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ABSTRACT

IDENTIFICATION, INDEXING, AND RETRIEVAL OF CARDIO-PULMONARY

RESUSCITATION (CPR) VIDEO SCENES OF SIMULATED MEDICAL CRISIS

Surangkana Rawungyot

December 1, 2014

Medical simulations, where uncommon clinical situations can be replicated, have

proved to provide a more comprehensive training. Simulations involve the use of patient

simulators, which are lifelike mannequins. After each session, the physician must manually

review and annotate the recordings and then debrief the trainees. This process can be

tedious and retrieval of specific video segments should be automated.

In this dissertation, we propose a machine learning based approach to detect and

classify scenes that involve rhythmic activities such as Cardio-Pulmonary Resuscitation

(CPR) from training video sessions simulating medical crises. This applications requires

different preprocessing techniques from other video applications. In particular, most pro-

cessing steps require the integration of multiple features such as motion, color and spatial

and temporal constrains. The first step of our approach consists of segmenting the video

into shots. This is achieved by extracting color and motion information from each frame

and identifying locations where consecutive frames have different features. We propose two

different methods to identify shot boundaries. The first one is based on simple thresholding

while the second one uses unsupervised learning techniques.

The second step of our approach consists of selecting one key frame from each shot

and segmenting it into homogeneous regions. Then few regions of interest are identified for
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further processing. These regions are selected based on the type of motion of their pixels and

their likelihood to be skin-like regions. The regions of interest are tracked and a sequence

of observations that encode their motion throughout the shot is extracted. The next step

of our approach uses an HMM classifier to discriminate between regions that involve CPR

actions and other regions. We experiment with both continuous and discrete HMM.

Finally, to improve the accuracy of our system, we also detect faces in each key

frame, track them throughout the shot, and fuse their HMM confidence with the region’s

confidence.

To allow the user to view and analyze the video training session much more efficiently,

we have also developed a graphical user interface (GUI) for CPR video scene retrieval and

analysis with several desirable features.

To validate our proposed approach to detect CPR scenes, we use one video simulation

session recorded by the SPARC group to train the HMM classifiers and learn the system’s

parameters. Then, we analyze the proposed system on other video recordings. We show

that our approach can identify most CPR scenes with few false alarms.
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CHAPTER 1

INTRODUCTION

Digital video generation and distribution is growing exponentially in business, edu-

cation, sports, entertainment, advertising, social media, and security. Manual annotation

of video for the purpose of review and retrieval is very time-consuming. The reason is that

tremendous manpower is needed to label the video. Therefore, a content-based approach is

needed. Consequently, there have been various studies and applications in video indexing

[1][2], analysis [3], retrieval [4, 5, 6], and classification [7][8]. Although several content-based

video retrieval prototypes have been proposed [9, 10, 11], the problem remains largely un-

solved especially for generic video. As a result, researchers have focused on indexing and

retrieval of video for specific applications. For example, Chen et al. [12] developed a Soc-

cerQ for retrieving soccer events from sports videos by using temporal relationships. The

content provider needs to extract and present the highlights for the viewer. SoccerQ is

developed to support both basic queries and relative temporal queries that can be auto-

matically analyzed. Video shots relevant to the query are then retrieved and displayed via

a user-friendly interface. Several other methods have been proposed to detect events in

sports videos such as football games [13], basketball games [14], and baseball games [15].

These methods take into account the different rules of the game, the players’ actions, and

the strategy of the game.

Another application that can benefit from content-based video retrieval is security.

In this application, videos from surveillance cameras are used to detect events requiring

attention as they happen and to take actions in real time when an unusual human be-

havior is detected. Detecting human behavior may require only a simple description of

each person in the scene, or a count of the number of people present. It may also involve
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more complex description of an individual such as overall body motion, limb movement, or

hand gesture. For instance, Raiyn [16] introduced a cognitive video surveillance system to

retrieve video shots where a suspected person is detected using motion features. Another

example in security application is to detect dangerous situations in underground railway

stations. Velastin et al. [17] exploited motion-based methods used in a surveillance system

with multiple cameras. The system kept recorded video as visual evidence to help with a

posteriori investigation of unusual events or criminal actions.

Video usage in traffic systems is another application of content-based video analysis.

Typically, motion analysis is used to detect anomalous behaviors such as a car driving in the

wrong lane or turning left from the right-hand lane that can be detected from a surveillance

camera mounted above an intersection. For instance, in [18], Brand and Kettnaker learned

patterns of behavior by training a HMM. They applied their system in an office environment

to detect unusual behavior such as falling asleep or driving in the wrong lane. Using a similar

approach, the Bobick system[18] was proposed to interpret movements in a parking lot. The

system can detect events such as a car entering or leaving, a person entering or leaving, a

person being picked up or dropped off, or losing or finding a track.

Another application in content-based video analysis involves classification. The ob-

jective in this application is to classify video segments into categories, typically with a

meaningful label such as sport, movie, or crowd. For instance, Huang et al. [19] proposed

a method to categorize sport video into basketball and football games based on color, mo-

tions, and audio features from other video sources. Similarly, in [20], Li et al. presented an

automatic sports genre categorization based on the bag of visual-words model.

In this dissertation, we focus on analyzing medical simulation training video da-

ta. We use data recorded by the Simulation for Pediatric Assessment, Resuscitation and

Communication (SPARC) group within the Department of Pediatrics at the University of

Louisville. SPARC was developed to teach pediatrics faculty, fellows, and residents how to

respond to medical crises. Its objective is to enhance the care of infants and children by

using simulation-based educational methodologies to improve patient safety and strengthen
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interdisciplinary and clinician-patient interactions. The simulation sessions involve the use

of patient simulators which are lifelike mannequins that have respiration and heartbeat,

and respond to treatment with virtual drugs. Simulation sessions involve 4 to 9 people and

last approximately 30 minutes to one hour. They are scheduled approximately twice per

week and are recorded as video data. After each session, the physician/instructor must

manually review and annotate the recording and then debrief the trainees on the session.

Video-assisted debriefing allows participants to deconstruct and reflect on their experiences,

teaching them how to approach such tasks more effectively in the future.

The physician responsible for the simulation sessions has recorded over 100 sessions,

and is now realizing that: (1) the manual process of review and annotation is labor intensive;

(2) retrieval of specific video segments is not trivial; and (3) there is a wealth of information

waiting to be mined form these recordings. Providing the physician with automated tools

to segment, semantically index and retrieve specific scenes from a large database of training

sessions will enable him/her to: (1) immediately review important sections of the training

with the team; (2) allow more efficient debriefing with the team of trainees; and (3) identify

similar circumstances in previously recorded sessions. The longer term payback is the

potential discovery of similar critical elements in a training session that results in either

positive or negative outcomes and thus enhances the effectiveness of the training.

We focus on detecting and classifying scenes that involve rhythmic activities such

as Cardio-Pulmonary Resuscitation (CPR) from training video sessions simulating medical

crises. Our approach consists of two main steps: The first one segments the video into

shots, selects one keyframe for each shot, and identifies regions with skin-like colors in each

keyframe. Each skin region is then represented by a sequence of observations that encode

its motion in the different frames within the shot boundaries. The second step consists of

using motion-based features in a discrete and a continuous HMM classifier to identify the

skin-like regions that involve CPR activities. Our framework is illustrated in figure 1.1.

The main contribution of this dissertation could be outlined as follows:

1. We developed, implemented, and tested an algorithm to segment video into shots.
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Our approach is based on unsupervised learning and uses features based on color,

motion, and temporal information.

2. We developed, implemented, and tested an image segmentation algorithm to partition

the shot key frame into homogenous regions. Our approach uses color, optical flow,

and spatial information as features and the NCut algorithm to perform clustering.

3. We developed, trained, and a tested classifier to identify regions with skin-like colors.

4. We developed, trained, and a tested discrete and continuous HMM classifier to identify

CPR scenes. Our approach is based on tracking regions of interest throughout the

shot and encoding their motion information.

5. We implemented and tested a face selection and tracking algorithm. We showed that

this information could improve the accuracy of the CPR classifier by analyzing the

motion of the face of the subject performing CPR in addition to the motion of his/her

hands.

6. We integrated all of the above algorithms into a system that analyzes a video simu-

lating medical crises and identifies CPR scenes in a completely unsupervised way.

7. We developed a GUI prototype for CPR scene retrieval and analysis. The GUI has

revealed desirable features that allow the user to view and analyze the video training

sessions in an efficient way.

The remainder of this thesis is organized as follows. In chapter II, we provide

an overview of related work on image segmentation, skin detection, motion features, and

scene detection techniques. In chapter III, we propose the Cardio-Pulmonary Resuscitation

(CPR) scene identification system. In chapter IV, we present the experimental results and

analysis and describe our graphical user interface (GUI). Finally, in chapter V, we conclude

and discuss potential future work.
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Figure 1.1: Overview of the proposed system to identify and retrieve Cardio-Pulmonary
Resuscitation (CPR) scenes from training video sessions simulating medical crisis
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CHAPTER 2

RELATED WORK

Understanding, indexing, and retrieving medical video data is an important and nec-

essary tool to take advantage of the large image and video databases. A good introduction

the current state of the art in medical image and video analysis can be found in [21][22].

