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ABSTRACT 

POLYCHLORINATED BIPHENYL 153 EXACERBATES NONALCOHOLIC 
FATTY LIVER DISEASE IN C57BU6 MICE 

Banrida Wahlang 

April 04,2012 

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants which 

are detectable in the serum of all American adults. Amongst PCB congeners, 

PCB 153 has the highest serum level. PCBs have been dose-dependently 

associated with suspected nonalcoholic fatty liver disease (NAFLD), obesity and 

metabolic syndrome in epidemiological studies. The purpose of this study is to 

determine if PCB 153 induces NAFLD in mice fed a control diet (CD), and 

exacerbates NAFLD in mice fed a high fat diet (HFD). C57BL6/J mice were fed 

either control or 42% milk fat diet for 12 weeks with or without PCB 153 co-

exposure (50 mg/kg i.p. x 4). Glucose tolerance tests were performed, and 

plasma/tissues were obtained at necropsy for measurements of adipocytokine 

levels, histology, and gene expression microarrays. In mice fed CD, the addition 

of PCB 153 had little to no effect on any of the measured parameters. In contrast, 

PCB 153 co-exposure in high fat-fed mice was associated with dramatically 

increased visceral adiposity, hepatic steatosis and increased plasma adipokines 
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including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. 

Likewise, co-exposure reduced expression of hepatic genes implicated in ~­

oxidation while increasing the expression of genes associated with lipid 

biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or 

tumor necrosis factor alpha levels. However, HFD+PCB 153 appeared to induce 

an endoplasmic reticulum (ER) stress response. Therefore, PCB 153 is an 

obesogen which exacerbates hepatic steatosis; alters adipocytokines; and 

disrupts normal hepatic lipid metabolism when administered with HFD. Because 

all U.S. adults have been exposed to PCB 153, this particular nutrient-toxicant 

interaction potentially impacts on the progression of human NAFLD. 
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CHAPTER 1 

INTRODUCTION 

Polychlorinated biphenyls (PCBs) 

Polychlorinated biphenyls (PCBs) are halogenated compounds consisting 

of up to 10 chlorine atoms attached to a biphenyl group. They were 

manufactured during 1930s-1970s and were used as dielectric and heat transfer 

fluids in electric transformers, wax extenders, flame retardants and as a source 

of chlorine content. A total of 1.3 million tons of PCBs containing about 130 

congeners was manufactured worldwide prior to their banning in 1977 (1). 

Monsanto, a well-known PCB manufacturer in North America, produced PCB 

mixtures under the brand name Aroclor at several plants including Anniston, 

Alabama. High-level environmental contamination during production resulted in 

increased PCB body burden in Anniston residents (2). Although PCBs have been 

banned for over 30 years, their high thermodynamic stability make them resistant 

to chemical degradation in the environment and hence, PCBs, belong to the 

category of 'persistent organic pollutants' (POPs). PCBs are still present in our 

ecosystem, including the atmospheric air, lakes, rivers, fish, human adipose 

tissue, serum and breast milk. Humans are exposed to PCBs through inhalation 

of PCB-contaminated air or ingestion of PCB-contaminated food. In fact, PCBs 

continue to be present in the food supply and daily intake in the American diet is 



estimated to be approximately 30 ng/day based on a recent study from a Dallas 

supermarket (3). PCBs are the 5th most hazardous substances on the CERCLA 

priority list (2007). The National Health and Nutrition Examination Study 

(NHANES) indicates that 100% of adult NHANES participants had detectable 

circulating PCB levels and PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl) has the 

highest median serum concentration in humans amongst all PCB congeners (5). 

Non-alcoholic fatty liver disease (NAFLO) 

A previous study from our laboratory group identified suspected non­

alcoholic fatty liver disease (NAFLD) and toxicant associated steatohepatitis 

(TASH) in the NHANES participants with chronic low-level environmental 

exposures to POPs including PCBs (4). NAFLD represents a pathological 

spectrum of diseases ranging from lipid accumulation in the hepatocytes 

(steatosis) to the development of superimposed inflammation (steatohepatitis) 

and ultimately fibrosis and cirrhosis. NAFLD is the most prevalent liver disease in 

North America. It resembles alcoholic fatty liver disease although it occurs in 

non-alcoholic subjects. The pathogenesis of NAFLD has been reviewed (5), and 

key mechanisms include altered adipo-cytokines with low adiponectin and high 

leptin levels (5, 6) and production of pro-inflammatory cytokines such as TNFa 

and IL-6 (7). NAFLD gives rise to hepatic insulin resistance and systemic 

inflammation, which in turn, induces obesity, diabetes and the metabolic 

syndrome (8, 9). Moreover, NAFLD is also exacerbated by diabetes (10) and is 

associated with obesity (5). Because it is often seen in association with insulin 
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resistance and dyslipidemia, NAFLD is generally regarded to be the hepatic 

manifestation of obesity and the metabolic syndrome. Interestingly, inflamed and 

fatty liver conditions are not confined to obese individuals only, but other factors 

can predispose a person to steatohepatitis. Therefore, it is possible that primary 

factors such as consumption of hyper-caloric foods can lead to steatosis in 

normal individuals but secondary factors such as POPs can act as a second hit 

and worsen this effect, leading to a diseased state. 

Effects of PCB exposure in humans 

Our laboratory group recently identified advanced steatohepatitis 

associated with insulin resistance and increased pro-inflammatory cytokines in 

non-obese chemical workers who were subjected to high-level industrial 

chemical exposures. The term TASH was then coined to describe this condition 

(11). Our initial work was focused on TASH in non-obese vinyl chloride workers; 

in our recent work however, our laboratory group identified suspected 

NAFLDITASH in NHANES participants with low-level environmental exposures to 

POPs including PCBs (4, 11). Other epidemiologic studies have found 

associations between PCBs and metabolic disorders associated with NAFLD 

including obesity (12, 13), insulin resistance/diabetes (14-16), and the metabolic 

syndrome (13,17). Furthermore, follow-up of subjects involved in the "Yu-cheng" 

incident in Taiwan, one of the two known major human PCB intoxication 

episodes, where cooking oil had been highly contaminated by PCBs, the 
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mortality rate due to cirrhosis was 2.7 -fold higher than expected (18), although 

pathologic confirmation was not provided. 

Structure-activity and toxicity relationship 

The PCB's structure determines the compound's activity and toxicity. 

Based on the chlorine substitution in the two phenyl rings, PCBs can be 

classified as either planar or non co-planar (Figure 1). Planar PCBs have chlorine 

substitutions in either the meta- or para- positions but not in the ortho- positions. 

Non co-planar PCBs have ortho- substituted chlorine atoms, apart from meta­

and/or para- substitutions. PCB studies focused on hepatocarcinogenesis and 

receptor-based mechanisms including the aryl hydrocarbon receptor (AhR) 

(coplanar or dioxin-like PCBs), the constitutive androstane receptor (CAR) (non­

coplanar or non-dioxin-like PCBs), and more recently, the estrogen receptor (19-

21). The AhR is a member of the PAS domain protein family of transcription 

factors and regulates a battery of genes involved with xenobiotic detoxification 

including CYP1 A and CYP1 B which can, in turn, bio-transform or activate pro­

carcinogens to their carcinogenic forms. Depending on the type of PCB-receptor 

interaction, PCBs have a tendency to induce pro-carcinogens leading to 

carcinogenicity or they can cause hepatomegaly and fatty liver. Coplanar PCBs 

such as PCB 126 are AhR agonists similar to dioxin (22). Previous work has 

implicated dioxins and dioxin-like PCBs in animal models of steatohepatitis (23, 

24). However, by mass, dioxin-like PCBs are a relatively minor component of the 

total PCB burden in human serum (4). Moreover, PCBs do not appear to be as 
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carcinogenic in man as they are in rodents (eg: PCB 126), and this may be due 

to differences in the AhR structure and in the battery of target genes between 

species (25). From a mechanistic standpoint, a PCB's structure determines its 

ability to interact with nuclear receptors as well. A theoretical structure-activity 

relationship study predicted that ortho-substituted PCBs can interact with the 

pregnane-X-receptor (PXR), estrogen receptor(ER), androgen receptor (AR) and 

thyroid receptor (TR) (26). PCB 153, an ortha-substituted, non co-planar PCB 

(Figure 1) has been studied extensively by the National Toxicology Program 

(NTP) in female Harlan Sprague-Dawley (SO) rats and the mode of action has 

been attributed to the compound's interaction with CAR (27-29). The studies also 

demonstrated PCB-induced hepatotoxicity (20, 27). Furthermore, nutrient­

toxicant interactions appear to be important in diet-induced obesity/metabolic 

syndrome (30) and NAFLD (5). However, the effect of PCB 153, a lipid soluble, 

non-dioxin like PCB which concentrates in adipose tissue has not been 

adequately studied in animal models of NAFLD. 

PCB's metabolism is defined by the number of chlorine atoms present. 

Low molecular weight PCBs (mono-, di-, tri- or tetra-chlorinated) are hydroxylated 

by cytochrome P450 enzymes (31). The metabolized PCBs, also known as 

biotransformed congeners, can form DNA adducts or bind to proteins to exert 

their toxic effects. High molecular weight PCBs, on the other hand, do not 

metabolize, hence they are known as persistent congeners. These PCBs such as 

the hexa-chlorinated PCB 153, bioaccumulate in the adipose tissue (32). 
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Figure 1. Chemical structure of PCBs. 
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Significance of the study 

Obesity has been identified as a leading "preventable cause of death" by 

the World Health Organization (WHO), and many health authorities view it as one 

of the most serious health problems of the 21 st century (25). The annual cost of 

obesity treatment in the US alone was recently estimated at $147 billion (1). 

