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 ABSTRACT

INFERENCE FOR A ZERO-INFLATED CONWAY-MAXWELL-POISSON REGRESSION
FOR CLUSTERED COUNT DATA

Hyoyoung Choo-Wosoba

April 14, 2016

 This dissertation is directed toward developing a statistical methodology with applications of the

Conway-Maxwell-Poisson (CMP) distribution (  to count data.Conway, R. W., and Maxwell, W. L., 1962)

The count data for this dissertation exhibit three different characteristics: clustering, zero inflation, and

dispersion. Clustering suggests that observations within clusters are correlated, and the zero inflation

phenomenon occurs when the data exhibit excessive zero counts. Dispersion implies that the mean is

greater/smaller than the variance unlike a Poisson distribution.

   The dissertation starts with an introduction of inference for a zero-inflated clustered count data in

the first chapter. Then, it  presents novel methodologies through three different statistical approaches

(Chapters 2-4). A marginal regression approach as the second chapter which begins with a description of a

zero-inflated CMP model and subsequently develops proper statistical methodologies for estimating

marginal regression parameters. Furthermore, various types of simulations are conducted to investigate

whether the marginal regression approach leads to the proper statistical inference. This chapter also

provides an application to a dental dataset, which is clustered, zero inflated, and dispersed. Chapter 3

develops a mixed effects model including a cluster-specific random effect term. This chapter also addresses

numerical challenges of a mixed effects model approach through extensive simulations. For the application

of the zero-inflated mixed effects model, next generation sequencing (NGS) data from a maize hybrids

 experiement is analyzed.
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While Chapter 3 applies a mixed effects model using the frequentist approach, Chapter 4 develops a

Bayesian method to analyze such data under a mixed effects model sturucture. In that chapter, a hurdle

model is applied to cope with a zero inflation phenomenon, rather than a zero-inflated model used in both

Chapters 2 and 3. Furthermore, Chapter 4 provides the application to the same dental dataset used in

Chapter 2. The application section introduces a new factor into a hurdle mixed effects model, which

incorporates both fixed effects term and random effects term. Chapter 5 describes the future plan as the

concluding chapter.
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CHAPTER 1

INTRODUCTION

This dissertation consists of three interconnected research projects (Chapters 2-4). The first project

(Chapter 2) deals with marginal zero-inflated CMP regression models for clustered count data that has

excessive zero values. The aim of the second project (Chapter 3) is the similar to that of the first project but

the analysis is based on a joint model involving cluster specific random effects with zero-inflated CMP

conditionals. The last project (Chapter 4) is to apply a Bayesian approach method with a hurdle CMP mixed

effects model.

1.1 A marginal model approach to zero-inflated clustered count data

Some count datasets have more zero values than expected from a certain common count distribution such as

Poisson or negative binomial. This phenomenon, called zero-inflation, takes place in diverse fields such as

engineering, dentistry, health surveys, transport, genomics and so on.  To this end, zero-inflated versions of

these distributions and related inferential procedures have been derived (Bohning, 1998; McLachlan, 1997;
ÞÞ

Yau,Wang and Lee ., 2003)

 A Poisson distribution is well known for modeling count data.  It is a relatively simple distribution

that belongs to an exponential family which makes it convenient for analysis within the generalized linear

models (GLM) framework.  However, a Poisson distribution may not be the best choice in certain cases

when the data is under- or over- dispersed, which is violation of the property that the variance and the mean

are equal. Negative binomial is a popular choice to model such data.  However, while a negative binomial

distribution fits reasonably well for overdispersion, that is not the case for underdispersion.  The Conway-

Maxwell Poisson (CMP) distribution introduced by Conway and Maxwell (1962) is a great tool to
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overcome this difficulty, since it can model a wide range of dispersion. In addition, it belongs to an

exponential family as well.

 Often in practice not all the data values are independent. Instead they arise as independent groups

called clusters. An illustrative dataset is provided in Project 1 and 2, where observations on teeth belonging

to the same individual form a cluster. They are expected to exhibit some form of statistical dependence due

to shared environmental factors. Currently, SAS version 13.1 has a procedure, PROC COUNTREG which

allows us to perform a regression analysis based on the zero-inflated CMP distribution and the

COMPoissonReg package in R performs a CMPoisson regression analysis based on a GLM framework

(Sellers and Shmueli, 2010). However, all these procedures are only applicable to independent data. Thus,

the motivation of the first project is to seek a proper statistical method for a count dataset that is clustered

and fitted into a zero-inflated marginal CMP model. In this project, we illustrate two statistical

methodologies: MES(Modified Expectation-Solution) algorithm and MPL(Maximum Pseudo Likelihood)

method. The MES algorithm, one of our proposed methods is a modified version of an ES algorithm which

is introduced by Rosen, Jiang and Tanner, 2000. The MES algorithm shows how to account for the

clustered count data with excessive zeros based on a CMP regression model. The MPL method gives

estimators under the inference where clustered data is considered as being independent but account for the

clustering feature through a clustered-adjusted variance estimation. Hence, our methods not only consider

the clustering features but also deal with a wide range of dispersion. Furthermore, we assess our methods

has properties of asymptotic theory through various simulations and provide an application to a dental data

with a proper interpretation.

1.2 A joint modeling approach to zero-inflated clustered count data

Introduction of the random effects into a regression model has been a useful statistical tool for the analysis

of longitudinal/clustered data. Considering not only fixed effects but also random effects allows us to adjust

for subject-level (within-subject) randomness. Typically, a joint model via a mixed effects model has more

accuracy than a marginal model as long as a random effect structure with random factors is correctly
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specified. Furthermore, a joint model is able to produce a full likelihood function so that we can make

efficient inference with standard large sample statistical theory and methods.

 Recently there have been a number of attempts to apply the joint modeling framework into

clustered/correlated count data with excessive zeros (Fulton, Liu, Haynie and Albert, 2015; Hall, 2000;

Hasan, Sneddon and Ma, 2009, ets). Furthermore, a zero-inflated mixed effect modeling regression analysis

is able to handle a limited range of dispersion of count data (Yau, Wang and Lee, 2003; Rodrigues-Motta,

Gianola and Heringstad, 2010; ets). We can easily perform a regression analysis on certain types of

distributions and dispersion through statistical software programs such as the "GLIMMIX" procedure in

SAS 9.2 version and the "glmmADBM" package in R. However, these articles and programs have a limited

number of count distributions (Poisson and negative binomial) and can only manage overdispersed data. In

this regard, our model, zero-inflated CMP enables us to cope with various types of dispersion for any count

data because of the versatility of a CMP distribution mentioned in Section 1.1.

 In this work, we adapt the Gaussian-Hermite (G-H) quadrature method to calculate an

approximation of the likelihood function from a zero-inflated CMP mixed effects model since there is no

closed explicit form of the true likelihood function. As a by product of our approach, we are able to

construct a statistical test for zero inflation in the data. We also carry out a numerical power analysis for

testing a covariate effect as well as that of a zero-inflation test Further, we apply our methodology to a. 

maize hybrids experiment dataset to illustrate our methodology for clustered zero-inflated count data with

two types of dispersions (over and under).

1.3 A Bayesian approach to zero-inflated clustered count data

A Bayesian method may incorporate a mixed effects model without requiring the quadrature method or

other approximations to calculate the likelihood function. While the frequestist-based estimates are obtained

by maximizing the log-likelihood function, estimates in a Bayesian approach are generated from the

posterior distributions by using Markov chain Monte Carlo (MCMC) sampling methods. In this project, a

hurdle model framework is applied to account for zero inflation and clustering.  
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 Barriga and Louzada (2014) performed a Bayesian approach to analyze a zero-inflated dispersed

data based on a CMP distribution. Our work differs from theirs as they only consider independent data, not

dependent/clustered data. Our model considers clustering by adding a random effects term. Moreover, we

use a hurdle model rather than a zero-inflated model which was used for their paper. The hurdle model

gives an easier interpretation in terms of the way to divide zero inflated data into two different parts. The

hurdle model considers the data with zero and non-zero parts, and analyzes each part with the

corresponding distribution. However, in the zero-inflated model, data is explained by a mixture of two

different distributions so that zero counts can be explained either from a degenerate distribution at zero or a

count distribution. This statistical methodology is partially motivated to analyze data from the Iowa

Fluoride Study (IFS) on nine-year old children which is used for an application in Chapter 2.



5

CHAPTER 2

MARGINAL REGRESSION MODELS FOR CLUSTERED COUNT DATA

BASED ON ZERO-INFLATED CONWAY-MAXWELL-POISSON DISTRIBUTION

WITH APPLICATIONS

2.1 Methods and Materials

We begin with the probability mass function (pmf) of a CMP distribution,

:ÐCÑ œ ß C œ !ß "ß #ß ÞÞÞ ß
ÐCxÑ ^Ð ß @Ñ

-

-

C

@
 (1)

where Here is a shape parameter and is a dispersion parameter.  If  is 1, a^Ð ß @Ñ œ Þ � ! @   ! @- -�
=œ!

∞

Ð=xÑ
-=

@

CMP distribution is the exactly same as a Poisson distribution which means there is no additional

dispersion.  It turns out that represents underdispersion and   represents overdispersion. Note@ � " @ � "

that this distribution belongs to an exponential family since  .:ÐCÑ œ /B: C691Ð Ñ � @691ÐCxÑ ^ Ð ß @Ñ˜ ™- -�"

The limiting cases of a CMP distribution also include a Bernoulli  distribution ( , or a geometric@ œ ∞Ñ

distribution ( and )  Thus, a CMP distribution has great flexibility to include various types of@ œ ! � " Þ-

count distributions. Another important feature of the CMP distribution is about the expectation function of

] .  In general, the means behave independently from the dispersion parameters; in other words, the

dispersion parameters do not affect the means. However, Equation (2) shows that the mean of  in the CMP]

*distribution is not only a function of the shape parameter, , but also of the dispersion parameter, .- @

I] œ Î^Ð ß @Ñ
=

Ð=xÑ
�
=œ!

∞ =

@

-
- . (2)

A penultimate version of this chapter appeared in Choo-Wosoba, Levy, and Datta, 2016.
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A zero-inflated model consists of two components: the zero-degenerated distribution , and a particular$!

count distribution . The zero-degenerated part controls excessive zeros in the form of a binary[

distribution and a count distribution. The CMP distribution, in this case, controls counts including the

expected number of zeros. Thus, the zero-inflated CMP (or ZICMP, hereafter) model has a probability mass

function described by

TÐ] œ CÑ œ

: # ß C œ !

Ð" � :Ñ ß C   "

ÚÝÝÛÝÝÜ

Ð"�:Ñ
^Ð ß @Ñ

ÐC xÑ ^Ð ß@Ñ

-

-

-

if  ,

if ,

(3)
C34
34

34
@

34

where is a parameter of the distribution representing the mixing proportion of the degenerate at: − Ò!ß "Ó

zero part.

 We assume that data are clustered into clusters. The size of the  cluster is denoted by ,R 3 8>2
3

" Ÿ 3 Ÿ RÞ ] 4 3 " Ÿ 4 Ÿ 8 Þ Furthermore, let indicate the observation in the cluster, 34 3
>2 >2

 The expectation-maximization (EM) algorithm is widely used for estimating parameters in a zero-

inflated model. However, the EM algorithm, by itself,  is not a valid tool for clustered data.

 In this chapter, two different methods are proposed to explain the mechanisms of marginal

framework, accounting for not only zero-inflation but also dependency. One is MES (Modified

Expectation-Solution) algorithm and the other one is MPL (Maximum Pseudo Likelihood) method.

2.1.1 MES algorithm based on a modified Newton-Raphson method

 The MES algorithm is motivated from the ES (Expectation-Solution) algorithm (Hall and Zhang,

2004; Rosen, Jiang and Tanner, 2000) when the data are clustered. The ES algorithm combines elements of

both GEE (Liang and Zeger, 1986) and the EM algorithms, so that one can account for dependency

(clustering) in the data. However, the ES algorithm as prescribed by Rosen, Jiang and Tanner (2000) has a

major limitation in that it is only applicable to an exponential dispersion family which has a form of  0ÐC à34

) 9 9 ) 934 34 34 34
Ð C �5Ð ÑÑA

ß œ 2ÐC ß Ñ/B:Ö ×ß A) where  is the canonical parameter,  is a constant, and  is a) )

9
34 34 34 34

dispersion parameter. Unfortunately, the CMP distribution does not belong to the exponential dispersion
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family. Since the  function can not be factored into a function of log and a function of , it^ Ð œ Ð ÑÑ @- )34 34

cannot be re-expressed in the exponential dispersion family form. As a consequence of this, the expectation

of is not only related to  but also to  making a regression formulation complicated.] @-

 Therefore, we propose the following modification of the standard ES algorithm to deal with the

CMP family; we call it the MES algorithm. Note that given a specified value of , the CMP distribution@

indexed by  belongs to an exponential dispersion family with log and- -2 œ ÐCxÑ ß 5 œ ^Ð ß @Ñß A œ "ß�/

9 œ Þ1  So, instead of using the ES algorithm for estimating all parameters, we applied the ES algorithm for

only regression coefficients other than . For estimating , @ @ a log-likelihood function is applied instead of

GEE. The parameters of interest based on this algorithm consist of  : a dispersion) " # 3 $œ Ö ß ß @ß ß ×

parameter, , both and  as coefficients of the count and zero-inflation parts from the GLM framework of@ " #

691Ð Ð ÑÑ œ \ 6913>Ð:Ð ÑÑ œ \- " " # # 3 $" #  and  and correlation coefficients,  and  from correlation matrices

corresponding to the count and zero-inflation parts in GEE formulation. and  are covariates in the\ \" #

CMP distribution and zero-degenerated distribution, respectively. The covariates are determined depending

on researchers' interests.

 An MES algorithm starts with the complete log-pseudo-likelihood of zero-inflated CMP (ZICMP)

model given by

j Ð ß ß @à C ß ? Ñ œ ? 691:Ð Ñ # Ð" � ? Ñ691Ð" � :Ð Ñ-
34 34 34 34 34

3œ" 4œ" 3œ" 4œ"

R R8 8

34" # # #�� ��3 3

Ñ #

  (��
3œ" 4œ"

R 8

34 34 34 34 34

3

Ð" � ? ÑÐC 691 Ð Ñ � @691 C xÑ � 691^ Ð Ñ- " - "Ð ß @ÑÑß (4)

where are latent (i.e., unobserved) binary indicators of the degenerate at zero part. (We call it a pseudo-?34

likelihood  because it is a product over likelihoods of individual terms as if they were independent.)

Subsequently, it alternates between two main steps:  the expectation (E) step and the solution (S) step. The

E-step is to calculate the expectation of the expressions in each side of equation (4) by replacing  with?34
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IÐ? Ñ34  leading to

U œ IÐj Ð ß ß @à ß ÑÑ œ j Ð ß ß @à C ß IÐ? ÑÑ ß- -

3œ" 4œ"

R 8

34 34" # " #C ? ��3

where

 IÐ? Ñ œ TÐ? œ "l C œ !ß ß ß @Ñ34 34 34 " #

œ
:

: # Ð" � : ÑÎ^Ð ß @Ñ
34

34 34 - "34Ð Ñ
. (5)

Let denote this value at the  iteration.  In the solution step, given , estimates of , ? 2 IÐ Ñ Ð œ Ñ34
2 >2 2? ? " #

and  are obtained by solving there own linearized estimating equations leading to the following updating@

schemes:

# # , G # G # G #
# #

2#" 2 �" X

3œ"

R
3 3
X

? " "3 "3

�"

œ # ÖZ × # Ð Ñ Ð Ñ Ð Ñ
` `

` `
” •� : :

3
,

" " , G " G " G "
" "

2#" 2 �" X

3œ"

R
3 3
X

3 X #3 #3 #

�"

œ # ÖZ × H3+1Ð � Ñ # Ð Ñ Ð Ñ Ð Ñ
`IÐ Ñ `IÐ Ñ

` `
” •� C C

?C
3 1 ,2

@ œ @2#" 2

� Î # ß
`j Ð@ l ß Ñ ` j Ð@ l ß Ñ `j Ð@ l ß Ñ

`@ `@ `@
,

" # " # " #” • ” Œ  •�� �� ��
3œ" 4œ" 3œ" 4œ" 3œ" 4œ"

R R R8 8 8 #- 2 2 2 # - 2 2 2 - 2 2 2
34 34 34

#

3 3 3

(6)

where

G # G # #
#

#
" " 3

3 3œ"

3

R
3

X

? 3
�" 2Ð Ñ œ Ð Ñ œ Z Ð � Ð ÑÑß

` Ð Ñ

`
� � 

:
? :

3
(7)

and

G " G " "
"

# # 3 3

3 3œ"

3

R
3
X

C 3
�" 2Ð Ñ œ Ð Ñ œ Z H3+1Ð" � ÑÐ � IÐ Ð ÑÑÑ

`IÐ Ñ

`
  . (8)� � C

? C C
3

See Appendix 2.1 and 2.2 for the details of the estimating functions and   Note that the estimatingG G" #Þ

functions for  and  are of the GEE form (as in a standard ES algorithm) whereas that for the  is from a# " @

complete data pseudo-likelihood.  Further, the CMP distribution does not fall under an exponential

dispersion family for changing , and consequently we cannot apply the GEE methodology to estimate .@ @
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Also note that a step-size parameter  is introduced in the updating scheme as , compared with the classical

Newton-Raphson method so that the algorithm converges slowly and steadily. The iterative algorithm stops

when the maximum componentwise difference of the estimates between two successive iterations falls

below a threshold .%

 zero-inflation and the count parts The working variance-covariance matrices for the are specified

as Z œ E VÐ ÑE Z œ H VÐ Ñ H Þ E œ E Ð Ð ÑÑ œ Z +<Ð Ñ œ? C 3 3 3 33 3 3 3
"Î# "Î# "Î# "Î#

3 3
$ 3 #and    , respectively Here  : ?

H3+1Ð Ð" � ÑÑ ß H œ H ÐÐIÐ l ß @ÑÑ œ H3+1ÐZ +<Ð ÑÑ VÐ Ñ VÐ Ñ: : C C3 3 3 3 33 " $ 3 ,  and and are working correlation

matrices.

 For estimating the correlation coefficients,  and ,  the GEE formulations can be used; the$ 3

corresponding estimating equations are given by (see Appendice 2.3 and 2.4 for details)

G $ 3 $
3 $

$
$ 3

3œ"

R
3

X
�"
3 3Ð Ñ œ [ ÐY � Ð ÑÑ œ !

