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ABSTRACT

ENSEMBLE LEARNING METHOD FOR HIDDEN MARKOV MODELS

Anis Hamdi

December 2, 2014

For complex classification systems, data are gathered from various sources and potentially

have different representations. Thus, data may have large intra-class variations. In fact, modeling

each data class with a single model might lead to poor generalization. The classification error can

be more severe for temporal data where each sample is represented by a sequence of observations.

Thus, there is a need for building a classification system that takes into account the variations within

each class in the data.

This dissertation introduces an ensemble learning method for temporal data that uses a

mixture of Hidden Markov Model (HMM) classifiers. We hypothesize that the data are generated

by K models, each of which reflects a particular trend in the data. Model identification could

be achieved through clustering in the feature space or in the parameters space. However, this

approach is inappropriate in the context of sequential data. The proposed approach is based on

clustering in the log-likelihood space, and has two main steps. First, one HMM is fit to each of

the N individual sequences. For each fitted model, we evaluate the log-likelihood of each sequence.

This will result in an N-by-N log-likelihood distance matrix that will be partitioned into K groups

using a relational clustering algorithm. In the second step, we learn the parameters of one HMM

per group. We propose using and optimizing various training approaches for the different K groups

depending on their size and homogeneity. In particular, we investigate the maximum likelihood

(ML), the minimum classification error (MCE) based discriminative, and the Variational Bayesian

(VB) training approaches. Finally, to test a new sequence, its likelihood is computed in all the

models and a final confidence value is assigned by combining the multiple models outputs using a

decision level fusion method such as an artificial neural network or a hierarchical mixture of experts.

v



Our approach was evaluated on two real-world applications: (1) identification of Cardio-

Pulmonary Resuscitation (CPR) scenes in video simulating medical crises; and (2) landmine detec-

tion using Ground Penetrating Radar (GPR). Results on both applications show that the proposed

method can identify meaningful and coherent HMM mixture components that describe different

properties of the data. Each HMM mixture component models a group of data that share common

attributes. The results indicate that the proposed method outperforms the baseline HMM that uses

one model for each class in the data.
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CHAPTER 1

INTRODUCTION

Statistical learning problems in many fields involve sequential data. Sequential data can

be temporal, i.e. ordered with respect to time, or non temporal, i.e. ordered with respect to an

index other than time, e.g. space. Temporal data examples include speech signals, stock market

prices, Ground Penetrating Radar (GPR) data, Cardio-Pulmonary Resuscitation (CPR) scenes, and

electroencephalographic (EEG) signals. Examples of nontemporal data include pixels in an image,

protein sequences, and moves in a chess game. Although there is no notion of time as such in non

temporal data, it has to have an ordering, and thus can be expressed in some form of temporal data.

One of the key tasks in sequential data mining is classification, or supervised learning.

Sequence classification task can be formulated as follows. Let (xi, yi)
N
i=1 be a set of N training

examples. Each example is a pair of sequence, xi, and its label, yi. A classifier h is a function that

maps from sequences to labels. In a classification setting, the goal is to learn a classifier h from the

available N data samples in order to predict the label of a new example.

One of the widely used classifiers for sequential data is the Hidden Markov Model (HMM).

HMMs were introduced and studied in the late 1960s and early 1970s. They have been extensively

and successfully applied to speech processing and recognition by Rabiner and Huang [5]. In the

1980s, HMMs became the method of choice for sequential data in bioinformatics applications such

as protein modeling [6] and gene prediction [7].

An HMM is a statistical model of a doubly stochastic process that produces a sequence

of random observation vectors at discrete times according to an underlying Markov chain. The

underlying Markov process, not directly observable, governs the transition of the system from one

hidden state to another. At discrete instants of time, the process is assumed to be in a given state

and an observation is emitted by the second stochastic process (also called observation emission

probability) corresponding to the current hidden state. The underlying Markov chain then changes

its state according to the system’s transition matrix. In an HMM, the observer sees only the

outputs of the observation emission probability and can not observe the states of the underlying
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Markov chain.

In 1989, Rabiner and Huang [8] identified three key problems of interest that need to be

addressed in order for HMMs to be useful in real world applications. The canonical problems in

HMM literature are the evaluation problem, the decoding problem, and the inference problem. One

of the reasons for the wide adoption and success of HMMs is the existence of efficient and accurate

algorithms that solve each of these problems. The forward-backward procedure, the Viterbi algo-

rithm [9], and the Baum Welch reestimation algorithm [10] address respectively the aforementioned

problems.

The third problem, namely the inference problem, is by far the most challenging in HMMs.

It can be cast as follows: given a set of training data, how to learn the model parameters that best

fit or describe the data? The subtlety of the problem arises from the definition of the criterion

that measures the model/data fit. Maximum likelihood [11], minimum classification error [12],

and maximum mutual information (MMI) [13] are among such criteria that have been used in the

literature.

In certain applications, the amount of data to be analyzed can be too large to be effectively

handled by a single classifier. Sequential/streaming data exhibit inherently more variability as the

characteristics of each class could change over time. Sometimes data are collected at a different time

or in a different environment. Training a single classifier with a vast amount of heterogenous data

is usually not practical. Building diverse, uncorrelated, and accurate classifiers and combining their

outputs often proves to be a more efficient approach. Several ensemble learning approaches such as

boosting [14], bagging [15], stacked generalization [16], random subspace method [17], and simple

algebraic combiners [18] have been introduced and proven to be superior to individual classifiers in

a number of benchmark datasets.

The most successful ensemble based systems (e.g. AdaBoost[14] and Bagging [15]) are

typically meta-classifiers that rely on some form of resampling from the original training data and

building a base classifier for each sampling outcome. Although results on benchmark datasets are

significantly better than the base classifiers, these methods are computationally expensive and cannot

be applied efficiently to large data sets with high levels of noise and outliers. Other non-resampling-

based methods [17] [18] can be applied to large datasets but are typically underperformers.

In this work, we propose an HMM-based ensemble classification method that is based on

clustering sequences in the log-likelihood space. Our approach is based on partitioning the data into

smaller subsets, training different HMM classifiers within the different partitions of the data, and
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devising an adequate combination scheme to aggregate the output of the individual HMM classifiers.

We hypothesize that the data are generated by K models. These different models reflect the

fact that the different classes may have different characteristics accounting for intra-class variability

within the data. Model identification could be achieved through clustering in the parameters space

or in the feature space. However, this approach is inappropriate as it is not trivial to define a reliable

distance metric for model parameters or sequence comparison. Our proposed approach is based on

clustering in the log-likelihood space, and has two main steps. First, one HMM is fit to each of

the N individual sequences. For each fitted model, we evaluate the log-likelihood of each sequence.

This will result in an N x N log-likelihood distance matrix that will be partitioned into K groups

using a hierarchical clustering algorithm. In the second step, we learn the parameters of one HMM

per group. We propose using and optimizing various training approaches for the different K groups

depending on their size and homogeneity. In particular, we will investigate the maximum likelihood,

the MCE-based discriminative, and the Variational Bayesian (VB) training approaches.

The remainder of this dissertation is organized as follows. In chapter 2, we outline the

background material related to HMMs and to ensemble based classification methods. In chapter

3, we detail the main components of the proposed ensemble HMM classifier. In particular, in the

first part, we provide the motivations behind our approach using an illustrative example from the

landmine detection application. In the second part, we detail the components of our classifier,

namely the log-likelihood similarity computation, the pairwise-distance-based relational clustering,

the model-per-cluster learning component, and the decision level fusion approach. In chapter 4,

we evaluate the proposed eHMM approach on the identification of CPR scenes in video simulating

medical crises. In chapter 5, we show the experimental results of the application of our method to

landmine detection using GPR data. Finally, in chapter 6, we conclude and provide potential future

work.
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CHAPTER 2

RELATED WORK

2.1 Hidden Markov Models

HMMs are widely used in a variety of fields for modeling time series data. Application

domains of HMM include speech recognition [8], protein sequence modeling [19, 20], and finance

[21, 22]. The core theory was first introduced by Baum et al in [10] with primary focus on elementary

speech processing. The popularity of HMMs soared subsequently with the works of Rabiner and

Huang [8, 5]. Nowadays, HMMs are the method of choice for temporal data modeling.

2.1.1 HMM architecture

An HMM is a model of doubly stochastic process that produces a sequence of random

observation vectors at discrete times according to an underlying first order Markov chain. At each

observation time t, the Markov chain may be in one of the N states, denoted s1, · · · , sN . Given that

the chain is at a certain state st, it moves to another state st+1 according to a state-to-state transition

probability, denoted A. At any given state st, the model emits am observation ot according to a

state emission probability, denoted B. Finally the probability that the chain starts at a particular

state st is governed by the initial probability density function, denoted π.

Let T be the length of the observed sequence, O = [o1, · · · , oT ] be the observed sequence,

and Q = [q1, · · · , qT ] be the hidden state sequence. The compact notation

λ = (A,B, π) (1)

is generally used to indicate the complete parameter set of the HMM model. In (1), A = [aij ]

is the state transition probability matrix, where aij = Pr(qt = j|qt−1 = i) for i, j = 1, · · · , N ;

B = bi(ot) for i = 1, · · · , N and t = 1, · · · , T where bi(ot) = Pr(ot|qt = i) is the emission probability

distribution in state i; and π = πi = Pr(q1 = i) are the initial state probabilities.

An HMM is called continuous if the emission probability density functions are continuous

and discrete if the emission probability density functions are discrete. In the case of a discrete HMM,

4



the observation vectors are commonly quantized into a finite set of M symbols {v1, · · · , vm, · · · , vM}

called the codebook. Each state is represented by a discrete probability density function and each

symbol has a probability of occurring given that the model is in that state. Thus, for the discrete

case, B becomes a simple set of fixed probabilities for each state.

2.1.2 HMM topologies

Depending on the state transition matrix, an HMM can be classified into one of the following

types [23]:

1. Ergodic model: if the associated Markov chain is ergodic. That is, the system can move from

one state to any other state. In other words, all the transition matrix entries aij , 1 ≤ i, j ≤ N ,

are non negative.

2. Left-right model: if the Markov chain starts at a particular initial state, traverses a number of

intermediate states, and finally terminates in a final state (sometimes called absorbing state).

While traversing intermediate states, the chain may not go backwards to the initial state.

Mathematically, the transition matrix, A, should be such that aij = 0,∀j < i.

2.1.3 HMM assumptions

The theoretical framework of HMM is based on three assumptions that make the models

useful in real-world applications and allow for tractable computations within the framework.

1. Markov property assumption The standard practice is to make a first order Markov assump-

tion: The transition to a new state qt+1 = sj , given the current and previous states, depends

only on the current state qt = si through the transition matrix A = aij. Mathematically, this

translates to: P (qt+1|qt, qt−1, · · · , q1, λ) = P (qt+1|qt, λ)

2. Independence assumption Here, it is assumed that the current observation is statistically in-

dependent from all the previous observations. Formally,

Pr(O|Q,λ) = Pr(o1, o2, · · · , oT |q1, q2, · · · , qT , λ) =

T∏
t=1

Pr(ot|qt, λ). (2)

3. Stationarity assumption This assumption states that the model parameters are time-independent.

Particularly, for the transition matrix:

Pr(qt1+1 = sj |qt1 = si, λ) = Pr(qt2+1 = sj |qt2 = si, λ) = aij , (3)
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and for the state emission pdfs,

P (ot1 |qt1 = si, λ) = P (ot2 |qt2 = si, λ) ∼ bi(.), (4)

for any t1, t2 in [1..T ].

2.1.4 Main problems in HMMs

Given the form of the HMM defined in (1), Rabiner[8] defines three key problems of interest

that must be solved in order for the model to be useful in real world applications:

1. The evaluation problem: given the observation sequence O and the model λ, how to efficiently

evaluate the probability of O being produced by the source model λ, i.e. Pr(O|λ)?

2. The decoding problem: given the observation sequence O and the model λ, how to find the

most likely hidden state sequence q that led to the observed sequence O?

3. The learning problem: also called the training problem, consists of learning the optimal model

parameters given a set of training data. This problem is difficult because there are several

levels of estimation required in an HMM. First, the number of states must be estimated. This

is usually inferred from the physical characteristics of the problem at hand or performed using

a model selection technique. Then, the model parameters λ = (π,A,B) need to be estimated.

In the discrete HMM, first the codebook is determined, usually using clustering algorithms

such as the K-means [24], or other vector quantization algorithms. In the continuous HMM,

and for the case of Gaussian mixture density functions, the mixture component parameters,

µij and Σij , are first initialized (usually by clustering the training data). Then for both cases,

the parameters (π,A,B) are estimated iteratively.

2.1.5 The HMM classifier

In the previous sections, we introduced the architecture, topologies, assumptions, and the

three main problems in hidden Markov modeling. The reason for the wide adoption and develop-

ment of HMMs for sequential data is the presence of efficient algorithms that address and solve the

aforementioned problems. HMMs have particularly proven useful in pattern recognition and classi-

fication applications. In a multiclass classification setting, each class c, c = {1, .., C}, is modeled by

an HMM λc. An observation O is classified according to Bayes decision theory[25], which assigns O
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to the class whose model has the maximum posterior probability. That is, ĉ = arg maxc P (λc|O).

Bayes rule states that

P (λc|O) =
P (O|λc)P (λc)

P (O)
(5)

where P (O|λc) is the likelihood of observed data O given the model for class c, P (λc) is the prior

probability of model λc, and P (O) is the evidence or the probability of occurrence of observation O.

Assuming all the models are equally probable, and given that the denominator of equation

(5) does not depend on c, maximizing the posterior probability P (λc|O) is equivalent to maximizing

the likelihood P (O|λc): ĉ = arg maxc P (O|λc). As discussed in the next section, P (O|λc) can be

computed efficiently using the forward-backward procedure.

A less trivial task in hidden Markov modeling is the inference, or learning of the model

parameters λc that best describe the characteristics of class c. Several approaches to HMM model

learning will be discussed later in this chapter.

2.1.6 Solution to the evaluation problem: the forward-backward procedure

Given an observation sequence O = [o1, · · · ,oT ], the most straightforward way to compute

P (O|λ) is by enumerating every possible state sequence of length T. There are NT such states.

Let q = [q1, q2, · · · , qT ] denote one such state, where q1 is the initial state. Assuming statistical

independence of observations ot, the probability of the observation sequence O given the state

sequence q and the model λ is:

P (O|q, λ) =

T∏
t=1

P (ot|qt, λ) = bq1(o1)bq2(o2) · · · bqT (oT ) (6)

The probability of the fixed state sequence q in the model λ is:

P (q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (7)

The joint probability of O and q is the product of the above two terms, that is:

P (O,q|λ) = P (O|q, λ)P (q|λ) (8)

To obtain the probability of O given the model λ, we sum the joint probability in (8) over all possible

state sequences. Thus, we have

P (O|λ) =
∑
q

P (O|q, λ)P (q|λ)

=
∑

q1,q2,··· ,qT

πq1bq1(o1)aq1q2bq2(o2) · · · aqT−1qT bqT (oT ) (9)
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The evaluation problem of HMMs using exhaustive enumeration is intractable as the sum-

mation in (9) is on the order of NT computations. This evaluation is infeasible even for small values

of N and T . For instance, for N = 4, T = 120, there are on the order of 1072 computations (on the

order of the number of electrons in the universe! [26]). Fortunately, the forward-backward procedure

tackles this problem and reduces the complexity to N2T by exploiting the HMM Markov property

and its interpretation as a graphical model.

2.1.6.1 Forward procedure

Let the forward variable αt(i) be the probability of the partial distribution sequence up to

time t:

αt(i) = P (o1,o2, · · · ,ot, qt = i|λ). (10)

A closed-form for αt(i) can be derived by induction on t [8]:

1. Initialization

α1(i) = πibi(o1), 1 ≤ i ≤ N. (11)

2. By induction, for 1 ≤ t ≤ T − 1, and 1 ≤ j ≤ N , we have:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1) (12)

3. At the end we have:

Pr(O|λ) =

N∑
i=1

αT (i) (13)

In step 2, the forward variable αt(j) is computed for each state j and each partial observation up

to time t. Given a fixed t, state j can be reached independently from any of the N states with

probability aij . The summation in step 2 reflects this. Once at state j, the system emits observation

symbol ot according to state j probability distribution bj(·). Thus, using dynamic programming,

the solution to problem 1 is reduced to the order of N2T computations.

2.1.6.2 Backward procedure

In a similar way, we let the backward variable βt(i) be the probability of the partial distri-

bution sequence from time t+ 1 to T given the state i at time t and the model λ:

βt(i) = Pr(ot+1, ot+2, . . . , oT |qt = i, λ). (14)
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Note that here qt = i has already been given (it was not the case for the forward variable). This

distinction has been made to be able to combine the forward and the backward variables coherently

to produce useful results that will help solve problem 2 and problem 3 of HMMs, as we shall see

soon. Following the same induction argument as for αt(i), βt(i) could be easily calculated using the

following steps [8]:

1. Initialization:

βT (i) = i, 1 ≤ i ≤ Ns (15)

2. By induction and for t = T − 1, T − 2, . . . , 1 , and 1 ≤ i ≤ N

βt(i) =

N∑
j=1

aijbj(ot+1)βt+1(j) (16)

3. After termination,

Pr(O|λ) =

N∑
i=1

πibi(o1)β1(i) (17)

The computation of Pr(O|λ) using βt(i) also involves the order of N2T calculations. Hence both

the forward as well as the backward method are equally efficient for the computation of Pr(O|λ).

This solves the evaluation problem in HMM.

2.1.7 Solution to the decoding problem: the Viterbi algorithm

The second problem in HMM consists of finding the optimal state sequence associated with

a given observation sequence. Unlike the evaluation problem, for which an exact solution could be

derived, there are several possible ways for solving the decoding problem. The difficulty lies with

the definition of an optimality criterion. One possible choice for the optimality criterion is to choose

the states that are individually most likely at each time t. In other words, we have to find a state

sequence q = [q1, q2, . . . , qT ] such that the probability of occurrence of the observation sequence

O = [o1, o2, . . . , oT ] from this state sequence is greater than that from any other state sequence. The

problem is then to find q∗ that will maximize Pr(O,q|λ). This can be achieved using the Viterbi

algorithm [9]. First, we define the quantity

δt(i) = max
q1,q2,··· ,qt−1

P (q1, q2, · · · , qt−1, qt = i, o1, o2, · · · , ot|λ) (18)

as the highest probability along a single path that generated the partial sequence [o1o2 · · · ot] and

ended in state i. By induction, we have:
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δt+1(j) = [max
i
δt(i)aij ]bj(ot+1) (19)

The Viterbi algorithm can be summarized by the following four steps:

1. Initialization: for 1 ≤ i ≤ N

δ1(i) = πibi(o1) (20)

ψ1(i) = 0 (21)

2. Recursive computation: for 2 ≤ t ≤ T and 1 ≤ j ≤ N

δt(j) = max
1≤i≤N

[δt−1(i)aij ] .bj(ot) (22)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] (23)

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)] (24)

q∗T = arg max
1≤i≤N

[δT (i)] (25)

4. Tracing back the optimal state sequence, for t = T − 1, T − 2, . . . , 1

q∗t = ψt+1(q∗t+1) (26)

Hence P ∗ gives the required state-optimized probability, and q∗ = [q∗1 , q
∗
2 , . . . , q

∗
T ] is the optimal

state sequence. Computationally, the Viterbi algorithm is similar to the forward-backward procedure

except for the comparisons needed to find the maximum values of δ and for the backtracking step

4. Therefore, its complexity is also on the order of N2T . It is possible to implement the Viterbi

algorithm by taking the logarithm of δ hence reducing the complexity to N2T additions instead of

multiplications.

In summary, problems 1 and 2 are efficiently solved using the forward-backward procedure

and dynamic programming. However, a less trivial task in hidden Markov modeling is the inference,

or learning of the model parameters λ that best describe the characteristics of the training data. In

the following, we describe three different approaches to solve this problem.
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2.1.8 Solutions to the inference problem

The parameter estimation problem is the most challenging problem of HMMs. The goal is

to adjust the model parameters (π,A,B) based on the observed sequence(s) O. In fact, there is no

analytical solution for the model parameter set that maximizes the probability of the observation

sequence. There are several possible ways for defining an optimality criterion. The Maximum

Likelihood (ML) [11] criterion is generally used to find the set of parameter estimators that maximize

the likelihood of the data in the HMM model. However, for the general HMM setting, there is no

analytical solution to the Maximum Likelihood Estimator (MLE). Generally, iterative methods, such

us the Expectation Maximization (EM) algorithm [27], are used to approximate the MLE.

Another widely used optimality criterion is the minimum misclassification error (MCE)[12].

In the MCE training framework, the goal is to find the optimal model parameters that minimize the

classification error on the training data.

Both MLE and MCE are iterative procedures and could lead to sub-optimal solutions (local

optima). In addition, MLE is a point estimation of the true model parameters that maximize the pos-

terior probability. This method requires a large training data set to get good estimates. In the case

of insufficient training data, Bayesian methods are preferred. In Bayesian learning, we first set priors

on the parameters to be estimated. Then, we use the available observations (evidence) to compute

the posterior distribution over the parameters. Predictions for test data are made by integrating out

the parameters. Unfortunately Bayesian inference for HMMs is not possible as it involves comput-

ing intractable integrals. Most existing methods, such as Markov Chain Monte Carlo (MCMC) [28],

Gibbs sampling [29], and Laplace approximations[26] either require vast computational resources to

get accurate results or approximate all the posteriors via a normal distribution centered at the ML

estimate. The Variational Bayesian (VB)[30] method tries to approximate the posteriors by a class

of simpler functions. Typically, the approximating functions should be separable/focatorizable in

the model parameters.

2.1.8.1 Maximum Likelihood training: The Baum-Welch algorithm

In this section, we outline the procedure for the re-estimation of the HMM parameters using

the Expectation Maximization algorithm [27]. In the context of HMMs, the EM algorithm is also

known as the Baum-Welch (BW) algorithm [10], or the forward-backward reestimation procedure.

The goal is to approximate the maximum likelihood estimator of the HMM parameters, since a

closed-form of the these parameters can not be derived.
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First, we define ξt(i, j) as the probability of being in state i at time t and state j at time

t+ 1, given the model and the observation sequence, i.e.

ξt(i, j) = P (qt = i, qt+1 = j|O, λ). (27)

From the definitions of the forward and backward variables in equations (10) and (14), we can rewrite

ξt(i, j) as

ξt(i, j) =
P (qt = i, qt+1 = j,O|λ)

P (O|λ)

=
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

. (28)

Let γt(i) denote the probability of being in state i at time t, given the observation O and the model

λ, i.e.,

γt(i) = P (qt = i|O, λ). (29)

It can be shown that γt(i) is related to ξt(i, j) by summing over all states j, i.e.,

γt(i) =

N∑
j=1

ξt(i, j). (30)

Now, if we sum γt(i) over the time index t, we get a quantity that could be interpreted as the expected

number of times that state i is visited. Similarly, summing ξt(i, j) over t yields the expected number

of transitions from state i to state j. γ1(i) is interpreted as the expected frequency (number of

times) we started at state i. Finally, summing γt(i) over time steps at which a particular symbol vm

was observed can be interpreted as the expected number of times visiting state i and observing vm.

Using the above interpretations, we derive the following equations for re-estimating the parameters

of an HMM:

πi = γ1(i), (31)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

, (32)
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and

bj(m) =

∑
1≤t≤T,ot=vm

γt(j)

T∑
t=1

γt(j)

. (33)

Algorithm 1 Baum-Welch training algorithm

Require: Training data [O(1), · · · , O(R)], O(r)=[o1,· · · , oT ]. Fix the variables N and M .
Ensure:

1: Cluster training data into N clusters, and let si, the center of each cluster, be the representative
of state i

2: Cluster training data into M clusters, and let vm, the center of each cluster, be the mth element
of the codebook

3: Set the initial parameters using one of the methods described in section (2.1.9)
4: while stopping criteria not satisfied do
5: Compute the probability of the hidden states given the data using the forward-backward

procedure;
6: Deduce the transition and emission statistics;
7: Update A using (32);
8: Update B using (33);
9: end while

A more detailed derivation of the update equations for the BW algorithm could be found in

[31].

2.1.8.2 Discriminative training: Minimum Classification Error criterion

In this section, we derive the necessary MCE update equations for the HMM parameters for

a C-class problem. In the discriminative MCE training, we seek to minimize the classification error.

Each random sequence O is to be classified into one of the C classes. We denote these classes by

Cc, c = 1, 2, . . . , C. Each class c is modeled by an HMM λc. Let O be an observation sequence and

let gc(O) be a discriminant function associated with classifier c. In the case of an HMM classifier, the

discriminant function gc is proportional to the posterior probability Pr(O|λc). Thus, the sequence

O is assigned to the class c in which it has maximum posterior probability.

The classifier Γ(O) defines a mapping from the sample space O ∈ O to the discrete categorical

set Cc, c = 1, 2, . . . , C. That is,

Γ(O) = arg max
c
gc(O). (34)

The misclassification measure of the sequence O is defined as:

dc(O) = −gc(O,Λ) + log

 1

C − 1

∑
j,j 6=c

exp[ηgj(O,Λ)]

 1
η

(35)
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where η is a positive number, dc(O) > 0 implies misclassification and dc(O) ≤ 0 means correct

decision. When η approaches ∞, the second term of the right hand side of equation (35) becomes

maxj,j 6=c gj(O,Λ). The misclassification measure is then casted in a smoothed zero-one function,

referred to as loss function, defined as:

lc(O; Λ) = l(dc(O)), (36)

where l is a sigmoid function, one example of which is:

l(d) =
1

1 + exp(−γd+ θ)
. (37)

In (37), the threshold parameter θ is normally set to zero, and the smoothing parameter γ is

set to a number larger than one. Correct classification corresponds to loss values in [0, 1
2 ), and

misclassification corresponds to loss values in ( 1
2 , 1].

For an unknown sequence O, the classifier performance is measured by:

l(O; Λ) =

C∑
c=1

lc(O; Λ)I(O ∈ Cc) (38)

where I(.) is the indicator function. The true classifier performance can be measured by the expected

cost of the error:

L(Λ) = E[l(O; Λ)]. (39)

Given a set of training observation sequences Or, r = 1, 2, . . . , R, an empirical loss function on the

training dataset is defined as

L(Λ) =
1

R

R∑
r=1

C∑
c=1

lc(Or; Λ)I(Or ∈ Cc). (40)

The empirical loss L is a smooth function in Λ which can be optimized over the training set using

gradient descent methods such as the generalized probabilistic descent algorithm (GPD) or its vari-

ants [12]. The HMM parameters are therefore derived by minimizing L(Λ) using a gradient descent

algorithm.