Research on automatic medical video processing has focused on recordings of specific medi-

cal procedures such as colonoscopies or echocardiograms, and on the analysis of the training

video data. For instance, Gokturk et al. [23] proposed a computer-aided diagnosis system

for colonoscopy videos based on a 3D shape pattern processing method and a support vector

machine classifier. Cao et al. [24][25] developed a spatial-temporal analysis technique to

automatically identify video events in a colonoscopy video that correspond to a diagnostic

or therapeutic operation. In [25][26], image segmentation-based spatial analysis techniques

are utilized to locate the image with regions of interest in a colonoscopy video. A scene

is recognized as a specific configuration of the detectable objects. Li et al. [27] suggested

algorithms and tools useful to summarize the echocardiogram videos using temporal video

segmentation techniques.

Medical video, used to train the next generation of physicians, is another category

of video that needs to be analyzed, indexed, and retrieved by content. In [28], Han et al.

proposed an approach for analyzing and providing objective statistics of the trainees’ be-

havior. The main idea is based on tracking the motion and location of the subjects. These

parameters are used to judge and compare the behavior of the trainees. To simplify identi-

fication and tracking, the trainees wore medical caps with distinctive colors.

In [29], Zhu et al. introduced a framework to mine medical video content and events.

First, the video is segmented and key-frames are selected. Second, the scenes are clustered
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and grouped to organize the video shot into a hierarchical structure. Then, audio and video

processing techniques are integrated to mine event information, such as dialog, presentation,

and clinical operation, among the detected scenes. Finally, visualization techniques are used

to construct a scalable video skimming tool. Other methods used to segment and analyze

medical training video can be found in [30][31].

In general, most of the above systems and other methods used for video indexing

and retrieval include the following main steps:

2.1 Hierarchical Representation of Video

The first step in video analysis consists of organizing the video into an ascending

hierarchy of frames, shots, and scenes [3, 8, 32] as illustrated in figure 2.1. A frame is a

still image in the video stream. Whereas, a shot is a set of consecutive frames from a single

camera, and can involve camera motion like panning (horizontal rotation), tilting (verti-

cal rotation), zooming (focal length change), tracking (horizontal transverse movement),

booming (vertical transverse movement) and dolling (horizontal lateral movement) as well

as movement of objects within or out of the frame of view [2]. Thus, multiple motions can

appear within a single shot. Shots usually transition from one to the next using what is

called a hard cut (discontinuous), where the last frame of one shot is followed immediately

by the first frame of another shot. Shot transitions can also be gradual (continuous) such

as a fade in/out, dissolve, wipes, or the more elaborate digitally-based shot transitions [6].

Shots are considered to be the fundamental units to organize the content of video sequences

and the basic elements for semantic annotation and retrieval tasks. A scene is the next

level in video hierarchy. It is defined as a part of a story that represents a sequence of an

action or an observation of an object [7]. Scene segmentation is also known as story unit

segmentation. Scenes have normally higher level semantics than shots. They are identified

or segmented out by grouping successive shots with similar content into a meaningful se-

mantic unit. Most scene segmentation approaches are based on high-level information that

can be extracted from text, images, or the audio track in the video.
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Figure 2.1: Hierarchical video representation

The organization of a video in a hierarchical structure involves 3 main steps: shot

boundary detection, scene segmentation, and key frame extraction. These steps are high-

lighted in the following sections.

2.1.1 Shot Boundary Detection

Shot boundary detection, also known as temporal video segmentation, is usually

performed by identifying the transition between adjacent shots. The general approach to

detect shot boundaries involves 3 main steps. First, visual features are extracted from

each frame. Then, the similarity between adjacent frames, using the extracted features is

computed. Finally, shot boundaries are identified between frames with low similarity [1].

The main feature used to measure the similarity between frames involves color his-

tograms [33, 34, 35]. Another feature that proved to be useful in detecting shot boundaries

is edge change [36][37]. Other features, that are computationally more expensive, are based

on motion [38][39] and on correlation in the frequency domain [40][41]. Combinations of the

above features have also been investigated [35, 40, 42]. Many researchers have also exploited

information stored in the compressed video files and achieved good accuracy at much lower

computation cost [43][44].

Shot boundary detection methods can be based on either thresholding or statisti-

cal learning. In the threshold-based techniques, the pair-wise similarities between adjacent
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frames are usually compared to a predefined threshold to detect shot boundaries[45]. In

[40], Gargi et al. presented an automatic thresholding framework. In statistical learning-

based approach, Yuan et al.[46] combine the threshold-based method with an SVM-based

classifier. First, candidate boundaries are selected using the threshold-based method. Then,

a Support Vector Machine(SVM) classifier is used to verity the boundaries. Other super-

vised learning algorithms, such as Adaptive Boosting(AdaBoost) algorithm [42], K-nearest-

neighbor classifier[47], and Hidden Markov Model(HMM)[48] with visual features, have also

been used for shot boundary detection.

2.1.2 Key Frame Extraction

After identifying the shot boundaries, one or more representative frames, called key

frames, needs to be extracted for each group of frames or video shot. The visual contents

of these key frames are then used to represent salient information of the video shots for the

purpose of indexing and retrieval, video summarization, and browsing [49]. Some simple

methods pick one or more key frames from every shot at a predefined temporal location such

as the first, middle, or last frame. For instance, Divakaran et al.[38] extract the key frame by

dividing the shot into segments with equal cumulative motion activity using the MPEG-7

motion activity descriptor and a fidelity measure. The frame located at the halfway point

of each segment is then selected as a key frame.

Other key frame extraction methods are based on low level features such as color,

shape, edge, optical flow, motion vector, and MPEG discrete cosine coefficients [34]. In [36],

Zabih et al. proposed a key frame extraction approach based on edge change ratio. Sze et al.

[50] proposed the temporally maximum occurrence frame (TMOF). TMOF is constructed

by considering the probability of occurrence of pixel values at each pixel position for all

frames within a video shot.
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2.1.3 Scene Segmentation

Some short videos can consist of a large number of shots while other longer video can

include few shots. Thus, shots may not be useful in video indexing and retrieval. Moreover,

it is less likely that users are looking for a single shot. Instead, they may be searching

for semantically meaningful scenes consisting of a number of shots. Video segmentation

into scenes (or story units) is a harder task that requires the definition of a semantically

meaningful scene.

Video segmentation can be achieved using a variety of features and techniques. For

instance, in [51], Goela et al. presented a genre-independent method to detect scene bound-

aries in broadcast video. In their method, scene segmentation is achieved by defining a

class of scene change and another class of non-scene change. An SVM is used to classify

the scene boundaries. Hand-labeled video scene boundaries, extracted from a variety of

broadcast genres, are used to generate positive and negative training samples for the SVM.

Another commonly used approach for scene segmentation is based on graph parti-

tioning. Graph-based algorithms cluster shots based on similarity and arrange them in a

graph representation. Nodes represent shots or clusters of shots and edges indicate simi-

larity or temporal closeness between the connected nodes. By using graph segmentation

algorithms, the constructed graphs are divided into subgraphs, each representing a shot.

For instance, Rasheed and Shah [52] construct a shot similarity graph for a video and par-

tition the graph using normalized cuts. The subgraphs represent individual shots in the

video. Another approach, based on scene transition graph, is introduced by Ngo et al. [53].

Benini et al. [54] also use the scene transition graph approach for identifying scenes, where

the shot similarity is calculated based on codebooks of visual codewords generated by a

vector quantization process.

Another technique for scene segmentation is based on rules. For example, Lin et al.

[55] proposed a scene segmentation approach based on splitting and merging forces. For

each shot, a dominant color histogram (DCH) and a spatial structure histogram(SSH) are

calculated. The splitting force indicates the difference in the previous shots by comparing
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each shot with its three ancestors and successors. The merge force indicates the coherence

of one shot with its three successor shots. An ideal scene boundary is detected when the

splitting force reaches its maximum and the merging force reaches its minimum. In practice,

this is not always the case, thus two additional rules have been proposed for scene boundary

detection: (1) if the splitting force reaches its maximum and the merging force is under a

pre-defined threshold; or (2) if the merging force reaches its minimum the splitting force is

above a pre-defined threshold.

Some researchers have used hybrid solutions that combine the individual strength

of visual-based, audio-based and text-based methods. The challenge is not only how to

combine the different features or different methods but also the choice of an effective sim-

ilarity measure for each modality. For example, Gatica-Perez et al. [56] presented a scene

segmentation for home videos which uses video shots. They exploited the characteristics

of home video and combined color and edge density, edge direction, and color ratios into

4-D histograms. Using these features, a hierarchical clustering algorithm was used for shot

clustering. Other methods used for scene detection can be found in [32][53].

2.2 Feature Extraction

Video indexing and retrieval rely on features to describe their content. Here, we

focus on visual features suitable for video indexing and retrieval. These are mainly color-

based, shape-based, motion-based, and object-based features extracted from one key-frame

or from multiple frames within a short sequence.

Color-based features include color histograms [33][35], color correlograms [57], mix-

ture of Gaussian models [58], and others. The extraction of color based features requires the

specification of a color space such as RGB, HSV, Y CbCr, YUV and HVC. The choice of the

color space depends on the objective of each application. Color features can be extracted

from the entire image or from image blocks or regions. Color-based features are the most

efficient descriptors for video indexing and retrieval. In particular, color histogram and color

moments are simple but efficient. The color histogram approach is based on identifying the

11



color of every pixel in each frame and gathering these into a histogram with a fixed number

of bins. Many video retrieval and indexing applications have used color histograms [33][35].