` Ð Ñ

`
� #

#
#

# , (9)

G 3 3 3
3 3

3
% 3 3

3œ"

R
3

X
�"
3 3Ð Ñ œ [ L ÐY � Ð ÑÑ œ !

` Ð Ñ

`
� "

" " "
" , (10)

where  and are working variance covariance matrices for the zero-degenerating and the count (i.e.,[ [# "3 3

CMP) distributions, respectively.  Note that all the estimated parameters are updated iteratively as explained

before. We are sometimes suppressing the index for notational simplicity.2

2.1.2 The Maximum Pseudo-Likelihood (MPL)

 Estimators from the MPL method are obtained maximizing the  log-pseudo-likelihoodby observed

function,

jÐ ß ß @à C Ñ œ MÐC œ !Ñ Ò:Ð Ñ # Ö" � :Ð Ñ×Î Ð ß @ÑÓ" # # #34 34 34

3œ" 4œ"

R 8

34��3

log ^ Ð Ñ- "34

# MÐC   "ÑÒ Ö" � :Ð Ñ��
3œ" 4œ"

R 8

34 34

3

log # × # ÐC Ð Ñ× � @ C xÑ34 34 34log log(Ö- "

� ^ Ð ÑlogÖ Ð ß @ÑÑ×Ó- "34 , (11)
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with respect to  associated with covariates,  and X, and the dispersion parameter The above log-" #ß \ @Þ" #  

pseudo-likelihood is constructed under the independence assumption; so, an adjusted variance method is

used to account for the dependency within clusters. The adjusted variance proposed in this project is based

on the log-pseudo-likelihood-based sandwich variance.

2.1.3 Variance Estimations

 We investigate two different variance estimation methods:  a sandwich-variance based on the large

sample approximation and one using a nonparametric bootstrap at the cluster level. Large sample sandwich

variances are calculated both for the MPL estimators and the estimators obtained from the MES algorithm.

The typical sandwich covariance matrix  is of the form .  The matrices and for the MPLF QF F Q�" X�"

method for independent data are given by

F œ IF F œ �s s

!

! !

!

MPL MPL MPL, with and   (12)

Î ÑÐ ÓÐ Ó
Ï Ò

` j ` j
` ` ` `@

` j
` `

` j ` j
`@` `@ : ‡:

# #

X

# -

X

# #

X #

" " "

# #

"
" #

Q œ I œ IMPL  , (13)

Î ÑÎ Ñ Î ÑÎ ÑÐ ÓÐ Ó Ð ÓÐ ÓÐ ÓÐ Ó Ð ÓÐ Ó
Ï ÒÏ Ò Ï ÒÏ Ò

��
`j `j
` `
`j `j
` `
`j `j
`@ `@

X

3œ" 4œ"

R 8

`j `j

` `
`j `j

` `
`j `j

`@ `@

X

" "

# #

" "

# #

3

34 34

34 34

34 34

where is the observed log-pseudo-likelihood function in (11)j : :ß " # and are the numbers of covariates used

for the count part and the zero part, respectively (see Appendix 2.5 for details). However, the equation (13)

does not account for dependence within a cluster so an adjusted sandwich covariance matrix is applied inà

the complete log-pseudo-likelihood function. The adjusted sandwich covariance matrix  for the MPL

estimators is obtained in the form of  using the independence of the clusters whereF Q Fs s s
MPL MPL MPL
�" ‡ X�"

Q œs
MPL
‡

3œ"

R

`j `j
` `
`j `j
` `
`j `j
`@ `@

X

�Î ÑÎ ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï ÒÏ Ò

3 3

3 3

3 3

" "

# #
.

 The sandwich covariance matrix for obtained from the MES algorithm is ) " #s sœ Ð ß @Ñs sMES
X X X,   in

the form of where the matrices  and  are defined in AppendixZ +< œ F Q F ß F QŠ ‹)sMES MES MES MES MESMES
�" X �"



11

1.6.  We note that it is not possible to estimate  based on the model assumptions since we do notFMES

specify the joint likelihood of the clustered observations. Therefore, using a bootstrap based covariance

matrix is a natural option in this case. Of course, bootstrap could be used for obtaining the standard errors

for the MPL estimators as well.

 We employ a cluster bootstrap technique (Field and Welsh, 2007) to perform the resampling since

the clusters are independent and the primary sampling units. This way, the intra-cluster correlation will be

preserved for the resampled data. Thus, each bootstrap sample is generated by resampling at the cluster

level with replacement. Mathematically, let  be a random sample of indices drawn with3 ß âß 3", R,
‡ ‡

replacement from for Then the  bootstrap dataset is given by ,Ö"ß âß R×ß " Ÿ , Ÿ FÞ , Ð C ß\th ‡ ‡
", ß","

\ Ñßâß ÐC ß\ \ Ñß C œ C ß\ œ \ \ œ \ Þ‡ ‡ ‡ ‡ ‡ ‡ ‡
ß", R, ßR, ßR, 4, ß4, ß4,3 ß3 ß3# " # " #" #, where ,  The bootstrap standard‡ ‡ ‡

4, 4, 4,

errors based on  bootstrap resamples are calculated asF

SEBSÐ Ñ œ .3+1 Ð � ÑÐ � Ñ ßs s s"

F
s s ) ) ) ) )

ÍÍÍÌ � š ›
,œ"

F
‡ ‡

, ,

‡ ‡
X

where  is the vector of estimates obtained by either the MPL method or the MES algorithm from the )s ,
‡

,
>2

bootstrap sample and  is the mean of the  bootstrap estimates.)s F
‡

2.2  Applications

This section introduces two different count datasets that include both zero inflation and clustering

characteristics. The first dataset is obtained from the Iowa Fluoride Study  that serves as(Levy et al., 2003)

an example of the overdispersion phenomenon; the second illustrative dataset is taken from an NGS assay

on maze hybrids and provides an example of underdispersion in count data.

2.2.1 An application for the Iowa Fluoride Study (IFS)

 We apply our marginal regression model to analyze a dataset on dental caries from the Iowa

Fluoride Study (Levy et al., 2003). As mentioned before, this dataset possesses the characteristics of zero-

inflation, overdispersion and clustered counts. IFS was a longitudinal study of Iowa children who were
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recruited at age 5 (http://www.dentistry.uiowa.edu/preventive-fluoride-study). For this illustration, we

looked at the data at the first follow-up when they were about nine years of age.

 The response is the caries experience score (CES) that is obtained by summing the scores of

individual dental surface scores for each tooth (scored 0, 1 or 2 depending on the caries severity).   Eight

potential risk/protective factors (covariates) are available in Table 2.1.

Altogether, 464 children are included in our analysis.

 We treat the outcomes (i.e., CES) on teeth belonging to the same child to be clustered. It is likely

that they will be correlated due to shared genetic and environmental factors. The cluster size varies between

16 and 24. Overall, there are 10,838 observations on the CES. A preliminary inspection  of the CES values

reveals that zero-inflation is a concern for this dataset (Figure 2.1).

 We fit a clustered ZICMP model to these data where the parameters are estimated using both the

MPL and MES methods. The ZIP estimates obtained from the R package ‘ ’ are used as the startingpscl

values in the MES algorithm. The standard errors of the MPL estimators are calculated by using the

adjusted sandwich variance method mentioned before. For the standard errors of MES estimators, the

bootstrap scheme (outlined in Section 2.1) is used with bootstrap size F œ &!!Þ Finally, p-values for each

of the potential risk/protective factors are calculated using a large sample Wald test.

 Before we describe the significance of the risk/protective factors, we want to note that  @s turned

out to be about 0.6 for both the MPL and MES methodologies (Table 2.2), indicating that the data are

somewhat overdispersed. Because , it is important to test whether this apparent overdispersive pattern@ � "s

is statistically significant. The observed absolute -statistic corresponding to the MES estimator,Z

l@ � "lÎ @+<Ð@Ñ œ � " Î!Þ ¸ D ¸s sÈè |0.5975 | 1362 2.96 is larger than 1.96, indicating statistical!Þ!#&

significance at the commonly applied 5% level. A similar conclusion is reached from  as well.@sMPL

Therefore, the ZICMP model is recommended over the simpler ZIP model for analyzing this dataset.

Furthermore, we also compare the ZICMP model with the ZIP model with adjusted sandwich variance

accounting for the cluster dependence (Table 2.2).

 Based on our fitted ZICMP model and the corresponding -values (Table 2.2), it turns out that:

AUCmhF5_9yrs, AUCSodaOz5_9yrs, ToothBrushingFeq.Per_DayAvg and have statistically significant
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effects ( on the excessive zero part for 9-year-old children p-values are all less than 0.01) data for both the

MPL and MES methodologies. According to the signs of the coefficients of these model terms,  frequent

tooth brushing and greater daily fluoride intake are protective against the development of caries, whereas

soda pop intake is a risk factor for the same.  HomeFluorideppm.Avg is the one which is a moderately

significant factor for both the count part and the excessive zero part just above 5% level  with the MPLÐ Ñ

method; however, the message is mixed.  The result for the count part makes clinical sense and indicates

that the presence of fluoride in tap water might reduce the severity of caries. Also noteworthy is that the

data from the same mouth exhibited low correlation ( 27 for the count part and for the3 $s ¸ !Þ ß ¸ !Þ""ßs

excessive zero part).

 The standard ZIP (zero-inflated Poisson) model, which operates under the independence

assumption, In addition yields a different set of significant factors for both count and excessive zero parts. 

to the three significant factors based on our marginal ZICMP model, Gender(Male=1),

FluorideTreatmentPast6monthAvg, and HomeFluorideppm.Avg have significant effects in the count part ( :-

values < 0.01). Thus, overall, the significance results from the simpler ZIP model appear to be a bit too

optimistic. This may be due, in part, to the fact that the ZIP analysis did not account for (positive)

correlations within the cluster members and over-dispersion of the data. This leads to the consequence that

the variance of the covariate effects are underestimated, leading to an inflated -statistic (and low -value).^ :

On the other hand, the ZIP model with the adjusted sandwich variance obtained using a similar formula as

(14) identifies the same set of significant factors as the ZICMP model (perhaps with the exception of

ToothBrushingFeq.Per_DayAvg which is borderline significant under the MES method), . This consequence

is natural because the ZIP with the adjusted sandwich variance reflects the dependency of data. However,

dispersion characteristics cannot be captured by a ZIP model even with the adjusted sandwich variance and

may lead to biased inference. Indeed we verify this to be the case in a simulation study in the next section.

 It is perhaps worth mentioning that the CES values were all less than or equal to 10 because there

were five surfaces for each tooth. Thus, use of a truncated ZICMP, say, may be more appropriate. However,

we have calculated the probability of a response  exceeding 10 under the fitted model and found it to beC

too small to make a practical difference in this analysis.
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2.2.2 An application to maize hybrids data

 We also apply our marginal ZICMP methods to a next generation sequencing (NGS) dataset to

demonstrate a case of zero inflated, clustered count data, with underdispersion. This dataset emerges from a

maze hybrids experiment (Paschold et. al, 2014). A complete analysis of this dataset from a biological

standpoint is not intended here which consists of 39,656 gene IDs with four different genotypes (B73,

B73 Mo17, Mo17 B73 and Mo17), four different tissues of each experimental unit (in this case, a‚ ‚

certain genotype of a maze) and four biological replications. Since four tissues are harvested from the same

root, there could exist some correlation among tissues belonging to the corresponding root. Therefore, this

data is clustered. Out of all gene IDs, “GRMZM2G042361” is selected for an providing an illustrative

example of zero-inflation with underdispersion. For this specific gene ID, we have 64 observations (read

counts) including 37 zeros, 23 ones, 3 twos and 1 three.

 Both the MPL and MES methods are applied to fit a marginal ZICMP model to the data. Since

differences in total numbers of read counts over genes exist across biological sample units or different

lanes, we need to account for this additional characteristic of NGS data in our model. Hence, we include the

total read counts as an offset term into our regression model for a normalization across the biological

samples. Therefore, our count part link function is modified as genotype offset691 œ # 691Ð ÑÞ-  The

number of clusters is not deemed to be large enough for us to use the normal based confidence interval

calculations. Instead, we report the point estimates along with a first order bootstrap confidence interval

using the cluster bootstrap scheme described in the previous section with .F œ "!!

 The dispersion estimates 2  for both methods (Table 2.3) and indicate that the expression data@ ¸s

for GRMZM2G042361 is significantly underdispersed since the bootstrap  confidence intervals do not

include the value 1. All the coefficients for genotype effects are similar in both the MPL and MES methods.

Only the Mo17 genotype has a significant effect on this specific gene ID for the count part since the

corresponding bootstrap confidence interval excludes zero for both MPL and MES confidence intervals.

Note that, for a full scale analysis of this dataset, additional considerations such as multiple hypotheses

corrections need to be taken into account.
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2.3 Simulation Studies

We perform two different sets of simulations to study the finite sample performance of our methodology.

The first simulation study is guided by the dental data analyzed in the previous section. Here we study the

bias and variance of our MPL and MES estimators as well as the performance of the adjusted sandwich

based variance estimator and the bootstrap based variance estimator, respectively. Performances of the

estimators based on ZIP model and both variance estimators are also included for comparison.  The second

simulation study is guided by a dataset on airfreight breakage which has only one covariate; however, the

covariate is a subject level (rather than cluster level) covariate. In addition, we are able to study the effect of

increasing the number of clusters on the performance of these estimators.

2.3.1 Simulation guided by the dental data

 The CES dataset of the nine-year-old children from the Iowa Fluoride Study (Levy et al., 2003) is

described in detail in the previous section, which is also used for application of our marginal ZICMP model.

The present large simulation study is guided by that dataset.  We generate the clustered CES scores using a

correlated ZICMP regression model with four cluster level covariates for both parts of the model. These

covariates were the significant factors (based on results from Section 3) for the zero part: AUCmhF5_9yrs,

AUCSodaOz5_9yrs  and ToothBrushingFeq.Per_DayAvg except HomeFluorideppmAvg which was 

borderline significant for both the count and the zero parts based on the MPL analysis. Noisy versions of

these covariate vectors resampled from the original dataset were used to generate the CES scores using the

subject specific parameters through the links explained in Section 2.  We use parameter values

" #œ � � � Ñ œ � �(1.00,0.01, 0.01, 0.13, 0.16  for the count part, (2.00, 0.70, 0.07, 0.56, 0.30) for the

zero part and 0.6.  These are close to both MPL and MES estimates obtained for the dental data in@ œ

Section 3.

 In order to keep the computational burden in check, he total number of clusters, , is taken to bet R

200 and a constant cluster size of 15 is used for all the clusters. That is,  =  is a 15 5 matrix8 œ \ \ ‚3 3ß 3ß" #

including an intercept term for each of the count and zero parts.  Following Kong et al. (2014), correlated

Bernoulli variables to generate the zero values are simulated using the Cholesky decomposition of a
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compound symmetric correlation matrix with a common correlation coefficient , whereas the correlated$
µ

count (CMP) data are generated by the inverse CDF transformation technique starting with a multivariate

normal distribution with zero mean and a compound symmetric correlation matrix with a common

correlation .  We consider both low (  ) and high (  ) intra-cluster correlation3 3 $ 3 $µ µ µœ œ !Þ# œ œ !Þ)
µ µ

cases.

 For each setting, we create 100 datasets, calculate the MPL and MES estimates for each dataset,

and obtain the empirical bias and  standard error for each parameter estimator. The adjusted sandwich

variance estimates are calculated for the MPL method and the variance estimates for the MES estimators are

obtained through the bootstrap scheme (Field and Welsh, 2007) based on 100 bootstrap resamples as

detailed in Section 2. ZIP estimates with their asymptotic variance and the adjusted sandwich variance  

estimates are also obtained for each Monte Carlo dataset by applying the R package and using an:=-6 

analogous adjusted sandwich variance formula as (14), respectively.

  Estimators obtained from the ZIP model have larger biases than both the MPL and MES

estimators of the ZICMP model (Table 1.4). This is more notable in high intra-cluster correlation case. The

bias for the high intra-correlation case is larger for almost all estimators compared to the low intra-cluster

case in both the ZICMP and ZIP models, as expected.

 T  are accompanied by Hessian-based standard errors,he estimators based on the simpler ZIP model

SE (pscl), obtained by the zeroinfl  function in pscl R package. For the low correlation case, these are not‘ ’

too different from the true standard errors for both count and zero parts. However, in the high intra-cluster

correlation case, are considerably smaller than the true ones. This impliesZIP standard errors (SE (pscl)) 

that the Hessian-based standard errors are deflated which leads to a more liberal interpretation of p-values.

This happens because the ZIP estimators do not account for the dependency of data in a cluster. This issue

turns out to be more apparent for the high intra-cluster correlation case. On the other hand, the adjusted

sandwich variance estimators tend to be closer to the true standard errors (SE). Thus, the inference from a

ZIP model along with an adjusted sandwich variance has an ability to account for the clustering

characteristic of data but still lacks the ability to handle data dispersion (under or over). This aspect may
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causes prominently larger bias, especially in the count part, which may lead to incorrect inference as shown

by the p-p) plots (Figure 2.2 and Figure 2.3).probability-probability (

 While the MES estimators yield smaller biases and true standard errors (SE) than MPL estimates

(Table 2.4), they need to use the bootstrap-based standard errors for variance estimates which consumes a

considerable amount of computational efforts.

 In order to study the performance of the resulting inferences of the effects of covariates/factors, we

created the p-p plots where we plot the targeted nominal coverage of a confidence interval in the horizontal

axis and the corresponding true coverage, as measured by the Monte Carlo simulation, in the vertical axis.

Thus, a diagonal p-p plot would indicate that the asymptotic normal approximation to various estimators is

accurate so we can have proper inferences using them. Overall, we noticed that all the p-p plots obtained

from both the MPL and MES methods are relatively close to the solid reference lines (see Figures 2.2 and

2.3) even for the high correlation case. However, none of the p-p plots based on the ZIP model with

standard variance estimates is very linear even in the low correlation case. As mentioned earlier, the

situation improves when we use the adjusted sandwich variance with the ZIP model. Nevertheless, the p-p

plots for most of the regression parameters still exhibit varying extent of under coverage. Thus, the ZIP

model may not be a satisfactory method for analyzing zero-inflated clustered data with overdispersion.

