 2006 and the end date to the end of the year 2006 if such information is 

unknown. 

• We also define the value of STATUS as 0 when the survival time DAYS is equal 

to 364. 

• We suppose the frequency of prescription for the year 2005 is at most 12. 

The SAS code [26] is shown below. 

DATA SASUSER.T06; SET SASUSER.MERGEDATA06; 

ARRAY MEDS(3) MED_l - MED_3; ARRAY DATES(3) DATE 1 -
DATE_3; 

DO J=l TO 3; IF DATES(J)=. THEN DATE='31DEC2006'D; END; 

DO 1=1 TO 3; 

IF 1=1 THEN TEMP=MEDS(I); 

IF MEDS(I) NE TEMP THEN DO; 

MED_NUM=I; DATE_NUM=DATES(I); CHMED=MEDS(I); 

STATUS=I; 1=3; 

END; 

END; 

/*Define 0-1 indicators and status*/ 

IF CHMED=' , THEN STATUS=I; 
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7 
8 
9 
10 

IF CHMED= , GLYBURIDE , THEN GLYBURIDE=O AND STATUS=l ; ELSE 
GLYBURIDE=l ; ... 

/*Define the variables days*/ 

IF DATE lA= . THEN SDATE=DATE_l ; ELS E SDATE= ' OlJAN2006 ' D; 

I F DATE 2A=. THEN EDATE=DATE_2 ; ELSE EDATE= ' 31DEC2006 ' D; 

FORMAT SDATE EDATE DATE9 ; DAYS=DATDIF 
(SDATE,EDATE, ' ACT/ACT '); 

IF DAYS=364 THEN STATUS=O; RUN ; 

Finally, we sort the new data by CHMED to get the data shown in Figure 7.14. 

O1JAN2Cffi 3&1 
O1JAN2Cffi 31DEC2Ol 3&1 
270EC2Cffi 270EC2Oll 
O1JAN2Cffi 31DEC21lli 3&1 
2O.IAN21X6 310EC2006 345 

1 01JAN2006 310EC2006 3&1 
1 OlFEB2OOl 31DEC2006 333 
1 3lWJG2OIll 310EC2006 123 
1: O1JAN2!ll 31DEC2006 3&1 

Figure 7.14. Survival Data for 2006 

In 2005, in order to get an accurate conclusion, we filter out the beneficiaries in 

the office-based visits file rather than in the prescription drug file. We first sort out the 

enrollees whose Medicare payments are greater than 0 according to the ICD 9 diagnosis 

codes. Then we get the results shown in Figure 7.15; and we use the same method to get 

another data set about diabetes patients in the outpatient visit file . 
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DUPERSID OBICD1X OBICD2X OBICDJ)( OBICD4X 

1 30078019 250 -1 -1 -1 
2 30121012 401 250 ; 185 530 
3 30180024 250 -1 -1 -1 

. ,. ···+-1 . .... ,.-. ............ .- 30192012 250 -1 -1 
-- ................. 

5 30201026 250 -1 -1 -1 
6 30206025 250 401 -1 -1 
7 30363015 401 250 272 716 
8 30392041 250 -1 -1 -1 
9 30450010 590 429 250 -1 
10 3049401 3 401 250 716 530 ... " ................... . ............ " ........ ............... ... - " . . ....... ......... 

Figure 7.15. Diabetes Patients in Office-based Visit 

Finally, we use the SQL horizontal join to get all the diabetes beneficiaries and 

we use these patient IDs to find all Medicare drug plan enrollees. For analysis, we use the 

life table method, setting the interval at 10 days and stratifying the data by CHMED. The 

SAS code and some results are shown below. 

PRoe LIFETEST DATA=SASUSER. ST06 OUTSURV=SASUS ER . GP06 
ALPHA=O. 05 METHOD=LIFE WIDTH=10; 

TIME DAYS*S TATUS ( O); RUN ; 

STRATA CHMED; 

Table 7.5 Summary of CensoredlUncensored Values for 2005 

Summary of the Number of Censored and Uncensored Values 

Stratus CHMED Total Failed Censored Percent 

1 GLYBURIDE 4 4 0 0.00 

2 GL YBURIDE_METF 4 0 4 100.00 

3 INSULIN 8 3 5 62.50 

4 METFORMIN 90 10 80 88.89 

5 PRECOSE 3 1 2 66.67 

6 ROSIGLIT AZONE I 0 I 100.00 

7 TOLAZAMIDE 2 0 2 100.00 

Total 112 18 94 83 .93 
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Table 7.6 Summary of CensoredlUncensored Values for 2006 

