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ABSTRACT

PHOSPHINIMINE ZINC COMPLEXES AND NEUTRAL
PHOSPHINIMINES FOR RING OPENING POLYMERIZATION
OF LACTIDES

Rajesh Thapa
July 24, 2015

Achiral arenesulfonates ligands having a (NNN) or (NNO) side arm have been
developed (Chapter 2) and their respective zinc ethyl complexes, NNNZnEt 3.2 and
NNOZnEt 3.3, have been synthesized and characterized using spectroscopic methods
(Chapter 3). NNNZnEt as well as NNOZnEt complexes are stable under nitrogen
atmosphere. In the NNOZnEt 3.3 complex the protons associated with the pendant
(dimethylamino)ethyl arm are broad indicating that a fluxional process is operative, most
likely dissociation of the (dimethylamino)ethyl arm at 25 °C in CD,Cl,. The fluxional
behavior present in the "H NMR spectrum of 3.2 could be arrested by cooling the CD,Cl,
solution to -60 °C. In Chapter 3, the reactivity of 3.2 and 3.3 with alcohols was explored
in detail. NNOZnEt was found to be unstable in the presence of alcohols. The NNNZnEt
complex does not show any reactivity with weak acids (pKa = 16), such as ethanol,

anthrylmethanol or anthrylethanol. Strong acids (pKa = 8-10) like phenols protonate the



zinc ethyl bond to produce zinc phenoxide complexes with release of ethane. The rate of
the reaction is directly proportional to the acid strength (pKa) of the alcohols. The
NNNZnEt complex as well as its corresponding phenoxides show dynamic behavior at 25
°C. The dimethylaminoethyl arms in these complexes are hemilable as indicated by 'H,
13C, 3P and variable temperature NMR, i.e., the dynamic behavior of these complexes
was demonstrated. The detail structure of the NNNZnEt was elucidated by examining the
single X-crystal structure of analogous air stable NNNZnMe complex. Zinc phenoxides
3.10-3.12 were isolated in good yield by reaction of NNNZnEt complex and one
equivalent of the corresponding solid phenols in CH,Cl, under N,. Zinc phenoxides 3.10-
3.12 were characterized by '"H, C, and *'P and multi-dimensional NMR. Fluxional
behavior was observed at 25 °C for the pendant (dimethylamino)ethyl arm in complexes
3.10-3.12 as also seen in zinc alkyl complexes 3.7 and 3.13. The dynamic behavior due
to association and disassociation of the (dimethylamino) ethyl arm in complexes 3.10-
3.12 could be halted by cooling the CD,Cl, solutions to -40 °C. Complexes 3.10-3.12
were stable in dry CD,Cl, for several days at 25 °C and 12 hours at 45 °C. The catalytic
activity of zinc phenols with lactide were tested on NMR scale reactions. The discrete
zinc phenoxide as well as in situ generated zinc phenoxides 3.10-3.12 show low catalytic
activity with dl-lactide. The low reactivity of zinc phenoxides with dl-lactide is probably

due to the low electrophilicity of the zinc center.

In the second part of this dissertation (Chapter 4), a series of tolyl/phenylethyl
phosphinimines 4.1-4.8 were synthesized by Staudinger reaction between azide and
various phosphines. These phosphinimines were characterized using 'H, "°C, *'P NMR.
In general, the phosphininimine only ring substituted with an electron donating group,

such as methoxy or dimethylanino, enhances the basicity of the phosphinimines. The

vi



correlation between the basicity of the phosphinimines and the downfield shift of the
alcohol hydroxyl group when activated by phosphinimine was studied. The catalytic
activity of these phosphinimines towards ring opening polymerization of lactide is
correlated by alcohol hydroxyl proton shift when interacted with an alcohol (1:1) in non-
hydrogen bonding solvent CDCls at 25 °C under N, atmosphere. The phosphinimines 4.5
to 4.14 were tested for ROP of lactides and their correlation with the basicity estimated
with alcohol activation was shown. These phosphinimines represent highly active
catalysts for ROP under N, at ambient temperature. The phosphinimine 4.7 reacts with
lactide monomer even in absence of alcohol initiation with reasonable reaction rate.
Phosphinimines initiate the ROP of lactide even in the absence of initiating alcohol.
However, the addition of alcohol enhances the rate of the reaction. We anticipate that the
ease of handling of these catalysts, combined with their high reactivity on the ROP of

lactide will make them useful to the synthetic community.
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CHAPTER 1

RING OPENING POLYMERIZATION OF LACTIDE

1. A. Ring opening polymerization (ROP) of lactides
1. A. 1. Introduction
1. A. 2. Biodegradable polymer: polylactide (PLA)
1. A. 3. Synthesis of polylactide
1. A. 4. Ring opening polymerization
1. A. 5. ROP mechanism
1. A. 6. Industrial catalyst for preparation of PLA
1. A. 7. Stereocontrol of ROP lactide
1. B. Metal Based Initiators for the ROP of lactides
1. B. 1. Single site homogenous catalysts
I. B. 3. Zinc based catalyst
1. B. 4. Aluminum based catalyst

1. C. Dissertation objectives



1.A.1. Introduction

A great majority of the synthetic plastics, such as polyethylene, polypropylene,

polystyrene, or polyvinyl chloride, are commonly used today. These polymeric materials
are derived from petroleum resources. The utilization of fossil fuels such as oil and gas in
the manufacture of plastics engender concern over the long-term availability of the
required feedstock. Furthermore most of these materials are not readily degradable or
recyclable.' They often end their life cycle in landfill sites or being burned generating
harmful gaseous emissions.
With all these issues, there has been a drive to discover and commercialize polymeric
materials that are both derived from annually renewable resources and are readily
degradable without emitting harmful gases to the environment.” One of the best
alternatives for this problem discovered in the last two decades is poly(lactic acid) or
poly(lactide) (PLA). PLA can be derived either directly by polycondensation of lactic
acid or by ring opening polymerization (ROP) of lactide (cyclic dimmer of lactic acid).
PLAs are derived from 100% renewable resources, such as corn and sugar beets, and are
highly biocompatible and readily degradable. Therefore PLA offers great promise in
range of commodity application.’

The ring opening polymerization is initiated by metal complexes, organic
compounds, or enzymes, with/without alcohol, to yield high molecular weight PLA in
excellent conversion and purity. Metal complexes are desirable because they give rise to
controlled polymerization and well defined high molecular weight (M,), narrow
polymerdispersity index (PDI). The commonly used initiators are metal alkoxide or
amide coordination compounds.® These compounds are useful due to their tolerance,

selectivity, rate and minimal side reactions.’



The metal catalyzed ring opening polymerization (ROP) of cyclic esters such as
lactide and caprolactone is an efficient way to produce a biodegradable and recyclable
polymeric material. The commercial production of polymers such as polylactide (PLA)
for various applications such as packaging, biomedicine, drug delivery etc. relies on this
important catalytic transformation.” Various metal alkoxide complexes exhibit varying
degrees of effectiveness for stereoselectivity and polymerizationg rates for ring opening
polymerization of these cyclic esters. Ligand sterics as well as electronics have been

shown to influence the catalytic activity in several metal catalysis systems.’

0O

o O
\O)miut. ekfoﬁ o> T oy
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B-butyrolactone
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P 0
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B-caprolactone Glycolide

Figure 1.1. Ring opening polymerization of cyclic esters

1.A.2. Biodegradable polymer: polylactide (PLA)

Polylactide (PLA) is an aliphatic polyester composed of lactide (LA) repeat units.
It is a clear, colorless polymer that can be readily formed as thin films or fibers. The self-
condensation of lactic acid to yield solid material was reported back in the sixteenth
century.® However, the polymer was realized only when Carruthers et al. reported the
ring opening polymerization of lactide in 1932.° The advantages and applications for
degradable PLA were only recognized and medical products such as sutures, stents and
fibers were developed in 1970s. PLA is now being manufactured on a large scale (300

million pounds) annually in Nebraska, USA by Natureworks LLC, and on a smaller scale



by several enterprises in the EU and Japan. In 2003, Natureworks LLC has built the
world’s largest lactic acid manufacturing facility to feed their polymer plant.® Due to the
growing ecological awareness, sustainable development leads to an increasing demand
for biodegradable plastics based on renewable raw materials.'’ PLA has attracted much
attention because it is bio-degradable; it hydrolyzes easily to produce lactic acid. Lactic
acid can be easily metabolized both in vivo and in the environment. PLA is also
proposed as a sustainable alternative to polyolefins because the raw material, lactic acid
to make the lactide is produced by fermentation of glucose, which is obtained renewable
resources such as corn, sugar beets and agricultural waste."'

Polyesters such as poly(e-caprolactone) (PCL), polylactide (PLA) and their
copolymers have attracted a great deal of attention over last decade because of their
reduced environmental impact compared to polyolefins, and increasing applications in

the biomedical and pharmaceutical fields.’

Catalyst

Condensation MOR
Lactlde

Ko oo
)

Hydrolysis

Fermentation

OH
HO

<_/Biodegradati0n

Figure 1.2. Life cycle of Poly(Lactic Acid)




PLA has applications in the biomedical industry for making sutures and
biodegradable screws as well as drug delivery and biodegradable packing materials. PLA
has suitable properties that make it environmentally friendly and a sustainable alternative
to traditional petrochemical-based plastics, mainly in packaging, coating and fiber
applications.'” The polylactide can be either recycled or readily composted after use, and
therefore its CO, emission is neutral. Among the several polyesters studied to date, PLAs

have proven to be the most attractive and useful class of biodegradable polyesters.*

1.A.3. Synthesis of polylactide

The synthesis of polylactide can be carried out by either simple condensation of
lactic acid or the ring opening polymerization (ROP) of lactide, a cyclic ester (cyclic
dimer of lactic acid) (Scheme 1.1). The simple condensation process utilizes azeotropic
dehydration process. However, it is difficult to produce high molecular weight polymer
by simple condensation process. The direct condensation route is an equilibrium reaction
and traces amounts of water are difficult to remove in the late stage of polymerization
generally limit the high molecular weight polymer. Therefore, lactide polymerization is
more commonly prepared with the ring opening polymerization using a metal catalyst.*

ROP enables a greater degree control over the molecular parameters of the polymer.
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Scheme 1.1. Polymerization of lactic acid and ROP of lactide



1.A.4. Ring opening polymerization

PLA synthesis and the various methods of preparation have been extensively
investigated.® The ring opening polymerization is important because this method
produces a high molecular weight and stereocontrolled polymer. The ring opening
polymerization is initiated by metal complexes, organic compounds, or enzymes,
with/without alcohol, to yield high molecular weight PLA in excellent conversion and
purity. Ring opening polymerization of lactide promoted by organometallic compounds
via a coordination-insertion mechanism represents the most efficient and versatile method
to prepare PLA with controlled microstructural properties such as molecular weight,
polydispersity and stereoregularity.” Metal complexes are desirable because they give
rise to controlled polymerization and well defined high molecular weight (M,), narrow
polymer dispersity index (PDI). The commonly used initiators are metal alkoxide or
amide coordination compounds.® These compounds are useful due to their tolerance,

selectivity, rate and minimal side reactions.’

1.A.5. ROP mechanism

Several mechanisms have been proposed for the ROP of lactide such as anionic,
coordination insertion and a monomer activated mechanism. ROP of the lactide in the
presence of metal complexes is believed to occur via coordination-insertion mechanism.
The coordination-insertion mechanism is wide accepted and supported experimentally
(by end group analysis) and theoretically.” The coordination-insertion process is
considered as the most efficient method for the well-controlled synthesis of polyesters

with regard to composition, molecular weight and microstructure.”™ ' The
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coordination insertion mechanism of lactide polymerization involves four steps (Figure
1.3). The coordination of the lactide monomer to the Lewis-acidic metal center, followed
by a nucleophilic attack of the alkoxide on the acyl carbon atom and insertion of lactide
into the metal-alkoxide species with retention of configuration.”” A new metal alkoxide
species is formed, which is capable of further insertion reaction. Continuous insertions of
lactide monomers produce a polyester chain. Finally termination of the polymerization
reaction by hydrolysis of the active propagation chain is performed before isolation of the
PLA material.

Different types of mechanism are possible depending upon the nature of the
catalyst such as anionic, monomer activated as well as coordination insertion mechanism.
In all cases, stereocontrol can be realized by two different mechanisms, chain-end control
and enantiomorphic site-control.  In the chain-end control mechanism, the

stereochemistry of the most recently inserted monomer influences the stereochemistry of
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Figure 1.3. Coordination-insertion mechanism of ROP of lactide
the subsequent insertion. This type of control is observed in systems having a sterically
bulky ligand around the metal. Sterically bulky ligand around the metal center enforces

sterochemical control in the polymerization of rac-LA via chain-end control mechanism.