For instance, Geetha and Palanivel [8] proposed a Block Intensity Comparison Code(BICC)

as a feature to detect the shot change in a video stream.

Shape-based features can be extracted from object contours or regions in a video

frame. A common approach is to detect edges in the image and then describe the distri-

bution of the edges using histograms. Hauptmann et al. [37] adopted the edge histogram

descriptor (EHD) to capture the spatial distribution of edges for the video search task in

TRECVid-2005. The EHD is computed by counting the number of pixels that contribute

to edges according to their quantized directions. Similarly, Lienhart [35] extracted edge

features using the Canny edge detector. The detected edges are then used to detect shot

boundaries by computing the edge change ratio in adjacent frames.

Object-based features include dominant colors, texture, and trajectory [7]. These

features are derived from detected objects. They can be used to retrieve videos likely

to contain similar objects. When used, they tend to focus on identifying specific types of

objects, such as faces, pedestrians, and cars. Faces are useful objects in many video retrieval

systems such as in human behavior analysis [59]. For instance, Sivic et al.[59] presented a

person retrieval system that is able to retrieve a ranked list of shots containing a particular

person, given a query face in a shot.

Motion within a video is primarily of two types: movement on the part of the

objects in a video sequence or movement due to camera motion. Motion-based features

consist mainly of optical flow [60] or MPEG motion vectors [61]. Optical flow is an estimate

of motion in a sequence of images calculated from the velocities of pixel brightness patterns.

This could be due to object motion or camera motion. There are many ways to measure

the optical flow [60]. The most commonly used one is the Horn Schunck algorithm [62].

Another approach detects the total motion in a shot by comparing the histograms

of blocks of consecutive frames [63]. In order to detect object motion, they first calculate

optical flow using Horn Schunck algorithm [62]. Motion due to camera movement would
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result in all blocks having motion. Thus, camera motion can be subtracted, leaving only the

motion of objects. These objects are identified by segmenting pixels with parallel motion.

2.3 Video Classification

The goal in video classification is to learn rules or knowledge from the extracted

features and then classify video shots into predefined categories[8]. In general, categories

are associated with semantically meaningful events. Some classification methods assign

meaningful labels to the entire video such as sports video or scary movies [7]. Other methods

have focused on classifying segmented video for the purpose of identifying violent scenes in

a movie or distinguishing between different news segments within the entire video [64].

Several learning algorithms have been used for video classification. The most com-

mon ones are based on Gaussian Mixture Model (GMM) [58] and Hidden Markov Model

(HMM) [65]. In GMM, an unknown probability distribution function p(x) can be repre-

sented by K Gaussian distribution functions such that

p (x) =
K∑
i=1

πiN (x | µi, Ci). (2.1)

In (2.1), N(x | µi, Ci) is the ith Gaussian distribution with mean µi and covariance Ci

and πi is the prior probability of component i. GMMs have been used for constructing

complex probability distributions as well as clustering. For example, Roach et al.[66] per-

formed video classification with a GMM into sports, cartoons, and news by using object

and camera motion. Camera motion is detected using an optical flow feature, and object

motion is detected by comparing pixels between consecutive frames. Both types of motion

are represented by a second order signal. A Discrete Cosine Transform (DCT) is applied

to these signals to reduce the dimensionality. Similarly, in [67], GMM was used to classify

video as either cartoon or non-cartoon. In this application, the features used for classifica-

tion are based on motion of foreground objects, which are detected using pixel based frame

differentiation.

Hidden Markov Model[65] is a common algorithm for classsifying sequential data.

Since video is a collection of features extracted from a sequence of ordered frames, many
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researchers have used HMM to classify video. In[68], Lu et al. used HMM to classify

television programs into four categories : news reports, commercials, live basketball games,

and live football games. First, for each frame, features are extracted from illumination-

invariant color histograms. Then, a hierarchical clustering algorithm is used to segment

the video into scenes. Finally, HMM is used to classify each scene. Similarly, in [69], the

authors used HMM to segment soccer video. In this application, dominant color ratio and

motion intensity are extracted from the compressed domain of MPEG video. A manually

labeled training set is used to train the models. As a result, soccer videos can be classified

into play scenes and break scenes.
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CHAPTER 3

EXTRACTION, IDENTIFICATION, AND ANALYSIS OF CPR SCENES FROM

VIDEO SIMULATING MEDICAL CRISIS

In this chapter, we describe our proposed approach to detect and classify video scenes

that involve rhythmic activities. The objective is to provide answers to queries that are of

interest to the physician supervising the training sessions such as: “Show me all the scenes

that have a CPR action from a given video simulation training.” First, we describe the

feature extraction process. These features are needed to quantify the similarity between

adjacent frames. Then, we present our approach to segment the video into a set of shots.

After shot detection, a key frame that reflects the main content of each shot is extracted.

Finally, we illustrate how to select the regions of interest for detecting and tracking the

motion throughout the shot. The motion observations will be used to build the binary

classification model. An overview of the proposed system is illustrated in figure 3.1. The

steps of our proposed system are described in the following sections.

3.1 Feature Extraction for Identifying Shot Boundaries

The general idea of video shot boundary detection is to look for discontinuity. This

can be achieved in different ways. In this dissertation, we use a feature-based approach and

investigate three features: global color histogram, average motion magnitude, and motion

orientation histogram. These features are described in the following subsection.

3.1.1 Global Color Histogram

Color histogram is an efficient and robust way to describe and encode the color

information of a video frame. This is because histograms are insensitive to image rotation
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Figure 3.1: Overview of the proposed system to extract and identify CPR scenes

and change slowly with a change in angle and scaling effect. Moreover, two images with

similar background and similar object content will have similar histograms. In our proposed

method, we quantize the RGB color space into M bins. Then, for each frame, we compute

its M -bin histogram. Next, we compute the dissimilarity between histograms of consecutive

frames. The dissimilarity between the histogram of frame t (hct) and the histogram of frame

t+ 1 (hct+1) is defined as :

CHDiff(t) =
M∑
i=1

|hc(t+ 1, i)− hc(t, i)|. (3.1)

In (3.1), t refers to the frame number and i refers to the bin number. Typically, a large

CHistDiff at frame t indicates the possibility of a shot boundary at that location. Figure
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Figure 3.2: Sample color histogram difference of a video sequence with 4 major shot changes

3.2 shows an example of a color histogram difference with 4 strong candidates for shot

boundaries.

3.1.2 Global Magnitude of Motion Vector

Color histograms detect shot boundaries that involve discontinuity in the color of

adjacent frames. However, they do not consider movement information including camera

motion and object movement within the frame. In addition, a color histogram encodes only

the image’s overall color composition. Thus, images with different color appearances can

have similar global color histograms. To overcome this limitation, we propose using motion

information as an additional feature to identify shot boundaries. This information can be

extracted from the compressed domain and is directly accessible from the MPEG stream as

the motion vector for each block [70]. Thus, this feature is intuitive and does not require

significant additional computation.

Typically, in an MPEG video, frames are divided into blocks of size 16x16 pixels,
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and motion vectors are estimated as the movement from the center of one macroblock in the

current frame to the closest matching macroblock in the reference frame. The global motion

in frame t (Vt), is defined as the global average of the motion vectors of all macroblocks in

the frame.

Shot boundaries can be identified at frames with significantly different motion. We

quantify the difference in motion between consecutive frames by defining the absolute dif-

ference of average motion magnitude as

MDiff(t) = |(V t+1)− (V t)| (3.2)

In (3.2), V t is the average magnitude of the motion vectors for all macroblocks in frame t

and is computed using

V t =
1

WH

W∑
i=1

H∑
j=i

Rxy(i, j) (3.3)

where W and H denote the number of macroblocks per row and column in each frame

respectively. In (3.3), Rxy(i, j) =
√
dx2(i,j) + dy2(i,j) is the magnitude of the motion vector of

the macroblock at location (i, j) and dx(i,j) and dy(i,j) denote the motion vectors in the x

and y directions. A sample of the motion magnitude difference for a video with 200 frames

is illustrated in figure 3.3. The yellow arrow illustrates the frame location where two objects

in the red circle and the green circle are moving at different speeds.

3.1.3 Motion Orientation Histogram

Another feature that could be used to identify shot boundaries is based on the

difference in orientation of the motion of the different macroblocks. The motion orientation

histogram is an efficient and effective way to represent the motion orientation information.

The distribution of the orientation movement in each frame is estimated from the motion

vector of its macroblocks. First, the orientation of the motion vector of each macroblock

(i, j) is computed using

θ(i, j) = arctan(dy(i, j)/dx(i, j)) (3.4)
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Figure 3.3: Sample motion magnitude histogram difference of a sequence of 200 frames

where (dx(i, j), dy(i, j)) is the motion vector associated with macroblock in (i, j). Next, all

θ(i, j) are quantized into M discrete orientations. Let hθ(t) denote the motion orientation

histogram of frame t and let hθ(t, i) denote the ith bin of hθ(t). We define the dissimilarity

between the motion orientation histogram of frames t (hθt) and the motion orientation

histogram of frame t+ 1 (hθt+1) as

OHDiff(t) =
M∑
i=1

|hθ(t+ 1, i)− hθ(t, i)|. (3.5)

Figure 3.4 illustrates the quantization of the motion orientation into 13 bins. Each bin

represents the macroblocks that move in a particular direction. For example, bin 1 is

used to represent macroblocks with a motion vector angle between 75 and 105 degrees.