Summary of the Number of Censored and Uncensored Values 

Stratu CHMED Total Failed Censored Percent 

1 GLYBURIDE 2 0 2 100.00 

2 INSULIN 7 0 7 100.00 

3 METFORMIN 100 17 83 83.00 
------------ -------

4 PIOGLIT AZONE 2 2 0 0.00 

5 PRANDIN I I 0 0.00 

6 PRECOSE 5 2 3 60.00 

7 STARLIX 3 I 2 66.67 

Total 120 23 97 80.83 

Results in Tables 7.5 and 7.6 show that the medications are divided into 7 groups 

in each year by CHMED. In 2005, since the number of prescriptions of rosiglitazone is 

one, we do not include it. The censored percentages of glyburide- metformin and 

tolazamide are 100 %, which means that it is hard for the patients to change such 

medicines once they begin taking them. In 2006, we also discard prandin due to one-time 

use. The censored rates of glyburide and insulin are 100 %, and the rate of metformin use 

is 83 %; all of these outcomes demonstrate that the three drugs can seldom be replaced by 

other medicines. In summary, the metformin and insulin uses are stable in both years. 

Glyburide itself is unstable in 2005, but stable in 2006. Moreover, the average censored 

rate in 2005 is a little higher than that in 2006, indicating that the usage of prescribed 

drugs is more stable in 2005. 

Next, we estimate the differences of survival cases among various drugs by 

survival functions. The survival distribution function (SDF) in 2005 (displayed in Figure 

7.16) demonstrates that none of the drug, tolazamide, is switched to the other medicines 

throughout the whole year. The survival rate of metformin decreases little by little from 
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100 % to 89 % at the end of the year. Ouring the three periods, 30th - 40th, 120th - 130th 

and 280th - 290th days, the prescriptions of insulin largely decrease, but in the other time 

periods, they remain unchanged. The sharp decrease of precose use appears between the 

190th day and the 200th day, but before and after that period, the usage is stable. A large 

number of beneficiaries switch their drugs from glyburide to the other medicines during 

the following periods, the 40th day - 50th day, the 90th - 100th day and 1 10th - 1 20th day, 

which means that the survival rate of the drug decreases to 20 percent at the end of the 

year. Therefore, the glyburide usage is very unstable in 2005. The SOF in 2006 (shown in 

Figure 7.17) shows that insulin and metformin survive longer than the other drugs since 

the survival rates are higher than that of any other drug throughout the year. None of 

prescriptions of insulin are changed to another medicine until the end of the year. Only 

less than 14 % of the prescriptions of metformin are switched to other drugs. Between the 

90th day and the 11 Oth day, large quantities of prescriptions of pioglitazone are changed to 

other drugs; however, after that, no more changes happen. The survival rate of precose 

goes down to 80 % around the 220th day, to 60 percent around the 280th day and then 

remains unchanged until the end of the year. The survival rate of starlix sharply decreases 

on the 320th day and then stabilizes. In general, metformin and insulin uses are more 

stable than those of the other medicines. 
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7.3 Effects of Drug Plan on the Cost Effectiveness of Medications and Health 

Outcomes 

The purpose of this section is to estimate the cost effectiveness of diabetes 

medications and the health outcomes in Medicare in 2005 and 2006 to examine the 

impact of Medicare, Part 0 using the data sets from MEPS [191. 

7.3.1 Cost Effectiveness Analysis 

First, we need to discover our research subjects who are Medicare drug plan 

enrollees in 2006 and also joined Medicare in 2005. To keep consistency, we do not 

consider the Medicare beneficiaries of age 65 in 2006; we also do not consider the 

patients who switch their drugs from the year 2005 to the year 2006. We use SAS SQL 

conditional selection to sort out the patients with diabetes according to the ICD9 

condition code. Then we use an SQL inner join to combine the full year consolidated data 

file and prescription drug file by the 10 variable, DUPERSID. After we find out the 

beneficiaries who joined in Medicare, Part 0, we use the DUPERSID to match the 

patients in 2005. Then we get a dataset that we need. After importing a life table, we can 

combine it with the newly-generated data and calculate ICERI displayed in Figure 7.18 

with the code shown below. 