 

2.3.2 Simulation guided by the airfreight breakage data 

 In this simulation, we investigate the performance of our ZICMP marginal model with a subject

(observation) level covariate by building a simulation plan around the airfreight breakage data (Kutner,

Nachtsheim and Neter, 2003, page 35, Exercise 1.21) which consists of 10 observations and one scalar

covariate. A CMP model for this data was fit by Sellers and Shmueli (2010), which yielded parameter

estimates of and 18.  Going forward, we use the same parameter values for" œ Ð"$Þ)ß "Þ$Ñ @ œ &Þ()X

generating the count part of our data, with covariates  resampled from the set of scalar covariates in the\"

original dataset (to match the desired number of observations). The zero-inflated part is generated by a

regression model as described in Section 2, with the same set of covariates, i.e.,  but with the\ œ \ ß# "
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regression parameters  . For generating clustered ZICMP data, we need to generate# œ Ð#ß � $ÑX

correlated zeros, as well as, correlated counts.  These are generated as explained in the Section 4.1

 In this simulation, we consider three different combinations of number of clusters and the cluster

size, namely,  with with , and  with  For each condition,R œ $! 8 œ #!ß R œ &! 8 œ $! R œ (& 8 œ "&Þ

we generate data with low or high correlations within each cluster.Ð œ œ !Þ#Ñ Ð œ œ !Þ)Ñµ µµ µ
3 $ 3 $

Both MPL and MES methods are applied to each of the 100 simulated dataset and the results are averaged

to compute the empirical bias and variances of our estimators.  We also used the bootstrap to compute

variance estimates for both estimators in addition to the adjusted sandwich variance estimate for the MPL

estimator.  In order to keep the computational resources in check, we have used a modest number of

bootstrap resamples ( 100) which is still deemed to be sufficient for our purpose. As mentioned earlier, inœ

order to calculate bootstrap variance, we resample 100 times at the cluster level with replacement so that the

correlation structures are preserved within a cluster. Finally, bootstrap variance estimates are given by the

empirical variances of the parameter estimates obtained for the 100 bootstrap resamples. The results for

R œ &!  are provided in Table 1.5; results for the other two cases are placed in the Tables 2.6 and 2.7.

 Table 2.6 results show that, in the case of 30, the estimators obtained from both MPL andR œ

MES methods have comparable performances in terms of bias and standard errors for both low and high

intra-cluster correlation cases. For the low intra-cluster correlation case, bootstrap standard errors of both

MPL and MES estimators match the true standard errors fairly well. However, in the high correlation case,

the accuracy of the bootstrap standard errors worsens in both the MPL and the MES methods. Similarly, the

adjusted sandwich standard errors based on the MPL method are fairly close to the true standard errors in

the low intra-cluster correlation case, but not in the high correlation case. The bias terms for both MPL and

MES methods are similar to each other and the bias tends to be larger in the high intra-cluster correlation

case, as expected.

 When the number of clusters increases to 50 (Table 2.5), the variance results were again

comparable for the two sets of estimators in the case of both low and high intra-cluster correlations. In

addition, the bootstrap based standard errors for both sets of estimators are very close to the true standard

errors in both low and high intra-cluster correlation cases. Moreover, the adjusted sandwich standard errors
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based on the MPL method are quite comparable to the bootstrap standard errors in both low and high

correlation cases, even though the bootstrap estimates are slightly  closer to the true standard errors.

 When the number of clusters  further increases to 75 in Table 2.7, the performance improvesR

across the board. From the results based on all the three scenarios, both the MPL method and MES

algorithm have similar performances with respect to bias and standard errors. Note, however, that the MPL

method is generally easier to implement and comes with a closed form sandwich variance estimate. The

standard errors obtained using the bootstrap method appear to be reasonably close to the true SE as

obtained by the Monte Carlo method; the estimates obtained from the adjusted sandwich formula for the

MPL estimator can be adequate when the number of clusters is large.

 We would like to point out that the biases for the intercept terms from the count parts based on

these two simulations (Table 2.5 and Table 2.6) appear to be large compared to those for the other terms. In

fact, the true values of the intercept parameters are relatively large compared to the other regression

coefficients and consequently the relative biases of the intercept terms are comparable to those for the other

terms.

2.4 Discussion

The CMP model has received a great deal of attention in recent years in many fields of application. In 

particular, the article by (2005) advocating the use of CMP distributions has already beenShmueli et al. 

cited 165 times according to Google Scholar (accessed September 5, 2015). While Sellers and Shmueli

(2010) developed regression modeling for CMP distributed data, in this chapter we provide two significant

extensions of the CMP methodology for making frequentist inference, thereby making this applicable to a

greater variety of problems. Our version of the methodology can handle excessive zeros (zero-inflation) in

the data and also when the data are clustered so that not all observations are independent. In particular, we

have analyzed a dataset from the Iowa Fluoride Study using our model and show that more reliable

inference can be obtained using it than the .ZIP regression

 In this chapter, we have introduced two methods to fit a ZICMP marginal model with clustered

data that has over or under dispersion. In our simulations, the MES method produced slightly more efficient
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estimators through the use of  a working variance-covariance matrix like the GEE. However, the

corresponding variance estimates are computationally more expensive. The MPL method, on the other

hand,  a close form variance estimator. Like any other numerical optimization/estimating equationaffords

based methods, these methods may have convergence issues for certain datasets and changing the initial

values and the optimization method (e.g., use a different method rather than the default in the R function

‘ ’optim ) or the updating scheme (e.g., acceleration constant, ) may help the situation.Cesàro updating

 We also demonstrated that a cluster bootstrap method is capable of producing reasonable variance

estimates for both sets of estimators through two different simulations. With respect to this, it is important

for the reader to note that certain R packages that are directly able to calculate the sandwich variances may

not work as well as using bootstrap to estimate the variances. We also obtain a theoretical form of the

asymptotic variance covariance matrix of the MES estimators that explains the variability in the estimation

of the indicators of the zero part. However, it is not possible to obtain an empirical analogue of this for

general clustered data, since we do not know the exact joint likelihood of the cluster-correlated

observations. On the other hand, we can obtain a valid sandwich variance estimators for the MPL method

even for clustered data by utilizing the independence of the cluster sums of the corresponding estimating

functions.

 The two real data examples demonstrate the scope of applications of our methodology to diverse

fields and it is our hope that with time more applications to these models for clustered count data with zero

inflation and wide range of dispersion will be discovered.
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Table 2.1

The descriptions of eight different covariates including nondietary and dietary factors as a part of the dental

dataset from the Iowa Fluorida Study

Gender Gender of the child; Male is coded as 1.
DentalExamAge Age in years at the time of the dental examination
AUCmhF5_9yrs Daily 

Þ
Fluoride intake (mg) from water, other  

beverages and selected foods, ingested dentifrice  
and fluoride supplements.  Computed using AUC 
trapezoidal method using all available data within 
the time span 5 to 9 years.

AUCSodaOz5_9yrs Daily soda pop intake (oz.) computed using AUC 
trapezoidal method using all available data within the 
time span 5 to 9 years.

ToothBrushingFeq.Per_DayAvg Average of all tooth brushing frequencies reported 
for the period 5 to 9 years.

DentalVisitPast6monthAvg Proportion of times a dental visit was indicated with
each individual point assessing the previous 6 months.

FluorideTreatmentPast6monthAvg Average proportion of times a professional dental 
fluoride treatment was received with each individual 
point assessing the previous 6 months.

HomeFluorideppmAvg Average home tap water fluoride level for all 
returned questionnaires for the period 5 to 9 years.
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Table 2.2

Results for the data  of the nine-year-old children from the Iowa Fluoride Study

ZICMP (MPL)
Counts SE (Adj_SW) P-value Zero-inflation SE (Adj_SW) P-value

Intercept 1.2571    0.4708 0.008** 2.1507 0.7839 0.006**
Gender(Male=1) -0.0154  0.0545 0.777 0.1363 0.1235 0.270
DentalExamAge -0.0360  0.0394 0.361 -0.0791 0.0795 0.320
AUCmhF5_9yrs 0.0137 0.1087 0.900 0.7741 0.2127 <0.0001**
AUCSodaOz5_9yrs -0.0120 0.0116 0.302 -0.0721 0.0241 0.003**
ToothBrushingFeq.Per_DayAvg -0.1476 0.0612 0.016* 0.5607 0.1249 <0.0001**
Dental VisitPat6moth Avg 0.1161 0.1522 0.446 -0.5297 0.2785 0.057
FluorideTreatmentPast6monthAvg 0.1010 0.1264 0.424 -0.0186 0.1951 0.924
HomeFluorideppm.Avg -0.1551 0.0801 0.053 -0.3179 0.1710 0.063

0.6027 0.1060  
ZICMP (MES)

Counts SE (BS) P-value Zero-inflation SE (BS) P-v

@

alue
Intercept 0.9273 0.6253 0.138 2.2401 0.8463 0.008**
Gender(Male=1) -0.0134 0.0548 0.807 0.1408 0.1266 0.266
DentalExamAge -0.0081 0.0591 0.891 -0.0884 0.0902 0.327
AUCmhF5_9yrs 0.0135 0.1136 0.905 0.7041 0.2293 0.002**
AUCSodaOz5_9yrs -0.0098 0.0119 0.409 -0.0704 0.0245 0.004**
ToothBrushingFeq.Per_DayAvg -0.1225 0.0649 0.059 0.5664 0.1371 <0.0001**
Dental VisitPat6moth Avg -0.0604 0.1745 0.729 -0.4932 0.3537 0.163
FluorideTreatmentPast6monthAvg 0.0765 0.1228 0.533 -0.0643 0.2138 0.7636
HomeFluorideppm.Avg -0.1580 0.0854 0.064 -0.2877 0.1892 0.1283

0.5975 0.1362
ZIP
@

 
Counts SE (pscl, adj_sw) P-value(pscl, adj_sw) Zero-inflation SE (pscl, adj_sw) P-value(pscl, adj_sw)

Intercept 0.5737 0.2994, 0.4886 0.055, 0.2403 2.1560 0.4469, 0.7578 <0.0001**, 0.0044**
Gender(Male=1) -0.0174 0.0369, 0.0690 0.639, 0.8017 0.1540 0.0648, 0.1224 0.018*, 0.2084
DentalExamAge 0.0771 0.0296, 0.0480 0.009**, 0.1080 -0.0814 0.0451, 0.0773 0.071, 0.2928
AUCmhF5_9yrs -0.0185 0.0688, 0.1355 0.788, 0.8911 0.4701 0.1129, 0.1963 <0.0001**, 0.0166*
AUCSodaOz5_9yrs -0.0055 0.0075, 0.0146 0.466, 0.7073 -0.0560 0.0129, 0.0235 <0.0001**, 0.0114*
ToothBrushingFeq.Per_DayAvg -0.0745 0.0418, 0.0708 0.075,  0.2926 0.6070 0.0697, 0.1221 <0.0001**, < 0.0001**
Dental VisitPat6moth Avg 0.0962 0.1045, 0.1791 0.358, 0.5912 -0.2886 0.1678, 0.2862 0.085, 0.3133
FluorideTreatmentPast6monthAvg 0.0029 0.0677, 0.1397 0.967, 0.9837 -0.2490 0.1135, 0.2055 0.028*, 0.2256
HomeFluorideppm.Avg -0.1863 0.0477, 0.0961 <0.0001**, 0.0525 -0.1573 0.0768, 0.1503 0.041*, 0.2952

*:  0.01 p-value < 0.05, **: p-value < 0.01�

The result includes the  with adjusted sandwich standardMaximum Pseudo Likelihood (MPL) estimators

error (Adj_SW) and the Modified Expectation-Solution (MES)

estimators with a 500 size bootstrap standard error (BS). Results from a standard zero-inflated PoissonF œ

analysis with a Hessian-based standard error from the pscl

package (SE ( are also shown for comparison.pscl)) 
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Table 2.3

Results for the maze hybrids data:GRMZM2G042361 gene from the  Parameter estimates are reported along

with cluster bootstrap based (nonasymptotic) confidence intervals (BS_CI).

MPL
Count part BS_CI Zero part BS_CI

Intercept -16.6529 (-16.70, -15.93) -11.2535 (-24.46, -2.04)
B73 Mo17 0.5264 (-0.29, 0.71) -1.9622 (-18.‚ 75, 6.86)
Mo17 1.4999 (0.66, 3.24) -3.9165 (-10.27, 15.54)
Mo17 B73 0.6317 (-1.22, 2.97) -4.9595 (-14.67, 13.64)

2.1020 (1.86, 4.93)
MES

Coun

‚
@

t part BS_CI Zero part BS_CI
Intercept -16.6490 (-16.69, -15.93) -11.2748 (-24.46, -2.04)
B73 Mo17 0.5150 (-0.28, 0.71) -1.9740 (-18.75, 6.85‚ )
Mo17 1.5027 (0.65, 3.23) -3.8774 (-10.26, 15.53)
Mo17 B73 0.6273 (-1.22, 2.96) -4.9362 (-14.67, 13.63)

2.1056 (1.86, 4.93)
‚

@
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Table 2.4

Empirical bias and variance of our estimators in a simulation study guided by the dental data of nine-year-

old children from the Iowa Fluoride Study: The number of clusters is 200; the size of each cluster is 15.

Each entry is based on  Monte Carlo iterations. "!! The performances of ZIP estimators are also added.

MPL
Low intraclass correlation High intraclass correlation

True Bias SE SE (Adj_SW) Bias SE SE (Adj_SW)
Count Intercept .00 0.0645 0.2040 0.28" 35 0.3191 0.5564 0.5916
  part 0.01 -0.0006 1388 1274 0.0462 3889 0.2966

-0.01 - 011 0201 0167 -0.0076 0
AUCmhF5_9yrs
AUCSodaOz5_9yrs

!Þ !Þ !Þ
!Þ! !Þ !Þ !Þ 558 0.0430

-0.13 -0.0117 0920 0879 - 290 2439 2086
-0.16 0.0080 1000 0999 -0.0631

ToothBrushingFeq.Per_DayAvg
HomeFluorideppm.Avg

!Þ !Þ !Þ! !Þ !Þ
!Þ !Þ 0.3174 0.2453

0.60 0.0427 0.1030 0.1277 0.1892 0.2052 0.2461

High intraclass correlation
True Bias SE SE (Adj_SW)

@
 

Low intraclass correlation
Bias SE SE (Adj_SW)

 Zero Intercept 2.00 0.4117 0.8477
 part 0.70 0.0044 0.3068 0.3156 0.5244 0.6381

0.0533 0.4238 0.0274 0.7473
AUCmhF5_9yrs 0.0356
AUCSodaOz5_9yrs 0.0129
ToothBrushingFeq.Per_DayAvg -0.0157
Hom

-0.07 0.0091 0.0489 0.0433 0.0879 0.0902
0.56 -0.0417 0.2324 0.2235 0.4599 0.4592

eFluorideppm.Avg -0.30 -0.0006 0.2491 0.2317 0.0328 0.5282 0.4942                              

MES
Low intraclass correlation High intraclass correlation

True Bias SE SE (BS)       Bias SE SE (BS)         
Count .00 -0.0045 0Intercept " .0687 0.1016 -0.0068 0.1481 0.1593
  part 0.01 -0.0025 0 0487 0.0820 0.0133 1235 0.1282

-0.01 - 003 0.0074 0.0099
AUCmhF5_9yrs
AUCSodaOz5_9yrs

Þ !Þ
!Þ! -0.0019 0177 0.0182

-0.13 -0.0006 0353 0.0531 -0.0033 0717 0.0862
-0.16 0.0032 0359 0.0

!Þ
!Þ !Þ
!Þ

ToothBrushingFeq.Per_DayAvg
HomeFluorideppm.Avg 558 -0.0154 0.0934 0.0982

0.60 -0.0069 0.0539 0.0686 -0.0034 0.0640 0.0430

High intraclass correlation
True Bias S

@
 

Low intraclass correlation
E SE (BS) Bias SE SE (BS)

 Zero 2.00 0.1623 0.3664
 part 0.70 -0.0046 0.1061 0.1182 0.2075 0

Intercept 0.0240 0.1537 0.0115 0.3154
0.0048AUCmhF5_9yrs .2734

-0.07 0.0027 0.0161 0.0158 0.0335 0.0358
0.56 -0.0140 0.0820 0.0816 0.1786 0.19

AUCSodaOz5_9yrs
ToothBrushingFeq.Per_DayAvg

0.0072
-0.0052 13

-0.30 -0.0026 0.0767 0.0877 0.0176 0.1798 0.2022                                   HomeFluorideppm.Avg

ZIP
Low intraclass correlation  High intraclass correlation

True Bias SE SE ( , Adj_SW) Bias SE SE ( , Adj_SW)
Count .00 0.

pscl pscl
Intercept " 7203 0.2361 0.1665, 0.2038 0.7002 0.5395 0.1922, 0.4104

  part 0.01 -0.0063 0 1782 0.1374, 0.1646 0.0721 4532 0.1597, 0.3348AUCmhF5_9yrs
AUC

Þ !Þ
SodaOz5_9yrs

ToothBrushingFeq.Per_DayAvg
-0.01 - 044 0.0272 0.0182, 0.0215 -0.0102 0654 0.0231, 0.0484
-0.13 -0.0566 1253 0.0919, 0.11

!Þ! !Þ
!Þ 23 -0.0620 2790 0.1067, 0.2312

-0.16 -0.0418 1372 0.1038, 0.1265 -0.1092 0.3700 0.1249, 0.2710
!Þ

!ÞHomeFluorideppm.Avg
 

Low intraclass correlation

0.0596 0.4234 0

High intraclass correlation
True Bias SE SE ( , Adj_SW) Bias SE SE ( , Adj_SW)

 Zero 2.00 0.3117, 0.4086
pscl pscl

Intercept .0372 0.7874
0.0335

0.3220, 0.8389
 part 0.70 -0.0069 0.3026 0.2446, 0.3122 0.5423 0.2532, 0.6292

-0.07 0.0114 0.0
AUCmhF5_9yrs
AUCSodaOz5_9yrs 490 0.0333, 0.0429 0.0880 0.0354, 0.0882

0.56 -0.0258 0.2333 0.1671, 0.2219 0.4678 0.1733, 0.4534
0.0135
-0.0047ToothBrushingFeq.Per_DayAvg

HomeFluorideppm.Avg -0.30 0.0174 0.2469 0.1801, 0.2288 0.0388 0.5456 0.1957, 0.4911

SE: Monte Carlo; SE (BS): bootstrap estimated standard error, SE (Adj_SW): square root of adjusted
sandwich variance estimate,
SE (pscl): standard errors obtained from the Hessian matrix.
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Table 2.5

Empirical bias and variance of our ZICMP estimators in a simulation study guided by the airfreight

breakage data : The number of clusters is 50; the size of each cluster is 30. Each entry is based on "!!