According to the data from NHANES 2007-2008,33.8% of US adults are obese 

(defined by body mass index, BMI ~ 30) with another 34.2% being overweight 

(defined by BMI ~ 25) (26). Alarmingly, obesity is not restricted to the adult 

population; 15% of children and adolescents in the US are obese (27). 

Overweight/obesity is one of the defining features of metabolic syndrome, 

a metabolic disorder which is also characterized by insulin resistance, 

hypertension, and dyslipidemia (28). The prevalence of metabolic syndrome in 

US adults was recently estimated at 34.3% (29). The obesity epidemic is strongly 

associated with increased type 2 diabetes which is the late stage of insulin 

resistance. The National Diabetes Fact Sheet obtained from the Center for 

Disease Control and Prevention (CDC, 2011) reports that 25.8 million Americans 

have diabetes with another 79 million being insulin resistant. Obesity, insulin 

resistance, and metabolic syndrome eventually lead to target organ damage 

including fatty liver disease, cardiovascular disease, chronic kidney disease, and 

cancer. 

The pathogenesis of obesity, insulin resistance, and the metabolic 

syndrome is complex. Historically, obesity was blamed on over-nutrition and 
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genetic background. However, recent literature reports implicated NAFLD (2, 

30,31) and persistent organic pollutants such as PCBs (3-10,12-15,32) as 

key players in the development of obesity and the metabolic syndrome. 
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CHAPTER 2 

PCB 153 WORSENS DIET INDUCED OBESITY IN C57BU6 MICE 

INTRODUCTION 

Epidemiologic studies have implicated PCBs in metabolic disorders 

associated with NAFLD including obesity (12, 13), insulin resistance/diabetes 

(14-16), and the metabolic syndrome (13,17). Moreover, PCB 153 had the 

highest median serum levels in NHANES participants, than any single PCB 

congener. It therefore becomes crucial to evaluate the role of PCB 153 in 

induction of obesity or worsening diet-induced obesity. 

In this study, PCB 153 is hypothesized to act as a relevant "second hit" 

mechanism in the genesis and progression of NAFLD occurring in the context of 

a high fat diet. The first purpose of this study is to determine, if PCB 153 alone is 

capable of inducing NAFLD in mice fed a control diet (normal chow diet). The 

second purpose of the study is to determine if PCB exposures increase NAFLD 

occurring on a background of diet-induced obesity by worsening previously 

implicated mechanisms such as insulin resistance. 

C57BL6/J mice were used in our 12 week study. The mice were fed either 

control diet or 42% milk fat diet with or without PCB 153 co-exposure (50 mg/kg 

i.p. x 4). NAFLD is characterized by hepatic steatosis, inflammation and 

9 



dysregulation in adipokine levels. The objective of our study is to validate if the 

PCB 153-exposed animals gain weight, showed steatosis, insulin resistance or 

any other form of metabolic disorder. 
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MATERIALS AND METHODS 

Animals and diets. The animal protocol was approved by the University of 

Louisville Institutional Animal Care and Use Committee. Male C57BU6J mice (8 

weeks old, n=40; The Jackson Laboratory, Bar Harbor, Maine) were divided into 

4 study groups (n=10) based on diet and PCB 153 exposure in this 12 week 

study utilizing a 2x2 design. Mice were fed either a high fat diet (HFD, 42% kCal 

from fat; TD.88137 Harlan Teklad) or a control diet (CD, 13.5% kCal from fat; 

5010 LabDiet). Diet composition is shown in Table 1. PCB 153 (Ultra Scientific, 

North Kingstown, RI), was administered in corn oil (vehicle) by IP injection (vs. 

corn oil alone) at a dose of 50 mg/kg on weeks 4, 6, 8, and 10 (200mg/kg of PCB 

153 cumulative). This dose was chosen based on previous NTP TR 530 study 

(3000 Ilg/kg by gavage, 5 days per week for 14 weeks:::: 210 mg/kg of PCB 153 

cumulative) (28). Mice were housed in a temperature-and light-controlled room 

(12h light; 12h dark) with food and water ad libitum. Glucose tolerance tests were 

performed at week 11, and the animals were euthanized (sodium pentobarbital, 

40 mg/kg body weight, i.p.) at the end of week 12. Thus four different treatment 

groups were evaluated in this fashion: CD, CD+PCB 153, HFD, HFD+PCB. 
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Control Diet High Fat Diet 

%kCal Source %kCal Source 

Protein 28.5 Soybean Meal 15.2 Casein 

Sucrose/Corn 
Carbohydrate 58.0 Starch/Sucrose 42.7 

starch 

Fat 13.5 Ether extract 42 Milk Fat 

Table 1. Diet composition. 
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Glucose tolerance test. The glucose tolerance test (GTT) was performed 2 

weeks prior to the end of study. On the day of test, mice were fasted for 6 h (9 

A.M.-3 P.M.) and fasting blood glucose level was measured with a hand-held 

glucometer (ACCU-CHEK Aviva, Roche, Basel, Switzerland) using 1 III blood via 

tail snip. Glucose was then administered (1 mg glucose/g body weight, sterile 

saline, i.p.), and blood glucose was measured at 5, 15,30,60,90 and 120 min 

post-injection. Insulin resistance was calculated by homeostasis model 

assessment (HOMA) using the formula HOMA-IR = Fasting glucose (mg/dL) x 

Fasting insulin (~U/mL) /405 (20). 

Liver histological studies. Liver sections were frozen using optimal cutting 

temperature (OCT), a liquid embedding medium, or fixed in 10% buffered 

formalin for 24 h and embedded in paraffin for histological examinations. Tissue 

sections were stained with either Oil Red a (frozen OCT), hematoxylin-eosin 

(H&E; formalin-fixed) or Sirius red stain (formalin-fixed) and examined under light 

microscopy at 200X magnification. Photomicrographs were captured using a 

Nikon Eclipse E600 Microscope. 

Liver enzymes, lipids and TNFa mRNA measurements. Plasma aspartate 

transaminase (AST), alanine transaminase (AL T), cholesterol, triglyceride, high 

density lipoprotein (HDL) and low density lipoprotein (LDL) levels were measured 

using Cobas Mira Plus automated chemical analyzer (Roche, Basel, 

Switzerland). Real-time polymerase chain reaction (RT -PCR) experiments were 

used to measure hepatic tumor necrosis factor alpha (TN Fa) mRNA. Animal liver 
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was homogenized and total RNA was extracted using the RNA-STAT 60 protocol 

(Tel-Test, Austin, TX). cDNA was synthesized from total RNA using the 

QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA). PCR was 

performed on the Applied Biosystems StepOnePlus Real-Time PCR Systems 

using the Taqman Universal PCR Master Mix (Life Technologies, Carlsbad, CA). 

Primer sequence for TNFa (Mm00443258-m1) was obtained from Taqman Gene 

Expression Assays (Applied Biosystems, Foster City, CA). The levels of mRNA 

were normalized relative to the amount of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (4352932E). Expression levels in mice fed CD and 

administered vehicle were set at 100%. Gene expression levels were calculated 

according to the 2-MCt method (33). 

Measurement of hepatic triglyceride and cholesterol content. Frozen mouse 

livers were washed in neutral 1 X phosphate buffered saline and pulverized. 

Hepatic lipids were extracted by an aqueous solution of chloroform and 

methanol, according to the Bligh and Dyer method (21), dried using nitrogen and 

re-suspended in 5% lipid free bovine serum albumin. Triglycerides and 

cholesterol were quantified using the Cobas Mira Plus automated chemical 

analyzer. The reagents employed for the assay were L-Type Triglyceride M 

(Wako Diagnostics, Richmond, VA) and Infinity Cholesterol Liquid Stable 

Reagent (Fisher Diagnostics, Middletown, VA) for triglycerides and cholesterol 

respectively. 

14 



Statistical Analysis. Statistical analyses were performed using GraphPad Prism 

version 5.01 for Windows and SigmaPlot 11.01. Data are expressed as mean ± 

SEM. For 2 group comparison, an unpaired t-test was used, and multiple group 

data were compared using Two Way ANOVA followed by Tukey Test for post­

hoc all pairwise comparisons. P <0.05 was considered statistically significant. 
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RESULTS 

PCB 153 treatment increased body weight and visceral adiposity in mice 

fed high fat diet, but had no effect in mice fed control diet. 

During the 12 week experiment, all groups experienced weight gain 

(Figure 2). PCB 153 administration had no significant effect on mean percent 

body weight gain in mice fed CD (111.10 ± 0.75% for CD VS. 107.50 ± 1.73% for 

CD+PCB 153). In contrast, PCB 153 significantly increased body weight gain in 

mice fed with HFD (122.80 ± 1.98%) VS. HFD+vehicle (114.40 ± 2.56%, P <0.05). 

There was a significant interaction between HFD and PCB 153 using Two Way 

ANOVA (p =0.002). 

On H&E stain, epididymal adipocyte size was increased by HFD, but PCB 

153 had no additive effect (Figure 3). In mice fed with CD, the mean epididymal 

adipocyte area (~m2) was 1357.95 ± 70.73 ~m2 with vehicle control and this was 

significantly increased with PCB 153 (1806.46 ± 169.46 ~m2, p=0.02) (Figure 4). 