In order to ensure that the estimated HMM parameters satisfy the stochastic constraints of

aij ≥ 0,
∑Ns
j=1 aij = 1 and bjk ≥ 0,

∑M
j=1 bjk = 1, we map these parameters using

aij → ãij = log aij , (41)

bij → b̃ij = log bij (42)
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Then, the parameters are updated with regards to Λ̃. After updating, we map them back using

aij =
exp ãij∑Ns

j′=1 exp ãij′
, (43)

bjk =
exp b̃jk∑M

k′=1 exp b̃jk′
. (44)

Using a batch estimation mode, the HMM parameters are iteratively updated using

Λ̃(τ + 1) = Λ̃(τ)− ε∇Λ̃L(Λ)
∣∣∣
Λ̃=Λ̃(τ)

. (45)

It can be shown [32] that the update equations for ã
(c)
ij and b̃

(c)
jk are

ã
(c)
ij (τ + 1) = ã

(c)
ij (τ)− ε∂L(Λ)

∂ã
(c)
ij

∣∣∣∣∣
Λ̃=Λ̃(τ)

, (46)

and

b̃
(c)
jk (τ + 1) = ã

(c)
jk (τ)− ε∂L(Λ)

∂b̃
(c)
jk

∣∣∣∣∣
Λ̃=Λ̃(τ)

, (47)

where

∂L(Λ)

∂ã
(c)
ij

=

R∑
r=1

C∑
m=1

∂lm(Or)

∂dm(Or)

∂dm(Or)

∂gOrc

∂gOrc

∂a
(c)
ij

∂a
(c)
ij

∂ã
(c)
ij

,

and

∂L(Λ)

∂b̃
(c)
ij

=

R∑
r=1

C∑
m=1

∂lm(Or)

∂dm(Or)

∂dm(Or)

∂gOrc

∂gOrc

∂b
(c)
ij

∂b
(c)
ij

∂b̃
(c)
ij

.

Substituting the partial derivatives, we get the gradient direction of the update equations for the

parameters of the HMM:

∂L(Λ)

∂ã
(c)
ij

=

R∑
r=1

C∑
m=1

T∑
t=1

γlm(Or,Λ)(1− lm(Or,Λ))×

δ(qrt = i, qrt+1 = j)(1− a(c)
ij )

∂dc(Or)

∂gm(Or,Λ)
,

and

∂L(Λ)

∂b̃
(c)
jk

=

R∑
r=1

C∑
m=1

T∑
t=1

γlm(Or,Λ)(1− lm(Or,Λ))×

δ(qrt = j,QV (ort ) = k)(1− b(c)jk )
∂dc(Or)

∂gm(Or,Λ)
,

where

∂dc(O)

∂gm(O,Λ)
=

 −1 if c = m

exp[ηgc(O,Λ)]∑
j,j 6=c exp[ηgj(O,Λ)] if c 6= m

, (48)
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Algorithm 2 MCE/GPD training algorithm

Require: Training data [O(1), · · · , O(R)], O(r)=[o1,· · · , oT ]. Fix the HMM structure variables N
and M for each model λc.

Ensure:
1: For each λc, cluster training data into N clusters, and let si, the center of each cluster, be the

representative of state i.
2: For each λc, cluster the training data into M symbols. The center of each cluster vm is a symbol

of the codebook.
3: while stopping criteria not satisfied do
4: Compute the loss function of each sequence O using (40);
5: Update A of each λc using (46);
6: Update B of each λc using (47);
7: end while

and δ is the 2-D Kronecker’s delta function. The MCE-based discriminative training is outlined in

Algorithm 2.

A more detailed derivation of the update equations for the MCE-based discriminative train-

ing algorithm could be found in [31].

2.1.8.3 Variational Bayesian training

The Bayesian framework provides a solution to the over-fitting problem. Unfortunately, com-

putations in the Bayesian framework can be intractable. Most existing methods, such as Markov

Chain Monte Carlo (MCMC) [28] and the Laplace approximation [26] either require vast computa-

tional resources to get good estimates or they crudely approximate all the posteriors via a normal

distribution. The variational Bayesian (VB) method attempts to approximate the integration as

accurately as possible while remaining computationally tractable [30].

Let O , Z, Θ, and λ denote the training data set, latent (hidden) variables, a set of model

parameters, and the model identity itself, respectively. In VB, the aim is to maximize the marginal

likelihood defined as:

Pr(O|λ) =

∫
Pr(O,Z,Θ|λ)dZdΘ. (49)

The VB approach introduces a variational posterior distribution p̃(Z,Θ|λ) of the model parameters

and hidden variables. Taking the logarithm, then the expectation with respect to the distribution

p̃(Z,Θ|λ), and applying Jensen’s inequality [33], we obtain:

logPr(O|λ) = F (p̃) +KL(p̃||Pr) (50)

where

F (p̃) =

∫
p̃(Z,Θ|λ) log

Pr(O,Z,Θ|λ)

p̃(Z,Θ|λ)
dZdΘ, (51)

16



and

KL(p̃||Pr) =

∫
p̃(Z,Θ|λ) log

p̃(Z,Θ|λ)

p̃(Z,Θ|O, λ)
dZdΘ. (52)

The term F (p̃) represents a lower bound of logPr(O|λ). The aim of VB learning is to maximize

this lower bound by tuning the variational posterior p̃(Z,Θ|λ) such that as the variational posterior

approaches the true posterior, the bound becomes tight and the marginal likelihood can be effi-

ciently approximated efficiently. The equality between F (p̃) and logPr(O|λ) occurs if and only if

p̃(Z,Θ|λ) = Pr(Z,Θ|λ,O). In practice, we use a factorized approximation p̃(Z,Θ) ≈ p̃Z(Z)p̃Θ(Θ).

Thus, F can be written in the form:

F (p̃) =

∫
p̃Z(Z)p̃Θ(Θ) log

Pr(O,Z,Θ|λ)

p̃Z(Z)p̃Θ(Θ)
dZdΘ = F (p̃Z(Z), p̃Θ(Θ), O, λ) (53)

The quantity F can be viewed as a functional of the free distributions p̃Z(Z) and p̃Θ(Θ). The

variational Bayesian (VB) algorithm iteratively maximizes F in equation (53) with respect to the

free distributions p̃Z(Z) and p̃Θ(Θ). Taking the partial derivatives of F with respect to the free

distributions, and setting it to zero, results in the following update equations:

p̃
(t+1)
Z (Z) ∝ exp

[∫
Pr(Z,O|Θ, λ)p̃

(t)
Θ (Θ)dΘ

]
, (54)

and

p̃
(t+1)
Θ (Θ) ∝ Pr(Θ|λ) exp

[∫
Pr(Z,O|Θ, λ)p̃

(t+1)
Z (Z)dZ

]
(55)

where subscript (t) denotes the iteration number. Clearly, p̃Zi(Zi) and p̃Θ(Θ) are coupled, so we

iterate these equations until convergence.

The variational Bayesian training steps is outlined in Algorithm 3.

Algorithm 3 VB training algorithm

Require: Training data [O(1), · · · , O(R)], O(r)=[o1,· · · , oT ]. Fix the variables N and M .
Ensure:

1: Cluster training data into N clusters, and let si, the center of each cluster, be the representative
of state i

2: Cluster training data into M clusters, and let vm, the center of each cluster, be the kth element
of the codebook

3: Set priors on the HMM parameters.
4: while stopping criteria not satisfied do
5: Update marginal posteriors on the hidden variables Z using equation (54);
6: Update marginal posteriors on the parameters Θ using equation (55);
7: end while

A more detailed derivation of the update equations for the VB training algorithm could be

found in [30].

17



2.1.9 Initialization of the HMM parameters

A key question in HMM is how to choose initial estimates of the HMM parameters to improve

the likelihood of reaching the global minimum and the rate of convergence. A number of initialization

methods have been proposed [8]. Examples include:

• Random: the HMM parameters are generated randomly from a uniform distribution.

• Manual segmentation: when the hidden states have a physical meaning, manual partitioning

could be performed to split the data into the different states of the HMM and then the

remaining parameters could be derived [34].

• Segmental k-means: starting form a random guess of the HMM parameters, and using the

Viterbi algorithm to label the observation sequences, the segmental k-means clusters the se-

quences to learn the HMM parameters [8].

2.2 MultiStream HMMs

For complex classification, multiple sources of information may contribute to the generation

of sequences. In the standard HMMs, the different features contribute equally to the classification

decision. However, these features may have different relevance degrees that depend on different

regions of the feature space. Thus, more complex HMM based structures were proposed [35, 31] to

handle temporal data with multiple sources of information. Approaches toward the combination of

different modalities can be divided into three main categories:

• Feature level fusion: multiple features are concatenated into a large feature vector and a single

HMM model is trained [36]. This type of fusion has the drawback of treating heterogeneous

features equally important. It also cannot represent the loose timing synchronicity between

different modalities easily.

• Decision level fusion: the modalities are processed separately to build independent models

[37]. This approach completely ignores the correlation between features and allows complete

asynchrony between the streams.

• Model level fusion: an HMM model that is more complex than a standard one is sought. This

additional complexity is needed to handle the correlation between modalities, and the loose

synchronicity between sequences.
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Several HMM structures have been proposed in the context of model level fusion. Examples include

factorial HMM [38], coupled HMM [39] and Multi-stream HMM [35]. Both factorial and coupled

HMM structures allow asynchrony between sequences since a separate state sequence is assigned to

each stream [40]. However, this is performed at the expense of an approximate parameter estimation.

In fact, the parameters of factorial and coupled HMMs could be estimated via the EM (Baum-Welch)

algorithm [27]. However, the E- step is computationally intractable and approximation approaches

are used instead [39, 38].

Multi-Stream HMM (MSHMM) [35, 31] is an HMM based structure that handles multiple

modalities for temporal data. In [31], weights are assigned to the different streams and incorporated

into the model parameters. The added complexity of model parameters makes the inference task

more challenging and in some cases, even the ML training becomes intractable. In [31], multiple

MSHMM structures for the discrete and continuous HMM have been proposed. Generalized training

framework combining the ML and the MCE training were derived to learn the MSHMM parameters

simultaneously.

MSHMM addresses the issue of fusing multiple features. Another problem in complex real-

world applications is that a single model is not sufficient to accurately handle the intra-class vari-

ability. To alleviate this limitation, multiple simple models could be used and fused. The models

need not to be accurate on all the regions of the feature space. The multiple model approach can

be regarded as ensemble learning. Generally, an ensemble learning method includes two main steps

that could potentially be intertwined: the creation and the fusion of the multiple models. Different

approaches of ensemble learning are described in the following section.

2.3 Ensemble learning methods

In this section, we outline some ensemble learning approaches that have been extensively

studied and used in many applications.

2.3.1 Bagging

Bagging is considered as a method of independent construction of the base classifiers [15]. It

consists of running a learning algorithm several times with random samples from the training data

for each run. Given a set of N training data points, at each iteration, bagging chooses a set of data

points of size m ≤ N via uniform sampling with replacement from the original data points. At each

run, some data points will appear multiple times, other data points will not appear at all in the
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resampled dataset. If the base classifier is unstable, i.e. a small variation in the training data leads

to large change in the resulting classifier, the bagging will result in a diverse set of hypotheses. On

the other hand, if the base classifier is stable, Bagging may underperform the base classifier.

2.3.2 Boosting (AdaBoost)

Following the taxonomy in [41], Boosting is a method of coordinated construction of ensem-

bles. While in bagging the samples are drawn uniformly with replacement, in boosting methods the

learning algorithm is called at each iteration using a different distribution over the training exam-

ples. At iteration t + 1, this technique places higher weights on the examples misclassified by the

base classifier at iteration t. Let {xi, yi)Ni=1, yi = ±1} be a set of N labeled training examples. The

goal is to construct a weighted sum of hypothesis such that H(xi) =
∑
t wtht(xi) has the same sign

as yi. The algorithm operates as follows. Let dt(xi) be the weight of data point xi at iteration t

of the algorithm. Initially, all training data points xi are given a uniform weight (d1(xi) = 1/N).

At iteration t, the underlying learning algorithm constructs hypotheses ht to minimize the weighted

training error. The resulting weighted error on the training set is rt =
∑
t wtdt(xi)ht(xi). The

weight assigned to hypothesis ht is

wt =
1

2
ln(

(1 + rt)

(1− rt)
). (56)

For each data point i, the weight for the next iteration is updated using

dt+1(xi) = dt(xi)
exp(−wtyiht(xi))

Zt
, (57)

where Zt is a normalizing factor.

It has been shown in [42] that this algorithm is a form of gradient optimization in the

function space with J(H) =
∑
i exp(−yiH(xi)) as the objective function. The quantity yiH(xi)

could be interpreted as the margin by which xi is correctly classified. Minimizing J is equivalent to

maximizing the margin. Work by Vapnik [43] on SVMs (Support Vector Machines) derives upper

bounds on the generalization error with regards to the margins of the training data. Freund et al

[44] extended the margin analysis to Adaboost. The generalization error is bounded by the fraction

of training data for which the margin is less than a quantity Θ > 0, plus a term that grows as√
d

N

ln(Nd )

Θ
, (58)

where d is a measure of the expressive power of the hypothesis space from which the individual

classifiers are drawn, known as the VC-dimension. The value of Θ can be optimized such that the
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bound in (58) is minimized. Experimentally Adaboost has been proven to increase the margins

on the training data points which explains partly its good generalization performance on new data

points.

Although Adaboost shows significant improvement over existing classification methods on

benchmark datasets, it suffers from the following drawbacks:

• Adaboost does not perform well on high noise setting as it tends to put very high weights on

the noisy data points

• The upper bounds on the generalization error are not tight and can not fully explain the

success of Adaboost across multiple benchmark datasets. Dietterich [45] noticed that it is

possible to design algorithms that are more effective than Adaboost at increasing the margin

on the training data, but these algorithms have very poor generalization error compared to

Adaboost. Also, it is worth noting that when using large decision trees and neural networks

as base classifiers, Adaboost works very well even though these base classifiers are known to

have high VC-dimensions.

2.3.3 Hierarchical mixture of experts

The HME approach, introduced by Jordan et al in [1], is a tree structured architecture

which is based on the principle of divide-and-conquer. The model uses a probabilistic approach to

partition the input space into overlapping regions on which the ”experts” act. The leaves of the

tree are denoted ”expert networks”, and the non-terminal elements of the tree are called ”gating

functions”. Each gating function is associated with a node (expert network) in the tree. It weights

the outputs of the subtrees coming into it, to form a combined output. The final network output is

obtained at the root of the tree. An illustration of a HME with 2 levels and a common branching

factor of 2 at each level is shown in figure 1. In the general architecture, multiple levels and branching

factors are possible. However, the model structure should be fixed/predetermined before proceeding

to training.

Expert network (i, j) produces its output µij as a generalized linear function of the input x:

µij = f(Uijx), (59)

where Uij is a weight matrix and f is a fixed continuous nonlinearity. For regression problems, f

is generally chosen to be the identity function. For binary classification, f is generally taken to be
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Figure 1. Block diagram of a two-level HME, adapted from [1]

the logistic function. Other choices for f could be taken to handle the application at hand (e.g.,

multiway classification, counting, rate estimation).

The gating networks are also generalized linear functions of the input x. Let ξi = vTi x,

where vi is a weight vector. Then the ith output of the top level gating network is the ”softmax”

distribution of the ξ′is:

gi =
eξi∑
k e

ξk
, (60)

It is worth noting that the gi’s are positive and sum to one for each x. They can be viewed as a

”soft” partitioning of the input space. Similarly, the gating networks at lower levels are generalized

linear systems. Thus, we define intermediate variables, ξij , as ξij = vTijx, and let

gj|i =
eξij∑
k e

ξik
(61)

be the output of the jth unit in the ith gating network at the second level of the architecture. The

output vector at each nonterminal node of the tree is the weighted sum of the experts below that
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node:

µi =
∑
j

gj|iµij, (62)

and the output at the top level of the tree is:

µ =
∑
i

giµi. (63)

The hierarchy can be given a probabilistic interpretation. First, we refer to gi and gj|i as the

prior probabilities, as they depend only on x. Then, for each expert, we assume that the true output

y is chosen from a distribution P with mean µij . Therefore, the total probability of generating y

from x is obtained by summing over all the possible paths to the root of the tree, that is:

P (y|x, θ) =
∑
i

gi
∑
j

gj|iP (y|x, θij). (64)

To develop the EM-based learning algorithm for HME, the posterior probabilities associated with

each node in the tree are derived according to Bayes’ rule:

hi =
gi
∑
j gj|iPij(y)∑

i gi
∑
j gj|iPij(y)

(65)

hj|i =
gj|iPij(y)∑
j gj|iPij(y)

. (66)

Finally, the joint posterior probability hij , is the product of hi and hj|i:

hij =
gigj|iPij(y)∑

i gi
∑
j gj|iPij(y)

. (67)

This quantity is the probability that expert network (i, j) has generated the data, based on the

knowledge of both the input and the output. It should be emphasized that the above quantities are

conditional on the input x.

l(θ,X) =
∑
k

ln
∑
i

g
(k)
i

∑
j

g
(k)
j|i Pij(y

(k)). (68)

The problem of learning in HME can be casted as a maximum likelihood estimation problem.

Given a data set X = {xk, yk}Nk=1, its log-likelihood is computed by taking the log of the product

of N densities of the form of equation (64). An analytical solution that minimizes the likelihood

in (68) could not be derived, as it involves three summations and a logarithm term. In practice,

iterative methods such as gradient descent [1], and expectation-maximization [46] algorithms were

proposed in the HME literature.
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2.3.4 Local fusion

One way to categorize classifier combination methods is based on the way they select or assign

weights to the individual classifiers. Some methods are global and assign a degree of worthiness,

that is averaged over the entire training data, to each classifier. Other methods are local and adapt

the classifiers’ performance to different data subspaces.

In [47], a local fusion approach, called Context-Dependent Fusion (CDF), has been proposed.

CDF has two main steps. First, it uses a standard clustering algorithm to partition the training

signatures into groups of signatures, or contexts. Then, the fusion parameters are adapted to each

context. CDF treats the partitioning of the feature space and the selection of local expert classifiers

as two independent processes performed sequentially.

In [48], a generic framework for context-dependent fusion, called Context Extraction for

Local Fusion (CELF) was proposed. CELF jointly optimizes the partitioning of the feature space and

the fusion of the classifiers. The partitioning of the feature space includes a feature discrimination

component to identify clusters in subspaces in possibly high-dimensional feature space. Within these

subspaces (called also contexts), a linear aggregation of the different algorithms outputs provides a

better classification rate than all the individual classifiers and the global approach.

Both CDF and CELF use multiple algorithms and features. Any algorithm/features pair

can be used as long as the algorithms have a continuous, probability-like output and the features

are metric. However, these approaches are not applicable in the context of sequential data as there

is no robust similarity measure between two sequences. Also, the aforementioned approaches do not

intervene at the model creation and training level.

2.4 Multiple models fusion

For complex detection and classification problems involving data with large intra-class varia-

tions and noisy inputs, good solutions are difficult to achieve, and no single source of information can

provide a satisfactory solution. As a result, combination of multiple classifiers (or multiple experts)

is playing an increasing role in solving these complex pattern recognition problems, and has proven

to be a viable alternative to using a single classifier.

There are many taxonomies for classifier combination methods : trainable vs. non trainable,

class label combination vs. continuous output combination, classifier selection vs. classifier fusion,

etc.
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In the latter taxonomy, classifier selection methods put an emphasis on the development of

the classifier structure. First, these methods identify the single best classifier or a selected group of

classifiers and then only their outputs are taken as a final decision or for further processing. This

approach assumes that the classifiers are complementary, and that their expertise varies according

to the different areas of the feature space. For a given test sample, these methods attempt to

predict which classifiers are more likely to be correct. Some of these methods consider the output

of only a single classifier to make the final decision [49]. Others, combine the output of multiple

”local expert” classifiers [50]. Classifier fusion methods operate mainly on the classifiers outputs,

and strive to combine the classifiers outputs effectively. This approach assumes that the classifiers

are competitive and equally experienced over the entire feature space. For a given test sample, the

individual classifiers are applied in parallel, and their outputs are combined in some manner to take

a group decision.

Another way to categorize classifier combination methods is based on the way they select

or assign weights to the individual classifiers. Some methods are global and assign a degree of

worthiness, that is averaged over the entire training data, to each classifier.

2.5 Chapter summary

In this chapter, we presented the background related to the proposed work. We first laid

down the fundamentals of hidden Markov modeling and its use as a sequential data classifier. We

presented the different approaches to address complex classification problems with noisy, large,

intra-class variable data using fusion methods. We then argued for the need to use multiple models

and to efficiently combine their outputs. In the last section of this chapter, we detailed several

state-of-the-art methods and approaches for combining multiple models.
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CHAPTER 3

ENSEMBLE HMM CLASSIFIER

3.1 Introduction

In this chapter, we start by motivating the need for our eHMM approach. Then, we outline

the architecture of the proposed method and its components. The intermediate steps of the eHMM

are illustrated using examples from landmine detection application using Ground Penetrating Radar

(GPR) signatures and Edge Histogram Descriptors (EHD) features. The details of the application of

eHMM to landmine detection using GPR signatures and the results will be described subsequently

in detail in chapter 5. The EHD features, along with other features representations for the GPR

signatures, are outlined in section 5.3 of the same chapter.

In the following sections, eHMM refers to both the discrete (eDHMM) and continuous

(eCHMM) case seemingly, except where otherwise stated (e.g. individual model initialization, clus-

ters’ models construction).

3.2 Motivations

For a two class problem, the baseline HMM models each class by a single model learned from

all the observations within that class. The goal is to generalize from all the training data in order to

classify unseen observations. However, for complex classification problems, combining observations

with different characteristics to learn one model might lead to too much averaging and thus loosing

the discriminating characteristics of the observations.

To illustrate this problem, we use an example of detecting buried landmines using GPR

sensors1. In this case, the training data consists of a set of N GPR alarms labeled as mines (class

1) or clutter (class 0). The goal is to generalize from the training data in order to classify unlabeled

GPR signatures. In figure 2, we show three groups of mines with different strengths. It is obvious

that grouping all of these signatures, to learn a single model, would lead to poor generalization.

Similarly, the false alarms could be caused by different clutter objects and varied environment

1The details of the landmine detection application using GPR signatures will be presented in chapter 5
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conditions and could have significant variations. The above problem is more acute when data is

collected by multiple sensors and/or using various features.

(a) Mines with strong signature. (b) Mines with average signature.

(c) Mines with weak signature.

Figure 2. Mine signatures manually categorized into three groups.

Consequently, learning a set of models that reflect different characteristics of the observations

might be more beneficial than using one global model for each class. In this dissertation, we develop

a new approach that replaces the two-model classifier with multiple models classifier. For instance,

each group of signatures in figure 2 would be used to learn a different model. Our approach aims to

capture the characteristics of the observations that would be lost under averaging in the two-model

case.

We hypothesize that under realistic conditions, the data are generated by multiple models.

The proposed approach, called ensemble HMM (eHMM), attempts to partition the training data

in the log-likelihood space and identify multiple models in an unsupervised manner. Depending on

the clusters homogeneity and size, a different training scheme is applied to learn the corresponding

HMM parameters. In particular, for homogeneous clusters with mainly observations from the same

class, the HMM is trained using the standard Baum-Welch algorithm [10]. For clusters containing

observations from different classes, the corresponding HMM is trained using a discriminative training

scheme based on the minimization of the misclassification error (MCE) criterion [12]. For clusters

with small number of observations, the corresponding HMM parameters are learned using the varia-

tional Bayesian approach [30]. The resulting K HMMs are then aggregated through a decision level

fusion component to form a descriptive model for the data.
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3.3 Ensemble HMM architecture

Let O= {Or, yr}Rr=1 be a set of R labeled sequences of length T where Or = {O(1)
r , · · · , O(T )

r }

and yr ∈ {1, · · · , C} is the label (class) of the sequence Or. The proposed alternative for baseline

HMM consists of the construction of a mixture of K HMMs, Λ = {λk}Kk=1, to cover the diversity of

the training data. The eHMM has four main components:

1. Similarity matrix computation

2. Pairwise-distance-based clustering

3. Models initialization and training

4. Decision level fusion

These steps are illustrated in the block diagram in figure 3, and are described in the next sections.

Figure 3. Block diagram of the proposed eHMM (training)
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3.3.1 Similarity matrix computation

3.3.1.1 Fitting individual models to sequences

In the first step, each sequence in the training data, Or, 1 ≤ r ≤ R is used to learn an HMM

model λr. Even though the use of only one sequence of observations to form an HMM might lead

to over-fitting, this step is only an intermediate step that aims to capture the characteristics of each

sequence. The formed HMM model is meant to give a maximal description of each sequence and

therefore, over-fitting is not an issue in this context. In fact, it is desired that the model perfectly

fits the observation sequence. In this case, it is expected that the likelihood of each sequence with

respect to its corresponding model is higher than those with respect to the remaining models.

Let {λ(0)
r }Rr=1 be the set of initial models and s

(r)
n , 1 ≤ n ≤ N , be the representative of each

state in λ
(0)
r . First, the model states are initialized following one of the methods described in section

2.1.9. In most cases, domain knowledge will be used to initialize the model. This will be illustrated

through the example of landmine detection in section 3.3.1.2.

For the discrete case, the codewords {v1, · · · vM} of the initial individual DHMM model are

the actual observations of the sequence {O1, · · ·OT }. Consequently, the emission probability of each

codeword in each state is inversely proportional to their distance to the mean of that state, i.e.,

bn(m) =

1
‖vm−sn‖∑N
l=1

1
‖vm−sl‖

, 1 ≤ m ≤M. (69)

To satisfy the requirement
∑M
m=1 bn(m) = 1, we normalize the values by:

bn(m)←− bn(m)∑M
l=1 bn(l)

, 1 ≤ m ≤M. (70)

In the continuous case, the emission probability density functions are modeled by mixtures

of Gaussians. In the case of individual sequence models, we use a single component mixture for each

state, as the number of observations is small. Thus, the observations belonging to each state are

used to estimate the mean and covariance of that state’s component.