Bulky ligand should increase the influence of the stereogenic center of the last inserted
monomer that will again determine whether (R,R)- or (S,S)-lactide is enchained.'® There
are two stereochemistries possible. If a chain end of R stereochemistry selects (R,R)-
lactide, then isotactic PLA forms. If this chain end selects (S,S)-lactide (racemic
enchainment), the heterotactic PLA forms."” The enantiomorphic site control
mechanism relies on the chirality of the ancillary ligand, and hence the catalyst itself is
the source of stereochemical selectivity due to steric interaction between the incoming
monomer and the catalyst framework. In enantiomorphic site control, the stereocontrol
may arise from a complicated interplay between two mechanisms.'®

With an organocatalytic and cationic initiating catalyst system, the activated
monomer mechanism is believed to occur. In this mechanism, a nucleophile substrate
activates the lactide monomer toward attack by an alcohol initiator, as shown in Scheme
1.2.). According to activated monomer mechanism, first the monomer is activated by
either a Bronsted acid, a nucleophile or an H-bond donor. The alcohol then reacts with
the activated lactide to form a ring-opened adduct in the initiation process. The chain end
of the polylactide thus bears the ester from the initiating alcohol while the other chain end

is a secondary alcohol that serves as the alcohol for propagation of the chain.
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Scheme 1.2. Activated Monomer Mechanism



1.A.6. Industrial catalyst for preparation of PLA

The most widely used catalyst for the industrial preparation of PLA is tin(IT)bis(2-
ethylhexanoate, usually referred as tin(I)octanoate, Sn(Oct),, is commercially available,
easy to handle and soluble in common organic solvents as well as in melt monomers.

o 9
DA
Figure 1.4. Structure of tin(Il)octanoate/Sn(Oct),

It is a highly active catalyst in the presence of co-initiators or protic reagents such
as alcohols at elevated temperatures (typically under melt conditions) and allows for the
preparation of high molecular-weight polymer." Tin (II) alkoxide, which is generated by
the reaction of tin(Il)octanoate and protic reagents such as alcohols or even impurities
such as lactic acid present in the monomer, is the active species that initiates the ROP of

lactides.'”®

(0]
(6] (@]
Sn ROH o Sn\OR
/\/))J\O/ \O ~—
stannous octoate actual initiator

Figure 1.5. Structure of true initiator Sn(Oct), formed in presence of alcohol

Tin(IT)octanoate polymerizes lactide via a coordination-insertion mechanism. The
drawbacks of tin catalyst are (i) polymerization mediated by Sn(Oct), is reported to
undergo both inter- and intra-molecular transesterification side reactions throughout
polymerization process that decrease the level of control and increases the

polydispersities (~2). (ii) It is practically impossible to entirely remove the tin



compounds from the polyesters. This is of concern in biomedical applications for these
polyesters because the organometallic tin compounds are characterized by high toxicity.
The common side reaction of ROP is transesterification. Transesterification
causes scrambling of polymer chain. There are two types of transesterification reaction
that can occur during ROP: (1.1) intermolecular that can increase in the range of chain

length. (1.2) intramolecular transesterification leading to cyclic oligomer
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1.1. Intermolecular Transesterification 1.2. Intramolecular Transesterification

Figure 1.6. Transesterification reactions

The degree of transesterification can be determined by gel-permeation
chromatography, (GPC), MALDI and NMR. The increase of molecular weight
distribution (PDI) is the indication of transesterification reaction. In MALDI mass
spectrometry chains of odd number of lactic acid repeat units. Analysis of the tetrad level
of polymer chain of rac-lactide in 'H NMR and "“C NMR also indicates

transesterification reaction.

1.A.7. Stereocontrol ROP of lactide

Stereocontrol is an important feature because the polymer’s tacticity influences its
properties, e.g. isotactic PLA is crystalline while atactic PLA is amorphous. Lactide
possesses two stereocenters and therefore three distinct diasteromers. They are single
enantiomer, racemic and meso lactide. They are denoted as D-LA or L-LA, rac-LA and

10



meso-LA (Figure 1.8.). The four common type of PLA tacticities observed are isotactic,
syndiotactic, heterotactic, and atactic. The PLA tacticity depends on the initiator as well

as lactide type.’
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Figure 1.7. Stereoisomers of lactide
The application of ROP technique enables control over the order of insertion of
monomer into the polymer chain based on their stereochemistry. Polylactide can exhibit
different microstructures depending both on the monomer involved and on the course of

the polymerization reaction (Figure 1.9.)."*
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Figure 1.8. (a) Typical PLA microstructure from rac- lactide (b) Typical PLA
microstructure from meso- lactide
ROP of the enantiopure monomer results in an isotactic polymer in which all of
the stereocenters are aligned along the same side of the polymer chain. Stereocontrolled
ROP of meso-lactide can produce either syndiotactic PLA (alternating S and R
stereocenters i.e. -SRSRSR-) or heterotactic PLA in which the stereocenters double

alternate i.e. -SSRRSS-. ROP of rac-lactide can give heterotactic. *

L i b) fii/sis c) 585, IS, d) 58S
SSI, i88
i st iis/sii s -
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Figure 1.9. Schematic diagrams showing chemical shifts (in ppm) of tetrad for PLA in
(a) Homonuclear decoupled 'H NMR of PLA from rac-lactide; (b) °C NM of PLA from
rac-lactide; (c) homonuclear decoupled 'H NMR of PLA from meso-lactide; (d) °C
NMR of meso-lactide.

The tacticity of the polymer at tetrad level can be determined from *C NMR and
homonuclear decoupled "H NMR analysis. In order to decouple the effect of splitting
between the methyl and methine protons, homonuclear decoupling of the methyl signal is
carried out resulting in the singlet resonance in the methine region ( 8 = 5.15-5.25 ppm).
The dregree of stereoregularity in lactide ROP is expressed as the probability of racemic
or meso enchainment i.e. probability of forming a new racemic (syndiotactic) or meso
(isotactic) diad, Pr and Pm, respectively. Pr and Pm can be directly calculated from the

homonuclear decoupled 'H NMR spectra.
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1. B. Metal based initiators for the ROP of lactides
1.B.1. Single-site homogeneous catalysts

Single-site homogeneous catalysts are usually represented as L,MR, L, is
ancillary ligand that can be modified according to the need bound to the catalytically
active metal center (M), and a possible initiating group or polymer chain-end (R). The
advantages of the homogeneous catalysts are that they allow for the modifications of
ligand electronics and sterics, labile metal centers and initiating groups that help control
microstructure of polymer as well as possible to study catalysis. Stereochemistry is one of
the most important factors determining the physical and mechanical properties of a
polymeric material. Due to their stereoregularity, isotactic and syndiotactic polymers are
typically crystalline, an important feature for many applications. Design and application
of single site catalysis is one of the most promising methodologies for the synthesis of
stereoregular polymer.*’

Several well defined metal catalysts have been developed based on tin', zinc?',
calciumzz, magnesium23 s aluminum®’ , scandium24, and yttrium24'25 These catalysts have
been successfully used in the ROP of lactide. However, PLA is still more expensive than
petrochemical based plastics. For the production of a large volume of PLA, the
development of new polymerization catalysts is required. Most large scale commercial
processes are based on the use of tin compounds as initiators. The toxicity associated
with tin compounds limits their use for biomedical applications. Therefore there are
several exclusive studies going on concerning the development of active catalyst with
well-defined structures for the ROP of lactide using biologically benign metals such as

. . . . 2
aluminum, magnesium, calcium and zinc.*®
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The important features required for lactide polymerization catalysts are high
activity, ability to controllably produce high molecular weight, low polydispersity
polymer and stereochemical control. Beside these features, low toxicity, low cost,
minimal color and odor are also desirable features.”> Development of new single site
catalyst for the ring opening polymerization is growing rapidly. A number of single site

homogenous catalyst systems with many of these features have been reported.

1.B.2. Zinc metal based catalyst

(B-Diiminato)metal complexes have been shown to provide powerful catalysts for
the stereospecific ROP of lactide. The Coates research group reported that f3-
(diketiminato)zinc isopropoxide complex, 1.3 (Figure 1.10) produced highly
heterospecific ROP of rac-lactide (Pr = 0.94) at ambient temperature with high yield of
polymerization activity i.e., 20 minutes, DP = 200.' (B-Diiminato)tin(Il) isoprooxide 1.4
(Figure 1.11) and dimethylamide complexes were first examples of stereoregular ROP of
lactide by tin complex reported. These complexes were shown to be highly active
catalysts for the polymerization of lactide that produce stereocontrolled PLA where

heterotactic bias is reported (Pr= 0.77)."*’
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Figure 1.10. B-diiminato)zinc(Il) isoprooxide (1.3), f-diiminato)tin(Il) isoprooxide (1.4)
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A series of zinc(Il) and magnesium alkoxides based on a P-diiminate ligand
framework has been synthesized by Coates et al. Three isostructural zinc alkoxides
[(BDI)-1)ZnO'Pr],, [(BDI)-2)ZnO'Pr],, [(BDI)-3)ZnO'Pr], were synthesized by the
treatment of the zinc amides with stoichiometric 2-proponol in toluene (Scheme 1.3). All
of these three zinc alkoxide retain their dimeric structures in solution. [(BDI-1)ZnO'Pr],
[(BDI-1) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl) -imino)-2-
pentene] shows the highest activity and stereoselectivity of the zinc complexes studied
for the polymerization of rac- and meso-lactide to poly(lactic acid).

[(BDI-1)ZnO'Pr], polymerized (S,S)-lactide to isotactic PLA without observable
epimerizaiton, rac-lactide to heterotactic PLA (Pr = 0.94) at 0 °C, and meso-lactide to
syndiotactic PLA (Pr = 0.76 at 0 °C). microstructural study of polymer formed and the
kinetic data indicate that the substituents on the PB-diiminate ligands significantly

influence the catalytic activity and the ability of zinc complexes to control the stereoche-
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@ [(BDI-1)Zn(m-O iPr)]
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[(BDI-3)Zn(m-O 'Pr)]
Scheme 1.3. Synthesis of zinc complexes with $-diiminate ligand framework

istry of monomer enchainment. similar stereochemical control was not observed with the

magnesium analogues. Tuning of steric bulk of the ligand, as well as the initiating group
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of the complex is very important. Minor changes in ligand greatly influence the
polymerization activity. Ligand sterics have been shown to influence the catalytic activity
in several systems.®

Chen research group synthesized a series of zinc complexes ligated by
symmetrical and unsymmetrical f-diketiminate ligands and studied their reactivity for
ring opening polymerization of lactide.”” They have explored specifically steric and
electronic effects of these ligands on the polymerization of lactide. The rate of
polymerization dependence on the N-aryl substituents with the order as alkyl
group/alkoxy group> halide group > nitro group was reported. The substituents in the
phenyl ring of the pB-dikitiminate ligand of the zinc complexes alter the catalytic activity

of the complexes.
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Scheme 1.4. Effect of N-substituents in 3-dikitiminate zinc complex
They have found that electron-donating substituent on the phenyl rings at the
ortho-position decrease the electrophilicity of the zinc center as well as bond strength
between zinc and alkoxide (RO") and are favorable for the polymerization (increases the
catalytic activity) whereas the electron withdrawing group shows the adverse effect. This
effect changes the rate of polymerization.”
Series of dinuclear zinc complexes supported by a NNO-tridentate Schiff base

ligand framework by Lin et al.*’ The stability and catalytic properties of organozinc
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complexes can be easily tuned by using different types of ligands. The reactivity of the
dinuclear zinc complexes supported by NNO-tridentate Schiff base ligands were
dramatically affected by both the electronic and steric properties of the substituents at the
ortho and para position. Tridentate base ligand (NNO) with hindered substituents have
been shown to give high levels of stereocontrol with zinc and calcium. All these

complexes give heterotactic PLA from rac-LA.
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Figure 1.11. Dinuclear zinc complex supported by NNO-tridentate Schiff base ligand.

The zinc complexes (Figure 1.12) give highly heterotactic PLA from the
polymerization of rac-lactide (Pr = 0.91). Reduction of steric hindrance shows the
reduction in heterospecificity (Pr = 0.59-0.65). Both dimeric and monomeric species are
present in the solution as indicated by 'H NMR studies. NNO-tridentate Schiff base zinc
alkoxides are reported as an excellent initiators for controlled polymerization of L-LA.
They have reported that all complexes are efficient initiator towards ROP of lactide. The
para substituted phenyl ring with electron withdrawing group such as CI or Br atom 1.5
decreases the reactivity. This phenomenon is attributed to the more electronegative
behavior of the substituent on the ligand strengthing the zinc alkoxide bond, and this
slows the reaction rate. The sterically hindered substituent such as fert-butyl group 1.6
also decreases the reaction rate dramatically. This may be due to sterically hindered
ligand resists the approaching of a monomer toward zinc center.’’ The imine carbon of
the NNO-tridentate Schiff-base ligand intensely affects their activity towards the
controlled polymerization of L-LA.’’
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Figure 1.12. Zinc-NHC alkoxide complexes for ROP of lactide

These complexes gave heterotactic-biased PLA with a Pr value of 0.60 at room
temperature in rac-LA polymerization. Absence of free carbene participation in the
lactide polymerization was shown by separate reaction with carbene catalyst 1.8 in the
presence of benzyl alcohol as initiator in rac-LA polymerization. The tacticity of the
resulting polymers obtained by using the zinc complex 1.7 compared to using the free
carbene found different. Free carbene 1.8 produced isotactic enriched PLA from rac-LA
at -20 °C and carbene 1.9 produced highly isotactic PLA material with a Pm value up to
0.90 from rac-LA at -70 °C.*

Recently, new Zn-N-heterocyclic carbene (NHC) alkoxide complexes 1.11 and
1.12 that mediated the ROP of lactide in presence of an alcohol in an effective and
controlled manner to produce chain length-controlled polylactide (PLA) was reported.
Furthermore, computational analysis of the ROP of lactide initiated by complex 1.7
revealed that the operating coordination-insertion mechanism was assisted by the second

zinc center.>’
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Figure 1.13. Zinc-NHC alkoxide complexes for ROP of lactide

Carpenter and coworkers have used a dual catalytic system combining an original
cationic zinc complex (Lewis acidic metal, monomer activator) with a tertiary amine
(Lewis base, initiating/propagating alcohol) for the first time towards efficient and
controlled ROP of lactides. They have shown the possibility to combine the organic and
organometallic approaches in ROP catalysis.>*

(o Lewis acid
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Figure 1.14. Lewis acid and Lewis base dual Catalyst for ROP of lactide

Wang et al. prepared series of zinc complexes bearing NHC-based C,N,N- or
C,N,P-tridentate ligands and investigated their activity towards the ROP of rac-lactide in
presence of alcohol at room temperature. Few of these complexes are active towards the

ROP of rac-lactide in presence of alcohol at room temperature.®*
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Figure 1.15. Zinc NHC-based (1.13) CNN and (1.14) CNP ligand bearing complex

1.B.3. Aluminum metal based catalyst

Several achiral Schiff base aluminium alkyls were shown to be efficient
stereoselective catalysts for lactide polymerization in presence of an alcohol as initiator.>
Nomura et al.*® reported the synthesis of stereoregular heterotactic (Pr = 0.81) PLA by
achiral aluminium metal catalyst complex with sterically hindered (bulky tert-butyl
groups at the ortho and para position of the phenol group ligand (Figure 1.17). These

achiral catalysts are postulated to exert stereocontrol via a chain end control mechanism.

