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ABSTRACT 

SIZE AND COMPOSITION DEPENDENT ELECTROCHEMICAL OXIDATION 

AND DEPOSITION OF METAL NANOSTRUCTURES 

Olga S. Ivanova 

December 8, 2010 

This dissertation describes 1) size-dependent electrochemical oxidation/stripping 

of gold and silver nanoparticles (NPs), 2) alloying of copper with gold nanoparticles at 

underpotential deposition potentials, 3) electrochemical characterization of AuJAg core

shell structures, 4) characterization of metal nanoparticle alloys by stripping 

voltammetry, and 5) layer-by-Iayer assembly of metal nanoparticle/polymer structures. 

The motivation of this work is to better understand fundamental properties of metal 

nanostructures as a function of size, shape, and composition. 

We synthesized Au and Ag NPs with different size by electrochemical reduction 

of the metal salt directly on the electrode surface and by seed-mediated growth in 

solution followed by chemisorption on a silane functionalized electrode surface, 

respectively. Linear sweep voltammetry results demonstrated a negative shift in peak 

potential for oxidation with decrease in size. For Ag NPs, the oxidation potential is 275 

m V and 382 m V for 8 and 50 nm particles, respectively. In the case of Au NPs, the peak 

potentials are 734 and 913 mV for 4 and 250 nm particles, respectively. This shift in 
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oxidation potential with change in size of metal nanoparticles is consistent with Plieth 

theory. 

Underpotential deposition of copper on Au NPs of different size led to alloying of 

Au and Cu. Several peaks were observed on linear sweep voltammograms. We assigned 

these peaks to different copper locations in the alloy structure: 1) Cu UPD on the surface 

of Au NP, 2) outer-shell Cu-Au alloy, and 3) core ofCu-Au NP alloy. 

Au! Ag core-shell nanostructures were synthesized by seed-mediated growth 

directly on the electrode surface and characterized with electrochemical techniques. 

During electrochemical characterization, dealloying of Au from Au! Ag alloy structures 

occurred by cycling in bromide containing electrolyte solution. Composition analysis 

based on LSV showed that less than 3% of Au remained on the electrode surface. SEM 

images showed that the morphology of Au! Ag nanostructures changes after 

electrochemical oxidation. Particles become bigger and form hollow "bulbs", porous 

structures, and networks. 

We also synthesized Au!Ag alloy nanoparticles through a high temperature seed

mediated growth procedure and characterized them by UV -Vis and LSV at different 

stages of synthesis. LSV results provided information about the composition and atomic 

arrangements of alloy nanoparticles synthesized using 1: 1 Au:Ag ratio, but a different 

synthesis method. After a 24-hour heating time, the (A14nm)Ag NPs did not show the 

oxidation peak for Ag, indicatingtha.t it ~~bilized during the alloy formation. In the case 

of (Agsnm)Au NPs, Ag oxidation peak appeared on LSVs regardless the heating time. 

Electrochemical characterization and UV -vis spectroscopy results for metal 

nanoparticle-polymer multilayer films showed that, with increase in the number of metal-
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polymer layers, absorbance and coverage increases due to an increase of the amount of 

metal assembled on the surface. A red shift in peak wavelength indicates an increase in 

size and aggregation of NPs on the electrode surface. SEM analysis shows that the 

morphology of the film depends on the nature of the metal deposited and the size ofNPs. 

Films of Ag NPs consisted of large aggregated structures on the electrode surface, while 

films of Au NPs were uniform and porous. Experiments on the electron transfer through 

the polymer film to the metal NPs, demonstrated that electron transport depends on the 

number of polymer bilayers and the nature of the NPs. After deposition of 5 polymer 

bilayers, Au oxidation peak disappeared, while Ag oxidation peak was lower compared to 

1 layer, but still observable. 

This dissertation describes a few sets of experiments on fundamental 

electrochemical properties of metal nanostructures. The results of these experiments are 

crucial for the application areas such as catalysis and sensing. It is important to study the 

stability of these nanoparticles, and also their recycling potential, since it can be affected 

by changes in the shape and size of the nanoparticles during the course of a reaction. 

This will not only provide information about electrochemical stability but may also prove 

useful as a method for analyzing nanoparticles and using them as labels for analytical 

applications by electrochemical stripping voltammetry. 
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CHAPTER I 

INTRODUCTION 

1.1 MAIN GOAL AND SUMMARY 

The mail goal of this research was to study stability towards electrochemical 

oxidation of metal nanoparticles as a function of their size and composition directly by 

linear sweep voltammetry. Chapter I provides background information on the research 

findings in the area of nanoparticle stability. Two different theories of size-dependent 

electrochemical oxidation of metal nanoparticles are described. Chapter II describes 

experimental procedures and instrumentation used in this study. Chapter III and IV are 

focused on our research on size-dependent oxidation of silver and gold nanoparticles. 

Chapter V describes our research on size-dependent alloying of copper with gold 

nanoparticles at underpotential deposition (UPD) potentials. Chapter VI describes our 

attempt to electrochemically characterize core-shell nanostructures. Chapter VII shows 

our preliminary data on electrochemical characterization of gold-silver alloy 

nanoparticles. Chapter VIII focused on layer-by-Iayer deposition of metal nanoparticle 

films and their characterization. Chapter IX summarizes the results of this research and 

provides future directions. 
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1.2 MOTIV ATION/OBJECTIVE 

The motivation behind this research was to better understand the properties of 

gold and silver nanoparticles and various alloys. Our findings will not only provide 

useful information about electrochemical stability but may also prove useful as a method 

for analyzing nanoparticle samples for size and composition, and using them as labels for 

analytical applications by electrochemical stripping voltammetry. This is critical 

information for designing highly active catalysts and using nanostructures in 

electrochemical sensing devices. 

1.3 IMPORTANCE OF METAL NANOPARTICLES RESEARCH 

Due to their unique optical,I,2 magnetic/,4 thermal, 5 and electrochemical6
-
s 

properties metal nanoparticles (NPs) have been an object of intensive studies during the 

past decade. Their properties are very different from the bulk forms of the same material 

and strongly related to their size and shape. Over the years researches have developed 

various methods to synthesize metal nanostructures with controlled size and shape.9 This 

led to fundamental research on their size, shape and composition dependent properties. 

Of special interest is the relationship between the particle size, shape and structure with 

h . I I h· I .. 10-14 C emica or e ectroc emica reactIvIty. 

The use of metal nanostructures in electrochemical sensing devices is a promising 

prospect. 15 Mono- or multilayer arrays of conductive nanoparticles assembled on 

electrode surface may be considered as assemblies of nanoelectrodes. 16 Their high 

surface area, reactivity, and ability to facilitate electron transfer make arrays of metal 

nanoparticles useful as electrochemical sensors for vapors. 17-19 
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Nanoparticle-based materials also offer excellent prospects for biological sensing. 

Silver deposition on gold nanoparticles was used to amplify optical signal for DNA-

conjugated gold particles. Mirkin and co-workers developed DNA sensors using 

hybridization-induced changes in distance-dependent optical properties of gold-particle-

modified 0ligonucleotides20 and scanometric DNA array based on silver amplification of 

h b ·d·· 21 Y n lzatlon events. Silver enhancement was also used for detecting single viral 

copies using in situ hybridization, providing an alternative for in situ polymerase chain 

reaction.22 

Transition metal nanoparticles are very attractive to use as catalysts due to their 

high surface-to-volume ratio and high surface energy, which makes their surface very 

active. However, active surface atoms can result in nanoparticle instability during the 

course of its catalytic function. There have been numerous types of reactions that have 

been catalyzed using supported metal nanocatalysts such as oxidations,23 cross-coupling 

reactions 24-33 , electron-transfer reactions 34-38 , hydrogenations,39,40 and fuel cell 

reactions.41 ,42 

Researches have also used metal nanoparticles in areas such as separations,43 

plasmonics,44-46 nanoelectronics,47 therapeutics,48-50 biological imaging and diagnostics. 51-

54 

One issue of importance for these applications that is often ignored is the metal 

nanoparticle stability. Not only is stability important in terms of their resistance against 

aggregation and size and shape transformations, but it is also essential for these metal 

nanostructures to be inert toward oxidation and dissolution. 
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1.4 ELECTROCHEMICAL STUDIES OF METAL NANOPARTICLES 

1.4.1 Oxidation of metal NPs. 

Since metal oxidation is an electrochemical process, previous electrochemical 

studies of metal NPs are relevant to our work, which include studies of electrochemical 

sensing,55-61 electrocatalysis,62-65 electron transport,8,66-72 and metal nanoparticle 

oxidation. 6, 7, 73-76 

Murray and co-workers studied the electrochemistry of monolayer-protected gold 

NPs dissolved in solution or attached to the surface. Au NPs were synthesized using 

different thiolate ligands. Electrochemical measurements were performed in 0.1 M 

tetrabutylammonium perchlorate in dichloromethane solution. In their work, the entire 

NP core becomes oxidized and reduced by single electron events known as quantized 

double layer (QDL) charging for metallic NPs greater than about 1.5 nm in diameter.8,71 

It was shown that QDL charging of monolayer protected cluster is temperature

dependent. 7o Smaller NPs, including those as small as AU13,69 develop a highest occupied 

molecular orbital (HOMO) ~ lowest unoccupied molecular orbital (LUMO) gap, 

indicative of a metal-to-molecule transition.68,69,71 This metal-to-molecule transition can 

be detected optically or electrochemically. The electrochemical energy gap is a 

difference between potentials for the first oxidation and first reduction peaks. HOMO

LUMO energy gaps were studied on Au NPs with different core sizes.71 

A second type of study involves the oxidation and dissolution of the individual 

metal atoms within a NP. This process has been probed mainly by stripping voltammetry 

and microscopy. Voltammetry studies include use of metal NPs as labels in an 
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electrochemical immunoassay, where the stripping voltammogram of the metal NPs 

identifies and quantifies the analyte of interest, usually DNA77,78 or proteins.79,8o Alegret 

et. al. demonstrated direct voltammetric method of detection of DNA hybridization event 

based on AU67 NPs and paramagnetic beads.78 Hsing and co-workers introduced 

electrochemical DNA hybridization detection method using silver enhanced gold NPs 

labels.77 Merkoci et. al. constructed sandwich-like silver-enhanced immunoassay based 

on Au NPs and magnetic beads for detection of proteins.79 Silver enhancement was 

achieved by direct electrochemical reduction of Ag ions on the surface of Ag NPs. 

Detection limits of such assay were reported to be up to 23 fg/mL that are 1000 times 

lower in comparison with direct detection of Au NPs. 

Other researchers used scanning tunneling microscopy (STM) to directly image 

I NP f . . d' 'd' d . I I 73-7581 S b meta s 0 vanous SIzes urmg OXI atlOn un er potentia contro. ' orne 0 serve 

unusual electrochemical stability of metal clusters on the electrode surface/4,75 while 

others demonstrated the negative shift in oxidation potential with a decrease in cluster 

size.73 For example, Kolb examined the stability of copper particles on Au (111) 

surfaces.74 Copper cluster were arranged on gold surfaces by using the tip of a STM. 

They found that these copper clusters were stable to potentials ~200 mV greater than the 

Cu2+ICuO equilibrium potential of a bulk Cu electrode. Penner's group used 

electrodeposition to produce Ag NPs on the surface of a highly oriented pyrolytic 

graphite (HOPG) electrode and also reported an unusual stability of 0.4 to 1.0 nm 

diameter Ag clusters at potentials corresponding to +500 m V larger than the reversible 

potential of bulk silver.75 In contrast with work of Kolb and Penner, Stimming using an 

approach similar to Kolb for nanoparticle formation, investigated the stability of 
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palladium clusters on the Au (111) surfaces.73 They reported the dissolution process of 

Pd clusters of ~5 nm in diameter at potentials ~330 mY, which shifts negative from the 

standard electrode potential for bulk Pd by 370 m V. Their simulations suggest that the 

larger clusters consist of a palladium-gold alloy, which is more stable that pure 

palladium. Ceder et. al. studied electrochemical stability of platinum particles as a 

function of size using electrochemical scanning tunneling microscopy (ECSTM), 

deposited on Au (111) substrate and showed that smaller particles have less stability to 

dissolution in comparison to larger ones.8
) There is some debate on whether the 

metastability of metal clusters is due to particle size or interactions with the electrode 

surface such as mechanical alloying.82
-
84 Microscopy studies raised interesting questions 

about the electronic, structural, and chemical effect of the electrode-metal interaction on 

metal NP oxidation potential and kinetics. These studies lacked direct electrochemical 

measurements. 

Considering the above studies of metal NP oxidation and previous theoretical 

studies, there are two reasons to believe that the oxidation of metal NPs should be size-

dependent. First, theoretical calculations and experimental studies showed that the 

standard redox potential of metal NPs decreases with decreasing size.85
,86 Plieth86 

derived an equation that predicts the shift in oxidation potential of metal NPs as a 

function of size as follows: 

EO = (Eo _ 2yVm ) 
p hulk zFr (Eq. 1.1) 

where y is the surface tension, Vm is the molar volume, z is the number of electrons, F is 

Faraday's constant, and r is the radius. This equation is based on calculations of Gibbs 

free energies associated with the change in surface area; bulk metal becomes dispersed 
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into smaller nanoparticles. Figure 1.1 shows the plot of shift in the standard reduction 

potential of silver particles as a function of their radius. Shifts in potential are more 

dramatic at small sizes and then begin to level off as approaches larger diameters. Small 

particles more easily lose electrons and dissolve in solution compare to big particles due 

to their higher surface energy and fewer Ag-Ag bonds. 

Henglein85 also predicted a decrease in the metal/metal-ion oxidation potential 

with decreasing particle size by calculating the equilibrium potentials from sublimation 

energies and showed that small metal clusters can reduce organics. For example, he 

calculated that the standard reduction potential for a single Ag+/Ag atom is shifted to -1.8 

V vs. NHE, and the silver trimer Ag3 is predicted to have a standard potential of -1.0 V 

vs. NHE, compared to the standard reduction potential Ag macroelectrode, which occurs 

at +0.799 V vs. NHE. 

Experimentally, Brus and co-workers examined the stability of arrays of Ag 

nanoparticles on HOPG and indium tin oxide (ITO) surfaces and reported the operation 

of electrochemical Ostwald ripening associated with particle-size differences. 76 Because 

of different reduction potentials for different sized Ag particles, larger Ag NPs grew 

larger at the expense of smaller Ag NPs. 

The work of Compton and co-workers offers a second explanation for size

dependent electrochemical oxidation of metal NPS.87
-
90 Their work addresses the 

oxidation of an array of metal NPs attached to a conductive electrode surface and based 

on models of electrode arrays and the concentration profile of the oxidized metal ions 

diffusing away from the dissolving NPS.89 Under the assumption that standard electrode 

potential does not shift with particle size, theory, based on diffusion only, predicts that 
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the peak potential (Ep) in a stripping voltammogram does not depend on NP size, but 

shifts positive with increasing coverage of metal atoms provided that the system is 

electrochemically reversible and the diffusion layers of the NPs overlap. When the 

diffusion layers do not overlap, Ep shifts with particle size and is independent of the 

coverage. Under conditions of planar diffusion, the oxidation of Ag NPs with diameters 

in the range from 25 to 100 nm on a basal-plane pyrolytic graphite electrode did not 

exhibit a size-dependent Ep experimentally.87 For irreversible systems, theory predicts 

that Ep shifts negative with decreasing NP size and is independent of metal atom surface 

coverage. 

1.4.2 Electrochemical alloying and dealloying. 

Electrodeposition of alloys is an important area of research due to the differences 

In properties of alloy versus single metal electrodeposits. The properties of the 

electrodeposited alloys can be varied by changing the deposition conditions, such as 

composition of plating solution, current density, potential, temperature, and deposition 

time. While electrochemical deposition on macro scale is well known, the formation of 

bimetallic alloys by electrodeposition on nanometer scale is not well explored. There are 

two reports on the formation of Cu-Au alloy nanostructures by electrodeposition by 

Tanaka group.91,92 They electrodeposited Cu-Au alloy nanoparticles on an amorphous 

carbon film in the underpotential deposition region of Cu2
+. Under conditions of the 

experiment they were able to synthesize decahedral and icosahedral Cu-Au nanoparticles 

when the Cu content was below 30%. With increase of Cu content particles were smaller 

and had a spherical shape. The formation of Au-Cu alloy particles was proposed to be a 
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layer-by-Iayer growth. The region of Cu UPD is in the region of overpotential deposition 

of Au, therefore the alloy nanoparticle growth is initiated by the fonnation of Au nuclei. 

When Au nuclei are fonned, the underpotential deposition of Cu may occur on the 

surface of Au. Only one layer of Cu can be deposited at UPD potentials. Then Au ions 

cover this surface and so forth and so on. Pt-Cu alloy nanoparticles were fabricated by 

simultaneous reduction of two metal salts with hydrazine hydrate.93 Coreduction of two 

metals led to fonnation of poorly crystalline Pt, Cu and Pt-Cu alloy NPs. Annealing of 

these particles alloyed the metals and increased particles size and crystallinity. Using this 

method three different particle size distributions were achieved, > 25 nrn, 12 - 25 nrn and 

<12 nrn. 

Dealloying of one or more elements from the alloy attracted the attention of 

various research groups because of fonnation of porous films with high surface area and 

reactivity. Chemical and electrochemical dealloying is usually used to produce porous 

films. Chemical dealloying or etching involves the dissolution of one metal from alloy in 

a suitable solution. The fonnation of monolithic nanoporous silver by chemical 

dealloying in hydrochloric acid of Ag-AI alloys was demonstrated by Zhang group.94 

Nanoporous Au nanowires were synthesized by chemical etching with nitric acid of Ag

Au alloy nanowires by Searson group.95 It was shown that dealloying of Cu from Cu-Pt 

nanoparticles in nitric acid, led to the fonnation of porous "Swiss-cheese" structure with 

high surface area, which increased the activity of these nanoparticles toward oxygen 

reduction reaction.93 

In the case of electrochemical dealloying, potential is applied to the sample in 

order to electrochemically remove usually the less noble metal from the alloy. Recent 
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report from Erlebacher group demonstrates that the formation of nanoporous gold film by 

chemical dealloying of Ag from Ag-Au alloy occurs in neutral (pH=7) silver nitrate 

solution under potential control.96 It was shown that the morphology of resulting 

nanoporous films are similar to those obtained by etching in nitric acid, but the pore size 

is much smaller which led to threefold increase in surface area. Corcoran97 et. al. studied 

the electrochemical dealloying of Ag from Ag-Au alloys in halide-containing 

electrolytes. They showed that addition of halides affects the critical overpotential for 

dealloying. The critical overpotential decreases with the addition of halides in the order 

of r > Bf > cr > no halides. Addition of halides also affected the porosity of the film 

and it was found that the porosity of the film produced in iodine-containing electrolyte 

was nine times greater than the films prepared without addition of halide ions. The 

formation of porous Ag by electrochemical alloying/dealloying in zinc chloride-l-ethyl-

3-methyl imidazolium chloride ionic liquid was studied.98 The influence of such factors 

as quantity of zinc, applied potential, current, and temperature on the morphology of the 

final Ag structure was investigated. There are no reports on formation of porous metal 

nanopartic1es by electrochemical dealloying. 

1.4.3 Electrochemical characterization of metal NP films. 

It is common now to modify electrodes with nanopartic1es in order to fabricate the 

electrode with enhanced properties. Much of the recent work is driven by application of 

such electrodes in the areas of microelectronics, catalysis, sensing and other fields. There 

are numerous reports on formation of monolayer and multilayer metal nanopartic1e films. 

F ormation of monolayer films starts with modification of the electrode surface with self-
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assembled monolayer, which contains the functional groups that can be attached to the 

metal nanostructures. Multilayer films usually composed of charged polyelectrolytes and 

functionalized metal nanoparticles in a layer-by-Iayer fashion. The properties of such 

films can be tuned by changing the linker molecules, size of metal nanoparticles 

deposited, and number of deposition cycles used. For example, Claus group studied the 

change in resistance of Au/linker molecule multilayer films fabricated by layer-by-Iayer 

method.99 Three linker molecules were used: 2-mercaptoethanol, 1,6-hexanedithiol, and 

1,1O-decanedithiol. The initial resistance of the films varied as a function of length of 

linker molecule (longer molecule led to higher resistance). By applying different 

temperatures for the different periods of time to the films, resistance changes were 

monitored and it was shown that resistance decreases with increase in temperature and 

time of heating. The decrease in resistance was a result of desorption of linker molecules 

and aggregation of Au particles. Chirea et. al. fabricated the polyelectrolyte/Au NP 

multilayers using poly(L-lysine) and characterized films electrochemically using 

[Fe(CN)6] 3-/4- and [Ru(NH3)6]3+/2+.100 It was shown that permeability of studied ions 

highly depends on the charge of the last layer deposited. For the films terminated with 

Au NPs permeability of negatively charged ions was low and decreased with increase of 

number of deposition layers. In contrast, permeability of positively charged ions was 

high and increased with increase of number of layers. When films were terminated with 

poly(L-lysine), permeability was high for negatively charged, and low for positively 

charged ions. Crespilho et. al. studied charge transport and incorporation of redox 

mediators in LBL film containing dendrimer encapsulated Au NPS 101 and considered 
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electron hopping as a charge transport mechanism between Au NPs and polymer in LBL 

film. 

1.5 SUMMARY AND ACCOMPLISHMENTS 

In the main part of this dissertation (Chapter III and Chapter IV) I will present the 

work on oxidation/stripping of silver and gold NPs as a function of NP size. Chapter III 

will be focused on Ag NPs. Their synthesis by seed-mediated growth method, assembly 

on the surface, and size-dependent electrochemical oxidation in sulfuric acid will be 

described. The main accomplishments of this work are: 

Demonstration for the first time of size-dependent stripping of Ag NPs 

directly by linear sweep voltammetry. 

Under our experimental conditions of planar diffusion, constant coverage, 

and electrochemical reversibility, Compton theory based on diffusion only 

predicts a constant Ep with size. This fact suggests that the experimental shift 

in Ep is due to a size-dependent change in EO for Ag/ Ag + 

Constant potential experiments show the fast dissolution rates for small 

particles and slow dissolution rate for big Ag NPs, which is consistent with a 

negative shift in standard potential (Eo) for the smaller Ag NPs. 

Stirring experiments showed approximately the same shift III oxidation 

potentials for 8 and 35 nm Ag NPs, suggesting that diffusion is not the reason 

for the size-dependent shift in oxidation potential. 

Chapter IV describes size-dependent electrochemical oxidation of Au NPs. We 

synthesize Au NP by electrodeposition. The main findings ofthis project are: 
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For the first time, we synthesized Au NPs with different size directly on the 

electrode surface by electrochemical reduction of Au salt at different 

potentials. This method of synthesis provided us with control of the coverage 

of metal on the electrode surface. In addition, it is fast and simple method to 

synthesize Au NPs with controlled size. 

The oxidation potential for Au NPs shift negative with decrease in size. 

Two well resolved oxidation peaks can be seen on LSV of Au NPs of two 

different sizes deposited on the electrode surface at the same time. These 

results demonstrate that the LSV can be used as a tool for metal NP size 

analysis. 

Chapter V describes size dependent alloying of Cu with Au NPs at underpotential 

deposition potentials. By using cycling voltammetry we observed for the first time 

process of alloying of Cu with Au NP of 8 and 60 nm. This alloying behavior happens 

with less extent on bigger particles and does not occur on Au NPs of 250 nm and Au 

film. 

Chapter VI focuses on attempt to characterize Au! Ag core/shell structures 

electrochemically. We synthesized Au!Ag core/shell structures by seed-mediated growth 

directly on the surface of the electrode. Results of electrochemical oxidation in bromide 

electrolyte solution of such synthesized nanostructures led to formation of bulb-like and 

porous nanostructures. It is first time observation of formation of porous Ag 

nanoparticles by electrochemical dealloying of Au from Au-Ag alloy. 
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Chapter VII describes synthesis of Au! Ag alloys by seed-mediated growth in 

solution and their electrochemical characterization. Optical and electrochemical 

properties of these alloys strongly depend on the synthesis conditions. 

Chapter VIII focuses on fabrication of metal NP/polymer multilayer films by 

electrostatic attachment of Au and Ag NPs through positively charged polymer using 

layer-by-Iayer procedure. We characterized these films by UV-Vis spectroscopy, 

Scanning Electron Microscopy (SEM), and LSV. The morphology of films was different 

for different metal NPs deposited on the surface. 

Chapter IX summarizes and provides future directions of this research. 

The work presented in this dissertation may inspire future fundamental and 

applied studies in the area of electrochemistry of nanomaterials. 
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CHAPTER II 

EXPERIMENTAL 

Figure 2.1 shows the general scheme of experiments used in this work. The 

experimental route includes the following steps: substrate preparation, synthesis of metal 

NPs, assembly of metal NPs on the electrode surface and their characterization with 

various techniques. All these steps will be described in details in this chapter. 