In mice fed HFD, adipocyte size was not significantly different for vehicle 

(5643.82 ± 632.49 ~m2) VS. PCB 153 (5371.29 ± 484.91 ~m2). However, 

adipocyte size was significantly larger with HFD+vehicle VS. both CD+vehicle and 

CD+PCB 153 (p <0.05). Likewise, mean adipocyte size was larger with 

HFD+PCB 153 VS. both CD+vehicie and CD+PCB 153 (p <0.05). Therefore, PCB 

153 increased diet-induced obesity, independent of effects on adipocyte size. 

PCB 153 slightly increased adipocyte size only in mice fed CD. 
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Figure 2. PCB 153 increased body weight and visceral adiposity in mice fed 

HFD. 

The % increase in body weight for C57BU6J mice (n=10) treated with a 42% milk 

fat diet (vs. CD) ± PCB 153 (200 mg/kg cumulative) . Body weight measurements 

were taken from week 1 to week 12 (12 weeks) and the body weight at week 1 

was taken as 100%. Data are expressed as mean ± SEM. * P <0.05. CD-control 

diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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CD CD+PCB 153 

HFD HFD+PCB 153 

Figure 3. H&E staining showed HFD increased adipocyte cell size and this 

was unaffected by PCB 153. 

Epipdidymal adipose tissue was stained with H&E and images were captured 

using a Nikon Eclipse E600 Microscope. The adipocyte cell size was increased in 

mice fed with HFD and th is effect was not changed with PCB 153 co­

administration. CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 4. HFD increased adipocyte cell size <.,..m2
) and this was unaffected 

by PCB 153. 

Adipocyte area was measured and the average cell size of > 100 cells for each of 

the groups (n=1 0) was calculated. The adipocyte cell size (11m2) was increased in 

mice fed with HFD and th is effect was not changed with PCB 153 co-

administration. Data are expressed as mean ± SEM. * P <0.05. CD-control diet, 

HFD-high fat diet, PCB-polychlorinated biphenyl. 
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PCB 153 worsened NAFLD in mice fed high fat diet, but had no hepatic 

effects in mice fed control diet. 

CD-fed mice did not develop significant steatosis by histology (Oil Red 0 

and H&E stains-Figure 5 & 6) with either vehicle control or PCB 153. In contrast, 

HFD increased steatosis which appeared to be even greater with PCB 153 co­

exposure (vs. vehicle). 

Hepatic necro-inflammation was evaluated by histology (H&E), plasma 

aminotransferase activity, and hepatic TNFa message (RT-PCR). Qualitatively, 

significant necro-inflammation was not observed histologically in either group 

(Figure 6). Mean plasma AST activity levels were slightly, but significantly higher 

with HFD+PCB 153 (54.13 ± 4.65 U/L) vs. either CD+vehicie (37.09 ± 1.99 U/L, P 

<0.05) or CD+PCB 153 (37.68 ± 1.17 U/L, P <0.05) (Figure 7). The mean AST 

level in the HFD+vehicle group (49.85±4.52 U/L) was significantly different vs. 

CD+vehicie group (p <0.05) but not vs. CD+PCB 153. Mean plasma AL T activity 

levels were not significantly different between groups (Figure 8). Hepatic TNFa 

message was measured by RT PCR and normalized to GAPDH. Mean TNFa 

message levels were not significantly different between groups: CD+vehicle (100 

± 24.03); CD+PCB 153 (106.90 ± 40.06); HFD+vehicie (285.57 ± 109.73); 

HFD+PCB 153 (60.47 ± 16.81). Hepatic fibrosis was evaluated by Sirius red 

stain. As no qualitative differences were observed between treatment groups 

(data not shown), quantitative studies were not performed. 
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Hepatic triglycerides and cholesterol were quantitated biochemically. In 

CD-fed mice, mean hepatic triglycerides were not significantly different between 

vehicle (7.29 ± 1.20 Ilg/mg tissue) and PCB 153 treatment (4.63 ± 1.85 Ilg/mg 

tissue) (Figure 9). Likewise, hepatic cholesterol levels were not significantly 

different between vehicle (2.75 ± 0.39 Ilg/mg tissue) and PCB 153 (3.15 ± 0.93 

Ilg/mg tissue) treated mice fed with CD (Figure 10). In contrast, HFD-fed mice 

had significantly higher mean hepatic triglyceride levels with PCB 153 (56.37 ± 

14.36 Ilg/mg tissue) VS. vehicle control (17 ± 6.35 Ilg/mg tissue, p <0.05). Indeed, 

HFD+PCB 153 co-exposure resulting in significantly higher hepatic triglycerides 

than all other treatments. Hepatic cholesterol levels were not significantly 

different between HFD+vehicie (5.08 ± 1.49 Ilg/mg tissue) VS. HFD+PCB 153 

(9.26 ± 2.21 Ilg/mg tissue). However, mean hepatic cholesterol levels were 

significantly higher with HFD+PCB 153 VS. both CD+vehicle or CD+PCB 153 

(Figure 10). 

In summary, the combination of PCB 153 and HFD dramatically increased 

steatosis, marginally worsened necro-inflammation, but had no effect on fibrosis. 

PCB 153 had no effect on these parameters in mice fed CD. 

21 



CD CD+PCB 153 

HFD HFD+PCB153 

Figure 5. Oil Red 0 staining of liver tissue. 

Oil Red 0 staining of hepatic sections establ ished the occurrence of micro­

vesicular steatosis in the HFO+PCB 153 mice. There was no evidence of micro­

vesicular steatosis in mice fed CO without or with PCB 153 co-administration. 

CD-control diet, HFO-high fat diet, PCB-polychlorinated biphenyl. 
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CD CD+PCB153 

HFD HFD+ PCB 153 

Figure 6. H&E staining of liver tissue. 

H&E staining of hepatic sections established the occurrence of macro-vesicular 

steatosis in the HFD+PCB 153 mice. Macro-vesicular steatosis was not observed 

in mice fed CD without or with PCB 153 co-administration. CD-control diet, HFD­

high fat diet, PCB-polychlorinated biphenyl. 
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Figure 7. Effects of HFD and PCB 153 on plasma AST levels. 

Plasma AST levels (U/L) were measured (n=10) using Cobas Mira Plus 

automated chemical analyzer. The AST levels were significantly higher for the 

HFD+PCB 153 group as compared to CD or CD+PCB 153. Data are expressed 

as mean ± SEM. * P <0.05. CD-control diet, HFD-high fat diet, PCB-

polychlorinated biphenyl , AST-aspartate transaminase. 
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Figure 8. Effects of HFD and PCB 153 on plasma AL T levels. 

Plasma AL T levels (U/L) were measured (n=10) using Cobas Mira Plus 

automated chemical analyzer. No significant change was observed in any group. 

Data are expressed as mean ± SEM. * P <0.05. CD-control diet, HFD-high fat 

diet, PCB-polychlorinated biphenyl, AL T-alanine transaminase. 
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Figure 9. Effects of HFD and PCB 153 on hepatic triglyceride levels. 

Hepatic levels of triglycerides were quantified (Ilg/mg tissue) in mice (n=5) fed 

with control or high fat diet with or without PCB 153. PCB 153 increased hepatic 

triglyceride levels in mice fed a HFD. Data are expressed as mean ± SEM. * P 

<0.05. CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 10. Effects of HFD and PCB 153 on hepatic cholesterol levels. 

Hepatic levels of cholesterol were quantified ( ~g/mg tissue) in mice (n=5) fed with 

control or high fat diet with or without PCB 153. PCB 153 increased hepatic 

cholesterol levels in mice fed a HFD. Data are expressed as mean ± SEM. * P 

<0.05. CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Insulin resistance, glucose regulation and serum lipoproteins: Effects of 

HFD and PCB 153. 

In order to evaluate insulin resistance which may complicate obesity, 

HOMA-IR was determined and GTT was performed. As observed by HOMA-IR 

(Figure 11) HFD+vehicie (3.80 ± 0.48) was associated with insulin resistance but 

this effect was not augmented by HFD+PCB 153 (3.83 ± 0.62). However, HOMA­

IR levels were significantly higher in HFD+vehicle vs. CD+vehicie (1.26 ± 0.17) 

and CD+PCB 153 (1.30 ± 0.35, P <0.05). Likewise, HOMA-IR levels were 

significantly higher in HFD+PCB 153 vs. CD+vehicie and CD+PCB 153 (p 

<0.05). GTT was performed and compared to CD; PCB 153 had no additive 

effect to dietary manipulation alone (Figure 13). However, in CD-fed mice, PCB 

153 administration was associated with lower fasting blood glucose levels 

(170.40 ± 4.57 mg/dL for CD+vehicie vs. 147.10 ± 5.92 mg/dL CD+PCB 153, 

p=0.006) (Figure 12). Furthermore, HFD+vehicie and HFD+PCB 153 significantly 

increased the glucose area under the curve (AUC) (Figure 13 & 14) (p <0.05) 

which was obtained from GTT. 

The plasma levels of total cholesterol, triglycerides, high density 

lipoproteins (HDL) and low density lipoproteins (LDL) were measured in all 

animal groups (Table 2). No significant differences in total cholesterol, 

triglycerides, LDL and HDL were observed in mice administered CD+vehicle vs. 

CD+PCB 153. Likewise mean lipid levels were unchanged in HFD+vehicle vs. 
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HFO+PCB 153. However, total cholesterol, LOL, and HOL were significantly 

higher for HFO+PCB 153 vs. CO+PCB 153 (p <0.05 - Table 2). 

