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ABSTRACT 

EFFECTS OF DIFFERENT AGRICULTURAL MANAGEMENT SYSTEMS ON 

ARBUSCULAR MYCORRHIZAL FUNGAL DIVERSITY, COMMUNITY 

STRUCTURE, AND ECOSYSTEM SERVICES 

Charles B. Gottshall 

April 30, 2015 

 Disturbances associated with row-crop agricultural management systems include 

mechanical (tillage and cultivation) and chemical (fertilizer, pesticides, herbicides, 

fungicides) inputs and are often co-occurring. Many soil microbes are sensitive to these 

disturbances, including arbuscular mycorrhizal fungi (AMF), important plant mutualists 

in agricultural systems. AMF associate with many crop plants and provide direct benefits 

through root pathogen protection, drought resistance, nutrient acquisition and uptake, as 

well as contribute to ecosystem services by improving overall soil fertility. Examining 

how different row-crop management system disturbances affect the AMF community is 

important for understanding and enhancing benefits provided by these important 

mutualists, and key to developing sustainable agro-ecosystems.  

 For this work I surveyed AMF community composition, structure, and AMF 

related functions in no-till, biologically-based/organic, early succession, and conventional 

management plots at the Kellogg Biological Station-Long Term Ecological Study Main 

Cropping System Experiment. I examined the effects of tillage and chemical inputs on 

AMF through an intensive sampling from 2010 to 2012. I also examined the historical 
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effects of these different row crop agricultural management systems on AMF community 

and function by surveying archived soil samples taken annually following establishment 

of this site in 1989. Finally, I examined effects of the different management systems on 

the functioning of whole soil microbial communities in a controlled greenhouse 

experiment. 

 Overall, I found that AMF communities respond differently to tillage and 

chemical input disturbances associated with management. Although long term trends 

indicate a reduction in both AMF richness and diversity for all row crop management 

systems, short term richness and diversity were higher in conventional, organic, and 

reduced input plots, as compared to the no-till and early succession systems. I found 

AMF community structure to be differently affected by tillage and chemical inputs. For 

example, AMF community composition and structure was most similar between the 

conventional and no-till row crop systems, and the reduced input and organic systems, 

when controlling for year/crop effects, indicating an effect of chemical input on the AMF 

community. I found measures of AMF function, specifically plant root colonization, to be 

robust to management system inputs. Under row-crop management, ecosystem services 

linked to soil carbon sequestration and water-stable aggregate formation and provided by 

AMF derived soil glomalin, were lower in conventional compared to the organic systems. 

All active agricultural systems had lower levels of soil glomalin as compared to old fields 

(agricultural abandonment). My results suggest AMF community composition, structure, 

and function are altered by these different row crop agricultural management systems, 

and ecosystem services currently provided by AMF are limited by both historical (+100 

years) and continued management input disturbances. Following total abandonment of 



 

vi 
 

agricultural management, there is some restoration of AMF community structure and 

function and increased AMF contribution to ecosystem services, but these improvements 

in function are likely not similar to the functioning of the original soil microbial 

community. 
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CHAPTER I 
 

INTRODUCTION 
 

Land use change and agricultural management of both arable and marginal lands 

has intensified during the past 100 years, leading to reduced biodiversity at local, regional 

and global scales and increased negative environmental consequences associated with 

conventional agricultural production systems (Robertson and Vitousek, 2009; Levine et 

al., 2011). Ecosystem services provided by row-crop agricultural systems, such as food 

and fiber, are important to human societies, but environmental trade-offs can be high. 

Some negative effects to ecosystem services caused by agricultural management are due 

to initial land use change (DuPont et al., 2010; Paula et al., 2014), but continued intensive 

land management furthers the loss of biodiversity, often reducing soil fertility to a point 

where applications of inorganic fertilizers are necessary to maintain productivity 

(Drinkwater and Snapp, 2007a; Power, 2010). This type of intensive agricultural 

management has been shown to alter soil microbial community structure and ecosystem 

functioning across a wide variety of systems, affecting land restoration attempts 

(Holtkamp et al., 2008; Kardol et al., 2008), and potentially affecting overall 

sustainability and productivity of the system (Culman et al., 2010; Kardol et al., 2011).  

Some soil microbes are beneficial mutualists, providing plants access to nutrient 

pools or protection from water stress, such as arbuscular mycorrhizal fungi (AMF). AMF 

are a group of beneficial soil microbes present in both natural and agricultural ecosystems
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and associate with many important row crops (Douds and Millner, 1999; Smith and Read, 

2008). As obligate mutualist fungi, AMF associate with plant roots and form a network of 

extra-radicle hyphae (ERH). In this way, AMF-ERH act as an extension of the host plant 

root system and increases plant nutrient acquisition capabilities beyond the rhizosphere 

(Johnson and Gehring, 2007; Camenzind and Rillig, 2013). AMF also produce glomalin, 

a recalcitrant C-N rich glycoprotein. Glomalin has been shown to make up 3-8% of total 

organic carbon in some ecosystems, including agriculturally managed land (Treseder and 

Turner, 2007; Wilson et al., 2009). Together, AMF-ERH and glomalin contribute to 

water stable aggregate formation, and increase overall soil fertility (Rillig, 2004b; Wu et 

al., 2014).  

AMF should be considered important for row-crop agriculture. The benefits of 

AMF include increased nutrient use and uptake, root pathogen protection, and stress 

tolerance (Clark and Zeto, 2000; Jansa et al., 2003; Lewandowski et al., 2013), but these 

contributions are often ignored. However, recently the potential for AMF contributions to 

increase ecosystem services provided by row crop agriculture, specifically C 

sequestration, has received increased attention. Additionally, the role of beneficial soil 

microbes like AMF may become even more important for row-crop agriculture in the 

future, as effects of climate change create insecurity for many areas used for crop 

production (Funk et al., 2008; Chen et al., 2011). Understanding how conventional and 

alternative row crop management systems affect AMF community structure and function 

is important considering the multiple contributions AMF make to ecosystem services, as 

well as their overall importance to soil fertility and system sustainability.  
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ORGANIZATION OF DISSERTATION 

This dissertation is focused on how the AMF community responds to four 

different row crop agricultural management systems, as well as AMF community 

response to agricultural abandonment. I examine the effects of mechanical (tillage) and 

chemical (fertilizer, pesticide, herbicide) input disturbances associated with these 

different row crop systems on AMF community composition, structure, and function, and 

also look at ecosystem services provided by AMF.  

 Chapter two of this dissertation examines how conversion from conventional 

agricultural management to more sustainable systems affects AMF diversity, function, 

and ecosystem services, using archive soil samples representing 20 years of management. 

I evaluate long-term trends in AMF diversity and abundance, community structure, and 

glomalin production. I also compare between-year AMF community stability 

(heterogeneity) for the time series 1989 to 2008. My results indicate AMF have an 

overall negative response to tillage disturbance, leading to less diverse and less stable 

AMF communities in these types of row crop systems.   

Chapter three focuses on the effects of a three year crop rotation cycle through an 

intensive survey of the AMF community. I examine how the different row crop 

management systems affect overall AMF community composition and structure, and also 

effects on AMF function and contribution to soil C. My results indicate AMF respond to 

both mechanical and chemical disturbances, but not in predictable ways, and ecosystems 

services provided by AMF are limited under all row crop agricultural management 

systems.  
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In the fourth chapter I examine the effects of row crop agricultural management 

on the functioning of whole soil microbial communities. In a complimentary greenhouse 

experiment, I look at how three different row crop management systems alter the 

functioning of soil microbes. I show how whole soil sourced from the different systems 

differentially affects plant growth and C partitioning, and how removal of AMF and other 

soil biota to create a “microbial wash” negatively affects plant growth. Overall, our 

results indicate how these row crop systems can shift the functioning of the soil microbial 

community, but organic row crop management may work to reduce negative effects of 

conventionally managed tilled and no-till systems. 

Chapter five is a general summary and discussion of the findings of my 

dissertation research. Current and future research interests are presented.  

 

SITE DESCRIPTION 

The W.K. Kellogg Biological Station Long Term Ecological Research (KBS-

LTER) site located in Michigan, USA (42°24’N, 85°24’W) was established in 1989 to 

evaluate the ecology of row-crop agricultural management typical of the north central 

USA grain producing region. The Main Cropping Systems Experiment (MCSE) consists 

of eight agronomic management systems including: conventional (tillage and chemical 

inputs at recommended rates; CONV), reduced input (tillage/cultivation, but 50% 

reduction of all chemical inputs; LOW), no-till (conventional chemical inputs, but no 

tillage; NOTILL or NT), biologically-based/organic (tillage/cultivation, but no organic or 

inorganic inputs; ORG), and fire maintained early succession (i.e. abandoned agricultural 

field; ES). All treatments are replicated five times as 1 ha fields. The full site description 
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and experimental design is detailed in Robertson (1991). Site history prior to 1989 is well 

documented and consisted of mixed agricultural and horticultural cropping for 100+ 

years, with the most recent years dominated by conventional corn and soybean 

production.