Figure 1.16. Al-metal catalyst with sterically hindered ‘Bu group

Feijen and coworkers reported®’ that enantiopure (B-diiminato)tin(II) isoprooxide
with the Jacobsen ligand (Figure 1.17) showed a preference of 20:1 for ROP of d-lactide
ending up with Pm = 0.93 at 85% conversion. However, only a small initial monomer/

initiator ratio of 62 was used in this reaction.
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Figure 1.17. Enantiopure (R, R) Al-base catalyst with the Jacobsen ligand

Gibson et al*® reported that the rate and stereochemistry of polymerization of rac-
lactide is highly dependent upon the steric properties of the phenoxy substituents with the
aluminum initiators bearing tetradentate phenoxy-amine ligands.”® They have prepared
series of aluminium methyl complexes supported by tetradentate aminophenoxide ligands

(Figure 1.18).

N 1.15. R=Me
R AIZ R
oM~ 1.16.R = al
,'{j 1.17.R="Pr
R R 1.18.R='Bu

Figure 1.18. Al methyl complexes supported by tetradentate aminophenoxide ligand

It was found that the catalytic behavior of these complexes is highly dependent on the
substituents at the ortho and para positions of the phenol group. Complexes 1.15 and
1.17 with methyl and isopropyl groups at the ortho and para positions of the phenol
group provided isotactic-biased PLA (Pm=0.73 and 0.65). Complex 1.16 with chlorine
substituents at the ortho and para positions of the phenol group only gave an atactic
material form rac-LA. Complex 1.18 with fert-butyl group at the ortho and para
positions of the phenol group give a slight heterotactic polymerization of rac-LA (Pr =

0.57).%
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Figure 1.19. Tetradentate iminophenolato(aluminum) complexes

Spassky et al. reported that in a rac-LA polymerization carried out at 70 °C
initiated by the enantiopure Schiff base aluminium methoxide (R)-1, the polymerization
rate of (R,R)-LA was faster than that of (S,S)-LA. They reported that the kinetic
resolution of rac-lactide with the methoxide (R)-1 catalyst is highly selective and it
preferentially polymerized (R,R)-lactide over the (S,S)-enantiomer with a relative rate

ratio of 20. The
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Scheme 1.5. Synthesis of isotactic poly(R)-lactic acid
molecular weight of the resultant polymer was controlled by the monomer/catalyst ratio,
and MWD was narrow. Isotactic poly[(R)-lactic acid was predominantly obtained when
the polymerization of rac-lactide was carried out to less than a 50% conversion. After
about 60% conversion, only (S,S)-lactide remained and the reaction slowly approached

100% conversion because of the kinetic preference of the R, R-enantiomer.>> *°

BOE, 0K T lesethet e,
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Scheme 1.6. Synthesis of stereoblock isotactic poly(R)-lactic acid
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In 1999, Coates et al. reported that the polymerization of rac-lactide with a
racemic aluminium alkoxide (rac-2) catalyst produced an isotactic stereoblock PLA that
contains both poly(S)-segments and poly(R)-segments in the main chain. The higher 7,
of the polymer than that of the enantiomerically pure polymer indicates the
cocrystallization of the enantiomeric blocks of the polymer. The polymer exchange
pathway mechanism was proposed where living chain ends switch between metal centers

: : - . 35,41
to produce diastereomeric active species.”™
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Scheme 1.7. Synthesis of Syndiotactic poly(Lactic Acid)

Coates et al. reported that the enantiomerically pure aluminium complex (R)-2
affords syndiotactic PLA from meso-LA via an enantiomorphic site control mechanism.
The polymerization of meso-LA proceeds to 94% conversion at 70 °C in toluene for 40
hours, the syndiotacticity of the resulting PLA is 0.96. The large rrr tetrad peak in the
methane resonance of the homonuclear decoupled "H NMR spectrum is evidence for a
highly syndiotactic polymer. This is further confirmed by the ?C NMR in CDCls. Due to
the high degree of syndiotacticity, the PLA produced by meso-LA polymerization using
(R)-2 is crystalline, annealing at 95 °C for 60 minutes; this polymer exhibits a glass
temperature (7g) at 34 °C and a Tm as high as 152 °C. The proposed mechanism of
lactide ring opening is cleavage of an oxygen-acyl bond by metal alkoxide. Since meso-
LA has two enantiotopic O-acyl bonds (A, B), a chiral metal alkoxide will exhibit a

kinetic preference at one of the sites, producing the syndiotactic polymer.** **
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Scheme 1.8. Synthesis of heterotactic poly(lactic acid)
Coates et al. also reported the ROP of meso-lactide using rac-2. The

polymerization reached 98% after 40 h at 70 °C. Although the resulting polymer has a

heterotacticity of 0.80, it is amorphous and only exhibits a 7g at 43.2 °C.
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Scheme 1.9. Polymer exchange mechanism for the synthesis of heterotactic PLA

A polymer exchange mechanism was proposed by Coates et al. to explain the
formation of the heterotactic structure from meso-LA from rac-2.

Recently, Du and coworkers have prepared series of aluminum complexes bearing
chiral bidentate anilido-oxzolinate ligands and showed their catalytic activity towards

ROP of rac-lactide in presence of benzylic alcohol cocatalyst.

O/ﬁ/ R4

Figure 1.20. Al-complexes bearing chiral bidentate anilido-oxzolinate ligands
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They have reported the microstructure resulting from polylactides ranged from
slightly isotactic to moderately heterotatic depending upon different substituent group
present in the ligand. The reactivity and selectivity related to the steric and electronic
factors of substituents on several specific positions of the ligand motif.*

Cano et al. have prepared a series of lithium, sodium and potassium complexes
with phenoxo-imine ligand.** Some to these complexes molecular structure in solid state
have been determined by X-ray diffraction. Some of these complexes are reported to be
highly active in presence of benzyl alcohol towards ROP of rac-lactide, achieving 100%
conversion in less than 1 minute. Hetero-rich-PLA that was modified by the metal atom

and the ligand substituents were reported.

1. C. Dissertation objective

The catalytic activity of transition metal catalysts can be controlled by applying proper
steric and electronic features around the metal center. In the phosphine sulfonate (PSO)
ligands developed by Drent et al.,* the tertiary phosphine framework provides tunable
electronics and steric properties. Triaryl phosphines act as o donors. Various substituents
on the phosphorus aryl group provide a steric effect around the metal center.
Phosphinimines are sp’ nitrogen-based donor ligands. The strong donor ability of
phosphinimine is due to the highly polarized P=N double bond. The steric and electronic
properties of phosphinimines are easily adjusted by placing different substituents on the
phosphorus atom. To enhance the donor capability and electronic and steric properties,
we have designed and synthesized a series of air stable phosphinimine-sulfonate

ligands.*® Our group has recently reported the synthesis of the palladium complexes and
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investigated their thermal behavior and ethylene reactivity.*” In this thesis work, we will
discuss the synthesis, characterization and reactivity of tridentate phosphinimine arene
sulfonate ligands. In chapter 2, we will discuss the synthesis and characterizations of
series of tridentate phosphinimine arene sulfonate ligands. We will also add the synthesis
and characterization of several of bidentate phosphinimine arene sulfonate ligands.
Synthesis, characterization and reactivity of the zinc complexes with alcohols will be
discussed in chapter 3. The catalytic activity of zinc ethyl complex and zinc alkoxide
complexes towards ring opening polymerization of lactide will be also explored in
chapter 3. Neutral phosphinimines are strong nucleophilic bases and are potent
organocatalysts for ROP of cyclic esters (Chapter 4). A series of neutral phosphinimines
were synthesis and the evaluated for their basic property was done to studying the alcohol
proton shift observed in the 'H NMR when reacted with alcohol in CDCl; under N,.

These phosphinimines were screened for ROP of lactide.
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SYNTHESIS OF PHOSPHINIMINE LIGANDS
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2. A. ortho-phosphinimine-arenesulfonamides

2.A.1. Ligand and catalyst design

There are several excellent metal catalysts that have been reported in the literature
for ring opening of polymerization of lactides. The metals in these metal catalysts are
protected by various ligands, such as iminophenolato, B-diketiminate, aminophenolate
etc.> ! The electronic and sterics of the ligand can be controlled by incorporating various
groups into the ligand framework. In 1996, Spassky research group reported aluminum
metal complex supported my enantiopure Schiff base with salen BINAP chiral ligands.*
The enantiopure aluminum complex with bulky chiral backbone was reported for
selective ROP of D-lactide from DL-lactide. Coates et al. reported achiral zinc complex
incorporating achiral [B-diketiminate ligand for highly heterospecific ROP of rac-
lactide.'® The most widely used catalyst for the industrial preparation of PLA is
tin(IT)bis(2-ethylhexanoate), usually referred as tin(Il)octanoate  (Sn(Oct)2).
Tin(Il)octanoate is commercially available, easy to handle and soluble in common
organic solvents as well as in melt monomers.!” Aminophenolate ligand with zinc metal
was reported highly active catalyst for the ROP of lactide till date (Figure 2.1).2'® The
Lewis acidic metal center, chirality of the ligand and introduction of bulky substituents
are crucial for the stereocontrol in PLA chain produced from ROP of lactide.

We would like to design single site tridentate ligands that provide appropriate
steric as well as electronic effect around the metal center. The sterics around the metal
center provides the desired stereocontrol to the growing polymer chain by chain end
control mechanism. The Lewis acidic metal center is important for the polymer chain

initiation by the coordination insertion mechanism.
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Spassky, Coates Coates Industrial catalyst Tolman

Bu
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iPr

O(Me,Pr)
Iminophenolato Al complexes p-diketiminate zinc complex

o
X

Tin(IT)octanoate Aminophenolate based

zinc complex
Figure 2.1. metal complexes supported by various ligands

Hence, designing the ligand that can provide suitable electronic effect to the metal
center is crucial. We would like to incorporate phosphinimine group in our ligand system
because the electronic and the sterics of phosphinimine can be manipulated with ease.
The coordination chemistry of neutral phosphinimines, both as monodentate as well as
bidentate act as good electron donor ligands toward transition metals and are able to form
strong metal-nitrogen bonds. This ability is due to the fact that the delocalization about
the phosphinimine PN moiety produces compounds with enhanced basicity and
nucleophilicity. The excellent donor properties of neutral phosphinimine ligands was
illustrated by the synthesis of tungsten tetracarbonyl complexes containing benzene
bridged bidentate phosphinimine-imine ligands.* The low Vco values indicate that a
phosphinimine is a strong c-donor and a poor m-accepter ligand versus comparable
tetracarbonyl (0) complexes that contain benzene bridged bidentate iminophosphine
ligands.?

Neutral phosphinimines are strong o-donor ligands that will coordinate to
transition metals via nitrogen and provide steric shielding by exocyclic phosphinimine
substituents. The sterics and electronics of the phosphinimines ligands can be

manipulated easily by incorporating various substituents in phosphine. The
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phosphinimines steric bulk lies exocyclic to the chelate ring that coordinate to transition
metals via nitrogen. The steric bulk is slightly removed from the metal center. This
confers a second coordination sphere environment that contains steric bulk and is slightly
removed from the metal center The first coordination sphere is thus more open. A few
examples exist where an exocyclic phosphinimine group has been incorporated into a

mixed donor ligand system for use in the synthesis of late transition metal complexes.>*

48-49

We sought to synthesize bidentate and tridentate phosphinimine-arenesulfonate
ligands. We have successfully synthesized anionic non-symmetric strong/weak c-donor
ortho-phosphinimine-arenesulfonate ligand and isolated corresponding neutral Pd(II)
methyl pyridine complex (Figure 2.3).4 As discussed previously, Metal alkoxides are
reported, a highly active catalysts till date. Zinc is the best metal candidate for the
catalyst, we design. Zinc has very important properties best fit for metal catalyst such as
it is biocompatible and non-toxic. Zinc is also cheap and readily available. Our ligand
design model is zinc ethyl and zinc alkoxide incorporated with tridentate NNN and NNO

donor ortho-phosphinimine-arenesulfonate ligand (Figure 2.2).

Figure 2.2. ortho-phosphinimine-arenesulfonamide ligand design
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2. B. Synthesis of ortho-phosphinimine-arenesulfonamides
2.B.1. Introduction

We sought to synthesize a non-symmetric N,N,O and N,N,N-tridentate ligand
which incorporated a phosphinimine, sulfonamide and a dialkyl amine for the formation
of neutral zinc alkyl and alkoxide complexes and explore their reactivity with lactide. The
methyl group in the benzene ring in the commercially available starting material
facilitates solubility in the organic solvents and provides excellent spectroscopic handle,

with singlet signal appearing at § =~ 2 ppm in '"H NMR.