2.1 SUBSTRATES 

Indium Tin Oxide (ITO) coated glass slides. Indium tin oxide (ITO or tin

doped indium oxide) is a solid solution of indium (III) oxide (ln203) and tin (IV) oxide 

(Sn02), typically 90% In203, 10% Sn02 by weight. It is widely used because of its two 

main properties: electrical conductivity and optical transparency. The unpolished float 

(soda - lime) glass coated ITO slides (Delta Technologies, LTD) were used in 

experiments as an electrode material for electrochemical experiments and for UV -Vis 

measurements. These slides have a typical surface roughness of <0.2 Ilm/20 mm, peak

to-peak. The ITO coating is applied over the Si02, with the coating on both or just one 

surface of the glass with a resistance of 8-12 ohms. Slides were cut with a diamond pen 

into 25x7 mm slices, and then cleaned by sonication for 20 min each in acetone, ethanol, 

and 2-propanol before drying under a stream ofN2 and used in experiments. 
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Silicon. Silicon substrates were used for characterization of nanostructures with 

Atomic Force Microscopy (AFM). A p-type <100> silicon wafer (purchased from 

Silicon Quest International, CA) was cut with a diamond pen into smaller, approximately 

5x5 mm pieces. Next, every piece was cleaned with piranha solution, rinsed with 

nanopure water, and dried under a stream ofN2• The clean silicon slides were then used 

as substrates for NP assembly and for their AFM characterization. 

Gold film. The gold film was a silicon substrate sputter-coated with 250 A Ti/W 

and 2000 A of Au (Lance Goddard Assoc., Foster City, CA). It was used for as an 

electrode material in cyclic voltammetry measurements. 

2.2 SOLUTIONS 

Piranha solution. Piranha solution is a mixture of sulfuric acid (H2S04) and 

hydrogen peroxide (H20 2) in a ratio of 3:1, respectively. It is commonly used to clean 

organic residues off substrates. The solution may be prepared before application or 

directly applied to the material by adding hydrogen peroxide first, following by sulfuric 

acid. The piranha solution was used to clean silicon and gold substrates. All operations 

were performed under a hood. Substrates were kept in piranha for 20 min, then rinsed 

with nanopure water several times, rinsed with isopropyl alcohol (lPA) and dried under a 

stream ofN2• 

Au nanoparticie (Au NP) seed. We used the procedure described by Murphyl02 

and co-workers to chemically synthesize Au NPs of 4 nm average diameter. In order to 

prepare the Au NPs seed solution, the following solutions are required: 0.01 M trisodium 

citrate salt, 0.01 M HAuCI4, and 0.1 M sodium borohydride (NaBH4). Hydrogen 
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tetrachloroaureate trihydrate (HAuCI4x3H20) was synthesized in the lab according to a 

literature procedure. I03 Trisodium citrate and sodium borohydride were used as received 

from Bio-Rad Laboratories and Sigma-Aldrich respectively. A 20 mL aqueous solution 

of 0.25 mM HAuCl4 and 0.25 mL trisodium citrate was prepared. Next, 0.6 mL of ice

cold 10 mM NaBH4 was added at once into the solution with rapid stirring for 2h. The 

solution turned red immediately after NaBH4 addition, indicating Au NP formation. In 

this procedure NaBH4 serves as a reducing agent, citrate as a capping agent to stabilize 

the particles by electrostatic repulsion, which prevents aggregation. The average particle 

size was 3-5 nm according to literature lo2 and our previous work. These particles were 

attached to an electrode surface and served as an object in the study of the oxidation 

properties of metal nanoparticles as a function of size and also as a nucleation sites for 

the growth of Au and Ag nanostructures directly on the electrode surface. 

Ag nanoparticle (Ag NP) seed. Ag NP seeds were prepared using a similar 

approach that described for Au NP seeds. In this case, a 20 mM of aqueous solution of 

0.25 mM silver nitrate (AgN03) and 0.25 mM trisodium citrate was prepared. Ice-cold 

10 mM NaBH4 (0.6 mL) was injected at once into the solution and stirred for 2h. The 

solution went from colorless to yellow immediately after the addition of NaBH4. The 

average particle size was 8-12 nm according to AFM and SEM measurements. The 

particles in this solution were used as a seed solution for chemical synthesis of Ag NP 

with different size, as described in Chapter III. 

Au growth solution. Gold growth solution was used for synthesis of Au 

nanostructures directly on the electrode surface. It contains 4.5xI0-4 M HAuCI4, 0.1 M 

CTAB (cetyltrimethylammonium bromide), and 5.0xI0-4 M ascorbic acid. Appropriately 
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functionalized with organic linker molecule and Au NP seeds Glass/ITO slides were 

immersed in Au growth solution for 1 hour at 25°C. This led to the seed-mediated 

growth of Au nanoparticles (Au NPs), nanorods (NRs) and other shape nanostructures. 

Ag growth solution. Ag growth solution was used for the synthesis of Ag 

nanostructures on the surface of Glass/ITO, 0.29 g (8 x l0-4 mol) of CTAB was first 

dissolved by sonication (Branson, Connecticut, Model 8510) in 10 mL of pH 10.6 

phosphate buffer leading to a ~0.08 M CTAB solution. Next, 0.25 mL of 0.01 M 

AgN03, and 0.50 mL of freshly prepared 0.1 M ascorbic acid solutions were added in 

that order. Au seed-coated Glass/ITO slides were placed in this solution to grow Ag 

nanostructures. The substrate was immersed in growth solution and kept in it for 30 min 

at 28°C. 

2.3 PROCEDURES 

Functionalization of GlasslITO and SiiSiOx with organic silane linker. In 

order to attach metal NPs to the electrode surfaces, substrates were functionalized with 

aminopropyltriethoxysilane (APTES) or mercaptopropyltrimethoxysilane (MPTMS) by 

heating for 30 min in a solution containing 10 mL of 2-propanol, 100 ilL of APTES or 

MPTMS and 4 to 5 drops of nanopure water. In this step, the surface hydroxyl groups 

(-OH) of the glass or silicon react with the methoxy (-O-CH3) group of MPTMS or 

ethoxy (-O-CH2-CH3) group of APTES covalently to form a monolayer. The substrate 

surface modified with MPTMS produces a thiol (-SH) terminated surface. In the case of 

APTES, the substrate surface is amine terminated. Structures of APTES and MPTMS 
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molecules and the chemically functionalized Glass/ITO or Si/SiOx substrates are 

schematically illustrated on Figure 2.2. 

Attachment of metal NPs to the surface of substrate. Au and Ag nanoparticles 

were attached to the functionalized Glass/ITO or Si/SiOx surfaces by simple immersion 

of the substrate in a colloidal solution ofnanoparticles as shown in figure 2.3. Au and Ag 

NPs strongly attach to the -SH group of MPTMS through a covalent bond. Metal NPs 

attach to the APTES - functionalized surface through electrostatic interactions between 

negatively charged particles and positively charged amine - terminated surface of the 

substrate. In this case, one is able to control the coverage of NPs on the surface by 

varying the soaking time in the colloidal NPs solution. 

Chemical growth of metal nanostructures directly on the electrode surface. 

The functionalized Glass/ITOIMPTMS/ Au NPs slide was placed in the Au or Ag growth 

solution described above for 1 hour or 30 min, respectively. The growth solutions 

remained colorless throughout the entire time indicating that reduction of Au3
+ to Auo and 

Ag + to AgO did not occur in solution. The scheme of the entire growth procedure starting 

from functionalization of substrate is shown in Figure 2.3. The attached Au NPs seeds 

act as nucleation sites for growth of gold and silver nanostructures, leading to formation 

of variety of shapes. Most of the nanostructures growth directly on the surface had a 

spherical/near spherical shape (-90%), also growth of some rods, triangle and hexagons 

were observed. 

Construction of multilayer polymer and metal nanoparticle films using layer

by-layer procedure. A layer-by-Iayer procedure was used in order to construct 

multilayer films of polymers and mixed films of polymer and metal nanoparticles. 
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Figure 2.4 (A) shows the steps for the preparation of multilayer polymer films. First, the 

surface of the Glass/ITO was functionalized with APTES as described above in this 

section. Then, the Glass/ITO/ APTES slide was immersed in an aqueous solution of 5% 

wt. polystyrene sulfonate (PSS), which is a negatively charged polymer. Adsorption of 

PSS is possible due to electrostatic interactions between the positively charged amine -

terminated surface of Glass/ITO and the negatively charged polymer. In step 3, the 

Glass/ITO/ APTES/PSS substrate was immersed in a 5% wt. aqueous solution of Poly

(diallyldimethylammonium) (PDDA), which is positively charged. Adsorption in this 

step occurs between the negatively charged PSS and the positively charged PDDA 

molecules. Each deposition cycle reverses the surface charge leaving the surface primed 

for the next oppositely-charged polymer. The immersion time for both polymers was 20 

min in all experiments. The same approach was used to assemble metal 

nanoparticle/polymer multilayer films. Here we substitute PSS with negatively charged 

metal nanoparticles (see Figure 2.4 (B)). Immersion time for metal nanoparticles was 20 

min. It is theoretically possible to build an infinite number of layers. 

2.4 CHARACTERIZATION AND INSTRUMENTATION 

2.4.1 Electrochemical Methods 

Electrochemical techniques are experimental methods developed to study the 

chemical phenomena associated with electron transfer at the interface of an electrode and 

24 



(A) 
OH OH OH OH 
I I I I 

GlassllTO 

(1) 1 APTES 

NH+NH+ NH+ NH+ 
~3~3~3~3 
iii i 

Glass/ITO or Si/SiOx 

1 
Polymer 

(2) PSS 

Glass/ITO or Si/SiOx 

1 
Polymer 

(3) PDDA 

R 
E 
p 
E 
A 
T 

M 
U 
L 
T 
I 
P 
L 
E 

L 
A 
Y 
E 
R 
S 

OH OH OH OH 
(8) I I I I 

Glass/ITO 

(1) 1 APTES 

GlassllTO or Si/SiOx 

1 
Au or Ag 

(2) NPs 

Glass/ITO or Si/SiOx 

1 
Polymer 

(3) PDDA 

+++++++ 

R 
E 
P 
E 
A 
T 

M 
U 
L 
T 
I 
P 
L 
E 

L 
A 
Y 
E 
R 
S 

Figure 2.4 Layer-by-Iayer procedures (A) for multilayer polymer films (B) for 

multilayer polymer/metal nanoparticle films. 

25 



solution. This section will describe the electrochemical cell set-up, and techniques that 

were used in the studies. Figure 2.5 shows the basic electrochemical set-up that was used 

in this research. The main components of the system are: the electrochemical cell, which 

consists of three electrodes and a beaker with electrolyte, a potentiostat, and a computer 

for data acquisition and analysis. 

Electrochemical cell. The electrochemical cell consists of three electrodes: 

1) Working electrode - an electrode on which the electrochemical reaction occurs. 

2) Reference electrode - is a half cell with a known reduction potential. Its role is to act 

as a reference in measuring and to control the working electrode potential. It does not 

pass any current. 

3) Counter electrode - an electrode used to close the circuit. It passes all the current 

needed to balance the current observed at the working electrode. 

In this work, Glass/ITO/linker/Metal NPs served as a working electrode, Ag/AgCI (3M 

KCl) was the reference electrode and a Pt wire was the counter electrode. The main 

requirement for the reference electrode is that its potential must be stable. The Ag/ AgCI 

electrode is usually in the form of silver wire coated with AgCl. The coating is done by 

making silver the anode in an electrolytic cell containing hydrochloric acid (HCI). The 

electrolyte solutions used in electrochemical measurements were varied depending on the 

goal of the experiment and will be specified for each particular experiment in the 

following chapters. 

Potentiostat. The potentiostat is an electronic instrument required to run most of 

the electro analytical experiments. The system measures and controls the voltage 
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---------------------------------------------- -----------------

difference between the working electrode and reference electrode and also measures the 

current flow between the working electrode and counter electrode. CH Instruments 

(Austin, TX) 630C electrochemical workstation was used in all experiments. 

Linear sweep voltammetry (LSV) - stripping voltammetry. Stripping 

voltametry is a widely used electroanalytical tool that is applied to determine the 

composition and amount of species present on the electrode surface. LSV is a method in 

which the current at a working electrode is measured while the potential between the 

working electrode and a reference electrode is swept linearly in time. The excitation 

potential-time waveform and current-potential response in LSV are shown on Figure 2.6. 

The slope of excitation wave is equal to: 

M 
s[ope=--

Mime 
(Eq.2.1) 

and has units of volts per unit of time, and is generally called the scan rate of the 

experiment. Oxidation or reduction of species is registered as a peak in the current signal 

at the potential at which the species begins to be oxidized or reduced. Figure 2.7 shows 

the typical stripping voltammogram of Glass/ITO/ APTES/ Ag NPs (~8nm). The scan 

begins at 0.1 V, potential at which silver is stable. Then, the potential is swept in the 

positive direction and the current measured. The negative flow of current with a 

maximum at ~280 m V corresponds to the oxidation of Ag according to the reaction: 

A 0 - A + g, -e ~ gaq (Rxn.2.1) 

During the scan the current reaches the maximum and then drops back to the baseline 

once all of the Ag is oxidized to Ag+. The resulting i-V curve can be used to determine 

the amount of Ag oxidized. The area under the oxidation peak is the charge passed 

during the oxidation reaction. The SI unit of charge is Coulomb (C). According to 
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Faraday's first law, the mass of a substance changed at an electrode during the reaction is 

directly proportional to the quantity of electricity transferred at that electrode. Faraday's 

law is expressed by the following equation: 

mol =iL 
nF 

(Eq.2.2) 

where mol is the number of moles of oxidized or reduced species, Q is the electric charge 

passed through the working electrode during the reaction (area under the peak), n is the 

number of electrons involved in the reaction, F is the Faraday's constant 

(96,485 Cxmor1
). LSV was used in this work to study the electrochemical oxidation of 

metal nanoparticles, and also for underpotential deposition (UP D) of copper. 

Cyclic voltammetry (CV). Cyclic voltammetry is very similar to LSV. In this 

method, the voltage is swept between two values at a fixed rate. However, when the 

voltage reaches E2 (Figure 2.8 - Excitation wave), the scan is reversed and the voltage is 

swept back to E1• A typical expected response of a reversible redox couple during a 

single scan is shown in Figure 2.8. It is assumed that only the oxidized form 0 is initially 

present. The forward sweep produces an identical response to that seen for the LSV 

experiment. During the reverse scan, equilibrium moved back and R molecules 

(produced in the forward scan) are reoxidized back to O. For a reversible 

electrochemical reaction, the CV recorded has certain well defined characteristics: 

1. The voltage separation between the current peaks is 

(Eq.2.3) 

2. The positions of the peak voltages are not affected by the voltage scan rate 

3. The ratio of the peak currents is equal to one 
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(Eq.2.4) 

4. The peak currents are proportional to the square root of the scan rate u 

CV was used to study the electrochemical oxidation - reduction of Au3
+ for the 

electrochemical deposition of Au nanostructures and Cu2
+ for the UPD studies. 

Chronocoulometry (CC). Chronocoulometry involves the measurement of the 

charge - versus - time response to an applied potential step waveform. A potential step 

waveform and the response for a CC experiment are shown in Figure 2.9. The 

experiment typically starts at a potential EJ at which there is no electrolysis. The 

potential is then changed instantaneously (stepped) to a value that leads to oxidation or 

reduction of species in solution and is held at that potential for the desired time period ("C). 

In a single potential step experiment, the experiment is complete at the end of this step. 

In a double potential step experiment, the potential is then stepped to a third potential at 

which the species formed on the first step is reelectrolyzed. The single step potential 

method was used in this work. The equation for the charge (Q) versus time ("C) is 

obtained by integrating the Cottrell equation: 

2nFACDI/2rl/2 
Q = 112 + Qd/ + Qi 

1f 
(Eq.2.5) 

were n is the number of electrons, F is the Faraday's constant, A is the surface area, Cis 

the concentration, D is the diffusion coefficient, T is the time, Qdl is the charge due to 

double layer charging, and Qi is the charge due to reaction of adsorbed species. 

33 



Excitation 

""""" 
E2 

> --_ ... _- -
........ 

... -; .,... 

-= GJ ~ .-
0 El 
~ 

Time, [sec] 

Response 

""""" U ........ 

Time, [sec] 

Figure 2.9 The excitation waveform and current-potential response in a CC 

experiment. 

34 



Applications of CC include the measurement of electrode surface areas, diffusion 

coefficients, concentrations, kinetics of heterogeneous electron transfer reactions and 

chemical reactions coupled to electron transfer, adsorption, and the effective time 

window of an electrochemical cell. In this work CC was used to electrochemically 

deposit Au NPs of different size, by varying the deposition potential and keeping the 

amount of Au deposited constant. 

2.4.2 Ultraviolet - Visible Spectroscopy (UV-vis) and Localized Surface Plasmon 

Resonance (LSPR) 

UV-Vis spectroscopy data were obtained using a Varian Cary 50 Bio UV-Visible 

Spectrophotometer. It measures the intensity of light (I) passing through a sample, and 

compares it to the intensity of light before it passes through the sample (10). The ratio I1Io 

is called the transmittance (T), and is usually expressed as a percentage (% T). The 

absorbance, A, is based on the transmittance: 

A = -log(%T 1100%) (Eq.2.6) 

The basic parts of a spectrophotometer are a light source (UV and visible), a 

monochromator to separate the different wavelengths of light, a sample holder, a 

detector, and a signal processor and readout. For molecules, the absorption of light in the 

UV -vis region occurs when the light energy matches the energy required for a possible 

electronic transition within the molecule. Some of the light intensity will be absorbed as 

the electron is promoted to a higher energy orbital. A spectrophotometer records the 

wavelength at which the absorption occurs, and the degree of absorption at each 

wavelength. 
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Au or Ag nanostructures absorb strongly in the visible region due to the well

known localized surface plasmon absorption. The excitation of conducting electrons of a 

metal by light is referred to surface plasmon resonance (SPR) for planar surfaces or 

localized surface plasmon resonance (LSPR) for nanometer-sized metallic structures. For 

the case of LSPR, light interacts with particles much smaller than the incident wavelength 

and leads to a plasmon that oscillates locally around the nanoparticle. Surface plasmon 

absorption bands are characteristic of the type of material and are highly sensitive to the 

size, and shape of nanostructures. In the case of nanostructures for which one dimension 

is greater than the other, such as high aspect ratio nanorods (NRs) and nanowires (NWs), 

the LSPR band splits into two peaks. The shorter wavelength band is called transverse 

plasmon absorption band while the longer wavelength one is called the longitudinal band. 

The transverse band is produced by the oscillation of the electrons perpendicular to the 

major axis of the rods while the longitudinal band is caused by the oscillation of the 

electrons along the major axis of the NRs or NWs. The greater the aspect ratio (length 

divided by width) of the nanostructure, the greater the Amax of the longitudinal band. 

UV -vis spectroscopy was used to characterize the solutions of different size silver 

NPs, Au! Ag alloy NPs solutions, and Au or Ag NPs or alloy NPs attached to the 

electrode surface. 

2.4.3 Scanning Electron Microscopy (SEM). 

Conventional light microscopes use a series of glass lenses to bend light waves 

and create a magnified image. The SEM creates the magnified image by using electrons 

instead oflight waves. Schematic drawing of the SEM is shown in Figure 2.10. 
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Essential components of all SEMs include the following: electron source (gun), 

electron lenses, sample stage, detectors for all signals of interest, display and data output 

devices. A beam of electrons is produced at the top of the microscope by heating of a 

metallic filament, most commonly made of tungsten and lanthanum hexaboride. This 

beam travels downward through a series of magnetic lenses designed to focus the 

electrons to a very fine spot. Near the bottom, a set of scanning coils (not shown) moves 

the focused beam back and forth across the specimen, row by row. As the electron beam 

hits each spot on the sample, other electrons (backscattered or secondary) are ejected 

from the sample. Detectors collect the secondary (SE) or backscattered (BSE) electrons, 

and convert them to a signal that is sent to a viewing screen, producing an image. As 

shown in Figure 2.11, these are the most common type of electrons used to obtain 

topographical information about the sample. 

Detection of secondary electrons is the most common imaging mode. Secondary 

electrons produced when the energy from the primary beam electrons causes the atoms of 

the specimen to ionize. As a result of this ionization, electrons are emitted from the 

sample. These electrons are called secondary electrons and have energies which are 

typically less than 50 eV. Due to their low energy, these electrons originate within a few 

nanometers from the surface (50 to 500 A) and it is necessary to collect them with a 

positively biased collector in order to form an image. Bright areas on the image 

correspond to areas of the sample where large quantities of secondary electrons were 

emitted relatively to other areas of the sample. 

Backscattered electrons have energies comparable to those of the incident beam. 

Because these electrons move fast, they travel in straight lines. The negatively charged 
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electrons are attracted by positively charged nuclei, when the angle at which the electrons 

hit the sample is correct, then, instead of being captured by nuclei, they will circle around 

the nuclei and come back out of the sample without slowing down. The number of 

backscattered electrons increases with increase of the size of the nuclei, which can be 

used to obtain an image that represents the sample composed of different elements. 

SEM can provide topographic, morphological, compositional and crystallographic 

information about the sample. The strengths of SEM are: easy operation, rapid data 

acquisition, and minimal sample preparation. The drawbacks of SEM are: it is limited 

to conductive or semiconductive samples, it requires vacuum to operate, and it damages 

the sample. 

In this work, a Carl Zeiss SMT AG SUPRA 35VP field emISSIOn scanning 

electron microscope (FESEM) operating at an accelerating voltage of20.00 kV and using 

an in-lens ion annular secondary electron detector was used. 

2.4.4 Atomic Force Microscopy (AFM). 

AFM images were collected with a Veeco Metrology Multimode Nanoscope lIlA 

atomic force microscope operating in the tapping mode. This technique, unlike SEM, 

allows imaging of the samples with atomic resolution. A typical AFM setup is shown in 

Figure 2.12. The main components of AFM are a micro scale cantilever with a nanosharp 

tip, a piezoelectric scanner, a laser source, and a photodiode detector. AFM tips and 

cantilevers are microfabricated from Si or ShN4 and typically, the tip radius varies from a 

few to lOs of nm. The tip is scanned over the surface with feedback mechanisms that 
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enable the piezoelectric scanners to maintain it at a constant force or height above the 

sample surface. The laser is focused onto the back of a reflective cantilever. The 

interactions between the tip and the surface are detected as deflections of a cantilever 

during scanning, measured by deflections of a laser beam reflected off the metal coating 

on a cantilever. The laser beam is reflected on to the photocell and recorded as 

differential electrical signal. The tip movement during scanning changes the amount of 

reflected beam to the photocell thus producing different electrical signals that are 

translated further to topographical images. The tip-to-sample distance is controlled by 

the feedback mechanism and the piezoelectric tube capable of moving the sample in the z 

direction in sub - angstrom resolution. The sample is scanned in the x and y direction. 

The most common modes of operation are contact and tapping. In the contact 

mode, the tip scans the sample in contact with the surface. In contact mode AFM, the 

force between the tip and the surface is held constant at a desired value called the 

setpoint, causing static cantilever deflection during scanning. If the measured deflection 

varies from the setpoint, the feedback loop changes the voltage applied to the 

piezoelectric scanner which raises or lowers the surface appropriately to restore the 

desired deflection. The topography of the surface is measured by plotting the distance the 

surface raised or lowered as a function of x-y tip position while maintaining constant 

deflection. 

Tapping mode AFM relies on oscillating the cantilever at its resonant frequency 

by a piezoelectric crystal, and maintaining the amplitude of this oscillation constant by a 

feedback loop. The vibrating tip is brought close to the surface to a distance of about 10 

A, and the intermittent contact with a sample surface changes the oscillating amplitude. 
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The taller features on the surface decrease the amplitude of the oscillation while 

depressions cause an increase in the amplitude. This change is detected and the tip 

position is modulated to return to the previous amplitude by a feedback loop. 

AFM provides a three - dimensional map of the sample surface. In contrast to 

SEM, one can use conductive and insulator samples and the experiments can be 

performed under ambient conditions or in solutions. One disadvantage of AFM versus 

SEM is that it is much slower. It takes a few minutes to scan a 1 0 ~m x 1 0 ~m image. 
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CHAPTER III 

SIZE-DEPENDENT ELECTROCHEMICAL OXIDATION OF SILVER 

NANOPARTICLES 

Here we quantify the electrochemical oxidation of Ag nanoparticles (NPs) as a 

function of size by electrostatically attaching Ag NPs synthesized by seed-mediated 

growth in the presence of citrate (dia. = 8 to 50 nm) to amine-functionalized Glass/ITO 

electrodes and obtaining a linear sweep voltammogram from 0.1 V, where AgO is stable, 

up to 1.0 V and observing the peak potential (Ep) for oxidation of AgO to Ag+. 