In summary, HFO was associated with insulin resistance and serum 

hypercholesterolemia, but PCB 153 had no additional effect on these 

parameters. 
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Figure 11. HFD increased insulin resistance and this was unaffected by 

PCB 153 co-exposure. 

HOMA-IR was caluclated from fasting blood glucose and insulin levels for all four 

groups of animals (n=10). HFD and HFD+PCB 153 groups showed higher levels 

of HOMA-IR, indicative of insulin resistance, as compared to CD and CD+PCB 

153 groups. Data are expressed as mean ± SEM. * P <0.05. CD-control diet, 

HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 12. Fasting blood glucose levels. 

Fasting blood glucose levels (mg/dL) were measured for all animals. HFD and 

HFD+PCB 153 showed higher fasting blood glucose levels when compared to 

CD group. CD+PCB 153 showed significantly lower fasting blood glucose levels 

when compared to CD alone. Data are expressed as mean ± SEM. * P <0.05. 

CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 13. Glucose tolerance test (GTT). 

Glucose tolerance test was performed and blood glucose levels were measured 

for mice (n=10) fed with a control or high fat diet, with or without PCB 153. High 

fat diet increased glucose tolerance and this was unaffected by PCB 153. CD-

control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 14. Area under the curve calculated from GTT. 

Area under the curve was calculated from the glucose tolerance test readings. 

HFD and HFD+PCB 153 groups showed higher AUC levels than CD or CD+PCB 

153 groups. Data are expressed as mean ± SEM. * P <0.05. CD-control diet, 

HFD-high fat diet, PCB-polychlorinated biphenyl. 
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CD CD+PCB 153 HFD HFD+PCB 153 

136.78 ± 141.52 ± 
Cholesterol 70.01 ± 10.29 69.88 ± 16.50 

37.65a 27.49a 

Triglycerides 33.85 ± 12.95 38.63 ± 19.86 23.39 ± 4.17 34.17 ± 27.11 

111.01 ± 113.80 ± 
HDL 54.73 ± 5.07 58.85 ± 10.92 

31.02a 17.69a 

LDL 14.03 ± 2.39 14.29 ± 4.07 33.74 ± 9.67a 31.25 ± 8.79a 

Table 2. Plasma levels of total cholesterol, triglycerides, high density and 

low density lipoproteins 

ap <0.05 compared with mice fed CD alone or co-administered with PCB 153. 

Values are mean ± SEM (mg/dL). CD-control diet, HFD-high fat diet, PCB­

polychlorinated biphenyl, HDL-high density liporoteins, LDL-Iow density 

lipoproteins. 
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DISCUSSION 

The most striking result of this study was the synergistic interaction 

between PCB 153 and HFD resulting in dramatically increased obesity. 

Historically, exposures to PCBs, and the related molecule TCDD, have been 

associated with wasting syndrome, although hypercaloric diets were not utilized 

(34,35). Consistent with these historical observations, a decrease in % body 

weight gain was observed in the CD-fed mice administered with PCB 153 VS. 

vehicle control. However, recent epidemiological studies, which did not control for 

diet, revealed an association between serum levels of specific PCB congeners 

and human obesity (12, 13). Likewise, an increase in % body weight gain 

corresponding with qualitatively increased visceral fat was observed in mice with 

PCB 153+HFD co-exposure VS. HFD alone. These seemingly paradoxical 

findings could potentially be explained by (i) the fact that PCB 153 is not an AhR 

agonist as are the PCBs used in most prior rodent studies, (ii) AhR has 

dramatically different activities in rodents and humans (36), and (iii) unlike the 

rodent studies, in the epidemiologic studies, humans are simultaneously being 

exposed to hypercaloric diets. Although we can retrospectively rationalize our 

findings, they were nonetheless unexpected. Therefore, metabolic cages were 

not used and adiposity was not precisely quantitated. We were, however, able to 

quantitate adipocyte size which showed that PCB 153 had no effect on adipocyte 

size over HFD alone. 
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Despite changes in obesity, PCB 153 was not associated with increased 

insulin resistance (HOMA-IR). However some alterations were observed in 

glucose metabolism. There was a non-significant trend towards higher AUC 

levels (glucose tolerance test) with significantly lower fasting blood glucose levels 

in CD-fed mice co-administered with PCB 153 which theoretically could be 

explained by CAR activation (37). Notably, PCB 153 was associated with human 

diabetes in adult NHANES (15), indicating that other factors may have driven 

insulin resistance. A more recent prospective human study determined that 

higher baseline levels of PCBs with greater than 7 chlorine atoms (and not PCB 

153 that has six chlorines) were associated with the subsequent development of 

greater BMI, insulin resistance, and triglycerides (38). Therefore, it appears that 

the effects of PCBs on obesity/metabolic syndrome may be congener-dependent 

and depend on affinity for the AhR and degree of chlorination. 

Concordant with the increase in obesity, PCB 153 worsened NAFLD in 

HFD mice. Steatosis was dramatically increased by the combination of PCB 

153+HFD. In contrast to steatosis, which increased considerably, hepatic necro­

inflammation was only minimally increased by HFD+PCB 153. While mean 

plasma AST activity was significantly increased in this group, no significant 

changes were observed in ALT, necro-inflammation by histology, hepatic TNFa 

message levels, or plasma levels of TNFa, IL-6, or IL-10. Previous 

epidemiological study from our laboratory found a dose-dependent association 

between plasma PCB levels and elevated ALT in adult NHANES subjects (4). 
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However, weaker associations were also noted between PCBs and elevated AST 

levels. PCB 153 was not associated with hepatic inflammation, although 

preliminary in vitro studies from our laboratory showed that PCB exposures 

increased TNFa production from Raw 264.7 cells, a murine macrophage cell line 

(39). However, these differences could be PCB congener/dose specific or related 

to differences between in vitro vs. in vivo systems. 
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CHAPTER 3 

MECHANISMS BY WHICH PCB 153 PROMOTE OBESITY 

INTRODUCTION 

The characteristics of NAFLD/obesity include but are not limited to hepatic 

steatosis, insulin resistance and increased serum cholesterol. Adipokine 

dysregulation is another probable factor that drives NAFLD towards metabolic 

syndrome. Furthermore, in our studies, there was marked evidence for the 

occurrence of hepatic steatosis in mice fed a HFD and co-exposed to PCB 153. 

Deposition of fat in the liver can occur through different mechanisms such as 

increased synthesis and decreased catabolism of fat in liver (40) or increased 

import of fat to liver and decreased export to other tissues (24). We therefore 

measured the serum levels of adipokines such as adiponectin, leptin, resistin and 

tissue plasminogen activator inhibitor (t-PAI 1) as well as cytokines. 

To further understand the mechanism that led to steatosis, mRNA 

expression of enzymes involved in fatty acid metabolism was examined. These 

enzymes included fatty acid synthase (FAS) for fatty acid synthesis, PPARa and 

carnitine palmitoyl transferase 1A and 2 (CPT1A and 2) for fatty acid oxidation. 

The mRNA expression of fatty acid binding protein 1 (FABP1), utilized for fatty 

acid transport, was also examined. 
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Another aspect that we studied is related to the slight increase in 

adiponectin levels in the plasma as compared to the high fold-change observed 

with leptin in the HFD+PCS 153 group. We hypothesize that the decreased 

adiponectin:leptin ratio seen in this group may be due to endoplasmic reticulum 

(ER) stress brought upon by PCS exposure in high fat-fed mice. 

ER stress refers to the phenomenon when the protein load in the ER 

exceeds the ER folding capacity; hence, also known as unfolded protein 

response (UPR) (41). Synthesis, folding and maturation of secreted and 

transmembrane proteins occur in the endoplasmic reticulum (ER). ER is also the 

site of lipid biosynthesis and calcium (Ca2+) storage. Causes of ER stress are 

diverse and range from Ca2
+ to cholesterol accumulation and phospholipid 

depletion (42). 

One of the defining features in ER stress is the upregulation of the CAAT­

enhancer binding protein (C/ESP) homologous protein 10 (CHOP 10), also 

known as DNA damage-inducible transcript 3 (DOlT 3) (43). CHOP-10 belongs to 

the family of bliP C/ESP like transcription factors and has been implicated in ER 

stress, oxidative stress and nutrient deprivation (44, 45). UPR is an adaptive 

mechanism initiated by the cell in response to demand for protein folding. The 

presence of misfolded proteins in ER attracts immunoglobulin heavy chain 

binding protein (SiP); SiP's principal role is to bind to ER stress transducers in 

their inactive form towards it (41). Dissociation of the chaperone protein SiP from 

the ER stress transducer protein kinase RNA-activated (PKR)-like ER kinase 
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(PERK) leads to phosphorylation of the translation initiation factor 2 (eIF2a) 

(Figure 15). Phosphorylation of elF2a leads to nuclear translocation of activating 

nuclear transcription 4 (ATF4) which induces CHOP 10 (46, 47). CHOP 10 plays 

a functional role in apoptosis, diabetes mellitus and adipocyte differentiation (45, 

48,49). 
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Figure 15. Upregulation of CHOP 10 in endoplasmic reticulum (ER) stress. 
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Growth and differentiation of preadipocytes involve a complex sequence 

of transcription factors that are interdependent and can either stimulate or inhibit 

adipocyte differentiation, eventually affecting adipocyte genes and adipocyte 

secretory hormone levels. 