Monte Carlo iterations.

MPL
Low intraclass correlation High intraclass correlation

True Bias SE SE (BS) SE (Adj_SW) Bias SE SE (BS) SE (Adj_SW)
2484 0.8425 0."! "$Þ) !Þ 8341 8144 9945 1666 2.2882 576
260 0847 0.0816 797 965 088 0.2173 39

0.0130 703 0.1727 2089 691 803 0.

!Þ !Þ #Þ #Þ#
"Þ$ !Þ! !Þ !Þ! !Þ! !Þ# !Þ#"
# !Þ" !Þ !Þ! !Þ$

"

#
"

! 3469 4054
- -0.0384 538 0.1622 1918 - 726 309 0.3358 3788

1040 3490 0.3467 384 4152 0.9048 0.9540 403

MES

!Þ
$ !Þ" !Þ !Þ! !Þ$ !Þ

@ &Þ()") !Þ !Þ !Þ$ !Þ !Þ*
#"

Low intraclass correlation

0.2498 0.8430 0.8419 0.9978 2.1712 2.1816

High intraclass correlation
True Bias SE SE (BS) Bias SE SE (BS)
13.8
1.3 0.02

"

"
!

" 54 0.0848 0.0838 0.0952 0.2069 0.3223
2 0.0151 0.1704 0.1702 0.0732 0.3910 0.4453
-3 -0.0381 0.1534 0.1626 -0.0763 0.3356 0.3394
5.7818 0.1040 0.

#

#
!

"

@ 3491 0.3493 0.3937 0.9372 0.9446

SE: Monte Carlo; SE (BS): bootstrap estimated standard error, SE (Adj_SW): square root of adjusted
sandwich variance estimate, SE (pscl): standard errors obtained from the Hessian matrix.
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Table 2.6

Empirical bias and variance of our ZICMP estimators in a simulation study guided by the

airfreight breakage data: The number of clusters is 30; the size of each cluster is 20. Each entry is based on

"!!  Monte Carlo iterations.

MPL
Low intraclass correlation High intraclass correlation

True Bias SE SE (BS) SE (Adj_SW) Bias SE SE (BS) SE (Adj_SW)
0.2368 2988 1."! "$Þ) "Þ 2472 1.2059 1.3290 3.4226 2.8328 8935
0.0236 388 0.1240 1200 1225 3239 0.2696 0.2741
- 008 2553 0.2509 3063 485 975 0

#Þ
"Þ$ !Þ" !Þ !Þ !Þ
# !Þ! !Þ !Þ !Þ! !Þ$

"

#
"

! .6196 5227
- -0.0174 2497 0.2428 2825 - 763 3960 0.6763 4995

1004 5514 0.5201 5031 5567 4247 1.1796 1.2053

MES

!Þ
$ !Þ !Þ !Þ! !Þ !Þ

@ &Þ()") !Þ !Þ !Þ !Þ "Þ
#"

Low intraclass correlation

0.2383 1.3009 1.2592 1.3175 3.4271

High intraclass correlation
True Bias SE SE (BS) Bias SE SE (BS)
13.8 2.3657
1.3 0.0

"

"
!

" 230 0.1376 0.1395 0.3217 0.4115
2 0.0062 0.2553 0.2512 0.4229 0.7440
-3 -0.0141 0.2546 0.2397 0.3932 0.4364
5.7818 0.1005 0

0.1232
0.0587
-0.1044

#

#
!

"

@ .5515 0.5338 1.4188 0.99350.5533

SE: Monte Carlo based empirical standard error; SE (BS): bootstrap estimated standard error, SE
(Adj_SW): square root of adjusted sandwich variance estimate.
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Table 2.7

Empirical bias and variance of our ZICMP estimators in a simulation study guided by the

airfreight breakage data: The number of clusters is 75; the size of each cluster is 15. Each entry is based on

"!!  Monte Carlo iterations.

MPL
Low intraclass correlation High intraclass correlation

True Bias SE SE (BS) SE (Adj_SW) Bias SE SE (BS) SE (Adj_SW)
0.0991 0.9378 0."! "$Þ) 8927 0.8666 0.1844 1.8638 1.9151 1.8809
0.0105 0.0827 0.0874 0.0855 0.0177 0.1773 0.1799 0.1776
0.0046 0.1683 0.1713 0.2094 0.0448 0.2876 0.

"

#
"

!

"Þ$
# 2818 0.3433
- -0.0223 0.1895 0.1769 0.2089 -0.0435 0.3031 0.2834 0.3359

0.0432 0.3874 0.3710 0.3608 0.0774 0.7797 0.7960 0.7827

MES
Low in

#" $
@ &Þ()")

traclass correlation High intraclass correlation
True Bias SE SE (BS) Bias SE SE (BS)
13.8
1.3 1

"

"
!

"

0.1004 0.9380 0.8607 0.19 1.86 1. 956*$ '$ (
!Þ! 00 0.0821 0.0860 0.01 0.178 0. 519

2 0.0072 0.1679 0.1676 0.0382 0.260 0.2848
-3 -0.0233 0.1891 0.1731 -0.0405 0.2927 0.2826
5.7818 0.0433 0.

'! $ #
%

@

#

#
!

"

3874 0.3587 0.082 0.78 0. 761& ($ (

SE: Monte Carlo based empirical standard error; SE (BS): bootstrap estimated standard error, SE
(Adj_SW): square root of adjusted sandwich variance estimate.
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Figure 2.1. Summary plots of  from the Iowa Fluoride Study:the data  of the nine-year-old children

Frequency histogram of caries experience scores (CES) summarized over all teeth and children in our

sample (left panel), and the frequency histogram of CES excluding zero counts summarized over all teeth

and children in our sample (right panel).
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(a) Coverage probabilities based on ZICMP/MPL (b) Coverage probabilities based on ZICMP/MES

(c) Coverage probabilities based on ZI
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P (d) Coverage probabilities based on ZIP with Adj_SW

Figure 2.2. Empirical coverage of the confidence intervals in a simulation study guided by the dental data of

nine-year-old children from the Iowa Fluoride Study. The  plots are for 200 and 15 whenp-p R œ 8 œ

intra-cluster correlation is high. Three sets of plots are provided for the regression parameters

corresponding to the four covariates: ZICMP/MPL (upper left panel), ZICMP/MES (upper right panel), ZIP

(bottom left panel) and ZIP with Adj_SW (bottom right panel).
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(a) Coverage probabilities based on ZICMP/MPL (b) Coverage probabilities based on ZICMP/MES

(c) Coverage probabilities based on ZI
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P (d) Coverage probabilities based on ZIP with Adj_SW

Figure 2.3. Empirical coverage of the confidence intervals in a simulation study guided by the dental data of

nine-year-old children from the Iowa Fluoride Study. The  plots are for 200 and 15 whenp-p R œ 8 œ

intra-cluster correlation is low. Three sets of plots are provided for the regression parameters corresponding

to the four covariates: ZICMP/MPL (upper left panel), ZICMP/MES (upper right panel), ZIP (bottom left

panel) and ZIP with Adj_SW (bottom right panel).
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TECHNICAL DETAILS

Appendix 2.1: Estimating functions based on the MES algorithm for the zero degenerated part and the   

count part (CMP).

Equation ( ) is the estimating function of the zero part and below is given for the derivative term with(

respect to .#
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Appendix 2. : Estimating a dispersion parameter, , based on the MPL method for  a CMP distribution of .# @ C
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Appendix 2.3: Estimating a correlation coefficient, , based on the MES$

algorithm for zero-degenerated distribution of .?

Estimation of the common off-diagonal correlation coefficient  is carried out from Equation ( ) leading to   $ *
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Appendix 2.4: Estimating a correlation coefficient,  based on the MES algorithm for a CMP distribution3

of .C

Estimation of the common off-diagonal correlation coefficient  is carried out from Equation (10) leading3

to
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Appendix 2.5: (a modified/adjusted) Sandwich covariance matrix of  and " #sß @s s

based on the MPL method.

The partial derivatives of  with respect to ,  and  from  are given follows:j @" # Equations ( 2) and (13)"
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Appendix 2.6: A modified(adjusted) sandwich covariance matrix of  and  based on the MES algorithm." #s s

F F F" # # and  in the modified sandwich variance matrices are given . Here, accounts for variability inbelow

the ; see, e.g., Satten and Datta (2000).?3

F œ I

� Z H3+1Ð � Ñ ! �

! � Z

� Ð Ð ÑÑ �

"

3œ"

R

`IÐ Ñ `IÐ Ñ
` ` ` `@C

�"
3

4œ"

8
`

` Ð Ñ ` Ð Ñ
` `?

�"

`
`@ `#

X

4œ"

8
`

�
Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

�

�

C C

: :

3 3
X

3

3 # -
34

3 3
X

3

3 # -
34

" " "

# #
# #

" ?
j

j

0

0G " @#

Þ

F œ I

� Z H3+1Ð � � IÐ Ð ÑÑÑ

� Z Ð � Ð ÑÑ

� Ð � Ö � 691Ð xÑ # Î^Ð ß @Ñ

#

3œ"

R

`IÐ Ñ
` C

�"
3 3

` Ð Ñ
` ?

�"
3 3

3 3
=œ!

∞
691=x
Ð=xÑ

�
Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò�

C

:

3
X

3

3
X

3

=
3

@

"

#
#

" ? C C

? :

? C

3

3

ÑÐ

" Ñ

"

#

-
- ×

W Ð ß l œ ß ß @Ñ �

X

3 3 3

µ

? C ) " #

�
Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò�3œ"

R

`IÐ Ñ
` C

�"
3 3

` Ð Ñ
` ?

�"
3 3

3
=œ!

∞
691=x
Ð=xÑ

� Z H3+1Ð � IÐ � IÐ Ð ÑÑÑ

� Z ÐIÐ Ñ � Ð ÑÑ

� Ð � IÐ Ö � 691Ð xÑ # Î^Ð

C

:

3
X

3

3
X

3

=
3

@

"

#
#

" ? C C

? :

? C

3

3

ÑÑÐ

" ÑÑ

"

#

-
-3

X

3 3

µ

ß @Ñ×

W Ð l œ ß ß @ÑßC ) " #

where W Ð ß l œ ß ß @Ñ œ ß W Ð l œ ß ß @Ñ œ œ 6910Ð ß l Ñ.JÐ? ß ÞÞÞ3 3 3 3 3 3 3 3"

µ µ
`6910Ð ß l Ñ `6910Ð l Ñ

` `
X? C ? ? C) " # ) " # )

? C C3 3 3
X X

) )

) )
'

ß ? lC ß ÞÞÞ ß C Ñ œ38 3" 383 3 , and QMES

�
Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð ÓÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò�3œ"

R

`IÐ Ñ `IÐ Ñ
` `C C

�" �"
3 3 3

` Ð Ñ
` ?

�"
3 3

4œ"

8
`

`@
Ð ß ß@Ñs s s

C C

:

3 3
X X

3 3

3
X

3

3 -
34

" "

#
#

" #

Z H3+1Ð � ÑÐ � IÐ Ð ÑÑÑ Z

Z Ð � Ð ÑÑ

" ? C C

? :

"

#

j

º

H3+1Ð � ÑÐ � IÐ Ð ÑÑÑ

Z Ð � Ð ÑÑ Þ

" ? C C

? :

3 3 3

` Ð Ñ
` ?

�"
3 3

4œ"

8
`

`@

X

Ð ß ß@Ñs s s

"

#:3
X

3

3 -
34

#
#

" #

� j

º

Note that we use the final estimate of the in all of the above.?34



36

R-code
##################################################################################
# This r-code is a part of the IFS (Iowa Fluoride Study) simulation section in Chapter 2                         #
# This r-code describes MPL/MES estimates and adjusted SE for MPL estimates                                  #
# This r-code includes codes for Cardinal Research Clueter (CRC) server lines                                    #
##################################################################################

# CRC code
args <- commandArgs(trailingOnly = TRUE)
rho <- as.numeric(args[1])
seq <- as.numeric(args[2])

# Z function as a part of a pmf of a CMP distribution
Z<- function(xmat,b,v, max) {

  lambda <- exp(xmat%*%b)
   # Compute the terms used to sum for the (in)finite summation
       forans <- matrix(0,ncol=max+1,nrow=length(lambda))
   for (j in 1:max){
     temp <- matrix(0,ncol=j,nrow=length(lambda))
     for (i in 1:j){temp[,i] <- lambda/(i^c(v))}
     for (k in 1:length(lambda)){forans[k,j+1] <- prod(temp[k,])}
     }
   forans[,1] <- rep(1,length(lambda))

# Determine the (in)finite sum
   ans <- rowSums(forans)

return(ans)
}

eu_cmp <- function(xmat,zmat,beta,gamma,y,v,max) {
              eu <- matrix(0,nrow(y),1)
              p <- exp(zmat%*%gamma)/(1+exp(zmat%*%gamma))
              exp_u <- p/(p+(1-p)/Z(xmat,beta,v,max))
              for (i in 1:nrow(y)){
                   eu[i,] <- ifelse(y[i]==0,exp_u[i],0)
                   }
              return(eu) }

  RowbyRow<-function(A, b){  # b is a vector, A is a matrix
                temp <-A
                for (i in 1:length(A[,1]))
                    {temp[i,]<-A[i,]*b[i]}
                return(temp)
                }
 prod.b2 <- function(xmat, b, v,max) {
                  l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
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               for (i in 1:length(l)) {
                   for (k in 1: max) {
                         temp[i,k] <- k^2*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
               return(res)
                 }
 prod.b1 <- function(xmat, b, v,max) {
                  l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
               for (i in 1:length(l)) {
                   for (k in 1: max) {
                         temp[i,k] <- k*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
               return(res)
                 }
  prod.dlv1 <- function(xmat, b,v,max) {
               l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
               for (i in 1:length(l)) {
                   for (k in 1: max) {
                         temp[i,k] <- k*(log(factorial(k)))*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
               return(res)
                   }

   prod.v2 <- function(xmat, b,v,max) {
               l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
               for (i in 1:length(l)) {
                   for (k in 1: max) {
                         temp[i,k] <- (log(factorial(k)))^2*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
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               return(res)
                   }
    prod.v1 <- function(xmat, b,v,max) {
               l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
               for (i in 1:length(l)) {
                   for (k in 1: max) {
                         temp[i,k] <- (log(factorial(k)))*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
               return(res)
                   }
# variance of CMP
  var.w <- function(xmat,beta,v,max){

              temp1 <- prod.b2(xmat,beta,v,max)/Z(xmat,beta,v,max)
              temp2 <- prod.b1(xmat,beta,v,max)/Z(xmat,beta,v,max)
              temp <- temp1-temp2^2
              res <- diag(temp)
              return(res)
              }
# mean of CMP
 e.w <- function(xmat,beta,v,max){
             prod.b1(xmat,beta,v,max)/Z(xmat,beta,v,max)
             }
 # To estimate v, use loglikelihood based form
 dlvv<- function(xmat,zmat,b,g,y,v,max) {
                 p <- exp(zmat%*%g)/(1+exp(zmat%*%g))
                 yidx <- ifelse(y==0,1,0)
                 temp1 <- Z(xmat,b,v,max)^(-2)*prod.v1(xmat,b,v,max)*(1-p)
                 temp1_1 <- temp1/(p+(1-p)/Z(xmat,b,v,max))*yidx
                 temp2 <- -log(factorial(y))+(prod.v1(xmat, b,v,max)/Z(xmat,b,v,max))
                 temp2_1 <- (1-yidx)*temp2
                 res <- temp1_1+temp2_1
                 return(t(res))
                 }
var_gamma <- function(zmat,gamma) {
                    p <-  exp(zmat%*%gamma)/(1+exp(zmat%*%gamma))
                    return(diag(c(RowbyRow(p,1-p))))
                    }
  prod.bv <- function(xmat,b,v,max){
               l <- exp(xmat%*%b)
               smat <- matrix(0,length(l), max)
               for(i in 1:length(l)) {
                   for( j  in 1: max) {
                        smat[i,j] <- l[i]/j^v
                        }}
               temp <- matrix(NA, length(l),max)
               for (i in 1:length(l)) {



39

                   for (k in 1: max) {
                         temp[i,k] <- k*(log(factorial(k)))*prod(smat[i,1:k])
                         }
                         }
               res <- apply(temp, 1, sum)
               return(res)
                   }
 bv_inf <- function(xmat,zmat,b,g,y,v,max){
               uhat <- eu_cmp(xmat,zmat,b,g,y,v,max)
               wbv1 <- prod.bv(xmat, b,v, max)/Z(xmat,b,v,max)
               wbv2 <- (prod.b1(xmat,b,v,max)/Z(xmat,b,v,max))*(prod.v1(xmat, b,v,max)/Z(xmat, b,v,max))
               wbv <- wbv1-wbv2
               res <- t(xmat)%*% ((1-uhat)*wbv)
               return(res)
               }
  dlgamma <- function(xmat,zmat,b,g,y,v,max) {
                 p <- exp(zmat%*%g)/(1+exp(zmat%*%g))
                 temp1 <- p*(1-p)*(1-1/Z(xmat,b,v,max))/(p+(1-p)/Z(xmat,b,v,max))
                 temp1_2 <- RowbyRow(zmat,temp1)
                 temp2 <- RowbyRow(zmat,-p)
                 yidx <- ifelse(y==0,1,0)
                 y0 <- RowbyRow(temp1_2, yidx)
                 y1 <- RowbyRow(temp2, (1-yidx))
                 res <- y0+y1
                 return(t(res))
                 }
  dlbeta <- function(xmat,zmat,b,g,y,v,max) {
                 p <- exp(zmat%*%g)/(1+exp(zmat%*%g))
                 yidx <- ifelse(y==0,1,0)
                 temp1 <- y-prod.b1(xmat,b,v,max)/Z(xmat,b,v,max)
                 temp1_1 <- RowbyRow(xmat,temp1)
                 temp2 <- -(1-p)/Z(xmat,b,v,max)^2*prod.b1(xmat,b,v,max)
                 temp2_1 <- RowbyRow(xmat, temp2/(p+(1-p)/Z(xmat,b,v,max)))
                 y0 <- RowbyRow(temp2_1,yidx)
                 y1 <- RowbyRow(temp1_1, (1-yidx))
                 res <- y0+y1
                 return(t(res))
                 }
  # Adjusted Meat matrix for calculating adjusted sandwich variance for MPL estimates
  M_adj <- function(b,g,v,max) {
              res <- matrix(0,nrow(b)+nrow(g)+1,nrow(b)+nrow(g)+1)
              for ( i in 1:N ) {
                  x_ind <- as.matrix(allx[which(allx[,1]==i),-1])
                  z_ind <- x_ind
                  #z_ind <- matrix(1,nrow(x_ind),1)
                  y_ind <- ally[which(ally[,1]==i),-1]

                  temp1 <-
rbind(dlbeta(x_ind,z_ind,b,g,y_ind,v,max),dlgamma(x_ind,z_ind,b,g,y_ind,v,max),dlvv(x_ind,z_ind,b,g,y_i
nd,v,max))
                  temp2 <- apply(temp1,1,sum)
                  res <- res + temp2%*%t(temp2)

