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ABSTRACT 

PROMOTING DIFFERENTIATION AND SURVIVAL OF HUMAN C-KIT+ 

CARDIAC PROGENITOR CELLS EX VIVO 

Tareq Al-Maqtari 

June 8, 2015 

 

c-kit+ cardiac progenitor cells (CPCs) have recently gained much attention 

due to the therapeutic effects they exert on cardiac function following their 

administration into the infarcted heart as evidenced by animal studies and by a 

recent clinical trial (SCIPIO). However, injecting these cells in the heart is 

associated with poor differentiation into specialized cardiac cell types and with 

rapid death of the engrafted cells. With the ultimate goal of advancing cardiac 

stem cell therapy, we sought to facilitate the differentiation of human CPCs into 

cardiac cell types (e.g. cardiomyocytes, smooth muscle cells, endothelial cells 

and cardiac fibroblasts) by overexpressing selected cardiac transcription factors 

in vitro. To achieve that, Gata4, MEF2C, NKX2.5 and TBX5, were overexpressed 

in CPCs via lentivirus. When individually overexpressed, Gata4 upregulated 

some cardiomyocyte, smooth muscle cell, and fibroblast markers. TBX5, 

however, induced only few cardiomyocyte markers, indicating partial 

differentiation. In addition, these changes in CPC cardiac gene expression 

observed with Gata4 overexpression were accompanied by marked
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morphological changes, manifested by the cells becoming wider and largely 

polygonal. However, introducing the aforementioned transcription factors in 

various combinations largely failed to further enhance the cardiac differentiation 

of CPCs induced by Gata4 or TBX5, underscoring the complexity of the 

interaction between the cardiac transcription factors. Likewise, addition of the 

chromatin remodeling transcription factor BAF60C to Gata4 and/or TBX5 did not 

further potentiate their pro-differentiation effects in CPCs.  

In addition to inducing differentiation, we also endeavored to promote CPC 

survival by overexpressing a pro-survival gene. To that end, a constitutively 

active mutant form of Nrf2 (caNrf2) was overexpressed in CPCs. caNrf2 

overexpression protected CPCs against hydrogen peroxide- and 2, 3-dimethoxy-

1, 4-naphthoquinone (DMNQ)-induced oxidative stress in vitro without altering 

the overall growth characteristics of the cells. Taken together, our results 

highlight the potential of Gata4 in facilitating differentiation and the protective role 

of caNrf2 in CPCs. These effects of Gata4 and caNrf2 may enhance the 

regenerative capabilities of CPCs and could thus be utilized to advance cell-

based heart therapies. 
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CHAPTER I 

INTRODUCTION  

 

Discovery of c-kit+ cardiac progenitor cells in the adult human heart  

Myocardial infarction (MI) is a main cause of mortality and morbidity 

worldwide. In the USA, MI is responsible for approximately 50% of all 

cardiovascular deaths [1]. MI often occurs when an atherosclerotic plaque 

ruptures into a coronary artery, which may occlude the artery, and cause 

necrosis in the infarcted area [2]. Following infarction, both infarcted and non-

infarcted regions of the heart undergo a remodeling process, causing the 

infarcted region to lose contractility. Eventually, the infarct region heals leaving a 

fibrotic non-contractile tissue which culminates in heart failure [3]. Although 

reperfusion and pharmacological interventions for acute MI patients have been 

successful in lowering mortality, they fall short in repairing the damaged cardiac 

tissue [4], underscoring the need for newer therapeutic approaches. 

The long-standing notion of the heart being a terminally-differentiated 

organ has been challenged by cardiomyocyte-renewal findings in a number of 

studies [5-8]. The innate self-regenerative potential of the heart has been 

supported by the discovery of resident cardiac lin-/c-kit+ cardiac progenitor cells 

(CPCs) with stem cell characteristics (e.g. clonogenicity, self-renewal, and
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multipotency) [9]. These CPCs have been isolated from multiple mammalian 

species including rats, pigs, dogs and humans [10-13]. The presence of CPCs 

that are positive for both the stem cell marker c-kit and one or more early cardiac 

cell markers (e.g. GATA4, MEF2C and ETS1) suggests that CPCs are capable of 

differentiating into committed cardiac cell types [13]. Indeed, the ability of c-kit+ 

CPCs present in embryonic hearts to generate specialized cardiac cell types 

including cardiomyocytes, smooth muscle cells and endothelial cells during 

cardiogenesis have been shown [14, 15]. Currently, however, a debate is rising 

in regards to whether these c-kit+ cells are bona fide cardiac stem cells or 

stromal cells that reside in the heart and can generate cardiac lineages under 

certain conditions [16]. Thus, different authors may have different names for 

these cells including: c-kit+ cardiac stem cells, CPCs and cardiac stromal cells. 

However, For the purpose of this work, these cells will be referred to as “cardiac 

progenitor cells or CPCs”. 

 

CPC therapy for ischemic cardiomyopathy following MI 

The intriguing properties of CPCs and the need for a treatment that can 

replace the infarcted portion of the myocardium with a functional viable tissue 

have led numerous groups to assess the therapeutic potential of these cells. 

Indeed, independent laboratories have shown promising findings in animal 

models. For instance, c-kit+ cells isolated from adult Fischer rats exhibited stem 

cell properties and appeared to give rise in vitro and in vivo to at least 3 cell types 

within the cardiac tissue, namely cardiomyocytes, smooth muscle cells and 
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endothelial cells [9]. When injected in two loci bordering the infarct region in a rat 

model of MI, CPCs appeared to generate small cardiomyocytes and new blood 

vessels, thereby promoting functional recovery [9]. In addition, Tang et al. have 

shown that intracoronary injection of CPCs one month after the induction of MI in 

rats, decreased fibrosis, increased the viable tissues in the risk region, and 

improved cardiac ejection fraction, a marker of cardiac function [17]. In a third 

study, MI was induced in a porcine model by a 90-minute coronary occlusion 

followed by reperfusion [18]. Three months later, autologous CPCs were injected 

into the coronary artery using a balloon catheter and the analysis at one month 

post-treatment showed that CPC-injected animals had improved cardiac function 

as shown by greater ejection fraction and lower left ventricular end-diastolic 

pressure, corroborating the therapeutic potential of CPCs.  

These encouraging results in animal models led to the initiation of a phase 

I clinical trial [Cardiac stem cell infusion in patients with ischemic 

cardiomyopathy (SCIPIO)] in 2009. Albeit designed primarily to establish safety, 

SCIPIO has corroborated the positive therapeutic outcomes of the intracoronary 

infusion of CPCs as evidenced by improved left ventricular ejection fraction and 

smaller infarct size [19]. In this trial, 1.0 x 106 autologous CPCs were injected into 

16 patients via the intracoronary route 4 months after coronary artery bypass 

grafting. When left ventricular ejection fraction was assessed 4 months after CPC 

infusion, there was a significant improvement (increasing from 30.3% before 

CPC infusion to 38.5%) while the control group exhibited no change. Also, twelve 

months post treatment, ejection fraction further improved by an additional 4%, 
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indicating a long-term beneficial effect. Moreover, infarct size, as assessed by 

cardiac magnetic resonance imaging (MRI), decreased by 24% at 4 months and 

by 30% at 12 months [20]. These positive effects on heart function were 

accompanied by an improvement in the overall quality of life as shown by the 

Minnesota Living with Heart Failure Questionnaire (MLHFQ). 

Despite all the previous data that show the therapeutic potential of CPC 

for heart repair after MI, some studies have shown multiple shortcomings with the 

use of CPCs, including poor survival of the transplanted cells as well as lack of 

differentiation into mature cardiomyocytes [11, 17, 21, 22] (See below for more 

details). Addressing these issues may enhance the beneficial effects of CPCs for 

heart repair. 

 

CPCs do not differentiate upon injection in the infarcted heart 

The main underlying cause of heart failure following MI is the loss of viable 

contractile tissue [3] which is comprised of cardiomyocytes, smooth muscle cells 

and endothelial cells. Thus, it is conceivable that injecting cells that can generate 

functional cardiac cell types may be more conducive to heart recovery, conferring 

CPCs a critical advantage since they are considered, by many, as the 

progenitors of cardiomyocytes, endothelial cells and smooth muscle cells. 

However, only marginal differentiation of CPCs was noted upon intracoronary 

injection in a rat model of MI [17]. Indeed, although some injected cells 

coexpressed few cardiomyocyte-specific proteins, the cells were rather small and 

did not phenotypically resemble mature cardiomyocytes. In another study in 
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mice, GFP-labeled CPCs were traced following infusion via the intramyocardial 

and intracoronary routes [11] and their differentiation was assessed by 

expression of both GFP and the cardiomyocyte marker α-sarcomeric actin. 

Again, although few GFP-labeled cells co-expressed α-sarcomeric actin at 39 

days post implantation, these cells did not exhibit identifiable sarcomeric 

structures and their sizes were much smaller than the endogenous 

cardiomyocytes. These studies constitute strong evidence that the injected CPCs 

do not spontaneously give rise to functional cardiac cell types upon introduction 

into the heart. That lack of differentiation into functional cardiac lineages is 

thought to limit the therapeutic potential of CPCs in repairing the injured 

myocardium.  

Previous reports have demonstrated that multiple cell types can be 

directed to differentiate, at least partially, into cardiac cell lineages via 

introduction of cardiac transcription factors (TFs). For instance, cardiac TFs 

Gata4, Tbx5, and a subunit of the BAF chromatin-remodeling complex, Baf60c, 

directed ectopic differentiation of mouse mesoderm into beating cardiomyocytes 

[23]. Another combination of cardiac TFs (GATA4, TBX5, NKX2.5, and BAF60C) 

was sufficient to direct the differentiation of human embryonic stem cells into 

cardiomyocytes [24]. Also, both human embryonic stem cells and induced 

pluripotent stem cells generated cardiomyocyte-like cells following a plasmid-

based transient overexpression of GATA4, BAF60C and the early cardiomyocyte 

marker MESP1 [25]. Even fibroblasts (cardiac and dermal) were reprogrammed 

into becoming functional cardiomyocyte-like cells in vitro and in vivo by 
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overexpressing Gata4, Mef2c, and Tbx5 [26]. However, these findings were 

challenged by a recent study [27], which could be ascribed to differences in 

reagents or methodology.  

In addition, several reports have shown that cells which express higher 

levels of cardiac TFs (i.e. more cardiopoietic) exert superior therapeutic benefit 

for the infarcted heart. For instance, mesenchymal stem cells (MSCs) expressing 

Gata4 and Nkx2.5 (MSCs-GC) were superior to the naïve counterparts in 

promoting cardiac recovery after MI, in a mouse model [28]. Indeed, introducing 

MSCs-GC into the heart resulted in improved ejection fraction and fractional 

shortening, and led eventually to a thicker ventricular wall. In another study, a 

cocktail of TGF-β, activin, bone morphogenetic protein 4 (BMP4), retinoic acid, 

insulin-like growth factor-1 (IGF-1), alpha-thrombin, and interleukin-6 (IL-6) 

induced human MSCs to upregulate cardiac TFs [29]. These conditioned MSCs, 

which express higher levels of cardiac TFs, were superior to the naïve 

counterparts, leading to a pronounced improvement in cardiac structure and 

function upon injection into a mouse MI model. More recently, that cocktail of 

growth factors was used to create human cardiopoietic MSCs before injecting 

them into the endomyocardium of MI patients in a multi-center clinical trial [30]. 

Indeed, at 6 months post therapy, introduced MSCs improved multiple cardiac 

functional parameters such as ejection fraction, fractional shortening, and left-

ventricular end-systolic volume. Taken together, these studies support two 

important notions: 1) Cells can be induced to differentiate into cardiac lineages 

and 2) Promoting the cardiopoietic capacity of cells enhances their therapeutic 
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potential. Thus, it is likely that overexpressing cardiac TFs in CPCs may prove 

advantageous in facilitating their differentiation and enhancing their therapeutic 

potential in the clinical setting. 

