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ABSTRACT 

 
THE ANTI.OBESOGENIC EFFECTS OF NITRIC OXIDE 

 
Brian E. Sansbury 

 
April 22, 2014 

 
 
Obesity is a strong risk factor for developing type 2 diabetes and cardiovascular 

disease and has quickly reached epidemic proportions with few tangible and safe 

treatment options. While it is generally accepted that the primary cause of obesity 

is energy imbalance, i.e., more calories are consumed than are utilized, 

understanding how caloric balance is regulated has proven a challenge. 

Molecular processes and pathways that directly regulate energy metabolism 

represent promising targets for therapy. In particular, nitric oxide (NO) is 

emerging as a central regulator of energy metabolism and body composition. NO 

bioavailability is decreased in animal models of obesity and in obese and insulin 

resistant patients, and increasing NO output has remarkable effects on obesity 

and insulin resistance. Additionally, deletion of eNOS (the source of NO in the 

vasculature) is associated with adiposity, insulin resistance and impaired fatty 

acid oxidation. The role of eNOS in regulating metabolism, however, is not well 

understood. We propose that decreased vascular-derived NO bioavailability 

during nutrient excess is a critical development that leads to metabolic 

dysregulation. The studies presented here show that obesity induces severe
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GRAPHICAL ABSTRACT 
 

 

Modified from: Leonardo DaVinci’s Vitruvian Man, courtesy of Thomas P. Gorton 
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metabolic changes in adipose tissue including profound decreases in eNOS 

abundance. Overexpression of eNOS prevents obesity and its related metabolic 

alterations while causing significant changes in energy expenditure and systemic 

metabolism. Our findings reveal potent anti-obesogenic effects of NO and 

demonstrate a significant role for NO in regulating metabolism. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

The Obesity Epidemic 

The recent increase in the prevalence of obesity is alarming.  The Centers 

for Disease Control and Prevention (CDC) estimate that from 1962 to 2010 

prevalence of obesity has increased from 13% to 36%.  In 2008, approximately 

1.5 billion adults aged 20 years or older were overweight, and 10% were obese 1; 

more recent data from the United States indicate that >33% of adults and 17% of 

children are obese 2. This has led to a dramatic increase in individuals with pre-

diabetes. For example, current estimates indicate that one-third of the population 

in the US meets the criteria for pre-diabetes 3, 4, and, in addition to type 2 

diabetes (T2D), obesity is closely associated with co-morbidities such as 

coronary artery disease, hypertension, atherosclerosis, stroke, and cancer 5. 

Hence, the current high prevalence of obesity is likely to have a considerable 

impact on worldwide health.  In the US, the economic burden of obesity is 

substantial and accounts for an estimated $147 billion per year 6. The problem 

has become so severe that, in 2013, the American Medical Association House of 

Delegates declared obesity a disease. 
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 The principal cause of obesity is energy imbalance: the calories consumed 

are greater than that utilized by bodily processes, e.g., breathing, digestion, 

thermogenesis and mechanical work 7. Indeed, the average consumption of 

calories in the US increased by >200 kcal/d per person from 1971-2000, which is 

partly attributable to the abundance of affordable, widely marketed, energy-dense 

foods 8-11. Nevertheless, evidence suggests that the balance between calorie 

intake and energy expenditure is complex and regulated by many factors.  

Exposure to increasingly obesogenic environments has been suggested to 

promote not only overeating, but inactivity as well. For example, the human 

environment is fraught with both chemical and structural “obesogens.”  These 

include but are not limited to: pollutants that promote adiposity and insulin 

resistance 12-21; lack of structural features of the built environment that promote 

an active lifestyle, such as easy access to parks, sidewalks, and bike paths 22-24; 

and the night/day cycles in the natural environment of the individual, which can 

be altered in those having certain occupations 25-27. Moreover, the genetic 

makeup of individuals shows strong associations with the predisposition to 

become obese 28-30.  

Many of these factors influence body composition in an indirect or distal manner, 

and thus could be considered “distal causes” of obesity (Fig. 1).  Interventions to 

mitigate the effects of these distal causes are exceedingly difficult to test and 

implement. For example, changing the structural environment would likely entail 

departing from particular types of communities or neighborhoods. Similarly, living 

under favorable day-night cycles is difficult for workers in some occupations, and  
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Figure 1. Distal and proximal causes of obesity.  Influencing factors distal to 

the disease, such as policy as well as structural and chemical “obesogens” of the 

built and social (cultural) environment, may contribute to the prevalence of 

obesity. Funding for obesity research, dietary guidelines, physical education 

policies, and sidewalk standards are examples of potential influences related to 

Policy, which is most distal to the actual disease. The Built environment, which 

comprises places created or modified by people—i.e., where individuals work, 

their transportation systems, and life outside their homes—is another cause 

distal to obesity. The Social or cultural environment includes those family or 

cultural influences that affect behavioral activity, occupation (which may involve 

shift work), and social and media norms, all of which could affect eating habits 

and physical activity.  Lastly, direct mechanisms that control hunger, satiety, 

energy expenditure, and nutrient absorption are Proximal causes of obesity.  

Commonly, these proximal causes are more tangible targets for anti-

obesity/diabetes therapies compared with distal causes.  
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changing genetic makeup is currently not an option. Even weight loss via caloric 

restriction faces difficulties, including an evolution-engendered guard against low 

fat mass 7, 31 and the propensity of the body to increase caloric efficiency during 

dieting 32, 33. The intransigency of these problems has led to a search for causes 

more proximal to obesity, which may be tangible targets for anti-obesity 

therapies.    

 

Obesity, Insulin Resistance and Type 2 Diabetes 

The World Health Organization (WHO) defines obesity as abnormal or 

excessive fat accumulation that may impair health and is characterized by a body 

mass index (BMI) equal to or greater than 30 kg/m2. Evidence from numerous 

studies has demonstrated that obesity and increased weight gain are strongly 

associated with an increased risk of T2D 34-36 and that intentional weight loss 

decreases that risk 37. T2D is characterized by chronic hyperglycemia with 

disturbances of carbohydrate, protein and fat metabolism resulting from defects 

in insulin secretion, action or both 38. While a causal link between obesity and 

diabetes remains to be fully clarified, their association is undeniable. 

Development of effective treatments, therefore, depends on greater 

understanding of the metabolic dysregulation that accompanies the onset of 

obesity and its progression to insulin resistance and diabetes.  
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Metabolic pathways known to regulate obesity  

Understanding the mechanisms that promote adiposity and insulin resistance 

are critical to stem the growing tide of metabolic disease.  In particular, the 

development of therapies for obesity and T2D requires a better understanding of 

the biochemical pathways that regulate metabolism and body composition. As a 

first principle, energy balance must be considered to understand how changes in 

body composition could occur. Any effective obesity treatment must decrease 

energy intake, increase energy expenditure or both. Systems that regulate 

energy balance include: 

1) Hunger and satiety: The central nervous system regulates caloric intake 

and the feeling of satisfaction or fullness after a meal, i.e., satiety. This 

regulation is dependent on neural and endocrine inputs that can be 

divided into short- and long-term control systems. Release of 

cholecystokinin (CCK) in combination with neural signaling in response to 

gut distension are potent signals of satiety and trigger an end to feeding 39. 

The adipose tissue-derived hormone, leptin, is crucial to integrate the 

melanocortin neuronal circuit of the hypothalamus with the energy stores 

of the body 39-41. In addition to leptin, neuropeptide Y (NPY) directly affects 

feeding behavior, metabolism and body composition 42, 43, and 

corticotropin-releasing hormone, growth-hormone-releasing hormone, 

galanin and ghrelin, some of which are expressed in both the stomach and 

the brain, function in hunger and satiety signaling 44. The 
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neurotransmitters norepinephrine, dopamine and serotonin are also 

important in central energy balance 39, 41 and inhibiting their reuptake by 

drugs such as sibutramine, has proven anti-obesogenic effects but leads 

to side effects such as increased blood pressure and heart rate 45. Other 

drugs that have been shown to be effective in decreasing energy intake by 

suppressing appetite 7, 46, 47.     

2) Nutrient absorption: Targeting nutrient absorption in the gut may be an 

effective obesity therapy. Signals from the gut released post-prandially are 

important not only in regulating food intake, but also in digestion and 

nutrient absorption. Ghrelin and CCK, as well as, peptide YY, glucagon-

like peptides 1 and 2, gastric inhibitory peptide and corticotropin-releasing 

factor function to regulate both signaling and digestion [39, 43, 44]. 

Inhibition of gastric and pancreatic lipases via orlistat treatment decreases 

triglyceride hydrolysis and is able to inhibit absorption of ingested fat by 

~30% and contributes to a caloric deficit of approximately 200 calories per 

day [45].  As with neurotransmitter reuptake inhibitors, orlistat promotes 

weight loss; however, because of side effects the drug is poorly tolerated 

by many patients [40].   

3) Energy expenditure: The largest contributor to obligatory energy 

expenditure is the basal metabolic rate (BMR), which is defined as the 

resting energy expenditure at thermoneutrality in the unfed state 48. BMR 

includes cellular turnover, repair and basic functions (e.g., maintenance of 

ion gradients, transmembrane metabolite transfer), basal synthetic 
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reactions (e.g., RNA, DNA and protein synthesis) and mitochondrial 

proton leak. It also includes obligatory thermogenesis (e.g., digestion and 

absorption) 48.  

Mitochondria are central to the regulation of energy expenditure, 

and targeting their activity has been a prospect for obesity therapies for 

decades. Perhaps most infamous is the work by Cutting and Tainter 49, 50, 

which showed that 2,4-dinitrophenol (DNP)—a compound found to be 

responsible for weight loss in workers of French munitions factories during 

World War I—could be used to increase the metabolic rate of patients.  

Although the use of DNP led to weight loss as well as improvements in 

glucose tolerance in some diabetic patients, results were largely 

disastrous: people were “literally cooked to death” due to overdose, as the 

systemic uncoupling of mitochondria by DNP resulted in overheating. 

Other side effects included rashes, cataracts, and agranulocytosis.  

Hence, although the drug was effective for weight loss, it was not deemed 

safe by the FDA and was withdrawn from the market in 1938 51.    

In recent years, a more in-depth understanding of how 

mitochondrial metabolism could be regulated has been sought.  Unlike 

rudimentary approaches using pharmacological mitochondrial uncouplers, 

which have systemic effects, targeting mitochondrial metabolism in 

specific tissues may prove more beneficial.  Therapies that mimic 

physiological anti-obesogenic effects are likely to prove most effective.  

Mitochondria in organs with high energetic need (e.g., the heart) are likely 
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to maintain relatively well-coupled mitochondria, while other organs such 

as adipose tissue could afford to be less economical.  Overexpression of 

uncoupling protein 1 (UCP1), which generates an increase in substrate 

utilization and electron transport chain activity, in adipose tissue 52 or 

skeletal muscle 53 can prevent diet-induced obesity in mice, suggesting 

that uncoupling of oxidative phosphorylation in these two organs is 

sufficient to regulate body composition. Interestingly, oxidative 

phosphorylation in skeletal muscle is less well-coupled in endurance 

athletes compared with sedentary subjects 54, and this appears to result in 

an increase in fatty acid oxidation and a decrease in oxidative stress.  

Furthermore, genes encoding fatty acid oxidation are increased in the 

skeletal muscle of athletes compared with sedentary subjects 55, 

suggesting a gene profile in athletes that favors fat oxidation rather than 

storage 56.  

Brown adipose tissue (BAT), which expresses relatively high levels 

of UCP1, is an exciting target for therapy. Despite the small amounts in 

humans, as little as 50 g of BAT has been estimated to be capable of 

utilizing up to 20% of basal caloric needs 57. Mice with genetically reduced 

BAT mass are prone to obesity 58. The recent discovery that adult humans 

maintain active depots of BAT 59, 60 in conjunction with the identification of 

UCP2 and UCP3 in the skeletal muscle and other tissues 61, 62 suggests 

that enhancement of mitochondrial activity may hold promise for 

combatting obesity.   
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Increasing energy expenditure by BAT activation is an anti-obesity 

strategy that has recently gained widespread attention and represents an 

intriguing new therapeutic approach. However, the finding that adipocytes in 

some white adipose tissue depots can be programmed to become similar to BAT 

has further invigorated research into understanding the role of adipose tissue in 

systemic metabolism.   

 

White adipose tissue is an important regulator of whole-body metabolism  

 White adipose tissue (WAT) is a complex, essential and highly active 

metabolic and endocrine organ 63. Its utility as the main storage depot for excess 

energy from dietary intake has long been recognized 64, but only recently has its 

importance beyond energy storage been fully appreciated. WAT not only 

responds to afferent signals from traditional hormone systems and the central 

nervous system but it also expresses and secretes factors with important 

endocrine functions including cellular signaling, energy metabolism and 

inflammatory processes 63, 65. This network of secreted adipokines signal 

changes in the adipose tissue energy status to other metabolic organs that 

control fuel consumption and redistribution 66. In this way, adipose tissue is a 

critical regulator of whole-body metabolic homeostasis. The contribution of 

adipose tissue to regulating circulating levels of free fatty acids (FFAs), glucose 

and insulin is of particular importance 65 and will be discussed in detail in the 

following sections.  



  11  
 

 

WAT dysfunction in the progression of obesity and diabetes  

Chronic energy overload promotes systemic metabolic dysfunction, which 

appears to commence at the level of the adipose tissue. Though adipocytes have 

a large capacity to synthesize and store triglycerides (TGs) during feeding, after 

prolonged periods of nutrient excess their storage and endocrine functions 

become compromised 67, 68. Failure of WAT to store fat appropriately results in 

pathological adipocyte hypertrophy, hypoxia and secretion of macrophage 

chemoattractants, particularly monocyte chemoattractant protein-1 (MCP-1) 65, 69. 

Infiltrating macrophages secrete large amounts of tumor necrosis factor  (TNF) 

and other inflammatory cytokines thereby creating a chronic proinflammatory 

state in the WAT associated with impaired TG deposition and increased lipolysis 

65. The result is increased circulating TGs and FFAs which can be deposited in 

skeletal muscle, liver and β-cells of the pancreas 70, 71. Elevated FFAs and 

ectopic lipid deposition are associated with metabolic dysregulation in peripheral 

tissues of both humans and rodents 72-78. In the liver, infusion of FFAs increases 

glucose output and causes insulin resistance 79. Similarly, skeletal muscle insulin 

resistance has been shown to be associated with elevated circulating FFAs and 

intramyocellular triglyceride accumulation 80, 81. Increased hepatic glucose 

production and decreased glucose uptake by skeletal muscle (which accounts for 

approximately 80% of glucose disposal in the post-prandial state) contributes to 

elevated systemic glucose levels 66. In response, the pancreas releases more 

insulin and after prolonged periods of positive energy balance, this leads to 
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hyperinsulinemia 82. Additionally, chronic exposure to elevated FFAs may result 

in β-cell dysfunction 82, 83 a key event in the development of frank T2D.  

 

Proper lipid partitioning is critical in metabolic disease 

A critical feature in this model of disease progression is the failure of the 

WAT to benignly accommodate excess lipid. When the WAT is unable to 

sequester fat, a malignant cascade of events ensues. Studies in rodent models 

underscore the importance of fat storage in the adipocyte. These studies show 

that increasing adipocyte cell number, and therefore overall adipose tissue mass, 

by overexpressing the adipokine adiponectin in severely obese ob/ob mice, 

decreased hepatic and muscle fat deposits and normalized metabolic parameters 

84. Therefore, by providing additional adipose depots for fat storage, fat “spillover” 

or ectopic deposition in peripheral tissues can be prevented and insulin 

resistance and diabetes averted. This is further supported by the observation that 

mice almost totally devoid of adipose tissue due to the expression of A-ZIP/F-1 

protein in adipocytes, are severely insulin resistant due to defects in insulin 

action, particularly insulin receptor substrate (IRS)-1/IRS-2–dependent activation 

of PI 3-kinase, in muscle and liver 85. These abnormalities were associated with a 

twofold increase in muscle and liver triglyceride content, and upon 

transplantation of fat tissue into these mice, triglyceride content in muscle and 

liver returned to normal, as did insulin signaling and action 85, 86. While intensively 

studied, the mechanism by which increased lipid in peripheral tissues disrupts 

insulin signaling, remains to be fully elucidated 87. What is clear, however, is that 
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proper partitioning of fat in the WAT rather than in peripheral tissues is crucial for 

preserving insulin sensitivity.  

 

WAT mitochondria as therapeutic targets in metabolic disease 

 While numerous studies have focused on modulating mitochondrial 

activity in skeletal muscle and liver to prevent lipid accumulation and maintain 

insulin sensitivity, only recently has significant attention been paid to metabolic 

intervention at the level of the adipose tissue. Despite adipocytes having a 

relatively low mitochondrial abundance, mitochondria are essential for many 

adipocyte functions. Previous work has demonstrated that mitochondria play an 

important role in the differentiation and the maturation of adipocytes, as 

evidenced by a synchronized initiation of adipogenesis and mitochondrial 

biogenesis 88 and the promotion of differentiation in response to enhanced 

mitochondrial metabolism, biogenesis and reactive oxygen species (ROS) 

production 89. Additionally, adipocyte mitochondria must generate sufficient ATP 

to support energy-consuming lipogenic processes, while still maintaining normal 

cellular activity 90. Further, to sustain lipogenesis, mitochondria provide key 

intermediates for the synthesis of TGs through the actions of pyruvate 

carboxylase 91. Reacting to cues from its nutritional and hormonal 

microenvironment, the adipocyte coordinates the appropriate mitochondrial 

response to either oxidize incoming FAs and carbohydrates through the 

tricarboxylic acid (TCA) cycle and the respiratory chain, or store them as TGs 91. 

In light of this, it has been proposed that ‘FFA recycling in the adipocyte’ (a TG-
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to-FA cycle) is a crucial sequence of events that determines systemic FFA 

concentrations 92. 

During obesity and nutrient excess, mitochondrial function in adipocytes is 

compromised. Levels of ATP decrease while there is increased accumulation of 

NADH 66, thereby shifting the adipocyte toward lipid storage accompanied by 

reduced mitochondrial biogenesis and increased ATP synthesis from glycolysis 

91. Prolonged exposure to nutrient overload only further induces these 

mitochondrial alterations and leads to yet more lipid accumulation. Studies in 

diabetic mice have shown a decrease in both the number and the function (both 

oxidative phosphorylation and β-oxidation) of mitochondria in WAT 93. Further, 

several genes involved in mitochondrial function and oxidative phosphorylation, 

as well as PPARα, ERRα, and PGC-1α were downregulated in WAT from high 

fat diet-induced obese and db/db mice 94, 95. Similar changes have been 

observed in the WAT of obese, insulin resistant and diabetic patients. In human 

WAT, mitochondrial abundance is decreased and genes crucial for mitochondrial 

function are downregulated 96 as well. Adipocytes isolated from these patients 

had decreased oxygen consumption rates and ATP production 91, 97. These 

findings suggest a clear association between the activity of the mitochondria in 

adipose tissue and the pathological remodeling of the tissue that accompanies 

obesity.  

Targeting the mitochondria of WAT to combat obesity has emerged as a 

promising new strategy and has been the subject of increasing scientific scrutiny. 

A general idea is to increase mitochondria in WAT, which could promote a higher 
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basal metabolic rate.  Several molecular targets have been identified, with PGC-

1 being of critical importance 98. PGC-1 is a known regulator of energy 

metabolism and of mitochondrial biogenesis 99 and may induce many of the 

characteristic brown fat traits in white adipocytes in vitro 98. Additionally, recent 

studies have identified secreted proteins that stimulate brown adipocyte 

thermogenesis and recruit brown (or beige) adipocytes to WAT 100. One such 

secreted protein is irisin—a skeletal muscle-derived myokine that enhances 

systemic energy expenditure and improves obesity and glucose homeostasis in 

mice—via a mechanism, which depends, at least in part, on PGC-1 101.   

Interestingly, treatment with the gaseous signaling molecule, nitric oxide 

(NO), can induce PGC-1-dependent mitochondrial biogenesis in both mouse 

white fat 3T3-L1 adipocytes and brown adipocytes 102, 103. Importantly, NO-

induced mitochondrial biogenesis leads to the formation of functionally active 

mitochondria capable of coupled respiration leading to the generation of ATP 

through oxidative phosphorylation 104. Furthermore, emerging evidence suggests 

that changes in vascular function could regulate metabolic homeostasis, and 

many studies have shown that NO may play a pivotal role in regulating systemic 

metabolism, body composition, and insulin sensitivity.  In the sections that follow, 

the potential role of NO in regulating metabolism, obesity and insulin resistance 

is discussed. 
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Nitric oxide – endogenous formation and  

general modes of biological action 

Nitric oxide and related nitrogen oxides have emerged as critical 

regulators of cell and tissue function 105.  The potency of NO was perhaps first 

realized when it was inhaled by Sir Humphrey Davy, who nearly died from the 

self-experiment, and after which he vowed to “never design again…so rash an 

experiment” 106.  Nearly two centuries later, identification of the cardiovascular 

processes controlled by NO led to the Nobel Prize in Physiology or Medicine in 

1998.  Nevertheless, the pleiotropy of NO continues to unfold, and we are only 

now beginning to appreciate the deeper aspects of its impact on metabolism.  

 

Generation of NO  

The most common route of NO production is through the action of the 

nitric oxide synthase (NOS) family of enzymes 105, 107. These enzymes catalyze 

NADPH- and O2-dependent oxidation of L-arginine to L-citrulline, producing NO 

in the process.  Such synthesis of NO depends on the availability of cofactors 

such as FAD, FMN, tetrahydrobiopterin (BH4), as well as the prosthetic group, 

heme 108.   

The three NOS isoforms generate NO at different rates 105. Endothelial 

NOS (eNOS) is localized to the vascular endothelium, but has also been found in 

neurons, epithelial cells and cardiomyocytes 109.  It produces relatively low 

quantities of NO, and its activity is controlled by Ca2+ and calmodulin, post-

translational modifications 110, 111, and physical forces such as shear stress 112, 

113.  Neuronal NOS (nNOS) is also a Ca2+/calmodulin-dependent isoform that is 
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activated by agonists of the N-methyl-D-aspartate (NMDA) receptor 113.  It is 

expressed in neurons, skeletal muscle, and epithelial cells. Lastly, inducible NOS 

(iNOS), which has the highest capacity to generate NO, is expressed in multiple 

cell types in response to inflammatory stimuli 113, 114.  The results of some studies 

also suggest the presence of a mitochondria-localized isoform, which could be 

important in regulating mitochondrial function 115, 116; however, the identity of this 

isoform remains to be fully established. In addition to post-translational 

modifications and substrate and cofactor availability, NOS activity is regulated by 

its localization within cells and by interactions with itself and other proteins 113. 

NO could also be produced endogenously from its more oxidized nitrogen 

oxide precursor, nitrite.  Reduction of nitrite to NO is increased under acidic and 

hypoxic conditions, with the reduction occurring enzymatically by heme proteins 

such as deoxyhemoglobin or deoxymyoglobin 117.  The therapeutic potential of 

dietary or pharmacological nitrite is supported by multiple studies describing 

improvements in reperfusion injury following myocardial infarction, in pulmonary 

hypertension, and injury after organ transplantation 118. 

 

Biochemical properties of NO  

NO is a free radical of rather limited biological reactivity. The endogenous 

half-life of NO is in the range of 2 ms to > 2 s and appears to depend primarily on 

the availability of metals and oxygen 119. NO reacts avidly with ferrous (Fe2+) iron 

and with other radical species and such reactions form the basis for nearly all of 

the biological effects of NO. The highest affinity interactions of NO are with 
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metalloproteins such as soluble guanylate cyclase (sGC), cytochrome c oxidase, 

and hemoglobin; NO reacts also with non-heme iron.  Reaction of NO with Fe2+ 

iron results in the formation of a coordinate bond, which is termed a nitrosyl 

adduct (i.e., nitrosylation). The presence of free radicals such as superoxide  

(O2˙-) 120-123 changes the fate of NO because once NO reacts with O2˙- it  forms 

peroxynitrite 120, 122, 123 and can no longer bind to ferrous heme 124. Peroxynitrite 

and other reactive species (e.g., NO2) derived from the reaction of NO with O2˙- 

are important in inflammatory responses 123 and can modulate cell signaling 125-

128, in part by promoting the oxidation and nitration of a broad range of 

biomolecules 105.  

The NO molecule can also react directly with O2, which itself is a free 

radical possessing two unpaired electrons in different π* antibonding orbitals 129.  

The reaction of NO with O2 commonly underlies mechanisms by which S-

nitrosation or S-oxidation of protein side chains occurs.  In addition, NO can react 

directly with thiyl radicals, forming a nitroso covalent bond between NO and the 

thiol (termed S-nitrosation or S-nitrosylation). Cysteinyl residues of glutathione 

and proteins are among the most recognized and studied targets of NO and its 

oxidized species [(such as N2O3; collectively called reactive nitrogen species 

(RNS)]; reaction of RNS with thiols results in the formation of S-nitrosothiols, S-

glutathiolated species, and oxidized cysteinyl residues 130.  Such modifications 

can lead to transient changes in enzyme activity, providing redox switches that 

can be modulated by addition or removal of the modifications 131.  
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General physiological roles of NO 

NO has multiple biological actions and this versatile molecule can regulate 

physiology acutely or lead to long-term changes in cell function. The pleiotropic 

roles of NO include the regulation of long-term synaptic transmission, learning, 

memory, platelet aggregation, leukocyte-endothelial interactions, immune 

function, and angiogenesis and arteriogenesis (for review, see 132).  However, 

NO is most well known as a potent regulator of blood flow and was originally 

termed endothelial-derived relaxing factor (EDRF). The story unfolded from 

Furchgott and Zawadzki’s initial discovery that endothelial cells control 

acetylcholine-induced relaxation of smooth muscle 133. A few years later, NO was 

identified as the key endothelium-derived molecule promoting vasodilation: NO 

synthesized by NOS in the endothelium diffuses into the vessel wall where it 

activates sGC in vascular smooth muscle. This leads to an increase in cyclic 

GMP (cGMP) levels in the tissue and elicits vessel relaxation 134-140.  However, it 

readily became apparent that different isoforms of NOS have different 

physiological roles.  For example, eNOS and nNOS were found to have distinct 

roles in regulating microvascular tone 141; nNOS activity in the medulla and 

hypothalamus is important for systemic regulation of blood pressure 142-145; and, 

the nitrergic nerves containing nNOS are responsible for penile erection 137, 146. 