Adipocytes or fat cells arise from fibroblasts that require growth arrest and 

terminal differentiation to become functional and matured adipocytes. Growth 

arrest is controlled by CAAT -enhancer binding protein alpha (C/EBPa) and 

peroxisome proliferator-activated receptor gamma (PPARy), transcription factors 

that transactivate adipocyte-specific genes (48). C/EBPa increases p21 (cyclin­

dependent kinase inhibitor) levels and has anti-mitotic activity (50) while PPARy 

decreases the transcriptional activity of E2F/DP-1 complex which controls DNA 

synthesis (51). PPARy attains maximal level of expression in matured 

adipocytes. C/EBPI3, a transcriptional activator of C/EBPa and C/EBPo, 

precedes C/EBPa expression. CHOP 10 is expressed in growth arrested 

preadipocytes and it transiently sequesters C/EBPI3 by heterodimerization (52). 

C/EBPI3 and C/EBPo co-expression is essential for PPARy expression (53), thus 

these transcription factors have temporal and spatial expressions that influence 

each other. Therefore, CHOP 10 is a negative modulator of the C/EBP 

transcriptional activity and its upregulation leads to decreased C/EBPI3 and 

C/EBPo levels, which subsequently repress C/EBPa and PPARy expression. 

Suggested PPARy target genes include adiponectin, lipoprotein lipase (LPL) and 

adipocyte protein 2 (aP2) or fatty acid binding protein 4 (FABP4) (54, 55). 
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MATERIALS AND METHODS 

Cytokines and adipokines measurement. Plasma cytokine and adipokine 

levels were measured using Milliplex Mouse Serum Cytokine and Adipokine Kits 

(Millipore Corp, Billerica, MA) on the Luminex IS 100 system (Luminex Corp, 

Austin, TX), as per the manufacturer's instructions. 

Real time-PCR. Mouse liver and adipose tissue samples were homogenized and 

total RNA was extracted using the RNA-STAT 60 protocol (Tel-Test, Austin, TX). 

cDNA was synthesized from total RNA using the QuantiTect Reverse 

Transcription Kit (Qiagen, Valencia, CA). PCR was performed on the Applied 

Biosystems StepOnePlus Real-Time PCR Systems using the Taqman Universal 

PCR Master Mix (Life Technologies, Carlsbad, CA). Primer sequences (Taqman 

Gene Expression Assays) were obtained from Applied Biosystems (Foster City, 

CA) and included the following (with the catalogue number): fatty acid synthase 

(FAS) (Mm00662319-m 1), peroxisome proliferator-activated receptor alpha 

(PPARa) (Mm00440939-m1), carnitine palmitoyltransferase 1A (CPT1A) 

(Mm01231183-m1), carnitine palmitoyltransferase 2 (CPT2) (Mm00487205-m1), 

fatty acid binding protein 1 in liver (FABP1) (Mm00444340-m1), peroxisome 

proliferator-activated receptor gamma (PPARy) (Mm01184322-m1), CCAAT­

enhancer-binding protein alpha (C/EBPa) (Mm00514283-s1), C/EBP 

homologous protein (CHOP 10) (Mm00492097 -m 1) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (4352932E). The levels of mRNA were 

normalized relative to the amount of GAPDH mRNA, and expression levels in 
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mice fed CD and administered vehicle were set at 100%. Gene expression levels 

were calculated according to the 2-MCt method (33). 

Statistical Analysis. Statistical analyses were performed using GraphPad Prism 

version 5.01 for Windows and SigmaPlot 11.01. Data are expressed as mean ± 

SEM. For 2 group comparison, an unpaired t-test was used, and multiple group 

data were compared using Two Way ANOVA followed by Tukey Test for post­

hoc all pairwise comparisons. P <0.05 was considered statistically significant. 
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RESULTS 

PCB 153 altered plasma adipokine levels and expression although cytokine 

levels were unchanged. 

HFD+PCB 153 increased leptin levels 56-fold VS. CD+vehcile (p <0.05); 

and 25-fold VS. CD+PCB 153 (p <0.05) (Table 3). Three additional adipokines, 

adiponectin, resistin and tPAI-1, were also determined (Table 3). Compared to 

the large magnitude changes observed in plasma leptin levels, adiponectin levels 

were changed by a smaller amount. Adiponectin levels were higher in 

HFD+vehicie VS. CD+vehicie and CD+PCB 153. Likewise, adiponectin levels 

were higher in HFD+PCB 153 VS. both CD and CD+PCB 153. Resistin levels 

were significantly increased in HFD+PCB 153 VS. both HFD+vehicle and 

CD+vehicie (p <0.05). Resistin levels were also significantly higher in 

HFD+vehicie VS. CD+vehicie (p <0.05). No differences were noted between 

CD+PCB 153 VS. any other group. Similarly, mean plasma tPAI-1was 

significantly increased in HFD+PCB 153 VS. HFD+vehicie and VS. CD+vehicie (p 

<0.05). tPAI-1 levels were also significantly higher in HFD+vehicle VS. 

CD+vehicle (p <0.05). Plasma cytokines were measured and no change was 

observed in any of the animal groups for the pro-inflammatory cytokines, TNFa 

and IL-6, and the anti-inflammatory cytokine IL-10 (Table 3). Therefore, 

HFD+PCB 153 co-exposures led to significant changes in adipokines including 

the adiponectin, leptin, resistin, and tPAI-1; but did not affect cytokines including 

TNFa, IL-6, or IL-10. 
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Adipocytokines CD CD+PCB 153 HFD HFD+PCB 153 

Adiponectin 
6.39 ± 0.30 6.57 ± 0.38 9.01 ± 0.87a 11.33 ± 1.11 a 

(J.lg/mL) 

116.67± 1279.28 ± 6543.00 ± 
Leptin (pg/mL) 254.87 ± 55.46 

39.93 360.11 a 3550.89a 

742.02 ± 941.09 ± 1359.99 ± 
Resistin (ngl mL) 838.02 ± 246.11 

134.44 310.87a 325.47a
,b 

152.47± 363.80 ± 533.39 ± 
tPAI-1 (ng/mL) 218.05 ± 91.06 

71.32 142.82a 207.82a,b 

TNFa (pg/mL) 0.52 ± 0.49 0.65 ± 0.70 0.99 ± 1.44 0.58 ± 0.88 

IL-6 (pg/mL) 3.80 ± 2.62 5.31 ± 5.79 12.69 ± 13.07 6.65 ± 8.12 

IL-10 (pg/mL) 1.54 ± 0.33 1.42 ± 0.27 3.55 ± 3.03 2.68 ± 2.90 

Table 3. Plasma cytokines' and adipokines' levels 

ap <0.05 compared with mice fed CD alone or co-administered with PCB 153. b 

p<0.05 compared with mice fed HFD alone. Values are mean ± SEM. CD-control 

diet, HFD-high fat diet, PCB-polychlorinated biphenyl, tPAI-1-tissue plasminogen 

activator inhibitor 1, TNFa-tumor necrosis factor alpha, IL-interleukin. 
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PCB 153 exposure altered gene expression of enzymes involved in hepatic 

lipid metabolism. 

Real-time PCR was performed with total liver mRNA to analyze potential 

changes in expression of selected genes involved in fatty acid metabolism: FAS, 

PPARa, and CPT1A12. 

FAS expression was significantly increased in HFD+PCB 153 (2530.53 ± 

1436.48) VS. CD+vehicie (100 ± 39.30, P <0.05) and VS. CD+PCB 153 (422.05 ± 

169.58, p <0.05) (Figure 16). Lower FAS expression was observed in 

HFD+vehicie (472.78 ± 382.25) VS. HFD+PCB 153, and this was statistically 

significant (p <0.05). Interestingly, HFD+vehicie showed significantly higher FAS 

expression when compared to CD+vehicie group. 

PPARa expression was significantly decreased in HFD+PCB 153 (19.09 ± 

7.89) VS. CD+PCB 153 (112.64 ± 35.08, P <0.05) and VS. CD+vehicie (100 ± 

19.51, P <0.05) (Figure 17). No significant differences were seen in PPARa 

expression in HFD+vehicie (40.98 ± 13.17) VS. any other group; although there 

was a non-significant trend towards higher PPARa VS. HFD+PCB 153. CPT1A, a 

PPARa target gene and the rate limiting step in hepatic ~ oxidation, was 

decreased in HFD+PCB 153 (13.83 ± 6.85) VS. CD+vehicle (100 ± 22.63, P 

<0.05) (Figure 18). Mean CPT2 expression was significantly decreased in 

HFD+PCB 153 (14.58 ± 5.53) VS. CD+vehicle (100 ± 15.15, P <0.05); and also in 

HFD+vehicie (49.72 ± 29.45) VS. CD+vehicle (p <0.05) (Figure 19). CPT2 

expression was numerically lower in HFD+PCB 153 than HFD+vehicle, but this 
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observed trend was not statistically significant. FABP1 gene expression did not 

differ significantly between PCB-exposed and unexposed groups fed either a 

control or HFD. 

Therefore, with HFD+PCB 153 co-exposure, the overall picture favored 

increased expression of genes implicated in fatty acid synthesis and decreased 

expression of genes involved in mitochondrial fatty acid ~ oxidation. 
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Figure 16. HFD and PCB exposure altered expression of FAS in liver. 