R
PR PR PR
’\’l/ N/E_B /,\ M
NN 2 o
O/, \b o// \\C) o// \
21 2.2 23
R = aryl, alkoxide R = aryl, alkyl

Figure 2.3. Tridentate ortho-phosphinimine-benzenesulfonamide ligated zinc complex,
ortho phosphiniminium-arenesulfonates, and corresponding palladium methylpyridine
complexes

We have reported an efficient and modular synthesis of air stable ligand
precursors 2-phosphisphiniminium-5-methylbenzenesulfonate zwitterions 2.2.!> We have
successfully deprotonated zwitterions 2.2 to form anionic non-symmetric strong/weak o-
donor ortho-phosphinimine-arenesulfonate ligand and isolate corresponding neutral
Pd(IT) methyl pyridine complex (Figure 2.3). The thermal stability of the neutral
palladium complexes and their reactivity with ethylene was explored.*’ These ligands are

good electron donors towards transition metals and are able to form strong metal-nitrogen
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bonds. This ability is due to the delocalization about the phosphinimine PN moiety

(Scheme 2.3) that enhances the basicity and the nucleophilicity.

Ar/’" Re A @ R
Ar—P—N <> Ar—P—N .
AI'/ Ar/ ©

Figure 2.4. Mesomeric structure of phosphinimine ligands

These excellent donor properties of neutral phosphinimine ligand were elucidated
by the synthesis of tungsten complexes containing benzene bridged bidentate
phosphinimine imine ligands. The low 1%, values reported for these ligands are indicative

4 When neutral

of phosphinimine as a strong o-donor and a poor m-acceptor.
phosphinimines coordinate to transition metals via nitrogen the steric bulk is slightly
removed from the metal center. This confers second coordination sphere environment
that contains steric bulk to protect a metal while leaving the first coordination sphere
more open. The steric bulk of phosphines can be quantitatively described using Tolman
cone angles. The lager the cone angle, the more hindered the steric bulk of the phosphine
moiety. Steric hinderance is a limit of Staudinger reaction. However, all of the ligands

with PPhs (145°) worked well in our synthetic method. Tolman cone angle of few

phosphines are listed in Table 2.1.%°

Phosphine Tolman angle (0)
PPhs 145°
MePPha 136°
Me,PPh 122°
MesP 118°

Table 2.1. Tolman cone angles of phosphines
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2.B.2. Synthesis of neutral NNO ligand = 2-phosphinimine-5-(methylbenzene-
methyl-aminosulfonyl)ethanolate

The neutral NNO ligand can be prepared with commercially available p-toluidine-
2- sulfonic acid. The retrosynthetic plan of NNO ligand synthesis is as shown in scheme

2.1.
Ph Ph
P—Ph
— \}— N _Q NH,
OH OH OH
// — /\/ // \\ /\/ —N/\/
CHs

9 CH3

Target Ligand
fe) O

N/

> Ly

p-toluidine-2- sulfonic acid
(Commercially available)

Scheme 2.1. Retrosynthetic plan for synthetic strategies for target ligand

The -N=PPh; moiety in the target compound can be obtained from azide precursor
reacting with triphenylphosphine via Staudinger reaction. The azide precursor can be
obtained from simple azidation reaction of aromatic amine. N-methylaminoethanol

moiety can be easily obtained from amidation of sulfonic acid group as shown in scheme

2.1.
e o[
N :P—Ph —= R__N PPhy — \----PF
\Rr N “Ph T 7 N-==-PPh
R R
N N—PPh
-IN2 R 3 N—
2 o |R—r R~ N=PPh;
R R

Figure 2.5. Mechanism of Staudinger reaction
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The Staudinger reaction is utilized to incorporate the phosphine moiety for the
synthesis of the ligands. We anticipate the steric and electronics of phosphine moiety will
provide necessary effect for the ring opening polymerization of lactide. In the Staudinger
reaction the phosphine reacts with the azide to generate a phosphazide, which loses N> to
form phosphinimine. Loss of nitrogen is observed with lots of effervescence.

Aqueous work up leads to the amine product. Since our interest is to incorporate
phosphinimine motif ligand framework, hydrolysis step is avoided, instead the reaction is
done in dry condition to minimize the formation of the side product phosphine oxide.
This reaction is easy to handle as the only byproduct is nitrogen gas which is pumped
down in schlenk line. The mechanism of the Staudinger is as shown in Figure 2.5.

The synthesis of the ligand started with commercially available p-toluidine-2-
sulfonic acid. p-toluidine-2-sulfonic acid 2.4 was converted to p-toluidine-2-sulfonyl
chloride 2.5 by using the synthetic protocol described in the literature. The chlorination
reaction in literature reaction protocol is modified in its reaction time and workup to

obtained desired product 2.5 with 80 % yield, 4.5 gm scale (Scheme 8)*.

o, P o 0

!
S~0H 1h,0°C, S~ci
+CISOH —— >
NH, 2h, 80 °C, NH,
2.4 25

Scheme 2.2. Synthesis of p-toluidine-2-sulfonyl chloride 2.5

Commercially obtained 2-amino-5-methylbenzenesulfonic acid was reacted with
neat CISOsH to produce 2-amino-5-methylbenzenesulfonyl chloride 2.5.4¢  Sulfonyl
chloride 1 was reacted with 1 equivalent of N-methylaminoethanol in the presence of 1.1

equivalent of 1,4-diazabicyclo[2.2.2]octane (DABCO), as proton scavenger in methylene
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chloride solvent at room temperature to yield 2-amino-N-(2-(hydroxy)ethyl)-5-

methylbenzene sulfonamide 2.6 in 88 % yield (Scheme 2.3).%!

N/

o R
S e Hsc\N/\/OH \S//‘N/\/OH
q. H \
\C[ CH3
NH, 1.1 eq. DABCO NH,
CH,Cl,, 25 °C, 16 h 2.6

Scheme 2.3. Synthesis of sulfonyl aminoalcohol 2.5

The amino group in the aromatic ring was converted to azide by azidation
reaction. The classical Blackburn’s method in which NaN3 solution added into the
filtration of the diazonium bisulfate salt (N2-"HSO4) has high risk of forming of highly

).52 The unreacted H,SO4 in the diazonium salt can

volatile and toxic hydrazoic acid (HN3
react with NaN3 since NaNj3 solution will be added in the flask with diazonium salt in the
classical method. To prevent formation of health hazard hydrozoic acid, after the
formation of diazonium salt, HNO> was quenched with urea and started the azidation
reaction in the fresh flask. First, the amine functional group was converted into the
diazonium salt using sodium nitrite and acid HBF4 at 0-5 °C. Diazonium salt was treated
with thiourea, stirred for 15 minutes and charcoal was treated, stirred for 10 minutes and
filtered which was then transferred to fresh flask. In second step, diazonium salt was
treated with sodium azide in water at 0 °C and allowed to warm to 25 °C, stirred

altogether for 12 hours. Azide was extracted with diethyl ether (Scheme 2.7). Azide 2.7 is

a white solid obtained 5.3g, 88 % yield.

3. HBF,, NaNO,
‘QNHz H,0, 0 °C, 1hr. ‘QNs
NNOH = ~_-CH

S 4. Urea, 15 min. _S—N
0% ‘CH3 charcoal, 10 min. 0% CH;
5. NaN3, Hzo
0°C, 12h 27

Scheme 2.4. Synthesis of sulfonamide azide 2.7
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The  triphenylphosphine substituted  2-phosphinimine-5-methylbenzene
sulfonamides 2.8 ligands were synthesized using Staudinger reaction between azides 2.7
and triphenyl phosphines (PPh3) (Scheme 2.5). The addition of triphenylphosphine
solution in toluene was added to the toluene solution of azides 2.7. Rapid evolution of
nitrogen was observed from the clear yellow solution and a white suspension was
obtained after 12 h at 25 °C.

The phosphinimine ligand 2.8 was isolated as a white solid in 66 % yield by
simple filtration in air. Phosphinimine ligand 2.8 was characterized by 'H, '3C and *'P
NMR in CDCls. The resonance of -OH proton appeared as a broad singlet at 4.41 ppm

(Figure 2.3). The two sets of triplet methylene resonance peaks for -NCH and -

ph, Ph
,P—Ph
—_—
S_N/\/OH toItJene S—N/\/OH
AN 25°C, 4h )
0 0 CH3 o \O \CH3
2.8

Scheme 2.5. Synthesis of 2-phosphinimine-5-methylbenzene sulfonamides 2.8

CH>OH appeared at 3.42 ppm and 3.24 ppm in CDCIls. The methyl group on the nitrogen
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Figure 2.6. "H NMR and *'P NMR spectrum NNO ligand 2.8
36



appeared at 2.80 ppm and the aromatic methyl group appeared at 2.19 ppm. The *'P
NMR chemical shift of the isolated ligand 2.8 is 7.58 ppm in CDCl;.

Thus observed *'P NMR chemical shift for phosphinimine ligand (8 = 8.5 ppm) is
consistent with the values for aryl phosphinimines observed in the literature and not
phosphinimiiums (8 = 35-25 ppm) in CDCL.** > Staudinger reaction is sensitive to
water; presence of water leads to the decomposition of the phosphinimine to
corresponding amine and triphenylphosphine oxide. The triphenylphosphine oxide
(O=PPh;) appears at °'P NMR at 28 ppm in CDCls. The byproduct O=PPhs can be

washed away with appropriate solvents.

2.B.3. Synthesis and characterization of neutral NNN ligand {NNN} = 2-

phosphinimine-5-(methylbenzene-methyl-aminosulfonyl) N, N-dimethyl ethanamate

The neutral NNN ligand can be prepared with commercially available p-toluidine-
2- sulfonic acid. The synthetic route for the synthesis of NNN ligand is similar to NNO
ligand as shown in scheme 2.6-2.8. The only difference is the amide arm which is
incorporated by the reaction of N,N-dimethylethylenediamine and starting para-
toluidine-2-sulfonic acid. The series of (dimethylamino)ethyl-ortho-phosphinimine-
benzenesulfonamide ligands 2.11-2.14 were synthesized in good yields by a four-step
sequence. Commercially obtained 2-amino-5-methylbenzenesulfonic acid was reacted
with neat CISOsH to produce 2-amino-5-methylbenzenesulfonyl chloride 2.5.*° Sulfonyl

chloride 2.5 was reacted with N,N-dimethylethylenediamine in the presence of 1,4-
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diazabicyclo[2.2.2]octane (DABCO) to yield 2-amino-N-(2-(dimethylamino)ethyl)-5-
methylbenzene sulfonamide 2.9 in 91% yield.”!

~ N A~ NH,
DABCO, CH,ClI, /\/N

; ,S—N
25°C, 16h o H
2.9

Scheme 2.6. Synthesis of sulfonylamide 2.9

2-Azido sulfonamide 2.10 was synthesized via diazotization of the corresponding amine
2.9 followed by reaction with sodium azide in water and isolated as red solid in 64 %
yield (Scheme 2.7).

Azidation is a two-step process. First, the amine functional group is converted
into the diazonium salt using sodium nitrite and acid HBF4 at 0-5 °C, which is then
converted to azide by stirring 2 hours with sodium azide in water at 25 °C. Diazonium
salt (2.9-N2-BF4) was treated with thiourea, stirred for 15 minutes and charcoal was
treated, stirred for 10 minutes and filtered. Then second step azidation reaction was done

with sodium azide (Scheme 2.7).

3. HBF,, NaNO,

QNHz I H0,0°C, thr. QNa |
4. Urea, 15 min.
~N S N/\/N

F \\_H charcoal, 10 min. o “_H h
5. NaN3, Hzo
0°C, 12h 210

Scheme 2.7. Synthesis sulfonamide azide 2.10

Thus obtained azide is precursor of the Staudinger reaction. The Staudinger
reaction converts azide functional group to the phosphinimine functional group. Azide
should be free of water (~1.5 ppm in CDCl3) because presence of water decomposes
phosphinimine to corresponding phosphine oxide. The reaction of the azide with the
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corresponding phosphines in the suitable organic solvent such as toluene at 25 °C gives
corresponding phosphinimines (2.11-2.14). When the triphenylphosphine was added to a
toluene solution azide 2.10 rapid nitrogen evolution was observed and a white suspension
was obtained after only a few hours. The phosphinimine product 2.11 was isolated as a
white solid in 87 % yield by simple filtration in the air and rinsed with diethyl ether to
remove any excess PPhs;. Phosphinimine 2.11 was characterized by 'H, '*C, and 3'P
NMR in CDCI3. The remaining triphenyl phosphine and trace of byproduct i.e.;

phosphine oxide can be washed away by appropriate solvents.
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Figure 2.7. '"H NMR and *'P NMR spectrum NNN ligand 2.11
The *'P NMR spectroscopy shows single sharp singlet at 8.92 ppm in CD>Cl,
(Figure 2.4) which is comparable with NNO ligand 2.8 which is observed at 7.56 ppm in
CDCls. The triplet -NH proton resonance observed at 6.96 ppm (J = 6 Hz) in CD2Cl.
The two sets of triplet methylene resonance peaks represent -CH>N(CH3): and -

CH>CH2N(CH3)2 at 2.58 ppm and 2.30 ppm in CD2Cly, respectively. The methyl group
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in the aromatic ring and the two methyl groups attached to N i.e.; -N(CHs)2 appeared as

singlets at 2.20 ppm and 1.90 ppm in CD,Cl; (Figure 2.4).