  

CPCs do not survive well in the host heart 

Another major challenge for cardiac cell-based therapy is that the majority 

of cells introduced into the heart die within a few days [31, 32]. For instance, 

more than 99.5% of MSCs were no longer detected in the left ventricle 4 days 

post-transplantation in the heart in a mouse model [33]. Consistent with that, the 

vast majority of the 5 x 106 neonatal rat cardiomyocytes injected in cryo- infarcted 

rats died within 7 days, as assessed by the TUNEL assay [34]. In order to assess 

whether CPCs undergo a similar fate, we previously monitored the retention and 

engraftment of CPCs following transplantation into the infarcted heart at serial 

time points. Of the 1.0 x 105 intramyocardially injected cells, less than 10% were 

still detected 24 hours post-injection [21]. Another study showed that injected 

CPCs were no longer detected at 35 days post injection in most of the 

investigated rats [17]. This profound loss of cells is thought to be caused by the 

poor viability of the transplanted cells in the harsh ischemic environment of the 

infarcted heart. Possible causes of premature cell death include: ischemia, host 

inflammatory response to infarction, and loss of matrix- and cell-cell interactions 

[34].  

Thus, several attempts aimed at addressing the poor survivability of CPCs 

following transplantation have been carried out. For instance, Fischer et al. 
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implemented an ex vivo genetic engineering approach and injected CPCs 

overexpressing Pim-1 (a prosurvival serine/threonine kinase) into the infarcted 

hearts of mice [35]. Indeed, Pim-1 promoted proliferation of the implanted CPCs 

and enhanced their engraftment, leading eventually to a more pronounced 

improvement in cardiac function. Another approach utilized in vitro 

preconditioning of CPCs with cobalt protoporphyrin (a heme oxygenase 1 

inducer). Indeed, the preconditioning promoted cell survival following exposure to 

H2O2-induced oxidative stress and resulted in the cells releasing higher levels of 

prosurvival cytokines, including epidermal growth factor (EGF), fibroblast growth 

factors 2 (FGF2), FGF3, BMP3 and erythropoietin [36].  

With the ultimate goal of enhancing CPC therapeutic benefit in the 

treatment of MI, we sought in this work to address some of the limiting factors 

that seem to hinder the progress of CPC-based therapy, such as the poor 

survival and differentiation of CPCs. To facilitate CPC differentiation, cardiac 

TFs, including Gata4, MEF2C, NKX2.5, TBX5 and BAF60C were overexpressed 

(will be discussed in Chapter II). Another genetic-engineering approach aimed at 

activating endogenous antioxidants and detoxifying enzymes within CPCs was 

utilized to promote cell survival (will be discussed in Chapter III). 
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CHAPTER II 

TRANSCRIPTION FACTOR-FACILITATED DIFFERENTIATION OF 

HUMAN C-KIT+ CPCS 

 

Previous studies have shown that CPCs do not differentiate into functional 

cardiac cell types following their introduction to the infarcted heart [11, 17], which 

may limit their regenerative potential. On the other hand, cells which express 

higher levels of cardiogenic TFs (i.e. more cardiopoietic) have been shown to be 

therapeutically superior to less cardiopoietic cells [28, 29]. Thus, with the ultimate 

goal of promoting the regenerative potential of CPCs, we endeavored in this work 

to induce partial differentiation of CPCs into committed cardiac cell types in vitro. 

Once we achieve that goal and obtain more committed CPCs, it would be 

interesting down the road to test their therapeutic potential in vivo as compared 

to the naïve counterparts.  

To promote differentiation of CPCs, the cardiopoietic effect of selected 

cardiac TFs was utilized. To that end, genes encoding cardiogenic TFs, namely 

GATA binding protein 4 (Gata4), myocyte enhancing factor 2C (MEF2C), a 

homeobox TF (NKX2.5), and T-box TF 5 (TBX5), were overexpressed in CPCs 

via a lentiviral system. First, we compared the ability of each TF individually to 

initiate the differentiation of CPCs into the four main cardiac cell types (i.e. 
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cardiomyocytes, smooth muscle cells, endothelial cells, and fibroblasts). In the 

next set of experiments, all possible combinations of the aforementioned TFs 

were overexpressed in CPCs to determine whether the 4 aforementioned TFs 

synergize in promoting CPC differentiation. Also, the effect of differentiation 

media/dexamethasone on CPC differentiation was assessed. To assess the 

differentiation of CPCs caused by these methods, the changes in expression 

levels of markers associated with cardiomyocyte, smooth muscle cell, fibroblasts, 

and endothelial cells were analyzed. Quantitative real time PCR (qRT-PCR) was 

used to monitor the changes in gene expression at the mRNA level, while 

immunocytochemistry and Western blot techniques were utilized to assess them 

at the protein level (mCherry-transduced CPCs served as a control). As an 

additional assessment of differentiation, microscopy was used to assess 

differentiation-associated morphological changes in size, shape, or formation of 

characteristic structural changes.  

The results showed that Gata4 was most efficient in directing 

differentiation of CPCs into cardiomyocytes, smooth muscle cells and fibroblasts 

as evidenced by the upregulation of the correspondent cell-specific markers. 

However, when Gata4 was combined with differentiation medium and 

dexamethasone, CPCs seemed to initiate differentiation into cardiomyocytes 

only. These pro-differentiation effects of Gata4 may prove efficient in promoting 

complete differentiation of CPCs upon the in vivo transplantation and may thus 

have significant implications in maximizing the regenerative potential of CPCs. 
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MATERIALS AND METHODS 

Isolation and culture of c-kit+/lin- CPCs 

After obtaining a written consent, discarded right atrial appendage 

specimens from patients at Jewish Hospital in Louisville (KY) were collected 

according to a protocol approved by the Institutional Review Board (IRB) on 

human subject research at University of Louisville. Patients involved were 

undergoing open-heart, on pump, coronary artery bypass surgery and their ages 

ranged between 50 and 75 years. Briefly, right atrial appendages were 

transported under sterile conditions on wet ice before removal of gross blood and 

resection of adipose tissue [10]. The tissue was then washed with PBS, manually 

minced then enzymatically digested at 37°C using Worthington Collagenase type 

II/Hams F12 solution. The resulting cell suspension was centrifuged before 

discarding the supernatant. The cells were then transferred to T75 Flasks 

containing Ham’s F12 medium (Gibco), 10% FBS (Gibco), 10 ng/ml recombinant 

human basic FGF (PeproTech), 0.2 mM L-glutathione (Sigma), 0.005 U/ml 

human erythropoietin (Sigma) and 100 U/ml penicillin/streptomycin (Gibco). The 

adherent cells were continuously cultured with medium change every other day 

or subcultured every 4-5 days. Cells were passaged 1 time prior to c-kit magnetic 

activated cell sorting (MACS) kit using immunomagnetic beads (Miltenyi Biotec) 

to enrich for c-kit+/Lin- CPCs. The enriched CPCs were collected for expansion 

and/or analysis. Experiments shown in this study are performed on cells isolated 

from 1 patient but they have been repeated on isolates from at least one more 

patient to corroborate the findings. Figures depict the results from only 1 patient. 
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CPC immune magnetic-activated cell sorting (MACS) 

70-75% confluent cells at passage 1 were sorted for c-kit using anti-c-kit 

(Miltenyi) microbeads and magnetic sorting apparatus. Cells were trypsinized 

and then washed twice in ice-cold MACS buffer made according to the 

manufacturer’s specifications. All solutions were cooled on ice prior to the sorting 

protocol.  Cells were immunomagnetically-sorted using MS columns (Miltenyi 

Biotec) and pre-separation filters with magnetic stands. To exclude the potential 

contamination with lin+ cells (such as T cells, B cells, NK cells, dendritic cells, 

monocytes, granulocytes, erythroid cells, and their committed precursors), a 

Lineage Cell Depletion Kit (Miltenyi Biotec) was used to purify c-kit+ cell 

populations as previously described [37]. The magnetically labeled Lin+ cells 

were depleted by retaining them on a MACS column in a magnetic field while 

unlabeled lin− cells passed through the column and were collected for further 

expansion and/or analysis. c-kit+ enriched cells were plated at subconfluence 

then cultured and expanded in vitro. Cells at passages 3-4 were fixed in 3.7% 

paraformaldehyde and assessed for c-kit positivity by flow cytometric analysis.  

 

Flow cytometric analysis and immunocytochemistry 

Enriched CPCs were trypsinized at passages 3-4, washed with 1x ice-cold 

buffer containing 1% bovine serum albumin (BSA)/phosphate buffered saline 

(PBS) buffer followed by a second wash in cold PBS. Subsequently, cells were 

fixed for 15 minutes at room temperature (RT) using 3.7% paraformaldehyde. 

Following washing with PBS, fixed cells were stained for c-kit. Cells were then 



13 
 

blocked for 10 minutes at RT in 1% BSA buffer prior to staining for c-kit using c-

terminal specific Santa Cruz C19 rabbit polyclonal IgG anti-human c-kit antibody 

for 1 hour in the dark at RT. Isotype rabbit polyclonal IgG was used in parallel as 

an isotype control. Cells were then washed with 1% BSA before adding the 

secondary antibody, FITC-conjugated donkey anti-rabbit IgG (Invitrogen) for 1 

hour in the dark at RT. Flow cytometric analysis was performed using BD 

AccuriTM C6 flow cytometer. All analysis gates were set for false positivity of <1% 

in respective isotype controls. c-kit positivity was over 70%. 

 

Lentivirus expressing cardiac TFs 

Lentivirus expressing the cardiac TFs used in the current study was 

produced using ViraPowerTM Lentiviral Expression System (Invitrogen) 

according to manufacturer’s instructions. The following MGC verified full-length 

cDNA clones for the TFs were purchased from OpenBiosystems: human NKX2.5 

cDNA (MHS1010-7430146; Clone ID 5225103; NCBI Accession: BC025711), 

human MEF2C cDNA (MHS1010-7295133; Clone ID: 4815933; NCBI Accession: 

BC026341), and human TBX5 cDNA (MHS1010-7430001; Clone ID: 5204163; 

NCBI Accession: BC027942). A retroviral expression construct for mouse Gata4 

(NCBI Accession: NM_008092.3) was a kind gift from Dr. Deepak Srivastava (UC 

San Francisco). The coding sequences for each TF or mCherry were PCR-

amplified using Pfu high fidelity (HF) polymerase (Agilent) and subcloned into 

pLenti6/V5-D-TOPO vector (Invitrogen) according to the manufacturer’s 

instructions. Primer sequences used for the PCR were the following: 
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5`CACCATGTACCAAAGCCTGGCCATG-3` and 5`-

CGCGGTGATTATGTCCCCATGA-3` for Gata4; 5`-

CACCATGTTCCCCAGCCCT-3` and 5`-CCAGGCTCGGATACCATGC-3` for 

NKX2.5; 5`CACCATGGGGAGAAAAAAGATTCA-3` and 5`-

TGTTGCCCATCATTCAGAAAGTC-3` for MEF2C; 5`-

CACCATGGCCGACGCAG-3` and 5`-GCTATTGTCGCTCCACTCTGGC-3` for 

TBX5; and 5`-CACCATGGTGAGCAAGGGC-3` and 5`-

CTACTTGTACAGCTCGTCCATGCC-3` for mCherry. For generation of pLenti6-

mCherry expression construct, pmCherry-C2 vector (K. U. Hong) was used as 

the PCR template. For generation of 3xFLAG constructs, the following oligos 

were synthesized, annealed and inserted into the BamHI site of pLenti6/V5-

TOPO vector: 5`GATCCACCATGGATTACAAGGATGACGAC 

GATAAGGATTACAAGGATGACGACGATAAGGATTACAAGGATGACGACGAT

AAGGGG3` and 5`GATCCCCCTTATCGTCGTCATCCTTGTAAT 

CCTTATCGTCGTCATCCTTGTAATCCTTATCGTCGTCATCCTTGTAATCCATG

GTG-3`. 