Bin 0 represents macroblocks with no significant motion. Finally, we compute a motion

orientation histogram with M bins where bin i represents the number of macroblocks that

have the discrete orientation are associated with these bins.

The dissimilarity between the motion orientation histograms of two consecutive

frames at time t and time t + 1 is illustrated in figure 3.5. Figure 3.5(c) shows the dif-
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Figure 3.4: Quantization of the motion orientation histogram into M = 13 bins.

(a) Motion vectors of macro blocks
in frame t

(b) Motion vectors of macro blocks
in frame t + 1

(c) Difference between the motion
vectors in frame t and t + 1

(d) Histogram of motion orienta-
tions in (a)

(e) Histogram of motion orienta-
tions in (b)

(f) Difference between the 2 motion
orientation histograms

Figure 3.5: Illustration of the orientation histogram difference between 2 consecutive frames.

ference of the motion vector between figure 3.5(a) and figure 3.5(b). In figure 3.5(a) and

figure 3.5(b) we show the motion of the macroblocks in frames t and t + 1. The motion

orientation histograms of these frames are shown in figure figure 3.5(d) and (e). Figure

3.5(f) shows the dissimilarity orientation histogram between the 2 frames.
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Figure 3.6: Orientation histogram difference of motion vectors for a sequence of 200 frames.

Figure 3.6 plots the orientation histogram difference of the motion vector in a se-

quence of 200 frames. The yellow arrow indicates one local peak point that is caused by

the different motion direction of the objects in the red circle.

3.2 Shot Boundary Detection

The standard approach to shot detection consists of computing the difference be-

tween two successive frames and identifying locations with large differences. Identifying

the shots boundaries and partitioning the video into shots is the first step of our proposed

system. The goal is to have shots that do not combine CPR and non-CPR actions. Thus,

we use strict thresholds and partition the video into a large number of small shots. We

propose and compare two different methods.

3.2.1 Shot Detection based on Frequency Domain Filtering

Video segmentation could be achieved by detecting peaks in the sequence of the

difference between histograms of consecutive frames. In this approach, we propose to use

discrete signal processing techniques to identify peaks. This approach, called Shot Detection

based on frequency domain(SD FD), consists of three main modules: feature representation;

signal processing and analysis; and estimation of the shot boundaries.
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Figure 3.7: Combined color histogram difference, magnitude histogram difference, and ori-
entation histogram difference for a sequence of 200 frames.

For feature representation, the SD FD approach extracts and combines the color

histogram difference in (3.1), the average magnitude histogram difference in (3.2), and the

orientation histogram difference in (3.5). Formally, for each frame t, we compute

CMOHDiff(t) = wcCHDiff(t) + wmMDiff(t) + wdOHDiff(t) (3.6)

where wc, wm, and wd are weights associated with the 3 features such that wc+wm+wd = 1.

Figure 3.7 shows the combined 3 features for a sequence of 200 frames when wc = wm =

wd = 1/3. As it can be seen, some peaks are very strong and their detection is trivial.

However, other peaks are weak and are embedded within noise. The detection of these

peaks is a challenging task.

In our approach, we first smooth the histogram difference by median filtering it. To

simplify notation, let f(f) denote the histogram difference, that is f(t) = CMOHDiff(t),

and let f̂(t) denote the median filtered f(t). Next, the sequence (f) is transformed into the

frequency domain using the Fast Fourier Transform (FFT). We use the FFT based on the

overlap-add method [71] for two main reasons. First, our data is normally a long sequence

that must be filtered in segments. The FFT based on the overlap-add method is used to

break a long sequence into smaller segments for efficient processing. Second, combining the

overlap-add organization with use of the FFT yields a very efficient algorithm for calculating
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convolution that is faster than other methods, while producing exactly the same result. Let

F̂ (n) denote the FFT of f̂(t). Next, differentiation is applied to F̂ (n) to find the zero

crossing and find the coarse transition points. The zero crossing points are identified as

the points that have a sign change from positive to negative and indicate the location of

the peaks in the input histogram. The previous steps can result in many peaks that are

very close to each other. Thus, we use an additional post processing step that uses a small

sliding window and keeps at most one zero crossing per window that corresponds to the

maximum peak.

To illustrate the SD FD approach, in figure 3.8 we show an example of the integrated

histogram differences for a sequence of 200 frames from a training video simulation. The

blue curve plots the histogram difference, CMOHDiff(t), or simply f(t). The green

curve shows the smoothed curve f̂(t) by median filtering and the red curve shows the

Fourier transformed signal F (n). The location of the zero crossing points is indicated by

the magenta circle signs and the local maxima (using a sliding window) of all magenta circles

are displayed using black edge circles. The location of the latter points is taken as the shot

boundaries. As it can be seen, in addition to the various peaks in f(t), our approach can

detect smaller peaks that do correspond to actual shot boundaries. The local max of the

zero crossing can eliminate peaks that are close to each other such as those around frame

95 and frame 115.

Figure 3.9 provides an overview of the proposed SD FD approach.

3.2.2 Shot Detection based on Unsupervised Learning

In this section, we describe our second approach to shot boundary detection. This

approach, called Shot Detection based on unsupervised learning (SD UL), identifies the

change points in a video stream by applying an unsupervised learning technique to a dis-

similarity matrix. This matrix is measured by computing the distance between collections

of frames. It has been widely used in several audio applications, such as speech recognition

[72], music segmentation [73], and cover song identification [74].
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Figure 3.8: Sample output from our proposed video shot detection using Frequency Domain
Filters in a sequence of 200 frames.

Figure 3.9: Different steps of the proposed SD FD.
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First for a given video stream, we extract the color histogram difference (3.1), the

global motion difference (3.2), and the motion orientation histogram (3.5) features. Instead

of combining these features as in (3.6), we represent each frame t by a 3-Dimensional feature

vector,

f(t) = [CHDiff(t),MDiff(t), DHDiff(t)]. (3.7)

Next, we define the dissimilarity between frame t and frame t+ 1 as the Euclidean distance

between f(t) and f(t+ 1), i.e.

d(t) = ‖f(t)− f(t+ 1)‖2. (3.8)

Local maxima of d(t) can be used to localize the shot boundaries. Instead of using a

threshold based approach (as in the SD FD) to select peaks, we use a statistical learning

approach. In particular, we apply an unsupervised learning algorithm to d(t) to identify

clusters. Frames assigned to the same cluster will have low distance and will correspond to a

shot. Thus, the clusters’ boundaries will also correspond to the shot boundaries. To obtain

an estimate of the number of clusters and to initialize the cluster centers, we use a sliding

window approach to identify the local peaks in d(t). Also, to enforce the constraint that

shots should include only consecutive frames, we apply the clustering algorithm to the 2-

Dimensional features (d(t), t). Since t� d(t), clusters will tend to include only consecutive

frames.

Any clustering algorithm could be used for this task. In the current system, we use

the Fuzzy C-Mean (FCM) algorithm [75]. After clustering, the local maxima of d(t) within

each cluster is identified and selected to be a shot boundary. The proposed SD UL approach

is summarized in figure 3.10.

3.3 Key Frame Extraction

After identifying shot boundaries and partitioning the video into shots, the next step

is to identify and select one frame from each shot that is typical of its content. We call these

key frames. Most of the early work selects key frames by randomly or uniformly sampling
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Figure 3.10: Different steps of the proposed SD UL.

video frames from the original sequence at certain time intervals [76]. Since a shot is defined

as a video segment within a continuous capture period, a natural and straightforward way

to key frame extraction is to use the first frame of each shot as its key frame [77, 78].

In our system, we use different approaches to select key frames in training and testing

modes. In training, the shots are short and uniform (extracted manually). Therefore any

frame within the shot could be used as key frame. We simply use the first frame of each

shot as its key frame. For testing, every step of the proposed system needs to be automated

and unsupervised. Thus, shots could be long and may not be homogeneous. To address

this issue, we select the frame that has the least deviation from its neighboring frames.

Let

d̄(t) =
∑

x∈N (t)

d(x) (3.9)

where d(x) is as defined in (3.8) and N (t) is a fixed neighborhood around frame t. We

select frame t∗ as key frames of shot k where

t∗ = argmint∈Sk{d̄(t)} (3.10)

where Sk is the set of frames within shot k.
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3.4 Region Selection

In this section we describe our proposed approach to flag the regions of interest in the

key frame in order to track their motion within the video shot. Our approach, inspired by

the spatial domain content, is based on clustering local features and identifying the motion

magnitude and their skin identification.

In the training phase, the computation efficiency of this operation may not be a

major issue as this step is typically performed off-line. The main issue is the accuracy of

the extracted information as this will be used to train the models. Therefore, some tasks of

this part should be performed manually. The process of region selection in the training phase

is outlined in figure 3.11. After identifying shot key frames, each key frame is segmented

into a small number of homogeneous regions (detailed in section 3.4.1). In addition, each

pixel in the key frame is assigned a probability of being a skin-like pixel (detailed in section

3.4.2). Then, each segmented region is identified as a skin or non-skin region based on the

proportion of pixels with high skin-like probability. Finally, we manually select the one

skin-like region that can characterize the CPR activity to be the region of interest.