Then, the Baum-Welch algorithm [10] is used to fit one model to each given observation.

Let {λr}Rr=1 be the set of trained individual models.

3.3.1.2 Illustrative example: individual model construction step

The different steps of the eHMM will be illustrated using a landmine detection application

with GPR data and EHD features. We assume that each signature Or, as those shown in figure 2, is

represented by a sequence of T = 15 observations Or = {O(1)
r , O

(2)
r , . . . , O

(15)
r }. Each observation is
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a five-dimensional vector that encodes the strengths of the edges in the horizontal, vertical, diagonal,

anti-diagonal, and non-edge directions2, i.e. O
(t)
r = [H

(t)
r , V

(t)
r , D

(t)
r , A

(t)
r , N

(t)
r ]. The signatures of

the mines shown in figure 2 are characterized by a hyperbolic shape comprised of a succession of

rising, horizonal, and falling edges with different strengths of each edge and variable duration in

each state. Thus, for each sequence, we build a three-state HMM model that reflects our knowledge

of the mine signature. Specifically, the states are labeled state s1 or diagonal ”Dg” state, state s2

or horizontal ”Hz” state, and state s3 or anti-diagonal ”Ad” state.

First, the priors are initialized such that mine models have to start with the diagonal state

and non mine models can start in any of the states with equal probabilities. Thus, the priors are

initialized as follows:



Π =


1

0

0

 if sequence is mine

Π =


.33

.33

.33

 if sequence is non-mine

(71)

Next, the transition matrix, A, is initialized using prior knowledge (expected latency in each

state) and using the left-to-right constraint. We use:

A(0) =


0.8 0.2 0

0 0.8 0.2

0 0 1

 . (72)

To enforce the left-to-right constraint and the prior initialization assumption for the indi-

vidual mine models, we discard observations with weak diagonal (anti-diagonal) component at the

start (end) of the sequence. In other words, we use an adaptive sequence length by defining the new

start and end of the sequence, TSTART and TEND using:

 TSTART = min{t|O(t)
r (D) > τ, t = 1 · · ·T}

TEND = max{t|O(t)
r (A) > τ, t = 1 · · ·T}.

(73)

In (73), O
(t)
r (D) is the diagonal edge component of observation vector O

(t)
r , O

(t)
r (A) is the anti-

diagonal edge component of observation vector O
(t)
r , and τ is a predefined threshold.

2The details of the edge features and their extraction will be described in section 5.3
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For the emission probabilities initialization, the first step consists of computing the mean of

each state. For that matter, we investigate two possible initialization schemes:

• Initialization 1: This initialization scheme applies to both the mine and the non mine se-

quence models. We do not attempt to recognize the state of each observation. Instead, we

assume that the first few observations belong to state s
(r)
1 , the middle few observations belong

to state s
(r)
2 , and the last few observations belong to state s

(r)
3 . We simply compute the mean

of the three states as follows: the mean of the diagonal state ”Dg”, s
(r)
1 , is the average of

observations (OTSTART · · ·O7); the mean of the horizontal state ”Hz”, s
(r)
2 , is the average of

observations (O6 · · ·O10); and the mean of the anti-diagonal ”Ad” state, s
(r)
3 , is the average of

observations (O9 · · ·OTEND ).

• Initialization 2: This initialization scheme differs between mine and non-mine models. For

the mine model, we partition its observations into three clusters and label them ”Dg”, ”Ad”,

and ”Hz”. The ”Dg” cluster corresponds to the partition where the observations have stronger

diagonal edges. Similarly, the ”Ad” cluster corresponds to the partition where the observations

have stronger anti-diagonal edges. The ”Hz” cluster corresponds to the partition where the

observations have weak diagonal and anti-diagonal edge components. Once each observation

is assigned to one of the three clusters, we compute the means, s
(r)
i , as the average of all

observations assigned to cluster i, 1 ≤ i ≤ 3. For the non-mine model, the means of the states

are obtained by clustering all of the non target sequence observations into three clusters using

the k-means algorithm [25].

In the second step, we compute the initial emission probabilities of each state. For the

discrete case, the codewords for the individual DHMM model are the actual observations of the

sequence after squeezing {OTSTART , · · · , OTEND}. Consequently, the emission probability of each

codeword in each state are computed using equations (69) and (70). In the continuous case, the

mean and covariance of the emission probability density function for each state’s component are

estimated using the observations belonging to that state.

3.3.1.3 Computing the similarity matrix

For each observation sequence Or, 1 ≤ r ≤ R, we compute its likelihood in each model λp,

Pr(Or|λp), for 1 ≤ p ≤ R, using either the forward or the backward procedure described in section

2.1.6. Since the models share the same architecture, it could be asserted that similar alarms would
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have comparable likelihood values. However, the likelihood based similarity may not be always

accurate. In fact, some observations can have high likelihood in a visually different observation

model. This occurs when most of the elements of a sequence partially match only one or two of the

states of the model. In this case, the observation sequence can have a high likelihood in the model but

its optimal Viterbi path will deviate from the typical path. To alleviate this problem, we introduce

a penalty term, P, to the log-likelihood measure that is related to the mismatch between the most

likely sequence of hidden states of the test sequence (Oi) and that of the generating sequence (Oj).

Let S be the R×R similarity matrix defined by:

S(i, j) = αL(i, j)− (1− α)P(i, j), (74)

where

L(i, j) = logPr(Oi|λj) (75)

is the log-likelihood of observation sequence i in model λj , and

P(i, j) =

T∑
t=1

‖s(j)

q
(ji)
t

− s(j)

q
(jj)
t

‖, 1 ≤ i, j ≤ R, (76)

is a penalty term that measures the deviation between the Viterbi paths of testing Oi and Oj with

model λj (recall that model λj was learned using observation sequence Oj). In (76), q
(ji)
t , and q

(jj)
t

are respectively the most likely (as identified by the Viterbi algorithm [9]) hidden state sequences

that generated sequences Oi and Oj from the model λj .

The first term in equation (74) is the log-likelihood of sequence Oi being generated from

model λj . When the likelihood term is high, it is likely that model λj generated the sequence Oi. In

particular, since by construction model λj parameters were adjusted such that they maximize the

likelihood of sequence Oj in λj , it is expected that the likelihood of each sequence in its corresponding

model be high. In this case, sequences Oi and Oj are expected to share the same ”dynamics”. When

the likelihood term is low, it is unlikely that model λj generated the sequence Oi. In this case, it is

expected that Oi and Oj are not similar.

The second term in equation (74) is a penalty term denoted as the Viterbi path mismatch.

It is derived from the Viterbi optimal paths (refer to section 2.1.7). Precisely, an entry Pij is

the distance between the optimal path of the sequence Oi in model λj and the optimal path of

the sequence Oj in λj using an appropriate distance measure between paths. For instance, we

can use the distance between the mean of the states appearing in each path, as defined in (76).

Another distance, commonly used in ”string” comparisons, is the ”edit distance” [51]. The ”edit
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(a) Alarm Sig1 (b) Alarm Sig2 (c) Alarm Sig3

Figure 4. GPR signatures of mine alarms

distance” between two strings, say p and q, is defined as the minimum number of single-character edit

operations (deletions, insertions, and/or replacements) that would convert p into q. For example, the

distance between p = ”1111223333” and q = ”111223333” is 3. The Viterbi path mismatch term is

intended to ensure that similar sequences have few mismatches in their corresponding Viterbi paths.

This term is important in applications where the HMM states have a ”visual” interpretation or are

related to a certain shape characteristic in the original sequence raw data or extracted features. The

extra computational cost for obtaining the Viterbi path penalty is very low compared to that of

computing the traditional likelihood. Indeed, the Viterbi path is already available when using the

forward-backward procedure for the likelihood computation.

The mixing factor α ∈ [0, 1] of equation (74) is a trade-off parameter between the log-

likelihood-based similarity and the Viterbi-path-mismatch based similarity. It could be either set

according to the application at hand or optimized using the available training data and an adequate

criterion.

The matrix computed using (74) is a similarity matrix and is not symmetric. Thus, we use

the following symmetrization scheme to transform it to a pairwise distance matrix:
1. D(i, j) = −S(i, j) 1 ≤ i, j ≤ R

2. D(i, i) = 0, 1 ≤ i ≤ R

3. D(i, j) = max(D(i, j),D(j, i)), 1 ≤ i, j ≤ R.

(77)

The matrix D represents the distance or dissimilarity between pairs of sequences Oi and Oj .
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3.3.1.4 Illustrative example: similarity matrix computation step

Continuing with the landmine illustrative example, figures 4(a) and 4(b) show two typical

mine alarms, Sig1 and Sig2, that have similar GPR signatures and similar EHD features. Figure

4(c) shows a mine alarm, Sig3, that has a visually different signature compared to Sig1 and Sig2.

Let λi be the trained DHMM model for alarm Sigi and Oi be its observation vector, for i = 1 · · · 3.

The initial and trained DHMM models for these 3 alarms are given in figures 5, 6, and 7 respectively.

First, to check the validity of the log-likelihood measure, we compute the probabilities of

O1 and O2 in their respective models λ1 and λ2. As it can be seen in table 1, the probability of

each sequence in its own model is higher than its probability in the other sequence’s model. Note

that since Sig1 and Sig2 are similar, the log-likelihoods L12 and L21 are relatively high. In fact,

both models λ1 and λ2 have comparable attributes (codes, states’ means, and transition matrices)

as shown in figures 5 and 6. On the other hand, since Sig3 is different from Sig1 and Sig2, the

log-likelihoods L31 and L32 are relatively lower (L31 = −13.23 and L32 = −11.45).

(a)

(b)

Figure 5. DHMM model λ1 construction for Sig1. (a) EHD features of the sequence of 15 obser-
vations O1. TSTART and TEND denote the dynamic range of the sequence and are computed using
equation (73). The Viterbi path of testing O1 with λ1 is displayed under each observation number.
(b) Initial and learned (using Baum-Welch algorithm) parameters of model λ1.
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(a)

(b)

Figure 6. DHMM model λ2 construction for Sig2. (a) EHD features of the sequence of 15 obser-
vations O2. TSTART and TEND denote the dynamic range of the sequence and are computed using
equation (73). The Viterbi path of testing O2 with λ2 is displayed under each observation number.
(b) Initial and learned (using Baum-Welch algorithm) parameters of model λ2.

TABLE 1

Log-likelihoods of the three signatures in figure 4 in the models generated by these signatures

Lij λ1 λ2 λ3

O1 -1.65 -5.00 -10.13
O2 -5.50 -1.55 -7.55
O3 -13.23 -11.45 -1.53

Table 2 shows the Viterbi paths resulting from the test of each alarm Sig1, Sig2, and Sig3 in

each model λ1, λ2, and λ3. We notice that the Viterbi path mismatch penalty is not as determinant

as the log-likelihood in this particular illustration test case. Nevertheless, it is worth noting that

the path p11 for Sig1 in its model shows a perfect symmetry, in terms of diagonal and anti-diagonal

states occurrences. However, the path p33 for Sig3 in its model reflects the visual asymmetry of

Sig3 (stronger diagonal component).

In figure 8, we show a non-mine (i.e. clutter) alarm, Sig4. Let O4 denote its observation
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(a)

(b)

Figure 7. DHMM model λ3 construction for Sig3. (a) EHD features of the sequence of 15 obser-
vations O3. TSTART and TEND denote the dynamic range of the sequence and are computed using
equation (73). The Viterbi path of testing O3 with λ3 is displayed under each observation number.
(b) Initial and learned (using Baum-Welch algorithm) parameters of model λ3.

TABLE 2

Viterbi paths resulting from testing each alarm in figure 4 by the three models learned from these
alarms. pij refers to the optimal path obtained by testing signature i with model j.

p11 1 1 1 1 2 2 3 3 3 3
p12 1 1 1 2 2 3 3 3 3
p13 1 1 1 2 2 3 3 3 3

p21 1 1 1 1 2 2 2 3 3 3
p22 1 1 1 2 2 3 3 3 3
p23 1 1 1 1 2 2 3 3 3

p31 1 1 1 1 1 2 2 3 3 3
p32 1 1 1 1 1 2 3 3 3
p33 1 1 1 1 1 2 3 3 3

vector and let λ4 be its DHMM model. The construction of this model is illustrated in figure 9. As

mentioned in section 3.3.1.3, the motivation for using the path mismatch penalty comes from the

testing of non-mine signatures, such as Sig4, in a mine model, e.g. λ1. In fact, in the computation

of the log-likelihood L41, most or all of the non-mine alarm observations are assigned to one single

code from λ1 (typically, the one with weak edges), that is the closest code to all the observations of
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Sig4. Consequently, most of the observations in O4 are assigned to the state whose mean is closest

to that code. Hence, the probability of O4 in λ1 is high (L41 = −1.72) and its Viterbi path p14, as

shown in table 3, is a recurrence of state s1. In this case, the path mismatch penalties, derived from

the paths shown in table 3, can be easily computed using the ”edit distance” (P14 = 9 and P41 = 6).

Those penalty values are relatively high when compared to the previous penalty values obtained by

testing mine alarms in mine models (P12 = 3, P21 = 4, P13 = 3, and P31 = 2).

Figure 8. GPR signature for a non-mine alarm, Sig4

TABLE 3

Viterbi paths resulting from testing Sig1 and Sig4 in models λ1 and λ4. pij refers to the optimal
path obtained by testing signature i with model j.

p11 1 1 1 1 2 2 3 3 3 3
p14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

p44 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3
p41 1 1 1 1 1 1 1 1 1 1

Figures 10(a) and 10(b) show the log-likelihood and path mismatch penalty matrices for

a large collection of mine and clutter signatures. In these figures, the indices are rearranged so

that the first entries correspond to the mine signatures and the latter ones correspond to non-

mine signatures. In other words, the diagonal blocks correspond to testing mine signatures in mine

models and non-mine signatures in non-mine models, and the off-diagonal blocks correspond to

testing mine signatures in non-mine models and non-mine signatures in mine models. In these

figures, dark pixels correspond to small values of the log-likelihood and path mismatch penalty and

bright pixels correspond to larger entries of the corresponding matrices. Note that in the case of the

log-likelihood matrix of figure 10(a), the diagonal blocks are brighter than the off-diagonal blocks.

Conversely, in the path mismatch penalty matrix of figure 10(b)), the diagonal blocks are darker
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(a)

(b)

Figure 9. DHMM model λ4 construction for Sig4. (a) EHD features of the sequence of 15 observa-
tions O4. (b) Initial and learned (using Baum-Welch algorithm) parameters of model λ4.

than the off-diagonal blocks. Thus, both the log-likelihood and the path mismatch penalty provide

complementary measures for the (dis)similarity between signatures. This was the motivation for

combining both matrices using the mixing factor α in (74).

3.3.2 Pairwise-distance-based clustering

The similarity matrix, computed using equation (74) and illustrated in figure 10 for the case

of landmine detection, reflects the degree to which pairwise signatures are considered similar. The

largest variation is expected to be between classes. Other significant variation may exist within the

same class, e.g. the groups of signatures shown in figure 2. Our goal is to identify the similar groups

so that one model can be learned for each group. This task can be achieved using any relational

clustering algorithm. In our work, we investigate three different clustering algorithms : hierarchical

[25], spectral with learnable cluster dependent kernels [52], and fuzzy clustering with multiple kernels

[53].
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(a) Log-likelihood (b) path mismatch penalty

Figure 10. Log-likelihood and path mismatch penalty matrices for a large collection of mine and
clutter signatures

3.3.2.1 Hierarchical Clustering

In this case, the natural choice is to use an agglomerative hierarchical algorithm [25]. Ag-

glomerative hierarchical clustering is a bottom-up approach that starts with each data point as a

cluster. Then, it proceeds by merging the most similar clusters to produce a sequence of clusters.

Several similarity measures between clusters have been used [25]. Examples include single link,

complete link, average link, and ward distance. In the single link method, the distance between

two clusters is the minimum of the distances between all pairs of sequences drawn from the two

clusters. In the complete link based algorithm, the distance between two clusters is the maximum of

all pairwise distances between sequences in the two clusters. Complete link method tends to produce

compact clusters, while single link is known to result in ”elongated” clusters. Another interesting

similarity measure between two clusters is the minimum-variance distance, or ward distance [54].

This distance is defined as

d(i, j) =
ninj
ni + nj

‖ci − cj‖2 (78)

where nk and ck are respectively the cardinality and the centroid of the cluster Ck. It has been

shown in [55] that this approach merges the two clusters that lead to the smallest increase in the

overall variance.
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3.3.2.2 Spectral Clustering with Learnable Cluster Dependent Kernels (FLeCK)

FLeCK [52] is a kernel clustering algorithm that works on both object based representation

and relational data. It learns multiple kernels by simultaneously optimizing intra-cluster and inter-

cluster distances. Specifically, it tries to simultaneously minimize:

J intra =

K∑
i=1

N∑
j=1

N∑
k=1

βijk(1− exp(−rjk
σi

))−
K∑
i=1

ρ

σi
(79)

and maximize

J inter =

K∑
i=1

N∑
j=1

N∑
k=1

αijkexp(
rjk
σi

)−
K∑
i=1

ρ

σi
. (80)

In (79) and (80), r is a distance matrix representing the degree to which objects from a

dataset {x1, ...xN} are dissimilar; σi is the scaling parameter of cluster i; K is the number of

clusters; ρ is a regularization constant; βijk is the likelihood that two points xj and xk belong to

the same cluster; and αijk is the likelihood that two points xj and xk belong to different clusters.

Precisely,  βijk = umiju
m
ik

αijk = umij (1− umik) + umik(1− umij )
(81)

where m ∈ (1,∞) is a constant that determines the level of fuzziness, and uij is the fuzzy membership

of xj in cluster i and satisfies

0 ≤ uij ≤ 1 and

K∑
i=1

uij = 1, for j = 1, · · · , N. (82)

The first term in (79) seeks clusters that have compact local relational distances

Di
jk = 1− exp(−rjk

σi
) (83)

with respect to each cluster i.

Assuming that the scaling parameters σi’s are independent from each other, it can be shown

[52] that optimization of (79) and (80) can be performed iteratively using

σ
(t)
i =

∑N
j=1

∑N
k=1 β

i
jkr

2
jkexp(−

rjk

σ
(t−1)
i

)∑N
j=1

∑N
k=1 α

i
jkrjkexp(−

rjk

σ
(t−1)
i

) +
∑N
j=1

∑N
k=1 β

i
jkrjkexp(−

rjk

σ
(t−1)
i

)
(84)

and

uij =
1∑K

t=1(
d2ij
d2tj

)
1

m−1

, (85)

where d2
ik is the Euclidean distance from feature xk to cluster i that can be written [56] in terms of

the relational matrix Di as

d2
ik = (Divi)k −

vtiD
ivi

2
. (86)
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In (86), vi is the membership vector of all N samples in cluster i defined by

vi =
(umi1, · · · , umiN )t∑N

j=1 u
m
ij

. (87)

Starting with an initial partition, FLeCK iteratively updates the fuzzy membership variables βijk

and αijk and the scaling parameters σi. The FLeCK algorithm steps are summarized in Algorithm

4.

Algorithm 4 The FLeCK algorithm, adapted from [52]

Require:
1: Symmetric distance, r
2: Number of clusters K, fuzzifier m, and scaling parameters σi

Ensure:
3: repeat
4: Compute the distance Di for all clusters using (83);
5: Compute the membership vectors vi using (87);
6: Compute the distances using (86);
7: Update the fuzzy memberships using (85);
8: Update the scaling parameter σi using (84);
9: until Fuzzy memberships do not change

3.3.2.3 Fuzzy Clustering with multiple kernels (FCM-MK)

The FCM-MK [53] consists of reducing the dimensionality of the original distance matrix

and performing fuzzy c-means clustering [57] on the reduced data. The steps for FCM-MK are

detailed in Algorithm 5.

Algorithm 5 The FCM-MK algorithm, adapted from [53]

Require: symmetric distance matrix, D
Require: ”neighborhood” size
Ensure:

1: Compute σK matrix using the ”neighborhood” parameter
2: Compute Kernel Matrix K as K = exp(−((D2)/σK))
3: Normalize K
4: Perform singular value decomposition (svd) on normalized kernel K
5: Derive the corresponding mapping using the corresponding feature reduction dimension
6: Perform fuzzy c-means clustering on the reduced dimension space mapping
7: Derive the corresponding partition

3.3.2.4 Illustrative example: hierarchical clustering step

Continuing with the illustrative example of landmine detection, we use the standard hier-

archical clustering algorithm to cluster the distance matrix D computed from the similarity matrix

S of (74), using (77). The log-likelihood and path mismatch penalty terms of S for a collection of
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(a) Distance matrix (b) Dendrogram

Figure 11. Hierarchical clustering results of the matrix D for a large collection of mine and clutter
signatures

mine and clutter signatures were shown in figure 10. We cluster D into a pre-set number of clusters,

K = 20. The choice of K stems from prior knowledge of the training data at hand. In particular, the

choice of K should depend on the number of mine types, the clutter categories, and burial depths

observed in the data collection. In figure 11(a), we plot the resulting distance matrix (that combines

figure 10(a) and figure 10(b)) as a gray-scale intensity image. We use the VAT algorithm [58] to

rearrange the matrix entries so that each diagonal block corresponds to a cluster. The diagonal

blocks of the matrix are darker, which corresponds to smaller intra-cluster distances.

Similarly, the dendrogram in figure 11(b) shows that, at a certain threshold, we can identify

two main groups of clusters. On the left hand side of the dendrogram, clusters {3, 17, · · · , 13} have

mainly clutter signatures. On the right hand side, clusters {1, 5, · · · , 15} are dominated by mine

signatures. These findings are further highlighted in figure 12 where some clusters (e.g. cluster 1,

5, and 15) have a large number of mines and few or no clutter alarms. These are typically strong

clutter alarms with mine-like signatures. Figure 13 shows sample alarms belonging to cluster 5.

Similarly, some clusters are dominated by clutter with few mines (e.g. cluster 2, 13, and

18). The few mines included in these clusters, as shown in figure 14, are typically mines with weak

signatures that are either low metal mines or mines buried at deep depths. Other clusters are

composed of a mixture of mines and clutter signatures (e.g. cluster 3, 6, and 11). The mines within

these clusters are either low metal mines (figure 12 (b), cluster 6) or mines buried at deep depths

(figure 12 (c), clusters 3 and 11). Sample alarms belonging to cluster 11 are shown in figure 15.

The above figures illustrate the purpose of step 2 of the proposed eDHMM approach, i.e.
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Figure 12. Distribution of the alarms in each cluster: (a) per class, (b) per type, (c) per depth.

grouping similar signatures into clusters.

To summarize, using the similarity matrix D of (77), the R sequences are clustered into K

clusters. The objective of this clustering step is to group similar observations in the log-likelihood

space. The observations forming each cluster are then used to learn multiple HMM models. The

initialization of each model is performed by averaging the parameters of the individual models of

the sequences belonging to that cluster. Then, for each cluster, the initial model and the sequences

belonging to that cluster are used to train and update the HMM model parameters. In the next

step, we show how different HMM models can be learned for the different clusters.
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Figure 13. Sample signatures belonging to a cluster dominated by strong mines (cluster 5). Above
each signature, ”M” denotes a mine signature and the number refers to the burial depth.

Figure 14. Sample signatures belonging to a cluster dominated by weak signatures (cluster 18).
Above each signature, ”M” denotes a mine signature, ”C” denotes a clutter signature, and the
number refers to the burial depth.

Figure 15. Sample signatures belonging to a cluster that has a mixture of weak mines and clutter
signatures (cluster 11). Above each signature, ”M” denotes a mine signature, ”C” denotes a clutter
signature, and the number refers to the burial depth.
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3.3.3 Initialization and training of the ensemble HMM

The previous clustering step results in K clusters, each comprised of Nk potentially similar

sequences. These K clusters will be used to learn the ensemble HMM. Let N
(c)
k denote the number

of sequences assigned to the same cluster k and labeled as class c, such that

0 ≤ N (c)
k ≤ Nk, and

C∑
c=1

N
(c)
k = Nk. (88)

For instance, for the landmine example, if we let c = 1 denote the class of mines and c = 0 denote

the class of clutter, N
(1)
k would be the number of mines assigned to cluster k. The goal of this step

is to initialize up to C HMM models {λ(c)
k } for each of the K clusters. Let O(c)

k = {O(c)
r , y

(c)
r }

N
(c)
k

r=1 be

the set of sequences of class c belonging to cluster k and {λ(c)
r }

N
(c)
k

r=1 be the corresponding individual

sequence models, c ∈ {1, · · · , C}.

For each cluster, we devise the following optimized training methods based on the cluster’s

size and homogeneity.

• Clusters dominated by sequences from only one class: In this case, we learn only one

model for this cluster. The sequences within this cluster are presumably similar and belong

to the same ground truth class, denoted Ci. We assume that this cluster is a representative of

that particular dominating class. It is expected that the class conditional posterior probability

is uni-modal and peaked around the MLE of the parameters. Thus, a maximum likelihood

estimation would result in an HMM model parameters that best fit this particular class. For

these reasons, we use the standard Baum-Welch re-estimation procedure [10]. Let K1 be the

number of homogenous clusters and {λ(Ci)
i , i = 1, · · · K1} denote the set of BW-trained models.

• Clusters with a mixture of observations belonging to different classes: In this case,

we learn one model for each class represented in this cluster. It is expected that the posterior

distribution of the classes is multimodal. The MLE approach is not adequate and more ad-

vanced techniques are needed to address the multimodality, such as genetic algorithms [59], or

simulated annealing optimization [60]. In our work, we build a model for each class within the

cluster. The focus is on finding the class boundaries within the posteriors rather than trying to

approximate a joint posterior probability. Thus, the models parameters are jointly optimized

such that the overall misclassification error is minimized. In this context, we use discriminative

training based on minimizing the misclassification error to learn a model for each class [12].

The details of the discriminative training based on the MCE criterion are given in section
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2.1.8.2. Let K2 be the number of mixed clusters and {λ(c)
j , j = 1, · · · K2, c = 1, · · · C} be the

set of MCE-trained models.