Electrostatic attachment to the organic linker presumably removes direct interactions 

between Ag and ITO and allows control over the total Ag coverage by altering the 

soaking time. This is important as both metal-electrode interactions and overall Ag 

coverage can affect Ep. Ep shifts positive from an average of 275 to 382 mV as the Ag 

NP diameter increases for a constant Ag coverage and under conditions of planar 

diffusion, suggesting a shift in Ep due to a thermodynamic shift in EO for the Ag/ Ag + 

redox couple with size. The negative shift in Ep with decreasing Ag NP radius follows 

the general trend predicted by theory and demonstrated by previous qualitative 

experimental observations. 
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3.1 INTRODUCTION 

There are two main reasons to expect size-dependent electrochemical oxidation of 

metal nanoparticles. First, theoretical and experimental studies showed that the standard 

redox potential of metal nanoparticles decreases with decreasing size.85
,86 For example, 

Henglein predicted large negative shifts in the redox potential for small Agn clusters (n=l 

to 15) as the number of atoms in the cluster decreases.85 Plieth similarly predicted a 

negative shift in the redox potential proportional to (llradius) for small nanoparticles 

relative to the bulk metal based on the difference in surface free energy between bulk 

metal and the same number of atoms dispersed into smaller NPs.86 According to Plieth, 

the standard electrode potential EO p of a small metal particle shifts negatively via 

Equation 3.1 

EO = (Eo _ 2yVm ) 
p hulk zFr (Eq.3.1) 

where y is the surface tension, V m is the molar volume, z is the lowest valence state, F is 

Faraday's constant (96,485 Cxmor1
), and r is the radius. Experimentally, Brus and co-

workers showed that large Ag NPs grow at the expense of small NPs on a conductive 

surface (Ostwald ripening) due to the predicted negative shift in oxidation potential for 

smaller sizes.76 The work of Compton and co-workers offers a second explanation for 

size-dependent electrochemical oxidation of metal nanoparticles.87
-
9o Their work 

addresses the oxidation (stripping) of an array of metal nanoparticles attached to a 

conductive electrode surface. The different electrochemical behavior is based on the 

size-dependent diffusion profiles of the metal ions that emanate from the oxidizing array 

of nanoparticles. Under the assumption that EO does not shift with particle size, theory 
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predicts that in electrochemical reversible systems the peak potential (Ep) depends on the 

metal coverage, but not the NP radius under conditions where the diffusion layers of the 

nanoparticles overlap (planar diffusion) and vice versa when they do not overlap.89 Under 

conditions of planar diffusion, the oxidation of Ag NPs (diameter = 25 to 100 nm) on a 

basal-plane pyrolytic graphite electrode did not exhibit a size-dependent Ep 

experimentally.87 In irreversible systems, theory predicts that Ep is independent of metal 

coverage but shifts negative as the NP radius decreases. 

A number of microscopy studies have shown that tiny clusters of eu on AU74 and 

Ag on graphite75 «1.0 nm) exhibit greater stability against electrochemical oxidation 

(+200 to +500 mY) compared to the bulk metal, contrasting the predictions of Plieth86 

and Henglein.85 These results raise interesting questions about the electronic, structural, 

and chemical effects of the electrode - metal interaction on metal NP oxidation potential 

and kinetics.74,75,lo4 These studies lacked direct quantitative measurements of the shift in 

oxidation potential of a metal as a function of size that could be compared to Eq 3.1. 
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3.2 EXPERIMENTAL DETAILS 

General scheme of experiments used in this study is shown in Figure 3.1 Main 

steps include: 1) chemical synthesis of Ag NPs of different size by seed-mediated citrate 

reduction method, 2) attachment of Ag NPs to the electrode surface, 3) characterization 

of these NPs by UV-vis, SEM and LSV. 

Synthesis of AgNPs of different size. We used the procedure described by 

Pyatenko et al. to synthesize citrate-capped spherical AgNPs with controlled size. 105 A 

solution containing x mL of 0.01 M AgN03 and 100-x mL of water was brought to 

boiling followed by the addition of 2 mL of 1 % trisodium citrate solution by weight and 4 

mL of Ag NP seed solution (described in Chapter II) for a total volume of approximately 

106 mL. After boiling with intense stirring, the solution was cooled to room temperature, 

analyzed by UV-vis spectroscopy and used. The amount of AgN03 (Ag+) in the solution 

controlled the eventual size of the Ag NPs by altering the Ag+IAg Seed (n+/ns) mole 

ration in solution, where n+ is the mol Ag + and ns is the total mol of Ag in the Ag NPs. 

As the ration of Ag + I Ag seed increased, the size of Ag NPs increased. The ratios studied 

included 0:0 (Ag seed only), 5:1, 10:1,20:1,40:1,60:1 and 100:1. This required x = 0, 

0.5, 1.0, 2.0, 4.0, 6.0 and 10.0 mL of AgN03 in the solution, respectively, as shown in 

Table 3.1. The mechanism of NP growth was described by Henglein in 1999106 and 

schematically shown in Figure 3.2. According to this mechanism the growth of Ag NPs 

is conducted via the reduction of silver ions on their surface. 
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Ag +1 Ag seed (D+/D8) Vol H20 Vol 0.01 M AgN03 VoI2.5x10-4 M Ag Seed 

Ratio (mL) (mL) (mL) 

5 99.5 0.5 4.0 

10 99.0 1.0 4.0 

20 98.0 2.0 4.0 

40 96.0 4.0 4.0 

60 94.0 6.0 4.0 

100 90.0 10.0 4.0 

Table 3.1 Compositions used for seed-mediated synthesis of various - sized Ag NPs 

Vol 1 % Trisodium citrate 

(mL) 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 



VI 
o 

Ag Seed 

0
-::-. 

I. \ 
, J 
~ '/ 
"-

+ Ag+ 

Surface 
reduction 

Na-citrate 
-@ 

Figure 3.2 Schematic of Ag NP growth by citrate reduction. 

--, 
Ag+ ,,_ © X Ag+ ,,-(8/ Ag ~) 

\' '/ 
'\; "/ .... _-



Attachment of Ag NPs to the GlassllTO electrode surface. Glass/ITO slides 

were cleaned and functionalized with APTES as described previously in Chapter II. 

Then the Glass/ITOINH2 substrate was directly immersed into an aqueous solution of the 

negatively - charged citrate - capped Ag NPs for 10 to 60 minutes, leading to 

electrostatic attachment to surface NH3 + groups. The time was varied to keep the 

constant Ag coverage for different particle sizes. The time was generally shorter as the 

particle size increased. The functionalized Glass/ITOINH3 + / Ag NP electrodes were 

removed from solution, rinsed with nanopure water, and dried under N2 before 

electrochemical analysis. 

Linear sweep voltammetry measurements. The electrochemical cell consisted 

of three electrode with Glass/ITOINH//Ag NP as the working electrode, a Pt wire as an 

auxiliary electrode and an Ag/ AgCI (3 M KCI) reference electrode. All of the 

electrochemical measurements were performed in 0.1 M H2S04 electrolyte solution at a 

scan rate of 1 mV/s with a potential range of 0.1 to 1.0 V. 

51 



3.3 RESULTS AND DISCUSSION 

Figure 3.3 shows a photograph of solutions of Ag NPs synthesized with the 

different Ag + / Ag seed ratios. The color of the solution changed from light yellow to a 

cloudy greenish with increasing n+/ns, which is consistent with an increasing size of the 

Ag NPs as the n+/ns ratio increases. Immediately after the synthesis, all Ag NP solutions 

were characterized by UV-visible spectroscopy. Samples were diluted in order to keep 

the amount of silver constant in each solution. Figure 3.4 shows the UV -vis absorbance 

spectra of solutions of Ag NPs with different n+/ns ratios. The dashed vertical line in all 

spectra corresponds to the "'max for the surface Plasmon band of the Ag seed NPs (394 

nm). The solid horizontal line corresponds tot eh absorbance maximum of the surface 

Plasmon band for the Ag seed NPs (Abs~ 1.1). The position of the plasmon peak was 

~400 nm for n+/ns from 5 to 40, however, the intensity increased slightly as the ratio 

increased. This is consistent with Mie theory for absorbance/scattering of spherical NPs 

as a function of size. The UV -vis spectra show that with increasing n+/ns ratio, the 

position of the surface Plasmon band also red shifts, especially for ratios higher than 40. 

This is also consistent with an increase in Ag NP size. The surface Plasmon band in the 

spectra for n+/ns from 40 to 100 broadens significantly and is more red-shifted. This is 

consistent with larger NP sizes, the possible formation of more complex shapes, and 

some possible NP aggregation. Overall, the optical pictures and the UV -vis data are 

consistent with the controlled synthesis of Ag NPs of increasing average NP size as the 

n+/ns ratio increases. 

52 



V'I 
W 

5 10 20 40 60 

Figure 3.3 Optical pictures of Ag NP solutions synthesized with different Ag + / Ag seed ratios. 

100 



1.4 1.4 . 
" 1.2 1.2 
I, 

-Ratio 10 (398 nm) I , 
I 

~ 
1.0 

~ 

1.0 
, 

----Ratio 60 (429 nm) y Ag seed (394 nm) y , 
c c , , , 
~ 0.8 ~ 0.8 " . 

.Q .Q I 
, , 

r.. r.. i , 
Q 0.6 Q 0.6 

, , 
~ ~ , 

.Q .Q , 
-< 0.4 -< 0.4 , , , , 

0.2 
, 

0.2 , 
........ - ........... -........... --_ .......... 

0.0 0.0 , 
400 600 800 1000 400 600 800 1000 

I 

I 

Wavelength, [nm] I Wavelength, [nm] , 
, , 

VI 1.4 1.4 , 
, 

~ I 

1.2 '" - Ratio 5 (395 nm) 1.2 .,. , 
~ ~ - Ratio 20 (398 nm) y 1.0 , 

---- Ratio 40 (408 nm) y 1.0 c , c , 
----Ratio 100 (439 nm) ~ 

0.8 
, ~ 0.8 .Q 
, .Q , 

r.. , r.. 
Q 0.6 

, Q 0.6 ~ 
, 

~ 
.Q 

, 
.Q , 

0.4 -< 0.4 \ -< , , 
0.2 

, , 0.2 , 
~ 

........... _- ...... ...... - ... _-_ ................. _-
0.0 

---_ ... _ .. 
0.0 

400 600 800 1000 400 600 800 1000 

Wavelength, [nm] Wavelength, [nm] 

Figure 3.4 UV-vis spectra of Ag Seed and Ag NPs synthesized with an n+/ns ratio from 5 to 100 as indicated. 



Average size of synthesized Ag NPs was determined by AFM and SEM after 

electrostatic attachment to Si/SiOxINH2 and Giass/ITOINH3 surfaces, respectively. 

Figure 3.5 shows typical SEM images of Giass/ITOINH2 electrodes containing Ag seed 

NPs and those synthesized with various Ag+IAg seed ratios. Figure 3.6 shows the AFM 

images and cross section of Si/SiOxINH2 substrates after electrostatic attachment of Ag 

NPs synthesized with various Ag+IAg seed ratios. Ag NP seeds are 8-12 nm in diameter, 

ratio 5, 10,20,40,60 and 100 with average diameters of 16.7, 21.4, 25.0, 30.9, 35.1, 42.9 

nm respectively according to AFM measurements. Average size determined by SEM was 

in agreement with AFM results. The Ag NPs were fairly well-spaced and isolated on the 

surface. We obtained LSVs from 0.1 to 1.0 V in 0.1 M H2S04 at 1.0 mV/s of 

Giass/ITOINH2 electrodes coated with Ag NPs of different sizes. Figure 3.7 shows LSVs 

in the range of 0.2 to 0.45 V for all range of Ag NPs studied. No electrochemistry was 

observed outside of this range for all LSVs and it therefore not shown. The negative 

anodic current corresponds to the reaction of: 

AgO ~ Ag+ + le- (Rxn 3.1) 

Ep shifts positive with increasing Ag +1 Ag seed ratio (or increasing size). We also 

observed experimentally that for constant NP size, Ep was directly proportional to In(Ag 

coverage), which is expected for reversible Ag oxidation kinetics.89 Figure 3.8 shows the 

LSV s of Giass/ITOINH2 electrodes coated with 8-12 nm diameter Ag seed NPs as a 

function of the coverage of Ag controlled by soaking time in Ag seed solution. The times 

were 15 min, Ih and 3h and corresponding Ag coverages were 2.2, 8.8 and 20.5 x 10-4 C 

respectively. The inset of the Figure 3.8 shows a plot ofEp versus In(coverage). 
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Figure 3.5 SEM images of Giass/ITOINH2 electrodes containing Ag seed NPs 

and those synthesized with various Ag+/Ag seed ratios as labeled. 
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Figure 3.6 AFM images and cross section of Si/SiOxlNH2 substrates after 

electrostatic attachment of Ag NPs with various Ag +1 AgO ratios as labeled. 
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--- --------------

This experimental plot is linear as expected.89 To rule out the effect of coverage we kept 

coverage, we kept the total coverage of Ag on the electrode surface constant within (3-5) 

x 10-4 coulomb (C). We also observed that Ep shifts positive with increasing scan rate. 

Figure 3.9 shows the LSV s of Glass/ITOINH2 functionalized with Ag seed NPs recorded 

in 0.1 M H2S04 at different scan rates. Table 3.2 displays the relevant data. Figure 3.10 

(A) shows the exponential dependence ofEp on the scan rate and Figure 3.10 (B) shows 

that Ep is directly proportional to In(scan rate). Previous literature predicts that Ep is 

proportional to In(scan rate), which is in good agreement with our results.89 We chose a 

slow scan rate of 1 m V Is to ensure electrochemical reversibility and conditions of planar 

diffusion in which case diffusion profiles overlap. At 1 mV/s, the diffusion layer 

thickness (8) is ~0.04 cm over the ~45 sec, time that it takes to oxidize the Ag (peak 

width 30-60 m V). The diffusion layer thickness was calculated using the following 

equation: 

1 

0= 2(Dt)2 (Eq.3.2) 

The 8 is much larger than the average calculated Ag NP spacing of 50 nm for seed and 

370 nm for ratio 100 Ag NPs, ensuring planar diffusion. 

Table 3.3 shows the average diameter measured by AFM and SEM for the Ag 

Seed NP and different Ag + I Ag seed ratio Ag NPs along with average Ep, full width at 

half-maximum, and charge under the peak determined from LSVs. At least 5 samples 

were analyzed. The Ag NP diameter is in good agreement with the theoretical values at 

different ratios of Ag + I Ag seed based on the equation: 

1 

d p = d pO (1 + ~) 3" 
n, 

(Eq.3.3) 
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Scan rate, m Vis In(scan rate) Ep, [mY] Charge, [C] 

0.1 -2.3 245 2.528 x 10-'1 

1.0 0 270 1.435 x 10-4 

10 2.3 317 1.368 x 10-'1 

100 4.6 389 2.096 x 10-4 

Table 3.2 Ep for Ag seed NPs as a function of scan rate 
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Glass/ITOINH2 electrodes covered with Ag seed NPs. 
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0"1 
+:. 

Synthesis Diameter Diameter Theoretical Peak Potential Width at half 
Ratio AFM SEM diameter Ep maxrrnum 
(n/I\) (nm) (nm) (nm) (mY) (mY) 

0:0 (seed) 8.5 (±3.3) 12.3 (±3.5) 8.5 275 (±25) 33 (±10) 

5:1 16.7 (±6.9) 16.8 (±5.4) 15.5 291 (±11) 33 (±13) 

10: 1 21.4 (±6.3) 20.5 (±4.3) 18.9 318 (±6) 48 (±11) 

20:1 25.0 (±6.5) 26.6 (±5.1) 23.6 340 (±4) 55 (±8) 

40:1 30.9 (±8.9) 27.9 (±8.7) 29.5 354 (±7) 54 (±15) 

60:1 35.1 (± 12 . .3) 37.9 «±11.0) 33.6 371 (±10) 66 (±19) 

100:1 42.9 (±13.2) 45.5 (±15.1) 39.8 382 (±9) 65 (±20) 
-------- ---------

Table 3.3 Statistical size and electrochemical data for Giass/ITOINH3 +1 Ag NP electrodes. 

Charge 
under the peak 

(x 10-4 C) 

-4.3 (±1.7) 

-3.5 (±0.9) 

-3.9 (±0.5) 

-3.0 (±0.2) 

-3.8 (±1.0) 

-4.1 (±0.8) 

-3.3 (±0.7) 



were dp is the final diameter of the NP, dpo is the diameter of the Ag seed, and n+/ns is the 

Ag + I Ag seed mole ratio used in the synthesis. 105 The average Ep values shift positive 

with increasing Ag NP diameter and are all statistically different from each other except 

for the ratio 60 and 100 Ag NPs. Ep shifts ~ 107 m V from the smallest seed particles to 

largest ratio 100 Ag NPs. Under the conditions of experiment such as reversible system, 

constant coverage and planar diffusion, previous theory based on diffusion alone predicts 

that Ep should not shift as a function of size.87 For this reason, we believe that observed 

negative shift in Ep with size is not due to diffusion, but rather due to a negative shift in 

the standard redox potential (EO) as the size decreases as predicted by Plieth86 and 

Henglein85 and shown qualitatively by BruS.76 This was the first direct measurement of 

this phenomenon by voltammetry. The graph in Figure 3.11 plots the difference between 

Ep, AgNP and Ep, bulk Ag (~Ep) as a function of Ag NP radius (based on AFM measurements) 

as compared to the predictions by Plieth.86 We used Ep of the ratio 100 Ag NP as Ep, bulk 

Ag (382 m V). Our experimental ~Ep is larger than the theoretical prediction for all NP 

sizes except the two largest sizes, and they do not follow the theoretical trend, other than 

general negative shift in potential with decreasing radius. The reasons for the 

discrepancy are not clear at this time. Clearly more work is needed to explain the data 

theoretically. Note that we used the surface stress (y) of Ag in vacuum for the theoretical 

plot. The actual value for y would be different in electrolyte solution due to adsorbate -

induced stress, and it also depends on the electrode potential, which would affect the 

theoretical values of ~Ep. Compton and co-workers previously showed no change in Ep 

for Ag NPs with diameters ranging from 25 to 100 nm.87 
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Our results show a ~40 m V shift for 25 run diameter Ag NPs versus bulk Ag and no 

significant difference in Ep above 35 run diameter NPs. The difference at 25 run may be 

due to the aggregated state of the Ag NPs in the Compton work. 87 

We constructed three theoretical LSV s for the oxidation of ~5 xl 0-4 C of Ag from 

the electrode surface and compared them to experimental data. In order to create a 

theoretical LSV (i-E plot), we needed to determine the number of mol of Ag oxidized at 

each 1 m V change in potential. The scan rate was 1 m V Is. The mol of Ag oxidized at 

each 1 mV was then converted into charge Q (in Coulombs) using Faraday's constant 

(96485.34 C/mol) and then converted to current (Cis). 

We assumed a linear concentration gradient and used the Nemst equation in order 

to determine the concentration of Ag + at the electrode surface at each applied potential. 

The Nemst equation is as follows: 

(Eq.3.4) 

where E is the applied voltage (0 mY, 1 mY, 2 mY, ... 1000 mY), EO is the standard redox 

potential, and [Ag+lx=o is the concentration of Ag+ ions at the electrode surface (x = 0). 

Figure 3.12 shows the situation, where the [Ag+] is given by Nemst equation at the 

electrode surface. We then assume a linear decrease in the [Ag +] as a function of distance 

away from the electrode until the [Ag +] reaches 0 in the bulk solution at a distance father 

away than the diffusion layer thickness (0). From the [Ag +lx=o and knowing 0 and the 

area of the electrode (A = 1.4 cm2
), we calculated the total mol of Ag oxidized at a given 

potential as follows: 

mol of Ag oxidized = ([ Ag + L=o ) x 8 x A 
2 
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The diffusion layer thickness, 8, is a function of time (t) and the diffusion coefficient 

(DAg+) of Ag+ as shown in Equation 3.2. Equation 3.2 in case of Ag+ will be: 

1 

J = 2(D t)2 
Ag+ (Eq.3.6) 

where D Ag+ is 1.2 xl 0-5
, cm2/s and time is determined by the applied potential and the 

scan rate as follows: 

t = M I scan rate (Eq.3.7) 

For the theoretical plot, we started from 0 mV and scanned to 1000 mV at 1.0 mV/s. At 5 

mY, for example the time would then be: 

t = 5mV 11.0mV I s or 5 sec. 

Once we determined the number of mol Ag oxidized, we determined the Coulombs of 

charge from Faraday's constant, where: 

Q = (mol Ag oxidized) x (96485.34 elmo/) (Eq.3.8) 

We calculated the current by determining the total charge at one potential (Ed and then 

determining the total charge at the next potential (E2), which is 1.0 m V larger after 1 sec. 

The difference between the total charges at the two potentials is equal to the Coulombs of 

Charge passed in that 1.0 second, or the current. The following equation was used: 

(Eq.3.9) 

Table 3.4 shows the example calculations for the different parameters for the LSV from 0 

to 10m V. Once the calculated mol Ag oxidized exceeds the amount of Ag on the surface 

(3-5 x 1 0-4 C), we then made the current zero, since there is no more Ag to oxidize. The 

theoretical plots are shown in figure 3.13. We adjusted the EO value to match the 

experimental data and then compared that to what is expected for bulk Ag. Ratio 60 and 

100 Ag NPs are consistent with the EO of bulk Ag while the EO values for smaller Ag NPs 
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E applied, Ag + Concentration Charge Q (C) Current [Cis] 

[V] from Nernst (M) Q = [Ag+]FO* 8 * A i = (QE+I-QE)/1.0s 

[Ag+] = lO[(E-Eo)/592j 2000 

0 0 0 0 

1 1.46e-9 6.S5e-l0 6.S5e-l0 

2 1.52e-9 1.01e-9 3.22e-l0 

3 1.5Se-9 1.2Se-9 2.75e-l0 

4 1.65e-9 1.54e-9 2.57e-l0 

5 1.71e-9 1.7ge-9 2.50e-l0 

6 1.7Se-9 2.04e-9 2.4ge-l0 

7 l.S5e-9 2.2ge-9 2.51e-l0 

S 1.92e-9 2.54e-9 2.55e-l0 

9 2.00e-9 2.S1e-9 2.61e-l0 

10 2.0Se-9 3.07e-9 2.6ge-l0 

Table 3.4 Example calculations for theoretical LSV plots. 
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are consistent with a negative shift in EO. The theory predicts that when EO = 623 mY, the 

Ag NPs fully oxidize by 371 m V. This agrees well with the experimental Ep for ratio 60 

Ag NPs. Theoretical EO values of 575 and 523 mV fit the Ep for ratio 10 and Ag seed 

NPs, where the Ag fully oxidized by 318 and 275 mY, respectively. The standard redox 

potential for Ag/Ag+ is 0.799 V vs NHE. We found our Ag/AgCI reference electrode 

was ~ 172 m V vs NHE based on a cyclic voltammogram of Fe(CN)63
-
/4

-, giving a bulk EO 

value of 0.627 V for Ag/Ag+. This value agrees well with the EO of 0.623 V that best fits 

the ratio 60 Ag NP LSV. Ratio 60 and 100 Ag NPs (d=35-45 nm) were not statistically 

different; both behave electrochemically as a bulk Ag. The analysis is consistent with 

our conclusion that the smaller Ag NPs exhibit a lower Ep value due to a negative shift in 

EO for the Ag/ Ag + redox couple. 

We also performed constant potential experiments and stirring experiments 

suggesting that diffusion is not responsible for the change in Ep with size. As was 

mentioned before interparticle spacing, slow scan rate should be able to provide the 

conditions of planar diffusion in our experiments. We performed the following 

experiments in order to demonstrate experimentally, that diffusion is not responsible for 

the shift in oxidation potential. We studied the rate of Ag oxidation for two different 

sizes of 8-12 nm (Ag Seed NPs) and 35 nm (ratio 60 Ag NPs) by holding the potential at 

different values of 100 mY, 50 mV and 0 mV for different periods of time from 0 to 20 h. 

