University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2010

The role of genetic and environmental oxidative stress factors in prostate cancer.

Nicole A. Lavender University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation

Lavender, Nicole A., "The role of genetic and environmental oxidative stress factors in prostate cancer." (2010). *Electronic Theses and Dissertations*. Paper 797. https://doi.org/10.18297/etd/797

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

THE ROLE OF GENETIC AND ENVIRONMENTAL OXIDATIVE STRESS FACTORS IN PROSTATE CANCER

By

Nicole A. Lavender B.S., University of Louisville, 2005 M.S., University of Louisville, 2008

A Dissertation Submitted to the Graduate Faculty of the University of Louisville School of Medicine in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Pharmacology and Toxicology University of Louisville Louisville, KY

December 2010

.

. -

THE ROLE OF GENETIC AND ENVIRONMENTAL OXIDATIVE STRESS FACTORS IN PROSTATE CANCER

By

Nicole A. Lavender B.S., University of Louisville, 2005 M.S., University of Louisville, 2008

A Dissertation Approved on

November 19, 2010

By the following Dissertation Committee:

La Creis Renee Kide, Ph.D., MAR.H., Dissertation Director

David W. Hein, Ph.D.

Gavin E. Arteel, Ph.D.

W. Glenn McGregor, M.D.

Steven R. Myers Ph.D.

Guy N. Brock, Ph.D.

DEDICATION

This dissertation is dedicated to my parents Mr. Marvin D. Lavender, Sr. and Mrs. Sharon E. Lavender who have always supported my educational endeavors I also want to dedicate this dissertation to my late brother Marvin Jr., my fiancé Shawn P. Krupp, and my son Dohnavan T. Lydian for never giving up on me or letting me give up on myself.

ACKNOWLEDGEMENTS

I would like to thank my primary mentor, Dr. La Creis Renee Kidd, for her guidance, patience and support. I would also like to thank my other committee members, Dr. David W. Hein, Dr. Guy Brock, Dr. Gavin E. Arteel, Dr. Steven R. Myers, and Dr. W. Glenn McGregor for their direction and advice throughout this process. Thank you also to former the staff of Dr. Kidd's Molecular Epidemiology lab: Tiva T. VanCleave, M.S.; Marnita M. Benford, A.S.; and Oyeyemi O. Komolafe, M.P.H.

Special thanks to my family and friends for their confidence and encouragement of my success: Mary and the late Clifford Seger, Aunt Deborah, Aunt Kathy, Uncle Skip, Uncle Frank Lavender, Sr., Victor Lavender, Jr. Kelly Seger Fox, and Theresa Ladusaw.

And, many thanks to all my fellow graduate students, especially Gilandra Russell, Ashley Triplett, Carmine Leggett, Erica Rogers, Stephanie Mathews, Courtney George, Sula Hood, Carolyn Roberson, and Courtney Wheeler.

ABSTRACT

THE ROLE OF GENETIC AND ENVIRONMENTAL OXIDATIVE STRESS FACTORS IN PROSTATE CANCER

Nicole A. Lavender

November 19, 2010

Prostate cancer (PCA) development may be influenced by genetic variations within oxidative stress response (OSR) related mechanisms, such as antioxidation (e.g., carcinogen metabolism/detoxification), DNA repair, and apoptotic regulation. Excessive oxidative stress can produce DNA base changes, damage tumor suppressors, enhance proto-oncogene expression, and induce malignant transformation of cells. Persistent oxidative stress may even trigger apoptosis. Environmental reactive oxygen species (ROS) exposure attributable to lifestyle factors may exacerbate this situation by increasing oxidative stress. Therefore, it is likely that genetic variation resulting in compromised ROS capacity combined with increased environmental ROS exposure may increase PCA risk and disease aggressiveness. Consequently, this research evaluated the individual and joint modifying effects of OSR 242 genetic and 27 environmental factors in relation to PCA development among men of European and African descents. This analysis utilized a combination of traditional and innovative advanced mathematical methodologies that provided an opportunity to visualize, verify, and evaluate the

v

predictive accuracy of higher-order interactions as indicators of disease risk and aggressiveness.

Our analysis identified several OSR sequence variants to individually associated PCA risk among MED. In addition, antioxidative- and apoptotic-related SNPs were linked to increased disease risk in MAD. Higher order interaction analyses for across both populations detected gene-gene combinations among antioxidative- and apoptoticrelated sequence targets associated with increased risk. The potential functional consequences of these polymorphisms suggest that compromised detoxification and apoptotic induction may cause increased risk for PCA and more aggressive disease. Our results also indicate that environmental factors related to meat consumption and cooking methods may contribute to PCA mechanisms. Unfortunately, we were not able to characterize environmental factors alone or combined with gene variants that are involved in PCA. This may be attributed to MDR data filtering, small MAD sample size, or limitations in some study variables (e.g., meat-derived carcinogen exposure). However, future analysis within larger study populations, more accurate exposure variables, and improved computational power may allow us to identify and validate environmental factors relevant to PCA development.

vi

TABLE OF CONTENTS

		PAGE
DEDIC	ATION	iii
ACKNOWLEDGMENTS		iv
ABSTR	RACT	v
LIST O	F TABLES	ix
LIST O	IF FIGURES	xii
INTRO	DUCTION	1-2
	OXIDATIVE STRESS	4
	CIGARETTE SMOKE AS A SOURCE OF REACTIVE OXYGEN SPECIES	5-8
	MEAT-DERIVED SOURCES OF REACTIVE OXYGEN SPECIES	9-13
	DIETARY ANTIOXIDANTS	14-16
	GENETIC OXIDATIVE STRESS RESPONSE PATHWAYS	17-34
HYPOTHESIS STATEMENT		35
SPECIFIC AIMS		36-37
MATERIALS AND METHODS		38
	POPULATION DESCRIPTION	38-42
	OSR GENE SELECTION	43-4
	SNP SELECTION	45-46

PREDICTED FUNCTION OF SELECTED SNPS	47-65
GENETIC ANALYSIS OF VARIANT OSR MARKERS	66
SINGLE & MULTIPLE OSR FACTORS IN RELATION TO PROSTATE	
CANCER OUTCOMES	67-71
SPECIALIZED VISUALIZATION TOOLS (INTERACTION ENTROPY	
ALGORITHMS & HIERARCHICAL GRAPHS	72-74
RESULTS	74-82
SPECIFIC AIM 1 FINDINGS - MED SUBJECTS	83-100
SPECIFIC AIM 1 FINDINGS - MAD SUBJECTS	101-109
SPECIFIC AIM 2 FINDINGS - MED SUBJECTS	110-116
SPECIFIC AIM 2 FINDINGS - MAD SUBJECTS	117-121
SPECIFIC AIM 3 FINDINGS - MED SUBJECTS	122-143
SPECIFIC AIM 3 FINDINGS - MAD SUBJECTS	144-157
SUMMARY AND CONCLUSIONS	158-167
DISCUSSION	168-172
CONCLUSION AND SUMMARY	173-182
REFERENCES	183-190
CURRICULUM VITAE	191-199

LIST OF TABLES

TABLE TITLE

1	Phase I & II Metabolizing Enzymes	19	
2	Major genes involved in Apoptosis regulation	29	
3	NCBI data for Antioxidative Polymorphisms	49	
4	NCBI data for Base Excision Repair Polymorphisms	51	
5	NCBI data for Apoptosis-related Polymorphisms	52	
6	NCBI Prevalence Data for Variant Antioxidative Targets	58	
7	Prevalence Data for Variant Base Excision Repair Targets	60	
8	Prevalence Data for Variant Apoptotic Targets		
٩	Patient and Tumor Characteristics by disease status among European-		
9	American male participants of the CGEMS Study	76	
10	Patient and Tumor Characteristics for Men of African Descent	77	
11	Lifestyle Characteristics by disease status among European-American		
ТТ	male participants of the CGEMS Study	78	
12	Vitamin and supplement by disease status among European-American		
	male participants of the CGEMS Study	79	
12	Patient and Tumor Characteristics among CGEMS participants		
13	diagnosed with Prostate Cancer	80	
14	Lifestyle characteristics for CGEMS participants diagnosed with Prostate		
14	Cancer	81	
15	Vitamin and supplement use for among CGEMS participants diagnosed		
10	with Prostate Cancer	82	
16	Association between Antioxidative-related polymorphisms and Prostate		
10	Cancer Risk among MED	84	
17	Association between Base Excision Repair polymorphisms and Prostate		
-/	Cancer Risk among MED	86	
18	Association between Apoptotic polymorphisms and Prostate Cancer		
	Risk among MED	88	
19	Top 25th Percentile MDR models for OSR polymorphisms and prostate		
	cancer risk among MED (adjusted for age and family history)	91	
20	Association between OSR gene-gene interactions & PCA risk among		
	MED	93	
21	Top 50th Percentile MDR models for apoptotic polymorphisms and		
	prostate cancer risk among MED (adjusted for age and family history)	94	
22	Unfiltered MDR models for BER polymorphisms and prostate cancer risk	_	
"	among MED (adjusted for age and family history)	96	

TABLE TITLE

	Unfiltered MDR models for antioxidative-related OSR polymorphisms	
23	and prostate cancer risk among MED (adjusted for age and family	
	history	98
24	Association between gene-gene interactions & PCA risk among MED	100
25 26 27 28 29 30 31	Association between Antioxidative-related polymorphisms and Prostate	
23	Cancer Risk among MAD	102
26	Association between Base Excision Repair polymorphisms and Prostate	
20	Cancer Risk among MAD	103
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 	Association between Apoptotic polymorphisms and Prostate Cancer	
27	Risk among MAD	104
20	Unfiltered MDR models for OSR polymorphisms and prostate cancer	
28	risk among MAD (adjusted for age and family history)	107
29	Association between gene-gene interactions & PCA risk among MAD	109
20	filtered MDR models for antioxidative-related OSR polymorphisms 98 id prostate cancer risk among MED (adjusted for age and family 98 sociation between gene-gene interactions & PCA risk among MED 100 isociation between Antioxidative-related polymorphisms and Prostate 100 incer Risk among MAD 100 isociation between Apoptotic polymorphisms and Prostate 100 isociation between Apoptotic polymorphisms and Prostate Cancer 104 sk among MAD 105 isociation between Apoptotic polymorphisms and prostate cancer 104 sk among MAD (adjusted for age and family history) 105 isociation between gene-gene interactions & PCA risk among MAD 105 isociation between Apoptotic polymorphisms and prostate cancer 112 isociation between Apoptotic polymorphisms and prostate 112 isociation between apoptotic gene-gene interactions & PCA 114 isociation between apoptotic polymorphisms and Tumor Grade 116 ingressiveness among MED 116 isociation between apoptotic gene-gene interactions & PCA 116 isociation between apoptotic gene-gene interactions & PCA 116 isociation between apoptotic gene-gene interactions & PCA 116 <tr< td=""><td></td></tr<>	
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 	aggressiveness among MED	111
21	Top 50th Percentile MDR models for apoptotic SNPs and prostate	
21	cancer aggressiveness among MED (adjusted for age and family history)	114
32	Association between apoptotic gene-gene interactions & PCA	
32	aggressiveness among MED	116
33	Association between Apoptotic polymorphisms and Tumor Grade	
	among MAD	118
24	Unfiltered MDR models for apoptotic gene variations and PCA	
34	aggressiveness among MAD (adjusted for age and family history)	120
ЭE	Association between apoptotic gene-gene interactions & PCA	
30	aggressiveness among MAD	121
36	Single effects of Environmental OSR Factors and risk among MED	123
 Association between gene-gene interactions & PCA risk among MED Association between Antioxidative-related polymorphisms and Prostate Cancer Risk among MAD Association between Base Excision Repair polymorphisms and Prostate Cancer Risk among MAD Association between Apoptotic polymorphisms and Prostate Cancer Risk among MAD Unfiltered MDR models for OSR polymorphisms and prostate cancer risk among MAD (adjusted for age and family history) Association between gene-gene interactions & PCA risk among MAD Association between gene-gene interactions & PCA risk among MAD Association between Apoptotic polymorphisms and disease aggressiveness among MED Top 50th Percentile MDR models for apoptotic SNPs and prostate cancer aggressiveness among MED (adjusted for age and family history) Association between Apoptotic polymorphisms and Tumor Grade among MAD Unfiltered MDR models for apoptotic gene variations and PCA aggressiveness among MAD (adjusted for age and family history) Association between apoptotic gene-gene interactions & PCA aggressiveness among MAD (adjusted for age and family history) Association between apoptotic gene-gene interactions & PCA aggressiveness among MAD Single effects of Environmental OSR Factors and risk among MED Unfiltered MDR models for OSR panel and PCA risk among MED Association between environment - environment interactions & PCA risk among MED Association between OSR gene-environment interactions & PCA risk among MED Single effects of Environmental OSR Factors and prostate among MED Single effects of Environmental OSR Factors and PCA risk among MED (adjusted for age and family history)		
57	cancer risk among MED (adjusted for age and family history)	127
20	Association between environment - environment interactions & PCA	
20	risk among MED	129
20	Top 25th Percentile MDR models for OSR panel and PCA risk among	
39	MED (adjusted for age and family history)	130
10	Association between OSR gene-environment interactions & PCA risk	
40	among MED	132
<i>1</i> 1	Single effects of Environmental OSR Factors and PCA aggressiveness	
41	among MED	134
	Unfiltered MDR models for environmental OSR factors and disease	
42	aggressiveness among men of European descent (adjusted for age and	
	family history)	138
43	Association between environment-environment OSR interactions & PCA	
- J	aggressiveness among MED	140

TABLE	TITLE	PAGE
44	Top 25th percentile MDR models OSR panel and PCA aggressiveness among MED (adjusted for age and family history)	141
45	Association between OSR interactions & PCA aggressiveness among MED	143
46	Association between variant Antioxidative genes - Tobacco Use Interaction and disease risk among men of MAD	145
47	Association between variant Base Excision Repair genes - Tobacco Use Interaction and disease risk among MAD	146
48	Association between variant Apoptotic genes - Tobacco Use Interaction and disease risk among MAD	147
49	Unfiltered MDR models for OSR polymorphisms and Tobacco Use in relation to PCA risk among MAD	149
50	Association between variant Antioxidation genes - Tobacco Use Interaction and Tumor Grade among men of MAD	152
51	Association between variant Base Excision Repair genes - Tobacco Use Interaction and Tumor Grade among MAD	153
52	Association between variant Apoptotic genes - Tobacco Use Interaction and Tumor Grade among men of MAD	154
53	Unfiltered MDR models for OSR polymorphisms and Tobacco Use in relation to PCA aggressiveness among MAD	156
54	Association between apoptotic gene-gene interactions & PCA	157
55	Possible function consequences of genetic variants associated with PCA	191
22	tools	160

LIST OF FIGURES

FIGURE	TITLE	PAGE		
1	Oxidative Stress Response Mechanisms	3		
2	Metabolism of benzo[a]pyrene			
3	Major Metabolism of PhIP	10		
4	MeIQx Metabolism	11		
5	Base Excision Repair	25		
6	Apoptosis	31		
7	SNP Selection Diagram	48		
8	Interaction Entropy Graph	74		
٥	Interaction entropy graph for OSR polymorphisms and prostate cancer			
5	risk among MED subjects	92		
10	Interaction entropy graph for top 50th percentile apoptotic			
10	polymorphisms and PCA risk among MED subjects	95		
11	BER polymorphisms and prostate cancer risk among MED	97		
12	Interaction entropy graph for antioxidative-related OSR			
12	polymorphisms and PCA risk among MED subjects	99		
13	Interaction entropy model for OSR polymorphisms and prostate cancer			
10	risk among MAD	108		
14	Interaction entropy model for apoptotic SNPs in relation to prostate			
	cancer aggressiveness among MED	115		
15	Interaction entropy graph for apoptotic gene variants and PCA			
	aggressiveness among MAD subjects	121		
16	Interaction entropy model for unfiltered environmental OSR panel and			
	prostate cancer risk among MED	128		
17	Entropy graph for OSR panel and PCA risk among MED	131		
18	Interaction entropy model for unfiltered environmental OSR factors			
10	and disease aggressiveness in men of European descent	139		
	Interaction entropy model for top 25th percentile genetic			
19	environmental OSR factors in relation to PCA aggressiveness among			
	men of European descent	142		
20	Interaction graph for OSR polymorphisms and Tobacco Use in relation			
	to PCA risk among MAD	150		
21	Interaction graph for OSR polymorphisms and Tobacco Use in relation			
	to PCA aggressiveness among MAD	157		

INTRODUCTION

Prostate cancer (PCA) ranks second highest in incidence and mortality among all cancers occurring in American men, but its etiology remains is poorly understood.¹ For instance, age and family history are the strongest risk factors for PCA, but men of African descent (MAD) are 1.5-2.0 times more likely to develop the disease than any other racial or ethnic group.¹ MAD have a greater chance of being diagnosed with PCA at a younger age, with more aggressive disease and poorer prognosis.²⁻⁴ Despite increases in five year survival rates for African-American men over the last few decades; their rates still lag far behind other races.¹ In addition to age, family history and race. genetic factors are believed play an important role in PCA initiation and progression.^{1, 3, 5} Also, lifestyle habits (e.g., cigarette smoking, diet) are suggested to increase risk; indicating that environmental factors may also influence PCA.^{1,3} Based on its complexity, prostate carcinogenesis and its disparity most likely involve a multifaceted interplay between genetic and environmental contributors. Unfortunately, characterization of these factors and how their interactions modify PCA risk and disease progression are largely unknown.^{3, 5-6} Essential to overcoming gaps in understanding PCA and eliminating its disparities is identification and validation of genomic profiles in important biological pathways.^{3, 7-8} These profiles, along with environmental factors may serve as effective predictors of PCA risk and disease progression.^{3, 7-8}

1

Oxidative stress response (OSR) is one such biological pathway that is becoming increasingly important in prostate carcinogenesis.⁹⁻¹² PCA development may be influenced by genetic variations within OSR related mechanisms, such as antioxidation (e.g., carcinogen metabolism/detoxification), DNA repair, and apoptotic regulation, as shown in *Figure* 1.^{2-3, 9, 13} Excessive oxidative stress can produce DNA base changes, damage tumor suppressors, enhance proto-oncogene expression, and induce malignant transformation of cells.¹³⁻¹⁴ Persistent oxidative stress may even trigger apoptosis. Environmental reactive oxygen species (ROS) exposure attributable to lifestyle factors may exacerbate this situation by increasing oxidative stress. Therefore, it is likely that genetic variation resulting in compromised ROS capacity combined with increased environmental ROS exposure may increase PCA risk and disease aggressiveness. Consequently, this research evaluated the individual and joint modifying effects of genetic and environmental OSR factors in relation to PCA among a case control population of men of European and African descents.

Figure 1. Oxidative Stress Response Mechanisms

Figure 1: Oxidative Stress Response Mechanisms. Oxidative stress can result when the amount of reactive oxygen species produced exceeds that which can be removed. Prevention of oxidative stress involves multiple biological pathways, such as antioxidation (e.g., carcinogen metabolism/detoxification), DNA repair, and apoptotic regulation. Antioxidants function to remove or reduce reactive oxygen species and DNA repair corrects oxidative damage. However, excessive or persist oxidative damage may signal apoptosis to avoid induce malignant transformation of cells.

OXIDATIVE STRESS

Oxidative stress is a condition in which the amount of reactive oxygen species (ROS) produced exceeds the amount removed and can result from multiple endogenous and exogenous ROS-generating sources.¹³⁻¹⁶ Therefore, maintenance of homeostatic ROS levels is critical to prevent these highly reactive electrophiles from interacting with biomolecules, interfering with cell signaling and promoting cellular transformation.^{11, 14-} ¹⁷ This includes direct damage to nucleic acids and proteins, resulting in bulky adducts, oxidized DNA bases, and protein catalytic sites.^{9, 14-15, 17-18} Reactive species can also modify secondary or tertiary protein structures, subsequently effecting protein function or activation.¹⁵ In addition, ROS are capable of increasing intracellular calcium concentration, causing changes in calcium signaling that may ultimately affect protein activation states.¹⁵ These effects can be manifested as altered gene and protein expression, cell proliferation or apoptosis.¹⁵ Left unrepaired, accumulating ROS damage can lead to cellular transformation and ultimately progress into to cancer.^{12, 15, 18-19}

4

CIGARETTE SMOKE AS A SOURCE OF REACTIVE OXYGEN SPECIES

Oxidative stress can arise from exogenous sources such as environmental toxins and contaminants.^{13-14, 20} For example, cigarette smoke contains more than 60 known carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and aromatic amines.^{21-²³ Benzo[a]pyrene (BaP) is a prototypical and heavily studied PAH produced by combustion processes, such as smoke from cigarettes or grilled meats.²³⁻²⁴ BaP is a suspected carcinogen capable of producing oxidative damage and bulky DNA adducts.¹⁷ As shown in *Figure 2*, during its metabolism, BaP is bioactivated as more reactive metabolites are generated that can lead to oxidative DNA damage and possibly tumor formation. Exposure to PAHs, such as BaP, and other compounds in cigarette smoke result in higher ROS levels as a consequence of antioxidant metabolic reactions.^{13, 25-26} Over time increased ROS exposure can lead to cellular oxidative stress as well as oxidative DNA damage.^{13, 25-26} Inevitability, these conditions may contribute to increased cancer risk and progression.^{13, 25-26}}

5

Figure 2: Metabolism of benzo[a]pyrene. The tobacco carcinogen benzo[a]pyrene can be converted to DNA-reactive compounds through its metabolism. This figure illustrates BaP metabolism by Cytochrome P450 (CYP) and Epoxide Hydrolase enzymes to generate either BaP 4,5-dihydrodiol or BaP 7,8-dihydrodiol. Although both mutagenic, stereoselectivity as well as CYPs or ROS support the generation of B[a]P 7,8-dihydrodiol-9,10-epoxide (BPDE). BPDE can ssubsequently react with DNA to produce stable guanosine adducts, ultimately leading to tumor formation. Alternatively, BaP 7,8-dihydrodiol can be reduced to catechol and further oxidized to reactive ortho-quinone.

Although cigarette smoke is a suspected contributor to carcinogenesis based on its chemical composition its role in PCA remains unclear. For example, a cohort study with over 22,000 men in the Physicians' Health Study (PHS) found no association between smoking and overall PCA risk.²⁸ In comparison to never smokers, the risk ratio (RR) and corresponding 95% Confidence Interval was 1.14 (1.00-1.30) for former smokers.²⁸ The number of cigarettes smoked per day also had no effect on risk: RR (95%CI) = 1.10 (0.78-1.55) for less than 20 cigarettes per day and RR (95%CI) = 1.10 (0.84-1.44) for 20 or more cigarettes.²⁸ This study also considered the number of years smoked, but found no significant effects between duration and risk [RR (95%CI) = 1.69 (0.75-3.82) for 29-38 years and [RR (95%CI) = 1.05 (0.41-2.70)] for \ge 39 years.²⁸ With respect to PCA mortality, smoking history [RR (95%CI) = 1.30 (0.87-1.95)], daily frequency [RR (95%CI) = 1.25 (0.87-1.95) for < 20 and 1.22 (0.54-2.74) \ge 20 cigarettes/day] nor number of years smoked were associated with fatal PCA [RR (95%CI) = 1.69 (0.75-3.82) for 29-38 and 1.05 (0.41-2.70) \ge 39 years].²⁸

In contrast to the PHS cohort, a population-based case control study of 752 subjects found smoking at the time of diagnosis was associated with 2.7-fold increase in PCA mortality risk.²⁹ Another report observed a decrease in risk associated with smoking but an increase in fatality among participants of the NIH-AARP Diet and Health Study.³⁰ They found former and current smokers were less likely to be diagnosed with non-aggressive PCA [HR (95% CI) = 0.90 (0.87-0.93) and HR (95%CI) = 0.85 (0.80-0.90), respectively].³⁰ However, an increased risk of PCA mortality was associated with current and not former smokers [HR (95%CI) = 1.69 (1.25-2.27)].³⁰

7

A recent meta-analysis cites that inconsistencies in published findings may be due to differences in study type (e.g., cohort, case-control) as well as clinical outcome (e.g., incidence versus mortality).³¹ To address this issue, this analysis pooled data from 24 previous publications to evaluate role of smoking in PCA risk, progression and mortality.³¹ They found former, but not current smokers were at increased risk of PCA development.³¹ When the data was stratified by cigarettes smoked per day or years smoked, the increased use and duration translated to increased risk of disease and fatality.³¹

In addition to differences in study design and endpoints, conflicting results may be due to lack of considering multiple genetic and environmental factors along with smoking exposure. Biological evidence suggests that cigarette smoking may contribute to prostate carcinogenesis due to increased exposure to suspected carcinogenic and ROS-generating compounds.^{13, 25-26, 30-31} However, genetic variation or other environmental oxidative stress factors can influence the detoxification and damaging effects of cigarette smoking. Therefore, our study evaluated cigarette smoking as part of a comprehensive OSR panel to characterization of the role of these factors in PCA development.

8

MEAT-DERIVED SOURCES OF REACTIVE OXYGEN SPECIES

HCAs such as, 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine (PhIP); 2amino-3,8-dimethylimidazo[4,5-*b*]quinoxaline (MeIQx); and 2-amino-3,4,8trimethylimidazo[4,5-*f*]quinoxaline (DiMeIQx), naturally form from creatinine or creatine, amino acids and sugar condensing when meats are cooked.³²⁻³³ However, consumption of meat cooked at high temperatures or for prolonged periods (e.g., grilled or 'well-done'), has been found to produce high HCA exposure levels.^{32, 34-36} Although these compounds are typically attributed to red meat, white (e.g., chicken, pork) and processed (e.g., cold cuts) meats are also sources of HCAs.³²⁻³³ Since HCAs are produced during cooking, exposure is heavily influenced by method and duration used.³³ Total HCA concentration can vary, but cooked meat generally contains \leq 100 ng/g, but can range between \leq 1-500 ng/g.³³ Done or well-done chicken has been shown to have low or undetectable MeIQx (\leq 1) and PhIP concentrations (6-64ng/g).³⁷ Very well-done or grilled chicken has been shown to have high MeIQx (3ng/g) and PhIP concentrations (70-480ng/g).³⁷

Similar to BaP, HCA are bioactivated by metabolic enzymes to highly reactive compounds capable of forming DNA adducts (*See Figures 3 & 4*).^{11, 24, 27} Furthermore, processed meats containing nitrates/nitrites can produce nitrosamines that are also

potentially genotoxic.^{33, 38} Once metabolically activated, nitrosamines function as alkylating agents capable of reacting with DNA bases.³⁹

Figure 3. Major metabolism of PhIP²⁷

Figure 3: Major metabolism of PhIP. Cytochrome P450 enzymes bioactivate PhIP by catalyzing the *N*-oxidation of its exocyclic amine group. The resulting *N*-hydroxy-PhIP is subsequently acetylated or sulfated by acetyltransferases (NATs) or sulfotransferases (SULTs) to yield highly unstable esters that react with DNA to form adducts. Detoxification can occur via glucuronidation by UGT1A1 directly reacting with PhIP or *N*-hydroxy-PhIP. GSTA1 can also catalyze detoxification by reducing *N*-acetoxy-PhIP to PhIP.

Figure 4: MelQx metabolism. The metabolism of MelQx is catalyzed by cytochrome P450 1A2 (CYP1A2). Subsequent acetylation or sulfation by acetyltransferases (NATs) or sulfotransferases (SULTs) produce N^2 -acetoxy-MelQx and N^2 -sulfonyloxy-MelQx. These esters can ultimately generate highly reactive arylnitrenium ions capable of cross-linking DNA molecules. Detoxification of MelQx is achieved by either *N*-conjugation or oxidation of the C8 methyl group by CYP1A2. Meat-derived PAHs, HCAs, and nitrosamines are all suspected carcinogens based on experimental evidence showing their ability to generate oxidative and DNA damage.³²⁻³³ Unfortunately, studies examining the role of meat consumption and cooking methods in relation to PCA development have not yielded entirely consistent findings. For instance, a prospective study among more than 29,300 men from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening trial found no association between PCA risk and the consumption of red, white, or processed meats.⁴⁰ However, based on the population's median daily intake of 10g of well-done meat, men consuming more than this amount per daily had a 42% increase in disease risk [RR 1.42 (1.05-1.92; p = 0.02].⁴⁰ This study also considered the effect of meat-derived carcinogens (i.e., PhIP, DiMelQx, MelQx, BaP) on PCA; but only high levels of PhIP (>269.2 ng/day) was associated with an increase in risk [RR 1.22 (1.01-1.48; p = 0.04].⁴⁰

A more recent study evaluated the effect of meat intake and these carcinogens on PCA risk, aggressiveness, and fatality among participants of the NIH-AARP Diet and Health Study.³⁸ Within a study cohort of more than 175,000 men, consumption of both red and processed meats was associated with an increased of PCA risk and advanced disease [hazard ratio(HR) = 1.13 (1.02-1.25); p_{trend} = 0.003 and HR = 1.45 (1.10-1.92); p_{trend} = 0.006, respectively.³⁸

A 2009 review of published reports examining the role well-done meat and HCA on cancer risk concluded that most evidence suggests that high intake of well-done meat and exposure to meat-derived carcinogens increase PCA risk.²⁴ This included a 1999 population-based study of 317 cases and 480 controls that found well-done beef and streak associated with an 1.7-fold increase in risk [OR (95%CI) = 1.7 (1.1-2.8)].²⁴ However, no associations were detected for other well-done meats or individual and total HCA exposure.²⁴ This review also referenced a 2008 cohort study of 613 cases (140 advanced) that observed an increase in PCA risk [RR (95%CI) = 1.26 (1.02-1.54)] and advanced [RR (95%CI) = 1.97 (1.26-3.08)] disease associated with well- / very-well done meat consumption.^{24, 34}

Inconsistent findings from previous studies may be attributed to additional factors that may modify meat-carcinogen exposure or limited statistical power to model these effects. Carcinogenic dietary exposures are difficult to measure, since levels can fluctuate according to the type of meat, as well as cooking duration and temperature. Furthermore, exposure levels are also affected by genetic variants and other dietary habits (e.g., vegetable intake, vitamin/supplement use) that contribute to ROS metabolizing/ detoxifying capacity. To address this shortcoming, this study evaluated meat intake, cooking method and duration, meat-derived carcinogens; alone and combined with multiple genetic and environmental OSR factors.

DIETARY ANTIOXIDANTS

In contrast to meat consumption, a diet abundant in fruits and vegetables is presumed to reduce the risk of developing PCA.^{32, 41-42} These foods contain dietary antioxidants, such as carotenoids, vitamins C & E, and selenium, capable of protecting cells from oxidative stress.^{23, 32, 41} They have also been shown to possess certain anticarcinogenic properties that may retard cancer-cell development and inhibit tumor promotion.⁴¹ Compounds found in cruciferous vegetables (e.g., glucosinolates, isothiocyanates, flavonoids) have been shown to protect cells from DNA damage, induce apoptosis, and inhibit cell proliferation of PCA.⁴² For example, some flavonoids have antioxidant properties capable of binding of free radicals, and consequently reducing oxidative DNA damage and possibly preventing cancer.⁴² Vitamin E is a major lipidsoluble antioxidant in cell membranes; capable of scavenging free radicals; inducing apoptosis; and inhibiting expression of prostate specific antigen and androgen receptor mRNA as well as protein kinase C activity.^{23, 41} Similarly, vitamin C is a potent ROS scavenger that can also induce apoptosis and reduce lipid peroxidation in cellular membranes.^{23, 41} Selenium has been shown to induce apoptosis, inhibit cellular proliferation and angiogenesis as well.⁴²

Based on their biological functions, dietary antioxidants are believed to protect against PCA development, but epidemiological research investigating this claim is largely inconclusive.⁴²⁻⁴⁴ For example, the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study examined the effects of family history and lifestyle factors (e.g., micronutrient intake) on disease risk.⁴⁴ This placebo-controlled, double-blinded study was designed primarily as a prevention trial and consisted of more than 29,000 Finnish male smokers.⁴⁴ Study participants received either a placebo or a daily supplement of 50 mg α -tocopheryl acetate, 20 mg β -carotene or both α -tocopheryl acetate and β -carotene.⁴⁴ Among men with no family history of PCA, neither vitamin was significantly associated with disease risk [α -tocopheryl acetate: RR (95%CI) = 0.83 (0.74-0.94) and β -carotene: RR (95%CI) = 1.09 (0.97-1.23)].⁴⁴ There were also no statistically significant findings for subjects with a family history of PCA, however, their findings suggest that elevated β -carotene serum levels increase risk (interaction p = 0.08).⁴⁴ Low β -carotene serum levels nor α -tocopheryl/ β -carotene supplement use affected PCA risk among men with a family history of the disease.⁴⁴

The Selenium and Vitamin E Cancer Prevention Trial (SELECT), investigated whether selenium and vitamin E, taken alone or combined could prevent PCA with little or no toxicity in relatively healthy men.⁴⁵ Among more than 35,500 men from multiple sites in the United States, Canada, and Puerto Rico, this project found that daily oral use of 200µg selenium or 400 IU vitamin E, individually or together did not prevent PCA.⁴⁵

A study conducted within the Cancer Prevention Study Nutrition Cohort observed no protective effects against PCA from vitamin E use.⁴⁶ However, when only current smokers were considered, a decrease in risk was detected for those with regular or long-term supplement use compared to non-users.⁴⁶

15

In a 2009 publication, Zhang et al. examined the use of multivitamins and supplements in relation to PCA among a hospital-based case-control population.⁴⁷ They found no statistically significant associations between single supplement and multivitamin use of vitamin E, selenium, zinc, and β -carotene in relation to disease risk or aggressiveness [p \geq 0.089].⁴⁷ In contrast to the Cancer Prevention Study findings, this report determined there was no impact of vitamin E on PCA risk in smokers.⁴⁷ The effects of 11 micronutrients [i.e., 7 carotenoids, retinol (vitamin A), vitamin E] on PCA was examined using plasma concentration collected from male subjects of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.⁴⁸ Although no significant associations were observed in relation to risk (p_{trend} \geq 0.50), lycopene alone and the combined carotenoids were both shown to protect against advanced disease (p_{trend} \leq 0.05).⁴⁸

The lack of consistent findings may be due to failure to consider multiple genetic and environmental factors along with dietary antioxidants that may jointly modify PCA susceptibility and aggressiveness. Consequently, this study investigated this multiple dietary factors (e.g., meat, vegetable, vitamin/supplement intake) as part of our unique panel OSR-related panel to elucidate their role in PCA development.

GENETIC OXIDATIVE STRESS RESPONSE PATHWAYS

As a consequence of the potentially damaging effects of ROS, cells have multiple protective OSR mechanisms to prevent excess ROS, oxidative stress and genetic damage.^{15, 18-19} Several biological processes are relevant to oxidative stress status in prostate cells, including detoxification (via antioxidant enzymes), DNA repair, and apoptosis.^{2-3, 9, 13}

Antioxidation Targets & Prostate Cancer

Antioxidant enzymes are a major cellular oxidative stress defense mechanism in the removal of ROS.^{11, 14, 49-50} These enzymes reduce ROS to produce a less reactive species and thereby prevent cellular damage.^{9, 14, 19, 49-51} For example, superoxide dismutases (SODs) scavenge superoxide radicals, converting them to hydrogen peroxide molecules.⁵⁰ Reactive hydrogen peroxide is then subsequently removed by either catalase (CAT) or glutathione peroxidases (GPX).^{15, 19, 50} Other antioxidative-related enzymes important in detoxification and metabolism include, cytochrome P450s (CYPs), epoxide hydrolase (EPHX1), uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs) and glutathione S-transferases (GSTs) [See Table 1].^{17, 34, 52} CYPs are a diverse class of enzymes that catalyze the oxidation or reduction of endogenous and exogenous substrates.^{17, 34} Ephx1 converts epoxides from aromatic compounds to dihydrodiols that can be conjugated and excreted.⁵² There are two NAT genes (NAT1 and NAT2) that function in the metabolism of arylamines by catalyzing the transfer of an acetyl group from acetyl-CoA.^{17, 34} In contrast, other phase II metabolizing enzymes function by conjugating xenobiotics to less reactive, water soluble compounds that are more easily excreted.^{17, 52} More specifically, ugt enzymes transfer a glucuronic acid; sults catalyze the sulfate conjugation; and gsts catalyze the conjugation of ROS to glutathione to produce less reactive, water soluble compounds that are more easily excreted.^{19, 53}

	Gene	Function
Phase I	Cytochrome P450 (CYP)	Catalyze oxidation or reduction of many xenobiotics, including PAHs that may be metabolized to carcinogenic intermediates.
	Epoxide hydrolase 1 (EPHX1)	Catalyzes conversion of epoxides to dihydrodiols to detoxify or bioactivate aromatic compounds
	Glutathione S-transferase (GSTs)	Catalyze the conjugation of reduced glutathione to electrophilic and hydrophobic compounds
Phase II	N-acetyltransferase (NATs)	Catalyze the transfer of an acetyl group from acetyl-CoA to detoxify or bioactivate xenobiotic substrates
	Sulfotransferases (SULTs)	Catalyze the sulfate conjugation of many xenobiotic compounds
	UDP-glucuronosyltransferase (UGTs)	Catalyze the conjugation of glucuronic acid to many xenobiotic compounds

Table 1.	Phase	811	Metabolizing	Enzymes ^{17, 52}
----------	-------	-----	--------------	---------------------------

Unfortunately, in some cases antioxidation reactions can convert compounds such as PAHs and HCAs derived from cigarette smoke or meat to more reactive intermediates.^{27, 40, 54-56} As shown in figure 4, cyps catalyze the *N*-hydroxylation of MelQx which can be further metabolized by *NATs* or *SULTs* to form *N*²-acetoxy-MelQx or *N*²-sulfonyloxy-MelQx.^{27, 57} These highly reactive compounds can form DNA adducts that may lead to tumor formation if left unrepaired.^{27, 57} This is also true for endogenous ROS generated from cellular processes (e.g., respiration, electron-transport chain) such as superoxide radicals.^{13, 17, 58} Although, *SODs* scavenge these radicals, this reaction produces hydrogen peroxide which is a more unstable ROS.^{13, 17, 58} Without intervention from *CAT* or *GPX*, hydrogen peroxide can interfere with cellular signaling.^{13,} 17, 58

Due to their function in detoxification of potentially damaging ROS and carcinogens that may be critical to prostate carcinogenesis, antioxidant enzymes have been commonly studied in PCA risk.^{3, 21, 59-60} It has been previously shown that men with PCA possess lower antioxidant enzyme levels in prostate tissues compared to both healthy controls and men with benign prostatic hyperplasia (BPH).⁵⁹ Several previous

studies have shown PCA tissues contain higher amounts of ROS and oxidative DNA damage.^{21, 59-60} Also, *in vitro* studies have shown ROS to be associated with PCA progression and more aggressive phenotypes.^{9, 61}

Although, genetic variation in polymorphic antioxidation-related genes has been implicated in the etiology of prostate cancer and other malignancies, the associations are not accepted across all observational studies.^{53, 59, 62-66} For instance, a 2006 publication examined the effect of *GSTM1* and *T1* gene deletions as well as the *GSTP1* lle^{105} Val SNP on PCA susceptibility.⁶⁷ These variants are believed to increase disease risk due to decreased detoxification capacity.⁶⁷ This population-based study consisted of 590 cases (559 Caucasian, 31 African-American) and 538 controls (523 Caucasian, 15 African-American).⁶⁷ Among the Caucasian subjects, they found deletion of *GSTM1* was moderately associated with increased risk [OR (95%CI) = 1.54 (1.19-2.01)].⁶⁷ However, neither the *GSTT1* deletion nor *GSTP1* SNP modified risk in the Caucasians participants.⁶⁷⁷ No associations were detected in the African-Americans, but this is most likely due to the limited sample size.⁶⁷ Although a larger study of 378 African-Americans (274 cases and 104 controls) investigated the *GSTP1* 105 variant and did not find any statistically significant effects in relation to PCA risk [OR (95%CI) = 1.30 (0.43-3.94); p = 0.65]⁶⁸

Nock et al. 2007 examined polymorphic PAH-metabolizing genes and cigarette smoking in PCA tumors collected from 210 Caucasian and 177 African-American subjects.³⁶ More specifically, this study evaluated the individual and joint effects of *CYP1A1* Ile⁴⁶²Val; *CYP1B1* Ala¹¹⁹Ser and Leu⁴³²Val; *EPHX1* Tyr¹¹³His and His¹³⁹Arg; *CYP3A4* A⁻³⁹²G; *GSTM1* gene deletion; *GSTP1* Ile¹⁰⁵Val; and cigarette smoking in relation to PAH- DNA adducts in PCA tumor and adjacent non-tumor cells.³⁶ Cigarette smoking was stratified by never- or ever-smokers with ever smokers including former and current smokers. They did not observe any significant effects in the total population, but Caucasian participants possessing *EPHX1* ¹³⁹Arg alleles had higher adduct levels in tumor and non-tumor cells compared to the *EPHX1* ¹³⁹His alleles (p = 0.03).³⁶ For Caucasian subjects with the heterozygous *GSTP1* 105 genotype higher adducts were found in non-tumor cell compared to those with two *GSTP1* ¹⁰⁵lle alleles (p = 0.02).³⁶ The *EPHX1* ¹³⁹Arg alleles were also associated with higher adduct levels in the African-American subjects, but only in non-tumor cells compared to the *EPHX1* ¹³⁹His alleles (p = 0.02).³⁶ In the African-Americans, possessing at least one variant *CYP1B1* 432Val allele was linked to higher adduct levels in tumor cells ($p \le 0.04$).³⁶

A more recent study evaluated gene-environment interactions between *CYP1A1* and *EPHX1* gene variants and cigarette smoking in relation to PCA risk among a casecontrol Indian population (130 cases, 140 controls).⁶⁹ No significant effects were observed in non-smokers possessing the variant *CYP1A1* or *EPHX1* ¹³⁹*Arg* alleles ($p \ge$ 0.54).⁶⁹ However, the variant *EPHX1* ¹¹³*His* allele, alone and combined with cigarette smoking was associated with an increase at least a 2.6-fold increase in risk ($p \ge 0.008$).⁶⁹ They found smokers carrying the *CYP1A1* polymorphism had a 1.2-to 1.6-fold increase in risk, while those with at least one variant *EPHX1* ¹³⁹*Arg* was associated with a 3.0-fold increase in risk.⁶⁹

Although studies such as these may be limited by sample size or scope; investigating polymorphic xenobiotic metabolizing genes combined with environmental

ROS exposures in relation to PCA development has failed to produce consistent findings.^{34-35, 43, 70} For instance, Koutros et al. 2009 evaluated 127 polymorphisms across multiple metabolizing genes (CYP1A1, CYP1A2, CYP1B1, GSTA1, GSTM1, GSTM3, GSTP1, NAT1, NAT2, SULT1A1, SULT1A2, and UGT1A locus) and meat-derived HCAs in relation to PCA susceptibility within a subset participants selected from the Prostate Lung Colorectal and Ovarian Cancer Screening Trial.³⁴ Meat-derived carcinogen exposures was estimated using questionnaire data regarding meat consumption and cooking method for a study population of 1126 cases (473 non-aggressive, 654 aggressive) and 1127 controls.³⁴ From this analysis, possession of at least one or more variant GSTM3 ³⁵⁶Ser was associated with increased risk among subjects in the highest percentile of DiMelQx compared to subjects in the lowest percentile [OR (95%Cl) = 2.3 (1.2 - 4.7). HCA-SNP analyses revealed significant interactions between GSTM3 ³⁵⁶Ser and MeIQx and DiMelQx (p = 0.001). Although data generated from this study suggests joint risk effects may exist among GSTP1¹⁰⁵Val or the UGT1A locus and meat-derived carcinogens, the interactions were no longer significance after adjusting for False Discovery Rate (FDR).³⁴

More recently, Sharma et al. examined eight *NAT1* and seven *NAT2* SNPs, along with well-done red meat consumption in relation to PCA risk using a multi-ethnic cohort population (2106 cases, 2063 controls).⁷⁰ Individual and multivariate statistical analyses were conducted using possession of the *NAT1*10* or 'slow' *NAT2* phenotypes and frequent well-done red meat consumption designated as the high risk groups.⁷⁰ No
single or combined risk effects were observed between variant *NAT1* or *NAT2* acetylors and well-done red meat intake.⁷⁰

Discrepancies across antioxidative gene variant study findings may be partially attributed to failure to consider interactions among antioxidation sequence variants along with downstream targets such as those involved in DNA repair and cell death.