R R

/:F;—R" 211.R=R'=R"=Ph (87 %)
<:\< Mo e —( kN | 212.R—R'= Ph, R" = Me (74 %)
s— NN~ toluene 5NN 2.13.R =R'=Me, R" = Ph (not isolated)
‘o " H 2.14.R=R'=R" = Me (86 %)

0% 25°C, 4h o

Scheme 2.8. Synthesis of NNN phosphinimine ligands 2.11-2.14

Phosphinimine Ligand 2.12 was obtained by the reaction of azide 2.10 solution in
toluene and PPhoMe (liquid). When the methyldiphenylphosphine was added to a toluene
solution of azide 2.10 rapid nitrogen evolution was observed. The ligand 2.12 was
isolated as an off-white solid in 74 % yield by simple filtration in the air and rinsed with
diethyl ether to remove any unreacted PMePha. Off white solid phosphinimine ligand
2.12 was fully characterized on the basis of 'H, '*C and *'P NMR spectroscopy in
CD:Cl. The *'P NMR spectroscopy shows single sharp singlet at 8.4 ppm in CD>Cl,
(entry, 2.12, Figure 2.8) which is comparable with ligand 2.11 which is observed at 8.92
ppm in CDCIls. The broad peak of -NH proton resonance observed at 7.1 ppm in CD2Cl..
The 'H NMR signal of the 9 proton resonance of the three methyl group attached to the
phosphorus is appeared as doublet at 1.69 ppm (J = 13.2 Hz) in CD,Cl> due to the
coupling with phosphorus nuclei.

Phosphinimine Ligand 2.13 synthesis started mixing azide solutions in toluene
and PPhMe, and stirred. When the dimethylphenylphosphine was added to a toluene
solution of azide 2.10, rapid nitrogen evolution was observed. Aliquot of the reaction
mixture was pumped down in J-Y tube and CD,Cl, was added via schlenk line. The 3'P

NMR clearly shows the presence of product resonance at 32 ppm and 6 % phosphine
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oxide peak was observed. The ligand 2.13 was obtained as a brown glue after evaporation
of solvent.

Addition of diethyl ether turns it into yellowish brown glue. The attempt of
protonating glue 2.13 with [HPy][BFs] shows protonated species in the H NMR.
Brownish powder of Protonated phosphinimine ligand 2.13 was isolated using toluene
and ether solvent mixture. The Brownish powder contains the mixture of protonated
ligand (50 %), starting amine and phosphine oxide. Hence, clean product of 2.13 was not
isolated.

Ligand 2.14 was obtained by the reaction of azide 2.10 and PMes with the same
reaction protocol. When the trimethyl phosphine was added to a toluene solution of azide
2.10, rapid nitrogen evolution was observed. The ligand 2.14 was isolated as an off-white
solid in 86 % yield by simple filtration in the air and rinsed with diethyl ether to remove
any unreacted PMe;. Ligand 2.14 was fully characterized on the basis of 'H, 1*C and *'P
NMR spectroscopy in CD2Clo. The *'P NMR spectroscopy shows single sharp singlet at
12.31 ppm in CD:Cl; (entry 2.14, Figure 2.7) which is comparable with ligand 2.11
which is observed at 8.92 ppm in CDCls. The broad peak of -NH proton resonance
observed at 7.1 ppm in CD>Cl,. The 'H NMR signal of the three methyl group attached
to the phosphorus is splitted due to coupling with phosphorus nuclei appeared as doublet

at 1.69 ppm (J = 13.2 Hz) in CD,Cl.
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Figure 2.8. ORTEP-3°* diagram of 2.11 showing 50% ellipsoids. H atoms

are omitted for clarity.

To confirm the structure of phosphinimine ligand 2.11, a crystal suitable for X-ray
crystallography was obtained by slow diffusion of hexanes into a CH>Cl; solution of 2.11
at 25 °C. An ORTEP diagram of the corresponding structure is shown in Figure 2.8 and
selected bond lengths and angles are listed in Table 2.2.

The structure of 2.11 shows the presence of the exocyclic phosphinimine as well
as the sulfonamide -NH- groups. The P(1)-N(3) bond distance [1.5786(13) A] suggests a
high degree of double bond character much like the P-N double bond found in the free
phosphinimines PhsP=NPh [1.603(3) A] and 4-(2,6-iPrC¢H3)NPPh,)Ci2H70 [1.559(2)

Al
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2.8
P(1)-NQ3) 1.5786(13)
C10(1)-N(3) 1.3815(19)
C(5)-S(1) 1.7586(15)
S(1)-N(1) 1.6337(14)
S(1)-0(1) 1.4316(12)
S(1)-0(2) 1.4366(11)
C(9)-C(10)-N(3)-P(1) 14.1(2)

Table 2.2. Selected bong lengths (1&) and angles for compound 2.8
The P(1)-N(3) bond distance in 2.11 is significantly shorter than that found in the
protonated  phosphinimines  [PhsPN(H)Ph][CLLPd(CsHi1)] [1.624(3) A] and
[PhsPN(H)Ph][BF4] [1.635(4) A] which both display a high degree of P-N single bond
character. In addition, the triphenylphosphine group on the nitrogen atom of the
phosphinimine is situated below the arene ring plane of the 5-methylbenzenesulfonamide

fragment with a C(9)—C(10)-N(3)-P(1) torsion angle of 14.1(2)°.

2.B.4. Bidentate ligand library

We have synthesized a series of N,N bidentate phosphinimine arenesulfonamide ligands
3.5-3.7 in moderate yield with 2.5 g scale. These ligands were synthesized in a four step
reaction sequence with the commercially available starting material p-toluidine-2-
sulfonic acid 2.4 These phosphiminimines ligands were characterized by 'H, !*C, and
Phosphiminimine compound 2.8 was characterized by 'H, '3C and *'P NMR in CDCls.

The single peak in the *'P NMR shows the single component in the product in CDCls.
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Phosphinimine 3.7 was protonated using [HPy]|BF4] and protonated phosphinimine
tetrafluoroborate salt was islated as stable compound. These compounds are potential
candidates for metal complex syntheses. These N,N bidentate phosphinimine
arenesulfonamide ligands and their corresponding metal complexes are anticipated to
show different properties and activity compared to tridentate metal complexes.

Phosphinimine arene sulfonamide ligands 2.16 and 2.18 were also characterized by X-ray

structures.
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Figure 2.9. Phosphinimine arene sulfonamide ligands

2.B.4. Conclusion

The series of tridentate dimethylaminoethyl-ortho-phosphiniminebenzene
sulfonamide ligands were synthesized in good yield by a three step reaction sequence.
Phosphinimes are stronger donors than phosphines due to potential delocalization of the
P=N double bond. The modular nature of phosphinimine synthesis allows for the
creation of a diverse ligand library where steric and electronic properties can be

manipulated with ease.*® The steric properties of phosphinimine are quantified by Tolman
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angle (0°). The triphenylphospine has cone angle of 145° and the trimethylphosphine has
cone angle of 118°. The proper steric and electronic around the metal center controls rate
of reaction, tacticity and molecular weight polymer chain obtained by ring opening
polymerization of lactide.?® The tridentate phosphinimine ligands 2.8, 3.1, 3.2 to 3.4 are
synthesized by 3 step reaction protocol. All of these phosphinimine ligands are
characterized by 'H NMR, *C NMR, and *'P NMR in CD>Cl; at 25 °C. Phosphinimine
ligand 2.8 has N,N,O atoms to coordinate to the metal center, and other three
phosphinimines 3.1, 3.2 and 3.4 have N,N,N coordinating atoms. We have also
synthesized a series of N,N bidentate phosphinimine arenesulfonamide ligands starting
from commercially available p-toluidine-2-sulfonic acid 2.4 (Figure 2.9). These N,N
bidentate phosphinimine arenesulfonamide ligands and their corresponding metal
complexes are anticipated to show different properties and activity compared to tridentate

metal complexes.
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CHAPTER 3

SYNTHESIS AND REACTIVITY OF LZnEt COMPLEXES

3. A. Synthesis and Reactivity of LZnEt Complexes
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3.A.1. Introduction

Single-site homogeneous catalysts are usually represented as L.MR, L, is
ancillary ligand that can be modified according to the need bound to the catalytically
active metal center (M), and a possible initiating group or polymer chain-end (R). The
advantages of the homogeneous catalysts are that they allow for the modifications of
ligand electronics and sterics, labile metal centers and initiating groups that help control
microstructure of polymer as well as possible to study catalysis. The ring opening
polymerization (ROP) of cyclic esters such as lactide and caprolactone is an efficient way
to produce a biodegradable and recyclable polymeric material. The ROP is initiated by
metal complexes, organic compounds, or enzymes, with/without alcohol, to yield high
molecular weight PLA in excellent conversion and purity. Metal complexes are desirable
because they give rise to controlled polymerization and well defined high molecular
weight (Mn), narrow polymerdispersity index (PDI). The commonly used initiators are
metal alkoxide or amide coordination compounds.* These compounds are useful due to
their tolerance, selectivity, rate and minimal side reactions.’

Development of new single site catalyst for the ring opening polymerization of
cyclic esters such as lactide is growing rapidly. A number of single site homogenous
catalyst systems with many of these features have been reported.!'® The important features
required for lactide polymerization catalysts are high activity, ability to controllably
produce high molecular weight, low polydispersity polymer and stereochemical control.
Beside these features, low toxicity, low cost, minimal color and odor are also desirable

features.'
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Stereochemistry is one of the most important factors determining the physical
properties of a polymeric material. Due to their stereoregularity, isotactic and
syndiotactic polymers are typically crystalline, an important feature for many
applications. Design and application of single site catalysis is one of the most promising
methodologies for the synthesis of stereoregular polymer.?’ Zinc based catalysts have
been extensively employed and among the highly active metal-based catalysts used to
date for the controlled polymerization of lactide.’

The series of phosphinimine NNN ligands and NNO ligand were synthesized in
moderate to high yields (Chapter 2). The various substituents in the phosphinimine
phosphorus provide easy manipulation of steric and electronic in the phosphinimine
arene-sulfonamide ligands and metal complex. The Tolman cone angle provides the steric
measurement of the steric around the phosphinimine ligand. The Tolman cone angle of
PPhs, PPhoMe, PMes are 145°, 165° and 118° respectively. The steric and electronic
around the metal center is very important for catalysis towards the ring opening
polymerization of lactide that controls rate of polymerization, high molecular weight

polymer chain, and stereoseleletivity.*

Ph Ph Ph Ph h Ph Me, Me
P Ph F5 Me
NSO /\/N\ S— N/\/ ~ /\/ ~
S S— N , S—N
/\\ /,\\ 7\ H // \\ H
O CH, O o
2.8 2.11 212 214

Figure 3.1. Series of synthesized tridentate ligands
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3.A.2. Synthesis of NNOzZnEt complexes {NNO = 2-phosphinimine-5-
(methylbenzene-methylaminosulfonyl)ethanolate}

Diethyl zinc solution in toluene was added to the solution of ligand 2.8 in toluene
at -35 °C and allowed to warm to room temperature.?!® The mixture was further stirred
for 12 hours at room temperature to obtained, well-defined NNO ligated zinc ethyl
complex 3.5 via protonation of one ethyl group in diethyl zinc to give ethane and the
neutral zinc complex 3.5 with 80 % yield, 0.4g scale (Scheme 3.5).

Compound 3.5 was fully characterized by interpretation of 'H, 1*C and *'P NMR
spectra and multi-dimensional spectra. The incorporation of ethyl group with zinc in the
complex is depicted by the downfield shift of —CH; (quartet) and —CHj3 (triplet) groups of

diethyl zinc from 0.02 ppm and 1.05 ppm to 0.25 ppm and 1.10 ppm in neutral zinc

complex.
Ph Ph
Ph, = Ph
\p—Ph P/-“‘Ph
'\1/ 1.2 eq. EtyZn . '\1/
toluene, 12 h \Zn/\

//S\—N(H)R -35°Cto25°C ,S—N/ \O

28 3% N, 0

R = CH,CH,OH 3.5

Scheme 3.1. Synthesis of zinc ethyl complex 3.5
The single *'P NMR peak shift upfield as ligand show up at 7.56 ppm and the
diethylzinc complex 3.5 appeared at 3.06 ppm. The *'P NMR chemical shift shows
single peak for discrete zinc ethyl complex 3.5. The two dimensional NMR spectroscopy
(NOESY) of complex 3.5 indicates that the sulfonamide methyl group and the zinc ethyl

group are oriented in the same direction while the phosphinimine triphenylphosphine
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substituent is pointed away from the zinc center and on the opposite side compared to the
sulfonamide methyl group. We are not able to grow crystals of complex 3.5 for x-ray

crystallography to establish its solid state structure.

3.A.3. Synthesis of neutral NNNZnEt complexes; {NNN = 2-phosphinimine-5-
(methylbenzenemethylaminosulfonyl)ethanamate}

(NNN)ZnEt Complex 3.7 is synthesized. NNN ligated zinc ethyl complex
synthesized via protonation of one ethyl group in diethylzinc to give ethane and the

neutral zinc complex 3.7 with 92% yield, 1g scale (Scheme 3.2).