• Clusters containing a small number of sequences: In this case, we learn only one model

for the dominating class, denoted Ck, of each cluster. The MLE and MCE approaches need

a large number of data points to give good estimates of the model parameters. Thus, when

a cluster has few samples, the above approaches may not be reliable. The Bayesian training

framework [26] , on the other hand is suitable for clusters with small number of sequences.

These clusters may contain information about sequences with distinctive characteristics. In this

case, we use a variational Bayesian approach [30] to approximate the class conditional posterior

distribution. First, the models parameters are given priors. Then, parameter posteriors are

computed given the available data. Finally, the required probabilities are derived by integrating

over the parameters posteriors. Let K3 be the number of small clusters and {λ(Ck)
k , k =

1, · · · K3} denote the set of Bayesian-trained models.

Therefore, for each homogenous cluster i, we define one model λ
(Ci)
i , i = 1, · · · ,K1, for

the dominating class Ci. For mixed clusters, we define C models per cluster: λ
(c)
j , c = 1 . . . C,

j = 1, · · · ,K2. For each small cluster, we define one model λ
(Ck)
k for the dominating class Ck. The

ensemble HMM mixture is defined as {λ(c)
k }, where k ∈ {1, · · · ,K}, and c = Ck if cluster k is

dominated by sequences labeled with class Ck, and c ∈ {1 · · · , C} if cluster k is a mixed cluster.

We assume that all models λ
(c)
k have a fixed number of states N . For each model λ

(c)
k , the

initialization step consists of assigning the priors, the initial states transition probabilities, and the

states parameters (initial means and initial emission probabilities) using the observations O
(c)
r and

their respective individual models λ
(c)
r , r ∈ {1, · · · , N (c)

k }. In particular, the initial values for the

priors and the state transition probabilities are obtained by averaging, respectively, the priors and

the state transition probabilities of the individual models λ
(c)
r , r ∈ {1, · · · , N (c)

k }. The initialization

of the emission probabilities in each state, b
(k,c)
n , depends on whether the HMM is discrete or

continuous.

• Discrete HMM (DHMM): the state representatives and the codebook of model λ
(c)
k are ob-

tained by partitioning and quantizing the observations O(c)
k . Any clustering algorithm, such

as the k-means [61] or the fuzzy c-means [62], could be used for this task. First, the class-(c)

sequences belonging to cluster k, O
(c)
r , are ”unrolled” to form a vector of observations U(k,c)

of length N
(c)
k T . The state representatives, s

(k,c)
n ’s, are obtained by clustering U(k,c) into N
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clusters and taking the centroid of each cluster as the state representative. Similarly, the

codebook V(k,c) = [v
(k,c)
1 , · · · , v(k,c)

M ] is obtained by clustering U(k,c) into M clusters. For each

symbol v
(k,c)
m , the membership in each state s

(k,c)
n is computed using:

bn(m) =

1

‖v(k,c)m −s(k,c)n ‖∑N
l=1

1

‖v(k,c)m −s(k,c)l ‖

, 1 ≤ m ≤M. (89)

To satisfy the requirement
∑M
m=1 bn(m) = 1, we scale the values by:

b(k,c)n (m)←− b
(k,c)
n (m)∑M
l=1 b

(k,c)
n (l)

(90)

• Continuous HMM (CHMM): we assume that each state has Ng Gaussian components. For

each model λ
(c)
k , the observation sequences O

(c)
r , r ∈ {1, · · · , N (c)

k }, are assigned to one of

the states s
(k,c)
n and unrolled to form a vector of observations U

(k,c)
n , for each state s

(k,c)
n ,

n = 1, · · · , N . The mean and covariance of component g of state s
(k,c)
n are computed by

clustering U
(k,c)
n into Ng clusters using the k-means algorithm [24]. Precisely, the mean of

each component is the center of one the resulting clusters and the covariance is estimated

using the observations belonging to that same cluster.

After initialization, we use one of the training schemes described earlier, to update λ
(c)
k

parameters using the respective observations O(c)
k , k ∈ {1, · · · ,K}, c ∈ {1, · · · , C}. To summarize,

for homogenous clusters, BW training results in one model λBW per cluster. For mixed clusters,

MCE training results in C models per cluster: λMCE
c , c = 1 . . . C. For small clusters, variational

Bayesian learning results in one model per cluster, λV B .

3.3.3.1 Illustrative example: cluster models initialization and training steps

Referring back to the landmine example, the clustering of the training data resulted in 20

clusters. As it was shown in figure 12, eight clusters (1, 4, 5, 7, 8, 15, 16, and 17) were composed

of only mine alarms, two clusters (3 and 20) contain exclusively clutter alarms, and the remaining

ten clusters have both mine and clutter alarms. Therefore, using the notations of Algorithm 6, we

define our eHMM as
λBWi = {λ(M)

1 , λ
(M)
4 , λ

(M)
5 , λ

(M)
7 , λ

(M)
8 , λ

(M)
15 , λ

(M)
16 , λ

(M)
17 , λ

(C)
13 , λ

(C)
20 },

λMCE
j = {λ(M)

j , λ
(C)
j }, j ∈ {2, 3, 6, 9, 10, 11, 12, 14, 16, 18, 19},

λV Bk = ∅.

(91)
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Depending on the cluster type, one or two HMM models are built based on the elements

belonging to that cluster: one for mines and/or one for clutter. The initialization of these models is

performed as follows. The priors and transition matrices of model {λ(M)
k } and {λ(C)

k } are obtained by

averaging the corresponding parameters of the individual models of the mine and clutter signatures

belonging to cluster k, respectively. We assume that each model has N = 3 states. The initialization

of the emission probabilities for the discrete case is straightforward. That is, the means of the states

sn, n = 1, · · · , N , are obtained by clustering the codes of the individual models into N = 3 clusters

using the k-means algorithm [24]. Similarly, the codes vm, m = 1, · · · ,M , of the cluster model are

obtained by clustering the codes of the individual models into M = 20 clusters.

TABLE 4

λM5 DHMM model parameters of cluster 5

Means
H V D A N

s1 0.28 0.15 0.31 0.10 0.16
s2 0.48 0.10 0.12 0.13 0.17
s3 0.27 0.15 0.09 0.34 0.16

Initial A
s1 s2 s3

0.67 0.33 0.00
0.00 0.69 0.31
0.00 0.00 1.00

A
s1 s2 s3

0.59 0.41 0.00
0.00 0.26 0.74
0.00 0.00 1.00

Codes
v1 0.21 0.23 0.09 0.34 0.14
v2 0.36 0.01 0.10 0.04 0.39
v3 0.26 0.00 0.06 0.00 0.67
v4 0.57 0.01 0.06 0.07 0.23
v5 0.09 0.53 0.04 0.26 0.13
v6 0.47 0.09 0.21 0.10 0.11
v7 0.36 0.17 0.33 0.11 0.07
v8 0.38 0.09 0.11 0.26 0.09
v9 0.00 0.56 0.01 0.11 0.31
v10 0.69 0.03 0.09 0.06 0.09
v11 0.27 0.17 0.27 0.13 0.16
v12 0.57 0.06 0.19 0.11 0.04
v13 0.20 0.13 0.24 0.10 0.31
v14 0.09 0.23 0.23 0.07 0.37
v15 0.14 0.14 0.11 0.10 0.50
v16 0.14 0.11 0.06 0.47 0.11
v17 0.19 0.14 0.41 0.07 0.13
v18 0.10 0.29 0.04 0.33 0.33
v19 0.14 0.26 0.30 0.05 0.23
v20 0.39 0.09 0.21 0.04 0.26

Initial B
0.00 0.00 0.22
0.03 0.00 0.01
0.01 0.00 0.01
0.00 0.11 0.02
0.00 0.00 0.02
0.03 0.19 0.00
0.18 0.03 0.00
0.01 0.16 0.26
0.00 0.00 0.00
0.00 0.20 0.00
0.17 0.01 0.00
0.00 0.28 0.00
0.11 0.00 0.01
0.08 0.00 0.00
0.03 0.00 0.08
0.00 0.00 0.19
0.19 0.00 0.00
0.00 0.00 0.16
0.12 0.00 0.00
0.05 0.01 0.00

B
0.00 0.00 0.12
0.04 0.09 0.03
0.05 0.07 0.03
0.02 0.15 0.01
0.00 0.00 0.12
0.03 0.14 0.01
0.15 0.00 0.00
0.00 0.00 0.12
0.00 0.00 0.12
0.03 0.13 0.02
0.14 0.01 0.00
0.03 0.14 0.02
0.09 0.04 0.02
0.07 0.04 0.03
0.06 0.06 0.04
0.00 0.00 0.12
0.15 0.00 0.00
0.00 0.00 0.12
0.10 0.03 0.02
0.06 0.09 0.01

After initialization, and depending on the cluster size and homogeneity, one of the training

schemes described earlier, is devised. In table 4, we show the initial and the BW-trained model of

cluster 5. Recall that cluster 5 contains a large number of strong mines and few clutter alarms with

mine-like signatures, as it was shown in figure 13. Therefore, model λ
(M)
5 is expected to reflect the
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TABLE 5

λM2 DHMM model parameters of cluster 2

Means
H V D A N

s1 0.18 0.11 0.22 0.09 0.39
s2 0.14 0.17 0.08 0.10 0.51
s3 0.17 0.15 0.03 0.27 0.38

Initial A
s1 s2 s3

0.78 0.22 0.00
0.00 0.00 1.00
0.00 0.00 1.00

A
s1 s2 s3

0.82 0.18 0.00
0.00 0.00 1.00
0.00 0.00 1.00

Codes
v1 0.21 0.10 0.27 0.07 0.34
v2 0.01 0.09 0.09 0.11 0.70
v3 0.03 0.27 0.00 0.10 0.60
v4 0.06 0.44 0.04 0.14 0.31
v5 0.09 0.39 0.03 0.10 0.40
v6 0.04 0.07 0.06 0.19 0.64
v7 0.26 0.17 0.06 0.16 0.36
v8 0.09 0.31 0.02 0.28 0.30
v9 0.26 0.09 0.04 0.21 0.40
v10 0.04 0.13 0.14 0.06 0.63
v11 0.24 0.01 0.00 0.03 0.71
v12 0.21 0.09 0.40 0.01 0.29
v13 0.30 0.01 0.36 0.03 0.30
v14 0.50 0.03 0.11 0.06 0.30
v15 0.09 0.07 0.19 0.11 0.54
v16 0.07 0.31 0.10 0.09 0.43
v17 0.09 0.11 0.01 0.39 0.40
v18 0.13 0.22 0.15 0.09 0.41
v19 0.11 0.17 0.09 0.13 0.49
v20 0.09 0.24 0.00 0.27 0.40

Initial B
0.11 0.00 0.00
0.00 0.00 0.07
0.00 0.00 0.07
0.11 0.00 0.00
0.11 0.00 0.00
0.00 0.00 0.07
0.00 0.00 0.07
0.00 0.00 0.13
0.00 0.00 0.07
0.11 0.00 0.00
0.11 0.00 0.07
0.11 0.00 0.00
0.11 0.00 0.00
0.00 0.50 0.00
0.00 0.00 0.07
0.00 0.50 0.00
0.00 0.00 0.13
0.11 0.00 0.07
0.11 0.00 0.13
0.00 0.00 0.07

B
0.20 0.00 0.00
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.00 0.00 0.08
0.05 0.21 0.01
0.05 0.17 0.02
0.20 0.00 0.00
0.20 0.00 0.00
0.09 0.09 0.02
0.07 0.17 0.01
0.05 0.19 0.02
0.00 0.00 0.08
0.08 0.16 0.01
0.00 0.00 0.08
0.00 0.00 0.08

typical strong mines signatures characteristics, i.e. hyperbolic shape of the signature with succession

of Dg-Hz-Ad states. This can be corroborated by the results reported in table 4:

1. The means of states s1, s2, and s3 (i.e. the Dg, Hz, and Ad state) have the highest component

in the D, H, and A dimension, respectively.

2. In the initial model, the matrix A is nearly symmetric with regards to the latency in states

s1 and s2 (with approximately 2/3 probability) versus the transition to the consequent state

(with ∼ 1/3 probability). After training, however, the model is less likely to stay in s2 (0.26

probability) and tends to transition rapidly (0.74 probability) to s3. This can be explained by

the strength of the diagonal and anti-diagonal edges of the mine signatures in cluster 5 (refer

to figure 13), compared to the horizontal edge.

3. Codes with high emission probability B in state s1 (b1(v7), b1(v11), b1(v13), b1(v17), and b1(v19))

have strong D component. The same remark is valid for codes with high emission probability
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TABLE 6

λF2 DHMM model parameters of cluster 2

Means
H V D A N

s1 0.14 0.02 0.04 0.04 0.75
s2 0.17 0.03 0.05 0.06 0.69
s3 0.14 0.02 0.03 0.05 0.75

Initial A
s1 s2 s3

0.95 0.05 0.00
0.00 0.85 0.15
0.00 0.00 1.00

A
s1 s2 s3

0.76 0.24 0.00
0.00 0.31 0.69
0.00 0.00 1.00

Codes
v1 0.17 0.01 0.00 0.39 0.41
v2 0.61 0.00 0.00 0.00 0.36
v3 0.01 0.00 0.00 0.00 0.91
v4 0.23 0.13 0.17 0.24 0.23
v5 0.10 0.07 0.07 0.06 0.67
v6 0.31 0.03 0.03 0.16 0.47
v7 0.16 0.00 0.01 0.01 0.76
v8 0.06 0.01 0.06 0.01 0.81
v9 0.20 0.17 0.06 0.24 0.33
v10 0.29 0.00 0.01 0.01 0.66
v11 0.19 0.14 0.11 0.10 0.43
v12 0.24 0.04 0.08 0.08 0.56
v13 0.36 0.04 0.14 0.14 0.31
v14 0.11 0.24 0.34 0.01 0.20
v15 0.14 0.06 0.64 0.03 0.13
v16 0.46 0.00 0.00 0.01 0.51
v17 0.43 0.01 0.06 0.06 0.46
v18 0.04 0.18 0.19 0.02 0.49
v19 0.16 0.07 0.04 0.20 0.56
v20 0.11 0.07 0.16 0.07 0.54

Initial B
0.00 0.00 0.02
0.00 0.06 0.00
0.09 0.00 0.55
0.00 0.00 0.02
0.13 0.03 0.03
0.01 0.00 0.02
0.36 0.06 0.10
0.17 0.00 0.15
0.00 0.00 0.03
0.14 0.35 0.02
0.01 0.08 0.01
0.03 0.16 0.00
0.01 0.03 0.02
0.01 0.00 0.00
0.00 0.00 0.00
0.00 0.08 0.00
0.00 0.09 0.01
0.01 0.00 0.00
0.01 0.05 0.03
0.03 0.00 0.00

B
0.00 0.00 0.13
0.03 0.13 0.04
0.04 0.08 0.05
0.00 0.00 0.13
0.10 0.00 0.00
0.00 0.00 0.13
0.05 0.05 0.06
0.10 0.00 0.00
0.00 0.00 0.13
0.03 0.16 0.04
0.10 0.00 0.00
0.03 0.17 0.03
0.03 0.14 0.04
0.10 0.00 0.00
0.10 0.00 0.00
0.03 0.14 0.04
0.03 0.14 0.04
0.10 0.00 0.00
0.00 0.00 0.13
0.10 0.00 0.00

B in s2 and state s3 having strong H and A component, respectively.

In tables 5 and 6, we show the mine and the clutter model of cluster 2, respectively. As shown

earlier in figure 12, cluster 2 has a large number of clutter alarms with few weak mines. Therefore,

the means of states s1, s2, and s3 of λ
(M)
2 have respectively weaker D, H, and A components

compared to the states means of λ
(M)
5 , reported in table 4. However, the non-edge N component

of λ
(M)
2 states means (s1([N ]) = 0.39, s2([N ]) = 0.51, s3([N ]) = 0.38) is higher than those of λ

(M)
5

(s1([N ]) = s3([N ]) = 0.16 and s2([N ]) = 0.17). Moreover, the non-edge component is significantly

higher in the λ
(F )
2 model’ states means (s1([N ]) = s3([N ]) = 0.75 and s2([N ]) = 0.69), as shown in

table 6.

Given the set {λ(c)
k , k = 1, · · · ,K, c ∈ {M,C}} of models learned (refer to tables 4, 5, and 6

for few examples of clusters’ mine and clutter models), we analyze the performance of these models

on the training data. In figure 16, we plot the likelihood of a mine signature belonging to cluster 1

in all cluster models. As expected, the highest likelihood occurs when testing the sequence with the
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(a) (b)

Figure 16. (a) A sample alarm signature assigned to cluster 1. (b) Clusters’ models responses to
the signature in (a)

(a) (b)

Figure 17. (a) A sample alarm signature assigned to cluster 5. (b) Clusters’ models responses to
the signature in (a)

DHMM model of cluster 1. Moreover, the higher likelihood values correspond to the mine-dominated

clusters (1, 4, 5, 6, · · · , 14, 15, 17, · · · ).

The same remark is valid for the models’ response to a test signature of a strong mine from

cluster 5, as shown in figure 17. In this case, fewer models responded to that signature. These models

correspond to clusters containing similar signatures (strong mines). Similarly, figure 18 shows that

a test sequence belonging to cluster 2 (which is dominated by clutter signatures) has high likelihood

in only clutter-dominated clusters’ models.

Figure 19 shows the scatter plot of the log-likelihood of the training data in model 5 (ordinate
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(a) (b)

Figure 18. (a) A sample alarm signature assigned to cluster 2. (b) Clusters’ models responses to
the signature in (a)

Figure 19. Scatter plot of the log-likelihoods of the training data in model 5 (strong mines) Vs.
model 1 (weak mines). Clutter, low metal (LM), and high metal (HM) signatures at different depths
are shown with different symbols and colors.
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axis) versus model 1 (abscissa axis). In this figure, we display clutter, low metal (LM), and high

metal (HM) signatures at different depths using different symbols and colors. Even though the two

models are dominated by mine signatures, we see that not all confidence values are highly correlated.

In fact, some strong mine signatures have high log-likelihoods in model 5 and lower log-likelihoods

in model 1 (upper left side of the scatter plot, region R1). This can be attributed to the fact that

cluster 5 contains mainly strong mines and is more likely to yield high log-likelihood when testing

a strong mine signature. On the other hand, in region R2, the performance of cluster 1 model is

better as it gave higher likelihood values to the ”weak” mines in that region. In fact this result is

expected because cluster 1 contains weak mine signatures.

Figure 20. Scatter plot of the log-likelihoods of the training data in model 12 (clutter) Vs. model
5 (strong mines). Clutter, low metal (LM), and high metal (HM) signatures at different depths are
shown with different symbols and colors.

In figure 20, we display the scatter plot of the log-likelihood of all the training data in model

12 (clutter) versus model 5 (mines). As clusters 5 and 12 are dominated respectively by mines and

clutter, their results are negatively correlated. That is, cluster 5 assigns higher log-likelihood to mine

signatures and lower log-likelihoods to clutter signatures. Cluster 12 model does the opposite. In
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region R1 in figure 20, strong signatures (high metal mines and/or mines buried at shallow depths)

are being assigned high likelihood values in cluster 5 model and very low likelihood values in cluster

12 model. In region R2, a group of clutter signatures and deeply-buried low metal mines have high

likelihoods in cluster 12 model and very low likelihood in cluster 5 model.

Figures 19 and 20 illustrate that the learned HMM models give different results on different

regions of the input space and that they are potentially complementary.

Although each cluster may have one or two models, its output is a single confidence value.

Precisely, the output of the BW-trained models is Pr(O|λi) while the output of the MCE-trained

models is Pr(O|λj) = Pr(O|λ(1)
j )− Pr(O|λ(0)

j ). Therefore, we can consider each cluster model as a

classifier and analyze its overall performance on the training data. In figure 21, we plot the ROCs

of some cluster models. The clusters ROCs show that the models perform differently at different

levels of false alarms rate. We also notice that no model consistently outperforms all other models.

For instance, as shown previously in the scatter plots of figures 19 and 20, cluster 5 model assigns

high confidence values to strong mines but fails to recognize weak signatures.

Figure 21. ROCs of some clusters models. Solid line: clusters dominated by mines. Dashed line:
clusters dominated by clutter.
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3.3.4 Decision level fusion of multiple HMMs

In the previous steps of our ensemble HMM, we initialized and learned multiple models for

the different clusters. Any sequence O will be tested by these models. Depending on the type and

the contents of the clusters, one or more models may have strong response to the test sequence O.

The multiple responses of the different models need to be combined into a single confidence value.

We propose using the procedure highlighted in Algorithm 6 to achieve this task.

Figure 22. Block diagram of the proposed eHMM (testing)

The block diagram for the proposed eHMM, in testing mode, is given in figure 22. The

output of Baum-Welch- and VB-trained cluster models is Pr(O|λk) while the output of the MCE-

trained cluster models is maxc Pr(O|λMCE
k,c ). Although each cluster may have up to C models,

its output is a single confidence value that represents the degree to which the input test sequence

”belongs” to that cluster.
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Algorithm 6 Testing a new sequence using the eHMM

Require: Test observation O
Ensure:

1: Compute Pr(O|λBWi ) for the K1 clusters learned with BW
2: Compute Pr(O|λMCE

j ) = maxc Pr(O|λMCE
j,c ), for the K2 clusters learned with MCE

3: Compute Pr(O|λV Bk ) for the K3 clusters learned with VB
4: Pr(O) = H(Pr(O|λBWi ), Pr(O|λMCE

j ), Pr(O|λV Bk ))

The general framework for decision combination is the following. Let Λ = {λBWi , λMCE
j , λV Bk }

be the resulting mixture model composed of a total of K models, K = K1 +K2 +K3. Let

F(k, r) = logPr(Or|λk), 1 ≤ r ≤ R, and 1 ≤ k ≤ K (92)

be the log-likelihood matrix obtained by testing the R training sequences with the K models. Each

column fr of the matrix F represents the feature vector of each sequence in the decision space

(recall that fr is a K-dimensional vector while Or is a sequence of vector observations of length T ,

15 × 4 sequence in the case of the landmine application example). In fact, each column represents

the confidences assigned by the K models to each sequence r. Therefore, the set of sequences

O= {Or, yr}Rr=1 is mapped to an Euclidean confidence space {fr, yr}Rr=1. Finally, a combination

function, H, takes all the fr’s as input and outputs the final decision.

Several decision level techniques such as simple algebraic [63], artificial neural networks

(ANN) [2], and hierarchical mixture of experts (HME) [46] can be used.

3.3.4.1 Algebraic-based fusion

Simple algebraic methods are not trainable and rely on the statistics of the clusters contents

and the corresponding models performance. The assumption is that each cluster is associated with

one and only one class. A class can be represented by more than one cluster. In the case of

MCE-trained cluster models, the corresponding class is the class in which the observation has the

maximum likelihood. Let class(k) refer to the class label of the majority of the samples assigned to

cluster k. The aggregation function could be a simple majority vote, i.e.,

H(fi) = argmax
c=1:C

K∑
k=1

fikδ(class(k) = c), 1 ≤ i ≤ R, (93)

or the max operator,

H(fi) = class(argmax
k=1:K

fik), 1 ≤ i ≤ R. (94)

Since we adopted an unsupervised, non-trainable, approach to data partitioning, it is not always

possible to identify reliable cluster-to-class associations and derive adequate statistics. An alternative
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is to use ANNs and HMEs to automate these associations and learn the corresponding weights from

the performance of the models on the training data.

3.3.4.2 ANN-based fusion

The basic decision combination neural network (DCNN) [2] is a single layer perceptron

with no hidden layers taking {f1, . . . , fR} as input and outputting the predicted labels {z1, . . . , zR}.

Borrowing the framework introduced in [2], the proposed ANN architecture is illustrated in figure

23. The combination function for this network is

Figure 23. The structure of the basic decision combination neural network (DCNN), adapted from
[2]

hc(f1, · · · , fR) =

R∑
i=1

K∑
k=1

wikcfik + θc, (95)

where wikc and θc are respectively the weights and the per-class bias of the DCNN. The final output

is casted as a sigmoid function of the form

Hc(f1, · · · , fR) =
1

1 + e−hc(f1,··· ,fR)
. (96)

The advantage of this architecture is that each weight has an interpretation for the role it plays

in the decision combination. Weight wikc is the contribution to class Cc when classifier λk assigns

confidence fik to data sample i. The weights are learned using a backpropagation [64] algorithm

that minimizes the mean square error (MSE) between the true labels and the actual outputs of the

DCNN on the training data.

The DCNN framework has several desirable properties. First, it can be considered as a

generalization of the linear combination models. Second, it is easily trainable. In other words,

training data could be used to learn the weights. Finally, it is not sensitive to possibly correlated

classifiers, as redundant classifiers could be eliminated through standard ANN pruning techniques

57



[65]. The main drawback of ANNs is that they are not easily interpretable and could suffer from

overfitting.

3.3.4.3 HME-based fusion

As highlighted in section 2.3.3, the HME method utilizes a tree-based hierarchy of experts

and can be applied to various supervised learning problems. For the eHMM framework, models

learned from clusters of observations can be treated as experts in different domains. The leaves

of such a hierarchy represent experts, while the non-leaves constitute a gating network designed to

dynamically combine the outputs of the subtrees. The input to the HME network is a K-dimensional

vector F. Equation (64) maps the input of the HME to the output, denoted y, via a probabilistic

model. In this case, H is a probability density function, P , conditioned on the input F and the

model parameters θ of the HME:

P (y|F, θ) =
∑
i

gi
∑
j

gj|iP (y|F, θij). (97)

In the case of binary classification, the output y is a discrete random variable having two

possible classes (or two possible values: 0 or 1). In this case, equation (97) reduces to:

P (y|F, θ) =
∑
i

gi
∑
j

gj|iµ
y
ij(1− µij)

1−y. (98)

Here µij is the conditional probability of classifying the input as class 1. Note that the dependence

on the input is through the gating networks gi and gj|i.

The HME parameters are learned from data via an EM-like algorithm [46] or via gradient

descent techniques [1].

3.3.4.4 Illustrative example: fusion results using HME and ANN

In our illustration example, we combine the cluster model outputs using two methods: ANN

and HME fusions. In the case of ANN combination, the weights are relative to the clusters models’

performance and are learned from the models’ response to the training data. In figure 24, we report

the weights assigned to each cluster model after training the ANN. Typically, one should expect that

the weights assigned to clutter dominated models are negative and those assigned to mine dominated

clusters are positive.