In the testing phase, we developed a CPR video scene query/retrieval operation

that is invoked and performed in an interactive way. Hence, this task is performed online,

and must be efficient and automated. The block diagram of the region selection in the

testing phase is outlined in figure 3.12. The process begins with the feature extraction that

consists of optical flow computation [62] (detailed in section 3.4.1) and the edge gradient. To

segment the key frame image into regions, we use the normalized cut algorithm (NCut) [79].

Several clustering algorithms could be used to achieve this task. Our choice is motivated

by the computational efficiency of this algorithm and its ability to cluster the image into

a reasonable number of regions with no supervision information. Next, the average of the

magnitude of the optical flow in the key frame is computed for each region. Finally, the

region of interest is selected using the skin-like identifications (detailed in section 3.4.2) that

has the longest optical flow average magnitude.
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Figure 3.11: Overview of the region selection step in the training phase. Only the last step
involves manual selection.

Figure 3.12: Overview of the region selection step in the testing phase.
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3.4.1 Key Frame Segmentation

The process of the key frame segmentation starts by subsampling the key frame

in order to reduce the time complexity. Then, we represent each pixel (x, y) in the key

frame by a 5-dimensional feature vector, f(x, y). The first three components of f(x, y)

represent the RGB color information, i.e., R(x, y), G(x, y), and B(x, y). The other two

components consist of the motion vector ū(x, y) and v̄(x, y) extracted using the Horn-

Schunck algorithm[62]. The color features and the motion features of all pixels in a frame

are normalized to sum to one and averaged to form a single feature at each pixel (x, y), i.e.

f̄(x, y) = [R(x, y) +G(x, y) +B(x, y) + ū(x, y) + v̄(x, y)]/5. (3.11)

In the next step, the feature f̄(x, y) is filtered to extract the gradient E(x, y). E(x, y)

represents the edge strength at location (x, y). The information of edge gradients is used to

segment the key frame into regions of similar pixels. First, we construct the dissimilarity

matrix W between all pairs of pixels (xi, yi) and (xj , yj) using

w((xi, yi), (xj , yj)) = exp
−‖E(xi,yi)−E(xj,yj)‖

2
2

σE ∗


exp

−‖(xi,yi)−(xj,yj)‖
2
2

σX if‖(xi, yi)− (xj , yj)‖2 < R

0 otherwise.

(3.12)

In (3.12), E(xi, yj) and E(xj , yj) are the gradient features at pixel locations (xi, yi) and

(xj , yj), σF is a feature tuning parameter, and σX is a spatial tuning parameter. We note

that in (3.12), there is similarity w((xi, yi), (xj , yj)) = 0 for any pair of pixels that are more

than R pixels apart. Finally, the affinity matrix, w, is segmented using the Ncut algorithm

[80]. Figure 3.13 illustrates our proposed key frame segmentation approach.

3.4.2 Skin Detection

Instead of processing all detected regions, we identify only those that are of interest.

Since our objective consists of identifying CPR scenes, and since this action typically in-

volves the trainee hands and the mannequin chest, we identify and keep only those regions

with skin-like colors. To achieve this task, we use a simple but efficient skin pixel classifier
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Figure 3.13: Overview of the proposed key frame segmentation algorithm

[81] to discriminate between skin and non-skin regions. This classifier needs to be trained

to learn the characteristics of skin regions. We use a collection of skin images to train the

classifier. This collection includes 500 images of skin regions at different orientations and

under different illumination. These images were selected from regions of segmented key

frames. A sample of images from this collection is shown in figure 3.14.

First, each image is mapped into the Y CbCr color space. The Y , Cb, and Cr com-

ponents refer to luminance, chrominance blue, and chrominance red, respectively. This

Y CbCr color space has proved to be suitable for representing skin color under different

lighting conditions[82]. We only use the chrominance blue and chrominance red component

to detect skin. Each image is then filtered using a low-pass filter to reduce the effect of

noise.

Second, the color distribution of all pixels in all training images is fitted by a Gaussian
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Figure 3.14: Sample images used to train the skin model

model with mean µ and a covariance matrix C. Let xij be the ith pixel in region Rj of

segmented test keyframe with color (Cbij , Crij ). The likelihood of xij in the Gaussian skin

model can be estimated using

L(xij) = exp[−0.5(xij − µ)C−1(xij − µ)]. (3.13)

Each image segment is mapped to a likelihood image where the likelihood of each

pixel is computed using (3.13). Then, the likelihood images are smoothed again by a low-

pass filter. Regions that have a large number of pixels with likelihood larger than a given

threshold are retained for further processing. Since different image regions have different

illumination and brightness, they require different thresholds. Thus, we use an adaptive

threshold to find the optimal threshold for each image region. In particular, we use a

sequence of thresholds from 0.75 to 0.05 with a step of 0.1. For each threshold, the number

of skin pixels are counted. The optimal threshold is selected to be the one that causes a

dramatic change of the total number of skin pixels. Using the optimal threshold, a region

is labeled as a skin region if the ratio of its skin pixels to the total number pixel in the

region is greater than 50%. Figure 3.15 displays an overview of the proposed skin detection
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Figure 3.15: Overview of the skin detection process

process.

3.4.3 Face Detection

Most CPR activities in our video data collection are correlated with a human action.

In fact, when CPR is being administered, the head of the person performing the action tends

to parallel motion of his hands. Thus, to improve the accuracy of our CPR video scene

retrieval system, we propose detecting and analyzing the motion of the face of the person

performing CPR in addition to analyzing the motion of the skin regions.

Figure 3.16 illustrates our approach to detect faces in the video shot. We start by

looking for faces in the key frame of a given video shot. We use the Viola and Jones [83] face

detection method. This algorithm can detect faces in real time with very low false alarm

rate using Haar-like features trained by the AdaBoost algorithm [84]. If no face is detected
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Figure 3.16: Overview of the face detection and selection process

in the shot’s key frame, we keep processing adjacent frames until a face is found or all faces

have been processed. If no face is detected, the shot will be flagged as a “no-face” shot.

Otherwise, if multiple faces are found, we keep only those that are located near a detected

region of interest (i.e., skin-like region).

3.5 Observation Generation

To discriminate between skin regions that are involved in CPR activities and other

skin regions, we developed and trained a Hidden Markov Model (HMM) classifier that

uses motion features. Motion is an efficient feature to analyze moving objects that change

location with time [85]. The training phase and the testing phase rely on the same process

to generate the observation for CPR identification. The only difference is that for training,

only one region of interested is selected manually and used to train the models. For testing,
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Figure 3.17: Illustration of the motion feature extraction for one key frame

all identified regions of interested will be tested by the HMM.

Each video shot will be represented by one or more sequence of observations de-

pending on the number of identified regions of interest and faces. For each face or region

of interest, we extract a motion feature vector. First, we compute the optical flow for all

pixels within the region using Horn-Schunck algorithm(HS) [62]. Optical flow measures the

change in the velocity in terms of speed and direction at each pixel location. Then, the

optical flow, ūj = (ūxj , v̄
x
j ), of a region of interest Rj , is estimated as the average of the

optical flow of all of its pixels.

Figure 3.17(a) displays one of the keyframes and Figure 3.17(b) displays the iden-

tified skin regions. Figure 3.17(c) displays one selected skin region. In figure 3.17(d), we

superimpose the optical flow of each pixel in the region as well as the average optical flow

ūj(in red). In this case, the pixels are moving downward, indicating the push-down phase

of the CPR action.

The average optical flow ūj is computed for each region within each frame of a given

shot. Thus, skin region (or face) Rj within the kth video shot will be represented by the
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(a) Average Opticalflow of a typical CPR sequence

(b) Average Opticalflow of a non-CPR sequence

Figure 3.18: Optical flow sequences of 2 sample regions.

sequence of observations:

Oij = {ū1jk, ūtjk, · · · , ūTjk}. (3.14)

In (3.14), T is the number of consecutive frames within video shot k that includes skin

region Rj . Figure 3.18 displays the average optical flow of one skin region that involves

CPR activities and another non-CPR skin region over a sequence of 50 frames. As it can be

seen, the CPR sequence can be characterized by an upward motion followed by a downward

motion. On the other hand, the non-CPR sequence has no specific pattern and the motion

vector tends to be random.

3.6 CPR Scene Identification using Hidden Markov Models

A Hidden Markov Model (HMM) is a model of a doubly stochastic process that pro-

duces a sequence of random observation vectors at discrete time according to an underlying

Markov chain[86]. At each observation time, the Markov chain may be in one of Ns states

s1, . . . , sN and, given that the chain is in a certain state, there are probabilities of moving to
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other states. These probabilities are called the transition probabilities. An HMM is char-

acterized by three sets of probability density functions, the transition probabilities(A), the

state probability density functions(B), and the initial probabilities(π). Let Q = q1, . . . , qT

be the state sequence of the T observations of Ojk(defined in equation (3.14)). The compact

notation

λ = (A,B, π) (3.15)

is generally used to indicate the complete parameter set of the HMM model. In [65],

A = [aij ] is the state transition probability matrix, where a(i, j) = Pr(qt = j|qt−1 = i)

for i, j = 1, . . . , Ns; Π = [πi] where i = Pr(q1 = si) is the initial state probabilities; and

B = bi(Ot), i = 1, . . . , N, where bi(Ot) = Pr(Ot|qt = i) is the set of observation probability

distribution in state i. Hence, A and B are row-stochastic matrices and π is also a stochastic

vector:

ΣNs
j=1aij = 1; ΣNs

j=1bij = 1; ΣNs
j=1πj = 1; for i = 1, . . . , Ns (3.16)

3.6.1 Discrete Hidden Markov Model

In a discrete hidden Markov model (DHMM), the observation probability densi-

ty functions are characterized by discrete symbols chosen from a finite set of symbols,

v1, v2, . . . , vM , called the codebook V . In other words, B becomes a simple set of fixed

probabilities for each class, which is an NxM matrix with

bi(ot) = Pr(ot = vj |qt = si); for i = 1, . . . , Ns (3.17)

where vj is the symbol of the nearest code to observation ot, according to a distance measure.