 

6 
 

CHAPTER II 

LONG-TERM RESPONSES OF ARBUSCULAR MYCORRHIZAL COMMUNITIES 

FOLLOWING CONVERSION TO MORE SUSTAINABLE ROW CROP 

AGRICULTURAL MANAGEMENT SYSTEMS 

SUMMARY 

Conventional agricultural management has been shown to alter soil microbial 

community structure and ecosystem functioning. Many microbes are sensitive to 

chemical and mechanical disturbances associated with agriculture, including important 

plant mutualists like arbuscular mycorrhizal fungi (AMF). AMF provide benefits to 

agricultural production through multiple mechanisms including pathogen resistance, 

nutrient access and acquisition, and also act to increase total soil organic carbon through 

production of glomalin. Alternative agronomic management systems such as 

biologically-based/organic agriculture and no-till may reduce the negative effects of 

conventional management to AMF. To address the question of how conversion to more 

sustainable management systems affects AMF diversity and function, we surveyed AMF 

spore diversity, community structure and stability, and glomalin production over 20 years 

in no-till, biologically-based/organic, early succession, and conventional management 

plots at the Kellogg Biological Station-Long Term Ecological Study Main Cropping 

System Experiment. Our results indicate that conversion from intensive conventional 

agricultural management to a no-till system creates a more biodiverse and stable 
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agricultural system, but only total abandonment of agricultural management results in 

increased AMF abundance and soil glomalin concentration.  

 

INTRODUCTION 

Decades of ecological research looking at conventional agricultural management 

systems have highlighted important negative environmental consequences associated 

with intensive agricultural production (McLaughlin and Mineau, 1995; Robertson and 

Vitousek, 2009). These negative consequences include direct effects on regional 

biodiversity and ecosystem services due to land use change, but also indirect effects 

which have reduced soil fertility across large areas of arable land (Grandy et al., 2006; 

Power, 2010). Intensive agricultural management has been shown to alter soil microbial 

community structure and ecosystem functioning across a wide variety of systems. For 

example, biofuel crop production in a tropical system reduced arbuscular mycorrhizal 

fungi (AMF) diversity and soil aggregate stability (Alguacil et al., 2012). Another study 

found conventional agricultural management reduced bacterial functional gene diversity 

(Xue et al., 2013). Loss of soil biodiversity has been shown to increase both greenhouse 

gas production and nutrient losses from leaching (de Vries et al., 2011). These types of 

changes may have current and future consequences for crop production, as effects of 

climate change create uncertainty for agricultural productivity (Funk et al., 2008; Culman 

et al., 2010).  

Many soil microbes are sensitive to chemical and mechanical disturbances 

associated with agriculture, including important plant mutualists like AMF (Brito et al., 

2012). AMF are present in nearly all terrestrial ecosystems and are known to associate 
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with many agricultural crops (Douds and Millner, 1999). AMF can provide benefits to 

crops through multiple mechanisms including pathogen resistance and nutrient 

acquisition (Wehner et al., 2010, Veresoglou and Rillig 2012). AMF create an extra-

radicle hyphal (ERH) nutrient transfer network in the soil which contains a C-N rich 

glycoprotein known as glomalin (Wright and Upadhyaya, 1996). Glomalin is a 

recalcitrant soil protein produced by AMF-ERH and may represent 4-8% of soil organic 

carbon in natural ecosystems (Treseder and Allen, 2000) and 2-4% soil organic carbon in 

agricultural systems (Borie et al., 2006). Recent research in agricultural systems has 

shown positive correlations between glomalin and AMF diversity and abundance (Rillig, 

2004; Veresoglou et al., 2012). Soil fertility and crop performance benefit from the 

formation of water stable soil aggregates (Piotrowski et al., 2004), which are associated 

with soil glomalin concentration (Rillig et al., 2010). Unfortunately, these potential 

benefits are often ignored as farmers rely on chemical and fertilizer inputs to maintain 

productivity (Drinkwater and Snapp, 2007). 

Alternative agricultural management systems such as biologically-based/organic 

and no-till may reduce the negative effects of conventional management to AMF and 

other soil microbes. One study examining management effects on AMF communities 

associated with grain producing farmlands in England found AMF diversity was much 

reduced under conventional management as compared to organic management, which 

harbored communities more similar to natural grasslands (van der Gast et al., 2011). 

However, alternative agricultural systems may still affect soil microbial communities 

through different combinations of chemical and mechanical (tillage) disturbance. AMF 

community diversity and abundance have been shown to vary under organic management 
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employing different tillage regimes (Säle et al., 2015), and in one case, Hijri and 

colleagues (2006) found low AMF diversity in an organically managed system; similar to 

what they observed in an intensive conventional system. Management systems which 

increase overall soil microbial diversity and abundance may also work to increase 

ecosystem stability and productivity (Caruso and Rillig, 2011; de Vries and Shade, 2013), 

but little is understood about how the AMF community responds to implementation of 

these different management systems for previously cultivated land. 

In this study we looked at how the AMF community has responded following 

conversion from long term intensive conventional agricultural management to more 

sustainable no-till and biologically-based/organic systems. We focused on two main 

questions. 1) How have AMF community diversity and function been altered by 

conversion from conventional to no-till and biologically-based/organic management over 

time, and 2) do more sustainable alternative agricultural systems increase AMF 

community stability over time?  For our first question, we hypothesized that conversion 

from long-term conventional management to no-till and biologically-based/organic 

management would a) increase AMF diversity due to stopping tillage (no-till) and the 

reduction of chemical inputs (biologically-based/organic), and b) increase soil glomalin 

concentration as AMF diversity and abundance increase. For the second question, we 

hypothesized the AMF community would become more stable if tillage was stopped (no-

till), if chemical inputs were stopped (biologically-based/organic), or if both were 

stopped (early succession). Agricultural system sustainability may be positively affected 

by increasing the overall stability of AMF community structure (Wu and Xia, 2006; Li et 

al., 2013).  Results from our study provide more understanding of how conversion to 
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these more sustainable agricultural systems may change AMF communities and related 

functioning, and whether adoption of these alternative agricultural systems may work to 

reverse negative effects of conventional management. 

 

METHODS 

Site Description:  

The W.K. Kellogg Biological Station Long Term Ecological Research (KBS-

LTER) site located in Michigan, USA (42°24’N, 85°24’W) was established in 1989 to 

evaluate the ecology of row-crop agricultural management typical of the north central 

USA grain producing region. The Main Cropping Systems Experiment (MCSE) consists 

of eight fully replicated agronomic management systems including: conventional 

(CONV), no-till (NT), biologically-based/organic (ORG), and fire maintained early 

succession (i.e. abandoned agricultural field; ES). The full site description and 

experimental design is detailed in Robertson (1991). The site history prior to 1989 is well 

documented and consisted of mixed agricultural and horticultural cropping for 100+ 

years, with the most recent years dominated by conventional corn and soybean 

production. 

Soil Samples:  

In 2012, we took 50 g subsamples of eight archived soil samples from each 

agronomic treatment described above spanning 20 years (1989, 1990, 1991, 1992, 1994, 

1998, 2003, and 2008), following field conversion and experiment initiation. The original 

soil sampling dates were March or April, with the exception of 1989 which was taken in 

November. Full details of the LTER soil sampling protocol are available at: 
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lter.kbs.msu.edu/protocols/112. Briefly, five samples for each treatment were taken using 

a standard soil probe (2 cm x 30 cm) from five distinct sampling sites within each of five 

replicated hectare fields. The samples were pooled at the replicate field level, sieved to 4 

mm, and air-dried. Archived soil samples were dried at 60°C for 48 hours and stored in 

glass jars at room temperature.  

Glomalin Extraction: 

We extracted total soil glomalin from one gram of soil using the 0.8mM sodium 

citrate buffer and autoclaving method described in Janos et al., (2008), and then 

quantified the Bradford reactive fraction (Bio Rad, Hercules, CA, USA) using bovine 

serum as a standard (Koide and Peoples, 2013). Total soil glomalin has several 

extractible fractions (Cornejo et al., 2008), and Bradford reactive soil protein (BRSP) has 

been shown to consistently represent the largest fraction (approximately 95%) of total 

extracted soil protein. Therefore we chose to use BRSP to operationally define glomalin 

for this work. 