Base Excision Repair (BER) & Prostate Cancer

In the event that antioxidant enzymes are not capable of removing ROS, DNA repair mechanisms help prevent replication of damaged nucleotides.^{16, 18, 49, 71} ROS can damage DNA by oxidizing bases, resulting in mismatches or adducts and that can possibly lead to deletions, mutations and distortions in the helix.¹⁸ One of the most important pathways for removing oxidative DNA damage is base excision repair (BER).⁷² BER incorporates several enzymes which recognize and remove an erroneous base. The process, shown in Figure 5, is initiated by a glycosylase, such as 8-oxoguanine glycosylase (OGG1) or Thymine-DNA glycosylase (TDG).⁷³⁻⁷⁵ The glycosylase catalyzes the cleavage of the helical backbone to liberate the damaged base, creating an abasic site.⁷³⁻⁷⁵ Then the phosphodiester bond on the 5' side of the intact apurinic/apyrimidinic site is incised by either a glycosylase with lyase activity (bifunctional) or an apurinic/apyrimidinic endonuclease (APEX1).⁷³⁻⁷⁵ Finally, repair is completed with the recruitment of DNA polymerase β and ligase (LIG1) by X-ray repair cross-complementing group 1 (XRCC1) along with poly (ADP-ribose) polymerase (PARP1).73-75

Figure 5. Base Excision DNA Repair⁷⁶

Figure 5: Base Excision DNA Repair. BER is initiated by a glycosylase which catalyzes the cleavage of the helical backbone to liberate the damaged base. The phosphodiester bond on the 5' side of the abasic site is incised by either a glycosylase with lyase activity (bifunctional) or an apurinic/apyrimidinic endonuclease (APE). X-ray repair cross-complementing group 1 (*XRCC1*) or poly (ADP-ribose) polymerase (*PARP1*) recruit polymerase β and ligase (*LIG1*) to complete the repair process.

Several investigators have examined if non-sysnonymous BER variants (e.g., *OGG1, APEX1, XRCC1*) alter DNA repair capacity of encoded proteins and ultimately influence cancer risk.⁷⁷⁻⁸³ Previous studies on the functional consequence of the *OGG1* Ser³²⁶Cys polymorphism observed a decreased capacity to repair 8hydroxydeoxyguanosine (8-OHdG) adducts linked with the ³²⁶Cys allele.⁸⁴⁻⁸⁶ Yamane et al. 2003 demonstrated that the *OGG1* ³²⁶Cys allele had a significantly lower capacity to suppress spontaneous mutagenesis relative to the ³²⁶Ser protein using complementation activity assay in *Escherichia coli*.⁸⁴ In addition, two reports found higher levels of 8-OHdG in biospecimens (e.g., peripheral blood lymphocyte DNA or cord blood) collected from individuals with the Cys/Cys genotype relative to those who were Ser/Ser carriers.⁸⁵⁻⁸⁶ Another study revealed that the *OGG1* Cys/Cys genotype was predictive of prostate cancer at the time of biopsy among 2,088 predominantly Caucasian men prescreened with prostate-specific antigen and digital rectal exam.⁸⁷

Although the *APEX1* Asp¹⁴⁸Glu amino acid change does not appear to influence endonuclease activity, it may reduce the ability for *APEX1* to communicate with other BER proteins (e.g., *XRCC1*), resulting in a reduced BER efficiency and thus a potential link to carcinogenesis.⁸⁸⁻⁹⁰ When the *APEX1* ¹⁴⁸Glu allele was considered in combination with the *XRCC1* ³⁹⁹Gln variant allele in Caucasians (258 cases and 215 controls), Chen et al. 2006 observed a 2-3 fold increase in the risk of developing PCA relative to those with the referent genotype.⁹¹ The *XRCC1* Arg³⁹⁹Gln polymorphism, located within the *PARP*binding domain has been extensively examined and the presence of the Gln allele has been associated with reduced DNA repair capacity as reflected in the persistence of

26

bulky DNA adducts and genotoxic DNA damage.⁹²⁻⁹⁴ However, when examined individually, no investigators have found any association between this polymorphism and DNA adducts.⁹² Similar to Chen et al. 2006, other studies suggest the variant *XRCC1* allele may play a role in PCA risk when considered with other DNA repair targets.^{79, 95-96} For instance, Rybicki et al. (2004) observed a 4.8-fold increase in the risk of developing PCA among individuals with both the *XRCC1* ³⁹⁹Gln/Gln and *XPD* ³¹²Asn/Asn genotypes.⁷⁹

Unfortunately, there are limited published reports on whether complex interactions among BER genes and up-/ downstream targets in relation to PCA susceptibility, particularly among high-risk MAD. To clarify the role of BER genes alone and in concert with other OSR targets, we evaluated their individual and joint modifying effects in relation to PCA development.

Apoptosis & Prostate Cancer

In cases of persistent, severe or unrepaired oxidative damage, cells will signal apoptosis as a protective measure to prevent the replication and advancement of cellular damage into tumorigenesis.⁹⁷⁻¹⁰⁰ Apoptosis is an important biological process for cell differentiation, proliferation, death and overall whole body homeostasis.^{98, 100-101} As shown in *Table 2*, this process is controlled by pro- and anti-apoptosis genes that function to induce or block apoptosis, respectively.^{98-100, 102} Regulation of these genes is critical in prevention of tumor formation and carcinogenesis.⁹⁷⁻⁹⁹ Clonal expansion and tumor growth are believed to result from increased cell proliferation and decreased apoptotic cell death.⁹⁸ Failure to undergo apoptosis may enable survival of transformed cells that are prone to undergo further genetic alteration and show genomic instability, leading to more invasive phenotypes.¹⁰⁰

	Gene	Function
	Tumor Protein 53 (TP53)	Transcriptionally regulates target genes that induce cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism in response to cellular stresses
Dro. 8. Anti	Tumor Protein p53 inducible nuclear protein 1 (TP53INP)	Regulates cell cycle progression and apoptosis, dependently & independently from TP53
apoptotic	Tumor Necrosis Factor (TNF)	Binds and functions through its receptors TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR to regulate cell proliferation, differentiation, apoptosis
	BCL2-like 1 (BCL2L1)	(AKA: BCL-XL); Outer mitochondrial membrane protein that regulates membrane potential, controlling ROS production and cytochrome c release. Exists in two isoforms: the longer isoform acts as an apoptotic inhibitor and the shorter is pro-apoptotic
	Fas & FAS ligand (FASL)	Death domain-containing receptor, binding of FASL to FAS allows the formation of a death-inducing signaling complex
	Caspases (CASP)	Cysteine-aspartic acid protease (caspase) gene family involved in the execution of cell apoptosis
	Bcl2-associated X (BAX)	Forms a heterodimer with BCL2 and functions as an apoptotic activator involved mitochondrial release of cytochrome c
	BCL2-antagonist/killer 1 (BAK1)	Induces apoptosis by increasing cytochrome c release; interacts with the TP53 after exposure to cell stress
Pro-apoptotic	BCL2-associated agonist of cell death (BAD)	Forming heterodimers with BCL-XL and BCL-2 to reverse their death repressor activity.
	BCL2-like 10 (BCL2L10)	Interact with BCL2 proteins (e.g., BCL2, BCL2L1/BCL-XL, and BAX)
	BCL2-like 11 (BCL2L11)	(AKA BIM); Interacts with other members of the BCL-2 protein family (e.g., BCL2, BCL2L1/BCL-XL), and MCL1) to act as an apoptotic activator
	BCL2-like 14 (BCL2L14)	apoptosis facilitator
	BH3 interacting domain death agonist (BID)	Induced by caspase-8 (CASP8); CASP8 cleaves this encoded protein, and the COOH-terminal part translocates to mitochondria and triggers cytochrome c release
	BCL2-interacting killer (BIK)	Interacts with survival-promoting proteins to enhance programmed cell death; possible target for anti-apoptotic proteins
	B-cell CLL/lymphoma 2 (BCL2)	Blocks the release of pro-apoptotic cytochrome c from and block caspase activation.
	BCL2-related protein A1 (BCL2A1)	Reduces cytochrome c release from mitochondria and blocks caspase activation
Anti-apoptotic	Baculoviral IAP repeat- containing 2 (BIRC2)	(AKA CIAP1); Inhibits apoptosis by binding to tumor necrosis factor receptor-associated factors TRAF1 and TRAF2
	BCL2/adenovirus E1B 19kDa interacting protein 3-like (BNIP3L)	(AKA NIX); BCL2/adenovirus E1B 19 kd-interacting protein (BNIP) gene that may function simultaneously with BNIP3 and play a role in tumor suppression

Table 2. Major genes involved in the regulation of Apoptosis⁵²

One of the key genes in apoptotic induction is *Tumor Protein 53 (TP53*) which is regarded as "guardian of the genome" due to its multiple functions in regulating the cell cycle and supporting genomic stability.¹⁰³⁻¹⁰⁴ As a transcription factor (TF) for apoptotic

genes, TP53 can directly and indirectly trigger permanent or temporary arrest of the cell cycle as well as induce apoptosis when DNA repair cannot be achieved.¹⁰⁴⁻¹⁰⁵ TP53's cycle cell regulatory activity is dictated from intrinsic (cytotoxic stress) or extrinsic (outside the cell) signals that indicate the presence of oxidative damage.¹⁰⁴⁻¹⁰⁵ Intrinsic signals initiated by cytotoxic damage or stress can activate TP53 to arrest the cell cycle or induce apoptosis. ¹⁰⁴⁻¹⁰⁶ Extrinsic signals are mediated through the binding of ligands [e.g., tumor necrosis factor (tnf), fas ligand (fasl)], to their respective cellular membrane 'death' receptors.¹⁰⁶ [See Figure 6] This interaction can signal apoptosis or survival to downstream targets, such as BCL2-related genes.¹⁰⁰ The BCL2 family consists of proand anti-apoptotic proteins capable of inducing or blocking cell death, respectively.^{6, 107-} ¹⁰⁹ BCL2 regulates the transport of molecules and apoptotic transcription factors through mitochondria channels based on the oxidative state of the cell.¹⁰⁷ BAK1 (BCL2 Antagonist Killer-1) and BIM (BCL2-Interacting Protein) help accelerate channel opening. These proteins, as well as BAX (BCL2 Associated X-protein), these are initially inactive and must translocate to mitochondria to induce apoptosis.¹⁰⁸⁻¹⁰⁹ They can either forming pores in mitochondria directly or by binding to and antagonizing anti-apoptotic targets, such as BCL2 or BCL-XL (BCL2 Related Protein Long Isoform).¹⁰⁸⁻¹⁰⁹

BCL2 genes can activate additional apoptotic induction pathways, including the cysteine-dependent aspartate-specific proteases or caspases (casps).^{97, 107} For example, cytochrome-C from the mitochondria binds to Apoptotic Protease Activating Factor-1 (APAF1) with dATP and Procaspase 9 to activate Caspase 9.¹⁰⁶ The activation of Caspase 9 leads to activation of the caspase cascade.¹⁰⁶ Casp proteins can activate downstream

apoptotic events by either extrinsic (receptor-mediated) or intrinsic (mitochondrial) cellular pathways.¹⁰⁰

Figure 6. Apoptosis¹¹⁰

Figure 6: Apoptosis. Apoptosis is a complex process involving multiple proteins that can either block or induce cell death. Pro-apoptotic proteins can be activated by extrinsic or intrinsic signaling that indicate to the cell is no longer needed or damaged beyond repair. In the extrinsic pathway, signaling begins outside a cell, when conditions in the extracellular environment determine that a cell must die. This signaling activates cell surface receptors that in turn transmit the apoptotic signal to downstream targets, such as BID (Bcl2 Interacting Protein). The COOH-terminal part of BID translocates to the mitochondria and triggers the release of cytochrome-C. The released cytochrome-C binds to Apoptotic Protease Activating Factor-1 (APAF1) with dATP and Procaspase 9 to activate Caspase 9. The activation of Caspase 9 leads to activation of the caspase cascade. The intrinsic apoptosis pathway is initiated by cytotoxic stress or damage. TP53 (aka P53) is a sensor of cellular stress and is a critical activator of the intrinsic pathway. As a transcription factor, TP53 can initiate apoptosis by either activating pro-apoptotic (BAX) or suppressing anti-apoptotic (BAK1 aka BAK) BCL2-related targets.

Apoptotic targets play an important role in PCA progression as well as disease susceptibility. For instance, TP53, which is the most commonly mutated tumor suppressor in cancer, has a low mutation rate in primary PCA but is frequently mutated in metastatic PCA.⁵ Nam et al. 2005 reported that the TNF promoter SNP at -308 associated with increased TNF transcription activity was linked to PCA risk in population of 996 cases and 1092 controls (p = 0.04).⁸⁷ Studies have also found that expression of the TNF receptor family member FAS is reduced in PCA tissues, suggesting SNPs decreasing FAS or FASL functionality may contribute to disease progression.¹¹¹⁻¹¹² Also, overexpression of bcl-2 protein in prostate tumor epithelial cells has been correlated with tumor progression to androgen independent disease (e.g., more aggressive phenotypes).⁶ In fact, increased expression of either *TP53 or BCL2* has each been linked to poorer PCA prognosis.⁵⁻⁶ Another report found a decrease in the risk of developing PCA among African-American men harboring the low expressing BCL2 -938 AA genotype.⁹⁷ Higher bcl-2 immunostaining has been associated with more advanced disease (i.e., higher Gleason grade), suggesting that an increase in this anti-apoptotic protein may occur during PCA progression.¹¹³ McConkey et al. also revealed an increase in bcl-2 expression levels and loss of pro-apoptotic bax expression in prostatic carcinoma cells.¹¹⁴

Based on these studies, it is apparent that genetic alterations in apoptosisrelated genes have an important role in the pathogenesis of PCA, presumably due to an accumulation of genetically altered and transformed cells. Previous studies indicate that in isolation, apoptotic SNPs may minimally influence PCA progression.^{5-6, 87, 97, 113-115} However, combinations of variants may have a joint modifying effect. To our knowledge, there are limited published reports on the relationship between apoptotic polymorphisms, alone or in combination with variations in other biological pathways, and their association with PCA development.

HYPOTHESIS STATEMENT

This research project hypothesizes that inheritance of alleles in oxidative stress response (OSR) genes associated with compromised OSR capacity, combined with exposure to environmental oxidative stress factors will increase prostate cancer susceptibility and aggressiveness.

SPECIFIC AIMS

The following three specific aims were executed to evaluate the hypothesis of this study:

Specific Aim 1: Determine the single- and joint-modifying effects of variations within oxidative stress response (OSR)-related genes in relation to PCA risk. Oxidative stress is a condition in which the amount of reactive oxygen species (ROS) produced exceeds the amount that can be removed.¹³⁻¹⁶ Several biological processes have relevant effects on the oxidative stress status in prostate cells, including detoxification (via antioxidant enzymes), DNA repair, and apoptosis.^{2-3, 9, 13} Polymorphisms in OSR genes may influence the capacity to suppress ROS, repair oxidative DNA damage, and regulate cell death signaling pathways. Hence, it is likely that genetic variation in OSR genes resulting in compromised ROS capacity may increase PCA risk.

Specific Aim 2: Evaluate the individual- and combined effects of apoptotic polymorphisms on PCA progression (e.g., disease aggressiveness, tumor grade). Genetic variations that disrupt cell death and cell cycle regulation pathways may result in more aggressive phenotypes in prostatic tumors.^{2, 6} Regulation of the cell death is critical to maintain cellular homeostasis, proliferation, and differentiation by facilitating repair or induction of cell death.⁹⁸ This process involves multiple pathways and a balance between pro- and anti-apoptotic genes that function to activate or block apoptosis.^{16, 98} Decrease or loss of apoptotic induction can permit escape of transformed cells from programmed cell death, increase the accumulation of damaged cells, and lead to tumor formation and progression.⁹⁸ Therefore, genetic variations linked with decreased apoptosis and/or cell cycle arrest capacity may result in more aggressive disease.^{100, 116}

Specific Aim 3: Identify Oxidative Stress Response-related genetic-environment interactions capable of serving as effective predictors of prostate cancer development. Endogenous and exogenous ROS sources can contribute to oxidative stress.¹³⁻¹⁶ This includes normal cellular respiration and metabolic processes as well as polycyclic aromatic hydrocarbons and heterocyclic amines.¹³⁻¹⁴ Excessive oxidative stress can produce DNA base changes, damage tumor suppressors, enhance proto-oncogene expression, and induce malignant transformation of cells.¹³⁻¹⁶ Persistent oxidative stress may even trigger apoptosis.^{13-14, 16} OSR mechanisms function to protect cells against oxidative stress damage, however genetic alterations may diminish the ability to maintain ROS.³⁻⁴ Increased exposure to environmental ROS can exacerbate this effect. Consequently, OSR gene variants associated with decreased ROS capacity, combined with elevated ROS levels due to environmental factors may increase the risk of PCA disease and aggressiveness.

RESEARCH DESIGN AND METHODS

POPULATION DESCRIPTION

Cancer Genetic Markers of Susceptibility (CGEMS) subjects

<u>Setting and Participant.</u> This population consists of nationally available genetic data from 2,277 men of European-descent (488 non-aggressive cases, 688 aggressive cases and 1101 controls) collected through the NCI Prostate, Lung, Colon, and Ovarian (PLCO) Cancer Screening Trial.¹¹⁷⁻¹¹⁸ Randomization for the PLCO Trial began in 1993 and ended in2001 among men ages 55-74 years to evaluate the effect of screening on disease specific mortality, relative to standard care.

Men were included in the current analysis if they had a baseline PSA measurement before October 1, 2003, completed a baseline questionnaire, returned at least one Annual Study Update (ASU), and had available SNP profile data through the CGEMS data portal. For PCA screening, blood samples were collected and men received a Prostate Specific Antigen (PSA) test and Digital Rectal Exam (DRE). Subsequent to the initial screen, participants received a PSA and DRE annually for three and five years, consecutively. Men who had PSA levels >4ng/ml or abnormal DRE were referred to their health care provider for follow-up care.

Identification of PCA Cases and Controls. The PLCO Trial identified 1172 incident PCA cases (484 non-aggressive and 688 aggressive) through various sources including: screening exams; reports from patients, physicians, or relatives; linkage with the National Death Index; or linkage with the state cancer registries. Incident PCA (non-aggressive) cases were pathologically confirmed (Gleason score <7 or tumor stage I/II). Cases were diagnosed with aggressive disease based on a Gleason score ≥7 or tumor stage III/IV (regional or metastatic disease). Incident cases were defined as men receiving a diagnosis after the first year of follow-up. Controls (n = 1157) were matched to cases based on age, time since initial screening, and year of blood draw using incidence density sampling. Incidence Density sampling accounts the dynamic nature of a cohort study.¹¹⁹ Under this selection strategy, controls were selected independently for each case from those who were at risk at the time of the diagnosis of the case. Identification as a control for a given case set is independent of the following: future diagnosis as a case, selection as a control for other case sets, and the number of entry and exit times. Therefore, individuals may be included as both a case and a control. The genotype data for individuals who have been selected multiple times are taken into consideration for each selection. Other covariates that vary with time, such as age are defined differently each time, depending on the characteristics of the case set for which he was selected as a control.119

39

All participants signed informed consent documents approved by both the NCI and local institutional review boards. Access to clinical and background data collected through examinations and questionnaires was approved for use by the PLCO.

Demographic, Anthropometric and Lifestyle factors. Questionnaire data included information regarding age, family history of prostate cancer, as well as a comprehensive dietary and supplemental usage. For patient characteristics and lifestyle factors, risk categories were designated using guidelines recommended by the 2005 United States Department of Agriculture (USDA) Report of Dietary Guidelines and the NIH Office of Dietary Supplements.¹²⁰⁻¹²¹ For a male with median height and weight, a BMI less than 24.9 was considered normal or underweight.¹²⁰ The USDA also advises that adult men get at least 30 minutes of physical activity each day.¹²⁰ A BMI between 25 and 29.9 is overweight and men with a BMI greater than 30 are classified as obese.¹²⁰ Men over the age of 19, with a normal BMI should consume between 2000-3000 calories per day with at least 4 servings of fruits and 5 servings of vegetables, but no more than 5 servings of meat.¹²⁰ Total fat intake should be limited to 20-35% of daily calories and less than 10% percent of calories ought to come from saturated fatty acids.¹²⁰ Alcoholic consumption should be limited to no more than drinks per day.¹²⁰

According to the NIH office of Dietary Supplements, each day adult men need approximately 90 mg of vitamin C, 900 μ g or 3,000 IU (International Units) of vitamin A, and 15 mg or 22.4 IU of vitamin E.¹²¹ It is also recommended than adult men intake at least 11 mg of zinc and 55 μ g of selenium daily.¹²¹

For variables related to meat consumption and cooking methods, as well as exposure to meat-derived carcinogens were divided into quartiles using data for the control subjects. The 1st quartile was used as the low risk category. These categories included daily total meat intake as well the amount of white (i.e. chicken and fish), processed, or red meats. Red meat consumption was also stratified by type or cooking duration into non-processed, rare/medium-well, and well-/very-well done. The meatderived carcinogens used in this analysis were MelQx, DiMelQx, PhIP, and BaP.

Men of African Descent subjects

Between 2001 and 2005, 774 unrelated male residents were recruited from the Washington, D.C. and Columbia, SC areas through the Howard University Hospital (HUH) Division of Urology or PCA screening programs. The study population of men of African descent (i.e., self-reported African-Americans, East African-Americans, West African-Americans, and Afro-Caribbean Americans) consisted of 219 incident PCA cases and 694 unrelated controls. PCA patients between the ages of 41 and 91 were diagnosed within one year of enrollment. Following a visit to the HUH Division of Urology for an annual PCA screening exam or urinary symptoms, incident PCA cases were identified by a urologist using a transrectal ultrasound-guided biopsy. Biopsy cores were reviewed by members of the Department of Pathology at the Howard University College of Medicine. PCA cases were classified according to a well-established Gleason scoring system.¹²² Inclusion criteria of controls included men older than 45 with a low prostate specific antigen (PSA) level \leq 4.0 ng/ml and normal digital rectal exams (DREs) or biopsies. Clinical characteristics including age at diagnosis/enrollment, family history of PCA, PSA level (ng/ml), and Gleason score for PCA patients, were obtained from medical records. Histopathological grade was recorded as the Gleason score. Information on smoking history was also collected at the time of recruitment using a short questionnaire. Male residents from D.C. were classified as either never (n = 107) or ever smokers (n = 109), where 'ever' includes former and current smokers. All study participants had DNA extracted from whole blood and provided written informed consent for participation in genetic analysis studies under a protocol approved by Howard University, the HUH Division of Urology, and the University of Louisville Institutional Review Board.

Ancestry Markers. One hundred previously validated ancestry markers autosomal markers were included to account for potential population stratification among our admixed population of self-reported African-Americans, West African, East African, Afro-Caribbean, as previously described.¹²³ Study participants were grouped from lowest to highest genetic West African Ancestry (WAA), with scores ranging from 0-100%. These 100 markers were assembled using DNA from self-identified African-Americans (Coriell Institute for Medical Research, n = 96), Yoruban West Africans (HapMap, n = 60), West Africans (Bantu and Nilo Saharan speakers, n = 72), Europeans (New York City, n = 24), and CEPH Europeans (HapMap Panel, n = 60), as previously reported.¹²³ Individuals (n = 873) with a high degree of WAA greater than or equal to 25% were considered in the final analysis.

OSR GENE SELECTION

In an attempt to focus our investigation of OSR related genes in relation to PCA risk and disease progression, a panel of candidate SNPs was generated from genes involved in antioxidation, DNA repair and apoptotic mechanisms. A list of 118 OSR genes generated based on published PCA epidemiology studies as well as pathway databases and tools, including KEGG, Kyoto Encyclopedia of Genes and Genomes (www.genome.jp/kegg), Ingenuity (www.ingenuity.com), BioCarta (www.biocarta.com), and SNPs3D (www.SNPs3D.org), as summarized in Figure 7.^{110, 124-} ¹²⁸ More specifically, KEGG and BioCarta sites provide diagrams illustrating gene interactions within human biological pathways.^{110, 124-126} Ingenuity is a pathway analysis software that allows researchers to model and investigate biological systems (e.g., genes, mechanisms, and diseases).¹²⁷ SNPs3D is a website which assigns molecular functional effects of non-synonymous SNPs (nsSNPs) based on structure and sequence analysis.¹²⁸ SNPs3D also allows users to generate candidate gene lists and interactive maps for various conditions based on published literature as well as other functional/pathway databases [e.g., KEGG and the Gene Ontology (GO)].¹²⁸ Together, these tools show important molecular interactions and genes not readily found by literature search or other traditional methods. In order to predict the functional effects of a SNP, this site considers factors such as, protein structure, gene regulation, splicing

43

and miRNA binding, and whether the alternative alleles are likely to have differential effects on function.¹²⁹

SNP SELECTION

Phase I Selection of SNPs for men of European Descent. Prior to uploading our initial list (i.e., 118 OSR genes) into the CGEMS data portal, we secured the HUGO gene name equivalents for the targets of interest using National Center for Biotechnology Information (*NCBI*, http://www.ncbi.nlm.nih.gov) Entrez Gene. SNP profile data was available for more than 1516 SNPs [*Figure 7*].¹¹⁹ However, the final analysis focused on 242 SNPs detected in 83 OSR genes collected from 2276 European-Americans CGEMS participants, as summarized in *Tables 3-8*. Emphasis was placed on sequence variants that were: (1) detected within all exons, 2.5kb upstream of the gene, 2.5kb downstream of intron 1, 2.5kb downstream of the gene; (2) had a minor allele frequency >1%. SNPs were discarded if the observed genotype frequency among controls significantly deviated from the Hardy-Weinberg Equilibrium (HWE p < 0.005). Over 240 sequence variants detected in 83 OSR genes fit the aforementioned selection criteria, following assessment using NCBI Entrez SNP, as detailed in figure 7.^{52, 129}

Phase II Selection of SNPs for men of African Descent. 25 OSR SNPs were selected for analysis using one or more of following criteria: (1) epidemiological evidence from the CGEMS prostate cancer database or published reports indicating their involvement in cancer based on p values < 0.05; (2) commonly studied loci; (3) marked disparities in genotype frequency comparing men of African descent to their Caucasian counterparts; (4) evidence demonstrating a link with alterations in mRNA expression/stability or protein expression/structure or function using *in silico* tools (e.g., SNPinfo, SNPs3D) or published reports; and (5) minor allele frequency >1%. The SNPs that were analyzed among men of African descent are indicated in tables 3-8 by magenta font.

PREDICTED FUNTION OF SELECTED SNPS

Tools such as SNPinfo and SNPs3D aid investigators in annotating and/or predicting the functional consequence of selected SNP targets.¹²⁹ For instance, in the case of SNPs located in gene coding regions, the server identifies nonsense SNPs that lead to premature termination of translation or nsSNPs that lead to amino acid changes affecting protein function.¹²⁹ Sequence variants at transcription factor binding sites (TFBS) may affect the level or timing of gene expression.¹²⁹ Also, non-coding SNPs that are located in intronic or near gene regions may impact either splice- or microRNA-(miRNA) binding sites.¹²⁹ SNPs that are located within two base pairs of an intron–exon junction or at exonic splicing- enhancer (ESE)/ silencer (ESS) binding sites may disrupt messenger RNA (mRNA) splicing and severely affect protein function.¹²⁹ miRNA are 21– 23-base single-stranded RNA molecules that are usually complementary to a site in the 3' UTR region of an mRNA.¹²⁹ miRNA bound to the end of mRNA can inhibit protein translation.¹²⁹

Figure 7. Gene and SNP Selection Flow Diagram

Figure 7: SNP Selection Flow Diagram. By exploring published literature and pathway analysis tools for genes involved in prostate cancer and oxidative stress response, an initial list of more than 100 genes was generated. Upon analyzing these genes in CGEMS association finding dataset, we found 1,516 SNPs had genotype data available in the CGEMS database. National Center for Biotechnology Information (NCBI) was reviewed to ensure that the selected targets were related to our pathways of interest, had a minor allele frequency >1%, resided in regions likely to modify mRNA expression/stability/splicing or protein expression/structure/function. The finalized panel consisting of 242 SNPs detected in 83 OSR genes was then analyzed by logistic regression analysis (LR), multifactor dimensionality reduction (MDR), and hierarchical interaction graphs (hIG)

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs1001179	CAT	11	34416807	5'near gene (-206)	G>A	
rs564250	CAT	11	34415437	5'near gene (-1616)	C>T	
rs2470893	CYP1A1	15	72806502	3'near gene (-1540)	G>A	
rs4646903	CYP1A1	15	72828970	3'near gene (+1188)	G>A	
rs2069514	CYP1A2	15	75038220	5'region (-3859)	G>A	
rs2069522	CYP1A2	15	72826286	5'near gene (-1757)	T>C	
rs762551	CYP1A2	15	75041917	Intron 1	A>C	
rs1800440	CYP1B1	2	38209790	Exon 2	A>G	
rs11673270	CYP2B6	19	46212684	Intron 1	A>C	
rs2860840	CYP2C18	10	96485222	3'UTR (mRNA 1830)	C>T	
rs10509681	CYP2C8	10	96788739	Exon 8	T>C	Lys399Arg
rs1058932	CYP2C8	10	96786851	3'UTR (mRNA 1592)	C>T	
rs7909236	CYP2C8	10	96819420	5'near gene (-120)	G>T	
rs2480258	CYP2E1	10	135240981	Intron 1	G>A	
rs2515642	CYP2E1	10	135240894	Intron 1	T>C	
rs6413420	CYP2E1	10	135229710	5'near gene (+38)	G>T	
rs1051740	EPHX1	1	222326368	Exon 4	T>C	Tyr113His
rs1051741	EPHX1	1	222338964	Exon 2	C>T	Asn357Asn
rs2234922	EPHX1	1	222333141	Exon 5	A>G	His139Arg
rs6917325	GSTA1	6	52774232	Intron 1	C>T	
rs563464	GSTA3	6	52883831	5'near gene (-1387)	C>T	
	GSTM1			Gene deletion	*1>*0	
rs638820	GSTM2	1	109921948	5'near gene (+765)	C>T	
rs7483	GSTM3	1	109991743	Exon 7	G>A	Val224Ile
rs1695	GSTP1	11	67109265	Exon 5	A>G	lle105Val
rs6591256	GSTP1	11	67106475	5'near gene (+1197)	A>G	
	GSTT1			Gene deletion	*1>*0	
rs10888150	NAT1	8	18110406	5'near gene(+1489)	C>T	
rs4921581	NAT1	8	18115375	Intron 1	G>A	
rs7003890	NAT1	8	18121590	Intron 1	T>C	
rs7017402	NAT1	8	18112354	Intron 1	G>A	
rs8190870	NAT1	8	18125552	3'near gene (-452)	C>T	
rs1112005	NAT2	8	18300156	Intron 1	C>T	
rs1208	NAT2	8	18302596	Exon 2	A>G	Lys268Arg
rs1390358	NAT2	8	18297035	Intron 1	T>C	
rs4646247	NAT2	8	18303188	3'near gene (-224)	G>A	

Table 3. NCBI data for Antioxidative Polymorphisms⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs7832071	NAT2	8	18301560	Intron 1	C>T	
rs2758331	SOD2	6	160025060	Intron 1	C>A	
rs6717546	UGT1A1	2	234464119	3'near gene (-174)	G>A	

Table 3. NCI	I data for	Antioxidative	Polymorphism	s. continued ⁵²
--------------	------------	---------------	--------------	----------------------------

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs1130409	APEX1	14	20925154	Exon 5	T>G	
rs1052133	OGG1	3	9798773	Exon 6	C>G	Ser326Cys
rs125701	OGG1	3	9765478	5'near gene (+1402)	G>A	
rs2445837	POLD1	19	55613084	3'near gene (-207)	A>G	
rs3087374	POLG	15	87660998	Exon 16	G>T	
rs3730814	POLI	18	50072899	Intron 1	G>T	
rs545979	POLI	18	50073748	Intron 1	C>T	
rs8305	POLI	18	50074803	Exon 1	A>G	
rs4135036	TDG	12	102883184	5'near gene (+587)	T>C	
rs3219243	UNG	12	108026775	Intron 1	T>C	
rs3890995	UNG	12	108017912	5'near gene (+1953)	T>C	
rs25487	XRCC1	19	44055726	Exon 10	G>A	Arg399Gln
rs2682585	XRCC1	19	48773128	5'near gene (-1518)	G>A	
rs2854496	XRCC1	19	48760033	Intron 1	G>A	
rs3213255	XRCC1	19	48769347	Intron 1	T>C	

Table 4. NCBI data for Base Excision Repair Polymorphisms⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs1885097	ACIN1	14	22619159	Exon 6	A>G	Ser467Pro
rs3751501	ACIN1	14	22619125	Exon 2	G>A	Ser478Phe
rs10157763	АКТЗ	1	240321082	Intron 1	C>T	
rs10803155	АКТЗ	1	240220823	Intron 1	G>A	
rs10927067	АКТЗ	1	240249285	Intron 1	G>A	
rs12031994	АКТЗ	1	240243350	Intron 1	T>C	
rs2034915	АКТЗ	1	240204544	Intron 1	C>T	
rs2125230	АКТЗ	1	240211889	Intron 1	G>A	
rs2125231	АКТЗ	1	240088340	Intron 1	G>A	
rs2345994	АКТЗ	1	240258316	Intron 1	C>T	
rs4132509	АКТЗ	1	240269125	Intron 1	C>A	
rs4614244	АКТЗ	1	240326915	Intron 1	T>C	
rs897960	АКТЗ	1	240259609	Intron 1	A>G	
rs10745834	APAF1	12	97562818	Intron 1	A>G	
rs10860361	APAF1	12	97631965	3'near gene (-298)	A>G	
rs1439123	APAF1	12	97578784	Intron 1	T>C	
rs1439124	APAF1	12	97622538	Intron 1	A>C	
rs2288714	APAF1	12	97610756	Intron 1	T>C	
rs4319556	APAF1	12	97579054	Intron 1	G>A	
rs7299536	APAF1	12	97603878	Intron 1	G>A	
rs7315397	APAF1	12	97552834	Intron 1	G>A	
rs919699	APAF1	12	97586794	Intron 1	C>T	
rs210134	BAK1	6	33648187	3'near gene (+212)	G>A	
rs5745568	BAK1	6	33656372	5'near gene (-265)	C>A	
rs11667351	BAX	19	54147966	5'near gene (-2477)	T>G	
rs4645878	BAX	19	49457938	5'near gene (-248)	C>T	
rs4645900	BAX	19	54156175	Intron 1	C>T	
rs905238	BAX	19	54157196	3'near gene (-85)	A>G	
rs1016860	BCL2	18	58946054	3'UTR (mRNA 1997)	G>A	
rs1564483	BCL2	18	58945634	3'UTR (mRNA 2417)	G>A	
rs3927911	BCL2	18	59084606	Intron 1	C>T	
rs1138357	BCL2A1	15	78050461	Exon 1	G>A	Cys19Tyr
rs1138358	BCL2A1	15	78050400	Exon 1	T>G	Asn39Lys
rs3826007	BCL2A1	15	78050272	Exon 1	G>A	Gly82Asp
rs13405741	BCL2L11	2	111629287	Intron 1	T>C	
rs3789068	BCL2L11	2	617170	Intron 5	T>C	

	Table 5.	NCBI data	for Apoptosis	-related Pol	ymorphisms ⁵²
--	----------	-----------	---------------	--------------	--------------------------

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs616130	BCL2L11	2	111628912	Intron 1	C>A	
rs724710	BCL2L11	2	111623922	Exon 1	C>T	lle95lle
rs4488761	BCL2L13	22	16584167	Exon 1	A>G	Ser257Ser
rs10772530	BCL2L14	12	12157308	Intron 1	C>A	
rs10845479	BCL2L14	12	12135568	Intron 1	A>G	
rs11054704	BCL2L14	12	12191036	Intron 1	G>A	
rs1612841	BCL2L14	12	12136155	Intron 1	T>C	
rs1628766	BCL2L14	12	12142116	Intron 1	T>C	
rs1641729	BCL2L14	12	12142419	Intron 1	G>A	
rs2448050	BCL2L14	12	12140491	Intron 1	G>A	
rs2448063	BCL2L14	12	12113301	5'near gene (-1844)	G>T	
rs6488494	BCL2L14	12	12121219	Intron 4	C>T	
rs4763780	BCL2L14	12	12144858	Intron 1	T>G	
rs4763781	BCL2L14	12	12145743	Intron 1	G>A	
rs4763782	BCL2L14	12	12146023	Intron 1	A>C	
rs879732	BCL2L14	12	12131466	Exon 1	T>C	Tyr162Tyr
rs885637	BCL2L14	12	12139547	Intron 1	G>A	
rs885720	BCL2L14	12	12139366	Intron 1	G>A	
rs888152	BCL2L14	12	12131932	Intron 1	C>T	
rs1950252	BCL2L2	14	22848538	3'UTR (mRNA 1294)	G>A	
rs181402	BID	22	16604328	Intron 1	C>T	
rs181405	BID	22	16607554	Intron 1	G>A	
rs181408	BID	22	16609859	Intron 1	T>C	
rs181417	BID	22	16615528	Intron 1	G>A	
rs366542	BID	22	16632936	5'near gene (+1137)	C>T	
rs5746474	BID	22	16620486	Intron 1	T>C	
rs5747351	BID	22	16620929	Intron 1	A>G	
rs738095	BID	22	16630542	Intron 1	G>A	
rs9604787	BID	22	16609143	Intron 1	G>A	
rs1883263	BIK	22	41834115	Intron 1	A>C	
rs4988360	BIK	22	41829569	5'near gene (-1725)	C>T	
rs4988366	BIK	22	41830193	5'near gene (-1101)	A>G	
rs738276	BIK	22	41840163	Intron 1	G>A	
rs1042992	BNIP3L	8	26325108	3'UTR (mRNA 2047)	C>T	
rs10503786	BNIP3L	8	26325853	3'UTR (mRNA 2792)	C>T	
rs10405717	CARD8	19	53443620	Intron 1	C>T	

 Table 5. NCBI data for Apoptosis-related Polymorphisms, continued⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs10416565	CARD8	19	53434199	Intron 1	A>G	
rs11670259	CARD8	19	53435976	Intron 1	C>T	A
rs11672725	CARD8	19	53438493	Intron 1	C>T	
rs6509364	CARD8	19	53433879	Intron 2	C>T	
rs6509366	CARD8	19	53435389	Intron 2	G>A	
rs1049216	CASP3	4	185550089	3'UTR (mRNA 1267)	T>C	
rs2019978	CASP3	4	185932730	Intron 1	T>G	
rs507879	CASP5	11	104383137	Exon 2	A>G	Thr106Ala
rs537093	CASP5	11	104371256	Intron 5	G>A	
rs3181187	CASP6	4	110980514	Intron 1	G>A	
rs3212153	CASP6	4	110967085	3'near gene (+337)	C>T	
rs768063	CASP6	4	110978060	Intron 1	G>A	
rs12415607	CASP7	10	115428194	5'near gene (-740)	C>A	1
rs10931934	CASP8	2	201945295	Intron	C>T	
rs6747918	CASP8	2	201923081	5'near gene (+751)	A>G	
rs1052571	CASP9	1	15595919	Exon 1	C>T	Ala28Val
rs1052576	CASP9	1	15832543	Exon 5	G>A	Arg221Gln
rs4645989	CASP9	1	15595649	Intron 1	T>C	
rs12817549	CRADD	12	92645445	Intron 2	T>C	
rs3858606	CRADD	12	92760016	Intron 2	G>A	
rs11588734	DFFA	1	10467247	5'near gene (-419)	A>G	
rs12738235	DFFB	1	3809402	Exon 2	G>A	Arg196Lys
rs3205087	DFFB	1	3823399	Exon 1	G>A	Pro318Pro
rs4074709	DFFB	1	3820105	Intron 1	G>T	
rs4648426	DFFB	1	3796246	5'near gene (+756)	T>C	
rs12870	DIABLO	12	121217700	3'UTR (mRNA 1633)	G>A	
rs7972948	HRK	12	115774919	Intron 1	C>T	
rs9669553	HRK	12	115778069	Intron 1	C>T	
rs1048906	IKBIP	12	97531754	Exon 1	G>A	Gly265Ser
rs12371097	IKBIP	12	97531767	Intron 1	A>G	
rs12821083	IKBIP	12	97533519	Intron 1	G>T	
rs11578093	IKBKE	1	203059049	3'near gene (-495)	T>G	
rs1539243	IKBKE	1	203036182	Exon 4	C>T	lle67lle
rs1930438	IKBKE	1	203031501	5'near gene (+710)	G>A	
rs944775	IKBKE	1	203056988	Intron 1	A>G	
rs11688	JUN	1	58960014	Exon 1	G>A	Gln250Gln

Table 5. NCBI data for Apoptosis-related Polymorphisms, continued⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs13096	KRAS	12	25251108	3'UTR (mRNA 3636)	A>G	
rs9266	KRAS	12	25253484	3'UTR (mRNA 1260)	T>C	
rs1609798	NFKB1	4	103894643	Intron 1	C>T	
rs230547	NFKB1	4	103893462	Intron 1	C>T	
rs4648135	NFKB1	4	103893871	Intron 1	A>G	
rs1056890	NFKB2	10	104152760	3'near gene (-523)	C>T	
rs696	NFKBIA	14	34940844	3'UTR (mRNA 1190)	G>A	
rs8904	NFKBIA	14	34940968	3'UTR (mRNA 1066)	C>T	
rs2230365	NFKBIL1	6	31633427	Exon 2	C>T	Ser126Ser
rs1607237	РІКЗСА	3	180432999	Intron 1	T>C	
rs500687	РІКЗСВ	3	139942901	Intron 1	T>C	
rs4727666	PIK3CG	7	106099429	5'near gene (+473)	A>G	
rs4730205	РІКЗСС	7	106123200	Intron 1	C>T	
rs11656099	PRKCA	17	62224124	Intron 1	G>A	
rs8074995	PRKCA	17	62222593	Intron 1	G>A	
rs9890506	PRKCA	17	62214645	Intron 1	C>T	
rs1530668	PRKCE	2	46318270	Intron 1	T>C	
rs17034455	PRKCE	2	46225132	Exon 4	C>T	His524His
rs2594489	PRKCE	2	46319722	Intron 1	C>T	
rs281472	PRKCE	2	46315488	Intron 1	T>C	
rs281476	PRKCE	2	46312255	Intron 1	T>C	
rs281505	PRKCE	2	46327196	3'near gene (+417)	T>C	
rs281508	PRKCE	2	46322858	Intron 1	G>T	
rs3820729	PRKCE	2	46304426	Intron 1	G>A	
rs608139	PRKCE	2	45789207	5'near gene (+1360)	T>C	
rs935672	PRKCE	2	45957610	Intron	C>T	
rs935673	PRKCE	2	46034008	Intron	A>G	
rs951012	PRKCE	2	46309282	Intron 1	C>A	
rs2236379	PRKCQ	10	6567149	Exon 3	C>T	Pro330Leu
rs2236380	PRKCQ	10	6509823	3'UTR (mRNA 2458)	C>T	
rs519951	PRKCQ	10	6598346	5'near gene (-1243)	C>T	
rs571715	PRKCQ	10	6596560	Intron 1	T>C	
rs574521	PRKCQ	10	6596860	Intron 1	T>C	
rs585881	PRKCQ	10	6598275	5'near gene (-1172)	T>C	
rs11128607	RAF1	3	12648275	Intron 1	A>G	-
rs11709504	RAF1	3	12649199	Intron 1	T>C	