Table 3.5 A and B displays the data from these experiments and Figure 3.14 shows the 

plots of remaining Ag coverage as a function of pausing time. We determined the 

coverage remaining on the surface after holding the potential at particular value for a 

desired time by running the LSV after the potential was held and determining the charge 
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(A) Ag Seed NPs 
Pausing Potential Coverage (C) at Different Pausing Times (min) 

(mJ1 30 60 180 420 1200 
min min min min min 

0 3. 94e-4 2.25e-4 1.6ge-4 1.02e-4 O.72e-4 

50 2.06e-4 1.55e-4 1.44e-4 O.8ge-4 0 

100 1. 77e-4 1.45e-4 1.1ge-4 O.72e-4 0 

(B) Ratio 60 Ag NPs 
Pausing Potential Coverage (C) at Different Pausing Times (min) 

(mJ1 30 60 180 420 1200 
min min min min min 

0 3. 94e-4 2.25e-4 1.6ge-4 1.02e-4 O.72e-4 

50 2.06e-4 1.55e-4 1.44e-4 O.8ge-4 0 

100 1. 77e-4 1.45e-4 1.1ge-4 O.72e-4 0 

Table 3.5 Coverage (Charge) of Ag left on the surface as a function of time when 

holding the potential at 0, 50 or 100 m V for (A) Ag Seed NPs, and (B) ratio 60 Ag NPs. 

The initial coverage was ~5 xl 0-4 C. 
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Figure 3.14 Plots of charge remaining on the surface versus time after pausing the 

potential at (A) 100 mY, (B) 50 mY, and (C) 0 mV for Giass/ITOINH2 electrodes coated 

with Ag Seed NPs (_) and ratio 60 Ag NPs (+). 
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under the remaining Ag oxidation peak. For example, we held the potential at 100 mV 

for 30 min and then continued the LSV scan at 1.0 m V Is to observe the Ag stripping 

peak. The charge under the peak decreased with increasing time, but Ep also decreased 

due to a combination of a lower Ag coverage and a smaller size Ag NP with time. The 

important conclusion from this work is that the Ag seed NPs oxidize at a faster rate 

compared to the ratio 60 Ag NPs at all potentials. This is consistent with a smaller EO 

value for smaller Ag NPs since there will be a larger [Ag +] at the electrode surface for a 

given applied E and therefore a faster rate of Ag oxidation. Importantly, at 50 and 100 

mY, the Ag seed nanoparticle was completely oxidized after 20 h while the ratio 60 seed 

still had a significant amount of Ag on the surface. This shows that the ratio 60 Ag NP is 

stable after very long times, suggesting that the larger Ag NPs are thermodynamically 

more stable compared to the smaller Ag seed. This is consistent with a negative shift in 

EO for the smaller Ag seed. Additionally, this data shows that we can reduce the Ag NP 

size by controlled electrochemical oxidation over long time scales. 

Additionally we obtained the LSV s of Giass/ITOINH2 electrodes coated with Ag 

Seed NPs and ratio 60 Ag NPs while stirring the solution (Figure 3.15). We observed that 

stirring the electrolyte solution affects the smaller seed NPs and larger ratio 60 Ag NPs in 

a similar way. Ep shifted negative by 26 and 36 mY, respectively for the two samples 

shown. Stirring the solution leads to faster transport of Ag+ away from the electrode 

surface. This in effect increases the diffusion layer thickness and more mole of Ag 

oxidized at each E value during scanning. With more mol Ag oxidized at each E during 
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Figure 3.15 LSV of Ag seed NPs (A) and ratio 60 Ag NPs (B) performed without (black) and with (red) stirring of the 

electrolyte solution. 



the LSV, the Ag will be completely oxidized and removed from the surface at an earlier 

time and more negative Ep. Since stirring affects both sizes in a similar manner, we do 

not believe diffusion is a major reason for the size-dependent shift in Ep when there is no 

stirring. This supports our conclusion that Ep shifts due to a shift in EO. 
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-------------

3.3 CONCLUSIONS 

We described the direct voltammetric measurement of oxidation potential (Ep) for 

Ag oxidation as a function of Ag NP size. Under the experimental conditions of planar 

diffusion, constant Ag coverage, and electrochemical reversibility, previous theory based 

on diffusion only predicts a constant Ep with size. This fact and our theoretical LSV s 

suggest that the experimental shift in Ep is due to a size - dependent change in EO for the 

Ag/ Ag + redox couple. Constant potential experiments show the fast dissolution rates for 

small particles and slow dissolution rate for big Ag NPs, which is consistent with a 

negative shift in EO for the smaller Ag NPs. Ag NPs with average size of 35 nm were 

stable for 20 h during the pausing experiment while Ag NPs with average diameter of 8 

nm were dissolved completely at pausing potentials of 50 m V and 100 m V over the 20 h 

period. Stirring experiments showed approximately the same shift in oxidation potentials 

for both sizes (8 and 35 nm). All these experiments suggest that diffusion is not the 

reason for the size-dependent shift in Ep. 
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CHAPTER IV 

ELECTROCHEMICAL SIZE DISCRIMINATION OF GOLD NANOPARTICLES 

ATT ACHED TO GLASSIINDIUM-TIN-OXIDE ELECTRODES BY OXIDATION 

IN BROMIDE-CONTAINING ELECTROLYTE 

Here we describe the electrochemical oxidation of an assembly of gold 

nanoparticles (Au NPs) attached to glass/indium-tin-oxide (ITO) electrodes as a function 

of particle size. We synthesized Au NP arrays with NP diameters ranging from 8 to 250 

nm by electrodeposition of Au from HAuCl4 in H2S04 at potentials of -0.2 to 0.8 V 

versus Ag/ AgCI using chronocoulometry to keep the amount of Au deposited constant. 

The average Au NP size increased with increasing deposition potential. The chemical 

reduction of HAuCl4 by NaBH4 in trisodium citrate solution led to 4 nm average diameter 

Au NPs, which we chemisorbed to the glass/ITO electrode. Linear sweep 

voltammograms (LSVs) obtained on the glass/ITO/Au NP (4 to 250 nm) electrodes from 

0.5 V to 1.1 V in 0.01 M potassium bromide plus 0.1 M HCI04 showed a positive shift in 

oxidation potential from 734 ± 1 m V to 913 ± 19 m V with increasing diameter and 

constant coverage of Au atoms on the electrode surface. The shift agrees qualitatively 

with that predicted by a shift in the redox potential based on a difference in free energy 

associated with a change in surface energy as a function of particle size. Based on the 

charge during Au deposition versus the charge during oxidation, the oxidation process 

produces a mixture of AuIIIBr4- (25%) and Au'Br2- (75%). A glass/ITO electrode coated 
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with a mixture of 4 nm and 250 nm Au NPs revealed 2 oxidation peaks, consistent with 

the two Au NP size populations present on the surface. 
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4.1 INTRODUCTION 

As was mentioned before there are two reasons to believe that oxidation of metal 

NPs should depend on size. First, is theoretical predictions based on calculations of 

Gibbs free energy change associated with metal surface area.86 According to these 

calculations oxidation potential is proportional to lIr (r is the radius of NP). The second 

theory is based on concentration profiles of metal ions diffusing away from the dissolving 

NPS.89 Theory based on diffusion only predicts that the peak potential in a stripping 

voltammogram does not depend on NP size, but shifts positive with increase in coverage 

of metal atoms when the system is electrochemically reversible and diffusion layers of 

NPs overlap. When the diffusion layers do not overlap, peak potential shifts with 

particles size and independent of the coverage. For irreversible systems, theory predicts 

that oxidation peak potential shifts negative with decrease in NPs size and is independent 

of metal atom surface coverage. In Chapter III we attributed the experimentally observed 

negative shift in peak potential with decreasing NP radius to a shift in standard potential 

for the Ag/ Ag + redox couple based on the fact that our system was reversible and 

operating under conditions of planar diffusion. Here we extend our work to the study of 

the size-dependent electrochemical oxidation of Au NPs. There are several different 

aspects compared to our previous report on Ag NPs.6 First, this work involves a different 

metal. Second, we electrodeposit Au directly on Glass/ITO electrodes with size control 

from about 8 to 250 nm in diameter. This contrasts our previous method of chemically 

synthesized Ag NPs and depositing them chemically onto Glass/ITO through a silane 

linker. This removes the effect of the linker or stabilizer molecule on NP oxidation. 
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Third, the oxidation process involves complex ion formation (AuBr2- or AuBr4-)107 as 

opposed to the formation of a simple ion (Ag +). Finally, we demonstrated the 

discrimination of two different sizes electrochemically on the same electrode, which is a 

step toward electrochemical multinanoparticle size analysis for characterization or 

multianalyte sensing applications. 
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4.2 EXPERIMENTAL DET AILES 

Figure 4.1 shows the general scheme of experiment. There are two main steps: 1) 

synthesis of Au NPs of different size directly on Glass/ITO electrode surface by 

Chronocoulometry and 2) electrochemical oxidation of Au NPs as a function of size by 

LSV. 

Electrochemical deposition of Au NPs. Au nanoparticies (NPs) were 

electrochemically deposited onto the clean Glass/ITO working electrode using a CH 

Instruments (Austin, TX) 630C electrochemical workstation in chronocoulometry mode 

with an Ag/ AgCI (3M KCI) reference electrode and a Pt counter electrode to complete 

the cell. The potential was stepped from 1.0 V to a final deposition potential ranging 

between -0.2 V and 0.8 V for an appropriate time until 6x 10-4 Coulombs (C) of charge 

passed during deposition. After the desired charge was achieved, the Glass/ITO/Au NPs 

electrode was removed from the cell. The electrodes were gently rinsed further with 

water and dried under N2• The deposition time ranged between 2 and 5 min and the 

average Au NP diameter ranged from 8 to 250 nm. 

Electrochemical Oxidation Measurements. The electrochemical cell consisted 

of three electrodes with a 1.4 cm2 Glass/ITO/Au NP as the working electrode, a Pt wire 

counter electrode and an Ag/ AgCI reference electrode. All of the electrochemical 

measurements were performed in 10 mM KBr in 0.1 M HCI04 electrolyte solution at a 

scan rate of 1 mV/s with a potential range of 0.5 to 1.1 V in linear sweep voltammetry 

(LSV) mode. 
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Figure 4.1 General set-ups for Au NPs deposition and Au NP oxidation experiments 



4.3 RESULTS AND DISCUSSION 

Electrochemical deposition of Au NPs of different size on GlasslITO. Figure 

4.2 shows a cyclic voltammogram (CV) of a clean Glass/ITO electrode measured from 

1.5 V to -1.0 V at 100 mV/s in a solution of 5xlO-5 M HAuCl4 in 0.5 M H2S04. There is 

a cathodic peak at ~290 mV on the forward scan attributed to the reduction of AuCI4- to 

metallic Auo at the electrode surface according to the following reaction: 

EO = 0.994V vs. NHE (Rxn 4.1) 

There is a second cathodic peak starting at ~-0.6V due to the hydrogen evolution 

reaction. During the reverse scan, a cathodic current flowed until about 0.85 V, which is 

the onset for the Au oxidation peak centered at about 1.3 V. The cathodic current 

flowing up until 0.85 V is due to the reduction of Au by reaction (4.1) above. The fact 

that the onset of Au reduction occurs at about 0.5 Von the forward scan, but remains up 

until 0.85 V on the reverse scan is due to the well known nucleation and growth 

phenomenon. Within the timescale of the forward scan, a significant amount of current is 

due to reduction of AuCI4- does not flow until a potential below 0.5 V even though it is 

thermodynamically possible at more positive potentials. This is because an activation 

barrier must be overcome to initially reduce the AuCl4 - to form Au nucleation sites. Once 

these sites form below 0.5 V, the reduction of AuCI4- is possible up until potentials of 

0.85 V as shown by the crossover in the CV and presence of cathodic current up until 

0.85 V on the reverse scan. The Au formed below 0.5 V on the forward scan catalyzed 
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Figure 4.2 A cyclic voItammogram (CV) of a Glass/ITO electrode obtained in 

5x10-5 M HAuCl4 plus 0.5 M H2S04 at a scan rate of 100 mY/so The arrows show the 

direction of the forward and reverse scan beginning at 1.5 V and ending at -1.0 V. 
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the reduction of AuCk so that it can proceed at more positive potentials on the reverse 

scan. This is a well-known phenomenon that has been described previously. lOS 

Figure 4.3 shows scanning electron microscopy (SEM) images of Glass/ITO 

electrodes before (inset on Figure 4.3 F) and after Au electrodeposition at different 

potentials for the required time needed to deposit 6 x 10-4 C of charge. The dark, grainy 

background corresponds to the Glass/ITO electrode and the bright, somewhat rough and 

spherical features correspond to the Au NP deposits. It is clear from the images that the 

size of the Au NPs increases and the density of the Au NPs decreases with increasing 

electrode potential from -0.2 to 0.8 V while keeping the total coverage in terms of Au 

atoms constant on the surface by controlling the amount of charge deposited. It is crucial 

to keep the coverage in terms of Au atoms constant on the surface and only vary the NP 

size and density in order to properly study the size-dependent oxidation properties. 

Based on SEM analysis, the average diameters of the Au NPs on the Glass/ITO 

electrodes were 8 ± 6, 10 ± 7 nm, 13 ± 7, 23 ± 9, 61 ± 20 and 249 ± 52, respectively, for 

electrode deposition potentials of -0.2 V, 0.0 V, 0.2 V, 0.4 V, 0.6 V, and 0.8 V. The 

average diameter of the Au NPs formed at -0.2 and 0.0 V are statistically the same 

according to a t-test for comparison of two means at a 95% confidence level. Most of the 

Au NPs have a spherical or irregular shape and the larger particles formed at 0.6 and 0.8 

V have a noticeably rough, flower-like morphology that has been observed by others for 

Au deposition on Glass/ITO. 109,1 10 The density of Au NPs ranged from 85 to less than 1 

NP per I1lm2 at -0.2 and 0.8 V, respectively. 
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Figure 4.3 SEM images of Glass/ITO/AuNPs deposited at different potentials: A) -O.2V, B) O.OV, C) O.2V, D) O.4V, E) 0.6V, 

and F) 0.8 V. The inset ofF is a bare Glass/ITO electrode. The scale bars in the insets are 50 nm. 



The electrochemical deposition of metal proceeds through the nucleation of metal 

clusters and subsequent growth. III Small Au NPs deposit on the surface at high 

overpotentials (-0.2 V), because the formation of small Au nucleation sites is 

energetically favorable all over the electrode surface. This leads to a large number of 

nucleation sites and, given the same total amount of Au deposited, a smaller average 

diameter of each Au NP deposited. At small overpotentials (or the very onset of the 

thermodynamically favored potential for Au deposition), the energy is not sufficient for 

rapid Au nucleation all over the surface. The energy barrier is significant relative to the 

electron energy (governed by potential), so that there is a lower probability of an Au 

nucleation event. As soon as a nucleation event occurs, though, that nucleation site 

catalyzes further Au reduction, leading to the preferential growth of that particle over the 

formation of new nucleation events. This leads to a low density of Au NPs that are larger 

relative to Au NPs formed at more negative potentials, given that the total amount of Au 

deposited is constant. 

The relative standard deviation of the average NP diameter was larger for small 

particles (73, 69, 56% for deposition potentials of -0.2,0.0,0.2 V respectively) compared 

to that for the larger particles (38, 32, 21% for deposition potentials of 0.4,0.6,0.8 V, 

respectively). The larger relative standard deviation at negative deposition potentials 

could be due to 1) interparticle diffusional coupling I 12 that occurs with a higher density of 

Au NPs and 2) the fact that new nucleation sites can form throughout the deposition 

process, which leads to some nanoparticles that nucleate and grow at a later time. In 

contrast, the lower density of nucleation sites at larger deposition potentials prevents 

interparticle diffusional coupling and the continued growth of the initial Au nucleation 
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sites formed is favored over the formation of new nucleation sites, preventing a 

significant amount of nucleation and growth at a later time. The fact that smaller 

particles grow faster than larger particles helps to reduce size dispersity if some particles 

nucleate and grow at a later time and do not experience interparticle diffusional 

coupling. I 12 

Electrochemical oxidation of Au NPs as a function of size. Figure 4.4 shows 

linear sweep voltammograms (LSVs) of Glass/ITO electrodes with Au NPs 

electrodeposited at different potentials as shown in the SEM images in Figure 4.3. We 

obtained the LSVs from 0.5 V to 1.1 V in 10 mM KBr plus 0.1 M HCI04 at 1.0 mV/s in 

order to determine the peak oxidation potential (Ep) for the different-sized Au NPs. The 

Ep shifts positive with increasing NP diameter as predicted by Plieth86 and shown by our 

group previously for chemically-synthesized Ag NPs attached electrostatically to 

Glass/ITO.6 We found that we could only electrodeposit Au NPs as small as 8 ± 6 nm on 

Glass/ITO with our procedure. In order to study the oxidation of smaller Au NPs, we 

chemically synthesized 4 nm average diameter Au NPs using a literature procedure l02 (as 

described in Chapter II) and attached the NPs to Glass/ITO electrostatically as described 

in Experimental chapter. Figure 4.4 shows the LSV of a Glass/ITO electrode coated with 

the 4 nm average diameter Au NPs, where the Ep value was 733 mY, which is in line with 

the trend that the oxidation potential decreases with decreasing NP diameter. The 4 nm 

average diameter Au NPs remarkably oxidized at a potential ~200 m V more negative 

than the ~250 nm diameter Au NPs deposited electrochemically at 0.8 V. The larger 

current in the LSV for the 4 nm Au NPs is due to a slightly higher coverage of Au on that 
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chemically-synthesized Au NPs as indicated. 
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particular sample and a narrower oxidation peak compare to those of the 

electrochemically-deposited Au NPs. 

Previously, Compton and co-workers described a theory for the oxidation of an 

array of Ag NPs on an electrode surface.89 Based on models of the dissolved ions 

diffusing away from the array of NPs during metal oxidation, they reported that under 

conditions of planar diffusion (where the diffusion layers of the NPs significantly 

overlap), the Ep of the oxidative stripping wave is independent of the coverage (in terms 

of atoms) if the system is electrochemically irreversible and is a function of In( coverage) 

if the system is electrochemically reversible. Also, they predicted that Ep depends on NP 

diameter if the system is irreversible, but does not depend on the NP diameter if it is 

reversible. We studied the effect of Au coverage on Ep for the 4 nm diameter Au NPs 

and determined that Ep is linear as a function of In(Au coverage) as expected for a 

reversible system. Figure 4.5 shows LSVs of Glass/ITO electrodes coated with different 

coverages of chemically-synthesized 4 nm average diameter Au NPs by immersion of the 

electrode into Au NP solution for different amounts of time as indicated. Table 4.1 shows 

the corresponding data obtained from LSV s and Figure 4.6 shows a plot of peak potential 

versus In(Au Coverage), or In(Q). The linear relationship is indicative of an 

electrochemically reversible reaction. The charge passed during the oxidation of the Au 

deposited at -0.2 V, 0.0 V, 0.2 V, 0.4 V, 0.6 V, 0.8 V, and the 4 nm diameter Au NPs in 

Figure 4.4 was (2.8, 2.9, 2.9, 2.7, 2.7, 2.7, and 3.3)xlO-4 C, respectively, showing a nearly 

constant coverage of Au atoms. With a constant coverage and a reversible system under 

conditions of planar diffusion, theory based on diffusion alone predicts that Ep does not 

shift as a function ofNP diameter. Since we clearly show a 200 mV shift for a size 
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Figure 4.5 LSVs obtained in 10 mM KBr plus 0.1 M HCI04 solution of 

Glass/ITO electrodes coated with 4 nm average diameter Au NPs by soaking in an Au NP 

solution for 0.08,0.50,2,5, 10 and 15 min as indicated. 
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Soaking time, Coverage or Charge (Q) In (Q) 
[min] in coulombs (C) 

0.08 6.235 x 1 O-s - 9.68 

0.5 16.81 x 10-s - 8.69 

2 35.17x 10-s -7.95 

5 49.59 x 10-s - 7.61 

10 86.57x 10-s - 7.05 

15 98.75 x 10-s - 6.92 

Table 4.1 Peak oxidation potential of 4 run Au NPs as a function of coverage. 
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range of 4 run to 250 run, we conclude that the shift in Ep is due to a size-dependent shift 

in the thermodynamic oxidation potential (Eo) of the Au NPs as opposed to an effect of 

ion diffusion away from the NPs. An approximation of the diffusion layer at the small 

scan rates used in the LSVs (1.0 mV/s) showed that significant overlap of the diffusion 

layers exists, where planar diffusion would dominate. 

We found that a deposition of -6x10-4 C led to the oxidation of -3x10-4 C as 

shown in Figure 4.4. Assuming a 3 e- reduction of AuCI4- during deposition, the 

oxidation corresponds to 1.5 e-. The possible oxidation reactions are: 

AuO + 2 B{ ---+ AuBr2- + e

Auo + 4 B{ ---+ AuBr4- + 3 e-

EO Au(l)/Au(O) = 0.963 V vs. NHE 

EO Au(II1)/Au(O) = 0.858 V vs. NHE 

(Rxn 3.3) 

(Rxn 3.4) 

Theoretically to satisfy the 1.5 e- oxidation process, 75% of the Au oxidation product 

would be AuBr2- and 25% would be AuBr4-. It is interesting that the AuBr2- is favored 

over the more thermodynamically stable AuBr4-. A second explanation for half the 

charge upon oxidation relative to the Au reduction is that not all of the Au oxidized from 

the surface. SEM images obtained after Au oxidation show essentially complete removal 

of Au, ruling out this possibility (Figure 4.7). 

Table 4.2 displays the size of the electrochemically-deposited Au NPs as a 

function of deposition potential, as determined by SEM, and the corresponding Ep and 

charge as determined by LSV (average of at least 3 samples). The size of the Au NPs 

deposited on GlasslITO electrodes are all statistically different, except for those deposited 
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Figure 4.7 SEM images of Glass/ITO/Au NP samples prepared by deposition at 

0.8 V A) before electrochemical oxidation and B-D) after electrochemical oxidation. The 

circle in Frame B shows the area imaged in Frame D. 
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Deposition Diameter, Oxidation peak Theoretical Ep Theoretical Ep Charge under the I 

potential, [nm] potential Ep' [m V] [mY) [mV] peak i 

[mY] SEM 1 e- reaction 1.5e- reaction (XIO-4 C) I 

Au Seed 4 (±2) 734 (±1) 714 780 3.45 (±0.12) 

-200 8 (±6) 822 (±10) 814 847 2.86 (±0.13) 

0 10 (±7) 829 (±8) 834 860 2.90 (±0.20) 
i 

200 13 (±7) 842 (±7) 847 875 2.91 (±0.04) 

400 23 (±9) 890 (±15) 880 891 2.83 (±0.13) 
, 

600 61 (±20) 910 (±14) 900 904 2.85 (±0.13) 

800 249 (±53) 913 (±19) 910 911 2.79 (±0.17) 

Table 4.2 Statistical size and electrochemical data for all Glass/ITOI Au NP electrodes. The theoretical Ep,theor values are based 

on the Plieth equation. 



at -0.2 and 0.0 V. The oxidation potential for Au NPs deposited at -0.2 V and 0.0 V, and 

at 0.6 V and 0.8 V, are statistically the same with 95% confidence level. Taking into 

account the experimental conditions of constant coverage and planar diffusion, we 

believe that the shift in Ep is due to a size-dependent change in EO as predicted by Plieth86 

and Henglein.85 Figure 4.8 shows three theoretical plots (dashed lines) of the difference 

between the oxidation potential of Au NPs (Ep, AuNP) and oxidation potential of bulk Au 

(Ep, bulk) as a function of nanoparticle radius calculated using the Equation 3.1 developed 

by Plieth. 86 Note that for calculating the shift in oxidation potential we used the surface 

stress (y) of Au in vacuum (1880 erg cm-2).86 The actual value could be different in 

electrolyte solution. Also we used Ep of Au NPs deposited at 0.8 V (913 mY) as the bulk 

value in order to perform theoretical calculations. The three plots in Figure 4.8 

correspond to using 1.0, 1.5, and 3.0 as the value for z in equation (3.l). As discussed 

previously, the oxidation is a combination of a 3 e- and 1 e- process with an average of 

1.5 e-. The experimentally obtained values of Ep match reasonable well with the 1 e- and 

1.5 e- curve, especially for the smaller sized Au NPs (see Table 4.2). The shift in Ep is 

forced to be zero at the larger sizes and does not match the curve as well. Interestingly, 

the data for the Au NPs fits the theory of Plieth much better than our previous work on 

Ag NPs, although the general trend was the same in both reports. 6 The main differences 

in this work is that we synthesized the Au NPs electrochemically directly on Glass/ITO, 

except for the 4 nm Au NPs, and the oxidation process involved the formation of a 

complex anion with ligands (AuBr2-) versus direct oxidation of the metal with no ligands 

(Ag +). It is interesting to note that there is a 88 m V difference in 
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the oxidation potential of Au NPs with average diameters of 8 nm and 61 nm (53 nm 

difference) and the same 88 m V difference in oxidation potential of Au NPs with average 

diameters of 4 nm and 8 nm (4 nm difference). There is clearly a more dramatic property 

change as the Au NP diameter decreases below 8 nm as predicted by theory.86 

One potential benefit of different NPs having different oxidation potentials is that 

LSV could be utilized for size analysis. It might even be used to determine relative 

populations of different sized NPs in a solution. Different sized NPs having different 

biological receptors could also potentially serve as electrochemical tags in a bioassay for 

analyzing multiple analytes. For these applications, it is necessary to be able to measure 

more than one size NP in the same experiment. Figure 4.9 shows our first attempt to 

monitor the oxidation of two different sized particles simultaneously from one LSV. In 

this example, we performed the experiment with the 4 nm chemically-synthesized Au 

NPs and the 250 nm electrodeposited Au NPs. We used the most drastically different 

sizes as a proof of concept. First, we deposited the larger Au NPs at 0.8 V and then 

immersed the electrode into an aqueous solution of the 4 nm Au NPs for 60 min without 

functionalizing the Glass/ITO with APTES as we did for the 4 nm Au NPs in Figure 4.4. 