                       }
              return(res)
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              }

  # create a function for correlation coeff. for zero-inf. part
  corr_zero1 <- function(eu,p) {
                 uist <- NULL
                for(i in 1:(n-1)) {
                     for (j in (i+1):n) {
                           uist0  <- (eu[i,]-p[i,])*(eu[j,]-p[j,])/sqrt(p[i,]*(1-p[i,])*p[j,]*(1-p[j,] ))
                           uist <- rbind(uist0,uist)
                                 }
                              }
                return(sum(uist))
                  }
  corr_zero2 <- function(eu,p) {
                   std_u <- (eu-p)^2/(p*(1-p))
                   return(sum(std_u))
                   }
  # create a function for correlation coeff. for CMP part

   corr_cmp2 <- function(eu,beta0,v0) {
                   l <- e.w(xmat,beta0,v0,max)
                   res <- (1-eu)^2*(y-l)^2/as.matrix(diag(var.w(xmat,beta0,v0,max)))
                   return(sum(res))
                   }

  gencor.bi<-function(n, mu, delta)
                { X<-rnorm(n)
                R<-matrix(delta, nrow=n, ncol=n)
                diag(R)<-1

                X.cor<-X%*%chol(R)
                x.bi<-qbinom(p=pnorm(X.cor),size=1, prob=mu)
                return(x.bi)
                }
 # Peudo loglikelihood function for MPL etimates
 logL_cmp <- function(parm) {
            bhat <- as.matrix(parm[1:5])
            ghat <- as.matrix(parm[6:10])
            vhat <- as.matrix(parm[11])
            p <- exp(zmat%*%ghat)/(1+exp(zmat%*%ghat))
            l <- exp(xmat%*%bhat)
            yidx <- ifelse(y==0,1,0)
            l_0 <- log(p+(1-p)/Z(xmat,bhat,vhat,100))
            l_c <- log((1-p)*l^y/((factorial(y)^c(vhat))*Z(xmat,bhat,vhat,100)))
            lsum <- sum(yidx*l_0)+sum((1-yidx)*l_c)
            return(-lsum)
            }
library(MASS)
library(pscl)
library(matrixcalc)

n <- 15
delta <- rho
sigma_rho <- matrix(rho,n,n)+ diag(1-c(rho),n,n)
sigma_del <- matrix(delta,n,n)+ diag(1-c(delta),n,n)
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# calculate the derivative term of rho and delta
   dde1 <- NULL
        for( i in 2:(n-1)) {
              a1 <- matrix(c(NA,rep(1,n-i)),n-i+1,1)
              dde1 <- rbind(dde1, a1)
              }
        dde2 <- matrix(c(NA,rep(1,n-1)),n,1)
        ddel <- rbind(dde2,dde1,NA)

max <- 100
caries <- read.csv("/home/h0choo01/simcari_allzicmp/caries.csv", header=TRUE)
#caries <- read.csv("D:/caries.csv", header=TRUE)
N <- 200
x <- caries[,c(1,16,9:15)]

gamma <- matrix(c(2,0.7,-0.07,0.56,-0.3),5,1) # low proprortion of zero in each subject
beta <- matrix(c(1,0.01,-0.01,-0.13,-0.16),5,1)
v <- 0.6

seedi <- ifelse(rho==0.2,1880,521)
set.seed(seedi+seq)
     Nidx <- sample(unique(x$SID),N)
     x1 <- NULL
     for(i in 1:N){
        x2 <- x[which(x$SID==Nidx[i])[1:n],]
        x1 <- rbind(x1,x2)
      }
      xxx<- apply(x1[,c(4:6,9)],2,function(y) tapply(y,x1[,1], function(x)
unique(x)+round(rnorm(1,0,0.2),2)))
      xx <- matrix(apply(xxx, 2, function(x) rep(x, each=n)),n*N,4)

       onevec <- rep(1,nrow(xx))
       newx <- cbind(onevec,xx)
        allx <- data.frame(sub=as.matrix(rep(seq(1:N),each=n)),int=newx[,1], AUC=newx[,2],
soda=newx[,3],toothbrush=newx[,4],homefluoride=newx[,5])
        allz <- allx
        xmat <- as.matrix(allx[,-1])
        zmat <- xmat

        lambda <- exp(xmat%*%beta)

        p <- exp(zmat%*%gamma)/(1+exp(zmat%*%gamma))
        p_id <- data.frame(id=allz[,1],p=as.matrix(p))

       newy <- NULL
             for ( k in 1:N) {
                         z <- mvrnorm(1,rep(0,n),sigma_rho)
                         u <- pnorm(z)
                         tempx <-  as.matrix(allx[which(allx$sub==k),-1])
                         l <- exp(tempx%*%beta)
                         y1 <- matrix(NA, n,1)
                         for (i in 1:n){
                             y <- 0
                             zinv <- (1/Z(tempx,beta,v,max))[i]
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                             py <- zinv # p(y=0)=Z^-1
                             while( py < u[i]) {
                                  y <- y+1
                                  py <- py + (l[i]^y/(factorial(y))^v)*zinv
                                  }
                             y1[i] <- y
                             }
                         newy <- rbind(newy, y1)
                         }

       u <- NULL
       for (i in 1:N) {
           u <- rbind(u,matrix(gencor.bi(n,p_id[which(p_id$id==i),2],delta),n,1))
                   }
        w <- newy
        y <- matrix(NA, n*N,1)
        for (i in 1:(n*N)) {
           y[i,] <- ifelse(u[i]==0, w[i], 0) # zero-inflated data
            }
        ally <- cbind(as.matrix(rep(1:N,each=n)),y)   # index subjects for each data
        all_data <- data.frame(allx,y=ally[,2])
        all_data <- na.omit(all_data)

 mZIP <- zeroinfl(formula=y~AUC+soda+toothbrush+homefluoride, dist = "poisson", data=all_data)
 beta0 <- beta      # use true parameter values as initial values to obtain MPL/MES estimates
 gamma0 <- gamma
 v0 <- v
 mle_parm <- optim(c(beta0,gamma0,v0), logL_cmp,control=list(maxit=30000), hessian=TRUE)
 mpl_bhat <- as.matrix(mle_parm$par[1:5])
 mpl_ghat <- as.matrix(mle_parm$par[6:10])
 mpl_vhat <- mle_parm$par[11]

 adj_sw <-
solve(mle_parm$hessian)%*%M_adj(mpl_bhat,mpl_ghat,mpl_vhat,100)%*%solve(mle_parm$hessian)
 adj_swse <- sqrt(diag(adj_sw))

 ################# MES Algorithm #####################################################

 ddlv <- function(xmat,zmat,b,g,y,v,max){
                 uhat <- eu_cmp(xmat,zmat,b,g,y,v,max)
                 wv1 <- prod.v2(xmat, b,v,max)/Z(xmat,b,v,max)
                 wv2 <- (prod.v1(xmat, b,v,max)/Z(xmat,b,v,max))^2
                 temp1 <- wv2-wv1
                 res <- temp1*(1-uhat)
                 return(sum(res))
                 }
   dlvv<- function(xmat,zmat,b,g,y,v,max) {
                 p <- exp(zmat%*%g)/(1+exp(zmat%*%g))
                 uhat <- eu_cmp(xmat,zmat,b,g,y,v,max)
                 temp1 <- -log(factorial(y))+(prod.v1(xmat, b,v,max)/Z(xmat,b,v,max))
                 res <- (1-uhat)*temp1
                 return(sum(res))
                 }
   dpg <- function(zmat, gamma) {      # derivative term of gamma
            temp <- exp(zmat%*%gamma)
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            temp1 <- RowbyRow(zmat,temp)
            temp2 <- (1+temp)^2
            res <- RowbyRow(temp1,1/temp2)
            return(res)
            }
  dlb <- function(xmat,beta,v,max) {          # derivative term of beta
                 temp1 <- prod.b2(xmat,beta,v,max)/Z(xmat,beta,v,max)
                 temp2 <- prod.b1(xmat,beta,v,max)/Z(xmat,beta,v,max)
                 temp3 <- temp1-(temp2)^2
                 res <- RowbyRow(xmat, temp3)
                 return(res)
                 }
  dlv<- function(xmat, beta,v,max) {                 # derivative term of v
                 temp1 <- as.matrix(prod.dlv1(xmat,beta,v,max)/Z(xmat,beta,v,max))
                 temp2 <-
as.matrix(prod.b1(xmat,beta,v,max))*as.matrix(prod.v1(xmat,beta,v,max))/((Z(xmat,beta,v,max))^2)
                 res <- temp2-temp1
                 return(res)
                 }
 r <- 0.4     # tuning parameter for a modified Newton-Rapson algorithm
 delta0 <- 0.5
 rho0 <- 0.5
 all_ddg1 <- matrix(0, 5,5)
 all_geeg1 <- matrix(0,5,1)
 all_ddb1 <- matrix(0,5,5)
 all_geeb1 <- matrix(0,5,1)

# MES algorithm for clustered data

  N1 <- n*(n-1)/2*N
  nt <- n*N
  all_iter <- matrix(NA,13,100)
  for (j in 1: 100 ) {
       all_ddg <- matrix(0,nrow(gamma0),nrow(gamma0))
       all_geeg <- matrix(0,nrow(gamma0),1)
       all_ddb <- matrix(0,nrow(beta0),nrow(beta0))
       all_geeb <- matrix(0,nrow(beta0),1)
       all_del1 <- 0
       all_del2 <- 0
       all_rho1 <- 0
       all_rho2 <- 0
       N2 <- 0
       ntot <- 0
       for (k in 1:N) {
                xmat <- as.matrix(as.data.frame(split(allx,allx[,1])[k])[,-1])
                zmat <- xmat
                y <- as.matrix(matrix(unlist(split(ally,ally[,1])[k]),n,2)[,2])

                p0 <- exp(zmat%*%gamma0)/(1+exp(zmat%*%gamma0))

                eu0 <- eu_cmp(xmat,zmat,beta0,gamma0,y,v0,max)

                ntot1 <- sum((1-eu0)^2)
                ntot <- ntot+ntot1
                N20 <- as.vector(1-eu0)%*%t(as.vector(1-eu0))
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                N21 <- upper.triangle(N20)
                diag(N21) <- 0
                N22 <- sum(N21)
                N2 <- N2 + N22
                ew0 <- e.w(xmat,beta0,v0,max)
                cor_u <- matrix(delta0,n,n)+ diag(1-c(delta0),n,n)
                wu0 <- sqrt(var_gamma(zmat,gamma0))%*%cor_u%*%sqrt(var_gamma(zmat,gamma0))
                cor_y <- matrix(rho0,n,n)+ diag(1-c(rho0),n,n)
                wy0 <- sqrt(var.w(xmat,beta0,v0,max))%*%cor_y%*%sqrt(var.w(xmat,beta0,v0,max))

                # update gamma estimate
                temp_g <- t(dpg(zmat,gamma0))%*%solve(wu0)
                geeg <- as.matrix(apply(RowbyRow(t(temp_g),eu0-p0),2,sum))
               temp_g1 <- t(dpg(zmat,gamma0))%*%solve(wu0)%*%dpg(zmat,gamma0)+ geeg%*%t(geeg)

                all_ddg <- all_ddg + temp_g1 ## sum upto N for derivative of gee for gamma
                all_geeg <- all_geeg + geeg  ## sum upto N for gee for gamma

                # update delta estimate
                 all_del1 <- all_del1 + corr_zero1(eu0,p0)
                 all_del2 <- all_del2 + corr_zero2(eu0,p0)

                 # update beta estimate
                temp_b <- dlb(xmat,beta0,v0,max)
                temp_b1 <- t(temp_b)%*%solve(wy0)%*%diag(c(1-eu0))
                geeb <- as.matrix(apply(RowbyRow(t(temp_b1),(y-e.w(xmat,beta0,v0,max))),2,sum))
                temp_b2 <- t(temp_b)%*%solve(wy0)%*%diag(c(1-eu0))%*%temp_b + geeb%*%t(geeb)

                all_geeb <- all_geeb + geeb
                all_ddb <- all_ddb + temp_b2

                 # update rho estimate (cor.coefficient for y)
                 vary <- as.matrix(diag(var.w(xmat,beta0,v0,max)))
                 temp_rho <- cbind(ddel,vech((1-eu0)%*%t(1-eu0)),vech((y-e.w(xmat,beta0,v0,max))%*%t(y-
                                          e.w(xmat,beta0,v0,max))),vech(vary%*%t(vary)) )
                 temp_rho <- na.omit(temp_rho)
                 temp_rho1 <- temp_rho[,2]*temp_rho[,3]/sqrt(temp_rho[,4])

                 all_rho1 <- all_rho1 + sum(temp_rho1)
                 all_rho2 <- all_rho2 + corr_cmp2(eu0,beta0,v0)

                }

        all_xmat <- as.matrix(allx[,-1])
        all_zmat <- all_xmat
        all_ys <- as.matrix(ally[,2])
        v1 <- v0 -
r*sum(dlvv(all_xmat,all_zmat,beta0,gamma0,all_ys,v0,max))/(ddlv(all_xmat,all_zmat,beta0,gamma0,all_ys
,v0,max)+ sum(dlvv(all_xmat,all_zmat,beta0,gamma0,all_ys,v0,max))^2)

        ########## updating scheme #############
        if(j==1){ all_geeg1 <- all_geeg} else{ all_geeg1 <- ((j-1)*all_geeg1+all_geeg)/j }
        if(j==1){ all_ddg1 <- all_ddg} else{ all_ddg1 <- ((j-1)*all_ddg1+all_ddg)/j }
        if(j==1){ all_geeb1 <- all_geeb} else{ all_geeb1 <- ((j-1)*all_geeb1+all_geeb)/j }
        if(j==1){ all_ddb1 <- all_ddb} else{ all_ddb1 <- ((j-1)*all_ddb1+all_ddb)/j }
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        gnew0 <- gamma0 + r*solve(all_ddg1)%*%all_geeg1
        gnew <- (j*gamma0+gnew0)/(j+1)
        del_new <- (all_del1/N1)/(all_del2/nt)

        beta11 <- beta0 + r*solve(all_ddb1)%*%all_geeb1
        beta1 <- (j*beta0+beta11)/(j+1)
        rho_new <- (all_rho1/N2)/(all_rho2/ntot)
        vnew <- (j*v0+v1)/(j+1)

        all_iter[,j] <- matrix(c(j,beta1,gnew,vnew, max(abs(gnew-gamma0),abs(beta1-beta0),abs(vnew-
                                     v0))),length(c(beta,gamma,v))+2,1)
        if(max(abs(gnew-gamma0),abs(beta1-beta0),abs(vnew-v0)) <  0.01 | j==100) {
                             break
                             }
        gamma0 <- gnew
        beta0 <- beta1
        delta0 <- del_new
        rho0 <- rho_new
        v0 <- vnew
        cat(all_iter[,j],"\n")
                      }

 file.name <- paste("carisim_CorrectZ_avgiterT","_rho=delta=",rho,"_",seq,".RData", sep="")
 save.image(file.name)
 q()
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CHAPTER 3

ANALYZING CLUSTERED COUNT DATA WITH A CLUSTER SPECIFIC RANDOM EFFECT

ZERO-INFLATED CONWAY-MAXWELL-POISSON DISTRIBUTION

3.1 Methods and Materials

A zero-inflated model is composed of two parts: a zero-degenerated distribution and a certain count

distribution. The zero-degenerated distribution governs excessive zero values with a Bernoulli distribution

and the count distribution, a CMP in this case, governs counts including an expected number of zeros. In

particular, the probability mass function (pmf) of a zero-inflated Conway-Maxwell-Poisson (ZICMP)

distribution is given by
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normalizing constant in a regular CMP distributionÞ It turns out that for a CMP distribution (Shmueli et al.,

2005),  between 0 and 1 indicates overdispersion of data (i.e., variance is greater than the mean) and @ @

� " indicates underdispersion of data. Furthermore, the ZICMP distribution reduces to a zero-inflated

Poisson (ZIP) distribution when . In (1),  is the probability that a sample value of the response@ œ " :

variable, , is from a degenerated zero distribution.C

 In this chapter, we let both the excessive zero probability and the rate parameter  depend on: -

covariates through appropriate link function. The shape parameter @ is held as unknown constant that needs

to be estimated from the data as well. We build up correlation in the data by introducing a cluster level

random effects in the count data part which is the main component of the distribution for most applications.

We feel this modeling offers enough richness for applications while keeping the likelihood computationally
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manageable.  In order to keep track of clustered data, we use two different indices,  as a cluster indicator3

and  as an observation indicator within the cluster . The link functions of both parts for a ZICMP4 œ 4Ð3Ñ 3

joint model is now described as below
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the  cluster for the count and zero part, respectively.  and  are fixed effect parameters for their3>2 " #

corresponding part.  is a random intercept of the  cluster and is normally distributed with mean  and, 3 !3
>2

standard deviation . Therefore, 5, a set of parameters to be estimated in a ZICMP joint model is, then,

) " # 5œ Ð ß ß @ß Ñ, .

3.1.1 Calculation of the approximate likelihood function and estimation of parameters

 The likelihood contribution of the cluster in a mixed effect ZICMP model is given by3>2
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Note that  is calculated not only from multiplying all within-subject (cluster) observations but also byP3

integrating out the subject (cluster) specific random effect. As a result, the observed likelihood function of a

cluster in Equation (3) is difficult to compute in a theoretical fashion since there is no closed form of  toP3

integrate out with respect to . Thus, we employ a Gaussian-Hermite (G-H) quadrature method to,3

approximate , which is a popular numerical approximation to an integral given byP3

( �
�∞

∞
�B

;œ"

U

; ;0ÐBÑ/ .B ¸ 0ÐB Ñ‡A ß Ð Ñ
#

4

where  is a quadrature grid point and  is the corresponding weight. We use an R package calledB A; ;

'fastGHQuad ' to obtain  and . For a direct application of (4) toward calculating , we let  A B P , µ; ; 3 3

RÐ!ß !Þ&Ñ / which has as its pdf. In addition, the log link function is reparametrized as" �,È1
3
# 
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691 œ \ # # ,' ( È- " 5" , 3 which allows us to estimate variance of the random effect term from the count

part link function.