Overall, NO derived from the integration of eNOS and nNOS activities play key 

roles in regulating systemic blood pressure and acutely regulating organ blood 

flow, whereas iNOS-derived NO species are most well recognized for their 

impact on pathogen killing and inflammatory processes 120.   
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Another key function of NO is the regulation of mitochondrial respiration. 

Acutely, NO inhibits respiration by binding and inhibiting cytochrome c oxidase.  

Modulation of respiration by NO is dependent on both mitochondrial activity and 

the O2 level 147, 148. In addition, NO directly regulates the binding and release of 

oxygen with hemoglobin 149 and is able to increase blood flow at sites of very low 

oxygen concentrations 150.  Thus, a key function of NO is to modulate O2 

gradients in cells and tissues by regulating hemoglobin action and by inhibiting 

O2 consumption in respiring mitochondria 119.  Chronic exposure to relatively high 

levels of NO results in mitochondrial biogenesis 151-153, which could reprogram a 

cell or tissue to have a higher metabolic capacity.   

 

NO bioavailability is diminished in obesity 

NO bioavailability is decreased in animal models of obesity 154, 155 and in 

both adult and adolescent humans 156, 157.  Because NO bioavailability is 

dependent upon the balance between its generation and degradation, diminished 

levels of NO in obese states may be due to decreased expression of NOS, 

impairments in NOS activity, decreased NOS substrates or by the reaction of NO 

with reactive species (e.g., superoxide) (Fig 2).  These are discussed below. 

 

NOS expression changes in obesity  

A primary mechanism by which NO bioavailability could be decreased is via 

diminished expression of NOS enzymes (Fig. 2A). In particular, lower eNOS 

abundance is found in both WAT and skeletal muscle of obese humans and
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Figure 2. Mechanisms for decreased endothelial-derived NO in obesity and 

diabetes. Schematic of changes in NOS or NO: (A) Decreased eNOS 

expression commonly occurs in obese and diabetic states. Mechanisms 

proposed for diminished expression include TNF-α-mediated destabilization of 

eNOS mRNA, which may involve eEF1A1.  High levels of NO may regulate 

eNOS abundance through cGMP-mediated or via NF-κB-SNO feedback 

regulatory pathways.  A small 27-nt RNA regulates eNOS expression also, 

although it is not known whether this mechanism is invoked in obesity or 

diabetes.  (B)  Decreased eNOS activity in obesity and diabetes is largely 

attributed to insulin resistance, which may be mediated by free fatty acid (FFA)-

induced activation of TLR2, TLR4, and NF-κB.  In addition, activation of PKCβII 

may diminish Akt signaling, which causes phosphorylation of eNOS on Ser1177.  

Phosphorylation at this site increases NO output by the enzyme.  Hyperglycemia 

may also lead to increased O-GlcNAcylation of eNOS, which decreases Ser1177 

phosphorylation and inhibits its activity. In addition, conditions leading to obesity 

promote upregulation of Cav-1, which is a negative regulator of eNOS, and 

ceramide accumulation disrupts the eNOS-Akt-HSP90 complex, diminishing 

activity of the enzyme. (C) eNOS may also be uncoupled or NO quenched in 

obese and diabetic states.  Diminished levels of substrates and cofactors, such 

as L-arginine or tetrahydrobiopterin (BH4), lead to uncoupling of the enzyme, 

which is commonly associated with the presence of eNOS monomers rather than 

dimers and can produce superoxide instead of NO.  Endogenous inhibitors of 

eNOS such as ADMA are also increased in obese conditions and can promote 
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NOS uncoupling. Elevated production of reactive oxygen species such as 

superoxide can quench NO and result in its oxidation to highly reactive 

peroxynitrite, which damages biomolecules and can oxidize BH4 to BH2. 

Increased levels of BH2 exacerbate NOS uncoupling and superoxide production.  
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rodents 158-162. Factors associated with obesity and diabetes including increased 

shear stress, lysophosphatidylcholine, oxidized LDL, insulin and decreased 

ability to exercise can also regulate eNOS expression 163-167. TNF, which is 

increased in obesity and implicated in the etiology of insulin resistance 168, has 

been found to downregulate eNOS expression and abundance 161, 169-172 by 

decreasing the stability of eNOS mRNA 173, 174, effectively shortening its half-life 

175. This destabilization of the eNOS message has been linked, at least in part, to 

upregulation of elongation factor 1-α1 176.   

Acutely, TNF increases eNOS activity 177, most likely via activation of the PI3K-

Akt 178 and sphingomyelinase/sphingosine-1-phosphate pathways 179, 180.  Such 

diametrically opposite acute versus chronic effects of TNF would appear to 

suggest the potential existence of negative feedback loops that sense high levels 

of NO, leading to downregulation of eNOS.  Indeed, NO donors downregulate 

eNOS expression both in vitro and in vivo, which may involve cGMP and/or S-

nitros(yl)ation of NF-κB 181, 182.  A small, 27-nt RNA has also been shown to be an 

effective feedback regulator of eNOS 183.  Whether such small RNAs or miRNAs 

that regulate NOS expression are induced with obesity is currently unclear. 

Notable changes in the abundance of other NOS isoforms also occur in 

obesity.  The iNOS enzyme increases in abundance in pancreatic β-cells 184, 

aorta 185, skeletal muscle 186, liver 187, 188, and adipose tissue 189-191 of obese 

rodents.  In adipose tissue, the majority of iNOS is derived from infiltrating bone 

marrow-derived macrophages that display a proinflammatory phenotype 189-191.  

However, high levels of TNFα were shown to increase iNOS also in adipocytes, 
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which appears to downregulate UCP2 192; hence, this mechanism could 

contribute to decreases in WAT energy expenditure. In the ventromedial 

hypothalamus, which controls energy intake, diet-induced obesity was associated 

with lower numbers of nNOS-expressing cells 193.  In the aorta, however, nNOS 

was increased in abundance in mice fed a high fat diet.  The induction of nNOS 

was demonstrated to be due to leptin stimulation 194 and may partially 

compensate for the loss of eNOS-mediated vasodilatory action that typically 

occurs in obese, insulin-resistant states. 

 

Changes in eNOS activity in obesity  

Beyond changes in expression, the NO-producing activity of eNOS is 

diminished in metabolic disease (Fig. 2B).  In addition to the required substrates, 

calcium, and cofactors, the activity of eNOS is regulated by protein-protein 

interactions and by several post-translational modifications 132, 195, 196. High fat 

feeding upregulates caveolin-1, a negative regulator of eNOS 197, 198, in the aorta 

of obese rats 199.  Furthermore, ceramide (which is increased in obesity 200) 

promotes disruption of the eNOS-Akt complex from HSP90 201, which increases 

eNOS activity by promoting displacement of caveolin-1 from eNOS 202.    

Conditions of obesity have profound effects on eNOS phosphorylation.  In 

particular, eNOS phosphorylation at serine 1177 (S1177; S1176 in mice), which 

is critical for increasing NO output from the enzyme 203, is diminished in mice by 

nutrient excess 204-207 or high fat feeding 155, 160, 208, 209; studies in obese rats 210-

212 and pigs 213 have shown similar results. This eNOS phosphorylation site is 
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regulated by Akt 214, which is activated by insulin 215. Insulin stimulation of the 

Akt-eNOS pathway could thus be important for regulating post-prandial blood 

flow and nutrient disposition to peripheral tissues. Indeed, insulin resistance in 

the endothelium is sufficient to diminish NO bioavailability and promote 

endothelial dysfunction 216, and impaired eNOS phosphorylation due to insulin 

resistance was shown to be responsible for diminished glucose uptake in the 

skeletal muscle of mice subjected to nutrient excess 217.   

Reasons for diminished phosphorylation of eNOS under conditions of 

nutrient excess and obesity could be due to fatty acid (e.g., palmitate)-mediated 

induction of insulin resistance 155. Elevated free fatty acids lower NO 

bioavailability in cultured cells 218, isolated arteries 219, animal models 220 and 

humans 221, 222.  Insulin resistance due to FFAs may be engendered by activation 

of Toll-like receptor 4 (TLR4) and NF-κB 208, 218 or Toll-like receptor 2 (TLR2) 223.  

Other nutrient conditions inherent to diabetes may also be responsible for loss of 

S1177-eNOS phosphorylation. For example, hyperglycemia causes O-linked N-

acetylglucosamine (O-GlcNAc) modification of eNOS, which diminishes its 

activity 224. Additional mechanisms posited for diminished eNOS phosphorylation 

in the context of obesity include a fatty acid-mediated, yet Akt-independent 

impairment of eNOS phosphorylation 209, and PKCβII-mediated diminishment in 

Akt and eNOS responsiveness to insulin 210, 212.  How these signaling pathways 

integrate to regulate NO production in obesity and diabetes remains to be 

addressed.   
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Uncoupling of NOS and quenching of NO in metabolic disease  

The ability of NOS to produce NO is also dependent on its proper 

coupling, which is regulated by multiple cofactors, the ability of the NOS enzyme 

to remain in the dimerized form 225, 226, and post-translational modifications 132, 227-

229 (Fig. 2C).  In particular, the cofactor BH4 is critical to NOS activity, and it has 

been termed a ‘redox sensor’ because elevations in reactive oxygen and nitrogen 

species can result in its depletion 230.  Furthermore, BH4 may reflect the overall 

‘health’ of the endothelium 231. Obese and diabetic states in rodents and human 

cells are associated with decreased BH4 and elevated levels of its oxidized form, 

BH2 231-235. This is important because deficiency in BH4 or elevations in BH2 can 

uncouple NOS, which results in superoxide production from the enzyme and 

increases peroxynitrite generation 227.  Hence, deficiency of BH4 is thought to be 

a major regulator of vascular dysfunction that occurs during obesity and in 

diabetic states.  Indeed, the ratio of BH4 to BH2 is critical in preventing glucose-

induced eNOS uncoupling 236 and replenishment of BH4 pools has proven 

effective in multiple pathological scenarios 227, 228, 237-239. Uncoupling of NOS does 

not appear to be a factor unique to eNOS, however, as nNOS was shown to be 

uncoupled in penile arteries of obese rats, leading to nitrergic dysfunction, which 

was restored by increasing BH4 levels 240.   

Peroxynitrite may be especially critical in promoting NOS uncoupling. The 

3-nitrotyrosine (3-NT) is a typical ‘footprint’ post-translational modification that 

helps identify sites at which eNOS uncoupling might have occurred, and it is 

worth noting that this modification is observed in abundance in the context of 
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obesity and diabetes (e.g., 160, 232, 241, 242).  Patients with diabetes had diminished 

flow-mediated dilation of coronary arterioles and increased 3-NT protein adducts 

that colocalized with caveolae, demonstrating a dysfunction of the endothelium 

associated with elevated peroxynitrite production 243.  Interestingly, endothelial 

dysfunction in diabetic patients was rescued by sepiapterin supplementation 243, 

inferring that peroxynitrite may disrupt eNOS function not only by caveolar 

disruption, but by depleting BH4.  This would be consistent with multiple studies 

showing that elevated levels of reactive species (in addition to peroxynitrite, such 

as superoxide produced from NADPH oxidase) promote eNOS uncoupling 244-248. 

Nevertheless, the specific contribution of peroxynitrite and other reactive species 

to endothelial function is still unclear. Some studies suggest that rather than 

contributing to the uncoupling of eNOS, superoxide derived from NADPH oxidase 

activates the enzyme 249. Hence, inhibited eNOS function perceived under 

conditions of oxidative stress could be due in part to the quenching of NO and 

not to uncoupling of the enzyme per se.   While this would be consistent with the 

near diffusion-limited reaction rate of NO with superoxide (which is reported to be 

as high as 1.9 × 1010 M-1 s-1) 250, the evidence for a deleterious role of uncoupled 

NOS should not be underestimated, and multiple other factors beyond BH4 

depletion, such as asymmetric dimethyl arginine (ADMA) levels, insufficient L-

arginine levels or glutathio(ny)lation of the eNOS enzyme, can promote eNOS 

uncoupling and endothelial dysfunction 132, 251-254. That levels of ADMA are 

positively correlated with insulin resistance and diabetes, and that arginine 

supplementation overcomes this competitive inhibition 255 further suggests that 



29 
 

eNOS uncoupling or inhibition are major contributors to the development of 

metabolic diseases associated with obesity.    

Despite these findings, it is unclear whether obesity itself decreases NO 

availability.  The fact that obesity in humans is associated with decreased blood 

flow in response to methacholine 256, bradykinin 257, 258, substance P and 

acetylcholine 258, shear stress 259, and insulin 260, 261 appears to suggest that the 

obese condition is somehow linked causally with diminished vascular NO 

bioavailability. Several studies showing similar results lend credence to this 

hypothesis 158, 262-273.  However, the question remains: Is loss of NO production 

somehow due to excess adiposity, or is its etiology derived from those conditions 

commonly associated with obesity? Interestingly, endothelial dysfunction was 

found to occur in morbidly obese humans only in the presence of insulin 

resistance 274. And, severely obese humans, in the absence of insulin resistance, 

showed better flow-mediated dilation compared with normal and obese insulin-

sensitive subjects 275.  Furthermore, capillary recruitment has been shown to be 

higher in overweight compared with lean individuals 276.  This suggests that the 

maintenance of a metabolically benign form of obesity is possible and that either 

insulin resistance or conditions directly linked with the insulin resistant phenotype 

(e.g., dyslipidemia, inflammation, hyperglycemia) are to blame for loss of NO 

bioavailability during obesity.  Collectively, these findings raise multiple 

questions:  What determines how the metabolically benign versus harmful forms 

of obesity develop?; How does NO affect obesity and insulin resistance?; What is 

the relevance of changes in NOS isoform abundance, (some of which go in 
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diametrically opposite directions (e.g., eNOS vs. iNOS)), in the development of 

metabolic disease?; and, how does NO regulate tissue-specific metabolic 

pathways? 
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Project Objective 

Extensive evidence shows that obesity is a robust risk factor for the development 

of T2D, yet the mechanisms by which obesity increases the risk of T2D remain 

unclear. Recent studies suggest that endothelial dysfunction, characterized by a 

decrease in nitric oxide (NO) production, is pivotal in the progression of metabolic 

disease. The endothelium is a central regulator of insulin sensitivity and is the 

first tissue to become insulin resistant. In addition, it has been reported that 

deletion of eNOS is associated with adiposity, insulin resistance and impaired 

fatty acid oxidation. Nevertheless, the role of eNOS in regulating metabolism is 

not well understood. The overall goal of my work is to understand how NO 

regulates metabolism. We propose that during nutrient excess decreased 

vascular-derived NO bioavailability is a critical step that leads to the development 

of metabolic dysregulation. Specifically, we hypothesize that an increase in 

NO derived from eNOS prevents diet-induced obesity by promoting 

adipose tissue browning and increasing systemic metabolism. To determine 

effects of nutrient excess on tissues critical to obesity-related insulin resistance, 

we examined nutrient excess-induced metabolic changes occurring in adipose 

tissue. As discussed in Chapter II, we found changes consistent with 

mitochondrial remodeling and loss of mitochondrial bioenergetic capacity in 

adipose tissue. Further we show that obesity induces profound decreases in 

eNOS abundance. To assess the significance of eNOS downregulation, we 

investigated whether increasing eNOS expression was sufficient to prevent 

obesity-related metabolic consequences (Chapter III, Aim I). After studying the 
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anti-obesogenic effects of eNOS, we examined how overexpression of eNOS 

affects systemic metabolism (Chapter IV, Aim II). Our findings reveal an 

important role of NO in regulating metabolism and suggest that increasing NO 

could prevent diet-induced obesity. In addition, our findings support the view that, 

while obesity and insulin resistance are closely associated they remain distinctly 

separate consequences of nutrient excess.  
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CHAPTER II 

METABOLIC REMODELING OF WHITE ADIPOSE TISSUE IN OBESIT. 

 

Introduction 

The increasing prevalence of obesity is a principal health concern 

worldwide. In 2008, approximately 1.5 billion adults aged 20 years or older were 

overweight, and 10% were obese 1. In the US, more than one-third of the adult 

population is currently obese (BMI >30), and 68% have a BMI>25 277; these 

numbers are expected to increase by more than 50% by the year 2025 7.  These 

statistics are cause for alarm. Obesity is a powerful predictor of insulin resistance 

4 and a major risk factor for several common medical conditions, including type 2 

diabetes (T2D), cardiovascular disease, non-alcoholic fatty liver and gallstones, 

Alzheimer’s disease, and some cancers 278.  

While lack of exercise is an undeniable risk factor for weight gain 278-280, 

excessive caloric intake appears to be one of the key factors fueling the obesity 

epidemic. In the past three decades, the average consumption of calories in the 

US has increased by at least 200 kcal/d per person, which is partly attributable to 

an increase in the intake of energy-dense foods 8-10, 281. Such poor dietary habits 

negatively affect metabolic homeostasis, which could not only promote obesity, 

but the development of obesity-related co-morbidities as well. Despite the
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simplicity of the apparent remedy (i.e., decreasing caloric intake), treatment of 

obesity remains a challenging crisis facing the health care system. Losing weight 

via caloric restriction faces multiple conceptual challenges: these include an 

evolutionarily engendered guard against starvation and low fat mass 7, 31 and a 

propensity to increase caloric efficiency during dieting 32, 33.  While several 

approaches to combat obesity have been approved for clinical use, including 

medications that reduce caloric intake or absorption and bariatric surgery, these 

approaches in many cases show marginal long-term efficacy or have 

unacceptable or overtly dangerous side effects 7.  Thus, recent strategies to 

modulate obesity have begun to target tissues that naturally regulate energy 

metabolism.   

Increasing energy expenditure by modulating adipose tissue activity has 

become an especially attractive target for therapy.  Guided by the fact that adult 

humans maintain small depots of brown fat capable of burning significant 

amounts of calorific energy 57, multiple studies focused on the physiological and 

molecular mechanisms regulating the thermogenic capacity of adipose tissue.  

These studies show that adaptive thermogenesis in brown fat can be a powerful 

regulator of systemic energy metabolism.  However, the relatively small amount 

of brown adipose (less than 0.4% of body weight) compared with white adipose 

tissue (WAT; which can comprise 40% or more of the body weight of an obese 

human) suggests that WAT may be a more tangible target. Interestingly, white 

adipose depots, which typically function to esterify free fatty acids (FFA) and 

store excess lipids, have the capacity to develop brown adipose-like tissue 



35 
 

capable of modulating systemic metabolism and preventing obesity and insulin 

resistance 282.   

While the phenomenon of adipose “browning” is an exciting area of 

research, there is also considerable interest in understanding the metabolic 

changes that occur in WAT with obesity.  It has become increasingly clear that 

conditions of nutrient excess promote a “whitening” of adipose tissue 

characterized by decreases in mitochondrial abundance 93, 283, 284.  Hence, while 

promoting “browning” is one way to positively modulate metabolism, decreasing 

adipose tissue “whitening” could in principle prevent the dysregulation of 

systemic metabolism caused by obesity. Indeed, the therapeutic actions of 

thiazolidinediones such as rosiglitazone and pioglitazone have been suggested 

to be due to their ability to prevent loss of mitochondria or increase mitochondrial 

function in WAT 284, 285.  Nevertheless, the metabolic changes occurring during 

adipose tissue whitening have not been well-characterized, in part because these 

metabolic changes have been difficult to dissect from other sequelae of obesity 

such as adipose tissue inflammation.   

In this study, we examined both the systemic and WAT-specific changes 

in metabolism in a common model of diet-induced obesity—the C57BL/6J mouse 

fed a high fat diet (60% kcal from fat).  Our data indicate that mitochondrial 

remodeling, leading to decreases in mitochondrial oxidative phosphorylation and 

substrate oxidation, precedes the infiltration of inflammatory cells such as 

macrophages.  The changes apparently precede overt loss of mitochondrial 

mass and coincide with decreases in PGC1α and dysregulation of lipid and 
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amino acid metabolism.  In addition, we find ultrastructural and biochemical 

changes consistent with autophagy and mitochondrial remodeling, the onset of 

which also appears to precede the infiltration of macrophages. These findings 

have important implications for our understanding of the effects of obesity on 

adipose tissue metabolism and suggest that inhibiting the metabolic changes that 

contribute to adipose whitening could form the basis for novel therapies to 

combat metabolic disease.   

 

Experimental Procedures 

Animal studies: All procedures were approved by the University of Louisville 

Institutional Animal Care and Use Committee. C57BL/6J (wild-type; WT) mice 

were purchased from The Jackson Laboratory (Bar Harbor, ME). At 8 weeks of 

age, male mice were placed on either a 10% low fat diet (LFD; Research Diets, 

Inc., #D12450B) or a 60% high fat diet (HFD; Research Diets Inc., #D12492) for 

6 or 12 weeks. Water and diet were provided ad libitum. Body weights were 

recorded weekly.  

 

Metabolic phenotyping: Body composition was measured by dual-energy X-ray 

absorptiometry using a mouse densitometer (PIXImus2; Lunar, Madison, WI), 

and whole body energy expenditure, respiratory exchange ratio, food 

consumption, and locomotion, ambulatory and fine movements were measured 

using a physiological/metabolic cage system (TSE PhenoMaster System, Bad 
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Homberg, Germany) 286.  Glucose and insulin tolerance tests and plasma levels 

of insulin were measured as described in Sansbury et al 286.  

 

Adipocyte size measurements: Adipose tissue was excised at the time of 

euthanasia, and wet weight was recorded. All adipose tissue was either snap-

frozen at –80°C or fixed in 10% formalin (Leica), paraffin embedded, and 

sectioned. Sections were stained in hematoxylin and eosin. Adipocyte cross-

sectional area and size distribution was determined using Nikon Elements. 

Adipose tissue sections were assessed for crown-like structures as described 

previously 287.   

 

Adipose tissue metabolite profiling: WAT from the epididymal fat pads of mice 

fed a LFD or HFD for 6 weeks were used for these analyses.  Prior to tissue 

collection, mice were fasted for 16 h.  After euthanasia, the adipose tissue was 

removed and immediately snap-frozen in liquid nitrogen. Relative metabolite 

abundance was then measured by GC/MS or LC/MS as described before 286. 

Metabolites with missing values were imputed by replacing missing values with 

half of the minimum positive value in the original data.  Metabolites with greater 

than 57% of values missing were omitted from the analysis. After a generalized 

logarithm transformation, data were autoscaled, i.e., mean-centered and divided 

by the standard deviation of each variable. This step was performed to transform 

the intensity values so that the distribution was more Gaussian. T-test statistical 
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comparisons were then performed.  Univariate (e.g., volcano plots), multivariate 

(e.g., PLS-DA), and cluster (heatmap and dendogram) analyses were then 

performed. Most analyses were performed using Metaboanalyst 2.0 software 

(http://www.metaboanalyst.ca/) 288; z-score plots were constructed in GraphPad 

5.0 software using data derived from volcano plot analysis.    

 

Adipose tissue bioenergetic measurements: The oxygen consumption rate 

(OCR) of intact WAT explants was measured using a Seahorse XF24 analyzer 

(Seahorse Bioscience, Billerica, MA) as described previously 286. At least two 

replicates from each animal were used for the assay. After baseline 

measurements, the maximal OCR was measured by exposing the explants to 

carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (10 µM).  The 

non-mitochondrial OCR was measured following injection of antimycin A (25 μM) 

and rotenone (5 μM).  

 

Citrate synthase acitivity assay: Citrate synthase activity was measured in 100 

mM Tris-HCl, pH 8.0, containing 1 mM EDTA, 1 mM 5', 5'-Dithiobis 2-

nitrobenzoic acid (DTNB), 10 mM acetyl-CoA. The reaction was initiated by 

addition of 10 mM oxaloacetate. Cuvettes were warmed to 37°C, and upon 

addition of 10 μg of protein from WAT lysates, absorbance at 420 nm was 

measured for 10 min. Activity was expressed as nmoles/min/μg protein.  

http://www.metaboanalyst.ca/
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Expression analyses: For quantitative RT-PCR, RNA was extracted from 

tissues using the RNeasy lipid tissue kit (Qiagen), followed by cDNA synthesis. 

Real-time PCR amplification was performed with SYBR Green qPCR Master Mix 

(SA Biosciences) using a 7900HT Fast Real-Time PCR System (Applied 

Biosystems) and commercially available primers for il1, tnfa, il6, arg1, il10, ym1, 

hif1a, emr1, pgc1a, cytc, sirt1, sirt3, pdk4, cpt1a, cpt1b, cox7a1, hprt, and idh3a 

(SA Biosciences). Relative expression was determined by the 2−ΔΔCT method. M1 

macrophages in WAT were measured by flow cytometry using well-validated 

surface markers as shown previously 287.   

To measure protein abundance, WAT homogenates were prepared 

exactly as described in Horrillo et al 289. Equal amounts of protein were separated 

by SDS-PAGE, electroblotted to PVDF membranes, and probed using primary 

antibodies according to the manufacturers’ protocol.  The antibodies used were: 

ALDH2 (Abcam), Sirt3 (Cell Signaling), MitoProfile® Total OXPHOS Rodent WB 

Antibody Cocktail (Mitosciences), COX4I1 (Cell Signaling), GAPDH (Cell 

Signaling), Parkin (Abcam), Pink1 (Cell Signaling), p62 (Cell Signaling), LC3 

(Cell Signaling), protein-ubiquitin (Cell Signaling) and α-tubulin (Cell Signaling).  