Table 5. NCBI data for Apoptosis-related Polymorphisms, continued⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs11710163	RAF1	3	12671288	Intron 1	A>G	
rs13060691	RAF1	3	12653013	Intron 1	T>G	
rs6442322	RAF1	3	12664858	Intron 1	A>G	
rs6792773	RAF1	3	12643726	Intron 1	C>T	
rs7643321	RAF1	3	12638233	Intron 1	A>G	
rs7956	RAF1	3	12599763	5'near gene (+468)	A>G	
rs904453	RAF1	3	12679894	Intron 1	C>A	
rs9817675	RAF1	3	12651113	Intron 1	C>T	
rs7101916	RELA	11	65187936	5'near gene (-883)	C>T	
rs281505	PRKCE	2	46327196	3'near gene (+417)	T>C	
rs7739011	RIPK1	6	3057529	Intron 1	T>C	
rs11247963	RPS6KA1	1	26539543	5'near gene (+722)	G>A	
rs1865077	RRAS	19	54831904	Exon 3	T>C	Asn111Asn
rs1000294	TNFRSF10A	8	23136080	Intron 1	C>T	
rs13255394	TNFRSF10A	8	23139491	5'near gene (-890)	C>T	
rs13278062	TNFRSF10A	8	23138916	5'near gene (-386)	G>T	
rs2230229	TNFRSF10A	8	23105237	Exon 7	A>G	Arg441Lys
rs6557634	TNFRSF10A	8	23116201	Exon 4	T>C	His141Arg
rs7842021	TNFRSF10A	8	23135149	Intron 1	A>G	
rs1001793	TNFRSF10B	8	22956894	Intron 1	G>A	
rs1047266	TNFRSF10B	8	22956646	Exon 2	C>T	Ala67Val
rs11135693	TNFRSF10B	8	22981099	Intron 1	C>A	
rs9644062	TNFRSF10B	8	22976094	Intron 1	C>T	
rs1133782	TNFRSF10D	8	23057933	Exon 6	C>T	Ser310Leu
rs6651394	TNFRSF10D	8	23078565	5'near gene (-957)	T>C	
rs7463799	TNFRSF10D	8	23075599	Intron 1	T>C	
rs7957	TNFRSF10D	8	23049312	3'UTR (mRNA 3269)	T>C	
rs1860545	TNFRSF1A	12	6317038	Intron 1	C>T	
rs4149570	TNFRSF1A	12	6321851	5'near gene (+222)	G>T	
rs4149576	TNFRSF1A	12	6319376	Intron 1	A>G	
rs4149577	TNFRSF1A	12	6317783	Intron 1	T>C	
rs4149578	TNFRSF1A	12	6317698	Intron 1	G>A	
rs1061622	TNFRSF1B	1	12187221	Exon 4	T>G	Met196Arg
rs2270418	TNFSF10	3	173723701	Intron 1	T>G	
rs231983	TNFSF10	3	173719142	Intron 1	A>C	
rs365238	TNFSF10	3	173724568	5'near gene (-544)	A>G	

Table 5. NCBI data for Apoptosis-related Polymorphisms, continued⁵²

dbSNP ID	Gene	Chr	Chr position	Location	Nucleotide change	Amino Acid Change
rs4894559	TNFSF10	3	173716071	Intron 1	G>A	
rs9859259	TNFSF10	3	173705843	3'near gene (+356)	C>A	
rs2078486	TP53	17	7523808	Intron 1	G>A	
rs2909430	TP53	17	7519370	5'UTR (mRNA 167)	A>G	
rs4735334	TP53INP1	8	96024468	Intron 1	A>G	
rs896849	TP53INP1	8	96011420	3'UTR (mRNA 1570)	T>C	
rs896854	TP53INP1	8	96029687	Intron 1	A>G	
rs3750512	TRAF2	9	137096905	3'near gene (-2)	T>C	
rs4880073	TRAF2	9	137093190	Intron 1	G>A	

Table 5. NCBI data for Apoptosis-related Polymorphisms, co	continued
--	-----------

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs1001179	CAT	54.9-85.7	14.3-40.9	3.2-9.1	88.9-95.8	4.2-11.1	0.0
rs564250	CAT	51.7-72.7	22.7-46.7	1.7-4.5	72.7	27.3	0.0
rs2470893	CYP1A1	53.3-55.6	38.3-40.7	3.7-8.3	83.3	16.7	0.0
rs4646903	CYP1A1	62.1	37.9	0.0	56.6	30.4	13.0
rs2069514	CYP1A2	83.9	16.1	0.0	29.2	62.5	8.3
rs2069522	CYP1A2	83.3-100.0	16.7	0.0	75.0-78.3	20.8-21.7	4.2
rs762551	CYP1A2	45.5-54.2	33.3-41.9	6.5-13.6	26.1-54.2	45.8-69.2	17.4
rs1800440	CYP1B1	64.5-70.0	25.0-32.3	3.2-5.0	91.3-100.0	4.3	4.3
rs11673270	CYP2B6	51.7	43.3	5.0	n/a	n/a	n/a
rs2860840	CYP2C18	23.3-39.7	48.4-63.3	8.6-13.3	98.5-100.0	1.3-4.2	0.0
rs10509681	CYP2C8	75.2-80.6	16.1-25.0	1.7-4.2	95.7-100.0	1.3-9.4	0.0
rs1058932	CYP2C8	58.3-66.7	28.3-41.7	5.0	52.2	34.8	13.0
rs7909236	CYP2C8	56.7-57.6	39.0-40.0	3.3-3.4	n/a	n/a	n/a
rs2480258	CYP2E1	50.0-60.0	37.5-50.0	1.7-4.2	17.4-20.0	40.0-43.5	39.1-40.0
rs2515642	CYP2E1	50.0-58.3	39.1-50.0	1.7-4.3	18.2-20.0	40.0-40.9	40.0-40.9
rs6413420	CYP2E1	81.8-88.3	8.3-18.2	4.2	100.0	0.0	0.0
rs1051740	EPHX1	41.7-45.0	38.7-45.8	10.0-19.4	39.1-83.3	16.7-47.8	1.6-13.0
rs1051741	EPHX1	76.3-76.7	23.3-23.7	0.0	78.3	17.4	4.3
rs2234922	EPHX1	64.3-70.0	25.0-28.6	5.0-7.1	41.7	54.2	4.1
rs6917325	GSTA1	33.3-33.9	50.0-50.8	15.3-16.7	n/a	n/a	n/a
rs563464	GSTA3	93.2-100.0	6.8	0.0	33.3	46.7	20.0
	GSTM1	3.2	35.5	61.3	37.5	50.0	12.5
rs638820	GSTM2	36.7	33.3	30.0	n/a	n/a	n/a
rs7483	GSTM3	38.3-54.5	27.3-100.0	6.5-18.2	58.4-82.6	17.4-33.3	8.3
rs1695	GSTP1	33.3-47.8	30.4-55.5	11.7-21.7	33.3	52.4	14.3
rs6591256	GSTP1	30.0-37.5	37.5-54.2	15.3-25.0	34.8-41.0	47.5-56.5	8.7-11.5
	GSTT1	51.6	38.7	9.7	33.3	45.8	20.8
rs10888150	NAT1	31.7-33.9	46.7-51.7	16.7-20.0	1.6	35.5	62.9
rs4921581	NAT1	70.0	23.3	6.7	14.5	38.7	46.8
rs7003890	NAT1	23.3-29.2	37.5-50.0	26.7-33.3	34.8-53.2	35.5-43.5	11.3-21.7
rs7017402	NAT1	81.0-81.7	18.3-19.0	*0.0	43.5	45.2	11.3
rs8190870	NAT1	70.0-76.7	20.0-26.7	3.3	54.8-73.9	26.1-40.3	4.8
rs1112005	NAT2	50.0-60.0	20.0-37.5	11.7-20.0	50.0-56.5	43.5-50.0	0.0
rs1208	NAT2	23.5-35.5	48.3-55.9	16.1-20.6	37.5-49.2	25.0-37.7	13.1-37.5
rs1390358	NAT2	36.7-45.8	37.5-49.2	13.6-16.7	43.5	47.8	8.7
rs4646247	NAT2	45.5-61.8	29.4-40.9	8.8-13.6	33.3-41.9	51.6-61.1	5.6-6.5
rs7832071	NAT2	35.0-45.8	37.5-50.0	15.0-16.7	36.4	45.5	18.2
rs2758331	SOD2	90.0	8.3	1.7	95.2	4.8	n/a

 Table 6. NCBI Prevalence Data for Variant Antioxidative Targets⁵²

Abbreviations: Cau, Caucasians; AA, African-Americans, WT, wild-type; VT, variant
Table 6. NCBI Prevalence Data for Antioxidative Targets, *continued*⁵²

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs6717546	UGT1A1	36.4-41.7	41.7-59.1	4.5-16.7	26.1-33.3	46.7-52.2	20.0-21.7

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs1130409	APEX1	26.7	45.0-33.3	28.3-40.0	25.0-53.2	40.3-54.2	6.5-20.3
rs1052133	OGG1	51.1-63.3	30.0-38.9	6.7-6.9	79.2	20.8	0.0
rs125701	OGG1	74.6-77.3	22.7-23.7	1.7	87.0-88.0	12.0-13.0	0.0
rs2445837	POLD1	88.3	11.7	0.0	19.4	43.5	37.1
rs3087374	POLG	81.7-87.5	8.3-18.3	4.2	100.0	0.0	0.0
rs3730814	POLI	58.3-65.0	33.3	1.7-8.3	91.3	8.7	0.0
rs545979	POLI	51.7-58.3	33.3-41.7	6.7-8.3	78.3	21.7	0.0
rs8305	POLI	45.8-51.7	41.7-45.0	3.3-12.5	78.3-80.6	17.7-21.7	1.6
rs4135036	TDG	90.0	8.3	1.7	95.2	4.8	0.0
rs3219243	UNG	66.1	30.5	3.4	n/a	n/a	n/a
rs3890995	UNG	65.2-67.8	30.5-34.8	1.7	68.2	31.8	0.0
rs25487	XRCC1	25.8-47.9	12.5-43.7	8.5-19.4	83.3	12.5	4.2
rs2682585	XRCC1	63.3	31.7	5.0	n/a	n/a	n/a
rs2854496	XRCC1	73.3	23.3	3.3	n/a	n/a	n/a
rs3213255	XRCC1	25.0-38.3	48.3-70.8	4.2-13.3	38.7-39.1	43.5-51.6	9.7-17.4

 Table 7. Prevalence Data for Variant Base Excision Repair Targets⁵²

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs1885097	ACIN1	26.7-41.7	33.3-45.0	25.0-28.3	13.0	60.9	26.1
rs3751501	ACIN1	41.7-88.3	11.7-46.7	11.7	n/a	n/a	n/a
rs10157763	АКТЗ	50.8	39.0	10.2	n/a	n/a	n/a
rs10803155	АКТЗ	71.7	26.7	1.7	n/a	n/a	n/a
rs10927067	АКТЗ	71.7-72.9	25.4-26.7	1.7	n/a	n/a	n/a
rs12031994	АКТЗ	71.7	26.7	1.7	n/a	n/a	n/a
rs2034915	АКТЗ	50.0-60.0	25.0-40.0	10.0-20.8	0.0	26.1	73.9-100.0
rs2125230	АКТЗ	66.7-72.9	25.0-26.7	1.7-8.3	30.4	60.9	8.7
rs2125231	АКТЗ	50.0	40.0	10.0	n/a	n/a	n/a
rs2345994	АКТЗ	51.8	39.3	8.9	n/a	n/a	n/a
rs4132509	АКТЗ	62.5-71.7	26.7-29.2	1.7-8.3	56.5	34.8	8.7
rs4614244	АКТЗ	76.7-100.0	20.7-21.7	1.7	n/a	n/a	n/a
rs897960	АКТЗ	71.7-73.9	26.1-26.7	1.7	60.9	34.8	4.3
rs10745834	APAF1	36.2-36.7	55.0-55.2	8.3-8.6	n/a	n/a	n/a
rs10860361	APAF1	23.3	53.3	23.3	n/a	n/a	n/a
rs1439123	APAF1	71.7-75.0	25.0-26.7	1.7	73.9	26.1	0.0
rs1439124	APAF1	62.7-66.7	29.2-36.2	1.7-4.2	73.9	21.7	4.3
rs2288714	APAF1	23.7	59.3	16.9	n/a	n/a	n/a
rs4319556	APAF1	90.0	10.0	0.0	n/a	n/a	n/a
rs7299536	APAF1	38.3	53.3	8.3	n/a	n/a	n/a
rs7315397	APAF1	78.3	18.3	3.3	n/a	n/a	n/a
rs919699	APAF1	70.8-78.3	18.3-29.2	3.3	87.0	13.0	0.0
rs210134	BAK1	52.2-53.3	30.0-34.8	13.0-16.7	47.8-50.0	34.8-41.9	8.1-13.0
rs5745568	BAK1	68.3-70.0	25.9-26.7	3.3-5.2	74.2	25.8	0.0
rs11667351	BAX	73.3	25.0	1.7	n/a	n/a	n/a
rs4645878	BAX	78.8	19.2	1.9	81.8	13.6	4.5
rs4645900	BAX	90.0	10.0	0.0	n/a	n/a	n/a
rs905238	BAX	22.0-28.8	47.5-52.5	23.3-25.4	27.4	51.6	21.0
rs1016860	BCL2	85.0-95.8	4.2-15.0	0.0	50.0	31.8	18.2
rs1564483	BCL2	45.8-58.3	35.0-50.0	4.2-6.7	67.7-69.6	25.8-26.1	4.3-6.5
rs3927911	BCL2	50.0	41.7	8.3	n/a	n/a	n/a
rs1138357	BCL2A1	53.3-70.8	29.2-43.3	3.3	65.2	30.4	4.3
rs1138358	BCL2A1	53.3-70.8	29.2-43.3	3.3	21.7	52.2	26.1
rs3826007	BCL2A1	53.3-70.8	29.2-43.3	3.3	91.3	8.7	0.0
rs13405741	BCL2L11	81.4-81.7	16.7-16.9	1.7	n/a	n/a	n/a
rs3789068	BCL2L11	25.0-41.9	41.9-54.2	16.1-23.3	48.3-65.2	26.1-46.7	5.0-12.5
rs616130	BCL2L11	12.5-31.7	2.4-55.0	13.3-87.5	40.0	20.0	40.0
rs724710	BCL2L11	25.0-57.1	35.7-65.0	5.0-10.0	52.2-66.0	32.0-53.5	3.8-5.0

 Table 8. Prevalence Data for Variant Apoptotic Targets⁵²

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs4488761	BCL2L13	26.7-33.3	33.3-58.3	15.0-33.3	13.0	52.2	34.8
rs10772530	BCL2L14	26.7	48.3	25.0	n/a	n/a	n/a
rs10845479	BCL2L14	48.3-54.2	45.0-45.8	6.7	43.5	56.5	0.0
rs11054704	BCL2L14	73.3	26.7	0.0	n/a	n/a	n/a
rs1612841	BCL2L14	50.0	39.7	10.3	0.0	0.0	0.0
rs1628766	BCL2L14	53.3-70.8	25.0-36.7	4.2-10.0	65.2	34.8	0.0
rs1641729	BCL2L14	52.5-70.8	25.0-37.3	4.2-10.2	82.6	17.4	0.0
rs2448050	BCL2L14	48.3-51.7	45.0-46.7	3.3-5.0	n/a	n/a	n/a
rs2448063	BCL2L14	48.3-51.7	43.1-48.3	3.3-5.2	n/a	n/a	n/a
rs6488494	BCL2L14	27.1-33.3	39.0-45.8	20.8-31.7	30.4	52.2	17.4
rs4763780	BCL2L14	48.3-63.6	27.3-50.0	4.2-9.1	26.1	30.4-33.3	43.5-66.7
rs4763781	BCL2L14	35.2	37.0	27.8	n/a	n/a	n/a
rs4763782	BCL2L14	28.8-30.0	45.0-45.8	25.0-25.4	n/a	n/a	n/a
rs879732	BCL2L14	20.8-40.4	43.9-46.7	15.0-33.3	17.4	43.5	39.1
rs885637	BCL2L14	42.4-44.8	43.1-45.8	11.9-12.1	n/a	n/a	n/a
rs885720	BCL2L14	52.2-74.5	23.6-47.8	1.7-1.8	30.4	43.5	26.1
rs888152	BCL2L14	36.4-100.0	16.7-50.0	4.2-14.3	66.7-75.0	25.0-33.3	0.0
rs1950252	BCL2L2	85.0-87.5	12.5-13.6	1.7	91.3	8.7	0.0
rs181402	BID	16.7-73.7	26.3-61.7	1.7-21.7	65.0	30.0	5.0
rs181405	BID	25.0-35.0	50.0-100.0	13.3-25.0	87.0	8.7	4.3
rs181408	BID	12.5-31.7	50.0-50.8	18.3-37.5	21.7	47.8	30.4
rs181417	BID	73.3	26.7	0.0	n/a	n/a	n/a
rs366542	BID	25.0	51.7	23.3	n/a	n/a	n/a
rs5746474	BID	29.1	63.6	7.3	n/a	n/a	n/a
rs5747351	BID	35.0-45.8	45.8-58.3	6.7-8.3	13.0	30.4	56.5
rs738095	BID	82.4-88.3	11.7-17.6	0.0	58.1	37.1	4.8
rs9604787	BID	73.3-81.1	18.9-26.7	0.0	n/a	n/a	n/a
rs1883263	BIK	39.0	55.9	5.1	n/a	n/a	n/a
rs4988360	BIK	66.7	30.0	3.3	93.5	6.5	0.0
rs4988366	BIK	76.7	23.3	0.0	36.1	59.0	4.9
rs738276	BIK	42.1-54.2	41.7-53.3	4.2-10.5	52.2-65.2	28.3-39.1	6.5-8.7
rs1042992	BNIP3L	62.5-100.0	20.3-36.4	1.7-4.2	502-60.9	39.1-50.0	0.0
rs10503786	BNIP3L	54.4-58.3	25.0-45.6	8.5-16.7	100.0	0.0	0.0
rs10405717	CARD8	71.7	25.0	3.3	n/a	n/a	n/a
rs10416565	CARD8	100.0	0.0	0.0	60.9	34.8	4.3
rs11670259	CARD8	38.3-56.5	30.4-48.3	13.0-13.3	73.9	26.1	0.0
rs11672725	CARD8	58.3-61.7	33.3-37.5	4.2-5.0	65.2	21.7	13.0
rs6509364	CARD8	41.7-45.0	40.0-41.7	15.0-16.7	60.9	30.4	8.7

 Table 8. Prevalence Data for Variant Apoptotic Targets, continued⁵²

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs6509366	CARD8	41.7-45.0	45.8-46.7	8.3-12.5	52.2	39.1	8.7
rs1049216	CASP3	41.9-61.8	26.5-45.8	8.3-12.9	67.7-69.9	26.1-41.7	1.6-4.3
rs2019978	CASP3	58.3-100.0	28.3-41.7	6.7-8.7	75.0	25.0	0.0
rs507879	CASP5	23.3-42.9	28.6-63.6	4.5-28.6	7.1-16.7	50.0-64.3	28.6-33.3
rs537093	CASP5	23.8-25.0	38.1-55.0	20.0-38.1	46.7-54.5	36.4-40.0	9.1-13.3
rs3181187	CASP6	33.3-33.9	45.8-58.3	8.3-20.8	54.5-66.1	29.0-31.8	4.8-13.6
rs3212153	CASP6	61.7-66.7	29.2-36.7	1.7-4.2	91.3	8.7	0.0
rs768063	CASP6	86.7-88.3	11.7-13.3	0.0	n/a	n/a	n/a
rs12415607	CASP7	57.6	37.3	5.1	n/a	n/a	n/a
rs10931934	CASP8	33.3-45.5	42.4-45.5	9.1-23.7	6.7	46.7	46.7
rs6747918	CASP8	12.5-31.8	41.9-58.3	18.2-29.2	43.5-60.0	13.3-30.4	3.4-26.7
rs1052571	CASP9	30.0-30.5	42.4-43.3	23.7-26.7	8.2	45.9	45.9
rs1052576	CASP9	29.8-34.5	41.4-43.9	26.3-27.6	4.2-8.2	41.7-45.9	45.9-54.1
rs4645989	CASP9	63.0	35.2	1.9	n/a	n/a	n/a
rs12817549	CRADD	35.0-50.0	41.7-43.3	8.3-21.7	47.8	43.5	8.7
rs3858606	CRADD	45.8-46.7	37.5-41.7	11.7-16.7	26.1	47.8	26.1
rs11588734	DFFA	71.7	26.7	1.7	n/a	n/a	n/a
rs12738235	DFFB	53.3-86.7	13.3-40.0	6.7	n/a	n/a	n/a
rs3205087	DFFB	25.9	53.4	20.7	n/a	n/a	n/a
rs4074709	DFFB	76.7-85.7	13.2-20.0	3.3-3.8	78.3	17.4	4.3
rs4648426	DFFB	49.1	49.1	1.8	n/a	n/a	n/a
rs12870	DIABLO	33.3	45.0	21.7	n/a	n/a	n/a
rs12870	DIABLO	71.7	26.7	1.7	n/a	n/a	n/a
rs7972948	HRK	51.7	41.7	6.7	n/a	n/a	n/a
rs9669553	HRK	51.7	41.7	6.7	n/a	n/a	n/a
rs1048906	IKBIP	40.0-50.0	37.5-53.3	6.7-12.5	26.1	52.2	21.7
rs12371097	IKBIP	63.3-66.7	33.3-34.8	3.3-4.2	n/a	n/a	n/a
rs12821083	IKBIP	53.3-60.9	30.4-41.7	5.0-8.7	30.4	65.2	4.3
rs11578093	IKBKE	36.7	45.0	18.3	n/a	n/a	n/a
rs1539243	IKBKE	71.4-100.0	20.8-28.6	1.7-4.2	83.3-87.0	13.0-16.7	0.0
rs1930438	IKBKE	65.2-69.5	28.8-34.8	1.7	n/a	n/a	n/a
rs944775	IKBKE	25.9-30.4	39.1-60.9	13.0-32.8	17.4	56.5	26.1
rs11688	JUN	86.7	13.3	0.0	n/a	n/a	n/a
rs13096	KRAS	25.4-54.5	27.3-49.2	18.2-25.4	68.2	27.3	4.5
rs9266	KRAS	23.7-52.2	30.4-49.2	17.4-27.1	65.2	30.4	4.3
rs1609798	NFKB1	41.7-44.1	45.8-50.0	8.3-10.2	73.9	26.1	0.0
rs230547	NFKB1	89.8-96.7	3.3-8.5	1.7-4.2	62.5-73.9	26.1-33.3	1.6-4.2
rs1056890	NFKB2	45.0	38.3	16.7	0.0	0.0	0.0

Table 8. Prevalence Data for Variant Apoptotic Targets, *continued*⁵²

dbSNP ID	Gene	Cau WT/W1	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs696	NFKBIA	31.7-40.0	50.0-55.0	5.0-18.3	17.4	43.5	39.1
rs8904	NFKBIA	31.7-48.4	38.7-50.0	12.5-18.6	6.7-20.8	40.9-58.3	20.8-46.7
rs2230365	NFKBIL1	58.1-75.0	25.0-38.7	3.2	90.0-95.8	4.2-10.0	0.0
rs11656099	PRKCA	55.0-56.7	36.7-38.3	6.7	n/a	n/a	n/a
rs8074995	PRKCA	80.0	20.0	0.0	n/a	n/a	n/a
rs9890506	PRKCA	86.4-86.7	11.7-11.9	1.7	n/a	n/a	n/a
rs1530668	PRKCE	93.3	6.7	0.0	n/a	n/a	n/a
rs17034455	PRKCE	78.3-100.0	10.3-17.4	3.4-4.3	95.7	4.3	0.0
rs2594489	PRKCE	41.4-41.7	37.5-50.0	8.3-20.8	4.3	26.1	69.6
rs281472	PRKCE	83.1-83.3	15.0-15.3	1.7	n/a	n/a	n/a
rs281476	PRKCE	53.3-66.7	28.8-33.3	16.7-16.9	56.5	34.8	8.7
rs281505	PRKCE	32.8-33.3	50.0	16.4-17.2	n/a	n/a	n/a
rs281508	PRKCE	40.7-75.0	16.7-43.3	8.3-12.5	17.4-50.0	50.0-78.3	4.3
rs3820729	PRKCE	80.0	16.7	3.3	n/a	n/a	n/a
rs608139	PRKCE	63.3	31.7	5.0	n/a	n/a	n/a
rs935672	PRKCE	33.3-49.2	32.2-54.2	12.5-18.3	4.3	47.8	47.8
rs935673	PRKCE	31.7-37.5	50.0-60.0	8.3-12.5	12.5	50.0	37.5
rs951012	PRKCE	35.0-50.0	36.7-45.8	8.3-21.7	21.7-35.0	50.0-60.9	8.3-15.0
rs2236379	PRKCQ	61.7	35.0	3.3	47.2	43.4	9.4
rs2236380	PRKCQ	45.0-54.2	41.7-50.0	4.2-5.1	8.7	26.1	65.2
rs519951	PRKCQ	58.3-68.3	30.0-37.5	1.7-4.2	39.1	43.5	17.4
rs571715	PRKCQ	58.3-85.7	14.3-37.5	1.7-4.2	43.5-77.8	11.1-39.1	10.0-17.4
rs574521	PRKCQ	58.3-66.7	31.7-37.5	1.7-4.2	43.5	39.1	17.4
rs585881	PRKCQ	58.3-66.7	31.7-37.5	1.7-4.2	39.1	43.5	17.4
rs11128607	RAF1	65.0	31.7	3.3	n/a	n/a	n/a
rs11709504	RAF1	66.7-69.5	27.1-29.2	3.4-4.2	39.1	43.5	17.4
rs11710163	RAF1	83.3	16.7	0.0	n/a	n/a	n/a
rs13060691	RAF1	88.7	11.3	0.0	n/a	n/a	n/a
rs6442322	RAF1	33.3	50.0-51.7	15.0-16.7	56.5	39.1	4.3
rs6792773	RAF1	65.0	31.7	3.3	n/a	n/a	n/a
rs7643321	RAF1	68.3-79.6	16.7-28.3	3.3-3.7	n/a	n/a	n/a
rs7956	RAF1	61.0-62.5	33.3-33.9	4.2-5.1	52.4	33.3	14.3
rs904453	RAF1	31.7-42.9	45.5-57.1	15.0-18.2	28.6-35.5	43.5-45.5	14.3-21.0
rs9817675	RAF1	56.7-69.6	26.1-40.0	3.3-4.3	50.0	38.9	11.1
rs7101916	RELA	71.7	25.0	3.3	n/a	n/a	n/a
rs7739011	RIPK1	86.7	13.3	0.0	n/a	n/a	n/a
rs11247963	RPS6KA1	66.7-67.9	23.2-23.3	8.9-10.0	n/a	n/a	n/a

 Table 8. Prevalence Data for Variant Apoptotic Targets, continued⁵²

dbSNP ID	Gene	Cau WT/WT	Cau WT/VT	Cau VT/VT	AA WT/WT	AA WT/VT	AA VT/VT
rs1865077	RRAS	43.3-43.5	34.8-48.3	8.3-21.7	54.5	40.9	4.5
rs1000294	TNFRSF10A	60.0	38.3	1.7	n/a	n/a	n/a
rs13255394	TNFRSF10A	22.4	58.6	19.0	n/a	n/a	n/a
rs13278062	TNFRSF10A	16.9	67.8-100.0	15.3	n/a	n/a	n/a
rs2230229	TNFRSF10A	68.3-71.7	25.0-28.3	3.3	71.7	28.3	0.0
rs6557634	TNFRSF10A	29.2-38.3	41.4-54.2	16.7-20.3	34.8	56.5	8.7
rs7842021	TNFRSF10A	31.7	46.7	21.7	n/a	n/a	n/a
rs1001793	TNFRSF10B	56.7	40.0	3.3	n/a	n/a	n/a
rs1047266	TNFRSF10B	95.0	5.0	0.0	n/a	n/a	n/a
rs11135693	TNFRSF10B	33.3	51.7	15.0	n/a	n/a	n/a
rs9644062	TNFRSF10B	62.1	36.2	1.7	n/a	n/a	n/a
rs1133782	TNFRSF10D	40.0	45.0	15.0	n/a	n/a	n/a
rs6651394	TNFRSF10D	76.7	20.0	3.3	n/a	n/a	n/a
rs7463799	TNFRSF10D	75.9	20.7	3.4	n/a	n/a	n/a
rs7957	TNFRSF10D	60.0	36.7	3.3	n/a	n/a	n/a
rs1860545	TNFRSF1A	14.3-30.0	46.7-66.7	19.0-23.3	73.9	26.1	n/a
rs4149570	TNFRSF1A	45.5-50.9	40.4-47.8	4.3-9.1	78.3-80.6	19.4-21.7	0.0
rs4149576	TNFRSF1A	28.3-33.3	43.3-57.1	9.5-28.3	1.6	25.8-31.6	68.4-72.6
rs4149577	TNFRSF1A	35.0-40.9	45.5-50.0	13.6-15.0	75.0	25.0	0.0
rs4149578	TNFRSF1A	78.0-86.4	13.6-18.6	1.7	58.3-61.3	35.5-41.7	3.2
rs1061622	TNFRSF1B	52.5-62.5	37.5-44.1	3.3-3.4	68.4-75.8	17.7-29.2	5.3-6.5
rs2270418	TNFSF10	64.4-66.7	30.0-33.3	5.0-5.1	82.6	17.4	0.0
rs231983	TNFSF10	35.0-37.5	45.0-58.3	4.2-21.1	12.5-21.7	34.8-54.2	32.2-43.5
rs365238	TNFSF10	78.3-79.2	17.4-21.7	0.0	n/a	n/a	n/a
rs4894559	TNFSF10	55.9-58.3	36.7-41.7	6.7-6.8	87.0	13.0	0.0
rs9859259	TNFSF10	33.3	55.0	11.7	n/a	n/a	n/a
rs2078486	TP53	83.3-90.0	7.7-13.3	3.3-3.8	52.2-65.2	30.4-46.7	4.3-6.5
rs2909430	TP53	67.7-84.7	15.3-22.6	9.7	50.0	45.8	4.2
rs4735334	TP53INP1	48.3	45.0	6.7	n/a	n/a	n/a
rs896849	TP53INP1	70.8-100.0	10.0-29.2	3.4-10.0	30.4-33.3	52.2-66.7	17.4
rs896854	TP53INP1	25.0-91.7	8.3-45.0	25.0	n/a	n/a	n/a
rs3750512	TRAF2	33.3-43.5	50.0-56.5	16.7	72.7	27.3	0.0
rs4880073	TRAF2	38.3	36.7	25.0	n/a	n/a	n/a

 Table 8. Prevalence Data for Variant Apoptotic Targets, continued⁵²

GENETIC ANALYSIS OF VARIANT OSR MARKERS

To evaluate interactions among candidate OSR related genetic alterations in relation to PCA development we used genetic profile data collected from participants within our study populations. The CGEMS project has genotyped nearly 550,000 common genetic variants (SNPs) among 2,277 men of European descent (488 nonaggressive cases, 688 aggressive cases and 1101 controls).¹¹⁹ Genetic profiling was performed using the Illumina Human HapMap500 chips (Illumina, Inc, San Diego, CA). Access to clinical and background data collected through examinations and questionnaires was approved for use by PLCO. UofL IRB approval is not required for the use of nationally available de-identified data.

Candidate SNPs were detected among MAD subjects using TaqMan[®]- PCR allelic discrimination assays (Applied Biosystems, Foster City, CA) and 48-Plex GenomeLabTM SNPstream[®] Genotyping System (Beckman Coulter, Brea, CA). Based on 24 non-DNA template controls per batch analysis (n = 384), the percent cross-contamination during sample handling was minimal (<4.0%). Duplicate genotyping was performed for 72 randomly selected samples for quality control purposes, resulting in concordance rates >98%.

SINGLE & MULTIPLE OSR FACTORS IN RELATION TO PROSTATE CANCER OUTCOMES

Logistic Regression Analysis. Logistic regression analysis was used to evaluate 219 and 25 OSR associated SNPs among men of European and African descent, respectively, in relation to prostate cancer outcomes. To assess whether individuals possessing at least one variant (i.e., minor) oxidative stress allele have an elevated risk of developing PCA, we tested for significant differences in the distribution of homozygous wildtype, heterozygous, and homozygous minor genotypes between cases and controls using the chi-square test of heterogeneity. Case-control and case-case analyses were used to evaluate variant OSR related alleles in relation to PCA risk and aggressive disease (Gleason score < 7 and tumor stage \geq 3 versus Gleason score >7 and tumor stage \leq 2). The associations between PCA and candidate polymorphic genes, expressed as odds ratios (ORs) and corresponding 95% confidence intervals (CIs), were estimated using unconditional multivariate LR models adjusted for potential confounders. LR analysis for genetic variants and PCA development were conducted using the wild-type or common genotype as referent category. Risk estimates for MED were adjusted for age and family history of prostate cancer. Whereas, risk estimates for MAD were adjusted for age and WAA. All chi-square tests and LR analyses were conducted using SAS 9.2 (SAS Institute Inc., Cary, NC). Statistical significance was assessed using a p value < 0.05. Analysis of SNP pairwise interactions using LR. Two-way (i.e., gene-gene and geneenvironment) interactions were evaluated by the significance of the coefficient of the product term $\theta_3 factor_1^* factor_2$ in the following model: $Logit = \theta_0 + \theta_1 factor_1 + \theta_2$ $factor_2 + \theta_3 factor_1^* factor_2$. Interaction models were adjusted for potential confounders.

Reduction. To evaluate the single- and joint- modifying effects of hundreds of candidate SNPs within a large dataset, such as CGEMS is computationally challenging.¹³⁰⁻ ¹³¹ In order to overcome this problem, Multifactor Dimensionality Reduction (MDR) 2.0 (SourceForge, Inc, Sourceforge.net) was used to prioritize OSR sequence variants. The MDR software is open-source and freely available online.¹³² MDR is a method for detecting and characterizing high-order interactions in case-control studies, one remaining effective with relatively small sample sizes.⁸⁰ With MDR, multi-locus genotypes are pooled into high-risk and low-risk groups, reducing high-dimensional data to a single variable dimension and permitting an investigation of gene-gene and geneenvironment interactions. Concisely, this one-dimensional multi-locus genotype variable was evaluated for its ability to classify and predict disease susceptibility through cross-validation and permutation testing. Among all of the gene-gene and geneenvironment combinations, a single model was selected that maximized the case-tocontrol ratio of the high-risk groups while minimizing classification and prediction errors.

The current version of MDR used in this project allows for the incorporation and adjustment of multiple covariates.¹³³ To remove the covariate effect, we integrated two sampling methods (i.e., over- and under-sampling). This approach is computationally efficient, thus allowing for adjustment of multiple covariates without significantly increasing computational burden. Inclusion of covariates allows estimates of specificity, sensitivity, and overall predictive accuracy with and without the genetic factors, to assess the gains in predictive ability afforded by the genetic factors.

To evaluate how many times the same MDR model is identified in each possible $9/10^{ths}$ of the data and repeats this 10-fold cross-validation 10 times until the entire dataset is evaluated.¹³⁴ Therefore, CVC values can range from 1/10 up to 10/10, with a CVC = 10/10 indicating that a model was selected as the best predictor 10 out 10 times.¹³⁴ The prediction error is calculated as the average of prediction errors across each of the 10 cross-validation subsets.¹³⁴⁻¹³⁵ The model with the greatest CVC (e.g. \geq 7/10) and lowest prediction error [e.g., Average Testing Accuracy (ATA) values between 0.540-0.600] is selected as the best predictor of disease outcome.¹³⁴⁻¹³⁵ MDR models are validated by comparing the average CVC to the distribution of the average consistencies under the null hypothesis of no association, to be derived empirically from 1,000 permutations. The null hypothesis is rejected when the upper-tail Monte Carlo p value is \leq 0.05. LR was used to calculate risk estimates of the joint modifying effects of two or more factors identified by MDR.

Most data mining methods, including MDR, are by nature nonparametric, model free, and data-driven. Determining the statistical significance of these models requires

rigorous permutation testing to evaluate statistical significance while accounting for multiple testing issues. With permutation testing, the data relationships are randomized in a way consistent with the null hypothesis of no association. With many such datasets, the distribution of the statistical measure of association under the null hypothesis can be generated and used to calculate an empirical p value for the statistic calculated in the original dataset. This approach accounts for multiple testing issues as long as the entire model-fitting procedure is repeated for each randomized dataset to provide an opportunity to identify false-positives.

MDR with Covariate Adjustment. A newly updated version of the MDR software allows for the incorporation and adjustment of covariates in evaluating gene-gene interactions. To remove the covariate effect, we will incorporate two sampling methods (i.e, overand under-sampling). The approach is computationally efficient, thus allowing for adjustment of multiple covariates without significantly increasing computational burden.

with Spatially Uniform ReliefF (SURF) & Tuned ReliefF (TuRF) Filtering. Filtering options, such as RefliefF, built into MDR that rank and select factors most likely to be associated with the outcome of interest.¹³⁰⁻¹³¹ Since the filter removes SNPs possessing the lowest predictive value, the "background noise" is typically reduced.¹³⁰⁻¹³¹ Hence, using a filtered dataset improves the likelihood of detecting relevant interactions associated

with a particular outcome.¹³⁰⁻¹³¹ For this study, a combinatorial version of Relief called Spatially Uniform ReliefF (SURF) & Tuned ReliefF (TuRF) was used to filter the large candidate SNP list in order to select the most promising targets.¹³⁰⁻¹³¹ With respect to genetic association studies, ReliefF assigns a weight to each SNP using multiple individuals that are genetically similar.¹³⁰⁻¹³¹ TuRF repeats the ReliefF algorithm and with each repetition of SNPs with the lowest predictive values are removed; while SURF adjusts the weights of all the SNPs using all neighbors within a fixed distance (i.e., similarity threshold).¹³⁰ The combined effect of combining both approaches as SURF & TuRF essentially iterates SURF, but substantially improves detection of epistatic interactions compared to using either method individually.¹³⁰

To minimize any interactions that could potentially be removed by filtering, the OSR candidate panel was analyzed separately by each pathway in additional to analyzing the entire panel with the SURF & TuRF. Hence, there were a total of four MDR analyses conducted for the genetic factors, one combined analysis that was filtered, as well as separate analyses for all the antioxidative-, BER- and apoptosis-related SNPs.

SPECIALIZED VISUALIZATION TOOLS (INTERACTION ENTROPY ALGORITHMS & HIERARCHICAL GRAPHS

Interaction entropy algorithm, based on information theory, is a method to verify, visualize, and interpret combination effects identified by LR and MDR.^{80, 136-138} Orange software was used to perform interaction entropy analysis among candidate OSR factors and PCA development. This strategy will help to interpret multi-locus interactions identified by parametric and non-parametric modeling. Interaction entropy uses information gain (IG) to gauge whether interactions between two or more factors provide more information about PCA outcomes relative to each factor considered independently.^{80, 136-138}

Individual and all possible pairwise loci are assigned an IG percentage score in relation to disease risk or aggressiveness (scores < 5% are typical).^{80, 136-138} Explain why IG scores <5% are reasonable. Pairwise SNP combinations are deemed important if the pairwise IG is greater than the IG for each individual locus (IG_{FACTOR_1+ FACTOR_2}> IG_{FACTOR_1} and IG _{FACTOR_1+ FACTOR_2}> IG_{FACTOR_2}).^{80, 137-139} Interactions can be further visualized using an interaction graph. Strongly interacting factors are coded either red or orange, indicating high and medium levels of synergistic effects on outcomes, respectively [*See Figure 8*].^{80, 136-139} Weakly interacting factors are coded either blue or green to denote high or modest levels of redundancy between markers, respectively. Gold colored branches are neither redundant nor synergistic.¹³⁷⁻¹³⁹ Similarly, this tool can also be

used to visualize whether single or multi-markers have a stronger outcome prediction capacity relative to gold standard demographic and clinic-pathological parameters.¹³⁷⁻¹³⁹

Figure 8: Interaction Entropy Graph. Interaction entropy uses information gain (IG) to gauge whether interactions between two or more factors provide more information about PCA outcomes relative to each factor considered independently. The strongest interacting factors are coded in red indicating a high level of synergy. As shown in this figure, the strongest interaction detected is between Factors 4 and 5 evidenced by an IG score of 0.19%. Factors 4 and 5 provide more information about the outcome of interest relative to either factor when considered alone based on individual IG scores of 0.13% and 0.17%, respectively. A moderately synergistic interaction exists between Factor 1 and 2, as shown in orange. Weakly interacting factors are coded either blue (i.e., Factor 2-4, Factor 3-4, and Factor 3-5) or green (i.e., Factor 1-5 and Factor 2-5) to denote high or modest levels of redundancy between markers, respectively. Gold colored branches are neither redundant nor synergistic.

RESULTS

Population Description among CGEMS Participants. CGEMS study participants consisted of middle aged non-Hispanic Caucasian men (MED), ranging in ages between 55 and 81. A large portion of the study participants consumed adequate amounts of fruits (>4 servings/day) and vegetables (>5 servings/day), vitamins, and supplements. Despite these healthy eating practices, a majority of the men were overweight/obese (61.1%), as delineated in *Tables 9 & 13*. Men diagnosed with prostate cancer were more likely to have a family history of prostate cancer (11.4% versus 6.3%), PSA levels > 4ng/ml (49.8% versus 6.5%), and irregular DRE exams (64% versus 48.9%) relative to controls, as depicted in table 8. However there were no marked differences in smoking status, body mass index (BMI), lifestyle characteristics (i.e, meat intake, fruit/vegetable intake, vitamin supplement usage, physical activity, usage, alcohol consumption), daily total caloric intake, comparing cases to controls or aggressive and non-aggressive cases, as depicted in *Tables 9 & 11-15*.

Population Description among men of African Descent. Descriptive information for the men of African Descent (MAD) study participants is summarized in *Table 10*. Cases were significantly older and had higher PSA levels relative to controls. There was a significant difference in median West African genetic ancestry estimates comparing

cases and controls (p = 0.004).

Table 8. Patient and Tumor Characteristics by disease status among European-American male participants of the CGEMS Study

Characteristics	Cases	Controls	p value ^a
Number of Participants, n	1176	1101	
Age at diagnosis (yrs), median (range)	67 (55-81)	67 (55-80)	0.299
Age at enrollment (yrs), median (range)	65 (55-74)	64 (55-74)	0.094
Family History of Prostate Cancer, n (%)			
Yes	133 (11.4)	70 (6.3)	<0.0001
No	1031 (88.6)	1043 (93.7)	
PSA (ng/ml), n (%)			
< 4	569 (50.2)	1022 (93.5)	<0.0001
≥4	564 (49.8)	71 (6.5)	
Missing	31 (1.4)	20 (0.8)	
DRE results, n (%)			
Normal	398 (36.0)	537 (51.1)	<0.0001
Abnormal, suspicious	472 (42.8)	438 (41.8)	
Abnormal, non-suspicious	234 (21.2)	75 (7.1)	
Missing	60 (2.6)	63 <u>(</u> 0.3)	
Gleason Score, ^b n (%)			
4	49 (4.2)		
5	151 (13.0)		
6	357 (30.7)		
7	467 (40.2)		
8	69 (5.9)		
9	44 (3.8)		
10	3 (0.3)		
Body Mass Index (BMI), ^c n (%)			
Underweight or normal	305 (26.2)	271 (24.4)	0.244
Overweight	612 (52.6)	574 (51.7)	0.648
Obese	246 (21.2)	266 (23.9)	0.111
Missing	1 (0.4)	2 (0.9)	
Tobacco Use, n (%)			
Never	477 (41.0)	421 (37.9)	0.045
Former	593 (51.0)	570 (51.3)	0.880
Current	93 (8.0)	120 (10.8)	0.022
Ever (Former & Current)	686 (59.0)	690 (62.1)	0.128

Abbreviations: PSA, prostate specific antigen; DRE, digital rectal examination; ^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; ^bUnderweight or normal: BMI <24.9; Overweight: BMI 25-29.9; Obese: BMI >30 based on values established by the 2005 USDA Dietary Guidelines;¹²⁰

Characteristics	Cases	Controls	p value ^a
Number of Participants, n	219	694	
Age at diagnosis (yrs), median (range)	65 (41-91)	53 (26-89)	0.0001
PSA (ng/ml), n (%)			
< 4	45 (20.5)	636 (91.6)	< 0.0001
≥4	174 (79.5)	58 (8.4)	
Gleason Score, n (%)			
4	18 (13.1)		
5	16 (11.7)		
6	35 (25.6)		
7	41 (29.9)		
8	7 (5.1)		
9	16 (11.7)		·
10	4 (2.9)		
Tobacco Use, n (%)			
Current	26 (12.0)	11 (2.0)	0.825
Former	53 (24.5)	20 (3.6)	
Never	71 (32.9)	33 (6.0)	
Missing	66 (30.6)	491 (88.4)	
Global WAA, mean (SD)	0.734 (0.253-0.937)	0.716 (0.255-0.946)	0.004

Table 10. Patient and Tumor Characteristics for Men of African Descent

Abbreviations: PSA, prostate specific antigen; WAA, West African Ancestry; ^{*}Differences in frequencies were tested by a Chi-square test of heterogeneity, differences in age and Global West African Ancestry between cases and controls were tested using the Wilcoxon sum Rank test.

