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ABSTRACT 

 
ELECTROCHEMICAL AND MICROFABRICATION STRATEGIES  

FOR REMOTELY OPERATED HEAVY METAL SENSOR NETWORKS  
FOR WATER ANALYSIS:  

THE DUAL CHALLENGES OF CALIBRATION-LESS MEASUREMENT 
AND SAMPLE PRETREATMENT 

 
Mohamed M. Marei 

 
 

August 8, 2014 
 

 Current heavy metal monitoring in water utilizes sophisticated instrumental 

methods at centralized laboratories. For many applications, a preferable approach is the 

deployment of remote sensor networks. To this end, electrochemical methods in 

conjunction with microfabricated sensors potentially offer the required sensitivity and 

practical advantages including inexpensive sensors, reduced need for manual operation, 

reduced energy requirements, and also takes advantage of existing technologies such as 

communications networks for real-time data acquisition. The remote sensor platform 

developed herein consists of a photo-lithographically patterned gold electrode on SiO2 

substrate within a custom stopped-flow thin-layer cell (TLC). Metal concentrations were 

evaluated by anodic stripping coulometry (ASC), where it was possible to pre-

concentrate all dissolved metals from the finite TLC volume in about a minute. Unlike 

previously reported ASC approaches which rely on either linear sweep voltammetry or 

chronopotentiometry, the ASC variant described herein utilizes a potential step to 
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simultaneously strip all deposited metals. The use of a double potential step ASC method 

also allowed in situ blank subtraction without the need for a separate blank solution. To 

achieve selectivity, several deposition potentials are used to pre-concentrate only those 

metals which can be reduced at a given potential. This method is demonstrated to be 

capable of measuring 500 ppb As(III) to better than 10% error even in the presence of 

high interferent levels (1.3 ppm Cu2+, 500 ppb Cd2+, 500 ppb Pb2+, and 5 ppm Zn2+). 

Similar performance was possible for As(III) spiked Ohio River water after pH 

adjustment. For more negatively reduced metals, dissolved oxygen (DO) reduction 

interferes with stripping analysis. An indirect in-line electrochemical DO removal device 

(EDOR), utilizing a silver cathode to reduce DO in a fluidically isolated chamber from 

the sample stream, was therefore developed. This device is capable of 98 % DO removal 

at flow rates approaching 50 µL/min with power consumption as low as 165 mW hr L-1. 

Besides our specific stripping application, this device is well suited for Lab on Chip 

(LOC) applications where miniaturized DO removal and/or regulation are desirable. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

1.1 Foreword 

 In beginning this work, an analytical chemistry dissertation, it is arguably most 

useful to begin with a description of what analytical chemistry is and what its aims are, or 

perhaps should be. The experimentally practicable chemistry sub-disciplines are always 

named, and rightly so, after the compounds they study (e.g., biochemistry, inorganic 

chemistry, etc.) or the concepts and processes they apply to understand phenomena (e.g., 

physical chemistry). Using this naming convention as a guide, it is self-evident that 

analytical chemistry is best described as the chemical analysis of materials to achieve 

qualitative chemical identifications or sensitive quantitative measurements. Naturally, 

this requires that chemical analysis involve the separation of species in addition to their 

detection. The diverse separation and detection requirements of different samples have 

resulted in the development of myriad instruments and techniques. However, the 

techniques and instruments of chemical analysis are only tools to achieve the desired 

outcome – practical, sensitive, and selective measurements. The work in this dissertation 

is focused on the development of more practical heavy metal sensors for use in 

environmental monitoring applications. The enhanced practicality arises from the concept 



 
 

2 
 

of truly remote sensors, which can simultaneously monitor many sites without any 

intervention by an operator. Accordingly, the dual challenges of signal calibration and 

sample pretreatment, which are typically performed by the operator, are the focus of this 

work. These challenges are shown to be satisfactorily addressable by electrochemical 

methods in conjunction with miniature (i.e., microfabricated) sensors since these offer 

important practical advantages.  

 

1.2 Practical, Sensitive, Selective Measurements 

 In terms of sensitivity, modern analytical methods are capable of routine 

measurements of trace quantities of many analytes. There are even instances where the 

detection of a single analyte molecule is at least technically possible [1-2]. In terms of 

selectivity, it is possible to sort and separate species by methods such as chromatography 

and mass spectrometry and multi-dimensional combinations thereof prior to detection. In 

some instances, the use of analyte specific probes such as antibody assays and the more 

recent development of synthetic nucleic acid sequences known as aptamers allows direct 

detection of analytes in complex mixtures without prior separation [3-4]. Alternatively, it 

may be possible to use selective methodologies (which are insensitive to interferents) for 

direct detection of analytes in complex mixtures [4-5]. Note that the term selectivity is 

used here over the term specificity, according to the IUPAC recommendation, and is 

defined as the extent to which particular analytes can be determined under given 

conditions in mixtures or matrices, simple or complex, without interferences from other 

components [7].  
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 Modern analysis is thus capable of both sensitive and selective measurements, and 

performance in those regards can be evaluated objectively. The practicality of an analysis 

is, however, more complicated to evaluate since it is an amalgamation of many criteria 

including the desired accuracy and speed of analysis, the number of samples, the required 

frequency of analysis, instrument and reagent cost, personnel training, reagent safety, 

disposal of waste, etc. The complexity of these criteria does sometimes allow 

sophisticated instruments operated by specialized personnel to be, in fact, the most 

practical solution. This may be the case in a centralized laboratory where the flexibility of 

doing many types of analysis is important and highly trained personnel are available.  

 The practicality of the conventional analysis approach described above, however, 

is especially diminished when the number of samples or the frequency of analysis 

exceeds a given threshold. This loss of practicality may be due to the increased costs of 

instruments, reagents, or personnel. Even in the absence of these constraints and if all the 

costs are met, it is perhaps more important to consider the type of the measurements 

being provided. Large numbers of samples, of course, arise from the sampling of a large 

number of sites over extended periods of time. Thus, the central laboratory approach to 

analysis must also address the issues of sample collection, sample stabilization to prevent 

changes in the species to be measured, and transportation to the laboratory. And even 

when these additional requirements are met, the resulting measurement is a snapshot 

which reflects the level of a given species or parameter at a particular time and place.  
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1.3 Increasing Snapshot Frequency: Portable Analysis 

 One effort to increase the frequency of snapshots has been to develop portable 

analyses which can be performed in the field. Portable analyses essentially bring the lab 

to the sample rather than bringing each sample to the central laboratory. One of the 

primary obstacles has been the development of suitable sensors – i.e., sufficiently 

simplified, inexpensive, and reliable methodology and instrumentation. Indeed, the entire 

fields of lab on a chip (LOC) and micro total analysis systems (µTAS) have emerged to 

address the need for such practical sensors for decentralized analysis. Although 

decentralized sensing has potentially limitless utility, the most useful applications are 

arguably in the fields of biomedical point-of-care (POC) diagnostics and environmental 

monitoring. Not surprisingly, both fields share the challenge of a large number of 

dispersed samples that make routine centralized analysis impractical. Point-of-care 

diagnostics conducted by a technician at the doctor’s office or, preferably, by the patients 

at home allows for more rapid response to medical conditions which require prompt 

treatment, and offers the potential of reducing healthcare costs.  

 

1.3.1 An Example: The Blood Glucose Meter 

 One of the great successes of modern decentralized analysis has in fact been in the 

field of biomedical POC diagnostics. The blood glucose meter (BGM) is a testament to 

the utility of portable, inexpensive sensors which can simultaneously provide practical, 

sensitive, and selective measurements; and this achievement certainly merits more than 

passing mention in this work. Regular self-monitoring of blood glucose levels is now 

standard practice for millions of diabetics who are estimated to comprise as much as 5% 
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of the global population [8]. Most of the commercial BGMs use miniature sensors in 

conjunction with electrochemical detection by a portable battery powered potentiostat, as 

shown in Figure 1.1. Nowadays, the most commonly used electrochemical detection 

schemes are amperometry or coulometry which are used to monitor the current or charge, 

respectively, in response to the presence of glucose as shown in Figure 1.2 [9]. 

Selectivity is provided by the indirect detection of glucose according to the scheme of 

Figure 1.3:  A glucose specific enzyme, most commonly glucose oxidase or glucose 

dehydrogenase, first oxidizes glucose and the reduced enzyme is re-oxidized by a suitable 

mediator [9]. The reduced mediator generated during enzyme re-oxidation, which reflects 

blood glucose levels, is subsequently detected at the electrode [9].  
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Figure 1.1: A) An assortment of electrochemical miniature blood glucose test strips 
sampling 1 µL or less from several manufacturers [10]. B) Four generations of portable, 
battery-powered BGM meters with sampling times of 5 seconds to 2 minutes. 
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Figure 1.2: A) A sampling of electrochemical detection schemes for blood glucose 
monitoring. B) The raw data response of an amperometric and coulometric BGM. In 
amperometry, the response is the current measurement at a pre-determined time. In 
coulometry, the response is the area under the curve. [9] 
 

 
Figure 1.3: A comparison of the commonly employed enzymes in the modern BGM. 
Contrary to the illustration at right, early BGMs relied on a secondary hydrogen peroxide 
responsive enzyme to measure the H2O2 byproduct of O2 reduction. [9] 
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1.3.2 Practicality, Sensitivity, and Selectivity of the BGM 

 The different sensors exhibit a wide variety of approaches to increase stability and 

enhance selectivity for glucose over interferents such as ascorbic and uric acids. These 

innovations include the use of different enzyme cofactors, electrode materials, electron 

mediators, electrode coatings to limit access of interferents, operating potential, and  

detection mode, along with other improvements which aid reliability. Most of these lie 

well outside the scope of this work, and excellent reviews are available for the interested 

reader [10-11]. Most important and perhaps most easily overlooked is the elimination of 

the trained operator in all of these approaches which is of great relevance to the current 

work. The BGM employs the patient themselves as the operator, and provides simple 

directions for the use of disposable test strips to reduce trained operator intervention (i.e., 

doctor visits and lab tests). Also relevant to this work is the BGMs demonstration that 

electrochemical detection in miniaturized sensors is a ‘proven commodity’ for 

decentralized analysis. The choice of electrochemical methods allows for sensitivity since 

small currents are readily and accurately measurable and selectivity with proper choice of 

electrode materials and modifications, and it also supports practicality by virtue of its low 

cost and sensitivity (small samples are possible, if not preferable). Miniature sensors 

further support practicality due to the cost and reagent savings. 

  

1.4 The Role of the Operator 

 Although decentralized sensing goes some ways towards increasing the frequency 

of snapshots, the role of the operator remains essential and should not be overlooked. For 

the BGM, the patient can actively decide on the frequency of snapshots in their capacity 
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as the operator. Typically, the operator is responsible for essential tasks such as 

calibration and, in some cases, sample pretreatment, along with periodic maintenance and 

troubleshooting. Less obviously, the operator is also needed to collect the sample and 

introduce it to the sensor and to replace individual sensors after the prescribed number of 

uses. In the case of POC diagnostics, and the BGM in particular, readily available 

untrained caregivers or end users themselves are capable of serving as the operator when 

a few conditions are met.  

  

1.4.1 Calibration and Sample Pretreatment in the BGM 

 For BGM calibration, stringent quality control has been used to allow a few 

randomly selected sensors to initially establish a ‘calibration code’ for the entire batch, 

which is manually entered or automatically recognized by the pre-programmed handheld 

potentiostat [10-11]. To reduce complexity, some manufacturers have even eliminated 

coding entirely and focus solely on stringent quality control so that all sensors respond 

identically [10-11]. Sample pretreatment is eliminated by built-in sensor selectivity based 

on enzymatic assays or the use of filtering/trapping layers which limit the access of 

interferents to the electrode surface [10-11]. To further reduce errors by untrained 

operators, a variety of additional measures have also been implemented. For instance, the 

Freestyle sensor, shown in Figure 1.4, incorporates additional electrodes, besides those 

used for analysis, to ensure that the sampled blood volume is consistent since volume is a 

critical consideration for the coulometric mode of operation of that sensor [9]. 
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Figure 1.4: Left: Construction of the Freestyle BGM test strip. Right: Schematic of the 
fill electrodes used to ensure consistent sample volumes. [9] 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



 
 

11 
 

1.4.2 Operators in Environmental Monitoring 

 In environmental monitoring, where decentralized sensing is also of potentially 

great use, the widely dispersed sampling opportunities cannot be so conveniently attached 

to an operator. However, there exists an entire class of environmental contaminants 

which can be monitored electrochemically, namely heavy metals. Thus, a similar 

approach to the blood glucose meter – electrochemical monitoring using simple, portable, 

miniature sensors – is capable of increasing the frequency of snapshots. Indeed this is an 

active research area as demonstrated by the abundance of publications and reviews on 

portable metal analysis in the recent literature [12-13]. Despite these developments, large 

scale monitoring of many sites over extended periods would still require considerable 

numbers of technicians, each of whom is armed with a mobile sensor, to visit those sites. 

Hence, what may be practical in the biomedical POC applications is less useful in 

environmental monitoring. 

  

1.4.3 Portable vs. Remote Sensors 

 The distinction between portable and remote methods is therefore a critical one, 

in which the former may require only an untrained operator while the latter should 

require only periodic maintenance. The need for any sort of operator disallows complete 

avoidance of snapshots, and continuous real-time monitoring thus remains a largely 

unrealized but nonetheless desirable outcome. In fact, even for the BGM where operators 

are readily available, recent developments include so called continuous glucose 

monitoring (CGM) using implantable sensors which autonomously monitor glucose 

levels with minimal operator intervention [14]. These can be connected to a portable belt-
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worn potentiostat which can alert the user and possibly even to an insulin pump which 

automatically responds [14]. In practice, however, most implanted sensors which are 

exposed to physiological conditions require some calibration (at least twice daily) and 

sensor replacement (every 6 days) by the wearer to ensure continued accuracy [15]. 

Hence, despite increased sensor autonomy, there remains a reliance on frequent 

maintenance by an operator. 

 

1.4.4. Operator Elimination (Calibration and Sample Pretreatment) 

 The elimination of the operator can be accomplished by eliminating or automating 

the routine tasks of calibration and sample pretreatment. Outright elimination of the need 

for calibration is technically challenging since the response of most electrochemical 

methods is sufficiently unstable so as to require periodic calibration, even under highly 

controlled laboratory conditions. Another approach to eliminating the need for calibration 

is stringent quality control of sensors, as in the BGM test strips. This approach is difficult 

to implement, however, for environmental sensors which must perform measurements 

under uncontrolled, and perhaps extreme, conditions for extended periods (e.g., 

temperature, humidity, etc.). Automation of the calibration function is technically feasible 

by packaging the necessary reference standards and sample handling capability (e.g., 

pumps, valves, etc.). The practicality of this approach is, however, dubious since 

cumbersome, complicated devices have greater associated costs and maintenance 

requirements.  

 Sample pretreatment is, of course, dictated by the chosen method and analyte 

matrix. Since the analyte and its matrix are predetermined, the chosen method ought to 
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therefore minimize and allow for automatable sample pretreatment. Another important 

consequence of eliminating the operator is the necessity of rugged sensors which can 

function reliably for extended periods. To further extend sensor lifetime, the use of 

microfabricated sensors does allow for redundant semi-disposable sensors which can be 

activated sequentially, in a similar fashion to the semi-disposable sensors employed in 

CGM. Eliminating the operators of electrochemical sensors also entails addressing their 

less apparent functions and advantages they bring. These include a host of what are best 

described as design and engineering challenges: sample handling and transport, low-

power remotely operated potentiostat, low-power control hardware (microprocessor), 

simplified software, wireless communication to transmit data, and access to a continuous 

power supply, etc. 

 

1.5 Heavy Metals Monitoring  

 In keeping with the discussion above, electrochemical methods for remote heavy 

metal sensors appear to be a promising avenue for investigation. The occurrence of heavy 

metals in environmental waters is a major cause for concern which would benefit from a 

means for long-term monitoring. This section provides justification of this approach by 

listing some instances where remotely deployed heavy metal sensors would be useful. 

These instances include the so called SuperFund sites, municipal drinking waters, and 

groundwater which is used for drinking or irrigation. Additionally, a brief overview of 

the most commonly used heavy metal electrochemical detection method is provided.  
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1.5.1 Heavy Metals Occurrence at the SuperFund Sites, in Municipal Drinking 

Waters, Ground Waters, and Other Instances 

 The Comprehensive Environmental Response, Compensation, and Liability Act 

of 1980 (CERCLA), commonly known as the SuperFund, requires the creation of a 

National Priorities List (NPL) to serve as a database for sites of known or potential 

hazardous waste releases [16]. The current NPL includes 1321 sites throughout the 

contiguous United States, as shown in Figure 1.5. The SuperFund Amendments and 

Reauthorization Act of 1986 (SARA) amended CERCLA and requires the Agency for 

Toxic Substances and Disease Registry (ATSDR) and the EPA to prepare and 

periodically update a prioritized list of substances that pose the most significant potential 

threat to human health [16]. The prioritized list, shown in Table 1.1, includes four 

metals: As, Pb, Hg, and Cd in the top ten hazardous substances; with As, Pb, and Hg 

being the first, second, and third prioritized pollutants, respectively [17].  

  The threat level of a specific hazardous substance is determined not only by its 

toxicity but also by the potential for human exposure. This exposure is largely determined 

by the volatility or solubility of pollutants since these are the most likely means of release 

from contaminated sites. The primary mode of release of As, Pb, Hg, and Cd is via 

dissolution in runoffs which originate at the SuperFund sites (although mercury may also 

be released as a vapor) [18]. The Onondaga Lake SuperFund Site in New York State is 

such an example where metals have accumulated in the lake waters from eleven upland 

sources where industrial waste was stored or discharged [19]. This lake flows into the 

Seneca River, then into the Oswego River, and ultimately into Lake Ontario. Since the 

mobility of metals from such sites in waters remains a cause for concern, continuous  
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Figure 1.5: The EPA National Priority List Sites as of 2007. [20] 
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2013 
Rank Substance Name Total 

Points 
2011 
Rank 

CAS 
RN 

NPL 
Freq 

GMMC 
Water 

GMMC 
Air 

1 ARSENIC 1670 1 007440
-38-2 

1140 
 

6E-02 8E-05 

2 LEAD 1529 2 007439
-92-1 

1272 1E-01 3E-03 

3 MERCURY 1459 3 007439
-97-6 

832 3E-03 3E-03 

4 VINYL 
CHLORIDE 1360 4 000075

-01-4 
593 6E-02 9E-03 

5 
POLYCHLORIN
ATED 
BIPHENYLS 

1344 5 001336
-36-3 

547 1E-02 1E-03 

6 BENZENE 1329 6 000071
-43-2 

972 6E-02 3E-02 

7 CADMIUM 1319 7 007440
-43-9 

1003 4E-02 1E-04 

8 BENZO(A)PYRE
NE 1305 8 000050

-32-8 
545 3E-02 3E-04 

9 

POLYCYCLIC 
AROMATIC 
HYDROCARBO
NS 

1280 9 130498
-29-2 

401 2E-01 1E-03 

10 BENZO(B)FLUO
RANTHENE 1251 10 000205

-99-2 
405 3E-02 7E-06 

Table 1.1: The substance priority list maintained by ATSDR. Total points based on 
frequency of occurrence at NPL sites, toxicity, and potential for human exposure. 
Geometric Mean Maximum Concentration for water (mg/l), air (mg/m3). [18] 
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downstream monitoring of already contaminated sites is highly desirable. In fact, the use 

of continuous monitoring directly in discharged wastewater and in waters downstream 

from storage sites may provide early warning and aid in the prevention of future 

SuperFund sites. 

 Unsurprisingly, the occurrence of metals in drinking water is even more 

stringently regulated. A selected list of heavy metal contaminants that are actively 

regulated by the United States Environmental Protection Agency (EPA) in drinking water 

along with the maximum levels permitted by the EPA is shown in Table 1.3 [21-22]. The 

table also lists the EPA approved methods for those metals, and with the exception of a 

single electrochemical method for Pb, most of these rely on sophisticated instruments 

which are not inherently suited for unattended remote monitoring networks. Although the 

vast majority of water in the US is adequately treated, the sheer immensity of the 

drinking water distribution grid gives rise to instances where monitoring of one or more 

metals is either of great use or is mandated by law. The Louisville Water Company 

(LWC), for instance, serves a medium sized city and supplies 850,000 people with 124 

million gallons of water daily through a 4000 mile network of pipes, where a given water 

sample may reside in the grid for up to 4 weeks [23]. Older sections of pipes which 

contain lead or lead solder and/or small leaks may also contaminate water with heavy 

metals. Due to these external factors, many water companies, including LWC, can only 

reasonably guarantee safe levels of heavy metals for freshly treated water as it leaves the 

pumping station [24]. The common use of copper and the historical use of Pb pipes and 

solder has given rise to circumstances where monitoring can guide ongoing costly Pb 

removal and renovations to where they are needed most. 
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 These considerations have led to the EPA mandated lead and copper rule which 

requires that testing for these contaminants must be conducted at a prescribed number of 

customer taps [25]. Due to financial and manpower constraints, the number of samples 

collected is typically less than 0.1% of available taps; and sampling can be as infrequent 

as every 2-3 years [26-27]. For instance, the LWC 2010 water quality report cites 

samples collected and analyzed in 2008, where 4 of 53 samples exceeded the 15 ppb 

action level for lead [26]. The 2011 water quality report showed that 5 of 52 sites 

exceeded the lead action level [27]. Despite the small sample size, the fact that 5-10% of 

the tested taps showed larger than recommended Pb concentrations was not the worst 

case. In one case, discovered by random sampling, the lead concentration was 2770 ppb 

and was tracked to defective equipment (a broken meter vault) [26]. Alarmingly, very 

serious contamination events may exist for long periods prior to discovery by mere 

random sampling. The lead and copper rule requires even more frequent testing, 

according to the schedule in Table 1.2, of every school and child care facility since Pb is 

especially harmful to rapidly growing children [28, 34].  

 In contrast to metropolitan grids where at least some monitoring takes place, 

private water wells which supply drinking water to over 15 million US households are 

not regulated by the EPA [29]. These under-reported communities are at higher risks for 

heavy metal consumption, particularly arsenic. Arsenic is common in the earth’s crust 

and enters ground water naturally by dissolution of minerals, although human activities 

also introduce arsenic to surface water [30]. As a result, a significant portion of 

groundwater wells in the Northeast, the Midwest, parts of Texas, and the West have 

arsenic levels which exceed the EPA MCL of 10 ppb [31]. Arsenic in water used for 
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drinking also adversely affects millions of people world-wide, particularly in under-

developed regions such as Bangladesh and Nepal [32]. Besides drinking water, there have 

also been reports of elevated levels of arsenic and other heavy metals in a variety of crops 

including apples, rice, leafy vegetables, etc. [33]. In these instances, decentralized sensors 

can play a key role to monitor irrigation waters and/or surrounding watersheds for 

evidence of soil contamination. 