Fluorescent or HRP-linked secondary antibodies (Invitrogen) were used for 

detection and visualized with a Typhoon 9400 variable mode imager (GE 

Healthcare). Band intensity was determined using Image Quant TL® software. 

Relative mitochondrial DNA (mtDNA) measurements: Mitochondrial 

abundance in adipose tissue was estimated by measuring the mtDNA 

abundance relative to nDNA, essentially as described previously 290. Total DNA 
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was isolated from WAT using a QIAamp DNA Mini Kit (Qiagen).  Aliquots of 25 

mg tissue were homogenized followed by overnight digestion in Proteinase K at 

55°C.  Following isolation, relative amounts of mtDNA and nuclear DNA (nDNA) 

were compared using quantitative RT PCR.  In each assay 2 ng of DNA was 

used with specific primers for cytochrome b (mtDNA) and β-actin (nDNA).   

Sequences for the primer sets used were: cytochrome b, 5’-

TTGGGTTGTTTGATCCTGTTTCG-3’ and 5’-

CTTCGCTTTCCACTTCATCTTACC-3’; β -actin, 5’-

CAGGATGCCTCTCTTGCTCT-3’ and 5’-CGTCTTCCCCTCCATCGT-3’.  

 

Electron microscopy: Adipose tissues were fixed with 3% glutaraldehyde in 0.1 

M sodium phosphate buffer (pH 7.4) for 4 h at room temperature (25 °C). Tissues 

were then post-fixed with 1% osmium tetroxide for 1 h, dehydrated,  embedded in 

Embed-812 plastic (Electron Microscopy Sciences). Ultrathin (50-70 nm) sections 

were stained with uranyl acetate and Reynolds lead citrate, and electron 

micrographs were taken using a Philips CM10 transmission electron microscope 

operating at 80 kV. 

 

Statistical analyses: Data are mean ± SEM.  Unpaired Student’s t test was 

used for direct comparisons. Statistical analyses for metabolomic datasets were 

performed using Metaboanalyst 2.0 software. A p value <0.05 was considered 

significant.  
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Results 

High fat diet leads to increased adiposity and altered systemic metabolism. 

Wild-type C57BL/6J mice were placed on a LFD or HFD for 6 weeks. Significant 

weight gain occurred as early as 1 week on HFD, and the change in total body 

mass was nearly 10 g by 6 weeks on the diet (Fig. 3A). Food and water intake 

were not significantly different between groups (Fig. 3B,C). Dexascan analysis 

showed a 2-fold increase in fat mass and a concomitant decrease in lean mass 

in HF-fed mice (Fig. 3D,E).  These results are typical of this commonly utilized 

model of diet-induced obesity, e.g., see 155, 286.  

To determine how diet affects systemic metabolism, mice fed either LFD or HFD 

for 6 weeks were placed in metabolic chambers, and their oxygen consumption 

(VO2), carbon dioxide production (VCO2), and physical activity were measured. 

As shown in Fig. 3F and G, average VO2 and VCO2 values decreased in HF-fed 

mice compared with mice fed a LFD. The respiratory exchange ratio (RER) was 

also decreased in mice fed a HFD compared with mice fed LFD (Fig. 3H).  

Physical activity, measured by total beam breaks (Fig. 3I), ambulatory counts 

(Fig. 3J), and fine movements (Fig. 3K), was not significantly different between 

groups, although the group fed a HFD appeared to show a trend toward 

decreased physical movement. Similar to previous studies 286, mice fed a HFD 

also demonstrated worsened glucose and insulin tolerance (Fig. 4) as well as a 

significant increase in plasma insulin levels (WT LFD, 151±71 pg/ml  vs. WT 

HFD, 2690±593 pg/ml, n = 3 per group, p<0.05). 
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Figure 3. Effects of high fat diet on weight gain, adiposity and systemic 

metabolism. Male WT C57BL/6J mice were fed a low fat diet (LFD, 10% kcal 

fat) or high fat diet (HFD, 60% kcal fat) for 6 weeks and the following 

measurements were recorded: (A) mouse weights during 6 weeks of feeding, n = 

20 per group; (B) food intake, n = 7 per group; (C) water intake, n = 7 per group; 

(D) representative DexaScan images; (E) percentages of lean mass and body 

fat, n = 10 per group; and (F) average oxygen consumption (VO2); (G) average 

carbon dioxide production (VCO2); (H) respiratory exchange ratio (RER); (I) total 

activity level; (J) ambulatory counts; and (K) fine movements. n = 7 per group; 

*p<0.05 vs. LFD. 
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Figure 4. Glucose and insulin tolerance in mice fed low fat or high fat diets. 

After 6 weeks of a low fat (LFD) or high fat diet (HFD), glucose tolerance and 

insulin sensitivity were examined: (A) Glucose tolerance test (GTT); (B) GTT 

area under the curve (AUC); (C) insulin tolerance test (ITT) shown as % of 

baseline; and (D) ITT AUC.  n = 7 per group; *p<0.05, **p<0.01 vs. LFD. 
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Macrophage infiltration does not occur until after 6 weeks of HFD. To 

measure the metabolic effects of obesity on adipocytes in the intact adipose 

organ, effects of inflammatory cells such as macrophages must first be ruled out 

or otherwise delineated.  To examine effects of HFD on macrophage infiltration, 

we placed mice on LFD or HFD for 6 and 12 weeks and measured adipocyte 

size, crown-like structures indicative of macrophage infiltration, and the 

expression of inflammatory genes.  As shown in Fig. 5A–C, mice fed a HFD for 6 

and 12 weeks showed a 3–4-fold increase in adipocyte size when compared with 

LFD controls.  While sections of WAT derived from mice fed a HFD for 12 weeks 

showed obvious increases in crown-like structures, WAT from mice fed HFD for 6 

weeks showed minimal changes in such structures. This suggested that with 6 

weeks of HFD, there was minimal macrophage accumulation.  Indeed, the 

expression of emr1—a marker of macrophages—as well as that of other 

inflammatory genes was not changed with 6 weeks of HFD, and hypoxia was not 

evident as measured by expression of Hif1a (Fig. 5D).  Moreover, the abundance 

of M1 macrophages in adipose tissue stromal vascular fractions was not different 

between mice fed the different diets (F4/80+/CD11c+/CD301- cells as F4/80+ 

cells: LFD 37.4±3.5; HFD, 45.9±1.8; n = 9–10 per group, p>0.05.).  Most likely, 

the modest, insignificant increase in Tnfa is due to adipocytes, which have been 

shown to produce TNF-α 291, 292.  Collectively, these data show that after 6 weeks 

of HFD, there is an increase in adipocyte size without significant changes in 

infiltrating inflammatory cells. 
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Figure 5. Effect of HFD on adipose tissue expansion and inflammation. 

Morphological and molecular changes in adipose tissues: (A) Representative 

hematoxylin and eosin stains of epididymal adipose tissue of mice fed a LFD or 

HFD for 6 or 12 weeks; (B) average size of adipocytes; (C) adipocyte size 

distribution; and (D) qRT-PCR analyses of markers of inflammation in adipose 

tissues from mice fed a LFD or HFD for 6 weeks. CLS, crown-like structure; n = 

4-5 per group; *p<0.05 vs. indicated groups.  
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Obesity alters the metabolite profile of adipose tissue.  To examine the effect 

of obesity on adipose tissue metabolism, epididymal WAT from mice fed a LFD 

or HFD for 6 weeks was subjected to unbiased metabolomic analysis.  The 

relative concentrations of adipose metabolites were measured by mass 

spectrometry and queried against the Metabolon reference library. Partial least 

squares-discriminant analysis (PLS-DA) showed that the LFD samples clearly 

separate from HFD samples (Fig. 6A), and cluster analysis showed that the 

abundance of most metabolites was decreased in the HFD group compared with 

the LFD group (Fig. 6B).  Out of the 191 metabolites measured, 82 were found to 

be significantly different (p<0.05) in the WAT of mice fed a HFD compared with 

that of adipose from mice fed a LFD.  Volcano plot analysis showed that the 

levels of 79 metabolites decreased significantly and only 3 metabolites increased 

significantly with HF feeding (Fig. 6C and Table 1).  To examine and visualize the 

data in the biological context of metabolic pathways, metabolites that were 

statistically different in each group were analyzed using the MetPA tool of 

Metaboanalyst 2.0 software.  Pathways were calculated as the sum of the 

importance measures of the matched metabolites normalized by the sum of the 

importance measures of all metabolites in each pathway 288. As shown in Fig. 

6D, the highest pathway impact values were related with branched chain amino 

acid (BCAA) metabolism (i.e., Val, Leu, and Ile metabolism) and Phe, Tyr and 

Trp metabolism. Significant changes were also observed in His metabolism as 

well as Gly and Ser metabolism. Glycerophospholipid metabolism showed the 

most significant change with HF feeding. To further delineate changes in 
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Figure 6. Metabolomic analyses of adipose tissue.  Metabolomic analyses of 

epididymal adipose tissue metabolites from WT mice fed a LFD or HFD for 6 

weeks: (A) Multivariate analysis: partial least squares-discriminant analysis (PLS-

DA); (B) Hierarchial clustering: Heatmap and dendogram; (C) Univariate 

analysis: Volcano plot of metabolites. Those metabolites that significantly 

increased are in the quadrant shaded red and those that significantly decreased 

are shaded green (p<0.05, t-test). A list of these metabolites can be found in 

Table 1; (D) Metabolites found to be significantly different were subjected to 

pathway impact analysis using Metaboanalyst MetPA and the Mus musculus 

pathway library. Fisher’s exact test was used for overrepresentation analysis, 

and relative betweenness centrality was used for pathway topology analysis. n = 

14 animals: 7 WT LFD and 7 WT HFD 
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Table 1. List of adipose tissue metabolites that changed significantly in 

high fat-fed mice. 

Metabolite 
Fold 

change p value FDR 

threonine 0.54948 2.03E-08 3.57E-06 
leucine 0.45023 6.26E-08 5.51E-06 
ergothioneine 0.25885 7.34E-07 4.31E-05 
tyrosine 0.44838 2.05E-06 9.03E-05 
valine 0.34372 3.68E-06 0.00013 
phenylalanine 0.35614 4.73E-06 0.000139 
phosphoethanolamine 0.56087 5.51E-06 0.000139 
proline 0.55922 6.39E-06 0.000141 
pantothenate 0.41779 1.70E-05 0.000333 
lysine 0.49838 2.14E-05 0.000376 
xanthine 0.5918 3.02E-05 0.000484 
1,5-anhydroglucitol (1,5-AG) 0.32145 3.73E-05 0.000547 
isoleucine 0.46664 4.36E-05 0.000591 
betaine 0.48746 4.84E-05 0.000608 
asparagine 0.63104 7.38E-05 0.000792 
mead acid (20:3n9) 0.37579 7.54E-05 0.000792 
flavin adenine dinucleotide (FAD) 0.46937 7.75E-05 0.000792 
3-dehydrocarnitine 0.33055 8.10E-05 0.000792 
tryptophan 0.49615 9.37E-05 0.000868 
carnitine 0.66176 0.000107 0.00094 
methionine 0.49975 0.000175 0.001466 
serine 0.50099 0.000188 0.001502 
histamine 0.26069 0.000204 0.001523 
arginine 0.6417 0.000208 0.001523 
glycerophosphoethanolamine 1.5377 0.000292 0.001997 
glutamine 0.75187 0.000295 0.001997 
cholesterol 0.7317 0.000403 0.002579 
C-glycosyltryptophan 0.53405 0.00041 0.002579 
cis-vaccenate (18:1n7) 0.49012 0.000438 0.002608 
citrulline 0.73299 0.000454 0.002608 
phosphate 0.59509 0.000459 0.002608 
urea 0.38721 0.000489 0.002689 
17-methylstearate 0.37705 0.000566 0.00302 
nicotinamide 0.55648 0.000601 0.003114 
hydroxyisovaleroyl carnitine 0.54575 0.000634 0.00319 
mannose-6-phosphate 0.20024 0.001153 0.00549 
histidine 0.38909 0.001154 0.00549 
choline 0.60096 0.001218 0.005641 
palmitoleate (16:1n7) 0.51634 0.001386 0.006253 
glycerol 0.50143 0.001522 0.00668 
taurine 0.75975 0.001556 0.00668 
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glucose-6-phosphate (G6P) 0.29197 0.001647 0.006899 
1-stearoylglycerophosphoinositol 0.49031 0.002247 0.009195 
uracil 0.44141 0.002558 0.010175 
hypoxanthine 0.35895 0.002619 0.010175 
isobutyrylcarnitine 0.4573 0.002703 0.010175 
isopalmitic acid 0.28706 0.002733 0.010175 
uridine 0.53462 0.002775 0.010175 
scyllo-inositol 0.39204 0.00328 0.011781 
S-adenosylhomocysteine (SAH) 0.49132 0.003745 0.013182 
1-oleoylglycerophosphoethanolamine 0.47672 0.004631 0.015981 
1-palmitoylglycerophosphoethanolamine 0.58479 0.004838 0.016374 
glycerol 3-phosphate (G3P) 0.59732 0.005149 0.017099 
1-palmitoylglycerophosphoinositol 0.66829 0.005556 0.01811 
nonadecanoate (19:0) 0.47985 0.006228 0.01993 
cysteine 0.5292 0.007339 0.023067 
eicosenoate (20:1n9 or 11) 0.40267 0.00756 0.023275 
10-nonadecenoate (19:1n9) 0.45235 0.00767 0.023275 
cysteine-glutathione disulfide 0.5291 0.008825 0.026327 
palmitoyl sphingomyelin 0.60227 0.009257 0.027153 
choline phosphate 0.74957 0.010514 0.030335 
N-acetylglucosamine 6-phosphate 0.39909 0.012184 0.034588 
1-arachidonoylglycerophosphoinositol 0.48542 0.012459 0.034806 
2-hydroxyglutarate 0.39816 0.013183 0.036253 
inosine 0.45019 0.013616 0.036867 
glycerol 2-phosphate 0.39934 0.014415 0.038439 
cytidine 0.59371 0.015663 0.040621 
stearoyl sphingomyelin 1.5942 0.015695 0.040621 
urate 0.49862 0.020514 0.052327 
1-arachidonoylglycerophosphoethanolamine 0.57421 0.021629 0.054382 
1-palmitoleoylglycerophosphoethanolamine 0.26907 0.023675 0.058687 
stearidonate (18:4n3) 0.65008 0.024231 0.05923 
lactate 0.63047 0.025519 0.061036 
alpha-tocopherol 0.33155 0.025663 0.061036 
oleate (18:1n9) 0.6828 0.030736 0.072127 
2-methylbutyroylcarnitine 0.42844 0.036105 0.083611 
palmitate (16:0) 0.71324 0.03874 0.088549 
isovalerylcarnitine 0.39518 0.040257 0.090836 
guanosine 0.52357 0.044904 0.10004 
succinate 1.3363 0.047935 0.10531 
adenosine 0.73547 0.048468 0.10531 
Wild-type (WT) mice were fed a low fat or high fat diet (LFD or HFD, 

respectively) for 6 weeks. Epididymal adipose tissue was then subjected to LC 

or GC mass spectrometric analysis.  Those metabolites found to be significantly 

different by t-test are listed above. n = 7 mice per group. 
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metabolites, we examined those metabolites that were either significantly 

elevated or those that were decreased in abundance by more than 60%.  As 

shown in Fig. 7, stearoyl sphingomyelin, glycerophosphoethanolamine, and 

succinate were the only metabolites that increased in abundance in WAT derived 

from HF-fed mice.  The majority of metabolites that decreased by >60% 

belonged to the lipid and amino acid superfamilies.   

 

The effect of obesity on mitochondrial oxygen consumption and 

mitochondrial remodeling in WAT explants. The increase in succinate found 

in our metabolomic analyses suggested that HFD may alter adipose tissue 

bioenergetics. Importantly, these changes occurred in the absence of 

inflammatory cell infiltration (see Fig. 5), which could otherwise confound 

adipocyte-specific changes in metabolism. To determine how obesity affects 

adipose tissue mitochondrial function, WAT explants from mice fed a LFD or 

HFD were subjected to extracellular flux analysis.  As shown in Fig. 8A and B, 

the apparent basal mitochondrial oxygen consumption rate of adipose tissue 

derived from mice fed a LFD was >2-fold higher when compared with adipose 

explants derived from HF-fed mice (p<0.05); however, statistical significance in 

OCR between groups was lost upon exposure of explants to FCCP (Fig. 8C). 

This appeared to be largely due to an enhanced FCCP response in WAT 

explants from obese mice.  As shown in Fig. 8D, explants derived from mice fed 

a HFD responded more strongly to FCCP. No significant difference in the  
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Figure 7. Z-score plot analysis of metabolite changes in adipose tissue 

from high fat fed mice. Mice were fed a LFD or HFD for 6 weeks. Data are 

shown as standard deviations from the mean of LFD. Only the metabolites that 

increased significantly and those that decreased by >60% are shown. Each point 

represents one metabolite in one sample. n = 7 per group. 
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extracellular acidification rate (ECAR, a measure of the coupling between 

glycolysis and glucose oxidation) was observed. 

Although citrate synthase activity was decreased by more than 50% in 

WAT derived from these mice (Fig. 8E), which suggested a decrease in 

mitochondrial abundance, relative abundance of mtDNA, as assessed by qPCR 

of mtDNA and nDNA, was not changed after 6 weeks of diet (Fig. 8F).  From our 

protein determination measurements, we calculated that the yield of protein per 

wet weight is diminished by 43% in adipose tissue from high fat-fed mice (µg 

protein/mg wet weight: 6 wk LFD, 10.86±1.70; 6 wk HFD, 6.21±1.28; n = 10–12 

per group). Applying this information to our data would then shift the OCR curves 

to levels near those observed in explants from low fat-fed mice; which suggested 

no overall change in oxygen consumption per mitochondrion. However, the 

expression of cox7a1, a subunit in the electron transport chain per mg protein, 

was increased more than 2-fold in adipose tissue from mice fed a HFD, whereas 

pgc1a, sirt3, and pdk4 expression were decreased (Fig. 8G) which indicated 

mitochondrial remodeling with preserved function.       

To examine how WAT mitochondria change with obesity, we assessed the 

relative abundance of several mitochondrial complex proteins as well as 

mitochondrial matrix proteins. Although no changes in mitochondrial protein 

abundance were observed at 6 weeks of HFD, the protein levels of NDUFB8, 

SDHB, and COX4I1—subunits of complexes I, II, and IV, respectively—were 

diminished significantly by 12 weeks of HFD (Fig. 9A–D). The matrix proteins 
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Figure 8. Obesity-related energetic changes in white adipose tissue.  

Metabolic analysis of adipose tissue from mice fed a LFD or HFD for 6 weeks: 

(A) Extracellular flux analysis: After three basal oxygen consumption rate (OCR) 

measurements, FCCP (10 µM) was injected, followed by injection of antimycin A 

(AA, 25 μM) and rotenone (Rot, 5 μM). The apparent contribution of the non-

mitochondrial OCR to the total OCR is indicated by the gray box.  (B) Apparent 

basal mitochondrial OCR: The stabilized non-mitochondrial OCR achieved after 

AA+Rot treatment was subtracted from the basal OCR to calculate the rate of 

mitochondrial oxygen utilization in each explant; (C) FCCP-stimulated OCR: The 

FCCP-stimulated OCR was calculated by subtracting the non-mitochondrial OCR 

from maximal rate achieved after FCCP addition; (D) FCCP response: the FCCP 

response in each explant was calculated using the equation: (OCRMAX/OCRBASAL) 

× 100; n = 10 mice per group; (E) citrate synthase activity, n = 3-6 mice per 

group; (F) Relative mtDNA content, n = 6 per group; and (G) expression of 

metabolic genes, n = 4 mice per group. *p<0.05 vs. LFD group. 
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Figure 9. Obesity-related changes in mitochondrial protein abundance in 

white adipose tissue.  Analysis of adipose tissue from mice fed a LFD or HFD 

for 6 or 12 weeks: (A) Representative Western blots of mitochondrial matrix 

proteins and respiratory chain subunits; (B) Quantification of ALDH2; (C) 

Quantification of Sirt3; (D) Quantification of respiratory subunit abundance.  All 

blots were normalized to ATP5A, which showed no change in abundance in any 

group.  n = 4 per group; *p<0.05 vs. 6 wk LFD, #p<0.05 vs 12 wk LFD.  
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ALDH2 and Sirt3 showed similar trends, with ALDH2 decreasing significantly by 

12 weeks of HFD. 

 

Assessment of adipose tissue ultrastructure. To examine in greater detail the 

subcellular changes that occur in adipose tissue of nutrient-stressed animals, we 

examined adipocyte ultrastructure using electron microscopy. As shown in Fig 

8A, adipose tissue from mice fed a LFD showed mitochondria with three distinct 

morphologies: a round morphology of small size that was located near the 

nucleus (Fig. 10A-i,ii), a typical elongated shape up to ~0.7 μm in length located 

in small protrusions along the adipocyte cell membrane (Fig. 10A-iii), and 

extremely long mitochondria (up to 5 μm and above) that were located in 

juxtaposition to the fat locule (Fig. 10A-iv).  In adipocytes derived from HF-fed 

mice, autophagosomes—defined by a double-membrane and comprising 

cytoplasmic constituents—were found next to mitochondria (Fig. 10B-i), and 

large vacuoles of electron-dense material were present adjacent to 

autophagosomes (Fig. 10B-ii,iii). In addition, many mitochondria in adipose 

tissues from HF-fed mice appeared to be undergoing fission (Fig. 10B-iv,v).   

 

Effects of HFD on autophagy. Changes in citrate synthase and mitochondrial 

proteins combined with the ultrastructural alterations found in adipose tissue 

suggest that HFD may promote mitochondrial remodeling and activate mitophagy 
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Figure 10. Ultrastructure of white adipose tissues from lean and obese 

mice. Representative transmission electron micrographs of epididymal adipose 

tissues derived from mice fed a LFD or HFD for 6 weeks. (A) Ultrastructure of 

mitochondria in adipose tissues from LF-fed mice: (i) micrograph of adipocytes in 

areas close to the nucleus; (ii) higher magnification of panel i; (iii) a cytosolic 

compartment containing a mitochondrion found protruding into the fat locule; and 

(iv) an elongated mitochondrion in juxtaposition to the fat locule. (B) 

Ultrastructure of adipose tissue derived from HF-fed mice: (i) An elongated 

mitochondrion next to an autophagosome; (ii) an autophagosome in close 

proximity to a vacuole containing electron-dense material; (iii) magnified image of 

panel ii; (iv) protrusion of cytosolic compartment containing an atypical 

mitochondrion; and (v) mitochondrion that appears to be undergoing fission. 

Asterisks (*) indicate autophagosomes; small arrows indicate collagen; 

mitochondria (M), nucleus (N), vacuole lipid droplet (LD). 
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in WAT. To examine this possibility, we measured markers of mitophagy and 

autophagy in adipose tissues from mice fed a LFD or HFD.  The  E3 ubiquitin 

ligase Parkin, which has been shown to accumulate in mitochondria destined for 

degradation 293, was increased 2.3-fold by 6 weeks of HFD and nearly 2-fold by 

12 weeks of HFD (Fig. 11A,B).  Furthermore, the kinase Pink1—critical for 

identifying mitochondria destined for autophagy 293—was also increased by 

nearly 40% with HFD. Combined with the presence of autophagosomes and 

mitochondrial alterations observed by EM (Fig. 10), this suggests that autophagy 

may be involved in the metabolic remodeling of adipocytes in the expanding 

adipose organ and protein indicators of autophagy were examined. As shown in 

Fig. 11C–H, levels of p62 and LC3-I were diminished significantly and the LC3-

II/LC3-I ratio was increased more than 2-fold in mice fed a HFD for 6 weeks in 

comparison with those placed on LFD.  There was no significant difference in 

total protein abundance of protein-ubiquitin and LC3-II.  

 

Discussion 

This study demonstrates coordinated changes in adipose tissue 

metabolism that contribute to the “whitening” program during obesity. Using 

metabolomics analysis, we identified that lipid and amino acid metabolism was 

significantly significantly changed by HFD.  Importantly, these analyses were 

independent of inflammatory cell infiltration and are therefore unlikely to be 

confounded by changes in cell composition of the fat depot. The metabolomics 
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Figure 11. Evidence for activation of mitophagy in WAT of obese mice.  

Immunoblot analysis of markers of mitophagy and autophagy: (A) Western blots 

of Parkin and Pink 1 in adipose tissues from mice fed a LFD or HFD for 6 weeks 

(left panels) or 12 weeks (right panels); and (B) Quantification of Parkin and 

Pink1 abundance from panel E. n = 4 per group; *p<0.05 vs. LFD. n = 4 per 

group; *p<0.05 vs. 6 wk LFD, #p<0.05 vs 12 wk LFD. (C) Representative Western 

blots of ubiquitinated proteins, p62, and LC3 in mice fed a LFD or HFD for 6 

weeks.  (D) Quantification of protein-ubiquitin abundance. (E) Quantification of 

p62 abundance. (F) Quantification of LC3-I abundance. (G) Quantification of 

LC3-II abundance. (H) Quantification of the LC3-II/LC3-I ratio.  n = 10 per group; 

*p<0.05 vs. LFD. 
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dataset also indicated possible changes in energy metabolism. The Krebs cycle 

intermediate, succinate, was significantly elevated in adipose tissue from obese 

mice.  Further experiments identified early decreases in citrate synthase activity 

and explant oxygen consumption that coincided with decreased expression of 

pgc1a; yet diminishment in citrate synthase activity was independent of 

decreases in mitochondrial abundance, as indicated by mtDNA measurements 

and the abundance of electron transport chain subunits. Evidence of 

mitochondrial remodeling was found with 6 weeks of HFD, and elevation of the 

mitophagy markers Parkin and Pink1 persisted through 12 weeks of feeding. The 

decrease in p62 and LC3-I and elevation of the LC3-II/LC-I ratio in WAT from 

obese mice support the notion that  autophagic flux is increased in adipocytes of 

mice fed a high-fat diet. Collectively, these studies suggest a progressive 

remodeling of adipocyte metabolism under conditions of nutrient excess that 

involves downregulation of mediators of mitochondrial biogenesis, mitochondrial 

remodeling, and potential activation of the mitophagic program.   