Real-time PCR experiments showed the changes in hepatic mRNA expressions 

for fatty acid synthase (FAS) in mice liver caused by either PCB 153 exposure or 

HFD consumption or both as compared to gene expression in mice fed CD 

without or with PCB 153 exposure. All values were normalized to CD group, 

(n=10). Data are expressed as mean ± SEM. * P <0.05. CD-control diet, HFD-

high fat diet, PCB-polychlorinated biphenyl. 
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Figure 17. HFD and PCB exposure altered expression of PPARa in liver. 

Real-time PCR experiments showed the changes in hepatic mRNA expressions 

for peroxisome proliferation activator alpha (PPARa) in mice liver caused by 

either PCB 153 exposure or HFD consumption or both as compared to gene 

expression in mice fed CD without or with PCB 153 exposure. All values were 

normalized to CD group, (n=10). Data are expressed as mean ± SEM. * P <0.05. 

CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 18. HFD and PCB exposure altered expression of CPT1 A in liver. 

Real-time PCR experiments showed the changes in hepatic mRNA expressions 

for carnitine palmitoyl transferase 1 A (CPT1 A) in mice liver caused by either PCB 

153 exposure or HFD consumption or both as compared to gene expression in 

mice fed CD without or with PCB 153 exposure. All values were normalized to 

CD group, (n=10). Data are expressed as mean ± SEM. * P <0.05. CD-control 

diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 19. HFD and PCB exposure altered expression of CPT2 in liver. 

Real-time PCR experiments showed the changes in hepatic mRNA expressions 

for carn itine palmitoyl transferase 2 (CPT2) in mice liver caused by either PCB 

153 exposure or HFD consumption or both as compared to gene expression in 

mice fed CD without or with PCB 153 exposure. All values were normalized to 

CD group, (n=10). Data are expressed as mean ± SEM. * P <0.05. CD-control 

diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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The role of PCB 153 in endoplasmic reticulum stress. 

Our RT -PCR studies on the adipose tissue of C57BI/6 mice fed either CD 

or HFD with or without PCB 153 co-administration showed interesting results that 

suggested the role of PCBs as ER stress inducers in the presence of HFD. RT­

PCR was performed on mRNA extracted from the mouse adipose tissue for 

adiponectin, CHOP 10, C/EBPa and PPARy. 

Adiponectin mRNA levels decreased significantly in the HFD+PCB 153 

group (2.77 ± 1.06) and HFD+vehicie group (24.90 ± 16.92) when compared to 

CD+vehicle (100 ± 23.66, P <0.05) (Figure 20). CHOP 10 mRNA expression 

increased significantly in the HFD+vehicie (610.89 ± 194.73) and HFD+PCB 153 

group (325.66 ± 139.06) vs. CD+vehicie (100 ± 37.30, P <0.05) (Figure 21). 

C/EBPa showed a trend towards lower mRNA expression in HFD+vehicie and 

HFD+PCB 153 groups when compared to CD+vehicle or CD+PCB 153 groups 

(Figure 22) . PPARy mRNA expression (Figure 23) decreased significantly for the 

HFD+PCB 153 group (11.42 ± 2.43) as compared to CD+vehicie group (100 ± 

39.40, p <0.05), suggesting a probable ER-stress response in these animals. 
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Figure 20. HFD and PCB exposure altered expression of adiponectin in 

adipose tissue. 

Real-time PCR experiments showed the changes in adiponectin mRNA 

expression in the adipose tissue caused by either PCB 153 exposure or HFD 

consumption or both as compared to gene expression in mice fed CD without or 

with PCB 153 exposure. All values were normalized to CD group, (n=5). Data are 

expressed as mean ± SEM. * P <0.05. CD-control diet, HFD-high fat diet, PCB-

polychlorinated biphenyl. 
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Figure 21. HFD and PCB exposure altered expression of CHOP 10 in 

adipose tissue. 

Real-time PCR experiments showed the changes in CHOP 10 mRNA expression 

in the adipose tissue caused by either PCB 153 exposure or HFD consumption 

or both as compared to gene expression in mice fed CD without or with PCB 153 

exposure. All values were normalized to CD group, (n=6). Data are expressed as 

mean ± SEM. * P <0.05. CD-control diet, HFD-high fat diet, PCB-polychlorinated 

biphenyl. 
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Figure 22. HFD and PCB exposure altered expression of C/EBPa in adipose 

tissue. 

Real-time PCR experiments showed the changes in C/EBPa mRNA expression 

in the adipose tissue caused by either PCB 153 exposure or HFD consumption 

or both as compared to gene expression in mice fed CD without or with PCB 153 

exposure. All values were normalized to CD group, (n=4). Data are expressed as 

mean ± SEM .. CD-control diet, HFD-high fat diet, PCB-polychlorinated biphenyl. 
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Figure 23. HFD and PCB exposure altered expression of PPARy in adipose 

tissue. 

Real-time PCR experiments showed the changes in PPARy mRNA expression in 

the adipose tissue caused by either PCB 153 exposure or HFD consumption or 

both as compared to gene expression in mice fed CD without or with PCB 153 

exposure. All values were normalized to CD group, (n=7). Data are expressed as 

mean ± SEM. * P <0.05. CD-control diet, HFD-high fat diet, PCB-polychlorinated 

biphenyl. 
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DISCUSSION 

PCBs are known to concentrate within adipose tissue and liver, so it is not 

surprising that these were the principal target sites for PCB 153 toxicity in this 

study. Although PCB 153 levels were not measured, we expect them to be 

similar to those in the NTP TR 530 14-week study (16). The NTP protocol 

resulted in the following PCB 153 levels: lipid adjusted serum-1788 ng/g; liver-

34,010 ng/g; and adipose-1 ,118,300 ng/g. Thus, PCB 153 accumulates in the 

adipose tissue and is likely to exert its effects at this site. 

In our results, PCB 153 exposure to the HFD group altered multiple 

adipokines including leptin, tPAI-1, resistin and adiponectin. Adiponectin, also 

referred to as GBP-28, apM1, AdipoQ or Acrp30, is an adipocyte-derived 

protein hormone which is encoded by the AD/POQ gene in humans (56). 

Adiponectin regulates glucose and fatty acid catabolism (57) and its plasma 

levels in adults are inversely proportional to body fat percentage (58). Literature 

reports have demonstrated adiponectin's role in suppressing metabolic 

derangements that can occur due to obesity (55), type 2 diabetes mellitus (58), 

atherosclerosis (57) and metabolic syndrome (59). Interestingly, the plasma 

levels of leptin were increased to a greater extent in the HFD+PCB 153 group as 

compared to adiponectin. Leptin, a 30 kDa protein hormone encoded by the 

Ob(Lep) gene, is also secreted by the adipocytes and plays a crucial role in 

modulating energy intake and expenditure as well as appetite suppression (60, 

61). Circulating levels of leptin are directly correlated with body fat mass and 
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adipocyte size, with increasingly high levels seen in obesity (62). The overall 

increase in adiposity in the HFO+PCB 153 animals may be responsible for the 

increased circulating levels of leptin. Our results indicated that the observed 

disproportion of adiponectin to leptin increment in the plasma of animals treated 

with HFO+PCB 153 was due to increased adiposity and probably increased leptin 

/decreased adiponectin production in the adipose tissue. 

Steatosis was dramatically increased by the combination of PCB 

153+HFO, whereas PCB 153 had no effect in mice fed CD. Steatosis is 

determined by the rates of lipid synthesis, oxidation, uptake, and export. The RT­

PCR results suggest that PCB 153+HFO co-exposures increased hepatic lipid 

synthesis (up-regulated FAS) while decreasing ~-oxidation (down-regulated 

CPT1A and CPT2 and its transcription factor, PPARa). Therefore, PCB 153 

seemed likely to increase hepatic steatosis in mice fed HFO by altering 

adipokines, increasing hepatic lipid synthesis, and decreasing hepatic ~­

oxidation. This hypothesis will be investigated further in future studies. 

RT-PCR results showed a marked decrease in adiponectin expression 

levels in the adipose tissue. Interestingly, adiponectin plasma levels were 

increased in this group. This can be explained by increased fat mass in these 

animals that led to overall higher adiponectin secretion while the adiponectin 

synthesis per fat cell was decreased. The resulting adiponectin mRNA 

expression observed in the adipose tissue led us to hypothesize that PCB 153 
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may act as an ER stress inducer in the adipose tissue in the presence of HFD. 

We therefore looked at the mRNA expression of proteins that playa major role in 

ER stress response, namely, CHOP 10 which is upregulated in ER stress, 

C/EBPa, required for adipocyte differentiation and negatively regulated by CHOP 

10, and PPARy, a positive transcription factor for adiponectin. Indeed, mRNA 

expression was increased for CHOP 10 and repressed for CEBPa. PPARy 

mRNA expression was also reduced in PCB 153-exposed mice fed with HFD. 

In general, HFD consumption and PCB 153 co-exposure led to increased 

lipogenesis in the liver by upregulation of FAS, and a decrease in PPARa 

mediated fatty acid-~-oxidation. Furthermore, there is evidence of adipokine 

dysregulation in the HFD+PCB 153 group. These finding s are important because 

they implicate PCB 153 exposure in hepatic steatosis and adipokine 

dysregulation, hallmarks of the metabolic syndrome. The presence of an ER 

stress response is also speculated in the adipose tissue due to low adiponectin 

secretion. However, this study requires further investigation. 
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SUMMARY 

PCBs are poly-halogenated hydrocarbons which are persistent 

contaminants in our environment. Exposure to PCBs including the ubiquitous 

PCB 153 has been dose dependently linked to increased odds ratio for serum 

alanine aminotransferase elevation, indicative of NAFLD. To determine if 

PCB153 plays a casual role in the development of NAFLD, a study was 

undertaken to determine if PCB 153 either caused NALFD by itself or worsened 

NAFLD induced by HFD consumption. 