In the case of HME combination, each model is considered an ”expert” in a particular region

of the feature space. The gating networks of the HME control the regions on which a particular
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(a)

(b)

Figure 24. Weights assigned to the 20 HMMs using ANN. (a) Distribution of the alarms in each
cluster per class (mines vs. clutter). (b) ANN weights and bias

expert model has better performance. The posterior probability at a particular node in the HME is

the likelihood output of the expert model. The gating network coefficients are learned by optimizing

the performance of the HME network on the training data using the EM algorithm. We use a 1-level

HME with branching factor of two. We show the gating network parameters associated to each

model (expert network) in table 7. The gating network parameters , vi’s, can be viewed as a soft

partition of the original K−dimensional confidence space.

Given a test observation x, its inner product with the gating networks vectors (shown in

table 7), combined with the softmax smoothing function, determines the degree to which the test

point is to be treated by each of the expert networks. Geometrically, vectors v0, v11, and v12 can

be viewed as the normals to the regression surfaces of the gating networks. The higher the absolute

value of one covariate of v, the more weight is given to the corresponding model confidence. As

mentioned earlier, the parameters v0, v11, and v12 are learned via the EM algorithm. In figure 25,

we show the evolution of the mean log likelihood along the EM iterations. As it can be seen, the

overall log-likelihood of the HME reaches a plateau around iteration #40.

To evaluate the HME and ANN fusion methods, we compare the ROCs generated by these

two methods, using the training data, to the ROCs of the best three clusters’ models. As it can

be seen in figure 26, both fusion methods are consistently better than the three clusters’ models.

Also, we can see that the HME fusion slightly outperforms the ANN fusion. This is possibly due

to the fact that the HME is more suited for highly non linear classification problems. In this kind
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TABLE 7

HME gating network parameters after EM training

Dimension v0 v11 v12

1 -170.222 -0.355 -0.015
2 48.345 -0.498 0.485
3 -479.007 -0.632 -2.609
4 13.281 -0.264 0.351
5 51.229 0.220 -1.485
6 -129.177 0.188 -1.712
7 102.388 0.564 1.402
8 180.394 1.243 1.212
9 249.114 0.882 2.778
10 29.622 -0.023 0.354
11 175.361 -1.182 3.203
12 4.915 -0.191 -1.015
13 -96.080 0.072 -0.644
14 -135.543 -1.182 2.518
15 57.147 -0.447 0.318
16 -55.869 -0.276 -0.421
17 43.716 0.209 0.504
18 -9.176 0.429 -2.111
19 -531.275 -0.888 -2.791
20 36.375 0.075 0.219

Intercept -154.275 0.087 14.588

Figure 25. Log-likelihood of the HME during EM training

of settings (high non linearity), the ANN is prone to overfitting while the HME addresses the high

nonlinearity through the ”soft” partitioning of the input space, i.e. the divide and conquer approach.
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Figure 26. Comparison of the ANN and HME fusion with the best three cluster models (1, 2, and
12).

3.4 Chapter summary

In this chapter, we proposed our ensemble HMM classifier and its components. First, We gave

the motivations behind adopting our approach. Then, we detailed the different components/steps

of the proposed ensemble HMM classifier, namely, the similarity matrix computation, the pairwise-

similarity-based clustering, the models initialization and training, and the decision level fusion. We

have used an example of landmine detection using GPR signatures and EHD features to illustrate

and motivate each step. In the next chapters, we provide more details about the application of the

ensemble HMM classifier to real world sequential data sets. In particular, we analyze, in chapter

4, the results of the eHMM application to identify CPR scenes in video simulating medical crises.

Then, in chapter 5, we provide a more comprehensive results and analysis of the application of

eHMM to landmine detection.
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CHAPTER 4

APPLICATION TO CPR SCENES IDENTIFICATION

In this chapter, the proposed ensemble HMM classifier is used to identify CPR scenes in video

simulating medical crises. First, we provide the steps needed for extracting motion-based features

from the training videos. Then, we outline the proposed eHMM classifier architecture. Finally, we

compare the eHMM classifier’s performance to the baseline HMM classifier.

4.1 Introduction

Medical simulations, where uncommon clinical situations can be replicated, have proved to

provide a more comprehensive training. Simulations involve the use of patient simulators, which are

lifelike mannequins that have respiration, heartbeat, and respond to treatment with virtual drugs.

Simulations sessions involve 4 to 9 people and last approximately 30 minutes to one hour. Simulation

training sessions are scheduled approximately twice per week and are recorded as video data. After

each session, the physician/instructor must manually review and annotate the recording and then

debrief the trainees on the session. Video-assisted debriefing allows participants to de-construct and

reflect on their experiences, teaching them how to approach such tasks more effectively in the future.

The physician responsible for the simulation sessions has recorded over 100 sessions, and is

now realizing that: (1) the manual process of review and annotation is labor intensive; (2) retrieval

of specific video segments is not trivial; and (3) there is wealth of information waiting to be mined

form these recordings. Providing the physician with automated tools to segment, semantically

index and retrieve specific scenes from a large database of training sessions will enable him/her to:

(1) immediately review important sections of the training with the team; (2) allow more efficient

debriefing session with the team of trainees; and (3) identify similar circumstances in previously

recorded sessions. The longer term payback is the potential discovery of similar critical elements in a

training session that result in either positive or negative outcomes and thus enhance the effectiveness

of the training.
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4.2 Identification of CPR scenes in video simulating medical crises

In this section, we outline our approach to use the eHMM approach to detect and classify

scenes that involve CPR activity. Our approach consists of two main steps. The first one segments

the video into shots, selects one keyframe for each shot, and identifies regions with skin-like colors

in each keyframe. Each skin region is then represented by a sequence of observations that encode its

motion in the different frames within the shot boundaries. The second step consists of building an

ensemble HMM classifier that uses motion-based features in order to identify the skin-like regions

that involve CPR activities.

4.2.1 Video and image segmentation

First, a process that extracts shot boundaries to make a set of shots is needed. A shot is

defined as a video segment within a continuous capture period. To include the effect of dynamic visual

content, various cues such as color, motion, mosaic of frames can be adopted. The most common

approaches to shot boundary detection are based on color histogram [66], probability theory [67],

and unsupervised clustering [68]. Other approaches, based on motion are generally better suited

for controlling the number of frames based on temporal dynamics in the scene. These approaches

include pixel-based image differences [69], optical flow computation [70], and global motion and

gesture analysis [71].

After shot boundary detection, a key-frame that reflects the main content of each scene

needs to be extracted. Most of the early work selects key-frames by randomly or uniformly sampling

the video frames from the original sequence at certain time intervals [72]. Since a shot is defined

as a video segment within a continuous capture period, a natural and straightforward way of key-

frame extraction is to use the first frame of each shot as its key-frame [73, 70]. In our proposed

approach, we adopt the latter method. Next, each key-frame is segmented into a small number of

homogeneous regions. These regions will provide an organization framework for subsequent scene

analysis. Segmentation is achieved by clustering the color pixel information into non overlapping

regions of similar features. Any clustering algorithm could be used to achieve this task. We use

the normalized cut algorithm (Ncut) [3]. Our choice is motivated by the computational efficiency

of this algorithm and its ability to cluster the image into a reasonable number of regions with no

supervision information. Figure 27(a) displays a key-frame from a sample shot extracted from one

of the training sessions. Figure 27(b) displays the segmented regions obtained by using Ncut.
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(a) Key-frame of a sample shot (b) Segmented key-frame

Figure 27. Key-frame segmentation using Ncut [3] algorithm

4.2.2 Skin detection

Instead of processing all detected regions, we identify only those that are of interest. Since

our objective consists of identifying CPR scenes and since this action typically involves the trainees

hands and the mannequin chest, we identify and keep only those regions with skin-like colors. To

achieve this task, we use a simple but efficient skin pixel classifier [74] to discriminate between skin

and non-skin regions. We use a collection of skin images to train the classifier. This collection

includes 500 images of hands at different orientations and under different illumination. First, each

image is mapped to the (r, g) color space where r = R
(R+G+B) and g = G

(R+G+B) . This normalized

color space has proved to be suitable for representing skin color under different lighting conditions.

Each image is then filtered using a low-pass filter to reduce the effect of noise. Second, the color

distribution of all pixels in all images is fitted by a Gaussian model with mean µ and a covariance

matrix Σ.

Let xij = (rij , gij) be the color of the ith pixel in region Rj . The likelihood of xij in the

Gaussian skin model can be estimated using

L(xij) = exp(−0.5(xij − µ)Σ−1(xij − µ) (99)

A region is labeled as a skin region, and retained for further processing, if many of its pixels

have likelihood larger than a given threshold θ.

Figure 28 illustrates the skin detection process. In figure 28(a), we display the likelihood of

all pixels of figure 27(a) in the Gaussian skin model. Here, red pixels indicate high likelihood while

blue pixels indicate zero likelihood.
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(a) Skin likelihood (b) Identified skin regions

Figure 28. Skin detection using a Gaussian skin model

(a) One of the skin regions (b) Optical flow

Figure 29. Optical flow of one of the identified regions in figure 28(b)

4.2.3 Motion features extraction

Motion is an efficient feature to analyze moving objects that change location with time [75].

For each skin region, we extract a motion feature vector. First, we compute the optical flow for all

pixels within the region using Horn-Schunck algorithm [76]. Optical flow measures the change in

velocity in terms of speed and direction at each pixel location. Then, the optical flow, ūj = (ūxj , ū
y
j ),

of the region of interest Rj , is estimated as the average of the optical flow of all of its pixels. Figure

29(a) displays one of the skin labeled regions in figure 28(b). In figure 29(b), we superimpose the

optical flow of each pixel in the region as well as the average optic flow ūj (in red). In this case, the

pixels are moving downward, indicating the push-down phase of the CPR.

The average optical flow ūj is computed at each frame of a given shot. Thus, skin region Rj
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(a) Average optical flow of a typical CPR sequence

(b) Average optical flow of a non-CPR sequence

Figure 30. Average optical flow sequence of two sample regions

within the kth video shot will be represented by the sequence of observations:

Ōjk = {ū1
jk, · · · , ūtjk, · · · , ūTjk}, (100)

where T is the number of consecutive frames, within video shot k, that include skin region Rj .

Figure 30 displays the average optical flow of one skin region that involves CPR activities and

another non-CPR skin region over a sequence of 50 frames. As it can be seen, the CPR sequence

can be characterized by an upward motion followed by a downward motion. On the other hand, the

non-CPR sequence has no specific pattern and the motion vector tend to be random.

4.2.4 Video shot classification using HMMs

4.2.4.1 Baseline HMM classifier

To discriminate between skin regions that are involved in CPR activities and other skin

regions, we developed and trained a Hidden Markov Model (HMM) classifier that is based on motion

features. The baseline HMM classifier (bHMM) is comprised of two models: one for CPR sequences

and one for non-CPR sequences. Each model has two states and produces a probability value

by backtracking through model states using the Viterbi algorithm [9]. The CPR model, λCPR,

is designed to capture the smooth transition between state 1 and state 2 that characterizes CPR

sequences. The non CPR model, λ∼CPR, is needed to capture the characteristics of non-CPR

sequences. The probability value produced by the CPR (non-CPR) model can be thought of as
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an estimate of the probability of the observation sequence given that there is a CPR (non-CPR)

model present. These probabilities are produced by backtracking through the model states using

the Viterbi algorithm [9] . The confidence value assigned to each observation sequence, Conf(O),

depends on: (1) the probability assigned by the CPR model λCPR, and (2) the probability assigned

by the non-CPR model λ∼CPR. In particular, we use:

Conf(O) = logPr(O|λCPR)− logPr(O|λ∼CPR). (101)

4.2.4.2 Ensemble HMM classifier

In the baseline HMM classifier, the CPR scenes are modeled by a single HMM. The goal is to

generalize from all the training data in order to classify unseen scenes. However, generalizing from

all the motion vectors might lead to too much averaging and thus loosing some of the discriminating

characteristics of the CPR scenes. An illustrative example of this drawback was given in section

3.2. In order to overcome this limitation, the two model classifier is replaced by our ensemble HMM

(eHMM). Using multiple models can capture the variations of the CPR scenes that may be lost

under the effect of averaging in the two models case. The implementation of the eHMM for CPR

classification will be detailed later in section 4.3.4.

4.3 Experimental results

4.3.1 Data collection and preprocessing

To validate our proposed approach to detect CPR shots, we use the video of one simulation

session. The duration of the session is 30 min and 19 sec, with 29 frames per sec. Each frame has

720 × 480 resolution. After shot boundary detection, key-frame segmentation, and skin detection,

we obtain a total of N = 122 skin regions. We track each region, Rj , over all frames within its shot

(k) boundary, and extract the sequence of observations Ojk (as defined in (100)). For validation

purposes, we examine each sequence and assign the ground truth labels (CPR or non-CPR). We

obtain a total of 42 sequences labeled positively as representing CPR activity, and 80 non-CPR

sequences. We also fix the sequence length T to 20 even though HMM can handle sequences of

variable length. This is a reasonable assumption as 20 sequences tend to cover the upward and

downward motion of the hands in most CPR sequences. Moreover, HMM classifiers are simpler and

more efficient when all sequences have a constant length.

For our experiments, we use a 4-fold cross validation. For each fold, a subset of the data is

67



used for training (DTrn) and the remaining data is used for testing (DTst). Let Rn be the size of

DTrn and Qn = N − Rn be the size of DTst for the nth fold. For training, we denote (DCPR
Trn ) and

(D∼CPRTrn ) the subsets of the CPR sequences and the non-CPR sequences, respectively.

4.3.2 Evaluation: Receiver Operating Characteristic (ROC) curve

The ROC curve, is a graphical plot of the sensitivity vs. specificity for a binary classifier

system as its discrimination threshold is varied. The ROC can also be represented equivalently by

plotting the fraction of true positives (TPR = true positive rate) vs. the fraction of false positives

(FPR = false positive rate). Consider a two-class prediction problem (binary classification), in

which the outcomes are labeled either as positive (p) or negative (n) class. There are four possible

outcomes from a binary classifier. If the outcome from a prediction is p and the actual value is also

p, then it is called a true positive (TP); however if the actual value is n then it is said a false positive

(FP). Conversely, a true negative occurs when both the prediction outcome and the actual value

are n, and false negative is when the prediction outcome is n while the actual value is p. Let us

define an experiment from P positive instances and N negative instances. The four outcomes can be

formulated in a 2× 2 contingency table or a confusion matrix, (refer to table 8). To draw an ROC

curve, only the true positive rate (TPR) and false positive rate (FPR) are needed. TPR determines

a classifier or a diagnostic test performance on classifying positive instances correctly among all

positive samples available during the test. FPR, on the other hand, defines how many incorrect

positive results while they are actually negative among all negative samples available during the

test.

An ROC space is defined by FPR and TPR as x and y axes respectively, which depicts relative

trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent with

sensitivity and FPR is equal to 1-specificity, the ROC graph is sometimes called the sensitivity vs

(1-specificity) plot. Each prediction result or one instance of a confusion matrix represents one point

on the ROC curve.

TABLE 8

Contingency table

p n total
p’ True Positive False Positive P’
n’ False Negative True Negative N’

total P N P+N
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4.3.3 Video shot classification using baseline HMM

For each cross validation fold, we build a two-model classifier: one HMM model, λCPR,

based on the subset (DCPR
Trn ) of CPR training sequences; and another model, λ∼CPR, based on non-

CPR training sequences (D∼CPRTrn ). We assume that λCPR has two states s1 and s2: one represents

the upward motion of the hands and the second represents the downward motion. These states are

estimated using:

 s1 = average{ūj ∈ (DCPR
Trn )|ūyj ≥ 0}

s2 = average{ūj ∈ (DCPR
Trn )|ūyj < 0}.

(102)

The non-CPR HMM model, λ∼CPR, also has two states. Since this model follows no specific

pattern, we let its states be the two centers obtained by clustering D∼CPRTrn using the Fuzzy C-Means

(FCM) algorithm [57] with C=2.

The remaining parameters (A,B, π) of λCPR and λ∼CPR are initialized as follows. The

priors, π1 and π2, are estimated as the percentage of training sequences that start with state s1 and

s2 respectively. The transition matrix is initialized using:

A =

 0.5 0.5

0.5 0.5

 .
The initialization of the emission probabilities for each state depends whether we use a discrete or

a continuous HMM model.

• For the discrete case, the emission matrix, B, is initialized based on the states and a codebook

of size M=20. First, codewords {vm,m = 1, · · · , 20} are estimated as the centers obtained

by clustering the training data using the FCM algorithm with C = 20. For the CPR model,

we eliminate codewords that have low magnitude (|ūy| < 0.5). This will prevent observations

with small motion vectors (mainly from non-CPR sequences) from having high probabilities

in those codewords. Then, the emission probabilities are initialized using

bj(m) =

[
2∑
i=1

∥∥vm − sj∥∥∥∥vm − si∥∥
]−1

, for j = 1, 2 and m = 1, · · · , 20. (103)

Finally, bj(m) are normalized such that the probabilities in each state sum to one.

• For the continuous case, the emission probabilities are modeled by mixtures of Gaussians with

three components for each state. For each state, we cluster the observations belonging to that

state using FCM algorithm with C = 3. The means of the Gaussian mixture components of
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each state are the centers of the clusters. The covariance of each state component is estimated

using the observations that belong to the corresponding cluster. For computational reasons,

only the diagonal elements of the covariance are considered and all covariance values are lower-

bounded to a threshold MinV ar = 0.1.

After initialization, the transition probabilities and the emission probability parameters of

each model are fine-tuned using either the discrete or continuous version of the Baum-Welch learning

algorithm [10] and the respective training data. We denote λCPRDHMM and λCPRCHMM the resulting

discrete and continuous BW-trained CPR models, respectively. Similarly, we define λ∼CPRDHMM and

λ∼CPRCHMM for the non-CPR models.

4.3.3.1 Baseline discrete HMM results

TABLE 9

Baseline DHMM model parameters of λCPRDHMM

Means
ūx ūy

s1 0.16 0.64
s2 -0.11 -0.48

Initial A
s1 s2

0.5 0.5
0.5 0.5

A
s1 s2

0.85 0.15
0.13 0.87

Codes
v1 -5.47 -1.65
v2 2.63 1.77
v3 0.54 1.75
v4 0.28 1.09
v5 -0.22 -0.96
v6 -0.65 -1.21
v7 -0.23 1.36
v8 -0.21 0.82
v9 1.03 1.21

Initial B
0.00 0.00
0.00 0.00
0.00 0.00
0.41 0.00
0.00 1.00
0.00 0.00
0.00 0.00
0.59 0.00
0.00 0.00

B
0.00 0.00
0.00 0.01
0.05 0.00
0.16 0.00
0.09 0.88
0.00 0.11
0.06 0.00
0.57 0.00
0.06 0.00

Table 9 displays the baseline DHMM model λCPRDHMM parameters. In particular, the state

means, state transition probabilities, the codewords, and their emission probabilities in each state

are shown for both the initial and the Baum-Welch trained models. Since codewords that have

low magnitude (|ūy| < 0.5) were discarded, λCPRDHMM has only nine codewords out of the initial 20

obtained by the FCM clustering. Precisely, codewords {v2, v3, v4, v7, v8, v9} have positive ūy com-

ponent, and {v1, v4, v5} have negative ūy motion vector component. The corresponding probability

of emission of each codeword does not depend on ūy but rather on the distance of the codeword to

the mean of each state. Moreover, the normalization step of B matrix rows allows for codewords

with negative (resp. positive) ūy to have higher probability in state 1 (resp. state 2). This can be
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Figure 31. Training observations, states representatives, and codewords of λCPRDHMM

illustrated better by visualizing λCPRDHMM parameters in the (ūx,ūy) plane (refer to figure 31).

Figure 31 displays the observation vectors used to train the CPR model λCPRDHMM (first cross

validation set). In this figure, we also display the states means and the codewords obtained by

clustering the observations. As mentioned earlier, we notice that the codeword v1 (resp. v2) has

higher probability in state 1 (resp. state 2) even though its ūy value is negative (resp. positive).

However, both v1 and v2 have low probabilities in both states (≤ 0.01 as shown in table 9). Thus,

v1 and v2 will not contribute significantly in the test a new sequence in λCPRDHMM .

In table 10, we display the initial and the Baum-Welch trained λ∼CPRDHMM parameters. We

notice that the diagonal elements of the transition matrix A are higher than those of the CPR model

of table 9. This means that non-CPR sequences are more likely to stay in one of the states, unlike

the CPR sequences that reflect an alternation of upward/downward motion along ūy direction.

We notice also that all codewords of λ∼CPRDHMM with high magnitude ūy > 1, have a low emission

probability (≤ 0.01) in both states (e.g. v1, v2, v3, v8, · · · ).

Figure 32 illustrates the testing process of a sequence by λCPRDHMM . In figure 32(a), we

display the 20 observations of a typical CPR sequence. As it can be seen, this sequence corresponds

to a region that starts with an upward motion (3 observations), followed by downward motion

(9 observations), and then back to upward motion (8 observations). In figure 32(b), we display

(in green dots) the same sequence in the (ūx; ūy) plane. As it can be seen, the first and last
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(a) 20 observation vectors of a typical CPR sequence

(b) Path assigned by the Viterbi algorithm for the test sequence in (a)

Figure 32. Illustration of testing a sequence with λCPRDHMM

observations (upward motion) will be assigned to the codes with higher probability in state 1 while

the middle observations (downward motion) will be assigned to the codes with higher probability

in state 2. The optimal state sequence, assigned by the Viterbi algorithm, to this test sample is

11122222222211111111

To evaluate the proposed approach, we score it in terms of probability of detection (PD)

versus probability of false alarms (PFA). Confidence values are thresholded at different levels to

produce the receiver operating characteristics (ROC) curve.

Figure 33 compares the ROC curves generated by the trained λCPRDHMM , λ∼CPRDHMM , λCPRDHMM -

λ∼CPRDHMM models (in solid lines) and the corresponding initial models before training (in dashed lines).

As it can be seen, the CPR model outperforms the non-CPR model as the former one uses prior

knowledge to initialize and restrict the model parameters. We notice also that the BW-training

improves significantly the classification performance of the CPR model and the baseline DHMM
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TABLE 10

Baseline DHMM model parameters of λ∼CPRDHMM

Means
ūx ūy

s1 0.04 0.24
s2 -0.02 -0.18

Initial A
s1 s2

0.5 0.5
0.5 0.5

A
s1 s2

0.87 0.13
0.08 0.92

Codes
v1 -0.23 2.47
v2 -3.19 1.16
v3 -1.19 -3.61
v4 0.56 0.28
v5 -0.32 -0.20
v6 -1.78 -1.03
v7 -0.94 0.42
v8 -6.65 -4.78
v9 0.00 -0.02
v10 -1.57 0.21
v11 -0.32 -1.04
v12 0.09 0.03
v13 -3.27 -4.78
v14 2.03 0.71
v15 0.41 -0.25
v16 -5.52 4.88
v17 0.08 9.62
v18 -0.08 0.03
v19 -13.32 11.69
v20 -0.19 0.59

Initial B
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.03 0.27
0.00 0.00
0.00 0.00
0.00 0.00
0.15 0.25
0.00 0.00
0.00 0.00
0.25 0.18
0.00 0.00
0.00 0.00
0.00 0.14
0.00 0.00
0.00 0.00
0.27 0.17
0.00 0.00
0.29 0.00

B
0.01 0.00
0.01 0.00
0.00 0.00
0.15 0.00
0.00 0.11
0.01 0.00
0.06 0.00
0.00 0.00
0.05 0.50
0.03 0.00
0.00 0.03
0.30 0.12
0.00 0.00
0.01 0.00
0.00 0.11
0.00 0.00
0.00 0.00
0.26 0.13
0.00 0.00
0.11 0.00

classifier (blue and red ROC curves of figure 33).

Figure 36 compares the ROC curves generated by the trained λCPRCHMM , λ∼CPRCHMM , and

λCPRCHMM - λ∼CPRCHMM models (in solid lines) and the corresponding initial models before training

(in dashed lines). We notice that the BW-training improves significantly the classification perfor-

mance for the non-CPR model (blue ROC curves of figure 36). However, the BW-trained CPR

model slightly underperfoms compared to the non-trained CPR model in terms of the area under

ROC measure. Nonetheless, the BW-trained baseline CHMM classifier that combines the CPR and

non-CPR models has the largest area under ROC curve.

4.3.3.2 Baseline continuous HMM results

Tables 11 and 12 display the initial and the Baum-Welch trained λCPRCHMM and λ∼CPRCHMM

models parameters, respectively. In these tables, we notice that, for both λCPRCHMM and λ∼CPRCHMM , the

BW-training updates resulted in one dominant component of the Gaussian mixture (e.g. component

3 of state 1 and component 2 of state 2 of λCPRCHMM ). For both models, the dominant component in
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Figure 33. ROCs generated by the BW-trained (solid lines) and initial (dashed lines) DHMM models

each state is the one with the lowest magnitude |ū|. However, for λCPRCHMM , the dominant component

is the one that has the highest covariance along ūy, while, for λ∼CPRCHMM , the dominant component

is the one that has the lowest covariance along ūy. Converging to a single dominant component,

specially for λ∼CPRCHMM where state 1 component 3 weight is 0.92 (refer to table12), suggests that

λ∼CPRCHMM state 1 Gaussian mixture could have been modeled by a lesser number of components.