 Each batch of virus was concentrated 10 times using Lenti-X 

Concentrator (Clontech) according to the manufacturer’s instructions and 

resuspended in complete CPC medium. Aliquots were made and stored at -80°C 

until use. Virus titers were determined by qRT-PCR-based measurement of 

integrated copies of viral genome following transduction of CPCs with varying 

dilutions of each virus. For calculation of the copy numbers of virus genome 

integrated into the host, serial dilutions of pLenti6 vector were used to generate 
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the standard curve. Briefly, CPCs transduced with varying dilutions of virus were 

harvested after 4 days. Genomic DNA was isolated, and 50 ng of DNA was 

analyzed by qRT-PCR as described below. The following primers were used for 

the qRT-PCR analysis: 5`GCTCAGTTCCAGTTGCTTG-3` and 

5`GCAGTGAGCCAAGATTGCAC-3` for human HLA-A (for human/CPC genomic 

DNA) [21], and 5`-CATCTTGAGCCCCTGCGGACG-3` and 

5`CCGTCGGCTGTCCATCACTGTC-3` for integrated lentiviral vector. For the 

assay, mCherry virus served as a reference. The efficiency of transduction with 

each dilution of mCherry virus was assessed by measuring the percentage of 

mCherry-positive cells, and it was plotted against the number of viral genomes 

integrated into CPCs to obtain a standard curve. Based on the curve, the volume 

of virus required to achieve 70-80% transduction efficiency was calculated for 

each virus batch. 

 

Lentivirus transduction of CPCs 

CPCs were plated on 12-well plates the day before transduction at a 

density of approximately 1.0 x 105 cells per well. Next day, the medium was 

replaced with 250 µl of complete medium containing appropriate dilution of virus 

and 6 µg/ml Polybrene (Sigma), and on the following day, the medium was 

replaced with fresh complete media. The cells remained on the same plate until 

harvest at specified time points (i.e., 7, 10, or 14 days post-transduction). The 

medium was refreshed every 3 days. Each treatment was done in quadruplicate. 
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Differentiation medium and dexamethasone treatment 

On day 5 after Gata4 transduction of CPCs, regular culturing medium was 

replaced with differentiation medium (DMEM (Gibco), 5% FBS and Pen/strep) in 

the presence or absence of 10 nM dexamethasone (Sigma). Dexamethasone 

was added to the culture every other day for a total of 10 days. On day 14 post-

transduction, cells were harvested for qRT-PCR, immunocytochemistry or 

Western blot analyses.  

 

RNA isolation and qRT-PCR  

Total RNA was isolated from CPCs using RNeasy Mini Kit (with DNase 

treatment) (Qiagen) according to the manufacturer’s instructions. cDNA was 

synthesized using 250 ng of total RNA using AffinityScript Multiple Temperature 

cDNA Synthesis Kit (Agilent) according to the manufacturer’s instructions. 

Samples were analyzed for mRNA levels of indicated markers using SYBR 

Green Master Mix (Applied Biosystems) and 7900HT Fast qRT-PCR System with 

SDS version 2.4.1 (Applied Biosystems). Each gene-specific primer set was 

initially validated based on the product size, and each PCR product was then 

sequence-verified (data not shown). Sequences of the primers used in the 

present study are listed in Table 1. 
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Table 1.  

List of primers used for qRT-PCR analysis 
Target Gene Gene Symbol 

 
Primer Sequences (5' to 3') Product Size (bp) 

     
     

-actinin-2 ACTN2 forward CATGGGGCAGGCTGGTAGGTG 487 

  
reverse CCGACCCAGAGTCAGGGATCAAAA 

 MHC MYH6 forward AGGGATAACCAGGGGAAGCACC 339 

  
reverse AGGTTGAAAAGCACCGCGGG 

 SMA ACTA2 forward AGCGACCCTAAAGCTTCCCAGACT 205 

  
reverse CGGGGGCTGTTAGGACCTTCCC 

 ANP NPPA forward GGTCGTGCCCCCACAAGTGC 100 

  
reverse TGGGCTGACTTCCCCGGTCC 

 BAF60C SMARCD3 forward TGTCCAGGCCCTGTGGCAGT 151 

  
reverse TAGCAGGGCTGTGAGGCGCT 

 -Actin ACTB forward GCAGTCGGTTGGAGCGAGCA 197 

  
reverse ATCACCTCCCCTGTGTGGACTTGG  

 -MHC MYH7 forward AGGCCTTGGCCCCTTTCCTCAT 142 

  
reverse CCTGGTCTGCGCTTCTAGCCG 

 BNP NPPB forward CCCCGGTTCAGCCTCGGACT 172 

  
reverse ACGGATGCCCTCGGTGGCTA 

 Calponin-1 CNN1 forward AACAGCGCCCAAAGGACGCA 199 

  
reverse CGCTGCAAACCAAACCGCGT 

 CD31 PECAM forward CAGGCTCCCACTGGCCTGACT 184 

  
reverse TGCCCTTGCGGTGTTAGGCA 

 c-kit KIT forward TGGGCCACCGTTTGGAAAGCT 156 

  
reverse AGGGTGTGGGGATGGATTTGCTCT 

 Connexin 40 GJA5 forward AGCAAAAAGCGTGGGCAGTTGGA 236 

  
reverse TGCCCAGCACGAGCATACGG 

 Connexin 43 GJA1 forward CGACCAGTGGTGCGCTGAGC  226 

  
reverse CCCGCCTGCCCCATTCGATT  

 DDR2 DDR2 forward CTTTGGCTGGACTCTCCTGGCTC 470 

  
reverse TCCCATGACGGTTCCGCCAAGA 

 FLT1 FLT1 forward TGCGAGCTCCGGCTTTCAGG 182 

  
reverse TTCTCGCTGCCAGGTCCCGA 

 FSP-1 S100A4 forward TGGTTTGATCCTGACTGCTGTCATG 145 

  
reverse CTCCCGGGTCAGCAGCTCCT 

 GAPDH GAPDH forward GGTGAAGCAGGCGTCGGAGG 127 

  
reverse GAGGGCAATGCCAGCCCCAG 

 GATA4 GATA4 forward CGGCGAGGAGGAAGGAGCCA 144 

  
reverse TGGGGGCAGAAGACGGAGGG 

 GATA4 set 2 GATA4 forward CCTCTCCTGTGCCAACTGCCAGA 132 

  
reverse TTCCGCATTGCAAGAGGCCTG 

 KDR KDR forward AGCTCAAGGCTCCCTGCCGT 211 

  
reverse GCGGGGTGAGAGTGGGTTGG 

 MEF2C MEF2C forward GGACAACAAAGCCCTCAGCAGGT 493 

  
reverse CCGCCAGCGCTCTTCACCTT 

 MEF2C set 2 MEF2C forward TTGTCCATGTCGGTGCTGGCAT 354 

  
reverse CGTCCGGCGAAGGTCTGGTG 

 MLC-2V MLY2 forward CTAGGAGGGGGCTCGCTGCT 180 

  
reverse TGTGCGGCCACGAAGTACCC 

 Myocardin MYOCD forward GTGCCGGGGGAAACCCTTGT 340 

  
reverse GAAGCCGAGGGCTTGGTGAGG 

 Nkx2.5 NKX2.5 forward CACCGGCCAAGTGTGCGTCT 117 

  
reverse GCAGCGCGCACAGCTCTTTC 

 SM-MHC MYH11 forward ACGGGAGAGCTGGAAAAGCAGC 196 

  
reverse TGGCTTGGCGAATTGCCCGT 

 Smoothelin SMTN forward GATGCTGGTGGACTGTGTGCCC 127 

  
reverse CAGTTCGTGGCGTCGCAGGT 

 Tbx5 TBX5 forward AGTCCCCCGGAACAACTCGAT 235 

  
reverse ACAGCAGCTGCACCGTCACC 
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Tbx5 set 2 TBX5 forward CCTATCAGTGCCGGGTCTGCG 135 

  
reverse CTCCCAGCTGTGGGGAGCCA 

 TEAD1 TEAD1 forward TGGAGCCCCGACATCGAGCA   351 

  
reverse TGGGAAGGTCGGGCGTGGAA   

 Thy1/CD90 THY1 forward CCCAGGAGCCGGACACTTCTCA 252 

  
reverse GGTGGCGTTCCCCAGCCTCA 

 Troponin T TNNT2 forward AGAAGGCCAAGGAGCTGTGGCA 170 

  
reverse CCAGCGCCCGGTGACTTTAGC 

 VE-Cadherin CDH5 Forward ACAGCATCTTGCGGGGCGAC 178 

  
Reverse CCCGCGGGAGGGCTCATGTA 

 VEGF VEGFA Forward TGGCAGATGTCCCGGCGAAG 118 

  
Reverse TAGGCTGCACCCCAGGAAGGG 

 Vimentin VIM Forward CCGGAGACAGGTGCAGTCCCT 147 

  
Reverse TCATCCTGCAGGCGGCCAAT 

 vWF VWF Forward ACCCCTGCCCCCTGGGTTAC 322 

  
Reverse TGCAGCCTGGCAGTGATGTCG 
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Immunofluorescence staining 

Cells grown on culture plates or glass coverslips were fixed in 3.7% 

formaldehyde in PBS for 15 minutes at RT and permeabilized using 0.25% Triton 

X-100 in PBS for 10 minutes. Following incubation in the blocking solution (5% 

BSA in PBS) for 30 minutes, the cells were incubated in primary antibody 

solution (diluted in the blocking solution) for 1 hour at RT and washed twice in 

PBS. They were then incubated in a solution of secondary antibodies conjugated 

to fluorochromes (diluted in the blocking solution) for 1 hour at RT and washed 

twice in PBS. They were finally counterstained with DAPI (4’, 6’-diamidino-2-

phenylindole) and mounted on glass slides using Fluoromount (Sigma). 

Fluorescence images were viewed and acquired using EVOS® FL Cell Imaging 

System (Life Technologies). 

 

Western blot 

Total protein from transduced CPCs at serial time points was harvested 

using sample buffer and boiled for 15 min. Protein concentration was measured 

by BCA assay before loading onto a polyacrylamide gel. The proteins 

electrophoresed under reducing conditions were then transferred from the gel to 

a PVDF membrane. After blocking the membranes for 60 minutes with 5% dry 

milk powder and Tris-buffered saline, the membranes were incubated overnight 

at 4 °C with primary antibodies against the selected cardiac cell type markers. 

Following that, the membranes were washed and then incubated for an hour with 

horse radish peroxidase (HRP)-conjugated secondary antibody. Images were 
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developed using the ECL plus kit (Bio-rad) and an enhanced chemiluminescent 

detection system (Pierce). Densitometry was executed using non-saturated 

chemiluminescent membranes exposed and quantified using Fuji LAS-3000 bio-

imaging analyzer. 

 

Antibodies 

The antibodies used for the current study are listed below. KDR/VEFGR2 

(mouse monoclonal; ab9530; Abcam); α-SMA (mouse monoclonal; A5228; 

Sigma); troponin T (mouse monoclonal; clone 13-11; Thermo Fisher); α-

sarcomeric actin (mouse monoclonal; A7811; Sigma); FLAG tag (mouse 

monoclonal; F-tag-01; Applied Biological Materials); Thy1/CD90 (mouse 

monoclonal; clone 5E10; BD Pharmingen); smooth muscle myosin heavy chain 

(rabbit polyclonal; Abcam); ANP (mouse monoclonal; clone 23/1; Santa Cruz); 

BNP (mouse monoclonal; clone 50E1; Thermo Fisher); c-kit (rabbit monoclonal; 

clone YR145; Epitomics); α-tubulin (mouse monoclonal; clone DM1A; Sigma); V5 

tag (mouse monoclonal; clone E10; Applied Biological Materials). 

 

Phalloidin Staining 

To monitor potential changes in cell morphology induced by TF 

overexpression, cultured cells were stained with Phalloidin CruzFluor™ 488 

Conjugate (Santa Cruz) according to manufacturer’s instruction. Briefly, cultured 

cells were washed twice with prewarmed PBS (pH 7.4) prior to fixation with 3.7% 

formaldehyde in PBS for 10-15 minutes. Following 2 rounds of PBS wash, cells 
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were permeabilized using 0.125% Triton X-100 for 5-10 minutes. After another 

round of PBS washes, cells were incubated with the green fluorophore-

conjugated phalloidin solution for 20 minutes at RT. Fluorescence images were 

viewed and acquired using EVOS® FL Cell Imaging System (Life Technologies). 