AMF Spores: 

Each remaining 49 g sample was wet-sieved through stacked 500 µm and 38 µm 

sieves, and AMF spores were extracted using the sucrose gradient-centrifugation method 

described in Gerdemann and Nicholson (1963). Spores were visually quantified and 

placed into one of nine species groups (Table 1) based on AMF morphotypes described 

by Schussler and Walker (2010) and others (Walker et al., 2007; Morton and Msiska, 

2010b, a; Redecker et al., 2013). The morphospecies groups we used for this work are 

based on AMF functional differences associated with AMF at the family organizational 

level as described by van der Heijden and Scheublin (2007).  
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Analyses:  

To examine differences in AMF diversity and function across 20 years of 

agricultural management, spore diversity (Shannon’s H’), total soil glomalin (BRSP mg 

g-1), and AMF abundance (spores g-1 soil) data were analyzed using general linear models 

with agronomic treatment and year as factors. To look at differences in AMF community 

structure between the different agricultural treatments over time, we used a blocked 

MRPP with pairwise comparisons (McCune and Grace, 2002). A blocked indicator 

species analysis (ISA) was performed to see if individual AMF morphospecies were 

associated with a particular agricultural treatment (McCune and Grace, 2002). To 

visualize differences in AMF community structure due to agricultural management, we 

performed constrained ordination analysis (CAP). This procedure allowed us to look at 

effects of agricultural management on AMF community structure while constraining the 

effects of a blocking factor (in this case, year/time) (Anderson and Willis, 2003). To test 

if conversion from conventional agricultural management to no-till, biologically-

based/organic, or early succession alters AMF community stability, we calculated mean 

Euclidean distances between years for each treatment (Collins and Smith, 2006). We then 

used a one-way ANOVA to test for differences between the agronomic treatment groups. 

All GLM and ANOVA analyses were performed using Systat12 (SYSTAT v. 12 2008, 

SYSTAT Software Inc., Chicago, IL.). CAP analysis was performed using Primer v. 6 

(Anderson et al., 2008), and the blocked MRPP and ISA were done using PC-ORD 

v.6.08 (McCune and Mefford, 1999). 
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RESULTS 

AMF Diversity and Function: 

 There was a strong interaction between agronomic treatment and time for AMF 

diversity (H’) (Year F1,24 = 4.709, p = 0.0401; MCSE management  F3,24 = 1.729,  p = 

0.1877; Year x MCSE management F3,24 = 3.426,  p = 0.0332). AMF diversity increased 

over time in the no-till treatment, but diversity decreased in all other treatments (Figure 

1a). BRSP concentration increased in the early successional treatment (by 78%) 

compared to the other three treatments over time (Year F1,24 = 5.123, p = 0.0329; MCSE 

management  F3,24 = 1.729,  p = 0.0925; Year x MCSE management F3,24 = 4.601, p = 

0.0111; Figure 1b). Similarly, AMF abundance increased in the early succession 

treatment compared to the other three treatments over time (Year F1,24 = 9.205, p = 

0.0057; MCSE management  F3,24 = 2.519,  p = 0.0820; Year x MCSE management F3,24 

= 2.847,  p = 0.0587; Fig 1c).  

AMF community composition:  

CAP analysis indicated tillage disturbance rather than chemical inputs is driving 

differences in AMF community structure, with clear separation between tillage 

management systems: conventional and biologically-based organic clustering together, 

and no-till and early succession clustering together (Figure 2). This is further 

demonstrated in the blocked MRPP which showed significant AMF community 

differences between conventional and both no-till (A = 0.2233, p = 0.0156) and early 

succession systems (A = 0.2407, p = 0.0144), but no difference between AMF 

community structure under no-till and early succession (A = 0.0376, p = 1.0). There is 

some indication that the conventional and biologically-based/organic management plots 
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are separated along CAP axis 2, although the blocked MRPP indicated no significant 

difference in AMF community structure between these treatments (A = 0.0925, p = 

0.1172). 

Overlay of AMF morphospecies in the CAP analysis indicated there are different 

AMF associated with the different agricultural management systems, and this finding was 

supported by the blocked indicator species analysis. Results for the blocked ISA 

indicated that the Diversispora species group was significantly associated with the 

biologically-based/organic system, the Acaulospora species group was significantly 

associated with conventional management, no-till was significantly associated with the 

Gigaspora species group as compared to the other systems, and both Rhizophagus and 

Claroideoglomus species were indicators for early succession treatment (Table 1).  

AMF community stability: 

 For the time series of our experiment, 1989 – 2008 (N = 7 for each sample), AMF 

communities were most stable under no-till and early succession agricultural systems and 

least stable under the biologically-based/organic system (F3,23 = 4.559, p < 0.05).; 

conventional management seemed to have an intermediate, stabilizing effect on the AMF 

community (Figure 3). 

 

DISCUSSION 

For this work we surveyed AMF community structure and function under 20 

years of different agricultural management systems following conversion from 

conventional management previously in a soybean-corn rotation. The post-conversion 

management systems of no-till, biologically-based/organic, and early succession 
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represented in this study are alternatives currently available to farmers in mid-west and 

north-central grain producing regions of the USA. Overall, our results show conversion 

from conventional agricultural management to these alternative systems alters AMF 

community diversity, structure, and ecological functioning, but not in consistent ways. 

Research by others has shown that conventional horticultural and agricultural cropping 

systems generally reduce AMF diversity (Alguacil et al., 2012), but this is not always the 

case (e.g. Hijri et al., 2006).  

For the 20 year time series of our study, AMF diversity has increased following 

conversion to no-till management, but has been reduced by all other agricultural 

management systems we examined. Our results provide strong evidence of tillage 

disturbance effects on the overall AMF community composition as seen in other 

agricultural research comparing conventional or organic to no-till (Oehl et al., 2004).  

No-till management is expected to facilitate the growth and function of more disturbance 

sensitive AMF. In our study, Gigaspora species, an AMF known for colonizing mainly 

from spores and producing large amounts of soil hyphae (Powell et al., 2009), was 

associated with no-till treatment. Stopping tillage also increased stability of the AMF 

community under no-till and early successional management; likely a result of removing 

the mechanical disturbance to hyphal networks (de la Providencia et al., 2007). Such 

stability is not always a positive thing since overall losses in AMF diversity and the 

selection for more resilient, less mutualistic species could also stabilize communities 

(Reynolds et al., 2006). 

Our results also indicate that conversion from conventional to organic 

management may not improve AMF community structure and function, although similar 
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research by Verbruggen and others (2010), showed conversion to organic management 

significantly improved AMF richness and diversity. We found no effects of conversion to 

organic management on AMF diversity (H’), abundance, or total soil glomalin, and AMF 

communities were not different from those associated with conventional systems, even 

after 20 years. AMF community stability from year to year was also low, again probably 

due to agricultural disturbances associated with prior land use at this site causing a 

“bottle-neck effect” similar to that described by Verbruggen and colleagues (2012).  

Stopping both tillage and chemical inputs in the early successional system 

resulted in increased AMF abundance and soil glomalin, shifts in AMF community 

composition, and a more stable AMF community from year to year. Contrary to our 

initial predictions, AMF diversity (H’) did not increase in the early succession system. 

Changes in host plant presence in the early succession plots may be affecting AMF 

community assembly and diversity (Engelmoer and Kiers, 2015). Also, there are non-

mycorrhizal plant species present in the early succession system, i.e. Cyperus esculentus 

L. and Amaranthus retroflexus L., but their specific influence on AMF diversity is 

unknown. Differences between AMF diversity in the no-till and early succession systems 

could also be due to selection pressure associated with chemical inputs in the no-till 

system as described by Vandenkoornhuyse and others (2003).  

It is worth noting that differences in AMF communities between the management 

systems in our study may in part be due to seasonal and temporal variability in crops and 

climate for the sample year (Panwar et al., 2011; Jie et al., 2013; Lee et al., 2013). While 

we could not separate effects due to factors such as crop identity, phenology, or climate 

for this study, it is important to consider the role that these factors may play in AMF 
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community dynamics (Lutgen et al., 2003; Bohrer et al., 2004; Santos-Gonzalez et al., 

2007). 

In conclusion, we have found that conversion from long-term conventional 

agricultural management to the no-till or biologically-based/organic systems used in our 

study did not uniformly improve AMF diversity, community structure, or function. 

Conversion from conventional management does change AMF community properties and 

alter some related functioning, but adoption of these alternative agricultural systems does 

not work to reverse all the negative effects of prior conventional management. Our 

findings indicate that conversion to no-till management was best for improving AMF 

diversity and community stability, but only complete abandonment of agricultural 

management in the early succession system resulted in general improvements in AMF 

abundance, community structure, and function. Overall, our results provide evidence of 

negative long term effects of prior conventional agricultural management on the AMF 

community and demonstrate that conversion to more sustainable agronomic systems may 

not quickly restore important AMF functions. 
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Table 1.   