Usually, clustering algorithms such as K-mean clustering [87], Fuzzy C-Mean clustering

algorithm [75], or a vector quantization (VQ) algorithm [88] can be used to convert the

measurements into discrete observations.

In our system, we use a discrete HMM classifier with 2 models, one for CPR sequences

and another one for non CPR sequences. Each model produces a probability value by

backtracking through the model states using the Viterbi algorithm [86]. The CPR model,
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λCPR, is designed to capture the smooth transition among the states that characterizes

CPR sequences. The non CPR model, λ∼CPR, is needed to capture the characteristics of

non CPR sequences.

3.6.2 Continuous Hidden Markov Model

For the continuous HMM (CHMM), the observation probability density functions are

continuous. In general, a mixture of Gaussian is used to model the observation probability

density, i.e.,

bi(ot) = Pr(ot|qt = si) =

M∑
j=1

uijN (ot, µij , Cij) (3.18)

such that
M∑
j=1

uij = 1, uij ≥ 0. (3.19)

In (3.18), uij is the mixture coefficient for the jth mixture component in state i, and M

denotes the number of mixture components per Gaussian mixture model. N is a kernel of

multivariate Gaussian distribution with mean vector µij and covariance matrix Cij .

As in the discrete HMM, in our system we use the continuous HMM with 2 models,

one for CPR sequences and one for non CPR sequences. For both DHMM and CHMM, the

probability value produced by the CPR (non CPR) model can be thought of as an estimate

of the probability of the observation sequence given that there is a CPR (non CPR) model

present. These probabilities are produced by back-tracking through the model states using

the Viterbi algorithm [86]. The confidence value assigned to each observation sequence,

Conf(O), depends on : (1) the probability assigned by the CPR model, Pr(O|λCPR), and

(2) the probability assigned by the non CPR model, Pr(O|λ∼CPR). We use:

Conf(O) = Pr(O|λCPR)− Pr(O|λ∼CPR) (3.20)
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CHAPTER 4

EXPERIMENTAL RESULT

4.1 Data Collection

To validate our proposed approach to detect CPR shots, we use four video simulation

sessions recorded by the SPARC group. The frame rate of each video is 29.97 frames per

second and the resolution in each frame is 720x480 pixels. The size of each video is listed in

table 4.1. To provide an idea of the content of the video, in table 4.2, we show key frames

of 4 sample shots in each video.

4.2 Analysis of the Proposed System Using CPR1 video

In the first experiment, we use CPR1 video to analyze our proposed system with

different parameter settings. After shot boundary detection, key-frame segmentation, and

skin detection, we obtain a total of 360 sequences that track various skin regions. We track

each region, Rj , over all frames within its shot boundaries, and extract the sequence of

observations Ojk as defined in (3.14). For validation purposes, we examine each sequence

and assign ground truth labels (CPR or non-CPR). We obtain a total of 200 sequences

TABLE 4.1

Statistics of the 4 video simulation sessions used in our experiments.

Video Duration Number Number Avg number x̄ Standard deviation σ
of frames of CPR scene of frame per of frame per

manually label CPR scene CPR scene

CPR1 19 m 28 s 35000 36 258.1 132.2

CPR2 16 m 1 s 28831 36 259.7 173.3

CPR3 14 m 57 s 26905 3 2180 2108.3

CPR4 21 m 49 s 39253 24 493.75 513
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TABLE 4.2

Key frames of 4 sample shots extracted from the 4 video simulation sessions.

labeled positively as representing CPR activity, and 160 non-CPR sequences. We also fix

the sequence length T to 20 even though HMM can handle sequences of variable length.

This is a reasonable assumption as 20 sequences tend to cover the upward and downward

motion of the hands in most CPR sequences. Moreover, HMM classifiers are simpler and

more efficient when all sequences have a constant length. We use a 4-fold cross validation.

For each fold, a subset of the data is used for training (DTr), and the remaining data is

used for testing(DTs). In the testing phase, all tasks including shot boundary detection, key

frame extraction, region selection, and observation generation are performed in a completely

unsupervised manner. As described in the previous chapter, for region selection, we track

multiple regions for each shot, Rij , under the condition that each region has a high motion

magnitude and most of its pixels have high likelihood in the skin-like models. In our

experiment, each video shot can have 1 to 6 regions of interest to track and test. For each

region of interest Rjk, we compute the average optical flow of its pixels to generate the
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sequence of observations Ojk as defined in (3.14).

4.2.1 Discrete HMM Model Training

For training, we build a two-model CPR classifier: one Discrete HMM (DHMM)

model, λCPR, based on CPR training sequences (DCPR
Tr

); and another model, λ∼CPR, based

on non-CPR training sequence (D∼CPRTr
). We experiment with two classifiers with different

complexity. The first one uses two states s1 and s2 that are estimated using domain knowl-

edge. One state represents the upward motion of the hands and the second one represents

the downward motion. The non-CPR DHMM model, λ∼CPR, also has two states. However,

no prior knowledge could be used to guide the estimation of these states. For both models,

we heuristically estimate the states using

s1 = average{ūj ∈ DCPR
Tr |ū

y
j ≥ 0} (4.1)

s2 = average{ūj ∈ DCPR
Tr |ū

y
j < 0}. (4.2)

For the second classifier, we use DHMM with 4 states s1, s2, s3 and s4 that are fixed

by considering the movement not only in the vertical direction but also in the horizontal

direction. Similarly, the non-CPR DHMM, λ∼CPR, has 4 states as well. For both models,

the 4 states are estimated heuristically using

s1 = average{ūj ∈ DCPR
Tr |ūxj ≥ 0 and ūyj ≥ 0} (4.3)

s2 = average{ūj ∈ DCPR
Tr |ūxj < 0 and ūyj ≥ 0} (4.4)

s3 = average{ūj ∈ DCPR
Tr |ūxj < 0 and ūyj < 0} (4.5)

s4 = average{ūj ∈ DCPR
Tr |ūxj ≥ 0 and ūyj < 0}. (4.6)

For both classifiers, the remaining parameters (A,B, π) of each λCPR and λ∼CPR

are initialized as follows. The priors, π1 and π2 (and π3 and π4 for models with 4 states)

are estimated as the percentage of training sequences that start with state s1 and s2 (and
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s3 and s4) respectively. The transition matrix A is initialized using the state transition

probability distribution for each model using:

aij =
tij∑Ns

i=1,j=1 tij
, (4.7)

where tij is the number of observations that change from state i to state j within each

training sequence. For the 2 states models, the transition matrix is initialized using the

identity matrix, i.e.

A =

1 0

0 1

 (4.8)

and for the 4 states models, the transition matrix is defined as

A =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (4.9)

We use a codebook with M = 20 codewords {vk, k = 1, . . . ,M}. These codewords

are estimated as the centers obtained by clustering the training data using the K-mean

algorithm [87] with k = 20. The emission probabilities are first initialized using

bj(k) =

[
Ns∑
i=1

‖vk − sj‖
‖vk − si‖

]−1
(4.10)

for j ∈ {1, . . . , Ns} and k ∈ {1, . . . ,M}, where Ns is the number of states (Ns = 2 or 4).

These probabilities are then normalized such that the probabilities in each state sum to

one. We use

bj(k)← bj(k)∑M
i=1 bi(m)

. (4.11)

After initialization, the transition probabilities A and the observation probabilities B of

each model are fined-tuned using Baum-Welch learning algorithm [89] and the respective

training data.

Figure 4.1 and 4.2 display the observation vectors used to train the CPR model (first

cross validation set). We also display the means of the states and the codewords obtained
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Figure 4.1: Training observations for CPR class, states representatives, and codewords for
the DHMM classifier with 2 states.

by clustering the observations. Figure 4.1 shows the results when 2 states per model are

used and figure 4.2 show the results for 4 states. As it can be seen, for both cases, the codes

summarize the training samples.

In figure 4.3, we display a sample CPR testing sequence. We display the motion

vector of 20 observations of a typical CPR sequence. As it can be seen, this sequence corre-

sponds to a region that starts with a downward motion (first 9 observations), then followed

by upward motion (8 observations), and finally back to downward motion (3 observations).

The optimal state sequence, assigned by the Viterbi algorithm [86], to this test sample is

“2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2”.
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Figure 4.2: Training observations for CPR class, states representatives, and codewords for
the DHMM classifier with 4 states.

Figure 4.3: 20 Motion vectors of sample testing a CPR sequence.
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4.2.2 Continuous HMM Model Training

We have also experimented with the continuous HMM (CHMM). As in the discrete

case, we build a two-model CPR classifier: one CHMM model, λCPR, that represents the

CPR training sequences (CCPRTr
); and another model, λ∼CPR, that represents the non-CPR

training sequence (C∼CPRTr
). We assume that the CPR CHMM model, λCPR, has two states

s1 and s2 as in the DHMM models. The non-CPR CHMM model, λ∼CPR, also has two

states. The probability transition matrix A of each model is estimated using (4.7). The

priors, π1 and π2 are estimated as in the discrete case as the percentage of training sequences

that start with state s1 and s2 respectively.