TABLE 11

Baseline CHMM model parameters of λCPRCHMM

Initial Model
A

s1 s2

s1 0.5 0.5
s2 0.5 0.5
Priors
s1 1.00
s2 0.00

B Means
ūx ūy

c11 -0.16 1.09
s1 c12 0.57 1.11

c13 0.04 0.16
c21 -0.32 -0.76

s2 c22 0.01 -0.21
c23 2.33 -0.56

Covariance
ūx ūy

cov11 0.10 0.13
cov12 0.20 0.21
cov13 0.14 0.10
cov21 0.16 0.10
cov22 0.10 0.10
cov23 0.33 0.20

Coefficients
w

g11 0.33
g12 0.33
g13 0.33
g21 0.33
g22 0.33
g23 0.33

Trained Model
A

s1 s2

s1 0.66 0.34
s2 0.23 0.77
Priors
s1 1.00
s2 0.00

B Means
ūx ūy

c11 0.23 1.09
s1 c12 0.21 0.93

c13 0.09 0.31
c21 -0.20 -0.67

s2 c22 -0.07 -0.35
c23 -0.10 -0.42

Covariance
ūx ūy

cov11 0.32 0.23
cov12 0.29 0.31
cov13 0.20 0.35
cov21 0.21 0.13
cov22 0.18 0.17
cov23 0.18 0.17

Coefficients
w

g11 0.18
g12 0.13
g13 0.69
g21 0.21
g22 0.60
g23 0.19

Figure 34 displays the observation vectors used to train the CPR model (first cross validation

set). In this figure, we show the λCPRCHMM model parameters for both the initial model (a) and the BW-
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(a)

(b)

Figure 34. Gaussian mixtures of (a) the initial λCPRCHMM model, and (b) the BW-trained λCPRCHMM

model

Figure 35. Illustration of testing the CPR sequence of figure 32(a) with λCPRCHMM
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TABLE 12

Baseline CHMM model parameters of λ∼CPRCHMM

Initial Model
A

s1 s2

s1 0.5 0.5
s2 0.5 0.5
Priors
s1 0.50
s2 0.50

B Means
ūx ūy

c11 -0.26 9.70
s1 c12 -1.04 0.55

c13 0.02 0.06
c21 0.42 -0.25

s2 c22 -0.49 -0.65
c23 -0.01 -0.05

Covariance
ūx ūy

cov11 59.96 1.43
cov12 0.72 0.62
cov13 0.10 0.10
cov21 0.13 0.14
cov22 0.66 0.62
cov23 0.10 0.10

Coefficients
w

g11 0.33
g12 0.33
g13 0.33
g21 0.33
g22 0.33
g23 0.33

Trained Model
A

s1 s2

s1 0.40 0.60
s2 0.25 0.75
Priors
s1 0.50
s2 0.50

B Means
ūx ūy

c11 -3.95 7.92
s1 c12 -0.25 1.07

c13 -0.01 0.05
c21 0.00 -0.02

s2 c22 -0.44 -0.97
c23 0.00 0.00

Covariance
ūx ūy

cov11 25.97 9.56
cov12 1.05 0.81
cov13 0.17 0.10
cov21 0.14 0.10
cov22 1.50 1.79
cov23 0.14 0.10

Coefficients
w

g11 0.01
g12 0.08
g13 0.92
g21 0.36
g22 0.03
g23 0.61

trained model (b). In particular, we display the means of the states components where ci,j denotes

the center of component j of state i, for n ∈ {1, 2} and m ∈ {1, 2, 3}. The corresponding covariance

is represented by an ellipse with dimensions proportional to the covariance in each direction ūx and

ūy; state 1 Gaussian components are plotted in red while state 2 in blue; and color opacity of each

component is proportional to its coefficient in the Gaussian mixture. In figure 34(b), we notice that

the updated means shifted overall towards the center of the (ūx;ūy) plane in such a way that the

dominant component has the lowest magnitude |ūy|.

Figure 35 illustrates the testing process of the CPR sequence of figure 32(a) by λCPRCHMM .

Similarly to the DHMM model, the first and last observation (upward motion) are closer to the

means of the Gaussian mixture of state 1 and thus have higher probabilities in state 1. Similarly,

the middle observations (downward motion) have higher probabilities in the Gaussian mixture of

state 2. The optimal state sequence, assigned by the Viterbi algorithm, to this test sample is

11122222222221111111.

Figure 36 compares the ROC curves generated by the trained λCPRCHMM , λ∼CPRCHMM , and

λCPRCHMM - λ∼CPRCHMM models (in solid lines) and the corresponding initial models before training (in

dashed lines). We notice that the BW-training improves significantly the classification performance

for the CPR model (green ROC curves of figure 36). However, the BW-trained non-CPR model un-

derperfoms compared to the non-trained non-CPR model in terms of the area under ROC measure.
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Figure 36. ROCs generated by the BW-trained (solid lines) and initial (dashed lines) CHMM models.

Overall, the BW-training improves the performance of baseline CHMM classifier that combines the

CPR and non-CPR models.

4.3.4 Video shot classification using ensemble HMM

4.3.4.1 Fitting HMM models to individual sequences

For each sequence Or ∈ DTrn, we build an HMM model, λr,based on the observations

{ū1
r, · · · , ūTr }. We assume that each λr has two states s

(r)
1 and s

(r)
2 : one represents the upward motion

of the hands and the second represents the downward motion. The states means are estimated using:

 s
(r)
1 = average{ūr ∈ Or|ūyr ≥ 0}

s
(r)
2 = average{ūr ∈ Or|ūyr < 0}.

(104)

The remaining parameters (A,B, π) of λr are initialized as follows. The priors, π1 and π2,

are set to [1; 0] for CPR sequences and [0.5; 0.5] for non CPR sequences. The transition matrix is

initialized using:

A =

 0.5 0.5

0.5 0.5

 .
The initialization of the emission probabilities for each state depends whether we use a discrete or

a continuous HMM model.

• For the discrete case, the emission matrix, B, is initialized based on the states and a code-

book of size M=20. In the case of individual non-CPR sequences models, the codewords

{vm,m = 1, · · · ,M} are the actual sequence observations {ūtr, t = 1, · · · , T} of Or. For the

77



(a) CPR Sequence O1 (b) non-CPR Sequence O2

Figure 37. Motion vectors of two sample sequences

CPR sequences models, we discard codewords that have low magnitude (|ūy| < 0.5). This will

prevent observations with small motion vectors (mainly from non-CPR sequences) from having

high probabilities in those codewords, i.e. in individual CPR sequences models. Finally, the

emission probabilities are initialized based on the distance between the codewords and the

states means, using (103).

• For the continuous case, the emission probabilities are modeled by one Gaussian component

for each state. The choice of a single-component Gaussian mixture is motivated by the small

number of observations and the uni-modality of the CPR sequences observations. This as-

sumption is also valid for non-CPR sequences that can be modeled by a Gaussian distribution

with a large variance. Therefore, for each state, the parameters of the Gaussian distribution

are the mean of the state, computed using (104), and the statistical covariance obtained from

the respective observations. In particular, we use: cov
(1)
r = Cov{ūr = (ūxr , ū

y
r) ∈ Or|ūyr ≥ 0}

cov
(2)
r = Cov{ūr = (ūxr , ū

y
r) ∈ Or|ūyr < 0}.

After initialization, the transition probabilities and the emission probability parameters of

each model are fine-tuned using either the discrete or continuous version of the Baum-Welch algo-

rithm [10] and the corresponding training observation. As mentioned earlier in section 3.3.1.1, the

use of only one observation sequence to form and train an HMM leads to over-fitting, and subse-

quently to the desired property that the likelihood of each sequence with respect to its model being

higher than the other sequences likelihoods in the same model. Let {λr}Rnr=1 be the set of trained

individual models for the nth crossvalidation fold.

Let O1 = {ū1
1, · · · , ūT1 } and O2 = {ū1

2, · · · , ūT2 } be, respectively, a CPR sequence and a

non-CPR sequence from the subset DTrn of the training data. In figures 37(a) and (b), we show
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(a) (b)

Figure 38. Training observations, states means, and codewords of the models :(a) λDHMM
1 , and (b)

λDHMM
2 of the sequences O1 and O2 of figures 37(a) and 37(b)

the sequence of 20 motion features vectors of O1 and O2, respectively. Let λDHMM
i and λCHMM

i

denote, respectively, the BW-trained DHMM and CHMM models for sequence Oi, i ∈ {1, 2}.

Fitting discrete HMM models to individual sequences: Tables 13 and 14 show the DHMM

models parameters for sequences O1 and O2, respectively. For each model, the initial and the Baum-

Welch trained parameters (namely the state means, the state transition probabilities, the codewords,

and their emission probabilities in each state) are shown. Since the motion feature vectors are 2-

dimensional, we visualize the parameters of λDHMM
1 and λDHMM

2 in the (ūxr ; ūyr) plane in figures

38(a) and (b) respectively. From tables 13 and 14 and the respective figures 38(a) and 38(b), we

notice that:

TABLE 13

λDHMM
1 model parameters

Means
ūx ūy

s1 0.08 0.69
s2 -0.14 -0.56

Initial A
s1 s2

0.5 0.5
0.5 0.5

A
s1 s2

0.91 0.09
0.13 0.87

Codes
v1 -0.22 0.83
v2 0.10 1.34
v3 0.48 1.44
v4 0.70 1.22
v5 0.50 0.75
v6 -0.15 -0.61
v7 -0.41 -1.01
v8 -0.28 -0.87
v9 -0.17 -0.77
v10 -0.18 0.55
v11 -0.36 1.14

Initial B
0.40 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.47
0.00 0.00
0.00 0.12
0.00 0.42
0.60 0.00
0.00 0.00

B
0.08 0.00
0.08 0.00
0.08 0.00
0.08 0.00
0.08 0.00
0.00 0.62
0.00 0.12
0.00 0.12
0.00 0.12
0.50 0.00
0.08 0.00
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TABLE 14

λDHMM
2 model parameters

Means
ūx ūy

s1 0.12 0.05
s2 0.01 -0.06

Initial A
s1 s2

0.5 0.5
0.5 0.5

A
s1 s2

0.53 0.47
0.46 0.54

Codes
v1 -0.04 -0.03
v2 0.04 -0.01
v3 0.01 0.00
v4 0.06 0.06
v5 -0.02 -0.10
v6 -0.06 0.03
v7 0.08 0.00
v8 -0.08 -0.14
v9 -0.09 -0.03
v10 -0.05 -0.01
v11 -0.01 0.01
v12 0.02 0.03
v13 0.01 -0.03
v14 0.05 0.04
v15 -0.03 -0.27
v16 0.09 0.00
v17 0.16 -0.03
v18 0.34 0.03
v19 0.36 0.04
v20 0.18 0.12

Initial B
0.01 0.08
0.03 0.07
0.02 0.08
0.11 0.02
0.01 0.08
0.04 0.06
0.08 0.03
0.01 0.07
0.02 0.07
0.02 0.08
0.03 0.07
0.06 0.05
0.00 0.09
0.09 0.02
0.01 0.06
0.10 0.02
0.10 0.02
0.08 0.01
0.07 0.00
0.11 0.01

B
0.01 0.08
0.03 0.07
0.02 0.07
0.09 0.01
0.01 0.09
0.04 0.06
0.08 0.03
0.02 0.08
0.02 0.07
0.02 0.08
0.03 0.07
0.06 0.04
0.00 0.09
0.08 0.02
0.02 0.08
0.09 0.02
0.09 0.02
0.10 0.01
0.10 0.01
0.10 0.01

1. The means and the codewords of λDHMM
1 have higher magnitude motion vectors compared to

the non-CPR model λDHMM
2 .

2. The transition matrix A of λDHMM
1 has a higher diagonal entries than that of λDHMM

2 .

Precisely, in λDHMM
1 , the entry a11 = 0.91 is exactly the ratio of (1) the number of state

1 self-transitions (nine state 1 to state 1 transitions as it can be seen in figure 37(a)) to (2)

the total number of transitions from state 1 (eleven transition occurrences). Similarly for the

entry a22, that ratio is 7 to 8 as it can be deduced from the same figure 37(a). However, for

λDHMM
2 , the transitions from state 1 to either state 1 or state 2 (and vice versa) are almost

equiprobable.

3. For the emission probabilities, we notice that, for the BW-trained λDHMM
1 , one codeword (v10

in state 1 and v6 in state 2) has the highest emission probability while few other codewords

({v1, · · · , v5, v11} in state 1 and {v7,· · · ,v9} in state 2) have the same relatively low probability.

In both states, the codeword with highest probability is the one closest to the state mean (refer
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to table 13 and to the subsequent illustration of the λDHMM
1 parameters in the (ūxr ; ūyr) plane in

figure 38(a)). For the BW-trained non-CPR model λDHMM
2 , all the codewords have relatively

low magnitude motion vector and their respective emission probabilities in each state are low

and comparable (≤ 0.10 as can be seen in table 14). In conclusion, the emission probability

density function of each state of λDHMM
1 can be approximated by a discrete normal distribution

centered around the mean of that state. Similarly, the emission probability density function of

each state of λDHMM
2 can be approximated by a discrete uniform distribution. These findings

will be discussed in the following section for the continuous case.

Fitting continuous HMM models to individual sequences: Similarly to the discrete case,

we use the same sequences O1 and O2 (shown in figure 37) to fit two CHMM models: λCHMM
1 and

λCHMM
2 . The initial and BW-updated parameters of λCHMM

1 and λCHMM
2 are shown in tables 15

and 16, respectively.

TABLE 15

λCHMM
1 model parameters

Initial Model
A

s1 s2

s1 0.5 0.5
s2 0.5 0.5

B Means
ūx ūy

s1 c11 0.08 0.69
s2 c21 -0.14 -0.56

Covariance
ūx ūy

cov11 0.108 0.256
cov21 0.021 0.094

Coefficients
w

g11 1.0
g21 1.0

Trained Model
A

s1 s2

s1 0.90 0.10
s2 0.12 0.88

B Means
ūx ūy

s1 c11 0.08 0.73
s2 c21 -0.12 -0.50

Covariance
ūx ūy

cov11 0.105 0.228
cov21 0.019 0.112

Coefficients
w

g11 1.0
g21 1.0

We notice that the BW-training does not change the CHMM model parameters significantly

except for the transition matrices. For the covariance values, it is worth noting that variance along

ūyr is higher than the variance along ūxr direction.

4.3.4.2 Similarity matrix computation

In the first step of the eHMM, we built a set {λr}Rnr=1 of trained individual HMM models

for each crossvalidation fold. In this step, we test each observation sequence Oj in each model

λi, for 1 ≤ i, j ≤ Rn. This test produces (1) a log-likelihood value Lij = log(Pr(Oj |λi)) that is

the probability of sequence Oj being generated by λi and (2) a path pij that represents the optimal

81



TABLE 16

λCHMM
2 model parameters

Initial Model
A

s1 s2

s1 0.5 0.5
s2 0.5 0.5

B Means
ūx ūy

s1 c11 0.12 0.05
s2 c21 0.01 -0.06

Covariance
ūx ūy

cov11 0.025 0.010
cov21 0.010 0.010

Coefficients
w

g11 1.0
g21 1.0

Trained Model
A

s1 s2

s1 0.28 0.72
s2 0.30 0.70

B Means
ūx ūy

s1 c11 0.08 0.02
s2 c21 0.04 -0.03

Covariance
ūx ūy

cov11 0.016 0.010
cov21 0.014 0.010

Coefficients
w

g11 1.0
g21 1.0

(most likely) sequence of states of λi that would have generated Oj . This path is computed using the

Viterbi algorithm [9]. We define the path mismatch penalty, denoted Pij , as the edit distance [51]

between the optimal paths pij and pii, that resulted from testing Oj in λi and Oi in λi respectively.

Given the log-likelihood and the path mismatch penalty matrices, we define the similarity matrix,

S, as a weighted sum of L and P using a mixing factor α ∈ [0, 1] (refer to equation (74) in section

3.3.1.3).

Similarity matrix computation using discrete HMMs: To illustrate the similarity matrix

computation using discrete HMMs, we reconsider the sample sequences O1 and O2, shown in figure

37, and their respective DHMM models λDHMM
1 and λDHMM

2 , displayed in tables 13 and 14. In

figure 39, we illustrate the testing of the sequences O1 and O2 in λDHMM
1 and λDHMM

2 .

The log-likelihoods and the consequent optimal Viterbi paths obtained by testing O1 and

O2 in λDHMM
1 and λDHMM

2 are summarized in tables 17 and 18.

TABLE 17

Log-likelihoods of the two sequences in figure 37 in the models generated by these sequences

Lij λDHMM
1 λDHMM

2

O1 -9.27 -21.50
O2 -38 -3.21

From the paths in table 18, we use the ”edit” distance measure to deduce the path mismatch

penalty terms (shown in table 19) for sequences O1 with regards to O2 and vice versa.

Figures 40(a) and 40(b) show the log-likelihood and path mismatch penalty matrices for all

the training sequences DTrn. Figures 40(c) and 40(d) show the resulting similarity matrix using
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(a) Pr(O1|λDHMM
1 ) (b) Pr(O1|λDHMM

2 )

(c) Pr(O2|λDHMM
1 ) (d) Pr(O2|λDHMM

2 )

Figure 39. Illustration of the testing of sequences O1 and O2 in λDHMM
1 and λDHMM

2

TABLE 18

Viterbi paths resulting from testing O1 and O2 in models λDHMM
1 and λDHMM

2 . pij refers to the
optimal path obtained by testing sequence i with model j.

ū1 · · · ū20

p11 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1
p21 1 1 1 1 2 1 1 2 2 1 1 1 2 1 2 1 2 1 1 1

p12 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
p22 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1

α = .5 and α = .1 respectively. In these matrices, the indices are rearranged so that the first

entries correspond to the CPR sequences DCPR
Trn and the latter ones correspond to the non-CPR

sequences D∼CPRTrn . In these figures, dark pixels correspond to small values of the log-likelihood and

path mismatch penalty and bright pixels correspond to larger entries of the corresponding matrices.

Note that in the case of the log-likelihood matrix of figure 40(a), the diagonal blocks are brighter

than the off-diagonal blocks. Conversely, in the path mismatch penalty matrix of figure 40(b)), the

diagonal blocks are darker than the off-diagonal blocks. Thus, both the log-likelihood and the path

mismatch penalty provide complementary measures for the similarity between signatures. This was

the motivation for combining both matrices into the similarity S using the mixing factor α = 0.5
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TABLE 19

Path mismatch penalty of the two sequences in figure 37 in the models generated by these sequences

Pij λDHMM
1 λDHMM

2

O1 0 9
O2 8 0

(a) Log-likelihood L (b) Penalty P

(c) Similarity S with α = .5 (d) Similarity S with α = .1

Figure 40. Log-likelihood, path mismatch penalty, and similarity matrices for the sequences in DTrn

in figure 40(c) and α = 0.1 in figure 40 (d). In the next step of the eHMM, we use the similarity

matrix of figure 40(c) to partition DTrn into groups of similar sequences.

4.3.4.3 Clustering results

The similarity matrix S of figure 40(c) is transformed to a symmetric distance matrix D

using (77). Any relational-based clustering algorithm can be applied, using D, to partition the

training data subset DTrn into K clusters. In our experiments in this chapter, we use the relational
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(a) (b)

Figure 41. Fuzzy membership of the training sequences in each cluster: (a) initial membership (b)
after FLeCK convergence

clustering with learnable cluster dependent kernels (FLeCK) clustering algorithm [52] with K = 4.

Figure 41 shows the fuzzy membership of the training sequences in each cluster. Initially, a

random fuzzy partition matrix U (0) of size (Rn ×K) was created. Those initial membership values

are shown in figure 41(a). The FLeCK algorithm converges when the membership values do not

change significantly from one iteration to the next (‖(U (t) − U (t−1))‖ < 10−6). In our experiment,

FLeCK converged after 118 iterations. The resulting fuzzy memberships are shown in figure 41(b).

The variance of each cluster is displayed in table 20.

TABLE 20

Variance in each cluster after FLeCK convergence

Cluster σ1 σ2 σ3 σ4

Variance 0.13 0.11 0.13 0.11

As shown in figure 41(b), the first sequences of DTrn have high fuzzy membership in clusters

1 and 3, while the latter ones have higher memberships in clusters 2 and 4. Recall that the indices

of DTrn are rearranged so that the first elements correspond to the CPR sequences DCPR
Trn and the

latter ones correspond to the non-CPR sequences D∼CPRTrn , i.e. DTrn = {DCPR
Trn ,D

∼CPR
Trn }. Thus,

clusters 1 and 3 are composed mainly of CPR sequences and few non-CPR sequences and clusters

2 and 4 comprise only non-CPR sequences. Figure 42 shows the partition of the training data in

terms of the number of CPR and non-CPR sequences in each cluster. In figure 43, we visualize

the actual sequences belonging to each cluster (CPR sequences are displayed in red while non-CPR

sequences are shown in blue). In particular, for each sequence, we plot only the ūy component of

each observation. We notice that all but one of the CPR sequences belonging to cluster 1 start with

low magnitude ūy up to the 5th observation. Most of these sequences have a high positive ūy value

85



Figure 42. Distribution of the sequences in each cluster per class (CPR vs. non-CPR)

at observations {6, · · · , 10}, negative ūy values around observations {12, · · · , 16}, and then back to

low magnitude ūy values at the last observations. Cluster 3 comprises 22 CPR sequences and 1 non-

CPR sequence. For all these sequences, including the non-CPR one, the first and last observations

have high ūy values (upward motion) while the middle observations have negative ūy’s (downward

motion). Finally, Clusters 2 and 4 are composed mainly of low-magnitude ūy value sequences with

random number of transition between negative and positive ūy’s.

The above figures illustrate the purpose of step 2 of the proposed eHMM approach, i.e.

grouping similar signatures into clusters. To summarize, using the distance matrix D of (77), the

R sequences are clustered into K clusters. The objective of this clustering step is to group similar

observations in the log-likelihood space. The observations forming each cluster are then used to

learn multiple HMM models.

4.3.4.4 Clusters models initialization and training

For each cluster in figure 42, one or two HMM models are built based on the elements

belonging to that cluster: one for CPR sequences and/or one for non-CPR sequences. In particular,

the initialization of the priors and transition matrices for each model is performed by averaging the

corresponding parameters of the individual models of the sequences belonging to that cluster. We

assume that each model has N = 2 states. The initialization of the emission probabilities for the

discrete case is straightforward. That is, the states’ means, sn, of the cluster model are obtained by

averaging the states means of the individual models. Finally, the codes vm, m = 1, · · · ,M , of the

cluster model are obtained by clustering the codes of the individual models into M = 20 clusters.

For the continuous case, we further assume that each state has three Gaussian components.

For each cluster model, the means and covariances of state n components are obtained by clustering

the state n observations of the sequences belonging to the cluster into three clusters using k-means

algorithm [24]. Precisely, the mean of each component is the center of one of the resulting clusters
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 43. Sequences belonging to each cluster, only ūy motion vector component is plotted for each
sequence’ observation.

and the covariance is estimated using the observations belonging to that same cluster.

After initialization, and depending on the cluster size and homogeneity, one of the train-

ing schemes described earlier, is devised. Let λCPR,DHMM
k and λ∼CPR,DHMM

k denote the trained

DHMM models for the CPR and non-CPR sequences belonging to cluster k.

Clusters DHMM models initialization and training: In this case, we simply use the notation

λCPRk and λ∼CPRk to refer to the CPR and non-CPR cluster k models. Figure 44(a) shows the

CPR training sequences of cluster 1 and the parameters of the model, λCPR1 , built using those

sequences. Similarly, in figure 44(b), we show the non-CPR sequences observations of cluster 1

and their respective λ∼CPR1 parameters. We notice that the codes of λCPR1 have relatively high

magnitude motion vectors. The codes closest to the mean of each state have higher B values in

that state. However, for the λ∼CPR1 model, the majority of the codes have relatively low magnitude

motion vectors. A few codes of λ∼CPR1 have very high magnitude motion vectors but their emission

probability is very low. This suggests that those codes represent observations from outlier non-CPR

sequence(s) in the training data.

Cluster 2 is composed uniquely of non-CPR sequences. Thus, we set its corresponding λCPR2
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(a) λCPR
1

(b) λ∼CPR
1

Figure 44. Training sequences and λCPR1 DHMM model parameters of cluster 1

to ∅ and, by definition, returns a default log-likelihood value minProb = −40. In figure 45, we show

the non-CPR sequences belonging to cluster 2 and the λ∼CPR1 model parameters. As expected,

λ∼CPR1 have relatively low magnitude codes and states means, with codes closest to the mean of

each state have higher B values in that state.

Cluster 3 is composed of mainly CPR sequences with only 1 non-CPR sequence. In this

case, the non-CPR cluster 3 model, λ∼CPR3 , is defined as the individual model of that sequence.

The CPR model, λCPR3 and the CPR sequences of cluster 3 are shown in figure 46.

88



Figure 45. Training sequences and λ∼CPR2 DHMM model parameters of cluster 2

Figure 46. Training sequences and λCPR3 DHMM model parameters of cluster 3
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4.3.4.5 Clusters models performance

In figure 47, we plot the confidence of the training sequences in the four cluster models.

Recall that, the confidence of a sequence in each cluster is defined 1 as the difference between its

likelihood in the CPR cluster model and its likelihood in the non-CPR cluster model. As expected,

the highest confidences occur when testing the sequences of clusters 1 and 3 in their respective

cluster models. Similarly, sequences belonging to clusters 2 and 4 have higher confidence values in

cluster models 2 and 4. However, few sequences of cluster 1 have higher confidences in models 2 and

4 than in models 1 and 3. Those sequences are actually non-CPR sequences belonging to cluster 1

but were assigned high confidences by the non-CPR models..

Since the output of each cluster model is a confidence value, we can treat them as individual

classifiers and evaluate their performance on the training data. Figure 48 shows the ROCs of each

cluster model on the training data DTrn.

4.3.4.6 eHMM fusion results

In the previous steps of the eHMM, we initialized and learned multiple models for the

different clusters. Each training sequence (Or ∈ DTrn) is tested in the K models and is assigned

confidence value. Let fr denote the K-dimensional vector of confidences assigned by λk to Or. The

multiple responses of the different models need to be combined into a single confidence value using

one of the following combination methods.

• Artificial Neural Network: A single layer perceptron with no hidden layers taking {f1, . . . , fRn}

as input. Using the standard backpropagation algorithm [64] , the ANN is trained to output

the corresponding labels {y1, . . . , yRn} of the training data. In other words, the ANN weights

are optimized to minimize the misclassification error on the training data. In table 21, we

show the weights of each node in the ANN’s layer.

• Mixture of Experts: A one-level HME with branching factor of two is used. The input to

the HME is a (K+1)-dimensional vector of the cluster models confidences plus an intercept.

The HME parameters are updated using the expectation-maximization [27] algorithm and

the labeled training data. These parameters are the gating network weights, v0, at the non-

terminal node and the experts weights, v11 and v12, at the leaf nodes. The EM-learned

parameters are reported in table 22.

1refer to equation (101) in section 4.2.4.1 for the formal definition.
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(a) Using initial models

(b) Using BW-trained models

Figure 47. Confidence of the training sequences of each cluster in all cluster models

• Algebraic methods: We simply use algebraic operations such as the average, or the maximum

to combine the confidences outputted by the K models. This method has no parameters and

is not trainable. In this case, the extra step of computing the confidences of the training data

is not needed.