 

 

 

 

 

 

 

 

 

 

 

 

Morpho-group classifications, descriptions, and results from blocked indicator species analysis (ISA). Significant indicator 

morpho-group and associated agricultural management system listed in bold. (N.S. = Not a significant indicator) 
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Figure 1.  Trends in a) diversity (H’) of the AMF community; b) total soil glomalin – BRSP; and c) AMF abundance, across 

20 years associated with different agricultural management strategies. Different MCSE management represented by different 

symbols and line styles. Lines of best fit are provided to show trends, even if linear regressions were not significant. 
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Figure 2.  CAP analysis visualization of AMF community structure associated with each agricultural management system, 

controlling for differences between sampling years. Bi-plot lines represent significant correlations between morphogroups and 

ordination axes. CAP results based on m = 7, and explained 68.75% of the variation in the data with a misclassification of 

31.25%, and with a trace statistic p = 0.001 for 999 permutations.
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Figure 3.  Average heterogeneity of AMF communities in the MCSE agricultural systems 
during the time series 1989 – 2008. Different letters indicate significant differences AMF 
community structure as determined by pairwise Fisher’s LSD. Error bars are ± S.E. 
(CONV = conventional; NT = no-till; ORG = organic; ES = early succession).
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CHAPTER III 

RESPONSES OF ARBUSCULAR MYCORRHIZAL FUNGI TO DIFFERENT 
AGRICULTURAL MANAGEMENT SYSTEMS INCLUDE ALTERED COMMUNITY 

COMPOSITION AND ECOSYSTEM SERVICES 

SUMMARY 

Agricultural management has been shown to alter soil microbial community structure and 

ecosystem services. Tillage and chemical inputs negatively affect soil carbon and 

nitrogen cycling by uncoupling soil microbial communities from their associated 

ecological functioning. Important plant mutualists like arbuscular mycorrhizal fungi 

(AMF) associate with many agricultural crops and provide benefits to agricultural 

production through multiple mechanisms including pathogen protection, nutrient access 

and acquisition, and also act to increase total soil organic carbon through production of 

glomalin. To address the question of how different agricultural management systems 

affect AMF community structure, composition, and function, we surveyed no-till, 

reduced input, biologically-based organic, early succession, and conventional 

management plots at the Kellogg Biological Station-Long Term Ecological Study Main 

Cropping System Experiment. Our results indicate that AMF respond to both tillage and 

chemical disturbance associated with different management systems. However, the often 

reported negative effects of conventional agricultural management on AMF diversity 

were not apparent during our three year study. Also, organic management did not 
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improve AMF diversity, richness, or overall community function. Moreover, ecosystem 

services provided by AMF are limited under all agricultural management systems and 

even total abandonment of agricultural management does not act to quickly restore the 

AMF community.   

INTRODUCTION 

Agricultural management of arable and marginal lands has steadily increased 

during the past decades leading to increased negative environmental consequences 

associated with conventional agricultural production (Robertson and Vitousek, 2009; 

Levine et al., 2011). Some negative effects of agricultural management are due to initial 

land use change (DuPont et al., 2010; Paula et al., 2014), but continued intensive land 

management further reduces soil fertility to a point where applications of inorganic 

fertilizers are necessary to maintain productivity (Drinkwater and Snapp, 2007; Power, 

2010). This type of intensive agricultural management has been shown to alter soil 

microbial community structure and ecosystem functioning across a wide variety of 

systems. For instance, arid and semi-arid lands used for crop production in both China 

(Danfeng et al., 2006) and Italy (Salvati et al., 2015), were shown to be at greater risk for 

desertification, likely due to loss of important soil microbes. Another study in a tropical 

system showed biofuel crop production reduced arbuscular mycorrhizal fungi (AMF) 

diversity and associated soil aggregate stability (Alguacil et al., 2012). Loss of soil 

microbial biodiversity and ecosystem functioning due to intensive agricultural 

management may be reversible, therefore growers may want to consider alternative 

management strategies to restore benefits of soil microbes.  For example, altering 
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management to enhance beneficial soil microbes such as N-fixing rhizobial bacteria and 

AMF restored soil stability and ecosystem function in a semi-arid system (Requena et al., 

2001). The roles of soil microbes in agricultural systems may become even more 

important in the future, as effects of climate change create insecurity in many areas used 

for crop production (Funk et al., 2008; Culman et al., 2010; Chen et al., 2011). 

AMF are one group of beneficial soil microbes present in both natural and 

agricultural ecosystems and associate with many agricultural crops (Douds and Millner, 

1999; Smith and Read, 2008). AMF are important plant mutualists shown to provide 

benefit through multiple mechanisms, including root pathogen resistance and drought 

tolerance (Asrar and Elhindi, 2011; Veresoglou and Rillig, 2012). However as obligate 

mutualists, AMF must colonize their host plant root and create a nutrient transfer network 

of extra-radicle soil hyphae (ERH) to exchange plant derived carbon for soil nutrients 

foraged by the AMF-ERH, typically organic N and P (Cavagnaro et al., 2005). In this 

way, AMF-ERH act as an extension of the host plant root system and increases plant 

nutrient acquisition capabilities beyond the rhizosphere (Johnson and Gehring, 2007; 

Camenzind and Rillig, 2013). Additionally, AMF-ERH cell walls contain a recalcitrant 

C-N rich glycoprotein known as glomalin, shown to be tightly correlated with water 

stable aggregate formation and may account for 3-8% of soil organic carbon in natural 

and agricultural systems (Wright et al., 1996; Rillig et al., 2002). Through this pathway, 

glomalin produced by AMF-ERH contributes to soil organic carbon and nitrogen pools 

and improved soil fertility, potentially providing an important ecosystem service for 

agricultural systems (Nichols and Wright, 2006; D’Hose et al., 2014).  
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Through disturbances associated with tillage and chemical inputs, agricultural 

management has been shown to negatively affect soil carbon and nitrogen cycling by 

uncoupling soil microbial communities from their associated ecological functioning 

(McLauchlan, 2006; Liiri et al., 2012). Alternatives including no-till, reduced input, and 

biologically-based organic systems are considered more sustainable, however these 

management systems may still affect soil microbial communities through different 

combinations of chemical and mechanical (tillage) disturbance. For instance, under 

reduced tillage organic management Säle and colleagues (2015) saw increased AMF 

diversity and abundance, but in another case, Hijri and colleagues (2006) found AMF 

diversity in an organically managed system similar to an intensive conventional system, 

most likely due to the overriding effects of mechanical tillage. Understanding how 

different agricultural management systems affect the AMF community is important for 

being able to properly manage these important mutualists to maintain or improve soil 

fertility, agro-ecosystem stability, and productivity (Caruso and Rillig, 2011; Alguacil et 

al., 2014). 

In this study we looked at how different row-crop agricultural management 

systems have influenced AMF community diversity and function during a three year 

cropping rotation, and compared these effects to an early succession system abandoned 

from agriculture for >20 years. Our focus was on three main questions: 1) Do different 

row crop agricultural management systems affect AMF community structure and 

abundance? 2) do more sustainable agricultural systems enhance AMF ecosystem 

services? and 3) does cessation of agricultural management further restore AMF 

ecosystem services? For our first question, we hypothesized that no-till and biologically-
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based organic management would increase AMF abundance and diversity due to stopping 

mechanical disturbance (in no-till) or chemical inputs (in biologically-based organic). For 

the second question, we hypothesized that no-till management would enhance ecosystem 

services provided by AMF through increased ERH and associated glomalin (both 

correlated with water stable aggregates/soil organic carbon/soil fertility), and the systems 

that included tillage would continue to have much reduced AMF-ERH and glomalin-

associated ecosystem services. For the third question we expected that cessation of 

agricultural management, specifically the removal of both mechanical disturbance and 

chemical inputs, as well as associated increases in plant community diversity, would 

result in restored AMF diversity and associated function (Antoninka et al., 2011). 

Positive management effects on the AMF community may work to increase agricultural 

sustainability and reduce differential effects of climate change to ecosystem services 

provided by agricultural systems (Oehl et al., 2004; Wu and Xia, 2006). Results from our 

study provide more understanding of how different agricultural management systems 

may affect AMF communities and related ecosystem services.  

 

METHODS 

Site Description:  

The W.K. Kellogg Biological Station Long Term Ecological Research (KBS-

LTER) site located in Michigan, USA (42°24’N, 85°24’W) was established in 1989 to 

evaluate the ecology of row-crop agricultural management typical of the north central 

USA grain producing region. The Main Cropping Systems Experiment (MCSE) consists 

of eight agricultural management systems including: conventional (tillage and chemical 
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inputs at recommended rates; CONV), reduced input (tillage/cultivation, but 50% 

reduction of all chemical inputs; LOW), no-till (conventional chemical inputs, but no 

tillage; NOTILL), biologically-based/organic (tillage/cultivation, but no organic or 

inorganic inputs; ORG), and fire maintained early succession (i.e. abandoned agricultural 

field; ES). All treatments are replicated five times as 1 ha fields. The full site description 

and experimental design is detailed in Robertson (1991). Site history prior to 1989 is well 

documented and consisted of mixed agricultural and horticultural cropping for 100+ 

years, with the most recent years dominated by conventional corn and soybean 

production. 