Table 11. Lifestyle Characteristics by disease status among European-American male participants of the CGEMS Study

Dietary Factor	Cases	Controls	p value ^a
Meat Consumption (g/day), median (IQR)			
Total meat	173.9 (118.4-254.2)	174.5 (129.3-252.9)	0.166
White Meat (chicken & fish)	42.6 (25.1-71.9)	44.6 (26.2-71.8)	0.478
Processed meat	11.4 (6.1-21.0)	11.4 (6.1-21.0)	0.646
Red Meat group	80.9 (47.6-125.0)	82.7 (53.9-124.2)	0.278
Red meat not processed	62.1 (38.6-95.7)	62.1 (38.6-95.7)	0.396
Red meat rare/med done	15.0 (3.8-33.6)	16.0 (3.9-32.4)	0.567
Red meat well/very well done	9.3 (4.1-19.8)	9.8 (4.9-19.8)	0.141
Fruit (servings/day), ^b n (%)			
≥4	975 (83.8)	952 (85.7)	0.219
<4	188 (16.2)	159 (14.3)	
Missing	1 (0.4)	2 (0.9)	
Vegetables (servings/day), ^b n (%)			
≥5	907 (78.0)	831 (74.8)	0.073
< 5	256 (22.0)	280 (25.2)	
Missing	1 (0.4)	2 (0.9)	
Kcal from diet (g/day), ^b n (%)			
2000-3000	559 (48.1)	522 (47.0)	0.821
< 2000	395 (33.9)	391 (35.2)	0.538
> 3000	209 (18.0)	198 (17.8)	0.926
Missing	1 (0.4)	2 (0.9)	
Fat from diet (g/day), median (IQR)			
Fat	73.1 (95.5-56.4)	72.7 (99.2-55.7)	0.884
Saturated	25.0 (32.4-18.6)	24.6 (34.0-18.5)	0.790
Missing	1 (0.4)	2 (0.9)	
Physically Active (at least 30 min/day), ^c n (%)			
Currently	556 (47.8)	494 (44.5)	0.177
Since age 40	559 (50.3)	620 (53.3)	0.224
Missing	1 (0.4)	2 (0.9)	
Alcohol Consumption (drinks/day), ^b n (%)			
≤2	960 (82.6)	923 (83.1)	0.736
>2	203 (17.4)	188 (16.9)	
Missing	1 (0.4)	2 (0.9)	

Abbreviations: IQR, Interquartile range; ^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test

Vitamin/Mineral	Cases	Controls	p value ^a
Vitamin A (µg/day), ^b n (%)			
≥ 900	1054 (90.6)	1008 (90.6)	0.990
< 900	110 (9.4)	105 (9.4)	
Missing	0 (0.0)	0 (0.0)	
Vitamin C (mg/day), ^b n (%)			
≥ 75	1103 (94.8)	1042 (93.6)	0.245
< 75	61 (5.2)	71 (6.4)	
Missing	0 (0.0)	0 (0.0)	
Vitamin E (IU/day), ^b n (%)			
≥15	1014 (87.1)	952 (87.1)	0.273
< 15	150 (12.9)	161 (14.5)	
Missing	0 (0.0)	0 (0.0)	
Zinc (mg/day), ^b n (%)			
≥11	838 (72.0)	775 (69.6)	0.215
< 11	326 (28.0)	338 (30.4)	
Missing	0 (0.0)	0 (0.0)	
Selenium (µg/day), ^b n (%)			
≥ 55	1128 (97.0)	1085 (97.7)	0.324
< 55	35 (3.0)	26 (2.3)	
Missing	1 (0.4)	2 (0.9)	

Table 12. Vitamin and supplement by disease status among European-American male participants of the CGEMS Study

^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; ^bRisk categories are based on values established in the 2005 USDA dietary guidelines & NIH office of dietary supplements

Table 13. Patient and T	lumor C	Characteristics	among	CGEMS	participants	diagnosed
with Prostate Cancer						

Characteristics	Aggressive Cases	Non-Aggressive Cases	p value ^a
Number of Participants, n	688	488	
Age at diagnosis (yrs), Median (range)	67 (55-81)	66 (55-78)	0.083
Age at enrollment (yrs), Median (range)	64 (55-74)	65 (55-74)	0.080
Family History of Prostate Cancer, n (%)			
Yes	605 (87.9)	435 (89.1)	0.525
No	83 (12.1)	53 (10.9)	
PSA (ng/ml), n (%)			
< 4	347 (52.1)	230 (48.0)	0.173
≥ 4	319 (47.9)	249 (52.0)	
Gleason Score, ^b n (%)			
4	4 (0.6)	45 (9.8)	< 0.0001
5	18 (2.6)	133 (29.0)	
6	86 (12.6)	271 (59.2)	
7	459 (67.3)	8 (1.8)	
8	68 (10.0)	1 (0.2)	
9	44 (6.5)	0 (0.0)	
10	3 (0.4)	0 (0.0)	
DRE results, n (%)			
Normal	241 (36.9)	159 (34.4)	0.435
Abnormal, suspicious	282 (43.2)	197 (42.6)	
Abnormal, non-suspicious	130 (19.9)	106 (23.0)	
Body Mass Index (BMI), ^b n (%)			
Underweight or normal	180 (26.2)	127 (26.0)	0.126
Overweight or normal	350 (51.0)	272 (55.8)	0.105
Obese	157 (22.8)	89 (18.2)	0.055
Missing			
Tobacco Use, n (%)			
Never	296 (43.1)	186 (38.1)	0.169
Former	335 (48.8)	265 (54.3)	0.061
Current	56 (8.1)	37 (7.6)	0.722
Ever (Former & Current)	391 (56.9)	302 (61.9)	0.088

Abbreviations: PSA, prostate specific antigen; DRE, digital rectal examination; ^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; ^bUnderweight or normal: BMI <24.9; Overweight: BMI 25-29.9; Obese: BMI >30 based on values established by the 2005 USDA Dietary Guidelines;¹²⁰

Table 14. Lifestyle characteristics for CGEMS participants diagnosed with Prostate Cancer

Characteristics	Aggressive Cases	Non-Aggressive Cases	p-value ^a
Meat Consumption (g/day), median (IQR),			
Total meat	174.5 (124.3-24.7)	174.5 (118.1-245.6)	0.918
White Meat (chicken & fish)	44.6 (25.6-66.6)	44.6 (27.6-71.4)	0.129
Processed meat	11.4 (5.9-21.4)	11.4 (5.2-23.5)	0.928
Red Meat group	82.7 (50.8-122.8)	82.7 (50.2-119.8)	0.992
Red meat not processed	62.1 (36.2-93.6)	62.1 (36.7-91.9)	0.831
Red meat rare/med done	16.0 (3.9-32.7)	16.0 (3.8-31.6)	0.838
Red meat well/very well done	9.8 (4.7-19.4)	9.8 (4.2-16.9)	0.496
Fruit (servings/day), ^b n (%)			
< 4	584 (85.0)	403 (82.6)	0.264
≥ 4	103 (15.0)	85 (17.4)	
Missing	1 (0.9)	0 (0.0)	
Vegetables (servings/day), ^b n (%)			
< 5	547 (79.6)	370 (75.8)	0.121
≥5	140 (20.4)	118 (24.2)	
Missing	1 (0.9)	0 (0.0)	
Kcal from diet (g/day), ^b n (%)			
2000-3000	336 (48.9)	230 (47.1)	0.352
< 2000	237 (34.5)	161 (33.0)	0.591
> 3000	114 (16.6)	97 (19.9)	0.149
Missing	1 (0.9)	0 (0.0)	
Fat from diet (g/day), median (IQR)			
Fat	73.1 (57.7-94.6)	73.1 (56.4-98.2)	0.196
Saturated	25.0 (19.2-32.5)	25.0 (18.9-34.2)	0.114
Missing	1 (0.9)	0 (0.0)	
Physically Active (at least 30 min/day), ^c n (%)			
Currently	333 (48.5)	229 (46.9)	0.601
Since age 40	371 (54.0)	254 (52.1)	0.508
Missing			
Alcohol Consumption (drinks/day), ^b n (%)			
≤2	579 (84.3)	390 (79.9)	0.052
>2	108 (15.7)	98 (20.1)	0.055
Missing	0 (0.0)	0 (0.0)	

Abbreviations: IQR, Interquartile range; ^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; ^bRisk categories are based on values established in the 2005 USDA Dietary Guidelines & NIH Office of Dietary Supplements¹²⁰⁻¹²¹

Vitamin/Mineral	Cases	Controls	p value ^a
Vitamin A (µg/day), ^b n (%)			
≥ 900	620 (90.1)	444 (91.0)	0.636
< 900	68 (9.9)	44 (9.0)	
Missing	0 (0.0)	0 (0.0)	
Vitamin C (mg/day), ^b n (%)			
≥ 75	40 (5.8)	22 (4.5)	0.324
< 75	648 (94.2)	466 (95.5)	
Missing	0 (0.0)	0 (0.0)	
Vitamin E (IU/day), ^b n (%)			
≥ 15	93 (13.5)	59 (12.1)	0.472
< 15	595 (13.6)	429 (87.9)	
Missing	0 (0.0)	0 (0.0)	
Zinc (mg/day), ^b n (%)			
≥11	491 (71.5)	351 (71.9)	0.876
< 11	196 (28.5)	137 (28.1)	
Missing	0 (0.0)	0 (0.0)	
Selenium (µg/day), ^b n (%)			
≥ 55	24 (3.5)	11 (2.3)	0.218
< 55	663 (96.5)	477 (97.7)	
Missing	0 (0.0)	0 (0.0)	

Table 15. Vitamin and supplement use for among CGEMS participants diagnosed with Prostate Cancer

^aDifferences in frequencies were tested by a Chi-square test of heterogeneity; Differences in continuous variables between cases and controls were tested using the Wilcoxon sum Rank test; ^bRisk categories are based on values established in the 2005 USDA Dietary Guidelines & NIH Office of Dietary Supplements¹²⁰⁻¹²¹

SPECIFIC AIM 1 FINDINGS - MED SUBJECTS

To determine the single- and joint-modifying effects of variations within oxidative stress response (OSR)-related genes in relation to PCA risk, we evaluated 219 genetic variations across 80 OSR genes in relation to disease risk among 2277 MED (1176 cases, 1101 controls). LR analysis revealed two antioxidative-related SNPs were associated with an increase in PCA risk [*See Table 16*]. Possession of at least one minor *CYP2C8_rs7909236* T allele was associated with an increase in risk [OR (95%CI) = 1.24 (1.05-1.47); p = 0.011]. The *EPHX1_rs1051741* TT genotype was linked with 2.5-fold increase in risk compared to wild-type CC genotype. In contrast, possession of two minor *NAT1_rs4921581* AA alleles was associated with a decrease in PCA risk [OR (95%CI) = 0.75 (0.56-0.99); p = 0.042;

We also observed a 1.2-fold increase in risk linked to possession of at least one minor T allele in the BER polymorphisms $OGG1_rs125701$ [OR (95%CI) = 1.22 (1.02-1.45); p = 0.030; See Table 17]. However, we found a decrease in risk associated with men whom had one or more variant $POLI_rs8305$ T alleles [OR (95%CI) = 0.84 (0.71-0.99); p = 0.036].

Among our apoptotic targets, we found four SNPs were linked with a 18-27% decrease in PCA risk (*BIK_rs4988366*, *BNIP3L_rs10503786*, *IKBKE_rs1539243*, or *TNFRSF1A_rs4149576*) [See Table 18].

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value*	p trend	MDRpt p value
rs11673270	CYP2B6	AA	690 (59.7)	660 (59.7)	1.00 (reference)	1.00 (reference)			
		AC	404 (34.9)	375 (33.9)	1.03 (0.86-1.23)	1.02 (0.86-1.22)	0.808		1.5
		сс	62 (5.4)	71 (6.4)	0.84 (0.59-1.19)	0.79 (0.55-1.13)	0.188	0.674	0.342
		AC+CC	466 (40.3)	446 (40.3)	1.00 (0.85-1.18)	0.98 (0.83-1.17)	0.853		
rs7909236	CYP2C8	GG	626 (54.2)	659 (59.6)	1.00 (reference)	1.00 (reference)			
		TG	468 (40.5)	386 (35.0)	1.28 (1.07-1.52)	1.27 (1.07-1.52)	0.007		
		Π	61 (5.3)	60 (5.4)	1.07 (0.74-1.55)	1.06 (0.73-1.54)	0.779	0.036	0.107
		TG+TT	529 (45.8)	446 (40.4)	1.25 (1.06-1.48)	1.24 (1.05-1.47)	0.011		
rs1051741	EPHX1	CC	947 (81.4)	898 (80.7)	1.00 (reference)	1.00 (reference)			
		тс	199 (17.1)	208 (18.7)	0.91 (0.73-1.13)	0.91 (0.73-1.13)	0.391		
		Π	18 (1.5)	7 (0.6)	2.44 (1.01-5.86)	2.50 (1.04-6.02)	0.042	0.892	0.300
		TC+TT	217 (18.6)	215 (19.3)	0.96 (0.78-1.18)	0.96 (0.78-1.19)	0.711		
rs638820	GSTM2	CC	298 (25.6)	294 (26.4)	1.00 (reference)	1.00 (reference)			
		тс	555 (47.8)	553 (49.7)	0.99 (0.81-1.21)	1.00 (0.82-1.22)	0.998		
		Π	309 (26.6)	266 (23.9)	1.15 (0.91-1.44)	1.16 (0.92-1.46)	0.204	0.249	0.196
		TC+TT	864 (74.4)	819 (73.6)	1.04 (0.86-1.26)	1.05 (0.87-1.27)	0.596		Statistics &
rs1695	GSTP1	AA	513 (44.1)	495 (44.5)	1.00 (reference)	1.00 (reference)			
		AG	505 (43.4)	491 (44.1)	0.99 (0.83-1.18)	0.98 (0.83-1.17)	0.854		
		GG	145 (12.5)	127 (11.4)	1.10 (0.84-1.44)	1.10 (0.84-1.44)	0.493	0.616	0.326
		AG+GG	650 (55.9)	618 (55.5)	1.02 (0.86-1.20)	1.01 (0.85-1.19)	0.932		
rs6591256	GSTP1	AA	390 (33.6)	384 (34.5)	1.00 (reference)	1.00 (reference)			Land and
		AG	567 (48.8)	544 (48.9)	1.03 (0.85-1.23)	1.02 (0.85-1.23)	0.839		
		GG	205 (17.6)	185 (16.6)	1.09 (0.86-1.39)	1.09 (0.85-1.39)	0.510	0.502	0.380
		AG+GG	772 (66.4)	729 (65.5)	1.04 (0.88-1.24)	1.04 (0.87-1.23)	0.690		The Part of the P

Table 16. Association between Antioxidative-related polymorphisms and Prostate Cancer Risk among MED

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value*	p trend	MDRpt p value
rs10888150	NAT1	CC	387 (33.2)	357 (32.1)	1.00 (reference)	1.00 (reference)			
		тс	578 (49.7)	563 (50.6)	0.95 (0.79-1.14)	0.94 (0.78-1.13)	0.522		a la della
		Π	199 (17.1)	193 (17.3)	0.95 (0.75-1.22)	0.94 (0.74-1.21)	0.637	0.624	0.296
		TC+TT	777 (66.8)	756 (67.9)	0.95 (0.80-1.13)	0.94 (0.79-1.12)	0.502		
rs4921581	NAT1	GG	554 (48.0)	512 (46.3)	1.00 (reference)	1.00 (reference)			1. 1. C.
		AG	493 (42.7)	463 (41.9)	0.98 (0.83-1.17)	0.98 (0.82-1.16)	0.779		a starter
		AA	108 (9.3)	131 (11.8)	0.76 (0.58-1.01)	0.75 (0.56-0.99)	0.042	0.137	0.207
		AG+AA	601 (52.0)	594 (53.7)	0.94 (0.79-1.10)	0.92 (0.78-1.09)	0.353		
rs7003890	NAT1	Π	239 (20.5)	205 (18.4)	1.00 (reference)	1.00 (reference)			
		тс	598 (51.4)	582 (52.3)	0.88 (0.71-1.10)	0.88 (0.70-1.09)	0.237		
		сс	327 (28.1)	326 (29.3)	0.86 (0.68-1.10)	0.86 (0.67-1.09)	0.210	0.251	0.202
		TC+CC	925 (79.5)	908 (81.6)	0.87 (0.71-1.08)	0.87 (0.71-1.07)	0.187		
rs1208	NAT2	AA	382 (32.8)	340 (30.5)	1.00 (reference)	1.00 (reference)			
		AG	547 (47.0)	556 (50.0)	0.88 (0.73-1.06)	0.88 (0.73-1.07)	0.199		
		GG	235 (20.2)	217 (19.5)	0.96 (0.76-1.22)	0.97 (0.76-1.23)	0.781	0.595	0.216
		AG+GG	782 (67.2)	773 (69.5)	0.90 (0.76-1.08)	0.91 (0.76-1.08)	0.282		
rs1390358	NAT2	Π	395 (34.2)	352 (31.8)	1.00 (reference)	1.00 (reference)			
		тс	557 (48.2)	557 (50.4)	0.89 (0.74-1.07)	0.90 (0.75-1.08)	0.259		
		cc	204 (17.6)	197 (17.8)	0.92 (0.72-1.18)	0.93 (0.73-1.19)	0.558	0.392	0.271
		TC+CC	761 (65.8)	754 (68.2)	0.90 (0.76-1.07)	0.91 (0.76-1.08)	0.274		
rs7832071	NAT2	тт	386 (33.2)	344 (30.9)	1.00 (reference)	1.00 (reference)			
		тс	550 (47.2)	559 (50.2)	0.88 (0.73-1.06)	0.88 (0.73-1.07)	0.199		
		сс	228 (19.6)	210 (18.9)	0.97 (0.76-1.23)	0.97 (0.76 (1.23)	0.797	0.604	0.218
		TC+CC	778 (66.8)	769 (69.1)	0.90 (0.76-1.08)	0.91 (0.76-1.08)	0.283		

Table 16. Association between Antioxidative-related polymorphisms and Prostate Cancer Risk among MED, continued

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value*	p trend	MDRpt p value
rs125701	OGG1	GG	770 (66.2)	781 (70.2)	1.00 (reference)	1.00 (reference)			
		TG	354 (30.4)	304 (27.3)	1.18 (0.98-1.42)	1.20 (1.00-1.44)	0.055		
		Π	40 (3.4)	28 (2.5)	1.45 (0.89-2.37)	1.44 (0.88-2.36)	0.150	0.028	0.140
		TG+TT	394 (33.9)	332 (29.8)	1.20 (1.01-1.44)	1.22 (1.02-1.45)	0.030		
rs2445837	POLD1	AA	1020 (87.6)	955 (85.8)	1.00 (reference)	1.00 (reference)			
		AG	137 (11.8)	152 (13.7)	0.84 (0.66-1.08)	0.84 (0.66-1.08)	0.176		
		GG	7 (0.6)	6 (0.5)	1.09 (0.37-3.26)	1.11 (0.37-3.32)	0.857	0.245	0.284
		AG+GG	144 (12.4)	158 (14.2)	0.85 (0.67-1.09)	0.85 (0.67-1.09)	0.200		
rs545979	POLI	CC	566 (48.7)	529 (47.6)	1.00 (reference)	1.00 (reference)			
		тс	485 (41.7)	480 (43.1)	0.94 (0.79-1.12)	0.94 (0.79-1.12)	0.505		
		Π	112 (9.6)	104 (9.3)	1.01 (0.75-1.35)	0.98 (0.73-1.31)	0.891	0.756	0.291
		TC+TT	597 (51.3)	584 (52.4)	0.96 (0.81-1.13)	0.95 (0.81-1.12)	0.536		
rs8305	POLI	AA	601 (51.6)	526 (47.3)	1.00 (reference)	1.00 (reference)	State State		
		AG	462 (39.7)	496 (44.6)	0.82 (0.69-0.97)	0.81 (0.68-0.97)	0.018		
		GG	101 (8.7)	90 (8.1)	0.98 (0.72-1.34)	0.98 (0.72-1.33)	0.898	0.163	0.109
		AG+GG	563 (48.4)	586 (52.7)	0.84 (0.71-0.99)	0.84 (0.71-0.99)	0.036		
rs4135036	TDG	Π	1010 (86.8)	962 (86.4)	1.00 (reference)	1.00 (reference)			
		тс	148 (12.7)	148 (13.3)	0.95 (0.75-1.22)	0.96 (0.75-1.23)	0.760		N. State
		cc	6 (0.5)	3 (0.3)	1.91 (0.48-7.64)	1.76 (0.43-7.13)	0.430	0.952	0.391
		TC+CC	154 (13.2)	151 (13.6)	0.97 (0.76-1.24)	0.98 (0.77-1.25)	0.863		and the second
rs2682585	XRCC1	GG	747 (64.9)	680 (61.7)	1.00 (reference)	1.00 (reference)			19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		AG	355 (30.9)	375 (34.0)	0.86 (0.72-1.03)	0.85 (0.71-1.02)	0.078		
		AA	48 (4.2)	48 (4.3)	0.91 (0.60-1.38)	0.88 (0.58-1.33)	0.541	0.149	0.138
		AG+AA	403 (35.1)	423 (38.3)	0.87 (0.73-1.03)	0.85 (0.72-1.02)	0.073		

Table 17. Association between Base Excision Repair polymorphisms and Prostate Cancer Risk among MED

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value*	p trend	MDRpt p value
rs3213255	XRCC1	Π	380 (32.7)	348 (31.3)	1.00 (reference)	1.00 (reference)			
		TC	579 (49.7)	546 (49.1)	0.97 (0.81-1.17)	0.97 (0.81-1.17)	0.763		
		CC	205 (17.6)	219 (19.7)	0.86 (0.68-1.09)	0.85 (0.67-1.08)	0.187	0.240	0.245
		тт+сс	784 (67.3)	795 (68.8)	0.94 (0.79-1.12)	0.94 (0.79-1.12)	0.470		

Table 17. Association between Base Excision Repair polymorphisms and Prostate Cancer Risk among MED, continued

*Adjusted OR are adjusted for age & family history

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value*	p trend	MDRpt p value
rs12031994	АКТЗ	Π	853 (73.3)	802 (72.1)	1.00 (reference)	1.00 (reference)			
		тс	284 (24.4)	277 (24.9)	0.96 (0.80-1.17)	0.98 (0.81-1.19)	0.828		3 - 5
		сс	27 (2.3)	34 (3.0)	0.75 (0.45-1.25)	0.75 (0.45-1.25)	0.267	0.363	0.391
		TC+CC	311 (26.7)	311 (27.9)	0.94 (0.78-1.13)	0.95 (0.79-1.15)	0.613		
rs10860361	APAF1	AA	332 (28.6)	345 (31.0)	1.00 (reference)	1.00 (reference)			
		AG	597 (51.3)	519 (46.6)	1.20 (0.99-1.45)	1.20 (0.99-1.45)	0.063		
		GG	234 (20.1)	249 (22.4)	0.98 (0.77-1.23)	0.97 (0.77-1.23)	0.828	0.947	0.133
		AG+GG	831 (71.4)	768 (69.0)	1.12 (0.94-1.35)	1.13 (0.94-1.35)	0.195		See 1
rs905238	BAX	AA	315 (27.1)	302 (27.1)	1.00 (reference)	1.00 (reference)			
		AG	554 (47.6)	550 (49.4)	0.97 (0.79-1.18)	0.96 (0.79-1.17)	0.666		
		GG	295 (25.3)	261 (23.5)	1.08 (0.86-1.36)	1.07 (0.85-1.35)	0.564	0.513	0.335
		AG+GG	849 (72.9)	811 (72.9)	1.00 (0.83-1.21)	0.99 (0.83-1.20)	0.946		
rs616130	BCL2L11	CC	313 (26.9)	336 (30.2)	1.00 (reference)	1.00 (reference)	S. S. S. S. S. S.		
		AC	603 (51.8)	527 (47.3)	1.23 (1.01-1.49)	1.21 (0.99-1.47)	0.058		
		AA	248 (21.3)	250 (22.5)	1.07 (0.84-1.35)	1.07 (0.84-1.35)	0.598	0.470	0.153
		AC+AA	851 (73.1)	777 (69.8)	1.18 (0.98-1.41)	1.16 (0.97-1.40)	0.109		
rs10845479	BCL2L14	AA	635 (54.6)	630 (56.6)	1.00 (reference)	1.00 (reference)			
		AG	445 (38.2)	420 (37.8)	1.05 (0.88-1.25)	1.06 (0.89-1.26)	0.518		
		GG	84 (7.2)	62 (5.6)	1.34 (0.95-1.90)	1.39 (0.98-1.97)	0.064	0.148	0.155
		AG+GG	529 (45.4)	482 (43.4)	1.09 (0.92-1.29)	1.10 (0.93-1.30)	0.257		Const Sale
rs366542	BID	CC	275 (23.6)	264 (23.7)	1.00 (reference)	1.00 (reference)	CERT STAT		
		тс	597 (51.3)	535 (48.1)	1.07 (0.87-1.32)	1.08 (0.88-1.33)	0.450		
		Π	292 (25.1)	314 (28.2)	0.89 (0.71-1.13)	0.90 (0.72-1.14)	0.391	0.308	0.169
		TC+TT	889 (76.4)	849 (76.3)	1.01 (0.83-1.22)	1.02 (0.84-1.23)	0.870		

Table 18. Association between Apoptotic polymorphisms and Prostate Cancer Risk among MED

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value	p trend	MDRpt p value
rs4988366	BIK	AA	944 (81.1)	855 (76.8)	1.00 (reference)	1.00 (reference)			
		AG	208 (17.9)	244 (21.9)	0.77 (0.63-0.95)	0.78 (0.64-0.96)	0.020		
		GG	12 (1.0)	14 (1.3)	0.78 (0.36-1.69)	0.79 (0.36-1.71)	0.545	0.015	0.154
		AG+GG	220 (18.9)	258 (23.2)	0.77 (0.63-0.95)	0.78 (0.64-0.96)	0.017		
rs10503786	BNIP3L	CC	556 (48.9)	477 (43.9)	1.00 (reference)	1.00 (reference)			
		тс	480 (42.1)	489 (44.9)	0.84 (0.71-1.00)	0.85 (0.71-1.01)	0.061		
		Π	103 (9.0)	122 (11.2)	0.72 (0.54-0.97)	0.73 (0.55-0.98)	0.036	0.011	0.055
		TC+TT	583 (51.1)	611 (56.1)	0.82 (0.69-0.97)	0.82 (0.70-0.97)	0.022		
rs12870	DIABLO	GG	386 (33.2)	360 (32.4)	1.00 (reference)	1.00 (reference)			
		AG	568 (48.8)	540 (48.5)	0.98 (0.82-1.18)	098 (0.82-1.18)	0.850		
		AA	210 (18.0)	213 (19.1)	0.92 (0.72-1.17)	0.91 (0.71-1.15)	0.426	0.516	0.322
		AG+AA	778 (66.8)	753 (67.7)	0.96 (0.81-1.15)	0.96 (0.81-1.15)	0.656		
rs1539243	IKBKE	CC	837 (71.9)	740 (66.6)	1.00 (reference)	1.00 (reference)			
		тс	291 (25.0)	325 (29.2)	0.79 (0.66-0.95)	0.78 (0.65-0.95)	0.011		
		Π	36 (3.1)	47 (4.2)	0.68 (0.43-1.06)	0.68 (0.43-1.06)	0.085	0.005	0.072
		TC+TT	327 (28.1)	372 (33.4)	0.78 (0.65-0.93)	0.77 (0.64-0.92)	0.004		
rs11688	JUN	GG	1043 (89.6)	999 (89.8)	1.00 (reference)	1.00 (reference)			
		AG	120 (10.3)	110 (9.9)	1.05 (0.80-1.37)	1.06 (0.80-1.39)	0.692		
		AA	1 (0.1)	3 (0.3)	0.32 (0.03-3.08)	0.33 (0.03-3.19)	0.340	0.970	0.406
		AG+AA	121 (10.4)	113 (10.2)	1.03 (0.78-1.34)	1.04 (0.79-1.36)	0.789		
rs4727666	PIK3CG	AA	741 (64.2)	685 (62.1)	1.00 (reference)	1.00 (reference)			
		AG	364 (31.5)	366 (33.2)	0.92 (0.77-1.10)	0.91 (0.76-1.09)	0.317		and the second
		GG	49 (4.3)	52 (4.7)	0.87 (0.58-1.30)	0.88 (0.59-1.32)	0.537	0.288	0.277
		AG+GG	413 (35.8)	418 (37.9)	0.91 (0.77-1.08)	0.91 (0.77-1.08)	0.274		

 Table 18. Association between Apoptotic polymorphisms and Prostate Cancer Risk, continued

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value	p trend	MDRpt p value
rs281508	PRKCE	GG	640 (55.0)	583 (52.4)	1.00 (reference)	1.00 (reference)			and an
	States and	TG	445 (38.2)	438 (39.4)	0.93 (0.78-1.10)	0.92 (0.77-1.10)	0.347		State P
		Π	79 (6.80	91 (8.2)	0.79 (0.57-1.09)	0.77 (0.56-1.07)	0.117	0.136	0.216
		TG+TT	524 (45.0)	529 (47.6)	0.90 (0.77-1.06)	0.89 (0.76-1.06)	0.187		
rs571715	PRKCQ	π	755 (65.0)	720 (64.8)	1.00 (reference)	1.00 (reference)			
		тс	353 (30.4)	354 (31.8)	0.95 (0.80-1.14)	0.95 (0.80-1.14)	0.594		
		cc	53 (4.6)	38 (3.4)	1.33 (0.87-2.04)	1.36 (0.89-2.10)	0.159	0.715	0.267
		TC+CC	406 (35.0)	392 (35.2)	0.99 (0.83-1.17)	0.99 (0.83-1.18)	0.925		
rs585881	PRKCQ	π	765 (65.7)	723 (65.0)	1.00 (reference)	1.00 (reference)	No. Franklin		1
		тс	349 (30.0)	352 (31.6)	0.94 (0.78-1.12)	0.94 (0.78-1.12)	0.485		
		сс	50 (4.3)	38 (3.4)	1.24 (0.81-1.92)	1.28 (0.83-1.98)	0.265	0.960	0.255
		TC+CC	399 (34.3)	390 (35.0)	0.97 (0.81-1.15)	0.97 (0.82-1.16)	0.738		State Barry
rs6442322	RAF1	AA	342 (29.6)	361 (32.7)	1.00 (reference)	1.00 (reference)			
		AG	568 (49.1)	529 (48.0)	1.13 (0.94-1.37)	1.14 (0.94-1.37)	0.192		
	The second second	GG	247 (21.3)	213 (19.3)	1.22 (0.97-1.55)	1.21 (0.96-1.54)	0.110	0.082	0.216
		AG+GG	815 (70.4)	742 (67.3)	1.16 (0.97-1.39)	1.16 (0.97-1.38)	0.110		
rs11135693	TNFRSF10B	cc	574 (49.4)	510 (45.8)	1.00 (reference)	1.00 (reference)			Mark State
		AC	484 (41.6)	486 (43.7)	0.89 (0.74-1.05)	0.89 (0.75-1.06)	0.199		
		AA	105 (9.0)	117 (10.5)	0.80 (0.60-1.07)	0.80 (0.60-1.07)	0.126	0.069	0.170
	A BARANA SA	AC+AA	589 (50.6)	603 (54.2)	0.87 (0.74-1.02)	0.87 (0.74-1.03)	0.109		
rs4149576	TNFRSF1A	AA	234 (20.3)	183 (16.6)	1.00 (reference)	1.00 (reference)			and the second
		AG	545 (47.2)	545 (49.4)	0.78 (0.62-0.98)	0.79 (0.63-0.99)	0.038		
	the second states	GG	375 (32.5)	376 (34.0)	0.78 (0.61-0.99)	0.79 (0.62-1.01)	0.056	0.076	0.167
	And the second	AG+GG	920 (79.7)	921 (83.4)	0.78 (0.63-0.97)	0.79 (0.63-0.98)	0.029		Alexandra -

Table 18. Association between Apoptotic polymorphisms and Prostate Cancer Risk, continued

Based on the size of the entire OSR SNP panel (i.e., 219), MDR modeling would require analysis of more than 14 million one-, two-, and three-way combinations. Since it is not computationally feasible to analyze all 219 SNPs in MDR, we used the SURF & TuRF filter for the top 75 percentile OSR factors. This feature allows MDR to rank and select SNPs most likely to be associated with PCA risk and reduces the number of pairwise and three-way combinations to amount that is possible to analyze (i.e., approximately 160,400).

Unfortunately, MDR modeling for the top 25th percentile of the OSR SNP panel did not reveal any statistically significant models associated with PCA risk (permutation testing p value ≥ 0.114) [See Table 19]. However, hIG revealed synergistic interactions: $TNFRSF1A_rs4149576$ -GSTM2_rs638820 (IG = 0.26%), $IKBIP_rs1048906$ - $GSTM2_rs638820$ (IG = 0.20%), $IKBIP_rs1048906$ - $TNFSF10_rs9859259$ (IG = 0.17%), and $TNFRSF1A_rs4149576$ -PRKCE_rs935673 (IG = 0.16%) [See Figure 9]. Although, LR did not show any statistically significant effects when these SNPs were examined individually, two-way analysis their combined effects confirmed the TNFRSF1A-PRKCE interaction [See Table 20]. We found possession of \ge 3 minor TNFRSF1A-PRKCE alleles was

associated with decreased risk [OR (95%CI) = 0.58 (0.42-0.81); p = 0.001].

Table 19. Top 25th Percentile MDR models for OSR polymorphisms and prostatecancer risk among MED (adjusted for age and family history)

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
<u>One Factor</u> BNIP3L_rs10503786	54	7/10	0.501	0.433
<u>Two Factor</u> PRKCE_rs935673 TNFRSF1A_rs4149576	2916	3/10	0.485	0.800
Three Factor GSTM2_rs638820 IKBIP_rs1048906 TNFRSF1A_rs4149576	157464	7/10	0.522	0.114

Figure 1. Interaction entropy graph for OSR polymorphisms and prostate cancer risk among MED subjects

This graphical model describes the percent entropy that is explained by each OSR SNP or a combination of two loci within our MED study population. The joint effects of *GSTM2_rs638820-TNFRSF1A_rs4149576* yield an information gain of 0.14%, comparing to either *GSTM2* or *TNFRSF1A* loci alone (IG = 0.09% and 0.15%, respectively).

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% CI)*	p value*	interaction p value
TNFRSF1A_rs 4149576	AA	0	1.00 (reference)	1.00 (reference)	No. Star	1
GSTM2_rs638820	Π	1	0.82 (0.54-1.24)	0.81 (0.53-1.22)	0.308	
		2	0.74 (0.50-1.10)	0.74 (0.50-1.10)	0.141	0.383
		≥3	0.87 (0.58-1.29)	0.87 (0.59-1.30)	0.505	
IKBIP_rs1048906	AA	0	1.00 (reference)	1.00 (reference)		1
GSTM2_rs638820	Π	1	1.27 (0.96-1.67)	1.28 (0.97-1.69)	0.081	
		2	1.13 (0.86-1.49)	1.14 (0.87-1.51)	0.344	0.399
	14 3 m 3	≥3	1.18 (0.87-1.60)	1.20 (0.88-1.63)	0.250	
IKBIP_rs1048906	AA	0	1.00 (reference)	1.00 (reference)	Contraction of the	
TNFSF10_rs9859259	AA	1	1.06 (0.82-1.37)	1.07 (0.83-1.39)	0.589	
	ALC NO.	2	0.83 (0.64-1.07)	0.83 (0.64-1.08)	0.164	0.121
	and	≥3	0.91 (0.67-1.23)	0.92 (0.68-1.24)	0.576	
TNFRSF1A_rs 4149576	AA	0	1.00 (reference)	1.00 (reference)		
PRKCE_rs935673	GG	1	0.75 (0.55-1.04)	0.77 (0.56-1.06)	0.112	
		2	0.84 (0.62-1.15)	0.86 (0.63-1.17)	0.332	0.363
	The states	≥3	0.57 (0.41-0.79)	0.58 (0.42-0.81)	0.001	

Table 20. Association between OSR gene-gene interactions & PCA risk among MED

In order to verify that no interactions were missed by filtering the OSR SNP datafile, we performed additional analyses for all the SNPs separated by their respective biological pathway. Due to the large number of apoptosis-related markers, this panel was subjected to SURF & TuRF filtering. By selecting the top 50% of the apoptotic SNPs, the number of possible combinations was reduced from 5,177,717 to 636,056. However, no filtering was needed to analyze the antioxidative and BER SNP panels in MDR.

From these analyses, we did not observe any significant MDR models for the top 50th percentile apoptotic SNPs (permutation p value ≥ 0.062) [*Table 21*]. The entropy diagram showed synergistic effects involving *TNFRSF1A_rs4149576-PRKCE_rs281508* and *PRKCE_rs281508-BCL2L11_rs616130* [*See Figure 10*]. However, LR two-way risk analysis did not validate either interaction (p ≥ 0.093) [*Table 24*].

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor TNFSF10_rs4894559	86	5/10	0.505	0378
<u>Two Factor</u> TNFRSF1A_rs4149576 TNFSF10_rs4894559	7396	4/10	0.497	0.508
<u>Three Factor</u> BCL2L11_rs616130 PRKCE_rs281508 TNFRSF1A_rs4149576	636056	7/10	0.529	0.062

Table 21. Top 50th Percentile MDR models for apoptotic polymorphisms and prostate cancer risk among MED (adjusted for age and family history)

Figure 2. Interaction entropy graph for top 50th percentile apoptotic polymorphisms and PCA risk among MED subjects
MDR did not detect any statistically significant models among the unfiltered BER

SNP panel (permutation p value \geq 0.182) [Table 22]. hIG revealed synergistic

interactions between XRCC1_rs3213255-POLI_rs8305 and UNG_rs3219243-

OGG1_rs125701 [See Figure 11]; however these combinations were not associated with

risk when analyzed by LR [See Table 24].

Table 22. Unfiltered MDR models for BER polymorphisms and prostate cancer risk among MED (adjusted for age and family history)

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
<u>One Factor</u> POLI_rs8305	12	5/10	0.499	0.531
<u>Two Factor</u> POLI_rs8305 XRCC1_rs3213255	144	6/10	0.500	0.468
<u>Three Factor</u> OGG1_rs125701 POLI_rs8305 XRCC1_rs2682585	1728	7/10	0.516	0.182

Figure 3. BER polymorphisms and prostate cancer risk among MED

MDR analysis for the unfiltered antioxidative-related SNP panel confirmed the LR single effect finding for the antioxidative *CYP2C8_rs7909236* (CVC = 10/10) [*See Table 23*]. Although this model was identified as the best single predictor of risk, the permutation p value was not significant (p = 0.085). However, *CYP2C8* combined with *NAT1_rs4951581* was selected as the best two-factor predictor of risk (CVC = 10/10; p = 0.011). This interaction was confirmed by LR analysis, which indicated that possession of one minor *CYP2C8-NAT1* allele was associated with a 1.3-fold increase in risk [OR (95%CI) = 1.28 (1.04-1.57); p = 0.019; *Table 24*].

 Table 23. Unfiltered MDR models for antioxidative-related OSR polymorphisms and prostate cancer risk among MED (adjusted for age and family history)

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor CYP2C8_rs7909236	34	10/10	0.527	0.085
<u>Two Factor</u> CYP2C8_rs7909236 NAT1_rs4921581	1156	10/10	0.545	0.011
<u>Three Factor</u> CYP2C8_rs7909236 GSTP1_rs1695 NAT1_rs4921581	39304	3/10	0.502	0.409

hIG showed only a moderately synergistic effect from the *CYP2C8-NAT1* combination (IG = 0.11%) [*See Figure 12*]. However, the entropy graph revealed strong interactions between *CYP2C8_rs7909236-GSTP1_rs1695* (IG = 0.31%), *NAT1_rs4921581-GSTM2_rs638820* (IG = 0.28%), and *GSTP1_rs6591256-GSTM2_rs638820* (IG = 0.27%). LR two-way analysis of these interactions validated *CYP2C8-GSTP1* and *NAT1-GSTM2* [*Table 24*]. Men possessing \geq 2 variant *CYP2C8-GSTP1* alleles was associated with a 1.4fold increase in risk [OR (95%CI) = 1.38 (1.10-1.74; p = 0.006]. Also, carriers of at least two minor *NAT1-GSTM1* alleles were linked to increased PCA risk [OR (95%CI) = 1.39 (1.06-1.82); p = 0.016].

NAT1_rs4921581 0.07% 0.03% NAT2_rs1112005 0.01% 0.03% 0.05% -0.001 GSTP1 rs6591256 0.01% 0.115 0.02% 0.10% 0.02% 0.28% CYP2C8_rs7909236 0.08% 0.03% -0.00% 0.31% 0.14% 0.27% 0.31% 0.08% GSTP1_rs1695 0.02% GSTM2 13638820 0.10% 0.02% GSTM3_rs7483 0.04%

Figure 4. Interaction entropy graph for antioxidative-related OSR polymorphisms and PCA risk among MED subjects

This graphical model describes the percent entropy that is explained by each OSR SNP or a combination of two loci within our MED study population. The joint effects of the *GSTM2_rs1638820-NAT1_rs4921581* interaction yields an information gain of 0.28%, in comparison to either *GSTM2 or NAT1* loci alone (IG = 0.10% and 0.07%, respectively).

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% CI)*	p value*	interaction p value
TNFRSF1A_rs4149576	AA	0	1.00 (reference)	1.00 (reference)		
PRKCE_rs281508	Π	1	1.02 (0.75-1.38)	1.02 (0.75-1.38)	0.815	
		2	0.76 (0.56-1.03)	0.76 (0.56-1.03)	0.093	0.972
	Charles Ch	≥3	0.82 (0.59-1.14)	0.82 (0.59-1.14)	0.239	
PRKCE_rs281508	т	0	1.00 (reference)	1.00 (reference)		
BCL2L11_rs616130	AA	1	1.25 (0.97-1.60)	1.22 (0.95-1.56)	0.123	
		2	1.17 (0.91-1.51)	1.15 (0.90-1.49)	0.268	0.135
	1 23	≥3	1.00 (0.74-1.36)	0.98 (0.72-1.32)	0.879	
XRCC1_rs3213255	СС	0	1.00 (reference)	1.00 (reference)	And the second	
POLI_rs8305	GG	1	0.75 (0.54-1.05)	0.76 (0.55-1.06)	0.103	
		2	0.81 (0.59-1.12)	0.83 (0.60-1.14)	0.249	0.112
	a like	≥3	0.83 (0.59-1.15)	0.84 (0.60-1.17)	0.290	
UNG_rs3219243	СС	0	1.00 (reference)	1.00 (reference)	No. of States	
OGG1_rs125701	GG	1	1.16 (0.97-1.39)	1.17 (0.98-1.40)	0.089	
	and the second	2	1.02 (0.79-1.32)	1.04 (0.80-1.35)	0.776	0.329
		≥3	1.71 (0.89-3.29)	1.74 (0.91-3.35)	0.097	
CYP2C8_rs7909236	TT	0	1.00 (reference)	1.00 (reference)	The second	
GSTP1_rs1695	GG	1	1.12 (0.91-1.38)	1.10 (0.89-1.35)	0.384	
		2	1.40 (1.11-1.76)	1.38 (1.10-1.74)	0.006	0.100
		≥3	0.98 (0.70-1.38)	0.97 (0.69-1.37)	0.851	
NAT1_rs4921581	AA	0	1.00 (reference)	1.00 (reference)	San States	
GSTM2_rs638820	т	1	1.29 (0.98-1.69)	1.28 (0.98-1.68)	0.074	
		2	1.39 (1.06-1.81)	1.39 (1.06-1.82)	0.016	0.001
		≥3	1.03 (0.77-1.39)	1.03 (0.76-1.38)	0.860	2
CYP2C8_rs7909236	П	0	1.00 (reference)	1.00 (reference)	Contraction of the	
NAT1_rs4921581	AA	1	1.29 (1.05-1.58)	1.28 (1.04-1.57)	0.019	
	and an other	2	1.07 (0.86-1.35)	1.06 (0.85-1.34)	0.598	0.389
		≥3	1.06 (0.74-1.51)	1.02 (0.71-1.46)	0.912	
GSTP1_rs6591256	GG	0	1.00 (reference)	1.00 (reference)		
GSTM2_rs638820	TT	1	0.94 (0.69-1.28)	0.93 (0.68-1.26)	0.623	
		2	0.79 (0.59-1.07)	0.78 (0.58-1.06)	0.111	0.034
	Dama Viel	≥3	1.19 (0.87-1.64)	1.19 (0.87-1.64)	0.274	

Table 24. Association between gene-gene interactions & PCA risk among MED

*Adjusted OR are adjusted for age & family history

SPECIFIC AIM 1 FINDINGS - MAD SUBJECTS

For MAD, we examined the single effects of 25 OSR SNPs in relation to PCA risk among 224 PCA cases and 699 controls. From this analysis, we possession of one or more minor *BAX_rs4645878* T allele was linked to a 1.8-fold increase in PCA risk [OR (95%CI) = 1.80 (1.11-2.92); p = 0.017); *See Table 27*]. We also detected a significant association between men having one least variant *BCL2L11_rs3789068* C allele and disease risk [OR (95%CI) = 1.93 (1.15-3.24); p = 0.013). We did not find any single risk effects among antioxidative or BER SNPs among MAD subjects [*See Tables 25 & 26*].