 
Table 1.2: School and child care facility EPA recommended sampling frequency and 
required number of water samples for Pb and Cu screening. [34]  
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Analyte EPA 
MCL 

ASTM 
International 

EPA Methods Standard 
Methods 

Other 
Methods 

Arsenic 10 ppb D2972-03B a  
D2972-08B a 
D2972-03C b 
D2972-08C b 
D2972-97B a  
D2972-97C b 

200.5 rev 4.2 e 
200.8 rev 5.4 f 
200.9 rev 2.2 b 
 

3113B b 
3113 B-99 b 
3114B a 
3114 B-97 a 

 

Cadmium 5 ppb  200.5 rev 4.2 e 
200.7 rev 4.4 g 
200.8 rev 5.4 f 
200.9 rev 2.2 b 

3113B b 
3113 B-99 b 
 

 

Copper 1300 ppb D1688-02A c 
D1688-02C b 
D1688-07A c 
D1688-07C b 
D1688-90A c  
D1688-90C b  
D1688-95A c  
D1688-95C b  

200.5 rev 4.2 e 
200.7 rev 4.4 g  
200.8 rev 5.4 f 
200.9 rev 2.2 b 
 

3111B h 
3111 B-99 h 
3113B b 
3113 B-99 b 
3120B g 

 

Lead 15 ppb D3559-03D b 
D3559-08D b  
D3559-90D b  
D3559-96D b 

200.5 rev 4.2 e 
200.8 rev 5.4 f 
200.9 rev 2.2 b 
 

3113B b 
3113 B-99 b 
 

1001 i 

Mercury 2 ppb D3223-02 d 
D3223-95 d 

245.1 rev 3.0 d 
245.2 d 
200.8 rev 5.4 f 

3112B d 
3112 B-99 d 
 

 

Selenium 50 ppb D3859-03A a 
D3859-03B b 
D3859-08A a 
D3859-08B b 
D3859-98A a 
D3859-98B b 

200.5 rev 4.2 e 
200.8 rev 5.4 f 
200.9 rev 2.2 b 

3113B b 
3113 B-99 b 
3114B a 
3114 B-97 a 
 

 

Zinc 5000 ppb*     
Table 1.3: A select list of heavy metals regulated by the EPA and the maximum 
contaminant levels permissible in drinking water. *Voluntary recommended limit.a 
HGAAS, b GFAAS, c direct AAS, d cold vapor AAS, e Axially viewed ICP-AES, f ICP-
MS, g ICP-AES, h flame AAS, i DPSV. [21-22] 
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1.5.2 Overview of Electrochemical Heavy Metals Monitoring 

 Heavy metals are naturally suited for monitoring by electrochemical methods. In 

the US, the laws regulating heavy metals in drinking water are less complex and are, in 

any case, more stringent than those governing wastewater discharges; the permissible 

level of heavy metals in wastewater considers criteria such as the type of industry 

producing the wastewater, the production volume, whether the water is discharged into 

the environment or to publicly owned treatment works (POTW), and the sensitivity of the 

local ecosystem. For these reasons, the overall goal for remote heavy metal 

electrochemical methods ought to be meeting the sensitivity thresholds for drinking 

water, since this level of performance would very likely also be applicable to 

wastewaters. This is an especially worthwhile challenge considering that, although some 

electrochemical methods are listed in EPA guidelines, only one electrochemical method 

for Pb is approved for the important case of drinking water [35]. Currently, drinking 

water monitoring for heavy metal contaminants is handled by costly and complex 

instruments such as inductively coupled plasma atomic emission spectroscopy (ICP-

AES), ICP-mass spectrometry, and graphite furnace atomic absorption spectroscopy (GF-

AAS) [22]. Paradoxically, these complex instruments, which are confined to central 

laboratories, can be operated by suitably trained technicians in a ‘push button’ fashion 

utilizing standard operating procedures (SOPs).  

 In comparison, electrochemical methods for heavy metals are capable of equal or 

even better detection limits, and the required instrumentation is more cost effective for 

remote sensing. However, the electrochemical heavy metal (i.e., stripping) methods in 

particular require a higher level of operator experience. This is not due to the any 
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complexity or difficulty of the techniques but is rather due to the variable nature of the 

electrode surface/electrolyte interface and the necessity of performing blank subtraction 

and calibration [36]. This has led to several EPA initiatives to investigate the practicality 

of electrochemical methods for decentralized analysis of metals; and not surprisingly, 

these efforts have been focused on the most sensitive of the electrochemical techniques 

for metals analysis: stripping analysis [37].  

  

1.5.2.1 The Concept of Anodic Stripping 

 There are many sub-variants of stripping analysis including anodic stripping, 

cathodic stripping, adsorptive stripping, etc. The most commonly employed scheme for 

heavy metal detection is anodic stripping, where soluble metal ions are deposited (i.e., 

reduced) and hence pre-concentrated as elemental metals on the electrode surface 

according to Equation 1.1. In the analytical step, the elemental metals are stripped (i.e., 

oxidized) from the electrode surface to form, typically, soluble ions (the reverse of 

Equation 1.1). 

 

Cu2+ + 2 e-  Cu0  (Equation 1.1) 

 

 The common steps for anodic stripping analyses begin with a cathodic deposition 

step where metals are pre-concentrated on the electrode surface. The deposition step is 

usually performed by voltammetric control, although potentiometric depositions can also 

be used. The deposition step offers relatively few parameters which can be optimized 

including the deposition potential (or current in the case of potentiometric deposition), 
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the deposition time, and the stirring rate. The stirring rate is important since, without it, 

pre-concentration is limited to dissolved analytes within the diffusion layer for a given 

deposition time. Hence, the deposition time and stirring rate together determine the total 

volume sampled, and normally seek to pre-concentrate enough dissolved metals on the 

electrode surface to attain the desired sensitivity. Following the deposition step a rest 

period may be imposed during which stirring is stopped and the electrode may be placed 

in a different medium prior to the stripping step. Alternatively, deposition may be 

immediately followed by the stripping step. The stripping step is the reverse of the 

deposition step and oxidizes the elemental metals accumulated on the electrode surface 

and may be performed by either voltammetry or potentiometry. The great sensitivity of 

stripping analysis arises from the temporal concentration of the signal. It is not atypical to 

pre-concentrate metals for several minutes while stirring, whereas the stripping step 

strips the accumulated metals in as few as hundreds of milliseconds. 

  

1.5.2.1.1 Anodic Stripping by Potentiometry  

 Anodic stripping analysis has been historically performed on mercury electrodes 

and can be been performed under potentiometric or voltammetric control. Potentiometric 

stripping has been most often conducted in one of two approaches. The first is so called 

potentiometric stripping analysis (PSA) where a dissolved oxidant such as O2 or Hg2+ 

reoxidizes the plated elemental metals causing measurable changes in the potential as 

shown in Figure 1.6 [38]. In lieu of a chemical oxidant, the second method utilizes an 

applied anodic current to sequentially strip each of the pre-concentrated metals at its 
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characteristic potential [39]. The potential is again monitored with time and the resulting 

data is identical to that obtained by PSA.  

 

1.5.2.1.2 Anodic Stripping by Voltammetry 

 More commonly, the anodic stripping process is performed voltammetrically by 

scanning the potential to oxidize reduced metals in order, with peaks appearing at the 

characteristic potential of each metal. The most direct scan method is linear sweep 

voltammetry (LSV), and an example is shown in Figure 1.7 where Pb and Cd are 

anodically stripped (i.e., potential is scanned from negative to positive) in that order from 

a thin film mercury electrode [40]. This figure demonstrates an important feature of 

stripping voltammetry, where the peak heights are enhanced at higher scan rates. This 

feature is an important one since it demonstrates that the signal size not only depends on 

the amount of analyte, but also on the choice of experimental parameters (i.e., scan rate). 

This is due to the important facet of electrochemical analysis which requires appropriate 

background subtraction to differentiate the faradaic current from the non-faradaic current 

[41].  

 

 

 



 
 

25 
 

 
Figure 1.6: Chronopotentiometric stripping analysis of 30 µM Cu2+ and 30 µM Hg2+. 
Applied current +1.0 µA, potential recorded vs. Ag/AgCl reference electrode (3 M 
NaCl). Bottom panel shows the inverse derivative plot where the plateaus of the left plot 
are shown as peaks to facilitate estimation of transition times.  
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Figure 1.7: The influence of scan rate and peak charge on resolution of LSV (solution 
volume 200 µL, electrode rotation rate 45 r.p.s, deposition time 17 min). Equal amounts 
(23.2 µC) Cd and Pb, stripped with scan rates of 5 (a), 10 (b), and 20 mV s-1 (c). Dashed 
lines are baselines. [40] 
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1.5.2.2 Sensitivity and Background Subtraction 

 Faradaic current is the signal of interest in anodic stripping and arises from the 

process of stripping the metal deposits. Non-faradaic current by contrast is due to the 

movement of ions in the process of setting up the double layer in response to a change in 

potential. Hence, in LSV the main recourse for enhancing the faradaic current is ensuring 

that the deposition time and/or stirring rate are sufficient to achieve a significant pre-

concentration from a large solution volume. And this is in fact the approach taken in 

Figure 1.7 where a 17 minute deposition (while stirring!) is used to enhance the analyte 

peaks.  

 

1.5.2.3 Enhancing Sensitivity by Pulse Voltammetry Methods 

 An alternative means of enhancing the sensitivity has been the development of a 

family of techniques known as pulse or step voltammetry. There are a variety of stripping 

waveforms including normal pulse stripping voltammetry, differential pulse stripping 

voltammetry, and square wave stripping voltammetry (NPSV, DPSV, and SWSV, 

respectively). The improved sensitivities arise from the fact that the capacitive current 

(background) following a potential step decays more quickly than does the faradaic 

portion [41]. The different pulse voltammetry methods have various sensitivities as 

summarized in Table 1.4. Importantly, however, the necessary intermittent sampling 

after the charging current has dissipated to some pre-determined extent sacrifices a 

portion of the desirable faradaic current. However, the overall effect of the step stripping 

techniques is the enhancement of the stripping peaks following shorter depositions, which 

is certainly useful for many applications.  
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Table 1.4: Summary of several pulse voltammetric methods and detection limits. [36] 
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1.6 Challenges for Remote Heavy Metal Sensors Addressed in this Work 

 To this point, the need for remote heavy metal sensors for environmental sensors 

has been overviewed. This overview has included a detailed description of the widely 

available sampling opportunities where such a sensor can be useful. These examples 

include monitoring Pb in municipal drinking water, As in groundwater used for drinking 

and irrigation, and the monitoring of natural waters (lakes and rivers) downstream from 

SuperFund sites. The overview has also generically established that electrochemical 

methodologies (in the form of stripping analysis) in conjunction with miniature 

(microfabricated) sensors offer a promising approach. The overview has also placed a 

special emphasis on eliminating the need for any operator intervention and enhancing 

sensor durability.  

 Elimination of the operator requires minimizing or simplifying the operator 

intensive tasks of signal calibration and sample pretreatment. To remove the need for any 

signal calibration, a microfluidic thin layer cell platform where exhaustive coulometry is 

possible in about a minute is developed and used in conjunction with potential step 

anodic stripping coulometry. The issue of durability is, in principle, addressable by a 

combination of two approaches: 1) redundant semi-disposable microfabricated sensors 

which are activated sequentially and 2) the choice of a method that is inherently tolerant 

of changes to the ambient conditions and of changes to the sensor (i.e., the electrode 

surface). The proposed exhaustive coulometric method appears to offer this tolerance to 

changes to the electrode surface, whereas the stripping offers enhanced sensitivity along 

with a means to compensate for the background. In regards to sample pretreatment, this 

includes acidification and removal of humic acids, however, the most challenging step is 
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arguably the efficient removal of dissolved oxygen. An approach for DO removal, which 

has not been previously described for miniature sensors, is described in this work. 

 Amongst the numerous challenges which remain are the automation and 

replication of the amenities of the central laboratory. These amenities include sample 

handling and transport, access to a potentiostat, access to a power supply, control 

hardware (i.e., a micro-processor), software for data processing, data dissemination, etc. 

 

1.6.1 Calibration Free Measurements of Heavy Metals  

 The avoidance of calibration essentially requires that every analyte molecule 

contributes completely to the signal. The stripping process removes all metals that are 

pre-concentrated on the electrode surface, and hence the current over time (i.e., charge) is 

equivalent to the deposition process. Hence, a convenient opportunity arises during the 

deposition step where the extent of metal pre-concentration can be precisely controlled 

(i.e., from a finite known volume). This ensures that the amount of metals measured 

during the stripping step correspond to a known volume, allowing the concentration to be 

calculated. 

 

1.6.1.1 Faraday’s Law of Electrolysis 

 One of the very few possibilities for calibration free stripping analysis is 

coulometry as summarized in Faraday’s law of electrolysis (Equation 1.2) which states 

that the total charge (Q) is related to the amount of analyte (N) and the number of 

electrons (n) for a given redox process by the proportionality factor F, known as the 

Faraday Constant: 
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Q = n·F·N  (Equation 1.2) 

 

Q = n·F·V·C  (Equation 1.3) 

 

The N term is the product of the sample volume and concentration and Faraday’s Law 

can be rewritten, as in Equation 1.3, to emphasize this fact. Hence the concentration of a 

given analyte is easily determinable if electrolysis is 100% complete, reaction 

stoichiometry (n) is known, the sample volume is finite (V), and the charge can be 

measured [42]. The only requirements are that 1) the analyte is electrochemically active 

and 2) sample pretreatment methods (e.g., acidification for cationic trace metal analysis) 

can be practically achieved in the field. The condition where the sample volume is 

completely depleted of the analyte of interest is known as exhaustive coulometry. 

 

1.6.1.2 Coulometry (via Control of the Deposition Step) 

 Exhaustive coulometry is in fact one of the very few analytical methods which 

can be operated in a truly calibration-free fashion [42-45]. Unlike the other 

electroanalysis methods, coulometric signals are not critically dependent on analyte mass 

transport rates [43-44] which can vary with temperature, solvent viscosity, etc. In 

addition coulometric signals are tolerant of changes to the working electrode surface area 

due to fouling, for instance. While partial passivation of the WE surface due to fouling 

increases the time required for the analyte to diffuse to the electrode surface, the final 

magnitude of the coulometric signal is only dependent on the amount of analyte [45]. 
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These qualities of exhaustive coulometry are fortunate since electrodes for long term 

infield sensing are likely to become partially fouled with time and are subject to ambient 

temperature fluctuations. 

 To avoid very long depositions, a thin layer cell configuration is necessary for 

flow-by electrodes or alternatively that a porous electrode is used for a flowing sample 

(where the pores essentially behave as a thin layer cell). Exhaustive electrolysis from thin 

layer cells is governed by Equation 1.4 [41, 46] 

 

 ( )  
        

  
∑  

[
 (     )      

(  ) 
] 

     (Equation 1.4) 

 

where i(t) is the current at a given time, n is the number of electrons governing the redox 

process, F is the faraday constant, A is the electrode area, Do is the diffusion coefficient 

of the analyte, and Co is the analyte concentration, h is the height of the TLC. However, 

the time for complete depletion of a TLC, in principle, only depends on the height h, and 

the diffusion coefficient of the analyte according to Equation 1.5  

 

                   [   
          
(  ) ]  (Equation 1.5) 

 

Accordingly for a 75 µm TLC, even a relatively slow diffusing analyte (Do = 5 X 10-6 

cm2/s) can be effectively depleted (99% electrolyzed) in as few as 20 seconds. 
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1.6.2 Overview of Anodic Stripping Coulometry 

 Anodic stripping coulometry is no different than conventional anodic stripping 

with the exception that an additional constraint is placed on the deposition process. The 

deposition process, by design, only samples a finite known volume and completely 

exhausts this volume of dissolved metals which are plated on the electrode surface. The 

stripping step which is the source of the signal used for analysis, however, may still be 

performed by potentiometry or voltammetry. Although a comprehensive review of 

stripping analysis is beyond the scope of the current work, a recent review of on-line (i.e., 

continuous) metal monitoring methods demonstrates the novelty of the current work [12]. 

The review shows a variety of sampling methods for metals including flow injection 

analysis and sequential injection analysis and automated monitoring systems for stripping 

analysis (the various schemes are summarized in Table 1.5). Of these approaches, the 

most relevant to the current work are those which employ a calibration-free (i.e., 

coulometric) mode of analysis. Examination of the table reveals that only one 

voltammetric method and one potentiometric method satisfy the coulometry requirement: 

linear sweep voltammetry and chronopotentiometry, respectively. Notably, all of the 

calibration-free methods are based on flow approaches to pre-concentrate sufficient 

metals on the electrode surface. Implementation of this requirement, in practice, requires 

accurate and reliable pump(s) on each sensing platform. A more attractive coulometric 

approach that is consistent with economical sensing devices is the stopped-flow thin-

layer cell described in this work. Because the sample volume is determined only by the 

cell volume, the quality of the measurement does not depend on a precisely metered flow 

rate; and the device design ought to be greatly simplified.  
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Table 1.5: Summary of on-line stripping methods for metal analysis. [12] 
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1.6.2.1 ASC: Potentiometric Approaches 

 The literature for anodic stripping coulometry is highly developed for the 

chronopotentiometric stripping variants. These methods typically rely on flow through 

electrodes with a geometry optimized to allow exhaustive deposition of a metal from a 

flowing sample where the total volume analyzed is recorded [47]. Subsequently, an 

anodic current is applied while the potential is monitored and the result is typically a plot 

of potential vs. time which exhibits a series of waves and plateaus as typified in Figure 

1.6. Subsequent mathematical treatment can then be used to convert this plot into an 

inverse derivative plot where the area of each peak is equivalent to the individual 

transition times for each metal (Figure 1.6), and this analysis method is known as 

differential potentiometric stripping analysis [48]. Since a known current is used in the 

oxidation, the total charge passed can be calculated and the concentration calculated 

using Faraday’s Law. This basic method was used extensively by Beinrohr et al. and 

Pierce et al. for a variety of metals with excellent detection limits [49-50].  

 

1.6.2.2 ASC: Voltammetric Approaches 

 Notably, there are very few reports of coulometric uses of voltammetric methods.  

Historically, the voltammetric methods which have attracted the most attention have been 

the step methods. The chief problem with these step methods is that despite their 

sensitivity, they require calibration with standards since correction for the non-faradaic 

component necessarily throws out a portion of the signal (since it is difficult to find a 

perfect balance where the retained portion of the capacitive current happens to equal the 

lost portion of the faradaic current). In fact, one of the very few reporting such use of step 



 
 

38 
 

methods concludes that double potential step chronocoulometry is the more widely 

applicable method [51].  

 

1.6.3 Blank Subtraction: The Electrode/Electrolyte Interface 

 The key problem of most electroanalysis methods (including ASC) briefly 

mentioned above is the subtraction of the non-faradaic background component of the 

signal. The necessity of this step also has the additional benefit of countering ‘drift’ that 

is inherent to most electrochemical systems that arises due to changes at the solid 

electrode/solution interface [52]. One solution to counter this drift is the use of renewable 

electrodes such as the liquid mercury electrode. However, the use of mercury electrodes 

in environmental analysis has fallen out of favor for obvious reasons. Another way of 

correcting for this drift is to dilute the sample into a known electrolyte and compare this 

response to the pure electrolyte (i.e., to obtain a background in as close a time as possible 

for every experiment). This approach is obviously of limited practicality for remote 

sensors, as its employment requires additional device complexity to include the blank 

electrolyte and the sample handling components to switch between sample stream and 

blank solutions. Additionally, the speed with which these steps can be performed limits 

the extent to which transient and difficult to reproduce conditions at the solid 

electrode/solution interface can be corrected for, which is especially important for trace 

analysis. 
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1.6.3.1 Chronopotentiometric ASC Background Subtraction 

 For chronopotentiometric stripping coulometry, the procedures typically employ 

large surface area flow through porous electrodes where a significant portion of the 

applied current is used to charge the double layer as the potential changes [49-50]. 

Therefore, the sampling of large volumes is required (typically 5-20 mL) and few, if any, 

miniature sensors employing this approach have been reported to date.  

 

1.6.3.2: Subtractive Anodic Stripping voltammetry 

 An alternative solution to counter ‘drift’ is so called subtractive stripping 

voltammetry, which has been most commonly used in conjunction with step stripping 

methods such as SWSV [52]. This technique involves the performance of the blank 

correcting step in a very short period of time (immediately prior to or following the 

analytical stripping step). Further, this step can be performed in situ; in the same solution 

containing the metals being measured. The key difference is that no pre-concentration is 

used in the subtractive step. This approach offers the important advantage of obtaining an 

appropriate background for the transient and difficult to reproduce conditions at the solid 

electrode/solution interface. Although the step methods (e.g., SWSV) are difficult to 

apply coulometrically, the concept of subtractive anodic stripping is readily applicable to 

techniques that are compatible with coulometry.  

  

1.6.3.3: Linear Sweep Voltammetry 

 The elimination of chronopotentiometric and step voltammetric methods from 

immediate consideration thereby leaves LSV. An important consideration in LSV is the 
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scan rate. The peak heights can in fact be enhanced by increasing the scan rate as shown 

in Figure 1.7. However, the resolution between adjacent peaks is also compromised in 

this case. Besides, the speed of the maximum scan rate shown is 20 mV s-1 and the range 

shows that each scan would last 35 seconds. Hence the use of LSV directly in a TLC 

would cause significant pre-concentration during a background scan since the analytical 

scan itself is only preceded by, at most, several minutes of pre-concentration.  

 

1.6.3.4: Extreme LSV (Potential Step ASV/ASC) 

 The most practical form of LSV (for ASC in a TLC) is the extreme form where 

the sweep rate is essentially infinite (i.e., a potential step). Unlike the step methods 

however where the capacitive current is allowed to dissipate, the signal is collected in its 

entirety immediately following the potential step (including the non-desirable capacitive 

component). A secondary step is also performed where the contribution of the capacitive 

current is measured and subtracted. This approach sacrifices the resolution of the 

stripping step. However, the rapidity of the analysis allows a different form selectivity to 

be applied since it is possible to perform the step procedure for many deposition 

potentials (about 1 minute per deposition potential). 

 

1.6.4 The variants of PS-ASC 

 There are several possible variants of potential step anodic stripping coulometry. 

The discussion in this section only considers the stripping process (e.g., single potential 

step ASC refers to a single stripping step). Although the depositions in this work were 

also conducted by stepping the potential, these could ostensibly also be performed by 
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scanning the potential or even by an applied cathodic current. In single potential step 

ASC, SPS-ASC, a single potential step is used to strip all pre-concentrated metals 

simultaneously. The potential step is performed by stepping the potential from a holding 

potential where the metal(s) of interest have been deposited to a sufficiently anodic 

potential to oxidize all plated metals. The background correction for this PS-ASC variant 

depends on an identical experiment conducted in a metal free electrolyte. Double 

potential step ASC, DPS-ASC, is similar to SPS-ASC with the only difference being that 

it includes a second identical stripping step which is preceded by a very short deposition 

(e.g., 100 msec). This additional step allows for only very limited (i.e., negligible) pre-

concentration of dissolved metals from the TLC onto the electrode surface, and can be 

used to estimate the non-faradaic current.  

 In principle, it is possible for the subtractive step to have a different range than the 

analytical step, and this variant is termed multi potential DPS-ASC, MP-DPS-ASC. For 

example, the subtractive step may be from -300 mV to 500 mV following a 100 msec 

deposition at -300 mV, whereas the analytical stripping signal is from -500 mV to 500 

mV following exhaustive deposition at -500 mV. It follows that subtracting the two 

signals ought to directly provide the difference in the faradaic signal (assuming the two 

non-faradaic components are very similar in magnitude). However, this variant provides 

only limited information the contributions of the faradaic and non-faradaic components 

for each of the steps, and is not suitable for the method validation and proof of concept 

experiments. Although of potential use in the future, this variant of ASC is not used in 

this work. 
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 The sequential form of MP-DPS-ASC, termed SEQ-MP-DPS-ASC, essentially 

combines two separate DPS-ASC experiments. In the first, it seeks to determine the net 

stripping signal between two potentials (e.g. 0 mV and 500 mV) by employing two 

separate pulses preceded by exhaustive deposition and a brief deposition, respectively. 

Subtraction yields the total faradaic current (i.e., the concentration of Metals 1 and 2, for 

instance) which are deposited and stripped between the potentials of 0 mV and -500 mV. 