Figure 49 shows the ROCs of the ANN, HME, and SUM fusion using the training data.

To evaluate the fusion results, we juxtapose the ROC of the best cluster model classifier (cluster

model 1 from figure 48). We notice that the SUM fusion performs poorly since it just averaged the

confidence assigned by cluster 1 model with the confidences assigned by the other weaker clusters
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Figure 48. ROCs generated by the clusters models using the training data

TABLE 21

Weights and bias of the single-layer ANN after backpropagation training

Model Weight
1 0.28
2 0.75
3 0.91
4 -0.26

Bias -0.3

(2, 3, and 4) models classifiers. The ANN fusion ROC is slightly better than the best cluster model

classifier. The HME outperforms significantly the other fusion methods and the cluster 1 model

classifier. However this could be due to overfitting. The shape of the HME ROC suggests that the

HME output is overfit to the data and tends to be discrete (0 for most of the training non-CPR

sequences and 1 for most of the training CPR sequences).

4.3.4.7 eHMM performance

Recall that we use a 4-fold cross validation setting. For the nth fold, a subset Dn
Trn, of

size Rn, is used for training and another subset Dn
Tst, of size Qn = N − Rn, is used for testing.

All the eHMM steps detailed in the previous sections are repeated using the subset Dn
Trn for each

cross validation fold. The training step results in the mixture models {λ(n)
k }Kk=1, and an ANN- or

HME-based fusion model, Hn, for each crossvalidation fold n, n = 1, · · · , 4.

A new sequence Oq ∈ Dn
Tst will be tested in the models {λ(n)

k }. Depending on the type and

the contents of the clusters, one or more models may have strong response to the test sequence Oq.

The multiple responses of the different models will be combined into a single confidence value using
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TABLE 22

HME gating network and experts network parameters after EM training

Model v0 v11 v12

1 4.16 -0.33 7.6
2 5.20 0.07 41.23
3 5.62 -0.04 -5.83
4 -2.26 0.03 -13.98

Intercept 190.00 -0.96 368.64

Figure 49. ROCs of the fusion methods and the best cluster model (from figure 48) using the training
data

Hn. The label of Oq, CPR or non-CPR, is used only as a ground-truth to evaluate the performance

of the eHMM. In figure 50, we report the ROCs of the eDHMM using ANN and HME fusion, and

the ROC of the baseline DHMM ROCs provided earlier in figure 33 in section 4.3.3. The ROCs,

generated using the same 4-fold crossvalidation partition, show that the eDHMM outperforms the

baseline DHMM and that the ANN fusion method is better suited for the eDHMM. This may be

due to the HME optimization being overfit to the training data (refer to figure 49).

TABLE 23

Area Under ROC Curve (AUC) of the eHMM and the baseline HMM classifiers

Classifier AUC
eDHMM using ANN 538
eDHMM using HME 293

bDHMM 222

eCHMM using ANN 598
eCHMM using HME 611

bCHMM 574

In figure 51, we compare the ROCs of the eDHMM using ANN and HME fusion to the
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Figure 50. ROCs of the eDHMM and the baseline DHMM classifiers using 4-fold crossvalidation

Figure 51. ROCs of the eCHMM and the baseline CHMM classifiers using 4-fold crossvalidation

ROC of the baseline CHMM provided earlier in figure 36 in section 4.3.3. These ROCs show that

the eCHMM outperfoms the baseline CHMM. However, the improvement of the eCHMM over the

baseline CHMM is not a significant as in the discrete case. This can be seen in table 23, where we

repot the Are Under Curve of all the ROCs of figures 50 and 51. Overall, we can conclude that

the continuous eHMM is better suited for the data at hand, i.e identifying CPR sequences in video

simulating medical crises using motion-based features.

4.4 Chapter summary

In this chapter, the proposed eHMM classifier is applied and evaluated on the classification of

CPR sequences . First, we gave an overview of the preprocessing and extraction of CPR sequences

from the simulation videos. Then, we outlined the architecture of the eHMM classifier and its

intermediate steps. Finally, we compared the classification results of the eHMM to the baseline
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HMM. The experiments show that the proposed eHMM intermediate results are inline with the

expected behavior and that, overall, the ensemble HMM outperforms the two-model baseline HMM.

The results show also that both the HME and ANN fusion methods outperform the individual cluster

models and simple combination methods.
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CHAPTER 5

APPLICATION TO LANDMINE DETECTION

In this chapter, the proposed ensemble HMM classifier is evaluated using real datasets for

landmine detection. The proposed eHMM learning steps are individually analyzed and, ultimately,

the eHMM classifier’s performance is compared against the baseline HMM classifier and other state-

of-the-art algorithms.

5.1 Introduction

Detection, localization, and subsequent neutralization of buried antipersonnel (AP) and

antitank (AT) landmines is a worldwide humanitarian and military problem. The latest statistics

[77] show that in 2012, a total of 3, 638 casualties from mines were recorded in 62 countries and

areas, including 1, 066 people killed and 2, 552 injured. In fact, the vast majority (78%) of recorded

landmine casualties were civilians. Detection and removal of landmines is therefore a significant

problem, and has attracted several researchers in recent years. One challenge in landmine detection

lies in plastic or low metal mines that cannot or are difficult to detect by traditional metal detectors.

Varieties of sensors have been proposed or are under investigation for landmine detection. The

research problem for sensor data analysis is to determine how well signatures of landmines can be

characterized and distinguished from other objects under the ground using returns from one or more

sensors. Ground Penetrating Radar (GPR) offers the promise of detecting landmines with little or

no metal content. Unfortunately, landmine detection via GPR has been a difficult problem [78, 79].

Although systems can achieve high detection rates, they have done so at the expense of high false

alarm rates. The key challenge to mine detection technology lies in achieving a high rate of mine

detection while maintaining low level of false alarms. The performance of a mine detection system

is therefore commonly measured by a receiver operating characteristics (ROC) curve that jointly

specifies rate of mine detection and level of false alarm.

Automated detection algorithms can generally be broken down into four phases: pre-processing,

feature extraction, confidence assignment, and decision-making. Pre-processing algorithms perform
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tasks such as normalization of the data, corrections for variations in height and speed, removal of

stationary effects due to the system response, etc. Methods that have been used to perform this

task include wavelets and Kalman filters [80], subspace methods and matching to polynomials [81],

and subtracting optimally shifted and scaled reference vectors [82]. Feature extraction algorithms

reduce the pre-processed raw data to form a lower-dimensional, salient set of measures that represent

the data. Principal component (PC) transforms are a common tool to achieve this task [83, 84].

Other feature analysis approaches include wavelets [85], image processing methods of derivative fea-

ture extraction [86], curve analysis using Hough and Radon transforms [87], as well as model-based

methods. Confidence assignment algorithms can use methods such as Bayesian [87], hidden Markov

Models [86, 88, 34], fuzzy logic [89], rules and order statistics [90], neural networks, or nearest neigh-

bor classifiers [91, 92], to assign a confidence that a mine is present at a point. Decision-making

algorithms often post-process the data to remove spurious responses and use a set of confidence

values produced by the confidence assignment algorithm to make a final mine/no-mine decision.

In [86, 88], hidden Markov modeling was proposed for detecting both metal and nonmetal

mine types using data collected by a moving-vehicle-mounted GPR system and has proved that HMM

techniques are feasible and effective for landmine detection. The initial work relied on simple gradient

edge features. Subsequent work used an edge histogram descriptor (EHD) approach to extract

features from the original GPR signatures. The baseline HMM classifier consists of two HMM models,

one for mine and one for background. The mine (background) model captures the characteristics of

the mine (background) signatures. The model initialization and subsequent training are based on

averaging over the training data corresponding to each class.

5.2 Data preprocessing and pre-screening

5.2.1 GPR data

The input data consists of a sequence of raw GPR signatures collected by a NIITEK Inc.

landmine detection system comprising a vehicle-mounted GPR array [4] (see figure 52). The NIITEK

GPR collects 51 channels of data. Adjacent channels are spaced approximately five centimeters apart

in the cross-track direction, and sequences (or scans) are taken at approximately five centimeter

down-track intervals. The system uses a V-dipole antenna that generates a wide-band pulse ranging

from 200 MHz to 7 GHz. Each A-scan, that is, the measured waveform that is collected in one

channel at one down-track position, contains 416 time samples at which the GPR signal return is
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Figure 52. NIITEK vehicle mounted GPR system, taken from [4]

recorded. Each sample corresponds to roughly 8 picoseconds. We often refer to the time index

as depth although, since the radar wave is traveling through different media, this index does not

represent a uniform sampling of depth. Thus, we model an entire collection of input data as a three-

dimensional matrix of sample values, S(z, x, y), z = 1, · · · , 416;x = 1, · · · , 51; y = 1, · · · , NS , where

NS is the total number of collected scans, and the indices z, x,and y represent depth, cross-track

position, and down-track positions respectively. A collection of scans, forming a volume of data, is

illustrated in figure 53.

Figure 54 displays several B-scans (sequences of A-scans) both down-track (formed from a

time sequence of A-scans from a single sensor channel) and cross-track (formed from each channel’s

response in a single sample). The surveyed object position is highlighted in each figure. The objects

scanned are (a) a high-metal content antitank mine, (b) a low-metal antipersonal mine, and (c) a

wood block.

5.2.2 Data preprocessing

Preprocessing is an important step to enhance the mine signatures for detection. In general,

preprocessing includes ground-level alignment and signal and noise background removal. First, we

identify the location of the ground bounce as the signal’s peak and align the multiple signals with

respect to their peaks. This alignment is necessary because the vehicle-mounted system cannot

maintain the radar antenna at a fixed distance above the ground. The early time samples of each
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Figure 53. A collection of few GPR scans

(a) AT high-metal mine (b) AP low-metal mine (c) non-metal clutter

Figure 54. NIITEK radar down-track and cross-track (at position indicated by a line in the down-
track) B-scans pairs for (a) an Anti-Tank (AT) mine, (b) an Anti-Personnel (AP) mine, and (c) a
non-metal clutter alarm.
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signal, up to few samples beyond the ground bounce are discarded. The remaining signal samples

are divided into N depth bins, and each bin would be processed independently. The reason for this

segmentation is to compensate for the high contrast between the responses from deeply buried and

shallow anomalies. Next, the adaptive least mean squares (LMS) pre-screener [93] is used to focus

attention and identify regions with subsurface anomalies. The goal of a pre-screener algorithm, in the

framework of vehicle-mounted realtime landmine detection, is to flag locations of interest utilizing

a computationally inexpensive algorithm so that more advanced feature-processing approaches can

be applied only on the small subsets of data flagged by the pre-screener. The LMS is applied to the

energy at each depth bin and assigns a confidence value to each point in the (cross-track, down-track)

plane based on its contrast with a neighboring region. The components that satisfy empirically pre-

determined conditions are considered as potential targets. Their cross-track xs, and down-track ys

positions of the connected component center are reported as alarm positions for further processing

by the feature-based discrimination algorithm to attempt to separate mine targets from naturally

occurring clutter.

5.3 Feature extraction

The goal of the feature extraction step is to transform original GPR data into a sequence of

observation vectors. We use four types of features that have been proposed and used independently.

Each feature represents a different interpretation of the raw data and aims at providing a good

discrimination between mine and clutter signatures. These features are outlined in the following

subsections.

5.3.1 EHD features

The Edge Histogram Descriptors (EHD) [94] captures the salient properties of the 3-D alarms

in a compact and translation-invariant representation. This approach, inspired by the MPEG-7

EHD [95], extracts edge histograms capturing the frequency of occurrence of edge orientations in

the data associated with a ground position. The basic MPEG-7 EHD has undergone rigorous testing

and development, and thus, represents one of the generic and efficient texture descriptors. For a

generic image, the EHD represents the frequency and the directionality of the brightness changes

in the image. Simple edge detector operators are used to identify edges and group them into five

categories: vertical, horizontal, 45◦ diagonal, 135◦ antidiagonal, and isotropic (nonedges). The EHD

would include five bins corresponding to the aforementioned categories. For our application, we
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adapt the EHD to capture the spatial distribution of the edges within a 3-D GPR data volume.

To keep the computation simple, we still use 2-D edge operators. In particular, we fix the cross-

track dimension and extract edges in the (depth, down-track) plane. The overall edge histogram is

obtained by averaging the output of the individual (depth, down-track) planes. Also, since vertical,

horizontal, diagonal, and antidiagonal edges are the main orientations present in the mine signatures,

we keep the five edge categories of the MPEG-7 EHD.

Let S
(x)
zy be the xth plane of the 3-D signature S(x, y, z). First, for each S

(x)
zy , we compute four

categories of edge strengths: vertical, horizontal, 45◦ diagonal, 135◦ antidiagonal. If the maximum

of the edge strengths exceeds a certain preset threshold θG, the corresponding pixel is considered to

be an edge pixel. Otherwise, it is considered a nonedge pixel.

In the HMM models, we take the down-track dimension as the time variable (i.e., y corre-

sponds to time in the HMM model). Our goal is to produce a confidence that a mine is present at

various positions, (x, y), on the surface being traversed. To fit into the HMM context, a sequence of

observation vectors must be produced for each point. The observation sequence of S
(x)
zy at a fixed

depth z, is the sequence of T observation vectors H
(x)
zyi , i = 1, · · · , T , each represents a five-bin edge

histogram correspondent to S
(x)
zyi .

The overall sequence of observation vectors computed from the 3-D signature S(x, y, z) is

then:

O(x, y, z) = [Hzy1 , Hzy2 , · · · , HzyT ], (105)

where Hzyi is the cross-track average of the edge histograms of subimage S
(x)
zyi over NC channels, i.e.

Hzyi =
1

NC

NC∑
x=1

H(x)
zyi . (106)

The extraction steps of the EHD features are illustrated in figure 55.

Figures 56 and 57 display the edge histogram features for a strong mine and a clutter

encounter identified by the pre-screener due to its high-energy contrast. As it can be seen, the EHD

of the mine encounter can be characterized by a strong response of the diagonal and anti-diagonal

edges. Moreover, the frequency of the diagonal edges is higher than the frequency of the anti-diagonal

edges on the left side of the image (rising edge of the signature) and lower on the right part (falling

edge). This feature is typical in mine signatures. The EHD features of the clutter encounter, on

the other hand, does not follow this pattern. The edges do not follow a specific structure, and the

diagonal and anti-diagonal edges are usually weaker.
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Figure 55. Illustration of the EHD feature extraction process.

5.3.2 Gabor features

Gabor features characterize edges in the frequency domain at multiple scales and orientations

and are based on Gabor wavelets [34]. This feature is extracted by expanding the signature’s B-scan

(depth vs. downtrack) using a bank of scale and orientation selective Gabor filters. Expanding a

signal using Gabor filters provides a localized frequency description. In our experiments, without

loss of generality, we use a bank of filters tuned to the combination of two scales, at octave intervals,

and four orientations, at 45-degree intervals.

Let Sx(y, z) be the xth plane of the 3−D signature S(x, y, z). Let SG(k)(x, y, z), k = 1, , 8

denote the response of Sx(y, z) to the eight Gabor filters. Figure 58 displays the response of three

distinct signatures to the eight Gabor filters. Figure 58(a) shows the response to a strong mine

signatures. For this alarm, the signature has a strong response to the 45-degree filters (at both

scales) on the left part of the signature (rising edge), and a strong response to the 135-degree filters

on the right part of the signature (falling edge). Similarly, the middle of signature has a strong

response to the horizontal filters (flat edge). Figure 58(b) displays the response of a weak mine

signature. For this signature, the edges are not as strong as those in figure 58(a). As a result, it

has a weaker response at both scales, especially for the rising edge. Figure 58(c) displays a clutter

signature (identified by the pre-screener) and its response. As it can be seen, this signature has

strong response to the 45-degree filters. However, this response is not localized on the left side of

the signature, and is not followed by a falling edge as it is the case for most mine signatures.
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(a)

(b)

(c)

Figure 56. EHD features of a strong mine signature: (a) Mine signature in the (depth, down-track)
plane, (b) Edge orientation of each location of the signature, (c) EHD features for the 15 observations
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(a)

(b)

(c)

Figure 57. EHD features of a clutter encounter: (a) clutter GPR signature in the (depth, down-
track) plane, (b) edge orientation of each location of the signature, (c) EHD features for the 15
observations
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(a) Strong mine signature

(b) Weak mine signature

(c) Clutter signature

Figure 58. Response of three distinct alarm signatures to Gabor filters at two scales and four
orientations.

The observation sequence of Sx(y, z) at a fixed depth z, is the sequence of observation vectors:

O(x, y − p, z), O(x, y − p+ 1, z), . . . , O(x, y − 1, z), O(x, y, z), O(x, y + 1, z), ..., O(x, y + p, z), (107)

where

O(x, y, z) = [O1(x, y, z), . . . , O8(x, y, z)] (108)

and

Ok(x, y, z) =
∑
z∈w

SG(k)
x (y, z) (109)

In (109), Ok(x, y, z), encodes the response of S(x, y, z) to the kth Gabor filter, and w is a

depth window around the depth being considered.
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5.3.3 Gradient features

This feature encodes the degree to which edges occur in the diagonal and anti-diagonal

directions within a B-scan [86]. First, we compute the first and second derivative on the raw signal

S(x, y, z) along the down-track (y) direction to remove the stationary effects and accentuate the

edges in the diagonal and antidiagonal directions using:

Dy(x, y, z) =
[S(x, y + 2, z) + 2S(x, y, z)− 2S(x, y − 1, z)− S(x, y − 2, z)]

3
,

Dyy(x, y, z) =
[Dy(x, y + 2, z) + 2Dy(x, y − 1, z)−Dy(x, y − 2, z)]

3
(110)

Then, the derivative values are normalized using:

N(x, y, z) =
Dyy(x, y, z)− µ(x, z)

σ(x, z)
, (111)

where µ(x, z) and σ(x, z) are the running mean and standard deviation updated using a small

background area around the target flagged by the prescreener.

The down-track dimension is taken as the time variable in the HMM model. The observation

vector at a point (xs, ys) consists of a set of 15 features that are computed on a normalized array

of GPR data of size 32× 8. For a given xs and ys, let A = A(y, z) = N(x, y, z), where x = xs, y =

ys − 3, . . . , ys + 4, and z = 1, 2, . . . , 32. The array A is then broken into positive and negative parts

according to the formulas:

A+(y, z) =

 A(y, z) if A(y, z) ≥ 1

0 otherwise
(112)

A−(y, z) =

 −A(y, z) if A(y, z) ≤ −1

0 otherwise.
(113)

Next, for each point in the positive and negative parts of A, the strengths of the diagonal

and anti-diagonal edges are estimated. The strengths are measured by taking the local minimum in

either the 45◦ or 135◦ direction around the column ys + 1. Four types of edges that correspond to

the, positive anti-diagonal (PA), negative anti-diagonal (NA), positive diagonal (PD), and negative

diagonal (ND) edges are defined. These edges are computed using

PA(z) = minA+(ys, z − 1), A+(ys + 1, z), A+(ys + 2, z + 1), A+(ys + 3, z + 2)

NA(z) = minA−(ys, z − 1), A−(ys + 1, z), A−(ys + 2, z + 1), A−(ys + 3, z + 2)

PD(z) = minA+(ys, z + 2), A+(ys + 1, z + 1), A+(ys + 2, z), A+(ys + 3, z − 1)

ND(z) = minA−(ys, z + 2), A−(ys + 1, z + 2), A−(ys + 2, z), A−(ys + 3, z − 1)
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For each edge type, we find the position of the maximum value over a neighborhood of 32

depth values. For example, in the array PA we compute

mpa = argmax{PA(z) : z = 1, 2, · · · , 32} (114)

where mpa denotes ”maximum of the positive anti-diagonal”. The variables mpd, mna, and mnd

are defined similarly. The values of the positive and negative diagonal and anti-diagonal arrays

are used to define the 4-dimensional (4-D) observation vector associated with the point (xs, ys),

O(xs, ys) = [PD(mpd), PA(mpa), ND(mnd), NA(mna)]. Observation sequences of length 15 are

formed at point (x, y) by extracting the observation sequence:

O(x, y − 7), O(x, y − 6), · · · , O(x, y − 1), O(x, y), O(x, y + 1), · · · , O(x, y + 7).

5.3.4 Bar features

The bar features have been first used in the context of handwritten character recognition

[96]. Here, we adapt them to GPR data as follows. For each Ndepths-by-Nscans B-scan, the original

image is normalized and broken into positive and negative sub-images. Let S
(x)
zy be the xth plane

of the 3-D signature S(x, y, z). Then, each part of S is binarized using a constant threshold. Eight

feature images (H+(z, y), D+(z, y), V +(z, y), A+(z, y), H−(z, y), D−(z, y), V −(z, y), and A−(z, y))

are generated. Each feature image corresponds to one of the directions: Horizontal, Diagonal,

Vertical, and Antidiagonal in either the positive or negative binarized image. Each feature image

has an integer value at each location that corresponds to the number of successive pixel values equal

to 1 (or -1 for the negative images) in that direction. These numbers are computed efficiently using

the two-pass procedure described in Algorithm 7. The feature image in each direction is obtained

by simple summation of the feature images for the positive and negative sub-images, using :



H(z, y) = H+(z, y) +H−(z, y)

D(z, y) = D+(z, y) +D−(z, y)

V (z, y) = V +(z, y) + V −(z, y)

A(z, y) = A+(z, y) +A−(z, y).

An example of an original GPR B-scan image and the derived bar features images is shown

in figure 59. Each entry, in the matrix H for example, is given a value equal to the longest horizontal

bar that fits in the horizontal direction around that entry. Thus, the bar feature matrices H, D,

V, and A measure the strength of the horizontal, diagonal, vertical, and anti-diagonal edge at each

point of the original GPR image.
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Algorithm 7 Pseudo-code for computing the bar features

Require: 2-D matrix of binarized GPR image (Ndepths x Nscans).
Ensure:

1: {FORWARD PASS}
2: for z = 2, · · · , Ndepths− 1 do
3: for y = 2, · · · , Nscans− 1 do
4: H(z,y)=H(z,y-1)+1
5: D(z,y)=D(z-1,y+1)+1
6: V(z,y)=V(z-1,y)+1
7: A(z,y)=A(z-1,y-1)+1
8: end for
9: end for

10: {BACKWARD PASS}
11: for z = Ndepths− 1, · · · , 2 do
12: for y = Nscans− 1, · · · , 2 do
13: H(z,y)=max(H(z,y),H(z,y+1))
14: D(z,y)=max(D(z,y),D(z+1,y-1))
15: V(z,y)=max(V(z,y),V(z+1,y))
16: A(z,y)=max(A(z,y),A(z+1,y+1))
17: end for
18: end for

Figure 59. A mine B-scan image and the bar features matrices for the horizontal (H), diagonal (D),
vertical (V), and anti-diagonal (A) directions
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To derive meaningful features for HMM modeling, the feature images are combined into a

5-bin histogram: one bin for each direction and the 5th for the non-edge direction. In particular, if

the maximum of the bar matrices exceeds a certain preset threshold θB , the corresponding pixel is

considered to be an edge pixel in the corresponding direction. Otherwise, it is considered a non-edge

pixel. For a given channel x ∈ {1, · · · , NC}, the corresponding histogram, h
(x)
zy , is computed from

the features matrices {H(z, y), D(z, y), V (z, y), A(z, y)}. The overall sequence of observation vectors

computed from the 3-D signature S(x, y, z) is then:

O(x, y) = [Hzy1 , Hzy2 , · · · , HzyT ], (115)

where Hzyi is the cross-track average, NC channels, of the bar features histograms:

Hzyi =
1

NC

NC∑
x=1

h(x)
zyi . (116)

5.4 Baseline HMM detector

The baseline HMM classifier consists of two HMM models, one for mine and one for back-

ground. Each model has four states and produces a probability value by backtracking through model

states using the Viterbi algorithm [9]. The mine model, λm, is designed to capture the hyperbolic

spatial distribution of the features. It uses observation vectors that encode the degree to which edges

occur in the horizontal (H), vertical (V), diagonal (D), anti-diagonal (A), and non-edge (N) direc-

tions. This model assumes that mine signatures have a hyperbolic shape comprised of a succession

of rising, horizonal, and falling edges with variable duration in each state. Eventually, the beginning

and the end of the observation vectors correspond to non-edge (or background) state.

The 4-state mine model is illustrated in figure 60. In this case, the mine model is a cyclic

model with the following architecture constraints:

• The system starts always at state 1;

• When in state i, the system can move only to state i or state i+ 1, i = 1 · · ·N − 1;

• From state N , the system can move to state N or state 1.

The background model, λb, is needed to capture the background and clutter characteristics.

No prior information or assumptions are used in this model.

The probability value produced by the mine (background) model can be thought of as an

estimate of the probability of the observation sequence given that there is a mine (background)

present. The model architecture is illustrated in figure 61.
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Figure 60. Illustration of the baseline HMM mine model with four states.

Figure 61. Illustration of the baseline HMM classifier architecture

To generate the codebook, we cluster the training data corresponding to each class (mine

or background) into M clusters using the k-means algorithm [24]. The initial model parameters

are set according to the distance of the M codebooks to each of the N states, using equation (69).

The transition probabilities A and the observation probabilities B are then estimated using the

Baum-Welch algorithm [10], the MCE/GPD algorithm [12], or a combination of the two.

The confidence value assigned to each observation sequence, Conf(O), depends on: (1) the

probability assigned by the mine model, Pr(O|λm); (2) the probability assigned by the background
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model, Pr(O|λc); and (3) the optimal state sequence. In particular, we use:

Conf(O) =

 max(log Pr(O|λm)
Pr(O|λc) , 0) if #{st = 1, t = 1, · · · , T} ≤ Tmax

0 otherwise
(117)

where #{st = 1, t = 1, · · · , T} corresponds to the number of observations assigned to the background

state (state 1). Tmax is defined experimentally based on the shortest mine signature. Equation (117)

ensures that sequences with a large number of observations assigned to state 1 are considered non-

mines.

5.5 Ensemble HMM landmine detector

Mine signatures vary according to the mine type, mine size, and burial depth. Similarly,

clutter signatures vary with soil type, site moisture, and other noise and environmental factors.