 Applying this G-H quadrature method in equation (4),  an approximation of  is given byP3
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and consequently, an approximate observed log-likelihood function of a mixed effects ZICMP model is

obtained as log  log . Parameter estimates are obtained by maximizing the approximate log-P œ ÐP Ñ
µ µ

3œ"

R

3�
likelihood function. We have used the ‘optim’ function in R (version 3.1.2) to this end throughout this

chapter.

3.1.2 Variance Estimation

 Variance estimation is an integral part of statistical inference based on the approximate MLE

obtained above. We have considered both an approximate inverse Fisher information matrix and a sandwich

variance estimate. The former is given by

A-Var  =  s Ð Ñ œ � L Ð Ñ ßs s) )Œ �
3œ"

R µ

3

�"

where  is an approximate Hessian matrix contribution of the cluster;  it can be directlyL Ð Ñ œ 3s
µ

3
` 691P Ð Ñs

` `s s
>2)

#
µ

3
X
 )

) )

outputted from the ‘ ’ function in R.optim

 The estimated sandwich variance-covariance matrix is calculated using the G-H quadrature

approximation is given by

A-Var  ,  s Ð Ñ œ F QFs s s sW
�" �"

)

where  and Here F œ L Ð Ñ Q œ W Ð ÑW Ð Ñ Þs ss s sµ µ� �
3œ" 3œ"

R Rµ

3 3 3
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Thus,  is finally obtained from Equation (7) (see Appendix 3.1 for the details).`P Ð Ñ
` s

µ

3 )
) )
¹

In general, it is preferable to use a sandwich variance since it is robust to model misspecification.

3.1.3 A Statistical Test for Zero-Inflation

 Besides testing for a significant regression effect, we may be interested in testing whether  there

exists zero-inflation in the data. In other words, to determine whether a ZICMP model is statistically

necessary over a simpler CMP model under the same mixed effects framework for a given dataset. The

parameter associated with zero-inflation is the marginal probability of excessive zero part  Indeed, it is a: Þ

testable set of hypotheses given by  (no zero inflation) versus  (zero-inflation) underL À : œ ! L À : � !! 1

the setting where  [0,1] is not covariate dependent.: −

 Note that testing for zero-inflation is different from testing for zero-modification. In fact,

likelihood based score tests are applicable and widely used for testing zero-modification but not for zero-

inflation. A zero-modified model allows a range of negative values of  so that the value of the null:
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parameter being on the boundary for testing for zero inflation is avoided (Jansakul and Hinde, 2002). In the

zero-inflation test, one of the proper methods for handling the boundary issue is to use likelihood ratio test

(LRT) statistics, which asymptotically follows an equal mixture of point mass at 0 and a chi-squared

distribution with one degree of freedom (Fulton et. al., 2015). That is, logA œ # ÐP ÎP ÑZICMP CMP

Ä !Þ& ‚ # !Þ& ‚
.

! "
#$ ; . However, due to numerical issues in computing the likelihood functions and

different fitting procedures of ZICMP and CMP models, one may run into numerical issues in applying the

LRT in practice when using the large sample approximation for calibrating the rejection region. Instead, we

employ a null bootstrap mechanism to get approximate p-values for the zero-inflation test using the LRT.

 The null bootstrap method starts by creating bootstrap (re)samples from the null distribution which

asserts the presents of no zero inflation in the data. Thus, while we estimate the model parameters using the

original sample, we only resample from the corresponding estimated CMP part obtained by setting to zero:

and using the sample estimates for the remaining parameters. For each null bootstrap sample, we can

calculate the LRT log as above using the two maximized log-likelihoods one withAb b, ZICMP b, CMPœ # ÐP ÎP Ñ

ZICMP and the other using CMP, where b where  is a large positive integer, called theœ "ß ÞÞÞ ß Fß F

bootstrap replication size. Now a bootstrap based p-value is calculated by  p‡ F
9,=œ MÐ � ÑÎFß�

b=1 bsA A

where  is the value of the LRT for the original sample. One would reject the null hypothesis if pA α9,=
‡ � ß

α being the nominal level.

3.2 Simulation Studies

This simulation section contains three types of investigations into the finite sample behaviors of our

inferential methodology. First, we study the behaviors of the point estimators in terms of their bias and

variance. We also study the performance of  approximating normal distribution based confidence intervals

for the parameter of interest using two types of variance  estimates. Next we conduct a power analysis for a

statistical test for a regression effect based on an approximate Wald test; one again both variance estimates

have been attempted to standardize the test statistic. The third subsection contains the simulation results for

the zero-inflation test. We study the size/power of the test for three choices of the dispersion parameter

corresponding to three types of dispersion patterns.
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3.2.1 Study of bias and variance

 We considered three different combinations of number of clusters with the same cluster size,

namely, , and  each with 0  Both and are set as the same designR œ $!ß R œ &! R œ (& 8 œ " Þ \ \3 " #

matrix with an intercept term and one continuous covariate randomly generated from a normal distribution

with mean 0.94 and variance 0.25, which were arbitrarily chosen. For all three scenarios, we considered the

same set of parameter values given by     and ;" " # # 5! " ! " ,
#œ "$Þ)ß œ � "Þ$ß œ #ß œ � $ß @ œ 'ß œ %

these values were motivated by an application of CMP regression to airfreight breakage (Kutner,

Nachtsheim and Neter, 2003, page 35, Exercise 1.21) by Sellers and Shmueli (2010) although their

modeling was were less complex than ours. Given the true parameter values under each scenario, count

values including excessive zeros were created. The count values of the  cluster from the zero part were3>2

randomly sampled from a Bernoulli distribution with success probability,

: œ /B:Ð\ ÑÎÐ" # /B:Ð\ ÑÑ3 3ß 3ß# ## # , and the values from the count part were generated by using the inverse

CDF transformation method from a CMP distribution with  and . Here  was- " 53 3ß , 3 3œ /B:Ð\ # #, Ñ @ ,"
È

randomly generated from  implying that the true variance of the within cluster random effect was 4RÐ!ß !Þ&Ñ

in this simulation.

 We have used a Monte-Carlo sample size of 500 to empirically estimate the bias and theQ œ

variance of our estimators in each setting. For a single data set, the Gaussian-Hermite (G-H) quadrature

method (see Section 3.1 for details) was used to approximate via . One needs to make a decision aboutP P3 3

µ

Uß Uß , Athe number of grid points in order to apply Equation 5; for a given both  and  can be obtained3; ;

from a R package fastGHQuad. Currently, there is no standard statistical criteria to determine an optimal

value of  and a large value of may add to the computational burden of the entire process. FollowingU U

Lesaffre and Spiessens (2001), we have used  in all our subsequent calculations. The results areU œ #&

given in Table 3.1, where we report the bias, the true standard error (as obtained form Monte Carlo), and

the averages of estimated standard error, using both the information matrix and the sandwich estimator, over

all 500 Monte Carlo runs.

 As the number of clusters increases, the approximation bias due to the use of a quadrature method

seems to dominate the statistical bias since the empirically computed total bias does not converge to zero
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but rather stay flat. Generally speaking, the empirically estimated true standard deviation (SE) values reduce

with sample size. The estimated standard errors for the regression parameters from both methods were

reasonably close to the true standard deviations for all scenarios as can be seen from their ratios. However,

the sandwich variance method is tends to be more conservative than the Fisher information variance method

throughout.

 Furthermore, we have created probability-probability (p-p) plots to explore the behaviors of the

inference based on the asymptotic normality and  the two estimates of asymptotic variance in a more precise

way. A p-p plot consists of a range of nominal coverage rate along the x-axis and the corresponding

empirical coverage rate along the y-axis and it is a useful tool for checking if a large sample normal

approximation of a parameter estimator is effective. The p-p plots from the case of 50 are shown inR œ

Figure 3.1. For the Fisher information method (the left panel), the p-p plots for most of all the parameters

are close to the reference solid line except for .  On the other hand, the p-p plot of  with the sandwich5 5, ,

variance method performs noticeably better (the right panel in Figure 3.1). In addition, the p-p plots

corresponding to the remaining parameters behave well in terms of all the points being close to the

reference lines. Likewise, for both 30 and 75 cases, all the p-p plots from the sandwich varianceR œ

method include points closer to the reference lines than those from the Fisher information method,

especially, for  (Figures 3.3 and 3.4).5,

3.2.2 Power analysis

 We explore the behaviors of statistical powers of the Wald test for using each of theL À œ !ß! ""

two variance estimation methods, in all three dispersion cases.  Figure 3.2 describes the power curves

corresponding to the two different variance estimation methods. When the true value of  is 0, the""

empirical size for the sandwich variance method ("sandwich variance" in Figure 3.2) is 0.054 which is

extremely close to the targeted nominal size . However, the Fisher information method ("Fisherα œ !Þ!&

information" in Figure 3.2) produces a more inflated size of 0.082. Thus, we can conclude that it is more

appropriate to use the sandwich variance method than the inverse of the Fisher information for the

approximate maximum likelihood inference in the mixed ZICMP regression.
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3.2.3 A power analysis for the zero inflation test

 Next, we present the power analysis for the zero-inflation test in three different choices of the

dispersion parameters corresponding to underdispersion, overdispersion and equidispersion for the count

part of the model. All the performance of the power analysis is based on  with the same designR œ $!

matrix used for the previous simulation study. Since these analyses are computationally expensive, only two

different alternative values of  0.03 and 0.1) are considered for the power of a test along with the null: Ð œ=

value of  ( = 0) for each the three dispersion choices.:=

 In this analysis, we use different sets of regression parameters for those three dispersion cases. For

the underdispersion case, the parameter values are  . For the overdispersionÖ œ Ð&ß � #Ñß @ œ %ß œ #×" 5,

and equidispersion cases, the values are  and 0.7 ,Ö œ Ð � "Þ&ß !Þ&Ñß @ œ !Þ'ß œ "× Ö œ Ð ß � #Ñ" 5 ",

@ œ ß œ ×1 1 , respectively. In each case, the parameter values are chosen to maintain a stable range of5,

observations across 500 generated datasets.

  Table 3.4 shows how the power of the ZI test behaves as  increases from its null value of 0 in:

each of the three different dispersion cases. The empirical size of a test seems to attain the nominal size,

α œ !Þ!& for both equidispersion and overdispersion cases. However, the underdispersion case shows the

empirical size marginally inflated.  In addition, compared to , power values increase more dramatically in:=

the underdispersion case than the other two.

 

3.3 Applications

This section provides an example to demonstrate the usefulness of a CMP distribution in terms of handling

a wide range of dispersion. We use the maize hybrids experiment (Paschold et. al, 2014) recording the

expression values of genes in terms of the read counts using a next generation sequencing (NGS) platform.

This dataset consists of 39,656 genes with four different genotypes of corns (B73, B73 Mo17,‚

Mo17 B73 and Mo17). Four experimental units are assigned to the same genotype (in this case, total‚

sixteen corns are used) with four different tissues for each unit. Therefore, there are total 64 observations

for each gene ID. Since these tissues are four different parts of the same root, the tissues within the same

root are possibly correlated leading to clustered count data.
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3.3.1 An underdispersion case

Out of 39,656 genes, the gene ID, “GRMZM2G042361” is selected to represent the case of . This@ � "

gene ID consists of 64 observations including 37 zeros, 23 ones, 3 twos and 1 three. A joint model is

applied to analyze the data with a ZICMP framework including an random intercept accounting for

correlations within each root. Since the total numbers of read counts over genes are different among

biological units (in this case, individual replicate for each root), the model needs to be adjusted for

normalizing the data by adding an offset term into the link function of the count part. The offset term is

calculated by summing all read counts for each biological unit. Thus, our adjusted count part link function

becomes offset , where . The fixed effect691Ð Ñ œ \ # #, # 691Ð Ñ 3 œ "ß ÞÞÞ ß "'ß 4 œ "ß ÞÞÞ ß %- " 534 , 3 34
X
34

È
terms on both the count part and zero part are set to be the same as four different genotypes.

 A naive bootstrap confidence interval (typically, 95%) is used since a normal-based confidence

interval may not be appropriate due to such a small number (four) of clusters. A naive bootstrap confidence

interval is obtained by starting with resampling with replacement by cluster level, not by observation level

in order to preserve the original correlations within the same roots. For more variability, we randomly re-

assign four different genotypes to the sixteen bootstrap sample roots. Based on a bootstrap dataset

corresponding to the re-assigned genotypes, one set of bootstrap-based-estimates is obtained after fitting

into a joint model based on a ZICMP framework. After iterating this procedure, BS bootstrap datasets are

obtained along with BS sets of bootstrap-based-estimates. Finally, the cluster-based naive bootstrap

confidence interval is calculated based on those estimates (in this case, BS=500).

 The result of a ZICMP joint model analysis on this gene is provided in Table 3.2. Note that the

point estimate of the dispersion parameter, , is larger than one and the 95% bootstrap confidence interval@

of  excludes one. The standard error of the random intercept as the random component is extremely small.@

Thus, we refit the same data using an independent ZICMP model for comparison as shown in the table on

the right side in Table 3.2. In other words, this independent ZICMP model does not include the random

intercept as a part of the count link function and consider that all the observations are independent, not

clustered. As the result from the independent case, this data is also underdispersed since  is greater than@s

one with the confidence interval that excludes one and is the same value with the one from the joint ZICMP
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model rounding to four decimal places. In fact, most of all the coefficients from both count and zero parts

are relatively similar to these two models. The effects of this gene do not appear to be statistically

significant.

3.3.2 An over-dispersion case

We select the gene ID, “GRMZM2G106026” to represent the overdispersion case. The settings are exactly

the same as the underdispersion case in Section 3.4.1 except for the different set of observations due to

using a different gene ID. Table 3.3 summarizes the results including all the estimates based on a mixed

ZICMP model with the 95% naive bootstrap confidence intervals. According to the results, it is clear that @s

is less than 1 which indicates that this dataset is evidently overdispersed and the standard error of the

random intercept,  is relatively large. Based on the confidence intervals, the genetic effects are not5s,

statistically significant.

3.4 Disscussion

We have considered analyzing clustered count data based on a mixed effects ZICMP model. However, it is

numerically cumbersome to calculate the likelihood function based on a ZICMP mixed effects model due to

the absence of an explicit closed form of the likelihood function. While using the G-H quadrature method

for the likelihood approximation, we notice the importance of choosing an optimal value for the total

number of quadrature points,  described in Section 3.1 and simulations in Section 3.2. Through theU

simulations, we notice that the approximate likelihood results in biased estimation, while the standard errors

get smaller with the number of clusters, as expected. The overall inference from this methodology, specially

using the sandwich variance calculation is still adequate for the regression parameters as shown by the p-p

plots and the power analysis. The likelihood framework is also suitable for developing a test for zero

inflation. However, a bootstrap calibration is recommended instead of the asymptotic distribution to

overcome the problem of numerical approximation of the likelihood function.

 As alternative way to analyze clustered count data in the ZICMP framework is to perform a

marginal regression analysis (Choo-Wosoba, Levy and Datta, 2016). Unlike our mixed effects model in this
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chapter, the marginal model does not specify any random effects because the primary concern of marginal

modeling is to get marginal inference over a target population. On the other hand, the mixed effects model

focuses on individual's inference in estimating both fixed effects, , and the random effect, . Hence, these" 5,

two models for zero-inflated clustered data do not support the same statistical inference. In fact, it is not

feasible to compare these two sets of estimators statistically.

 A limitation of the mixed effects approach is the difficulty of incorporating a larger number of

random effects term since the approximation by G-H quadrature to the likelihood function will be even

more problematic. A Bayesian approach may be a way around in such situations. We explore this possibility

in the next chapter.
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TABLE 3.1

Finite sample behavior of parameter estimators obtained from fitting ZICMP mixed effects model when the

likelihood is approximated by G-H quadrature with  grid points:#&  Here SE  indicates estimatedFisher

standard errors based on the inverse of the Fisher information matrix and SE  refers to estimated standardsand

errors from a sandwich covariance variance matrix.  Also, SE stands for the standard error based

on the Monte Carlo replicates and is taken to be the gold standard for comparison.

R œ $! R œ &!

"$Þ) Þ#
True bias SE SE SE/ SE/SE bias SE SE SE/ SE/SE

-0.296 1.904 1.500 2.125 1 70 0.89
SE SE SE SEFisher Fisher Fisher Fishersand sand sand sand

"! 6 -0. 74 1.531 153 1.676 327 0.913
- 0.014 0.230 0.207 0.272 1 113 0.848 0.0 7 0.193 158 0.209 1.216 0.921

0.081 0.369 0.355 0.349 1 40 1.

% "Þ "Þ
"Þ$ Þ $ !Þ
# Þ!

"

#
"

! 058 0.003 0. 70 269 0.265 1.003 1.019
- -0.099 0.432 0.400 0.396 1 080 1.091 -0.002 0.304 302 0.297 1.005 1.022

-0.060 0.743 0.649 0.935 1 146 0

# !Þ
$ Þ !Þ

@ ' Þ
#"

.795 -0. 59 0.624 495 0.705 1.259 0.885
-0.134 0.340 0.227 0.450 1.496 0.757 -0.183 0.276 172 0.351 1.601 0.786

True bias SE SE SE

" !Þ
# !Þ

R œ (&

5,

Fisher sand SE/ SE/SE
13.8 -0.537 1.302 0.936 1.324 1.392 0.984
-1.3 0.046 0.153 0.129 0.167 1.190 0.915
2 0.048 0.267 0.222 0.222 1.202 1.202

SEFisher sand

"

"

#

#

!

!

!

! -3 -0.053 0.304 0.250 0.250 1.217 1.218
6 -0.196 0.531 0.401 0.561 1.323 0.947
2 -0.217 0.223 0.140 0.311 1.592 0.716

@
5,
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TABLE 3.2

Results for the maize hybrids data, for GRMZM2G042361 gene from the which the estimated dispersion

parameter was larger than 1 representing underdispersion in the fixed parameter count data part: Parameter

estimates are reported along with a cluster bootstrap based(nonasymptotic) naive confidence intervals.

Here, the bootstrap replication size was 500.