The same sequence is then repeated to obtain the faradaic signal for a more cathodic 

deposition potential (e.g., -500 mV and 500 mV) where the total signal is due to the 

combined Metals 1 and 2, along with Metal 3. Comparison of the two steps allows 

indirect measurement of the concentration of Metal 3. 

 

1.6.5 Sample Pretreatment Considerations  

 One impediment to remote monitoring is of course sample pretreatment which is 

easily performed in a laboratory. As noted in the above discussion, the sample 

pretreatment method is dependent on the specific analyte, the sample matrix, and the 

analytical method. In practice, only the analytical method may be chosen and the chosen 

method of  ASC along with the majority of electrochemical analyses techniques for 

heavy metals share two pretreatment steps (acidification and dissolved oxygen removal) 

[53-54]. The first step is typically a digestion and/or acidification of the sample to extract 

and/or activate the heavy metals. The acidification step serves two purposes. Most water 

samples contain so called ‘humic acids’, which exist as negatively charged species at near 

neutral pH, and form complexes with cationic heavy metal species (e.g. Pb, Cd) [55-56]. 
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The second reason for acidification is to inhibit the formation of insoluble metal 

hydroxides during the stripping step [57]. 

  

1.6.5.1 Acidification and Humic Acid Removal 

 Acidification of the sample is a relatively minor problem since the sample 

volumes are very small and it is in principle feasible to include a concentrated acid 

reservoir in the remote instrument along with a micro-mixer to introduce to the sample. 

Another limitation of electrochemical sensors in the field is electrode fouling over time, 

since the signal is usually dependent on electrode area. Once again, the class of analytes 

that causes electrode fouling are the humic acids [58]. One of the advantages of 

coulometric analysis is that in the event of partial electrode fouling, it simply takes longer 

for analyte molecules to reach the electrode surface. However, the removal of humic acid 

has been reported using a variety of miniaturizable techniques including electrochemical 

oxidation and UV digestion [59-60].  

 

1.6.5.2 DO Removal is the Most Challenging Step 

 The most challenging step for heavy metal analysis in the field is the interference 

of dissolved oxygen or its H2O2 reduction product on the stripping analysis of some 

metals including Pb and Cd [61-62]. A brief review of the literature on oxygen removal 

prior to analysis reveals several approaches, few of which are suitable for remote 

deployment. The development of such a system capable of dissolved oxygen removal 

with minimal sample alteration is therefore highly desirable. A promising approach 

where dissolved oxygen is reduced to water on Ag electrodes has been reported but direct 
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exposure of the sample allows plating of some metals on the electrode surface [63]. 

Approaches for indirect DO removal have also been reported and these are based on 

flowing the sample through DO permeable silicone tubing which is submerged in an 

oxygen depleted reservoir [64]. To date, the combination of these two approaches has not 

been reported. However, this combination would seem to offer much for remote DO 

removal. 

 

1.7 Overview of Requirements for Remote Heavy Metal Sensors 

 The overall goal of this work is to demonstrate the concrete progress towards 

heavy metal sensor networks with the requisite sensitivity, selectivity, and practicality for 

decentralized remote analyses of drinking waters, wastewater effluents from industry and 

agriculture, and even rivers and lakes. The development of this sensor draws its 

advantages from the fields of microelectronics fabrication and electrochemistry. This 

approach offers many advantages in the way of practicality including miniaturized and 

inexpensive sensors, potential for real-time data acquisition, reduced need for manual 

operation, and reduced energy requirements. It also takes advantage of advances in 

miniaturized instruments such as miniature remote potentiostats, control circuitry, 

communications, etc. Due to the complexity and interdisciplinary nature of this approach, 

an overview of the entire system has been included as Figure 1.8.  
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Figure 1.8: Overview of the remote heavy metal sensor. The portions contained within 
the dashed lines indicate the focus of this dissertation. Green outlines indicate major 
progress of a component, yellow outlines indicate preliminary work, and red outlines 
indicate as yet to be addressed components.  
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1.8 Overview of Dissertation  

 A select list of key issues has been compiled in Table 1.6 to frame the 

developments which are described in this work. In Chapter 2, the development and 

evaluation of a microfabricated platform suitable for calibration free determination of 

metals by ASC is described. This platform consists of a stopped-flow, thin-layer, three-

electrode electrochemical cell (a microfabricated gold working electrode, pyrolytic 

graphite counter electrode, and custom miniature Ag/AgCl reference electrode). In 

Chapter 3, the application of this sensor to measurements of arsenite in the presence of 

the interferents Cu, Pb, Cd, and Zn by SEQ-MP-DPS-ASC is described. In Chapter 4, a 

device for the indirect removal of dissolved oxygen from microfluidic sample streams is 

developed and evaluated. Finally, Chapter 5 summarizes the current status of the remote 

heavy metal sensor in terms of its sensitivity, selectivity, and practicality. This discussion 

also includes a description of future directions of this research that are aimed at further 

improvements in sensitivity and selectivity; and a brief description of the remaining 

challenges which will hopefully inspire future developments. 

Chapter Specific Aim Status 
2 Microfabricated Stopped-Flow Thin-Layer Cell of Known Volume Addressed  
2 Anodic Stripping Coulometry for Metals (Cu and Hg) Addressed 
3 In situ Background Subtraction (DPS-ASC and SEQ-MP-DPS-ASC) Addressed 
3 Sensitivity and Selectivity of AsIII in the Presence of Cu, Pb, Cd, and Zn Addressed 
4 Sample Pretreatment (Oxygen Removal) Addressed 
5 Sensitivity & Selectivity (Approaches for Further Enhancement) In Progress  

5 Durability and Practicality Considerations: Remote Miniature Potentiostat, 
Automated Sample Handling, Communications, Powering the Remote Sensor, etc. In Progress 

Table 1.6: The specific aims for developing a remote heavy metals sensor for water 
analysis and the current development status. 
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CHAPTER II  

MICROFABRICATED STOPPED FLOW THIN LAYER 

CELL FOR ANODIC STRIPPING COULOMETRY 
 

2.1 Overview 

 Remote unattended sensor networks are increasingly sought after to monitor the drinking 

water distribution grid, industrial wastewater effluents, and even rivers and lakes. One of the 

biggest challenges for application of such sensors is the issue of in-field device calibration. With 

this challenge in mind, we report here the use of anodic stripping coulometry (ASC) as the basis 

of a calibration-free microfabricated electrochemical sensor (CF-MES) for heavy metal 

determinations. The sensor platform consisted of a photo-lithographically patterned gold 

working electrode on SiO2 substrate, which was housed within a custom stopped-flow thin-layer 

cell, with a total volume of 2-4 μL. The behavior of this platform was characterized by 

fluorescent particle microscopy and electrochemical studies utilizing Fe(CN)6
3-/4- as a model 

analyte. The average charge obtained for oxidation of 500 μM ferrocyanide after 60 seconds 

over a 10 month period was 176 μC, corresponding to a volume of 3.65 μL (RSD=2.4%). The 

response of the platform to copper concentrations ranging from 50-7500 ppb was evaluated, and 

the ASC results showed a linear dependence of charge on copper concentrations with excellent 

reproducibility (RSD ≤ 2.5%) and accuracy for most concentrations (≤ 5-10% error). The 
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platform was also used to determine copper and mercury mixtures, where the total metallic 

content was measurable with excellent reproducibility (RSD ≤ 4%) and accuracy (≤ 6% error). 

 

2.2 Introduction 

At present, water quality monitoring for heavy metal contaminants is usually 

handled by costly and relatively complex instruments such as ICP-MS, GC/LC-MS, and 

AAS [1]. These instruments provide a high level of performance in terms of sensitivity 

and selectivity but require operation by trained personnel, usually in a central laboratory 

[2]. This approach also relies on selected “grab sampling” where samples are collected 

on-site and then transported to the lab for analysis. The result, of course, is a “snapshot” 

of the water quality at a particular time and place which may not be representative of 

other times and places in the over-all system. Alternatively there are numerous portable 

instruments, often electrochemical in nature, which permit measurements to be made in 

the field [3-7]. This is a promising approach, particularly in view of the rapid advances in 

fabrication of micro total analysis systems [8]. However, these are normally operated by 

a suitably trained technician and still offer the same type of periodic “snapshot” 

monitoring provided by the grab sampling approach. This is an important limitation, and 

clearly it would be desirable to develop a sensing system that enables continuous, on-site 

operation on a 24/7 basis with minimal direct operator intervention.  

 At present, there do exist some commercially available instrument systems 

intended for continuous water monitoring [9]. These systems, which are usually intended 

for use in monitoring drinking water distribution grids, are typically large in size and 

relatively expensive and require direct access to a conventional electrical power source. 
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Furthermore, the analytical measurements carried out are usually non-specific in nature – 

e.g., conductivity, turbidity, etc. – and therefore provide little or no direct insight into the 

presence of individual metal species. As a consequence, this approach does not seem to 

offer a very attractive solution for real-time sensing of heavy metals in drinking or 

wastewater systems.  

 It seems that a more promising approach is the development of simple yet reliable 

sensors that can be constructed in large quantity, with a high degree of reproducibility, 

and at an affordable cost. Such devices could be placed permanently on-site to create an 

appropriate sensor network and interfaced to a wireless communications network for 

control and monitoring purposes [10-11]. In order for this goal to be practically 

achievable, advances are required in numerous technical areas. However, the focal point 

of such a measurement network is, of course, the sensor itself which needs to be able to 

operate accurately and reliably for extended periods but independently without the need 

for constant maintenance or direct supervision. Unfortunately, most analysis methods for 

metals fail to meet this critical requirement. Even if miniaturized and field-deployable, 

nearly all instruments require considerable attention from a suitably skilled technician for 

proper operation. For example, virtually all analytical instrumentation, including 

electrochemically based devices, require frequent calibration, even when located in a 

pristine laboratory setting [2, 12]. When deployed for long measurement periods in an 

uncontrolled field environment (temperature, humidity, etc.), calibration issues may be 

overwhelming.  

With this in mind, we have chosen to investigate a well-known but infrequently 

used electroanalysis technique – coulometry – that, in principle, should not require 
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calibration [12]. Nearly all electroanalysis methods are sensitive to a variety of variables 

such as temperature, pH, electrolyte concentration, and electrode area and therefore 

provide reliable quantitative information only if these variables are suitably controlled 

and the experiment is adequately calibrated by comparison to standard solutions of 

known concentration. This is certainly true for nearly all commonly employed 

voltammetric and potentiometric measurement schemes. The exception to this are 

coulometric measurements in which a sample is electrolyzed and the resulting electrical 

charge (current Integrated over time) is determined. Such processes are described by 

Faraday’s Law, first proposed by Michael Faraday in 1834:  

 

Q = n·F·N  (Equation 2.1) 

 

where Q is the measured charge in coulombs, n is the # of electrons involved in the redox 

process, F is the Faraday constant (96,485 coulombs/mole), and N is the number of moles 

of sample species electrolyzed. An alternative form of the equation is:  

 

       Q = n·F·C·V  (Equation 2.2) 

   

where C represents the analyte concentration and V the sample volume. Clearly, n and F 

are constants for any given redox process. So, as long as the redox reaction (n) is known, 

the sample volume (V) is known, and the electrolysis has proceeded to 100% completion, 

the associated charge is an absolute measure of the analyte concentration – regardless of 

prevailing experimental conditions. The only requirements are that 1) the analyte is 
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electrochemically active and 2) sample pretreatment methods (e.g., acidification for 

cationic trace metal analysis) can be practically achieved in the field. EPA regulated 

contaminants that can be monitored electrochemically include lead, mercury, cadmium, 

arsenic, chemical oxygen demand, and many others. Variations in temperature or pH or 

even changes in electrode area due to fouling are irrelevant to the determination as long 

as the electrolysis is given sufficient time to proceed to completion.  

Some coulometry-based analysis concepts have been reported in recent years. In 

particular, Bakker’s group has demonstrated how coulometric methodology may be used 

to transform ion-selective electrode measurements that are conventionally potentiometric 

in nature [13-14]. For example, application of a constant current to appropriate ion-

selective membranes can be used to deliver coulometrically controlled amounts of 

various ions for either calibration or titration purposes. Alternatively, application of a 

suitable potential at an ion-selective membrane and measurement of the current over time 

(or charge) associated with the resultant ion uptake can produce a calibration-free ion-

selective sensor that may be attractive for remote monitoring purposes [15].  

A coulometric variation on traditional anodic stripping voltammetry (ASV) was 

reported for metal analysis by Beinrohr’s group in the early 1990s [16-19] and, more 

recently, by Geneste [20-21] and Pierce [22] as well. In this approach, the sample 

solution is passed through a porous flow-through electrode possessing a large surface 

area. When a reducing potential is applied, metals are collected via electrodeposition; 

and, as in conventional ASV, they can be stripped off and determined after a suitable 

accumulation period. In all of these cases, the integrated stripping current gave the total 

charge associated with the sample volume that had flowed through the electrode 
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(assuming 100% electrodeposition); and a potentially calibration-free analysis was 

possible. Although it is possible that this anodic stripping coulometry (ASC) method 

might be suitable for on-site remote sensing applications, we are not aware of any such 

reports as yet. Furthermore, because of the requirement to maintain a fixed and very well 

known sample flow rate in this approach, implementation in practice would require an 

accurate and reliable pump or flow meter if flow is natural e.g., capillary action, gravity, 

etc.) on each sensing platform.  

  We believe that a more attractive coulometric approach that is consistent with the 

production of relatively economical sensing devices is the stopped-flow thin-layer cell. 

Because the sample volume is determined only by the cell volume, the quality of the 

measurement does not depend on a precisely metered flow rate; and the device design 

ought to be greatly simplified. Recently, our group has completed “proof-of-concept” 

work on such calibration-free coulometric approach [23]. Specifically, we have reported 

a μL-volume, thin-layer coulometric cell that allows total sample electrolysis to be 

achieved with a high degree of reproducibility in less than a minute. This cell consisted of 

isolated working and counter electrode chambers where the working electrode was 

microfabricated by photo-lithographically patterning a Si wafer with a Au film that 

covered the entire bottom of the cell. For a model analyte (such as Fe(CN)6
3-/4-), this first-

generation device was shown to track the analyte concentration over a very wide range 

and to yield reliable sub-ppm determinations over periods of weeks without the need for 

direct calibration. In the present work, we describe further developments in the 

coulometric analysis technique. In particular, we report device improvements 
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implemented in order to provide higher quality coulometric performance and application 

of the approach to measurement of metals.  

 

2.3 Experimental 

2.3.1 Chemicals  

Copper and mercury standard AAS solutions (1000 ppm), potassium nitrate, nitric 

acid, and sodium chloride were all purchased from Sigma-Aldrich (Milwaukee, WI); 

potassium ferrocyanide was obtained from VWR International (Batavia, IL), and agarose 

was purchased from Difco Laboratories (Detroit, MI). All chemicals were of the highest 

available purity and were used without further purification. Deionized water was used to 

prepare all solutions, and potassium ferrocyanide solutions were prepared daily before 

use.  

 

2.3.2 Sensor Chip Containing the Working Electrode 

Fabrication of the sensor chips was conducted in the cleanroom facility of the 

University of Louisville Micro/Nano Technology Center. The gold sensing electrodes 

were patterned on SiO2 coated wafers using an image reversal photolithographic liftoff 

technique. Briefly, this process consisted of thermally oxidizing a 100 mm silicon wafer 

to form a ~500 nm oxide insulating layer. The SiO2 layer was then coated with a positive 

photoresist and selectively exposed in a MA6/BA6 mask aligner (Suss MicroTec, 

Garching, Germany) to yield the negative of the desired pattern. Subsequently, gaseous 

NH3 assisted image reversal in a 310TA oven (Yield Engineering Systems, Livermore, 

CA) was used to improve liftoff and yield patterned wafers with exposed oxide only in 
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the electrode regions. A buffered oxide etch produced a ~210 nm recessed region in the 

oxide layer. These recessed regions were then filled by two successive sputtering steps 

(conducted without breaking vacuum) utilizing the multi-target PVD 75 sputtering 

machine (Kurt J. Lesker Co., Jefferson Hills, PA). The final electrode consisted of a thin 

nickel adhesion layer (100 Å) covered by a layer of gold (2100 Å), which served as our 

thin-film gold working electrode. A final liftoff step then removed the excess metal 

deposits atop the remaining sacrificial photoresist, exposing the final patterned wafer. 

The edges of the metal filled recesses were checked by a Dektak 8 surface profilometer 

(Veeco Instruments Inc., Plainview, NY), and the surface roughness was less than 10 nm 

in all cases. Each wafer contained 13 sensor chips which were then separated by dicing to 

yield the individual 1.3 cm X 3 cm sensor chips (Figure 2.1 inset).  

 

2.3.3 Flow Cell 

The flow cell consisted of the sensor chip, two polycarbonate fixtures, two rubber 

gasket layers, and a membrane. Drawings for the top and bottom fixtures were prepared 

using Computer Aided Design (CAD) software (Solidworks, Dassault Systèmes 

SolidWorks Corp., Waltham, MA) and were milled from translucent polycarbonate by a 

commercial prototyping service (FirstCut, Proto Labs Inc, Maple Plain, MN). A trench in 

the bottom fixture allowed for precise positioning of the sensor chip, and four alignment 

pins (short 1/16th inch stainless steel rods) between the two polycarbonate fixtures served 

as guides for precise placement of the remaining components during assembly. The 

drawings for the gasket and membrane layers were also prepared using CAD software 

(AutoCAD, Autodesk, Inc., San Rafael, CA) and cut using a precision 40W CO2 mini 
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laser cutter/engraver (Epilog Laser, Golden, CO). Assembly of these components 

together yielded a three electrode, membrane separated, dual compartment cell with 

independent flow paths for each compartment (Figure 2.1). Here we refer to the lower 

compartment containing the working electrode as the analysis compartment, and the 

upper compartment containing the counter and reference electrodes as the auxiliary 

compartment. 

The volume of the lower (analysis) compartment was defined by the sensor chip’s 

central 8 mm X 5 mm elliptical electrode (which served as the working electrode) on the 

bottom, the elliptical hole in the lower gasket along its sides, and the membrane (SelRO 

MPF-34, Koch Membrane Systems, Inc., Wilmington, MA) at the top. The lower gasket 

was made of 125 µm (± 75 µm) thick ultra-pure silicone rubber, and the elliptical hole in 

the center sat atop the sensor chip’s elliptical electrode, masking the edges for an active 

area of 8 mm X 4 mm. This central hole was flanked by two 8 mm long X 0.5 mm wide 

holes which channeled flow to pre-cut holes in the layers above. The volume of the upper 

(auxiliary) compartment was defined by the same SelRO membrane on the bottom, the 

upper gasket (8 mm X 4 mm hole in 500 µm (± 75 µm) thick ultra-pure silicone rubber 

flanked by two 1 mm X 0.5 mm holes to channel flow upwards as before) along its sides, 

and the top fixture. This upper compartment also contained the counter and reference 

electrodes, which were inserted through access holes in the top fixture.  

Two types of counter electrodes (CE) were employed. The first CE consisted of 

two ultra-pure (99.985%) 1 mm diameter gold wires (Alfa Aesar, Ward Hill, MA) in the 

bottom face of the top fixture connected together to form a single electrode. This CE was 

made by inserting a length of the gold wire through two pre-machined access holes in the  
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Figure 2.1: The platform consists of two polycarbonate fixtures (A), two rubber gasket 
layers (B), analyte impermeable membrane (C), counter and reference electrode 
compartment and access holes (D&E), and 2-4 µL working electrode analysis 
compartment (F). Assembly yields a three electrode dual compartment cell with 
independent flow paths. Inset: Photo of elliptical Au working electrode on SiO2 chip, 
bottom fixture, and a pen for scale. 
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top fixture. The second type of CE consisted of a flat 100 μm thick pyrolytic graphite 

sheet (Panasonic Electronic Components, Secaucus, NJ) incorporated as an additional 

layer between the top gasket and top fixture. This custom cut pyrolytic graphite sheet 

(PGS) included holes for the alignment pins and flow paths of the layers above and 

beneath it, and an additional 0.8 mm diameter hole in the center aligned with the access 

hole for the miniature reference electrode (RE). In order to ensure stopped flow during 

electrochemical experiments, rigid connections were used to connect the inlets and 

outlets of the top fixture to closeable valves. These valves served to isolate the 

microfluidic analysis cell from the flexible Tygon tubing used to connect it to the sample 

and waste reservoirs. Fittings, tubing, rubber gaskets, syringes, and valves for sample 

handling were all composed of inert plastics and rubbers and were obtained from Cole-

Parmer (Vernon Hills, IL) and/or McMaster Carr (Aurora, OH). The expected volume of 

the analytical compartment based on the design dimensions was 2-4 µL, depending on 

the thickness of the gasket used. The exact volume was established for each set of 

experiments using known concentrations of electroactive species such as Fe(CN)6
3-/4- or 

Cu0/Cu2+. 

 

2.3.4 Reference Electrode 

For all experiments in the cell, we utilized a custom-made Ag/AgCl miniature 

reference electrode. The end of a 3-4 cm length of ultra-pure (99.997%) 100 µm diameter 

silver wire (Alfa Aesar) was soldered to a larger wire for easier handling and then 

cleaned by successive sonication in 1 M HNO3 and deionized water. Chlorinating the 

clean silver wire was conducted vs. a similar length of 500 µm diameter Pt wire in 1 M 
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NaCl using a two electrode configuration. A function generator (Model 4011A, B&K 

Precision Corp., Yorba Linda, CA) was used to generate a 560 mV, 40 msec on/60 msec 

off pulse that was applied for 60-70 min. A rectifier diode (1N4001, Vishay 

Semiconductor) was placed in series with the electrodes to suppress any reverse (non-

oxidizing) current. The square wave was monitored with an oscilloscope (Model 

DS1052E, Rigol Technologies Inc., Oakwood Village, OH), and a digital multimeter  

(Model 34410A, Agilent Technologies Inc., Santa Clara, CA) was connected via a 

LabVIEW (National Instruments, Austin, TX) control program to monitor the 

unidirectional current flow over time. Reverse current during the “off” period was 

negligible, while the typical average current during the “on” period was 300-400 µA 

initially and gradually increased to 400-500 µA after 60-70 minutes. The chlorinated 

silver wires were stored in deionized water until needed. To assemble the reference 

electrode, 3 M NaCl was drawn into a 41 mm long X 0.8 mm O.D. glass capillary 

(Drummond Scientific Co., Broomall, PA) until it was about 3/4th full, then the bottom of 

the capillary was pressed into solidified 3% w/v agarose gel in 3 M NaCl to form a ~0.25 

inch frit. The chlorinated wire was then inserted into the top of the capillary and sealed 

with Torr Seal insulating epoxy (Varian Vacuum Technologies, Lexington, MA). The 

fritted end was immersed in 3 M NaCl while the epoxy dried and thereafter stored in that 

solution when not in use. The prepared electrodes exhibited less than 10 mV drift over an 

18 hour period relative to commercial Ag/AgCl reference electrodes (Bioanalytical 

Systems, West Lafayette, IN).  
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2.3.5 Fluorescent Particle Microscopy 

For microscopy, the CNC machining tool marks were removed from the bottom 

polycarbonate fixture by chemical and mechanical polishing until the fixture was 

optically clear. For this study, the assembled flow cell was identical to that described 

above, except that the sensor chip was replaced by a transparent glass slide of identical 

dimensions (Fisher Scientific, Pittsburgh, PA). The Fluoro-Max R0200 2 µm polystyrene 

fluorescent particle solution (Thermo Fisher Scientific Inc., Waltham, MA) was prepared 

by adding 2-3 drops to 50 mL deionized water until the particle density was visually 

suitable. The visualization utilized a Nikon Eclipse Ti-U inverted microscope (Nikon 

Instruments Inc., Melville, NY) equipped with a green light source for excitation of the 

particle immobilized dye (λex=542 nm, λem=612 nm), and a suitable filter for isolating the 

emitted light. Videos and snapshots were captured using a Pico Sensicam QE camera 

(PCO AG, Kelheim, Germany). After filling the cell, repositioning the microscope 

platform and fine-tuning the focus (approximately a 30 second process), the camera was 

used to record the particle movements at 9.1 frames per second. A total of 46 frames, 

recorded 30 to 60 seconds after filling the cell, were then combined into a single 

composite image where  streaks represent the movement of particles over a 5 second span 

in real-time. The particles which did not move, presumably immobilized on the walls of 

the compartment, reflect the elliptical shape of the compartment.  