 A major goal of this study was to understand changes in adipose tissue 

biology and metabolism that occur with obesity.  This is important because such 

key metabolic features that change with obesity could become targets for anti-

obesity or insulin-sensitizing therapies. By 6 weeks of HFD, mice demonstrate 

profoundly increased fat mass, decreased systemic VO2, VCO2 and RER, and 

insulin resistance.  Although adipose tissue inflammation is apparent by the 10th-

12th week of HFD in this model 294, 295, 6 weeks of HFD was insufficient to 

produce a robust inflammatory response in adipose tissue (e.g., see Fig. 5 and 
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155, 295).  In addition, no increase in plasma levels of sensitive markers of 

inflammation such as IL-6 were identified at 6 weeks of HFD (IL-6 (pg/ml): LFD, 

23.6±7.5; HFD, 18.8±4.2).  The absence of significant levels of inflammation 

therefore allowed us to examine how obesogenic changes due to HFD regulate 

adipose tissue metabolism without the confounding features of highly energetic 

infiltrating cells such as macrophages 296.   

Metabolomic analyses showed several metabolic pathways affected in 

obesity.  These include glycerolipid metabolism, amino acid metabolism, and 

energy and glucose metabolism.  HFD decreased levels of long-chain fatty acids 

in adipose tissue, and, coupled with significant decreases in glycerol and 1-

palmitoylglycerol, is consistent with an increase in lipogenesis.  

Glycerophosphoethanolamine (GPEA), one of the few metabolites that increased 

in adipose tissue from obese mice, could be elevated as a result of 

phosphatidylethanolamine (PE) breakdown. This is consistent with the decreased 

abundance of 1-palmitoleoylglycerophosphoethanolamine and lysoPE species in 

adipose tissue from HF-fed mice. Increased GPEA could also be due to 

limitations in the rate of its hydrolysis: GPEA can be hydrolyzed by enzymes 

such as glycerophosphodiester phosphodiesterase to form glycerol-3-phosphate 

(G3P) 297, which is required for the formation of triglycerides and thus would likely 

be in high demand in expanding adipocytes 298.   

Demand for G3P may also be met by glycolysis and glyceroneogenesis, 

or, in some tissues, from the recycling of glycerol by glycerol kinase 298.  In our 
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study, G3P was significantly decreased, suggesting that it might be used quickly 

to accommodate lipid storage.  The glycolytic intermediate glucose-6-phosphate 

was decreased as well, which suggests perturbations in adipocyte glucose 

metabolism.  Indeed, pdk4 expression, which regulates pyruvate dehydrogenase 

activity, was decreased by HFD; it is then plausible that the decrease in pdk4 

may promote the glyceroneogenic formation of G3P 299 via cataplerosis 300. The 

possibility that systemic glucose metabolism was affected by HFD is supported 

by the lower abundance of 1,5-anhydroglucitol in samples from mice fed a HFD. 

Plasma 1,5-anhydroglucitol (1,5-AG), is distributed to all organs and tissues and 

is a validated marker of short-term glycemic control 301, 302.  Hence, even though 

fasting glucose levels are not different after 6 weeks of HFD 286, the decrease in 

this metabolite is in agreement with insulin resistance in skeletal muscle and liver 

occurring at 6 weeks of HFD 155.   

The increase in stearoyl sphingomyelin in adipose tissue from mice fed a 

HFD may be particularly significant. Sphingomyelin (SM; d18:1/18:0)—which in 

humans is the only membrane phospholipid not derived from glycerol—is a type 

of sphingolipid found in cell membranes that consists of oleic acid attached to the 

C1 position and stearic acid attached to the C2 position. Deficiency of enzymes 

involved in sphingomyelin synthesis have been shown to protect against diet-

induced obesity and insulin resistance 303, 304, and the breakdown of 

sphingomyelin could yield significant amounts of ceramide, which inhibits insulin 

signaling 305.  Hence, the elevated levels of sphingomyelin could poise 

adipocytes to release significant amounts of ceramide if acted upon by 
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sphingomyelinases.  Although ceramides were not measured in these analyses, 

HFD has been shown to increase plasma and adipose ceramides in mice by 

more than 300% 306. Interestingly, depleting ceramides in mice fed a HFD 

increases oxygen consumption and citrate synthase activity as well as preserves 

PGC1 expression 307, 308, all of which were decreased by HFD in the current 

study.  Ceramide also alters membrane permeability, inhibits electron transport 

chain function and promotes oxidative stress 200, which is consistent with the 

evolving hypothesis that ceramide (and by proxy excess SM) induces 

mitochondrial stress 305.   

In addition to changes in lipid and glucose metabolism, metabolites in the 

amino acid and energy metabolism pathways were also remarkably changed by 

HFD.  Recent studies suggest that changes in amino acid metabolism may be 

critical to the development of obesity and insulin resistance.  In particular, 

pathway impact analyses showed that BCAA and phenyalanine, tyrosine, and 

tryptophan metabolism were significantly impacted by diet.  In obese and insulin-

resistant humans, these amino acids are elevated systemically (reviewed in 309), 

and changes in several amino acid classes, including BCAAs and Phe, Tyr and 

Trp, are associated with metabolic risk factors in humans 310.  Although there is a 

clear relationship among amino acids, insulin resistance and obesity in animal 

models, the mechanistic interpretations are less clear.  For example, increasing 

circulating BCAAs in mice by preventing BCAA catabolism prevents diet-induced 

obesity and insulin resistance in mice 311, whereas feeding BCAAs to high fat-fed 

rats increases insulin resistance 312. Levels of amino acids in adipose tissues 
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appear to be important because BCAA metabolism in adipose tissues modulates 

levels of circulating BCAAs 313.  In our study, we found that several amino acids 

were decreased in abundance in adipose tissues from mice fed a HFD for 6 

weeks. This could be due to changes in the catabolic flux of BCAAs, which 

occurs in the mitochondrial matrix.   

While most studies show a decrease in BCAA catabolism in obesity 309, 

our data are most consistent with an increase in BCAA catabolism. BCAA 

catabolism results in the formation of acetyl CoA and succinyl CoA, the latter of 

which can be converted to succinate by hydrolysis and release of CoA by 

succinate thiokinase. Interestingly, succinate was one of the few metabolites that 

were significantly increased in WAT from HF-fed mice.  Other Krebs cycle 

intermediates, such as citrate and malate, were not changed in abundance.  This 

would appear to suggest an influx of carbon from BCAA catabolism into the 

Krebs cycle, which might be sufficient to sustain concentrations of other citric 

acid cycle intermediates or impart energetic changes.     

Interestingly, adipose explants derived from mice fed a HFD showed an 

apparent decrease in the rate of mitochondrial oxygen consumption; however, 

when the OCR rates were normalized to the wet weight of each explant the OCR 

was similar in adipose tissue from HF- and LF-fed mice. Given the fact that there 

was a 3-fold increase in adipocytes due to lipid accumulation, it is likely that the 

decreases in the apparent mitochondrial OCR are due simply to a decreased 

number of adipocytes in the explants due to an increased volume of triglycerides, 



73 
 
 

which comprises a large portion of the adipose tissue wet weight. Thus, despite 

extensive remodeling, mitochondrial function remains preserved. However, 

because the basal oxygen consumption in the explants was unaffected, it would 

suggest increased non-mitochondrial oxygen consumption potentially due to an 

increase in cytosolic oxidase activity 314, 315 in WAT from high-fat fed mice.  This 

possibility is consistent with  previous work showing an increase in adipose 

tissue oxidative stress in obsese mice, due to  an increase in the  expression of 

NADPH oxidase and downregulation of antioxidant enzymes 316-320.   

Despite no changes in mitochondrial number or oxygen consumption, 

there was a remarkable decrease in citrate synthase activity by HFD. This was 

accompanied by an increase in the gene expression of some subunits (e.g., 

cox7a1) in the adipose tissue of obese mice. These observations suggest that 

HFD promotes an early remodeling of mitochondria to accommodate for shifting 

metabolic needs and substrate availability. Reasons for increased cox7a1 gene 

expression and the augmented response of adipose explants from 6 week high 

fat-fed mice to FCCP are currently unclear. We speculate that the enhanced 

response to FCCP relative to the basal OCR could be due to increased substrate 

delivery to adipose tissue mitochondria in high fat-fed mice, which occurs only 

when the proton motive force is diminished with the uncoupler. Cox7a1, is a 

heart and muscle-specific subunit, which is also present in brown adipocytes. 

This subunit has been shown to be increased in the WAT of fattening cattle 321. 

While reasons for the increase in this subunit are not clear, it is possible that its 

increase may be an adaptive response to dissipate excess energy in the 
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adipocyte. Further studies are required to assess fully the role of this subunit in 

mediating energetic changes in WAT during obesity.   

With prolonged high fat feeding (i.e., 12 weeks), decreases in 

mitochondrial mass do appear to occur, which is supported both by our results 

showing decreases in mitochondrial matrix and inner membrane proteins as well 

as by published studies showing decreased mitochondrial mass in WAT of 

severely obese mice 161, 283 and humans 322. These data are consistent also with 

published data showing a decrease in adipocyte mitochondrial function in obese 

humans, independent of adipocyte size 322.  

Electron micrographs showed mitochondria appearing to undergo fission 

in adipose tissue from HF-fed mice, and autophagosomes were found adjacent 

to vacuolated structures containing electron-dense material and to mitochondria.  

This suggested that both mitochondrial remodeling and autophagy may be 

induced by HFD. That Parkin and Pink1 were also increased in adipose tissues 

from obese mice would support the notion that mitophagy is induced by HFD.  

Previous studies show that Pink1 accumulating within mitochondria recruits 

Parkin, which ubiquitinates mitochondrial proteins that are then recognized by 

autophagy adaptor proteins such as p62.  The p62 then binds to LC3 which 

sequesters mitochondria into autophagosomes for degradation 293. Although 

LC3-II and ubiquitinated proteins were not significantly changed with HFD, the 

abundance of p62 was decreased, which is consistent with an increase in 

autophagic flux 323.  Moreover, when autophagy is inhibited, the abundance of 
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both LC3-I and p62 have been shown to increase 324, 325, and, in our study, both 

p62 and LC3-I were decreased and the LC3-II/LC3-I ratio was increased.  These 

data would then be consistent with the notion that autophagy is increased in 

WAT of high fat-fed mice.  However, a limitation of this study is that autophagic 

flux was not measured. Nevertheless, the aggregate of ultrastructural and 

immunological data, combined with published data showing that autophagy is 

increased in adipocytes from obese humans and mice 326-328, suggest that HFD 

apparently increases autophagy and perhaps mitophagy in WAT. 

The loss of mitochondria shown to occur by the 12th week of HFD would 

then appear to suggest a role for autophagic degradation of mitochondria in the 

“whitening” of adipose tissue. Deletion of essential autophagy genes such as 

atg7 in mice results in resistance to obesity and promotion of a brown-like 

adipose tissue phenotype having more mitochondria and higher rates of 

substrate oxidation 325. Furthermore, mouse embryonic fibroblasts (MEFs) 

isolated from atg5−/− mice accumulate less lipid when stimulated to develop into 

adipocytes 325, suggesting that autophagy is essential for lipogenesis and WAT 

expansion. Interestingly, systemic knock-out of Parkin prevents diet-induced 

obesity and insulin resistance; however, this was shown to be due to decreased 

uptake of fat from the diet 329, indicating that functions of Parkin are not exclusive 

to mitophagy. Nevertheless, the Pink1-Parkin pathway has been shown to 

promote both mitophagy and selective respiratory chain turnover in vivo 330, 

which is consistent with our findings in adipose tissues of obese mice. The use of 

genetic models with adipose tissue-selective overexpression or deletion of Parkin 
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would further help to understand how mitophagy regulates adipose tissue 

phenotype.   

In summary, in this study we identified key metabolic changes that occur 

during WAT expansion. These coordinated changes occur before the infiltration 

of inflammatory cells and include: loss of mitochondrial biogenetic capacity; 

dysregulation of glycerolipid, sphingolipid and amino acid metabolism; 

mitochondrial remodeling; and changes suggestive of activation of mitophagy.  

Based on these observations, we posit that such metabolic remodeling 

contributes to the whitening of adipose tissue during obesity. 
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CHAPTER III 

OVEREXPRESSION OF ENDOTHELIAL NITRIC OXIDE S.NTHASE 

PREVENTS DIET.INDUCED OBESIT. AND REGULATES              

ADIPOC.TE PHENOT.PE 

 

Introduction 

Obesity and type 2 diabetes (T2D) have become major health challenges 

worldwide. Current data show that approximately 1.5 billion adults aged 20 years 

or older are overweight, and 10% are obese 1. In the US, one-third of the 

population meets the criteria for metabolic syndrome 3, 4. While lifestyle changes 

and lack of exercise are important risk factors for weight gain 279, 331, excessive 

caloric intake appears to be one key factor fueling the epidemic of obesity. Poor 

dietary habits negatively affect a broad range of cardiovascular functions and 

promote the onset of T2D 4.  

Although it is currently believed that obesity results from excessive 

nutrient consumption 11, 332, i.e., more calories are ingested than are utilized, 

recent evidence suggests that the balance between nutrient intake and energy 

expenditure is complex and is regulated by many inter-dependent mechanisms 

332. Several studies indicate that obesity and insulin resistance may be distinct 

sequelae of nutrient excess 333. Hence, to stem the tide of the epidemics of
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 T2D and obesity, it is important to understand the relationship between obesity 

and insulin resistance as well as the physiological processes that regulate their 

development.   

Accumulating evidence suggests that the vascular endothelium regulates 

insulin action. In humans, states of obesity and insulin resistance are 

characterized by endothelial dysfunction, impaired vasodilation and insulin 

resistance 334; and in rats, inhibition of endothelial nitric oxide synthase (eNOS) 

decreases insulin-stimulated uptake of glucose by skeletal muscle, suggesting 

that eNOS may be a key regulator of metabolic homeostasis. This role of eNOS 

is further corroborated by observations that deletion of the eNOS gene in mice 

induces insulin resistance 335, 336 and impairs fatty acid oxidation 337. 

Nevertheless, the role of eNOS in regulating metabolic changes that contribute to 

obesity under conditions of nutrient excess is not well understood. In particular, it 

is unclear whether eNOS could prevent or attenuate diet-induced adiposity and 

insulin resistance. 

To understand the metabolic role of eNOS, we studied effects of high fat 

diet in mice overexpressing eNOS.  Our hypothesis was that increasing eNOS 

levels mitigates effects of high fat feeding by regulating adipose tissue 

metabolism.  We found that eNOS-transgenic (eNOS-TG) mice were resistant to 

diet-induced weight gain, but not glucose intolerance.  These findings reveal a 

new anti-obesogenic role of eNOS and its favorable influence on adipose tissue 

metabolism. 
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Experimental Procedures 

Animal studies: The B6.BKS(D)-Leprdb/J (db/db) mice and C57BL/6J (wild-type; 

WT) mice were purchased from The Jackson Laboratory (Bar Harbor, ME).  The 

eNOS-TG mice, which express bovine eNOS under the control of the 

preproendothelin-1 promoter 338, were maintained on the C57BL/6J background.  

At 8 weeks of age, male mice were placed on either a 10% low fat diet (LFD; 

Research Diets, Inc., #D12450B) or a 60% high fat diet (HFD; Research Diets 

Inc., #D12492) and maintained for 6–15 additional weeks. Water and diet were 

provided ad libitum. Body weights were recorded weekly.  During the 7th and 13th 

weeks of feeding, glucose and insulin tolerance tests were performed. Pyruvate 

tolerance tests were performed only after the 13th week of feeding; all other 

variables were evaluated after euthanasia.  All procedures were approved by the 

University of Louisville Institutional Animal Care and Use Committee.  

 

Expression analyses: Tissue homogenates were prepared and used for 

Western blot protein expression analysis. For quantitative RT-PCR, RNA 

extracted from tissues was used to assess pgc1a, cytb6, gapdh, ppara, and 

pparg expression using commercially available primers (SABiosciences, 

Valencia, CA).   

 

Glucose, insulin, and pyruvate tolerance tests: As described before 339, 

glucose tolerance tests were performed following a 6 h fast by injection (i.p.) of 
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D-glucose (1 mg/g) in sterile saline. Insulin tolerance tests were performed on 

nonfasted animals by i.p. injection of 1.5 U/kg Humulin R (Eli Lilly, Indianapolis, 

IN). After a 6 h fast, pyruvate tolerance tests were performed as described 340.  

 

Biochemical analyses: Plasma lipids, proteins, and metabolites were measured 

using a Cobas Mira Plus 5600 Autoanalyzer (Roche, Indianapolis, IN) or Luminex 

kits (Millipore, Billerica, MA, USA).  Plasma levels of non-esterified free fatty 

acids and glycerol were measured by ELISA (Wako Chemicals, Richmond, VA 

and Cayman Chemical, Ann Arbor, MI, respectively). Nitrite and nitrate levels 

were measured as described 341. 

 

Adipocyte size measurements: Adipose tissue excised at the time of 

euthanasia was either snap-frozen at –80°C or fixed in 10% formalin (Leica), 

paraffin-embedded, and sectioned.  Sections were stained in hematoxylin and 

eosin. Adipocyte cross-sectional area was measured using Nikon Elements 

software. To assess relative mitochondrial abundance, sections were stained 

with MitoID Red (Enzo Life Sciences, Farmingdale, NY).  Crown-like structures 

and inflammatory cells indicative of adipose tissue inflammation were measured 

as described before 287, 294. 
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Body composition and calorimetry: Body composition was measured by dual-

energy X-ray absorptiometry using a mouse densitometer (PIXImus2; Lunar, 

Madison, WI). Whole body energy expenditure, respiratory exchange ratio, food 

consumption, and locomotion, ambulatory and fine movements were measured 

using a physiological/metabolic cage system (TSE PhenoMaster System, Bad 

Homberg, Germany).  

 

Immunostaining of adipose tissue: Capillary density was quantified in paraffin-

embedded sections using fluorescently labeled isolectin B4 as described 342. 

Nitrotyrosine adducts were measured in paraffin-embedded tissues using anti-

nitrotyrosine and goat-anti-rabbit IgG-Cy3 antibodies. 

 

Adipose tissue bioenergetic measurements: The oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR) of intact adipose tissue 

explants were measured using a Seahorse XF24 analyzer (Seahorse Bioscience, 

Billerica, MA). Briefly, freshly isolated epididymal adipose tissue was rinsed with 

unbuffered DMEM (Dulbecco’s modified Eagle’s medium, pH 7.4). The adipose 

tissue was cut into sections, and 10 mg were placed in each well of an XF 24 

Islet Capture Microplate (Seahorse Bioscience, Billerica, MA). The tissue was 

then covered with a screen, which allows free perfusion while minimizing tissue 

movement. Unbuffered DMEM (500 μl) supplemented with 50 μM BSA-

conjugated palmitic acid, 200 μM L-carnitine, and 2.5 mM D-glucose was then 
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added to each well. At least two replicates from each animal were used for the 

assay, and each tissue section was examined to ensure absence of large 

vessels (which can skew oxygen consumption measurements). The plate was 

incubated at 37°C in a non-CO2 incubator for 1 h prior to extracellular flux 

analysis. After three baseline measurements, a mixture of antimycin A (10 μM) 

and rotenone (1 μM) was injected.  Following injection, the OCR was closely 

monitored until the rates stabilized, and then the experiment was terminated.    

 

Metabolomic analysis of adipose tissue: White adipose tissue from the 

epididymal fat pad of fasted mice (16 h fast) was collected and snap-frozen in 

liquid nitrogen. At the time of analysis, sample metabolites were extracted with 

methanol.  A recovery standard was introduced at the beginning of the extraction 

process.  The extracted samples were split into equal parts for analysis on the 

GC/MS and LC/MS/MS platforms. Also included were several technical replicate 

samples created from a homogeneous pool containing a small amount of all 

study samples. Samples were placed briefly on a TurboVap® (Zymark) to remove 

the organic solvent. Each sample was then frozen and dried under vacuum.  

Samples were then prepared for the appropriate instrument, either LC/MS or 

GC/MS 

 

LC/MS, LC/MS2: The LC/MS portion of the platform was based on a Waters 

ACQUITY UPLC and a Thermo-Finnigan LTQ mass spectrometer, which 
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consisted of an electrospray ionization (ESI) source and linear ion-trap (LIT) 

mass analyzer. The sample extract was split into two aliquots, dried, then 

reconstituted in acidic or basic LC-compatible solvents, each of which contained 

11 or more injection standards at fixed concentrations. One aliquot was analyzed 

using acidic positive ion optimized conditions and the other using basic negative 

ion optimized conditions in two independent injections using separate dedicated 

columns. Extracts reconstituted in acidic conditions were gradient eluted using 

water and methanol both containing 0.1% formic acid, while the basic extracts, 

which also used water/methanol, contained 6.5 mM ammonium bicarbonate.  

The MS analysis alternated between MS and data-dependent MS2 scans using 

dynamic exclusion. 

 

GC/MS: Samples destined for GC/MS analysis were re-dried under vacuum 

desiccation for a minimum of 24 hours prior to being derivatized under dried 

nitrogen using bistrimethyl-silyl-triflouroacetamide. The GC column was 5% 

phenyl and the temperature ramp was from 40° to 300° C in a 16 minute period. 

Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-

quadrupole mass spectrometer using electron impact ionization. The instrument 

was tuned and calibrated for mass resolution and mass accuracy on a daily 

basis. The information output from the raw data files was automatically extracted 

as discussed below. 
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Accurate mass determination and MS/MS fragmentation: In addition to the 

LIT front end, the LC/MS portion of the platform had a Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometer backend. For ions with counts 

greater than 2 million, an accurate mass measurement could be 

performed. Accurate mass measurements could be made on the parent ion as 

well as fragments.  The typical mass error was less than 5 ppm. Fragmentation 

spectra (MS/MS) were typically generated in data-dependent manner, but if 

necessary, targeted MS/MS could be employed, such as in the case of lower 

level signals. 

 

QA/QC: Instrument variability was determined by calculating the median relative 

standard deviation (RSD) for the internal standards that were added to each 

sample prior to injection into the mass spectrometers. Overall process variability 

was determined by calculating the median RSD for all endogenous metabolites 

(i.e., non-instrument standards) present in 100% of the samples, which are 

technical replicates of pooled samples. Values for instrument and total process 

variability were 5% for internal standards and 15% for endogenous biochemicals, 

respectively. For QA/QC purposes, a number of additional samples are included 

with each day’s analysis. Furthermore, a selection of QC compounds was added 

to every sample, including those under test. These compounds were carefully 

chosen to avoid interference with the measurement of the endogenous 

compounds. 
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Metabolite identification: Compounds were identified by comparison to library 

entries of purified standards or recurrent unknown entities.  Identification of 

known chemical entities was based on comparison to metabolomic library entries 

of purified standards. More than 1000 commercially available purified standard 

compounds had been acquired registered into the Metabolon Laboratory 

Information Management System (LIMS) for distribution to both the LC and GC 

platforms for determination of their analytical characteristics. The combination of 

chromatographic properties and mass spectra gave an indication of a match to 

the specific compound or an isobaric entity.   

 

Curation: A variety of curation procedures were carried out to ensure that a high 

quality data set was made available for statistical analysis and data 

interpretation. The QC and curation processes were designed to ensure accurate 

and consistent identification of true chemical entities, and to remove those 

representing system artifacts, mis-assignments, and background noise. 

Visualization and interpretation software were used to confirm the consistency of 

peak identification among the various samples. Library matches for each 

compound were checked for each sample and corrected if necessary. 

 

Bioinformatics: The bioinformatics system consisted of four major components, 

the LIMS system, data extraction and peak-identification software, data 

processing tools for QC and compound identification, and a collection of 
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information interpretation and visualization tools. The purpose of the LIMS 

system was to enable fully auditable laboratory automation through a secure, 

easy to use, and highly specialized system.  The scope of the LIMS system 

encompasses sample accessioning, sample preparation and instrumental 

analysis and reporting and advanced data analysis.  Some of the subsequent 

software systems were grounded in the LIMS data structures, which have been 

modified to leverage and interface with the Metabolon information extraction and 

data visualization systems, as well as other data analysis software such as 

Metaboanalyst (http://www.metaboanalyst.ca/). 

 

Metabolomic analysis: The general outline for how metabolomic data were 

analyzed is shown in Fig. 22. Metabolites with missing values were imputed by 

replacing missing values with half of the minimum positive value in the original 

data. Metabolites with greater than 57% of values missing were omitted from the 

analysis. Data were then quantile normalized within replicates after log 

transformation. This step was performed to transform the intensity values so that 

the distribution was more Gaussian. T-test statistical comparisons were then 

performed. Further univariate and multivariate analysis, such as correlation 

analysis, principal component analysis and partial least squares discriminant 

analysis was then performed using the Metaboanalyst 2.0 software 

(http://www.metaboanalyst.ca/) 288, 343.  

 

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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Statistical analyses: Data are expressed as mean ± SEM. Multiple groups were 

compared using one-way or two-way ANOVA, followed by Bonferroni post-tests. 