 

Statistical analyses 

All values are expressed as mean ± SE. Analysis of variance (ANOVA) 

was performed to compare data among the groups compared to control. Tukey 

test was used for other pairwise statistical comparisons. A p value of < 0.05 was 

considered statistically significant. 
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RESULTS 

Introduction of cardiac TFs into CPCs 

To promote differentiation of CPCs into functional cardiac cell types, 

selected TFs were overexpressed using a lentivirus delivery system. First, 

lentiviruses expressing one of the four selected cardiac TFs, Gata4, MEF2C, 

NKX2.5, and TBX5 were generated. These TFs either alone or in combination 

have been shown to direct differentiation of different cell populations into 

cardiomyocytes, including ES cells, extra cardiac mesoderm, and fibroblasts [23-

26]. For ease of detection, The TFs used in this study were either FLAG-tagged 

at the N-terminus (Gata4, MEF2C, and TBX5) or V5-tagged at the C-terminus 

(NKX2.5). Following lentivirus production, CPCs were transduced with the 

viruses and the protein expression of the 4 TFs was verified by Western blot (Fig. 

1). Also, immunocytochemical analysis showed a high efficiency of transduction 

ranging between 70 and 90% (Fig. 1). More importantly, the exogenous TFs 

were localized to the nucleus as expected (Fig. 1B).  

 

Overexpression of individual TFs in CPCs 

TFs were individually introduced into CPCs to assess whether they 

promote expression of markers associated with cardiac differentiation [note that 

endogenous transcripts of GATA4, MEF2C, and TBX5 but not NKX2.5 were 

detectable in naive CPCs (data not shown)]. Transduced cells were cultured for 1 
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Figure 1. Lentivirus-mediated delivery of transcription factors to CPCs. A, 

Images of untranduced and mCherry-transduced CPCs at 4 days post-

transduction. Fluorescence of mCherry protein is shown in red. DAPI staining of 

nuclei was pseudo-colored in green. B, Immunostaining images for CPCs 

transduced with virus expressing 3xFLAG-tagged Gata4, MEF2C, TBX5 or 

BAF60C, or V5-tagged NKX2.5 and stained for the indicated epitope (i.e., FLAG 

or V5) which is shown in monochrome. DAPI images are shown in lower panels. 

C, Western blots confirming successful overexpression of the five TFs in CPCs. 
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or 2 weeks with medium change every 3-4 days before using qRT-PCR to detect 

the changes in the transcript level of more than 30 different cardiac cell type-

specific markers (see Table 2 for the entire set of markers analyzed). In these 

experiments, mCherry-transduced CPCs served as a control. 

Among the 4 TFs investigated in the study, Gata4 overexpression was 

associated with the most pronounced induction of cardiomyocyte, smooth muscle 

cell and fibroblast (but not endothelial cell) markers both at 1 and 2 weeks. 

Overexpression of Gata4 resulted in upregulating the mRNA transcripts of the 

cardiomyocyte markers: brain natriuretic peptide (BNP) and troponin T (TNNT2), 

within 1 week of expression (Fig. 2). However, not all cardiomyocyte markers 

were upregulated by Gata4 overexpression. Examples include α- and β-MHC 

and cardiac actin (ACTC) (data not shown). Interestingly, Gata4 induced the 

expression of not only cardiomyocyte markers but also of other cardiac cell types’ 

markers. For instance, Gata4 overexpression upregulated the transcript levels of 

smooth muscle cell markers, including calponin-1 and smooth muscle myosin 

heavy chain (SM-MHC) within 2 weeks (Fig. 2). In addition, fibroblast markers 

such as THY1/CD90 and fibroblast-specific protein 1 (FSP1; S100A4), were 

significantly upregulated following Gata4 expression in CPCs (Fig. 2). However, 

no significant induction of endothelial cell markers was detected in Gata4-

expressing cells (Fig. 2). In fact, Gata4 overexpression resulted in a marginal 

decrease in the expression of the endothelial cell marker VE-Cadherin. 
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TABLE 2.  
Markers of cardiac differentiation examined by qRT-PCR 

 

Cardiomyocyte 
Endothelial 

Cell 
Smooth 

Muscle Cell 
Transcription 

Factors 
Mesenchymal/ 

Fibroblast 
Stem 
Cell 

ANP (NPPA) KDR/FLK1 αSMA (ACTA2) GATA4 THY1/CD90 
c-kit 
(KIT) 

BNP (NPPB) vWF SM22α (TAGLN) NKX2.5 
FSP1 
(S100A4)  

α-MHC (MYH6) CD31 (PECAM1) SM-MHC (MYH11) MEF2C DDR2 
 

β-MHC (MYH7) 
VE Cadherin 
(CDH5) 

Calponin-1 (CNN1) TBX5 Vimentin (VIM) 
 

α-Actinin2 
(ACTN2) 

VEGF  
Smoothelin 
(SMTN) 

BAF60C (SMARCD3) 
  

Cardiac actin 
(ACTC) 

FLT1 
 

Myocardin (MYOCD) 
  

MLC-2v (MYL2) 
  

SRF 
  

Troponin T 
(TNNT2)   

TEAD1 
  

Connexin 40 
(GJA5)      
Connexin 43 
(GJA1)      

TBX20 
     

MYL4 
     

MYL7 
     

SERCA2A 
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Figure 2. Effect of individual transcription factors on expression of cardiac 

differentiation markers in CPCs. Transcription factors (Gata4 [G], MEF2C [M], 

NKX2.5 [N], and TBX5 [T]) were overexpressed in CPCs via a lentivirus-based 

delivery system. Following transduction, cells were cultured for 1 or 2 weeks. At 

each time point, cells were harvested, and relative changes in mRNA levels of 

indicated genes were measured using qRT-PCR. The level of indicated transcript 

in each group was compared to that of mCherry-expressing control group (set at 

1), and is expressed as a relative fold change. For each condition, n = 4. Bar 

graphs show mean ± SEM. *, p < 0.05 (vs mCherry-CPCs). †, not detected. 
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To assess any morphological changes in CPCs that may accompany 

Gata4-directed differentiation, phalloidin staining (which stains F-actin and shows 

the overall cytoskeleton), was utilized. Indeed, Gata4-overexpressing cells 

exhibited observable changes in cell morphology. The cells grew in size, 

resumed a polygonal morphology, and often exhibited prominent stress fibers, 

while mCherry-expressing cells retained their spindle-shaped morphology (Fig. 

3A).  

In addition to Gata4, TBX5 overexpression also exhibited a cardiogenic potential, 

albeit to a lesser extent. Genetic introduction of TBX5 induced few cardiomyocyte 

markers such as atrial natriuretic peptide (ANP) and TNNT2 (Fig. 2). However, 

TBX5 did not upregulate other cardiomyocyte markers such as α-, β-MHC and 

BNP by 2 weeks (data not shown and Fig. 2). Also, TBX5 transiently upregulated 

the endothelial cell marker KDR (vascular endothelial growth factor receptor 2; 

VEGFR2) but not VE-Cadherin, CD31 or vWF (Fig. 2 and data not shown). On 

the other hand, TBX5 expression resulted in downregulation of smooth muscle 

cell markers such as SM22α and αSMA (Fig. 2). Also similar but less pronounced 

than what was observed with Gata4 overexpression, TBX5 induced prominent 

morphological changes in some CPCs with the distinctive appearance of stress-

fiber like structures and the enlarged cell phenotype (data not shown). Taken 

together, these findings show that Gata4 overexpression was associated with the 

most differentiation-promoting effect in CPCs, as reflected by induction of 

markers of at least three cardiac cell types (i.e. cardiomyocytes, smooth muscle 
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Figure 3. Gata4-induced changes in gene expression and morphology. A, 

phase-contrast images of mCherry- and Gata4-overexpressing CPCs (upper 

panels). mCherry- and Gata4 virus-transduced CPCs were stained with Alexa Fluor 

488-conjugated phalloidin to stain the cytoskeleton at 2 weeks post-transduction 

(lower panels). Gata4 overexpression changed the normal elongated shape of CPCs 

into a wide polygonal morphology. B, mCherry- and Gata4-transduced CPCs stained 

for the indicated markers at 2 weeks post transduction. Gata4-expressing cells 

exhibiting supranuclear staining of BNP are indicated by the arrows. 
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cells and fibroblasts). On the other hand, TBX5 overexpression resulted in less 

pronounced induction of cardiomyocyte and endothelial cell markers. 

With regard to MEF2C or NKX2.5, their overexpression unexpectedly did 

not significantly increase the expression of genes associated with cardiac 

differentiation. NKX2.5 expression was associated with a trend of increasing the 

expression of the atrial cardiomyocyte marker connexin 40 and the endothelial 

cell marker KDR after 2 weeks (Figs. 2 and 4) but that induction did not reach 

statistical significance. MEF2C overexpression on the other hand was often 

associated with a decrease in the transcripts of smooth muscle cell markers 

(e.g., Calponin-1 and SM22α), compared to the control (Figs. 2 and 4). Also, 

MEF2C seemed to suppress some cardiomyocyte markers (e.g., TNNT2 and 

connexins 40) and fibroblast markers (e.g., Thy1/CD90) although that did not 

reach statistical significance (Fig. 2 and 4).  

To confirm the above observed changes in cardiac cell markers, protein 

expression of selected markers was assessed using immunofluorescence 

staining and Western blot analysis. For each assay, cells at 2 weeks post-

transduction were analyzed. In line with the aforementioned qRT-PCR data, 

Gata4-overexpression in CPCs resulted in BNP upregulation and that was 

observed mainly in the supranuclear region (Fig. 3B), in consistence with a 

previous report (26). Also, Gata4 overexpression was associated with a 

significant induction of the fibroblast marker Thy1/CD90 in CPCs, corroborating 

the qRT-PCR data (Fig. 3B). Interestingly, although αSMA mRNA level was not
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Figure 4. Co-expression of transcription factors in combination in CPCs. 

Cells were transduced with combinations of Gata4 [G], MEF2C [M], NKX2.5 [N], 

and TBX5 [T] and then cultured for 10 days prior to mRNA profiling using qRT-

PCR. mCherry-transduced cells served as a negative control and was set at 1. 

The level of indicated transcript in each group was compared to that of mCherry 

control group, and is expressed as a relative fold change. For each condition, n = 

4. Bar graphs show mean ± SEM. *, p < 0.05 (vs mCherry-CPCs). 
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upregulated by Gata4 (Fig. 2), its protein level was significantly upregulated as 

assessed by immunocytochemistry (Fig. 3B) and was confirmed by Western blot 

(data not shown), suggesting a Gata4-induced post-translational stabilization of 

αSMA. These observations are consistent with the previous qRT-PCR data 

mentioned earlier and further support the role of Gata4 in promoting 

differentiation of CPCs into cardiomyocytes, smooth muscle cells and fibroblasts. 

It should be noted that not all markers upregulated at the transcriptional level 

were associated by detectable protein expression (data not shown), suggesting 

that the level of induction of some markers by the TFs is minimal. 

 

Effects of overexpression of TFs in combination 

Based on the aforementioned data, we hypothesized that a combination of 

TFs may be needed for the TFs to achieve synergism and to further promote 

differentiation of CPCs. To test that, the four aforementioned TFs (i.e. Gata4 [G], 

MEF2C [M], NKX2.5 [N], TBX5 [T]) were introduced into CPCs in every possible 

combination via lentivirus. In total, 15 combinations of the aforementioned TFs 

were used (see Fig. 4). CPCs transduced with each combination of viruses were 

cultured for 10 days, and then analyzed for changes in mRNA expression of 

differentiation markers by qRT-PCR. The data show that overexpression of the 

correct set of TFs in each group was confirmed by quantitative as well as semi-

quantitative RT-PCR (Fig. 5C and data not shown). 
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Figure 5. Effect of transcription factor overexpression on the level of 

endogenous transcription factors. A and B, Cells were transduced with 

combinations of Gata4 [G], MEF2C [M], NKX2.5 [N], and TBX5 [T] and then 

cultured for 10 days prior to mRNA profiling using qRT-PCR. mCherry-

transduced cells served as a negative control (not shown) and was set at 1. The 

level of indicated transcript in each group was compared to that of mCherry 

control group (set at 1), and is expressed as a relative fold change. For each 

condition, n = 4. Bar graphs show mean ± SEM. *, p < 0.05 (vs mCherry-CPCs). 