Ph, Ph Ph, Ph

A\ Ph A/
p— .Ph
// 1.2 eq. EtyZn //P
> N_
toluene, 12 h Zn/\
_S—N(H)R -196 °C to 25 °C /S—N/ N7
211 0% N, 0" v

R = CH,CH,NMe, - Cale 3.7

Scheme 3.2. Synthesis of zinc ethyl complex 3.7

The incorporation of ethyl group with zinc in the complex is depicted by the
downfield shift of —CH> (quartet) and —CHj3 (triplet) groups of diethyl zinc from 0.02 ppm
and 1.05 ppm to -0.88 ppm and 0.69 ppm in neutral zinc complex.. The single *'P NMR
peak at 26.43 ppm (ligand appear at 8.8 ppm) in CD>Cl is indicative of tight
phosphinimine binding to the zinc center. The broad peak at 2 ppm that accounts for 8
proton resonance in 'H NMR is indicative of the fluxional behavior of the dimethylamino

arm of the complex 3.7 (Figure 3.2).
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Figure 3.2. 'TH NMR of the complex 3.7 showing fluxional behavior

Fluxional behavior of two methyl groups attached with nitrogen and the adjacent
methylene group observed at 25 °C 'H NMR. The dynamic behavior of these nuclei
concerned are exchanging at a rate faster than the NMR timescale. We slow down the
exchange by cooling the sample up to -60 °C.

Variable Temperature 'H NMR has been studied for complex 3.7 using an
temperature arrays, 45, 35, 25, 20, 15, 0, 10, -10, -20, -30, -40, -50, -60, -70, -80, °C. The
low temperature '"H NMR spectrum shows that coalescence occurs at -60 °C. 'H NMR at
-60 °C separated the two methyl groups attached with nitrogen and the adjacent
methylene group peaks to see the static spectrum in which peaks are clear and distinct.
The two methylene protons attached to zinc become distinct diastereotopic at -60 °C. The
two methyl groups attached to the nitrogen are inequivalent showing two separate peaks
at -60°C but broad signal is observed at 25 °C, which sharpens to single peak at 45 °C
(blue region Figure). The two methylene protons attached to zinc show clear triplet at 25

°C which turn into two clear diastereotopic proton peaks at -60 °C (red region Figure).

51



L JL - 60
—_— et e —

|

—

. ‘Jk - °
—_—
J ' 20
P N — L
i
- CH,CH,N(CH3) region Zn-CH,- region

Figure 3.3. 'TH NMR spectrum of 3.7 in CD>Cl, with variable temperature

This variable temperature 'H NMR experiment observation and the fluxional
behavior of two methyl groups attached with nitrogen at 25 °C indicative of the Zn-
N(CH3)2 bond of (NNN)ZnEt Complex 3.7 coming on and off at 25 °C (Scheme 3.3). In

other words, the (NNN)ZnEt 3.7 has hemi-labile diethyl amine arm as shown in scheme

3.3.
\\//o O\\//O N/
e e

N/Zn«N—— N,Zn

1 I

R P /Ph

Ph IshPh Bh
3.7a 3.7b

Scheme 3.3. Labile dimethylamine arm of (NNN)ZnEt complex 3.7
3.A.4. Reactivity of (NNO)ZnEt complex with alcohols
The most common initiators for ROP are metal alkoxide or amide coordination
compounds. The metal alkoxide in some cases is formed in situ by reaction of metal
precursor complex with the appropriate alcohol-referred to as an initiating system. The

ROP is initiated by metal complexes with alcohol generating metal alkoxide in situ or
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discrete metal alkoxide complexes, to yield high molecular weight PLA in excellent
conversion and purity. We ran test reactions of neutral ethyl zinc complex with alcohols
in small scale in the J. Young tube to study its reactivity with various alcohols.
(i) With p-cyanophenol

The reaction of the neutral (NNO)ZnEt complex 3.7 with p-cyanophenol (pka ca.
9) was carried in J-Young tube under moisture and air free condition. Reaction with p-
cyanophenol showed that 38 % decomposition to the ligand based on *'P (§ = 7.56 ppm
in CD2Cl,) and shows multiple peaks at & =28.8 ppm in 10 minutes. Both unreacted
starting materials were observed in the 'H NMR. Aromatic region of 'H NMR is
broadened and not interpretable. (NNO)ZnEt complex is not stable with p-cyanophenol.
(NNO)ZnEt complex (5 mol. %) does not show any catalytic activity towards ring

opening polymerization of rac-lactide.

Ph PP
d.wPh

,/S\\—N/ \

O o \_/

\©\ _CDCl, _ Decomposed to Ligand
cN 12h,25°C Based on *'P NMR
3.5

Scheme 3.4. Reaction between (NNO)ZnEt complex and p-cyanophenol

(if) With 9-anthrymethanol

The reaction of the neutral (NNO)ZnEt complex 3.7 with 9-anthrylmethanol (pka
= 15) showed that 76 % of the complex decomposed to the ligand based on *'P (8 = 7.56

ppm) and shows multiple peaks at & = 28.8 in CD>Cl, ppm at 25 °C.
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Ph, Ph
\P/' WWPh ‘
/ HO O CD,Cl, Decomposed to Ligand

O 12 h,25°C Based on *'P NMR

Scheme 3.5. Reaction between (NNO)ZnEt complex and 9-anthrylmethanol

Complete decomposition of the (NNO)ZnEt complex was observed after 32 hours. No
further change was observed after two weeks at 25 °C. (NNO)ZnEt complex (5 mol %)

does not show any catalytic activity towards ring opening polymerization of dl-lactide.

3.A.5. Reaction of with (NNN)ZnEt complex with alcohols:
(i) With Anthrylmethanol & Anthrylethanol

(NNN)ZnEt complex with anthrylmethanol does not show any reaction. With
anthrylethanol, small amount of ligand present in solution (8 %) and unreacted starting

material 3.7 (92%) after 24 hours was determined by *'P NMR spectroscopy (Scheme 3).

Ph, Ph
\P/“\\Ph
,\j/ ROH N duct
N —» No produc
/Zn\/j CD,Cly, 25°C
SN NC N,, 24 h
(@) e} \__/
3.7 R’ = 9-anthryICH,

= 9-anthrylCH,CH,
Scheme 3.6. Reaction of (NNN)ZnEt complex and anthyrl alcohol
(if) With Ethanol
Reaction of 3.7 with 1.5 equivalents of ethanol in CD>Cl> at 25 °C was also very
slow and after 24 hours the solution contained unreacted starting material 3.7 (87 %) as

well as decomposed ligand (13 %) as shown in Scheme 3.7.
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Scheme 3.7. Reaction of (NNN)ZnEt complex and ethanol
Tolman and coworkers demonstrated that the (diaminophenoxy)ZnEt 3.8 complex
reacted with ethanol at 25 °C to form (diaminophenoxy)ZnOEt 3.9 in 24 hours. The zinc
ethoxide product could be isolated as a dimer in good yield.?!® The inertness of the zinc
ethyl bond in 3.7 towards protonation with these three alcohols can’t simply be attributed

to the steric bulk of the triphenylphosphinimine group inhibiting the protonolysis

reaction.
t-Bu
t-Bu // t-Bu
t-Bu (o) 1) t-Bu
t-Bu _EtoH O\Znﬁ)kz / :
~N o) -ethane e n\N
[ U RT, 12h N \ "LJ ~
Zn toluene N—
Sl LN
. 3.8 3.9
[LZnEt] [LZnOE(t],

Scheme 3.8. Synthesis of Tolman catalyst [LZnOEt], 3.9
It would be expected that ethanol, being smaller than either 9-anthrylalcohol, would show
greater reactivity that was observed. It is clear that the acidity of the alcohol plays an
important role in the observed reactivity with zinc ethyl complex 3.7. Alkyl alcohols
have high pK, values (~ 30 in DMSO) are not prone to ready proton dissociation in
organic solvents such as methylene chloride.”> Aromatic alcohols (phenols) are more
acidic (pKa ~ 18 in DMSO) and would be expected to promote the desired protonolysis of

the zinc ethyl bond in 3.7.2!?
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(iif) With phenols

The reaction of zinc ethyl complex 3.7 with solid aromatic alcohols was initially
explored on a small scale and monitored by 'H and *'P NMR. The reaction of the neutral
(NNN)ZnEt 3.7 complex with p-cyanophenol (pKa ~ 9) was carried in J-Young tube
under moisture and air free condition. Reaction of 3.7 with one equiv. of 4-cyanophenol
at 25 °C in CD2Cl, for 10 minutes leads to the formation of ethane and [i*-2-
((CsHs)3P=N)-5-CH3CsH3SO>NH(CH2)2N(CH3)2] Zn(4-OC¢H4CN) 3.10 in quantitative
yield (Scheme 3.9). The *'P NMR shift upfield from 26.4 to 28.8 ppm in phenoxy zinc
complex, 3.10 at 25°C in 10 minutes. The aromatic 'H NMR resonance of the
cyanophenol shifted and appeared as broad signal at 25°C. However, the phenoxy zinc

complex shows fluxional behavior as in the case of its starting (NNN)ZnEt complex.

Q.0 00 ), <
S\N \\S// S\N/\/ /
=~ N
\C[ ' ROH N | N
N— —
N,Zn N\ . /zn_,N_ N,Zn\
|F|) \\ CD2C|2, 25°C '|\|l \O\ \ || O\R
PAR; N R P
Ph” 4 ‘Ph 2 P. A
Ph - ethane AN Ph” 1 ’Ph
3.7 Ph™ pPh Ph

3.10: R = 4-CgH,4CN; t = 10 min
3.11: R = 4-C¢H,4CgHs; t = 50 min
3.12:R = 3,4-C6H3(OM6)2; t=5hr

Scheme 3.9. Reaction of 3.7 with phenols
The low temperature '"H NMR resonance of the phenoxy zinc complex show that
the two amine methyl group -N(CHj3), are inequivalent and appeared at 2.15 and 1.86
ppm. The two aromatic proton of the phenoxy group bind to zinc center appeared at 7.17
(J = 8Hz) ppm and 6.32 (J = 8Hz) ppm. The two ethylene proton -CH>N(CH3)
resonance are inequivalent at -40 °C. The structure is fully characterized on the basis of

3P NMR, low temperature 'H NMR and 2D NMR.

56



pKa=8 pKa=9.96 pKa=10.6

OH HO. HO

I, | .

CN OMe

t=10 min., 73 %, 250 mg | t =50 min., 54 %, 200 mg | t=5 hr., 33 %, 250 mg

Table 3.1. Substituted phenols and their pKa value and reactivity with 3.7

When 3.7 was reacted with the less acidic 4-hydroxybiphenyl in CD,Cl> at 25 °C the
reaction proceeded at a slower pace but complete consumption of 3.7 was observed after
50 minutes to form [k3-2-((C¢Hs)3P=N)-5-CH3CsH3SONH(CH2),N(CH3)2]Zn(4-
OCsH4CsHs) 3.11 and ethane (Scheme 3.9). Finally, when 3,4-dimethoxyphenol was
reacted with 3.7 in CD,Cl» after 10 minutes only 33 % consumption of 3.7 had occurred
and it took 5 hours for all of complex 3.7 to be consumed to form [k>-2-((C¢Hs)3P=N)-5-
CH3CsH3SO2NH(CH2)>N(CH3)2]Zn(3,4-OC¢H3(OMe).) 3.12 as illustrated in Scheme
3.9.

Zinc aryloxides 3.10-3.12 can be isolated in good yield by reaction of 3.7 with
one equivalent of the corresponding solid phenols in CH>Cl, under N». Zinc aryloxides
3.10-3.12 were characterized by 'H, '3C, and *'P and multi-dimensional NMR. The *'P
NMR (25 °C, CD2Clz) chemical shifts for the triphenyl phosphinimine substituent in
3.10-3.12 appear as a singlet at 3 = 28.6 ppm for 3.10 and & = 28.5 ppm for 3.11-3.12.
Fluxional behavior was observed at 25 °C for the pendant (dimethylamino)ethyl arm in
complexes 3.10-3.12 as seen in zinc ethyl complex 3.7. The dynamic behavior due to
association and disassociation of the (dimethylamino)ethyl arm in complexes 3.10-3.12
could be halted by cooling the CD>Cl, solutions to -40 °C. Complexes 3.10-3.12 were

stable in dry CD,Cl> for several days at 25 °C and 12 hours at 45 °C.
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The Mehrkhodavandi research group synthesized a chiral version of the Hillmyer
and Tolman complex i.e.; (NNO)ZnEt and studied its reactivity with alcohols. Their
catalyst is found to be unreactive towards stoichiometric amounts of methanol, ethanol,
isopropanol and water in various organic solvents. However, phenol (pKa = 10) and HCI
reported to react to give phenoxide complex (NNO)ZnOPh and (NNO)ZnCl. This result
concludes that only strongly acidic alcohols and acids are able to protonate zinc ethyl to
give free ethane.

The reaction between 4-coordinate ethyl zinc complex and alcohols may have two
different possible mechanisms depending on the nature of the substrates (Scheme 3.11).
The reactivity of the zinc ethyl complex with alcohols depends on the pKa of the
alcohols. Phenol and HCI, (stronger acid) can dissociate easily forming H" and proceed
via a direct protonation of the zinc ethyl bond. In the case of less acidic alcohols such as
methanol, ethanol, isopropanol, first the alcohol must coordinate at the metal center and
leading to decrease in the pKa of coordinated species then dissociation of the terminal

amine arm.