 

2.3.6 Electrochemical Measurements 

Electrochemical measurements were carried out using a BASi Epsilon 

potentiostat (Bioanalytical Systems, West Lafayette, IN). For ferrocyanide, the basic 
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experiment consisted of using a syringe to fill the working electrode compartment with 

500 µM ferrocyanide in 0.1 M KNO3. To ensure that the electrode surface was 

sufficiently pre-conditioned prior to each run, a potential of -100 mV was applied and 

held for 10 seconds, followed by a 400 mV potential applied for 130 to 600 seconds to 

exhaustively oxidize the ferrocyanide to ferricyanide. Background correction was 

performed by conducting an identical experiment in the absence of ferrocyanide (0.1 M 

KNO3 only). The analyses of Cu and Hg were conducted in a 10 mM HNO3/10 mM NaCl 

supporting electrolyte and also utilized a 10 second pre-conditioning step (at the stripping 

potential) followed by a reducing potential step at 0 mV for exhaustive deposition of the 

metals.  

For early experiments, the background was obtained in a separate experiment in 

which the cell was filled with blank solution. However, in order to simplify the 

background correction process and minimize possible changes in electrode area over 

time, later experiments utilized an in situ background correction which was performed in 

the sample solution by stripping with and without pre-concentration of the metal on the 

electrode surface. The potential step sequence was 850 mV for 10 seconds to pre-

condition the electrode surface, 0 mV for 60 seconds to exhaustively reduce the metals 

onto the electrode surface, 850 mV for 640 msec during which the metal stripping signal 

was recorded, 850 mV for an additional 60 seconds to allow the metals to diffuse back 

into the cell, 0 mV for 20 msec where metal deposition was minimal, and finally to 850 

mV for 640 msec to obtain the background stripping signal. In all cases, the experiments 

were performed in triplicate for each sample, resulting in 3 current vs. time plots for each 
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sample and/or blank. A LabVIEW program was created to integrate the current-time 

curves and calculate the total charge passed following the potential steps. 

 

2.4 Results and Discussion 

2.4.1 Micro-Coulometry Cell Performance 

In our earlier work [23], we reported the development of a proto-type micro-

coulometry platform for calibration-free measurements and characterized its performance 

using Fe(CN)6
3-/4- as a model analyte. This device consisted of a µL-volume thin-layer 

cell with isolated working and counter electrode chambers. The actual working electrode 

consisted of a sputtered Au layer that was photo-lithographically patterned and covered 

the entire bottom of the elliptical cell (25.6 mm2). Thus, for the approximately 80 µm 

thick cell employed, the length of time required for complete electrolysis, once the 

working electrode compartment had been filled with sample and an appropriate potential 

was applied, was approximately 15 sec. The electrolysis charge was found to track the 

Fe(CN)6
3-/4- concentration over a very wide range (50-10,000 µM); and, most important, 

the approach gave stable and reproducible results for extended periods without the need 

for any calibration or other operator adjustments. The elliptical shape of the cell also 

promoted complete replacement of the cell contents, as indicated by excellent run-to-run 

reproducibility. 

 However, despite these positive outcomes, closer examination of the coulometry 

experiments indicated significant problems in cell performance. In particular, although 

the electrolysis currents were relatively short-lived as expected, it was found that these 

currents never completely reached the appropriate background and in fact persisted at low 
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levels for extended time periods. Consequently, the corresponding charge failed to reach 

a fixed level (representing total oxidation/reduction of the Fe(CN)6
3-/4- sample) but rather 

continued to increase slowly but steadily long after the cell should have been exhausted. 

For example, even though diffusion considerations suggested that electrolysis should be 

complete within tens of seconds, the accumulated charge continued to increase for 

several minutes and reached levels much higher than could be accounted for simply by 

the quantity of Fe(CN)6
3-/4- that had been injected into the cell (e.g., total charge 140% of 

expected after 1 min). 

 In view of these findings, the first problem that needed to be addressed in the 

current study was to improve the absolute coulometric performance of the measurement 

platform. The fact that the observed currents were always so long-lived and the measured 

charges for all Fe(CN)6
3-/4- concentrations consistently exceeded the expected values 

suggested that the effective electrolysis volume was larger than the actual physical 

volume of the cell and that this volume was augmented by unanticipated analyte mass 

transfer during the electrolysis. This could be due to such factors as analyte diffusion into 

the cell [24-25], leakage of sample solution, or residual flow after filling the sample 

compartment. In order to investigate these possibilities, we turned to a fluorescence 

particle microscopy (FPM) approach in order to visualize directly the microfluidic 

processes that were occurring in the device during a typical analysis. 

 The details of the FPM experiments are provided in the Experimental Section. 

Very briefly, the microfabricated sensor chip was removed and replaced by a transparent 

glass slide to permit viewing of the cell from below by an inverted microscope. The 

Fe(CN)6
3-/4- sample solution was replaced by one that contained a suspension of 2 µm 
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fluorescent-tagged polystyrene particles, but the cell filling procedure was carried out via 

manual syringe loading in exactly the same manner as usual. During the first 30 seconds, 

visual observations qualitatively indicated the flow was very fast initially and thereafter 

gradually slowed to a steady state value within 15-30 seconds. Figure 2.2A shows a 

composite FPM image constructed from dozens of individual photos taken between 30 

and 60 sec after a typical sample injection. In this image, recorded at the outlet of the 

electrolysis cell, the vertical streaks represent the movement of individual fluorescing 

particles during this period. Clearly, the sample solution was not static as desired but 

rather showed a long-term and relatively steady flow through the cell. By measuring and 

averaging the lengths of several streaks, the average linear flow rate was estimated to be 

nearly 4000 µm min-1 – which corresponds to a volume flow rate on the order of 0.30 µL 

min-1. Considering that the total volume of the electrolysis cell was only 2-4 µL, it was 

apparent that this level of residual sample flow could easily account for the surplus 

current and charge noted above.  

In an attempt to address this problem, all flow paths into and out of the cell (which 

previously had consisted of 1/8th inch I.D. Tygon tubing) were replaced by rigid plastic 

connectors. In addition, manual valves that could be closed after sample injection were 

inserted into the sample flow stream as close as possible to the device in order to isolate 

the cell to the greatest extent possible. When these simple measures were implemented, 

the residual sample flow was drastically decreased. As seen in Figure 2.2B, FPM 

imaging revealed that the steady-state flow was reduced by a factor of 4 (to 0.07 µL min-

1). Most critically, the resulting coulometric performance showed an immediate and 

drastic improvement. As shown in Figure 2.3, the experimentally measured charge for 
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Fe(CN)6
3-/4- closely matched the theoretically calculated charge over a much longer time 

period than before. Because the residual flow was not completely eliminated, the 

accumulated charge did increase slowly over time, but at a much slower rate than for the 

previous device. 

 
Figure 2.2: Fluorescent particle microscopy through transparent bottom fixture (sensor 
chip replaced with glass of identical dimensions). Particle movements recorded at 9.1 fps, 
46 frames composited to show particle movement over a 5 second span. A: Open valves, 
linear flow in channel: 3970 µm min-1. B: Closed valves, linear flow in channel: 882 µm 
min-1 (0.07 µL min-1 volumetrically). 
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Figure 2.3: Theoretical response of micro-coulometric cell (grey line), experimental 
result (black line), and ±10% of theoretical (dashed lines), and flow model based on 0.07 
µL min-1 of Figure 2.2B (triangles). Experimental data from charge accumulated during 
oxidation of 500 μM ferrocyanide in 0.1 M KNO3, background corrected and normalized. 
Oxidation at 0.4 V after 10 second electrode pre-conditioning at -0.1 V vs. Ag/AgCl, 
background correction obtained by subtraction of identical experiment with electrolyte 
only. 
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At times up to 2 minutes, there was practically no difference from the calculated charge; 

and even at electrolysis times up to 7 minutes, far exceeding that required for diffusion 

across the thin-layer cell, the measured charges remained within 10% of the 

expected/theoretical value. Further, the divergence of the experimental charge from the 

calculated charge appeared to be satisfactorily explained by accounting for the steady 

flow of fresh analyte at 0.07 µL min-1 (triangles of Figure 2.3).  

With the improved cell approaching stopped-flow conditions, it was possible to 

determine experimentally the cell volume by using ferrocyanide solutions of known 

concentrations. This would represent a good measure of the inherent reproducibility of 

the electrolysis operation over an extended period of time as shown in Table 2.1. The 

average charge obtained for the oxidation of 500 μM ferrocyanide after 60 seconds over a 

10 month period was 176 μC, corresponding to a volume of 3.65 μL, with an RSD of 

2.4%. Each day, the platform was ‘freshly’ assembled with different individual 

components (e.g., sensor chips, gaskets, electrodes). Even the major modification of the 

platform layout, for example, by addition of an extra layer (PGS counter electrode) did 

not affect the calculated cell volume (Days 291, 292, and 308), compared to the 

calculated volumes when the built-in gold counter electrode was used (Days 1, 5, and 

105). The experimentally obtained charges and calculated volumes above also showed 

the coulometric performance of the cell, with the excess charge after 130 seconds being, 

on average, only 5% higher than the charge at 60 seconds. Although improvements 

directed toward improving the coulometric performance of the device are being planned, 

the quality of these measurements was deemed adequate to allow the desired application 

to metal monitoring to be initiated.  
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Table 2.1: Experimentally calculated cell volumes on different days. Experimental 
details were the same as Figure 2.3. For each day, values in parentheses are the RSDs of 
three measurements, whereas the RSD next to the average values are for the six days.  
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2.4.2 Applications to Metal Analysis/Anodic Stripping Coulometry 

Obvious targets for electrochemically based analysis methods are the heavy 

metals, many of which are well known for their characteristic electroactivity. These 

species are of potential importance in practically relevant applications such as the 

monitoring of drinking and waste water systems. One fundamental difference in the 

analysis of metal analytes, compared to solution analytes such as ferri-/ferrocyanide, is 

the deposition of the reduced metal onto the electrode surface. In classic metal stripping 

experiments, the dissolved metal ion is pre-concentrated onto the electrode surface during 

a long lasting deposition step performed at a sufficiently negative potential to result in 

accumulation of a metallic deposit on the electrode surface. The deposition step, typically 

carried out in a bulk solution, is often accompanied by a stirring of the solution to 

enhance the transport of ions to the electrode surface, thereby enhancing the pre-

concentration effect. The most common stripping process involves some form of anodic 

potential sweep (linear or pulsed) where the metal deposits accumulated on the electrode 

surface during the deposition step are removed at a characteristic potential and the 

resulting currents are recorded.  

This is, of course, the basis for the familiar ASV trace analysis technique. The 

peak sizes (areas or heights) of the resulting voltammogram can then be used to 

determine the metal concentration by comparison to prepared standards. The peak size is 

dependent on numerous factors including the electrode area and history, deposition time, 

stirring rate, and the potential sweep parameters. Therefore, calibration is always 

necessary; and we are not aware of any reports of calibration-free methods based on 

voltammetric stripping techniques. By analogy, the method specifically examined here 
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might be termed anodic stripping coulometry (ASC). As with ASV, both deposition and 

stripping cycles are possible. The basic differences are that, with ASC, the amount of 

sample is fixed by the thin-layer cell volume and the length of time required for complete 

electro deposition is relatively short. Because the sample volume is intentionally 

restricted to a few µL, the very low concentration levels accessible by ASV are unlikely 

to be accessible with ASC. However, by fixing the volume, one ought to achieve an 

absolute, calibration-free measurement.  

 Figure 2.4 illustrates a typical square-wave voltammogram (SWV) obtained for a 

sample solution containing both Cu2+ and Hg2+ placed in the thin-layer micro-coulometry 

cell described above. (These metals were chosen because they are reducible at fairly 

positive potentials at the Au working electrode and therefore allowed us to avoid the 

concomitant reduction of O2 and H2O.)  The voltammogram showed the expected redox 

processes: Hg2+ reduction at approximately 600 mV and Cu2+ reduction at 275 mV (vs. 

Ag/AgCl) as well as the corresponding oxidations of the deposited metals on the return 

SWV scan. The oxidation, or “stripping”, peaks of trace B are larger than the reduction, 

or “deposition”, peaks of trace A due to the pre-concentration effect that occurs for each 

metal once its reduction potential has been reached. In fact, the reduction waves observed 

corresponded to the “underpotential deposition” (UPD) peaks related to the very first 

metal monolayer deposited onto the Au surface, which appears at a somewhat more 

positive potential than the subsequent “bulk” deposition occurring after the Au surface 

has been saturated. From the outset, we decided to focus on the UPD condition because, 

in view of the our small cell volume and large working electrode area, it was expected 

that sub-monolayer coverage would be exceeded only at very high Cu2+ or Hg2+  
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Figure 2.4: Square wave voltammogram in the micro-coulometry cell of 1.5 ppm Cu2+/5 
ppm Hg2+ in in 10 mM HNO3/10 mM NaCl, pH 2.20 (f = 15 Hz, Ep = 25 mV, Es = 4 mV, 
2 second quiet time preceded deposition before immediate return scan). A) Deposition 
trace showing reduction of Hg2+ followed by Cu2+. B)  Stripping trace showing oxidation 
of metallic Cu followed by metallic Hg. 
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concentrations. For example, calculations indicate that, for our specific cell, copper 

concentrations up to 20 ppm would yield sub-monolayer coverage [26]. By contrast, the 

maximum allowable Cu concentration in drinking water is only 1.3 ppm and that for most 

other heavy metals is much less than this. In addition, UPD conditions produced 

simplified voltammograms where (1) there was only one reduction peak and one 

oxidation peak for each metal, (2) intermetallic alloys were less likely to form [27], and 

(3) the Au electrode surface was likely to show less run-to-run hysteresis and therefore 

greater long-term reproducibility [28].  

  Initial ASC experiments, shown in Figure 2.5, examined the i-t behavior 

obtained for electrolysis of a sample solution that contained only Cu2+. Each experiment 

consisted of two phases. First, the potential was stepped to 0.0 V where the Cu2+ was 

efficiently reduced to Cu0 and the corresponding current was recorded over time. As seen 

in Figure 2.5A, the background corrected currents, whose levels were directly related to 

the Cu2+ concentration employed, decreased smoothly after the potential step, reaching 

the background after approximately 15 seconds. Next, as shown in Figure 2.5B, the 

potential was stepped back to 0.45 V to oxidize the deposited Cu0 back to Cu2+. Again, 

the currents (after background correction) were proportional to the Cu concentration in 

the starting sample. In this case, however, the currents were both much larger in 

magnitude and much shorter-lived, now decaying very rapidly and reaching the 

background level after only 500 msec. The slower decay of the deposition signal was, of 

course, determined by the diffusion of copper ions across the cell to the electrode surface 

and matched well what would be expected for the 73 µm thick cell used in this set of 

experiments. However, the stripping signal for the surface-confined copper, whose  
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Figure 2.5: Anodic stripping coulometry experiment for copper concentrations of 0.05 
ppm (a), 0.2 ppm (b), 0.5 ppm (c), 1 ppm (d), 2.5 ppm (e), 5 ppm (f), and 7.5 ppm (g) in 
10 mM HNO3/10 mM NaCl, pH 2.20. A) Background corrected deposition traces of first 
15 seconds shown (total deposition time was 60 seconds). B) Background corrected 
current time traces for subsequent stripping. Depositions were performed at 0 mV for 60 
seconds and stripping at 450 mV for 640 msec vs. Ag/AgCl reference electrode (3 M 
NaCl) and using PGS CE. Each trace represents the average of 3 trials of each [Cu2+] 
minus the average of 3 blank trials performed immediately prior to each concentration. 
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oxidation is no longer diffusion dependent, exhibited much faster charge accumulation. 

For all concentrations studied, the magnitude of the stripping charge was essentially 

finished in less 500 msec (with the measured charge increasing by <2% after an 

additional 140 msec). For both the deposition and stripping experiments, the 

corresponding charges could be obtained by integration of these i-t curves. When this was 

done, the coulometry data shown in Table 2.2 and the calibration curves shown in Figure 

2.6 were obtained.  

Several aspects of the ASC results in Table 2.2 were noteworthy. First, for both 

the deposition and stripping cycles, the total charges were directly related to the Cu2+ 

concentrations over the entire range studied – from 50 ppb up to 7500 ppb which is 

consistent with an absolute measurement such as exhaustive coulometry of a fixed 

sample volume. Second, for any given Cu2+ concentration, the total charge seen for the 

deposition and stripping cycles was always essentially the same which is consistent with 

a chemically reversible electrode process such as Cu0/Cu2+. Third, the accuracy and the 

precision of charge data obtained for the stripping cycle were consistently superior to the 

similar data for the corresponding deposition cycle. For the stripping experiments, the 

charges were much more reproducible, with RSDs generally less than 1%, even for the 

lowest concentrations employed. More important, the charges measured for the stripping 

cycle also matched the charges expected for the cell volume and Cu2+ concentrations 

much more closely – usually within 10% – than was the case for the corresponding 

deposition measurements where the discrepancy with the expected charge was sometimes 

50% or more.  
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This last feature of the ASC data – namely, the obviously higher quality of the 

stripping data compared to the deposition data – was somewhat surprising. We believe 

that this improvement is likely due to the much shorter time scale of the stripping step in 

ASC compared to that of the deposition: 500 msec vs. 15 sec. While the signal measured 

in each of these cycles should be identical in magnitude, it occurs over a much shorter 

time window for the stripping step; and therefore, there may be much less noise included 

in the measurement. This is a somewhat different situation than ASV where improved 

detection is obtained by the use of an extended electro deposition period to increase the 

signal directly. Despite the dissimilarity of the deposition processes, ASV and ASC both 

favor the stripping step to produce higher quality data.  

The lowest Cu2+ concentration employed in this study was 50 ppb (or 0.8 µM), 

but it was apparent that the limit of detection (LOD, signal/noise = 3) was somewhat 

lower. We chose not to try to optimize this aspect of ASC at this time because the LOD 

will clearly be determined by the specific characteristics of the ASC platform in use (in 

particular, the cell/sample volume and electrode area) and the specific application being 

targeted (i.e., the particular metal). Nevertheless, it seems likely that LOD values in the 

low ppb range should be achievable without drastic changes in cell design. At the same 

time, it is important to realize that the immediate goal of our ASC sensors is not to rival 

the ultra-trace level quantitation capabilities of conventional ASV but rather to make 

possible stand-alone sensing devices for use in sensor networks capable of providing 

reliable semi-quantitative monitoring capabilities suitable for early warning or emergency 

purposes. 
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Figure 2.6: Background corrected charges for Cu2+ concentrations of 50 ppb to 7.5 ppm 
in a solution of 10 mM HNO3/10 mM NaCl, pH 2.20. A) Charges of deposition cycles 
from Figure 2.5A (0-15 seconds). B) Charges of stripping cycle from Figure 2.5B (0-640 
milliseconds). Error bars represent the standard deviation (n=3). 
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Table 2.2: Background corrected experimentally determined charges for the deposition 
and stripping cycles for 50-7500 ppb Cu2+. Deposition charges calculated after a 15 
second reduction and stripping charges after 640 msec of oxidation (RSD indicated in 
parentheses n=3). Calculated charges are based on 1.83 µL cell and 2e- process for 
copper reduction and oxidation. Experimental conditions were the same as Figure 2.5. 
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2.4.3 Metal Mixtures 

It is unlikely that, in practice, many real samples such as drinking water or waste 

water would contain only a single metal ion. Rather, it is far more likely that, even if the 

analyst might be interested in only a single specific metal in his or her sample, other 

metals that are subject to electro deposition and stripping would be present in the sample 

as well. Therefore, a logical next step in characterizing the ASC method was to start to 

investigate samples that consisted of mixtures of metal ions. Of course, unlike ASV, 

where a potential scan is employed during the stripping cycle and individual metals give 

rise to peaks at characteristic potentials, the current ASC method employs just a single 

potential step for stripping. Thus, the resulting i-t curves provide insight only into the 

total quantity of metals that were electrodeposited from the sample and give no direct 

information with regard to exactly which metals had been present in the sample. In order 

to obtain such qualitative information, a more complex stripping approach would be 

required. 

The first mixture examined contained both Cu2+ and Hg2+. The SWV in Figure 

2.4 shows the i-E behavior of these metals under the prevailing experimental conditions 

and that both metals can be electrodeposited at 0.0 V (vs. Ag/AgCl). After exhaustive 

deposition, the metals were subsequently stripped from the electrode surface by a 

potential step to 850 mV, and the resulting i-t stripping curves for both Cu2+ alone and a 

Cu2+/Hg2+ mixture are shown in Figure 2.7. In both cases, the i-t curves shown are just 

those for the stripping of the Cu or Cu/Hg deposit since this measurement cycle has the 

greater analytical utility. The behavior seen in Figure 2.7A for Cu2+ by itself was exactly 

as expected: an exponentially decreasing anodic current that reached the background 
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level within 100 msec; and, as shown in Table 2.3, integration of this amperogram 

yielded charges that closely matched the value expected for this concentration and sample 

volume. Corresponding results for the Cu2+/Hg2+ mixture, shown in Figure 2.7B and 

Table 2.3, also displayed the expected short-lived oxidation current and allowed accurate 

determination of the total metal concentration present. However, close examination of the 

i-t curve for the mixture showed that the stripping current for the Hg deposit was slightly 

slower than that for Cu. The reason for the difference in time dependence, which was 

always seen for Cu/Hg mixtures, is not known at this point but presumably is due to 

slower electron-transfer kinetics for the Hg oxidation or to a specific interaction of the Hg 

with the Au electrode surface such as amalgam formation. 

In order to evaluate the capabilities of ASC for long-term calibration-free sensing 

applications, the above analyses of Cu2+ and Cu2+/Hg2+ samples were repeated several 

times over a period of more than 2 weeks. The results obtained, along with the values 

expected for the concentrations used, are summarized in Table 2.3. As always, the 

measured charges were highly reproducible for any single set of replicate measurements, 

with RSD’s of only a few percent. In addition, the charges showed good accuracy over 

the entire 2-week period, with errors usually much less than 1-3%. Although a 5-10% 

error in a conventional laboratory analysis might be considered large, we regard this level 

of performance as very good considering that these results did not depend on the use of 

any standards or on any run-to-run adjustments of the measurement platform and that the 

target of our ASC method is on-line metal measurement as part of a continuous “early 

warning” system. 
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Figure 2.7: Simultaneous determination of copper and mercury using in situ background 
correction. A) 30 µM Cu2+. B) 30 µM Cu2+ and 50 µM Hg2+. Electrolyte consisted of 10 
mM HNO3 and 10 mM NaCl, pH 2.20. Depositions were performed at 0 mV for 60 
seconds and stripping at 850 mV for 320 msec (vs. Ag/AgCl reference electrode and 
using PGS CE). Each trace represents the average of 3 metal trials (black) and 3 metal 
free electrolyte trials (grey). Insets show the corresponding charge-time curves. 
 