C, Selected PCR products resulting from experiments described in Figures 4 and 

5 were electrophoresed on agarose gel and stained by ethidium bromide. 
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 Surprisingly, additive or synergistic effects of TFs were rarely observed. 

Only ANP, connexin 40 and α-actinin-2 were most upregulated in cells 

expressing all four TFs (Fig. 4). By and large, TFs overexpressed in combination 

were less effective in inducing cardiac differentiation markers when compared to 

single TFs. For example, induction of BNP, TNNT2, and THY1/CD90 mRNAs by 

Gata4 and induction of KDR by TBX5 were attenuated when other TFs were 

coexpressed (Fig. 4). 

Next, the ability of overexpressed TFs to promote transcription of their 

endogenous counterparts was also assessed. Most of the TFs, whether alone or 

in combination, did not significantly induce their endogenous counterparts (Fig. 

4). For instance, none of the 15 combinations tested was able to upregulate the 

transcript of endogenous Gata4 (Fig. 4). The only exception was the upregulation 

of the endogenous MEF2C transcript by MEF2C overexpression (Fig. 5A). 

Similarly, the combinations did not promote the transcription of other important 

cardiac TFs including serum response factor (SRF) and myocardin (MYOCD); a 

master regulator of smooth muscle gene expression (Fig. 5A). In fact, MYOCD 

mRNA level was suppressed by the overexpression of MEF2C and TBX5 (Fig. 

5A). In fact, only Gata4 overexpression (individually) was able to reproducibly 

drive an upregulation in BAF60C, a chromatin remodeling TF, and in TEAD1 (a 

cardiac transcriptional enhancer) (Fig. 4 and data not shown). Taken together, 

these data show that only Gata4 overexpression (alone) activated some 

endogenous cardiac TFs.  
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Overexpressing BAF60C in CPCs 

With the limited induction of the cardiac gene markers observed with 

overexpressing the selected 4 TFs and for the purpose of further attaining more 

pronounced differentiation of CPCs, BAF60C was added to the list of tested TFs.  

BAF60C possesses a helicase and an ATPase activity and is part of a chromatin 

remodeling SWI/SNF-like multi-subunit BAF chromatin remodeling complex. 

These activities enable Baf60c to play an important role in reorganizing the 

chromatin structure and facilitating the binding of TFs to their target genes [38]. 

Indeed, Baf60c has been shown to promote interactions between TFs (e.g., 

Tbx5, Nkx2.5, and Gata4) and the BAF complex, to enhance transactivation of 

cardiac genes during mammalian heart development [39]. In addition, Baf60c 

assisted Gata4 and Tbx5 to reprogram extra-cardiac mesoderm into heart tissue 

in mice [23].  

The qRT-PCR analysis showed the presence of BAF60C transcript in 

undifferentiated CPCs (Fig. 6B). However, it was unknown if the protein was 

present at a sufficient level or if functional BAF complexes were present. Next, 

the role of BAF60C in promoting differentiation and its ability to potentiate the 

effects of Gata4 or TBX5 was investigated [The latter two TFs showed the most 

pronounced induction of differentiation markers and were thus included (Figs. 2 

and 4). To that end, CPCs were forced to overexpress BAF60C [B], Gata4 [G], 

and TBX5 [T] individually and in every possible combination. Following two 

weeks of culture, cells were analyzed for changes in cardiac gene expression by 

qRT-PCR.
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Figure 6. Effect of overexpression of BAF60C, Gata4 and TBX5 on 

regulation of cardiac differentiation markers in CPCs. A, CPCs transduced 

with different combinations of BAF60C [B], Gata4 [G], and TBX5 [T] via lentivirus 

and cultured for 2 weeks prior to mRNA profiling using qRT-PCR. mCherry-

transduced cells served as negative control. The level of indicated transcript in 

each group was compared to that of mCherry-expressing control group (set at 1), 

and is expressed as a relative fold change. For each condition, n = 4. Bar graphs 

show mean ± SEM. *, p < 0.05 (vs mCherry-CPCs). B, Semi-quantitative qRT-

PCR analysis showing increased expression of the indicated TFs in each 

treatment group. β-actin served as a loading control. 
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Unexpectedly, BAF60C expression did not upregulate any of the tested 

differentiation markers (Fig. 6). In fact, BAF60C had either no effect or 

downregulated the transcript levels of most investigated markers including the 

cardiomyocyte markers BNP and TNNT2, the smooth muscle marker α-SMA, the 

endothelial cell marker KDR, and the fibroblast markers Thy1/CD90 and FSP-1 

(Fig. 6). In addition, BAF60C antagonized several Gata4 and/or TBX5 effects and 

in CPCs. For instance, BAF60C blunted Gata4-induced upregulation of BNP, 

TNNT2, THY1/CD90, and FSP-1 transcripts (Fig. 6). These observations suggest 

that BAF60C suppresses cardiac gene expression in CPCs and that 

downregulation of its expression may be needed for CPCs to differentiate into 

functional cardiac cell types. 

 

Role of differentiation medium and/or dexamethasone 

The use of a serum-reduced medium has been shown to drive the 

differentiation of multiple stem cells into cardiomyocytes [33, 40]. Similarly, 

adding dexamethasone to the culturing medium has been shown to direct cells 

into the cardiomyocyte lineage [41, 42]. With the limited CPC differentiation 

caused by TF-delivery in this study, we examined whether combining Gata4 

overexpression and differentiation media/ dexamethasone have a synergistic 

effect in promoting differentiation of CPCs.  

Interestingly, in comparison to the effect of differentiation media, Gata4 

overexpression alone resulted in a more pronounced upregulation of 

cardiomyocyte markers. For instance, Gata4 overexpression caused a ~13 fold 
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induction in BNP whereas culturing in differentiation medium caused only a ~7 

fold induction (Fig. 7). In line with that, Gata4 overexpression had a consistent 

trend (yet not significant) of upregulating TNNT2, whereas the differentiation 

medium had no effect (Fig. 7). More importantly, a synergistic effect was 

observed when the differentiation medium was accompanied with Gata4 

overexpression. For instance, the ~7 fold induction in BNP caused by the 

differentiation medium tripled when Gata4 was overexpressed (Fig. 7). Also, the 

combination of Gata4/differentiation was significantly synergistic in upregulating 

TNNT2 mRNA level, increasing its level by 53 folds (Fig. 7). More interestingly, 

Gata4 overexpression in CPCs that were cultured in differentiation medium 

containing dexamethasone had an even more pronounced synergistic effect in 

upregulating TNNT2 expression, reaching 170 fold greater induction as 

compared to mCherry-expressing cells (Fig. 7). These findings suggest that 

Gata4 combined with the dexamethasone/differentiation medium regimen has a 

strong synergistic effect in upregulating cardiomyocyte markers.  
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Figure 7. Effect of overexpression of Gata4, differentiation medium and/or 

10 nM dexamethasone on regulation of cardiomyocyte markers in CPCs. 

CPCs transduced with Gata4 [G] via lentivirus and cultured for 2 weeks prior to 

mRNA profiling using qRT-PCR. Differentiation medium composed of DMEM 

medium containing 5% FBS was added on day 5 post Gata4 transduction and 

then changed freshly every other day. 10 nM dexamethasone was also added 

every other day starting on day 5 post-transduction. mCherry-transduced cells 

served as negative control and were set at 1. The level of indicated transcript in 

each group was compared to that of mCherry-expressing control group, and is 

expressed as a relative fold change. For each condition, n = 4. Bar graphs show 

mean ± SEM. *, p < 0.05 (vs mCherry-CPCs unless other way illustrated).  
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Discussion  

Although CPCs have the potential to generate at least three of the cell 

types that reside in the heart muscle (cardiomyocytes, smooth muscle cells and 

endothelial cells) [9], they do not exhibit that ability upon reintroduction into the 

infarcted heart [11, 17]. Reasons for that could be related to the cell isolation 

process, culturing conditions or the introduction to harsh conditions within the 

infarcted myocardium. This limited differentiation of CPCs is thought to affect 

their regenerative potential in MI cell-based therapy, particularly because studies 

have shown therapeutic superiority of cells that are more committed to the 

cardiac cell lineages. For instance, MSCs expressing the cardiogenic TFs Gata4 

and Csx/Nkx2.5 (Csx is the orthologue of Nkx2.5 in mice) proved superior to their 

naïve counterparts in alleviating ischemic cardiomyopathy [28]. Indeed, the 

genetically-engineered MSCs improved ejection fraction and fractional 

shortening, and resulted in lower deposition of collagen within the myocardium. 

Upon analysis of the implanted cells, most MSCs overexpressing Csx/Nkx2.5 

and GATA-4 also coexpressed the cardiomyocyte markers TNNT2 and connexin 

43, indicating partial differentiation into cardiomyocytes, and were associated 

with higher density of micro-vessels. In another study, bone marrow MSCs, 

isolated from 12 patients undergoing coronary artery bypass surgery, were 

injected into the infarcted hearts of 8- to 12-week-old immunocompromised mice 

[29]. Upon functional analysis, cells from only 2 patients led to functional cardiac 

benefit in the infarcted mice. These reparative MSCs were distinguished from the 

non-effective counterparts by the robust expression of the cardiac TFs NKX-2.5, 
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TBX5, MEF2C and MESP1. Interestingly, upon induction of the cardiac program 

in the non-reparative MSCs by a cocktail of growth factors (including TGFβ1, 

BMP-4, activin-A, retinoic acid, FGF-2, IGF-1, and IL-6), the cells upregulated 

NKX2.5, TBX5 and MEF2C expression and resulted in improved myocardial 

functional recovery when injected in vivo. These studies support that 

upregulating expression of cardiac TFs in CPCs (i.e. prompting them to acquire a 

more committed phenotype) is needed to promote their therapeutic benefit for 

heart cell-based therapy.  

Protocols to facilitate differentiation of c-kit+ CPCs include the use of 

differentiation media, dexamethasone, 5-azacytidine followed by TGF-β1, or co-

culturing with neonatal rat cardiomyocytes [9, 10, 43-45]. However, these 

protocols have not been reproducibly effective in facilitating differentiation of 

CPCs. We, thus, sought to enhance the differentiation of CPCs into cardiac cell 

types via the introduction of selected cardiac TFs (GATA4, MEF2C, NKX2.5, and 

TBX5), which have shown to be able to drive cardiogenesis [23-26]. To that end, 

the 4 TFs were overexpressed individually and in various combinations in CPCs. 

Only Gata4 individually was able to reproducible induce significant effects. By 

mRNA analysis, Gata4 was shown to upregulate markers of cardiomyocytes 

including BNP, connexin 40, BAF60C, and TNNT2. Gata4 also upregulated the 

smooth muscle cell markers: SM-MHC and calponin 1, as well as the fibroblast 

markers: THY1/CD90 and FSP-1 (Fig. 2 and 4). However, there was no 

accompanying induction of endothelial cell markers, suggesting that Gata4 

directs the differentiation of CPCs into cardiomyocytes, smooth muscle cells and 



41 
 

fibroblasts but not endothelial cells. It was also interesting to find that Gata4-

induced upregulation of cardiomyocyte markers (such as BNP and TNNT2) were 

more pronounced than that of the differentiation medium (5% FBS-containing 

DMEM) (Fig. 7). That suggests that overexpressing Gata4 is more effective than 

the differentiation medium in directing differentiation of CPCs into the 

cardiomyocyte lineage. In line with these pro-differentiation roles of Gata4 in 

CPCs, isolated CPCs from adult rat hearts up-regulated GATA-4 expression over 

long-term culture and were then characterized by enhanced differentiation into 

cardiomyocytes [46].  

Interestingly, a synergy between Gata4 and the differentiation medium 

was evident in facilitating differentiation of CPCs into cardiomyocytes, as 

evidenced by the induction of the cardiomyocyte markers BNP and TNNT2 (Fig. 

7). There was an even more pronounced synergism in inducing cardiomyocyte 

markers (e.g. TNNT2), by adding dexamethasone to the differentiation medium 

and Gata4 overexpression, (Fig. 7). However, no induction of smooth muscle 

cell, endothelial cell, or fibroblast markers was noted with the aforementioned 

regimens (data not shown). These findings suggest that although Gata4 directs 

CPC differentiation into 3 cardiac cell lineages (cardiomyocytes, smooth muscle 

cells and fibroblasts), it directs the differentiation into only cardiomyocytes if 

combined with dexamethasone-containing differentiation media. 