The eHMM approach attempts to learn these variations by constructing an ensemble of HMMs that

captures the characteristics and variability within the training data. In the following, we assume

that the training data consists of a set of R sequences of length T .

The architecture of the eHMM landmine classifier is shown in figure 62. It has five main

components namely, feature extraction, similarity matrix computation, similarity-based clustering,

clusters’ models construction, and decision level fusion. In the first step, the EHD, Gabor, gradient,

and bar features are extracted as detailed in section 5.3. In the second step, each of the R sequences

is used to learn one HMM model. The model parameters are initialized and subsequently adjusted,

using the Baum-welch algorithm, to fit the corresponding sequence. The third step consists of

building a pairwise similarity matrix based on the log-likelihood score and the Viterbi path mismatch

penalty that result from testing each sequence in each model. The mixing factor α in (74) is set

empirically to 0.1. In the fourth step, we use a standard hierarchical clustering algorithm to partition

the data into groups (clusters) of similar signatures. Then, for each cluster, an HMM model is

initialized and trained using the signatures belonging to that cluster. The devised training scheme

depends on the cluster homogeneity and size. Finally, in the fifth step, we use a HME or ANN to

combine the outputs of each model and assign a single confidence value to a given test sequence.
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Figure 62. Block diagram of the proposed eHMM landmine classifier (training)

5.6 Experimental results

5.6.1 Dataset collections

The proposed eHMM was developed and tested on GPR data sets collected with a NIITEK

vehicle mounted GPR system [4] (see figure 52). The datasets are comprised of a variety of mine and

background signatures. We use data collected from outdoor test lanes at three different locations.

The first two locations, site 1 and site 2, were temperate regions with significant rainfall, whereas

the third collection, site 3, was a desert region. The lanes are simulated roads with known mine

locations. Lanes at site 1 are labeled lanes 1, 3, and 4, and are 500 meters long and 3 meters wide.

Lanes at site 2 are labeled lanes 3, 4, 13, 14, and 19, and are 50 to 250 meters long and 3 meters

wide. Lanes at site 3 are labeled lanes 51 and 52, and are 300 meters long and 3 meters wide.

Multiple data collections were performed at each site at different dates. Statistics of these datasets

are reported in table 24. In the first dataset collection, D1, the LMS pre-screener has identified a

total of 1843 alarms, 613 of them are mine encounters. The second and third dataset collections,
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D2 and D3 are obtained form the same GPR raw data, but using different preprocessing and pre-

screening methods. Based on the first preprocessing method, the prescreener used for D2 identifies

724 mine encounters and 619 false alarms. With the second preprocessing method, used for D3, the

prescreener identifies 732 mine encounters, i.e. eight more mines than D2, at the expense of 1126

additional false alarms.

TABLE 24

Data collections

Total pre-screener alarms Mine encounters False alarms
D1 1843 613 1230
D2 1343 724 619
D3 2477 732 1745

5.6.2 Data preprocessing and features extraction

5.6.2.1 Data preprocessing

For each dataset collection, the raw GPR data is preprocessed and prescreened, as detailed

in section 5.2, to identify potential locations of interest within the GPR signals. Those locations,

also called alarms, can be mine targets or naturally occurring clutter. The prescreener alarms, in

the form of a 3-D GPR volume of data, are then used to extract the various features as described

in section 5.3.

Each alarm has over 400 depth values, 51 channel samplings, and 61 scans. Experimental

results show that we can reduce original data without affecting the overall performance. Thus

we down-sample the GPR data along depth (by a factor of 4) and we process only 7 channels

centered around the channel with maximum prescreener confidence. The prescreening step results

in alarms that are centered around the middle scan position. Therefore, we use only the middle

15 scans (24, · · · , 38) of the original prescreener alarm. The first and last few scans are typically

used for preprocessing (background variance estimation, background substraction, etc...). It is worth

noting that the ground-truth depths of mine signatures are either manually identified or previously

estimated by the prescreener. Those groundtruth depths are used only in the training step.

5.6.2.2 Features extraction

The previous step resulted in a smaller 7 × 15 × 100 GPR volume. Consequently, each

of the feature extraction methods, described in section 5.3, is used to extract a feature vector at
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each down-sampled depth. Depending on the feature extraction method, averaging over the seven

channels is done within the extraction procedure (for EHD) or post-extraction (for the Gabor, bar,

and gradient features).

Given the downsampled volume of GPR data obtained in the previous step, we apply each of

the extraction methods to compute the sequence of feature vectors at each depth. Each extraction

method results in a map of 15 sequences of 4- or 5-dimensional feature vectors at each down-sampled

depth. Let Ol
EHD, Ol

GBR, Ol
GRA, and Ol

BAR denote the observation vector map extracted from

dataset Dl, {l = 1, 2, 3}, using the EHD, Gabor, gradient, and bar features, respectively.

In figure 63, we show the observation vectors extracted from three signatures. The first (resp.

second) signature corresponds to a mine with high (resp. low) metal content taken at the groundtruth

depth and at the center channel identified by the prescreener. The third signature corresponds to

a subwindow of an alarm taken at a random depth with no significant GPR signature activity.

Note that the EHD and Gabor features are normalized, while the gradient and bar features values

have wider ranges. The extracted feature vectors cover different aspects of the GPR signature. For

instance, Gabor features are less prone to the intensity in the image and vary mainly with the size

of the target and the texture of the signature.

Figure 63. EHD, Gabor, gradient, and bar features of two sample mines and a background signature

In figure 64, we show the means of the extracted feature vector observations of all the
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(a) Mines using EHD (b) Clutter using EHD

(c) Mines using Gabor (d) Clutter using Gabor

(e) Mines using gradient (f) Clutter using gradient

(g) Mines using bar (h) Clutter using bar

Figure 64. Average feature observation vectors of mines (column 1), and clutter (column 2) using
EHD (row 1), Gabor (row 2), gradient (row 3), and bar extraction method (row 4)

mines (first column subfigures) and clutter (second column subfigures) of D1. For each feature

Feat ∈ {EHD,GBR,GRA,BAR}, we compute Ō
(t)
Feat = average{O(t) ∈ O1

Feat} for mines and

clutter signatures separately. Then, the 5- or 4-dimensional mean vector of the EHD (row 1), Gabor

(row 2), gradient (row 3), and bar features (row 4 sub-figures) is plotted at each observation position

t, 1 ≤ t ≤ T . These feature dependent global statistics could be used to set the thresholds of the

proposed algorithms as outlined in the next section.
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5.6.2.3 Identifying actual length of mine sequences

In order to satisfy the eHMM architecture constraints, we use equation (73) with the feature-

dependent threshold τ to identify the actual length of the mine sequences. From figure 64(a),

It can be seen that choosing τ = 0.18, for the EHD features, would result in discarding a few

mine observations with weak diagonal component from the start of the sequence and a few mine

observations with weak anti-diagonal component at the end of the sequence. Similarly, for the other

features and referring to figures 64(c), (e) and (g), respectively, we fix τ = 0.7 for the Gabor features,

τ = 0.3 for the gradient features, and τ = 0.11 for the bar features.

5.6.3 Experimental setup

In all experiments reported this chapter, we use a 6-fold cross validation for each data set

Dl, {l = 1, 2, 3}. For each fold, a subset of the data (DlTrn) is used for training and the remaining

data (DlTst) is used for testing. Let Rln be the size of DlTrn and Qln = N l−Rln be the size of DlTst

for the nth fold. Finally let Ol
Feat
Trn denote the observation vector maps extracted from dataset Dl,

{l = 1, 2, 3}, using the corresponding feature extraction method Feat ∈ {EHD,GBR,GRA,BAR}

(Feat labels ’EHD’, ’GBR’, ’GRA’, and ’BAR’ correspond to the EHD, Gabor, gradient, and bar

features respectively).

A comparison of the classifiers and the feature-based models should be based on the ROC

curves and should use the same cross-validation settings. Therefore, we use a unified cross-validation

experimental setup. For each dataset, we have the same crossvalidation partition, and the same

setting for the different feature extraction methods. In particular, the EHD, Gabor, gradient, and

bar features are pre-computed and saved for each dataset and will be used by all classifiers, namely

the baseline DHMM, the baseline CHMM, the eDHMM, and the eCHMM. In the following results

sections, we provide the implementation details of the eCHMM and eDHMM on one of the datasets

Dl and using one of the feature extraction methods seemingly. We illustrate some of the steps using

D3 and the eCHMM with bar features. In the last results section, we report the comprehensive

results, in terms of area under ROC curve (AUC), of the eHMM vs the baseline HMM: (1) in the

continuous vs. discrete case; (2) using EHD, Gabor, gradient, and bar features; and (3) using D1,

D2, and D3.
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(a) (b)

Figure 65. eCHMM hierarchical clustering of O3
BAR
Trn1: (a) pairwise-distance matrix, (b) dendrogram

5.6.4 eHMM construction and training

For each dataset Dl, l ∈ 1, 2, 3, and each feature extraction method, Feat ∈ {EHD,GBR,GRA,BAR},

we have a 6-fold crossvalidation partition Ol
Feat={Ol

Feat
Trn , Ol

Feat
Tst } of observation maps. Each alarm

in the original GPR data is represented by a T ×D sequence of feature vector observations at each

down-sampled depth location.

The first step of the eHMM is the similarity matrix computation. This step requires fitting

an individual HMM model for each sequence in the training data Ol
Feat
Trn . Details of the individual

DHMM construction and the similarity matrix computation of the first crossvalidation fold of dataset

D3 using the EHD features, O3
EHD
Trn1 , were provided in the running example of chapter 3.

In the second step, the similarity matrix is transformed into a distance matrix, D, using (77).

The hierarchical clustering algorithm [25] is then applied, using D with a fixed number of clusters

K = 10, to partition the training data. For both the discrete and continuous versions, using any

of the features and dataset, the eHMM clustering step successfully assigns groups of similar alarms

into clusters. For instance, in figures 65 and 66, we show the hierarchical clustering results of the

first crossvalidation fold of the eCHMM using bar features on D3. As it can be seen in figure 66(a)

and in the dendrogram of figure 65(b), we have a group of clutter dominated clusters (in red) an a

second group of clusters dominated by mines (in cyan). Additional details of the clusters’ contents

per mine type and per burial depth are shown in figures 66(b) and (c).

In the third step, we build the eHMM mixture models for the clusters obtained from the

previous step. The eHMM is built based on the clusters’ sizes and homogeneity. Then, the context

dependent training scheme, described in section 3.3.3, is used to initialize and learn the eHMM.

Continuing with the case example of the eCHMM with BAR features, D3
BAR
Trn1, of the previous step,

we can see that the partition of the training data includes four homogeneous clusters (Clusters 6, 7,

117



Figure 66. eCHMM hierarchical clustering results of O3
BAR
Trn1: distribution of the alarms in each

cluster: (a) per class, (b) per type, (c) per depth.

and 10 contain only mines and cluster 1 has only clutter). The remaining clusters (2, 3, 4, 5, 8, and

9) are mixed. Therefore, using the notation of Algorithm 6, we define our eHMM as :
λBWi = {λ(F )

1 , λ
(M)
6 , λ

(M)
7 , λ

(M)
10 },

λMCE
j = {λ(M)

j , λ
(C)
j }, j ∈ {2,3,4,5,8,9},

λV Bk = ∅.

(118)

Table 25 shows the BW-trained eCHMM model for cluster 6, λ
(M)
6 . Recall that cluster 6

contains only mine signatures that have a low metal content and/or buried at 2” or deeper, as it

can be seen in figure 66. Therefore, the alarms in cluster 6 are expected to have weak signatures

and therefore weak edge features. This could explain the large non-edge component of most of the

states means components of λ
(M)
6 reported in table 25. Moreover, both states s1 and s3 have two

dominant components (g11, g12 for s1; g32, g33 for s2) and one weak component. In both cases,

the dominant components are the ones with the largest no-edge attribute. Nevertheless, the states

representatives still characterize the hyperbolic shape of a typical mine signature, i.e. the succession

of Dg −Hz − Ad states. For instance, all s1 components means have their diagonal D dimension

larger than the anti-diagonal A dimension.

In the final step, the eHMM mixture constructed previously is combined using an ANN or a

HME. The ANN and HME parameters are trained to fit the responses of the eHMM mixture models
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TABLE 25

λM6 CHMM model parameters of cluster 6

A
s1 s2 s3

s1 0.75 0.25 0.00
s2 0.00 0.81 0.19
s3 0.00 0.00 1.00

Priors
π

s1 1.00
s2 0.00
s3 0.00

Means
H D V A N

c11 0.20 0.21 0.16 0.05 0.82
s1 c12 0.47 0.31 0.26 0.15 0.61

c13 0.60 0.27 0.34 0.20 0.36
c21 0.55 0.24 0.25 0.31 0.57

s2 c22 0.56 0.39 0.44 0.36 0.37
c23 0.67 0.30 0.38 0.43 0.27
c31 0.52 0.14 0.32 0.36 0.41

s3 c32 0.15 0.04 0.11 0.16 0.86
c33 0.36 0.09 0.23 0.31 0.66

Covariance
H D V A N

cov11 0.01 0.01 0.01 0.01 0.01
s1 cov12 0.01 0.01 0.01 0.01 0.01

cov13 0.01 0.01 0.01 0.01 0.01
cov21 0.01 0.01 0.01 0.01 0.01

s2 cov22 0.01 0.01 0.01 0.01 0.02
cov23 0.01 0.01 0.01 0.01 0.01
cov31 0.01 0.01 0.01 0.01 0.01

s3 cov32 0.01 0.01 0.01 0.01 0.01
cov33 0.01 0.01 0.01 0.01 0.01

Coefficients
w

g11 0.42
g12 0.48
g13 0.10
g21 0.46
g22 0.21
g23 0.33
g31 0.10
g32 0.50
g33 0.40

to the training data labels. For each crossvalidation fold, the initial and trained eHMM models, the

trained ANN, and the trained HME are saved and will be used to test the respective Ol
Feat
Tst subset.

5.6.5 eHMM testing

The block diagram for the proposed eHMM in testing mode, was given in figure 22. In the

training step, for each crossvalidation fold, we used the Ol
Feat
Trn subset to learn the eHMM mixture and

the decision level fusion model. In this testing step, we use the eHMM models and the decision level

component of the eHMM, obtained from the training step, to assign a confidence to a new sequence

from the corresponding crossvalidation testing subset Ol
Feat
Tst . For each dataset Dl, and experimental

setting of discrete vs. continuous and feature extraction method, we repeat the previous step for

each crossvalidation fold. The results for a particular experimental setting are summarized in terms

of receiver Operating Characteristics (ROC) and Area Under ROC Curve (AUC). In this section,

we investigate the performance of the HME and ANN fusion methods for the experimental setting

example provided in the eHMM training step. Then, we motivate our choice for the clustering

method and the number of clusters in the case of D3 using the EHD-based eDHMM. Finally, we
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(a) (b)

Figure 67. ROCs generated by the HME fusion, ANN fusion, and few cluster models using (a) the
training data O3

BAR
Trn1 and, (b) the testing data O3

BAR
Tst1 .

provide comparative results of the eHMM vs the baseline HMM on all datasets, using the discrete

and continuous HMM, and the different feature extraction methods.

5.6.5.1 Comparison of the HME and the ANN fusion results

Continuing with the example used in the eHMM training step, where we have shown the

hierarchical clustering results of eCHMM using bar features on O3
BAR
Trn1, we reported that the par-

tition of the training data includes four homogeneous clusters and six mixed clusters. In figure

67(a), we show the ROCs generated by the models of one mine-dominated cluster (cluster 6), one

clutter-dominated cluster (cluster 1), one mixed cluster (cluster 2) on the training data O3
BAR
Trn1. We

show also the ROCs of the ANN and HME fusion that were obtained by combining the confidences

of all ten cluster models. In figure 67(b), we show the ROCs generated by the same classifiers on the

corresponding test data O3
BAR
Tst1 . As it can be seen in the ROCs of figure 67, the HME and the ANN

improve the classification performance over the individual clusters’ models with the HME fusion

outperfroming the ANN fusion, specially on the training data. In the remainder of our experiments,

we use the HME as the default fusion method.

5.6.5.2 Comparison of the clustering methods

In our experiments, we noticed that the clustering methods used, namely the hierarchical

agglomerative, the FLeCK, and the spectral FCM-MK, yield comparable partitions in terms of

cluster purity (i.e. mine and clutter distributions in each cluster). Therefore, the overall eHMM

performance, using one of the clustering algorithms, is comparable in terms of the ROC or the AUC

measure. For instance, in figure 68, we show the ROCs generated by the eDHMM on O3
EHD using

the hierarchical, FLeCK, and FCM-MK algorithms with K = 10. As it can be seen, the performance
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Figure 68. ROCs generated by the eDHMM using O3
EHD and different clustering algorithms.

Figure 69. Optimization of the number of clusters

of the eDHMM using one of the clustering methods is comparable. It is worth noting that the FLeCK

and FCM-MK algorithms are paramater-based and may have inconsistent results. That is, for the

FLeCK algorithm, the results depend on the initial FCM partition. For the FCM-MK, it is not

guaranteed that the clustering results in exactly K clusters as the final partition may have empty

clusters. Therefore, we will use the hierarchical agglomerative clustering algorithm in the remainder

of our experiments, since it is non-parametric and gives consistent results.
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5.6.5.3 Choice of the number of clusters K

To optimize the number of clusters, a performance criterion such as the partition purity,

the mean of the inter- and intra-cluster distances, and the overall performance of the eHMM can be

used. In our case, we use the eHMM’s AUC as a criteria for choosing the optimal number of clusters.

For that matter, we conducted an empirical study by varying the number of clusters (K = 1, · · · , 50)

and measuring the performance of corresponding eHMM AUC for each value of K. In particular,

we used the EHD-based eDHMM using the hierarchical clustering and the HME fusion, on D3, to

illustrate the optimization of the number of clusters. In figure 69, we show the evolution of the

eDHMM’s AUC with the number of clusters used in the eDHMM hierarchical clustering component.

The trivial choice of K = 1 is equivalent to the baseline DHMM and has the lowest AUC of 643,

as it can be seen in figure 69. For K = 2, the eDHMM is comprised of two clusters: one cluster

contains the mine signatures and the mine-like clutter signatures, and the other cluster contains the

dominantly background, with no significant GPR activity, clutter signatures. Apart from the trivial

cases of K ∈ {1, 2}, the AUC of the eDHMM increases with number of clusters until it reaches a

plateau around K = 20. Therefore, we pick K = 20 as a reasonable tradeoff between the eDHMM

performance and its complexity in terms of number of clusters/ mixture models.

5.6.5.4 eHMM vs. baseline HMM results

In this section, we highlight the relative performance of the eHMM compared to the baseline

HMM. For the eHMM, we show the results using the HME fusion and the hierarchical agglomerative

clustering with K = 20. In figures 70(a)-(d), we show the ROCs generated by the discrete versions of

the eHMM and the baseline HMM on dataset D3, using one of the feature extraction methods: EHD,

Gabor, gradient, and bar respectively. Similarly, in figures 71(a)-(d), we report the ROCs generated

by the continuous versions, i.e. the eCHMM and the baseline CHMM, on dataset D3, using the

EHD, Gabor, gradient, and bar features, respectively. In all the experimental settings using D3, the

ensemble HMM method outperforms the baseline HMM. In all the ROCs of figures 70 and 71, at a

given false alarm rate (FAR), the eHMM has a better probability of detecting targets. For instance,

in figure 70(a), at a FAR of 10%, the eDHMM using EHD features successfully identifies 94% of the

mines while the baseline DHMM identifies only 87% of the targets. At the same FAR of 10%, the

ROCs of figure 71(a) show that the eCHMM successfully identifies 95% while the baseline CHMM

probability of detection is 85%.

To gain more insight on the relative performance of the eHMM and the baseline HMM
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(a) (b)

(c) (d)

Figure 70. ROCs generated by the eDHMM (solid lines) and baseline DHMM (dashed lines) classi-
fiers using D3 and (a) EHD, (b) Gabor, (c) gradient, and (d) bar features

(a) (b)

(c) (d)

Figure 71. ROCs generated by the eCHMM (solid lines) and baseline CHMM (dashed lines) classifiers
using D3 and (a) EHD, (b) Gabor, (c) gradient, and (d) bar features

123



classifiers on D3, we plot the scatter-plot of the confidences assigned by the eCHMM vs. the baseline

CHMM to the signatures of D3Tst, in figure 72. The scatter-plot shows that the eCHMM and CHMM

classifiers are positively correlated, as most of the points fall along the diagonal of the plot. Both

classifiers assign low confidences to clutter and higher confidences to mine signatures specially high

metal (in red and purple) and shallow signatures (in red and black). The improvement of the eHMM

over the baseline classifier can be seen particularly in the areas R1 and R2. In fact, the eCHMM

assigns higher confidences to the low-metal signatures enclosed by R1 while the baseline CHMM

assigns relatively lower confidences. Moreover, the eCHMM assigns relatively low confidences (< .8)

compared to the CHMM (> 6), to the clutter signatures of region R2.

Figure 72. Scatter plot of the confidences assigned by the EHD-based eCHMM (abscissa axis) and
the baseline CHMM (ordinate axis) to D3Tst1 signatures. Clutter, low metal (LM), and high metal
(HM) signatures at different depths are shown with different symbols and colors.

The results for all 3 datasets are summarized in terms of and Area Under ROC Curve (AUC)

and are reported in table 26. In most of our experiments (24 settings of continuous vs discrete, using

EHD, Gabor, gradient, or bar features, for each of the three datasets), the eHMM outperforms the

baseline HMM.
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TABLE 26

AUC of the eHMM and baseline HMM classifiers

Dataset Classifier using: EHD Gabor Gradient Bar
eDHMM 343 296 191 190

D1 bDHMM 272 122 299 367
eCHMM 326 226 119 180
bCHMM 284 140 208 173

eDHMM 402 127 498 50
D2 bDHMM 107 30 400 314

eCHMM 359 122 497 21
bCHMM 209 102 391 38

eDHMM 712 719 698 483
D3 bDHMM 643 499 582 471

eCHMM 718 617 697 284
bCHMM 614 472 579 150

5.7 Chapter summary

In this chapter, the proposed eHMM classifier is applied and evaluated on a real world

application: landmine detection. In this application, the eHMM intermediate steps are analyzed

and the final performance results are presented. The experiments show that the proposed eHMM

intermediate results are inline with the expected behavior and that, overall, the ensemble HMM

outperforms the standard HMM. As reported earlier in figures 13, 14, and 15, the clustering step

is able to identify similar groups of signatures. The fusion step results for the ANN and the HME

method were also presented and analyzed. The results show that both the HME and ANN fusion

methods outperform the individual models and that the HME fusion method gives better results than

the ANN based fusion. Finally the eHMM versus the baseline HMM ROCs and scatter plots show

that the eHMM with both ANN and HME fusion significantly outperforms the baseline two-model

classifier.
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CHAPTER 6

CONCLUSIONS AND POTENTIAL FUTURE WORK

6.1 Conclusions

In this work, we have proposed a novel ensemble HMM classification method that is based

on clustering sequences in the log-likelihood space. The eHMM uses multiple HMM models and

fuses them for the final decision making.

We hypothesized that the data are generated by multiple models. These different models

reflect the fact that the different classes may have different characteristics accounting for intra-class

variability within the data. Our approach has four main steps. First, one HMM is fit to each

individual sequence. For each fitted model, we evaluate the log-likelihood of each sequence. This

results in a log-likelihood-based similarity matrix. Next, the similarity matrix is partitioned into

K groups using a relational clustering algorithm. Three clustering algorithms were evaluated: the

hierarchical agglomerative algorithm, the FLeCK algorithm, and the FCM-MK algorithm.

In the third step, we initialize the parameters of one HMM per cluster using the observation

sequences belonging to that cluster. Then, we learn the parameters of the HMM models using an

optimized training approach for the different K groups depending on their size and homogeneity.

For clusters that are dominated by sequences from only one class, we use the standard Baum-Welch

re-estimation procedure. For clusters with a mixture of observations belonging to different classes,

we use discriminative training based on minimizing the misclassification error to learn a model for

each class. Finally, for clusters containing a small number of sequences, we use a variational Bayesian

method to update the model parameters given the observed data.

To test a new sequence, its likelihood is computed in all the models and a final confidence

value is assigned by combining the multiple models outputs using a decision level fusion method

such as an artificial neural network or a hierarchical mixture of experts.

The eHMM, in its discrete and continuous versions, was evaluated on two real-world appli-

cations. First, we applied our approach to identify CPR scenes in video simulating medical crises.

In this application, we used a small dataset of 2-dimensional CPR and non-CPR sequences that
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represent the motion vectors extracted from the simulation videos. Therefore, we illustrated and vi-

sualized the intermediate steps of the eHMM and compared its performance to the baseline HMM. In

the second application, we evaluated the eHMM on the task of landmine detection using GPR data

and multiple feature representations. In particular, we applied our method on three large datasets

of GPR data using EHD, Gabor, gradient, and bar features. In this application, we evaluated the

individual components of the eHMM and emphasized on its overall performance compared to the

baseline HMM.

Results on the CPR data and on the large GPR data collections show that the proposed

method can identify meaningful and coherent HMM clusters models that describe different properties

of the data. Each HMM mixture component models a group of data that share common attributes.

The experiments show that the proposed eHMM intermediate results are inline with the expected

behavior. The results indicate that, in both the continuous and discrete versions, the proposed

method outperforms the baseline HMM that uses one model for each class in the data.

6.2 Potential future work

In the application of the eHMM to the GPR data, we used each feature extraction separately

to build the eHMM mixture models. Therefore, multiple models can be learned from the different

features. We suggest combining each of the single-feature-based eHMMs either at the similarity

matrix level, or at the fusion level. At the similarity matrix level, we can combine the similarity

matrices of each single-feature-based eHMM and produce a weighted-average similarity matrix that

will be used in the relational clustering. At the fusion level, we can adjust the ANN or HME architec-

ture to take the mixture models of all the single-feature-based eHMMs as input. Subsequently, the

fusion model parameters will be learned from the training data. Finally, we can invoke a relational

clustering method that simultaneously clusters the training data using several similarity matrices

and assigns a weight to each similarity matrix in each cluster. Those weights can be used at the

decision level fusion to decide which single-feature-based model will be used for each cluster.

Future work also includes the evaluation of the eHMM with other applications such as face

recognition, gene sequence alignment, and handwritten character recognition.
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