Mixed model Independent
Count part BS_CI Zero part CI (Bootstrap) Count part BS_CI Zero part CI (Bootstrap)
-16.653 (-16.956,-13.Intercept 882) -12.550 (-15.272, 0.236) -16.653 (-16.872, -12.376) -12.550 (-15.058, 0.910)
0.525 (-1.960, 2.040) -1.933 (-9.969, 10.698) 0.5B73 Mo17‚ 25 (-3.064, 3.164) -1.933 (-11.910, 12.415)
1.498 (-1.860, 2.130) -2.573 (-11.030, 10.302) 1.499 (-2.805, 3.446) -2.573 (-11.946, 12,21Mo17 6)
0.631 (-2.285, 2.081) -1.247 (-10.427, 10.696) 0.631 (-2.964, 3.327) -1.247 (-11.868, 12.077)
2.100 (1.470, 4.569) 2.100 (1.556,

Mo17 B73‚
@  )

0.001 (0.001,0.951)
40.650

5, N/A
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TABLE 3.3

Results for the maize hybrids data, for GRMZM2G106026  gene from the which the estimated dispersion

parameter was smaller than 1 representing overdispersion in the fixed parameter count data part: Parameter

estimates are reported along with a cluster bootstrap based (nonasymptotic) naive confidence intervals.

Here, the bootstrap replication size was 500.

Mixed model
Count part BS_CI Zero part BS_CI
-15.981 (-16.116, -14.736) -0.296 (-0.717, 0.793)
   0.523 (-0.813, 0.734)  

Intercept
B73 Mo17‚ 0.018 (-1.220, 1.197)

   0.460 (-0.768, 0.811)  0.499 (-1.153, 1.086)
   0.549 (-0.773, 0.846)  0.777 (-1.103, 1.098)
   0.15

Mo17
Mo17 B73‚
@ 4 (0.095, 0.601)

   0.141 (0.001, 0.539)5,
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TABLE 3.4

Power of a zero inflation test (nominal size is 5%) based on a ZICMP model for clusters:$!  Three different

choices of the dispersion parameter was used. Each entry is based on a Monte Carlo sample size of 500.@

Choice of 
Proportion of zero inflation Underdispersion Equidispersion Overdispersion

0.092 0.042 0.040
0.03 0.872 0.216 0.120
0.1 1.000 0.

@

!

476 0.280
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FIGURE 3.1. The p-p plot of confidence intervals of all parameters based on our simulation models when

the number of clusters is  The left panel is based on the inverse of the Fisher information matrix and the$!Þ

right panel is based on the sandwich variance estimator.
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FIGURE 3.3. The p-p plot of confidence intervals of all parameters based on our simulation models when

thenumber of clusters is  The left panel is based on the inverse of the Fisher information matrix and the&!Þ

right panel is based on the sandwich variance estimator.
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FIGURE 3.4. The p-p plot of confidence intervals of all parameters based on our simulation models when

the number of clusters is  The left panel is based on the inverse of the Fisher information matrix and the(&Þ

right panel is based on the sandwich variance estimator.
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TECHNICAL DETAILS

Appendix 3.1: Score function of the mixed effect (joint) model based on a ZICMP framework for : , ,) " # @
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R-code
###################################################################################
# This r-code is given as a underdispersion case of the maize hybrids data in Chapter 3                           #
# This r-code describes non-parametric bootstrap method for obtaining 95 % naive confidence interval  #
# This r-code includes codes for Cardinal Research Clueter (CRC) server lines                                       #
###################################################################################
# CRC code #
args <- commandArgs(trailingOnly = TRUE)
seq <- as.numeric(args[1])

Z<- function(lambda,v, max) {

   # Compute the terms used to sum for the (in)finite summation
       forans <- matrix(0,ncol=max+1,nrow=length(lambda))
   for (j in 1:max){
     temp <- matrix(0,ncol=j,nrow=length(lambda))
     for (i in 1:j){temp[,i] <- lambda/(i^c(v))}
     for (k in 1:length(lambda)){forans[k,j+1] <- prod(temp[k,])}
     }
   forans[,1] <- rep(1,length(lambda))
# Determine the (in)finite sum
   ans <- rowSums(forans)

return(ans)
}

lik_zicmp <- function(parm) {
              bhat <- as.matrix(parm[1:4])
              ghat <- as.matrix(parm[5:8])
              vhat <- as.matrix(parm[9])
              bsigma_hat <- parm[10]

              logLi <- numeric(N)
              i <- 1
              for(k in unique(corn_gene$id)){
                 Li <- numeric(length(bi))
                 for(b in 1:length(bi)){
                    xmati <- as.matrix(allx[which(allx[,1]==k),-1])
                    zmati <- xmati
                    pij <- exp(zmati%*%ghat)/(1+exp(zmati%*%ghat))
                    lhat <- exp(xmati%*%bhat+sqrt(2)*bsigma_hat*bi[b]+log(off[which(corn_gene$id==k)]))
                    yi <- as.matrix(ally[which(ally[,1]==k),2])
                    Lij <- ifelse(yi==0,(pij+(1-pij)/Z(lhat,vhat,100)),(1-
                    pij)*lhat^yi/((factorial(yi)^c(vhat))*Z(lhat,vhat,100)))
                   Li[b] <- prod(Lij)*wi[b]
                                 }
                      logLi[i] <- log(sum(Li)*1/sqrt(pi))
                      i <- 1+1
                       }
            return(-sum(logLi))
            }

library(pscl)
library(MASS)
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library(matrixcalc)
library(fastGHQuad)
 rulebi <- gaussHermiteData(25)
 bi <- rulebi$x
 wi <- rulebi$w

corn <- read.table("/home/h0choo01/corn_glmm_ibs/genodata.txt",sep="\t",header=T)
dim(corn)
idxcorn <- apply(corn[,7:70],1, function(x)ifelse(mean(x==0)>=0.5 & mean(x==0) < 0.7 & max(x)
                       <=4,1,0))
zerocorn <- which(idxcorn==1)
n <- 4
i <- 26
off <- apply(corn[,7:70],2,sum)
y <- matrix(as.numeric(corn[zerocorn[i],7:70]),64,1)  # pick arbitrary gene that is suspiciously zero-inflated
idx_maze <- rep(1:16, each=n)
y_all <- cbind(as.matrix(idx_maze), y)
onevec <- as.matrix(rep(1,nrow(y)))
BS <- 1
w <- 1
all_estbs_zicmp <- NULL
N <- length(y)
set.seed(350+seq)
 while( BS <6) {
                idx_bs <- sample(1:16, 16, replace=TRUE)
                onevec <- as.matrix(rep(1,nrow(y)))
                idx_xbs <- sample(rep(1:n,each=n),16,replace=FALSE)

                ybs <- matrix(sapply(idx_bs, function(x) y_all[which(y_all[,1]==x),2]), 64,1)
                fbs <- matrix(as.factor(rep(idx_xbs,each=4)), 64,1)
                gtype_fbs <- data.frame(gtype=fbs)
                xmat <- model.matrix(~ gtype, gtype_fbs)  # genotype effect
                zmat <- xmat
                corn_gene <- data.frame(GeneID=as.matrix(rep(corn[zerocorn[i],1],
                length(y))),id=as.matrix(rep(1:16, each=4)),read=ybs, gtype_fbs, row.names=NULL)
                allx <- as.matrix(data.frame(id=corn_gene[,2],xmat))
                ally <- as.matrix(corn_gene[,2:3])
                val <- tryCatch({
                       mZIP <- zeroinfl(formula=read ~ gtype+offset(log(off))|gtype, data=corn_gene,dist =
                                               "poisson" )}
                                                  ,error= function(e) e$message)
                  error_idx <- list(w,value=val)

          if(length(error_idx$value)>1){
                      beta0 <- as.matrix(summary(val)$coefficients$count[,1])
                      gamma0 <-as.matrix(summary(val)$coefficients$zero[,1])
                      v0 <- 1
                      bsigma_hat0 <- 1
             val_zicmp <- tryCatch({
                             glmm_parm <- optim(c(beta0,gamma0,v0,bsigma_hat0), lik_zicmp,
                                                           control=list(maxit=30000),method="L-BFGS-B", lower=c(rep(-
                                                                      Inf,8),0.001,0.001),upper=c(rep(Inf,10)))
                                                      }, error= function(e) e$message)

            error_idx_zicmp <- list(w,value=val_zicmp)
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            if(length(error_idx_zicmp$value)>1){
                     bhat <- as.matrix(val_zicmp$par[1:4])
                     ghat <- as.matrix(val_zicmp$par[5:8])
                     vhat <- c(val_zicmp$par[9])
                     bsigma_hat <- c(val_zicmp$par[10])
                    if(val_zicmp$convergence==0){
                           all_estbs_zicmp <- rbind(all_estbs_zicmp,matrix(c(BS,bhat,ghat,vhat,bsigma_hat),1,11))
                           BS <- BS+1
                           w <- w+1
                          } else {all_estbs_zicmp <- rbind(all_estbs_zicmp,matrix(c(w,rep(NA,10)),1,11))
                                  all_estbs_zicmp <- na.omit(all_estbs_zicmp)
                                  w <- w+1
                                }} else {all_estbs_zicmp <- rbind(all_estbs_zicmp,matrix(c(w,rep(NA,10)),1,11))
                                         all_estbs_zicmp <- na.omit(all_estbs_zicmp)
                                         BS <- BS
                                         w <- w+1
                                     }} else {all_estbs_zicmp <- rbind(all_estbs_zicmp,matrix(c(w,rep(NA,10)),1,11))
                                               all_estbs_zicmp <- na.omit(all_estbs_zicmp)
                                               BS <- BS
                                               w <- w+1
                                            }
                               }

file.name <- paste("mazei_glmm_bs=",seq,".RData", sep="")
save(all_estbs_zicmp, val_zicmp,val,corn_gene, file=file.name)
q()
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CHAPTER 4

A BAYESIAN APPROACH TO ZERO-INFLATED CLUSTERED COUNT DATA WITH DISPERSION

4.1 Bayesian Model

Our Bayesian hurdle model consists of two different parts, called presence model and severity model. The

presence model considers a binary random variable for the non-zero outcome and the severity model

describes the positive counts using a CMP distribution. It is important to be aware that while the presence

model governs the existence of nonzero outcome, the severity model only governs the positive outcome to

account for how severe the outcomes can be, given covariates.

 The presence model is based on a probit regression with both fixed effects and random effects

terms. The probability that an outcome is positive (non-zero) is modeled through probit regression,

TÐ] � !Ñ œ Ð\ # Y \34 3 34
X X
34ß 34ßF " $" $ ). This model is associated with fixed effect covariates,  and random

effect covariates, , corresponding to the  observation in the  cluster. The -dimensional randomY 4 3 ;34
>2 >2

effects, , are assumed to be generated by a multivariate normal distribution with a mean vector with zeros$3

and a variance-covariance matrix, . A multivariate random effect allows flexibility in the dependence ofD

observations within clusters.

 The severity model starts with defining the usual probability mass function (pmf) of CMP,
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where  is the normalizing constant, and  is a positive shape parameter. The parameter ^Ð ß @Ñ œ @- -�
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indicates that the data are underdispersed if  , overdispersed if , or equidispersed if .@ � " ! � @ � " @ œ "

When , the  function becomes  which implies that CMP distribution is equivalent to the Poisson@ œ " ^ /-

distribution with mean . Then, the severity model, conditioning on the outcome being nonzero, is-
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where  is the linear predictor. It is important to be aware that the severity model uses a691Ð Ñ œ \- α34
X
34ßα

truncated CMP distribution which excludes zeros (Equation 1).  The full distribution of  after combining]34

the presence and severity models is, then,
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Clustering across outcomes is induced by the random effects  in the binary/presence$ D3 µ QZRÐ!ß Ñ

model.   

 The prior distributions for  and  in the presence model are taken to be conjugate priors for the" D

multivariate normal distributions:

" Hµ QZRÐ!ß Ñß Ð Ñ" 3

D Gµ M[Ð-ß ÑÞ (4)   

 Likewise, the prior distributions for the severity model parameters are also defined as

α Hµ QZRÐ!ß Ñ Ð Ñα 5

@ µ 691RÐ!ß Ñ5@
# (6)

As  function of a CMP distribution is not a closed form, conjugate priors are not readily available. We^

recommend that the prior distribution of the dispersion parameter  is to be a lognormal distribution@

(Equation 6) with a median/mode of  at 1, centered at equidispersion. We choose the variance of log( ) to@ @

be 0.5  so that 95% values are between 0.38 to 2.05.#

 

4.2 MCMC (Markov chain Monte Carlo) Sampling

Inference under this model is performed by using MCMC sampling methods. Due to the conjugacy in the

presence model, Gibbs Sampling steps are used to generate the samples. In sampling steps for the severity
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model, conjugacy for the CMP distribution is not available, and the samples are generated by Metropolis-

Hastings steps.

 In the presence model, instead of estimating  and  directly from the probit model, a data" $3

augmentation scheme (Chib and Greenburg, 1998) is applied by introducing a normally distributed latent

vairable, The value of  is determined by the sign of the latent variable: D µ RÐ\ # Y ß "ÑÞ ] ]34 3 34 34
X X
34 34" $

� ! D � ! ] œ ! D � ! if and if . In fact, the data augmentation allows Gibbs Sampling and gives better34 34 34

Monte-Carlo performance.

 The sampling distributions for the presence model are obtained as below.
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The notation, , in Equation 7 stands for a truncated normal distribution.XR

 For generating posterior samples of the regression coefficients  in the severity model, we use bothα

a global step and a local step to update. The global step seeks to change the full  vector, and in the localα

step only one component is updated at a time. For the global step, we propose the candidate value

α α H-
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For the local step that updates element , we propose  by taking  and .: µ RÐ ß Ñ œ Ð4 Á :Ñα α α 5 α α- - # -
: ;ß 4: 4α:

We accept the proposed  with probability,α-
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Variance parameters , , and  are chosen so that accectence rate is about 25% for univariateH 5 5;ß ;ß ;ß@
# #

α α:

steps and between 25% and 40% for global step (Robert et al., 1997).

 To speed computation, we run the presence and severity models in parallel because their posterior

are independent such as

C " $ D α C " D C αÐ ß ß ß ß @lCÑ œ Ð ß lCÑ Ð ß @lCÑ. (14)

To see this, note
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  .œ Ð ß lCÑ Ð ß @lCÑ Ð"&ÑC " D C α

Hence, we can run MCMC on the presence model independently from the MCMC chain on the severity

model.
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4.3 Applications

The Iowa Fluoride Study is a longitudinal study for identifying risk and protective factors to teeth from

children. It is obvious that teeth within the same child share the same dental environment, which implies

clustering characteristics. This clustering feature is statistically incorporated by introducing random effects

into a mixed effects model framework. In this section, we choose the nine-year old children's dataset which

is the same dataset applied in Chapter 2.

 In the dental field, the location of a tooth inside the mouth is believed to have a great effect on the

likelihood of cavities or caries. In fact, cavities are more likely to occur in the molars than canines and

incisors because molars have occlusal surfaces which are more easily able to retain foods. Additionally, the

distal and mesial surfaces of molars are also more likely to keep foods between the surfaces. To account for

this, a unique intercept for each tooth class is used in both presence and severity models. The eight

covariates previously considered are also used. To induce clustering, we consider three correlated random

effects corresponding to three tooth locations. Then, the design matrix for the random effects is given

below.

Y œ Ð" Ñ
Ð"ß !ß !Ñ À
Ð!ß "ß !Ñ À
Ð!ß !ß "Ñ À

X
34

Ú
ÛÜ

Molar
Canine and Premolar .
 Incisor

6

We include premolars with the canines in the second group (Equation 16) due to the location of premolars

next to canines at that premolars appear in the dataset as many nine-year-old children still have some

primary teeth.

 For this analysis, the hyperparameters for the priors are chosen to be I , ,H Hα "œ œ "! † - œ $""

G 5œ $ † œ !Þ&�"
$ @I , and , and MCMC sampling is performed as described in Section 3. The posterior

samples of the presence model parameters are obtained by running MCMC algorithm for 150,000 iterations,

and the posterior samples of the severity model parameters are also generated with Markov chain of length

50,000 (the presence model displayed slower mixing). The samples are collected after first 5,000 burn-in

and keeping every 10  thinning. At the end, there are 14,500 samples for the presence model parameters>2



75

and 4,500 samples for the severity model parameters to be used for inference. The convergence in

parameters is assessed through trace plots. The log-likelihood values for both models are also evaluated and

display good mixing. The effective sample size for the log-likelihood functions from each model is founded

to be greater than 1,000. The posterior means and 95% credible intervals are given in Table 4.1.    

 Coinciding with our expectations, we find molars to be much more likely to have cavities than

canines or incisors ( .00) .00). Furthermore, there is strong evidenceT<Ð � lCÑ ¸ " ß T<Ð � lCÑ ¸ "" " " "" # " $

that the daily fluoride intake (AUCmhF5_9yrs) and the frequency of brushing teeth per day

(ToothBrushingFeq.Per_DayAvg) are protective factors for teeth. The daily carbonated beverage intake

(AUCSodaOz5_9yrs) is found to be a risk factor ( ). Similarly, in the severity model,T<Ð � !lCÑ œ !Þ**"(

the molar intercept (  is found to be larger than the other teeth locations  and . This indicates thatα α α" # $Ñ Ð Ñ

molars with cavities have higher CES (caries experience score), on average, than canines or incisors with

cavities. There is some evidence that older dental exam age (DentalExamAge) tends to have higher CES,

but the effect size is small. Finally, the amount of fluoride in home tap water (HomeFluorideppmAvg)

appears to be a protective factor in the severity model but was not significant in the presence model. This

implies that the more fluoride intake supplied from home faucet water reduces the severity of cavities for

decayed teeth, while the fluoride intake may not be preventing the tooth cavities. This result is important in

light of ongoing debate within both the dental community and the public concerning the usefulness of

fluoride in the public water.

 We estimate the random effect covariance matrix,  (D Ds œ ÒIÐ lCÑÓ�" �" Yang and Berger, 1994), to

be

Ds œ ß Ð" Ñ
Ô ×
Õ Ø

0.792 0.763 0.470
0.667 1.655 0.925
0.533 0.727 0.979

7

where the variance-covariance components are displayed in the upper triangular part and the correlation

coefficients for the lower off-diagonal part. The off-diagonal entries are positive indicating that all the

cluster-specific tooth location effects have positive relationship with each other.  In the severity model, we

find strong evidence of overdispersion ( ).  T<Ð@ � "Ñ ¸ "
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4.4 Discussion

Through the model specification and application to the dental data (Sections 3.1 and 3.3), this chapter

demonstrates that the Bayesian method has a great advantage of giving more flexible model structures and

avoids the calculation of an approximated likelihood function.