In addition to its role in driving differentiation, Gata4 has been reported to 

play other beneficial roles in the heart. For instance, Gata4 has been shown to 

possess a prosurvival effect, serving as an upstream activator of the 
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antiapoptotic gene Bcl-X in differentiated postnatal cardiomyocytes [47]. Indeed, 

mouse heterozygotes for a null Gata4 allele had higher susceptibility to 

doxorubicin-induced cardiotoxicity which was rescued by genetic or 

pharmacological enhancement of Gata4 [47]. Also, Gata4 has also been shown 

to promote cardiac angiogenesis. For instance, conditional overexpression of 

GATA4 in adult cardiomyocytes increased myocardial capillary formation and 

increased coronary flow reserve and perfusion-dependent cardiac contractility 

[48]. These studies suggest that Gata4 activation in CPCs used for heart repair 

may have multi-faceted benefits, including promoting CPC differentiation and 

survival, as well as promoting cardiac angiogenesis. 

Although NKX2.5 plays a pivotal role in early heart development and 

cardiac function [49-51], its overexpression in CPCs did not robustly upregulate 

differentiation markers. NKX2.5 led only to a slight increase in the mRNA level of 

connexin 40 and KDR (Fig. 2 and 4). Also, NKX2.5 also did not synergize or 

potentiate the effects of the other TFs analyzed in the study. Although this was 

unexpected, a previous report has shown a similar antagonistic role of NKX2.5 in 

promoting differentiation into cardiomyocytes [26]. These data suggest specific 

requirements for the cardiogenic effect of NKX2.5 that were missing in the in vitro 

conditions of the current study or that NKX2.5 has a cell- or time- or 

developmental stage-specific effect.  

Previous reports suggested that cardiac TFs interact with one another to 

co-regulate cardiogenesis. For instance, co-expression of GATA-4 and Nkx2.5 

resulted in a synergistic activation of the ANP promoter in heterologous cells. 
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The synergy was associated with a physical interaction between the 2 TFs 

observed in vitro and in vivo [52]. Furthermore, Nkx2.5 has been shown to 

associate with Tbx5 to promote cardiomyocyte differentiation [53]. On the other 

hand, there are also indications in the literature suggesting antagonism between 

some cardiac TFs. For instance, the synergistic activation of the connexin 40 

promoter induced by NKX2.5 and GATA4 was suppressed by co-expression of 

TBX5 [54]. In line with that, our results show that overexpressing TFs in 

combination did not synergize in directing CPC differentiation. Indeed, except for 

the markers ANP, connexin 40 and α-actinin2, expressing all the 4 TFs (Gata4, 

NKX2.5, MEF2C and TBX5) in CPCs led often to suppressing the transcription of 

differentiation markers compared to single TFs (Fig. 4). These mixed results 

observed when multiple TFs are expressed in CPCs, as shown in our study and 

in some previous reports, suggest a gene-specific synergism/antagonism of TFs, 

reflecting the complexity of the regulatory transcription network within CPCs.  

BAF60C was added to the pool of investigated TFs in this study because it 

is a subunit of the BAF complexes that is involved in promoting interactions 

between cardiac TFs and the BAF complex, thereby promoting cardiogenesis 

[39]. To that end, BAF60C, Gata4 and/or TBX5 were overexpressed in every 

possible combination in CPCs. However, the qRT-PCR data (see Fig. 6) show 

that BAF60C suppressed the expression of most cell differentiation markers, 

suggesting that it inhibits CPC differentiation.  

Although speculative, the inability of BAF60C, MEF2C, NKX2.5 and TBX5 

(with the exception of Gata4) to promote robust CPC differentiation may be due 
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to one of the following: 1) it is possible that a precise temporal coordination is 

needed for these TFs to transactivate one another and drive cardiogenesis. In 

this study however, TFs were expressed at the same time and for the same 

period. 2) Duration of TF overexpression may need to be longer than the 2 

weeks applied in this study 3) The chromatin epigenetic status (i.e. methylation 

and acetylation) of the promotor regions of the target genes of our investigated 

TFs may have not been optimal and may have inhibited differentiation [55]. 4) 

Protocols of isolation and culturing and other in vitro conditions of CPCs have 

affected their ability to differentiate. 5) CPCs used in the study are not clonally-

expanded cells and thus may constitute a heterogeneous population of primitive 

and more committed progenitors [56, 57], with varying potentials of 

differentiation. 6) The cells used in this study are derived from relatively aged 

patients and thus may have lost their full differentiation potential.  7) Complete 

differentiation of CPCs may, in fact, never be achieved ex vivo due to a loss of 

one or more of cardiac tissue micro-environmental cues or because the 

surrounding milieu in vitro used in our experiments does not recapitulate the 

physiological cardiac tissue.  

Nonetheless, despite the insufficiency of Gata4 to induce complete 

differentiation of CPCs, partial differentiation of CPCs may be all that is required 

to achieve a superior therapeutic effect for MI. It is possible that some Gata4-

expressing CPCs may reach complete differentiation upon injection in the 

differentiation-conducive physiological environment of the mammalian heart. In 

support of that, Qian et al. have shown that TF-mediated reprogramming of 
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cardiac fibroblasts into cardiomyocytes is easier in the native cardiac tissue as 

compared to cells grown in culture [58].  

In conclusion, overexpressing Gata4 alone or in the presence of 

differentiation medium and dexamethasone robustly upregulated markers of 

cardiomyocytes, smooth muscle cells, and fibroblasts, suggesting a pivotal role 

of Gata4 in facilitating CPC differentiation. Unexpectedly, however, BAF60C, 

MEF2C, NKX2.5, and TBX5 did not significantly synergize or facilitate Gata4 

effects, underscoring the complexity of the interactions and effects of cardiac 

TFs.    
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CHAPTER III 

PROMOTING SURVIVAL OF HUMAN C-KIT+ CPCS 

 

Poor survival of cells engrafted in the heart is one of the major hurdles that 

slow the progress of heart cell-based therapies [21, 22]. That rapid cell loss does 

not allow implanted cells to remain long in the diseased cardiac tissue, and may 

thus limit their therapeutic benefit. Unfortunately, the exact cause of cell death is 

not well-defined although it is likely to be due to the ischemia within the infarcted 

heart, the host inflammatory response, and/or anoikis [34].  

Ischemia in the infarcted heart has a deleterious effect not only on 

endogenous cardiac cells but also on cells introduced to the heart for therapeutic 

purposes. In addition to the ischemia-mediated oxygen and nutrient deprivation 

[34], ischemia generates detrimental high levels of reactive oxygen species 

(ROS) [59-61]. Indeed, Kolamunne et al. have shown that hypoxia produces high 

amounts of mitochondrial superoxide, which mediate the toxicity observed in 

cardiac progenitors [62]. Produced ROS could be damaging to stem cells in 

multiple ways. For instance, high levels of ROS injure cell membranes and 

increase the permeability of the mitochondrial membrane, leading to impairment 

of intracellular Ca2+ homeostasis [63]. ROS also transduce the deleterious effects 

caused by inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-1β and IL-
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6] through a TNF-α receptor/caspase pathway [63]. ROS can even impair other 

crucial stem cell properties such as migration and differentiation [64].  

One interesting molecule that may be utilized to promote cell viability in 

the presence of high oxidative stress is Nrf2. Nrf2 is a TF that efficiently combats 

oxidative stress and may thus be utilized to enhance stem cell survival [65]. 

When activated, Nrf2 upregulates the transcription of various genes involved in 

cellular protection against oxidative stress, including heme oxygenase 1 (HO-1), 

NAD(P)H quinone oxidoreductase 1 (Nqo1), sulfiredoxin 1 (SRXN1), 

peroxiredoxin, epoxide hydrolase, peroxidases, and glutathione- (GSH)-

synthesizing enzymes [66, 67]. Nrf2 also exerts additional beneficial effects by 

upregulating production of prosurvival cytokines and by moderating inflammation 

and immune response [68-70]. The significance of Nrf2 and its prosurvival role 

have been shown in multiple systems. For instance, preconditioning astrocytes 

by adding sulforaphane (a Nrf2 stabilizing isothiocyanate abundant in broccoli) 

upregulated the expression of the reactive quinone quencher Nqo1 and 

conferred protection against oxidative stress [71]. Another study showed that 

neurons that lack Nrf2 activity in knock-out mice were more susceptible to 

oxidative stress as compared to the wild type counterparts (Nrf2+/+) [72]. When 

Nrf2 activity was restored in the Nrf2-/- neurons by overexpressing the encoding 

gene, the neurons regained the ability to resist oxidative stress. Consistent with 

that, activating Nrf2 chemically or via adenovirus-mediated Nrf2 delivery 

protected neural stem cells from oxidative stress [64]. In the context of human 

hematopoietic stem progenitor cells, Nrf2 was shown to abrogate oxidative 
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stress-induced toxicity and to upregulate production of prosurvival cytokines such 

as BCL2A1 and IL-10 [68]. These studies prompted us to hypothesize that Nrf2 

activation in CPCs is a good strategy to help promote survival of CPCs under 

high oxidative stress conditions in vitro. The ultimate long-term goal is to obtain 

genetically-modified cells that can resist the oxidative stress within the infarcted 

heart in vivo.  

To enhance the activity of Nrf2 in CPCs, it is vital to understand how Nrf2 

is regulated under both physiological and stressed conditions. Under normal 

conditions, Nrf2 is sequestered in the cytoplasm by binding to the actin-tethered 

Kelch like-ECH-associated protein 1 (Keap1) [73]. Keap1 recruits Cullin 3 (Cul3), 

a subunit of the E3 ligase complex, by interacting with its N-terminal region. 

Recruited Cul3, in turn, marks Nrf2 for proteosomal degradation and thus 

prevents Nrf2 translocation and subsequent activation into the nucleus [74]. In 

contrast, under stressful conditions, ROS and electrophiles disrupt critical 

cysteine residues (including Cys 151) within Keap1, which abolishes the 

interaction between Keap1 and Nrf2. This allows Nrf2 to freely translocate into 

the nucleus and bind to antioxidant response element (ARE) sites at the 

upstream promoters of Nrf2 target genes [75]. To bind to ARE, Nrf2 needs first to 

heterodimerize with its binding partner (small maf protein). DNA binding initiates 

transcription of several antioxidant genes [76]. In attempt to promote Nrf2 activity 

in CPCs, our lab generated a constitutively active form of Nrf2 (caNrf2) by 

deleting 88 amino acids at the N-terminus. The mutation stabilizes Nrf2 by 

abolishing the interaction of Nrf2 with Keap1, and thus activates Nrf2-mediated 
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antioxidant pathways [73]. Next, caNrf2 was expressed in CPCs and its ability to 

promote survival was assessed in vitro.  
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MATERIALS AND METHODS 

Isolation and culture of c-kit+/lin- CPCs 

See “methods and materials” section in Chapter II. 

 

Immunofluorescence staining and Western blot analysis 

See “methods and materials” section in Chapter II. Nrf2 antibody (rabbit 

polyclonal; GTX61763) was purchased from GeneTex.  