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value*	p trend	MDRpt p value
rs1695	GSTP1	AA	195 (31.8)	55 (29.4)	1.00 (reference)	1.00 (reference)	Constant and		
		AG	294 (47.8)	84 (44.9)	1.01 (0.69-1.49)	1.03 (0.66-1.61)	0.888		A State
	A State States	GG	125 (20.4)	48 (25.7)	1.36 (0.87-2.13)	1.55 (0.93-2.58)	0.095	0.204	0.212
		AG+GG	419 (68.2)	132 (70.6)	1.12 (0.78-1.60)	1.19 (0.79-1.79)	0.414		
	GSTM1	*1/*1	37 (26.1)	55 (30.7)	1.00 (reference)	1.00 (reference)			
		*1/*0	58 (40.8)	76 (42.5)	0.88 (0.51-1.51)	0.92 (0.51-1.63)	0.765		
		*0/*0	47 (33.1)	48 (26.8)	0.69 (0.39-1.23)	0.71 (0.38-1.33)	0.287	0.202	0.313
		≥ *0	105 (73.9)	124 (69.3)	0.79 (0.49-1.30)	0.83 (0.49-1.40)	0.477		
	GSTT1	*1/*1	30 (21.3)	53 (29.4)	1.00 (reference)	1.00 (reference)			
		*1/*0	71 (50.3)	81 (45.0)	0.65 (0.37-1.12)	0.62 (0.34-1.14)	0.125		
		*0/*0	40 (28.4)	46 (25.6)	0.65 (0.35-1.21)	0.59 (0.30-1.17)	0.130	0.179	0.144
		≥ *0	111 (78.7)	127 (70.6)	0.65 (0.39-1.08)	0.61 (0.35-1.08)	0.090		
rs2069514	CYP1A2	GG	356 (55.0)	106 (57.6)	1.00 (reference)	1.00 (reference)			
		GA	224 (34.6)	62 (33.7)	0.93 (0.65-1.33)	0.87 (0.57-1.31)	0.498		
		AA	67 (10.4)	16 (8.7)	0.80 (0.45-1.44)	0.54 (0.27-1.09)	0.083	0.448	0.186
		GA+AA	291 (45.0)	78 (42.4)	0.90 (0.65-1.25)	0.78 (0.53-1.15)	0.213		
rs4646903	CYP1A1	AA	253 (39.2)	73 (37.8)	1.00 (reference)	1.00 (reference)			A
		AC	289 (44.7)	92 (47.7)	1.10 (0.78-1.57)	1.22 (0.81-1.83)	0.350		
		CC	104 (16.1)	278 (14.5)	0.93 (0.57-1.53)	1.22 (0.69-2.15)	0.496	0.965	0.143
		AC+CC	393 (60.8)	120 (62.2)	1.06 (0.76-1.47)	1.22 (0.83-1.79)	0.321		

Table 25. Association between Antioxidative-related polymorphisms and Prostate Cancer Risk among MAD

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value	p trend	MDRpt p value
rs1130409	APEX1	Π	260 (40.3)	82 (43.6)	1.00 (reference)	1.00 (reference)			
		TG	294 (45.5)	87 (46.3)	0.94 (0.67-1.32)	1.02 (0.68-1.52)	0.928		
		GG	92 (14.2)	19 (10.1)	0.66 (0.38-1.14)	0.92 (0.49-1.72)	0.797	0.185	0.346
		TG+GG	386 (59.8)	106 (56.4)	0.87 (0.63-1.21)	1.00 (0.68-1.46)	0.993		
rs1052133	OGG1	CC	465 (69.6)	135 (68.5)	1.00 (reference)	1.00 (reference)			
		CG	182 (27.3)	58 (29.5)	1.10 (0.77-1.56)	1.05 (0.70-1.57)	0.832		
	and the state of the	CG+GG	203 (30.4)	62 (31.5)	1.05 (0.75-1.48)	1.00 (0.67-1.48)	0.991	0.772	0.290
rs25487	XRCC1	GG	476 (73.0)	138 (73.4)	1.00 (reference)	1.00 (reference)			
		GA	159 (24.4)	46 (24.5)	1.00 (0.68-1.46)	0.98 (0.63-1.51)	0.921		
		GA+AA	176 (27.0)	50 (26.6)	0.98 (0.68-1.41)	0.95 (0.62-1.45)	0.814	0.836	0.245

Table 26. Association between Base Excision Repair polymorphisms and Prostate Cancer Risk among MAD

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value	p trend	MDRpt p value
rs4645878	BAX	CC	86 (60.1)	83 (46.9)	1.00 (reference)	1.00 (reference)			
		СТ	42 (29.4)	70 (39.6)	1.73 (1.06-2.81)	1.80 (1.06-3.06)	0.029		
		Π	15 (10.5)	24 (13.6)	1.66 (0.81-3.38)	1.80 (0.85-3.84)	0.128	0.038	0.090
		CT+TT	57 (39.9)	94 (53.1)	1.71 (1.09-2.67)	1.80 (1.11-2.92)	0.017		Market State
rs3789068	BCL2L11	Π	68 (47.5)	67 (38.3)	1.00 (reference)	1.00 (reference)			
		тс	53 (37.1)	92 (52.6)	1.76 (1.09-2.84)	1.93 (1.15-3.24)	0.013		
		cc	22 (15.4)	16 (9.1)	0.74 (0.36-1.53)	0.82 (0.37-1.84)	0.632	0.690	0.125
		TC+CC	75 (52.5)	108 (61.7)	1.46 (0.93-2.29)	1.62 (1.00-2.64)	0.051		
rs4488761	BCL2L13	AA	52 (36.1)	60 (33.3)	1.00 (reference)	1.00 (reference)			
		AG	63 (43.8)	83 (46.1)	1.14 (0.70-1.87)	0.87 (0.51-1.48)	0.597		12 1 2 3 3
		GG	29 (20.1)	37 (20.6)	1.11 (0.60-2.04)	0.95 (0.49-1.84)	0.875	0.695	0.259
		AG+GG	92 (63.9)	120 (66.7)	1.13 (0.71-1.79)	0.89 (0.54-1.47)	0.648		
rs6488494	BCL2L14	Π	45 (31.5)	51 (27.7)	1.00 (reference)	1.00 (reference)			
		тс	70 (49.0)	89 (48.4)	1.12 (0.68-1.87)	1.15 (0.67-1.99)	0.614		
		CC	28 (19.5)	44 (23.9)	1.39 (0.75-2.58)	1.38 (0.71-2.69)	0.343	0.310	0.259
		TC+CC	98 (68.5)	133 (72.3)	1.20 (0.74-1.93)	1.22 (0.73-2.03)	0.450		
rs1883263	BIK	AA	115 (79.9)	148 (81.8)	1.00 (reference)	1.00 (reference)			
		AC+CC	29 (21.1)	33 (18.2)	0.88 (0.51-1.54)	0.69 (0.37-1.27)	0.227	0.664	0.390
rs738276	BIK	GG	48 (39.3)	73 (46.5)	1.00 (reference)	1.00 (reference)			
	Same Contractor	GA	61 (50.0)	68 (43.3)	0.73 (0.44-1.21)	0.74 (0.43-1.28)	0.278		
		AA	13 (10.7)	16 (10.2)	0.81 (0.36-1.83)	0.85 (0.36-2.03)	0.714	0.336	0.333
		GA+AA	74 (60.7)	84 (53.5)	0.75 (0.46-1.21)	0.76 (0.45-1.28)	0.299		
rs6509364	CARD8	CC	88 (61.5)	114 (64.4)	1.00 (reference)	1.00 (reference)			
		СТ	39 (27.3)	54 (30.5)	1.07 (0.65-1.76)	1.06 (0.62-1.81)	0.838		
		Π	16 (11.2)	9 (5.1)	0.43 (0.18-1.03)	0.51 (0.20-1.29)	0.158	0.210	0.221
	Carlo Land	CT+TT	55 (38.5)	63 (35.6)	0.88 (0.56-1.40)	0.91 (0.56-1.49)	0.708		

Table 27. Association between Apoptotic polymorphisms and Prostate Cancer Risk among MAD

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value	p trend	MDRpt p value
rs6509366	CARD8	GG	91 (63.6)	105 (60.0)	1.00 (reference)	1.00 (reference)			
		GA	44 (30.8)	65 (35.5)	1.28 (0.80-2.06)	1.32 (0.79-2.20)	0.290		
	A CARLES	AA	8 (5.6)	8 (4.5)	0.87 (0.31-2.40)	0.76 (0.26-2.27)	0.627	0.591	0.343
		GA+AA	52 (36.4)	73 (41.0)	1.22 (0.77-1.91)	1.23 (0.75-2.00)	0.413		and the second
rs1049216	CASP3	Π	88 (69.3)	113 (66.9)	1.00 (reference)	1.00 (reference)			
		TC+CC	39 (30.7)	56 (33.1)	1.12 (0.68-1.83)	1.34 (0.79-2.28)	0.282	0.658	0.355
rs507879	CASP5	AA	25 (17.7)	31 (17.0)	1.00 (reference)	1.00 (reference)			
		AG	67 (47.5)	91 (49.7)	1.10 (0.59-2.02)	1.38 (0.72-2.68)	0.336		
	and the second	GG	49 (34.8)	61 (33.3)	1.00 (0.53-1.92)	1.28 (0.64-2.57)	0.491	0.936	0.272
		AG+GG	116 (82.3)	152 (83.1)	1.06 (0.59-1.89)	1.34 (0.72-2.50)	0.359		
rs537093	CASP5	GG	78 (54.2)	91 (50.0)	1.00 (reference)	1.00 (reference)			
		GA	58 (40.3)	74 (40.7)	1.09 (0.69-1.73)	1.16 (0.71-1.90)	0.555		
		AA	8 (5.6)	17 (9.3)	1.82 (0.75-4.45)	1.69 (0.65-4.40)	0.279	0.260	0.212
		GA+AA	66 (45.8)	91 (50.0)	1.18 (0.76-1.83)	1.23 (0.77-1.97)	0.393		
rs6747918	CASP8	AA	30 (30.0)	43 (38.0)	1.00 (reference)	1.00 (reference)	The Same		
	San Providence	AG	12 (12.0)	9 (8.0)	0.52 (0.20-1.40)	0.56 (0.19-1.61)	0.280		
		GG	58 (58.0)	61 (54.0)	0.73 (0.41-1.32)	0.98 (0.52-1.88)	0.962	0.342	0.356
		AG+GG	70 (70.0)	70 (62.0)	0.70 (0.39-1.24)	0.90 (0.48-1.69)	0.743		
rs1052576	CASP9	GG	69 (48.6)	81 (44.5)	1.00 (reference)	1.00 (reference)			
		GA	56 (39.4)	82 (45.1)	1.25 (0.78-1.99)	1.43 (0.86-2.38)	0.165		
	Charles and and	AA	17 (12.0)	19 (10.4)	0.95 (0.46-1.97)	1.04 (0.48-2.26)	0.929	0.734	0.268
		GA+AA	73 (51.4)	101 (55.5)	1.18 (0.76-1.83)	1.34 (0.83-2.15)	0.232		
rs12817549	CRADD	Π	79 (55.6)	96 (53.6)	1.00 (reference)	1.00 (reference)			
		TC	50 (35.2)	65 (36.3)	1.07 (0.67-1.72)	1.23 (0.74-2.05)	0.430		
		CC	13 (9.2)	18 (10.1)	1.14 (0.53-2.47)	1.17 (0.51-2.69)	0.705	0.698	0.308
	Sale and Sale	TC+CC	63 (44.4)	83 (46.4)	1.08 (0.70-1.69)	1.22 (0.76-1.96)	0.420		

Table 27. Association between Apoptotic polymorphisms and Prostate Cancer Risk among MAD, continued

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value	p trend	MDRpt p value
rs3858606	CRADD	GG	43 (30.3)	39 (22.2)	1.00 (reference)	1.00 (reference)			
	TRACK STAR	GA	72 (50.7)	99 (56.3)	1.52 (0.89-2.57)	1.23 (0.70-2.17)	0.476		
	The Statistics	AA	27 (19.0)	38 (21.5)	1.55 (0.81-2.99)	1.55 (0.76-3.16)	0.224	0.163	0.357
		GA+AA	99 (69.7)	137 (77.8)	1.53 (0.92-2.53)	1.31 (0.76-2.25)	0.325		

Table 27. Association between Apoptotic polymorphisms and Prostate Cancer Risk among MAD, continued

Consistent with LR, MDR found the *BAX_rs4645878* polymorphism was the best single factor predictor of disease risk (CVC = 6/10; p = 0.350); however this model was not statistically significant [*See Table 28*]. Permutation testing indicated the three factor model containing *BCL2L13_rs4488761-CASP5_rs507879-BCL2L14_rs6488494* was significant (p = 0.048) and although this model had a high testing accuracy (ATA = 0.585) the CVC value was only 3/10.

Table 28. Unfiltered MDR models for OSR polymorphisms and prostate cancer riskamong MAD (adjusted for age and family history)

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor BAX_rs4645878	25	6/10	0.517	0.350
<u>Two Factor</u> CRADD_rs12817549 GSTT1_deletion	625	8/10	0.571	0.073
<u>Three Factor</u> BCL2L13_rs4488761 CASP5_rs507879 BCL2L14_rs6488494	15625	3/10	0.585	0.048

The entropy graph also showed the largest independent IG was attributed to the *BAX_rs4645878* variant (IG = 1.56%) in addition to revealing several strongly synergistic interactions occurred between polymorphic *CASPs* and *BCL2*-related genes [*See Figure 13*]. We also observed strong interactions between the *GST* gene deletions and apoptotic markers; however the *BCL2L14_rs6488464-CASP_rs507879* was the only interaction that could be confirmed by LR two-way analysis (p interaction = 0.013) [*See Table 29*].

Figure 1. Interaction entropy model for OSR polymorphisms and prostate cancer risk among MAD

This graphical model describes the percent entropy that is explained by each OSR SNP or a combination of two loci within our MAD study population. Note that the gene combination effect yields an information gain of 2.49% comparing the *GSTT1_deletion-CRADD_rs12817549* axis to either *GSTT1* or *CRADD* loci alone (IG = 1.34% and 0.17%, respectively).

Table 29. Association between gene-gene interactions & PCA risk among MAD

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% CI)*	p value*	interaction p value
GSTT1_deletion	*0/*0	0-2	1.00 (reference)	1.00 (reference)	A WARDS	
CRADD_rs12817549	СС	2-3	0.90 (0.54-1.48)	0.87 (0.50-1.48)	0.598	0.392
		4	0.62 (0.20-1.90)	0.61 (0.18-2.07)	0.430	
BCL2L14_rs6488494	СС	0-2	1.00 (reference)	1.00 (reference)		
CASP5_rs507879	GG	2-3	0.70 (0.44-1.09)	0.70 (0.43-1.14)	0.152	0.013
		4	2.32 (0.89-6.05)	2.51 (0.91-6.92)	0.075	
BCL2L13_rs4488761	GG	0-2	1.00 (reference)	1.00 (reference)		
CASP9_rs1052576	AA	2-3	0.68 (0.41-1.12)	0.73 (0.43-1.25)	0.249	0.106
		4	2.09 (0.41-10.58)	1.58 (0.29-8.51)	0.593	
GSTM1_deletion	*0/*0	0-2	1.00 (reference)	1.00 (reference)		
BCL2L13_rs4488761	GG	2-3	0.62 (0.39-0.98)	0.65 (0.39-1.07)	0.088	0.229
		4	0.92 (0.38-2.25)	0.94 (0.36-2.45)	0.902	
BCL2L14_rs6488494	СС	0-2	1.00 (reference)	1.00 (reference)		
CASP9_rs1052576	AA	2-3	0.93 (0.58-1.51)	0.91 (0.54-1.53)	0.710	0.337
		4	1.87 (0.36-9.85)	1.88 (0.34-10.45)	0.469	

SPECIFIC AIM 2 FINDINGS - MED SUBJECTS

We evaluated the individual- and combined impact of 173 apoptotic-related polymorphisms in relation to PCA aggressiveness for 1,176 MED subjects (688 aggressive and 488 non-aggressive cases). LR analysis found that possession of at least one minor *AKT3_rs12031994* C allele was associated with increased disease aggressiveness [OR (95%CI) = 1.50 (0.15-1.96); p = 0.003; *See Table 30*].

dbSNP ID	Genes	Allele	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value*	p trend	MDRpt p value
rs12031994	АКТЗ	Π	483 (70.2)	380 (77.9)	1.00 (reference)	1.00 (reference)			
		тс	192 (27.9)	94 (19.2)	1.61 (1.21-2.13)	1.61 (1.22-2.14)	0.001		
		cc	13 (1.9)	14 (2.9)	0.73 (0.34-1.57)	0.73 (0.34-1.57)	0.421	0.025	0.052
		TC+CC	205 (29.8)	108 (22.1)	1.49 (1.14-1.95)	1.50 (0.15-1.96)	0.003		
rs10860361	APAF1	AA	200 (29.1)	136 (27.9)	1.00 (reference)	1.00 (reference)			
		AG	349 (50.8)	252 (51.6)	0.94 (0.72-1.24)	0.94 (0.72-1.23)	0.650	- · ·	
		GG	138 (20.1)	100 (20.5)	0.94 (0.67-1.32)	0.93 (0.67-1.31)	0.688	0.688	0.356
		AG+GG	487 (70.9)	352 (72.1)	0.94 (0.73-1.22)	0.94 (0.72-1.21)	0.623		
rs905238	BAX	AA	189 (27.5)	130 (26.6)	1.00 (reference)	1.00 (reference)			
		AG	330 (48.0)	228 (46.8)	1.00 (0.75-1.32)	0.99 (0.75-1.31)	0.928		A SEC
		GG	169 (24.5)	130 (26.6)	0.89 (0.65-1.23)	0.88 (0.64-1.21)	0.425	0.498	0.280
		AG+GG	499 (72.5)	358 (73.4)	0.96 (0.74-1.25)	0.95 (0.73-1.23)	0.686		
rs616130	BCL2L11	CC	193 (28.1)	123 (25.2)	1.00 (reference)	1.00 (reference)			
		AC	353 (51.3)	252 (51.6)	0.89 (0.68-1.18)	0.88 (0.66-1.16)	0.353		
		AA	142 (20.6)	113 (23.2)	0.80 (0.57-1.12)	0.80 (0.57-1.11)	0.182	0.192	0.168
		AC+AA	495 (71.9)	365 (74.8)	0.86 (0.66-1.13)	0.85 (0.65-1.11)	0.232		
rs10845479	BCL2L14	AA	379 (55.1)	265 (54.3)	1.00 (reference)	1.00 (reference)			DO BLE SES
		AG	256 (37.2)	192 (39.3)	0.93 (0.73-1.19)	0.93 (0.73-1.19)	0.565		
		GG	53 (7.7)	31 (6.4)	1.20 (0.75-1.91)	1.23 (0.77-1.97)	0.388	0.879	0.223
		AG+GG	309 (44.9)	223 (45.7)	0.97 (0.77-1.22)	0.97 (0.77-1.23)	0.811		
rs366542	BID	CC	158 (23.0)	120 (24.5)	1.00 (reference)	1.00 (reference)			
		тс	351 (51.0)	253 (51.8)	1.05 (0.79-1.40)	1.06 (0.79-1.41)	0.705		C. C. C.
		Π	179 (26.0)	115 (23.6)	1.18 (0.85-1.65)	1.20 (0.86-1.67)	0.296	0.323	0.216
		TC+TT	530 (77.0)	368 (75.4)	1.09 (0.83-1.44)	1.10 (0.84-1.45)	0.493		

 Table 30. Association between Apoptotic polymorphisms and disease aggressiveness among MED

dbSNP ID	Genes	Allele	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adjusted OR (95%CI)*	p value*	p trend	MDRpt p value
rs4988366	BIK	AA	550 (79.9)	403 (82.6)	1.00 (reference)	1.00 (reference)			
		AG	130 (18.9)	81 (16.6)	1.18 (0.87-1.60)	1.19 (0.87-1.62)	0.270		
		GG	8 (1.2)	4 (0.8)	1.47 (0.44-4.90)	1.50 (0.45-5.04)	0.509	0.236	0.207
		AG+GG	138 (20.1)	85 (17.4)	1.19 (0.88-1.61)	1.20 (0.89-1.62)	0.227		
rs10503786	BNIP3L	CC	328 (48.8)	235 (49.2)	1.00 (reference)	1.00 (reference)			
		тс	294 (43.8)	189 (39.5)	1.11 (0.87-1.43)	1.11 (0.86-1.42)	0.424		
		Π	50 (7.4)	54 (11.3)	0.66 (0.44-1.01)	0.66 (0.44-1.01)	0.055	0.367	0.208
		TC+TT	344 (51.2)	243 (50.8)	1.01 (0.80-1.28)	1.01 (0.80-1.28)	0.946		
rs12870	DIABLO	GG	242 (35.2)	146 (29.9)	1.00 (reference)	1.00 (reference)			
		AG	328 (47.7)	250 (51.2)	0.79 (0.61-1.03)	0.80 (0.61-1.04)	0.091		
		AA	118 (17.1)	92 (18.9)	0.77 (0.55-1.09)	0.78 (0.55-1.10)	0.151	0.092	0.171
		AG+AA	446 (64.8)	342 (70.1)	0.79 (0.61-1.01)	0.79 (0.62-1.02)	0.067		
rs1539243	IKBKE	CC	502 (73.0)	341 (69.9)	1.00 (reference)	1.00 (reference)	A Company and and		
		тс	172 (25.0)	125 (25.6)	0.94 (0.72-1.22)	0.95 (0.73-1.24)	0.712		
		Π	14 (2.0)	22 (4.5)	0.43 (0.22-0.86)	0.44 (0.22-0.88)	0.200	0.075	0.248
		TC+TT	186 (27.0)	147 (30.1)	0.86 (0.67-1.11)	0.88 (0.68-1.13)	0.310		
rs11688	JUN	GG	608 (88.4)	446 (91.2)	1.00 (reference)	1.00 (reference)			
		AG	79 (11.5)	42 (8.6)	1.38 (0.93-2.05)	1.38 (0.93-2.04)	0.112	0.084	0.243
		AG+AA	80 (11.6)	42 (8.6)	1.40 (0.94-2.07)	1.40 (0.94-2.07)	0.097		a harden see
rs4727666	PIK3CG	AA	447 (65.5)	301 (62.3)	1.00 (reference)	1.00 (reference)			
		AG	207 (30.3)	162 (33.6)	0.86 (0.67-1.11)	0.86 (0.66-1.10)	0.225		
		GG	29 (4.2)	20 (4.1)	0.98 (0.54-1.76)	0.98 (0.54-1.76)	0.934	0.372	0.200
		AG+GG	236 (35.5)	182 (37.7)	0.87 (0.69-1.11)	0.87 (0.68-1.11)	0.255		

Table 30. Association between Apoptotic polymorphisms and disease aggressiveness among MED, continued

dbSNP ID	Genes	Allele	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adjusted OR (95%Cl)*	p value*	p trend	MDRpt p value
rs281508	PRKCE	GG	368 (53.5)	279 (57.2)	1.00 (reference)	1.00 (reference)			
		TG	279 (40.5)	170 (34.8)	1.24 (0.97-1.59)	1.24 (0.97-1.59)	0.089		
		Π	41 (6.0)	39 (8.0)	0.80 (0.50-1.27)	0.80 (0.50-1.27)	0.334	0.654	0.102
		TG+TT	320 (46.5)	209 (42.8)	1.16 (0.92-1.47)	1.16 (0.91-1.46)	0.226		
rs571715	PRKCQ	π	432 (62.9)	329 (67.7)	1.00 (reference)	1.00 (reference)			
		тс	221 (32.2)	138 (28.4)	1.22 (0.94-1.58)	1.23 (0.95-1.59)	0.119		
		cc	34 (4.9)	19 (3.9)	1.36 (0.76-2.43)	1.37 (0.76-2.44)	0.293	0.086	0.178
		TC+CC	255 (37.1)	157 (32.3)	1.24 (0.97-1.58)	1.24 (0.97-1.59)	0.082		
rs585881	PRKCQ	Π	439 (63.8)	332 (68.0)	1.00 (reference)	1.00 (reference)			
		тс	217 (31.5)	138 (28.3)	1.19 (0.92-1.54)	1.20 (0.93-1.55)	0.173		
		сс	32 (4.7)	18 (3.7)	1.34 (0.74-2.44)	1.35 (0.74-2.45)	0.328	0.123	0.206
		TC+CC	249 (36.2)	156 (32.0)	1.21 (0.94-1.54)	1.21 (0.95-1.55)	0.124		
rs6442322	RAF1	AA	203 (29.6)	141 (29.2)	1.00 (reference)	1.00 (reference)			
		AG	350 (51.1)	223 (46.2)	1.09 (0.83-1.43)	1.08 (0.82-1.42)	0.580		a state
		GG	132 (19.3)	119 (24.6)	0.77 (0.56-1.07)	0.76 (0.55-1.06)	0.105	0.168	0.142
		AG+GG	482 (70.4)	342 (70.8)	0.98 (0.76-1.26)	0.97 (0.75-1.25)	0.811		
rs11135693	TNFRSF10B	СС	330 (48.0)	251 (51.5)	1.00 (reference)	1.00 (reference)		-	
		AC	293 (42.6)	196 (40.3)	1.14 (0.89-1.45)	1.14 (0.89-1.46)	0.296		
		AA	65 (9.4)	40 (8.2)	1.24 (0.81-1.89)	1.25 (0.82-1.92)	0.307	0.210	0.182
		AC+AA	358 (52.0)	236 (48.5)	1.15 (0.92-1.46)	1.16 (0.92-1.46)	0.217	1	And the second
rs4149576	TNFRSF1A	AA	138 (20.2)	97 (20.1)	1.00 (reference)	1.00 (reference)			
		AG	320 (46.9)	232 (48.0)	0.97 (0.71-1.32)	0.99 (0.72-1.34)	0.923		
	Statistics.	GG	224 (32.5)	154 (31.9)	1.02 (0.73-1.42)	1.04 (0.75-1.45)	0.814	0.849	0.343
		AG+GG	554 (79.4)	386 (79.9)	0.99 (0.74-1.33)	1.01 (0.75-1.35)	0.962		

 Table 30. Association between Apoptotic polymorphisms and disease aggressiveness among MED, continued

Since the apoptotic SNP panel contained 173 targets, we had to use the SURF & TuRF filter in order to conduct the analysis. To analysis the entire panel would require MDR to evaluate more than 5 million one-, two-, and three-way combinations. Since it is not computationally possible to exhaustively analyze all 173 SNPs, we used the SURF & TuRF filter for the top 50 percentile. This feature allows MDR to rank and select apoptotic polymorphisms most likely to be associated with disease aggressiveness and reduces the number of pair-wise and three-way combinations to amount that is possible to analyze (i.e., approximately 643,500).

For the filtered apoptotic SNP datafile MDR identified *AKT3_rs12031994* as the best single factor model, but permutation testing indicated this finding was not statistically significant [*See Table 31*]. However, MDR modeling and permutation testing found this SNP combined with *PRKCQ_rs571715* was the best predictor of PCA aggressiveness (CVC = 8/10; p = 0.024).

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor AKT3_rs12031994	86	6/10	0.533	0.095
<u>Two Factor</u> AKT3_rs12031994 PRKCQ_rs571715	7396	8/10	0.542	0.024
<u>Three Factor</u> BAX_rs905238 BCL2L14_rs10845479 RAF1_rs6442322	636056	5/10	0.538	0.072

Table 31.	Top 50th Percentile MDR models for apoptotic SNPs and prostate cancer
aggressive	eness among MED (adjusted for age and family history)

When the apoptotic SNPs were visualized using hIG, we also observed two synergistic interactions: $BCL2L14_rs10845479$ - $BAX_rs905238$ (IG = 0.92%) and $BCL2L14_rs10845479$ - $BCL2L11_rs724710$ (IG = 0.77%) [See Figure 14]. Although LR twoanalysis did not find the AKT3-PRKCQ significant (p ≥ 0.102), the BCL2L14-BAX and BCL2L14-BCL2L11 combinations were each associated with increased PCA aggressiveness [OR (95%CI) = 1.72 (1.20-2.45); p = 0.003 and OR (95%CI) = 1.44 (1.07-1.95); p = 0.017, respectively]; See Table 32].

The combined effects of $BCL214_rs10845479$ -BAX_rs905238 and $BCL214_rs10845479$ - $BCL2L11_rs724710$ yield an information gain of 0.92% and 0.77%, respectively; compared to considering any on these loci individually BCL2L14 (IG = 0.07%), BAX (IG = 0.10%), or BCL2L11 (IG = 0.05%).

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% Cl)*	p value	interaction p value
AKT3_rs12031994	СС	0	1.00 (reference)	1.00 (reference)		
PRKCQ_rs571715	СС	1	1.84 (1.43-2.38)	1.86 (1.40-2.40)	0.102	
		2	1.37 (0.93-2.03)	1.39 (0.94-2.06)	0.915	0.013
	Sales -	≥3	1.04 (0.51-2.13)	1.04 (0.51-2.13)	0.484	
BCL2L14_rs10845479	GG	0	1.00 (reference)	1.00 (reference)		
BAX_rs905238	π	1	1.74 (1.22-2.48)	1.72 (1.20-2.45)	0.003	
	A Start B	2	1.11 (0.78-1.57)	1.10 (0.77-1.56)	0.599	0.055
		≥3	1.26 (0.83-1.91)	1.23 (0.81-1.88)	0.326	
BCL2L14_rs10845479	GG	0	1.00 (reference)	1.00 (reference)		
BCL2L11_rs724710	тт	1	1.45 (1.07-1.95)	1.44 (1.07-1.95)	0.017	
		2	0.97 (0.70-1.34)	0.97 (0.70-1.34)	0.838	0.042
		≥3	0.95 (0.57-1.59)	0.95 (0.57-1.60)	0.867	

Table 32. Association between apoptotic gene-gene interactions & PCAaggressiveness among MED

*Adjusted OR are adjusted for age & family history

SPECIFIC AIM 2 FINDINGS - MAD SUBJECTS

Among MAD subjects, we examined 15 apoptotic polymorphisms within our OSR panel as predictors of PCA progression as measured by Tumor Stage (i.e., Gleason score). The study population consisted of 137 case subjects, (68 aggressive and 69 non-aggressive). LR analysis of independent SNP effects did not reveal any significant associations in disease aggressiveness ($p \ge 0.062$) [See Table 33].

dbSNP ID	Genes	Allele	Low N (%)*	High N (%)*	OR (95%CI)	Adjusted OR (95%Cl)**	p value**	p trend	MDRpt p value
rs4645878	BAX	CC	18 (33.3)	28 (50.0)	1.00 (reference)	1.00 (reference)			
		СТ	29 (53.7)	21 (37.5)	0.47 (0.21-1.05)	0.43 (0.19-1.00)	0.049		
		Π	7 (13.0)	7 (12.5)	0.64 (0.19-2.14)	0.64 (0.19-2.20)	0.482	0.188	0.272
		CT+TT	36 (66.7)	28 (50.0)	0.50 (0.23-1.08)	0.47 (0.21-1.04)	0.062		
rs3789068	BCL2L11	Π	21 (38.9)	16 (30.2)	1.00 (reference)	1.00 (reference)			
		TC	29 (53.7)	30 (56.6)	1.36 (0.59-3.10)	1.61 (0.66-3.89)	0.291		
		cc	4 (7.4)	7 (13.2)	2.30 (0.57-9.22)	2.64 (0.64-10.95)	0.182	0.232	0.263
		TC+CC	33 (61.1)	37 (69.8)	1.47 (0.66-3.28)	1.75 (0.74-4.11)	0.200		
rs4488761	BCL2L13	AA	19 (33.9)	18 (32.7)	1.00 (reference)	1.00 (reference)	and the second		
		AG	21 (37.5)	27 (49.1)	1.36 (0.57-3.21)	1.39 (0.58-3.34)	0.461		
		GG	16 (28.6)	10 (18.2)	0.66 (0.24-1.83)	0.66 (0.24-1.87)	0.437	0.517	0.159
		AG+GG	37 (66.1)	37 (67.3)	1.06 (0.48-2.33)	1.07 (0.48-2.40)	0.862		
rs6488494	BCL2L14	Π	16 (28.1)	16 (28.6)	1.00 (reference)	1.00 (reference)			
		тс	26 (45.6)	27 (48.2)	1.04 (0.43-2.50)	0.96 (0.39-2.40)	0.931		The second
		cc	15 (26.3)	13 (23.2)	0.87 (0.31-2.39)	0.79 (0.28-2.25)	0.660	0.793	0.262
		TC+CC	41 (71.9)	40 (71.4)	0.98 (0.43-2.21)	0.90 (0.38-2.11)	0.805		
rs1883263	BIK	AA	41 (74.6)	48 (87.3)	1.00 (reference)	1.00 (reference)		4	
		AC+CC	14 (25.5)	7 (12.7)	0.43 (0.16-1.16)	0.45 (0.16-1.23)	0.120	0.095	0.326
rs738276	BIK	GG	22 (48.9)	23 (41.8)	1.00 (reference)	1.00 (reference)			
		GA+AA	23 (51.1)	32 (58.2)	1.33 (0.60-2.94)	1.30 (0.59-2.91)	0.517	0.222	0.224
rs6509364	CARD8	CC	35 (63.6)	35 (68.6)	1.00 (reference)	1.00 (reference)			
		CT+TT	20 (36.4)	13 (25.5)	0.80 (0.36-1.79)	0.83 (0.37-1.88)	0.656	0.932	0.272
rs6509366	CARD8	GG	35 (62.5)	30 (57.7)	1.00 (reference)	1.00 (reference)			
		GA	18 (32.1)	18 (34.6)	1.17 (0.52-2.64)	1.17 (0.52-2.67)	0.705		
		AA	3 (5.4)	4 (7.7)	1.56 (0.32-7.51)	1.46 (0.30-7.10)	0.643	0.547	0.336
	a grant from the	GA+AA	21 (37.5)	22 (42.3)	1.22 (0.57-2.64)	1.21 (0.56-2.64)	0.625		

Table 33. Association between Apoptotic polymorphisms and Tumor Grade among MAD

*Low Tumor Grade: Gleason score: >7; High Tumor Grade: Gleason score: <7; **Adjusted Odds Ratios (ORs) are adjusted for age, family history, & WAA

dbSNP ID	Genes	Allele	Low N (%)*	High N (%)*	OR (95%CI)	Adjusted OR (95%Cl)**	p value**	p trend	MDRpt p value
rs1049216	CASP3	Π	37 (69.8)	35 (67.3)	1.00 (reference)	1.00 (reference)			
		тс	13 (24.5)	15 (28.9)	1.22 (0.51-2.93)	1.21 (0.50-2.95)	0.670		
		cc	3 (5.7)	2 (3.9)	0.71 (0.11-4.47)	0.68 (0.11-4.38)	0.688	0.951	0.371
		TC+CC	16 (30.2)	17 (32.7)	1.12 (0.49-2.56)	1.11 (0.48-2.57)	0.803		
rs507879	CASP5	AA	11 (19.6)	6 (10.7)	1.00 (reference)	1.00 (reference)	North State		
		AG	27 (48.2)	29 (51.8)	1.97 (0.64-6.06)	2.50 (0.70-8.94)	0.159		and the
		GG	18 (32.1)	21 (37.5)	2.14 (0.66-6.94)	2.14 (0.56-8.11)	0.265	0.268	0.235
		AG+GG	45 (80.4)	50 (89.3)	2.04 (0.70-5.96)	2.34 (0.69-7.93)	0.171		
rs537093	CASP5	GG	30 (53.6)	28 (50.9)	1.00 (reference)	1.00 (reference)			
		GA+AA	26 (46.4)	27 (49.1)	1.11 (0.53-2.34)	1.12 (0.53-2.39)	0.764	0.779	0.431
rs6747918	CASP8	AA	15 (39.5)	14 (41.2)	1.00 (reference)	1.00 (reference)			
		AG	3 (7.9)	3 (8.8)	1.07 (0.19-6.22)	0.97 (0.16-5.77)	0.971		
		GG	20 (52.6)	17 (50.0)	0.91 (0.34-2.41)	0.85 (0.32-2.31)	0.755	0.847	0.433
-		AG+GG	23 (60.5)	20 (58.8)	0.93 (0.36-2.39)	0.87 (0.33-2.28)	0.774		
rs1052576	CASP9	GG	19 (34.6)	27 (48.2)	1.00 (reference)	1.00 (reference)			and the second
		GA	29 (52.7)	24 (42.9)	0.58 (0.26-1.29)	0.59 (0.27-1.32)	0.203		
		AA	7 (12.7)	5 (8.9)	0.50 (0.14-1.82)	0.51 (0.14-1.86)	0.306	0.163	0.163
		GA+AA	36 (65.5)	29 (51.8)	0.57 (0.26-1.22)	0.58 (0.27-1.24)	0.160		
rs12817549	CRADD	Π	32 (57.1)	26 (48.2)	1.00 (reference)	1.00 (reference)			and the state
		тс	19 (33.9)	19 (35.2)	1.23 (0.54-2.79)	1.27 (0.56-2.93)	0.568		
		cc	5 (8.9)	9 (16.7)	2.22 (0.66-7.43)	2.29 (0.68-7.76)	0.182	0.215	0.295
		TC+CC	24 (42.9)	28 (51.9)	1.44 (0.68-3.05)	1.49 (0.70-3.19)	0.305		
rs3858606	CRADD	GG	13 (24.5)	11 (20.0)	1.00 (reference)	1.00 (reference)			
		GA	32 (60.4)	30 (54.6)	1.11 (0.43-2.85)	1.12 (0.43-2.92)	0.815		
		AA	8 (15.1)	14 (25.5)	2.07 (0.63-6.75)	2.17 (0.65-7.19)	0.205	0.238	0.261
		GA+AA	40 (75.5)	44 (80.0)	1.30 (0.52-3.23)	1.32 (0.53-3.33)	0.551		Street all

Table 33. Association between Apoptotic polymorphisms and Tumor Grade among MAD, continued

*Low Tumor Grade: Gleason score: >7; High Tumor Grade: Gleason score: <7; **Adjusted Odds Ratios (ORs) are adjusted for age, family history, & WAA

MDR revealed the two factor model containing CASP9_rs1052576-

BCL2L14_rs6488494 as the best predictor of aggressiveness (CVC = 10/10; p=0.011) [See Table 34]. Due to limited sample size this interaction was confirmed visually by the entropy graph which showed a 9.38% IG attributable to this gene combination [See Figure 15]. Moderately synergistic interactions were also detected between CASP9-CASP5 (IG = 4.80%) and *BCL2L13-BCL2L14* (IG = 3.54%), however LR analysis was not able validate any of these combinations as statistically significant ($p \ge 0.114$) [See Table 35].

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
<u>One Factor</u> BCL2L13_rs4488761	15	5/10	0.498	0.501
<u>Two Factor</u> CASP9_rs1052576 BCL2L14_rs6488494	225	10/10	0.681	0.011
<u>Three Factor</u> CASP9_rs1052576 CASP5_rs507879 BCL2L14 rs6488494	3375	5/10	0.596	0.097

 Table 34. Unfiltered MDR models for apoptotic gene variations and PCA aggressiveness among MAD (adjusted for age and family history)

Figure 1. Interaction entropy graph for apoptotic gene variants and PCA aggressiveness among MAD subjects

This graphical model describes the percent entropy that is explained by each apoptotic SNP or a combination of two loci. The *BCL2L14-CASP9* interaction provides an IG=9.38%, compared to either *BCL2L14* or *CASP5* considered individually (0.73% & 1.97%, respectively).

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% CI)*	p value*	interaction p value
BCL2L14_rs6488494	СС	0-2	1.00 (reference)	1.00 (reference)		
CASP9_rs1052576	AA	2-3	0.77 (0.34-1.73)	0.73 (0.32-1.65)	0.440	0.961
	「日本の	4	0.44 (0.04-4.99)	0.43 (0.04-5.15)	0.502	
CASP9_rs1052576	AA	0-2	1.00 (reference)	1.00 (reference)	A. South	
CASP5_rs507879	GG	2-3	1.44 (0.65-3.17)	1.41 (0.63-3.14)	0.403	0.545
		4	0.51 (0.09-2.96)	0.59 (0.10-3.46)	0.555	
BCL2L14_rs6488494	CC	0-2	1.00 (reference)	1.00 (reference)		
BCL2L13_rs4488761	GG	2-3	1.02 (0.47-2.22)	0.96 (0.43-2.11)	0.909	0.114
	and the state	4	0.15 (0.02-1.27)	0.15 (0.02-1.31)	0.086	

Table 35. Association between apoptotic gene-gene interactions & PCAaggressiveness among MAD

*Adjusted OR are adjusted for age & WAA

SPECIFIC AIM 3 FINDINGS – MED SUBJECTS

We assessed the effects 27 environmental OSR factors along with our panel of 219 gene variants in relation to PCA development. We evaluated 27 variables related to dietary habits, vitamin/ supplement intake and exposure to meat- and cigarette-derived carcinogens using data collected from 2,277 CGEMS project participants (1176 cases, 1101 controls). Risk categories for dietary intakes and vitamin/supplement use were based on values established in the 2005 USDA Dietary Guidelines Report & NIH Office of Dietary Supplements.¹²⁰⁻¹²¹ However, variables related to meat consumption, meat cooking methods, and meat-derived carcinogens, were divided into quartiles using data for the control subjects. Statistical analyses were conducted using the 1st quartile as the low risk category.

LR analysis found men in the 4nd quartile of MeIQx exposure (i.e., \geq 46.64 ng/day) were associated with a 23% reduction in PCA risk [OR (95%CI) = 0.77 (0.61-0.97); p = 0.025; *See Table 36*]. We also observed a decrease in disease risk among current smokers in contrast to never smokers [OR (95%CI) = 0.69 (0.51-0.94); p = 0.018].