 In this chapter, we only consider random effects in the presence model, not in the severity model.

As a part of future work with the dental dataset, an expended modeling approach will be performed such

that random effects will be also incorporated into the severity model. The severity model will include a

cluster-specific random effect that is correlated with  form the presence model. Consequently, the$3

variance-covariance matrix for all the random effect components accounts for random effects not only from

the presence model but also from the severity model. Thus, posterior sampling must be performed jointly

without running seperate MCMC chains. Preliminary results have been hindered by poor mixing, but

alternative sampling methods may lead to improvements. This work is ongoing.
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Table 4.1

Posterior means (post mean) and credible intervals (C.I.) for both presence and severity models

           Presence Model          Severity Model
post mean           C.I. post mean         C.I.

Molar -0.543 (-1.106, 0.027) 0.435 (0.218, 0.651)
Canine -3.252 (-4.536, -2.245) -0.119 (-0.455, 0.204)
Incisor -4.252 (-5.925, -2.910) 0.168 (-0.347, 0.597)
Gender -0.215 (-0.430, 0.001) -0.012 (-0.071, 0.048)

0.121 (-0.030, 0.272) 0.056 (0.011, 0.102)
-0.430 (-0.779, -0.080) -0.021 (-0.133, 

DentalExamAge
AUCmhF5_9yrs 0.086)

0.071 (0.027, 0.117) -0.004 (-0.016, 0.008)
-0.568 (-0.793, -0.343) -0.056 (-0.119, 0.0

AUCSodaOz5_9yrs
ToothBrushingFeq.Per_DayAvg 08)

 0.256 (-0.286, 0.804) 0.026 (-0.150, 0.200)
 0.304 (-0.058, 0.672) 0.021 (-0

DentalVisitPast6monthAvg 
FluorideTreatmentPast6monthAvg .090, 0.132)

 0.129 (-0.123, 0.382) -0.127 (-0.205, -0.054)
  N/A 0.424 (0.334, 0.517)

HomeFluorideppmAvg 
@
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R-code
##############################################################################
# This r-code describes the MCMC samplings for the presence model for Chapter 4                      #
##############################################################################
library(MASS)
library(truncnorm)
library(matrixcalc)
library(mvtnorm)
library(MCMCpack)
library(coda)
# create another variable for random effects
caries <- read.csv("C:\\Users\\h0choo01\\Desktop\\caries.csv", header=T)
caries[,9] <- caries[,9]-9
molar <- c(3,14,1,2,15,16,"a","b","i","j",17:19,30:32,"k","l","s","t")
canine <- c(4:6,11:13,"r","m","c","h",20:22,27:29)
incisor <- c(7:10,"e","f",23:26,"p","o","d","g","q","n")
loc_t <- sapply(caries$Tooth, function(x) if(x %in% molar){res <- 1}else{if(x %in% canine){res <- 2}
                            else{res <-3}})
loc_t <- matrix(loc_t,nrow(caries),1)
caries_r <- cbind(caries, loc_t)
y <- as.matrix(caries$CariesCount)
umat <- model.matrix(~-1+as.factor(loc_t))
umat <- as.matrix(data.frame(molars=umat[,1], canine=umat[,2], incisor=umat[,3]))
xmat <- as.matrix(data.frame(umat,caries_r[, c(16, 9:15)] ))

all_data <- data.frame(id=caries$SID, xmat, y)
ids <- unique(all_data[,1])
pos_data <- subset(all_data, all_data$y>0)
y_pos <- pos_data$y
xmat_pos <- as.matrix(pos_data[,2:12])  # fixed factor
N <- length(unique(all_data[,1]))
sigma2b <- 10
cc <- ncol(umat)     # degree of freedom for IW distribution
psy <- diag(1/cc, cc, cc)    # positive-definite parameter for IW
sig_dg0 <- cc*psy  # var-cov matrix components for random effects :prior

b0 <- matrix(0, ncol(xmat),1)
d0 <- matrix(0,3,1)
z0 <- matrix(0,nrow(all_data),1)
for(i in 1:nrow(xmat)){
       z0[i,] <- abs(rnorm(1,xmat[i,]%*%b0+umat[i,]%*%d0, 1))*ifelse(y[i]==0,-1,1)
       }
di <- matrix(rnorm(N*ncol(umat),0,1),ncol(umat),N)
colnames(di) <-  ids
zaid <- matrix(0,3,1)
BB <- 150000
idx_thin <- seq(5001,BB,10)
all_sigmas <- array(0,c(3,3,length(idx_thin)))
all_tracks <- matrix(NA,length(idx_thin), length(b0)+2 )
bb <- 1
kk <- 1
watch <- Sys.time()

while(bb < BB+1){
            # Gibbs sampler for beta|Z, delta
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            mu1_b <- mu2_b <-0
            for (i in ids){
                 xmati <- as.matrix(all_data[which(all_data[,1]==i),2:12])
                 umati <- as.matrix(all_data[which(all_data[,1]==i),2:4])
                 yi <- as.matrix(all_data[which(all_data[,1]==i),13])
                 dii <- di[,which(as.numeric(colnames(di))==i)]
                 z0i <- as.matrix(z0[which(all_data[,1]==i),])
                 mui1_b <- t(xmati)%*%xmati
                 mui2_b <- t(xmati)%*%z0i-t(xmati)%*%umati%*%dii
                 mu1_b <- mu1_b + mui1_b
                 mu2_b <- mu2_b + mui2_b
                  }
            mu_b <- solve(mu1_b+diag(1/sigma2b,ncol(xmat)))%*%mu2_b
            sigma2_bz <- solve(t(xmat)%*%xmat+diag(1/sigma2b,ncol(xmat)))
            b1 <- matrix(rmvnorm(1,mu_b,  sigma2_bz), ncol(xmat),1)  # b|z,delta

            # Gibbs sampler for Z|beta, delta
            z1 <- NULL
            for (zz in ids){
                 xmati <- as.matrix(all_data[which(all_data[,1]==zz),2:12])
                 umati <- as.matrix(all_data[which(all_data[,1]==zz),2:4])
                 yi <- as.matrix(all_data[which(all_data[,1]==zz),13])
                 dii <-   di[,which(as.numeric(colnames(di))==zz)]
                 mu_zi <- xmati%*%b1+umati%*%dii
                 z1i <- matrix(apply(cbind(mu_zi,yi),1,function(x) ifelse(x[2]==0,rtruncnorm(1,-Inf,0, x[1],1),
                                          rtruncnorm(1,0,Inf, x[1],1))),nrow(yi),1)
                 z1 <- rbind(z1,z1i)
                 }
            # Gibbs sampler for delta|beta, Z
            sig_dd0 <- sig_dg0[1:3,1:3]
            ii <- 1
            for (i in ids){
                xmati <- as.matrix(all_data[which(all_data[,1]==i),2:12])
                umati <- as.matrix(all_data[which(all_data[,1]==i),2:4])
                zi<-  as.matrix(z1[which(all_data[,1]==i)])
                mu_di  <- t(solve(solve(sig_dd0)+t(umati)%*%umati))%*%(t(umati)%*%zi-
                                         t(umati)%*%xmati%*%b1)
                var_di <- solve(solve(sig_dd0)+t(umati)%*%umati)
                di[,ii] <- as.matrix(mvrnorm(1,mu_di,var_di))
                ii <- ii+1
                }

           # updating cov-var matrix   | delta
           Lsum <- matrix(0,ncol(umat),ncol(umat))
           for (i in 1:length(unique(all_data[,1]))){
                  dii <- di[,i]
                  Li <- matrix(dii,3,1)
                  Lsum <- Lsum+Li%*%t(Li)}
           sig_dg1 <- riwish(cc+N, psy+Lsum)

           p1_all <- NULL
           for (i in unique(all_data[,1])){
                    xmati <- as.matrix(all_data[which(all_data[,1]==i),2:12])
                    umati <- as.matrix(all_data[which(all_data[,1]==i),2:4])
                    yi <- as.matrix(all_data[which(all_data[,1]==i),13])
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                    dii <- di[,which(as.numeric(colnames(di))==i)]
                    p1 <- pnorm(xmati%*%b1+umati%*%dii)
                    p1_all <- rbind(p1_all, p1)
                    }
          logL_zero <- sum(apply(cbind(y,p1_all), 1, function(x) ifelse(x[1]==0, log(1-x[2]), log(x[2]))))
          if(bb %in% idx_thin){
                   all_tracks[kk,] <- matrix(c(b1,log(det(sig_dg1)), logL_zero),1,length(b0)+2)
                   all_sigmas[,,kk] <- sig_dg1
                   kk <- kk+1
                 }
            b0 <- b1
            z0 <- z1
            bb <- bb+1
            sig_dg0 <- sig_dg1
            }
Sys.time()-watch

# posterior mean and equal tail credible interval
round(apply(all_tracks,2,mean),3)
round(apply(all_tracks,2,function(x) quantile(x, c(0.025,0.975))),3)

library(coda)
effectiveSize(all_tracks)
post_sig <- apply(all_sigmas,c(1,2),mean)
post_corr <- diag(diag(post_sig)^(-0.5))%*%post_sig%*%diag(diag(post_sig)^(-0.5))
post_sig0 <- sapply(1:nrow(all_tracks), function(x) solve(all_sigmas[,,x]))
post_sig1 <- solve(matrix( apply(post_sig0,1,mean),3,3))

##############################################################################
# This r-code describes the MCMC samplings for the severity model for Chapter 4                       #
##############################################################################
trunc_logZi<- function(xmat,b,v, maxi) { # xmat should be truncated xmat given y >0

        forans <- matrix(NA, nrow(xmat),maxi)
        for (i in 1:maxi){
           forans[,i]  <-  matrix(i*(xmat%*%b)-v*lgamma(i+1),nrow(xmat),1)
            }

        A <- apply(forans, 1,max)
        temp1 <- matrix(apply(forans, 2,function(x) x-A),nrow(xmat),maxi)
        ans <- log(rowSums(exp(temp1)))+A
    return(ans)
      }

trunc_logZ <- function(all_data,b,v, maxi) { # xmat should be truncated xmat given y >0
                  ans <- 0
                  for (i in unique(all_data[,1])){
                          xmati <- as.matrix(all_data[which(all_data[,1]==i),2:12])

                          yi <- as.matrix(all_data[which(all_data[,1]==i),13])

                          forans <- matrix(NA, nrow(xmat),maxi)
                          for (i in 1:maxi){
                             forans[,i]  <-  matrix(i*(xmat%*%b)-v*lgamma(i+1),nrow(xmat),1)
                              }
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                          A <- apply(forans, 1,max)
                          temp1 <- matrix(apply(forans, 2,function(x) x-A),nrow(xmat),maxi)
                          ansi <- log(rowSums(exp(temp1)))+A
                          ans <- ans +ansi}
                      return(ans)
      }
 truncl_cmpi <- function(xmat,y,ahat,vhat) {
                                 l_c <- y*(xmat%*%ahat)-vhat*lgamma(y+1)-trunc_logZi(xmat,ahat,vhat,100)
                                 return(sum(l_c))
                                  }
 truncl_cmp <- function(all_data,ahat,vhat) {
                      l_c <- 0
                      for (i in unique(all_data[,1])){
                              xmati <- as.matrix(all_data[which(all_data[,1]==i),2:12])
                              yi <- as.matrix(all_data[which(all_data[,1]==i),13])
                              li_c <- yi*(xmati%*%ahat)-vhat*lgamma(yi+1)-trunc_logZi(xmati,ahat,vhat,100)
                                                  l_c <- l_c+sum(li_c)
                                  }
                              return(sum(l_c))
                              }
# create another variable for random effects
caries <- read.csv("C:\\Users\\h0choo01\\Desktop\\caries.csv", header=T)
caries[,9] <- caries[,9]-9
molar <- c(3,14,1,2,15,16,"a","b","i","j",17:19,30:32,"k","l","s","t")
canine <- c(4:6,11:13,"r","m","c","h",20:22,27:29)
incisor <- c(7:10,"e","f",23:26,"p","o","d","g","q","n")
loc_t <- sapply(caries$Tooth, function(x) if(x %in% molar){res <- 1}else{if(x %in% canine){res <- 2}
else{res <-3}})
loc_t <- matrix(loc_t,nrow(caries),1)
caries_r <- cbind(caries, loc_t)
y <- as.matrix(caries$CariesCount)
umat <- model.matrix(~-1+as.factor(loc_t))
umat <- as.matrix(data.frame(molars=umat[,1], canine=umat[,2], incisor=umat[,3]))
xmat <- as.matrix(data.frame(umat,caries_r[, c(16, 9:15)] ))

all_data <- data.frame(id=caries$SID, xmat, y)
ids <- unique(all_data[,1])
pos_data <- subset(all_data, all_data$y>0)
y_pos <- pos_data$y
xmat_pos <- as.matrix(pos_data[,2:12])  # fixed factor
N <- length(unique(all_data[,1]))

sigma2_acand <- round(diag(solve(t(xmat_pos)%*%(xmat_pos))),4)
sigma2_acand <- sigma2_acand/22
sigma2_ai <- sigma2_acand+c(0.001,0.17,0.4,0.008,0.005,0.005,0.00015,0.0015,0.003,0.005,0.003)
sigma_vcand <- 0.06
sigma2b <- sigma2a <- 10
v0 <- 1
alpha0 <- matrix(rep(0,11),ncol(xmat),1)
tcmpl_a0 <- truncl_cmp(pos_data,alpha0,v0)

BB <- 50000
# accecptance ratio for gamma over iterations
mha <- matrix(NA,BB,1+ncol(xmat))
mhv <- numeric(BB)
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idx_thin <- seq(5001,BB,10)
all_tracks <- matrix(NA,length(idx_thin), length(alpha0)+2 )
bb <- 1
kk <- 1
while(bb < BB+1){
            a_cand <- matrix(mvrnorm(1,alpha0, diag(sigma2_acand,ncol(xmat))), ncol(xmat),1)
            v_cand <- rlnorm(1,log(v0),sigma_vcand)

            # truncated logL for a CMP distribution : y>0
            # for estimating alpha globally
            log_acand<- dmvnorm(c(a_cand), rep(0,ncol(xmat)),diag(sigma2a,ncol(xmat)), log=T)
            log_a0<- dmvnorm(c(alpha0), rep(0,ncol(xmat)),diag(sigma2a, ncol(xmat)), log=T)
            mh_a <- exp(truncl_cmp(pos_data,a_cand,v0)+ log_acand-tcmpl_a0-log_a0)
            u <- runif(1)
            if(mh_a>u){alpha0 <- a_cand
                       tcmpl_a0 <- truncl_cmp(pos_data,alpha0,v0)
                       mha[bb,1] <- 1             } else{ mha[bb,1] <- 0}
            # for estimating alpha individually
            tcmpl_a0i <- tcmpl_a0
            for(j in 1:length(a_cand)){
               a_cand <- alpha0
               a_cand[j] <- rnorm(1, alpha0[j],sqrt(sigma2_ai[j]))
               log_acandi <- dmvnorm(c(a_cand), rep(0,ncol(xmat)),diag(sigma2a,ncol(xmat)), log=T)
               log_ai0<- dmvnorm(c(alpha0), rep(0,ncol(xmat)),diag(sigma2a, ncol(xmat)), log=T)

               mh_aj <- exp(truncl_cmp(pos_data,a_cand,v0)+ log_acandi-tcmpl_a0i-log_ai0)
            # if mh_a=0, accept alpha0
               u <- runif(1)
               if(mh_aj>u){alpha0 <- a_cand
                           tcmpl_a0i <- truncl_cmp(pos_data,alpha0,v0)
                           mha[bb,j+1] <- 1             } else{ mha[bb,j+1] <- 0}
                           }

            log_vcand <- dlnorm(v_cand, 0,0.5, log=T)
            log_v0 <- dlnorm(v0,0,0.5,log=T)
            logq_vcand <- dlnorm(v0,log(v_cand),sigma_vcand, log=T)
            logq_v0 <- dlnorm(v_cand,log(v0), sigma_vcand, log=T)
            mh_v <- min(1,exp(truncl_cmp(pos_data,alpha0,v_cand)+log_vcand+logq_vcand-tcmpl_a0i-
                                 log_v0-logq_v0))
            u <- runif(1)
           if(mh_v>u){
                  v0 <- v_cand
                  tcmpl_a0i <- truncl_cmp(pos_data,alpha0,v0)
                  mhv[bb] <- 1       } else{mhv[bb] <- 0}

           logL_pos <- truncl_cmp(pos_data,alpha0,v0)
           tcmpl_a0 <- logL_pos

   if(bb %in% idx_thin){
           all_tracks[kk,] <- matrix(c(alpha0, v0,logL_pos),1,length(alpha0)+2)

        kk <- kk+1
          }
           bb <- bb+1
            }



83

 apply(mha,2,mean)
 mean(mhv)
 round(apply(all_tracks,2,mean),3)
 round(apply(all_tracks,2,function(x) quantile(x, c(0.025,0.975))),3)
 library(coda)
 effectiveSize(all_tracks)
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CHAPTER 5

FUTURE PLAN

One of our future plans is to expand the usefulness of a CMP model by applying it to NGS (Next

Generation Sequencing) data. Although we have used in for analyzing two genes in this dissertations, the

plan is to undertake a full scale analysis of all genes in the essay. Since different types of dispersion truly

exist on different genes, our suggested CMP model is an ideal choice in terms of accounting for each gene's

dispersion and obtaining more accurate effects. In order to identify significant genes, it is important to

correctly adjust the test results for multiple comparisons. For the final procedure, four performance

measures can be considered: sensitivity, specificity, false discovery rate (FDR), and false nondiscovery rate

(FNR). With these measures, we can also determine the effectiveness of a CMP model based analysis

through simulation studies. We also plan to investigate the effectiveness of the CMP-seq analysis through

biological validations of the findings.

 For Chapter 4, we use the hurdle model for the Bayesian approach method, rather than the zero-

inflated model framework. Another possible future plan would be to perform a Bayesian modeling based on

a zero-inflated framework and to compare the results of both hurdle and zero-inflated Bayesian models from

simulations and/or applications.

  This dissertation has been providing the three different methodologies (Chapters 2-4) based on a

CMP distribution. In the future we will consider extending our methodologies by using different types of

count distributions.
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