 

 Production of caNrf2 lentivirus and lentivirus-mediated transduction  

Lentivirus expressing caNrf2 used in the current study was produced 

using ViraPowerTM Lentiviral Expression System (Invitrogen) according to 

manufacturer’s instructions. The pcDNA3-Myc3-Nrf2 (Addgene plasmid 21555) 

which contains the full-length human Nrf2 coding sequences was purchased from 

Addgene (www.addgene.org). caNrf2 was generated in our lab by deleting 88 

amino acids at the N-terminus of Nrf2. That mutation is at the locus of Nrf2 

responsible for Keap1 binding, leading to constitutive activation of caNrf2. The 

coding sequences for caNrf2 or mCherry were PCR-amplified using Pfu HF 

polymerase (Agilent) and subcloned into pLenti6/V5-D-TOPO vector (Invitrogen) 

according to the manufacturer’s instructions.  Primers used for the PCR were the 

following: 5’-GTTTTTCTTAACATCTGGCTTCTTACTTTTG-3’ and 5’-

CACCATGCAGCACATCCAGTCAGAAACCA-3’. For generation of pLenti6-

mCherry expression construct, pmCherry-C2 vector (K. U. Hong) was used as 

the PCR template. For generation of 3xFLAG-caNrf2, the following oligos were 
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synthesized, annealed and inserted into the BamHI site of pLenti6/V5-TOPO 

vector: 5’-

GATCGACCATGGATTACAAGGATGACGACGATAAGGATTACAAGGATGACG

ACGATAAGGATTACAAGGATGACGACGATAAGG-3’ and 5’-

GATCCCTTATCGTCGTCATCCTTGTAATCCTTATCGTCGTCATCCTTGTAATC

CTTATCGTCGTCATCCTTGTAATCCATGGTC-3’.  Each batch of virus was 

concentrated 10 times using Lenti-X Concentrator (Clontech) according to the 

manufacturer’s instructions and resuspended in complete CPC media. Aliquots 

were made and stored at -80°C until use. 

 

Inducing oxidative stress in CPCs  

CPCs cultured in 6-well plates and supplemented with regular complete 

medium were transduced with mCherry- (control) or caNrf2-expressing 

lentiviruses. Transduced cells were cultured with medium change every 3 days 

for a total of 6 days to allow expression and activation of the inserted gene. The 

cells were then washed with PBS, trypsinized and counted using a 

hemocytometer. Subsequently, 1.0 x 104 CPCs were plated per well of a 96 well 

plate. The cells were then exposed to oxidative stress-inducers such as 2, 3-

dimethoxy-1, 4-naphthoquinone (DMNQ) or hydrogen peroxide (H2O2). DMNQ 

was used at either a concentration of 25 μM in regular complete medium or at a 

concentration of 12 μM in serum-free medium for a period of 4-5 days. H2O2 was 

applied at a 1.5 mM concentration for a total of 6 hours. Both DMNQ and H2O2 

were freshly prepared from stock solutions prior to each experiment. Following 
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oxidative-stress exposure, viability assays were performed to determine the 

number of surviving cells at serial time points. 

 

Prestoblue assay  

PrestoBlue (Invitrogen) cell assay was used to assess cell viability on 1.0 

x 104 CPCs that were plated on a 96-well plate. PrestoBlue solution contains 

resazurin, which is a blue non-fluorescent substance that enters viable cells and 

then gets converted by the reducing intracellular environment into a red & 

fluorescent metabolite. Cell viability can thus be estimated by measuring 

absorbance or fluorescence. The PrestoBlue assay was performed according to 

manufacturer’s instructions. Briefly, the 10x reagent was diluted in the culturing 

medium to make a 1x reagent solution. At the time of analysis, culturing medium 

was replaced with the freshly prepared 1x Prestoblue solution and incubated at 

37° C for an hour. The viability was then assessed by reading the fluorescence at 

Ex/Em 560/590 nm. All experiments were done in quadruplicates. 
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RESULTS 

Overexpressing caNrf2 in CPCs 

Previous studies have shown that Nrf2 activation has conferred protection 

to multiple cell types exposed to high levels of oxidative stress [64, 68]. Thus, we 

hypothesized that Nrf2 activation by forced expression of the encoded gene will 

promote CPC survivability. To that end, FLAG-tagged caNrf2 was overexpressed 

in CPCs using a lentivirus delivery system. Western blot verified successful 

caNrf2 expression in CPCs and immunocytochemistry showed 70-90% 

transduction efficiency for both mCherry- and caNrf2-viruses (Fig. 8).  

 

caNrf2 induces multiple antioxidant genes in CPCs 

Following the successful expression of the caNrf2 construct, the effect of 

caNrf2 gene transfer on the expression of antioxidant genes was investigated. 

CPCs were transduced with mCherry- (control) or caNrf2-expressing lentiviruses. 

Six days post transduction, the gene expression of selected Nrf2 target genes 

were examined at the mRNA and protein levels using qRT-PCR and Western 

blot. Indeed, transduction of CPCs with caNrf2-lentivirus significantly increased 

the expression of Nrf2 target genes, most notably HO-1 (Fig. 9). HO-1 is a 

stress-inducible gene whose expression is upregulated in response not only to 

ROS but also to a large number of other internal and external factors that cause 

cellular stress [77]. In addition to HO-1 induction, caNrf2 caused a significant 

upregulation of other Nrf2 target gene transcripts including NAD(P)H quinone
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Figure 8. Lentivirus-mediated delivery of caNrf2 into CPCs. A, Western blot 

images confirming caNrf2 protein expression in CPCs compared to mCherry-

transduced cells at day 5 post-transduction. GAPDH was used as a loading 

control. B, Immunostaining images showing level of forced expression in CPCs 

transduced with mCherry- (left panel) or 3xFLAG-tagged caNrf2-virus (right 

panel). DAPI images are shown in lower panels. 
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Figure 9. caNrf2 overexpression in CPCs upregulates Nrf2 target genes. A, 

mCherry and caNrf2 were overexpressed in CPCs via a lentivirus-based delivery 

system. At day 6 post-transduction, cells were harvested, and relative changes in 

mRNA transcripts of the indicated Nrf2 target genes were measured using qRT-

PCR. The level of each transcript was compared to that of mCherry-expressing 

control group, and is expressed as a relative fold change. B, Western blot images 

confirming caNrf2-induced upregulation of HO-1 and SRXN1 at the protein level 

in CPCs compared to mCherry-transduced cells.  For each group in A, n = 4. Bar 

graphs show mean ± SEM. *, p < 0.05. 
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oxidoreductase 1 (NQO1) [78], glutamate-cystein ligase catalytic (GCL-C), 

glutamate-cystein ligase modifier (GCL-M), GSH reductase (GSR), and SRXN1 

(See Fig. 9A). Western blot analyses were also performed and corroborated the 

induction of HO-1 and SRXN1 at the protein level (Fig. 9B). These observations 

support that overexpressed caNrf2 bound to the promoter regions of target genes 

and upregulated the transcription of Nrf2 target genes. 

caNrf2 overexpression protects CPCs against oxidative stress 

After demonstrating the ability of caNrf2 to upregulate antioxidant genes, the 

ability of caNrf2 overexpression to protect CPCs from oxidative stress conditions 

was examined. To that end, 1.0 x 104 mCherry- and caNrf2-overexpressing 

CPCs were plated onto a 96-well plate and then cultured using regular 10% FBS-

containing F12 medium. Next day, medium was replaced with regular F12 

medium containing the redox cycling agent DMNQ at a concentration of 25 μM to 

induce oxidative stress before assessing cell viability. Indeed, significant 

protection was observed in caNrf2-overexpressing cells at 24 and 48 hours post-

DMNQ treatment, as assessed by the Prestoblue cell viability assay (Fig. 10A). 

Next, caNrf2-expressing CPCs were subjected to a combination of DMNQ and 

serum-deprivation. To achieve that, regular CPC medium was replaced with 

serum-free F12 medium containing 12 μM DMNQ. caNrf2 overexpression,  

protected CPCs that are exposed to DMNQ and serum starvation at both 48 and 

72 hours following DMNQ treatment (Fig. 10B), confirming the protective role of 

caNrf2 overexpression in CPCs. 
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Figure 10.  caNrf2 overexpression protects CPCs against  oxidative stress. 

A, CPCs transduced with mCherry- or caNrf2-encoding lentivirus were subjected 

to 25 μM DMNQ in regular CPC complete medium (A) or to 12 μM DMNQ in 

serum-free medium (B). Prestoblue viability assay was performed at the 

indicated time points. For each group, n = 4. Bar graphs show mean ± SEM. *, p 

< 0.05. 
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To monitor viability of caNrf2-overexpressing CPCs at multiple time points, rather 

than taking a snap shot at 1 or 2 time points, a time-course analysis was 

performed by assessing viability at regular intervals. Twenty four hours after 

plating cells, 25 μM DMNQ was freshly added to the culturing medium and was 

renewed daily. Prestoblue assay was performed every 12 hours. Our results 

show that caNrf2 overexpression resulted in a significant protection in caNrf2-

expressing CPCs starting at 24 hours and up to 60 hours post DMNQ treatment 

(Fig. 11A). Following that, the ability of caNrf2 to promote cell survival of CPCs 

was assessed upon exposure to a different source of oxidative stress. This time, 

caNrf2-expressing cells were incubated with 1.5 mM H2O2 prior to the cell 

viability assessment. As expected, caNrf2 gene delivery improved cell resistance 

to H2O2-induced toxicity at the time points analyzed (1, 2, 3, 4, 5 and 6 hours 

following H2O2 treatment) (Fig. 11B). Taken together, these data show a 

significant survival advantage of caNrf2-expressing CPCs under oxidative stress. 

Finally, to exclude any caNrf2-mediated impact on proliferation, mCherry- and 

caNrf2-overexpressing CPCs were seeded at a low density and proliferation was 

monitored at 12-hour intervals. Our data show that caNrf2-expressing CPCs 

proliferated in a manner comparable to mCherry-transduced cells (Fig. 12). 
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Figure 11. Time-course cell viability analysis for caNrf2- and mCherry-

overexpressing CPCs under oxidative stress. CPCs transduced with 

mCherry- or caNrf2-encoding lentivirus, were subjected to 25 μM DMNQ (upper 

panel) or to 1.5 mM H2O2 (lower panel). Prestoblue viability assay were 

performed at the indicated time points. The data indicate that caNrf2 

overexpression protects CPCs from oxidative stress. For each time point, n = 4. 

Data are shown as mean ± SEM. *, p < 0.05. 
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Figure 12. Effect of caNrf2 overexpression on CPC proliferation under 

normal conditions. Five thousand CPCs transduced with mCherry- or caNrf2-

encoding lentivirus were plated in a 96-well plate in regular complete medium. To 

assess proliferation, relative cell number at 12 hour intervals for 4 days was 

determined using the Prestoblue viability assay. No significant difference was 

noted between mCherry- and caNrf2-overexpressing CPCs at all the time points 

analyzed. For each time point, n = 4. Data are shown as mean ± SEM. 
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Discussion 

It is accepted that the mammalian myocardium has very limited 

regenerative capacity after injury [79]. Thus, introducing exogenous cells that 

have the ability to regenerate or repair the heart constitutes a conceivable 

approach to treat MI-induced heart failure. To that end, several cell types have 

already been investigated, including cardiomyocytes [80], skeletal myoblasts 

[81], MSCs, [29] CPCs [9] or even smooth muscle cells [82] and fibroblasts [83]. 

Among these cell types, cardiomyocytes are theoretically the ideal candidate to 

replace lost cardiomyocytes. However, providing a reliable source of human 

cardiomyocytes remains unresolved. Thus, stem cells which have the ability to 

proliferate robustly and generate functional progeny provide an alternative to 

cardiomyocytes for heart cell replacement therapies.  

Among stem cells that can be utilized for cardiac repair, CPCs offer a 

number of advantages. Unlike other types of stem cells, findings from 

independent laboratories have validated the ability of CPCs to generate not only 

cardiomyocytes, but also other cell types present in the cardiac tissue such as 

smooth muscle cells and endothelial cells [9, 35, 84]. Also, use of CPCs have not 

been associated with adverse side effects or oncogenic transformations, 

conferring them a significant safety advantage over the use of embryonic stem 

cells and induced pluripotent stem cells [85]. Indeed, these encouraging results 

observed with CPC grafting in animal models were conducive to the initiation of a 

phase I clinical trial, which corroborated both the safety and the therapeutic 

potential of CPCs [19].  
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Nevertheless, one of the remaining challenges for CPC-based therapy is 

that the majority of infused cells do not survive in the host tissue. For instance, 

our group has previously shown that ~99% of transplanted CPCs were 

undetected in the heart at 35 days post implantation [21, 22]. Thus, strategies 

that can enhance CPC survival after adoptive transfer are needed. To that end, a 

number of strategies have been utilized, including exposure to hypoxic 

preconditioning [86], chemical activation of HO-1 [36], delivery of growth factors 

genes [87], prosurvival genes and heat shock treatment [34]. In this study, we 

demonstrate for the first time in CPCs, that caNrf2 overexpression enhances the 

CPC resistance to oxidative stress. Our data show that caNrf2 protected CPCs 

against the redox cycler DMNQ with and without serum deprivation (Fig. 10 and 

11). Furthermore, caNrf2 protected CPCs against another oxidative stress 

inducer, H2O2 (Fig. 11).  