The LSV in Figure 4.9 clearly shows two well-resolved oxidation peaks corresponding to 

the 4 nm Au NPs (710 mY) and 250 nm Au NPs (918 mY) as labeled. These two 

different sizes oxidize with a more than 200 m V difference in Ep, making it easy to 

resolve the two sizes by LSV. This experiment clearly shows that we can distinguish 

between two different sizes of Au NPs present on an electrode surface at the same time 

by LSV, which may be important for using this technique to analyze NPs or for using 

different-sized Au NPs as electrochemical tags for sensing applications. 
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4.4 CONCLUSIONS 

Here we described the direct measurements of Ep for the oxidation of Au NPs as a 

function of size. Au NPs of different size were directly deposited at glass/ITO using 

chronocoulomentry at various potentials, which is easy to perform, fast, reproducible, and 

allows control over size and coverage. The oxidation potential for the Au NPs shifted 

negative with decreasing nanoparticle size which is consistent with the theory of Plieth,86 

calculations of Henglein,85 and previously reported experimental data for different 

metals.6 Our experimental results show that the oxidation of Au NPs is likely the 

combination of 1 and 3 electron processes. The oxidation of Au NPs of two different 

sizes deposited on the electrode surface at the same time shows two well resolved 

oxidation peaks. We believe that these results will motivate future fundamental and 

applied studies in the area of electrochemistry of nanomaterials. 

103 



CHAPTER V 

SIZE-DEPENDENT ALLOYING OF COPPER WITH GOLD NANOPARTICLES 

AT UNDERPOTENTIAL DEPOSITION (UPD) POTENTIALS 

This Chapter describes the size-dependent alloying of Cu with Au nanoparticles 

(NPs) at underpotential deposition (UPD) potentials. This is the first observation of the 

alloying of Cu with Au NPs at UPD potentials. UPD of Cu on Au NPs of 8±6 run, 61 ±20 

run, and 249±53 run directly deposited on the surface of Glass/ITO electrodes, and also 

on gold film, and on chemically synthesized Au NPs with average diameter of 4 run 

which were chemisorbed on Glass/ITO electrode was studied. Stripping voltammetry 

demonstrated the formation of UPD layer of Cu for all sizes of Au NPs and for Au film. 

In addition, unusual bulk copper deposition occurred for Au NPs size from 4 to 60 run 

diameter. Up to four different Cu oxidation peaks were detected. These peaks attributed 

to different phases of Cu in Au-Cu alloy nanostructure. The composition of the alloy 

depends on the Cu deposition time. Alloying of Cu with Au occurs to a lesser extent on 

larger particles. 
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5.1 INTRODUCTION 

Underpotential deposition (UPD) is well-known phenomenon of deposition of a 

monolayer or a sub-monolayer of one metal on the surface of another metal at potentials 

more positive than Nemst potential for bulk deposition. Cu UPD on Au is the most 

widely studied system in this research area. Most of work has been focused on the Au 

(111) electrodes. The UPD ofCu on Au (111) occurs in two stages. 1l3 These two stages 

were extensively studied experimentally and in theory. The Cu deposition in sulfuric 

acid starts with random deposition of Cu adatoms and sulfate ions on the electrode 

surface followed by the formation of ordered phase at 2/3 of a monolayer Cu coverage. 

Cu adlayer at this stage has a honeycomb (V3 x -V3)R30° structure in which surface 

coverage of Cu is 0.67 and with sulfate anions occupying the centers of honeycomb 

(coverage of anions is 0.33).114 The second stage corresponds to the formation of full 

monolayer of Cu with (1 xl) structure and sulfate ions adsorbed on top of the copper 

adlayer. 115 Adsorption of Cu can be affected by the presence of adsorbed anions. It was 

shown that the honeycomb structure can be transformed to (SxS) structure in the presence 

of chloride anions. ll6 At chloride concentrations below 10-5 M a (2x2) structure was 

observed at potentials below +0.14 V vs SCE and copper coverage of 0.7S was 

determined. In perchloric acid solution, the situation is similar to low chloride 

concentration electrolytes. Cu UPD was observed on different crystal faces of Au 

electrodes. Thus, Au (110) and Au (100) both have (1 xl) structure in sulfuric acid 

media. 
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While there is massive amount of publications on macro-sized electrodes, there 

are few reports on UPD of metal on the surface of metal nanopartic1es (NPs). Hernandez 

et. al. used Pb UPD on Au nanopartic1es to characterize their shape and relative size. 117 

Compton and co-workers demonstrated the absence of UPD of Pb, Cd and TI on the 

nanoelectrode arrays composed of silver nanopartic1es with diameter less than 50 

nm 118, 119 as well as on Au NPs with average diameter of 10±5 nm. 120 

While study the UPD on macro scale is important for corrosion and catalysis, 

nanometer scale materials are interesting due to their size-dependent properties that can 

be applied in areas of catalysis and sensing. 

Here we describe the size-dependent alloying of Cu with Au NPs at UPD 

potentials. We studied the UPD of copper on gold nanopartic1es of 8±6 nm, 61±20 nm 

and 249±53 nm directly deposited on the surface of Glass/ITO (indium tin oxide) 

electrode. Also UPD deposition of copper was performed on gold film and chemically 

synthesized gold nanopartic1es (Au NPs) with average diameter of 4 nm which we 

chemisorbed on Glass/ITO electrode. In contrast to results available in literature, UPD 

layer of copper was observed by stripping voltammetry for all sizes of gold nanopartic1es. 

In addition, unusual bulk copper deposition was observed for nanopartic1e size from 4 to 

60 nm. We believe that unusual alloying of these two metals on nanometer scale could 

be a result of diffusion of copper atoms into the crystal lattice of Au NPs. 
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5.2 EXPERIMENTAL DETAILS 

Synthesis of Au NPs. Au nanoparticles of 8, 60 and 250 run were synthesized by 

direct electrochemical deposition on Glass/ITO electrode as described in Chapter IV. 

Briefly, 3 electrode cell was constructed with Glass/ITO as working electrode, Ag/ AgCI 

(3M KCI) as reference electrode and Pt wire as counter electrode. Electrochemical 

deposition was performed in Chronocoulometry. The potential was stepped from 1.0 V to 

a final deposition potential -0.2 V, 0.6 V and 0.8 V for an appropriate time until 6xl0-4 

Coulombs (C) of charge passed during deposition. After the desired charge was 

achieved, the Glass/ITO/Au NPs electrode was removed from the cell. The electrodes 

were gently rinsed further with water and dried under N2. The deposition time ranged 

between 2 and 5 min and the average Au NP diameter was 8, 60 and 250 run respectively 

for -0.2 V, 0.6 V and 0.8 V deposition potentials. 

Underpotential deposition of Cu on Au NPs. The electrochemical cell 

consisted of three electrodes with Glass/ITO/Au NP as the working electrode, a Pt wire 

counter electrode and an Agi AgCI reference electrode. Cu UPD was deposited at 300 

mV from the solution of 0.01 M Cu(HCI04)z x6H20 in 0.1 M HCI04 using linear sweep 

voltarnrnetry (LSV). Working electrode was immersed into the electrolyte solution under 

potential control at 500 m V and scanned to 300 m V were it was paused for desired period 

of time (from 1 sec to 17 h). Scan rate was 20 m V Is. Then sample was taken out under 

potential control, gently rinsed with nanopure water and used for oxidation experiments. 

Electrochemical Oxidation Measurements. All measurements were performed 

in three electrode cell with Glass/ITO/Au NP/Cu UPD as the working electrode, a Pt wire 
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counter electrode and an Agi AgCI reference electrode. All data were taken in 0.1 M 

HCI04 solution at room temperature at a scan rate of 20 m V Is with a potential range from 

o to 1.6 V. 
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5.3 RESULTS AND DISCUSSION 

Figure 5.1 shows our general experimental set-up (see full details in supporting 

information). In the first step, we perform electrodeposition of Au nanoparticles of 

8 ± 6 nm, 61 ± 20 nm and 249 ± 53 nm in diameter onto indium-tim-oxide (ITO)-coated 

glass electrodes as reported previously.7 We compared these electrodes to bulk Au films 

and 4 nm diameter chemically-synthesized Au nanoparticles that were assembled 

electrostatically onto the glass/ITO electrodes. We refer to these electrodes as 

glass/ITOI Ausnm, glass/ITOI All6onm, glass/ITOI AU250nm, glass/ITOI A14nm, and Au films. 

Next, we deposited Cu at a UPD potential of 0.3 V versus Agi AgCI for various times in a 

0.01 M Cu(CI04h + 0.1 M HCI04 solution. Finally, we monitored Cu UPD stripping by 

cyclic voltammetry from 0.0 to 1.6 V versus Ag/AgCI at 20 mV/s in a Cu-free 0.1 M 

HCI04 solution. 

Figure 5.2 (A) shows cyclic voltammograms (CVs) of glass/ITO and 

glass/ITOIAu electrodes measured from 0.5 to -0.5 V in a solution of 0.01 M Cu(CI04)2 

and 0.1 M HCI04. The cathodic peak in the CVs corresponds to Cu2
+ reduction by the 

following reaction: 

C 2+ 2 - C 0 
U (aq) + e ---+ u (s) (Rxn.5.1) 

The potential for bulk Cu2
+ reduction follows the order of Ausnm (190 m V) > AU60nm 

(225 m V) > AU250nm (240 m V) = bare glass/ITO. This shows that the growth of bulk Cu 

deposition is more energetically favored as the size of the Au NPs decreases. This is due 

to the well-know phenomenon of nucleation and growth. The growth of bulk Cu is more 

favorable at small Au nucleation sites. Interestingly, large Au NPs do not catalyze Cu 
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Figure 5.2 (A) CVs of Glass/ITO/Au NPs in 0.01 M Cu(CI04h and 0.1 M 

HCI04. (B) CVs of Glass/ITO/Au NPs in 0.01 M Cu(CI04)2 and 0.1 M HCI04. Narrow 

range of potentials. (C) CV s of Glass/ITO/Au NPs in 0.1 M HCI04, (---) Au-8 run, (- . -) 

Au 60 run, (- .. -) Au-2S0 run, and (-) bare ITO. Scan rate 20 mV/s. 
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deposition any better than bulk ITO. The corresponding stripping peak for bulk Cu is at 

~300 mV for all sizes. 

Figure 5.2 (B) shows CVs of bare glass/ITO and glass/ITO/Au in 0.01 M 

Cu(CI04)2 and 0.1 M HCI04 measured from 0.4 to 0.2 V, focusing on the Cu UPD 

region. For glass/ITO/Ausnm, the Cu UPD reduction and corresponding oxidation peaks 

occurred at ~300 mV and ~330 mY, respectively. The peaks are well-pronounced and 

visible above the background charging current. For glass/ITO/Au6onm, the Cu UPD 

reduction was not well-pronounced, but the subsequent oxidation was visible at ~31 0 

mY. In the case of glass/ITO/Au250nm and bare glass/ITO electrodes, there was no visible 

reduction or oxidation peaks for Cu UPD. The Cu UPD peaks are likely absent in the 

voltammetry for AU250nm and difficult to observe in the AU60nm because of the much lower 

Au surface area. Since the amount of Au is the same for all electrodes, but the size 

changes, the surface area increases with decreasing Au NP size. 

Figure 5.2 (C) shows the CVs of Glass/ITO Au NPs in 0.1 M HCI04. From these 

CV s we can quantify the relative Au surface area based on the Au oxide reduction peak 

that occurs at 0.9 V. This reduction corresponds to the reduction of the surface Au 

oxided formed at ~ 1.4 V. The glass/ITO/ Ausnm has the biggest reduction peak, indicating 

that it has high surface area. This reduction peak decreases with increasing size of the Au 

NPs. 

Our initial goal was to determine if the oxidation potential of the Cu UPD layer 

on Au depended on the size of the Au, since we recently determined that the oxidation 

potential of Au and Ag nanopartic1es depends on the size.6,7 To study this we performed 

the experiment in Figure 5.1. At a deposition potential of300 mY, only a single Cu UPD 
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layer should form on the Au NPs. The stripping of this UPD layer after deposition for 1 s 

was difficult to compare between the different sizes because of the low currents 

associated with the small surface area AU60nm and AU250nm NPs (Figure 5.3). From the 

limited data, it appeared that there was not a very large dependence on the stripping 

potential as a function of size. All visible UPD stripping peaks were in the range of 280 

- 320 m V. From this experiment we observed an interesting peak at ~ 1.2 V in the 

voltammetry for the small 8 nm NPs that led us to believe other forms of Cu deposited 

onto the small Au NPs. 

Figure 5.4 shows CVs of giass/ITOIAu8nm electrodes from 0.0 to 1.6 V using the 

procedure in Figure 5.1 after Cu UPD deposition at 300 mV for times ranging from 0 sec 

to 17 h. Instead of just observing 1 stripping peak for Cu UPD oxidation as expected for 

one layer of Cu on Au, we observed several different oxidation peaks depending on the 

deposition time, which we attribute to different forms of Cu. After 0 s of deposition time, 

we only observed the oxidation and reduction of Au at ~1400 mV and 880 mY, 

respectively. After 1 s, we observed two oxidation peaks attributed to Cu at 300 mV (Cu

I) and 1220 mV (Cu-2). After 1 min, the Cu-l and Cu-2 peaks increase slightly and shift 

negative in potential while a new Cu-3 peak appeared at 575 m V. With increasing time, 

the Cu-l and Cu-3 peaks remain similar in magnitude but shift negative in potential. For 

example, the Cu-l oxidation peak shifted from ~300 mV after 1 sec to 140 mV for 17 h. 

The Cu-3 oxidation peak appeared at ~575 m V, and shifted negative with an increase in 

the Cu deposition time until it disappeared at times of 4h and longer. The Cu-2 peak at 

~ 1200 m V increased more dramatically with time and shifted negative to ~ 1170 m V after 

17 h. Another oxidation peak (Cu-4) appeared at ~900 m V for deposition times of 30 
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Figure 5.3 CVs of Glass/ITO/Au NPs after 1 sec of Cu UPD deposition 

perfonned in 0.1 M HCI04 for different Au NP sizes as indicated. Cu deposition time 

was 1 sec. Scan rate was 20 m V Is. 
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min or longer. The area under the Cu-4 peak increased slightly with an increase in 

deposition time, but the peak potential remained fairly constant. Control experiments on 

glass/ITO in the Cu deposition solution and on glass/ITO/Ausnm in Cu-free 0.1 M HCI04 

solution did not show any of these peaks in these regions for any deposition time (Figure 

5.5). This confirms that these peaks are associated with Cu and the Au NPs and shows 

that up to 4 forms of Cu can deposit onto these Au NPs at UPD potentials. 

Figure 5.6 shows CVs comparing glass/ITO electrodes coated with Ausnm, AU60nm, 

and AU250nm after Cu deposition at 300 m V for 30 min. There are similar Cu Cu-l, Cu-2, 

and Cu-3 stripping peaks for the All60nm and the AuSnm, but we did not observe any Cu 

stripping peaks for the AU250nm. Figure 5.7 and 5.8 shows the voltammetry for all of the 

Cu deposition times for AU60nm and AU250nm, respectively. Cu stripping peaks were 

present at all times on AU60nm, but only appeared on AU250nm after 17 h. To further 

confirm that the peaks in these CV s were due to Cu, we stripped the Cu by obtaining a 

linear sweep voltammogram (LSV) from 0.0 to 1.6 V, then removed the sample from 

solution under potential control at 1.6 V, and then ran another LSV from 0.0 to 1.6 V in a 

fresh 0.1 M HCI04 solution. The latter LSV (Figure 5.9) resembled bare Au (although 

smaller in size, see SI for details), indicating that the anodic peaks during the first LSV 

were due to Cu. 

To better understand the dependence of the Cu deposition process on Au size, we 

plotted the CUtotal AUsurf ratio and CUtotal/ AUtotal ratio as a function of Cu deposition time 

for AuSnm, All6onm, and AU250nm NPs on glass/ITO as shown in Figure 5.10. CUtotal is the 

total amount of Cu deposited as determined by integrating all of the Cu stripping peaks 

and AUsurf and AUtotal are the amount of surface Au and total Au as determined by 
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Figure 5.8 CV s of Glass/ITO/ Au-250 nm/Cu in 0.1 M HCI04 for different Cu 

deposition time, as indicated. Scan rate is 20 m V Is. Horizontal dashed lines points level 

o current. 
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integrating the Au oxide reduction peak and monitoring the total charge during Au 

deposition (6.0 x 10-5 C), respectively. The CUtotal/Ausurfratio (Figure 5.10 (A)) follows 

the order AU60nm > AU8nm > AU250nm. The plots are dominated by the Cu-2 stripping peak 

because it is the largest and increases with increasing deposition time. For short 

deposition times the CUtotal1 AUsurf is similar for Ali60nm and AU8nm but reaches 12: 1 and 

4:1, respectively after 17 h. The larger value for the AU60nm is due to the smaller surface 

area of AU60nm. The large ratios (> 1) and large oxidation potential (-1200 m V) suggests 

that this Cu is due to bulk AuCu alloying within the interior of the Au NPs. The 4: 1 ratio 

for AUSnm reaches it maximum after 4 h, while the 12: 1 ratio for AU60nm was still 

increasing even up to 17 h. This shows that the bulk alloying is not limited by the surface 

Au atoms and that the alloying process occurs much faster for smaller nanoparticles. The 

value is 0.01 for AU250nm at 17 h, also suggesting that a small amount of bulk alloying is 

possible even with the larger Au NPs after long deposition times. 

The CUtotal/Autotal (Figure 5.10 (B)) follows the order of AUSnm > AU60nm> AU250nm. 

The Cu-2 stripping peak also dominates this ratio, which represents the maximum 

amount of AuCu alloying possible at this deposition potential. The bulk alloying on 

AU8nm occurs the fastest and the ratio reaches a maximum of 30% Cu after 4 h. This 

value was 15% and 0.02 % for AU60nm and AU250nm, respectively, after 17h, again showing 

that the rate of alloying is slower on larger Au nanoparticles. It is not clear if the extent 

of alloying decreases with increasing particle size, however. If the 30% Cu ratio is 

limited by the amount of Au present, we would expect that bulk alloying on AU60nm and 

possibly even AU250nm NPs would also eventually result in 30% Cu if we allowed the 

deposition to proceed even longer than 17 h. This experiment was not conducted. From 
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our data, we can conclude that the rate of bulk AuCu alloying at UPD potentials increases 

with decreasing Au NP size, leading to a larger amount of Cu at any given time for the 

smaller NPs up to 17 h. 

These same plots are shown for the Cu-I, Cu-3, and Cu-4 stripping peaks in 

Figure 5.11 and 5.12. The Cui AUsurf associated for all of these peaks are very similar for 

both Ausnrn and AU60nrn. These peaks therefore correspond to surface or near-surface Cu 

layers since they are related to the number of surface Au atoms. The Cui AUtotat for these 

same three peaks is 4-6 times larger for Ausnrn compared to AU60nrn since the total Au is 

the same in both cases, but the number of surface Au atoms are much larger for the 

AuSnrn. This leads to a larger number of Cu atoms bound to the surface of Au and overall 

larger Cui AUtotat for Ausnrn. AU250nrn does not exhibit these peaks. 

Figure 5.13 shows the change in oxidation potential for Cu-I, Cu-2, Cu-3, and Cu-4 

stripping peaks as a function of Cu UPD deposition time. The oxidation potential 

decreases with increasing deposition time in all cases, except for the Cu-4 peak. Figure 

5.14 illustrates the Cu UPD deposition process as a function of time for small Au NPs 

based on the Cui Au ratios shown in Figure 5.10 and the shift in oxidation potential with 

time for each peak. Figure 5.14 shows that at short times, there exists an outer traditional 

Cu UPD layer (Cu-I) and interior CuAu alloy (Cu-2). With later times, Cu continues to 

diffuse into the interior of the Au NP to form more interior AuCu alloy, which causes this 

peak to increase with deposition time. Another exterior Cu UPD phase also forms at later 

times (Cu-3), which could be a higher coverage of the outer Cu UPD layer or a sub

surface Cu layer. As the deposition continues, the Cu-I oxidation peak shifts negative, 

showing that it is easier to strip the outer Cu layer. This is because the interior formation 
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of bulk AuCu renders the outside Cu layer less stable, since a Cu UPD layer is stronger 

on pure Au compared to AuCu. The outer Cu UPD layer becomes weakened further with 

more bulk alloying, leading to a further shift negative and complete loss of the Cu-3 UPD 

peak. A new Cu-4 peak appears, which could be a subsurface AuCu alloy different from 

the bulk AuCu Cu-3 alloy peak. 
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5.4 CONCLUSIONS 

We demonstrated here the underpotential deposition of Cu on Au NPs of different 

sizes. By using cyclic voltammetry we were able to monitor up to four different oxidation 

peaks for Cu. For the first time, alloying of Cu with Au NPs of 8 and 60 nm at UPD 

potentials was demonstrated. This alloying behavior happens with less extent on bigger 

particles. We believe that the Cu-3 peak is due to the diffusion of Cu into the Au lattice. 

This effect was observed previously during the chemical synthesis of AU/Cu alloys at 

high temperature. 121 Diffusion of Cu into the Au lattice did not proceed to the same 

extend for bigger Au NPs (~250 nm in diameter) and on Au film. Peak at ~1200 nm was 

not observed for these samples even after 17 h of Cu deposition time. These results can 

be useful for the electrochemical synthesis of bi-metallic nanostructures with controlled 

metal/metal composition by simply varying the deposition time. 
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CHAPTER VI 

DEALLOYING OF GOLD FROM GOLD/SILVER CORE/SHELL 

NANOSTRUCTURES BY ELECTROCHEMICAL CYCLING IN BROMIDE 

CONTAINING ELECTROLYTE 

Here we describe the dealloying of gold from gold/silver core/shell nanostructures 

by electrochemical cycling in bromide containing electrolyte. Gold/silver core/shell 

structures were synthesized directly on the surface of a Glass/ITO electrode [ret], and 

then samples were cycled in electrolyte solution containing 0.01 M KBr and 0.1 M 

HCI04 for 1 and 10 cycles. Analysis by UV -vis spectroscopy and SEM showed the 

formation of "bulb"-like structures and porous spherical structures were observed after 

electrochemical cycling for Au! Ag nano structure s. We determined the amount of gold 

left on the electrode surface after electrochemical cycling in KBr by electrochemical 

removal of the Ag shell in H2S04 and electrochemical stripping of the remaining Au in 

KBr again. These experiments showed that after 1 cycle in KBr there is from 1.5 to 3% 

of the initial amount of Au left on the electrode surface. After 10 cycles in KBr there is 

less than 1% of the initial Au left on the surface of Glass/ITO. Results show that we 

were able to remove gold from gold/silver nanostructures and that the resulting bulb-like 

or porous shapes are made from silver only. This work represents the first example of 

forming hollow or porous Ag structures by electrochemical dealloying of Au from Ag. 

The reverse case is common however. 
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6.1 INTRODUCTION 

Bimetallic alloy and core-shell nanoparticles have received a great deal of 

attention due to the fact that their properties are distinct from those of the corresponding 

monometallic particles. The synthesis of bimetallic alloys and core-shell nanostructures 

has been reported in many papers. 122-125 Such structures were characterized using 

transmission electron microscopy (TEM), SEM, UV-vis spectroscopy, X-ray 

photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). 