Dietary Factor	N (%)	Cases N (%)	Controls N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Fruit (servings/day)	≥4	188 (16.2)	159 (14.3)	1.00 (reference)	1.00 (reference)			
	< 4	975 (83.8)	952 (85.7)	0.87 (0.69-1.09)	0.88 (0.70-1.10)	0.260	0.220	0.238
Vegetables (servings/day)	≥5	256 (22.0)	280 (25.2)	1.00 (reference)	1.00 (reference)			
	< 5	907 (78.0)	831 (74.8)	1.19 (0.98-1.45)	1.20 (0.99-1.46)	0.067	0.073	0.237
Total Meat (g/day)	≤ 129.33	330 (28.4)	278 (25.0)	1.00 (reference)	1.00 (reference)			
	129.33-174.54	294 (25.3)	303 (27.3)	0.82 (0.65-1.03)	0.82 (0.66-1.04)	0.096		
	174.54-252.89	268 (23.0)	252 (22.7)	0.90 (0.71-1.14)	0.92 (0.73-1.16)	0.474	0.173	0.131
	≥ 252.89	271 (23.3)	278 (25.0)	0.82 (0.65-1.04)	0.83 (0.65-1.05)	0.111		
	> 129.33	833 (71.6)	833 (75.0)	0.84 (0.70-1.02)	0.85 (0.71-1.03)	0.100		
White Meat (g/day)	≤ 26.21	288 (24.8)	278 (25.0)	1.00 (reference)	1.00 (reference)			
	26.21-44.63	357 (30.7)	319 (28.8)	1.08 (0.86-1.35)	1.11 (0.88-1.39)	0.378		
	44.63-71.83	249 (21.4)	236 (21.2)	1.02 (0.80-1.30)	1.04 (0.81-1.33)	0.754	0.470	0.187
	≥ 71.83	269 (23.1)	278 (25.0)	0.93 (0.74-1.18)	0.96 (0.76-1.22)	0.747		
	> 26.21	875 (75.2)	833 (75.0)	1.01 (0.84-1.23)	1.04 (0.86-1.26)	0.689		
Red Meat (g/day)	≤ 53.90	317 (27.3)	278 (25.0)	1.00 (reference)	1.00 (reference)			
	53.90-82.72	320 (27.5)	313 (28.2)	0.90 (0.72-1.12)	0.91 (0.73-1.15)	0.433		
	82.72-124.19	249 (21.4)	242 (21.8)	0.90 (0.71-1.15)	0.91 (0.71-1.15)	0.418	0.287	0.181
	≥ 124.19	277 (23.8)	278 (25.0)	0.87 (0.69-1.10)	0.88 (0.70-1.12)	0.301		
	> 53.90	846 (72.7)	833 (75.0)	0.89 (0.74-1.07)	0.90 (0.75-1.09)	0.282		
Processed Meat (g/day)	≤ 6.08	322 (27.7)	279 (25.1)	1.00 (reference)	1.00 (reference)			
	6.08-11.42	315 (27.1)	317 (28.6)	0.86 (0.69-1.08)	0.87 (0.70-1.10)	0.252	and the second	
	11.42-20.96	210 (18.0)	237 (21.3)	0.77 (0.60-0.98)	0.79 (0.61-1.01)	0.056	0.745	0.146
	≥ 20.96	316 (27.2)	278 (25.0)	0.99 (0.79-1.24)	1.00 (0.80-1.26)	0.995		
	> 6.08	841 (72.3)	832 (74.9)	0.88 (0.73-1.06)	0.89 (0.74-1.08)	0.232		

Table 36. Single effects of Environmental OSR Factors and risk among MED

*Adjusted Odds Ratios (OR) are adjusted for age and family history

Dietary Factor	N (%)	Cases N (%)	Controls N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Red Meat not processed	≤ 38.65	314 (27.0)	278 (25.0)	1.00 (reference)	1.00 (reference)			
(g/day)	38.65-62.14	324 (27.9)	326 (29.3)	0.88 (0.70-1.10)	0.88 (0.71-1.10)	0.272		
	62.14-95.72	251 (21.6)	229 (20.7)	0.97 (0.76-1.24)	0.98 (0.77-1.25)	0.887	0.402	0.203
	≥ 95.72	274 (23.5)	278 (25.0)	0.87 (0.69-1.10)	0.88 (0.70-1.11)	0.281		
	> 38.65	849 (73.0)	833 (75.0)	0.90 (0.75-1.09)	0.91 (0.75-1.10)	0.321		
Red Meat rare/med done	≤ 3.86	278 (23.9)	273 (24.6)	1.00 (reference)	1.00 (reference)			
(g/day)	3.86-15.98	348 (29.9)	298 (26.8)	1.15 (0.91-1.44)	1.17 (0.93-1.47)	0.185		
	15.98-32.41	257 (22.1)	262 (23.6)	0.96 (0.76-1.22)	0.99 (0.78-1.26)	0.913	0.560	0.155
	≥ 32.41	280 (24.1)	278 (25.0)	0.99 (0.78-1.25)	1.00 (0.79-1.28)	0.971		
	> 3.86	885 (76.1)	838 (75.4)	1.04 (0.86-1.26)	1.06 (0.87-1.28)	0.570		
Red Meat well/very well	≤ 4.95	319 (27.4)	278 (25.0)	1.00 (reference)	1.00 (reference)			
done (g/day)	4.95-9.84	320 (27.5)	299 (27.0)	0.93 (0.75-1.17)	0.94 (0.75-1.18)	0.605		
	9.84-19.82	250 (21.5)	256 (23.0)	0.85 (0.67-1.08)	0.86 (0.68-1.09)	0.215	0.144	0.156
	≥ 19.82	274 (23.6)	278 (25.0)	0.86 (0.67-1.08)	0.86 (0.68-1.09)	0.213		
	> 4.95	844 (72.6)	833 (75.0)	0.88 (0.73-1.07)	0.89 (0.74-1.07)	0.226		

 Table 36. Single effects of Environmental OSR Factors and risk among MED, continued

*Adjusted Odds Ratios (OR) are adjusted for age and family history

Dietary Factor	N (%)	Cases N (%)	Controls N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Kcal from diet (g/day)	2000-3000	559 (48.1)	522 (47.0)	1.00 (reference)	1.00 (reference)			
	< 2000	395 (33.9)	391 (35.2)	0.94 (0.79-1.13)	0.94 (0.78-1.13)	0.480	0.768	0.276
	> 3000	209 (18.0)	198 (17.8)	0.97 (0.79-1.24)	0.98 (0.78-1.24)	0.884		
Fat from diet (g/day)	≤ 73.11	626 (53.8)	590 (53.1)	1.00 (reference)	1.00 (reference)			
	> 73.11	537 (46.2)	521 (46.9)	0.97 (0.82-1.15)	0.96 (0.82-1.14)	0.663	0.730	0.348
Saturated Fat from diet	≤ 24.95	628 (54.0)	602 (54.2)	1.00 (reference)	1.00 (reference)			
(g/day)	> 24.95	535 (46.0)	509 (45.8)	1.01 (0.85-1.19)	1.00 (0.85-1.18)	0.976	0.929	0.407
Body Mass Index (BMI)	Under/normal weight	305 (26.2)	271 (24.4)	1.00 (reference)	1.00 (reference)			
	Overweight	612 (52.6)	574 (51.7)	0.95 (0.78-1.16)	0.97 (0.79-1.19)	0.758	0.111	0.192
	Obese	246 (21.2)	266 (23.9)	0.82 (0.65-1.04)	0.84 (0.66-1.06)	0.143		
Physically Active (≥30 min	Yes	556 (47.8)	494 (44.5)	1.00 (reference)	1.00 (reference)			
/day)	No	607 (52.2)	617 (53.5)	0.87 (0.74-1.03)	0.88 (0.74-1.04)	0.125	0.110	0.234
Vitamin A (µg/day)	≥ 900	1054 (90.6)	1008 (90.6)	1.00 (reference)	1.00 (reference)		All and	
	< 900	110 (9.4)	105 (9.4)	1.00 (0.76-1.33)	1.03 (0.77-1.36)	0.867	0.990	0.421
Vitamin C (mg/day)	≥ 90	1103 (94.8)	1042 (93.6)	1.00 (reference)	1.00 (reference)		Martin G	
	< 90	61 (5.2)	71 (6.4)	0.81 (0.57-1.16)	0.84 (0.59-1.19)	0.317	0.246	0.383
Vitamin E (IU/day)	≥ 22.4	1014 (87.1)	952 (85.5)	1.00 (reference)	1.00 (reference)		all and	
	< 22.4	150 (12.9)	161 (14.5)	0.88 (0.69-1.11)	0.89 (0.70-1.13)	0.325	0.273	0.332
Zinc (mg/day)	≥11	838 (72.0)	775 (69.6)	1.00 (reference)	1.00 (reference)			
	<11	326 (28.0)	338 (30.4)	0.89 (0.74-1.07)	0.88 (0.74-1.06)	0.179	0.215	0.215
Selenium (µg/day)	≥ 55	1128 (97.0)	1085 (97.7)	1.00 (reference)	1.00 (reference)			
	< 55	35 (3.0)	26 (2.3)	1.30 (0.77-2.17)	1.30 (0.77-2.17)	0.324	0.325	0.390
Alcohol Consumption	≥2	960 (82.6)	923 (83.1)	1.00 (reference)	1.00 (reference)			
(drinks /day)	<2	203 (17.4)	188 (16.9)	1.04 (0.84-1.29)	1.04 (0.83-1.29)	0.747	0.736	0.427

Table 36. Single effects of Environmental OSR Factors and risk among MED, continued

*Adjusted Odds Ratios (OR) are adjusted for age and family history

Dietary Factor	N (%)	Cases N (%)	Controls N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
MelQx (ng/day)	≤ 13.10	335 (28.8)	278 (25.0)	1.00 (reference)	1.00 (reference)	-		
	13.10-23.93	310 (26.7)	278 (25.0)	0.93 (0.74-1.16)	0.94 (0.75-1.00)	0.601		
	23.93-46.64	263 (22.6)	277 (25.0)	0.79 (0.63-0.99)	0.79 (0.63-1.00)	0.051	0.009	
	≥ 46.64	255 (21.9)	278 (25.0)	0.76 (0.60-0.96)	0.77 (0.61-0.97)	0.025	0.042	0.055
	> 13.10	828 (71.2)	833 (75.0)	0.83 (0.69-0.99)	0.83 (0.69-1.01)	0.057		
PhIP (ng/day)	≤ 36.74	297 (25.5)	278 (25.0)	1.00 (reference)	1.00 (reference)			
	36.74-73.98	328 (28.2)	300 (27.0)	1.02 (0.82-1.28)	1.04 (0.83-1.31)	0.722		
	73.98-156.86	283 (24.3)	255 (23.0)	1.04 (0.82-1.31)	1.06 (0.84-1.35)	0.620	0.251	
	≥ 156.86	255 (21.9)	278 (25.0)	0.86 (0.68-1.09)	0.89 (0.70-1.13)	0.323	0.778	0.166
	> 36.75	866 (74.5)	833 (75.0)	0.97 (0.81-1.18)	1.00 (0.82-1.21)	0.983		
DiMeIQx (ng/day)	≤ 0.39	308 (26.5)	279 (25.1)	1.00 (reference)	1.00 (reference)			
	0.39-1.22	365 (31.4)	297 (26.8)	1.11 (0.89-1.39)	1.12 (0.89-1.40)	0.340		
	1.22-2.58	246 (21.1)	257 (23.1)	0.87 (0.68-1.10)	0.88 (0.69-1.12)	0.297	0.014	
	≥ 2.58	244 (21.0)	278 (25.0)	0.80 (0.63-1.01)	0.81 (0.64-1.02)	0.074	0.456	0.067
	> 0.39	855 (73.5)	832 (75.0)	0.93 (0.77-1.12)	0.94 (0-78-1.14)	0.522		
BaP (mcg/day)	≤ 1.705	303 (26.0)	278 (25.0)	1.00 (reference)	1.00 (reference)			
	1.705-9.14	330 (28.4)	294 (26.5)	1.03 (0.82-1.29)	1.03 (0.82-1.29)	0.792		
	9.14-44.585	288 (24.8)	261 (23.5)	1.01 (0.80-1.28)	1.02 (0.81-1.29)	0.873	0.077	
	≥ 44.585	242 (20.8)	278 (25.0)	0.80 (0.63-1.01)	0.81 (0.63-1.02)	0.076	0.573	0.107
	> 1.705	860 (74.0)	833 (75.0)	0.95 (0.78-1.14)	0.95 (0.79-1.15)	0.621		
Tobacco Use	Never	477 (41.0)	421 (37.9)	1.00 (reference)	1.00 (reference)			
	Former	593 (51.0)	570 (51.3)	0.92 (0.77-1.09)	0.92 (0.77-1.09)	0.337	0.026	
	Current	93 (8.0)	120 (10.8)	0.68 (0.51-0.92)	0.69 (0.51-0.94)	0.018	0.128	0.178
	Ever [†]	686 (59.0)	690 (62.1)	0.88 (0.74-1.04)	0.88 (0.74-1.04)	0.135		

Table 36. Single effects of Environmental OSR Factors and risk among MED, continued

*Adjusted Odds Ratios (OR) are adjusted for age and family history

Although MDR modeling did not confirm any single effects observed by LR, a

significant association was found between consumption of White_meat-

Processed_meat- Well_done_red_meat (CVC = 7/10; p = 0.038) [See Table 37].

Table 37. Unfiltered MDR models for environmental OSR factors and prostate cancer risk among MED (adjusted for age and family history)

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor DiMelQx	27	6/10	0.497	0.544
<u>Two Factor</u> Processed_Meat Red_Meat_Well_Done	729	2/10	0.497	0.563
<u>Three Factor</u> White_meat_intake Processed_Meat Red_Meat_Well_Done	19683	7/10	0.534	0.038

hIG illustrated that the strongest risk effects were attributed to variables related to meat intake in our panel. Taken individually IG values were considerably less (i.e., IG $\leq 0.19\%$), compared to those obtained from the combined effects of *Processed_meat-Rare_red_*meat (0.38%); *Processed_meat-Well_done_red_*meat (0.30%); and *Processed_meat-White_meat* (0.29%) [*See Figure 16*]. LR modeling was used to validate these interactions, however only *Processed_meat-White_meat* was statistically significant [*See Table 38*]. This combination was associated with a decrease in risk comparing the highest quartiles of meat intake to the lowest quartiles [OR (95%CI) = 0.77 (0.60-0.98); p = 0.032].

Figure 1. Interaction entropy model for unfiltered environmental OSR panel and prostate cancer risk among MED

The combined effect of *Processed meat-Rare red meat* consumption yield an information gain of 0.38% in comparison to considering either *Processed_meat* or *Rare_red_meat* alone (IG = 0.19% and 0.10%, respectively).

Genes	Minor Category (g/day)	# Minor Category	OR (95% CI)	Adj OR (95% Cl)*	p value*	interaction p value
Processed Meat	≥ 20.96	0	1.00 (reference)	1.00 (reference)		
Red meat rare	≥ 124.19	1	1.11 (0.87-1.43)	1.09 (0.85-1.40)	0.506	
		2	0.96 (0.77-1.19)	0.97 (0.78-1.20)	0.780	0.181
	A CARLES	≥3	1.11 (0.88-1.41)	1.12 (0.89-1.43)	0.325	
Processed Meat	≥ 20.96	0	1.00 (reference)	1.00 (reference)		
Red meat well-done	≥ 19.82	1	0.89 (0.67-1.18)	0.88 (0.66-1.17)	0.368	
		2	0.95 (0.77-1.18)	0.97 (0.79-1.20)	0.791	0.256
		≥3	0.78 (0.61-0.99)	0.79 (0.62-1.01)	0.057	
Processed Meat	≥ 20.96	0	1.00 (reference)	1.00 (reference)		
White meat	≥ 71.83	1	0.98 (0.76-1.27)	0.96 (0.74-1.24)	0.744	
		2	0.96 (0.78-1.19)	0.97 (0.79-1.20)	0.806	0.942
		≥3	0.76 (0.60-0.97)	0.77 (0.60-0.98)	0.032	

 Table 38. Association between environment - environment interactions & PCA risk

 among MED

*Adjusted OR are adjusted for age & family history

To conduct MDR modeling for the entire genetic and environmental OSR panel in relation to disease risk, we again subjected the datafile to the SURF & TuRF filter. With MDR ranking and selecting factors most likely to be associated with PCA risk the number of possible one-, two-, and three-way combinations was reduced from over 14 million to about 1.3 million. Although this was still computationally challenging, MDR was able to carry out this analysis in roughly one week. Unfortunately, this analysis did not did not detect any models significantly associated with disease risk ($p \ge 0.289$) [*See Table 39*].

Table 39. Top 25th Percentile MDR models for OSR panel and PCA risk amon	g MED
(adjusted for age and family history)	

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor MelQx	61	5/10	0.494	0.603
<u>Two Factor</u> PRKCE_rs935673 MelQx	3721	6/10	0.503	0.420
<u>Three Factor</u> BNIP3L_rs10503786 White_meat_intake MelQx	226981	4/10	0.510	0.289

hIG revealed synergistic interactions between *White meat intake-POLI_rs8305* and *White meat intake-BNIP3L_rs10503786* [See Figure 17]. However, neither combination was significant in LR analysis ($p \ge 0.129$) [See Table 40].

Figure 2. Entropy graph for OSR panel and PCA risk among MED

The combined effect of *White meat intake-POLI_rs8305* yield an information gain of 0.28% in comparison to consumption of either *White meat* intake or *POLI_rs8305* individually (IG = 0.09% and 0.17%, respectively).
Genes	Minor Factors	# Minor Factors	OR (95% CI)	Adj OR (95% Cl)*	p value*	interaction p value
White_meat (g/day)	≥ 71.83	0	1.00 (reference)	1.00 (reference)		
POLI_rs8305	GG	1	1.17 (0.95-1.45)	1.18 (0.95-1.46)	0.129	
		2	0.98 (0.79-1.21)	0.98 (0.79-1.21)	0.816	0.073
		≥3	1.18 (0.90-1.54)	1.18 (0.90-1.54)	0.227	
White_meat (g/day)	≥ 71.83	0	1.00 (reference)	1.00 (reference)		
BNIP3L_rs10503786	т	1	0.86 (0.69-1.07)	0.86 (0.69-1.07)	0.174	
		2	1.09 (0.88-1.35)	1.10 (0.88-1.36)	0.402	0.477
		≥3	0.82 (0.63-1.07)	0.83 (0.64-1.08)	0.161	

Table 40. Association between OSR gene-environment interactions & PCA risk among MED

*Adjusted OR are adjusted for age & family history

When we evaluated our candidate OSR panel as predictors of disease aggressiveness LR identified several environmental factors that independently modified PCA progression. Subjects that had more than 2 alcoholic drinks per day were associated with a decrease in disease aggressiveness compared to those having less than 2 drinks daily [OR (95%CI) = 0.73 (0.54-0.99); p = 0.044; *See Table 41*]. We also observed a decrease in PCA aggressiveness among men in 3rd quartile of daily PhIP exposure (i.e., 73.98-156.86 ng/day) compared the men exposed to less than 36.74 ng each day [OR (95%CI) = 0.71 (0.51-0.99); p = 0.045].

Men in the 2nd quartile of processed meat consumption (i.e., 6.08-11.42 g/day) were associated with a 1.5-fold increase in disease aggressiveness in contrast to men who consume less than 6.08 g per day. In addition, men in the 2nd quartile for daily consumption of well-done or very well-done red meat (i.e., 4.95-9.84 g/day) were linked to increased disease aggressiveness compared to men in the 1st quartile (consuming less than 4.95 g per day) [OR (95%CI) = 1.38 (1.00-1.89); p = 0.049].

Dietary Factor	N (%)	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Fruit (servings/day)	≥4	584 (85.0)	403 (82.6)	1.00 (reference)	1.00 (reference)			
	< 4	103 (15.0)	85 (17.4)	1.20 (0.87-1.64)	1.16 (0.85-1.59)	0.352	0.264	0.288
Vegetables (servings/day)	≥ 5	547 (79.6)	370 (75.8)	1.00 (reference)	1.00 (reference)			
	< 5	140 (20.4)	118 (24.2)	1.25 (0.94-1.65)	1.22 (0.92-1.61)	0.169	0.121	0.206
Total Meat (g/day)	≤ 129.33	189 (27.5)	147 (30.1)	1.00 (reference)	1.00 (reference)			
	129.33-174.54	187 (27.2)	108 (22.1)	1.35 (0.98-1.86)	1.30 (0.94-1.80)	0.107		
	174.54-252.89	150 (21.9)	120 (24.6)	0.97 (0.70-1.34)	0.97 (0.70-1.33)	0.831	0.951	0.153
	≥ 252.89	161 (23.4)	113 (23.2)	1.11 (0.80-1.53)	1.06 (0.77-1.48)	0.712		
	> 129.33	498 (72.5)	341 (69.9)	1.14 (0.88-1.47)	1.10 (0.85-1.43)	0.453		
White Meat (g/day)	≤ 26.21	179 (26.1)	112 (23.0)	1.00 (reference)	1.00 (reference)			
	26.21-44.63	213 (31.0)	148 (30.3)	0.90 (0.66-1.24)	0.89 (0.65-1.22)	0.454	Seat State	
	44.63-71.83	146 (21.2)	106 (21.7)	0.86 (0.61-1.22)	0.83 (0.59-1.18)	0.295	0.116	0.175
	≥ 71.83	149 (21.7)	122 (25.0)	0.76 (0.55-1.07)	0.74 (0.53-1.04)	0.078	State State	
	> 26.21	508 (73.9)	376 (77.0)	0.85 (0.65-1.11)	0.82 (0.63-1.08)	0.162		
Red Meat (g/day)	≤ 53.90	185 (26.9)	137 (28.1)	1.00 (reference)	1.00 (reference)			
	53.90-82.72	198 (28.8)	123 (25.2)	1.19 (0.87-1.63)	1.18 (0.86-1.62)	0.302		
	82.72-124.19	137 (20.0)	116 (23.8)	0.88 (0.63-1.22)	0.87 (0.62-1.21)	0.392	0.996	0.146
	≥ 124.19	167 (24.3)	112 (22.9)	1.10 (0.80-1.53)	1.07 (0.77-1.48)	0.700		
	> 53.90	502 (73.1)	351 (71.9)	1.06 (0.82-1.37)	1.04 (0.80-1.35)	0.774		
Processed Meat (g/day)	≤ 6.08	179 (26.1)	148 (30.3)	1.00 (reference)	1.00 (reference)		Contraction of the	
	6.08-11.42	206 (29.8)	113 (23.2)	1.50 (1.09-2.06)	1.49 (1.08-2.05)	0.014		
	11.42-20.96	124 (18.0)	89 (18.2)	1.15 (0.81-1.63)	1.13 (0.80-1.61)	0.486	0.958	0.059
	≥ 20.96	179 (26.1)	138 (28.3)	1.07 (0.79-1.46)	1.06 (0.78-1.45)	0.707		
	> 6.08	508 (73.9)	340 (69.7)	1.24 (0.96-1.60)	1.22 (0.94-1.58)	0.127		

Table 41. Single effects of Environmental OSR Factors and PCA aggressiveness among MED

Dietary Factor	N (%)	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Red Meat not processed	≤ 38.65	188 (27.4)	132 (27.0)	1.00 (reference)	1.00 (reference)			
(g/day)	38.65-62.14	195 (28.4)	130 (26.6)	1.05 (0.77-1.44)	1.04 (0.76-1.42)	0.852		
	62.14-95.72	139 (20.2)	114 (23.4)	0.86 (0.61-1.19)	0.85 (0.61-1.18)	0.326	0.844	0.197
	≥ 95.72	165 (24.0)	112 (23.0)	1.03 (0.75-1.44)	1.00 (0.72-1.39)	0.999	Contraction of the	
	> 38.65	499 (72.6)	356 (73.0)	0.98 (0.76-1.28)	0.96 (0.74-1.25)	0.781		
Red Meat rare/med done	≤ 3.86	161 (23.4)	123 (25.2)	1.00 (reference)	1.00 (reference)			
(g/day)	3.86-15.98	225 (32.8)	125 (25.7)	1.38 (1.00-1.90)	1.36 (0.99-1.88)	0.060		
	15.98-32.41	129 (18.8)	130 (26.6)	0.76-0.54-1.06)	0.75 (0.54-1.06)	0.101	0.866	0.049
	≥ 32.41	172 (25.0)	110 (22.5)	1.20 (0.85-1.67)	1.17 (0.83-1.63)	0.375	Street.	
	> 3.86	526 (76.6)	365 (74.8)	1.10 (0.84-1.44)	1.09 (0.83-1.42)	0.555		
Red Meat well/very well	≤ 4.95	177 (25.8)	143 (29.3)	1.00 (reference)	1.00 (reference)			
done (g/day)	4.95-9.84	203 (29.5)	119 (24.4)	1.38 (1.01-1.89)	1.38 (1.00-1.89)	0.049	and the set	
	9.84-19.82	138 (20.1)	118 (24.2)	0.95 (0.68-1.31)	0.95 (0.68-1.32)	0.756	0.510	0.088
	≥ 19.82	169 (24.6)	108 (22.1)	1.26 (0.91-1.75)	1.26 (0.91-1.75)	0.170		
	> 4.95	510 (74.2)	345 (70.7)	1.19 (0.92-1.55)	1.19 (0.92-1.55)	0.183	the state	

 Table 41. Single effects of Environmental OSR Factors and PCA aggressiveness among MED, continued

Dietary Factor	N (%)	Aggressive Cases N (%)	Non-aggressive Cases N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
Kcal from diet (g/day)	2000-3000	237 (34.5)	161 (33.0)	1.00 (reference)	1.00 (reference)			
	< 2000	336 (48.9)	230 (47.1)	1.01 (0.78-1.31)	1.02 (0.78-1.32)	0.894	0.258	0.176
	> 3000	114 (16.6)	97 (19.9)	0.80 (0.59-1.11)	0.80 (0.58-1.10)	0.169		
Fat from diet (g/day)	≤ 73.11	381 (55.5)	252 (51.6)	1.00 (reference)	1.00 (reference)			
	> 73.11	306 (44.5)	236 (48.4)	0.86 (0.68-1.08)	0.85 (0.68-1.08)	0.179	0.196	0.186
Saturated Fat from diet	≤ 24.95	384 (55.9)	250 (51.2)	1.00 (reference)	1.00 (reference)			
(g/day)	> 24.95	303 (44.1)	238 (48.8)	0.83 (0.66-1.05)	0.83 (0.66-1.04)	0.110	0.114	0.140
Body Mass Index (BMI)	Under/normal weight	180 (26.2)	127 (26.0)	1.00 (reference)	1.00 (reference)			
	Overweight	350 (51.0)	272 (55.8)	0.91 (0.69-1.20)	0.90 (0.68-1.19)	0.452	0.273	0.156
	Obese	157 (22.8)	89 (18.2)	1.25 (0.88-1.76)	1.21 (0.85-1.71)	0.294		
Physically Active (≥30 min	Yes	333 (48.5)	229 (46.9)	1.00 (reference)	1.00 (reference)			
/day)	No	354 (51.5)	259 (53.1)	0.94 (0.75-1.19)	0.93 (0.74-1.18)	0.557	0.601	0.225
Vitamin A (µg/day)	≥ 900	620 (90.1)	444 (91.0)	1.00 (reference)	1.00 (reference)			
	< 900	68 (9.9)	44 (9.0)	1.11 (0.74-1.65)	1.08 (0.72-1.60)	0.723	0.618	0.403
Vitamin C (mg/day)	≥ 90	40 (5.8)	22 (4.5)	1.00 (reference)	1.00 (reference)	0		
	< 90	648 (94.2)	466 (95.5)	1.31 (0.77-2.23)	1.31 (0.77-2.24)	0.316	0.325	0.364
Vitamin E (IU/day)	≥ 22.4	93 (13.5)	59 (12.1)	1.00 (reference)	1.00 (reference)			
	< 22.4	595 (13.6)	429 (87.9)	1.14 (0.80-1.61)	1.15 (0.81-1.63)	0.438	0.472	0.319
Zinc (mg/day)	≥11	491 (71.5)	351 (71.9)	1.00 (reference)	1.00 (reference)			
	<11	196 (28.5)	137 (28.1)	1.02 (0.79-1.32)	1.03 (0.79-1.33)	0.840	0.877	0.365
Selenium (µg/day)	≥ 55	24 (3.5)	11 (2.3)	1.00 (reference)	1.00 (reference)			
	< 55	663 (96.5)	477 (97.7)	1.57 (0.76-3.24)	1.60 (0.77-3.29)	0.206	0.222	0.359
Alcohol Consumption	≥2	579 (84.3)	390 (79.9)	1.00 (reference)	1.00 (reference)			
(drinks /day)	<2	108 (15.7)	98 (20.1)	0.74 (0.55-1.00)	0.73 (0.54-0.99)	0.044	0.053	0.197

Table 41. Single effects of Environmental OSR Factors and PCA aggressiveness among MED, continued

Dietary Factor	N (%)	Aggressive Cases N (%)	Non-Aggressive Controls N (%)	OR (95%CI)	Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
MelQx (ng/day)	≤ 13.10	190 (27.7)	148 (30.3)	1.00 (reference)	1.00 (reference)			
	13.10-23.93	178 (25.9)	133 (27.3)	1.04 (0.76-1.42)	1.03 (0.75-1.40)	0.875		
	23.93-46.64	159 (23.1)	107 (21.9)	1.16 (0.84-1.60)	1.14 (0.82-1.59)	0.423	0.153	0.193
	≥ 46.64	160 (23.3)	100 (20.5)	1.25 (0.90-1.73)	1.23 (0.89-1.72)	0.215		
	> 13.10	497 (72.3)	340 (69.7)	1.14 (0.88-1.47)	1.12 (0.87-1.45)	0.373		
PhIP (ng/day)	≤ 36.74	178 (25.9)	119 (24.4)	1.00 (reference)	1.00 (reference)			
	36.74-73.98	212 (30.9)	119 (24.4)	1.19 (0.86-1.65)	1.16 (0.84-1.61)	0.366	a Section	
	73.98-156.86	149 (21.7)	137 (28.0)	0.73 (0.52-1.01)	0.71 (0.51-0.99)	0.045	0.086	0.059
	≥ 156.86	148 (21.5)	113 (23.2)	0.88 (0.63-1.23)	0.84 (0.60-1.19)	0.329		
	> 36.75	509 (74.1)	369 (75.6)	0.92 (0.71-1.21)	0.90 (0.67-1.18)	0.435		
DiMelQx (ng/day)	≤ 0.39	175 (25.5)	134 (27.5)	1.00 (reference)	1.00 (reference)			
	0.39-1.22	215 (31.3)	153 (31.3)	1.08 (0.79-1.46)	1.07 (0.79-1.46)	0.661		
	1.22-2.58	150 (21.8)	99 (20.3)	1.16 (0.83-1.63)	1.15 (0.82-1.62)	0.418	0.483	0.237
	≥ 2.58	147 (21.4)	102 (20.9)	1.10 (0.79-1.55)	1.09 (0.77-1.52)	0.635	Test Sti	
	> 0.39	512 (74.5)	354 (72.5)	1.11 (0.85-1.44)	1.10 (0.84-1.43)	0.488		
BaP (mcg/day)	≤ 1.705	172 (25.0)	132 (27.1)	1.00 (reference)	1.00 (reference)			
	1.705-9.14	203 (29.5)	130 (26.6)	1.20 (0.87-1.64)	1.19 (0.87-1.63)	0.289		
	9.14-44.585	170 (24.8)	120 (24.6)	1.09 (0.79-1.51)	1.06 (0.76-1.47)	0.739	0.992	0.260
	≥ 44.585	142 (20.7)	106 (21.7)	1.03 (0.73-1.44)	1.01 (0.72-1.42)	0.941		
	> 1.705	515 (75.0)	356 (72.9)	1.11 (0.85-1.45)	1.09 (0.84-1.42)	0.517		
Tobacco Use	Never	296 (43.1)	186 (38.1)	1.00 (reference)	1.00 (reference)			
	Former	335 (48.8)	265 (54.3)	0.79 (0.62-1.01)	0.80 (0.63-1.03)	0.079		
	Current	56 (8.1)	37 (7.6)	0.95 (0.60-1.50)	0.92 (0.59-1.46)	0.732	0.228	0.160
	Ever [†]	391 (56.9)	302 (61.9)	0.81 (0.64-1.03)	0.82-0.65-1.04)	0.098		

Table 41. Single effects of Environmental OSR Factors and PCA aggressiveness among MED, continued

MDR identified the three factor model with consumption of *Processed_meat-Rare_red_meat- BaP* as a modestly significant predictor of PCA aggressiveness (CVC = 10/10; p = 0.053) [*See Table 42*]. Visualization by hIG revealed additional synergistic effects due to the meat-related variables [*See Figure 18*]. The strongest combined effects were seen for *Red_meat_not_processed-BaP* (IG = 0.77%); *Red_meat_not_processed_Processed_meat* (IG = 0.68%); *Red_meat_not_processed-White_meat* (IG = 0.54%); and *White_meat-BaP* (IG = 0.51%). LR confirmed the *Red_meat_not_processed_Processed_meat* interaction was linked with increased disease aggressiveness [OR (95%CI) = 1.45 (1.08-2.04); p = 0.016) [*See Table 43*].

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor Red_Meat_Rare	27	9/10	0.5344	0.093
<u>Two Factor</u> Processed_Meat Red_Meat_Rare	729	3/10	0.4961	0.536
<u>Three Factor</u> Processed_Meat Red_Meat_Rare BAP	19683	10/10	0.5459	0.053

Table 42. Unfiltered MDR models for environmental OSR factors and disease aggressiveness among men of European descent (adjusted for age and family history)

Figure 1. Interaction entropy model for unfiltered environmental OSR factors and disease aggressiveness in men of European descent

The strongest synergistic interaction was attributed to the interaction between *BaP_meat-Non-processed red meat* (IG = 0.77%). Note that additional IG attributed to this combination compared to the single effects of or *BaP* (IG = 0.10%) or *Non-processed red meat* (IG = 0.12%).

Genes	Minor Category	# Minor Category	OR (95% CI)	Adj OR (95% Cl)*	p value*	interaction p value
Red_meat_not processed (g/day)	≥ 95.72	0	1.00 (reference)	1.00 (reference)		
BaP (mcg/day)	≥ 44.585	1	0.74 (0.51-1.06)	0.76 (0.53-1.09)	0.133	
		2	1.31 (0.98-1.76)	1.30 (0.97-1.75)	0.078	0.456
		≥3	0.90 (0.64-1.27)	0.89 (0.63-1.25)	0.506	
Red_meat_not processed (g/day)	≥ 95.72	0	1.00 (reference)	1.00 (reference)		
Processed_Meat (g/day)	≥ 20.96	1	1.03 (0.71-1.50)	1.05 (0.72-1.53)	0.802	
		2	1.48 (1.07-2.03)	1.45 (1.08-2.04)	0.016	0.002
		≥3	0.94 (0.67-1.32)	0.94 (0.67-1.32)	0.740	
Red_meat_not processed (g/day)	≥ 95.72	0	1.00 (reference)	1.00 (reference)		
White_meat (g/day)	≥ 71.83	1	0.83 (0.58-1.18)	0.84 (0.59-1.20)	0.342	
		2	1.26 (0.93-1.72)	1.25 (0.92-1.70)	0.161	0.657
		≥3	0.75 (0.54-1.04)	0.75 (0.54-1.05)	0.093	
White_meat (g/day)	≥ 71.83	0	1.00 (reference)	1.00 (reference)		
BaP (mcg/day)	≥ 44.585	1	1.11 (0.77-1.60)	1.14 (0.79-1.64)	0.497	
		2	1.12 (0.84-1.51)	1.12 (0.83-1.50)	0.469	0.459
		≥3	0.95 (0.69-1.31)	0.94 (0.68-1.30)	0.704	

 Table 43. Association between environment-environment OSR interactions & PCA aggressiveness among MED

*Adjusted OR are adjusted for age & family history

Similar to our MDR modeling of OSR risk effects, we filtered the OSR panel using SURF & TuRF in order to evaluate genetic and environmental OSR factor in relation to disease aggressiveness. MDR analysis of the top 25th percentile of OSR factors revealed the three factor model *AKT3_rs12031994-NAT2_rs7832071-PRKCQ_rs571715* as the best predictor of disease aggressiveness among all genetic and environmental OSR factors (CVC = 7/10; p = 0.006) [*See Table 44*]. hIG detected synergistic effects from *PRKCQ_rs571715-AKT3_rs12031994* and *PRKCQ_rs585881-AKT3_rs12031994* interactions [*See Figure 19*]. LR confirmed the *PRKCQ_rs585881-AKT3_rs12031994* combination was associated with increased PCA aggressiveness [OR (95%CI) = 1.86 (1.44-2.64); p = <0.001]. LR models for the *PRKCQ_rs571715-AKT3_rs12031994* interaction were not associated with disease aggressiveness (p = \geq 0.102), but the interaction p value was significant (interaction p value = 0.001) [*See Table 45*].

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
One Factor NAT2_rs7832071	61	7/10	0.529	0.118
<u>Two Factor</u> AKT3_rs12031994 PRKCQ_rs571715	3721	5/10	0.539	0.069
<u>Three Factor</u> AKT3_rs12031994 NAT2_rs7832071 PRKCQ_rs571715	226981	10/10	0.587	0.001

Table 44.	Top 25th perce	ntile MDR models	OSR panel a	and PCA	aggressiveness among
MED (adju	isted for age an	d family history)			

Figure 2. Interaction entropy model for top 25th percentile genetic environmental OSR factors in relation to PCA aggressiveness among men of European descent

This graphical model describes the percent entropy that is explained by each OSR factor or a combination of two factors. The strongest synergistic effect of exists in the interaction between $PRKCQ_rs571715-AKT3_rs12031994$ (IG = 0.64%). However, this interaction is mainly driven by AKT3 (IG = 0.74%) due to lack of additional IG obtained by considering $PRKCQ_rs571715$ (IG = 0.14%).

Genes	Minor Factors	# Minor Factors	OR (95% CI)	Adj OR (95% Cl)*	p value*	interaction p value
AKT3_rs12031994	СС	0	1.00 (reference)	1.00 (reference)		
PRKCQ_rs585881	СС	1	1.88 (1.43-2.38)	1.86 (1.44-2.40)	< 0.001	
		2	1.34 (0.91-1.98)	1.36 (0.92-2.00)	0.127	0.001
		≥3	0.99 (0.47-2.08)	0.98 (0.46-2.07)	0.957	
AKT3_rs12031994	СС	0	1.00 (reference)	1.00 (reference)		
PRKCQ_rs571715	сс	1	1.84 (1.43-2.38)	1.86 (1.40-2.40)	0.102	
		2	1.37 (0.93-2.03)	1.39 (0.94-2.06)	0.915	0.001
		≥3	1.04 (0.51-2.13)	1.04 (0.51-2.13)	0.484	

Table 45. Association between OSR interactions & PCA aggressiveness among MED

*Adjusted OR are adjusted for age & family history

SPECIFIC AIM 3 FINDINGS – MAD SUBJECTS

We used LR along with MDR to assess the role of 25 OSR SNPs combined with a history of tobacco use in relation to PCA risk among 137 MAD case subjects (68 aggressive, 69 non-aggressive). LR revealed that current or former smokers missing at least one copy of the *GSTT1* gene were associated with a 2.3-fold increase in disease risk [OR (95%CI) = 2.27 (1.20-4.30); p = 0.012; See Table 46]. In addition, 11 out of the 15 apoptotic markers we examined were associated with a 2.1- to 3.3-fold increase in risk among subjects exposed to cigarette smoke ($p \le 0.020$) [*See Table 48*]. LR models for *GSTP1_rs1695, CYP1A1_rs4646903*, and the three BER polymorphisms had extremely small p- values (<0.0001) [*Tables 46 & 47*], suggesting that their accuracy needs to be validated in additional MAD populations.

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	Non- smokers Adj OR (95%CI)*	Current/Former smokers Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
rs1695	GSTP1	AA	37 (31.1)	39 (31.2)	1.00 (reference)	13.56 (5.52-33.31)	<0.0001		
		AG+GG	82 (68.9)	86 (68.8)	11.38 (6.10-21.23)	11.85 (6.36-22.07)	<0.0001	0.278	0.114
	GSTM1	*1/*1	37 (31.1)	43 (32.6)	1.00 (reference)	4.42 (1.80-10.88)	0.001		
		*1/*0 + *1/*0	82 (68.9)	89 (67.4)	2.39 (1.23-4.62)	1.89 (1.00-3.58)	0.051	0.265	0.162
	GSTT1	*1/*1	30 (24.4)	38 (29.2)	1.00 (reference)	2.69 (1.05-6.90)	0.039		
		*1/*0 + *1/*0	93 (75.6)	92 (70.8)	2.05 (1.08-3.88)	2.27 (1.20-4.30)	0.012	0.571	0.068
rs2069514	CYP1A2	GG	67 (50.8)	91 (62.3)	1.00 (reference)	12.93 (6.69-24.99)	<0.0001		65 (a. 17)
		GA+AA	65 (49.2)	55 (37.7)	13.73 (6.65-28.34)	9.55 (4.48-20.39)	<0.0001	0.014	0.113
rs4646903	CYP1A1	AA	60 (44.8)	52 (35.9)	1.00 (reference)	10.19 (4.76-21.84)	<0.0001		
		AC+CC	74 (55.2)	93 (64.1)	11.45 (5.82-22.51)	11.94 (6.19-23.02)	<0.0001	0.810	0.062

Table 46. Association between variant Antioxidative genes - Tobacco Use Interaction and disease risk among men of MAD

*Adjusted Odds Ratios are adjusted for age &WAA

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	Non- smokers Adj OR (95%Cl)*	Current/Former smokers Adj OR (95%CI)*	p value*	p trend	MDRpt p value
rs1130409	APEX1	Π	59 (45.4)	67 (46.9)	1.00 (reference)	17.06 (8.09-35.98)	<0.0001		
	State State	TG+GG	71 (54.6)	76 (53.1)	9.40 (4.78-18.50)	7.43 (3.75-14.72)	<0.0001	0.261	0.077
rs1052133	OGG1	CC	102 (77.3)	96 (63.6)	1.00 (reference)	9.30 (5.12-16.90)	<0.0001		
		CG+GG	30 (22.7)	55 (36.4)	10.72 (3.92-29.34)	10.00 (4.35-22.99)	<0.0001	0.846	0.133
rs25487	XRCC1	GG	93 (72.1)	97 (64.2)	1.00 (reference)	11.18 (5.86-21.33)	<0.0001		and the second
		GA+AA	36 (27.9)	54 (35.8)	6.22 (2.45-15.83)	7.16 (3.44-14.90)	<0.0001	0.654	0.175

Table 47. Association between variant Base Excision Repair genes - Tobacco Use Interaction and disease risk among MAD

*Adjusted Odds Ratios are adjusted for age &WAA

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	Non- smokers Adj OR (95%Cl)*	- smokers Current/Former smokers OR (95%CI)* Adj OR (95%CI)*		p trend	MDRpt p value
rs4645878	BAX	CC	62 (50.8)	67 (49.6)	1.00 (reference)	1.54 (0.77-3.07)	0.224		
		CT+TT	60 (49.2)	68 (50.4)	2.90 (1.39-6.02)	4.23 (2.02-8.87)	0.0001	0.966	0.075
rs3789068	BCL2L11	Π	56 (46.3)	50 (37.9)	1.00 (reference)	3.85 (1.67-8.88)	0.002		
		TC+CC	65 (53.7)	82 (62.1)	2.55 (1.28-5.08)	2.06 (1.08-3.92)	0.029	0.111	0.003
rs4488761	BCL2L13	AA	47 (37.9)	45 (33.6)	1.00 (reference)	2.26 (0.99-5.15)	0.052		
		AG+GG	77 (62.1)	89 (66.4)	2.20 (1.14-4.23)	2.40 (1.28-4.52)	0.007	0.857	0.118
rs6488494	BCL2L14	Π	29 (23.6)	36 (26.7)	1.00 (reference)	1.84 (0.81-4.19)	0.148		
		TC+CC	94 (76.4)	99 (73.3)	2.47 (1.31-4.67)	3.47 (1.78-6.78)	0.0003	0.416	0.150
rs1883263	BIK	AA	99 (80.5)	113 (84.3)	1.00 (reference)	2.41 (1.37-4.27)	0.002		des series
		AC+CC	24 (19.5)	21 (15.7)	2.58 (0.92-7.26)	0.92 (0.30-2.80)	0.881	0.147	0.150
rs738276	BIK	GG	49 (48.0)	45 (38.8)	1.00 (reference)	2.58 (1.14-5.83)	0.023		
		GA+AA	53 (52.0)	71 (61.2)	2.83 (1.31-6.12)	2.08 (1.03-4.22)	0.042	0.428	0.165
rs6509364	CARD8	CC	69 (57.0)	80 (61.5)	1.00 (reference)	2.06 (1.10-3.88)	0.025		
		CT+TT	52 (43.0)	50 (38.5)	1.76 (0.82-3.80)	1.96 (0.89-4.34)	0.097	0.626	0.113
rs6509366	CARD8	GG	69 (56.6)	85 (63.9)	1.00 (reference)	2.36 (1.23-4.53)	0.010		N. Sandali
		GA+AA	53 (43.4)	48 (36.1)	2.49 (1.16-5.35)	2.09 (0.97-4.52)	0.060	0.738	0.131
rs1049216	CASP3	Π	76 (66.1)	93 (74.4)	1.00 (reference)	1.87 (1.00-3.49)	0.050		En la
		TC+CC	39 (33.9)	32 (25.6)	1.27 (0.57-2.83)	3.38 (1.24-9.19)	0.017	0.150	0.176
rs507879	CASP5	AA	15 (12.3)	27 (20.2)	1.00 (reference)	3.62 (1.22-10.74)	0.023		
	and all the second	AG+GG	107 (87.7)	107 (79.8)	2.80 (1.50-5.22)	2.81 (1.50-5.25)	0.001	0.126	0.063
rs537093	CASP5	GG	68 (54.8)	59 (44.0)	1.00 (reference)	2.26 (1.10-4.64)	0.026		
		GA+AA	56 (45.2)	75 (56.0)	1.88 (0.90-3.93)	2.05 (1.04-4.02)	0.038	0.584	0.094
rs6747918	CASP8	AA	25 (30.1)	28 (30.1)	1.00 (reference)	6.03 (1.79-20.38)	0.004		
		AG+GG	58 (69.9)	65 (69.9)	2.07 (0.93-4.59)	1.96 (0.91-4.23)	0.088	0.500	0.178
rs1052576	CASP9	GG	42 (34.1)	68 (51.9)	1.00 (reference)	2.15 (1.09-4.26)	0.028		
		GA+AA	81 (65.9)	63 (48.1)	2.81 (1.44-5.48)	2.57 (1.22-5.39)	0.013	0.599	0.114

Table 48. Association between variant Apoptotic genes - Tobacco Use Interaction and disease risk among MAD

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	Non- smokers Adj OR (95%CI)*	Current/Former smokers Adj OR (95%CI)*	p value*	p trend	MDRpt p value
rs12817549	CRADD	Π	67 (54.5)	75 (56.0)	1.00 (reference)	2.50 (1.30-4.80)	0.006		
	Ser States	TC+CC	56 (45.5)	59 (44.0)	2.74 (1.23-6.12)	1.90 (0.89-4.05)	0.099	0.744	0.051
rs3858606	CRADD	GG	27 (22.3)	40 (30.3)	1.00 (reference)	1.90 (0.76-4.74)	0.170		
		GA+AA	94 (77.7)	92 (69.7)	2.86 (1.51-5.42)	3.24 (1.71-6.15)	0.0003	0.845	0.188

Table 48. Association between variant Apoptotic genes - Tobacco Use Interaction and disease risk among MAD, continued

*Adjusted Odds Ratios (ORs) are adjusted for age, family history, & WAA

MDR revealed the two factor model containing *BCL2L11_rs3789068-Tobacco Use* as the best predictor of risk (CVC = 10/10; p = 0.025) [*See Table 49*]. MDR findings may be limited by the small sample size (n = 216) since this method is recommended for populations which have at least 200 cases and 200 controls. However, *BCL2L11-Tobacco_Use* was also significantly linked with a 2.1-fold increase in PCA risk by LR analysis [*See Table 48*]. Furthermore, hIG showed a synergistic effect attributed to the *BCL2L11-Tobacco_Use* interaction as well (IG = 2.99%) [*See Figure 20*].