In line with our findings, previous studies have shown the beneficial effect 

of Nrf2 activation. For instance, sulforaphane (a Nrf2 activator) has been shown 

to upregulate Nqo1 and to protect astrocytes from oxidative stress [71]. Also, 

Nrf2 activation through selective deletion of Keap1 in Clara cells in the mouse 

lung upregulated the expression of Nqo1 and Gcl-m, and that was accompanied 

by a protection against oxidative stress ex vivo and boosted the resistance of 

lungs against cigarette smoke-induced inflammation [88]. In intact animals, 

boosting Nrf2 activity with pharmacological agents was also protective against 

oxidative damage [89]. More importantly, Nrf2 has also been shown to play a 

significant role in stem cell survival and function. For instance, hematopoietic 
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stem progenitor cells (HPSCs) from Nrf2-knockout mice had significantly higher 

rates of spontaneous apoptosis and had lower survival rates when exposed to 

oxidative stress [68]. The study also showed that Nrf2 is indispensable for 

myeloid development and stem cell function of HPSCs. Collectively, these lines 

of evidence, along with our findings, support a beneficial outcome of Nrf2 

activation, which may be utilized to advance cell-based cardiac repair. 

It is possible that caNrf2 overexpression in CPCs may affect their 

proliferation. For instance, Schafer et al. found that overexpressing caNrf2 in 

mice had a negative effect on keratinocyte proliferation [90]. In the present study, 

however, caNrf2 overexpression had no effect on the proliferation rate of CPCs 

under normal unstressed conditions (Fig. 12). These data suggest that caNrf2-

induced effect on proliferation is cell-specific and that caNrf2-overxepressing 

CPCs retain their normal proliferative potential. This also indicates that the role 

caNrf2 plays in CPCs is protecting them against oxidative stress, rather than 

promoting their proliferation. 

The cytoprotective effects of Nrf2 activation is thought to be mediated 

through a battery of antioxidant genes such as GCL, GSR, NQO1, HO-1, and 

SRXN1. These proteins play important roles in cellular responses to oxidative 

stress and thus help protect cells from oxidative stress [66]. Consistent with that, 

our findings show that caNrf2 overexpression in CPCs was associated with 

transcriptional induction of several Nrf2 target genes including GCL-C, GCL-M, 

GSR, NQO1, HO-1, and SRXN1 (Fig. 9). The qRT-PCR analysis revealed that 

the synthesizing components of GSH: GCL-C and GCL-M were significantly 
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upregulated (Fig. 9). GCL mediates the rate limiting step of GSH synthesis. This 

step involves the ATP-dependent condensation of cysteine and glutamate to 

form the dipeptide gamma-glutamylcysteine (γ-GC) [91]. Structurally, GCL is 

comprised of a 73 kDa heavy catalytic subunit (GCL-c) and a 31 kDa light 

modifier subunit (GCL-m) and genes encoding the two subunits have been 

shown to contain ARE sequences at their promoters [91]. Several studies have 

shown the transcriptional and functional association between Nrf2 and GSH, and 

the role of GSH in combating oxidative stress. For instance, Nrf2-knockout mice 

have been shown to express lower levels of GSH [92]. Also, N-acetyl L-cysteine 

(NAC), a precursor of GSH, was effective in protecting cells against Fas-

mediated toxicity [93]. In addition to GCL, the GSH- replenishing enzyme GSR is 

also needed for GSH homeostasis and cellular activity. When GSH is oxidized, 

GSR is responsible for reducing the GSH oxidized form (GSSG) to the sulfhydryl 

form (GSH), to maintain a healthy reducing environment within the cell [94, 95]. 

Similar to what was observed with the GCL subunits, our data show a significant 

induction of GSR mRNA levels in caNrf2-overexpressing CPCs (Fig. 9). 

In addition to the transcriptional elevation of enzymes that restore GSH 

levels, caNrf2 induced transcription of other Nrf2 target genes, most notably HO-

1 and SRXN1 (Fig. 9). HO-1 is the inducible form of HO and is transcriptionally 

regulated by Nrf2 whereas HO-2 is the constitutive form. Both HO-1 and HO-2 

mediate heme (pro-oxidant) breakdown, to produce biliverdin (an antioxidant that 

can be converted to bilirubin by biliverdin reductase) and carbon monoxide (an 

antioxidant exclusively synthesized by HO-1) [96, 97]. Previous studies have 

http://en.wikipedia.org/wiki/Cysteine
http://en.wikipedia.org/wiki/Glutamate
http://en.wikipedia.org/wiki/Gamma-glutamylcysteine
http://en.wikipedia.org/wiki/Glutathione_disulfide
http://en.wikipedia.org/wiki/Glutathione
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shown the role of Nrf2 in upregulating HO-1 transcripts and the importance of the 

latter in ameliorating ROS damage. For instance, conditional expression of a Nrf2 

dominant-negative mutant was accompanied by 85-95% reduction in the HO-1 

transcript in response to heme, cadmium, zinc, arsenite, and tert-

butylhydroquinone [98], supporting that HO-1 is one of the principal target genes 

of Nrf2. In addition, chemical activation of HO-1 through cobalt protoporphyrin 

was beneficial to CPCs by promoting ERK/Nrf2 signaling, and conferring 

protection against oxidative stress [36]. In accordance with that, our results show 

~30 fold induction in the HO-1 mRNA transcript in caNrf2-expressing CPCs (Fig. 

9), corroborating the association between Nrf2 activation and HO-1 expression. 

Another target gene of Nrf2-activation is SRXN1 which is believed to lower 

oxidative stress by re-activating peroxiredoxins (a family of peroxidases) that are 

inhibited by over-oxidation [99]. Our qRT-PCR revealed that caNrf2-expressing 

CPCs had a ~20 fold higher transcript level of SRXN1 (Fig. 9). Although not 

tested, it is possible that that both HO-1 and SRXN1 play major roles in 

mediating caNrf2 protective effect in CPCs.  

Like other Nrf2 target genes, mutational studies have identified the 

presence of ARE sequence in the promotor region of NQO1 [100]. NQO1 is a 

prototypical Nrf2 target gene that catalyzes the reduction and detoxification of 

highly reactive redox cycling quinones that can cause cellular damage [76].  

Several studies have shown that Nrf2 activation promotes Nqo1 expression, 

which in turn help promote cell survival. For instance, Nrf2 activation by Keap1 

selective deletion in the mouse lung was associated with increased levels of 

http://en.wikipedia.org/wiki/Peroxiredoxin
http://en.wikipedia.org/wiki/Quinones
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Nqo1 [88]. When a pharmacological inhibitor of NQO1 was added, the cells were 

sensitized to Fas ligand-induced apoptosis [93], indicating a prosurvival role of 

NQO1. In line with these studies, there was a small but significant induction of 

NQO1 mRNA levels in caNrf2-overexpresing CPCs (Fig. 9).  

Although this study did not look at the mechanisms by which caNrf2 

promotes CPC viability under oxidative stress conditions, Nrf2 has been reported 

to possess multiple beneficial effects. 1) Nrf2 directly decreases oxidative stress 

by influencing homeostasis of ROS and reactive nitrogen species (RNS) [67]. For 

instance, Nrf2 promotes catabolism of superoxide and peroxides by increasing 

the cellular levels of superoxide dismutase (SOD), GSH peroxidase and 

peroxiredoxin. Nrf2 also promotes synthesis of reducing factors such as GSH 

and NADPH, and replenishes oxidized cofactors and proteins (including oxidized 

GSH) by upregulating the transcription of specific reductases [67, 101]. 2) Nrf2 

activation has been shown to inhibit apoptosis [101, 102] although the precise 

mechanisms by which this occurs remain to be elucidated. Indeed, when Nrf2 

was inhibited in HeLa cells by expressing an antisense Nrf2 cDNA or a 

membrane permeable dominant-negative polypeptide, the cells were sensitized 

to Fas-induced apoptosis and that was rescued by Nrf2 overexpression [93]. 3) 

Nrf2 induces the expression of a class of proteosomal proteins, and thus reduces 

protein aggregation that is detrimental to cells [103]. In support of that, 

sulforaphane protected murine neuroblastoma cells from amyloid beta (Aβ) 

aggregation-induced toxicity [104]. 4) Studies have revealed a beneficial anti-

inflammatory effect for Nrf2. For instance, Nrf2 can attenuate NFkappaB-
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inflammatory response in vitro and in vivo [105]. Also, inducing expression of 

Nrf2 in microglia by using the phenolic antioxidant tBHQ, prevented LPS-induced 

microglial hyperactivation and attenuated overproduction of pro-inflammatory 

neurotoxic mediators like TNF-α, IL-1β, IL-6, prostaglandin E2 (PGE2), and nitric 

oxide (NO) [106]. Based on these reports, we speculate that in addition to caNrf2 

ability to protect CPCs from oxidative stress, it may confer additional benefits to 

CPC survival by one or more of the following mechanisms: inhibiting apoptosis, 

reducing protein aggregation and/or reducing inflammatory mediators. 

In summary, our data show that caNrf2 can protect CPCs against 

oxidative stress conditions in vitro with no apparent impact on cell proliferation. 

However, despite these promising results observed with caNrf2-expressing 

CPCs, it is important to be cautious when interpreting these data since all the 

experiments in this work were performed only under in vitro conditions. 

Therefore, whether caNrf2-overexpression in CPCs would be protective in vivo 

needs further investigation. It would be particularly interesting to test the 

prosurvival role of caNrf2 in cells upon implantation in an animal model of MI. If 

proved effective, caNrf2 gene delivery may have significant implications for MI-

induced heart failure. 
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CHAPTER IV 

SUMMARY 

MI-induced heart failure presents a major challenge because none of the 

existing therapies are capable of reversing myocardial death. Fortunately, newer 

approaches including CPC-based therapies are promising venues because they 

offer a potential to modify the underlying pathophysiology, either by replacing 

dead cells and/or by protecting the remaining ones. Indeed, this relatively new 

CPC field is advancing fast and is achieving encouraging results, albeit with a 

few unresolved concerns.  

Among these concerns, poor survivability of transplants and their inability 

to generate functional cardiac cell types, hinder further advancement of the cell-

based heart repair. It is thus imperative that more investigations be carried out to 

understand and resolve these issues. The present work focused on genetically 

engineering CPCs to facilitate their differentiation into committed cardiac lineages 

and to confer cells better protection against oxidative stress. The data indicate 

that Gata4 and caNrf2 gene delivery have the potential to address CPC poor 

differentiation and survival, respectively. Gata4 overexpression was able to direct 

the differentiation of CPCs into 3 out of the 4 main cardiac cell lineages 

(cardiomyocytes, smooth muscle cells and fibroblasts). Combining a 

differentiation medium (5% FBS-containing DMEM) and dexamethasone with
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Gata4 overexpression shifted the differentiation into only the cardiomyocyte 

lineage. Determining the therapeutic advantage, if any, of CPCs committed to 

multiple cardiac cell lineages, versus those committed to cardiomyocytes only, 

need further investigation. With regard to promoting CPC survival, 

overexpressing caNrf2, which has the ability to activate several antioxidants and 

phase II detoxifying enzymes, protected CPCs against multiple oxidative stress 

conditions in vitro with no impact on cell proliferation.  

Because the experiments performed in this work were performed under in 

vitro conditions, it would be interesting to confirm these findings by assessing 

whether Gata4-, caNrf2- or Gata4-caNrf2-overexpressing CPCs are 

therapeutically superior to naïve CPCs in an appropriate animal model of MI. 

Such studies need to analyze not only the differentiation and survivability of 

implanted cells in the infarcted heart, but also the ability of cells to result in 

improved cardiac function. Success of these genetically-engineered CPCs in vivo 

may have implications not only for ischemic cardiomyopathy but also in other 

diseases that may benefit from cell-based therapies. 
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