 
 
 

 
Table 2.3: ASC background corrected results for Cu2+ and Cu2+/Hg2+ mixtures over 
several weeks (RSD in parentheses n=3). The expected charges were 21 μC for copper 
and 56 μC for the copper/mercury mixture.  
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2.5 Conclusions 

 Although coulometry is a well-established electrochemical technique that has 

long been used in the investigation of electrode processes, it has not routinely been 

employed as a quantitative analysis tool. The reason for this is that coulometry is neither 

highly sensitive nor highly selective in nature and therefore possesses some distinct 

limitations for trace analysis of complex samples. Nevertheless, this study demonstrated 

clearly that coulometry, particularly in the form of ASC, offers some unique advantages. 

Most important, by carrying out exhaustive electrolysis in a µL-volume thin-layer cell, it 

is possible to make an absolute quantitative determination of the concentration of 

electroactive analytes. As long as the cell volume is fixed, the determination does not 

require the use of any standards and can be viewed as essentially “calibration free”. This 

uncommon feature of ASC makes the approach extremely attractive for applications 

requiring continuous on-site monitoring where immediate operator intervention is not 

feasible. Further, the ASC method should also be relatively insensitive to prevailing 

environmental conditions, such as temperature, which are not possible to be controlled in 

the field without direct operator input.  

By means of the microfabricated ASC device described here, we were able to 

begin exploring potential applications of this technique for the determination of 

individual metals and mixtures and were able to achieve rapid detection at sub-ppm 

levels by making use of the very fast stripping process that follows the much slower 

electro deposition step. Numerous issues remain to be investigated before practical 

applications for unattended on-site metal analysis by ASC will be feasible – e.g., 

electrode materials other than Au, more advanced stripping waveforms, inclusion of 
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elementary sample treatment steps. Nevertheless, we believe this new analysis approach 

is promising and that the current study represents a useful advancement of this 

methodology. 
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CHAPTER III 

ASC OF ARSENIC (III)  

WITH IN SITU BLANK SUBTRACTION 

 

3.1 Overview 

 The prevalence of arsenic in ground water and the large number of potential water 

sources used for drinking and irrigation makes remote widespread monitoring highly 

desirable. The ideal approach should be highly independent of operator intervention (i.e., 

automatable), not require any sort of calibration or blank electrolyte for background 

correction. Additionally, the approach ought to be selective for the most toxic of the 

arsenic species and tolerate possible interference by other metals. We describe such an 

approach here that is based on our previously developed microfabricated platform for 

determination of metals by potential step anodic stripping coulometry. Further, we also 

report the use a double potential step ASC (DPS-ASC) variant for in situ background 

correction, which does not require the use of a separate blank solution. To measure 

As(III) in the presence of other metals, (sequential multiple potential) SEQ-MP-DPS-

ASC is used to correct for the contribution of Pb, Cd, and Cu to the stripping signal. The 

coulometric response is shown to linear for As(III) standards between 100-1000 ppb 

(errors <10% and RSD <5%). In the presence of interferents, 500 ppb As(III) is 
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measurable to better than 10% error even in the presence of high interferent levels (1.3 

ppm Cu2+, 500 ppb Cd2+, 500 ppb Pb2+, and 5 ppm Zn2+). Similar performance was also 

possible for As(III) spiked Ohio River water after pH adjustment. An artificial 

component of the signal arising from the DPS-ASC method itself is also shown to be 

partially addressable by the SEQ-MP-DPS-ASC method. 

 

3.2 Introduction 

Human exposure to arsenic from groundwater used for drinking has been linked 

to numerous health problems, including skin diseases and a variety of cancers [1], and 

adversely affects the health of millions of people worldwide. For example, the Chinese 

Ministry of Health screened 445,000 wells in 20,000 villages between 2001 and 2005 and 

found 5% and 13% contained arsenic levels greater than 50 ppb and 10 ppb, the old and 

current World Health Organization and EPA recommended limits, respectively [2-3]. 

Despite the view that this problem is particularly associated with underdeveloped regions 

[4], naturally occurring arsenic in groundwater also represents a concern in rural regions 

of developed countries. For instance, it has been determined that a significant portion of 

groundwater wells in the northeast, midwest, and west regions of the USA have arsenic 

levels that exceed 10 ppb [5]. In addition, accidental release from industrial waste ponds 

can lead to elevated arsenic levels in local waters, and a variety of health scares relating 

to contamination of crops grown with arsenic contaminated waters or soils continues to 

be an issue [6].  

Current EPA approved methods for As monitoring in drinking water include ICP-

AES, ICP-MS, GF-AAS, and HG-AAS [7-12]. The cost and complexity of these methods 
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clearly limit their widespread application, and any large-scale As monitoring program 

based on these approaches would require a sustained and coordinated effort for sample 

collection and transportation to centralized laboratories. However, arsenic geochemistry 

and transport processes are complex in nature, and reports indicate that As levels even in 

individual wells can vary significantly with time. Therefore, both the periodic sampling 

possible via the above methods and even occasional on-site testing with portable 

instrumentation fail to provide an ideal system for As monitoring. In fact, the main 

lasting impact of the large scale study above is a recently reported predictive model for 

China that is based on parameters such as soil texture, wetness, salinity, and current 

understanding of the geochemical arsenic mobilization processes in groundwater [13]. 

Rather, there is a need for sensing devices that enable continuous in-the-field As 

monitoring. In practice, such sensors need to have adequate sensitivity to detect relevant 

As species at or near dangerous levels, sufficient selectivity to render complex sample 

treatment procedures unnecessary, and high enough reliability to permit long-term 

operation without the need for frequent hands-on operator intervention. Beyond this, the 

devices also ought to be able to be fabricated reproducibly in large enough quantity and 

at low enough cost to enable the development of extensive sensor networks. In contrast to 

the AAS, AES, and MS methodologies, electrochemical (EC) methods would seem to 

possess many of the above qualities and therefore offer real potential for remote 

monitoring applications. One of the critical characteristics of EC-based analysis systems 

is that EC cells can usually be scaled down in size dramatically without incurring any 

loss in performance. This feature has made the use of modern microfabrication 

techniques very attractive for the construction of electroanalysis devices; and, as a 
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consequence, the mass production of miniaturized electrochemical sensors that would be 

required to create sensor networks has potentially become cost effective [14].  

Recently, our group has begun to explore the use of anodic stripping 

coulometry (ASC), involving the exhaustive electrolysis of a fixed-volume  sample, 

to provide accurate stripping measurements that are effectively calibration free and 

thus seem to be ideally suited for in-the-field metal sensing applications [15]. In this 

work, our goal is to extend the ASC approach to As analysis. In particular, the 

sensor system presented here is specifically intended to enable the monitoring of 

inorganic As(III) or arsenite. Arsenic can exist in a variety of oxidation states 

including arsenide (As3-), elemental arsenic (As0), arsenite (AsIII), and arsenate 

(AsV). The most common species of arsenic in ground and surface waters are the 

inorganic forms of AsIII and AsV, which occur as the oxo-anions AsO3
3- and AsO4

3- 

and can be protonated to different extents depending on pH [16]. Elemental arsenic 

is nearly non-existent in surface and groundwater while the organic forms are rare 

and more commonly found in foods where they are readily eliminated by the human 

body and pose little toxicity risk [17]. Of the inorganic forms, As(III) is the more 

prevalent species in anoxic environments such as groundwater where entry most 

frequently occurs by dissolution of arsenic rich soil deposits [17]. Furthermore, 

As(III) is reported to be 25-60 times more toxic than As(V), and hundreds of times 

more toxic than organic As species [19-21]. While it would, of course, be ideal to 

have the capability to determine As in each of its chemical forms, that task would be 

undoubtedly require the instrument resources of a full analytical laboratory. 
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However, we believe that development of a practical in-the-field As(III) sensor 

would represent a useful step forward. 

There already exists a substantial body of knowledge regarding As(III) 

electrochemistry. Both voltammetric and potentiometric stripping techniques have been 

reported for As, and there is widespread agreement on the utility of the gold electrode for 

its determination [22-24].The deposition of AsIII (as As0) is reported to be facile on Au, 

requiring the application of a relatively modest cathodic potential, while AsV reduction is 

much more difficult and occurs only at applied potentials in the H2 evolution region [25]. 

Thus, AsIII can be pre-concentrated selectively and then subsequently determined by 

anodic stripping. Despite the relative portability electrochemical methods, all of these 

methods rely on a technician to physically transport instrumentation and manually sample 

each site. The technician is responsible for essential functions such as calibration to 

obtain quantitative results and sample pretreatment and/or additional experiments to 

mitigate the influence of interferents. 

In our previous work, we examined the calibration-free quantitative determination 

of metals such as Cu2+ and Hg2+. Our findings were in accord with Faraday’s Law: the 

absolute charge (in coulombs) associated with the deposition process must equal the 

charge for the stripping process. Although the signal associated with either the deposition 

or the stripping process could be employed for absolute quantitative analysis, the use of 

the stripping signal afforded two important advantages: 1) enhanced S/N and 2) more 

facile background correction. A limitation of our prior investigation was the utilization of 

a ‘blank’ electrolyte to obtain background signals for subtraction of the non-faradaic 

component of the signal. The requirement of a blank solution necessitates an extra sample 
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preparation step to mix the sample into a known electrolyte, in addition to the 

experimental steps to obtain and compare blank and analyte signals. We have therefore 

also been interested in developing an in situ blank correction to eliminate the need for a 

separate blank solution.  

 One approach for in situ blank correction of is so called subtractive anodic 

stripping voltammetry (SASV). In this method, two stripping voltammograms are 

obtained in the same solution (with and without prior pre-concentration of dissolved 

metals) and subtracted to enhance the various peaks at the characteristic potentials for 

each metal [26]. SASV is commonly used with pulse or step techniques such as SWSV 

which sacrifice a portion of the stripping signal to enhance sensitivity; and consequently 

SASV is not routinely or commonly applied as a calibration-less coulometric method 

[27]. Hence, the typical SASV analysis still requires the use of standards or standard 

additions. It should be noted that these methods are not intended for the application we 

have in mind and are indeed well suited for laboratory analysis where frequent operator 

intervention is possible. However, the concept of SASV is readily applicable to the 

potential step anodic stripping coulometry method. 

 

3.3 Experimental 

3.3.1 Chemicals  

Standard AAS solutions (1000 ppm) were used as the source for arsenite, 

cadmium, copper, lead, and zinc, and were purchased from Sigma-Aldrich (Milwaukee, 

WI) along with nitric acid and sodium chloride. All chemicals were of the highest 
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available purity and were used without further purification. Deionized water was used to 

prepare all solutions, and arsenic solutions were prepared daily before use.  

3.3.2 Sample Preparation 

 As2O3, Cu2+, Pb2+, Cd2+, and Zn2+ AAS standard solutions (1000 ppm) were 

diluted into the supporting electrolyte solution containing 10 mM HNO3 and 10 mM 

NaCl to make the indicated concentrations of those metals. For the determination of 

arsenite in natural waters, we used Ohio River water as a test matrix. The river water was 

collected in Downtown Louisville into a 1 gallon polypropylene container from the 

Kentucky side riverbank just upstream of the Big Four Bridge (GPS coordinates: 

38°15'47.0"N 85°44'14.3"W) and was refrigerated until used. To prepare samples using 

the RW, slightly less than 100 mL was decanted from the top of the container (to avoid a 

small amount of sediment which had settled) and allowed to come to room  temperature. 

The sample was then acidified with approx. 900 µL 1 M HNO3 to a pH of 2, and NaCl 

added to a final concentration of 10 mM along with the desired amount of AsIII before the 

final volume was adjusted to 100 mL. The resulting solution was then filtered through a 

0.45 µm polypropylene syringe filter to remove suspended particles and used directly in 

the analysis described below.  

 

3.3.3 Coulometric Stopped-Flow Cell and Microfabricated Au Working Electrodes 

Fabrication and testing of the coulometric flow cell and sensor chips has been 

previously described [15]. Briefly, thin film (2100 Å) gold working electrodes atop a thin 

nickel adhesion layer (100 Å) on SiO2 coated wafers were patterned by an image reversal 

photolithographic liftoff technique. Each 1.3 cm X 3 cm sensor chip contained a central 8 
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mm X 5 mm elliptical electrode, and a patterned 125 µm (± 75 µm) thick ultra-pure 

silicone rubber gasket was used to define the 8 mm by 4 mm working electrode 

compartment in the center of the electrode (Figure 3.1). Otherwise, the flow cell 

consisted of two polycarbonate fixtures, rubber gasket layers, 100 μm thick pyrolytic 

graphite sheet as counter electrode (Panasonic Electronic Components, Secaucus, NJ), 

and a 200 MWCO membrane (SelRO MPF-34, Koch Membrane Systems, Inc., 

Wilmington, MA). An access hole at the top allowed insertion of a custom-made 

Ag/AgCl 0.8 mm OD miniature reference electrode (RE), also as previously described 

[15]. Assembly yielded a three electrode, membrane separated, dual compartment cell 

with independent stoppable flow paths (Figure 3.1). The volume of the lower (WE) 

compartment was 1.85 µL (4 mm X 8 mm X 75 µm) and the dimensions of the top 

compartment were 4 mm X 8 mm X 500 µm. Fittings, tubing, rubber gaskets, syringes, 

and valves for sample handling were all composed of inert plastics and rubbers and were 

obtained from Cole-Parmer (Vernon Hills, IL) and/or McMaster Carr (Aurora, OH).  
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Figure 3.1: Partial schematic of anodic stripping coulometry platform (structural layers 
omitted for clarity). RE: custom 0.8 mm OD Ag/AgCl reference electrode. CE: pyrolytic 
graphite sheet counter electrode. CEC: counter electrode compartment (4 mm X 8 mm X 
0.5 mm). WEC: working electrode compartment (4 mm X 8 mm X 75 µm). WE: 
lithographically patterned 5 mm X 8 mm elliptical working electrode and contact pad 
(remaining electrodes unused in this work). Assembly yields a three electrode dual 
compartment cell with independent stop-valve controlled flow paths for WEC and CEC.  
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3.3.4 Electrochemical Measurements 

Electrochemical measurements were carried out using a BASi Epsilon 

potentiostat (Bioanalytical Systems, West Lafayette, IN). With the exception of river 

water samples, all analyses were conducted in a 10 mM HNO3/10 mM NaCl supporting 

electrolyte. In all cases a 10 second pre-conditioning step (at the stripping potential) was 

followed by the sequence of potentials indicated in Figure 3.3. Briefly, this consisted of 

an in situ blank deposition for 100 msec followed by stripping for 320 msec, then 

deposition for 60 seconds to exhaust the cell volume of all dissolved metals followed by 

stripping for 320 msec. The deposition potentials were 0 mV for Cu2+ deposition, -300 

mV for simultaneous Cu2+, Pb2+ and Cd2+ deposition, and -500 mV for simultaneous 

AsIII, Cu2+, Pb2+ and Cd2+ deposition. The stripping potential was 500 mV in all cases. 

 

3.4 Results and Discussion 

3.4.1 Characteristics of As(III) Deposition 

 Since our aim is in-field calibration-free determination of arsenite, we began by 

examining the arsenite deposition and stripping processes by CV. Since arsenic 

deposition is pH dependent, we chose to conduct these initial studies in an electrolyte of 

known pH (~2). We also chose low arsenite concentrations to ensure that the deposited 

arsenic on the electrode surface resulted in less than monolayer coverage since metallic 

arsenic is a semiconductor and does not readily electrodeposit on itself [28-29]. The 

resulting cyclic voltammograms for 2.5 µM arsenite are shown as curve 2 of Figure 3.2. 

Comparing this curve to the electrolyte only CV (curve 1) shows the reduction peak for 

dissolved oxygen remains nearly unchanged. Although the arsenic deposition peak 
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cannot be clearly distinguished from the oxygen reduction peak, the notable difference 

between these two traces is the small arsenic stripping peak at +100 mV. Since the 

oxygen reduction reaction or its byproducts on Au electrodes has been reported to 

interfere with stripping analysis for some metals [30-31], we wanted to investigate 

whether the arsenite stripping response was altered in the absence of oxygen. We 

therefore purged the arsenite containing sample with N2 and collected another CV (curve 

3). The absence of O2 allows visualization of the arsenite reduction peak at approximately 

-300 mV. The size of this peak is comparable to the arsenic stripping peak and also 

necessary for observation of the latter, indicating that these peaks represent the AsIII/As0 

redox couple.  

These findings were in accord with earlier studies of arsenite, and importantly, showed 

no evidence of the arsenite peak instability observed by previous investigators [32]. Van 

den Berg et al. investigated this instability and convincingly showed that generation of 

HOCl at the counter electrode oxidizes arsenite to arsenate if Edep < -0.5V and/or the 

chloride concentration is greater than 0.01 M. Van den Berg et al. also described that this 

effect is exacerbated by the presence of O2 (whose reduction current at the WE, causes 

generation of extra Cl2 at the CE and hence more HOCl). At our chosen conditions of 

pH~2 and 0.01 M chloride, we do not expect significant contribution of this effect. 

Additionally, the employment of a membrane to isolate the WE and CE in the ASC 

platform should further limit the exchange of byproducts between the chambers. 
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Figure 3.2: Cyclic voltammograms initiated at 700 mV (100 mV/sec scan rate) of 1) 10 
mM HNO3 and 10 mM NaCl supporting electrolyte. 2) 2.5 µM AsIII in 10 mM HNO3 and 
10 mM NaCl (ambient dissolved O2). 3) 2.5 µM AsIII in 10 mM HNO3 and 10 mM NaCl 
(after purge and blanket with N2). Inset: Expanded view of +/- 1 µA. 
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3.4.2 Measuring As(III) Standards by DPS-ASC 

 All coulometric measurements were performed in the ASC platform of Figure 

3.1. Our aim was to combine the primary advantage of potential step stripping for 

absolute coulometric analysis with the primary advantage of SASV, namely in situ 

background correction. We have termed the resulting method, shown in Figure 3.3, 

double potential step anodic stripping coulometry (DPS-ASC). In practice, the DPS-ASC 

method is very similar to the SASV method described above in that it employs two 

stripping steps (with and without exhaustive pre-concentration of dissolved metals from 

the TLC). To experimentally validate this method, we began by conducting the DPS-ASC 

experiment described in Figure 3.3 at various arsenite concentrations. In accordance with 

Figure 3.2, we chose a deposition potential of -500 mV and a stripping potential of 500 

mV since these would entirely encompass the arsenite deposition and stripping processes. 

The use of a wide potential window is purposeful in DPS-ASC since a sufficiently 

positive stripping potential is needed to remove all deposited metals in one step. This 

ensures the restoration of the gold electrode to its original condition, which is necessary 

for appropriate subtraction between analytical and background steps. The resulting 

amperograms for the stripping process with and without exhaustive deposition of the cell 

contents are overlaid in Figure 3.4, and correspond to the two stripping steps of Figure 

3.3. For each of the arsenite concentrations from 0-1000 ppb, the stripping signal 

obtained after a brief (100 msec) deposition resulted in negligible metal pre-concentration 

(<4% of the total dissolved arsenic in the 1.85 µL cell). This ‘background’ stripping 

signal is shown as the grey trace of Figure 3.4 for each concentration and corresponds to 

the first (grey) stripping signal of Figure 3.3. The stripping signal obtained after 
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exhaustive deposition of the TLC is shown in black and corresponds to the second 

stripping signal (black) of Figure 3.3. The arsenite stripping signal (in coulombs) is 

therefore equivalent to the difference between the integrated current time curves with and 

without exhaustive deposition of the cell. The magnitude of this arsenite coulometric 

stripping signal is visually represented by the crescent shaped area between the signals of 

Figure 3.4.  

 Plotting the area of these crescents vs. the arsenite concentration resulted in the 

calibration curve, inset of Figure 3.4. Two positive attributes of DPS-ASC that are 

immediately evident in the calibration curve are its linear response to the arsenite 

concentration, and of course the low RSD values (~<5%) indicated by the error bars for 

the individual data points. One aspect of this plot that was unexpected was the non-zero 

intercept for the blank (electrolyte only) coulometric signal. Independent experiments 

have demonstrated that this ‘signal’ is an artifact of the DPS-ASC method. Those 

experiments show the cause of this artifact is due to the necessary non-identical 

treatments of the electrode surface prior to each stripping step (100 msec deposition for 

‘blank; and 60 sec for exhaustive deposition). Although further details are omitted 

presently, this is an important aspect of DPS-ASC and certainly merits further 

investigations as described below. Of course, the non-zero intercept complicates the 

direct application of Faraday’s law since the charge obtained at any concentration is 

partially due to this artifact. However, when this artifact is accounted for by artificially 

placing the intercept at zero and a cell volume of 1.85 µL is used (as earlier determined 

by a similar experiment with copper), we find that the absolute accuracy is better than 5% 
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at concentrations above 500 ppb arsenite, and remains better than 10% for concentrations 

as low as 100 ppb (Table 3.1). 

 The DPS-ASC experiment was conducted three to five times for each 

concentration, and the last 3 experiments were always used for the quantitative analysis 

described above. In between runs, the cell contents were flushed and replaced by a fresh 

aliquot of sample. Notably, the stripping signals without exhaustive pre-concentration 

(grey traces of Figure 3.4A) were highly reproducible and nearly indistinguishable 

visually (RSD’s < 5%). Similarly the stripping signals after exhaustive deposition were 

highly reproducible. This reproducibility is somewhat surprising given that the current 

time plots are obtained in the order indicated by repeating the experiment of Figure 3.3 

(i.e., a deposition and stripping cycle is completed before repeating any particular peak is 

reproduced). The actual evaluation of the detection limit (LOD) should however be based 

on the RSD value of the areas for 3 individual crescents representing 3 identical trials, 

and these RSD values are shown in the fourth column of Table 3.1. It thus appears the 

actual LOD is certainly below 100 ppb and depending on the desired accuracy, the LOQ 

is also in this range. Nonetheless, this approach does not account for the impact of the 

non-zero intercept and it is clear that future work should seek to reduce the magnitude of 

this intercept artifact experimentally. In that regard, investigation of the DPS-ASC 

method parameters has shown that this intercept can be reduced by making the electrode 

area smaller and/or the ‘blank’ deposition time longer than the 100 msec shown in Figure 

3.3.  
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Figure 3.3: Illustration of recorded current during DPS-ASC pulse sequence performed 
within the ASC platform of Figure 3.1 (not to scale). Experiment always initiated by 
holding the stripping potential (Estrip) for 10 sec (not shown in schematic above). 
Recording of current initiated upon stepping to deposition potential (Edep) for 100 msec, 
then stepping to Estrip for 320 msec. The potential is then stepped back to Edep for 60.1 sec 
to exhaustively pre-concentrate all metals on the electrode surface, followed by Estrip for 
320 msec. Edep was 0 mV for plating Cu2+, -300mV for plating Cu2+, Pb2+, and Cd2+ 
simultaneously, and -500 mV for plating Cu2+, Pb2+, Cd2+, and AsIII simultaneously. Estrip 
was always 500 mV and reflects the stripping of all plated metals. 
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Figure 3.4: DPS-ASC results for AsIII concentrations of 0 ppb (A), 100 ppb (B), 250 ppb 
(C), 500 ppb (D), 750 ppb (E), 1 ppm (F) in 10 mM HNO3/10 mM NaCl, pH 2.0. The 
collected stripping signal for any given concentration (e.g., for F) shows an overlay of the 
two stripping steps collected during the experiment described in Figure 3.3. Inset: Top 
line: Measured charge in µC for the stripping signals (i.e., area of the crescents at each 
AsIII concentration). Bottom line: same as top line, but ‘background corrected’ so that 
intercept is zero (see text for discussion). Error bars represent the standard deviation of 
the crescent areas (n=3). 
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Table 3.1: Numerical values for DPS-ASC results shown in Figure 3.4. ‘Strip 1’ is the 
area under stripping amperogram after 100 msec at Edep = -500 mV. ‘Strip 2’ is the area 
under stripping amperogram after 60.1 sec at Edep = -500 mV. Indicated RSD’s for Strip 1 
and Strip 2 are based on the standard deviation and averages of the individual steps from 
three trials. ‘BgC Charge’ is the area of the crescent independently calculated for three 
trials. Corresponding RSD’s are calculated by first obtaining the area of the crescents 
from three independent DPS-ASC trials for each solution, then using the standard 
deviation of the area of three crescents (i.e., three trials). Measured ‘Intercept Corrected 
Charge’ (in red) is based on artificially subtracting the intercept (1.54 µC) from each 
‘BgC Charge’ value, hence the RSD’s are identical to the ‘BgC Charge’. Expected charge 
as calculated from Faraday’s Law, Q=nFVC, where n=3 for AsIII/As0, F is the Faraday 
constant, C is AsIII concentration, and V is volume (1.85 µL). 
 