Unpaired Student’s t test was used for direct comparisons. Statistical analyses 

were performed with the program “R” http://cran.r-project.org/, Metaboanalyst 

(http://www.metaboanalyst.ca/), and/or GraphPad 5.0.   A P value less than 0.05 

was considered significant. 

 

Results 

Nutrient excess alters eNOS abundance.  To study effects of obesity and 

diabetes on eNOS protein levels, C57BL/6J mice were placed on a high fat diet 

155, and db/db mice were used as a model of T2D 344. High fat feeding for 6 and 

12 weeks resulted in a profound decrease in eNOS levels in adipose tissue (Fig. 

12A,B), with no statistically significant changes in the aorta (Fig. 12A,C) or 

skeletal muscle (Fig. 13A,B). Similar changes were observed in 20 week old 

db/db mice, in which eNOS in the adipose tissue was undetectable despite a lack 

of change in eNOS levels in most other tissues. Interestingly, eNOS expression 

was increased in hearts of db/db mice (Fig. 13A,C), which might be a 

compensatory change in response to an increase in NO demand. These data 

show that both obesity and diabetes result in tissue-specific changes in eNOS 

expression with a profound and selective decrease in eNOS levels in the adipose 

tissue. This decrease in eNOS in adipose tissue is consistent with previous 

reports in obese humans 158, 159 and in mouse models of obesity 161, indicating 

http://cran.r-project.org/
http://www.metaboanalyst.ca/
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that the expansion of adipose tissue establishes a state of chronic eNOS 

deficiency.  

 

Overexpression of eNOS prevents diet-induced obesity.  To examine the role 

of eNOS, we used eNOS-TG mice 338. Previous studies have shown that these 

mice reproduce in a Mendelian fashion, maintain normal growth characteristics, 

and are protected from numerous pathologies including myocardial 345, hepatic 

346, lung 347, and vascular injury 348 as well as sepsis 349.  In comparison with WT 

mice, hemizygous mice showed a 4-fold increase in eNOS levels in the aorta, 

with no significant change in eNOS levels in the adipose tissue (Fig. 12D,E).  In 

contrast, in homozygous mice there was a 2-fold increase in eNOS in the 

adipose tissue and a 6-fold increase in the aorta. The eNOS in TG animals 

localized exclusively with isolectin staining (Fig. 14), indicating that the transgene 

was expressed only in the vasculature 338, 350.  Plasma from eNOS-TG mice 

showed increased L-citrulline and nitrite levels when compared with WT mice 

(Fig. 15A,C), and adipose tissue from eNOS-TG mice demonstrated an increase 

in L-citrulline (Fig. 15B). Due to high variability, there were no significant 

differences in nitrate or nitrite in adipose tissue (Fig. 15D) perhaps due to other 

confounding factors, such as nitrite/nitrate found in the diet or reduction of nitrite 

to NO.   

  When placed on a high fat diet for 6 weeks, the homozygous eNOS-TG 

mice gained 50% less weight than WT mice, and this effect persisted for 12 
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weeks (Fig. 16B,C). Food intake was not different between WT and eNOS-TG 

mice (Fig. 16D).  A more modest resistance to weight gain was also observed in 

hemizygous eNOS-TG mice (Fig. 13-D), perhaps due to lower adipose tissue 

eNOS levels in these mice compared with homozygous eNOS-TG mice. Hence, 

for all subsequent studies, only eNOS homozygous mice were used.  

The transgenic mice maintained a higher percent of lean mass (Fig. 16G), 

although the tibia length in transgenic mice was only slightly smaller than in WT 

mice (Fig. 16H). These observations indicate that overexpression of eNOS 

decreases adiposity and prevents weight gain induced by high fat diet. 

 

eNOS overexpression increases whole body metabolism.  To determine how 

eNOS overexpression affected whole-body metabolism, we measured oxygen 

consumption (VO2), carbon dioxide production (VCO2), and activity in high fat-fed 

WT and eNOS-TG mice over the course of a 12 h dark period and a 4.5 h light 

period. The fact that food intake was not different between WT and TG mice (Fig. 

16D), indicates that the lean phenotype of eNOS-TG mice is not due to a 

decrease in food consumption. This view is reinforced by the observation that 

high fat feeding increased plasma cholesterol and leptin to similar levels in WT 

and eNOS-TG mice (Table 2). In comparison with WT mice, eNOS-TG mice 

showed higher mean VO2 and VCO2 rates throughout the dark and light periods 

(Fig. 16I,J), with no change in the respiratory exchange ratio (RER; Fig. 16K).  
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Figure 12. Nutrient excess alters tissue eNOS levels. Tissue levels of eNOS 

from mice fed a low fat (LFD) or high fat diet (HFD) for 6 or 12 weeks; age-

matched db/db mice were included as an additional model of T2D: (A) 

Representative Western blots of eNOS from epididymal adipose tissue and 

aorta. (B,C) Quantification of eNOS expression from panel A. n = 3–4 per 

group;**p<0.01 vs. 6 week LFD. (D,E) Levels of eNOS in adipose tissue and 

aorta from wild-type (WT), littermate eNOS-TG hemizygous, and eNOS-TG 

homozygous mice. n = 3 per group; **p<0.01 vs. indicated groups  

. 
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Figure 13. Effects of nutrient excess on eNOS levels, and body weight gain 

of mice expressing different levels of eNOS. Panels A–C: Immunoblot 

analysis of eNOS expression in skeletal muscle and heart in C57BL/6J mice fed 

a low fat diet (LFD) or high fat diet (HFD) for 6 or 12 weeks; db/db mice age-

matched to the 12 week feeding group were included as an additional model of 

metabolic syndrome.  (A) Representative Western blots of eNOS expression in 

skeletal muscle and heart; (B) Quantification of skeletal muscle eNOS 

expression; and (C) Quantification of heart eNOS expression. n = 3–4 per 

group;***p<0.001 vs. WT LFD. Panel D: Weight gain of wild-type, littermate 

eNOS hemizygous, and eNOS homozygous mice fed HFD over the course of 12 

weeks.  n = 4–8 per group.  
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Figure 14. The eNOS transgene localizes to the vasculature in adipose 

tissue. Immunofluorescence images of epididymal adipose tissue from eNOS-

TG mice: Adipose tissues were fixed, sectioned, and stained with DAPI (blue), 

isolectin (green), and eNOS antibody (red).  The overlay shows the co-

localization of the eNOS and isolectin signals.  
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Figure 15.  Measurements of eNOS and NO metabolites in plasma and 

adipose tissue. Mice were fed a LFD or HFD for 6 weeks and citrulline, nitrite, 

and nitrate levels in the plasma and adipose tissue were analyzed by LC/MS or 

HPLC.  Panels A and B: Relative levels of L-citrulline from (A) plasma and (B) 

adipose tissue; Panels C and D: Measurements of nitrite from (C) plasma and 

(D) adipose tissue; Panels E and F: Measurements of nitrate from (E) plasma 

and (F) adipose tissue. n = 6–7 per group; *p<0.05 vs. WT LFD;
 #

p<0.05 vs. TG 

LFD; 
$
p<0.05 vs. WT HFD.   
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Activity levels, assessed by horizontal activity count (beam breaks) 

showed similar patterns and levels of activity, and total ambulatory activity was 

not significantly different (Fig. 16L). Taken together, these observations suggest 

that on a high fat diet, eNOS-TG mice maintain a higher metabolic rate than WT 

mice. This increase in systemic metabolism, however, cannot be attributed to 

thyroid hormones, because plasma levels of triiodothyronine (T3) and thyroxine 

(T4) in WT and eNOS-TG mice were not significantly different (Fig. 17).  

Measurements of body composition by dual-energy X-ray absorptiometry 

(Dexascan) showed that after 6 weeks of high fat feeding, the body fat content 

was much lower in eNOS-TG mice than in non-transgenic mice (Fig. 16E,F).  

 

Effect of eNOS on diet-induced insulin resistance. Because we found that 

eNOS overexpression prevented diet-induced weight gain, we expected 

concurrent changes in insulin resistance. Indeed, we found that overexpression 

of eNOS completely prevented diet-induced hyperinsulinemia (Table 2), although 

plasma levels of adiponectin and resistin were not affected.  This was associated 

with a remarkably lower HOMA-IR score (WT low fat, 1.45±0.65; WT high fat, 

34.4±5.3, p<0.05 vs. WT low fat; TG low fat, 6.9±3.1; TG high fat, 8.2±2.9, 

p<0.05 vs. WT high fat). Moreover, even though 6 weeks of high fat feeding did 

not significantly increase triglycerides or plasma non-esterified free fatty acids 

(NEFA), both of these were decreased by 50% in the TG mice compared with 

WT mice (Table 2).  We found no significant differences in plasma glycerol 
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between groups (Table 2), suggesting that adipose tissue lipolysis was not 

affected. Collectively, these data indicate that overexpression of eNOS prevents 

high fat diet-induced hyperinsulinemia and decreases plasma triglycerides and 

fatty acids.  

To examine how eNOS overexpression affects systemic glucose disposal, 

WT and eNOS-TG mice were placed on a high fat diet for 6 weeks, and GTT and 

ITT were performed. There was no significant difference in the basal blood 

glucose levels in non-fasted WT and eNOS-TG mice (Fig. 18A).  After a fast of 6 

h, the plasma glucose levels of both high fat-fed groups were significantly 

increased compared with the WT low fat-fed group. Fasting for 16 h resulted in 

near normalization of blood glucose in WT mice; however, glucose levels in the 

eNOS-TG mice remained slightly, but significantly, elevated (Fig. 18A).  There 

were no significant differences in plasma HbA1c in any group (Fig. 18B).  

To test whether effects of the transgene would manifest after prolonged 

feeding, we placed WT and eNOS-TG mice on high fat diet for 12 weeks and 

assessed insulin resistance. At completion of the feeding protocol, the GTT and 

ITT curves were superimposable suggesting that eNOS overexpression does not 

affect diet-induced insulin resistance even after prolonged nutrient excess (Fig. 

19A-D).  Although, plasma glucose levels in non-fasted and 6 h-fasted mice were 

not statistically different, a 16 h fast led to a greater decrease in blood glucose in 

WT compared with TG mice (Fig. 19E), indicating that the TG mice were more 

resistant to fasting-induced hypoglycemia, which could be due to increased 

gluconeogenesis in the liver.  
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Figure 16. eNOS prevents diet-induced obesity.  Weight gain, adiposity, and 

indirect calorimetry measurements from WT and eNOS-TG mice fed a low fat 

(LFD) or high fat diet (HFD): (A) Body weights during 6 weeks of LF feeding, n = 

22–26 per group; (B) body weights during 6 weeks of HF feeding, n = 26 per 

group; (C) summarized weight gain over the course of 6 weeks and 12 weeks of 

HF feeding, n = 28–29 per group for 6 week group, n = 4–7 per group for 12 

week group; (D) food intake, n = 4 per group; (E) representative DexaScan 

images of mice fed a LFD or HFD for 6 weeks; (F) body fat percentage, n = 8–12 

per group; (G) lean mass percentage, n = 8–12 per group; and (H) tibia length for 

mice fed a LFD or HFD for 6 weeks, n = 8–12 per group; (I) average oxygen 

consumption (VO2); (J) average carbon dioxide production (VCO2); (K) 

respiratory exchange ratio (RER); and (L) ambulatory counts. n = 4 per group; 

*p<0.05, **p<0.01, and ***p<0.001 vs. indicated groups; #p<0.05 vs. WT HFD.  
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Figure 17. Diet and genotype do not affect circulating free T3 or T4 levels. 

Free triiodothyronine (T3) and thyroxine (T4) were measured in plasma from WT 

and eNOS-TG mice that were fed LF or HF diets for 6 weeks. n = 4–6 per group. 
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To test this, we performed pyruvate tolerance tests, which did not show 

remarkable differences between WT and TG mice (Fig. 19F,G), indicating that 

resistance to hypoglycemia in TG mice may not be due to increased hepatic 

production of glucose. Collectively, these data suggest that eNOS 

overexpression does not significantly affect diet-induced insulin resistance or 

glucose intolerance, but maintains glucose homeostasis during starvation.  

 

Effect of eNOS on adipose tissue. Given our observations that obesity and 

diabetes were associated with a selective decrease of eNOS levels in adipose 

tissue and that eNOS-TG mice were resistant to diet-induced weight gain, we 

measured changes in adipocyte area and size in epididymal fat pads.  These 

measurements revealed that high fat diet induced adipocyte hypertrophy leading 

to a 3–4-fold increase in mean adipocyte area (Fig. 20A,B).  Moreover, the high 

fat diet promoted size heterogeneity in WT, but not eNOS-TG mice (Fig. 20C), 

indicating that eNOS overexpression prevents diet-induced adipocyte 

hypertrophy and size dispersion. 

In murine models of diet-induced obesity, adipocyte hypertrophy is 

associated with inflammation and accumulation of macrophages in adipose 

tissue 351. This is commonly recognized by the presence of crown-like structures 

that appear between adipocytes 190, 287, 351. In humans, obesity is similarly 

associated with adipose tissue inflammation, and weight loss interventions such 

as bariatric surgery improve endothelial function 352, 353. 
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Figure 18. Effect of eNOS overexpression on indices of insulin resistance.  

After 6 weeks of a low fat (LFD) or high fat diet (HFD), glucose tolerance and 

insulin sensitivity were examined in WT and eNOS-TG mice: (A) Non-fasting and 

fasting glucose levels; white bars, WT LFD; blue bars, eNOS-TG LFD; white 

hatched bars, WT HFD; blue hatched bars, eNOS-TG HFD; (B) HbA1c; (C–E) 

glucose tolerance tests; and (F–H) insulin tolerance tests. n = 14 per group; 

*p<0.05 vs WT LFD or otherwise indicated groups. 
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Figure 19. Measures of insulin resistance and gluconeogenesis in WT and 

eNOS-TG mice fed a high fat diet for 12 weeks. After 12 weeks of HFD, 

glucose tolerance and insulin sensitivity were examined in WT and eNOS-TG 

mice: (A) Glucose tolerance test (GTT); (B) Insulin tolerance test (ITT); (C) GTT 

area under the curve (AUC); (D) ITT AUC; (E) Blood glucose under non-fasted, 

6-h-fasted and 16-h-fasted conditions; (F) Pyruvate tolerance test (PTT) was 

used to determine differences in gluconeogenesis between the mice; and (G) 

PTT AUC. n = 4 per group;*p<0.05 vs. WT. 
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Therefore, we examined adipose tissue inflammation in WT and eNOS-TG mice 

after 6 weeks of high fat diet. Analysis of adipose tissue showed no significant 

difference in the abundance of crown-like structures between WT and TG mice 

(Fig. 20A), and analysis of the adipose tissue stromal vascular fractions showed 

no difference in total F480+ cells or changes in macrophage subtypes (Fig. 21).  

These results are in accordance with studies showing that macrophage 

accumulation and insulin resistance occur only with prolonged high fat feeding 

(>10 weeks)155, 295 and suggest that the anti-hypertrophic effects of eNOS are not 

associated with significant changes in adipose tissue inflammation, but are likely 

to be related to favorable changes in metabolism that prevent lipid accumulation 

and adipocyte expansion. 

 

Metabolic changes in adipose tissues of eNOS-overexpressing mice. The 

lean phenotype of eNOS-TG mice and their resistance to diet-induced weight 

gain and adipocyte expansion clearly indicated that eNOS overexpression has a 

significant impact on adipocyte metabolism. Therefore, to assess this impact, we 

measured metabolite levels in epididymal adipose tissue of high fat-fed WT and 

eNOS-TG mice using UHPLC/MS/MS and GC/MS. Spectral data were identified, 

searched against a standard library, and quantified (Fig. 22).  Internal standards, 

including injection standards, process standards, and alignment standards were 

used for quality control and to control for experimental and instrument variability. 

This analysis led to the identification of 192 metabolites of which 37 were 

significantly different between WT and eNOS-TG mice (Fig. 23A and Table 3). 
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Figure 20. eNOS overexpression decreases diet-induced adipocyte 

hypertrophy. Adipocyte size measurements from WT and eNOS-TG mice fed a 

LFD or HFD for 6 weeks: (A) Representative hematoxylin and eosin-stained 

images  of adipose tissue from the epididymal fat pad (×20 magnification; scale 

bar = 100 μm); (B) Mean adipocyte area; (C) Distribution of adipocyte sizes from 

mice fed a LFD (upper panel) and a HFD (lower panel). n = 5 per group, *p<0.05 

vs. WT LFD; #p<0.05 vs. WT HFD.  
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Figure 21. Effects of high fat diet on macrophage subtypes in WT and 

eNOS-TG mice. Macrophage subpopulations measured in epididymal adipose 

tissues after 6 weeks of LFD or HFD: (A–D) Representative flow cytometry dot 

plots of F4/80
+
 adipose tissue macrophages from WT and eNOS-TG mice. (E) 

Quantification of M1 macrophage subpopulations; (F) Quantification of M2 

macrophage subpopulations; and (G) Quantification of macrophages doubly 

positive for M1 and M2  macrophage markers. n = 6 per group. 
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Figure 22. Flow chart illustrating procedure for metabolomic profiling of 

adipose tissues.  Mice were fed a HFD for 6 weeks.  The adipose tissue was 

then procured, and metabolites were extracted.  The samples were divided for 

GC/MS or LC/MS analysis.  Following spectral analysis, the data were imputed, 

normalized, and analyzed using Metaboanalyst 2.0 software.  
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Although intermediates in the glycolytic pathway and TCA cycle were not 

affected, there were significant increases in propionylcarnitine, acetylcarnitine, 3-

dehydrocarnitine, and isobutyrylcarnitine, some of which have been shown to 

stimulate fatty acid oxidation 354, 355. Higher levels of amino acids such as 

threonine, methionine, valine, isoleucine, and leucine were also observed in TG 

mice (Table 3). Multivariate and cluster analyses showed that these changes 

were determining factors in the separation of the groups (Fig. 23B,C), and 

pathway impact analysis (Fig. 23D) suggested that changes in amino acid 

synthesis and degradation may be important features regulating the lean 

phenotype of eNOS-TG mice. Plotting of the z-scores of metabolites from 

adipose tissues of eNOS-TG and WT mice showed increases in short-chain 

acylcarnitines as well as amino acids and their degradation products (Fig. 24A). 

Metabolites correlating with citrulline levels showed a similar pattern of 

metabolites (Fig. 24B). The adipose tissue metabolites in eNOS-TG mice shown 

to be significantly different from WT mice equated to differences in urea 

cycle/arginine metabolism, branched chain amino acid (BCAA) metabolism, 

carnitine metabolism, purine metabolism, oxidative phosphorylation, and fatty 

acid metabolism subpathways (Fig. 24C). Taken together, changes in metabolite 

levels in the adipose tissue indicated that overexpression of eNOS stimulates 

amino acid and fatty acid metabolism in adipose tissue.  

Adipose tissue mitochondria are increased in eNOS-TG mice. Favorable 

changes in BCAA and fatty acid metabolism are indicative of increased 

mitochondrial activity. Previous studies have shown that BCAA increases 
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mitochondrial biogenesis and that this is attenuated in eNOS-null mice 356. In 

addition, it has been reported that NO triggers mitochondrial biogenesis in 

adipocytes and that deletion of eNOS decreases mitochondrial content in 

adipose tissue 357. Based on this evidence, we hypothesized that the change in 

BCAA and fatty acid metabolism in the adipose tissue of eNOS-TG mice may be 

related to greater mitochondrial content. Indeed, adipose tissue, but not skeletal 

muscle, from eNOS-TG mice showed significant increases in key mitochondrial 

proteins such as COX4I1 and ALDH2 (Fig. 25A,C).  The increase in 

mitochondrial proteins in TG adipose tissue could be due to remodeling of the 

mitochondria or an increase in mitochondrial abundance. To distinguish between 

these possibilities, sections of adipose tissue were stained with a non-membrane 

potential-dependent mitochondrial stain, mitoID-Red.  As shown in Fig. 25E, 

adipose tissue isolated from high-fat-fed eNOS-TG mice stained more strongly 

than WT mice, indicating that the adipose tissue mitochondrial content was 

higher in TG than WT mice. Indeed, adipocytes isolated from high fat-fed eNOS-

TG mice were more brown in color than those isolated from WT mice (Fig. 25F), 

suggesting an increase in mitochondrial cytochromes. Indeed, in addition to 

increased abundance of COX4I1 (Fig. 25A,C), the expression of the 

mitochondrial gene cytochrome b6 (cytb6), was elevated 2-fold in eNOS-TG mice 

(cytb6:gapdh ratios, fold change: WT, 1.0±0.1; eNOS-TG, 2.0±0.3; n=4–7/group, 

p<0.05).  That this increase in mitochondrial content may be due to increased 

biogenesis is supported by our observation that in comparison with WT mice, TG 

mice had higher adipose levels of PGC1α and Sirt3, as well as an increase in  
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Figure 23. Metabolomic analyses of adipose tissues from high fat-fed mice.  

Metabolomic analyses of epididymal adipose tissue metabolites from WT and 

eNOS-TG mice fed HFD for 6 weeks: (A) Univariate analysis: t-tests of 

compounds from adipose tissues. All metabolites above the dotted line were 

found to be significantly different between WT and eNOS-TG mice (p<0.05).  

Each of these metabolites is listed in Table 4; (B) Multivariate analysis: partial 

least squares-discriminant analysis (PLS-DA); (C) Hierarchial clustering: 

Heatmap and dendogram using the the most significantly different metabolites. 

(D) The significant metabolites were subjected to pathway impact analysis using 

Metaboanalyst MetPA and the Mus musculus pathway library. Fisher’s exact test 

was used for overrepresentation analysis, and relative betweenness centrality 

was used for pathway topology analysis. n = 14 animals: 7 WT HFD, 7 eNOS-TG 

HFD. 
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Figure 24. Overexpression of eNOS regulates intermediary metabolism in 

adipose tissue.  Metabolite analysis from adipose tissues of WT and eNOS-TG 

mice fed HFD for 6 weeks: (A) z-score plots of significantly changed metabolites; 

(B) Correlation analysis was assessed using the Spearman rank correlation test, 

and metabolites that correlated with citrulline were then examined. (C) Super- 

and sub-pathway distribution of adipose tissue metabolites found to be 

significantly different between WT and eNOS-TG mice. n=14 animals: 7 WT HFD 

and 7 eNOS-TG HFD.  
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ppar and   (Fig. 25G); factors that are important activators of mitochondrial 

biogenesis 284, 358-362.  

 

Effect of eNOS on adipose tissue metabolic flux. To assess the functional 

implications of our observations, we measured oxygen consumption in adipose 

tissue explants using extracellular flux technology. As shown in Fig. 26B, adipose 

tissue from eNOS-TG mice showed a significantly higher oxygen consumption 

rate (OCR) compared with adipose tissue from WT mice. To determine the 

contribution of mitochondria to the OCR, we treated explants with the electron 

transport chain inhibitors antimycin A and rotenone. The stabilized rate measured 

thereafter was used to calculate the mitochondria-derived OCR, which was 2-fold 

higher in eNOS-TG compared with WT adipose tissue (Fig. 26C).  No statistically 

significant difference was observed in the extracellular acidification rate (ECAR), 

a surrogate index of glycolysis (Fig. 26D). Collectively, these observations 

corroborate our metabolic, biochemical, and anatomical measurements by 

demonstrating directly that the adipose tissue of eNOS-TG mice maintains a 

hypermetabolic state that could at least partially account for their increase in 

whole-body oxygen consumption and resistance to obesity.  

 

Discussion 

The major findings of this study are that high fat diet results in the 

downregulation of eNOS in adipose tissue and that overexpression of eNOS 
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Figure 25. Mitochondria are increased in the adipose tissue of eNOS-TG 

mice.  Measurements of mitochondria in epididymal adipose tissue and skeletal 

muscle from WT and eNOS-TG mice: (A) Representative Western blots of 

adipose tissue eNOS, PGC1α, ALDH2, COX4I1, and Sirt3; GAPDH was used as 

a loading control. (B) Representative Western blots of skeletal muscle eNOS, 

PGC1α, VDAC, COX4I1, and Sirt3. GAPDH was used as a loading control.  (C) 

Quantification of protein expression from panel A. (D) Quantification of protein 

expression from panel B. n = 3 per group; *p<0.05 vs. WT; White bars, WT; blue 

bars, TG. (E) Immunofluorescence images of adipose tissue sections from HF-

fed WT (panel i) and eNOS-TG (panel ii) mice; the sections were stained with 

MitoID-Red as a qualitative index of mitochondrial mass. Scale bar=200 μM  (F) 

Representative photomicrograph of adipocytes isolated from HF-fed WT and 

eNOS-TG mice (600,000 adipocytes per well). (G) mRNA analysis of Ppara and 

Pparg. White bars, WT LFD; blue bars, eNOS-TG LFD; white hatched bars, WT 

HFD; blue hatched bars, eNOS-TG HFD; n=6 per group; *p<0.05 vs. indicated 

groups.  
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Figure 26. eNOS overexpression increases adipose tissue mitochondrial 

energetics. Extracellular flux (XF) analysis of adipose tissue explants from WT 

and eNOS-TG mice fed a HFD for 14 wks: (A) Representative photomicrographs 

of adipose tissue explants used for XF analysis; (B) Oxygen consumption rates 

(OCR) of adipose tissue explants:  After three baseline measurements, antimycin 

A and rotenone (AA/Rot) were injected to identify the mitochondria-dependent 

OCR. (C) Mitochondrial OCR calculated from measurements in panel B. (D) 

Extracellular acidification rate (ECAR) measured from adipose explants; ECAR is 

a surrogate measure of glycolytic rate. n = 3–4 per group, *p<0.05 vs WT. 
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prevents diet-induced obesity.  These findings support a causal role of eNOS in 

regulating obesity and whole-body metabolism.  Our results suggest that the 

mechanism of this anti-obesogenic effect of eNOS is related to an increase in 

whole-body oxygen consumption associated with increased mitochondrial 

abundance and activity in the adipose tissue. Collectively, these observations 

support the notion that NO is an important regulator of adipocyte metabolism and 

thereby weight gain due to a high fat diet.  While it has been shown before that 

deletion of eNOS gives rise to features of metabolic syndrome 336, the rescue of 

the obese phenotype by increasing eNOS indicates that enhancing eNOS 

expression can overcome the metabolic changes caused by consumption of high 

fat diet. 