It was observed that PCB153 exposure caused an increase in % body 

weight for animals fed a HFD. PCB 153 exposure also caused micro-vesicular 

steatosis in animals fed a HFD and worsened HFD-induced macro-vesicular 

steatosis. Serum adipokines were increased with HFD and this effect was 

augmented by PCB 153 co-administration. PCB 153 treatment increased liver 

triglycerides and cholesterol levels in the HFD group of animals. FAS expression 

was upregulated and PPARa expression downregulated in the liver of animals 

fed a HFD and co-exposed to PCB 153. The adiponectin mRNA level decreased 

in the HFD+PCB153 group. 
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In conclusion, PCB 153 is a diet-dependent obesogen, which also 

worsens NAFLD via adipokine dysregulation and altered lipid metabolism. These 

experimental results suggest that the previously observed associations between 

PCB levels and human obesity/NAFLD may be causal. Nutrient-toxicant 

interactions in obesity, metabolic syndrome, and NAFLDITASH warrant further 

study. 

62 



REFERENCES 

1. Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical 

emission inventory for selected PCB congeners--a mass balance approach. 

1. Global production and consumption. Sci Total Environ 2002;290:181-198. 

2. Goncharov A, Bloom M, Pavuk M, Birman I, Carpenter DO. Blood pressure 

and hypertension in relation to levels of serum polychlorinated biphenyls in 

residents of Anniston, Alabama. J Hypertens 2010;28:2053-2060. 

3. Schecter A, Colacino J, Haffner 0, Patel K, Opel M, Papke 0, Birnbaum L. 

Perfluorinated Compounds, Polychlorinated Biphenyl, and Organochlorine 

Pesticide Contamination in Composite Food Samples from Dallas, Texas. 

Environ Health Perspect 2010. 

4. Cave M, Appana S, Patel M, Falkner KC, McClain CJ, Brock G. 

Polychlorinated biphenyls, lead, and mercury are associated with liver 

disease in american adults: NHANES 2003-2004. Environ Health Perspect 

2010;118:1735-1742. 

5. Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C. 

Nonalcoholic fatty liver disease: predisposing factors and the role of 

nutrition. J Nutr Biochem 2007; 18: 184-195. 

6. Abdelmalek MF, Sanderson SO, Angulo P, Soldevila-Pico C, Liu C, Peter J, 

Keach J, et al. Betaine for nonalcoholic fatty liver disease: results of a 

randomized placebo-controlled trial. Hepatology 2009;50: 1818-1826. 

7. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver 

disease: update. Hepatology 2008;48:322-335. 

8. Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and 

cardiovascular disease. Clin Biochem 2009;42: 1331-1346. 

63 



9. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver 

injury. J Clin Invest 2004;114:147-152. 

10. Chiang DJ, Pritchard MT, Nagy LE. Obesity, diabetes mellitus and liver 

fibrosis. Am J Physiol Gastrointest Liver Physiol 2011. 

11. Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R, Bon Homme 

M, et al. Toxicant-associated steatohepatitis in vinyl chloride workers. 

Hepatology 2010;51 :474-481. 

12. Ronn M, Lind L, van Bavel B, Salihovic S, Michaelsson K, Lind M. 

Circulating Levels of Persistant Organic Pollutants Associate in Divergent 

Ways to Fat Mass Measured by DXA in Humans. The Toxicologist CD 

Supplement to Toxicological Sciences - An Official Journal of the Society 

of Toxicology. 2011 ;120. 

13. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR, Jr. Relationship between 

serum concentrations of persistent organic pollutants and the prevalence of 

metabolic syndrome among non-diabetic adults: results from the National 

Health and Nutrition Examination Survey 1999-2002. Diabetologia 

2007;50:1841-1851. 

14. Patel CJ, Bhattacharya J, Butte AJ. An Environment-Wide Association 

Study (EWAS) on type 2 diabetes mellitus. PLoS One 2010;5:e10746. 

15. Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, Jacobs DR, Jr. 

A strong dose-response relation between serum concentrations of 

persistent organic pollutants and diabetes: results from the National Health 

and Examination Survey 1999-2002. Diabetes Care 2006;29: 1638-1644. 

16. Cotrim HP, Andrade ZA, Parana R, Portugal M, Lyra LG, Freitas LA. 

Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers. Liver 

1999; 19:299-304. 

17. Uemura H, Arisawa K, Hiyoshi M, Kitayama A, Takami H, Sawachika F, 

Dakeshita S, et al. Prevalence of metabolic syndrome associated with body 

burden levels of dioxin and related compounds among Japan's general 

population. Environ Health Perspect 2009;117:568-573. 

64 



18. Yu ML, Guo YL, Hsu CC, Rogan WJ. Increased mortality from chronic liver 

disease and cirrhosis 13 years after the Taiwan "yucheng" ("oil disease") 

incident. Am J Ind Med 1997;31:172-175. 

19. Safe SH. Toxicology, Structure-Function Relationship, and Humana nd 

Environmental Health Impactsof Polychlorinated Biphenyls: Progress and 

Problems. Environmental Health Perspectives 1993; 1 00:259-268. 

20. NTP. NTP Toxicology and Carcinogenesis Studies of a Binary Mixture of 

3,3' ,4,4' ,5-Pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) and 

2,2' ,4,4' ,5,5'-Hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in 

Female Harlan Sprague-Dawley Rats (Gavage Studies). Natl Toxicol 

Program Tech Rep Ser 2006:1-258. 

21. Dean CE, Jr., Benjamin SA, Chubb LS, Tessari JD, Keefe T J. Nonadditive 

hepatic tumor promoting effects by a mixture of two structurally different 

polychlorinated biphenyls in female rat livers. Toxicol Sci 2002;66:54-61. 

22. Safe S, Bandiera S, Sawyer T, Robertson L, Safe L, Parkinson A, Thomas 

PE, et al. PCBs: structure-function relationships and mechanism of action. 

Environ Health Perspect 1985;60:47-56. 

23. Hennig B, Reiterer G, Toborek M, Matveev SV, Daugherty A, Smart E, 

Robertson LW. Dietary fat interacts with PCBs to induce changes in lipid 

metabolism in mice deficient in low-density lipoprotein receptor. Environ 

Health Perspect 2005; 113:83-87. 

24. Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, et 

al. A novel role for the dioxin receptor in fatty acid metabolism and hepatic 

steatosis. Gastroenterology 2010; 139:653-663. 

25. Dere E, Lee AW, Burgoon LD, Zacharewski TR. Differences in TCDD­

elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and 

rat H411E hepatoma cells. BMC Genomics 2011 ;12:193. 

26. Luthe G, Jacobus JA, Robertson LW. Receptor interactions by 

polybrominated diphenyl ethers versus polychlorinated biphenyls: a 

65 



theoretical Structure-activity assessment. Environ Toxicol Pharmacol 

2008;25:202-210. 

27. NTP. NTP technical report on the toxicology and carcinogenesis studies of 

2,2' ,4,4' ,5,5'-hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in 

female Harlan Sprague-Dawley rats (Gavage studies). Natl Toxicol Program 

Tech Rep Ser 2006:4-168. 

28. NTP Toxicology and Carcinogenesis Studies of a Binary Mixture of 

3,3' ,4,4' ,5-Pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) and 

2,2',4,4',5,5'-Hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in 

Female Harlan Sprague-Dawley Rats (Gavage Studies). Natl Toxicol 

Program Tech Rep Ser 2006: 1-258. 

29. NTP Toxicology and Carcinogenesis Studies of a Binary Mixture of 

3,3' ,4,4' ,5-Pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) and 

2,3',4,4',5-Pentachlorobiphenyl (PCB 118) (CAS No. 31508-00-6) in Female 

Harlan Sprague-Dawley Rats (Gavage Studies). Natl Toxicol Program Tech 

Rep Ser 2006: 1-218. 

30. Hennig B, Ettinger AS, Jandacek RJ, Koo S, McClain C, Seifried H, 

Silverstone A, et al. Using nutrition for intervention and prevention against 

environmental chemical toxicity and associated diseases. Environ Health 

Perspect 2007; 115:493-495. 

31. Brown JF. Determination of PCB Metabolic, Excretion, and Accumulation 

Rates for Use as Indicators of Biological Response and Relative Risk. 

Environ Sci Technol 1994;28:2295-2305. 

32. Bandiera SM: Cytochrome P450 enzymes as biomarkers of PCB exposure 

and modulators of toxicity. In: Roberston LW, Lansen LG, eds. PCBs: 

Recent Advances in Environmental Toxicology and Health Effects, 2001; 

185-192. 

33. Livak KJ, Schmittgen TO. Analysis of relative gene expression data using 

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 

2001 ;25:402-408. 

66 



34. NTP. NTP toxicology and carcinogenesis studies of 3,3' ,4,4' ,5-

pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) in female Harlan 

Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 

2006:4-246. 

35. NTP. Toxicology and carcinogenesis studies of 2,3',4,4',5-

pentachlorobiphenyl (PCB 118) (CAS No. 31508-00-6) in female harlan 

Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser 

2010:1-174. 