/*Combine the life table and 2006 Medicare part 0 
beneficiary table */ 

PROC SQL; 

CREATE TABLE SASUSER.LE06 AS 

SELECT * 

FROM SASUSER.LIFETABLEI AS LT, 

SASUSER.BCHWLQ06 AS BC 

WHERE LT.AGE=BC.AGE06X; QUIT; 

/*Calculate the 2006 QALY for different genders*/ 
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2 
3 
4 
5 
6 
7 
8 
9 
10 

DATA SASUSER . QALY06 ; SET SASUSER . LE06 ; 

IF SEX=l THE N QALY06=MALE*LQ06; 

I F SEX=2 THEN QALY06=FEMALE*LQ06i RUN; 

PROC SORT DATA=SASUSER. QALY06 ; BY DUPERSID ; RUN ; 

/*To calculate t h e ICER */ 

PROC SQL ; CREATE TABLE SASUSER. CICER AS 

SELECT DUPERSID , SRXNAME, QALY05 , QALY0 6 , TOTMCR05 , TOTMCR06 , 

((TOTMCR06 - TOTMCROS) / (QALY06-QALYOS)) AS ICERl 

FROM SASUSER . ICER ; QUIT ; 

leER1 

·330223.68 
30136026 GliPIZIDE 6.8 9.768 0 11084 3734.50135 
30180024 GLYBURIDE 4.42 4.184 6974 1947 21300.8475 
30363015 GliPIZIDE 3.956 3.736 710 4578 ·1 7581.818 
30386013 GliPIZIDE 8.934 11376 0 1782 729.72973 
30392041 GLYBURIDE 2.71 5.164 2120 6140 1638.141 81 
30437028 GLY8URIDE 1.336 4.008 224 2434 827.095808 

·i 

30489011 STARLIX 11 .024 7.86 0 3952 ·1249.0518 
30507010 GLYBURIDE_M . 5.788 5.51 2 149 783 ·2297.1014 
30516018 GLYBURIDE 7.888 7.576 179 2737 ·8198.7179 

Figure 7.18. leER Table 

Table 7.7 leER by Different Diabetes Drugs 

SRXNAME Mean N 

GLIMEPIRIDE -1268.78 4 

GLIPIZIDE -12573.77 49 

GLYBURIDE -4728.05 45 

GL YBURIDE_METFORMIN 1934.47 10 

INSULIN -14203.62 16 

METFORMIN 896.1215818 44 

STARLIX -590.0887749 3 

Once we get the table, we use the proc means procedure in base SAS to get the 

average leER value for each drug shown in Table 7.7. Here, a negative leER means that 
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there are savings for the year 2006 over the year 2005. For example, the comparison 

between the year 2006 and the year 2005 for insulin treatment shows a cost saving of 

$14,203.62 in 2006. For a positive ICER, the bigger the ICER, the less efficient the new 

method. Therefore, Table7.7 demonstrates that insulin becomes the most cost-effective in 

2006, while Glyburide-metformin is the most inefficient treatment, and metformin is a 

close second. 

7.3.2 Medical Resources Utilization 

Next, we evaluate utilizations of healthcare resources by comparing the 

frequencies of office-based visits, outpatient visits and times of prescription drugs filled 

as well as the length of stay in the hospital or home health providers separately. We 

firstly find the data containing the times of office-based visits in these two years, then we 

use the times of visits in 2005 as the denominator; the difference of the times in these two 

years is used as numerator to calculate the increasing or decreasing rate. Finally, we get 

the average rates for each drug. In the same way, we also get the increasing and 

decreasing rates in the other cases. 

Table 7.8 shows that compared to the year 2005, the Medicare diabetes patients 

receive more drug treatments in 2006 since the drug refill rates increase by an amount 

varying from 17% to 66%. At the same time, the average LOS (length of stay) in the 

hospital of the insulin or glipizide users is largely decreased by 80% or 61 %, which 

means that adequate insulin or glipizide usage saves considerable hospitalization 

resources. However, the average of the prescription frequency and LOS of metformin 

users increases by 73% and 200 % respectively from the year 2005 to the year 2006. It is 

also true for glyburide users. In other words, the drug plan makes these two drug 
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treatments more inefficient. The relationship between the LOS in the hospital and the 

home health provider for most drug users is negative; the longer the stay using home 

health providers, the shorter the stay in the hospital. Considering the costs of 

hospitalization are higher than those of home health providers, the patients should 

sufficiently utilize the home health agency services. 