Several lines of evidence gathered during this study support the view that 

the anti-obesogenic effects of eNOS are due to favorable changes in adipocyte 

metabolism. Although on the basis of current results we cannot rule out, or even 

fully assess all potential systemic effects, our observations that food 

consumption, activity, plasma levels of cholesterol, leptin and thyroid hormones 

were not different between WT and TG mice argue against a global, systemic 

change that could completely account for the lean phenotype of the TG mice.  

Both insulin resistance and obesity are complex phenotypes that are regulated 

by multiple interactions between several tissues, some or all of which might be 

affected in a manner not captured by our current analysis.  Nevertheless, in 

regulating obesity, the adipose tissue appears to be a major target of eNOS. Our 

gene-dosage studies show that despite a 4-fold increase in eNOS in the aorta, 
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diet-induced obesity was only marginally affected in eNOS hemizygous mice, in 

which there was no increase in eNOS in adipose tissue. Only in homozygous 

mice, in which eNOS was increased both in adipose tissue and aorta, did the 

anti-obesogenic effects of eNOS become apparent. This association of the lean 

phenotype with eNOS expression in adipose tissue supports the view that an 

increase in NO in adipose depots may be required for the manifestation of the 

anti-obesogenic effects of eNOS. 

How does eNOS regulate adipose tissue metabolism? Our results suggest 

that eNOS supports both mitochondrial biogenesis and metabolic activity. 

Previous observations showing that β-oxidation is impaired in eNOS-null mice 337 

and that dietary supplementation with the NO precursor nitrite reverses features 

of metabolic syndrome in eNOS-null mice 363 are supportive of this concept. 

Although AMP kinase (AMPK) has been shown to relate with NO levels 364, 365, 

we did not find an increase in the phosphorylation state of AMPK in adipose 

tissue (Fig. 27). However, we did find elevated levels of several metabolites such 

as BCAAs and short-chain acylcarnitines (e.g., acetylcarnitine, 

proprionylcarnitine) in the adipose tissue of TG mice that were indicative of high 

metabolic activity. Interestingly, oral supplementation with proprionylcarnitine 

reduces obesity and hyperinsulinemia in obese rats 366, which at least partially 

recapitulates the phenotype of eNOS-TG mice. We also found in the adipose 

tissue of TG mice elevated levels of proteins such PGC-1α and Sirt3 and 

increased expression of ppara and pparg that regulate mitochondrial activity, 

fatty acid oxidation, and biogenesis 284, 358-362, 367, 368. That the increase in these
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Figure 27.  Western blot analysis of AMPK activation status. Mice were fed a 

LFD or HFD for 6 weeks and P-AMPK and total AMPK abundance were 

measured by western blotting. n = 3–4 per group 
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proteins was functionally significant is reflected by our observations that 

mitochondrial abundance and rates of fatty acid oxidation were higher in the 

adipose tissue from eNOS-TG mice.  On the basis of these observations, we 

propose that high levels of eNOS lead to an increase in mitochondrial biogenesis 

and stimulation of fatty acid oxidation. This establishes a state of heightened 

metabolism that attenuates the obesogenic effects of high fat consumption. 

  Although our results show that eNOS overexpression increases adipose 

tissue metabolism by increasing mitochondrial content and activity, metabolic 

activity could also be affected by eNOS-dependent changes in oxygen 

distribution. Hence, it is possible that adipocytes of eNOS-TG mice are better 

perfused than those of WT mice. Such an increase in tissue perfusion could be 

due to either regulatory effects on vascular tone 369 and O2 consumption370 or an 

increase in angiogenesis 371. Nevertheless, we found that capillary density was 

unaffected by eNOS overexpression, as isolectin B4 staining per adipocyte and 

VEGFR2 expression were similar between the groups (Fig. 28), suggesting that 

an increase in angiogenesis is unlikely explain the lean phenotype of eNOS-TG 

mice. 

The metabolic role of eNOS, however, appears to be tissue-specific.  We 

found that high fat feeding decreased eNOS in the adipose tissue but not in the 

heart or the skeletal muscle. Hence, we expected that overexpression of eNOS 

would ameliorate adipose tissue hypertrophy without affecting high fat-induced 

changes in other peripheral tissues. Data from eNOS-TG mice substantiated this 

expectation. These results showed that high fat-induced changes in glucose
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Figure 28. Overexpression of eNOS does not affect capillary density in 

adipose tissue. Fluorescence images and markers of capillary density in 

sections of epididymal adipose tissue isolated from WT or eNOS-TG mice fed a 

LFD or HFD for 6 weeks: (A) Representative images of isolectin B4 (green) 

staining. (B) Isolectin B4 staining quantified per adipocyte. n = 9 per group. (C) 

VEGFR2 expression in adipose tissue. Density of the VEGFR2 bands were 

normalized to amido black stain. n = 6 per group. Note: the apparent decrease in 

isolectin staining in HFD groups from panel A relates to an increase in adipocyte 

size relative to the LFD group. 
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disposal were not different between WT and eNOS-TG mice indicating that whole 

body glucose metabolism, which is regulated primarily by glucose uptake by the 

skeletal muscle 372, was not related to changes in eNOS levels. Nevertheless, the 

observation that despite their lean phenotype the TG mice develop insulin 

resistance is significant because a lean phenotype characterized by the browning 

of fat is usually associated with improved glucose tolerance 325, 373-375. It is likely 

that a decrease in eNOS is a critical event in adipose tissue but not skeletal 

muscle, and therefore, elevated levels of eNOS in the adipose tissue prevent 

obesity without affecting systemic insulin resistance.    

Results showing that overexpression of eNOS prevents obesity without 

affecting insulin resistance also suggest that the two symptoms of metabolic 

syndrome could be dissociated from one another. Similar segregation between 

obesity and insulin resistance has been described previously. For instance, it has 

been shown that overexpression of adiponectin completely rescues the diabetic 

phenotype of ob/ob mice while promoting morbid obesity 376. Moreover, the 

observations that decreasing inflammation 377-379 does not result in lower 

adiposity but improves insulin sensitivity, and that PPAR agonists decrease 

insulin resistance but increase weight gain 333 provide additional support that 

obesity and diabetes are disconnected and, in some cases, even conflicting 

events in the etiology of metabolic disease. However, it remains to be 

established how eNOS prevents hyperinsulinemia as well as impacts other 

processes that are associated with insulin resistance, such as inflammation. It is 

currently believed that, due to excessive adipocyte expansion, hypoxia and 
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necrosis occur in adipose tissue, which in turn leads to the recruitment of 

inflammatory cells 380, 381. The resultant low-grade chronic inflammation is 

proposed to establish a state of insulin resistance 382, 383. However, the eNOS-TG 

mice develop the anti-obesogenic phenotype far before macrophage infiltration, 

inflammation, and insulin resistance in adipose tissue occur 155, 295. 

It is important to note that the eNOS-TG mice did not display a 

lipodystrophic phenotype. Lipodystrophy in humans and animal models generally 

results in severe hypertriglyceridemia, hyperinsulinemia, and insulin resistance 

384-386. The eNOS-TG mice, however, show decreased triglycerides and were 

protected from hyperinsulinemia despite developing diet-induced glucose 

intolerance. The prevention of hyperinsulinemia does not appear to be due to a 

pancreatic defect: baseline insulin levels were not significantly different from WT 

mice (Table 2), the glucose tolerance test showed a normal profile (Fig. 18 and 

19), and the pancreatic islets from eNOS-TG mice appeared unremarkable (Fig. 

29). These observations raise the interesting possibility that hyperinsulinemia in 

response to systemic insulin resistance may be in part regulated by the adipose 

tissue, although additional work is required to fully understand this relationship.  

Additional investigations will also be required to assess how high fat diet 

affects eNOS activity and expression. Although it has been shown that eNOS 

levels are suppressed in high fat diet in part due to TNF--dependent 

mechanisms 161, the effects of diet on eNOS protein and activity are less clear. 

The eNOS protein is subject to several post-translational modifications including  
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Figure 29. Hematoxylin and eosin-stained images of pancreas from WT and 

eNOS-TG mice.  Representative photomicrographs of pancreas isolated from 

WT and eNOS-TG mice fed a HFD for 6 weeks; ×20 magnification. 
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phosphorylation 387, O-GlcNAcylation 388, S-glutathiolation 253, and acylation 389, 

390.  In addition, the enzyme could also be uncoupled and therefore generate 

superoxide instead of synthesizing NO. Interestingly, we found that while eNOS 

monomer abundance was maintained in eNOS-TG mice (Fig. 30), the 

phosphorylation of eNOS at Ser1177 and abundance of the eNOS dimer were 

significantly decreased in both WT and TG mice fed a high fat diet (Fig. 30). 

Although these changes in the eNOS-TG mice might be compensated by 

continually elevated levels of eNOS protein, as evidenced by persistently 

elevated citrulline levels (Fig. 15A,B), such changes in WT mice might result in a 

chronic state of NO deficiency. Moreover, uncoupling of the enzyme could lead to 

increased superoxide production and the formation of the toxic metabolite 

peroxynitrite. Indeed, we found increased nitrotyrosine formation in adipose 

tissue of high fat-fed mice (Fig. 31), although this was not significantly affected by 

eNOS overexpression.  Hence, in future studies it will be important to identify the 

processes that regulate eNOS activity and how they might be involved in the 

development of diet-induced obesity and insulin resistance. 

In conclusion, the present study shows that preventing eNOS depletion by 

forced expression of the eNOS transgene attenuates diet-induced obesity in 

mice, without ameliorating systemic insulin resistance.  These findings reveal a 

novel anti-obesogenic role of eNOS and are consistent with the notion that eNOS 

prevents weight gain in high fat-fed mice by stimulating mitochondrial biogenesis 

and activity in adipose tissues.  Further understanding of this role of eNOS could  
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Figure 30.  Analysis of eNOS expression and modification. Immunoblotting of 

eNOS enzyme states that reflect eNOS activity state: WT and eNOS-TG (TG) 

mice were fed a LFD or HFD for 6 weeks and eNOS abundance and 

phosphorylation status were examined by immunoblotting.  (A) Representative 

Western blots of eNOS dimer, Ser
1177

 phosphorylation of eNOS (P-eNOS), and 

the eNOS monomer; (B) Quantification of P-eNOS; (C) Quantification of the 

eNOS dimer; n = 3–4 per group; *p<0.05 vs WT LFD; 
#
p<0.05 vs. TG LFD. 
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Figure 31. High fat feeding increases protein-nitrotyrosine adducts in 

adipose tissue.  Immunofluorescence images and quantification of nitrotyrosine 

adducts in adipose tissue: WT and eNOS-TG mice were fed a LFD or HFD for 6 

weeks. The adipose tissue was stained for nitrotyrosine adducts, and the adducts 

were visualized by fluorescence microscopy. (A) Negative (–) and positive (+) 

controls for nitrotyrosine staining. (B) Representative images of nitrotyrosine 

staining in WT and eNOS-TG mice fed a LFD or HFD. (C) Quantification of 

nitrotyrosine adducts from adipose tissues.  n = 3 per group; *p<0.05 vs. 

indicated group.  
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lead to the development of new therapeutic modalities for preventing obesity and 

weight gain in human populations.   

 

 

 

 



146 
  

CHAPTER IV 

REGULATION OF S.STEMIC METABOLISM B. NITRIC OXIDE 

 

Introduction 

Our previous work shows that overexpression of eNOS in mice regulates 

diet-induced obesity, in part by increasing total body energy expenditure. This 

resistance to obesity in eNOS transgenic mice is associated with the presence of 

a more “brown-like” adipocyte in white adipose tissue depots, suggesting that 

eNOS-induced changes in adipose tissue could underlie the anti-obesogenic 

effects of eNOS. However, in rodents, adipocytes utilize less energy compared to 

other peripheral tissues such as liver and skeletal muscle, which have estimated 

metabolic rates 50 and 3 times that of adipose tissue, respectively 391, and they 

collectively account for at least 50% of the overall oxygen use 392. To understand 

the role of eNOS in regulating adipose tissue energy consumption and systemic 

energy expenditure, we estimated the proportion of whole body oxygen 

consumption that could be ascribed to adipose tissue.  

To estimate the contribution of adipose tissue consumption, whole body 

VO2 values and adipose tissue oxygen consumption rates were measured. Using 

the Ideal Gas Law: (pV = nRT), where p is pressure of the gas, V is volume of the
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gas, n is number of moles of the gas, R is the universal gas constant, and T is 

temperature in Kelvin, the number of moles of O2 consumed was calculated. The 

VO2 in wild type (WT) mice was 6.622 L O2/h/kg (Chapter III, Fig. 16I).  Assuming 

an average body weight of ~40 g per mouse, this corresponds to 0.26 L 

O2/h/mouse, which is equivalent to  250 mmols O2/day/mouse. Body fat 

percentage, as measured by dual X-ray absorptiometry, was approximately 30% 

(12.03 g fat) in the high fat-fed WT mice (Chapter III, Fig 16F). From adipose 

tissue explant respirometry, we calculated the mitochondrial oxygen consumption 

rate of adipose tissue explants from WT high fat-fed mice to be 21.94 pmols 

O2/min/mg tissue (Chapter III, Fig 26C). Therefore, 12,030 mg of adipose tissue 

consuming oxygen at a rate of 21.94 pmol/min/mg tissue is approximately equal 

to 263,938.2 pmols O2/min and 0.380 mmols O2/day. Thus, dividing the adipose 

explant value (0.380 mmols O2/day) by the whole body value (250 mmols 

O2/day/mouse) suggests that approximately 0.15% of the total O2 consumption 

per day is accounted for by adipose tissue in a WT mouse. When the same 

calculation was applied to eNOS-TG mice, 0.18% of oxygen consumption is 

attributed to adipose tissue; a difference of only 0.03% compared with WT mice.  

These estimates suggest that an increase in adipose tissue mitochondrial 

activity is unlikely to account for the anti-obesogenic phenotype of eNOS-TG 

mice. The differences in standard metabolic rate between animals of different 

body mass have been assessed to be due to proportional changes in the whole 

of energy metabolism 393. It has been estimated that ~90% of mammalian oxygen 

consumption in the standard state is due to mitochondrial activity of which ~80% 
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is coupled to ATP synthesis 393. Therefore, to assess the source of increased 

energy expenditure in eNOS-TG mice a wider metabolic analysis is necessary.  

The metabolic effects of nutrient excess extend beyond adipose tissue.  

Indeed, the skeletal muscle of obese diabetic patients is characterized by fewer 

and smaller-sized mitochondria 394, 395, with decreased oxidative capacity 396. 

Moreover, high fat diet decreases the expression of genes involved in oxidative 

phosphorylation and mitochondrial biogenesis of humans and mice 397. In the 

liver, it is associated with increased intracellular lipid accumulation 398-400. 

Mitochondrial abnormalities including ultrastructural lesions, depletion of mtDNA, 

decreased activity of respiratory chain complexes 401 and impaired mitochondrial 

β-oxidation have been found in patients with elevated hepatic lipid deposition 395, 

402, while increased expression or activity of hepatic fatty acid oxidation enzymes 

reduces fat accumulation 403-406.  

Metabolic dysfunction in peripheral tissue is likely to be reflected in the 

plasma. Dysregulated fatty acid oxidation is characterized by increased plasma 

levels of acylcarnitines in both obese and diabetic individuals 407 as well as in 

animal models of obesity and diabetes 408. Similarly, plasma lactate levels are 

increased in individuals with severe diabetes 409 and levels of circulating FFAs 

have been shown to be correlated with obesity and diabetes 410-412.  As a result, 

metabolic changes in tissues other that the adipose depots could strongly 

influence adiposity and thereby contribute to the metabolic phenotype of eNOS-

TG mice. Hence, identifying the specific metabolic pathways affected is therefore 

important understanding the mechanism(s) by which eNOS prevents obesity. 
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Recent advances in metabolomics have been critical for understanding 

the systemic effects of metabolic diseases like obesity and diabetes 413. By 

measuring and, in some cases, mathematically modelling, changes in 

metabolites found in biological fluids and tissues, metabolomic data can provide 

key information on metabolic changes required to link phenotype to genetics 414, 

415. In particular, biological fluids such as plasma and urine can be used to 

identify metabolic pathways that are perturbed by disease or impacted by drug 

treatment or experimental intervention 416-419. Interestingly, the idea of quantifying 

changes in biological fluids as markers of disease is not a new one.  Indeed, 

there is evidence of such endeavors occurring as early as ancient Greece and 

diagnostic 'urine charts' that linked the colors, smells and tastes of urine to 

various medical conditions were widely used from the Middle Ages onwards 414. 

Metabonomics, and the related field of metabolomics, uses modern techniques to 

analyse samples, but the basic principle of relating chemical patterns to biology 

is the same. More recently, highly sensitive analytical techniques (i.e., mass 

spectrometry, nuclear magnetic resonance spectroscopy) applied to 

metabolomics and systems biology have emerged at the forefront of drug 

discovery and understanding disease processes 420.  

Using a metabolomics approach, we examined plasma from WT and 

eNOS-TG mice fed low or high fat diets to identify changes in systemic 

metabolism caused by nutrient excess or eNOS overexpression. Our analysis, 

was driven by three main questions: 1) How are plasma metabolites affected 

by a high fat diet?; 2) What are the metabolic changes induced eNOS 
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overexpression?; and 3) Which plasma metabolites are sensitive to both 

high fat diet and eNOS? To address these questions we compared the 

metabolite profiles of each group of animals and identified the metabolic 

pathways most affected by diet and/or genotype.   

 

Experimental Procedures 

Animal studies: The C57BL/6J (wild-type; WT) mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME).  The eNOS-TG mice, which express 

bovine eNOS under the control of the preproendothelin-1 promoter 338, were 

maintained on the C57BL/6J background.  At 8 weeks of age, male mice were 

placed on a 10% low fat diet (LFD; Research Diets, Inc., #D12450B), a 60% high 

fat diet (HFD; Research Diets Inc., #D12492) or a custom formulated 60% high 

fat diet containing GW4064 and maintained for 6 additional weeks. The custom 

GW4064 diet was produced by Research Diets Inc. and was formulated by 

adding GW4064 (Sigma, #G5172) to the HFD (#D12492) at a concentration of 

180 mg of compound/kg of diet. Water and diet were provided ad libitum. Body 

weights were recorded weekly.  During the 7th week of feeding, body composition 

analysis and glucose and insulin tolerance tests were performed. All other 

variables were evaluated after euthanasia.  All procedures were approved by the 

University of Louisville Institutional Animal Care and Use Committee. 
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Glucose and insulin tolerance tests: As described previously 339, glucose 

tolerance tests were performed following a 6 h fast by injection (i.p.) of D-glucose 

(1 mg/g) in sterile saline. Insulin tolerance tests were performed on nonfasted 

animals by i.p. injection of 1.5 U/kg Humulin R (Eli Lilly, Indianapolis, IN). 

 

Body composition: Body composition was measured by dual-energy X-ray 

absorptiometry (Dexascan) using a mouse densitometer (PIXImus2; Lunar, 

Madison, WI).  

 

Metabolomic analysis of plasma: Whole blood was collected from WT and 

eNOS-TG mice fed a LFD or HFD for 6 weeks by cardiac ventricular puncture 

following a 16 hour fast. EDTA was added to whole blood samples to prevent 

coagulation and plasma was separated from red blood cells by centrifugation. 

Samples were shipped to Metabolon, Inc. (Durham, NC) for analysis. Metabolites 

were extracted with methanol and relative metabolite abundance was measured 

by GC/MS or LC/MS/MS exactly as described before 286. Metabolites with 

missing values were imputed by replacing missing values with half of the 

minimum positive value in the original data.  Metabolites with greater than 57% of 

the values missing were omitted from the analysis. After a generalized logarithm 

transformation, the data were autoscaled, i.e., mean-centered and divided by the 

standard deviation of each variable.  This step was performed to transform the 

intensity values so that the distribution was more Gaussian. Values between 
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groups were then compared using t-tests.  Univariate (e.g., volcano plots), 

multivariate (e.g., PLS-DA), cluster (heatmap and dendogram), and Z-score 

analyses were then performed. Z-scores were calculated using the equation: 

 
     

 
 ; where   is the raw score,   is the mean of the population and   is the 

standard deviation of the entire population.  Most analyses were performed using 

Metaboanalyst 2.0 software (http://www.metaboanalyst.ca/) 288; Z-score plots 

were constructed in GraphPad 5.0 software using data derived from volcano plot 

analysis.    

 

Statistical analyses: Data are presented as mean ± SEM. Multiple groups were 

compared using one-way or two-way ANOVA, followed by Bonferroni post-tests. 

Unpaired Student’s t test was used for direct comparisons. Statistical analyses 

were performed with the program “R” http://cran.r-project.org/, Metaboanalyst 

(http://www.metaboanalyst.ca/), and/or GraphPad 5.0.   A P value less than 0.05 

was considered significant. 

Plasma bile acid measurements: Total bile acids were measured using a liquid 

stable enzymatic colorimetric assay (Randox Laboratories, #BI3863) and 

analyzed by a Cobas Mira Plus 5600 Autoanalyzer (Roche, Indianapolis, IN). 

 

Results 

Overexpression of eNOS prevents diet induced obesity. To examine the role 

of eNOS in the regulation of systemic metabolism, mice overexpressing eNOS 

http://www.metaboanalyst.ca/
http://cran.r-project.org/
http://www.metaboanalyst.ca/
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(eNOS-TG) and C57BL/6J (WT) mice were placed on a low fat diet (LFD) or high 

fat diet (HFD) for six weeks. In agreement with our previous results, high fat-fed 

eNOS-TG mice were protected against diet-induced obesity and gained 50% less 

weight than high fat-fed WT mice (Fig. 32B). Dexascan analysis confirmed that 

the body fat percentage of the eNOS-TG mice was significantly lower and lean 

mass was significantly higher compared with WT mice after high fat feeding (Fig. 

32C,D). 

 

Plasma metabolomic analysis. To understand how overexpression of eNOS 

prevents diet-induced obesity in mice in greater detail, we measured the relative 

abundance of circulating metabolites in the plasma of WT and eNOS-TG mice on 

low or high fat diets. This analysis led to the identification of 298 metabolites. 

Using levels of these metabolites and excluding the genotype and diet group for 

each animal (i.e., WT LFD), we performed a multivariate (PLS-DA) analysis of 

the data. We found that group separation distance was significantly different 

when groups were separated based on their given characteristic (genotype and 

diet) rather than a randomly assigned variable. This indicates that the individuals 

within each group are more similar to each other than if they were placed in any 

other randomly assembled group.  

After PLS-DA confirmed that the experimental animal groups were distinct, 

we interrogated the differences in metabolite profiles between the groups. There 

were 34 metabolites that were significantly different between low fat- and high  
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Figure 32. Overexpression of eNOS prevents diet-induced obesity. Weight 

gain and adiposity measurements from WT and eNOS-TG mice fed a low fat 

(LFD) or high fat diet (HFD): (A) Body weights during 6 weeks of high or low fat 

feeding, n = 7 per group; (B) Summarized weight gain over the course of 6 

weeks of HF feeding, n = 7 per group; (C) Body fat percentage and (D) lean 

mass percentage following 6 weeks of diet measured by Dexascan analysis. n = 

7 per group; *p<0.05 and ***p<0.001 vs. indicated groups; #p<0.05 vs. WT HFD. 
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fat-fed WT mice, 39 between low fat-fed WT and low fat-fed eNOS-TG mice, and 

41 between high fat-fed WT and high fat-fed eNOS-TG mice. However, each of 

these metabolites may not have been unique to only one comparison of animal 

groups. For instance, of the 34 metabolites that were significantly different 

between the low fat- and high fat-fed WT mice, 8 were also significantly different 

between the low fat-fed WT and low fat-fed eNOS-TG groups. Further, 10 of the 

34 metabolites that were significantly different between low fat- and high fat-fed 

WT mice were also significantly different between the high fat-fed WT and eNOS-

TG groups. Finally, 3 metabolites were significantly different in each comparison 

between the groups. This is illustrated by the Euler diagram in Figure 33 with 

each comparison between animal groups represented by a separate oval. The 

number of significantly different metabolites between these groups is in 

parentheses. In the regions where the ovals overlap, the number represents the 

number of metabolites that are shared between those comparisons of different 

animals. 

  

Plasma metabolic changes due to diet. As stated above, of the 298 

metabolites identified, 34 were significantly different between the low and high 

fat-fed WT mice. Volcano plot analysis showed that 12 of these metabolites were 

increased and 22 were decreased after high fat feeding (Fig. 34A). To delineate 

the biological relationships between metabolites that changed, we used the 

MetPA tool of Metaboanalyst 2.0 for pathway analysis. Pathways were calculated 

as the sum of the importance measures of the matched metabolites normalized 
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Figure 33. Changes in the plasma metabolome due to high fat feeding or 

eNOS overexpression.  Euler diagram showing the set-theoretic relationships 

between WT and eNOS-TG mice fed a low fat (LFD) or high fat diet (HFD). Total 

number of significantly different metabolites between the groups is shown in 

parentheses. Number of significantly different metabolites shared between 

groups is in the overlapping region of the corresponding groups. Diagram 

constructed using Euler APE v3 software. n = 7 per group, total n = 21.  
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by the sum of the importance measures of all metabolites in each pathway 288. 