Solid metallic nanostructures have been used in a wide range of applications that 

take advantage of their high surface-to-volume ratio. Recently, a lot of attention has been 

paid to the synthesis of nanoporous metals for various applications such as catalysis 126 

and sensing. 127 Nanoporous structures can be formed by chemical etching or electrolytic 

dealloying. In the case of chemical etching, one element is selectively etched out of the 

alloy in a suitable solution. For example, nitric acid is typically used to dealloy Ag from 

Au-Ag alloys.128 During the electrolytic dealloying, the electrode potential is applied to 

the sample in order to electrochemically remove usually the less noble metal from the 

alloy, leaving the more noble metal on the surface of the electrode. Electrochemical 

dealloying can be performed on any system where a large difference between the 

electrochemical oxidation potentials of the elements in the alloy exists. Dealloyed 

structures can be coarsened at elevated temperatures 129 or room temperature depending 

on the applied voltage 130 and nature of the electrolyte. 128 

This chapter describes the first example of electrochemical dealloying Au from an 

Au-Ag core-shell nanostructure grown directly on an electrode surface. The findings of 
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this chapter will show that we were not able to synthesize a perfect Ag shell on an Au 

core. Interestingly, the experiments showed that we are able to dealloy a more noble 

metal (in this case Au) from the alloy structure by using an appropriate complexing agent 

(Br} The dealloying process led to the formation of porous nanostructures, similar to 

those described in literature, but for the less noble metal, Ag in this case. 
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6.2 EXPERIMENTAL DETAILS 

The experimental procedure consists of 4 main steps (Figure 6.1): 1) growth of 

Au nanostructures directly on the Glass/ITO electrode, 2) growth of an Ag shell with 

various thickness on top of Au, 3) removal of Au from the Au!Ag nanostructure by 

electrochemical cycling and 4) characterization of nanostructures before and after 

electrochemical experiments by UV -vis spectroscopy, SEM, and linear sweep 

voltammetry in order to determine the composition of the final structure. 

Growth of Au/Ag core/shell nanostructures. Glass/ITO electrodes were 

cleaned and functionalized with MPTMS as described in Chapter II. Then samples were 

placed in Au seed solution for 20 min and after that in Au growth solution for Ih (See 

Chapter II for details). Then Glass/ITO/MPTMS/Au NP samples were rinsed with water, 

dried under N2 and placed into Ag growth solution at pH 10.6 for 30 min. This step was 

repeated up to 5 times to produce thicker Ag shells. Glass/ITOIMPTMSI Au-corel Ag

shell samples were rinsed with nanopure water, dried under nitrogen and characterized by 

UV -vis, SEM and electrochemical methods. 

Characterization. UV -vis spectroscopy was used to monitor the growth of Au 

and Ag on the electrode surface by observing the localized surface plasmon band before 

and after electrochemical experiments. SEM was used to determine the morphology of 

the Au! Ag nanostructures before and after electrochemical treatment. Cyclic 

voltammetry was used in order to remove Au from the Au! Ag nanostructures, and LSV 

was used in order to determine the amount of Au left on the electrode surface after 

removal. See Chapter II for description of techniques. 
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6.3 RESULTS AND DISCUSSION 

The first step in the experimental procedure was to synthesize Au nanostructures 

directly on the Glass/ITO/MPTMS electrodes by a seed-mediated growth procedure. l31 

We characterized the final Au structures by LSV, UV-vis and SEM. Figure 6.2 (A) 

shows the characteristic LSV of Glass/ITO/MPTMSI Au NPs from 0 V to 1.8 V 

performed in 0.01 M KBr and 0.1 M HCl04 electrolyte solution at a scan rate of 5 mV/s. 

The peak at ~970 m V is due to the oxidation of gold and formation of AuBr4-, according 

to the Reaction 3.4. The UV-vis spectrum of the electrode before electrochemistry is 

shown on Figure 6.2 (B) (black line). The UV -vis spectrum has a characteristic 

absorption band for gold at ~550 nm. The average absorbance was 0.20 ±0.05. After the 

oxidation reaction the absorbance dropped to 0.04 and the peak shifted to ~560 nm 

(Figure 6.2 (B) red line). According to the UV -vis data there is a small amount of gold 

remained on the electrode surface after the oxidation of Au. The size of Au 

nanostructures was determined by SEM. SEM data shows that the majority of the 

nanoparticles on the electrode surface are spherical with average diameter of 88 ±20 nm 

and coverage of 20 particles per 1 Jlm2
• There are some short nanorods and platelets 

present on the electrode surface but their amount is insignificant (9 and 6 % respectively). 

Also SEM images were taken after the oxidation reaction was performed. The average 

size of Au NPs after the oxidation reaction was 44± 15 nm with coverage of 5 particles 

per 1 Jlm2
. A typical SEM image before and after electrochemical oxidation is shown in 

Figure 6.3 (A) and (B) respectively. 
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Figure 6.2 (A) LSV of Glass/ITOIMPTMS/Au NPs in 0.01 M KBr and 0.1 M 

HCI04. Scan rate 5 mV/s. (B) UV-vis spectrum of Glass/ITO/MPTMS/Au NPs before 

(black) and after (red) electrochemical oxidation. 
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Figure 6.3 SEMs of Glass/ITO/MPTMSI Au NPs before (A) and after (B) 

electrochemical oxidation in KBr. 
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Au-corel Ag-shell nanostructures were synthesized with various Ag-shell 

thicknesses and characterized electrochemically. The idea of the project was to 

electrochemically characterize the core-shell metal nanostructures. When we monitor the 

oxidation reaction on Au-corel Ag-shell nanopartic1es in KBr containing electrolyte 

solution, Ag should form AgBr, according to the following reaction: 

AgO + B{ ~ AgBr(s) + e- EO = 0.07 V vs NHE (Rxn.6.1) 

AgBr that forms during the reaction is insoluble and remains on the electrode surface. In 

the case when Ag forms a perfect shell, Au oxidation and formation of AuBr4- will not be 

possible because of the protecting layer of AgBr on top of it (Figure 6.4 (A)). In the case 

where defects exist in the Ag-shell, or when a full shell of Ag does not exist on top of the 

Au NP, it will be possible to oxidize Au to AuBr4-, which is soluble in water and will 

leave the electrode surface while Ag remains on the electrode in the form of AgBr. Since 

Au in our case is a core, after the oxidation reaction occurs, we hypothesized that Ag 

would remain on the electrode surface in the form of a hollow Ag-shell (Figure 6.4 (B)). 

AgBr can be easily re-reduced to AgO by performing the scan in the direction of negative 

potentials. 

We grew an Ag-shell on top of the Au NPs using the overgrowth approach. 132 

The thickness of the Ag-shell was varied by the number of Ag growths performed. We 

made Glass/ITO/MPTMSI Au-corel Ag-shell samples with 1, 3 and 5 Ag growths. The 

growth of Ag on top of Au was monitored by UV -vis spectroscopy. Figure 6.5 shows 

UV -vis spectra of Glass/ITO/MPTMSI Au NPs (red) and Glass/ITO/MPTMSI Au

corel Ag-shell up to 5 Ag growths. Au by itself showed an absorbance maximum at ~550 
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on the surface. 
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run. When 1 Ag growth was performed on the same sample, the characteristic Ag 

absorption band appeared at ~340 run, while the Au peak shifted to red (~532 run). With 

every consecutive Ag growth the peak wavelength for Ag shifted to more positive values 

and reached 378 run after 5 growths. The Au peak wavelength shifted slightly to more 

negative with the increase of Ag content on the surface and reached 525 run after 5 

growths. The shift in Au confirms deposition of Ag onto Au. The intensity of both peaks 

increased with each Ag growth, indicating the increased amount of metal (in this case 

Ag) on the surface. Figure 6.6 shows typical SEM images of Glass/ITO/MPTMSI Au

corel Ag-shell nanostructures with different Ag-shell thicknesses. Similar to the Au NPs, 

Au-corel Ag-shell nanostructures were mostly spherical with some short nanorods and 

plates also present on the surface. Average sizes of the Au-corel Ag-shell structures were 

129±59, 128±48, and 143±48 run for Ag growth 1, 3 and 5 respectively. After synthesis 

and characterization by UV-vis and SEM, we obtained LSVs or CVs in 0.01 M KBr and 

0.1 M HCI04 electrolyte solution in order to examine them. LSVs of 

Glass/ITO/MPTMSI Au-corel Ag-shell with different shell thickness are shown in Figure 

6.7. The peak at ~140 mV on Figure 6.7 (A) is due to oxidation of Ag to form AgBr on 

the electrode surface. With an increase in the amount of Ag on the electrode surface 

(Figure 6.7 (B) and (C)), this peak shifts to more positive potentials and increases in 

current. Second peak at ~820 mV is due to the oxidation of Au to form AuBr4-. This 

peak has the same oxidation potential (~820 m V) and similar area (1 x 10-3 C) regardless 

of the amount of Ag on the electrode surface. We believe that the Ag is not forming 

a perfect shell on top of the Au NPs and therefore it is possible to oxidize Au 

electrochemically and remove it from the AuiAg nanostructures. We characterized the 
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Figure 6.6 SEMs of Glass/ITO/MPTMSI with (A) Au growth only, (B) Au 

growth and 1 Ag growth, (C) Au growth and 3 Ag growths, and (D) Au growth and 5 Ag 

growths. 
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samples by UV -vis spectroscopy before and after performing the electrochemical 

experiments. Figure 6.8 shows the UV -vis spectra of Glass/ITO/MPTMSI Au-corel Ag

shell before and after oxidation in KBr. For Ag growth 1, the Ag absorption peak is not 

visible and the absorbance increased in the region of 300-350 nm. The Au absorption 

band disappeared and an additional band at ~650 nm appeared. The shift in absorption 

band toward higher wavelengths is an indicator of the presence of hollow 

nanostructures.1 33 For 3 and 5 Ag growths, the absorption band for Ag shifted a little to 

the negative wavelengths (~330 and ~350 nm respectively for 3 and 5 Ag growths) and 

increased significantly in absorbance. Similar to Ag 1 growth, a peak at ~ 750 nm 

appeared, indicating the presence of hollow structures on the electrode surface. Figure 

6.9 shows SEM images of Glass/ITO/MPTMS/Au-core/Ag-shell before (A, B, and C) 

and after (D, E, and F) electrochemical oxidation in KBr. After oxidation particles 

appear almost perfectly spherical and bigger in size, compared to the sample before the 

electrochemical reaction was performed. In addition, all particles appear much brighter 

after the oxidation, compared to before. We refer to these particles as "bulbs" because of 

their large size, hollow interior, and bright appearance. For 5 Ag growths very large 

bright "bulb" nanoparticles exist at the same time with much smaller particles on the 

electrode surface for resons not fully understood at this time. The sizes of the "bulb" 

particles were 177± 76, 190± 77, and 233±88 nm for 1, 3 and 5 Ag growth, respectfully. 

We believe that the increase in size is due to the formation of AgBr during the oxidation 

reaction. The size of the new structures ("bulbs") for 5 Ag growths was determined 

without taking into account the smaller particles that varied in size from 25 to 90 nm. 
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Figure 6.8 UV -vis spectra of Glass/ITO/MPTMSI Au-corel Ag-shell 

nanostructures with (A) 1 Ag growth, (B) 3 Ag growths, and (C) 5 Ag growths before 

(black) and after (blue) oxidation in 0.01 M KBr, in comparison with 

Glass/ITO/MPTMS/Au NPs (red line). 
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Figure 6.9 SEM images of Glass/ITO/MPTMSI Au-corel Ag-shell (A, B, and C 

for 1, 3 and 5 Ag growths respectively) and Glass/ITO/MPTMS/Au NPs (D) before 

oxidation, and after (E, F, and G for 1, 3, and 5 Ag growths respectively and H for Au 

only) oxidation in 0.01 M KBr. 

147 



During the imaging with SEM, obtaining high magnification (zoom-in) pictures led to the 

"bulb" NPs, showing that they are less stable than non-hollow spherical particles. Figure 

6.10 shows "bulb" particles melted by the SEM beam at different stages of melting. 

In view of the fact that Au-corel Ag-shell NPs undergo morphological changes 

during the oxidation reaction, we decided to extend this work and perform 1 and 10 

electrochemical cycles on the samples. In this case Au-corel Ag-shell structures went 

through both oxidation and reduction in 0.01 M KBr solution. Typical electrochemical 

cycle in 0.01 M KBr for Glass/ITO/MPTMS/Au-core/Ag-shell is shown in Figure 6.11. 

The peak at ~ 150 m V is due to the oxidation of AgO and formation of AgBr and the 

second peak on the forward scan (at ~820 m V) is due to the oxidation of Auo to AuBr4- or 

AuBr2-. On the reverse scan the reduction of AuI or AuIII still in the vicinity of the 

electrode surface occurs at ~460 mY. Reduction of AgBr to AgO occurred at ~20 mY. 

While the areas of the peaks for Ag oxidation and reduction increased with increase of 

amount of Ag on the electrode surface, the Au oxidation and reduction peaks remained 

relatively constant. The UV -vis absorption spectra before and after 1 cycle in KBr for 

different amount of Ag growth are shown in Figure 6.12. For 1 Ag growth, the Ag peak 

shifted to more negative wavelengths and the Au peak significantly decreased in 

intensity. For 3 Ag growths, the Ag peak absorbance increased and Amax blue shifted. 

The Au peak was not well pronounced in the spectra; most likely it is buried under the 

Ag peak. In the case of 5 Ag growths, the absorbance of the Ag peak increased and 

broadened while the Au peak was not visible. There was no peak at ~650 nm as in the 
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Figure 6.10 SEM image of the Glass/ITO/MPTMS/Au-core/Ag-shell after the 

oxidation in 0.01 M KBr, melted by the SEM beam for different beam exposure time, as 

indicated. 
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Figure 6.11 CVs of Glass/ITO/MPTMS/Au-core/Ag-shell recorded in 0.01 M 

KBr and 0.1 M HCI04 solution. Scan rate 5 m V Is. (A) 1 Ag growth, (B) 3 Ag growths, 

and (C) 5 Ag growths. Arrows indicate direction of the cycle. 
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case of samples that underwent the oxidation reaction only (Figure 6.8). Figure 6.13 

shows the SEM images of Glass/ITO/MPTMS/Au-core/Ag-shell after 1 cycle in 0.01 M 

KBr solution. The samples that underwent a full cycle appeared similar to those only 

treated by the oxidation reaction only. The formation of "bulbs" occurred in all three 

cases (1, 3 and 5 Ag growths). In addition to "bulbs", islands of much smaller particles 

from 30 to 60 nm were observed on all samples. The sizes of "bulb" particles were 

128±30, 170±61, and 199±64 nm for 1,3 and 5 Ag growths respectively. Among the 

regular spherical particles, there were some interesting structures like an "open shell" 

(Figure 6.13 (D)) and porous nanostructures (Figure 6.13 (E)). 

Figure 6.14 displays the 1 st, 5th
, and 10th cycle of CV s recorded on 

Glass/ITO/MPTMS/ Au-corel Ag-shell samples. The Ag oxidation peak decreases 

approximately 3 times in size with the 2nd cycle and remains relatively constant with 

every other cycle. The Au oxidation and reduction peaks are visible only during the 1 st 

cycle, demonstrating the absence of Au on the electrode surface after the 1 st cycle was 

performed. UV -vis spectra before and after the 10 cycles are shown in Figure 6.15 and 

they are very similar to those obtained after 1 electrochemical cycle. SEM images after 

10 cycles demonstrated the formation of "bulbs" and some irregular structures for 1 Ag 

growth. In the case of 3 and 5 Ag growths the "bulbs" transformed into spherical porous 

structures and some porous networks. The size of the porous spherical particles was 

similar to size of the "bulb" particles. Some very small particles were observed on the 

electrode surface as well. SEM images of Glass/ITO/MPTMSI Au-corel Ag-shell 

nanostructures after 10 electrochemical cycles in 0.01 M KBr and 0.1 M HCI04 are 
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Figure 6.13 SEM images of GlassIITOIMPTMS/Au-core/Ag-shell structures after 1 cycle in 0.01 M KBr. (A) 1 Ag growth, 

(B) 3 Ag growths, and (C) 5 Ag growths. Figures (D) and (E) are expanded images of structures found on the surface of 3 and 5 Ag 

growth samples respectively. 
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Figure 6.14 CVs of Glass/ITO/MPTMS/Au-core/Ag-shell recorded in 0.01 M 
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and (C) 5 Ag growths. Arrows indicate the direction of the cycle. Cycle 1, 5 and 10 are 

shown. 
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shown in Figure 6.16. The sizes of the final porous structures and "bulbs" after 10 cycles 

were 123±22, 186±58, and 247±98 run for 1,3 and 5 Ag growth respectively. 

The formation of nanoporous, sponge-like structures during dealloying on 

macro scale (usually bulk alloys or films) has been described in literature.97,134,135 The 

dealloying process starts with dissolution of one element from the alloy surface, leaving 

behind the second element. There are many systems studied in this area, such as Au

Ag,I28,129,136,137 Cu-Au,138 and Cu_pt,93 etc. In all cases, the less noble metal was 

dissolved while the more noble element remained on the surface. This is almost always 

the case, especially in examples of AuAg alloys. In our case, we removed the more noble 

metal (Au) from the AuAg alloy and performed the experiment on nanometer-scale 

objects, making the system unique. Corcoran et. al. reported the formation of porous Au 

by dealloying Ag from Ag-Au bulk alloy samples in halide containing electrolytes.97 

According to the author, applying a certain overvoltage to the electrode in halide 

containing electrolyte (0.1 M K(halide) and 0.1 M HCI04) led to the formation of 

nanoporous Au structures. There was no evidence presented that the remaining element 

on the surface was Au. We performed a series of experiments in order to determine the 

amount of Au left on the electrode surface after the oxidation reaction was performed as 

shown on Figure 6.17 to confirm that we dealloyed Au from the Ag. First, we obtained 

a CV of a Glass/ITO/MPTMS/Au-core/Ag-shell electrode in 0.01 M KBr and 0.1 M 

HCI04 for 1 or 10 cycles. Then we performed the oxidation of Ag from the same sample 

in 0.5 M H2S04. In the latter case AgO will form Ag + and dissolve from the electrode 

surface into the solution. This step was necessary in order to rule out the possibility that 

the Ag-shell was blocking the oxidation of Au in KBr solution. By removing the Ag in 
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Figure 6.16 SEM images of Glass/ITOIMPTMS/Au-core/Ag-shell structures after 10 cycles in 0.01 M KBr. (A) 1 Ag growth, 

(B) 3 Ag growths, and (C) 5 Ag growths. Figure (D) represents a nanoporous network (sample with 5 Ag growths). (E) zoom-in on the 

porous spherical nanostructure. 
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Figure 6.17 Experimental steps performed to determine the amount of Au on the electrode surface after electrochemical 

cycling in 0.01 M KBr and 0.1 M HCl04 solution. 



H2S04 we should allow access to only remaining Au on the electrode surface. In the last 

step, we obtain a VS of the same sample in 0.01 M KBr and 0.1 M HCl04 again, in order 

to determine if there is any Au (and how much). 

Figures 6.18 and 6.19 show CVs of Glass/ITO/MPTMS/AuiAg NPs in (A) 0.01 

M KBr and 0.1 M HCl04, (B) 0.5 M H2S04, and (C) 0.01 M KBr and 0.1 M HCl04. 

Numbers 1, 3 and 5 correspond to the number of Ag growths performed on the sample. 

Figures 5.17 and 5.18 (B) show that after 1 and 10 cycles in KBr media, we can oxidize 

Ag in H2S04. It proves that the "bulbs" and porous structures formed after the 

electrochemical cycling contain Ag. The Ag oxidation peak in H2S04 increases with an 

increase in the number of Ag growths performed on the sample. After 10 cycles, the 

amount of Ag determined by LSV was smaller than that after 1 cycle, showing that some 

Ag is lost during the cycling in KBr. As described above, to determine the amount of Au 

left on the surface we performed an additional sweep in KBr electrolyte after removing 

Ag. During this step, we compared the remaining amount of Au to the initial amount 

present on the sample, also determined by LSV of the original Au sample only. From the 

CVs shown in Figures 6.17 and 6.18 (C) we determined that samples cycled once in step 

(1) and processed through the rest of the route as described before had 1 to 3 % of 

original amount of Au left on the surface, independent of the amount of Ag overgrowths. 

The amount of Au left on the electrode surface after 10 cycles in KBr varied from 0.03 to 

0.05 % and was also independent of the number of Ag growths. These results show that 

the "bulbs", porous structures, and networks formed on the electrode surface during the 

electrochemical cycling in KBr solution are made from Ag, not Au. This is likely the 

case in the Corcoran study, since the conditions are very similar. 

159 



<" 0.2 <" 0.4 <" 0.6 
'? 0.0 '? 0.2 '? 0.4 = 0 2 = 0.0 = 0.2 
~ -. ~ ~ QO 
X -04 X -0.2 X 0 2 
- . - 04 - -. i -0.6 i :0'6 i -0.4 
f -0.8 f -0:8 ~ ~g.~ 
~ -1.0 (A-I) ~ -1.0 (A-3) !iii -1:0 j V (A-5) 

U -1.2 U -1.2 U -1.2 +---~~~~~~~-'-
1.2 0.8 0.4 0.0 -0.4 1.2 0.8 0.4 0.0 -0.4 1.2 0.8 0.4 0.0 -0.4 

Potential, [V] Potential, [V] Potential, [V] 

<" 0.2 <" <" 
~ ~ 0.0 ~ 0.0 
~ QO ~ ~ 
2S 2S -1.0 2S -2.0 
J 42 ~ ~ = ~ ~ ~ 
f -04 e -2.0 e a . (B-1) a (B-3) a -6.0 j v (B-5) 

...... -0.6 -3.0 -I--~~----~ 
0'1 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

o Potential, [V] Potential, [V) Potential, [V] 

<" 0.0 <" 0.0 <" 0.0 

~ -0.2 ~ -2.0 ~ -2.0 
~ ~ ~ 
X X X -4.0 -= -0.4 -= -4.0 -= 'S 'S 'S -6.0 e -0.6 e -6.0 e -8 0 

~ -,---~~~_(-'-.-C_-l~) ~ (C-3) ~. >-1 ~~_.,........,....(C~-5...L) u -0.8· U -8.0 U -10.0' 
1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0 

Potential, [V] Potential, [V) Potential, [V) 

Figure 6.18 CV s and LSV s of Glass/ITOIMPTMSI Au-corel Ag-shell recorded in (A) 0.01 M KBr and 0.1 M HCI04 (1 cycle), 

(B) 0.5 M H2S04, and (C) 0.01 M KBr and 0.1 M HCI04 (second run). Numbers 1,3 and 5 correspond to number of Ag growths on 

the sample. Scan rate 5 m Vis. 
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Figure 6.19 CVs and LSVs of Glass/ITOIMPTMS/Au-core/Ag-shell recorded in (A) 0.01 M KBr and 0.1 M HCI04(10 

cycles), (B) 0.5 M H2S04, and (C) 0.01 M KBr and 0.1 M HCI04 (second run). Numbers 1, 3 and 5 correspond to number of Ag 

growths on the sample. Scan rate 5 m V Is 



To verify if Au has any role on formation of porous Ag nanostructures Via 

dealloying, we carried out similar experiments on pure Ag nanostructures chemically 

synthesized on Glass/ITO surface. We performed Ag overgrowth on Ag nanostructures 

as we did in the case of Ag overgrowth on Au and kept the same number of overgrowth 

layers 1, 3, and 5. Figure 5.20 shows UV-vis spectra and SEM images of 

Glass/ITO/MPTMSI Ag NPs. UV -vis spectra represent Ag nanostructures with sequential 

growth of Ag on top of them. With an increase in the number of overgrowth cycles the 

intensity of the Ag plasmon band increases. The SEM images show typical Ag 

nanostructures formed after 1 (A), 3 (B), and 5 (C) Ag growths on the ITO surfaces. The 

majority of the nanostructures were spherical nanoparticles with average sizes of 52± 16, 

126±38, and 142±75 nm for 1, 3, and 5 growths respectively. Other shapes appeared 

sporadically, including rods, triangles, and hexagons. As in the case of Au! Ag 

overgrowth, these structures were smooth. 

These Ag nanostructures were further used in electrochemical experiments. 

Similar to the Au!Ag core-shell structures, samples were cycled once or 10 times in 0.01 

M KBr and 0.1 M HCI04• Figure 6.21 and 6.22 shows CVs and UV-vis spectra before 

and after electrochemical oxidation for 1 and 10 cycles, respectively. Frame (A) of 

Figure 6.21 shows the oxidation peak of Ag at ~140 mY. Frames (B) and (C) show that 

with an increase of the amount of Ag on the electrode surface, the oxidation peak for Ag 

increased and shifted slightly to more positive potentials. Ag reduction peak shifted to 

more negative with increase of amount of Ag on the electrode surface. The CV s in 

Figure 6.22 show the 1 st, 5th and 10th cycles of a Glass/ITO/MPTMSI Ag NP electrode in 

0.01 M KBr solution. The Ag peak area decreased drastically on the 2nd cycle (~5 times) 
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Figure 6.20 UV-vis spectra of Glass/ITOIMPTMS/Ag NPs overgrowth (up to 5 Ag growths) and SEM images of 

Glass/ITO/ Ag NPs with (A) 1 Ag growth, (B) 3 Ag growths, and (C) 5 Ag growths. 
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Figure 6.21 CVs of Glass/ITO/MPTMS/Ag NPs in 0_01 M KBr and 0.1 M 

HCl04, 1 cycle for (A) 1 Ag growth, (B) 3 Ag growths, and (C) 5 Ag growths. Frames 

(D), (E), and (F) show corresponding UV -vis spectra for 1, 3 and 5 growths, respectively. 
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Figure 6.22 CVs of Glass/ITO/MPTMS/Ag NPs in 0.01 M KBr and 0.1 M 

HCI04, 10 cycles for (A) 1 Ag growth, (B) 3 Ag growths, and (C) 5 Ag growths. Frames 

(D), (E), and (F) show corresponding UV -vis spectra for 1, 3 and 5 growths, respectively. 
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compared to 1 st one, and continued to decrease until the 5th cycle, where it stabilized. 