SN
oo 21 ra \th& K@

—Z

R =H, Me, Et, i-Pr
t-Bu
~
AN O HCI or HOPh .~._N
]: \énv = ]: \én
\"'/N/ - ethane L. N ~OPh(CI)

-
|

Scheme 3.10. Mechanism for the reaction of ethyl zinc complexes and acids/alcohols
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The dissociation of the terminal amine arm of the chelating ligand must occur so the

alcohol can bind to zinc.

t-Bu t-Bu

N
N
2
@
t-Bu t-Bu
~N ~
(0] N (0]
: I
N/Zn\/ N f”\/
7~
I | / NG 345
3.14

Scheme 3.11. Reaction of Tolman catalyst 3.14 with pyridine

The possible equilibrium between the ethyl zinc complex Ln.ZnEt (3.14-3.15) and
pyridine in situ is shown in Scheme 3.12. Two distinct methyl peaks of the dimethylated
amine are observed in absence of pyridine. This is due to the asymmetry of the two
methyl groups of amine in the ethyl zinc complex (3.14).2!* When pyridine was added to
the ethyl zinc complex 3.14, the equilibration of the two signals occurred showing a
broad single resonance in 'H NMR spectra. The equilibration is due to the dissociation of
the dimethyl amine in presence of pyridine. This investigation concluded that the
dimethyl amine dissociates before the coordination of other coordinating species in this
four coordinate ethyl zinc complex system.>!?

The chiral zinc ethyl complex analogue of highly active Tolman -catalyst
synthesized by Mehrkhodavandi research group is not reactive toward alcohols such as
ethanol in direct contrast to Tolman catalyst, which reacted readily to form corresponding
zinc ethoxide. The reactivity of chiral catalyst toward alcohols is explained by lack of
dissociation of the diamine ethyl arm of the ancillary ligand, that coordination and

deprotonation of alcohols with high pKa values. In case of complex 3.7, the dimethyl
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amine arm is hemi labile but still we do not see reactivity with weakly acidic alcohols

such as ethanol.

3.A.6. Reactivity with L-lactide

o LZnOR

0
LZnEt + Phenols ZnL
o}
5\% 0 — RO/QH/ %09’5
OWH\ CD,Cl,, 25 °C o
o} N2 PDLA

DL-LA
Scheme 3.12. Lactide polymerization test
The catalytic activity of zinc phenols with lactide was tested in NMR scale reactions.
The discrete zinc phenoxides as well as situ generated zinc phenoxides 3.10-3.12 reveal

low catalytic activity toward ROP of dl-lactide.

pKa=38 pKa=9.96 pKa=10.6
OH HO O HO
O OMe
CN OMe

LZnOR, ( 3.10)

LZnOR; (3.11)

LZnOR; ( 3.12)

t =96 hr., No Polymer

t =24 hr., 24 % Polymer

t=48 hr., 12 % Polymer

Table 3.2. Substituted phenols, their pKa values and reactivity with 3.7
Complex 3.10 show no catalytic activity toward dl-lactide monomer up to 24
hours in CD,Cl> at 25 °C under N> atmosphere. Complex 3.11 and 3.12 show slow
activity toward lactide monomer with 24 % and 12 % conversion to polylactic acid (PLA)
in 24 hours in CD2Cl, at 25 °C under N2 atmosphere. The conversion rate is calculated
directly from the integration of methine proton resonance of monomer vs polymer

appeared in '"H NMR. The low reactivity of the zinc phenoxide is attributing to the low
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electrophilicity of the zinc center showing the carbon attached to the zinc resonance
downfield -0.6 ppm (In Tolman catalyst 4 ppm). The zinc ethyl bond is not strong base to
react with weak acid such as ethanol but strong enough to react with strong acidic
phenols to give zinc phenoxide complexes 3.10-3.12. The zinc center of the zinc
phenoxide 3.7 is not Lewis acidic enough to coordinate strongly to activate lactide

monomer which is the basis of coordination insertion mechanism.

3. A. 7. Synthesis of stable (NNN)ZnMe Complexes for x-ray crystallography
Roesky research group reported the synthesis of a new organozinc based catalyst,
N-isopropyl-2-(isopropylamino)troponiminate zinc methyl for the hydroamination
reaction. This complex is distinguished by functional group tolerance, good activity in the
catalytic conversion of non-activated C-C multiple bonds and a relatively high stability

towards moisture and air.

Ph Ph
Ph, I Ph
\p—Ph Sd.wPh
// 1.2 eq. MeyZn /
> N
toluene, 12 h 2
S-N(H)R -196 °C to 25 °C ,S\—N/ N7
211 0"o N, 0 /N
R = CH,CH,NMe, - Cafe 313

Scheme 3.13. Synthesis of zinc methyl complex 3.13
To obtained good x-ray crystallography data, we synthesized more stable
NNNZnMe complex (scheme 3.14). We tentatively propose that the structure of
NNNZnEt complex, for which no X-ray crystal structure could be obtained, is analogous
to that of NNNZnMe complex. NNNZnMe complex was obtained by the reaction of

ligand 2.11 reacting with dimethyl zinc in toluene at -196 C under nitrogen. Complex 3.6
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was obtained white solid in high yield with 78 % yield in 0.5g scale. The details of X-ray
crystallography of the complex 3.6 are as follows.

Crystals suitable for X-ray crystallography were obtained by slow diffusion of
hexanes into a chlorobenzene solution of 3.7 and the structure was determined by X-ray
diffraction. An ORTEP diagram of the corresponding structure is shown in Figure 3.3

and selected bond lengths and angles are listed in Table 2.2 (Chapter 2). The X-ray

C22

Figure 3.4 ORTEP-3* diagram of 3.7 showing 50% ellipsoids. H atoms are omitted for
clarity

structure shows that 3.7 is monomeric, with the four-coordinate Zn(II) ion adopting a
distorted tetrahedral geometry. The differences between the angles C(30)-Zn(1)-N(3)
(123.13(10)°) and N(1)-Zn(1)-N(2) (84.49(9)°) are illustrative of the distortion from an
ideal tetrahedral geometry. The Zn(1)-C(30) distance of 1.983(3) A is longer than
observed for Zn(II)-alkyl bonds in complexes that contain bidentate NN ligands such as
BDI or 9-N-alkylamino-1-N"-alkyliminophenalene [1.941(3)-1.966(3) A]. 1t is similar in
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length to Zn(IT)-alkyl bonds in complexes that contain tridentate ligands such as
tris(pyrazolyl)borate and diaminophenoxy [1.981(8)-1.997(4) A]. Ligand 2.11
coordinates to the zinc ion in a tridentate fashion. In complex 3.7, the pendant
(dimethylamino)ethyl- arm coordinates to the zinc ion with a Zn(1)-N(2) distance of
2.187(2) A which is shorter than observed for two B-diketiminato Zn(II) ethyl complexes
that contain a coordinating (dimethylamino)ethyl- arm [2.457(3) and 2.482(2) A].¢

The exocyclic phosphinimine P(1)-N(3) bond distance [1.607(2) A] is slightly longer
than the same P-N bond found in ligand 2.11 but still has a high degree of double bond
character. It is very similar in distance to the exocyclic phosphinimine P-N bond found
in [k?-2-(PhsP=N)-5-MeC¢H3SO3]PdMe(4-'BuPy) [1.608(2) A] which contains a high

degree of double bond character.*’

3. A. 7. Conclusion

In summary, we have synthesized and characterized neutral zinc ethyl complexes
supported by novel phosphinimines amidosulfonyl NNO and NNN tridentate ligands
having -SO>NCH3C>HsO- and -SO>NCH3C>H4N(CH3)3 groups and a phosphinimine
motif. The structures of neutral zinc complex are characterized with the help of NMR,
and single x-ray crystallography. The low temperature NMR revealed that amine arm of
NNNZnEt complex is coming on and off. Phosphinimines are sp® nitrogen donor with
polar P=N double bonds. The ligand steric influences the catalytic activity. In
phosphinimines amido sulfonyl ligands, sterics and electronics can be altered and tuned
easily through application of various groups on the phosphorus atom. The incorporation

of these ligands with zinc metal produces neutral zinc ethyl complexes. The reactivities
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of zinc ethyl complexes with several alcohols are established. Lower pKa alcohols
(strongly acidic proton) such as p-cyanophenol are able to protonate the zinc ethyl bond
to produce ethane. However, higher pKa alcohols are not able to protonate the zinc ethyl
bond to produce ethane. Zinc phenoxide complex was synthesized by the reaction
between zinc ethyl complex and p-cyanophenol. The zinc phenoxide complexes are inert
and are not able to polymerize lactide. The NNN zinc complex polymerizes L-lactide but
very slowly. The chiral version of Toman catalyst synthesized by Mehrkhodavandi
research group is not reactive to ethanol because the dimethyl amine arm of NNOZnEt
complex is not labile. In NNNZnEt complex 3.7 the amine arm is labile shown by the
fluxional behavior. The dynamic behavior is observed because there is association and
disassociation of the (dimethylamino)ethyl arm in complex 3.7. However the NNNZnEt
complex 3.7 does not react with ethanol (high pKa) to give zinc ethoxide because the
metal center is not electrophilic enough to react with weaker bases. The low
electrophilicity of zinc alkyls complexes is identified by downfield shift of carbon
directly attached to the zinc compared to highly active Tolman catalyst. In the Tolman
catalyst precursor (NNOZnEt) the carbon bonded to zinc resonates at 4 ppm where as in
the catalysts 3.10-3.12 the carbon bonded to zinc resonates at -0.57 ppm for
NNN(PPh3)ZnEt and 0.89 ppm for NNN(PMes)ZnEt. This clearly shows that the zinc
center in the catalysts 3.10-3.12 is weakly electrophilic. Future work will involve further

modification of ligands to improve the Lewis acidity of metal center.
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4. A.1. Introduction
4. A. 2. Synthesis of Neutral phosphinimines bases
4. B. Tolyl triaryl phosphinimines
4.B. 1. Synthesis of Tolyl triaryl phosphinimines
4.B. 2. Alcohol Activation by tolyl-phosphinimines
4. B. 3. Polymerization of lactide by tolyl-phosphinimines
4. C. Phenylethyl triarylphosphinimines
4. C. 1. Synthesis of Phenylethyl triarylphosphinimines
4. C.2. Alcohol Activation by Phenylethyl -phosphinimines
4. C. 3. Polymerization of lactide by Phenylethyl —phosphinimines
4. C. 4. Order of reactivity of phenethyl phosphinimines towards ROP of L-LA

4. D. Conclusion

65



4.A.1. Introduction

Aliphatic polyesters are an important class of polymers having excellent material
properties, and have several applications such as packaging, microelectronics and drug
delivery.! Common synthetic ways to aliphatic polyesters utilize transition metal
complexes to effect the ring opening polymerization (ROP) of cyclic esters.> Although
organometallic catalysts provide effective synthetic route to synthesis of aliphatic
polyesters, this method has limited application in microelectronics and resorbable
biomedical areas due to the toxic heavy metal residue trapped within the polymer
materials.> The first organocatalytic approach to the ROP of lactide using strongly basic
tertiary amines i.e., 4-(dimethylamino)pyridine (DMAP, Figure 4.1) was reported by
Hendrick et al. in 2001.* This strategy used a nucleophile such as an alcohol that initiated
the polymerization of lactide in the presence of the DMAP.’ They showed mild and
highly selective polymerization conditions produced polylactides with predictable
molecular weight and narrow polydistersities. DMAP catalyzed ROP of lactide was
originally proposed to react via nucleophilic monomer activation mechanism (Scheme

4.1)4
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Scheme 4.1. Nucleophilic activation mechanism by DMAP
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In the nucleophilic activation mechanism, the nucleophile (DMAP) attacks the
monomer (lactide) to generate a reactive chain end containing an alkoxide intermediates.
The alkoxide is protonated by the initiating alcohol and and resulting alkoxide acylates
the carbonyl group which releases the nucleophile leading to the formation of a ring-
opened alcohol that can propagate by repeated attack on the activated monomer.*

However, computational studies suggest that an alcohol activation mechanism
may be effective in the DMAP catalyzed ROP of lactide (Scheme 4.2). In the alcohol
activation mechanism, the initiator or chain end is activated by deprotonation to generate
an alkoxide. Attack of the alkoxide at the carbonyl carbon on the monomer is followed by
acyl-oxygen bond cleavage. This forms an ester end group and an active alcoholate

species which reacts with the monomer for further propagation.®

\
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Scheme 4.2. Alcohol activation mechanism by DMAP

The catalytic activity of a number of phosphines towards ring opening
polymerization of lactide in the presence of an alcohol was reported.” Alkyl substituted
phosphines are more active than the corresponding aryl containing phosphines towards
ROP of lactide. They were shown to be effective ROP catalyst that generates narrowly
dispersed polylactides with predictable molecular weights. These phosphine catalysts
were investigated in bulk at 135 °C and 180 °C and in solution in various solvents such as

THF, toluene and CH>Cl, with benzyl alcohol as the initiator. The high phosphine
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concentration (more than 1 equivalent) and high temperature leads to broader molecular
weight distribution, which indicates the presence of adverse transesterification reactions
during the polymerization. Compared to DMAP, phosphine catalyzed ROP in solution
was observed to be slower and less selective.

The guanidine and amidine, N-methyl 1,5,7-triazabicyclododecene (MTBD) and
diazabicycloundecene (DBU) shown in Figure 4.1, were shown effective for the
polymerization of LA producing polymer up to DP = 500 with narrow polymerdispersity
index (PDI) in less than 1 hour.® In these cases an alcohol-activated mechanism was
proposed for the ROP of lactide. In such a mechanism, the “nucleophilic” catalyst
activates the initiating alcohol but remains inert towards the ring opening of the

monomer.