The highest pathway impact value was related to branched chain amino acid 

(BCAA) biosynthesis (i.e., valine, leucine and isoleucine) while 

glycerophospholipid metabolism and glyoxalate and dicarboxylate metabolism 

were also elevated. The pathway with the highest statistical significance was 

primary bile acid synthesis (Fig. 34B).   

 A Z-score analysis was then performed and metabolites that were 

significantly changed by more than 60% were plotted (Fig. 35). Metabolites that 

were lower in the high fat-fed group were mostly lipids (lysolipids and long chain 

fatty acids). Dicarboxylic fatty acids (decanedioate, tetradecanedioate, 

hexadecanedioate and octadecanedioate) also were lower in high fat-fed mice.  

Additionally, 1,5-anhydroglucitol (a marker of glycemic control) and members of 

the bile acid metabolism pathway (β-muricholate, cholate, taurocholate) were 

reduced. Sphingolipids (palmtioyl sphingomyelin and stearoyl sphingomyelin) 

and markers of cysteine metabolism (S-methylcysteine and cystine) were among 

the metabolites that were increased.    

 

Plasma metabolic changes due to genotype. To delineate the systemic 

metabolic changes that are induced by eNOS overexpression, similar analyses 

as described above were performed on the 39 metabolites that were significantly 

different between the low fat-fed WT and eNOS-TG mice. Volcano plot analysis 

identified that 13 metabolites were increased and 26 decreased in the eNOS-TG 
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Figure 34. Plasma metabolic changes due to diet. Metabolomic analyses of 

plasma from WT mice fed a low fat (LFD) or high fat diet (HFD) for 6 weeks: (A) 

Univariate analysis: Volcano plot of metabolites. Those metabolites that 

significantly increased are in the quadrant on the right side of the plot and those 

that significantly decreased are on the left (p<0.05, t-test); (D) Metabolites found 

to be significantly different were subjected to pathway impact analysis using 

Metaboanalyst MetPA and the Mus musculus pathway library. Fisher’s exact test 

was used for overrepresentation analysis, and relative betweenness centrality 

was used for pathway topology analysis. n = 14 animals: 7 WT LFD and 7 WT 

HFD 
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Figure 35. Z-score plot analysis of metabolite changes in plasma from low 

and high fat-fed mice. WT mice were fed a low fat (LFD) or high fat diet (HFD) 

for 6 weeks. Data are shown as standard deviations from the mean of LFD. Only 

metabolites that increased significantly and those that decreased by >60% are 

shown. Each point represents one metabolite in one sample. The color of 

metabolite indicates the superpathway to which it belongs: green - lipid 

metabolism; blue - bile acid metabolism; red - BCAA metabolism. n = 7 per 

group. 
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compared with the WT mice (Fig. 36A). Metabolic pathway analysis (Fig. 36B) 

showed that -linolenic acid metabolism had a very high pathway impact value 

and was highly significant. Other significant pathways were BCAA metabolism, 

glycerophospholipid metabolism, pantothenate and CoA biosynthesis and lysine 

metabolism.  

In the eNOS overexpressing mice several markers of BCAA metabolism 

(isovalerylcarnitine, propionylcarnitine, isobutyrylcarnitine, and 4-methyl-2-

oxopentanoate) and bile acid metabolism (taurodeoxycholate, deoxycholate, and 

cholate) were significantly increased as shown in the Z-score plot (Fig. 37). 

Lysolipids and long chain fatty acids were decreased in the low fat-fed eNOS-TG 

compared with low fat-fed WT mice.  

Metabolic changes in high fat-fed WT and eNOS-TG mice were also 

considered. Between groups there were 41 metabolites that were significantly 

different; as determined by volcano plot analysis, 28 were increased in the 

eNOS-TG mice while 13 decreased (Fig. 38A). After metabolic pathway analysis 

was performed (Fig. 38B) three pathways were found to have both high pathway 

impact values and significance: -linolenic acid metabolism, BCAA biosynthesis, 

and ubiquinone and terpenoid biosynthesis. Other significant pathways were 

arginine and proline metabolism, bile acid biosynthesis, histidine metabolism and 

β-alanine metabolism.  

Similar to the metabolic changes in low fat-fed eNOS-TG mice, markers of 

bile acid metabolism (β-muricholate, cholate, deoxycholate, taurocholate, 
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Figure 36. Plasma metabolic changes due to genotype. Metabolomic 

analyses of plasma from WT and eNOS-TG mice fed a low fat diet (LFD) for 6 

weeks: (A) Univariate analysis: Volcano plot of metabolites. Those metabolites 

that significantly increased are in the quadrant on the right side of the plot and 

those that significantly decreased are on the left (p<0.05, t-test); (D) The 

metabolites found to be significantly different were subjected to pathway impact 

analysis using Metaboanalyst MetPA and the Mus musculus pathway library. 

Fisher’s exact test was used for overrepresentation analysis, and relative 

betweenness centrality was used for pathway topology analysis. n = 14 animals: 

7 WT LFD and 7 eNOS-TG LFD 
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Figure 37. Z-score plot analysis of metabolite changes in plasma from low 

fat-fed WT and eNOS-TG mice. WT and eNOS-TG mice were fed a low fat diet 

(LFD) for 6 weeks. Data are shown as standard deviations from the mean of WT 

LFD. Only metabolites that increased significantly and those that decreased by 

>60% are shown. Each point represents one metabolite in one sample. The color 

of metabolite indicates the superpathway to which it belongs: green - lipid 

metabolism; blue - bile acid metabolism; red - BCAA metabolism.  n = 7 per 

group. 
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Figure 38. Plasma metabolic changes due to genotype in obesity. 

Metabolomic analyses of plasma from WT and eNOS-TG mice fed a high fat diet 

(HFD) for 6 weeks: (A) Univariate analysis: Volcano plot of metabolites. 

Metabolites that significantly increased are in the quadrant on the right side of the 

plot and those that significantly decreased are on the left (p<0.05, t-test); (D) 

Metabolites found to be significantly different were subjected to pathway impact 

analysis using Metaboanalyst MetPA and the Mus musculus pathway library. 

Fisher’s exact test was used for overrepresentation analysis, and relative 

betweenness centrality was used for pathway topology analysis. n = 14 animals: 

7 WT HFD and 7 eNOS-TG HFD. 
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taurodeoxycholate and taurochenodeoxycholate) and BCAA metabolism 

(isovalerylcarnitine, isobutyrylcarnitine, propionylcarnitine, N-acetylleucine, 

leucine and valine) were significantly elevated in eNOS-TG compared with WT 

mice on a high fat diet (Fig. 39). Phenylalanine and tyrosine metabolism and urea 

cycle intermediates were also significantly elevated. Levels of long chain fatty 

acids, lysolipids, and essential fatty acids were major metabolites that were lower 

in the high fat-fed eNOS-TG compared with WT mice.     

 

Plasma metabolic changes due to diet and genotype. To visualize the 

metabolic changes more likely to be involved in eNOS-induced resistance to diet-

induced obesity, we identified those metabolic changes occurring in HF-fed WT 

mice that were reversed by eNOS overexpression. For this we plotted the Z-

scores of plasma metabolites found to be significantly different between WT LFD 

and WT HFD mice (as in Fig. 35) and then superimposed the Z-scores from 

eNOS-TG mice (Fig. 40). Although most metabolites were affected similarly by 

HFD in both gentoypes, 3-dehydrocarnitine, 3-indoxyl sulfate, cholate, 

taurocholate, and leucine were significantly decreased by HFD in WT mice but 

were comparatively higher in high fat-fed eNOS-TG mice. This could indicate that 

the metabolic pathways to which they belong may be important in the mechanism 

by which eNOS overexpression protects from diet-induced obesity and adiposity.   
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Figure 39. Z-score plot analysis of metabolite changes in plasma from high 

fat-fed WT and eNOS-TG mice. WT and eNOS-TG mice were fed a high fat diet 

(HFD) for 6 weeks. Data are shown as standard deviations from the mean of WT 

HFD. Only metabolites that increased significantly and those that decreased by 

>60% are shown. Each point represents one metabolite in one sample. The color 

of metabolite indicates the superpathway to which it belongs: green - lipid 

metabolism; blue - bile acid metabolism; red - BCAA metabolism. n = 7 per 

group. 
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Figure 40. Modified Z-score plot analysis of metabolite changes in plasma 

from low fat-fed WT and both high fat-fed WT and eNOS-TG mice. WT mice 

were fed a low fat (LFD) or high fat diet (HFD) and eNOS-TG mice were fed a 

HFD for 6 weeks. Data are shown as standard deviations from the mean of WT 

LFD. Metabolites that increased significantly and those that decreased by >60% 

between the WT LFD and HFD (black circles) are shown. Levels of those 

metabolites were then compared between WT LFD and eNOS-TG HFD and 

plotted (blue circles). Each point represents one metabolite in one sample. n = 7 

per group. 
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Changes in bile acids and fatty acids are induced by diet and eNOS 

overexpression. Analyses described above suggested that bile acid 

metabolism, which can regulate energy expenditure and obesity 421, 422, and 

carnitine metabolism, which is involved in regulating fatty acid oxidation, might be 

significant pathways contributing to eNOS-induced resistance to obesity.  

Therefore, to obtain additional insights into these metabolic changes, we plotted 

changes in bile acids and fatty acid metabolism.  In WT mice, HFD significantly 

decreased 5 of the 7 bile acids compared with WT, low fat-fed mice (dotted line, 

Fig. 41A). In the context of LFD, eNOS overexpression was associated with 

higher levels of three of the bile acids compared with WT (Fig. 41A). On HFD, 

eNOS-TG mice had significantly higher levels of all but one bile acid compared 

with high fat-fed WT mice (Fig. 41A). When compared with WT LFD mice, levels 

of bile acids were not significantly different in eNOS-TG mice fed a HFD, with the 

marked exception of deoxycholate and taurodeoxycholate which were 

significantly elevated.   

Bile acid signaling has been linked to increased fatty acid oxidation by increased 

PPAR 423 and PDK-4 424 expression in liver. Our previous metabolic pathway 

analyses showed that -linolenic acid metabolism had the highest pathway 

impact and statistical significance of any pathway in eNOS-TG mice when 

compared to WT on both diets (Fig 36B and 38B). Together these results led us 

to investigate if levels of markers of fatty acid metabolism mirrored those of bile 

acids. Indeed, medium-chain, long-chain, and essential fatty acids were 

decreased in eNOS-TG mice when compared with WT on both LFD (data not 
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Figure 41. Changes in bile acid and fatty acid levels induced by diet and 

eNOS overexpression. Plasma levels of (A) bile acids obtained from 

metabolomics analyses from WT mice fed a high fat diet (HFD) (white hatched 

bars) or eNOS-TG mice fed a low fat diet (LFD) (blue bars) or HFD (blue hatched 

bars) for 6 weeks. n = 7 per group; *p<0.05, **p<0.01 and ***p<0.001 vs. WT of 

same diet; #p<0.001 vs. WT LFD. (B) Plasma levels of fatty acids from HFD-fed 

WT (white bars) and eNOS-TG (blue bars) mice. Data are expressed as fold 

change vs. WT HFD. n = 7 per group, *p<0.05 vs. WT HFD. 
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shown) and HFD (Fig. 41B). A majority of fatty acid species that were not 

significantly decreased were either saturated fats with an odd numbered chain 

length or polyunsaturated fats. These data suggest that eNOS overexpression 

increases bile acid synthesis, which could increase the oxidation of fatty acids 

and augment overall energy expenditure  

 

Preventing bile acid synthesis does not prevent diet-induced obesity. To 

test whether the lean phenotype of eNOS-TG mice is due to eNOS-induced 

changes in bile acid metabolism, eNOS-TG mice were placed on a HFD for 6 

weeks along with a synthetic inhibitor of bile acid synthesis, GW4064, which is a 

farensoid X receptor (FXR) agonist that decreases bile acid biosynthesis and bile 

acid pool size in C57BL/6J mice 421. We reasoned that if bile acids are 

responsible for the lean phenotype of eNOS-TG mice, decreasing their synthesis 

should increase weight gain. Treatment of eNOS-TG mice with the bile acid 

inhibitor showed a trend toward decreased levels of circulating bile acids (Fig. 

42B), however there was no difference in weight gain compared with those fed 

HFD alone (Fig. 42A). Likewise, glucose tolerance, insulin sensitivity and fasting 

blood glucose levels were unaffected by the GW4064 supplementation (Fig. 42C-

i-iii). These findings indicate that eNOS overexpression increases systemic 

energy expenditure by a bile acid-independent mechanism. 
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Figure 42. Preventing bile acid synthesis does not prevent diet-induced 

obesity. eNOS-TG mice were fed a high fat diet (HFD) with or without GW4064 

for 6 weeks. Body weight gain, glucose tolerance and insulin sensitivity were 

examined: (A) Body weight gain by week of HFD. n = 5-6 per group; (B) Levels 

of plasma bile acids. n = 4-6 per group; (C) Glucose tolerance test (GTT) area 

under the curve (AUC), insulin tolerance test (ITT) AUC and fasting blood 

glucose levels are shown. n = 5-6 per group. 
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Discussion 

The major goal of this study was to identify systemic metabolic changes 

that could underlie the lean phenotype induced by eNOS overexpression. During 

this analysis we considered that eNOS overexpression could either prevent a 

defect caused by high fat feeding or increase metabolic pathways that would 

otherwise promote resistance to obesity. Using metabolomics analysis, we 

identified several metabolic pathways that were significantly affected by high fat 

feeding or overexpression of eNOS. We found that, bile acid metabolites were 

significantly decreased by high fat feeding and significantly elevated due to 

eNOS overexpression. Additionally, after high fat feeding, bile acids remained 

significantly elevated in eNOS-TG compared to WT mice. This indicated that 

eNOS protects from a diet-induced suppression of bile acid metabolism and may 

play a role in the resistance to obesity observed in eNOS-TG mice. We also 

found evidence of significantly increased fatty acid metabolism in eNOS-TG 

mice. Therefore, we hypothesized that eNOS overexpression stimulates bile acid 

synthesis, which in turn increases both fatty acid oxidation and energy 

expenditure, providing intrinsic resistance to diet-induced obesity. If this were 

true, we reasoned that inhibiting bile acid synthesis would cause an accentuated 

weight gain in eNOS-TG mice on a HFD. Alternatively, bile acid-independent, 

eNOS-dependent changes in fatty acid metabolism could be important for the 

maintenance of a lean phenotype.  

To understand how eNOS overexpression induces a lean phenotype 

during nutrient excess, we first investigated the systemic metabolic changes that 
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occur in WT mice on a HFD. Metabolomic analyses showed several metabolic 

pathways affected in obesity. Primarily, HFD altered fatty acid and lipid 

metabolism (mainly lysophospholipid and sphingolipids), bile acid metabolism, 

glucose and cholesterol metabolism and markers of oxidative stress.  

Lysophospholipid metabolism and its role in the regulation of obesity and 

systemic metabolism are unclear. The term 'lysophospholipid' (LPL) refers to any 

phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free 

alcohol at either the sn-1 or sn-2 position. The prefix 'lyso-' derives from the early 

observations that LPLs were hemolytic, however, it is now used to refer generally 

to phospholipids missing an acyl chain. Lysophosphatidylcholine (lysoPC) is 

found in small amounts in most tissues and is formed by hydrolysis of 

phosphatidylcholine by the enzyme phospholipase A2, as part of the de-

acylation/re-acylation cycle that controls its overall molecular composition 425. In 

plasma, significant amounts of lysoPC are formed by a specific enzyme system, 

lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver 426. 

The enzyme catalyzes the transfer of the fatty acids of position sn-2 of 

phosphatidylcholine to the free cholesterol in plasma, with formation of 

cholesterol esters and lysoPC 427. LPLs play a key role in lipid signaling by 

binding to the LPL receptors (LPL-R) 428. LPL-Rs are members of the G protein-

coupled receptor family of integral membrane proteins 429.  LysoPCs are known to 

account for 5–20% of all phospholipids in the serum 430 and have been 

suggested to be closely associated with endothelial dysfunction, oxidative stress, 

inflammation, atherogenesis, and obesity 430. 
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Since lysoPCs have a relatively short half-life, they are thought to be 

metabolic intermediates that are produced during the formation or breakdown of 

other lipids. LysoPCs can have different combinations of fatty acids of varying 

lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 

16, 18 and 20 carbons are the most common. In our analysis, several species of 

lysoPC, including lysoPC 16:1 and 18:1 were decreased while one, lysoPC 17:0, 

was increased by HFD. These findings are in accordance with a previous study 

that showed decreased levels of lysoPC 16:1 and 18:1, as well as lysoPC 14:0, 

15:0, 16:0, 17:1, 18:2, 19:0, 20:1 and 20:4 while lysoPC 17:0, 18:0 and 18:3 were 

increased in diet-induced obese mice 431. Additional studies have shown 

decreased serum levels of lysoPC 18:1 and increased lysoPCs 14:0 and 18:0 in 

obese men 432 as well as increased lysoPC 18:0 in high fat-fed pigs 433. While 

there was an association between specific lysoPC species and obesity, further 

study is needed to elucidate their role in regulation of body composition.   

Decreased levels of lysoPCs measured in obesity could indicate a 

decrease in the activity of the enzymes responsible for their esterification. 

However, studies in mice lacking LCAT, the main generator of circulating 

lysoPCs, demonstrate a resistance to diet-induced obesity and insulin 

insensitivity 434. Further, LDLR/LCAT double knockout mice, in addition to 

remaining lean after high fat feeding, display ectopic depositions of brown 

adipocytes in skeletal muscle 434. Though phospholipids, generally, were 

decreased in these mice, the authors did not specify as to their species. 

Conversely, overexpression of LCAT in mice has been shown to increase plasma 
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HDL and markedly reduced VLDL, LDL and triglyceride levels, but offered no 

protection from the development of diet-induced atherosclerosis 435. While our 

analysis is suggestive of a decreased synthesis of circulating lysoPCs by LCAT, 

further examination of the activity and expression of the enzyme would be 

necessary to determine the mechanism underlying these changes.  

As in our previous analysis of adipose tissue, we found that the plasma 

levels of sphingolipid metabolites were profoundly increased in obesity. Palmitoyl 

sphingomyelin and stearoyl sphingomyelin were the most significantly increased 

metabolites high and low fat-fed animals. As mentioned previously (Chapter II), 

the breakdown of sphingomyelin could yield significant amounts of ceraminde, 

which is a potent inhibitor of insulin signaling. Plasma ceramide levels are 

elevated in obese individuals and correlate with the severity of insulin resistance 

436.  

Carbohydrate metabolism and glucose handling were also altered by 

HFD, specifically, glucose and mannose levels were elevated while 1,5-

anhydroglucitol (1,5-AG), an important marker of glycemic control 437, was 

significantly decreased. This evidence of disrupted glucose metabolism is 

consistent with our previous data that six weeks of high fat feeding is sufficient to 

induce glucose and insulin intolerance (Chapter II, Fig. 4).  

Bile acids have been shown to be potent regulators of metabolism. 

Synthesized from cholesterol in the liver, bile acids are secreted into the 

intestines to aid in digestion, primarily fat emulsion 438. Recently, new roles for 
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bile acids as important signaling molecules have also been described. Bile acid 

signaling has been shown to augment energy expenditure 439, lipid and glucose 

homeostasis 440, 441, and body composition 421. Through its control of short 

heterodimer partner (SHP) expression, FXR has been shown to downregulate 

hepatic fatty acid and triglyceride synthesis 440 while bile acid supplementation 

increased brown adipose tissue energy expenditure and prevented obesity and 

insulin resistance in mice 439. Conversely, decreasing bile acid pool size 

worsened obesity and diabetes in high fat-fed mice 421. Further, there is evidence 

supporting an NO-induced increase of bile acid synthesis. Perfusion of livers with 

NO donors increased bile acid outflow 442, 443 while inhibition of NOS reduced the 

biosynthesis of bile acids by inhibiting the activity of hepatic Cyp7A1 444, the rate-

limiting enzyme in bile acid production 445.  Bile acids can also increase 

mitochondrial biogenesis. Through the binding and activation of the G-coupled 

receptor, TGR-5, in brown adipose tissue and skeletal muscle, bile acids trigger a 

signaling cascade that activates PGC-1, a master regulator of mitochondrial 

biogenesis 439.  These data support the idea that increased bile acid synthesis in 

eNOS-TG mice could have a significant impact on body composition and energy 

expenditure.  

The relationship of bile acids and triglyceride metabolism has been 

established for decades 445. In clinical trials, dyslipidemic patients given bile acid-

sequestering resins exhibited increased plasma triglyceride and VLDL levels 446, 

447. Additionally, patients with deficiencies in CYP7A1 are also characterized by 

increased plasma triglyceride concentrations 448. In rodent models, FXR 
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activation has been linked to lower plasma triglycerides 440, 449 by the induction of 

hepatic PPAR expression 423. In our analysis, overexpression of eNOS induced 

a broad decrease in plasma FFA levels, predominantly long chain fatty acids and 

essential fatty acids. Further, on HFD levels of the β-oxidation intermediates, 3-

hydroxyoctanoate and 3-hydroxydecanoate, were decreased while the carnitine-

conjugated end product, propionylcarnitine, was higher in eNOS-TG mice 

compared with WT mice. Taken together, these data suggest that eNOS 

overexpression increased β-oxidation and decreased fatty acid synthesis.  

Studies in NO donor-treated rat hepatocytes showed similar results by 

increasing β-oxidation in a cGMP-dependent manner and decreasing lipid 

synthesis 450. Additionally, inhibitors of NOS 451 and deletion of eNOS increased 

hepatic lipid synthesis 452. The eNOS KO mice also showed decreased 

expression of genes involved in β-oxidation and increased expression of 

neolipogenic genes in skeletal muscle 337. Collectively, these data suggest that 

eNOS regulates lipid metabolism, possibly via a PPAR-mediated mechanism 

453. As shown previously, PPAR was elevated in the adipose tissue of eNOS-

TG mice (Chapter III) which supports the hypothesis that eNOS overexpression 

increases fatty oxidation capacity.  

Because the liver is the site of both bile acid synthesis and fatty acid 

metabolism, we hypothesized that eNOS overexpression increases bile acid 

synthesis, and, in doing so, might increase fat utilization, either directly by 

increasing PPARα activity in the liver, or indirectly, by promoting increased 

thermogenesis in other peripheral tissues, such as brown adipose tissue. 
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Activation of FXR by the synthetic agonist GW4064 was shown previously to be 

sufficient to decrease bile acid levels and energy expenditure, thereby 

accentuating diet-induced weight gain and insulin resistance 421. However, in our 

study, bile acid inhibition had no effect on weight gain, glucose handling or insulin 

sensitivity in eNOS-TG mice.   

These data appear to indicate that eNOS overexpression increases fatty 

acid metabolism and systemic energy expenditure by a bile acid-independent 

mechanism. The increase in PPAR expression measured in the adipose tissue 

of eNOS-TG mice may indicate that eNOS overexpression has a direct effect on 

PPAR-mediated increased fatty acid oxidation in other tissues as well. To 

address this hypothesis, we plan to measure PPARα-driven genes in liver and 

skeletal muscle. Should results suggest a role for PPARα, future experiments 

would focus on pharmacological or genetic disruption of PPAR in the eNOS 

overexpressing mice. For example, crossing PPAR knockout mice with eNOS-

TG mice and feeding a high fat diet could be an especially revealing experiment. 

If these mice were to become obese as a result of high fat feeding we would 

have strong evidence to support the claim that eNOS protects from obesity via a 

PPAR-mediated mechanism. Additionally, activation of PPAR in WT mice 

during high fat feeding could also be informative. Fibrates are a class of PPAR 

agonists that have been used in combination with statins to lower plasma 

cholesterol and triglycerides 454 and have been shown to reduce micro- and 

macrovascular risk 455. Fibrate treatment during high fat feeding of WT mice 
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would provide additional insights into the role of PPAR-induced fatty acid 

metabolism on the development of metabolic disease.   

Fibrates have also been shown to promote the catabolism of BCAAs 456. 

In our analysis, plasma levels of BCAAs and short-chain acyl carnitines were 

decreased in high fat-fed WT mice and increased in the eNOS-TG mice, similar 

to our previous findings in adipose tissue (Chapter III). It has been shown before 

that plasma BCAAs are increased in obese and diabetic humans and rodents 66, 

312, but the significance of BCAAs in regulating adiposity or insulin resistance is 

unclear. BCAAs have also been shown to promote insulin resistance 312. Despite 

lower levels of weight gain, rats fed a BCAA/HF diet remain insulin resistant. 

Sustained insulin resistance in these rats has been linked to mTOR activation 312, 

which induces insulin resistance by phosphorylating IRS1 457, 458. 

BCAA supplementation has been shown to have favorable effects on diet-

induced metabolic disease. Feeding leucine prevented obesity in rodents 459, 460, 

and was associated with lower adiposity in humans 461, while isoleucine 

decreased tissue TG accumulation and adiposity and increased expression of 

PPAR and UCPs in diet-induce obese mice 462. Additionally, increasing BCAA 

levels by deletion of BCATm, the enzyme that catalyzes the first step in BCAA 

metabolism, completely prevents HFD-induced insulin resistance and adiposity in 

mice 311. Furthermore, BCAAs as well as 3C-acylcarnitines increase 

mitochondrial biogenesis and promote energy expenditure 311, 354-356. Therefore, it 

is possible that BCAA levels in high fat-fed eNOS-TG mice is due to increased 

protein degradation and synthesis, which dissipates excess energy.  
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Limitations of this study are inherent to the descriptive approach employed 

by metabolomics analyses. Metabolomics is a powerful analytical tool to 

interrogate wide-ranging changes in different experimental samples. However, 

metabolomics analysis is designed mainly to generate new hypotheses as 

opposed to test specific hypotheses. These analyses can be very useful in 

nutritional research and biomarker discovery, but they give only a “snapshot” of 

changes that are occurring at that moment.  Furthermore, current libraries of 

known metabolites and metabolic pathway models are incomplete. Nevertheless, 

such approaches are indispensable for identifying novel pathways that might be 

important to health and disease. 