Table 7.8 Ratios in Utilizations of Healthcare Resources 

SRXNAME OBTRATIO OPTRATIO RXTRATIO LOS RATIO HHDRATO 

GLIMEPIRIDE 0.03 0 0.66 

GLIPIZIDE 0.52 0.19 0.22 -0.61 0.50 
-- -----------

GLYBURIDE 1.30 0.82 0.33 0.65 -0.01 

GLYBURIDE -0.12 0.80 0.20 -\.0 

METFORMIN - I 
-- -- -------r-- -------

INSULIN 0.01 -0.29 0.17 -0.8 -0.07 

METFORMIN 0.54 0.29 0.73 
i 

2.0 -0.40 
i 

STARLIX 0.61 0.45 

7.3.3 Health Status 

Finally, we use the decision tree model to investigate which factors have vital 

effects on the beneficiaries' health status. We input all the variables, frequencies of 

physician visits, drug prescriptions, Al C tests, ER (Emergency Room), LOS in the 

hospital or home healthcare agency, gender, age and family size. We set the health status 

as a predicted target. Figure7 .19 demonstrates that in 2005, the frequency of Al C tests 

and the physician visits have vital effects on a patients' health. Figure 7.20 indicates that 

in 2006, the frequency of drugs filled becomes a key factor to the patient's health 

status. However, there is something in common between these two years. LOS in the 

hospital and family size are not important factors to health conditions. 
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7.4 Conclusion 

Based on the analyses in Section 7.2, we can draw the conclusion that Medicare, 

part D indeed greatly increases the expenditures of Medicare on diabetes medications. 

The prescription drug plan itself reduces the choices of the medicines for diabetes for 

each year. We also discover that generally, the usage of insulin and metformin is always 

more stable than that of other drugs. However, glyburide usage is very unstable in 2005 

but stable in 2006. In addition, more drugs are switched into other medicines in 2006, 

which indicates that the use of drugs is less stable than that in 2005. It is also discovered 

that in 2005, female patients spend more on insulin and supplies, while the males spend 

more on metformin. In 2006, the female beneficiaries pay more for metformin. 

Cost-effectiveness analysis suggests that Medicare, Part D makes the insulin 

treatment the most efficient, while the combination of glyburide - metformin is the least 

effective. Our results also demonstrate that under this drug plan, the Medicare 

beneficiaries can receive more sufficient drug treatments than ever before. In the 

meanwhile, enough usage of some drugs such as insulin can decrease the usage of 

hospital resources. In contrast, the metformin users stay in the hospital for a longer time 

in 2006. Another discovery is that using the drugs properly can improve the patient health 

status. 
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CHAPTER VIII 

CONCLUSION 

In this dissertation, we introduced pattern recognition analysis and supervised! 

unsupervised machine learning algorithms as well various kinds of linear statistical 

models into the study of diabetes patients in the Medicare population and we proposed 

several methods to decrease Medicare expenditures while improving healthcare quality. 

First, we utilized the linear statistical models to complete a cost analysis of 

diabetes outpatients in Medicare. We conclude that most predictors that we find are key 

factors influencing the costs and we suggest that outpatients with diabetes should often 

monitor their blood glucose level and the patients with such complications as anemia and 

heart diseases need more medical care. By these means, the costs can be decreased to 

some extent. 

Second, we applied supervised learning approaches such as the decision tree 

model and market basket analysis to an outcomes study of inpatients. We arrive at the 

conclusions that the patients who have procedures related to heart diseases often need 

other procedures; neither age nor the end-stage renal disease is the key factor to mortality, 

which is contrary to widely held belief. 

Third, we employed pattern recognition analysis and the decision tree model in 

readmission risk analysis. Patients with cardiovascular or kidney co-morbidities have a 

higher risk of readmission than those with other diseases. Another discovery is that the 
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patients without professional medical services are more likely to be readmitted to the 

hospitals after discharge. 

Fourth, we performed two- way interaction effects analysis using the generalized 

linear model with a gamma distribution, the logistic regression model and the Poisson 

regression model. We find that as for inpatients expenditures, most two -way interaction 

effects between diabetes complications are significant; when the response variable is 

frequency of hospitalization, only the effects between kidney disease and the other 

diseases are significant to the Poisson regression model. We also conclude that the 

patients who have both heart disease and kidney disease have a much higher risk of dying 

since the interaction effect between these two diseases are significant to mortality in the 

logistic regression model. 

Fifth, we used survival analysis to analyze diabetes drug usage. Results 

demonstrate that insulin and metformin are more stable than other drugs in terms of usage 

and the uses of drugs in 2005 are more stable than those in 2006 with the influence of 

Medicare, Part D. 

Finally, we applied cost-effectiveness analysis to diabetes medications. The 

results indicate that with the introduction of the Medicare drug plan, insulin becomes the 

most cost-effective treatment and the combination of glyburide and metformin is the most 

inefficient. They also demonstrate that metformin users highly increase their length of 

hospitalization and the frequency of prescriptions from the year 2005 to the year 2006. 

In summary, in this dissertation, several new algorithms and methods are 

introduced or improved and some suggestions are proposed to decrease Medicare costs 

and improve health outcomes. 
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