Frames (D), (E) and (F) show UV -vis spectra of corresponding samples. The intensity of 

the spectra increased throughout the entire wavelength range. The peaks became broader 

and shifted towards higher wavelengths, which points out to either formation of hollow 

nanostructures133 or aggregation ofthem on the electrode surface. 

To verify morphological changes we obtained SEM Images after the 

electrochemical oxidation for 1 and 10 cycles in KBr solution. Typical SEM images after 

electrochemical oxidation of Ag in KBr are shown in Figure 6.23. Frames (A), (B), (C) 

display nanostructures obtained after 1 cycle in KBr with 1, 3, and 5 Ag growths, 

respectively. Average diameters were 83±33, 195±112, and 279±136 nm for 1, 3 and 5 

Ag growths respectively. Frames (D), (E) and (F) show images after 10 cycles in KBr. 

Average diameters in this case were 131±53, 209±102, and 278±133 nm for 1, 3 and 5 

Ag growths respectively. Similar to AU/Ag core-shell nanostructures, the formation of 

"bulbs" were observed for all conditions of pure Ag samples. Porous structures were 

rarely seen on the surface, regardless of the number of growths and cycles. 
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Figure 6.23 SEM images of Glass/ITOIMPTMSI Ag NPs after electrochemical oxidation in KBr solution for 1 cycle, frames 

(A), (B), and (C) with 1, 3 and 5 Ag growths respectively. And after 10 cycles, frames (D), (E), and (F) with 1, 3, and 5 Ag growths 

respectively. Figures G, H, and I shows Glass/ITOIMPTMS/Ag NPs with 1, 3 and 5 Ag growths, respectively. 



6.4 CONCLUSIONS 

Here we successfully synthesized Ag and Au!Ag nanostructures directly on ITO 

surface with controlled size. Then we effectively dealloyed Au from Au! Ag 

nanostructures by oxidation in bromide containing electrolyte. The composition analysis 

based on LSV showed that there is less than 3% of Au on the electrode surface, 

indicating successful dealloying of Au from Ag. During the dealloying process we 

formed interesting porous and hollow bulb structures of Ag by electrochemical oxidation 

of pure Ag or Au!Ag in Br". Pure Ag forms bulbs, Au!Ag structures forms bulbs or 

porous structures depending on number of electrochemical cycles. Table 6.1 shows 

change in diameter of nanostructures after 1 and 10 electrochemical cycles in comparison 

with original size of nanostructures. 1 cycle in bromide media led to formation of bulbs 

for both pure Ag and Aul Ag nanostructures. 10 electrochemical cycles led to formation 

of bulbs for pure Ag sample and mixture of bulbs and porous structures for Au! Ag 

nanostructures. These hollow or porous Ag nanostructures could find use in various 

applications such as catalysis, sensing or drug delivery. 
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(A) 

AulAg 
Diameter [om) 

Diameter after 1 Diameter after 10 
# of Ag growths cycle [om) cycles [om) 

1 129±59 128±30 213±22 

3 128±48 120±61 (132 %) 186±58 (145 %) 

5 143±48 199±64 (139 %) 247±98 (172 %) 

(B) 

-0'\ 
\0 

PureAg 
Diameter [om) 

Diameter after 1 Diameter after 10 
# of Ag growths cycle [om) cycles [om) 

1 52±16 83±33 (160 %) 131±53 (151 %) 

3 126±38 195±1l2 (112 %) 209±102 (167 %) 

5 142±75 279±136 (196 %) 278±133 (195 %) 

Table 6.1 Diameter of the particles before and after electrochemical cycling for (A) Au-core/Ag-shell structures and 

(B) for pure Ag nanostructures. 



CHAPTER VII 

ELECTROCHEMICAL AND OPTICAL CHARACTERIZATION OF 

BIMETALLIC (Ag)Au AND (Au)Ag NANOPARTICLES PREPARED BY SEED 

MEDIATED GROWTH METHOD 

Here we describe the electrochemical characterization of Au! Ag alloy 

nanoparticles (NPs). The goal of the experiments was to distinguish between the two 

methods of synthesis by Linear Sweep Voltammetry (LSV). Au! Ag NPs were 

synthesized by a seed mediated growth method. Two routes of synthesis were used: 

1) Ag ions were reduced onto preformed Au NP seeds and 2) Au ions were reduced onto 

preformed Ag NP seeds. The solution molar ratio of 1: 1 (Au:Ag) was studied in both 

cases. The electrochemical composition analysis was used to determine the Au:Ag ratio 

and atomic arrangement at different stages of the synthesis. In the case of (A14nm)Ag, 

heating solution for 24 h led to disappearance of Ag oxidation peak, while in the case of 

the (Agsnm)Au NPs showed the presence of Ag oxidation peak even after 24 h. This 

indicates the different atomic arrangement in Au! Ag alloy NP for two different synthesis 

methods. In the first case, Ag is stabilized by Au and therefore is not accessible for 

oxidation. In the latter case Ag is on the surface of the Au NPs, which makes it possible 

to oxidize. Quenching the alloy solution in an ice bath provided the study of alloy 

composition and atomic arrangement at earlier (first 5 min) stages of synthesis. 
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7.1 INTRODUCTION 

Bimetallic nanoparticles exhibit unique optical, magnetic and catalytic properties 

different not only from the bulk metals, but also from corresponding monometallic 

nanoparticles. 122
,I39-141 This provides another method to tune their properties besides size 

and shape manipulation. Two main groups of bimetallic colloids exist, alloys and core

shell colloids. Au-Ag alloy nanoparticles can be prepared by number of methods. The 

most common one is the co-reduction of metal salts in the presence of stabilizing 

agent. 123,142 Another well established method is to reduce metal salt (Au or Ag) on 

preformed colloid of a different metal. 122
,125 Au-Ag alloy nanostructures were used for 

SERS demonstrating that Ag atoms provide SERS-active sites on a Au surface at a 

wavelength where Au itself is not active. 143 Au-Ag alloy NPs are also good materials for 

tuning the localized Surface Plasmon Resonance (SPR) by varying the composition of the 

alloy. It was also shown that Au-Ag alloy NPs are better as a catalyst for CO oxidation 

compared to pure Ag or pure Au NPS. 144 There are many publications focused on the 

synthesis of bimetallic nanostructures. Most of them characterize the final product by 

optical methods and High Resolution TEM (HRTEM) technique. There is little known 

about the electrochemistry of these bimetallic NPs. 

Here we describe preliminary results on synthesis of AuAg bimetallic NPs by 

seed-mediated growth and their electrochemical and optical characterization at different 

stages of the synthesis procedure. We used two different ways of synthesis of AuAg 

bimetallic NPs and two different temperature protocols in order to determine if the 

electrochemistry of the Au and Ag are sensitive to these differences. 
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7.2 EXPERIMENTAL 

Figure 7.1 shows the general experimental route used in this study. The main 

steps involve the synthesis of Au-Ag alloy NPs in solution, characterization of the 

colloidal solution by UV -vis spectroscopy, assembly of the alloy NPs on an electrode 

surface, and characterization by LSV and UV -vis on the electrode. 

Synthesis of AuAg NPs. AuAg NPs were synthesized by seed mediated growth 

method at high temperatures, similar to the procedure used for the synthesis of different 

size Ag NPs described in Chapter III. In this case Ag or Au metal ions were reduced in 

the presence of citrate (act as a reducing and capping agent at the same time) and at high 

temperatures over preformed Au or Ag colloidal NPs. Figure 7.2 shows a schematic of 

the synthesis procedure. In route one, a 0.01 M AgN03 solution was brought to boil and 

then a 40 m L of 4 nm diameter Au Seed NPs (2.5 x 10-4 M in Au) (described in Chapter 

II) were added simultaneously with a 1 % citrate solution. The mixture was allowed to 

boil for desired period of time (1 min to 24 h), with vigorous stirring. The solution was 

then cooled down to room temperature before UV -vis and electrochemical analysis. The 

resulting NP alloy will be further referred as (A14nm)Ag since Au was used as the seed. 

In route 2,0.01 M AuC14- was reduced onto preformed 8 nm diameter Ag Seed NPs (see 

Chapter II) using the same approach as in route one. The resulting colloid NPs will be 

further referred as (Agsnm)Au since Ag NPs were the seed. 

Attachment of alloy NPs to the electrode surface. The alloy NPs were 

chemisorbed onto Glass/ITO electrodes functionalized with APTES according to the 
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Figure 7.1 Experimental steps. 
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Route 1 (Au/ Ag) 

-- -- 40 mL Au Seed (2.5 10-4 M in Au) 
Boil kA + 1 mL of 1 % N a-citrate - ... 

Boil for x h, stir 
(x=I min - 24 h) 

~ ~ 
13 mL H2O Cooled to room temperature 

+ 1 mL O.OIM A~NO 
....... 
--..J 
~ 

Route 2 (Ag/Au) 

~ ~ 
40 mL Ag Seed (2.5 10-4 Min Ag) 

Boil /\ + 1 mL of 1 % N a-citrate - ... 
Boil for x h, stir 
(x=I min - 24 h) 

'-------" ~ 
13 mL H2O 

+ 1 mL O.OIM HAuCl4 

Cooled to room temperature 

Figure 7.2 Schematic of (A14nm)Ag and (Agsnm)Au alloy synthesis by seed mediated growth method. 



----------------

procedure described in Chapter II. The soaking time was kept constant at 20 min for all 

samples. 

Characterization of alloy NPs. AuAg NP solutions were characterized by 

UV-vis spectroscopy. The composition of the alloy nanoparticies were determined by 

LSV. Electrochemical characterization involved two consequent oxidation steps: 1) The 

LSV was performed in 0.5 M H2S04 from 0 to 1.0 V at 5 m V /sec in order to determine 

the oxidation potential and the amount of Ag present and 2) the LSV was obtained in 

0.01 M KBr and 0.1 M HCI04 electrolyte solution from 0 to 1.2 V to determine the 

oxidation potential and the amount of Au. 
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7.3 RESULTS AND DISCUSSION 

Figure 7.3 (A) shows the photographs of (A14nm)Ag alloy NPs colloidal solutions 

synthesized with a 1: 1 Au:Ag molar ratio. The photographs were taken at different times 

following the addition of Au seed. The 0 min time represents AgN03 solution only, 

which is colorless. 1 min to 24 h represents the time of boiling the solution after addition 

of Au Seed NPs and 1 % citrate solution. Immediately after the addition of Au Seed NPs, 

the solution turned red, similar to the Au Seed color shown in Figure 7.3 (8)). With 

increasing heating time, the color of solution changed from red to red-orange and at 60 

min became orange. Heating for 24 h led to a color change from orange to brown. 

Figure 7.3 (8) shows the color of Ag Seed and Au Seed for comparison. We obtained 

UV -vis spectra of (Au)Ag colloidal solutions after each heating time as well as a 

monometallic Au and Ag NPs (Figure 7.3 (C)). Only one LSPR band was detected for 

each alloy. After 1 min of heating time the wavelength of the peak did not change, 

compared to Au Seed NPs (510 nm), while the intensity of the peak increased. With 

further increase in heating time the peak intensity was increased and the wavelength 

shifted to more negative values, such as 490 and 465 nm, for 15 min and 30 min, 

respectively. The absorption spectra for 30, 45 and 60 min heating times were identical. 

The peak was broadened and blue-shifted relative to that at 15 min. Further heating for 

24 h led to an increase in the intensity and formation of one single peak at 458 nm. 

Heating the solution for longer time (up to 29 h) did not change the peak intensity or 

wavelength further, indicating that all Ag ions in solution were reduced. A single LSPR 

peak and the fact that this peak is located in between pure Au NPs (510 nm) and pure Ag 
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Figure 7.3 (A) photographs of (Au)Ag NPs solutions at different heating times. (B) Photographs of monometallic Ag Seed 

and Au Seed NPs. (C) UV-vis spectra of (Au)Ag NPs solutions at different heating times, and Au Seed and Ag Seed NPs for 

comparison. 



NPs (390run) indicates that the synthesized particles were alloys rather than core-shell or 

a mixture of monometallic Au and Ag NPs. Table 7.1 shows the change in peak 

wavelength (Amax) with heating time, in comparison with pure Ag NP seed and Au NP 

seed solutions. 

We characterized these alloy NPs electrochemically by LSV. Figure 7.4 shows 

the LSVs of Glass/ITOIAPTES/(Au)Ag NPs for different heating time. Column (A) 

shows the oxidation of Ag from (A14nm)Ag NPs in 0.5 M H2S04 while column (B) shows 

the oxidation of Au from the (Ausnm)Ag NPs in 0.01 M KBr and 0.1 M HCI04 solution 

obtained afterwards. The electrochemical data is presented in Table 7.2. The peak for 

Ag oxidation is 329 mV for 1min of heating time and shifts slightly to more positive 

values with an increase in heating time. The shift in the oxidation potential for Ag could 

be due to two reasons: an increase in Ag coverage or diffusion of Ag into the Au lattice, 

which makes it harder to oxidize. The Ag coverage increased with an increase in heating 

time up to 30 min, and remained similar for 30, 45 and 60 min of heating time, which is 

consistent with our UV -vis data. Interestingly, we did not observe an oxidation peak for 

Ag for the (Ausnm)Ag alloy NPs prepared by heating 24 h. We believe that the long 

heating time results in diffusion of Ag atoms into the Au lattice, which makes it difficult 

to oxidize. The diffusion of Ag into the Au NP and increase of Au at the surface is 

consistent with the LSPR band shifting positive and sharpening after 24 h. The Au 

oxidation potential and coverage remained approximately the same, except for the 24 h 

heating time. The reduction in Au could be due to a lower overall coverage of NPs on 

the surface or stabilization of Au. Converting coulombs into the number of moles 

showed that after 1 min of heating alloy, Au:Ag ratio was approximately 9:1 and reaches 
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Heating time "max 

1 min 510 

15 min 490 

30 min --465 

45 min ~465 

60 min ~65 

24h 458 

Ag Seed 390 

Au Seed 510 

Table 7.1 UV-vis data for (All4nm)Ag NPs. 
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Figure 7.4 LSVs of Glass/ITO/APTES/(Au)Ag NPs performed in (A) 0.5 M 

H2S04 and (B) in 0.01 M KBr and 0.1 M HCI04 for different heating times as indicated. 

Scan rate 5 mY/so 
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Heating EpAg, Ap Ag, [XIo-4 C) EpAu, Ap Au, [xlo-4 C) Au:Ag ratio 
time [mV] [mV] 

1 min 329 ± 51 1.3 ± 0.5 809± 2 17 ± 1.9 8.7 

15 min 370 ± 1 2.6 ± 0.1 806 ± 1 9.8 ± 1.3 2.5 

30 min 378±3 4.0 ± 0.1 808±3 12 ± 3.9 2.0 

45 min 379±3 3.7± 0.2 804±4 9.9 ± 1.4 1.8 
...... 
00 ...... 60 min 388 ± 14 3.3 ± 0.9 808 ±2 7.7 ± 3.4 1.6 

24h - - 779± 4 5.5 ± 0.6 -

Table 7.2 Summary of electrochemical data for oxidation of (A14nm)Ag alloy NPs attached to Glass/ITO/ APTES electrodes. 



2:1 after 60 min of heating. 

Figure 7.5 (A) and (B) represents the photographs of (Agsnm)Au 1: 1 molar ratio 

colloidal solutions at different stages of the synthesis. The colors of the solutions were 

different from those obtained for the (At4nm)Ag synthesis. The initially yellow solution 

(the color of HAuCl4 solution, not shown), became plum immediately after AgN03 

addition. Continued heating changed the color from plum to pink (15 min), dark pink (30 

min), pink-reddish (45 min), red (60 min), and yellow-brown (24 h). UV-vis spectra of 

the solutions are shown in Figure 7.5 (C). As in the case of (At4nm)Ag alloy NPs, only 

one LSPR peak was observed. The wavelength of the peak was shifted from 532 nm for 

1 min heating time to 486 nm for 24 h heating time. Table 7.3 shows the summary of 

UV -vis data. 

Note, that since the standard reduction potential of AuC14-IAuo is higher than that 

of Ag + I AgO, Ag NPs can undergo galvanic exchange with Au ions according to the 

following reaction)33: 

3 Ag(s) + AuCI4-~ Au(s) + 3 Ag\aq) + 4 cr (Rxn 7.1) 

The alloy composition and oxidation potentials were determined by LSV. Figure 

7.6 shows LSVs of Glass/ITOIAPTES/(Ag)Au NPs for different heating times and Table 

7.4 represents the summary of the electrochemical data. While the coverage of Ag stays 

approximately constant for all heating times, the oxidation potential shifts positive with 

an increase in heating time (except for 24 h of heating). The shift to more positive 

potentials is due to the formation of the (Agsnm)Au alloy and possibility that Au is 

forming an outer shell, which prevents Ag from oxidation. The amount of Au on the 
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Figure 7.5 (A) and (B) photographs of (Agsnm)Au NPs solutions at different heating times. (C) UV -vis spectra of (Agsnm)Au 

NPs solutions at different heating times, and Au Seed and Ag Seed NPs for comparison. 



Heating time "'-max 

1 min 532 

15 min 527 

30 min 532 

45 min 532 

60 min 521 

24h 486 

Ag Seed 390 

Au Seed 515 

Table 7.3 UV-vis data for (Agsnm)Au NPs. 
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Figure 7.6 LSVs of Glass/ITO/APTES/(Ag)Au NPs performed in (A) 0.5 M 

H2S04 and (B) in 0.01 M KBr and 0.1 M HCI04 for different heating times as indicated. 

Scan rate 5 mY/so 
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Heating EpAg, Ap Ag, [x 10-4 C] EpAu, [mV] Ap Au, [x10-4 C] Au:Ag ratio 
time [mV] 

1 min 378 ± 10 1.5 ± 0.2 802±7 2.4 ± 0.2 1.0 

15 min 399±3 1.9 ± 0.4 801 ± 4 3.1 ± 0.6 1.1 

30 min 401 ± 5 1.3 ± 0.2 803 ±4 3.5 ±0.7 1.8 

- 45 min 429±2 2.1 ± 0.3 807±6 5.1±1.2 1.6 
00 
0\ 

60 min 430±3 1.9 ± 0.3 797±6 3.3±1.1 1.2 

24h 406 ± 18 1.4 ± 0.9 813 ± 2 7.7± 1.1 3.6 

Table 7.4 Summary of electrochemical data for oxidation of (Ag)Au alloy NPs attached to Glass/ITOI APTES electrodes. 



sample increases with increase in heating time (except for 60 min of heating), indicating 

that more AuCk was reduced on the Ag template with time. The Ag:Au ratio for 1 min 

heating time was 1: 1 and reached 4: 1 after heating the solution for 24. 

We also performed the synthesis of (All4nm)Ag NPs as described previously, but 

after desired time, the solutions were quenched in an ice bath. It took about 3 min to cool 

it down. The ice bath should force the reaction to slow down and eventually stop, 

allowing us to study the composition of the alloy at earlier stages. The colloidal solution 

of (All4nm)Ag NPs was then divided in two parts. The first was analyzed immediately, 

and second part left to stir at room temperature overnight (~19 h). We studied synthesis 

times of 1.3, and 5 min. The reasoning behind these experiments is the drastic color 

change during the first few minutes of the synthesis, after addition of Au NPs Seed to the 

boiling Ag salt solution and change in the color of synthesized alloy with time at room 

temperature. 

We studied synthesis times of 1, 3 and 5 min. Figure 7.7 (A) shows the UV-vis 

spectra of (All4nm)Ag colloidal solutions after 1 (red), 3 (blue) and 5 (green) min of 

heating time in comparison with the monometallic Au seed NPs (black). The LSPR band 

increased in intensity and shifted to more negative wavelengths with an increase in the 

heating time, which is consistent with the described above results for (All4nm)Ag NPs. 

The peak absorption wavelength shifted from 510 nm for Au Seed NPs to 508, 503, and 

498 nm for 1, 3 and 5 min of heating time respectively. The LSVs of 

Glass/ITOIAPTES/(All4nm)Ag NPs are shown in Figure 7.7 (B). As expected, with an 

increase in heating time, the Ag oxidation peak increased, indicating that more Ag was 

reduced onto the Au NPs during the synthesis. The Au oxidation peak remained the same 
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Figure 7.7 (A) UV-vis of (Au)Ag colloidal solution taken after 1 (red), 3 (blue), 

and 5 (green) minutes of heating time, compared to Au Seed NPs (black). LSV s of 

Glass/ITOIAPTES/(Au)Ag NPs in (B) 0.5 M H2S04 and (C) 0.01 M KBr and 0.1 M 

HCI04, 1 (red), 3 (blue), and 5 (green) minutes of heating time. Scan rate 5 m V Is. 

188 



regardless of the heating time (Figure 7.7 (C)). Summary of the electrochemical 

oxidation experiments are in Table 7.5. According to electrochemical data, the Au:Ag 

ratio was 6: 1, 4: 1 and 3: 1 for 1, 3 and 5 min of heating time respectively. 

UV -vis spectra and electrochemical data of (A14nm)Ag NP solutions that were left 

to stir overnight at room temperature showed that the reduction of Ag occurs without heat 

being applied. Despite the length of heating time before putting the sample in the ice 

bath, all three alloys (l, 3 and 5 min), demonstrated identical LSPR spectra after 19 h 

stirring at room temperature (Figure 7.8 (A)). The electrochemical analysis is in good 

agreement with the UV -vis data. Figure 7.8 (B) shows LSVs of 

Glass/ITOIAPTES/(A14nm)Ag NPs after stirring for 19 h and Table 7.4 summarizes the 

LSV data. From the LSV experiments we can observe that the amount of Ag and Au is 

highly reproducible for all samples. Interestingly, the conversion of the coverage from 

Coulombs into moles, showed that we have a little bit more silver on the surface than Au. 

The Ag:Au ratios were 1.5:1, 1.4:1 and 1.8:1 for 1,3 and 5 min of heating respectfully. 

The reason is not understood at this point since we should have a 1: 1 Ag:Au ratio if the 

reaction went to completion. 
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Heating EpAg, f\ Ag, Ep Au, f\Au, Au:Agratio 
time [mV] [xlD-4 C] [mV] [x ID-3 C] 

1 321 ± 11 1.5 ± D.2 77D± 1 1.3 ± D.l 5.8 

3 337± 5 2.2 ± D.2 772± 7 1.3 ± D.2 3.9 

5 333 ± 1 2.9 ± D.l 774±3 1.4 ± D.l 3.2 

-~ 

Table 7.5 Summary of electrochemical data for oxidation of (Au)Ag NPs synthesized by heating the solution for 1, 3 and 5 

min and placing it into the ice bath. 
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Figure 7.8 (A) UV -vis of (Au)Ag colloidal solution taken after 1 (red), 3 (blue), 

and 5 (green) minutes of heating time and stirring for 19 h, compared to Au Seed NPs 

(black). LSVs of Glass/ITO/APTES/(Au)Ag NPs in (B) 0.5 M H2S04 and (C) 0.01 M 

KBr and 0.1 M HCI04, 1 (red), 3 (blue), and 5 (green) minutes of heating time. Scan rate 

5 mY/so 
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Heating EpAg, ~Ag, EpAu, ~Au, Au:Agratio 
time [mY] [x 10-4 C] [mY] [x 10-3 C] 

1 341 ± 26 5.4 ± 0.3 766±4 1.2 ± 0.1 1.5 

3 357±6 5.8 ± 0.1 769±3 1.2 ± 0.1 1.4 

5 354± 8 4.7 ± 0.9 773 ±3 1.3 ± 0.1 1.8 

-'-0 
tv 

Table 7.6 Summary of electrochemical data for oxidation of (Au)Ag NPs synthesized by heating the solution for 1, 3 and 5 

min, placing it into the ice bath and stirring for 19 h at room temperature. 