 
 

 

 

 

 

 

 

 

 

 

 



 
 

100 
 

3.4.3 Interferences: Selective As(III) Stripping by SEQ-MP-DPS-ASC 

 The issue of interference by other metals which can be pre-concentrated on the 

electrode surface and subsequently stripped is a concern for most arsenite studies. 

Beinrohr et al. found that the stripping peaks for As, Sb, and Pb completely coalesced, 

and partially overlapped with the Bi peak [33]. They concluded that Sb and Bi were less 

probable in the analysis of real waters and proposed an additional experimental step to 

correct for Pb interference [33]. Compton et al. utilized gold nanoparticle modified 

electrodes to analyze river water (1:1 with 2 M HCl) by LSV and SWV and concluded 

Cu2+ was the only likely interferent [23, 34]. Kounaves et al. also investigated the effect 

of Hg, Pb, and Cu interference on the arsenite stripping peak in 2 M HCl on Au 

microelectrode arrays by SWASV [28]. They found significant interference by Pb, Hg, 

and especially Cu at ppb concentrations similar to the 100 ppb As(III) used [28]. Due to 

the prevalence of these metals, an approach for the removal of these positively charged 

metal cations has been described by Swain et al. [35]. In DPS-ASC, the effect of such 

interferents ought to be correctable by variation of the deposition potential.  

 As previously demonstrated for mixtures of copper and mercury [15], the 

potentials chosen for the DPS-ASC experiment can be chosen to encompass the 

deposition and stripping processes for one or more metals, so that the stripping signal 

reflects the total concentration of metals within a chosen potential window. Since the 

most problematic interferents appear to be other metals which can be electrodeposited 

and accumulated on the electrode surface at potentials preceding the arsenite deposition 

(e.g., Cu2+, Pb2+, and Cd2+), we investigated the feasibility of arsenite analysis in the 

presence of these metals. We also included Zn2+, whose deposition potential is well 
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negative of arsenite to demonstrate that interferents in this category may be ignored 

entirely in DPS-ASC. Cyclic voltammograms were conducted in the Cu2+, Pb2+, and 

arsenite spiked electrolyte and the results indicated that a Cu stripping peak is evident 

when the deposition potential is more negative than 0 mV, and a Pb stripping peak is 

present when the deposition potential is negative of -300 mV. Separate experiments 

showed that a stripping peak for Cd was obtained when the deposition potential was less 

than -100 mV, and that the presence of 5000 ppb Zn2+ was not detectable at potentials as 

negative as -500 mV.  

To demonstrate the effect of the above interferents, we conducted a series of DPS-ASC 

experiments for arsenite solutions spanning 0-1000 ppb, all of which also contained 1300 

ppb Cu2+, 500 ppb Pb2+, 500 ppb Cd2+, and 5000 ppb Zn2+. These concentrations were 

chosen since they are much higher than the concentrations expected in groundwater 

samples and ought to give a general idea of the feasibility of this approach. The premise 

of this experiment is that quantitative differentiation between the total arsenite content 

from that of Cu, Pb, and Cd content could simply be obtained by comparing the DPS-

ASC signal when the deposition was carried out at -300 mV (where the stripping signal 

reflects the sum of Cu, Pb, and Cd) and -500 mV (where the signal reflects these metals 

in addition to arsenite). The results are shown in Figure 3.5 where the different bars 

show the measured charge after depositions at several potentials. In the case of 0 mV, 

only the signal due to copper is apparent and the measured charge is constant since the 

copper concentration was a constant 1300 ppb in all the solutions, even as the arsenite 

concentration of the solutions is changed. Unexpectedly, the signal at -300 mV deposition 

showed an increasing response (for fixed Cu, Pb, and Cd concentration). The cause of 
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this slope is likely due to some arsenite deposition at this potential (see Figure 3.2). The 

RSD values were however generally excellent (~<5%) as is typical for the DPS-ASC 

experiment. Further, the slope increase was most pronounced when the deposition 

potential was -500 mV (sufficient for deposition of arsenite). 

 Interestingly, the acquisition of this data set allows the application of an alternate 

background correcting (BgC) method. BgC method 1 (as in Figure 3.4) is to simply, and 

of course artificially, adjust the intercept to a value of zero. In practice, this BgC method 

was only possible since the stripping signal of an arsenite-free but otherwise identical 

blank solution was used in that data set. Such a convenient blank solution would of 

course be unavailable at the time and location of analysis for remotely deployed sensors. 

We therefore explored background correction using the multiple deposition potentials 

that the data set of Figure 3.5 affords. This BgC method essentially subtracts the 

stripping signals obtained after depositions at -500 mV and -300 mV, respectively. This 

is possible since the coulometric stripping signal for the -300 mV deposition ought to 

contain 1) any metals besides arsenic which can be deposited at that potential, and 

importantly 2) a large portion of the artificial signal which arises due to the use of the 

DPS-ASC method (even if metals are absent). The subtraction of the two DPS-ASC 

signals after depositions at -500 mV and -300 mV gives the final coulometric values 

(blue bars of Figure 3.5) which are clearly correlated to the concentration of As(III) in 

each solution. Encouragingly, comparison of the measured charge (blue bars) to the 

expected charge (red bars) shows an accuracy of better than 5% for arsenite 

concentrations above 500 ppb. However, when the ppb lead and cadmium concentrations 

(500 ppb) exceed the arsenite ppb concentration, the accuracy is compromised (>30%). In 
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practice, it is unlikely that interferents such as Cu2+, Pb2+, and Cd2+ would be present at 

such high concentrations in natural samples.  

 In conclusion the DPS-ASC method, Like SASV and traditional stripping 

voltammetry, shows enhanced sensitivity due to the temporal concentration of the signal. 

Unlike SASV, the selectivity of DPS-ASC arises from the choice of deposition potential 

whereas the stripping is performed at positive enough potentials to indiscriminately strip 

all plated metals. Also unlike SASV, this method is capable of directly providing 

accurate coulometric determinations without the use of standards. An additional 

advantage of DPS-ASC is the run to run signal stability (RSD typically less than 5%), 

which allows meaningful subtraction between signals. Despite these advantages, an 

important limitation is that the chosen potentials essentially contain all analytes which 

can be deposited and stripped over a given potential window. The lack of direct 

information about the individual metal contents is mitigated by the speed of the analysis. 

Each determination takes about a minute, and therefore the total analysis time is 

approximately 3 minute per metal (for 3 trials).  
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Figure 3.5: SEQ-MP-DPS-ASC results for AsIII concentrations of 0 ppb (A), 100 ppb 
(B), 250 ppb (C), 500 ppb (D), 750 ppb (E), 1 ppm (F) in 10 mM HNO3/10 mM NaCl, 
pH 2.0 containing 1.3 ppm Cu2+, 500 ppb Pb2+, 500 ppb Cd2+, and 5 ppm Zn2+. Bars 
indicate measured charge after conducting experiment of Figure 3.3 using an Edep of: 0 
mV (Cu2+ measurement), -300 mV (simultaneous Cu2+, Pb2+, and Cd2+), and -500 mV 
(simultaneous Cu2+, Pb2+, Cd2+, and AsIII) as shown in green, purple, and light blue, 
respectively. Error bars represent the standard deviation of the crescent area for 3 
independent trials. Subtracting the area of crescents obtained after deposition at -300 mV 
and -500 mV resulted in the charge values of the dark blue bars (Error bars represent 
standard error propagation of values used for calculation, i.e., light blue bars minus 
purple bars). The expected charge for the ASC platform at the indicated AsIII 
concentrations is represented by the red bars for ease of comparison. Inset: 
Representative results for 1 ppm AsIII solution showing the raw current-time stripping 
signal following: 1) Edep = 0 mV, 2) Edep = -300 mV, 3) Edep = -500 mV.  
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3.4.4 As(III) in Spiked Ohio River Water by SEQ-MP-DPS-ASC  

 In order to explore the utility of this approach for determinations of arsenite in 

natural waters, we used natural river water samples that were spiked with arsenite in the 

500-1000 ppb range. We chose to conduct this investigation in acidified river water that 

was adjusted to resemble the electrolyte used in the experiments above (10 mM NaCl, pH 

~2). To ensure that the ASC platform behaved as expected, the first trace shows the 

response for a 500 ppb arsenite sample identical to that shown in Figure 3.4. The 

resulting stripping signals for this sample and three river water samples spiked with 500-

1000 ppb, shown as Figure 3.6, are qualitatively similar. Background correction utilizing 

the subtraction method described for Figure 3.5 (i.e., the stripping after deposition at -

500 mV less the stripping signal after deposition at -300 mV) resulted in the numerical 

values of Table 3.2. The accuracy of the standard 500 ppb solution was within 0.5%, 

while those for the arsenic spiked river water were within 2.6%, 3.0%, and 13.6% for the 

500 ppb, 750 ppb, 1000 ppb arsenite spiked treated river water. Clearly, the pretreatment 

of the river water with NaCl and HNO3 is a disadvantage. We therefore attempted the 

same experiment (results not shown) for untreated arsenite spiked river water. Although 

Van den Berg et al. showed that arsenite can be detected at pH<8, we were not able to 

obtain coulometric results at the natural pH of arsenic spiked river water even when 

stripping at +850 mV. This may be consistent with the reported non-optimal anodic 

stripping voltammetry in the presence of O2 at low ionic strength (low chloride) [36]. 
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Figure 3.6: SEQ-MP-DPS-ASC results for 500 ppb AsIII standard in 10 mM HNO3 and 
10 mM NaCl (A), and 500, 750, 1000 ppb spiked river water (plus 10 mM NaCl and 
HNO3 to pH~2) (B, C, and D respectively). Measured charge corresponding to AsIII was 
obtained by subtracting the area of crescents obtained after deposition at -300 mV and -
500 mV for each sample (See Table 3.2 for numerical values). 
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Table 3.2: Numerical values for SEQ-MP-DPS-ASC results shown in Figure 3.6. ‘Strip 
1’ is the area under stripping amperogram after 100 msec at indicated Edep. ‘Strip 2’ is the 
area under stripping amperogram after 60.1 sec at Edep. Indicated RSD’s for Strip 1 and 
Strip 2 are based on the standard deviation and averages of the individual steps from 
three trials. ‘BgC Charge’ is the independently calculated crescent area for three trials. 
Corresponding RSD’s are calculated from the standard deviation of the area of three 
crescents (i.e., three trials). Measured BgC (in red) is based on subtracting crescent 1 
from crescent 2, and RSD’s were obtained by propagation of the uncertainties used in the 
calculation.  
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3.5 Conclusions 

 We describe a method we have termed multi-potential DPS-ASC, and 

demonstrate its excellent promise for large-scale de-centralized remote monitoring of 

arsenite in natural waters for health applications. The technique uses a 1.85 µL sample 

volume but nonetheless shows promising sensitivity (currently 1-2 orders of magnitude 

higher than the 1-10 ppb LOD required for practical field use). Further development of 

this approach should proceed in several directions: 1) adapt the method for natural pH 

low conductivity media such as river and well waters, 2) expand the method to arsenate 

in a manner that is consistent with remote monitoring, and most importantly 3) adapt or 

modify the method to obtain lower LOD’s which ought to be applicable to ASC as an 

approach for remote metal determinations. To lower the LOD, a detailed investigation to 

optimize parameters such as the electrode area and DPS-ASC waveform is currently 

underway and we look forward to reporting on these in the near future. Additionally, 

significant inter-disciplinary advances will be necessary to integrate a remotely 

deployable potentiostat, sample handling techniques (e.g., pumping/moving the sample), 

remote data collection and processing before routine field application is feasible. 
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CHAPTER IV 

SAMPLE PRETREATMENT:  

DISSOLVED OXYGEN REMOVAL 

 

4.1 Overview 

 Current water quality monitoring for heavy metal contaminants largely results in 

analytical snapshots at a particular time and place. We have therefore been interested in 

miniaturized and inexpensive sensors suitable for long-term, real-time monitoring of the 

drinking water distribution grid, industrial wastewater effluents, and even rivers and 

lakes. Amongst the biggest challenges for such sensors are the issues of in-field device 

calibration and sample pretreatment. Previously, we have demonstrated use of 

coulometric stripping analysis for calibration-free determination of copper and mercury. 

For more negatively reduced metals, O2 reduction interferes with stripping analysis; 

hence, most electroanalysis techniques rely on pretreatments to remove dissolved oxygen 

(DO). Current strategies for portable DO removal offer limited practicality due to their 

complexity and often cause inadvertent sample alterations. We have therefore designed 

an indirect in-line electrochemical DO removal device (EDOR), utilizing a silver cathode 

to reduce DO in a chamber that is fluidically isolated from the sample stream by an 

O2 permeable membrane (Figure 4.1). The resulting concentration gradient supports 
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passive DO diffusion from the sample stream into the de-oxygenation chamber. The DO 

levels in the sample stream were determined by cyclic voltammetry (CV) and 

amperometry at a custom thin-layer cell (TLC) detector. Results show removal of 98 % 

of the DO in a test sample at flow rates approaching 50 µL/min and power consumption 

as low as 165 mW hr L-1 at steady state. Besides our specific stripping application, this 

device is well suited for LOC applications where miniaturized DO removal and/or 

regulation are desirable. 

 

 
Figure 4.1: Overview of indirect dissolved oxygen removal by passive diffusion. 
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4.2 Introduction 

 A unique characteristic of electrochemically based analysis systems is that the 

electrodes and cells at the heart of such instrumentation can generally be scaled down in 

size without loss of performance. This feature makes the use of modern microfabrication 

techniques very attractive for the construction of electroanalysis devices, and in fact the 

production and use of microfabricated electrochemical devices has become 

commonplace. Among the new possibilities that this has made feasible is the cost-

effective mass production of miniaturized electrochemical sensors. 

 In our group, we have become interested in the development of microfabricated 

devices suitable for the creation of sensor networks for long-term remote analysis 

applications - such as the continuous monitoring of chemical contaminants in drinking 

water systems. In these situations, the scale and complexity of the system limits a 

conventional analysis approach to only periodic sampling at limited times and locations. 

The primary obstacles to making such remote sensors practical are the issues of in-field 

sample preparation and calibration. To address the latter, our group has recently shown 

that anodic stripping coulometry (ASC) in microfabricated devices is a promising 

approach for calibration-free sensing of heavy metals [1]. However, these investigations 

were not able to address metals such as Pb and Cd which suffer from interference due to 

oxygen reduction at the potentials needed for electrodeposition [2]. Although portable 

anodic stripping analyses are widespread, the associated dissolved oxygen (DO) removal 

step still requires direct operator intervention and thus would be unsuitable for remote 

automated sensing [3-5]. With the exception of Ag, Ag amalgam electrodes and a few 

special cases with the Au electrode [6-9], classical stripping analysis of Pb requires a de-
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oxygenation step on typical electrode materials such as graphite and mercury [10-

11].Consequently, we have become involved in the development of microfabricated 

electrochemical platforms for on-site removal of DO for use with our ASC devices for 

metal analysis. In fact, a miniaturized DO removal or regulating apparatus should also be 

useful for a diverse range of electroanalytical and lab-on-a-chip applications, such as 

voltammetric detection in capillary electrophoresis, microfluidic cell culturing platforms, 

and possibly O2 sensitive microfluidic reactors [12-15]. 

 A review of ‘portable’ continuous DO removal schemes reveals a variety of 

chemical and physical approaches. The principal of these include the application of a 

vacuum, exposure to an O2 scavenger, and the displacement of DO by purging with an 

inert gas such as Ar or N2. Furthermore, the removal can be carried out either directly 

(e.g., by direct addition of the scavenger or direct degassing with N2) or indirectly (e.g., 

by flowing the sample stream through O2 permeable tubing immersed in O2 scavenging 

medium or N2 atmosphere) [4-5, 16-19]. Most of these approaches possess obvious 

drawbacks for automated remote analysis. The direct addition of oxygen scavenging 

additives may unintentionally change metal speciation while membrane separated use 

requires storage of air reactive consumables on the device. And the use of vacuum pumps 

or purge gas reservoirs, besides being cumbersome and complicated, may also change 

sample pH by removal of dissolved CO2 [17-19]. 

 An ideal device for in-line DO removal should be simple to operate over extended 

time periods and should offer the potential for low cost fabrication and low power 

requirements. A very attractive, but macro-sized, electrochemical approach was described 

by Frei et al., where the sample is passed through a porous silver electrode held at a 
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sufficiently cathodic potential for O2 reduction [20]. Subsequently, Adanuvor and White 

studied the reduction of oxygen on silver electrodes in detail and suggested that, in highly 

basic solution, the O2 conversion involves the following reaction sequence [21-22]:  

 

O2
 + H2O + 2e- 

 HO2
- + OH-  (Equation 4.1) 

 

HO2
-  1/2O2 + OH-   (Equation 4.2) 

 

 We report herein a proof-of-concept study demonstrating the design and 

evaluation of an indirect electrochemical oxygen removal system. The device described 

here allows DO in a thin-layer sample stream to proceed via passive diffusion across an 

oxygen permeable membrane into a second thin-layer chamber where it is 

electrochemically reduced at a Ag electrode as reported above. Importantly, this indirect 

approach avoids unintended alterations of the sample stream by the Ag cathode (e.g., 

deposition of metals) or reactions at the associated counter electrode. 

 

4.3 Experimental 

4.3.1 Materials 

 ACS reagent grade NaOH was obtained from Fisher Scientific (Pittsburgh, PA). 

KCl, 1000 ppm AAS Pb2+ standard, sodium acetate, and acetic acid were obtained from 

Sigma-Aldrich (Milwaukee, WI). 1.6 mm Au disc and Ag/AgCl electrodes were obtained 

from BASi (West Lafayette, Indiana). Deionized water was used to make the EDOR de-

oxygenation solution (6.5 M NaOH), and the test sample (100 mM KCl) was allowed to 
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equilibrate with air for at least 24 hours. N2 and CO2 gases were from Welder’s Supply 

(Louisville, KY). 

 Drawings for the fixtures and rubber layers were designed in SolidWorks 

(Dassault Systèmes SolidWorks Corp., Waltham, MA) and Auto-CAD (AutoCAD, 

Autodesk, Inc., San Rafael, CA), respectively. The fixtures were milled by a commercial 

prototyping service (FirstCut, Proto Labs Inc, Maple Plain, MN), and the rubber layers 

were precision cut by a mini laser cutter/engraver (Epilog Laser, Golden, CO). Rubber 

layers including the 125 µm thick high purity silicone rubber, valves, PEEK tubing, 

adapters, and Viton O-rings were from McMaster Carr (Aurora, OH), Cole-Parmer 

(Vernon Hills, IL), or AAAcme Rubber (Tempe, AZ). High purity (99.95 %) 75 µm thick 

silver foil was obtained from Alfa-Aesar (Ward Hill, MA), the 200 MWCO SelRO MPF-

34 membrane was from Koch Membrane Systems, Inc., (Wilmington, MA), and 100 µm 

thick pyrolytic graphite sheet was from Panasonic Electronic Components (Secaucus, 

NJ). 

 

4.3.2 Equipment 

 A commercial power supply (Model GPR-1810HD, GWInstek Corp., Chino, CA) 

was used to provide a 1V potential to the EDOR device, and a digital multimeter (Model 

34410A, Agilent Technologies Inc., Santa Clara, CA) connected via a LabVIEW 

(National Instruments, Austin, TX) control program was used to monitor the current. The 

initial sample DO content was measured by a commercial Clark type O2 Probe 

(Milwaukee Instruments Inc., Rocky Mount, NC). Sample flow was controlled by an 

HPLC pump (Model 222C, Scientific Systems, Inc., State College, PA). A BASi Epsilon 
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potentiostat (Bioanalytical Systems, West Lafayette, IN) was used to monitor the DO at 

the TLC detector. 

 

4.3.3 Electrochemical Dissolved Oxygen Remover 

 Operationally, the EDOR device consisted of two adjacent fluidic chambers 

separated by a 125 µm thick O2 permeable silicone rubber sheet (Figure 4.2). The choice 

of this O2 permeable membrane was based on its practicality for prototype construction 

and high O2 permeability coefficient, 19685 cm3·mm/m2·day·atm [23]. The sample 

chamber was a serpentine channel 250 µm deep, 400 µm wide, and 345 mm long. These 

dimensions were chosen so that sample residence time was >10 times the diffusion time 

(√   ) at a flow rate of 10 µL/min. On the other side of the silicone rubber separator was 

the de-oxygenation chamber which included a porous silver cathode and graphite anode. 

This chamber was subdivided into three elliptical thin-layer compartments with 

independent inlet/outlet ports with valves. Opening/closing of the six valves in different 

combinations ensured complete filling of each thin-layer sub-chamber by syringe. 

 Device construction was accomplished using a ‘layer-by-layer’ approach with 

PVC fixtures at the top and bottom with fluidic inlet/outlets for the de-oxygenation 

chamber and sample stream, respectively. Sandwiched in between were alternating layers 

of rubber gaskets precision patterned with channels and aligned holes to direct flow 

through each layer and to the layers beneath. A perforated silver cathode and graphite 

anode were incorporated as additional layers between the rubber sheet layers to facilitate 

a good fluidic seal. A diagram of the complete 14 layer device and additional details 

regarding its fabrication are available (Figure 4.6). 
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Figure 4.2: Experimental setup and functional schematic of EDOR prototype (structural 
layers omitted for clarity). A: Serpentine micro fluidic sample stream (250 µm deep X 
400 µm wide X 345 mm long). B: O2 permeable silicone rubber (125 µm thick). C1-C3: 
O2 reduction chamber divided into three thin-layer elliptical sub-chambers (C1: 15 mm X 
65 mm X 0.5 mm, C2: 15 mm X 55 mm X 0.5 mm, C3: 15 mm X 45 mm X 0.5 mm). D: 
Perforated silver sheet cathode. E: Insulating membrane. F: Graphite anode. 
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4.3.4 TLC Detector 

 The sample stream of Figure 4.2 was directed to a custom built TLC where 

residual DO could be electrochemically monitored. Briefly, this TLC detector consisted 

of a polycarbonate bottom fixture with a recessed area for precise placement of the sensor 

chip and a PVC top fixture containing the fluidic inlet/outlet. The sensor chip was 

fabricated as previously described, and defined the bottom of the TLC where a 1 mm 

long (extending the width of the channel) gold working electrode was 200 µm 

downstream of an identical gold electrode converted to a Ag/AgCl pseudo reference 

electrode, also as previously described [1, 24]. Atop the sensor chip was a precision 

patterned Viton rubber gasket containing a 500 µm wide X 250 µm deep channel. The 

top of the channel was defined by a pyrolytic graphite sheet, which was also used as the 

counter electrode. A detailed diagram of the detector and additional details regarding its 

fabrication are available (Figure 4.7). 