For the parameter B, we use a mixture of M = 3 Gaussian components. Let bi(k)

be the probability density function of observation vector k in state i. bi(k) can be written

as :

bi(k) =
M∑
j=1

uijbij(k) (4.12)

such that
M∑
j=1

uij = 1, uij > 0. (4.13)

In (4.12), uij represents the mixture coefficient for the jth component in state i, and bij(k) is

a normal distribution N (k, µij ,
∑

ij) with mean vector µij and diagonal covariance matrix∑
ij of observation vector k, such that

N (k, µij ,
∑
ij

) =
1

(2π)p/2
∣∣∣∑ij

∣∣∣1/2 exp−
1
2
(k−µij)T

−1∑
ij

(k − µij). (4.14)

In (4.14), |
∑

ij | is the determinant of the covariance matrix.

After initialization, the parameters are fine tuned using Baum-Welch algorithm [89].

Figure 4.4 displays the observation vectors used in the first cross validation set to train the

CPR model. In this figure, we also display the learned 3 components of each state.

4.2.3 Performance Evaluation

To evaluate the performance of the proposed approach to identify CPR shots, we

use the receiver operating characteristic (ROC). The ROC is a graphical plot commonly
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Figure 4.4: 4 Training observations and the means of the 3 Gaussian components of each
state for the CPR model training with CHMM.

used to evaluate the quality of a binary classifier as the discrimination threshold is varied.

The ROC is created by plotting the probability of detection (PD) versus probability of false

alarms (PFA).

4.2.4 Results

First, we evaluate the performance of our approach using the manually segmented

shots. Recall that for the manual segmentation, we also manually select the best region

of interest. The purpose of this experiment is to illustrate that the HMM classifiers, with

motion-based observation features, can discriminate between CPR and non CPR sequences.

Figure 4.5 compares the performance of the DHMMs (with 2 and 4 states) and the CHMMs

(with 2 states). For all cases, the confidence value is computed using (3.20) which is the

difference in the confidence assigned by the CPR model and the one assigned by the non-
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Figure 4.5: The ROCs generated using DHMM with 2 and 4 states and CHMM with 2
states.

CPR model. As it can be seen, our approach can achieve high probability of detection with

low probability of false alarms. For instance, using the CHMM with 2 states, we can detect

80% of the CPR shots with only 10% of false alarms. Careful investigation of the missed

CPR shots revealed that most of them were due to a non-perfect shot segmentation. For

instance, there are shots that include frames with no CPR actions. As a result, the HMM

confidence value of the entire sequence is reduced. From figure 4.5, we also note that the

CHMM has the best overall performance.

Manual video segmentation and region selection is not practical and need to be by

automated. In the next experiment, we evaluate the proposed approaches to automate the

shot segmentation and region of interest selection. In particular, we compare the perfor-

mance of our shot detection based on frequency domain filtering (SD FD) and shot detection

based on unsupervised learning (SD UL) algorithms. For the region of interested selection,

we compute the confidence assigned to the candidates of all regions candidates and selected

the one with the maximum confidence in the λCPR HMM model.

Figure 4.6 compares the ROC curves generated using the SD FD and SD UL shot

boundary detection methods. For this experiment, we use HMMs with 2 states for both
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TABLE 4.3

Evaluation of the proposed CPR detection with the SD FD and SD UL shot detection
methods.

Shot detection Number of Number of Number of Area under
method detected shots CPR shots non-CPR shots the ROC

SD FD 165 66 99 0.806

SD UL 299 82 217 0.863

the continuous and discrete case. As it can be seen, the SD UL method outperforms the

SD FD one. In table 4.3, we report other statistics that compare the two methods. As it

can be seen, the SD UL approach segments the videos into a larger number of shots (299 vs

165). In other words, the SD UL segments the video into smaller shots. Most of these are

non-CPR shots (217 vs 99). However, the HMM classifier can reject most of these non-CPR

shots. The performance could also be measured by the area under the ROC. The larger

the area, the more accurate the classifier is. For the remaining experiments in this video,

we will use the SD UL approach to segment the videos into shots. In the next experiment,

we illustrate the advantage of integrating the face detection and tracking component into

our system. Recall that for this component, we detect faces in the key frame. If multiple

faces are detected, we keep the one that is most likely associated with the selected region

of interest. In figure 4.7, we display a scatter plot of the DHMM confidence values of the

selected regions and the selected faces associated with them. If a given shot no face was

detected, the confidence value is set to a low confidence constant (-0.15). As it can be seen,

most confidence values are correlated. However, there are some CPR scenes, e.g. those

highlighted in region R1, where the DHMM models tested with the observations generated

by face regions is more reliable than the observations generated by the selected skin region.

Similarly, other CPR scenes, e.g., those highlighted in region R2, can be detected more

reliably using the skin region of interest. For other scenes, such as those highlighted in

region R3, both confidence values need to be combined to improve the accuracy.

In figure 4.8, we compare the ROCs obtained when DHMM classifiers were used to

track skin regions, track faces, and track the two combinations (using their sum). The AUC
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Figure 4.6: ROC generated by the DHMM when the video is segmented into shots using
SD FD and SD UL methods

of the DHHM classifiers using observation sequences generated by face regions, skin regions,

and a combination of the two are 0.685, 0.863, and 0.889 respectively. As it can be seen,

the observation sequence generated by the face regions can not identify CPR scene reliably.

However, when combined with skin regions, they can improve the performance significantly.

Another way to visualize the results of the proposed system is illustrated in figure

4.9. In this figure, for each shot, we display its ground truth (CPR or non CPR), detection

results using skin regions only, faces only, and a combination of the two. This figure shows

whether the shots are detected/missed by one or both features.

4.3 Analysis of the Proposed System on Multiple Video Recordings

In this experiment, we use the learned models in CPR1 to test the remaining 3 videos

CPR2, CPR3, and CPR4. In the training phase, our proposed system was validated using

4-fold cross validation on CPR1. Since 4 models were learned, in testing the new videos,
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Figure 4.7: Scatter plot of the confidence of the observation sequence generated by the
selected region of interest and the observation sequence generated by the face region.

TABLE 4.4

Comparison of the performance of the different DHMM models on all 3 video sessions.

Video Name 1st DHMM 2nd DHMM 3rd DHMM 4th DHMM Average of
models models models models 4 models

CPR2 0.653 0.658 0.637 0.638 0.647

CPR3 0.654 0.607 0.566 0.626 0.613

CPR4 0.756 0.772 0.728 0.754 0.753

each sequence will be tested with the 4 models, and the average of the 4 confidences will be

used. For all videos, we use the SD UL shot detection method to segment video into shots.

All other parameters are as learned using CPR1. In table 4.4, we report the AUC with

ROC of the 3 videos. The ROCs of video CPR2, CPR3, and CPR4 are shown in figures

4.10, 4.11, and 4.12, respectively.

As it can be seen, the performance is not as good as in CPR1. For instance, our
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Figure 4.8: Performance of the proposed system when both skin regions and faces are
tracked.

Figure 4.9: Comparison of the CPR identification when skin regions and faces are tracked
for 150 shots extracted from video CPR1.

50



Figure 4.10: Comparison of the 4 DHMM models for CPR2 video.

classifier has incorrectly identified some shots CPR sequences. Examples of these misclassi-

fications are shown in figure 4.13 and figure 4.14. In figure 4.13, the region with the highest

confidence is identified as the hand which is pumping the respiratory pump. As it can be

seen, the movement of that region has the same characteristics as the motion involved in

a CPR activity. Similarly, in figure 4.14, our application has selected the head area of the

subject checking the dummy to prepare for CPR. As this figure shows, the head is moving

up and down similar to the motion in a CPR activity.

In addition to the larger number of false alarms, our classifier has also missed the

detection of a few CPR scenes. For instance, in figure 4.15 the CPR scene was not classified

correctly due to bad segmentation of the key frame. Figure 4.16 shows another CPR scene
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Figure 4.11: Comparison of the 4 DHMM models for CPR3 video.

that was not detected. In this case, the mannequin is similarity an infant and the magnitude

of the motion is very small.

In figure 4.17, 4.18, and 4.19, we display the ground truth (CPR and non CPR)

for each detected shot. As it can be seen, in figure 4.17 and 4.18 the poor performance

on CPR2 and CPR3 video can be explained by the high number of missed CPR scenes.

One reason for this poor performance is that the settings for these videos are different from

the setting in CPR1 video (camera location, new angle, frame resolution). Another reason

is that the mannequin in CPR4 video is simulating an infant and the CPR actions there

involve motion with much smaller magnitude. Also, we note that in CPR4 video there is a

large number of false detections at the beginning of the video. Investigation of these false

detections revealed that they are caused by activities of the subject while preparing for the
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Figure 4.12: Comparison of the 4 DHMM models for CPR4 video.

simulation.

4.4 A Graphical User Interface for CPR Video Scene Retrieval and Analysis

We have developed a CPR scene video retrieval and analysis prototype system with

graphical user interfaces (GUI). This GUI has several desirable features that allow the user

to view and analyze the video training session much more efficiently. A block diagram of

the developed GUI is shown in figure 4.20. Figure 4.21 illustrates the main functionalities of

the GUI. First, the user selects the video sequence in the database using the “Open video”

command button (refer to step 1 and 2 in figure 4.21). After a video has been selected, it

is played in the window media player (refer to step 3 in figure 4.21). Generic statistics of
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(a) Key frame of shot 153. (b) Region of interest of shot (a). (c) Region with max confidence.