7.4 CONCLUSIONS 

The optical properties and composition of bimetallic Au-Ag NPs was studied at 

different stages of the synthesis procedure. Alloy NPs were synthesized by seed

mediated growth at high temperatures and samples were analyzed after desired periods of 

heating time with UV-vis spectroscopy and LSV. The solution molar ratio of 1:1 

(Au:Ag) was studied. Both (All4nm)Ag and (Agsnm)Au NPs are alloy nanoparticies 

according to the UV -vis data. The electrochemical composition analysis was used to 

determine the Au:Ag ratio and atomic arrangement at different stages of the synthesis. In 

the case of (All4nm)Ag, heating solution for 24 h led to disappearance of Ag oxidation 

peak, which indicates that heating for 24 h stabilizes Ag, probably by diffusion of Ag 

atoms into the Au NP lattice. In the case when alloys were heated from 1 to 5 min and 

then quenched in an ice bath, Ag oxidation was observed for all three times, which 

indicated that Ag reduced on the surface of the Au and remains there even after 19 h of 

vigorous stirring. LSV results for the heating of the (Agsnm)Au NPs showed the presence 

of Ag oxidation peak even after 24 h. These results shows that LSV can be used to 

determine composition of the alloy NPs and atomic arrangement. 
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CHAPTER VIII 

ELECTROCHEMICAL CHARACTERIZATION OF GOLD AND SILVER 

NANOPARTICLES ELECTROSTATICALLY ATTACHED TO THE POLYMER 

FILMS USING LAYER-BY -LAYER PROCEDURE 

This Chapter describes the electrooxidation of the metal nanoparticle 

(NP)/polymer films constructed using layer-by-Iayer (LBL) assembly technique. LBL

assembled Au and Ag NP multilayer films were studied by UV -vis spectroscopy, 

scanning electron microscopy (SEM) and linear sweep voltarnmetry (LSV). SEM images 

show that the nature of the metal NP influences the morphology of the films. Ag NPs 

tend to aggregate and form large clusters during assembly, while films of Au NPs, are 

more continuous and porous. For films metal NP/polymer films charge increased with 

increase in the number of layers, suggesting that all of the metal is electroactive. For 

films with non-conductive spacers (PSS/PDDA), charge for Ag and Au oxidation 

decreased with increase in the number of polymer bilayers. After deposition of 1, 3 or 5 

polymer bilayers, percent of Ag oxidized changes from 15 to 1.5, to 0.8, respectively. In 

the case of Au, percent of Au oxidized drops from 24 to 5, to 0 for 1, 3 and 5 polymer 

bilayers, respectively. 
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8.1 INTRODUCTION 

Assembled films of metal nanostructures are useful in electrochemical sensing 

devices for several reasons. IS Multilayers of conductive NPs give rise to porous, high 

surface area electrodes, where the metal nanoparticles can be assembled through cross-

l'nk' 1 . 'fi d 1 " . . hId f: 14S 146 I mg e ements VIa speci IC an se ectlve mteractIOns WIt e ectro e sur aces. ' 

Mono- or multilayer arrays of conductive NPs assembled on electrode surfaces may be 

considered as assemblies of nanoelectrodes of controllable active areas. 16 One of the 

most common ways to fabricate nanostructured multilayer films is through layer-by-layer 

(LBL) electrostatic attachment. There are several reports on the morphology, optical and 

electrochemical properties of metal nanoparticle - polymer LBL films. 101
,147 The 

assembly is usually electrostatic in nature, involving negatively-charged metal 

nanoparticles and positively-charged polymers. Srinivasan et. al. reported the fonnation 

of multilayer Au NP films using poly( allylamine hydrochloride) and showed that with an 

increase in the number of assembled layers, the particles tend to agglomerate and fonn 

large aggregates. 147 Chirea et. al. fabricated polyelectrolyte/Au NP multilayer films 

using poly(L-lysine) and characterized the films electrochemically using [Fe(CN)6]3-/4-

and [Ru(NH3)6]3+/2+ .100 It was shown that the permeability of these ions depends strongly 

on the charge of the last layer deposited and on the charge of the Au NPs. Crespilho et. 

al. studied charge transport and the incorporation of redox mediators in LBL films 

containing dendrimer-encapsulated Au NPS 101 and considered electron hopping as 

a charge transport mechanism between the Au NPs and polymers in the LBL film. 
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Here we describe the electrochemical characterization of multilayer films 

constructed from Au and Ag NPs using positively and negatively charged polymers as 

building blocks. The metal NPs films were characterized by LSV. The goal of this 

research was to study the charge transport through multilayers composed of 

polyelectrolytes and NPs, and through polyelectrolyte layers to metal NPs. The electron 

transfer through polymer films is not studied well. There is no information about 

oxidation of metal nanopartic1es through the film. Others have studied the electron 

transport to redox molecules, such as ferrocene, but not for metal NP oxidation. It is 

important to study electrochemistry of such systems to control permeability of 

multilayers, for applications such as stripping analysis voltametry for chemical and 

biosensors, and catalysis. 
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8.2 EXPERIMENTAL SECTION 

Fabrication of metal NP/polymer multilayer films. The LBL procedure is 

described in detail in Chapter II. Shortly, the Glass/ITO electrodes were cleaned and 

dried under N2. Then, the electrodes were functionalized with aminopropyltriethoxy 

silane (APTES), which provides positively charged -NH3 + groups on the surface. 

Negatively-charged, citrate-stabilized Au (3-5 run diameter) or Ag (8-12 run diameter) 

NPs were then attached to the Glass/ITO/ APTES by soaking in the NP solution for 

a desired period of time (20 min to 1 h). This is the 1 st layer. In order to construct 

multilayer films, the Glass/ITO/ APTES/Metal (Me) NP electrode was immersed into a 

positively-charged polymer solution (Poly(diallyldimethylammonium chloride - PDDA) 

for 20 min, then to the solution of Me NPs again and so on, until a desired number of 

bilayers (MeNP/PDDA) are deposited. Multilayer polymer films were constructed using 

the same strategy, but instead of using metal NPs, negatively-charged polymer 

(Poly(styrenesulfonate) - PSS) was used. 

Characterization. Metal NP/polymer films were characterized by UV -vis 

spectroscopy, SEM and LSV. Details ofthese techniques are provided in Chapter II. 
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8.3 RESULTS AND DISCUSSION 

Figure 8.1 (A) shows UV-vis absorption spectra of 

G1ass/ITO/(APTES/Ag)/(PDDAlAg)x, where x = 0-9, and the number of Ag layers is 

x+ 1. There is single LSPR band at 399 run for 1 layer (x = 0) and the peak shifts positive 

with an increase in the number of layers (Figure 8.1 (B) inset), most likely due to the 

aggregation of nanoparticles and formation of bigger structures. The intensity of the 

LSPR peak increases linearly with an increase in the number of layers (Figure 8.1 (B)). 

This shows a ~imi1ar amount of Ag deposited in each layer. These multilayer films were 

characterized electrochemically by obtaining a LSV in 0.5 M H2S04. In this solution, the 

Ag oxidizes from AgO to Ag+. Figure 8.1 (C) represents typical LSVs of 

G1ass/ITO/(APTES/ Ag)/(PDDAI Ag)x multilayer films. With an increase in the number 

of layers, the coverage increases linearly and the peak potential shifts to more positive 

values (Figure 8.1 (D)). The increase in current with increasing layers shows that Ag 

NPs are e1ectroactive. The positive shift in potential is due to an increase in the coverage 

of Ag NPs on the electrode surface and due to the aggregation of the particles and 

formation of big agglomerates. 

Figure 8.2 shows UV -vis absorption spectra and LSV s for 

G1ass/ITO/(APTES/Au)/(PDDA/Auh multilayer electrodes. Similar to the case of Ag, 

the LSPR intensity increased linearly with an increase in the number of layers. The 

wavelength of the LSPR peak shifted drastically from 520 run to 560 nm for 1 and 3 

layers, respectfully. With a further increase in the number of layers, the peak wavelength 

increased linearly up to 405 run at 10 layers. LSVs recorded in 0.5 M H2S04 showed 
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an increase in peak current with an increase in the number oflayers. The peak at ~ 1300 

m V in the LSV corresponds to Au oxide formation. The peak oxidation potential shifted 

positive with an increase in the number of layers and remained constant after 7 layers. 

Multilayer in a non-uniform fashion Au and Ag metal NPs/polymer films were 

also characterized by Scanning Electron Microscopy (SEM). Figure 8.3 shows SEM 

images for Ag NPs (left column) and Au NPs (right column) deposited using the LBL 

method with PDDA for different numbers of layers as indicated. We observed 

a remarkable difference in the structure of the two films constructed from the different 

metals. In the case of Ag, an increase in the number of deposition layers led to the 

formation of large looking particles, which we attribute to the formation of aggregates of 

the ~8 nm Ag NPs attached to the film. In the case of Au NPs, the initial coverage (1 5t 

layer) is more dense and uniform compared to the film of Ag NPs, and with an increase 

in the number of layers, the Au formed a more continuous porous film. Figure 8.4 shows 

the proposed growth of these films. 

Electron transfer to the Ag and Au NPs through the polymer films was studied 

next. We were interested in understanding electron transport through the polymer to the 

electrode during metal oxidation. Several aspects have to be understood to fully describe 

the process, including how long will electron transfer occur during metal oxidation and 

how the distance from electrode affects oxidation potential and current. These are 

important questions when using metal NPs in stripping analysis. The multilayer 

metal/polymer films contained negatively and positively charged polymers, PSS and 

PDDA, respectfully were fabricated. Note that PSS is not a conductive polymer. After 

the polymer film was constructed, a single layer of Au or Ag NPs was assembled on top 
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Figure 8.3 SEM images of Glass/ITOIAPTES/(Ag or Au NP/PDDA)x fabricated 

with 1, 3, 5, 7, and 10 bilayers as indicated. 
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of the film. Number of (PSSIPDDA) bilayers varied from 1 to 5 as shown in Figure 8.5. 

Figure 8.6 (A) Shows UV -vis spectra of Glass/ITO/(PSS/PDDA)xI Ag NPs. The LSPR 

band for Ag shifted to more positive with an increase in the number of polymer layers 

while the peak absorbance remained at the same level, showing approximately equal Ag 

in all cases. The LSVs (Figure 8.6 (B)) showed that one bilayer of polymer limits the 

electron transfer from electrode to the Ag NPs significantly. The peak area for 1 bilayer 

was ~ 7 times smaller than the original Ag peak for oxidation of Ag on APTES. With an 

increase in the number of polymer layers, the amount of Ag oxidized decreased further, 

but did not reach zero, even after 5 polymer bilayer were deposited (Figure 8.6 (C)). 

Values of percent Ag oxidized are shown in Figure 8.6 (D). 

Similar experiments for Au NPs were obtained. Figure 8.7 shows the UV -vis and 

LSV s of Glass/ITO/(PSS/PDDA)xl Au NPs. Interestingly, the optical properties of these 

films were significantly different from those obtained for Ag NPs. The Intensity of the 

LSPR peak increased with an increasing number of polymer layers. This is difficult to 

understand assuming the Au NPs can only attach to the outer PDDA layer. The results 

suggest that Au can intercalate into the polymer film to some degree. The LSVs showed 

that with an increase in the number of polymer layers, the amount of Au oxidized was ~4 

times less after depositing 1 layer of PSS/PDDA, and completely inhibited after 5 layers 

ofPSS/PDDA. 
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8.4 CONCLUSIONS 

Here we described the fabrication of metal NPs/polymer multilayer films by 

electrostatic attachment of Au and Ag NPs through positively-charged PDDA. These 

films were characterized by UV-vis spectroscopy, SEM and LSV. The LSPR peak 

increased with an increase in the number of Me NPs/PDDA layers due to an increase in 

the metal coverage on the electrode surface for both metals. The peak wavelength shifted 

to more positive values due to the aggregation of metal NPs. LSV analysis showed 

a similar behavior; an increase in the number of bilayers led to an increase in peak 

current, and positive shift in peak oxidation potential. This showed that most of the metal 

NPs in the film were in electronic communication with the electrode likely through 

electron hopping. SEM analysis showed that the morphology of the film is drastically 

different, depending on the metal deposited. While the experimental conditions were 

kept constant and only the nature of the metal NPs varied (and size varied), the final 

structures were extremely different. Films of Ag NPs consisted of large aggregated 

structures on the electrode surface while films of Au NPs were uniform and porous. 

Experiments on the electron transfer through the polymer film to the metal NPs 

demonstrated that it depends on the nature of the NPs as well. After deposition of 5 

layers of polymer, we did not observe oxidation peak for gold (electron transfer fully 

blocked), while Ag oxidation peak was lower compared to 1 layer, but still observable. 

This occurred even though Au NPs appeared to intercolate into thicker multilayer 

polymer films. After deposition of 1, 3 or 5 polymer bilayers, percent of Ag oxidized 
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changes from 15 to 1.5, to 0.8, respectively. In the case of Au, percent of Au oxidized 

drops from 24 to 5, to 0 for 1, 3 and 5 polymer bilayers, respectively. 

This is a preliminary data and there are several unanswered questions regarding 

the difference in morphologies of the films as well as the optical and electrochemical 

properties. 
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CHAPTER IX 

SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation focused on the stability of metal nanoparticles and 

nanostructures toward oxidation and the electrochemical characterization of metal NPs as 

a function of size and composition. 

We demonstrated in Chapters III and IV the effect of size of metal NPs on their 

oxidation potential. Two different metal NPs were studied, Ag and Au. Ag NPs were 

synthesized by seed mediated growth, and their diameter varied from 8 to 50 nm. The 

oxidation of Ag NPs was performed by linear sweep voltammetry in sulfuric acid media. 

The main conclusions from the research on Ag NPs are: 

The oxidation potential for Ag shifts negative with a decrease in the 

average Ag NP diameter. 

The shift in oxidation potential is due to a size-dependent shift in the 

standard electrode potential for the Ag + I AgO redox couple. 

Constant potential experiments show the fast dissolution rates for small 

particles and slow dissolution rates for larger particles. 

This was the first direct measurement of size-dependent stripping of 

metal NPs by linear sweep voltametry. 

The shift in oxidation potential with SIze follows the general trend 

predicted by theory. 
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Au NPs of different SIze were electrochemically deposited directly onto 

a Glass/ITO electrode surface. The stability toward oxidation of these particles was 

studied by linear sweep voltammetry in bromide containing electrolyte. The main 

conclusions from the project on Au NPs are: 

Au NPs with different size (from 8 to 250 nm diameter) can be 

synthesized electrochemically by reduction of an Au salt at varied 

deposition potentials, but there is a constant coverage in terms of total 

Au atoms. 

The shift in oxidation potential with size (from 4 to 250 nm diameter) 

followed the theoretical predictions of Plieth much better compared to 

AgNPs. 

On the basis of the charge during Au deposition versus the charge during 

oxidation, the oxidation process appears to be a mixture of 1 and 3 e-

processes. 

The oxidation of Au NPs of two different sizes deposited on the same 

electrode surface showed two well resolved oxidation peaks that 

correlated to the two sizes. 

Cu UPD was carried out on Au NPs of different size as discussed in Chapter V. 

The work on copper UPD on Au NPs led to the following conclusions: 

It is possible to deposit a UPD layer of Cu on Au NPs with different 

size. 
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During Cu deposition at UPD potentials, Cu underwent bulk-alloying 

with Au. 

The composition of the alloy depends on the deposition time. 

LSVs show several oxidation peaks for Cu, corresponding to different 

Cu-Au alloy formations. 

Alloying of Cu with Au occurs to a lesser extent on larger particles. 

This is the first example of AuCu alloying at UPD potentials. 

Electrochemical characterization of Au! Ag core-shell structures was also 

performed. Au! Ag core-shell nanostructures were synthesized by seed-mediated growth 

procedure directly on the electrode surface. These structures were then characterized by 

UV-vis spectroscopy and LSV. The conclusions of this work are: 

Dealloying of Au from the Au! Ag alloy structures is possible by cyclic 

voitammetry in bromide containing electrolyte. 

While Au gets dissolved, Ag remains on the electrode surface. 

The morphology of the structures remaining after electrochemical 

cycling in bromide is different from the morphology of the original 

Au! Ag core-shell nanostructures. Interesting hollow Ag bulb structures 

form on the surface. 

Pure Ag nanostructures also undergo the bulb formation during cycling 

in bromide media. 

This is the first description of dealloying Au from Ag and formation of 

hollow Ag nanostructures by electrochemical cycling in bromide. 
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Au! Ag alloy NPs were synthesized by a high temperature seed-mediated growth 

method. Two different synthesis routs were applied: Au seed-Ag salt and Ag seed-Au 

salt. In both cases, the molar ratio of 1: 1 (Au:Ag) was studied. UV -vis and 

electrochemical measurements obtained at different stages of synthesis and different 

heating times led to the following conclusions: 

Both synthesis methods led to the formation of alloy (not core-shell) NPs 

according to UV -vis data. 

The composition and atomic arrangement of the alloy strongly depends 

on the heating time. 

LSV can be used to determine atomic arrangements in alloy NPs. 

Multilayer metal NP/polymer films were fabricated and analyzed 

electrochemically. The conclusions of this project are: 

With an increase in the number of metal/polymer layers, the intensity of 

the peak (by UV-vis) increased while the wavelength was red-shifted for 

both Au and Ag NPs. 

The charge passed during oxidation of metal NPs, determined by LSV, 

increased with an increase in the number of layers showing that the NPs 

are in electronic communication with the electrode. 

The morphology of the films depended on the metal used during 

assembly. 
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Polymer films (PSS/PDDA) assembled before the metal NPs limit or 

block electron transfer from the electrode to the metal NPs during metal 

oxidation. 5 layers completely inhibit Au oxidation, while some Ag still 

oxidized at 5 layers. 
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FUTURE DIRECTIONS 

Future projects could include a study of the electrochemical oxidation of metal 

nanoparticles with sizes below 4 nm. In that size regime the shift in the oxidation peak 

potential should be more dramatic compared to the bigger sizes, according to Plieth (see 

Figure 1.1 Chapter I). There are methods to synthesize smaller clusters of Au NPs as 

small as AU25, which is composed of 25 Au atoms and has size below 1.0 nm diameter. 

The experimental procedure would be similar to our project on Au NPs but with smaller 

clusters. These experiments would require removal of the passivating thiollayer. 

Based on the results from Chapter VI, I would like to continue work on the shape 

evolution of metal nanostructures during electrochemical cycling. I would synthesize 

different shaped Au nanostructures using different methods, then deposit them on an ITO 

electrode surface, and test their shape evolution during electrochemical oxidation. After 

synthesis and deposition of various shaped Au nanostructures, I would perform 

electrochemical experiments using cyclic voltammetry and observe the topographic 

images on the substrate before and after the oxidation/reduction reaction occurred. I 

would expect that the method of synthesis, the deposition procedure, the nature of the 

electrolyte, and the number of electrochemical cycles would affect the shape evolution of 

the Au nano structure s. I would perform experiments on the substrates prepared by 

different methods and then electrochemically cycle them in different electrolyte solutions 

for different numbers of cycles. I would expect that the shape change would be more 

significant with an increase in the number of electrochemical cycles. I would monitor the 

shape evolution ofthe Au nanostructures in-situ using EC-AFM (Electrochemical Atomic 
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Force Microscopy). First of all, I would obtain a topographic image of the electrode 

surface modified with gold nanostructures using tapping mode AFM. Then I would 

perform cyclic voltammetry using the AFM fluid cell which provides flow capability and 

allows insertion of the reference and counter electrodes. Samples would be the working 

electrode. An advantage of this set-up is that I can image exactly the same area of the 

electrode surface before, during, and after the electrochemical reaction. From these 

experiments, I would learn about the shape evolution of the gold nanostructures as a 

function of the number of cycles. Also, I would study the effect of electrolyte solution 

and the effect of different methods of synthesis and deposition on the shape evolution of 

gold nanostructures. This study would provide important information on stability of the 

nanoparticles towards electrochemical oxidation. 

Au NPs have been found to be useful for the catalysis of NO oxidation and 

reduction. 148 Nitric oxide is a free radical signal molecule involved in many 

physiological functions and pathological changes in the nervous system, immune system, 

epithelial system, smooth muscles, and other tissues. The ability to measure NO in real 

time will advance the understanding of physiological and pathological processes. Due to 

the importance of NO in biology, there is an increasing interest in the development of 

methods for detecting this compound. Typical NO detection methods,149 including 

chemiluminescence and colorimetry, provide indirect NO detection and cannot be used in 

vitro for localized, real-time sensing. Electrochemical detection may allow the direct 

measurement of NO concentration and is inexpensive, sensitive, and relatively non 

destructive to biological surroundings. 
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To accomplish this, I would synthesize different shapes of gold nanoparticles and 

then test them as catalysts. NO will be produced by adding NaN02 in acidic buffer 

solution according to the disproportionation reaction as reported by Yomathan et al.: 150 

(Rxn.8.1) 

Cyclic voltammograms of gold nanostructures should not show any faradaic current in 

Na2HP04-citric acid buffer solution (pH 2.2).151 But after adding NaN02 into the buffer 

solution, an anodic peak at ~ +O.9V should appear indicating the oxidation of NO on the 

nanoparticles, which we can express by the following reaction: 152 

(Rxn.8.2) 

To prove the catalytic effect of gold nanoparticles, I would perform blank 

voltammetric measurements for NaHP04 - citric acid buffer solution (pH 2.2) containing 

NaN02 on bare ITO electrodes and cyclic voltammogramms of buffer solution at 

modified electrodes before adding NaN02. I would expect not to get any electrocatalytic 

response toward NO oxidation on bare ITO. To determine the dependence of catalytic 

activity of Au NPs on their shape, I would measure the catalytic current as a function of 

nanoparticle shape. Since the average size of each shape of gold nanoparticles should be 

different, I would have to normalize the catalytic current to the number of gold 

atoms/cm2 on the surface and number of surface gold atoms on particles for a proper 

comparison. Using Au reduction peak, I would calculate the active surface area of the 

Au on the electrode surface and normalize the catalytic current as a function of shape. 
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Keeping in mind that the reactivity of nanoparticles depends on the amount of comers 

and edges,37 I would expect to get the highest catalytic current for triangles, stars, and 

branched structures in comparison with spheres, cubes, and nanorods. To examine the 

stability of as-prepared electrodes I would measure the electrochemical response of the 

gold nanoparticles in Na2HP04-citric acid buffer solution (pH 2.2) containing NaN02 by 

multiple cyclic voltammetric scans. If the response to NO does not show noticeable 

change after a number of successive cyclic voltammetric scans, it would indicate the 

stability of these electrodes. 

I would also examine the effect of electrocatalysis on the shape and size of Au 

NPs during and after its catalytic function. I would use EC-AFM for in-situ examination 

of shape stability of gold nanostructures during and after the catalytic reaction. If, during 

the catalytic reaction, Au NPs change their shape due to dissolution of atoms from the 

comers and edges, I would expect deformation of the original shapes closer to a spherical 

shape. This drastic shape change would likely result in a reduction in the catalytic 

activity because the most active surface atoms which are located on the comers and edges 

would be dissolved. I would expect a higher rate of shape change for the particles that 

would have more active sites (edges and comers) such as branched structures, 

nanoflowers, nanostars. 

The main requirement for this part of the research is to deposit uniform 

nanostructures on the electrode surface. If different shapes are present on the same 

sample, I would not be able to examine the catalytic activity as a function of shape since 

all shapes are present. 
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Also I would perform amperometric measurements to determine the detection 

limit for NO sensing on the nanoparticles of different shapes. Typical 

chronoamperometric experiments will be done in Na2HP04-citric acid buffer solution on 

ITO modified with different shapes of gold nanoparticles during successive addition of 

NaN02. The catalytic current should increase with the addition of nitrite. According to 

these chronoamperometric measurements, the plots of the catalytic current versus the 

nitrite concentration would be drawn and the relationship between catalytic current and 

nitrite concentration would be found. This study would give information about the 

catalytic properties of gold nanoparticles of different shapes. I would determine catalytic 

activity as a function of shape, perform in-situ monitoring of the shape change during and 

after their catalytic function, and determine the detection limit for NO. 

In addition, I would like to continue my study on Au-Ag alloy nanostructures by 

varying the molar ratio of metals and temperature to complete that project. For the 

multilayer metal NPs-polymer films, I would like to study in more detail the electron 

transfer from the electrode to NPs through the polymer film. To achieve that goal, 

I would have to learn elipsommetry techniques in order to determine the thickness of the 

polymer film. This would give information on how far from the electrode surface the 

electrons can travel in order to oxidize metal NPs, which could be different from electron 

transfer to a redox molecule like ferrocene. 

These studies can be useful for the next step in nanoresearch - fabrication of 

nanodevices. In this case, these electrodes could be useful as sensors and provide 

fundamental information about catalytic systems. 
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