 

4.3.5 Reference DO Removal Manifold 

 In order to evaluate the performance of our EDOR device, it was essential to have 

a proven de-oxygenation system available to serve as a reference. Accordingly, we chose 

to employ a scheme derived from one initially described by Pedrotti et al. and based on 

the diffusion of DO from a sample stream across O2 permeable silicone rubber tubing and 

into a counter-flowing N2 stream [17-19]. This system was reported to produce >99 % O2 

removal. The details of its construction and validation of its effective oxygen removal can 

be found in the Supporting Information (Figure 4.8). Evidence of complete DO removal 
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by the reference manifold was demonstrated by the unvarying TLC detector response for 

a wide range of flow rates (10 µL/min to 200 µL/min). 

 

4.3.6 Experimental Protocol 

 Air equilibrated 100 mM KCl was pumped directly to the detector, through the 

reference manifold or through the EDOR device (Figure 4.2). To begin de-oxygenation 

in the reference manifold, an adjustable valve was opened to allow N2 from a cylinder 

into the manifold jacket, and the DO content of the sample stream in the inner tubing was 

monitored at the TLC detector. The de-oxygenation chamber of the EDOR device was 

filled with 6.5 M NaOH, and the device was activated by applying a 1 V potential 

between the cathode and anode to initiate DO reduction. The current flowing between the 

silver and graphite electrodes was monitored with a digital ammeter. Upon initial startup, 

the platform reaches s.s. operation in a few hours. In principle, three concentration 

gradients must reach equilibrium after the device is activated: first, the de-oxygenation 

chamber must be fully de-oxygenated; second, a concentration gradient must presumably 

form in the silicone rubber separator; and finally a flow rate dependent oxygen 

concentration gradient must form in the flowing sample stream. A potentiostat was used 

to monitor O2 reduction at the downstream TLC detector by CV and amperometry. The 

CV proceeded between 0 mV to -800 mV at a scan rate of 1000 mV/s, and the potential 

step amperometry began at 0 mV with a single step to -800 mV. In both cases, the TLC 

working electrode was held at a pre-conditioning potential of 0 mV prior to the scan or 

step. In separate offline experiments, 15 ppb Pb2+ in 0.1 M acetate buffer pH 5.3 was 

determined for as prepared sample and effluent collected after passage through EDOR. 
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Determination was by square wave stripping voltammetry (SWSV: f: 150 Hz, Ep: 25 mV, 

Es: 5 mV) on 1.6 mm diameter Au disc electrode vs. Ag/AgCl with Pt. wire as counter 

electrode while stirring at 400 rpm (Edep: -800 mV, Tdep: 300 sec). 

 

4.4 Results and Discussion 

4.4.1 Evaluation of EDOR Performance 

 The fabrication of our electrochemical DO removal device required numerous 

design choices regarding specifications such as channel dimensions, membrane material, 

de-oxygenation chamber volume, etc. Accordingly, once these parameters were selected 

and incorporated into a working platform, the first step was to establish experimentally 

whether the choices described in the Experimental Section had in fact been appropriate. 

Our initial evaluation consisted of directing the outflow of the device to a TLC containing 

a gold working electrode where any O2 present could be detected by electro-reduction. 

For comparison purposes, the outflow stream of our reference DO removal system could 

alternatively be directed into the TLC. Typical results obtained for a 100 mM KCl test 

sample are shown in Figure 4.3. The dissolved O2 concentration in the initial sample was 

measured to be 8 ppm with a commercial Clark type probe; and, without any treatment, 

CV1 showed the expected O2 reduction starting at -400 mV. CV2 and CV3, obtained after 

O2 removal by the reference procedure and by our approach, respectively, both showed 

essentially the same dramatic decreases in this current. Clearly, the electrochemical 

removal system was largely successful in its operation. 
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Figure 4.3: Cyclic voltammograms in the TLC DO detector at 10 µL/min for 1) Ambient 
DO. 2) DO removal by reference manifold. 3) DO removal by EDOR prototype. 
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 Once it had been established that the prototype DO removal device was working 

well in a qualitative sense, the next step was to evaluate its performance quantitatively. 

Accordingly, we carried out the same comparison shown in Figure 4.3 but examined the 

DO levels via amperometry - an approach that allowed us to look at much lower DO 

levels than CV. These experiments were initiated by applying a suitable DO reduction 

potential (i.e., -800 mV) while the sample was passed continuously through the TLC. The 

corresponding amperograms, obtained downstream in the TLC for the untreated sample 

stream as well as after passage through both the reference DO removal system and our 

DO removal device, are shown in Figure 4.4A. In each case, there was a very rapid jump 

in current when the experiment was initiated by stepping to -800 mV (from 0 mV). 

Subsequently, the currents reached steady-state levels that persisted unchanged 

throughout the 30-sec measurement period. As expected, a large reduction current, 2550 

nA, was observed in the absence of DO removal (curve 1) with dramatically decreased 

currents after DO removal by either the reference (58 nA +/- 12, curve 3) or the 

electrochemical (108 nA +/- 12, curve 2) systems. These values were obtained by 

averaging the steady state current (15-30 sec) for many individual amperometric 

experiments (as indicated in Figure 4.5’s legend) during DO removal. Assuming that the 

reference method was able to remove all DO and the 58nA current response was largely 

due to background processes,  the electrochemical procedure would appear to be 

removing at least 98 % under the conditions in effect. Downstream amperometric 

monitoring showed that this degree of O2 removal could be sustained continuously for 

several hours. 
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Figure 4.4: Comparison of EDOR prototype and reference manifold. A: 
Chronoamperometry in the TLC detector for 1) Ambient DO at 10 µL/min. 2) DO 
removal by reference manifold at 200 µL/min. 3) DO removal by EDOR prototype at 10 
µL/min (Inset: Expanded view for traces 2 and 3). B: Measured current for O2 reduction 
on Ag cathode at applied potential of 1 V (Inset: Expanded view of current after 16 hours 
of continuous operation at 10 µL/min). 
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 The capability of this in-line electrochemical approach to eliminate DO is 

expected to be directly dependent on numerous experimental and system parameters. 

Chief among these might be the sample stream flow rate. To a limited extent, it is 

possible to model some aspects of the cell behavior. Complete depletion of an analyte 

from a fully laminar thin-layer sample stream – so that bulk analyte concentration, 

Co*=0, at the outlet – in a rectangular duct with the electrode positioned as one wall of 

the duct has been previously described [25]. Using the method of reference 25 where all 

DO is depleted along one wall of our prototype’s rectangular channel dimensions, 

exhaustive diffusion based depletion of DO ought to be possible at flow rates as high as 

82 µL/min (diffusion coefficient of DO = 2 X 10-5 cm2/s) [26]. This is only an 

approximation since the O2 concentration at the surface of the silicone rubber separator is 

unlikely to be zero and the sample flow may not be fully laminar due to wall roughness. 

The operating principle of the device is such that the limiting process at high flow rates is 

either the diffusion of DO in the flowing sample stream to the O2 exchange membrane or 

the exchange of O2 across the membrane. Accordingly, the residual DO in the sample 

stream is expected to increase as the flow rate is increased beyond the limiting process of 

the cell. As shown in Figure 4.5A, this is in fact the case when as the flow-rate increased 

from 10 µL/min to 187 µL/min. The current at the O2 reducing silver electrode also 

increases with flow rate (as shown in Figure 4.5B), but this increase occurs at a lower 

rate than the sample stream. Taken together, these data suggest the limiting process is O2 

diffusion across the membrane (i.e., excess O2 at higher flow rates does not cross the 

membrane and is simply carried along the sample stream and detected at the TLC). 

Nevertheless, a high level of DO removal was maintained at flow rates approaching the 
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expected 80 µL/min. However, the choice of a different membrane material with higher 

O2 permeability and different channel dimensions (both of which are to be investigated in 

future work) would be expected to further improve the O2 removal capability. 

 Another performance criterion that might be critical for some applications is the 

power consumption required for O2 elimination. For this approach, this is readily 

evaluated from the potential applied to the Ag electrode for O2 reduction (1 V). As shown 

in Figure 4.4B, the maximum O2 reduction current occurs immediately after the 1 V 

potential is applied and steadily declines to a steady state (s.s.) value of 100 µA for an 8 

ppm O2 sample stream at 10 µL/min. Thus, the energy needed for continuous DO 

removal is 165 mW hr L-1 which is compatible with battery or photovoltaic power 

sources and is certainly much lower than would be required to operate a vacuum pump. 

Also, this approach does not require the storage of consumable chemicals or gases on-

site. Of course, there remains the issue of transporting the sample in an energy efficient 

manner; a challenge that is shared by all portable DO removal approaches. In that regard, 

integrated sample transporting electro-osmotic and capillary micro pumps appear to be 

fundamentally compatible with our microfluidic approach [27-28].  
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Figure 4.5: EDOR prototype performance at various flow rates. A: Average current 
recorded in TLC detector for i: Ambient DO at 10 µL/min, ii-vii: EDOR at the indicated 
flow rates, and viii: DO removal by Reference manifold at 200 µL/min. B: 
Corresponding measured current for O2 reduction on silver cathode of EDOR at indicated 
flow rates. A: bars represent steady state current from 15-30 sec of Figure 4.4 and error 
bars show standard deviation for n trials over t minutes (i: n=8, t=22; ii: n=138, t=171; iii: 
n=51, t=62; iv: n=22, t=26; v: n=34, t=42; vi: n=16, t=19; vii: n=34, t=41; viii: n=24, 
t=28). B: bars represent current recorded (once per sec) at Ag electrode of EDOR 
prototype over the same time span as A (e.g., ii: n=138*60, t=171 min, etc.).  
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4.4.2 Practical Considerations 

 In view of the diverse applications possible for EDOR, it is useful to pay some 

attention to selectivity issues. For the EDOR device presented here, the selectivity should 

be determined primarily by the membrane employed to allow entry into the O2 reduction 

chamber and its permeability to the different species present in the sample stream. For the 

current study, the membrane material selected was silicon rubber because of its relatively 

high permeability toward O2. In addition, this material was expected to exhibit very low 

permeability to metal ions such as Pb2+ which are potential analytes in our own intended 

application of the EDOR device. This expectation was confirmed experimentally by 

passing a test solution containing 15 ppb Pb2+ (the EPA recommended action/treatment 

level for Pb in drinking water) in 0.1 M pH 5.3 acetate buffer through the EDOR platform 

and collecting the effluent. Subsequently, conventional anodic stripping voltammetry was 

carried out on both the initial Pb2+ solution and the EDOR effluent. As anticipated, no 

Pb2+ appeared to be lost to the device as the Pb stripping peak currents were essentially 

unchanged for these two solutions (38.9 +/- 1.1 µA vs. 38.4 +/- 0.4 µA). This is 

consistent with recent findings that diffusion of metal salts across silicone rubber 

encapsulants for implanted microelectronic devices is negligible [29]. 

                A second selectivity consideration of interest is related to dissolved gases other 

than O2 that in fact are much more likely to diffuse through the silicone rubber material. 

As it was not feasible to test all possible gases, preliminary studies were carried out for 

CO2 which has greater aqueous solubility than O2 as well as higher permeability in 

silicone rubber [23, 30]. In addition, sustained CO2 removal might cause a change in the 

acidity of the deoxygenated solution and thereby produce an unintended alteration in 
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sample pH. Accordingly, we intentionally enriched an aqueous solution with CO2 and 

passed this solution continuously through the EDOR device. Subsequently, no CO2-

related current was noted in the O2 reduction chamber, and no change in the effluent pH 

was detected. These results suggest that the EDOR device is not responsive to CO2 even 

though this gas in all likelihood is able to diffuse through the silicone rubber membrane 

from the sample stream. 

 

4.5 Supplementary Information 

4.5.1 Electrochemical Dissolved Oxygen Remover 

A diagram of the complete 14 layer device and some details regarding its 

fabrication are shown in Figure 4.6 and Table 4.1. The device consisted of PVC fixtures 

at top and bottom with fluidic inlet/outlets for the de-oxygenation chamber and sample 

stream, rubber gasket layers, an insulating membrane, silver sheet electrode, and a 

graphite block anode. Drawings for the PVC fixtures were prepared using Computer 

Aided Design (CAD) software (Solidworks, Dassault Systèmes SolidWorks Corp., 

Waltham, MA). The fixtures were machined from polyvinyl chloride blocks by a 

commercial prototyping service (FirstCut, Proto Labs Inc, Maple Plain, MN). The 

drawings for the rubber gasket and membrane layers were also made using CAD software 

(AutoCAD, Autodesk, Inc., San Rafael, CA) and precision patterned with a 40W CO2 

mini laser cutter/engraver (Epilog Laser, Golden, CO). Holes for twelve alignment pins 

(short 2 mm stainless steel rods) in the PVC fixtures served as guides for precise 

placement of the remaining layers during assembly. Other holes through all layers of the 

assembly ended with threads in the bottom fixture for screws to tighten the assembly. 
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Assembly of the ‘stack’ resulted in a membrane separated, dual compartment cell with 

independent flow paths for each compartment (Figure 4.6).  

Hereafter we refer to the lower compartment as the sample chamber and the upper 

compartment containing the silver cathode and graphite anode as the de-oxygenation 

chamber. The bottom of the sample chamber was composed of a Viton rubber layer 

(Layer B of Figure 4.6). The sides of the sample chamber were comprised of a serpentine 

channel in a Viton rubber layer that was 250 µm deep, 400 µm wide and 345 mm long 

(Layer C). As previously noted, these dimensions were chosen so that the sample 

residence time was >10 times the diffusion time based on √    at a flowrate of 10 

µL/min. The oxygen exchange membrane defined the top of the sample chamber and was 

composed of a 125 µm thick ultra-pure silicone rubber silicone rubber sheet (Layer D). 

The choice of silicone rubber sheet was based on its practicality for device construction 

and high oxygen permeability coefficient, 19685 cm3·mm/m2·day·atm for un-wetted 

silicone rubber [23]. On the other side of the silicone rubber separator was an elliptical 

chamber which ‘contained’ the perforated silver cathode and a graphite anode separated 

by an insulating membrane incorporated as additional layers between rubber sheet layers 

to ensure a fluidic seal.  

The de-oxygenation chamber was functionally subdivided into three elliptical 

thin-layer sub-chambers with independent inlet/outlet ports with valves (Layers E, G, and 

I). This design was chosen so that opening/closing of the six valves in different 

combinations allowed complete filling of each thin-layer sub-chamber by syringe. The 

dimensions of these ellipses were 15 mm X 65 mm X 0.5 mm, 15 mm X 55 mm X 0.5 

mm, and 15 mm X 45 mm X 0.5 mm. The spacing between the inlet/outlets of these three 
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chambers at the top of the cell (Layer L) did not allow for mechanical clearance for 

fluidic connectors (described below). Therefore, a simple manifold consisting of two 

additional layers was added so as to increase the spacing between inlet/outlets (Layers M 

and N). The 200 MWCO (molecular weight cut-off) insulating membrane (SelRO MPF-

34, Koch Membrane Systems, Inc., Wilmington, MA) incorporated as Layer H was used 

to prevent a short circuit between cathode and anode and may have also limited diffusion 

of anode byproducts to the silver cathode, but its inclusion was precautionary and, to our 

knowledge, not critical for effective device operation.  

The perforated silver cathode (Layer F) was composed of a 99.95% silver foil 

which was 150 mm X 25 mm X 75 µm foil (Alfa Aesar, Ward Hill, MA). The foil was 

aligned so that it was offset from center and extended out the side of the stack where an 

alligator clip was used to make electrical contact. The perforations in the foil were made 

using a precision laser patterned polycarbonate stencil and a needle to make a few dozen 

through-holes in the silver foil. These perforations were necessary to allow the graphite 

anode to be in electronic contact with the solution contained in the bottom-most elliptical 

chamber (Layer E). The graphite anode itself (Layer J) was machined from a solid block 

of graphite (McMaster Carr, Aurora, OH) to its final shape also using a precision laser 

patterned polycarbonate stencil. Electrical contact to the anode was made by affixing a 

length of copper foil to one corner between Layers J and K which became firmly held in 

place when the assembly was tightened (Measured ohmic contact of <1Ω).  

At the top of the stack (Layer N), six nylon 10-32 UNF threaded to luer adapter 

fittings were used to connect to PVDF luer stopcocks which could be opened and closed 

independently when filling the de-oxygenation chamber with 6.5 M NaOH as noted 
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above. Once the three elliptical sub-chambers were filled, these stopcocks were kept 

closed during use of the device to ensure stopped flow and hence DO depletion within the 

de-oxygenation chamber. On the bottom side of the stack, fluidic connections to the 

sample chamber were made using acetal 10-32 UNF threaded Standard Fingertight II™ 

high-pressure HPLC fittings. To ensure air (and oxygen) tight connections, PEEK 

(polyetheretherketone) Tubing (0.020" ID, 1/16"OD) was inserted through the center of 

the fittings with Viton O-rings used as ferrules. Fittings, PEEK tubing, rubber gaskets, O-

rings, syringes, and valves for sample handling were all composed of inert plastics and 

rubbers and were obtained from Cole-Parmer (Vernon Hills, IL), McMaster Carr (Aurora, 

OH), and/or AAAcme Rubber (Tempe, AZ).  
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Figure 4.6: Schematic of the complete EDOR prototype. Layer A is displayed as 
transparent to show the fluidic inlet/outlet of the sample stream. See Table 4.1 and the 
text for more detailed descriptions of each layer. 
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Layer Material Exterior Dimension Critical Feature Dimension 

A PVC 150 mm X 100 mm X 15 mm a 
Threads: 10-32 UNF 

Fluidic through-holes: 1.5 mm 
diameter 

B Viton 150 mm X 100 mm X 0.010” b Fluidic through-holes: 1.5 mm 
diameter 

C Viton 150 mm X 100 mm X 0.010” b Channel: 250 µm deep X 400 µm 
wide X 345 mm long 

D Silicone 
Rubber 150 mm X 100 mm X 0.005” c Ultra-thin (~125 µm) 

E Silicone 
Rubber 150 mm X 100 mm X 0.020” c Elliptical chamber: 15 mm X 65 mm 

X 0.5 mm 

F Silver Foil 150 mm X 25 mm X 75 µm d 

(offset from center) 
Perforations : 0.1 mm to 0.5 mm 
Fluidic through-holes: 1.5 mm 

diameter 

G Silicone 
Rubber 150 mm X 100 mm X 0.020” c 

Elliptical chamber: 15 mm X 55 mm 
X 0.5 mm Fluidic through-holes:   

1.5 mm diameter 

H Membrane 150 mm X 100 mm X 500µm e Fluidic through-holes: 1.5 mm 
diameter 

I Silicone 
Rubber 150 mm X 100 mm X 0.020” c 

Elliptical chamber: 15 mm X 45 mm 
X 0.5 mm Fluidic through-holes:   

1.5 mm diameter 

J Graphite 
Sheet 75 mm X 25 mm X ¼” c Fluidic through-holes: 1.5 mm 

diameter 

K Silicone 
Rubber 150 mm X 100 mm X 0.020” c Fluidic through-holes: 1.5 mm 

diameter 

L PVC 150 mm X 100 mm X 10 mm a Fluidic through-holes: 1.5 mm 
diameter 

M Butyl 
Rubber 150 mm X 100 mm X 1/16” c Fluidic through-holes: 1.5 mm 

diameter 

N PVC 150 mm X 100 mm X 10 mm a 
Threads: 10-32 UNF 

Fluidic through-holes: 1.5 mm 
diameter 

Table 4.1: List of materials used in fabrication of EDOR prototype along with the 
important feature dimensions. The thickness of the materials are based on 
manufacturer/supplier specifications (a Firstcut, b AAAcme Rubber, c McMaster Carr, d 
Alfa Aesar, e Koch Membrane) 
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4.5.2 Custom Built TLC O2 Detector 

The detector consisted of a polycarbonate bottom fixture with a recessed groove 

for precise alignment of the sensor chip, two Viton rubber gasket layers, a pyrolytic 

graphite sheet, and PVC top fixture with fluidic inlet/outlet. A diagram of the detector 

and details regarding its fabrication are shown in Figure 4.7 and Table 4.2. The 

fabrication process of the individual layers was similar to that described above for the 

EDOR prototype. Assembly resulted in a three electrode single compartment flow cell. 

The channel was cut from the same Viton material described above and had dimensions 

of 250 µm deep, 500 µm wide and 2 cm long (Layer C). The working and reference 

electrodes were based on two lithographically patterned thin film Au electrodes with an 

exposed length of 1 mm each separated by a 200 µm gap at the bottom of the channel 

(Inset of Figure 4.7). The upstream Au electrode was converted to a Ag/AgCl pseudo 

reference electrode by deposition of a Ag layer, followed by electrochemical oxidation in 

Cl- containing medium (a 100 µm electrode between the Working and reference 

electrodes (WE and RE) along with the remaining electrodes on the sensor chip were not 

used in this work). The fabrication of the sensor chip and conversion of Au thin-film 

electrodes to Ag/AgCl pseudo reference electrodes are described in detail elsewhere 

[references 1 and 24, respectively]. The counter electrode consisted of a flat 100μm 

thick pyrolytic graphite sheet (Panasonic Electronic Components, Secaucus, NJ) 

incorporated as an additional layer atop the channel. This custom cut pyrolytic graphite 

sheet (PGS) included holes for the alignment pins and flow paths of the layers above and 

beneath it. Air tight fluidic connections were made as described above. 
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Figure 4.7: Schematic of the complete TLC DO detector. Sample stream defined by 
layers B-F is shown in blue. See Table 4.2 and the text for detailed descriptions.  
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Layer Material Exterior Dimension 
Critical Feature 
Dimension 

A Polycarbonate 6.0 cm X 3.25 cm X 1 cm a 
Recessed groove for sensor 
chip: 3.02 cm X 2.25 cm X 
350 µm 

B SiO2 / Au / AgCl 3.0 cm X 1.3 cm X 500 µm g 

Exposed Au at channel 
base: 1 mm 
Ag/AgCl pseudo ref 
electrode: 1 mm 

C Viton 6.0 cm X 1.15 cm X 0.010” b Channel: 250 µm deep X 
500 µm wide X 2 cm long 

D Pyrolytic 
Graphite 6.0 cm X 1.15 cm X 100µm f Fluidic through-holes:     

1.5 mm 

E Viton 6.0 cm X 1.15 cm X 0.010” b Fluidic through-holes:     
1.5 mm 

F PVC 6.0 cm X 1.15cm X 2.54cm c 
Threads: 10-32 UNF 
Fluidic through-holes:     
1.5 mm 

Table 4.2: List of materials used in fabrication of TLC DO detector along with the 
important feature dimensions. The thickness of the materials are based on 
manufacturer/supplier specifications or measured (a Firstcut, b AAAcme Rubber, c 
McMaster Carr, f Mouser Electronics, g Measured) 
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4.5.3 Construction and Use of Reference Manifold 

 In view of using a custom built DO detector for initial evaluation of the EDOR 

prototype, it was useful to compare the detector response to a proven de-oxygenation 

platform. The reference de-oxygenation manifold used here follows the same principle 

reported by Pedrotti et al., who described a system based on the diffusion of DO from a 

sample stream flowing inside O2 permeable silicone rubber tubing [17]. Pedrotti et al. 

used a N2 atmosphere, a vacuum, or a combination of the two on the outside of the 

silicone rubber tubing to remove DO from the sample stream, and showed >99% O2 

removal for all cases after optimization. Colombo and Van den Berg investigated the 

performance of several O2 permeable tubing materials in a N2 atmosphere and found 

silicone rubber tubing and poreflon to be suitable for these devices [18]. Billing et al. 

later improved on this manifold by jacketing the O2 permeable silicone rubber tubing 

with polyethylene tubing where N2 was counter-flowing to maintain the O2 concentration 

gradient along the entire length of the tubing [19].  