(d) Optical flow sequence.

Figure 4.13: A sample false alarm from CPR2 video.

(a) Key frame of shot 39. (b) Region of interest of shot (a). (c) Region with max confidence.

(d) Optical flow sequence.

Figure 4.14: A sample false alarm from CPR4 video.
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(a) Key frame of shot 155. (b) Region of interest of shot (a). (c) Region with max confidence.

(d) Optical flow sequence.

Figure 4.15: A sample CPR scene from CPR2 video that was not detected by the HMM
classifier.

(a) Key frame of shot 183. (b) Region of interest of shot (a). (c) Region with max confidence.

(d) Optical flow sequence.

Figure 4.16: A sample CPR scene from CPR4 video that was not detected by the HMM
classifier.
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Figure 4.17: Comparison of the CPR identification when skin regions are tracked for 130
shots extracted from video CPR2.

Figure 4.18: Comparison of the CPR identification when skin regions are tracked for 100
shots extracted from video CPR3.

Figure 4.19: Comparison of the CPR identification when skin regions are tracked for 190
shots extracted from video CPR4.
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Figure 4.20: Block diagram of the proposed CPR video scene identification and retrieval
prototype.

the selected video are displayed (refer to step 4 in figure 4.21) and additional options are

presented (refer to step 5, 6, and 7 in figure 4.21).

The action “Feature extraction” in step 5 in figure 4.21 allows the user to extract

features for each frame for the purpose of shot boundary detection. Currently, the GUI

includes the features described in section 3.1.

The next option, “Show shot boundaries” is shown in step 6 in figure 4.21. This

function extracts the shot boundaries and partitions the video into shots using the method

described in section 3.2.2.

After a given video has been preprocessed and segmented into shots, the user can

use the HMM classifier to identify all video shots that correspond to CPR action (refer to

the step 7 in figure 4.21). The system will then combine all consecutive CPR shots to create

a CPR scene. Once all CPR scenes are identified, the user will be presented with a new

interface, as shown in figure 4.22, to analyze individual CPR scenes. In this view, the full
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Figure 4.21: GUI of the proposed CPR video scene identification and retrieval prototype.

video can be played in the movie player (top left corner in figure 4.22). The user can select

one of the CPR scenes for further analysis. This will highlight the selected CPR scene and

display its statistics as show in figure 4.24. If the users wants a more detailed analysis, he

can double click to open the GUI shown in figure 4.23. In this GUI, the user can examine

the key frame segmentation and region selection processes. The user can also visualize the

sequence of observation used by the HMM classifier.

In addition to the individual CPR scenes (shown in the left side of the GUI in figure

4.22), we also display summary statistics of the video. For instance, Part 1 of the GUI in

figure 4.22 consists of 2 panels. The top panels in part 1 in figure 4.22 show the timeline

of the video where the green bars indicate the temporal location of all CPR scenes. The

bottom panel in part 1 in figure 4.22 highlights the average motion vector of each frame.

Red bars indicate frames with the highest average motion vector and the cyan bars indicate

the frames with the slowest average motion vectors.
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Figure 4.22: GUI for the analysis of CPR scenes.

In panel 2 of the GUI in the figure 4.22, the user can visualize a histogram of the

frequency of all CPR scenes or a histogram of confidence value assigned to all CPR scenes.

For the frequency option, we use the motion vectors of all observations within the sequence,

identify their zero-crossings, and compute their frequency. The frequency of all scenes are

quantized into 5 discrete intervals as shown in figure 4.25. Using this option the physician

can identify CPR scenes that are too fast or too slow. In fact, the user can choose to

visualize only CPR scenes for a given frequency range, then select individual scenes to

analyze. For instance, in figure 4.26 and figure 4.27 we display 2 sample CPR scenes. The

first one has high frequency while the second one has low frequency.

For the confidence histogram option in panel 2 of figure 4.22, the confidence values

(assigned by the HMM classifier) to all CPR scenes is quantized into 5 levels as shown

in figure 4.28. This will provide the option for the user to visualize the CPR scenes by

confidence values. For instances, the CPR scene with low confidence value may not be

reliable and its classification may require confirmation by the user. In figure 4.29 and figure
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Figure 4.23: Tools to analyse a given CPR scene.

4.30, we display 2 sample CPR scenes. The first one has a high confidence value, while the

second one has low confidence value. As it can be seen, the motion in the second scene is

not as consistent as the first one.

Panel 4 in figure 4.22 can be used to focus on a specific time interval. The user can

select the start and end time. Only CPR scenes within the specified range will be displayed.

Panel 5 of the GUI in figure 4.22 provides the user to retrieve only CPR scenes

performed by a specific subject. All subjects in the video will be shown in this panel and

the user can select one of them. For instance, in figure 4.31, the users selects the middle

person and all CPR scenes performed by this subject and shown on the right side. The

detail of query by face is highlighted in figure 4.32.
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Figure 4.24: Illustration of the retrieval information in each CPR video scene.

Figure 4.25: Histogram of the frequency of all CPR scenes.
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Figure 4.26: A sample CPR scene and its observation sequence that has high chest com-
pression rate.

Figure 4.27: A sample CPR scene and its observation sequence that has low chest compres-
sion rate.

Figure 4.28: Histogram of the confidence values assigned to all CPR scenes by the HMM
classifier.
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Figure 4.29: A sample CPR scene with high confidence values.

Figure 4.30: A sample CPR scene with low confidence values.

Figure 4.31: Output of query by CPR face.

63



Figure 4.32: Overview of the query by a human face in our approach.

For this task, we need a face database to have a face recognition classifier. For

the training data, we extract few faces for each subject from the given video. Then, from

each face we extract Gabor features based on a bank of Gabor filters or kernels at different

scales and orientations [90]. We extract Gabor features from each image with 5 scales and

8 orientations. This will result in a 40-dimension feature vector in each face. Then, we use

the principal component analysis (PCA) [91] to reduce the dimension. Finally, a k-nearest

neighbor classifier [90] is used to label each face.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The main objective of this dissertation was to provide the physician with automated

tools to segment, semantically index and retrieve specific scenes, especially in CPR scenes,

from a large database of training sessions. These tools are expected to enable the physician

to immediately review important sections of the training video with the team. To achieve

this objective, we proposed a machine learning based approach to detect and classify scenes

that involve rhythmic activities such as CPR from training video sessions simulating med-

ical crises. This applications requires different preprocessing techniques from other video

applications. In particular, to identify and track regions of interest, we integrated motion

and color information and spatial and temporal constrains. The first step of our approach

consists of segmenting the video into shots. This is achieved by extracting features from

each frame and identifying locations where consecutive frames are different. The first fea-

ture is based on color information. In particular, the color histogram which is an efficient

and robust way to describe and encode the content of the video frames. To complement

the information provided by the color, we propose using motion information as an addi-

tional feature to identify shot boundaries. This additional information is extracted directly

from the compressed domain from the MPEG stream. Thus, no additional computation is

needed. To identify shot boundaries, we proposed two different methods. The first one is

based on simple thresholds (namely SD FD) while the second one uses unsupervised learn-

ing techniques (namely SD UL). Our experiments have shown that the SD UL method

outperforms the SD FD method.

The second step of our approach consists of selecting one key frame from each shot
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and segmenting it into homogeneous regions. Then, few regions of interest are identified

for further processing. These regions are selected based on the type of motion of their

pixels and their likelihood to be skin-like regions. The regions of interest are tracked and a

sequence of observations, that encode their motion throughout the shot, is extracted. Since

CPR sequences can be characterized by rhythmic pattern (an upward motion followed

by a downward motion), we train an HMM classifier to learn the characteristics of the

CPR actions and to discriminate between regions that involve CPR and other regions.

We experiment with both continuous and discrete HMM. The HMM classifiers produced a

confidence value by backtracking through the model states using the Viterbi algorithm.

To improve the accuracy of our system, we also detect faces in each key frame, track

them throughout the shot, and fuse their HMM confidence with the region’s confidence.

We have also developed a CPR scene video retrieval and analysis prototype system

with graphic user interface (GUI). This GUI prototype has several desirable features that

allow the user to view and analyze the video training session much more efficiently.

To validate our proposed approach to detect CPR scenes, we used one video sim-

ulation session recorded by the SPARC group to train the HMM classifiers and learn the

system’s parameters. Then, we analyzed the proposed system on other video recordings.

We showed that our approach can identify most CPR scenes with few false alarms.

5.2 Future Work

Although our system has much proved to be an efficient approach to index, segment,

analyze, and retrieve relevant video scenes with CPR activity, there are still some issues

that can improve its performance. For instance, shot boundary detection could be improved

by including additional features such as audio, facial, and textual features. Similarly, seg-

mentation of the key frames into regions can be improved by using additional features such

as texture [92] and other clustering algorithms that can find the optimal number of regions

[93].

Currently, our system has been trained using one training session. Testing on differ-
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ent videos has been resulted in reduced accuracy. Investigation of our results has revealed

that our system is sensitive to the viewing angle, frame resolution, and size of the patient

(infant vs toddler). Thus, a larger training collection with diverse settings may be needed

to improve the robustness of our system.
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