Table 49.	Unfiltered MDR models fo	r OSR polymorphisms and	Tobacco Use in relation
to PCA ris	k among MAD		

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
<u>One Factor</u> BAX_rs4645878	26	6/10	0.5169	0.352
<u>Two Factor</u> Tobacco_Use BCL2L11_rs3789068	676	10/10	0.6071	0.020
<u>Three Factor</u> Tobacco_Use CASP5_rs507879 BCL2L14_rs6488494	17576	9/10	0.6581	0.001

Figure 1. Interaction graph for OSR polymorphisms and Tobacco Use in relation to PCA risk among MAD

This graphical model describes the percent entropy that is explained by each OSR factor or a combination of two factors. The combined effect of *Tobacco_Use-BCL2L11_rs3789068* provides an (IG = 2.99%), in comparison to considering either *Tobacco_Use* or *BCL2L11_rs3789068* loci individually (IG = 0.27% and 1.56%, respectively).

When we examined the combined effects of OSR sequence variants and tobacco use in relation to disease aggressiveness among MAD, we found significant single effects linked to both *GST* gene deletions [*See Table 50*]. Former/current smokers lacking one or more copies of *GSTM1* were associated with a 3.1-fold increase in PCA aggressiveness [OR (95%CI) = 3.10 (1.12-8.57); p = 0.030]. Also, missing at least one copy of *GSTT1* among former/current smokers resulted in increased association with disease aggressiveness [OR (95%CI) = 3.39 (1.27-9.06); p = 0.015]. In addition, we observed a 3.1- to 6.0-fold increase in disease aggressiveness associated with six apoptotic SNPs (*BCL2L11_rs3789068, BIK_rs738276, CARD8_rs6509366, CASP3_rs1049213, CRADD_rs12817549*, and *CRADD_rs3858606*) when combined with a history of tobacco use [*See Table 50*].

dbSNP ID	Genes	Allele	Cases N (%)	Controls N (%)	Non- smokers Adj OR (95%CI)*	Current/Former smokers Adj OR (95%Cl)*	p value*	p trend	MDRpt p value
rs1695	GSTP1	AA	37 (31.1)	39 (31.2)	1.00 (reference)	2.43 (0.80-7.39)	0.119		
		AG+GG	82 (68.9)	86 (68.8)	1.33 (0.49-3.66)	1.82 (0.68-4.85)	0.232	0.362	0.048
	GSTM1	*1/*1	37 (31.1)	43 (32.6)	1.00 (reference)	2.13 (0.70-6.46)	0.182		
		*1/*0 + *1/*0	82 (68.9)	89 (67.4)	1.51 (0.54-4.27)	3.10 (1.12-8.57)	0.030	0.844	0.048
	GSTT1	*1/*1	30 (24.4)	38 (29.2)	1.00 (reference)	3.68 (1.00-13.54)	0.050		Sale stants
		*1/*0 + *1/*0	93 (75.6)	92 (70.8)	2.17 (0.77-6.12)	3.39 (1.27-9.06)	0.015	0.151	0.042
rs2069514	CYP1A2	GG	67 (50.8)	91 (62.3)	1.00 (reference)	2.19 (0.84-5.75)	0.111		A state
		GA+AA	65 (49.2)	55 (37.7)	0.97 (0.34-2.77)	1.67 (0.56-4.98)	0.354	0.925	0.027
rs4646903	CYP1A1	AA	60 (44.8)	52 (35.9)	1.00 (reference)	3.61 (1.18-11.08)	0.025		
		AC+CC	74 (55.2)	93 (64.1)	0.98 (0.34-2.78)	1.23 (0.48-3.17)	0.669	0.231	0.052

Table 50. Association between variant Antioxidation genes - Tobacco Use Interaction and Tumor Grade among men of MAD

*Low Gleason score: >7; High Gleason score: ≤7; **Adjusted Odds Ratios are adjusted for age, family history, & WAA

dbSNP ID	Genes	Allele	High N (%)*	Low N (%)*	Non-smokers Adj OR (95%Cl)**	Current/former smokers Adj OR (95%Cl)**	p value**	p trend	MDRpt p value
rs1130409	APEX1	Π	59 (45.4)	67 (46.9)	1.00 (reference)	0.94 (0.34-2.58)	0.906		
		TG+GG	71 (54.6)	76 (53.2)	0.66 (0.23-1.89)	1.92 (0.65-5.63)	0.238	0.171	0.018
rs1052133	OGG1	CC	102 (77.3)	96 (63.6)	1.00 (reference)	1.66 (0.69-4.02)	0.258		
		CG+GG	30 (22.7)	55 (36.4)	0.73 (0.19-2.79)	2.02 (0.71-5.77)	0.187	0.516	0.046
rs25487	XRCC1	GG	93 (72.1)	97 (64.2)	1.00 (reference)	1.26 (0.55-2.88)	0.587		
		GA+AA	36 (27.9)	54 (35.8)	0.16 (0.02-1.44)	3.11 (0.88-11.01)	0.078	0.029	0.052

Table 51. Association between variant Base Excision Repair genes - Tobacco Use Interaction and Tumor Grade among MAD

*Low Gleason score: >7; High Gleason score: ≤7; **Adjusted Odds Ratios are adjusted for age, family history, & WAA

dbSNP ID	Genes	Allele	High N (%)*	Low N (%)*	Non-smokers Adj OR (95%CI)**	Non-smokersCurrent/former smokersAdj OR (95%CI)**Adj OR (95%CI)**		p trend	MDRpt p value
rs4645878	BAX	CC	62 (50.8)	67 (49.6)	1.00 (reference)	3.83 (1.07-13.74)	0.040		
		CT+TT	60 (49.2)	68 (50.4)	0.50 (0.15-1.60)	1.22 (0.48-3.14)	0.676	0.806	0.048
rs3789068	BCL2L11	π	56 (46.3)	50 (37.9)	1.00 (reference)	1.34 (0.42-4.32)	0.621		
		TC+CC	65 (53.7)	82 (62.1)	0.99 (0.33-2.95)	3.68 (1.29-10.46)	0.015	0.282	0.048
rs4488761	BCL2L13	AA	47 (37.9)	45 (33.6)	1.00 (reference)	3.91 (1.11-13.69)	0.033		
		AG+GG	77 (62.1)	89 (66.4)	1.40 (0.50-3.94)	2.15 (0.81-5.74)	0.127	0.171	0.033
rs6488494	BCL2L14	π	29 (23.6)	36 (26.7)	1.00 (reference)	2.60 (0.65-10.36)	0.177		
	Charles and	TC+CC	94 (76.4)	99 (73.3)	0.71 (0.25-2.04)	1.74 (0.67-4.50)	0.257	0.800	0.048
rs1883263	BIK	AA	99 (80.5)	113 (64.3)	1.00 (reference)	2.08 (0.91-4.78)	0.084		1311-18-5
		AC+CC	24 (19.5)	21 (15.7)	0.48 (0.09-2.66)	1.75 (0.35-8.69)	0.496	0.570	0.048
rs738276	BIK	GG	49 (48.0)	45 (38.8)	1.00 (reference)	1.88 (0.61-5.80)	0.274		
		GA+AA	53 (52.0)	71 (61.2)	1.02 (0.33-3.14)	3.32 (1.10-10.04)	0.034	0.593	0.034
rs6509364	CARD8	CC	69 (57.0)	80 (61.5)	1.00 (reference)	3.33 (1.25-8.87)	0.016		
		CT+TT	52 (43.0)	50 (38,5)	0.78 (0.20-3.03)	1.35 (0.44-4.12)	0.597	0.565	0.026
rs6509366	CARD8	GG	69 (56.6)	85 (63.9)	1.00 (reference)	2.13 (0.82-5.54)	0.122		
		GA+AA	53 (43.4)	48 (36.1)	1.80 (0.59-5.50)	5.49 (1.47-20.42)	0.011	0.688	0.032
rs1049216	CASP3	Π	76 (66.1)	93 (74.4)	1.00 (reference)	1.38 (0.57-3.34)	0.475		
	And a start of	TC+CC	39 (33.9)	32 (25.6)	0.41 (0.10-1.73)	6.01 (1.16-30.99)	0.032	0.030	0.027
rs507879	CASP5	AA	15 (12.3)	27 (20.2)	1.00 (reference)	2.14 (0.46-9.91)	0.331		
		AG+GG	107 (87.7)	107 (79.8)	1.39 (0.49-3.95)	2.73 (0.99-7.52)	0.052	0.946	0.039
rs537093	CASP5	GG	68 (54.8)	59 (44.0)	1.00 (reference)	2.82 (0.94-8.46)	0.064		
		GA+AA	56 (45.2)	75 (56.0)	0.88 (0.27-2.87)	1.81 (0.69-4.73)	0.225	0.771	0.048
rs6747918	CASP8	AA	25 (30.1)	28 (30.1)	1.00 (reference)	8.73 (1.75-43.56)	0.008		
		AG+GG	58 (69.9)	65 (69.9)	1.52 (0.38-6.14)	3.34 (0.92-12.12)	0.067	0.120	0.050
rs1052576	CASP9	GG	42 (34.2)	68 (51.9)	1.00 (reference)	2.85 (0.96-8.47)	0.060		
	a mar a faith	GA+AA	81 (65.9)	63 (48.1)	0.89 (0.33-2.44)	1.90 (0.63-5.71)	0.253	0.942	0.040

Table 52. Association between variant Apoptotic genes - Tobacco Use Interaction and Tumor Grade among men of MAD

*Low Gleason score: >7; High Gleason score: ≤7; **Adjusted Odds Ratios (ORs) are adjusted for age, family history, & WAA

Table 52. Association between variant Apoptotic genes - Tobacco Use Interaction and Tumor Grade among men of MAD, *continued*

dbSNP ID	Genes	Allele	High N (%)*	Low N (%)*	Non-smokers Adj OR (95%CI)**	Current/former smokers Adj OR (95%Cl)**	p value**	p trend	MDRpt p value
rs12817549	CRADD	Π	67 (54.5)	75 (56.0)	1.00 (reference)	2.37 (0.92-6.13)	0.074		
		TC+CC	56 (45.5)	59 (44.0)	2.38 (0.71-7.93)	4.06 (1.28-12.84)	0.017	0.622	0.017
rs3858606	CRADD	GG	27 (22.3)	40 (30.3)	1.00 (reference)	2.35 (0.58-9.59)	0.232		
		GA+AA	94 (77.7)	92 (69.7)	1.58 (0.56-4.49)	3.10 (1.10-8.71)	0.032	0.953	0.013

*Low Gleason score: >7; High Gleason score: ≤7; **Adjusted Odds Ratios (ORs) are adjusted for age, family history, & WAA

MDR modeling identified Tobacco Use alone as the best predictor of disease aggressiveness (CVC = 10/10, p = 0.034) [See Table 53]. This finding was confirmed by hIG which revealed Tobacco Use as the strongest independent effect (IG = 7.16%) [See Figure 21]. Synergistic interactions between CASP9_rs1052576-BCL2L14_rs6488494 and BAX_rs4645878-GSTT1_deletion were also observed in the entropy graph. However, neither combination was statistically significant in LR two-way analysis (p \geq 0.961) [Table 53].

Table 53. Unfiltered MDR models for OSR polymorphisms and Tobacco Use in relation to PCA aggressiveness among MAD

Best Model	Number of Combinations	Cross Validation Consistency (CVC)	Average Testing Accuracy (ATA)	Permutation Testing p value
<u>One Factor</u> Tobacco_Use	26	10/10	0.637	0.034
<u>Two Factor</u> CASP9_rs1052576 BCL2L14_rs6488494	676	7/10	0.629	0.056
<u>Three Factor</u> BCL2L13_rs4488761 GSTP1_rs1695 CYP1A1_rs4646903	17576	5/10	0.639	0.058

Figure 21. Interaction graph for OSR polymorphisms and Tobacco Use in relation to PCA aggressiveness among MAD

This graphical model describes the percent entropy that is explained by each OSR factor or a combination of two factors. The combined effect of *BCL2L14_rs6488464-CASP9_rs1052576* provides an (IG = 9.38%), in comparison to considering either *BCL2L14_rs6488464* or CASP9_*rs1052576* loci individually (IG = 0.73% and 1.97%, respectively).

Table 54. Association between apoptotic gene-gene interactions & PCAaggressiveness among MAD

Genes	Minor Alleles	# Minor Alleles	OR (95% CI)	Adj OR (95% CI)*	p value*	interaction p value
BCL2L14_rs6488494	CC	0-2	1.00 (reference)	1.00 (reference)		
CASP9_rs1052576	AA	2-3	0.77 (0.34-1.73)	0.73 (0.32-1.65)	0.440	0.961
	27.5	4	0.44 (0.04-4.99)	0.43 (0.04-5.15)	0.502	
BAX_rs46465878	Π	0-2	1.00 (reference)	1.00 (reference)		
GSTT1_deletion	*0/*0	>2	1.65 (0.77-3.56)	1.60 (0.74-3.46)	0.236	0.985

*Adjusted OR are adjusted for age & WAA

SUMMARY AND CONCLUSIONS

Specific Aim 1 Summary. We evaluated a panel of 242 oxidative stress response (OSR)related polymorphisms to determine their single- and joint-modifying effects on PCA risk. LR analysis revealed seven genetic variants capable of individually modifying risk among MED. We found one antioxidative (*CYP2C8_rs7909236*) and one BER (*OGG1_rs125701*) SNP independently associated with a 1.2-fold increase in PCA risk. In addition, the *EPHX1_rs1051741* polymorphism was linked with 2.5-fold increase in disease risk. We also observed an 18-25% decrease in PCA risk associated with one antioxidative-related (*NAT1_rs4921581*), one BER (*POLI_rs8305*), and four apoptotic (*BIK_rs4988366, BNIP3L_rs10503786, IKBKE_rs1539243, TNFRSF1A_rs4149576*) polymorphisms.

MDR indentified *CYP2C8_rs7909236-NAT1_rs4921581* as the best two factor model in predicting disease risk. LR two-way analysis indicated this combination was linked with 1.3-fold increase in PCA risk [OR (95%CI) = 1.28 (1.04-1.57); p = 0.019]. hIG did reveal any synergistic effects due to *NAT1-CYP2C8*, but several additional interactions were seen that remained significant in LR analysis. In particular, men with 3 or more minor *TNFRSF1A_rs4149576-PRKCE_*rs935673 alleles were associated with a 42% decrease in PCA risk [OR (95%CI) = 0.58 (0.42-0.81); p = 0.001]. Also, possessing at

least 2 variant CYP2C8_rs7909236-GSTP1_rs1695 or NAT1_rs4921581-GSTM2_rs638820 alleles resulted in a 1.4-fold increase in PCA susceptibility.

Among the MAD subjects, we detected two apoptotic polymorphisms associated with increased PCA risk (*BAX_rs4645878* & *BCL2L11_rs3789068*). However, there were no significant single effects were observed for antioxidative or BER targets. MDR did not confirm the BAX SNP, but MDR and hIG revealed five interactions containing apoptotic targets and both *GST* gene deletions. Only one of these interactions remained significant in LR (*BCL2L14_rs6488494_CASP5_rs507879*).

Specific Aim 1 Conclusions. Among both populations we observed single risk effects in antioxidative, BER, and apoptotic gene variants. For MED, these SNPs were either a decrease or increase in risk, however, in MAD subjects significant effects were limited to apoptotic markers associated with increased risk. These SNP associations in relation to PCA susceptibility may be attributable to altered gene/protein function caused by the variation [*See Table 53*]. For instance, *CYP2C8_rs7909236* was associated with increased risk. This particular SNP is located in the promoter region of *CYP2C8* and predicted to interfere with transcription factor binding sites (TFBS), resulting in increased transcription.¹²⁹ As a cyp450 enzyme, 2C8 can that can detoxify or bioactivate a wide range of xenobiotics via oxidation or reduction.⁵² However, one of cyp2c8's substrates is the suspected carcinogen B[a]P which is able to form DNA adducts during is metabolism.¹⁴⁰ Therefore, increased *CYP2C8* transcription leading to higher gene expression or protein activity could ultimately result in elevated BaP bioactivation.

Table 55. Possible function consequences of genetic variants associated with PCA outcomes based on previous publication or SNP prediction database tools

AKT Inhibits pro-apoptotic BAD rs12031994 Intron 1 Increase apoptosis BAX Pro-apoptotic; increases mitochondria rs4645878 Promoter (-248) TFBS interference may decrease function BAX Pro-apoptotic; increases mitochondria rs905238 Promoter (-85) TFBS interference may decrease function BC12L11 Pro-apoptotic rs724710 Exon 1 Ile95ile Altered splicing may decrease expression BC12L14 (aka BIM); Pro-apoptotic rs64845479 Intron 1 Decrease apoptosis BC12L14 (aka BIM); Pro-apoptotic rs6488494 Promoter Decrease apoptosis BK Pro-apoptotic, but may be a target for anti- apoptotic, proteins rs6488494 Promoter Decrease apoptosis BK/P31 (aka BIM); Pro-apoptotic rs1053766 Promoter (-228) Disruption apoptosis: suppressing interactions BN/P31 (aka NIX); Anti-apoptosic rs1053766 Stora 2 Thr106Ala Decreased apoptotic signaling CXP2C8 Oxidicy / reduce xenobiotics (benca)apyrenei rs7052380 Promoter (-271) IFBS: increased transcription EPHX1 Detoxifies xenobiotics through glutathione rs1052376 Exon 2	Gene	Function	dbSNP ID	Location	Amino Acid Change	Predicted/Observed effects*
BAX Pro-apoptotic; increases mitochondria channel opening rs4645878 Promoter (-248) TFBS interference may decrease function BAX Pro-apoptotic; increases mitochondria channel opening rs905238 Promoter (-85) TFBS interference may decrease function BCL2111 Pro-apoptotic rs724710 Exon 1 ile95ile Altered splicing may decrease expression BCL2114 Pro-apoptotic rs74488761 Exon 7 Ser257Ser Altered splicing may decrease expression BCL2114 (aka BIM); Pro-apoptotic rs10845479 Intron 1 Decrease apoptosis BCL2114 (aka BIM); Pro-apoptotic rs6488366 Promoter (-228) Disruption apoptosis suppressing interactions BNIP31 (aka NIX); Anti-apoptotic rs10503786 3'UTR Decreased apoptotic signaling CXP2C8 Oxidize / reduce xenobiotics (benzaje apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzaje apoptosis rs7099236 Promoter (-271) TFBS increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 5	AKT	Inhibits pro-apoptotic BAD	rs12031994	Intron 1		Increase apoptosis
BAX Pro-apoptotic, increases mitochondria channel opening rs905238 Promoter (-85) TFBS interference may decrease function BCL2L11 Pro-apoptotic rs724710 Exon 1 Ile95ile Altered splicing may decrease expression BCL2L13 Pro-apoptotic rs74488761 Exon 7 Ser257Ser Altered splicing may decrease expression BCL2L14 (aka BIM); Pro-apoptotic rs4488761 Exon 7 Ser257Ser Altered splicing may decrease expression BCL2L14 (aka BIM); Pro-apoptotic rs4488749 Promoter Decrease apoptosis BLX Pro-apoptotic, but may be a target for anti- apoptotic proteins rs4988366 Promoter (-228) Disruption apoptosis- suppressing interactions CASP5 Initiator caspase; mediates apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzolgalyrene) rs1051741 Exon 9 Arg221Gin Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GSTM1 Detoxifies xenobiotics throug	BAX	Pro-apoptotic; increases mitochondria channel opening	rs4645878	Promoter (-248)		TFBS interference may decrease function
BCL2L11 Pro-apoptotic rs724710 Exon 1 Ile95Ile Altered splicing may decrease expression BCL2L13 Pro-apoptotic rs4488761 Exon 7 Ser257Ser Altered splicing may decrease expression BCL2L14 (aka BIM); Pro-apoptotic rs10845479 Intron 1 Decrease apoptosis BCL2L14 (aka BIM); Pro-apoptotic rs648849 Promoter Decrease apoptosis BIK Pro-apoptotic, but may be a target for anti- apoptotic proteins rs648849 Promoter (-2288) Disruption apoptosis- suppressing interactions BNIP31 (aka NIX); Anti-apoptotic rs10503786 3'UTR Decreased apoptosis is plantage CASP5 Initiator caspase; mediates apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CASP9 Initiator caspase; mediates apoptosis rs507879 Exon 2 Asn357Asn Altered splicing may decrease CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription GSTM1 Detoxifies xenobiotics through glutathione rs1051741 Exon 2 Asn357Asn Altere	BAX	Pro-apoptotic; increases mitochondria channel opening	rs905238	Promoter (-85)		TFBS interference may decrease function
BCL2113Pro-apoptoticrs4488761Exon 7Ser257SerAltered splicing may decrease expressionBCL214(aka BIM); Pro-apoptoticrs10845479Intron 1Decrease apoptosisBCL214(aka BIM); Pro-apoptoticrs6488494PromoterDecrease apoptosisBIKPro-apoptotic, but may be a target for anti-apoptotic proteinsrs4988366Promoter (-228)Disruption apoptosis- suppressing interactionsBNIP31(aka NIX); Anti-apoptoticrs105037863'UTRDecreased apoptotic signalingCASP5Initiator caspase; mediates apoptosisrs507879Exon 2Thr106AlaDecreased apoptotic signalingCASP5Initiator caspase; mediates apoptosisrs507879Exon 9Arg221GinDecreased apoptotic signalingCASP6Initiator caspase; mediates apoptosisrs5078179Exon 2Asn357AsnAltered splicing may decreaseEPHX1Detoxify or bioactivate aromatic compoundrs1051741Exon 2Asn357AsnAltered splicing may decreaseGSTM1Detoxifies xenobiotics through glutathione conjugationrs163820Promoter (+765)Itel305ValExon 5GST71Detoxifies xenobiotics through glutathione conjugationrs16395Exon 5Ille105ValDecreased detoxificationGST71Detoxifies xenobiotics through glutathione conjugationrs1539243Exon 4Ille67IleInterference with splicing may lead to decreased ability to block apoptosisIKBKEInhibits NFKBrs1539243Exon 4Ille67IleIncreased detoxification/ decreased <br< td=""><td>BCL2L11</td><td>Pro-apoptotic</td><td>rs724710</td><td>Exon 1</td><td>lle95lle</td><td>Altered splicing may decrease expression</td></br<>	BCL2L11	Pro-apoptotic	rs724710	Exon 1	lle95lle	Altered splicing may decrease expression
BCL2L14 (aka BIM); Pro-apoptotic rs10845479 Intron 1 Decrease apoptosis BCL2L14 (aka BIM); Pro-apoptotic rs6488494 Promoter Decrease apoptosis BIK Pro-apoptotic, but may be a target for ani- apoptotic proteins rs4988366 Promoter (-228) Disruption apoptosis- suppressing interactions BNIP3L (aka NIX); Anti-apoptotic rs10503786 3'UTR Decreased ability to block apoptosis CASP5 Initiator caspase; mediates apoptosis rs10503786 3'UTR Decreased apoptotic signaling CASP5 Initiator caspase; mediates apoptosis rs1052576 Exon 9 Arg221Gin Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs709236 Promoter (-271) TFB5: increased transcription EPHX1 Detoxifies xenobiotics through glutathione rs1051741 Exon 2 Asn357Asn Altered splicing may decrease 6STM1 Detoxifies xenobiotics through glutathione rs638820 Promoter (+765) Itel 105Val Loss of gene; decreased detoxification 6ST711 Detoxifies xenobiotics through glutathione rs1695 Exon 5 Itel 105Val Decreased detoxification; reduced efficiency	BCL2L13	Pro-apoptotic	rs4488761	Exon 7	Ser257Ser	Altered splicing may decrease expression
BCL2114 (aka BIM); Pro-apoptotic apoptotic, but may be a target for anti- apoptotic proteins rs6488494 Promoter Disruption apoptosis- suppressing interactions BIK Pro-apoptotic, but may be a target for anti- apoptotic proteins rs4988366 Promoter (-2288) Disruption apoptosis- suppressing interactions BNIP3L (aka NIK); Anti-apoptotic rs10503786 3'UTR Decreased ability to block apoptosis CASP5 Initiator caspase; mediates apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CXP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease expression/detoxification GSTM1 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GST71 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ile105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GST71 Detoxifies xenobiotics through glutathione conjugation rs1639243 Exon 4	BCL2L14	(aka BIM); Pro-apoptotic	rs10845479	Intron 1		Decrease apoptosis
BIK Pro-apoptotic, but may be a target for anti- apoptotic proteins rs4988366 Promoter (-2288) Disruption apoptosis- suppressing interactions BNIP3L (aka NIX); Anti-apoptotic rs10503786 3'UTR Decreased ability to block apoptosis CASP5 Initiator caspase; mediates apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CASP5 Initiator caspase; mediates apoptosis rs1052576 Exon 9 Arg221Gin Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease 65TM1 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification 6ST71 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GST71 Detoxifies xenobiotics through glutathione conjugation rs1539243 Exon 4 Ille67lle Interference with splicing may lead to decreased ability to block apoptosis NAT1	BCL2L14	(aka BIM); Pro-apoptotic	rs6488494	Promoter		Decrease apoptosis
BNIP3L (aka NIX); Anti-apoptotic rs10503786 3'UTR Decreased ability to block apoptosis CASP5 Initiator caspase; mediates apoptosis rs507879 Exon 2 Thr106Ala Decreased apoptotic signaling CASP9 Initiator caspase; mediates apoptosis rs1052576 Exon 9 Arg221Gin Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease expression/detoxification 6STM1 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) Loss of gene; decreased detoxification 6ST711 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ile105Val Decreased detoxification; reduced efficiency 6ST711 Detoxifies xenobiotics through glutathione conjugation rs1539243 Exon 4 Ile67Ile Interference with splicing may lead to decreased ability to block apoptosis <i>KBKE</i> Inhibits NFkB rs1539243 Exon 4 Ile67Ile Interference with splicing may lead to decreased ability to block apoptosis NAT1 <td>BIK</td> <td>Pro-apoptotic, but may be a target for anti- apoptotic proteins</td> <td>rs4988366</td> <td>Promoter (-2288)</td> <td></td> <td>Disruption apoptosis- suppressing interactions</td>	BIK	Pro-apoptotic, but may be a target for anti- apoptotic proteins	rs4988366	Promoter (-2288)		Disruption apoptosis- suppressing interactions
CASP5Initiator caspase; mediates apoptosisrs507879Exon 2Thr106AlaDecreased apoptotic signalingCASP9Initiator caspase; mediates apoptosisrs1052576Exon 9Arg221GinDecreased apoptotic signalingCYP2C8Oxidize / reduce xenobiotics (benzo[a]pyrene)rs7909236Promoter (-271)TFBS: increased transcriptionEPHX1Detoxify or bioactivate aromatic compoundrs1051741Exon 2Asn357AsnAltered splicing may decrease expression/detoxificationGSTM1Detoxifies xenobiotics through glutathione conjugationrs638820Promoter (+765)TFBS may decrease detoxificationGSTP1Detoxifies xenobiotics through glutathione conjugationrs1695Exon 5Ille105ValDecreased detoxification; reduced efficiency for diol epoxides or PAHsGST711Detoxifies xenobiotics through glutathione conjugationrs1539243Exon 4Ille67IlleInterference with splicing may lead to decreased ability to block apoptosisIKBKEInhibits NFkBrs1539243Exon 4Ille67IlleInterference with splicing may lead to decreased ability to block apoptosisNA71Detoxify / bioactivate via transfer of acetylrs4921581Intron 1Increased detoxification may increase risk	BNIP3L	(aka NIX); Anti-apoptotic	rs10503786	3'UTR		Decreased ability to block apoptosis
CASP9 Initiator caspase; mediates apoptosis rs1052576 Exon 9 Arg221Gln Decreased apoptotic signaling CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease expression/detoxification GSTM1 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) Loss of gene; decreased detoxification GSTM2 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GSTP1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiencry for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs1539243 Exon 4 Ile67Ile Interference with splicing may lead to decreased ability to block apoptosis <i>KBKE</i> Inhibits NFkB rs1539243 Exon 4 Ile67Ile Interference with splicing may lead to decreased ability to block apoptosis NA71 Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA rs4921581 Intron 1 Increas	CASP5	Initiator caspase; mediates apoptosis	rs507879	Exon 2	Thr106Ala	Decreased apoptotic signaling
CYP2C8 Oxidize / reduce xenobiotics (benzo[a]pyrene) rs7909236 Promoter (-271) TFBS: increased transcription EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease expression/detoxification GSTM1 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) Loss of gene; decreased detoxification GSTM2 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GSTP1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiencry for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs159243 Exon 4 Ille67Ile Interference with splicing may lead to decreased ability to block apoptosis <i>KBKE</i> Inhibits NFkB rs4921581 Intron 1 Increased ability to block apoptosis <i>NAT1</i> Detoxify / bioactivate via transfer of acetyl-coA rs4921581 Intron 1 Increased detoxification / decreased detoxification 0GGT1 Exclass 8-oxoguanine rs125701 S'UTR Decreased function may increase risk	CASP9	Initiator caspase; mediates apoptosis	rs1052576	Exon 9	Arg221Gln	Decreased apoptotic signaling
EPHX1 Detoxify or bioactivate aromatic compound rs1051741 Exon 2 Asn357Asn Altered splicing may decrease expression/detoxification GSTM1 Detoxifies xenobiotics through glutathione conjugation Image: Conjugation	CYP2C8	Oxidize / reduce xenobiotics (benzo[a]pyrene)	rs7909236	Promoter (-271)		TFBS: increased transcription
GSTM1 Detoxifies xenobiotics through glutathione conjugation Loss of gene; decreased detoxification GSTM2 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GSTP1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs1595 Exon 5 Ille105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs1539243 Exon 4 Ile67Ile Interference with splicing may lead to decreased ability to block apoptosis NAT1 Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA rs4921581 Intron 1 Increased detoxification/decreased bioactivation OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	EPHX1	Detoxify or bioactivate aromatic compound	rs1051741	Exon 2	Asn357Asn	Altered splicing may decrease expression/detoxification
GSTM2 Detoxifies xenobiotics through glutathione conjugation rs638820 Promoter (+765) TFBS may decrease detoxification GSTP1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ille105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation rs1539243 Exon 4 Ille67Ile Interference with splicing may lead to decreased ability to block apoptosis IKBKE Inhibits NFkB rs4921581 Intron 1 Increased detoxification/ decreased bioactivation OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	GSTM1	Detoxifies xenobiotics through glutathione conjugation				Loss of gene; decreased detoxification
GSTP1 Detoxifies xenobiotics through glutathione conjugation rs1695 Exon 5 Ile105Val Decreased detoxification; reduced efficiency for diol epoxides or PAHs GSTT1 Detoxifies xenobiotics through glutathione conjugation	GSTM2	Detoxifies xenobiotics through glutathione conjugation	rs638820	Promoter (+765)		TFBS may decrease detoxification
GSTT1 Detoxifies xenobiotics through glutathione conjugation Loss of gene; decreased detoxification IKBKE Inhibits NFkB rs1539243 Exon 4 Ille67Ile Interference with splicing may lead to decreased ability to block apoptosis NAT1 Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA rs4921581 Intron 1 Increased detoxification/ decreased bioactivation OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	GSTP1	Detoxifies xenobiotics through glutathione conjugation	rs1695	Exon 5	lle105Val	Decreased detoxification; reduced efficiency for diol epoxides or PAHs
IKBKE Inhibits NFkB rs1539243 Exon 4 Ille67Ile Interference with splicing may lead to decreased ability to block apoptosis NAT1 Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA rs4921581 Intron 1 Increased detoxification/ decreased bioactivation OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	GSTT1	Detoxifies xenobiotics through glutathione conjugation				Loss of gene; decreased detoxification
NAT1 Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA rs4921581 Intron 1 Increased detoxification/ decreased bioactivation OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	IKBKE	Inhibits NFkB	rs1539243	Exon 4	lle67lle	Interference with splicing may lead to decreased ability to block apoptosis
OGG1 Excises 8-oxoguanine rs125701 5'UTR Decreased function may increase risk	NAT1	Detoxify / bioactivate via transfer of acetyl group from acetyl-CoA	rs4921581	Intron 1		Increased detoxification/ decreased bioactivation
	OGG1	Excises 8-oxoguanine	rs125701	5'UTR		Decreased function may increase risk

*Predicted or observed effects of genetic variants are based on previous publications and SNP prediction database tools 52, 129

Table 55. Possible function consequences of genetic variants associated with PCA outcomes based on previous publication or SNP prediction database tools, *continued*

Gene	Function	dbSNP ID	Location	Amino Acid Change	Predicted/Observed effects*
POLI	Proceeds when normal polymerases stall	rs8305	Exon 1	Thr731Ala	Decreased function may lower risk due to error-prone activity
PRKCE	Activates pro-survival NFkB gene	rs935673	Intron 1		Increase apoptosis
PRKCQ	Activates pro-survival NFkB gene	rs571715	Intron 1	and the second s	Increase apoptosis
PRKCQ	Activates pro-survival NFkB gene	rs585881	Intron 1		Increase apoptosis
TNFRSF1A	Major TNFα receptor; activates NFkB	rs4149576	Intron 1		Decreased ability to block apoptosis

*Predicted or observed effects of genetic variants are based on previous publications and SNP prediction database tools 52, 129

Similarly, nat1 enzyme activity can either detoxify or bioactivate many xenobiotics and these effects are largely substrate dependent. Unfortunately, no published data or functional predictions are available regarding the intronic rs4921581 SNP. Therefore, we can only speculate the protective association we observed is due to decreased bioactivation or increased detoxification. Interestingly, when *NAT1_rs4921581* was combined *CYP2C8_rs7909236* or *GSTM2_rs638820*, the interaction was associated an increase in PCA risk. Unlike *CYP2C8*, the *GSTM2* variant was not individually linked to risk, however both are promoter region SNPs so altered TF binding may be the reason their effects. Taken together, these findings warrant further investigation of the functional consequences caused by *CYP2C8*, *NAT1*, and *GSTM2* polymorphisms.

Decreased protein function may explain the risk effects observed in two BER SNPs: *OGG1_rs125701* and *POLI_rs8305*. Ogg1 is a DNA glycosylase involved in the repair of the 8-oxoguanine. Therefore, the rs125701 may compromise ogg1's capacity to remove these mutagenic adducts and subsequently increase PCA susceptibility. Poli is polymerase that proceeds during DNA synthesis when normal polymerases may fail. Since this protein is error prone, particularly opposite a thymidine template, a SNP linked to decrease poli activity may decrease risk by reducing the protein's ability to insert in correct bases.

The decreased PCA risk observed in the four apoptotic SNPs may be attributed to a reduction in their ability to promote cell survival. For example, *BIK* is a pro-apoptotic gene, but is believed to be a target for anti-apoptotic proteins. Consequently, the

rs4988366 variant is located in the promoter region of and may result in disruption of transcription or apoptotic suppressors interacting with BIK, and would therefore be associated with decreased PCA risk. *BNIP3L* is pro-survival, *IKBKE* inhibits the prosurvival *NFkB* gene, and *TNFRSF1A* is a major cell death receptor in apoptosis. Therefore, the SNPs we found linked to risk may be due a reduced the ability of these markers to block apoptosis.

BAX_rs4645878 was linked to increased PCA risk in MAD subjects and is also located in the promoter region of this gene. Since bax is induces apoptosis, transcription factor interference could reduce protein expression, and ultimately decrease apoptosis. Similarly, the increase risk associated with *BCL2L11_rs3789068*, *BCL2L14_rs6488494*, and *CASP5_rs507879* among the subjects may result from a comprised ability for the targets to induce or signal apoptosis.

Gene-gene interactions identified by MDR and hIG modeling validated as significant by LR only contained antioxidative or apoptotic markers. These findings suggest a possible jointly modifying effect among variant antioxidative and apoptotic genes may contribute to risk. However, BER polymorphisms appear to play a less important role in PCA risk, particularly among men of African descent.

Specific Aim 2 Summary. In a case-only analysis, we examined the role of 173 apoptotic variants on disease aggressiveness in a population of 1,176 MED (688 aggressive and 488 non-aggressive cases). We found the A*KT3_rs12031994* alone and in the two-factor

MDR model with *PRKCQ_rs571715* was significantly associated PCA aggressiveness. hIG and two-way LR analysis revealed the *BCL2L14_rs10845479-BAX_rs905238* and *BCL2L14_rs10845479-BCL2L11_rs724710* interactions were significantly linked to increase aggressiveness in LR two-analysis.

Evaluation of 15 apoptotic sequence variants among 137 MAD (68 aggressive and 69 non-aggressive cases) did not show any single effects. We observed several interactions using MDR and hIG modeling between CASP9_rs1052576-BCL2L14_rs6488494, CASP9_rs1052576-CASP5_rs507879, and BCL2L13_rs4488761-BCL2L14_rs6488494. However, two-way LR analysis was not able validate any of these combinations as statistically significant ($p \ge 0.114$).

Specific Aim 2 Conclusions. We detected several gene-gene interactions linked to PCA aggressiveness among both populations involving *BCL2*-related genes. Since *BCL2L11, BCL2L13, BCL2L14, BAX,* as well as *CASP5/9* all function in cell death signaling and induction. Combined polymorphisms that reduce their ability to signal apoptosis would like promote cellular transformation or tumor formation (i.e., more aggressive phenotypes). In fact, a previous study found the amino acid change of glutamine to arginine in *CASP9_rs1052576* has also been shown to have functional significance.^{129, 141} *CASP9* activation is an important step that occurs early in apoptosis and our data suggest this polymorphism along with other apoptotic SNPs increase PCA risk possibly due to compromised cell death mechanisms.¹⁴¹

Although we found *AKT3* individually modified risk, we would anticipate that most single effects would not strongly contribute to risk since apoptotic regulation involves many complex interacting mechanisms. Akt3 and prkcq are important upstream signaling proteins in apoptotic regulation and the intronic SNPs we examined in these may interfere with splicing or miRNA binding; thereby possibly lead to deformed or non functional proteins due to skipped or inhibited exon sites.⁹⁹

Specific Aim 3 Summary. We assessed the effects 27 environmental OSR factors along with our panel of 219 gene variants in relation to PCA development. We evaluated 27 variables related to dietary habits, vitamin/ supplement intake and exposure to meat- and cigarette-derived carcinogens using data collected from 2,277 CGEMS project participants (1176 cases, 1101 controls). LR analysis revealed that MeIQx exposure and current smokers were independently associated with a decrease in disease risk. MDR and hIG also identified interactions involving meat consumption linked with PCA risk. LR modeling validated *Processed_meat-White_meat* was associated with a decrease in risk.

We also found subjects that had more than 2 alcoholic drinks per day and PhIP exposure were associated with a decrease in disease aggressiveness. However, consumption of processed meat and well-done or very well-done red meat were independently linked to increased disease aggressiveness. Interaction analyses revealed the combinations effects of *Red_meat_not_processed-Processed_meat* and

PRKCQ_rs585881-AKT3_rs12031994 were associated with increased disease aggressiveness.

Among MAD subjects, LR revealed that current or former smokers missing at least one copy of the *GSTT1* gene were associated with a 2.3-fold increase in PCA risk. Also, 11 apoptotic polymorphisms were associated with a 2.1- to 3.3-fold increase in risk among subjects exposed to cigarette smoke ($p \le 0.020$). However, we found several LR models had extremely small p values (<0.0001), suggesting that the targets may need to be validated in larger MAD populations.

When we examined the combined effects of OSR sequence variants and tobacco use in relation to disease aggressiveness among MAD, we found significant single effects linked to both *GST* gene deletions and six apoptotic SNPs.

Specific Aim 3 Conclusions. We were surprised to find MeIQx and PhIP exposure, smoking, alcohol use independently associated with a decreased PCA development among MED. MeIQx and PhIP are both possible carcinogens capable of producing damaging DNA adduct during their metabolism. These compounds are derived from cooking meats at high temperature or for long durations, but we found consumption of well-done or very well-done red meat was linked to increased disease aggressiveness. This inconsistency may be caused by the PLCO project deriving these exposures from meat consumption data, so the measurements may not accurately reflect actual levels of these compounds. Therefore, further analysis of measured adducts or plasma metabolites would be needed to validate this finding. Also the association between men who had more than 2 alcoholic drinks per day and decreased PCA risk may require future analyses examining the type of alcohol and further stratification of the number of drinks per day. This finding may have been limited by only considering men consuming either more or less than 2 drinks based on the USDA recommendation that these beverages should be limited to no more than two.

That fact that smoking was associated with a decreased risk in MED but increased risk and aggressiveness when combined with OSR variants among MAD subjects suggests that its possible protective effect in the former population likely involves a mechanism that was not examined in this study. For instance, smoking may activate additional detoxification targets that we either did not investigate or weren't due to genetic variation. Nevertheless, when we analyzed higher order interactions in the MED subjects, smoking was not involved with any significant models.

In fact, the combined effects we observed were related to meat consumption. We found *Processed_meat-White_meat* associated with a decrease in risk, but consumption of *Red_meat_not_processed-Processed_meat* was linked to increased disease aggressiveness. This finding warrants further investigation into the biological mechanisms involved in the metabolism of these meats to examine how processed meat was associated with a decrease in risk with white meat but increased aggressiveness with non-processed red meat.
DISCUSSION

Despite high incidence and mortality rates of PCA, especially among African-American men in particular, its etiology is poorly characterized. Identifying and validating new genomic profiles in biological pathways to serve as effective predictors of PCA susceptibility and aggressiveness are critical to overcoming this limitation.^{3, 9}

Oxidative stress response (OSR) is one such biological pathway that appears to play an important role in prostate carcinogenesis.^{3, 7} Oxidative stress is a condition in which the amount of reactive oxygen species (ROS) produced exceeds the amount removed.¹³⁻¹⁶ Cells are constantly exposed to reactive oxygen species (ROS) generated from multiple endogenous and exogenous sources.¹³⁻¹⁶ Although they are required for cellular functioning, ROS are highly reactive electrophiles that can interact with biomolecules, interfere with cell signaling, and promote cellular malignant transformation.^{11, 14-17} ROS can directly damage nucleic acids and proteins, as well as alter protein function or activation.^{9, 14-15, 17-18} These effects can be manifested as altered gene and protein expression, cell proliferation or apoptosis.¹⁵ Left unrepaired, accumulating ROS damage can lead to cellular transformation and ultimately progress into to cancer.^{12, 15, 18-19}

Genetic variation resulting in decreased function of OSR related mechanisms, such as antioxidation (e.g., carcinogen metabolism/ detoxification), DNA repair, and

apoptotic regulation may contribute to PCA progression.^{2-3, 87} Previous studies have investigated the relationship between single variant OSR alleles and PCA, but many are either limited in scope, null, or conflicting.^{2-3, 5, 87} Such inconsistencies may be attributed to inadequate statistical rigor or failure to consider gene-gene and gene-environment interactions. Consequently, this study evaluated the single- and joint- modifying effects of OSR factors on PCA using a combination of traditional and advanced statistical methods. This comprehensive analytical strategy utilized LR combined with MDR and hIG to examine the role of a unique OSR panel in relation to the PCA risk and disease aggressiveness.