 The reference manifold utilized in this work utilized a 3.5m length of jacketed 

tubing as illustrated in Figure 4.8. The inner tubing was high-purity silicone rubber 

tubing (0.025" ID, 0.047" OD) and the outer tubing was Polyethylene Tubing (4 mm ID, 

6 mm OD). The sample stream was pumped from a reservoir which had been allowed to 

equilibrate with air for at least 24 hours into the manifold inlet. The manifold outlet was 

directly connected to the TLC detector as previously described for the EDOR prototype. 

In order to avoid atmospheric O2 re-entry into the sample stream between the manifold 

outlet and the detector, an adapter from the silicone tubing to PEEK tubing (0.020" ID, 

1/16"OD) was placed inside the N2 jacket so that only a short length (<10 cm) of PEEK 
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tubing extended from the manifold outlet to the detector. To begin de-oxygenation, an 

adjustable valve was opened to allow N2 to flow from a cylinder into the manifold jacket, 

and the DO content of the sample stream was monitored at the TLC detector. Evidence of 

complete DO removal by the reference manifold was demonstrated by the independence 

of TLC detector for a wide range of sample flow rates (10 µL/min to 200 µL/min), when 

N2 was used in the outer jacket. Conversely, the TLC detector response increased with 

increasing sample flow rate when the reference manifold was inactive or when O2 was 

flowing in the outer jacket. 

 

 

 

Figure 4.8: Schematic of the reference manifold. A: Sample stream inlet from pump, B: 
Sample stream outlet to detector, C: O2 permeable silicone rubber tubing (0.025" ID, 
0.047" OD), D: O2 impermeable PEEK tubing (0.020" ID, 1/16"OD), E: Adapter from 
silicone to PEEK tubing, F: Polyethylene jacket tubing for counter flowing N2 (4 mm ID, 
6 mm OD), G: N2 gas inlet from cylinder, H: N2 vent to atmosphere. 
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4.6 Conclusions 

 An indirect electrochemical dissolved oxygen removal device is proposed, and its 

design and proof of concept are described. The current device is capable of removing 98 

% of DO (8 ppm O2 sample stream flowing at 10 µL/min) and requires 165 mW hr L-1. 

This is consistent with our intended aim for a continuous flow-by oxygen removal system 

for our micro anodic stripping coulometry application which analyzes a 2-4 µL volume 

cell per minute. The device is simple to operate, and the only hook-ups necessary for 

continuous operation are the sample inlet/outlet and a voltage controlled DC current 

source. Besides the micro fluidic sample pretreatment applications, the inherent energy 

efficiency of this approach may eventually attract development of massively parallel 

preparative de-oxygenation processes (e.g., water for the semiconductor industry, ship 

ballast water, boiler water, or even jet fuel for the aviation industry). 

 The next stage of development will involve addressing the limitations of the 

current prototype. Specifically, future work will be directed at finding more resistant O2 

exchange membranes and/or a milder O2 reduction electrochemistry. Silicone rubber is 

not compatible for long term operation in the presence of 6.5 M NaOH due to OH- 

hydrolysis of Si-O-Si bonds. Most importantly, the passive nature of DO removal by 

diffusion in the current scheme ought to be greatly aided by miniaturization of the device. 

Future investigations are also planned to determine the potential for longer term 

operation. 
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CHAPTER V 

CONCLUSIONS AND PERSPECTIVES 

 

5.1 Foreword 

 Having introduced this dissertation within the context of practical, sensitive, and 

selective  measurements, it is appropriate to conclude by addressing the current status of 

the TLC coulometric sensor along each of these lines and, where possible, to describe 

future work and make reasoned predictions of future improvements. The proposed sensor 

for decentralized remote heavy metal monitoring is not intended to compete with or 

replace the analyses of the central laboratory. It rather seeks to enhance these analytical 

tools by applying them to where the most interesting measurements can be obtained. 

 The current generation of the TLC coulometric sensor is capable of the 

determination of minute amounts of dissolved metals in micro-liter sized sample 

volumes. For instance, <500 ppb levels of metals such as AsIII and Cu2+ in a 1.85 µL 

sample can be measured to better than 10% Accuracy and with excellent reproducibility 

(RSD’s generally <5%). Importantly, these measurements can be carried out in about 1-2 

minutes and are possible without any calibration steps. The demonstrated detection of Pb 

and Cd is a work in progress, but the sensor performance discussed in this section 

provides a general estimate of the results that can be expected. Additionally, the most 
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difficult challenge for the analysis of Pb and Cd is addressed elsewhere in this work; the 

development of a highly energy efficient (165 mW hr  L-1) means for remote removal of 

dissolved oxygen (which interferes with Pb and Cd ASC).  

 

5.2 Sensitivity of the Current Heavy Metal Sensor 

 The discussion of sensitivity has, to this point, proceeded in general terms with 

the implicit understanding that it also effectively includes considerations regarding the 

detection limit. In these closing remarks to this work, however, it is appropriate to 

examine closely the sensitivity (and detection limit) of anodic stripping coulometry by a 

single potential step (SPS-ASC), the proposed double potential stripping anodic stripping 

coulometry (DPS-ASC) method, and its sequential multi-potential variant (SEQ-MP-

DPS-ASC) for evaluating a single metal in the presence of interferents.  

The Cmin value reflects the smallest discernible concentration increment (e.g., the 

relative power of the method to discern samples containing 120 ppb vs. 121 ppb arsenite 

for instance, or 1 ppb vs. 2 ppb). As shown in this hypothetical example, a Cmin of 1 ppb 

is quite satisfactory at high concentrations but is clearly much less so as the analyte 

concentration approaches Cmin. Accordingly, it is useful to represent Cmin as a percentage 

of the measured concentration. The resulting Cmin values for a few test cases (see 

Appendix A for detailed calculations) indicate that the uncertainty in all measurements 

performed by SPS-ASC and DPS-ASC is below 12%, whereas measurements by SEQ-

MP-DPS-ASC were typically below 21%.  

Although Cmin is a valuable indicator of performance, the most relevant criterion 

in the context of heavy metal measurements is perhaps the lowest concentration which 
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can be detected and quantified (CLOD and CLOQ, respectively) since even trace metal 

levels may be of concern. Evaluating the detection limit of stripping coulometry should, 

in principle, include components such as the reproducibility of the blank (i.e., 3σblank), the 

electrode area (which is often a source of noise in electrochemical measurements), the 

volume sampled (since the low LODs of stripping analysis arises from the pre-

concentration effect usually achieved by sampling bulk solutions while stirring to enlarge 

the sampled volume), and finally the number of electrons in the redox process (since the 

sensitivity ought to be greater for a 2e- stripping process vs. a 1e- process because the 

signals are larger in the former case).  

Due to the variations in the metals analyzed, the use of several individual Au 

electrodes with different histories, and the presence of different interferents, the resulting 

CLOD values for a few test cases (see Appendix B for detailed calculations) are 38 ppb for 

Cu2+ and 19-135 ppb for AsIII. Further improvements of the detection limits ought to 

obviously seek favorable alterations to the area to volume (A/V) ratio, since this is in fact 

the same term responsible for the sensitivity of conventional stripping analysis where a 

relatively small electrode area pre-concentrates metals from an effectively infinite bulk 

volume. In the case of the TLC coulometry platform described in this work, relatively 

modest and technically feasible alterations can have a significant impact on the A/V ratio. 

For instance, future generations of the current TLC platform employing 100 fold smaller 

microelectrode arrays (MEA) and 3 times thicker cells would seem to offer useful 

detection limits. Assuming that the experimentally measured noise in the blank per unit 

of electrode area remains constant, the predicted CLODs and CLOQs are below the EPA 

MCL level for drinking waters. In conclusion, the sensitivity of ASC cannot rival that of 
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traditional stripping voltammetry where essentially unlimited improvements of the A / V 

term are possible. However, CLOD and CLOQ values suitable for heavy metal detection in 

drinking waters appear to be achievable with appropriate design and optimization. This is 

especially plausible since drinking water ought to be a sufficiently stable matrix requiring 

minimal sample pretreatment. Although natural waters and wastewater effluents may be 

highly variable matrices with consequently larger QLOD and QLOQ values, the CLOD and 

CLOQ requirements in these cases are also less stringent.  

 

5.3 Selectivity 

 The use of stripping analysis offers an important advantage in terms of selectivity. 

The electroactive interferents of most concern are those that are accumulated on the 

electrode surface prior to the analytical stripping step. Therefore, the most likely 

interferents in the measurement of metals are other metals. The conventional approach to 

anodic stripping analysis seeks to deposit all metals present which can be reduced at the 

deposition potential. The stripping step is performed sequentially so that the removal of 

each metal at its characteristic oxidation potential is temporally separated from its 

neighbors. The literature contains many instances where the stripping of two metals 

occurs at sufficiently close potentials, or even chemically react on the electrode surface, 

so that their individual stripping signals are indistinguishable. Over the long history of 

this approach, many special procedures and sample pretreatments have been adopted for 

application specific problems. 

 In double potential step anodic stripping coulometry (DPS-ASC), it is necessary 

to strip all metals simultaneously to obtain the bare electrode surface necessary for blank 
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subtraction. Hence, the selectivity must instead be applied during the deposition step. The 

use of selective deposition in conjunction with simultaneous stripping as in PS-ASC is 

much less developed in the literature. The only cases where it can be said with certainty 

that an interferent can be tolerated are limited to the results obtained in this work. These 

show that under the conditions used, MP-DPS-ASC and SEQ-MP-DPS-ASC allow 

measurement of the individual concentrations of Cu2+ and Hg2+ in a mixture, Cu2+ and 

AsIII in a mixture, and that AsIII can be measured accurately in the presence of Cu2+, Pb2+, 

Cd2+, and Zn2+ (as long as the Pb and Cd ppb levels are at most half the As ppb level). In 

the long term only time can tell the extent to which these methods may be applicable to 

increasingly challenging sample matrices.  

 Despite the presently limited extent to which any predictions regarding selectivity 

can be made, there are at least two considerations which would seem to indicate that 

widespread utility of the sensor is possible. The first of these is that heavy metals are 

themselves the most concerning interferents in anodic stripping coulometry. Since heavy 

metals are often present at trace levels, it is plausible that the contribution of one metal as 

an interferent to another may have a minimal impact on the overall measurement. The 

second of these is that even incomplete selectivity does not necessarily constitute a 

failure of the sensor to detect heavy metals. If in the course of arsenic monitoring, for 

instance, the sensor begins to mistakenly report a spike in arsenic concentration due to a 

spike of another heavy metal, the changing response could actually have the positive 

effect of directing snapshot monitoring by centralized laboratories to where conditions 

have changed. 
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5.4 Practicality 

 The discussion of practicality cannot proceed to any significant extent without 

thorough consideration of all the components and challenges for the remote heavy metal 

monitoring system. The whole system, as currently envisioned, is represented in Figure 

5.1. The realization of the overall system requires inter-disciplinary collaboration and 

careful design to minimize cost and complexity. Many of the individual components 

remain as works in progress, however, few of the challenges appear to pose fundamental 

technical challenges and several involve the customization of currently available 

technologies. For instance, several of the functions in the figure can be adequately 

performed by even the simplest first generation so called smart phones, since these are 

essentially a packaged microprocessor, battery, and communications platform. Similarly, 

the design and microfabrication of miniature and inexpensive components such as pumps, 

microfluidic manifolds including automatic valves, control circuitry, and potentiostats 

have all been previously described [1]. For our application, preliminary work towards the 

development of customized versions based on assembly of inexpensive, off-the-shelf 

components appears to also offer a promising avenue.  

 One major challenge which remains is the issue of sensor durability. In this 

regard, there are already some promising aspects of the current sensor, and other planned 

developments which may increase sensor lifetime. Current features of the sensor which 

are supportive of long term stability include the exhaustive deposition in a thin layer cell, 

which in the event of partial electrode fouling, would simply take longer to achieve. 

Secondly, the application of the DPS-ASC method for in situ background correction 

appears promising for proper blank subtraction at the changing electrode surface. Planned 



 
 

145 
 

developments aim to take advantage of the microfabricated nature of the sensor which, in 

principle, also allows for a built in redundancy for self-verification and/or increasing 

periods between maintenance. Future developments also under consideration include the 

use of alternative materials which are resistant to fouling during extended use including 

electrode materials such as boron doped diamond and fluoropolymer membranes, and 

regeneration of the reference electrode.  

 

 
Figure 5.1: Overview of the remote heavy metal sensor. The portions contained within 
the dashed lines indicate the focus of this dissertation. Green outlines indicate major 
progress of a component, yellow outlines indicate preliminary work, and red outlines 
indicate as yet to be addressed components. 
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Appendix A 

The Minimum Measurable Concentration Increment: 

Cmin 

 In analytical chemistry, the term analytical sensitivity is defined according to 

Equation A1 

 

γ = m / σsignal  (Equation A1) 

 

where m is the calibration sensitivity (i.e., slope) and σsignal is the standard deviation. The 

smallest measurable concentration difference (Cmin) is defined as the inverse of the 

analytical sensitivity according to Equation A2 

 

Cmin = γ-1   (Equation A2) 

 

 

 The Cmin value reflects the smallest discernible concentration increment (e.g., the 

relative power of the method to discern samples containing 120 ppb vs. 121 ppb arsenite 

for instance, or 1 ppb vs. 2 ppb). As shown in this hypothetical example, a Cmin of 1 ppb 

is quite satisfactory at high concentrations but is clearly much less so as the analyte 
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concentration approaches Cmin. Accordingly, it is useful to represent Cmin as a percentage 

of the measured concentration.  

 In order to report quantitative values for Cmin, a few test cases were selected from 

the data previously shown in Chapters 2 and 3. These data sets include the determination 

of 50 ppb to 7.5 ppm Cu2+ and 100 ppb to1 ppm AsIII in carefully prepared standard 

solutions. In order to evaluate the effect of interferents on Cmin, the same calculations 

were performed for experiments where the carefully prepared standards also contained 

selected interferents (100 ppb – 1 ppm AsIII as measured by SEQ-MP-DPS-ASC in the 

presence of 1.3 ppm Cu2+, 500 ppb Pb2+, 500 ppb Cd2+, and 5 ppm Zn2+). Similarly, 

measurements of arsenite spiked river waters allowed estimation of Cmin in natural 

samples. The specific experimental details for these test cases have been compiled in 

Table A1. The resulting Cmin values for each of the test cases, tabulated in Table A2, 

indicate that the uncertainty in all measurements performed by SPS-ASC and DPS-ASC 

is below 12%, whereas measurements by SEQ-MP-DPS-ASC were typically below 21%.  

 The only case where Cmin exceeded 21% was for the determination of arsenite in 

the presence of interferents (1.3 ppm Cu2+, 500 ppb Pb2+, 500 ppb Cd2+, and 5 ppm Zn2+). 

A closer examination of this data shows that Cmin was 12, 15, 22, 28, and 87% for 

arsenite concentrations of 100, 250, 500, 750, and 1000 ppb, respectively. Hence, Cmin 

was below 22% when the As ppb level was less than Pb and Cd ppb levels. The 

interferent levels in that particular study were purposely chosen to be much higher than 

would be encountered in any actual sample. The high Cmin for the 100 ppb and 250 ppb 

arsenite solutions (28% and 87%, respectively) noted above caused overestimation of the 

actual arsenite concentration. The extent of this overestimation was 29 and 36%, 
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respectively which indicates imperfect selectivity against Pb and Cd when these metals 

are present at high levels, and further discussion of this can be found in that Selectivity 

section below. Overall however, these calculations demonstrate the range of Cmin values 

for several metals determined at different times under different conditions using several 

variants of potential step ASC. Accordingly, it seems reasonable to expect that most 

measurements would have an associated +/- 20% uncertainty. This level of uncertainty is 

useful for remote monitoring devices and would hopefully aid in directing the random 

sampling by central laboratories to sites where metals are near or above the levels of 

concern.  

 
Table A1: A Summary of select experiments used to calculate the Cmin and CLOD values 
within this chapter. *In situ blank correction utilized a separate aliquot of sample than 
used for the analysis.  
 

Metal / Concentration / # samples 
Cmin for 

ideal 
standards 

 Cmin for 
 Interferents 

spiked  
standards  

 Cmin for 
 real sample 

Cu2+ / 50 ppb - 7.5 ppm / 17 1-12% a N/A N/A 
AsIII / 100 ppb -1 ppm / 5 2-5% b 12-87%* c 1-21% d 

Table A2: Calculated Cmin as a percentage of the measured concentration. Superscripts 
denote the experiment of Table A1 used for the calculation: a Test Case 1, b Test Case 2, c 

Test Case 3, d Test Case 4.  
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Appendix B 

Limits of Detection and Quantification: CLOD and CLOQ 

 

Part 1) Current CLOD and CLOQ 

 Although Cmin is a valuable indicator of performance, the most relevant criterion 

in the context of heavy metal measurements is perhaps the lowest concentration which 

can be detected and quantified (CLOD and CLOQ, respectively) since even trace metal 

levels may be of concern. Evaluating the detection limit of stripping coulometry should, 

in principle, include components such as the reproducibility of the blank (i.e., 3σblank), the 

electrode area (which is often a source of noise in electrochemical measurements), the 

volume sampled (since the low LODs of stripping analysis arises from the pre-

concentration effect usually achieved by sampling bulk solutions while stirring to enlarge 

the sampled volume), and finally the number of electrons in the redox process (since the 

sensitivity ought to be greater for a 2e- stripping process vs. a 1e- process because the 

signals are larger in the former case). Combination of all these variables to evaluate the 

detection limit of anodic stripping coulometry (of which SPS-ASC, DPS-ASC, and SEQ-

MP-DPS-ASC are variants) has been previously proposed by Eggli according to 

Equation B1 [2] 
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CLOD = (QLOD) · (A/V) · (1/nF)   (Equation B1) 

 

where CLOD is the lowest detectable concentration, QLOD is the lowest measurable charge 

per unit area under a particular set of conditions, A is the electrode area, V is the volume 

sampled, n is the number of electrons in the redox process, and F is the Faraday constant. 

The evaluation of QLOD is dependent on the reproducibility of the blank charge and is 

related to the standard deviation of the blank according to Equation B2 

 

QLOD = 3σblank  (Equation B2) 

 

Similarly, the lowest concentration which can be quantified (CLOQ) can be evaluated by 

Equations B3 and B4 

 

CLOQ = (QLOQ) · (A/V) · (1/nF)  (Equation B3) 

 

QLOQ = 10σblank  (Equation B4) 

 

where the blank charge and its standard deviation may be obtained by measurements in a 

separate blank (metal free) solution as in SPS-ASC, in the same solution after a brief 

deposition causing negligible metal pre-concentration as in DPS-ASC, or even by a 

separate DPS-ASC experiment conducted at an entirely different potential as in SEQ-

MP-DPS-ASC.  
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 The same data sets used to determine Cmin above were used to estimate the values 

of QLOD. As previously noted, these experiments consisted of multiple types of ASC 

experiments (including SPS-ASC, DPS-ASC, or SEQ-MP-DPS-ASC variants) for several 

metals which were determined at a variety of potentials (As: Edep = -500 mV, Estrip = 500 

mV. Cu: Edep = 0 mV, Estrip = 500 mV). The various experimental details are tabulated in 

Table A1. Due to the variations in the metals analyzed, the use of several individual Au 

electrodes with different histories, and the presence of different interferents, the QLOD 

values ranged from 0.6 µC/cm2 at best to 3.9 µC/cm2 at worst. The electrode area was 

0.25 cm2 and the volume was 1.85 µL for a constant A / V ratio of 135 cm-1, since 4 mm 

by 8 mm elliptical gold electrodes were used in the same TLC platform for all 

experiments. The resulting CLOD values are shown in Table B1 for Cu and As since the 

calculations were based on ASC experiments for these two metals.  

 

CLOD=(QLOD)•(A/V)•(1/nF) CLOD (ppb) 

QLOD 
(C/cm2) 

Area / 
Volume 
(cm-1) 

Cu (n=2) 
EPA MCL 
 = 1.3 ppm 

As (n=3) 
EPA MCL 
 = 10 ppb 

8.7E-07 135 38 a N/A 
3.9E-06 135 N/A 135 b 
3.2E-06 135 N/A 113 c  
5.6E-07 135 N/A 19 d 

Table B1: Calculated CLOD values based on select experiments shown in bold. Other 
values are projected based on the QLOD. Superscripts denote the experiment of Table A1 
used for the calculation: a Test Case 1, b Test Case 2, c Test Case 3, d Test Case 4.  
 
 

 

 

 



 
 

166 
 

Part 2) Predicted Enhancement of CLOD and CLOQ 

 Further improvements of the detection limits ought to obviously seek favorable 

alterations to the terms of Equation B1. The term A / V appears to offer the most direct 

means of enhancement and is in fact the same term responsible for the sensitivity of 

conventional stripping analysis where a relatively small electrode area pre-concentrates 

metals from an effectively infinite bulk volume. In the case of the TLC coulometry 

platform described in this work, relatively modest and technically feasible alterations can 

have a significant impact on the A / V term. For instance, the microelectrode array 

(MEA) shown in Figure B1 consists of 10 µm diameter openings with 60 µm center to 

center spacing. This particular MEA offers a 50 fold reduction of the effective electrode 

surface area while covering the same geometric area as the elliptical 4 mm by 8 mm 

electrode. Similarly, the TLC platform currently in use offers a cell thickness of about 75 

µm. Modestly thicker cells could, in principle, be used without significant increases of 

the time required for complete deposition (e.g., 225 µm cell would require approximately 

200 seconds).  

 Assuming that the experimentally measured, normalized QLOD values remain 

constant per unit area of active electrode surface, future generations of the current TLC 

platform employing 100 fold smaller area electrodes and 3 times thicker cells would 

seem to offer useful detection limits. Using the range of experimentally measured QLOD 

values under a variety of circumstances along with such a 300 fold reduced A / V ratio 

allows prediction of the CLOD and CLOQ values. The predicted CLODs along with the 

predicted CLOQs (based on QLOQ = 10σblank) are shown in Table B2. These predicted 

values are, with the lone exception of the Hg CLOQ, below the EPA MCL level for each of 
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the metals chosen. In conclusion, the sensitivity of ASC cannot rival that of traditional 

stripping voltammetry where essentially unlimited improvements of the A / V term are 

possible. However, CLOD and CLOQ values suitable for heavy metal detection in drinking 

waters appear to be achievable with appropriate design and optimization. This is 

especially plausible since drinking water ought to be a sufficiently stable matrix requiring 

minimal sample pretreatment. Although natural waters and wastewater effluents may be 

highly variable matrices with consequently larger QLOD and QLOQ values, the CLOD and 

CLOQ requirements in these cases are also less stringent.  
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Figure B1: A portion of the Au 4 mm by 8 mm ellipse showing deposited and patterned 
silicon nitride to expose microelectrode array of 10 µm diameter openings which are 60 
µm center to center. Red arrow highlights one of the 10 µm diameter openings.  
 
 
 

Metal EPA MCL 
(ppb) 

Predicted CLOD 
Range (ppb) 

Predicted CLOQ 
Range (ppb) 

As 10 0.06 - 0.45 0.22 - 1.50 
Cd 5 0.15 - 1.02 0.49 - 3.39 
Cu 1300 0.08 - 0.57 0.27 - 1.91 
Pb 15 0.27 - 1.87 0.9 - 6.24 
Hg 2 0.26 - 1.81 0.87 - 6.04 
Se 50 0.07 - 0.48 0.23 - 1.59 
Zn 5000 0.08 - 0.59 0.28 - 1.97 

Table B2: Predicted CLOD and CLOQ values based on a 300 fold improvement of the A/V 
term of Equations B1 and B2 and experimentally measured QLOD/QLOQ*values from 
Table B1. QLOQ is 10/3 QLOD according to Equations B3 and B4. 
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