36. Flaveny CA, Perdew GH. Transgenic Humanized AHR Mouse Reveals 

Differences between Human and Mouse AHR Ligand Selectivity. Mol Cell 

Pharmacol 2009;1 :119-123. 

37. Kodama S, Koike C, Negishi M, Yamamoto Y. Nuclear receptors CAR and 

PXR cross talk with FOX01 to regulate genes that encode drug­

metabolizing and gluconeogenic enzymes. Mol Cell Bioi 2004;24:7931-

7940. 

38. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR, Jr. 

Low dose organochlorine pesticides and polychlorinated biphenyls predict 

obesity, dyslipidemia, and insulin resistance among people free of diabetes. 

PLoS One;6:e15977. 

39. Kershner N, Stocker A, Falkner KC, McClain CJ, Cave M. Polychlorinated 

Biphenols (PCB) Induce Tumor Necrosis Factor a (TN Fa} Production IN 

RAW 264.7 Cells [abstract]. The Toxicologist CD Supplement to 

Toxicological Sciences - An Official Journal of the Society of Toxicology. 

2010;114(1}::743A. 

40. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki 

Y, et al. Increased expression of PPARgamma in high fat diet-induced liver 

steatosis in mice. Biochem Biophys Res Commun 2005;336:215-222. 

41. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and 

diabetes. Trends Mol Med 2012;18:59-68. 

67 



42. Li Y, Ge M, Ciani L, Kuriakose G, Westover EJ, Dura M, Covey DF, et al. 

Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic­

endoplasmic reticulum calcium ATPase-2b activity in parallel with increased 

order of membrane lipids: implications for depletion of endoplasmic 

reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. 

J Bioi Chem 2004;279:37030-37039. 

43. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, 

et al. Signals from the stressed endoplasmic reticulum induce C/EBP­

homologous protein (CHOP/GADD153). Mol Cell Bioi 1996;16:4273-4280. 

44. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. ATF6 

activated by proteolysis binds in the presence of NF-Y (CBF) directly to the 

cis-acting element responsible for the mammalian unfolded protein 

response. Mol Cell Bioi 2000;20:6755-6767. 

45. Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH. Differential 

regulation of CHOP-10/GADD153 gene expression by MAPK signaling in 

pancreatic beta-cells. Proc Natl Acad Sci USA 2007;104:11518-11525. 

46. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling 

pathways converge upon the CHOP promoter during the mammalian 

unfolded protein response. J Mol Bioi 2002;318:1351-1365. 

47. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ. Complexes 

containing activating transcription factor (ATF)/cAMP-responsive-element­

binding protein (CREB) interact with the CCAAT/enhancer-binding protein 

(C/EBP)-ATF composite site to regulate Gadd153 expression during the 

stress response. Biochem J 1999;339 (Pt 1):135-141. 

48. Tang QQ, Lane MD. Role of C/EBP homologous protein (CHOP-10) in the 

programmed activation of CCAAT/enhancer-binding protein-beta during 

adipogenesis. Proc Natl Acad Sci USA 2000;97:12446-12450. 

49. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 

sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 

and perturbing the cellular redox state. Mol Cell Bioi 2001 ;21 :1249-1259. 

68 



50. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ. 

CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell 

proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 

1996; 10:804-815. 

51. Altiok S, Xu M, Spiegelman BM. PPARgamma induces cell cycle 

withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of 

PP2A. Genes Dev 1997; 11: 1987 -1998. 

52. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear 

protein that dimerizes with transcription factors C/EBP and LAP and 

functions as a dominant-negative inhibitor of gene transcription. Genes Dev 

1992;6:439-453. 

53. Clarke SL, Robinson CE, Gimble JM. CAAT/enhancer binding proteins 

directly modulate transcription from the peroxisome proliferator-activated 

receptor gamma 2 promoter. Biochem Biophys Res Commun 1997;240:99-

103. 

54. Kita A, Yamasaki H, Kuwahara H, Moriuchi A, Fukushima K, Kobayashi M, 

Fukushima T, et al. Identification of the promoter region required for human 

adiponectin gene transcription: Association with CCAAT/enhancer binding 

protein-beta and tumor necrosis factor-alpha. Biochem Biophys Res 

Commun 2005;331 :484-490. 

55. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, 

Schraw T, et al. Obesity-associated improvements in metabolic profile 

through expansion of adipose tissue. J Clin Invest 2007; 117:2621-2637. 

56. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara 

K. cDNA cloning and expression of a novel adipose specific collagen-like 

factor, apM 1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys 

Res Commun 1996;221 :286-289. 

57. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone 

adiponectin in human disease. Eur J Endocrinol 2003;148:293-300. 

69 



58. Ukkola 0, Santaniemi M. Adiponectin: a link between excess adiposity and 

associated comorbidities? J Mol Med (Berl) 2002;80:696-702. 

59. Renaldi 0, Pramono B, Sinorita H, Purnomo LB, Asdie RH, Asdie AH. 

Hypoadiponectinemia: a risk factor for metabolic syndrome. Acta Med 

Indones 2009;41 :20-24. 

60. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 

Positional cloning of the mouse obese gene and its human homologue. 

Nature 1994;372:425-432. 

61. Zhang F, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson OK, 

DiMarchi RD, et al. Crystal structure of the obese protein leptin-E100. 

Nature 1997;387:206-209. 

62. Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: 

a review. J Anim Sci 1998;76:1405-1420. 

70 



CURRICULUM VITAE 

BANRIDA WAH LANG 

Date of Birth: March 16 1986 

Birth Place: Shillong, India 

Email address: bOwahl01 @ louisville.edu 

EDUCATION 

Master of Science, Pharmacology & Toxicology, 
University of Louisville 

MS (Pharmaceutics), NIPER 

Bachelors (Pharmacy), University of Delhi 

ABSTRACTS 

2010-Present 

June 2010 

June 2008 

1. 2009- Wahlang B, Pawar VB, Patil SR and Bansal AK. The Caco-2 Cell 

Model: A Useful Tool in Drug Discovery and Development. CRIPS 2009, 

10(2), 29-34. (Apr-Jun). 

2. HPLC method for determination of curcumin for its application in Caco-2 

permeability assays. B. Wahlang, Y.B. Pawar, A.K. Bansal. IPC, 2009. 

3. Determination of curcumin's permeability using the Caco-2 cell model. B. 

Wahlang, Y.B. Pawar, A.K. Bansal. DMPK, 2010. 

71 



4. Intestinal transport mechanism of a novel thyrotropin releasing hormone. K 

Khomane, B. Wahlang, Y.B. Pawar, C.L. Meena, R. Jain, A.K. Bansal. 

DMPK,2011. 

5. Polychlorinated Biphenyl 153 worsens non-alcoholic fatty liver disease in 

C57BU6 mice. B. Wahlang, K.C. Falkner, D.J. Conklin, C.J. McClain, M. 

Cave. OVSOT 2011. 

6. A comparison of serum adipocytokines, cytokeratin 18, and antioxidants in 

human subjects with steatohepatitis due to alcohol (ASH), obesity (NASH), 

and industrial chemicals (TASH). H. Shah, B. Wheeler, Y. Mannery, K.C. 

Falkner, B. Wahlang, C.J. McClain, M. Cave. Research! Louisville, 2011. 

7. Polychlorinated Biphenyl 153 worsens hepatic steatosis in mice fed a high 

fat diet and differentially regulates 40 liver metabolites: preliminary results of 

a metabolomics analysis. B. Wahlang, X. Zhang, K. C. Falkner, C. J. 

McClain, M. Cave. AASLD, 2011. 

8. The metabolic effects of PCB 153 depend on nutrient interactions in 

obesity/nonalcoholic fatty liver disease. B. Wahlang, X. Shi, X. Zhang, K.C. 

Falkner, C.J. McClain, R. Prough, M. Cave. Digestive Disease Week, 2012. 

PUBLICATIONS 

1. Identification of permeability-related hurdles in oral delivery of curcumin 

using the Caco-2 cell model. Eur. J Pharm. Biopharm. 2011,77(2): 275-82. 

2. The Persistent Environmental Pollutant, Polychlorinated Biphenyl 153, 

Exacerbates Nonalcoholic Fatty Liver Disease in C57BU6 Mice. B. 

72 



Wahlang, K. C. Falkner, B. Gregory, D. Ansert, D. Young, D. J. Conklin, C. 

J. McClain, Aruni Bhatnagar, M. Cave. 2012. (Under Review). 

3. Metabolomic Analysis of the Effects of Polychlorinated Biphenyls in Non­

alcoholic Fatty Liver Disease. X. Shi, B. Wahlang, X. Wei ,X. Yin,K. C. 

Falkner, R. A. Prough,S. Ho Kim, C. J. McClain, M. Cave, X. Zhang. 2012. 

(Under Review). 

PROFESSIONAL MEMBERSHIPS/POSITIONS 

Member, Indian Pharmaceutical Graduate Association (IPGA). 

Secretary, Pharmaceutics Club, NIPER. 

2006-2008 

2009-2010 

Member, American Association of Pharmaceutical Scientists (AAPS) NIPER 

Students Chapter. 2009-2010 

Public Relations Officer, American International Relations Club (AIRC), 

University of Louisville. 2011-Present 

Member, Indian Students Association, University of Louisville. 

Member, Kentucky Academy of Science. 

73 

2011-Present 

2012-Present 


	Polychlorinated biphenyl 153 exacerbates nonalcoholic fatty liver disease in C57BL/6 mice.
	Recommended Citation

	tmp.1423685735.pdf.Ddofa