Soil Samples:  

Soil samples were taken from each agricultural treatment described above in June 

for the year 2010 (wheat), and October for the years 2011 (corn), and 2012 (soy), in 

accordance with the KBS-LTER soil sampling protocol available at: 

lter.kbs.msu.edu/protocols/112. Briefly, five samples were taken at each replicate field 

sampling site using a standard soil probe (2 cm x 30 cm). Sampling times corresponded 

to when crops were senescing and when AMF could be expected to have highest 

sporulation rates (June for wheat, October for corn and soy). These samples were pooled 

by treatment at the field level, sieved to 4 mm, and air dried. All samples were stored at -

20⁰C prior to processing.  

AMF Spores: 

We extracted spores from 50 g of soil by wet-sieving through stacked 500 µm, 

212 µm, and 38 µm sieves, after Gerdemann and Nicolson (1963), and a sucrose 

gradient-centrifugation method described in Walker et al., (1982). Cleaned spore samples 
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were placed into an 85 mm petri dish and visually quantified within four days of 

extraction. Since many spores were able to be identified only to the family level due to 

degradation or damage, we chose to use a morpho-group classification for this study. 

Spores were enumerated and placed into one of nine morpho-groups based on AMF types 

described by Schussler and Walker (2010) and others (Redecker et al., 2007; Young, 

2012; Redecker et al., 2013), (Table 1).   

AMF Roots: 

 To examine the extent of AMF colonization in crop plant roots, we obtained fine 

root samples from 500 g of soil using a wet-sieve process (500 µm sieve). Roots were 

cleared with 10% KOH and stained using a 5% vinegar-ink solution using methods 

modified after Vierheilig et al., (1998). Visual estimation of percent root length 

colonization was made using 100 fields of view per sample under 200X magnification 

(NIKON E400), and a grid-intercept method modified after Giovanetti and Mosse (1980).  

AMF Extra-radical Hyphae: 

To estimate activity of AMF in the soils of each site, AMF-ERH were extracted 

from 20 g soil subsamples. Each subsample was mixed with 500 ml DI water in a 100 ml 

beaker and stirred at 80% speed for 2 min with a magnetic stirrer (Fisher Scientific 11-

500-49SH). Before solid material settled, the solution was poured through 710 µm and 

212 µm sieves to separate sand and large organic material from the hyphal suspension. 

Residue from the 212 µm filter was rinsed back into a 50 ml beaker using 10 ml of DI 

water. Twenty drops of 0.05% Lacto-Glycerol Trypan Blue stain were added and left to 

sit for 45 min. This solution was then filtered through a 38 µm sieve and rinsed with DI 

water until water ran clear from the sieve. The residue on the 38 µm sieve was rinsed 
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back into a 400 ml beaker using 200 ml of DI water and agitated for 2 min on the 

magnetic stirrer. A 20 ml sample was removed from ~1 cm below the water surface and 

drained through a 25 mm glass microanalysis vacuum filter holder fitted with a 0.45µm 

mesh nylon membrane. The membrane was then removed from the holder, dried briefly 

and mounted onto a slide using PVLG. Hyphal length was recorded as % of intercepts per 

field of view using the gridline-intercept method (McGonigle et al., 1990) under a 

compound microscope (Nikon E400 at 100X).  

Glomalin Extraction: 

 Total soil glomalin was extracted from one gram of soil using the 0.8 mM sodium 

citrate buffer and autoclaving method described in Janos et al., (2008). We quantified the 

Bradford reactive fraction (Bio Rad, Hercules, CA, USA) using bovine serum albumin 

(0.5 mg/ml) as a standard (Koide and Peoples, 2013). Total soil glomalin has several 

extractible fractions (Cornejo et al., 2008), and Bradford reactive soil protein (BRSP) has 

been shown to consistently represent the largest fraction of total soil protein extracted 

using these methods (approximately 95%). Therefore we chose to use BRSP to 

operationally define glomalin for this work. 

Analyses: 

 AMF diversity (Shannon’s H’) and AMF abundance (spores g-1 soil) data were 

calculated from pooled soil samples from each replicate field in each year and differences 

between different agricultural management systems were analyzed using two-factor 

ANOVAs with agricultural management treatment (n = 5) and year (n = 3) as the main 

factors. We compared AMF function and ecosystem services using % root colonization, 

BRSP (mg g-1 soil) and AMF-ERH (m cm-2) data using similar 2-way ANOVAs. We 
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followed up all significant ANOVA models with pairwise comparisons using Fisher’s 

LSD. AMF diversity, community structure, AMF-ERH, and root colonization data were 

square root transformed to better meet model assumptions for analyses. All ANOVA 

analyses were performed using Systat12 (SYSTAT v. 12 2008, SYSTAT Software Inc., 

Chicago, IL). 

We used a two-factor PERMANOVA (Anderson, 2001; McArdle and Anderson, 

2001), to examine overall differences in AMF community composition and structure due 

to the agricultural treatment and year, followed by pairwise comparisons to see whether 

the AMF communities were different between each agricultural treatment. To visualize 

differences in AMF community structure due to agricultural management, we performed 

a constrained ordination analysis (CAP). This procedure allowed us to look at the overall 

effects of agricultural management on AMF community structure while constraining the 

effects of a factor (year/crop in this case) (Anderson and Willis, 2003). An indicator 

species analysis (ISA) was performed to see if individual AMF morphospecies were 

associated with a particular agricultural treatment (McCune and Grace, 2002). 

PERMANOVA and CAP analyses were performed using Primer v. 6 (Anderson et al., 

2008), and the ISA was done using PC-ORD v.6.08 (McCune and Mefford, 1999). 

 

RESULTS 

AMF Diversity:  

 There was a significant management by year effect on AMF richness indicated by 

ANOVA (Table 1). This was driven by differences among agricultural treatments in 2010 

and 2012. No-till management had lower AMF richness than all other treatments in 2010, 
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and in 2012 richness was lowest the early succession system (Figure 1a). AMF diversity 

followed a similar pattern for 2010, with diversity lowest in no-till (Table 1; Figure 1b). 

However, in 2011 diversity was lowest in no-till, organic, and early succession, and 

highest under conventional and reduced input management. This pattern continued in 

2012 with diversity in no-till and organic lower than conventional and reduced input, but 

diversity was lowest in the early succession system. AMF abundance was only affected 

by year and was lowest in 2010 (wheat year). There was no difference between overall 

abundance for 2011 and 2012 (Table 1; Figure1c). 

AMF Function: 

 Crop root colonization by AMF was highest during 2012, compared to 2010 and 

2011. Overall root colonization was highest in in the early succession treatment and there 

were no differences between the four agricultural treatments (Table 1; Figure 2a/b). 

There was a significant interaction between management and year for AMF-ERH length, 

driven mainly by differences between the agricultural treatments and early succession 

system in 2010 and 2011. In 2010 (wheat year), conventional management had more 

AMF-ERH than the early succession system. This was reversed in 2011 (corn year) when 

there was less AMF-ERH in conventional, no-till, and reduced input as compared to early 

succession (Table1; Figure 2c). AMF-ERH length in no-till was also significantly lower 

than organic management in 2011. Total soil glomalin – BRSP content was significantly 

lower in conventional compared to organic agricultural treatment, although all 

agriculturally managed soils had lower BRSP content overall compared with early 

successional soils (Table 1; Figure 2d). 
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AMF Community Structure: 

 Overall, both agricultural management and year, as well as their interaction, had 

significant effects on AMF community structure (PERMANOVA, treatment F(pseudo)4,135 = 

8.0389, p(perm) = 0.001; year F(pseudo)2,135 = 15.483, p(perm) = 0.001; treatment x year 

F(pseudo)8,135 = 2.3018, p(perm) = 0.002). AMF communities were significantly different 

between all agricultural management treatments and early succession as indicated by 

pairwise comparisons (all p-values between 0.001 – 0.034), except between the reduced 

input and organic systems which were not different (p(perm) = 0.094). CAP analysis 

showed that differences in community structure were due mostly to chemical 

disturbances, with no-till and conventional management overlapping, while reduced input 

and organic treatments clustered together.  The exception to this is that early successional 

fields appeared more similar to NOTILL/CONV than ORG/LOW (Figure 3). Results 

from the indicator species analysis show that both Glomus spp. and Diversisporaceae 

were indicators for no-till, Funneliformis sp., was significantly associated with 

conventional management, and Rhizophagus sp. was most significantly associated with 

biologically-based organic management as compared to the other systems (Table 2). 