In summary, this study identified significantly altered metabolic pathways 

due to high fat feeding and eNOS overexpression. Bile acid metabolism and fatty 

acid metabolism pathways were significantly decreased by nutrient excess in WT 

mice but were rescued by eNOS overexpression. Inhibiting bile acid synthesis 

did not produce an obese phenotype in eNOS-TG mice on HFD; however, eNOS 

shows a clear influence on fatty acid metabolism. Future studies will focus on the 

mechanism(s) by which increased eNOS activity regulates fatty acid metabolism 

and energy expenditure.  
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CHAPTER V 

CONCLUDING DISCUSSION 

 

We undertook the studies presented here were to develop a better 

understanding of how NO regulates metabolism. For this, we examined 

metabolic changes that accompany diet-induced obesity and insulin resistance 

and we assessed the impact of increasing NO during nutrient excess. Our 

hypothesis was that increased NO derived from eNOS prevents diet-

induced obesity by promoting adipose tissue browning and increasing 

systemic metabolism. To address this hypothesis, we examined whether 

overexpression of eNOS was sufficient to promote metabolic alterations in WAT 

during high fat feeding that would prevent obesity and insulin resistance. To 

obtain a more comprehensive view, we investigated changes in systemic 

metabolism that were induced by eNOS.  

 As discussed in Chapter II, we first examined the metabolic and 

bioenergetic changes occurring in WAT with obesity. After six weeks of high fat 

feeding, metabolomic analyses showed marked changes in glycerolipid and 

amino acid metabolism, with most metabolites showing a decrease in WAT of 

obese mice.  Levels of succinate, however, increased significantly in WAT from 

high fat-fed mice, suggesting changes in mitochondrial metabolism. Furthermore, 
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we found changes indicative of mitochondrial remodeling, decreased 

mitochondrial bioenergetic capacity and striking decreases in eNOS abundance. 

Collectively, these results revealed a range of coordinated changes in 

mitochondrial function that might be contributing to the “whitening” of adipose 

tissue in obesity.   

 To examine the significance of in eNOS downregulation in WAT, we 

investigated whether increasing eNOS expression would prevent obesity and its 

metabolic consequences. In Chapter III, we present data showing that 

endothelial-specific overexpression of eNOS prevents diet-induced obesity and 

reduces plasma levels of insulin, TGs and FFAs, without affecting systemic 

glucose intolerance. The eNOS-TG mice displayed a higher metabolic rate and 

reduced adipocyte hypertrophy in WAT. Metabolomic analyses indicated an 

increase in fatty acid oxidation in WAT that was reflected by an increase in the 

expression levels of PPAR- and PPAR- genes, higher abundance of 

mitochondrial proteins and increased rate of mitochondrial oxygen consumption. 

These findings demonstrate that eNOS has anti-obesogenic effects that prevent 

high fat diet-induced obesity without affecting systemic insulin resistance, in part 

by stimulating metabolic activity in WAT.  

 Although effects of eNOS overexpression on WAT were quite profound, 

we questioned whether these effects could account fully for the increase in 

whole-body energy expenditure and the lean phenotype observed in eNOS-TG 

mice. Therefore, as discussed in Chapter IV, we studied effects of eNOS 

overexpression on systemic metabolism. Measurements of plasma metabolites in 
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eNOS-TG mice were consistent with increases in fatty acid, bile acid and BCAA 

metabolism. However, our experiments to decrease bile acids in eNOS-TG mice 

did not markedly affect on body composition and glucose or insulin handling 

suggesting that the metabolic effects of eNOS overexpression on fatty acid 

metabolism are not mediated by bile acids. From these findings we propose that 

eNOS increases BCAA metabolism thereby increasing PPAR activity in the liver 

and possibly skeletal muscle leading to increased fat utilization. Further 

elucidation of the regulatory effects of eNOS on BCAA metabolism and its effects 

on fatty acid metabolism could help understand the mechanism by which eNOS 

increases systemic energy expenditure and prevents adiposity.  

 Nevertheless, data obtained from studies so far support a pivotal role of 

NO as a central regulator of energy metabolism and body composition. This 

regulation, however, is inherently complex and growing evidence demonstrates 

divergent effects of NO depending on its source and anatomic location. In the 

sections that follow, our findings are discussed in the context of the known 

interactions between NO, its sources of generation and obesity and insulin 

resistance.  

 

Regulation of obesity and insulin resistance by NO 

In one approach, pharmacological studies as well as gain-of-function and 

loss-of-function studies helped in elucidating the critical roles for NO in regulating 

obesity and insulin resistance. Previously, supplementation with the NOS 
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substrate, L-arginine, and inhibition of NOSs were the most common 

pharmacological approaches used to determine how NO regulates body 

composition and insulin sensitivity.  Genetic approaches, utilizing mice in which 

components integral to the synthesis of NO have been deleted or overexpressed, 

have led to further development of a model by which NO regulates systemic 

metabolism.  The model thus built is extensive in its complexity and integration 

and involves nearly all aspects thought to be important in regulating metabolic 

homeostasis. 

 

Lessons from pharmacological interventions 

Using primarily L-arginine and NOS inhibitors, early pharmacological 

studies showed that NO is a potent regulator of both energy intake and 

expenditure.  Interestingly, both L-arginine and NOS inhibitors prevent obesity 

and insulin resistance, albeit by different mechanisms.   

 

nNOS-derived NO increases food intake  

In rodents, L-arginine was shown to increase, and NOS inhibitors to 

decrease, food intake 193, 463-466.  These effects were due to NO activity in the 

brain, impinging on the leptin and serotonergic systems that regulate hunger. 

Leptin, given intracranially, was found to diminish diencephalic NOS activity and 

decrease food intake and body weight gain, and intracranial co-administration of 

L-arginine antagonized this effect 467. Furthermore, intracerebroventricular 

injection of L-arginine, likely through stimulation of NOS activity, inhibited 
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serotonin-induced anorexia caused by IL-1β 468. Studies with NOS inhibitors have 

further solidified our understanding of the central effects of NO on hunger.  

Systemic administration of the NOS inhibitor, NG-nitro-L-arginine, reduced food 

intake in obese rats and increased serotonin metabolism in the cortex, 

diencephalon, and medulla pons, thereby implicating the central serotoninergic 

system in mediating the anorexic effect of NOS inhibitors 469. Other NOS 

inhibitors, such as L-NAME, promote weight loss and diminish food intake in 

ob/ob and db/db mice 465 and obese rats 470 and reduce adiposity and improve 

insulin sensitivity in high fat-fed mouse models 471.  Interestingly, 

intracerebroventricular administration of NG-monomethyl-L-arginine (L-NMMA) 

was shown also to regulate insulin secretion and peripheral insulin sensitivity 472, 

suggesting that centrally derived NO has effects that extend to distal nodes of 

systemic metabolism.  It is also possible that this effect contributes to the 

hyperphagic effects of NO, as insulin is well known to regulate hunger and satiety 

473-477. Taken together with numerous other studies demonstrating a role for NO 

in the regulation of hunger 478-482, it would appear that NO produced in the brain 

antagonizes anorectic signals and stimulates food intake. 

 

Evidence supporting a role of NO in energy expenditure and glucose and lipid 

metabolism 

Ostensibly, the reported anti-anorexic effects of NO might imply that by 

promoting food intake, increased levels of NO, e.g., that elicited by 

supplementation with L-arginine, should increase adiposity and insulin 
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resistance.  However, human studies have shown repeatedly that L-arginine 

supplementation has favorable effects on body composition and insulin sensitivity 

483-489.  Results from animal studies are in agreement: in rodents, L-arginine 

treatment has multimodal effects characterized by decreased fat mass, increased 

muscle mass, and improved insulin sensitivity. Despite promoting hyperphagia, 

L-arginine feeding reduced WAT mass, improved insulin sensitivity, and 

increased energy expenditure in mice 490. In rats, not only has dietary L-arginine 

supplementation been shown to reduce fat mass, but it appears to increase 

skeletal muscle and brown fat mass and reduce serum concentrations of 

glucose, TGs, FFAs, homocysteine, dimethylarginines, and leptin as well 491, 492. 

Similar salubrious systemic effects of L-arginine have been demonstrated in pigs 

493. Overall, these collective data suggest that L-arginine, and by inference, NO, 

has the capacity to reduce fat mass by increasing mitochondrial biogenesis, 

regulating brown adipose tissue signaling, and increasing the expression of 

genes that promote oxidation of energy substrates 494. 

Chronic treatment with sildenafil, which prevents the degradation of cGMP 

and is commonly prescribed to improve penile erectile function, improved insulin 

action and diminished obesity in high fat-fed mice 495. Shorter durations of 

sildenafil treatment have been shown to promote “browning” of white adipose 

tissue 496. While there are no reports that type 5-phosphodiesterase inhibitors 

such as sildenafil regulate obesity in humans, they have been shown to increase 

mitochondrial biogenesis in human adipose tissue ex vivo 497, suggesting at least 

the potential to increase energy expenditure.   
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Other drugs that affect NO production or function lend additional support 

to a role for NO in regulating insulin sensitivity. Beraprost (a stable prostaglandin 

analog) restores eNOS phosphorylation in endothelial-specific IRS-2 knockout 

mice and has been found to rescue capillary recruitment and to promote 

adequate insulin and glucose delivery to the skeletal muscle 217.  Insulin, L-

arginine, and sodium nitroprusside, by promoting S-nitro(sy)lation of key proteins, 

have been found to be particularly critical for regulating vascular endothelial 

insulin uptake and its transendothelial transport 498. Hence, NO derived from 

eNOS appears play an important role in regulating systemic glucose metabolism 

and insulin delivery to peripheral tissues. 

A characteristic feature of NO signaling is that effects of NO depend on its 

site of generation, concentration, and duration of application. Particularly 

interesting are the modes of action of NO in the liver, skeletal muscle, and 

pancreas.  Although chronic treatment with NOS inhibitors promote weight loss 

and insulin sensitivity in animal models 465, 470, 471, acute application of these 

inhibitors causes systemic insulin resistance 499. This is mediated in part by 

actions in the liver, which can regulate systemic responses to insulin 500.  

Administration of BH4, which is known to be oxidized to BH2 in the diabetic state 

501-503 and plays an important role in regulating coupled eNOS activity (see 

above), to STZ-induced diabetic mice lowered fasting blood glucose levels in an 

eNOS-dependent manner and improved glucose tolerance and insulin sensitivity 

in ob/ob mice 504.  This metabolic improvement was at least partially due to 

eNOS-mediated activation of AMPK in the liver, which suppressed hepatic 
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gluconeogenesis 504.  Hence, eNOS uncoupling in liver may be important for 

regulating systemic glucose metabolism.   

Several studies demonstrate an important role of eNOS and nitrogen oxides 

in the liver. For example, intraportal administration of NOS inhibitors was shown 

to cause insulin resistance, which was rescued by intraportal delivery of the NO 

and superoxide donor, SIN-1 505, 506.  Interestingly, when liver glutathione was 

first depleted by buthionine sulfoximine, the effects could not be rescued by 

sodium nitroprusside or SIN-1 506.  These results suggest that the formation of 

nitrosated glutathione (GSNO) in the liver might be important in mediating 

systemic responses to insulin. That intraportal delivery of glutathione methyl 

ester and SIN-1 enhances insulin sensitivity in rats would appear to support this 

view 507. 

 

The NO-HISS connection? 

How does NO (and its oxidation products) in the liver mediate systemic 

responses to insulin?  It has been suggested that the hepatic role of NO may 

relate to a hormone called ‘hepatic insulin-sensitizing substance (HISS)’.  This 

substance, for which there are only suggestive candidates (e.g., bone 

morphogenetic protein-9 508), appears to account for 55% of the glucose disposal 

by insulin. Briefly, it is posited that post-prandial elevations in insulin results in 

release of a hormone, i.e., HISS, from the liver that acts on skeletal muscle to 

promote glucose uptake 509, 510. Intriguingly, one study suggests that HISS, not 

insulin action, regulates the peripheral vasodilation generally attributed to insulin 
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511.  Atropine or hepatic surgical denervation inhibited the peripheral vascular 

actions of insulin, allegedly by blocking HISS release, whereas intraportal 

delivery of acetylcholine, which increases NOS activity, restored HISS release 

and insulin-mediated vasodilation 511. These findings are consistent with original 

studies showing that insulin-mediated vasodilation is dependent on NO 512, 513 

and that insulin-mediated skeletal muscle vasodilation contributes to insulin 

sensitivity in humans 514. Combined with other studies suggesting a role for NO in 

promoting the release of HISS 515-517, this suggests that the putative hormone 

could be an NO-regulated, liver-produced, endocrine mediator of classical EDRF 

crucial for glucose disposal.  However, (in addition to the identity of HISS) it 

remains unclear how this distally engendered mode of vasoregulation integrates 

physiologically (and pathologically) with the local effects of insulin and NO in the 

vasculature 214-217.   

 

Pancreatic effects of NO  

Extremely important for maintaining metabolic homeostasis, the pancreas 

utilizes NO to regulate their function. The pancreas is comprised of two types of 

glands: (1) exocrine glands, which secrete the bicarbonate and digestive 

enzymes needed to neutralize the acidic gastric contents entering the small 

intestine and to complete digestion of food, respectively; and (2) endocrine 

glands, i.e., the islets of Langerhans, which contain several types of secretory 

cells, including α cells, β cells, δ cells, and F cells.  Each of these cell types 

secretes multiple proteins, such as insulin (β cells), glucagon (α cells), and 
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somatostatin (δ cells). NO has been shown to affect both exocrine and endocrine 

functions of the pancreas 518, 519.   

With respect to insulin release, it appears that NO stimulates early, glucose-

induced insulin release, while it is responsible for cytokine (e.g., IL-1β)-mediated 

inhibition of insulin secretion.  This dual role of NO in regulating insulin secretion 

has been a subject of controversy (e.g., 520), which may be, in part, due to the 

mechanistic complexity regulating pancreatic insulin secretion; compounded by 

the multiple actions of NO.  The inhibitory actions of NO on insulin release 

appear to be due to iNOS-derived NO, which is implicated in the destruction of 

islet cells in type 1 diabetes 521, 522.  However, mechanisms regulating the insulin-

stimulating effects of NO 523-526 have been more difficult to elucidate. NO has 

been suggested to stimulate islet cell insulin secretion by inducing calcium 

release from mitochondria 527, which may be due to NO-mediated inhibition of 

respiration and mitochondrial depolarization. Nevertheless, the stimulatory 

effects of NO on insulin secretion are relatively subtle 526, which might explain 

why some studies suggest that NO is not involved in the initiation of insulin 

secretion from pancreatic islets 528, 529. 

 

Lessons from human studies and genetic interventions  

Considerable data suggests an association between genetic polymorphisms 

in NOS isoforms and insulin resistance. Notably, several studies have associated 

a T(-786)C variant of the eNOS gene with insulin resistance 530-532. Several other 

genetic variants in the eNOS locus are associated with T2D 533, susceptibility for 
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insulin resistance, hypertriglyceridemia, and low HDL 534, or worsened 

endothelial function in individuals prone to T2D 535.  Polymorphisms in the iNOS 

gene have been associated with higher plasma glucose and elevated waist/hip 

ratios 536, and variants in the iNOS gene promoter are associated with T2D 537. 

Genetic deletion, manipulation, and overexpression of NOS isoforms in mice 

have allowed for interrogation of mechanisms by which NO regulates metabolic 

health and disease.  In mice, it has been reported that deletion of eNOS causes 

insulin resistance, hyperlipidemia, and hypertension 336. While full gene deletion 

mimics human “metabolic syndrome,” even partial gene deletion of eNOS results 

in exaggerated insulin resistance, glucose intolerance, and hypertension induced 

by a high fat diet 538, 539. Mice lacking all NOS isoforms, i.e., eNOS/nNOS/iNOS 

triple knockout mice, demonstrate increased visceral obesity, hypertension, 

hypertriglyceridemia, and impaired glucose tolerance, and, it is interesting to 

note, that this is one of the few mouse strains to date to have spontaneous 

myocardial infarctions, apparently due to unstable coronary arteriosclerotic 

lesions 540. That NOS is important to insulin sensitivity was further shown by 

studies in mice in which overexpression of dimethylarginine 

dimethylaminohydrolase—an enzyme that catalyzes the breakdown of the 

endogenous inhibitor of NOS, ADMA—increased insulin sensitivity 541.  

 

Anti-obesogenic effects of eNOS 

It appears that the metabolic phenotype elicited by insufficient levels of 

eNOS-derived NO relates directly to defects in intermediary metabolism in key 
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peripheral tissues.  Supporting evidence supplied by eNOS KO mice include a 

markedly lower energy expenditure and decreases in mitochondrial content and 

fatty acid oxidation in muscle compared with WT mice 337; and, as expected, 

eNOS KO mice demonstrate an impaired ability to exercise 542. Gain-of-function 

studies show a remarkable ability of eNOS to regulate body composition and 

increase metabolism.  Supplementation of eNOS KO mice with nitrate, which can 

be serially reduced to nitrite and NO, decreases not only blood pressure, but 

visceral fat and TGs as well, thus reversing features of metabolic syndrome 363. 

Furthermore, our studies show that mice overexpressing eNOS acquire an anti-

obesogenic phenotype characterized by resistance to accumulation of white 

adipose tissue in response to a high fat diet, a higher metabolic rate, resistance 

to diet-induced hyperinsulinemia, and remarkably lower plasma levels of FFAs 

and TGs (Chapter III) 286. Our findings were supported by results from an 

investigation of an eNOS phosphomimetic point mutant mouse model that was 

published shortly after our study 543, 544.  Mutation of serine 1176 of eNOS to an 

aspartic acid resulted in increased endothelial NO production as well as 

resistance to diet-induced weight gain and hyperinsulinemia; mutation of the 

residue to an alanine, which cannot be phosphorylated, resulted in insulin 

resistance and features of metabolic syndrome 195, 544. 

How does eNOS regulate metabolism and body composition? Several 

possibilities exist.  Consistent changes in plasma lipids insinuate a central role of 

eNOS in lipid oxidation or synthesis, e.g., eNOS KO mice have elevated plasma 

levels TGs and FFAs compared with WT mice 336, 539, while eNOS transgenic 
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mice show diminished abundance of the lipids 160.  That these differences are 

due to modulation of fat oxidation are suggested by studies showing a direct 

effect of NO on the capacity to oxidize fat.  Not only do eNOS KO mice show 

diminished fat oxidation capacity in skeletal muscle 337, but administration of a 

NOS inhibitor is sufficient to increase serum TGs and diminish hepatic fatty acid 

oxidation in rats 545, potentially by decreasing the activity of carnitine palmitoyl 

transferase 546. Similar, NOS inhibitor-dependent decreases in fat oxidation 

capacity have been found in heart 547. In isolated hepatocytes, treatment with NO 

donors was shown to increase fatty acid oxidation in a cGMP-dependent manner 

by inhibiting acetyl CoA carboxylase (thereby decreasing production of malonyl 

CoA) and stimulating carnitine palmitoyl transferase activity 450.  Interestingly, NO 

also inhibits fatty acid synthesis in hepatocytes 450, which is consistent with 

studies showing that NOS inhibitors 451 or genetic deletion of eNOS increases 

lipid synthesis in liver 452. In skeletal muscle, genetic deletion of eNOS increases 

neolipogenic genes expression while downregulating genes involved in β-

oxidation 337. 

That genes involved in fatty acid oxidation are modulated by NO is 

consistent with data showing that overexpression of eNOS increases the 

expression of peroxisome proliferator activated receptor (PPAR)-α 160, which is 

well known to regulate lipid metabolism 453. However, it is possible that NO 

regulates fat oxidation post-translationally as well. Recent studies show 

widespread S-nitrosation of multiple enzymes involved in intermediary 

metabolism. In particular, the liver enzyme, very long chain acyl-coA 
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dehydrogenase (VLCAD) was shown to be nitrosated at Cys238, which 

increased the catalytic efficiency of the enzyme, and this modification was absent 

in eNOS KO mice 548.  Collectively, these studies suggest that the powerful anti-

obesity effects of eNOS-derived NO could be due to simultaneous increases and 

decreases in fat oxidation and a decrease in fat synthesis.   

 

iNOS promotes insulin resistance  

The iNOS enzyme also regulates systemic metabolism, particularly insulin 

resistance. Although ablation of the iNOS gene has no effect on diet-induced 

obesity, its absence was shown to improve glucose tolerance, normalize insulin 

sensitivity, and prevent derangements in the PI3K/Akt signaling in response to 

insulin 549. Commonly, increases in iNOS expression in skeletal muscle of obese 

mice are associated with increased S-nitrosation of the insulin receptor (IR), IRS-

1, and Akt, suggesting that nitrosative post-translational modifications of proteins 

in the insulin signaling pathway are responsible for iNOS-induced insulin 

resistance 550, 551. The presence of iNOS appears to decrease the abundance of 

IRS-1 by promoting its proteasomal degradation 186. Interestingly, an acute bout 

of exercise was sufficient to downregulate iNOS in high fat-fed rats as well as 

prevent S-nitrosation of proteins involved in insulin 

signaling, and administration of an inhibitor of iNOS (L-N6-(1-iminoethyl)lysine; L-

NIL) pheno-copied these effects 552. Also, aspirin—which is one of the oldest 

known treatments for diabetes 553, 554 and which improves blood glucose and 

insulin sensitivity in diabetic patients 555 and animal models of T2D 556—inhibited 
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iNOS-mediated S-nitrosation of IR, IRS-1, and Akt in skeletal muscle and 

improved insulin sensitivity 557. 

Expression of iNOS in peripheral tissues other than skeletal muscle is also 

important for regulating insulin sensitivity. Selective overexpression of iNOS in 

liver is sufficient to cause hepatic insulin resistance, hyperglycemia and 

hyperinsulinemia 558, and the use of an iNOS-specific inhibitor (L-NIL) reversed 

hyperglycemia, hyperinsulinemia, and insulin resistance in ob/ob mice 188. In 

obesity, proinflammatory macrophages accumulating in adipose tissue are 

responsible for the majority of iNOS expression 189-191 and may propagate the 

inflammatory signaling implicated in insulin resistance 168. Importantly, the role of 

iNOS in adipose tissue appears to differ remarkably from the canonical NO-

cGMP pathway, as high fat diet-induced increases in proinflammatory cytokines 

and macrophage recruitment were attenuated by the administration of sildenafil 

559. Interestingly, lack of iNOS does not prevent age-induced insulin resistance 

560, which suggests that not all insulin resistant states are created equal 561.  In 

agreement with this view it has been shown that mice lacking the nNOS isoform 

are insulin resistant due to a sympathetic, alpha-adrenergic mechanism 562.  

Integration of findings from these studies, and our own, helps to form a 

model illustrating the complex role of NO in regulating obesity and insulin 

resistance (Fig. 43). NO derived from eNOS appears to have both anti-

obesogenic and insulin-sensitizing properties. Its anti-obesogenic role stems 

from its ability to increase fat oxidation in peripheral tissues such as skeletal 

muscle, liver, and adipose tissue. As mentioned above, there is evidence that NO 
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also decreases lipid synthesis in liver. The impact of eNOS on glucose 

metabolism and insulin sensitivity is supported by its capacity to increase the 

transport of insulin and glucose to key peripheral tissues such as skeletal muscle 

and to regulate gluconeogenesis. Additionally, there may be implications for 

eNOS-mediated HISS release, which enhances the vasodilatory properties of 

insulin.  That eNOS prevents hyperinsulinemia in two separate genetic gain-of-

function studies 160, 544 suggests further that it could impact glucose metabolism 

directly by modulating insulin release. Other isoforms of NOS appear to promote 

deleterious changes in metabolism.  In the brain, evidence suggests that nNOS-

derived NO promotes hyperphagia.  The iNOS isoform promotes insulin 

resistance in both liver and skeletal muscle and is critical in inflammatory 

responses in multiple tissues, most notably, the adipose organ. In contrast to 

eNOS, iNOS appears to promote gluconeogenesis, and iNOS has remarkable 

effects on cytokine-mediated insulin secretion. Collectively, it is apparent that NO 

is one of the most critical regulators of metabolism, body composition, and insulin 

sensitivity. Harnessing its beneficial metabolic actions is an exciting prospect for 

combatting metabolic disease in the future. 
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Figure 43. Working model of the systemic effects of NO on obesity and 

metabolism. Illustration of major organs and processes affected by NO and 

nitrogen oxides derived from eNOS, nNOS, and iNOS:  The eNOS isoform 

shows anti-obesogenic and insulin sensitizing effects, which appears to be based 

in the ability of the enzyme to decrease lipid synthesis and promote fat oxidation 

in the liver and skeletal muscle.  Additionally, eNOS may be implicated in the 

secretion of hepatic insulin sensitizing substance (HISS), which might support 

insulin sensitivity in peripheral tissues such as skeletal muscle. eNOS is 

important also for maximizing delivery of insulin and substrates to skeletal 

muscle, and this is likely critical in regulating insulin sensitivity and glucose 

tolerance. Through its actions in liver and pancreas, eNOS may also suppress 

gluconeogenesis and prevent hyperinsulinemia, respectively.  Additionally, NO 

increases the abundance of mitochondria and stimulates substrate oxidation 

capacity in adipose tissue, effectively promoting “browning” of white adipocytes. 

Conversely, other isoforms of NOS appear to have a more malevolent role in 

metabolism.  NO derived from nNOS promotes hyperphagia, and iNOS-derived 

nitrogen oxides can promote insulin resistance and inflammation in key 

peripheral tissues such as liver, skeletal muscle, and adipose tissue.  In addition, 

iNOS may affect glucose homeostasis by increasing glucose output from the liver 

and by impairing the exocrine and endocrine activities of the pancreas.  
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