Our unique candidate panel included 242 genetic and 27 environmental OSR factors related to diet and lifestyle habits. The OSR panel was generated using factors involved in antioxidation (e.g., carcinogen detoxification and metabolism), repair of oxidative DNA damage, and apoptotic regulation. We identified targets based on published PCA epidemiology studies as well as functional/pathway databases and tools. The latter provided important molecular interactions and genes that may not be readily found by literature search or traditional candidate SNP search methods. In addition, prediction tools aid in selecting markers likely to have a functional consequence resulting in compromised OSR capacity that may modify PCA disease outcomes. From an initial list of 118 OSR genes, more than 1500 had genotype available in through the CGEMS project. We finalized this list by first confirming sequence variants were related to our pathway of interest using NCBI Entrez SNP/Gene databases. Then we focused on polymorphisms that were (1) detected within all exons, 2.5kb upstream of the gene,

168

2.5kb downstream of intron 1, 2.5kb downstream of the gene; (2) had a minor allele frequency >1%; and (3) the genotype frequency among controls passed the Hardy-Weinberg Equilibrium test (HWE p > 0.005).

We evaluated our OSR panel using genetic profiles from 2277 men of European descent (MED) [488 non-aggressive and 688 aggressive cases, 1101 controls] and 923 men of African descent (MAD) [224 PCA cases and 699 controls]. Tumor grade (measured by Gleason Score) was available for 137 (68 aggressive, 69 non-aggressive) to examine disease aggressiveness in the population. Statistical analyses were conducted adjusting for age and family history of PCA, as well as population admixture (WAA) for MAD subjects. Our single risk findings associated several OSR sequence variants to PCA risk among MED. In contrast, only antioxidative- and apoptotic-related SNPs were linked to increased disease risk in MAD. Higher order interaction analyses for across both populations detected gene-gene combinations associated with increased risk.

Several of the targets we found that modify risk are intronic or have unknown functional consequence. However, based on data available from previous publications and prediction tools, as well as considering gene function, we presume that these variants result in compromised OSR. More specifically, our findings suggest that reduced detoxification and apoptotic induction are linked to increased PCA susceptibility.

When we investigated the role of apoptotic polymorphisms in relation to disease progression, *BCL2*-related and *CASPs* markers were jointly associated with increased PCA aggressiveness. This effect was found across both populations. These genes are

critical to apoptotic regulation and can activate downstream targets that commit cells to undergo this process.^{97, 107} Failure to undergo apoptosis may enable survival of transformed cells that are prone to undergo further genetic alteration and show genomic instability, leading to more invasive phenotypes.¹⁰⁰

Unfortunately we were not able to characterize the role of environmental factors in PCA among our study populations. The MAD analysis findings suggest smoking and apoptotic targets jointly increased risk. However, the apoptotic variants independently increased disease risk and aggressiveness so they may be driving this association. Also, these findings are limited by the small MAD sample size so these effects require validation in larger study populations. We were able to evaluate 27 environmental factors within the larger MED population. Our results indicate that meat consumption and cooking methods may contribute to PCA development. However, these factors most likely involve additional targets or mechanisms that were not examined in this study. To address this issue, future studies would need to focus on improved exposure analyses as well as biological mechanisms involved in meat metabolism.

Our study findings may be limited by filtering some of the OSR analyses for MED subjects. MDR filtering allows users to analyze large numbers of SNPs (e.g., GWAS) by ranking and selecting factors most likely to be associated with the disease outcome.¹³⁰⁻¹³¹ The filter essentially reduces "background noise" by removing SNPs that have the lowest predictive value.¹³⁰⁻¹³¹ The resulting filtered dataset improves the chance of detecting relevant interactions in MDR analysis.¹³⁰⁻¹³¹ However, it is possible that

filtering the largest datasets in this study removed some relevant targets. To overcome this limitation, future analyses will secure additional computational support to order to analyze unfiltered OSR and apoptotic targets in relation to PCA.

In addition, MAD findings are limited due to small sample size. However, future analyses using consortia and GWAS data will allow us to confirm results from this study.

REFERENCES

- 1. American Cancer Society. *Cancer Facts & Figures 2010*. Atlanta, Georgia2010.
- Mudashiru AS, Blessing E, Olapade-Olaopa EO. Update on prostate cancer in black men. J.Men's Health & Gender. 2007;4(4):456-463.
- Hsing AW, Chokkalingam AP. Prostate cancer epidemiology. *Front Biosci.* 2006;11:1388-1413.
- **4.** Powell IJ. Epidemiology and pathophysiology of prostate cancer in African-American men. *J.Urol.* 2007;177(2):444-449.
- Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. *Genes Dev.* 2000;14(19):2410-2434.
- Guo Y, Sigman DB, Borkowski A, Kyprianou N. Racial differences in prostate cancer growth: apoptosis and cell proliferation in Caucasian and African-American patients. *Prostate*. 2000;42(2):130-136.
- Rothman N, Wacholder S, Caporaso NE, Garcia-Closas M, Buetow K, Fraumeni JF, Jr. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. *Biochim.Biophys.Acta*. 2001;1471(2):C1-10.
- Schmidt CW. Signs of the times: biomarkers in perspective. *Environ.Health Perspect.* 2006;114(12):A700-A705.

- Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ.
 Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. *Eur.J.Cancer.* 2005;41(1):61-70.
- **10.** Shibata A, Whittemore AS. Genetic predisposition to prostate cancer: possible explanations for ethnic differences in risk. *Prostate*. 1997;32(1):65-72.
- **11.** Fleshner NE, Klotz LH. Diet, androgens, oxidative stress and prostate cancer susceptibility. *Cancer Metastasis Rev.* 1998;17(4):325-330.
- De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. *Am.J.Pathol.* 1999;155(6):1985-1992.
- Sikka SC. Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention--a mechanistic approach.
 Curr.Med.Chem. 2003;10(24):2679-2692.
- Sies H. Oxidative stress: oxidants and antioxidants. *Exp. Physiol.* 1997;82(2):291-295.
- Halliwell B. Oxidative stress and cancer: have we moved forward? *Biochem.J.* 2007;401(1):1-11.
- Coates PJ, Lorimore SA, Wright EG. Cell and tissue responses to genotoxic stress.
 J.Pathol. 2005;205(2):221-235.
- **17.** Boelsterli UA. *Mechanistic Toxicology: the molecular basis of how chemicals disrupt biological targets*. 2nd ed. Boca Raton, FL: CRC Press; 2007.

- Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. *Biochem.J.* 1996;313 (Pt 1):17-29.
- Aydin A, rsova-Sarafinovska Z, Sayal A, et al. Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. *Clin.Biochem.* 2006;39(2):176-179.
- 20. Cerutti PA. Prooxidant states and tumor promotion. *Science*.1985;227(4685):375-381.
- **21.** Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. *J.Carcinog.* 2006;5:14.
- Hickey K, Do KA, Green A. Smoking and prostate cancer. *Epidemiol.Rev.* 2001;23(1):115-125.
- **23.** Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. *Curr.Med.Chem.* 2001;8(7):773-796.
- 24. Zheng W, Lee SA. Well-done meat intake, heterocyclic amine exposure, and cancer risk. *Nutr.Cancer.* 2009;61(4):437-446.
- **25.** Shields PG. Epidemiology of tobacco carcinogenesis. *Curr Oncol Rep.* May 2000;2(3):257-262.
- 26. Lee MS, Su L, Christiani DC. Synergistic effects of NAT2 slow and GSTM1 null genotypes on carcinogen DNA damage in the lung. *Cancer Epidemiol Biomarkers Prev.* Jun 2010;19(6):1492-1497.

- Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. *Drug Metab Rev.* May 2010;42(2):268-354.
- 28. Lotufo PA, Lee IM, Ajani UA, Hennekens CH, Manson JE. Cigarette smoking and risk of prostate cancer in the physicians' health study (United States). Int J Cancer. Jul 1 2000;87(1):141-144.
- **29.** Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR. Cigarette smoking and prostate cancer-specific mortality following diagnosis in middle-aged men. *Cancer Causes Control.* Feb 2008;19(1):25-31.
- **30.** Watters JL, Park Y, Hollenbeck A, Schatzkin A, Albanes D. Cigarette smoking and prostate cancer in a prospective US cohort study. *Cancer Epidemiol.Biomarkers Prev.* 2009;18(9):2427-2435.
- Huncharek M, Haddock KS, Reid R, Kupelnick B. Smoking as a risk factor for prostate cancer: a meta-analysis of 24 prospective cohort studies. *Am J Public Health*. Apr 2010;100(4):693-701.
- **32.** Kushi LH, Byers T, Doyle C, et al. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. *CA Cancer J.Clin.* 2006;56(5):254-281.
- **33.** U.S. Human and Health Services. *11th Report on Carcinogens*2005.
- Koutros S, Berndt SI, Sinha R, et al. Xenobiotic metabolizing gene variants, dietary heterocyclic amine intake, and risk of prostate cancer. *Cancer Res.* 2009;69(5):1877-1884.

- **35.** Hooker S, Bonilla C, Akereyeni F, Ahaghotu C, Kittles RA. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. *Prostate Cancer Prostatic.Dis.* 2008;11(4):349-356.
- 36. Nock NL, Tang D, Rundle A, et al. Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. *Cancer Epidemiol.Biomarkers Prev.* 2007;16(6):1236-1245.
- 37. Sinha R, Rothman N, Brown ED, et al. High concentrations of the carcinogen 2amino-1-methyl-6-phenylimidazo- [4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. *Cancer Res.* 1995;55(20):4516-4519.
- 38. Sinha R, Park Y, Graubard BI, et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am.J.Epidemiol. 2009;170(9):1165-1177.
- **39.** Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. *Environ.Mol.Mutagen.* 2004;44(1):44-55.
- **40.** Cross AJ, Peters U, Kirsh VA, et al. A prospective study of meat and meat mutagens and prostate cancer risk. *Cancer Res.* 2005;65(24):11779-11784.
- 41. Chan R, Lok K, Woo J. Prostate cancer and vegetable consumption.*Mol.Nutr.Food Res.* 2009;53(2):201-216.
- **42.** Ma RW, Chapman K. A systematic review of the effect of diet in prostate cancer prevention and treatment. *J.Hum.Nutr.Diet.* 2009;22(3):187-199.

- Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress.
 Mutat.Res. 2009;674(1-2):137-147.
- **44.** Ahn J, Moslehi R, Weinstein SJ, Snyder K, Virtamo J, Albanes D. Family history of prostate cancer and prostate cancer risk in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. *Int J Cancer*. Sep 1 2008;123(5):1154-1159.
- **45.** Lippman SM, Klein EA, Goodman PJ, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). *JAMA*. 2009;301(1):39-51.
- Rodriguez C, Jacobs EJ, Mondul AM, Calle EE, McCullough ML, Thun MJ. Vitamin
 E supplements and risk of prostate cancer in U.S. men. *Cancer Epidemiol.Biomarkers Prev.* 2004;13(3):378-382.
- **47.** Zhang Y, Coogan P, Palmer JR, Strom BL, Rosenberg L. Vitamin and mineral use and risk of prostate cancer: the case-control surveillance study. *Cancer Causes Control.* 2009;20(5):691-698.
- **48.** Key TJ, Appleby PN, Allen NE, et al. Plasma carotenoids, retinol, and tocopherols and the risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition study. *Am.J.Clin.Nutr.* 2007;86(3):672-681.
- **49.** Sies H. Strategies of antioxidant defense. *Eur.J.Biochem.* 1993;215(2):213-219.
- Mates JM, Perez-Gomez C, Nunez dCI. Antioxidant enzymes and human diseases.
 Clin.Biochem. 1999;32(8):595-603.

- 51. Hayes JD, Strange RC. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. *Free Radic.Res.* 1995;22(3):193-207.
- 52. National Center for Biotechnology Information (NCBI) website. 2007;www.ncbi.nih.gov. Accessed 11/05/2010.
- **53.** Forsberg L, de FU, Morgenstern R. Oxidative stress, human genetic variation, and disease. *Arch.Biochem.Biophys.* 2001;389(1):84-93.
- 54. Hein DW. Acetylator genotype and arylamine-induced carcinogenesis.*Biochim.Biophys.Acta.* 1988;948(1):37-66.
- **55.** Hein DW, Doll MA, Rustan TD, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. *Carcinogenesis.* 1993;14(8):1633-1638.
- 56. Hein DW, Rustan TD, Ferguson RJ, Doll MA, Gray K. Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. *Arch.Toxicol.* 1994;68(2):129-133.
- 57. Metry KJ, Neale JR, Doll MA, et al. Effect of rapid human N-acetyltransferase 2 haplotype on DNA damage and mutagenesis induced by 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MelQx). *Mutat Res.* Feb 3 2010;684(1-2):66-73.
- Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. *Cancer Lett.* Sep 18 2009;282(2):125-136.

- **59.** Choi JY, Neuhouser ML, Barnett M, et al. Polymorphisms in oxidative stressrelated genes are not associated with prostate cancer risk in heavy smokers. *Cancer Epidemiol.Biomarkers Prev.* 2007;16(6):1115-1120.
- **60.** Miyake H, Hara I, Kamidono S, Eto H. Oxidative DNA damage in patients with prostate cancer and its response to treatment. *J.Urol.* 2004;171(4):1533-1536.
- Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. *Cancer Res.* 2008;68(6):1777-1785.
- **62.** Autrup JL, Thomassen LH, Olsen JH, Wolf H, Autrup H. Glutathione S-transferases as risk factors in prostate cancer. *Eur.J.Cancer Prev.* 1999;8(6):525-532.
- 63. Beer TM, Evans AJ, Hough KM, Lowe BA, McWilliams JE, Henner WD.
 Polymorphisms of GSTP1 and related genes and prostate cancer risk. *Prostate Cancer Prostatic.Dis.* 2002;5(1):22-27.
- **64.** Gsur A, Haidinger G, Hinteregger S, et al. Polymorphisms of glutathione-Stransferase genes (GSTP1, GSTM1 and GSTT1) and prostate-cancer risk. *Int.J.Cancer.* 2001;95(3):152-155.
- 65. Wadelius M, Autrup JL, Stubbins MJ, et al. Polymorphisms in NAT2, CYP2D6,
 CYP2C19 and GSTP1 and their association with prostate cancer.
 Pharmacogenetics. 1999;9(3):333-340.
- **66.** Kang D, Lee KM, Park SK, et al. Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in

the prostate, lung, colorectal, and ovarian cancer study. *Cancer Epidemiol.Biomarkers Prev.* 2007;16(8):1581-1586.

- **67.** Agalliu I, Langeberg WJ, Lampe JW, Salinas CA, Stanford JL. Glutathione Stransferase M1, T1, and P1 polymorphisms and prostate cancer risk in middleaged men. *Prostate*. 2006;66(2):146-156.
- 68. Rybicki BA, Neslund-Dudas C, Nock NL, et al. Prostate cancer risk from occupational exposure to polycyclic aromatic hydrocarbons interacting with the GSTP1 Ile105Val polymorphism. *Cancer Detect.Prev.* 2006;30(5):412-422.
- **69.** Mittal RD, Srivastava DS, Mandhani A, Kumar A, Mittal B. Polymorphism of GSTM1 and GSTT1 genes in prostate cancer: a study from North India. *Indian J.Cancer.* 2004;41(3):115-119.
- 70. Sharma S, Cao X, Wilkens LR, et al. Well-done meat consumption, NAT1 and NAT2 acetylator genotypes and prostate cancer risk: the multiethnic cohort study. *Cancer Epidemiol.Biomarkers Prev.* 2010;19(7):1866-1870.
- **71.** Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. *Bioessays.* 2004;26(5):533-542.
- 72. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. *FASEB J.* 2003;17(10):1195-1214.
- **73.** de BJ, Hoeijmakers JH. Nucleotide excision repair and human syndromes. *Carcinogenesis*. 2000;21(3):453-460.
- **74.** Paz-Elizur T, Brenner DE, Livneh Z. Interrogating DNA repair in cancer risk assessment. *Cancer Epidemiol.Biomarkers Prev.* 2005;14(7):1585-1587.

- 75. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. *Cancer Epidemiol.Biomarkers Prev.* 2002;11(12):1513-1530.
- 76. NIEHS SNPs. NIEHS Environmental Genome Project. http://egp.gs.washington.edu. Accessed 11/03/2010.
- 77. Sokhansanj BA, Wilson DM, III. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. *Cancer Epidemiol.Biomarkers Prev.* 2006;15(5):1000-1008.
- Ritchey JD, Huang WY, Chokkalingam AP, et al. Genetic variants of DNA repair genes and prostate cancer: a population-based study. *Cancer Epidemiol.Biomarkers Prev.* 2005;14(7):1703-1709.
- Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS. DNA repair gene
 XRCC1 and XPD polymorphisms and risk of prostate cancer. *Cancer Epidemiol.Biomarkers Prev.* 2004;13(1):23-29.
- 80. Andrew AS, Nelson HH, Kelsey KT, et al. Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking, and bladder cancer susceptibility. *Carcinogenesis*. 2005:1030-1037.
- 81. Andrew AS, Karagas MR, Nelson HH, et al. DNA repair polymorphisms modify
 bladder cancer risk: a multi-factor analytic strategy. *Hum.Hered.* 2008;65(2):105-118.

- 82. Mechanic LE, Millikan RC, Player J, et al. Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. *Carcinogenesis*. 2006;27(7):1377-1385.
- 83. Popanda O, Schattenberg T, Phong CT, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. *Carcinogenesis*. 2004;25(12):2433-2441.
- Yamane A, Kohno T, Ito K, et al. Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo.
 Carcinogenesis. 2004;25(9):1689-1694.
- 85. Tarng DC, Tsai TJ, Chen WT, Liu TY, Wei YH. Effect of human OGG1 1245C-->G gene polymorphism on 8-hydroxy-2'-deoxyguanosine levels of leukocyte DNA among patients undergoing chronic hemodialysis. J Am.Soc.Nephrol. 2001;12(11):2338-2347.
- 86. Chen L, Elahi A, Pow-Sang J, Lazarus P, Park J. Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer.
 J.Urol. 2003;170(6 Pt 1):2471-2474.
- 87. Nam RK, Zhang WW, Jewett MA, et al. The use of genetic markers to determine risk for prostate cancer at prostate biopsy. *Clin.Cancer Res.* 2005;11(23):8391-8397.
- B8. De RK, Szaumkessel M, De RI, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. *Mutat.Res*. 2007;631(2):101-110.

- **89.** Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM, III. Functional characterization of Ape1 variants identified in the human population. *Nucleic Acids Res.* 2000;28(20):3871-3879.
- **90.** Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. *Genomics.* 2004;83(6):970-979.
- **91.** Chen L, Ambrosone CB, Lee J, Sellers TA, Pow-Sang J, Park JY. Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans 1. *J Urol.* 2006;175(1):108-112.
- 92. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. *Carcinogenesis*. 2001;22(9):1437-1445.
- **93.** Xu J, Zheng SL, Turner A, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. *Cancer Res.* 2002;62(8):2253-2257.
- **94.** Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. *Cancer Res.* 1999;59(11):2557-2561.
- **95.** Xu Z, Hua LX, Qian LX, et al. Relationship between XRCC1 polymorphisms and susceptibility to prostate cancer in men from Han, Southern China. *Asian J.Androl.* 2007;9(3):331-338.
- **96.** Hirata H, Hinoda Y, Tanaka Y, et al. Polymorphisms of DNA repair genes are risk factors for prostate cancer. *Eur.J.Cancer.* 2007;43(2):231-237.

- 97. Kidd LR, Coulibaly A, Templeton TM, et al. Germline BCL-2 sequence variants and inherited predisposition to prostate cancer. *Prostate Cancer Prostatic.Dis.* 2006;9(3):284-292.
- **98.** Tapia-Vieyra JV, Mas-Oliva J. Apoptosis and cell death channels in prostate cancer. *Arch.Med.Res.* 2001;32(3):175-185.
- 99. Chen K, Hu Z, Wang LE, et al. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. *Carcinogenesis*.
 2007;28(9):2008-2012.
- **100.** Zhivotovsky B, Orrenius S. Carcinogenesis and apoptosis: paradigms and paradoxes. *Carcinogenesis*. 2006;27(10):1939-1945.
- **101.** Limoli CL, Hartmann A, Shephard L, et al. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. *Cancer Res.* 1998;58(16):3712-3718.
- 102. Danial NN, Korsmeyer SJ. Cell death: critical control points. *Cell.*2004;116(2):205-219.
- **103.** Duarte RL, Paschoal ME. Molecular markers in lung cancer: prognostic role and relationship to smoking. *J.Bras.Pneumol.* 2006;32(1):56-65.
- Hofseth LJ, Hussain SP, Harris CC. p53: 25 years after its discovery. *Trends Pharmacol.Sci.* 2004;25(4):177-181.
- **105.** Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. *Cancer Res.* 2000;60(24):6788-6793.

- Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis the p53 network. *J Cell Sci.* Oct 15 2003;116(Pt 20):4077-4085.
- **107.** Voehringer DW. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. *Free Radic.Biol.Med.* 1999;27(9-10):945-950.
- **108.** Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. *Trends Biochem.Sci.* 2001;26(1):61-66.
- 109. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. *Science*.1998;281(5381):1322-1326.
- **110.** BioCarta LLC. BioCarta.com 2009; www.BioCarta.com. Accessed 09/05/2009.
- **111.** Takayama H, Takakuwa T, Dong Z, et al. Fas gene mutations in prostatic intraepithelial neoplasia and concurrent carcinoma: analysis of laser capture microdissected specimens. *Lab Invest.* Mar 2001;81(3):283-288.
- 112. Jiang J, Ulbright TM, Zhang S, et al. Fas and Fas ligand expression is elevated in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. *Cancer.* Jul 15 2002;95(2):296-300.
- **113.** Amirghofran Z, Monabati A, Gholijani N. Apoptosis in prostate cancer: bax correlation with stage. *Int.J.Urol.* 2005;12(4):340-345.
- 114. McConkey DJ, Greene G, Pettaway CA. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. *Cancer Res.* 1996;56(24):5594-5599.

- 115. Koutros S, Schumacher FR, Hayes RB, et al. Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer.
 Cancer Res. Mar 15 2010;70(6):2389-2396.
- **116.** Comstock CE, Knudsen KE. The complex role of AR signaling after cytotoxic insult: implications for cell-cycle-based chemotherapeutics. *Cell Cycle*. 2007;6(11):1307-1313.
- **117.** Gohagan JK, Prorok PC, Hayes RB, Kramer BS. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. *Control Clin.Trials.* 2000;21(6 Suppl):251S-272S.
- **118.** Hayes RB, Sigurdson A, Moore L, et al. Methods for etiologic and early marker investigations in the PLCO trial. *Mutat.Res.* 2005;592(1-2):147-154.
- 119. Cancer Genetic Markers of Susceptibility (CGEMS). 2008; https://caintegrator.nci.nih.gov/cgems/browseSetup.do. Accessed 10/08/2010.
- US Department of Health and Human Services and US Department of
 Agriculture. Dietary Guidelines for Americans. 6th ed. Washington, DC: US
 Government Printing Office; 2005.
- 121. National Institutes of Health. Office of Dietary Supplements. http://ods.od.nih.gov/. Accessed 09/08/2010.
- **122.** Gleason DF. Classification of prostatic carcinomas. *Cancer Chemother Rep.* Mar 1966;50(3):125-128.

- **123.** Christian C, Erica S, Morandi U. The prognostic impact of tumor size in resected stage I non-small cell lung cancer: evidence for a two thresholds tumor diameters classification. *Lung Cancer.* 2006;54(2):185-191.
- **124.** Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. *Nucleic Acids Res.* 2008;36(Database issue):D480-D484.
- **125.** Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res.* 2006;34(Database issue):D354-D357.
- 126. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.* 2000;28(1):27-30.
- 127. Ingenuity Systems. Ingenuity Pathways Analysis. 2010; http://www.ingenuity.com/index.html. Accessed 04/28/2010.
- **128.** Yue P, Melamud E, Moult J. SNPs3D: candidate gene and SNP selection for association studies. *BMC.Bioinformatics*. 2006;7:166.
- Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. *Nucleic Acids Res.* 2009;37(Web Server issue):W600-W605.
- Greene CS, Penrod NM, Kiralis J, Moore JH. Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. *BioData Min.* 2009;2(1):5.
- **131.** Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genomewide association studies. *Bioinformatics*. Feb 15 2010;26(4):445-455.

- 132. Moore JH, Gilbert JC, Tsai CT, et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. *J.Theor.Biol.* 2006;241(2):252-261.
- 133. Gui J, Andrew AS, Andrews P, et al. A Robust Multifactor Dimensionality Reduction Method for Detecting Gene-Gene Interactions with Application to the Genetic Analysis of Bladder Cancer Susceptibility. Ann Hum Genet. Nov 22 2010.
- **134.** Moore JH. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. *Expert.Rev.Mol.Diagn.* 2004;4(6):795-803.
- Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. *Bioinformatics*. 2003;19(3):376-382.
- 136. Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. *Genet.Epidemiol.* 2003;24(2):150-157.
- 137. Jakulin A, Bratko I. Analyzing attribute depedencies. In Lavrac N , Gamberger D,
 Blockeel H and Todorovski L (eds.)PKDD 2003. Cavtat, Croatia.: Springer-Verlag;
 2003:229-240-240.
- **138.** Jakulin A, Bratko I, Smrike D, Demsar J, Zupan B. Attribute interactions in medical data analysis. Protarus: Cyprus; 2003:229-238-238.

- **139.** Demosar J, Zupan B. *Orange: From Experimental Machine Learning to Interactive Data Mining, White Paper*2004.
- Aktas D, Hascicek M, Sozen S, Ozen H, Tuncbilek E. CYP1A1 and GSTM1
 polymorphic genotypes in patients with prostate cancer in a Turkish population.
 Cancer Genet.Cytogenet. 2004;154(1):81-85.
- **141.** Hosgood HD, III, Baris D, Zhang Y, et al. Caspase polymorphisms and genetic susceptibility to multiple myeloma. *Hematol.Oncol.* 2008;26(3):148-151.

CURRICULUM VITAE

Nicole A. Lavender

505 South Hancock Street Clinical & Translational Research Bldg, Room 352 Louisville, KY 40202 Phone: (502) 852.1547 Fax: (502) 852.2123 Email: <u>nalave01@louisville.edu</u>

A. EDUCATION

University of Louisville

Louisville, KY

- Ph.D. Pharmacology and Toxicology
 December 2010
 <u>Dissertation Title</u>: The Role of Genetic and Environmental Oxidative
 Stress Factors in Prostate Cancer
- M.S. Pharmacology and Toxicology December 2008 <u>Thesis title</u>: Joint Modifying Effects of Variant Oxidative Stress Factors in Relation to Prostate Cancer
- B.S. Chemistry with a concentration in biochemistry Minor: Philosophy. May 2005 <u>Honors</u>: Woodford R. Porter Scholar, Golden Key International Honour Society

B. PROFESSIONAL EXPERIENCE

2004-2005 Undergraduate Research Fellow, Hormone Receptor Laboratory, Biochemistry and Molecular Biology, University of Louisville, School of Medicine, Louisville KY 2006- *Graduate Student Researcher*, Pharmacology and Toxicology, University of Louisville, School of Medicine, Louisville KY

C. PROFESSIONAL MEMBERSHIPS AND ACTIVITIES

2006-	American Society for Pharmacology and Toxicology and Experimental
	Therapeutics (ASPET), Student member
2007-	Black Biomedical Graduate Student Organization (BBGSO), <i>Vice-President 2008-2009</i>
2007-	Ohio Valley Chapter of Society of Toxicology (OVSOT), Student member
2007-	American Association for Cancer Research (AACR), Associate member
2009-	American Society of Human Genetics (ASHG), Trainee Student Member
2009-2010	University of Louisville School of Medicine Academic Grievance Committee, graduate student member

D. HONORS AND AWARDS

2007	University of Louisville Graduate Bridge Fellowship (May 1 – July 31)
2007-2008	Integrated Programs in the Biomedical Sciences Fellowship, Department
	of Pharmacology and Toxicology
2008	American Association for Cancer Research Minorities in Cancer Travel
	Award, 2008 Annual Meeting
2008-	Environmental Health Sciences Training Program, Department of
	Pharmacology and Toxicology
2009-2010	CODRE/Graduate School Diversity Grant for Graduate Students Research
	Award
2010	2009-2010 K.C. Huang Outstanding Graduate Student Award,
	Department of Pharmacology and Toxicology

E. ABSTRACTS AND PRESENTATIONS

E1. ORAL PRESENTATIONS: LOCAL/REGIONAL MEETINGS

Lavender, N.A., Kruer, T.L., Kerr II, D.A., Smolenkova, I.A., Wittliff, J.L. Fractionation of Botanicals Exhibiting Estrogen Mimicry. Undergraduate Research Symposium, UofL, Louisville, KY, April 18, 2005.

Lavender, N.A. Impact of Xeroderma Pigmentosum Group D (XPD) Polymorphisms on Prostate Cancer Risk. Pharmacology and Toxicology 1st year graduate departmental seminar, University of Louisville, Louisville, KY, March 9, 2007.

Lavender, N.A. Influence of Polymorphic Genes Involved in Oxidative Stress and Apoptosis on Prostate Cancer Risk, Scientific Writing Course lecture. Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, September 25, 2007.

Lavender, N.A. Insulin Therapy. Endocrinology and Metabolism Course lecture. Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, October 31, 2007.

Lavender, N.A. Joint Modifying Effects Variant Oxidative Stress in Relation to Prostate Cancer. Master's Thesis Defense. Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, November 6, 2008.

Lavender, N.A. Joint Modifying Effects of Variant Oxidative Stress and Apoptosis Markers and Smoking in Relation to Prostate Cancer Risk in African-American Men. University of Louisville CODRE Monthly meeting, University of Louisville, KY, June 11, 2010.

E2. POSTER PRESENTATIONS: NATIONAL/INTERNATIONAL MEETINGS

Kerr II, D.A., Smolenkova, I.A., Andres, S.A., Russell, A.J., Nicholson, E.S., Smolenkov, A.S., **Lavender, N.A.**, Kruer, T.L., Spatola, A.S., Zabel, S., Gangemi, J.D., Wittliff, J.L. Elucidating Medicinal Properties of Botanicals: Activities Altering Ligand & DNA Recognition by Estrogen Receptors. Annual International Clinical Ligand Assay Society Meeting, San Diego, CA, May 11, 2005.

Lavender, N.A., Komolafe, O.O., VanCleave, T.T., Srivastava, D.S., Thacker, B., States, J.C., Brock, G.N., Kidd, L.R. Interplay Between Xeroderma Pigmentosum Complementation Group D and Multi-drug Resistant 1 Genes (*XPD and MDR1*) and Prostate Cancer Risk. Annual American Society for Pharmacology and Toxicology and Experimental Therapeutics, Washington DC, April 27-30, 2007.

Lavender, N.A., Komolafe, O.O., Brock, G.N., Moore, J.H., Vancleave, T.T., Srivastava, D.S., Benford, M.L., States, J.C., Kittles, R.A., Kidd, L.R. Influence of high order interactions between variant DNA repair genes on prostate cancer risk in African-American Men. 99th Annual American Association for Cancer Research Conference, San Diego, CA, April 12-16, 2008.

Zhu, Y., Benford, M., **Lavender, N.A.**, Vancleave, T.T., Kittles, R., Wittliff, J., Kidd, L.R. TaqMan Allelic Discrimination Validation of Angiogenesis-associated Biomarkers. 99th Annual American Association for Cancer Research Conference, San Diego, CA, April 12-16, 2008. **Lavender, N.A.**, Zhu, Y., Benford, M.L., Vancleave, T.T., Kidd, L.R. Role of Glutathione S-Transferases (GSTs) Polymorphisms in Predicting Prostate Cancer Risk Among African-American Men. 100th Annual American Association for Cancer Research Conference, Denver, CO, April 18-22, 2009.

Benford, M.L., VanCleave, T.T., **Lavender, N.A.**, Kittles, R.A., Kidd, L.R. 8q24 Sequence Variation in Relation to Prostate Cancer Risk among African-American Men. 100th Annual American Association for Cancer Research Conference, Denver, CO, April 18-22, 2009.

Lavender, N.A., Kimbro, K.S., Tang, W., Vancleave, T.T., Bouzyk, M., Kidd, L.R. Oxidative Stress Response Sequence Variants as Predictors of Prostate Cancer Risk and Aggressive Disease among men of European and African Descent. 101th Annual American Association for Cancer Research Conference, Washington, DC, April 17-21, 2010.

E3. POSTER PRESENTATIONS: LOCAL/REGIONAL MEETINGS

Lavender, N.A., Komolafe, O.O., Vancleave, T.T., Srivastava, D.S., Thacker, B., States, J.C., Brock, G.N. Interplay Between Xeroderma Pigmentosum Complementation Group D and Multi-drug Resistant 1 Genes (*XPD and MDR1*) and Prostate Cancer Risk. James Graham Brown Cancer Center Retreat, Louisville, KY, November 29, 2006.

Komolafe, O.O., Vancleave, T.T., Srivastava, D.S., Thacker, B., **Lavender, N.A.**, Doll, M., Hein, D.W., Brock, G.N., Kidd, L.R. Multifaceted Analytical Approach for Predicting Prostate Cancer Susceptibility Among African-American Men. School of Public Health and Information Sciences, University of Louisville, Louisville, KY, April 24, 2007.

Lavender, N.A., Komolafe, O.O., Brock, G., Moore, J.H., Vancleave, T.T., Srivastava, D.S., Benford, M.L., States, J.C., Kittles, R., Kidd, L.R. Variant Base and Nucleotide Excision Repair Alleles and Prostate Cancer Risk among African-American Men. Research!Louisville, Louisville, KY, October 16, 2007.

Zhu, Y., **Lavender, N.A.**, Benford, M.L., Vancleave, T.T., Kidd, L.R. TaqMan Allelic Discrimination Validation of Angiogenesis-associated Biomarkers. Research!Louisville, Louisville, KY, October 17, 2007.

Lavender, N.A., Komolafe, O.O., Brock, G.N., Moore, J.H., Vancleave, T.T., Srivastava, D.S., Benford, M.L., States, J.C., Kittles, R.A., Kidd, L.R. Influence of High Order Interactions between Variant DNA Repair Genes on Prostate Cancer Risk in African-American Men. James Graham Brown Cancer Center Retreat, Louisville, KY, November 28, 2007.

Zhu, Y., Lavender, N.A., Benford, M.L., Vancleave, T.T., Kidd, L.R. TaqMan Assay for Genotyping of Single Nucleotide Polymorphisms (SNPs) in Genes Regulating Tumor

Angiogenesis. James Graham Brown Cancer Center Retreat, Louisville, KY, November 28, 2007.

Lavender, N.A., Zhu, Y., Benford, M.L., Vancleave, T.T., Kidd, L.R. Role of Glutathione S-Transferases (GSTs) Polymorphisms in Predicting Prostate Cancer Risk Among African-American Men. Research!Louisville, University of Louisville, Louisville, KY, October 21, 2008.

Zhu, Y., Benford, M.L., Vancleave, T.T., **Lavender, N.A.**, Zeng, J., Kidd, L.R. Interplay of Genetic Polymorphisms and Prostate Cancer Risk. Research!Louisville, University of Louisville, Louisville, KY, October 22, 2008.

Vancleave, T.T., Brock, G. N., Benford, M. L., **Lavender, N.A.**, Zhu, Y., Kruer, T. L., Wittliff, J.L. Kidd, L. R. Clinical Relevance of Angiogenesis SNP Profiles in Breast Cancer Recurrence. Research!Louisville, University of Louisville, Louisville, KY, October 22, 2008.

Lavender, N.A., Zhu, Y., Benford, M.L., Vancleave, T.T., Kidd, L.R. Role of Glutathione S-Transferases (GSTs) Polymorphisms in Predicting Prostate Cancer Risk Among African-American Men. James Graham Brown Cancer Annual Retreat, University of Louisville, Louisville, KY, October 29, 2008.

Vancleave, T.T., Brock, G.N., Benford, M.L., **Lavender, N.A.**, Zhu, Y., Kruer, T.L., Wittliff, J.L., Kidd, L.R. Clinical Relevance of Angiogenesis SNP Profiles in Breast Cancer Recurrence. James Graham Brown Cancer Annual Retreat, University of Louisville, Louisville, KY, October 29, 2008.

Zhu, Y., Benford, M.L., Vancleave, T.T., **Lavender, N.A.**, Zeng, J., Kidd, L.R. Interplay of Genetic Polymorphisms and Prostate Cancer Risk. James Graham Brown Cancer 7th Annual Retreat, University of Louisville, Louisville, KY, October 29, 2008.

Lavender, N.A., Zhu, Y., Benford, M.L., Vancleave, T.T., Kidd, L.R. Role of Glutathione S-Transferases (GSTs) Polymorphisms in Predicting Prostate Cancer Risk Among African-American Men. 1st University of Louisville Graduate Research Symposium, University of Louisville, Louisville, KY, March 6, 2009.

Lavender, N.A., Zhu, Y., Benford, M.L., Vancleave, T.T., Kidd, L.R. Role of Glutathione S-Transferases (GSTs) Polymorphisms in Predicting Prostate Cancer Risk Among African-American Men. Environmental Health Science Fellows Showcase, University of Cincinnati, Cincinnati, OH, September 18, 2009.

Lavender, N.A., Komolafe, O.O., Brock, G.N., Moore, J.H., Vancleave, T.T., Benford, M.L., States, J.C., Kittles, R.A., Kidd, L.R. Influence of High Order Interactions between Variant DNA Repair Genes on Prostate Cancer Risk in African-American Men. 12th Annual

Midwest DNA Repair Symposium, University of Louisville, Louisville, KY, May 14-15, 2010.

F. RESEARCH SUPPORT

F.1 ACTIVE GRANTS

Clinical & Translational Science Pilot grant (Kidd) **Clinical & Translational Science Pilot Program** Innate Immune Response Predictors of Prostate Cancer Outcomes. This project utilizes a case-cohort to evaluate whether patients who inherit compromised innate immunity markers will suffer shortened disease-free relapse and even death. Increased prostate cancer risk, disease progression, poor prognosis may be partially attributed to inheritance of variant innate immunity-related loci linked with enhanced pro-inflammatory, presumably due to alterations macromolecules that may lead to changes in responsiveness to pathogens by toll-like receptors and their cytokine/chemokine production. These biochemical changes may result in chronic inflammation and other microenvironment changes that support tumor growth and disease progression.

Role: Research Assistant

F2. COMPLETED GRANT AWARDS

NIEHS T32 Training Program Grant

10/01/08 - 09/30/10

National Institute of Environmental Health Sciences, NIEHS Joint Modifying Effects of Variant Oxidative Stress and Apoptosis Markers and Second Hand Cigarette Smoke in Relation to Prostate Cancer Risk in African-American Men. The goal of this project is to examine the impact of complex interactions among oxidative stress, apoptosis, and second hand smoke on prostate cancer risk and disease progression among men of African-descent. These complex interactions will be analyzed using traditional and advanced bioinformatic approaches, including multifactor dimensionality reduction. This multi-faceted approach is designed to capture geneenvironment interactions that would remain undetected using conventional strategies such as logistic regression models. Role: Principal Investigator

Intramural Award (Kidd) **Bales Medical Research Fund**

Impact of DNA Repair Genes on Prostate Cancer Risk Among Men of African Descent. Determine the role of variations in base excision (OGG1, XRCC1, APEX1) alone or in combination with nucleotide excision repair genes (XPA, XPD) in the risk of developing prostate cancer among African-American men. **Role: Research Assistant**

04/15/06 - 03/15/07

10/01/10-present

Intramural Award02/01/07 - 01/31/08JGBCC Pilot Program Initiative 2007 (Kidd)Genomic Approach to Predicting Breast Cancer Recurrence.The purpose of this study is to identify important SNP or mRNA signatures to optimize
breast cancer.Role: Research Assistant

2006 Competition Awards Program (Kidd) Prostate Cancer Foundation

Combined Genetic Assessment of Angiogenesis Pathway Variants Predictive of Prostate Cancer Risk.

Systematically evaluate the interaction among 12 highly variant angiogenesis genes and their combined modifying effects on prostate cancer risk and disease progression within a unique and large case-control study. This assessment involves genetic profiles collected from 918 men of African-descent (220 cases and 698 controls) using highly advanced statistical tools. The project tests the hypothesis that variations within regulatory or coding regions within selected angiogenesis markers genes will individually or jointly modulate prostate cancer risk and disease progression (i.e., high tumor grade), presumably due to alterations in mRNA/protein expression critical to tumor vasculature formation capacity.

Role: Research Assistant

Cancer Prevention R03 (Kidd)

06/1/07 - 5/31/09

National Cancer Institute, NIH

A Pharmacogenetic Approach to Prostate Cancer Susceptibility.

The purpose of the study is to systematically evaluate the capacity of an innovative panel of genetic variants within carcinogen-biotransformation, -transport, and -DNA repair pathways to predict prostate cancer susceptibility among men of African descent. In order to accomplish this high-impact research objective, the proposed project will use a multi-faceted statistical strategy that combines orthodox statistical methods with computation algorithms and hierarchical interaction graphs. Role: Research Assistant

CODRE/Graduate School Diversity Grant for Graduate Students 06/01/09 - 05/31/10 UofL Commission on Diversity and Racial Equality

Joint Modifying Effects of Variant Oxidative Stress and Apoptosis Markers and Smoking in Relation to Prostate Cancer Risk in African-American Men.

This study aims to identify and evaluate whether a complex array of oxidative stressrelated genetic and environmental markers can detect PCA risk, disease aggressiveness and treatment response using a combination of traditional and innovative advanced mathematical methodologies.

Role: Principal Investigator

02/1/07 - 01/31/08

G. ADMINISTRATIVE AND COMMUNITY SERVICES

G1. SERVICE TO THE DEPARTMENT

Interviewer, Department of Pharmacology & Toxicology, Spring 2008 – present

University of Louisville, School of Medicine, Louisville, KY

Responsibilities:

- Interview and recommend prospective graduate students
- Address questions/concerns regarding graduate school
- Disseminate recruitment materials
- Follow-up with interested candidates

G2. SERVICE TO THE UNIVERSITY

Member, Academic Grievance Committee, September 2009-2010

University of Louisville, School of Medicine, Louisville, KY

Responsibilities:

 Handle grievances from medical students, graduate students and postdoctoral trainees

G3. SERVICE TO THE PROFESSION

Manuscript Peer Reviews

Cancer Epidemiology, review submitted March 19, 2010

 Polymorphisms of Glutathione S-Transferase M1 and T1 and Prostate Cancer Risk in a Tunisian population, manuscript reference number: CANEP-D-10-00055

Disease Markers, review submitted September 28, 2010

 Association of GSTM1 and GSTT1 polymorphism and tobacco usage with oxidative stress in benign prostate hyperplasia and prostate cancer, manuscript reference number: DMA0910

G4. SERVICE TO THE COMMUNITY

Volunteer Activities

Team member/participant, American Cancer Society Relay For Life, May 15, 2010 Mentor, YMCA Black Achievers Program, 2008-present Mentor/advisor, Nativity Academy at Saint Boniface Science Fair, Spring 2008

H. PUBLICATIONS, BOOK CHAPTERS, MONOGRAPHS AND TEXTBOOKS

H1. PEER-REVIEWED MANUSCRIPTS

Lavender N.A., Benford M.L., VanCleave T.T., Brock G.N., Kittles R.A., Moore J.H., Hein D.W., and Kidd L.R. Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoke and prostate cancer risk: A case-control study. BMC Cancer. 2009 Nov 16; 9:397.

Lavender N.A., Komolafe O.O., Benford M.L., Brock G.N., Moore J.H., VanCleave T.T., States J.C., Kittles R.A., and Kidd L.R. No association between variant DNA repair genes and prostate cancer risk among men of African descent. Prostate. 2010 Feb 1; 70(2):113-9.

Kidd L.R., Brock G.N., VanCleave T.T., Benford M.L., **Lavender N.A.**, Kruer T., Wittliff J.L. Angiogenesis-associated Sequence Variants Relative to Breast Cancer Recurrence and Survival. Cancer Causes and Control. 2010 Oct; 21(10):1545-57.

Benford M.L., VanCleave T.T., **Lavender N.A.**, Kittles R.A., Kidd L.R. 8q24 Sequence Variants in Relation to Prostate Cancer Risk among Men of African Descent. BMC Cancer. 2010 Jun 28; 10:334.

I. SCIENTIFIC MEETINGS, WORKSHOPS, SEMINARS

James Graham Brown Cancer Center Memorial Lecture Series, weekly seminars September 2006 to present

James Graham Brown Cancer Center, University of Louisville Louisville, KY

Pharmacology and Toxicology Departmental Seminars, weekly seminars September 2006 to present

University of Louisville, School of Medicine Louisville, KY

Grant Workshop: NIH Training and Career Development Programs, October 18, 2007

Research Louisville! University of Louisville, School of Medicine Louisville, KY

Third American Association for Cancer Research Conference: The Science of Cancer Health Disparities, September 30-October 3, 2010

Loews Miami Beach Hotel Miami, FL