DISCUSSION 

-- Do different row crop agricultural management systems affect AMF community 

structure and abundance? 

We found evidence that different agricultural management systems can alter AMF 

community diversity and abundance, but these effects are not consistent and often change 

depending on the year or crop. No-till management had lower AMF richness and 
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diversity than all other treatments surveyed in 2010 (wheat), although both recovered to 

levels found for the other systems in following years. Surprisingly, conventional 

management had higher AMF richness and diversity than organic management in both 

2011 and 2012. AMF abundance was lowest under wheat in 2010 and did not differ 

between any of the agricultural treatments we surveyed. This result may be due to 

differences in crop phenology or crop functional type influencing the relationship 

between spore production and root colonization as shown by Zangaro et al., (2013). 

Research by others has highlighted the temporal and seasonal variability of AMF 

diversity and abundance (Escudero and Mendoza, 2005), but variability may also be due 

to the indirect effects of chemical inputs, such as changes to soil pH with long-term N 

fertilizer addition (Liu et al., 2014). 

We found consistent significant differences in AMF community structure in 

response to agricultural management, even given some variation due to year/crop. Results 

from the PERMANOVA analysis and the CAP visualization (Figure 3), indicate 

significant shifts in AMF community structure due to both tillage disturbance and 

chemical inputs. Similarity between NOTILL/CONV AMF communities in the CAP 

ordination are most likely due to chemical inputs. When tillage is removed, i.e. when 

comparing NOTILL and ES AMF communities, shifts in AMF community structure due 

to chemical inputs are significant. In natural ecosystems where tillage is not a 

consideration, chemical inputs such as fertilizer and herbicide have been shown to affect 

soil microbial community functioning and reduce soil organic carbon (DuPont et al., 

2010). Herbicide control has been shown to affect AMF function (Lutgen and Rillig, 

2004), although the effect may be indirectly due to host plant loss. Glomeraceae were the 
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most populous AMF family in our system, similar to what others have found in 

agricultural sites (Opik et al., 2010). We were able to identify members of this family to 

genera, allowing a split of the Glomus group. We are confident our morphogroup 

classifications are valid because although 3 of 4 ISA analysis indicators are from 

Glomeraceae (Table 2), functional differences at the species level have been described 

(Hart and Reader, 2002). In similar experimental systems, members of the AMF family 

Gigasporaceae have been found associated with low mechanical disturbance (Castillo et 

al., 2006), although this group was not an indicator for the no-till or early succession 

systems in our study (Table 1).  

-- Do more sustainable agricultural systems enhance AMF ecosystem services? 

 One important ecosystem service that AMF provide is increased soil fertility and 

C sequestration through production of ERH and glomalin. Our results indicate that there 

were differences in these services across agricultural treatments, but not in the ways we 

predicted. We expected AMF-ERH to increase in length under no-till management. 

Surprisingly, in 2011 ERH in no-till plots was low compared to the organic treatment and 

early succession system. This may be due to shifts in AMF communities in response to 

management or crop plant host. For instance, members of the AMF family Glomeraceae 

are known to differ in ERH construction strategies from other families (de la Providencia 

et al., 2005; Voets et al., 2006). AMF in Glomeraceae often fuse extra-radicle hyphae 

between closely related species to form common mycorrhizal networks rather than 

creating networks of individual large diameter hyphae. This could explain reduced AMF-

ERH in the no-till system as a shift to dominance by Glomus species was indicated by the 

results of our ISA (Table 2). AMF-ERH growth and dieback have been shown to be 
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responsive to changes in temperature and soil moisture (Hernandez and Allen, 2013), 

therefore crop cover and soil physical properties might also be affecting our result. Total 

soil glomalin – BRSP was higher under organic management as compared to 

conventional management in our study. Differences in BRSP between conventional and 

organic management may be due to differences in the dominant AMF species in each 

treatment (Wu et al., 2014) (Table 1), although difference in glomalin production by the 

two AMF groups indicated in our study is not specifically known. Total soil glomalin-

BRSP was not affected by year, adding support to AMF’s contribution to recalcitrant soil 

organic carbon in these systems. We found no differences in crop root colonization 

among the agricultural treatments. Overall reduction of root colonization due to long-

term N application has been seen in other systems (van Diepen et al., 2007), and may 

explain the similarity in root colonization across the agricultural management systems in 

our study. 

-- Does cessation of agricultural management further restore AMF ecosystem services? 

Root colonization and total soil glomalin were highest in the early succession 

system, adding support to the idea that when all agricultural inputs and management are 

stopped, some AMF functions can be restored. However, increases in these functions 

within the early succession system do not seem directly connected to changes in the AMF 

community. In 2010, AMF-ERH length in the early succession system was low, but 

recovered in 2011. This reduction could be due to edaphic conditions at the time of 

sampling, although burn maintenance, which has been shown to stimulate AMF-ERH 

activity in other systems (Treseder et al., 2004) could be the cause. However, Eom and 

colleagues (1999) found no effects of fire on AMF-ERH in a tallgrass prairie system. 
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Total soil glomalin was highest in the early succession system, adding some support to 

our original hypothesis that if agricultural management is stopped, AMF community 

structure and functions would be restored. However, AMF richness, diversity, and spore 

abundance all varied significantly from year to year in the early succession system, and 

were sometimes lower than the conventionally managed agricultural system. One 

explanation may be the long history (100+ years) of agricultural land use at our study 

site. Long term negative selection pressure from tillage and chemical inputs would have 

reduced original AMF diversity, potentially creating a depauperate AMF community 

present at the establishment of these agricultural treatments in 1989, as suggested in 

Verbruggen et al., (2012).  

Conclusions: 

For this study we surveyed AMF communities from four different agricultural 

management systems, which vary in both tillage and chemical input disturbance. The 

conventional (CONV), no-till (NOTILL),  reduced input (LOW), and  biologically-based 

organic (ORG) management systems are similar to those used in the upper mid-west and 

central grain producing regions of the US. The early succession (ES) system was 

abandoned from agriculture in 1989, at the same time the agricultural systems were 

established. The agricultural treatments have been under the same corn – soy – wheat 

rotation since 1994.  

Overall, the results of our three year survey show that AMF community 

composition shifts in response to differences in agricultural management tillage and 

chemical inputs. The conventionally managed system did not have the expected effects 

on AMF diversity or richness, and more sustainable agricultural systems (no-till, reduced 
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input, and organic) did not have the positive effects on the AMF community we expected. 

For some years, measures of AMF community function were improved as a result of 

organic management. However, variations in AMF ecosystem services were not 

definitively associated with changes to community structure and composition or function 

unless agriculture was entirely abandoned.  
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Table 1.  
 

 

 

 

 

 

 
 
 

 

Two factor ANOVA table for all response variables (N = 150, d.f  management.= 4, d.f. year = 2, d.f. interaction = 8). 

Significant values indicated with bold type. 
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Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

AMF morpho-group characteristics and indicator species analysis results. Significant indicator species (morpho-group) and 

associated management system are shown in bold-type.
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Figure 1. Results for AMF a) richness, b) diversity (H’), and c) abundance for the three year study. Different lower case letters 

indicate significant differences for each panel as determined by Fisher’s LSD pairwise analyses. Data are mean ± S.E.
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Figure 2.  AMF activity measured as a-b) percent root colonized by year and agricultural 

management, c) ERH, and d) total soil glomalin. Different lower case letters indicate 

significant differences within each panel as determined by Fisher’s LSD pairwise 

comparisons. Error bars indicate ± S.E.  
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Figure 3.  CAP analysis of AMF community structure associated with each agricultural 

treatment, controlling for differences between sampling years. CAP results based on m = 

6, and explained 62.667% of the variation in the data with a misclassification of 

37.333%, and with a trace statistic p = 0.001 for 999 permutations. Crossed symbols 

represent agricultural management with conventional chemical inputs and open symbols 

represent agricultural managements with reduced chemical inputs. 
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CHAPTER IV 

SUSTAINABLE AGRICULTURAL MANAGEMENT ALTERS SOIL MICROBIAL 
EFFECTS ON CROP GROWTH 

SUMMARY 

Native ecosystems harbor diverse soil microbial communities, which have been 

shown to maintain productivity and other ecosystem services.  Land use change due to 

agriculture disturbs the soil microbial community, potentially altering crop performance 

and ecosystem functioning. Understanding how different agricultural management 

systems may affect soil microbial communities is essential to improving sustainability 

and ecosystem functioning of these important systems. To help address this, we 

conducted a greenhouse experiment to investigate changes in soil microbial community 

function associated with three different agricultural management systems. We measured 

aboveground and belowground biomass production of corn (Zea mays L.) and spring 

wheat (Triticum aestivum L.) grown using live soil and microbial wash inocula sourced 

from conventional, no-till, and biologically-based/organic agricultural management 

systems at the Kellogg Biological Station Long Term Ecological Research Site. We 

found that microbial community effects on plant growth varied across agricultural 

management systems. Corn aboveground biomass was greatest when grown with 

conventionally managed soil inocula, while corn root-to-shoot ratios were most improved 

by live soil communities from organically managed soil. Wheat aboveground growth was 
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reduced by both conventional and no-till soil inocula, but was not affected by soil inocula 

from organically managed systems.  Overall, our results indicate that agricultural 

management practices can shift the functioning of soil microbial communities for crops. 

Conversion to more sustainable agricultural management systems could reverse some of 

the negative microbial effects associated with conventional agriculture, and the presence 

of possible positive feedbacks in conventional management systems is worth further 

research. 

INTRODUCTION 

Native ecosystems harbor diverse soil microbial communities, which have been 

shown to maintain productivity and other ecosystem services (de Vries et al., 2013; 

Eisenhauer et al., 2013). Land use change can alter soil microbial biodiversity by 

changing soil physiochemical properties (Baeten et al., 2010; Dunne et al., 2011; Sul et 

al., 2013), shifting microbial community structure (Wardle, 1995), altering food web 

processes (Liiri et al., 2012), and disrupting soil nutrient cycling (Bowles et al., 2014). 

Nearly all modern agricultural practices include tillage and chemical inputs, and these 

practices can negatively impact soil microbial communities, thereby indirectly reducing 

ecosystem nutrient cycling and primary production (Brussaard et al., 2007; van der 

Heijden et al., 2008). For example, in a recent study comparing bacterial functional 

diversity, samples from conventional agriculture had lower species richness and 

functional gene abundance as compared to more sustainable systems (Xue et al., 2013). 

In another study both bacterial and arbuscular mycorrhizal fungal (AMF) diversity were 

reduced due to inorganic nitrogen fertilizer application (Toljander et al., 2008). Shifts in 

the composition and functioning of soil microbial communities due to conventional
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 management could result in reduced plant growth and a cycle of increasing inputs to 

maintain agricultural yields.   

Adoption of more sustainable agricultural practices may reverse some of the 

negative effects of conventional practices on soil microbial communities and improve 

overall soil health and sustainability. No-till agricultural practices have been reported to 

improve soil aggregation through both increased bacterial biomass and fungal hyphal 

density, specifically AMF hyphae (Helgason et al., 2010; Jansa et al., 2002), which can 

improve crop nutrient use (Pellegrino and Bedini, 2014). However, no-till agricultural 

systems rely heavily on herbicides and inorganic fertilizers, and both inputs are known to 

negatively impact soil biodiversity (Wright et al., 1999; Constantin et al., 2010). 

Similarly, organically managed agricultural systems have been shown to improve overall 

soil microbial biodiversity (Mäder et al., 2002) and soil structure (Elmholt et al., 2008; 

Gosling et al., 2006; Lee and Eom, 2009), as well as increase diversity of the AMF 

community (Galván et al., 2009; Gosling et al., 2006), though tillage remains a regular 

soil disturbance.   

In this study, we compared the function of soil communities associated with 

conventional and more sustainable agricultural practices. To directly evaluate the effects 

of the soil microbial community on crop performance, we looked at how two different 

crop species respond to soil inocula from conventional and sustainably-managed 

agricultural systems under controlled conditions. We asked specifically: 1) Do soil 

microbial communities from different agricultural management systems vary in their 

effects on plant performance, and does this vary with crop species? And 2) do bacterial 

community effects differ from effects of the soil microbial community as a whole?  We 
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predicted that overall plant growth would be most strongly inhibited by the microbial 

communities from conventionally managed soil as compared to those from more 

sustainable agricultural systems. We also predicted that the bacterial community would 

be primarily responsible for any negative effects on crop performance, with whole soil 

microbial community effects being more moderate due to presence of beneficial 

organisms such as AMF. 

METHODS 

Experimental Design:  

We designed a 3-factor greenhouse experiment to compare microbial community 

function associated with conventional and sustainably-managed row-crop agricultural 

systems. In May 2012, we collected soil samples from the W.K. Kellogg Biological 

Station Long Term Ecological Research Main Cropping System Experiment (LTER-

MCSE) in Hickory Corners, MI., USA. The full experimental design of the LTER-MCSE 

and established agricultural treatments are described in detail in Robertson (1991). 

Briefly, the MCSE was designed to evaluate the ecology of row-crop agricultural 

practices typical of the north central USA. The experiment was established in 1989 and 

consists of eight fully replicated and differently managed systems including conventional 

(CONV), no-till (NT), and zero-input organic (ORG), in an annual corn-soybean-wheat 

rotation. Soil samples used in our experiment were taken from replicate treatment plots in 

May 2012 using a 2x30 cm probe (5 samples x 5 sampling points/plot x 5 replicate plots), 

composited, bagged, and stored at -4°C until use.
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In June 2012, we filled 120 1.6 L Mini Treepots (Model MT49; Stuewe &Sons) with 

approximately 1.4 L of a 2:1 mixture of general purpose sand (SAKRETE©) and coarse 

horticultural grade vermiculite (Perlite/Vermiculite Packaging Co.). Each pot received 50 

g inoculum from one of three agronomic system soil sources (CONV, NT, or ORG), 

which were each divided into three microbial treatments: whole live soil, autoclaved soil 

(121°C for two, 60 minute cycles) to kill all soil organisms, or autoclaved soil plus a 

microbial wash isolated from 50 g of live soil.  The microbial wash was made by placing 

50 g live soil into a beaker with 500 ml DI H2O and stirring for several minutes to break 

up any aggregates. The soil solution was then slowly decanted through a stacked set of 

sieves (500 µm, 212 µm, 38 µm openings) and the liquid flow-through consisting of all 

organisms smaller than 38 µm (i.e., bacteria) was collected (e.g., Emery and Rudgers, 

2012). All inocula were gently mixed into filled pots with single-use, sterile wooden 

applicator sticks. Each treatment inoculum made up only 2-3% of the total pot volume. 

After pots were inoculated, we planted one of two different crops into each: 

Triticum aestivum L. var. “Glenn”, a hard red spring wheat popular with farmers in the 

US, comprising 18.1% of 6.35 million acres planted in 2011 (Jantzi, 2011), or Zea mays 

L. var. “Nothstine”, a yellow dent field corn (Johnny’s Seeds, Maine). We placed three 

wheat seeds or two corn seeds near the center of each pot, covered with approximately 4-

5 cm of the potting mixture. Following emergence, seedlings were thinned to one per pot 

by sub-surface pruning using tissue scissors cleaned with 98% EtOH between each 

pruning to avoid cross-contamination between microbial and soil source treatments.  

Wheat plants grew from June 4 to August 5 (58 days post emergence) and corn 

plants grew from June 4 to August 15 (65 days post emergence), both under well-
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watered, ambient greenhouse conditions (temp. range 23-42°C). We rotated trays of pots 

two times during the experiment to reduce edge and abiotic variability effects in the 

greenhouse. At the end of the experiment, we separated all aboveground biomass 

(ANPP), including surface litter, from the belowground biomass by clipping the stem at 

1-1.5 cm above the growth media surface. ANPP samples were placed into individually 

labelled paper bags, dried for 48 hours at 65°C, and weighed. Belowground biomass 

(BNPP) in each pot was gently removed from the sand-vermiculite mixture by shaking 

away loose material and repeated washing in containers of standing water. We took small 

samples of root material from three locations on each root system and processed these for 

determination of AMF colonization (following methods in Vierheilig et al., 1998), as one 

measure of treatment contamination control (i.e., if sterile or wash treatments had 

evidence of AMF colonization, then those treatments may have been compromised). The 

remaining cleaned root systems were then placed in individually labeled paper bags, 

dried for 48 hours at 65°C, and weighed. Raw values for ANPP and BNPP were used to 

determine plant root:shoot ratios (R:S) for each pot. 

Statistical Analyses:  

The sterilized soil treatment associated with each MCSE soil source and crop 

combination was used as the baseline for calculating treatment effects on crop 

performance. We calculated percent differences (%Δ) between each “live” or “wash” 

treatment pot and the associated sterile baseline group mean, and used %ΔANPP 

%ΔBNPP, and %Δ R:S as dependent variables for analyses.    

We initially conducted a 3-factor ANOVA [crop (corn, wheat) x soil source 

(CONV, NT, ORG) x microbial treatment (live, wash)], to examine direct and interactive 
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effects of the main factors on overall plant performance. As expected, due to differences 

in phenology and physiology between the plant species used in the experiment, “crop” 

and its interactions were significant in all full models (data not shown). For this reason, 

we chose to run all subsequent analyses as two-factor ANOVAs with data separated by 

crop.  All analyses were performed using Systat12. (SYSTAT v. 12 2008, SYSTAT 

Software Inc., Chicago, IL.) 

RESULTS 

Experimental treatments:  

To determine the effectiveness of our microbial treatment preparations, we 

examined roots from each treatment group for both corn and wheat plants. Overall, 

colonization by AMF in corn plants grown using the live soil inoculum was moderate (> 

40%, data not shown) and vesicles were noted in all colonized root segments. 

Colonization by AMF for wheat plants grown using the live soil inoculum was relatively 

low regardless of the MCSE soil source (< 20%, data not shown), but large vesicles were 

noted in the colonized root sections. Colonization by AMF was not seen in the microbial 

wash or sterile treatment groups, indicating that our microbial treatments were effective. 

Corn:   

Corn aboveground growth was enhanced (positive %ΔANPP) when grown in 

inoculum from the conventional (CONV) system, as opposed to no-till (NT) and organic 

(ORG) inocula (Table 1, Figure 1a). There were no differences in the effects of live and 

bacterial wash inocula across treatments. Corn belowground growth was reduced in all 

soil inocula compared to the sterile controls (negative %ΔBNPP), though this effect was 
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not as strong for plants grown using live soil inocula (Table 1, Figure 1b). Soil inoculum 

from the organic (ORG) system reduced root growth more than the conventional (CONV) 

and no-till (NT) systems (Figure 1c). All soil inocula made corn plants more efficient 

(negative %ΔR:S) compared to sterile controls. This effect was strongest for live inocula 

as compared to the microbial washes.  Inocula from the organic (ORG) system had 

stronger effects on reducing R:S ratios than inocula from the no-till (NT) system (Table 

1; Figure 1d, e).  

Wheat:   

All microbial inocula had a strong negative effect on wheat plant growth 

compared to sterile controls, except for plants grown using live soil inoculum from the 

organic (ORG) system (Table 1; Figure 2a,b). Similarly, %ΔBNPP for wheat plants was 

negative for all live and soil wash inocula treatments, though plants grown using live soil 

from the organic (ORG) system were not as strongly affected as plants from the other 

treatments (Figure 2c,d). Wheat plants were overall more efficient, as indicated by a 

lower R:S ratio, with live soil inoculum as compared to microbial wash, and benefited 

most in terms of efficiency when grown using inoculum from the no-till (NT) systems 

(Figure 2e,f). 

DISCUSSION 

Our results show that the microbial communities associated with different agronomic 

systems have differential effects on crop performance. In general, corn showed an overall 

increase in plant resource use efficiency associated with all soil microbial communities, 

but ANPP increased the most when crops associated with microbial communities from 
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conventional agricultural systems. One explanation for this positive effect could be 

adaptation of the soil microbial community to conventional agricultural inputs associated 

with the KBS LTER-MCSE corn crop in 2011, the year before we collected soil for our 

experiment.  It has been shown that plant identity can have strong effects on soil 

microbial communities (Ngosong et al., 2010; Becklin et al., 2012), so our results are 

potential evidence of positive soil feedbacks (Kulmatiski and Beard, 2011; van de 

Voorde et al., 2011). This type of positive soil feedback has been shown to occur with 

some regularity in natural AMF communities and has been implicated in some invasive 

species spread (Vogelsang et al., 2006; Pringle and Bever, 2008; Qin et al., 2015), but to 

our knowledge has yet to be documented in agricultural systems. 

Soil microbes from all soil sources reduced corn belowground biomass, though 

this effect was strongest for inocula from organic systems. Corn is known to be a highly 

mycorrhizal plant (Wright et al., 2005), and the strong effects of live soil inocula on corn 

belowground biomass may be due to the presence of AMF (Eo and Eom, 2009), as plants 

that form beneficial associations with AMF can reduce root growth. Tillage and 

fertilization practices are known to reduce overall fungal diversity, including AMF (Wu 

et al., 2007), and so biologically-based/organic management may be enhancing this group 

of organisms and their associated benefits for crop growth.    

Wheat growth was reduced by all soil microbial communities, with the exception 

of live soil inocula from biologically-based/organic systems, which cancelled negative 

effects of the bacterial community from this system. If crops select for soil 

microorganisms that benefit themselves, similar to what has been demonstrated with 

other dominant plants in natural systems, (e.g. de la Pena et al., 2010), then this type of 
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negative feedback may explain the reduced growth of wheat in soil inocula collected after 

a season of corn growth. In general, bacterial communities associated with the different 

agricultural treatments made wheat plants less efficient (higher R:S ratios under “wash”), 

as compared to live soil communities. These differences between bacterial wash and live 

soil communities could be driven by AMF, since our microbial wash treatment would 

have excluded their functional elements (Bender et al., 2015). However, wheat roots in 

our live soil treatments showed relatively low AMF colonization, which may indicate that 

an overall increase in soil biodiversity could be responsible for cancelling out the 

negative effects of bacteria in biologically-based/organic systems.  

Overall, our results indicate that agricultural management practices can alter 

effects of soil microbial communities on crop above- and belowground productivity, both 

positively and negatively depending on crop species. Surprisingly, we have some 

evidence that soil microbial communities associated with conventional agricultural 

practices may benefit crops, possibly due to positive soil feedback mechanisms. 

Conversion to more sustainable agricultural management systems (i.e. biologically-

based/organic) could reverse some of the negative microbial effects associated with 

conventional agriculture for other crop species.  
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Two-way ANOVA results separated by crop (corn, wheat) for main factors microbial treatment (live, wash) and MCSE soil source 

(conventional (CONV), no-till (NT), and biologically-based (ORG)). 
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FIGURE LEGENDS 

Figure 1. Corn growth in response to significant factors from ANOVA models in Table 1 

as measured by (a)- percent difference in ANPP; (b, c)- percent difference in BNPP; and 

(d,e)- percent difference in R:S ratio. Treatments codes correspond to conventional 

(CONV), no-till (NT), and biologically-based (ORG) agricultural systems. Letters 

indicate significant Tukey pairwise comparisons within each panel. Error bars indicate ± 

S.E. 

Figure 2. Wheat growth in response to significant factors from ANOVA models in Table 

1 as measured by (a, b) -percent difference in ANPP; (c, d) - percent difference in BNPP; 

and (e, f) - percent difference in R:S ratio. Treatments codes are the same as in Figure 1. 

Letters indicate significant Tukey pairwise comparisons within each panel. Error bars 

indicate ± S.E. 
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Figure 1. 

 

  



 

56 
 

Figure 2. 
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CHAPTER V 

RESEARCH SUMMARY 

 These studies represent both long term and short term effects of different row 

crop agricultural management systems on AMF community composition, structure and 

function, and contributed ecosystem services. By examining the long-term effects 

following conversion from conventional management, we found tillage was driving 

differences in AMF community composition and structure; no-till and the early 

succession systems harbored similar communities. No-till management increased AMF 

diversity and stabilized the community, but complete abandonment of agricultural 

management improved ecosystem services. The often reported negative effects of 

conventional row crop management on AMF diversity were not apparent, and organic 

row crop management did not improve AMF diversity, richness, or community function. 

Ecosystem services were limited under all row crop systems and more than 20 years of 

agricultural abandonment did not restore the AMF community. Overall, the more 

sustainable row crop management systems (no-till, reduced input, and organic) did not 

have the expected positive effects on the AMF community or ecosystem services. 

CURRENT AND FUTURE RESEARCH INTERESTS 

My current research interests include completion of the molecular analyses which 

complement research reported in chapter one and chapter two. Analysis of rDNA 

sequences from AMF spore samples taken from the archival soil samples (Ch. 1) will 
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provide insight as to the AMF community in this system beginning in 1989. When 

coupled with spore morphological data, sequence data will help provide more accurate 

baseline richness and diversity measures. Completing the analyses of paired-end Illumina 

sequencing data for the samples from 2010 – 2012 (Ch. 2) will allow comparison 

between the AMF community “pool” and the AMF species actively colonizing the crop 

plant roots. The functional roles of individual AMF species in the community are not 

well understood. I think being able to compare between the “active” and “non-active” 

AMF may help explain why some AMF communities are more effective at providing 

plant benefits and or ecosystem services. This type of information is important to farmers 

interested in managing their AMF communities with cover-crops, or optimizing crop 

rotations to provide maximum benefit.  

My future interests include working to better understand C sequestration in 

agricultural soils, which has been suggested as one way to off-set carbon dioxide and 

methane emissions from these systems. I am also interested in gaining a better 

understanding of glomalin and exploring differences in production between AMF 

species. Also, advances in sequencing technology have simplified the complex study of 

temporal and spatial differences in AMF communities due to management inputs or other 

disturbances. This technology can be used to improve understanding of AMF functioning 

at the community and species level, and their relative contributions to soil C and plant 

growth.  
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