-
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Figure 4.1. Nitrogen bases used as organocatalyst for ROP

The importance of hydrogen bonding in the organocatalytic ring opening reactions of L-
lactide was investigated.” The mechanism based on hydrogen bonding by the catalyst was
shown to be more favorable than the mechanism based on acetyl transfer (nucleophilic
activation mechanism). In case of the guanidine TBD (Figure 4.1), the hydrogen attached
to the amine nitrogen activates the carbonyl group of L-lactide through hydrogen bonding
and the imine nitrogen activates the alcohol by attracting the hydrogen atom of the
alcohol’s hydroxyl group through a lone pair interaction (Scheme 4.3).!° In case of

MTBD, the hydrogen attached to the amine nitrogen is absent due to methyl substitution.’
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The rate of ROP of L-lactide mediated by MTBD is more than 90 times slower versus the
reaction run with TBD.!! This result shows that lack of a hydrogen bonding motif in the

catalyst slows the reaction rate immensely.

o O—F . W h g H |

o 0~ OH o) MTBD
.- o
OWH\ o WH\ O CHs

° 0
Scheme 4.3. TBD-catalysed ROP of LA by the H-bonding mechanism
A bifunctional catalyst system containing a thioruea and an amine functionality
was reported in the literature. The thiourea is capable of hydrogen-bonding and acts as H-
bond donor to activate the cyclic ester while the amine base can activates an alcohol
present in the reaction. In the ROP of LA, the thiourea/amine bifunctional catalyst
produced PLA of narrow PDI. It was also reported that combination of thiourea and

amine molecules are equally active towards ring opening polymerization.'® 1?

There are different types of mechanism proposed for the polymerization of lactide:
(1) Nucleophilic Monomer Activation

Nucleophiles activate the monomer by direct attack on the monomer to give
reactive zwitterionic alkoxide. Protonation of zwitterionic alkoxide by alcohol followed
by acylation of the alkoxide lead to the formation of a ring opened alcohol that propagate
by repeated attack on the activated monomer. Guanidines,'* amidines'* and N-
heterocyclic carbenes! are postulated nucleophilic monomer activation mechanism for

ring opening polymerization of cyclic esters.’
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Scheme 4.4. Nucleophilic activation mechanism
(i1) Chain-End activation by a general base
The initiator or chain end is activated by deprotonation in the classical anionic
polymerization to generate an alkoxide. The alkoxide is reactive enough to mediate ring
opening polymerization. The alkoxide attacks at the carbonyl carbon of the monomer
giving species having an ester end group and an active alcohol group due to acyl-oxygen
bond cleavage. The species with an ester group and alcohol end group further reacts with

the monomer for further propagation.
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Scheme 4.5. Chain end activation mechanism
(111) Bifunctional activation of monomer
Dual activation of both monomer and the chain end take place in the case of

bifunctional activation mechanism (Scheme 4.6).
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Scheme 4.6. Bifunctional activation using H-bonding
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4. A. 2. Synthesis of Neutral phosphinimines bases

There are few phosphinimine bases reported in the literature that are used as catalyst
towards ROP of lactides.'® We synthesized simple phosphinimine with single step
Staudinger reaction and its basicity was estimated with alcohol OH shift and
corresponding relationship with the rate of ROP polymerization of lactide shown. These
electron rich phosphinimines act as bronsted bases. Phosphinimines are stronger bases
than phosphines due to delocalized PN double bond. The basicity of the phosphinimines
is evaluated by the interactions with an alcohol using 'H and *'P NMR in the solution.
Phosphine bases are used as bronsted base in the catalytic ring opening polymerization of
cyclic esters such as lactide to yield biodegradable polymers. The modular nature of
phosphinimine synthesis allows for the creation of a diverse ligand library where steric
and electronic properties can be manipulated with ease.'’

Neutral phosphinimines are believed to be stronger donor ligands than phosphines and
amines due to potential delocalization about the N=P double bond. The steric properties
of phosphinimines are different than phosphines and amines since the steric bulk is
slightly removed from the site of the lone pair electrons on the phosphinimine nitrogen.
Hendrick and coworker have investigated that H-bonding pathway is preferable pathway

for ring opening polymerization of L-lactide using a guanidine-based catalyst.’

Ar,/" /RZ Ar/’ @ /Rz
Ar—P—N  <«—» Ar—P—N. o
Ar Ar/

Figure 4.2. Mesomeric structure of phosphinimine ligands
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4. B. Tolyl triaryl phosphinimines
4.B.1. Synthesis of Tolyl triaryl phosphinimines

Electron rich phosphines 4.1-4.4 were synthesized in good yields by a two-step
sequence (Scheme 4.7). Grignard reagent was generated in-situ by the reaction of 4-
bromo-N,N-dimethylaniline and Mg in THF under N> atmosphere. The brown solution
of the Grignard reagent was allowed to react with PhoPCl or PhPClz at 0 °C for 1 hour
and 25 °C for 12 hours to obtained the corresponding phosphines 4.1 and 4.2 respectively
(Scheme 4.7). Phosphines 4.1 and 4.2 were isolated as a white solids in 85-86 % yield on
a 9 g scale. Phosphines 4.3 and 4.4 were synthesized by an analogous method (Scheme
4.7). Phosphine 4.3 was obtained as a light orange solid in 8.6 g scale, 76 % yield.
Phosphine 4.4 was obtained as yellow solid in 53 % yield on a 5 g scale. Phosphines 4.1-
4.4 were characterized by 'H, °C, *'P NMR. 3!P NMR of phosphines 4.1-4.4 show single
peaks at -7.3, -10.7, -11.3 and -10.1 ppm respectively. These are consistent with values
reported in the literature.! *'P chemical shifts are particularly useful in determining the
purity of the product. The single peaks in the *'P NMR spectra for these phosphines show
they are pure.

Phosphinimines, P=N double bond containing compounds can be prepared
commonly by Kirsanov'® or Staudinger reaction. Both are two-step reactions. A typical
Kirsanov reaction involves triphenylphosphine with bromine to give bromotriphenyl
phosphonium bromide. The bromotriphenyl phosphonium bromide was treated in situ
with an alkylamine to give a phosphinime. The Kirsanov reaction is used when the
Staudinger reaction is not applicable, i.e. when the organic azide is not available to

generate the phosphinimines. We utilized the Staudinger was treated in-situ with alkyl

72



\ THF Ph,PCI
@ N Br + 2Mg — N MgBr ——— Pph,(4-CsH,NMe,)

4.1
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Scheme 4.7. Synthesis of electron rich phosphines

amines was treated in situ with alkylamines to give the phosphinimes. The Kirsanov
reaction is used when the Staudinger reaction is not applicable, i.e. when the organic
azide is not available to generate the phosphinimines. We utilized the Staudinger reaction
for the synthesis of the phosphinimines due to ease of this reaction and the fact that the
starting azides are readily available or easily synthesized. The Staudinger reaction is a
very mild azide reduction. As there are varieties of methods for the preparing azides
readily, the Staudinger reaction makes it possible to use an azide as an amine synthon.
The complete Staudinger reaction is a two-step sequence in which an azide is converted

to a phospinimine and the phosphinimine is converted to an amine by hydrolysis. For the

rR, K
PR'R, *P;/R
toluene, - N, N
25°C, 12h
45.R=R'=Ph

46.R=R= 4'CGH4
4.7.R' = Ph, R = 4-CgHsN(Me),
4.8.R' = R = 4-CgH,N(Me),

Scheme 4.8. Synthesis of tolyl phosphinimines 4.5-4.8 by the Staudinger reaction
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generation of phosphinimines for our study, the hydrolysis step is avoided. Phosphimines
4.5-4.8 were synthesized by the Staudinger reaction of tolyl azide and corresponding

phosphine. The detail mechanism of the Staudinger reaction is illustrated in Chapter 2.

P //P OCH,4
< >_N 3 _< >_N 3
4.5 46
Ph‘P N/ P N/
/ \ // \
4< >—N 2 —< >—N 3
4.7 4.8

Figure 4.3. Series of tolyl phosphinimine bases

The Staudinger reaction between tolyl azide and triphenylphosphine (PPhs), tris
(4-methoxyphenyl)phosphine  PPh(4-CsHs-OMe)s,  phenyl(bisdimethylaminophenyl)
phosphine (PPh(4-CsHa(4-NMe2)2), or (trisdimethylaminophenyl)phosphine P(CsHa(4-
NMe,)s, produce tolyl triphenylphosphine (4.5), tolyl-4-trimethoxyphenyl phosphinimine
(4.6), Phenylethyl-bis-N,N-dimethylphenyl phosphinimine (4.7), tolyl-tris-N,N-
dimethylphenyl phosphinimine (4.8) respectively. When the phosphine was added to a
toluene solution of a tolyl azide rapid nitrogen evolution was observed at 25 °C and all
reactions were complete in 16 hours at 25 °C.

Tolyl phosphinimines 4.5-4.6 were isolated as yellow solids and 4.7-4.8 as white
solids. Phosphinimines 4.5-4.8 were characterized with 'H, 1*C, 3P NMR (Table 4.1).
Phosphinimines 4.5-4.8 were synthesized in 1-2 gm scale and obtained in moderate to
high yield. The *'P NMR chemical shift for the isolated phosphinimines falls in the range
of 1.52 to -1.58 ppm which is consistent with the values for the aryl phosphinimines

reported in the literature.!” The single peaks in the *'P NMR from & 1.52 to -1.58 ppm
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indicate a pure product in each case. Interpretation of 'H NMR spectra clearly show the
incorporation of the phosphine moiety in the phosphinimines. Phosphinimines 4.6-4.8
contain two sets of doublet of doublets in the aromatic region illustrating that the 2,6- and

3,5- proton signals are split by both the phenyl proton and the phosphorus nuclei.

Compd. gm %Y. 8(3'P) ppm
4.5 1.0 90 -1.58
4.6 0.9 81 -1.41
4.7 1.7 64 0.98
4.8 1.5 50 1.52

Table 4.1. Yield, % Yield and *'P shifts (C¢Ds) of phosphinimines 4.5-4.8

4. B. 2. Alcohol Activation by p-tolyl-phosphinimines

The interaction of phosphinimines 4.5-4.8 with hydroxyl group is crucial for the
success of the polymerization reaction. To investigate these interactions further, a series
of "TH NMR spectroscopy experiments was conducted in C¢Dg at 25 °C.

B: + HO—R CeDs

25°C
B = base
Figure 4.4. Activation of alcohol with base via hydrogen bonding
We have the —OH proton shift of the 2-(9-anthryl)ethanol for the reported organic
catalyst such as DMAP, TBD and DBU (Table 4.2). These bases were mixed with 2-(9-
anthryl)ethanol in 1:1 ratio in C¢D¢and "H NMR spectra were obtained. 'H NMR spectra

of these mixtures clearly show the —OH proton shifts downfiled in the presence of a
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nitrogen base. (Table 4.2). We utilized three different alcohols 2-(9-anthryl)ethanol, 9-
anthrylmthanol and 1-octadecanol for this initial study. The downfield shift of the alcohol
—OH proton observed for the different alcohols in the presence o the same nitrogen base
are similar in values. DMAP with 2-(9-anthryl)ethanol in 1:1 ratio in C¢Ds shows a
downfield shift of 1.4 ppm. DMAP with 2-(9-anthryl)ethanol or 1-octadecanol shows
1.90 and 1.97 ppm -OH proton shift respectively. TBD with 2-(9-anthryl)ethanol or 1-

octadecanol shows 1.24 and 1.26 ppm -OH proton shift respectively.

Mixture
S6(OH) ppm AS(OH) ppm
Base + Alcohol
DMAP + AnCH2CH20H 2.17 1.40
DMAP + CH3(CH2)16CH20H 1.89 1.90
DMAP + AnCH:20H 2.94 1.97
DBU + AnCH2CH20H 4.84 4.07
TBD + CH3(CH2)16CH20H 4.80 4.24
TBD + AnCH2CH20H 5.03 4.26

Table 4.2. Activation of alcohol with base via hydrogen bonding

Phosphinimines 4.5-4.8 were mixed with 2-(9-anthryl)ethanol (AnOH) in 1:1
ratio in C¢Dg and 'H and 3'P NMR spectroscopy obtained (Scheme 4.9). The downfield
shift of the hydroxyl resonance of the alcohol is the clear indication of the intermolecular
hydrogen bonding between phosphinimines and 2-(9-anthryl)ethanol. 3'P NMR show

single peak for clean reaction.
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AnOH-phosphinimine
complexes

Scheme 4.9. Activation of 2-(9-anthryl)ethanol by phosphinimines

We postulate that observed that 9-anthrylmethanol has shown lower reactivity
than 2-(9-anthryl)ethanol towards ROP of lactide. This may be due to the length of the
alkyl chain between the alcohol and the aromatic ring. The anthrecene functional group is
important because for the polymer end group analysis of the individual chains are
observed by UV. Therefore, we chose 2-(9-anthryl)ethanol for our investigation of —OH
activation by phosphinimines via hydrogen bonding. 2-(9-anthryl)ethanol is crystalline
solid that allows for ease of handing in a glove box. The chemical shift of the —OH proton
of free 2-(9-anthryl)ethanol is observed at 0.77 ppm in CsDs at 25 °C.

However side reaction can occur i.e.; alcohol can completely protonoate the
phosphinimine to give protonated phosphinimine. The side reaction was verified by
protonating tolyl phosphinimine 4.7 and 4.8 with pyridinium tetrafluroforate, [HPy][BF4]
in 1:1 in NMR scale reactions at ambient temperature. The protonated phosphine 4.15
and 4.16 shows single peak in the *'P NMR at 32 ppm and 31.7 ppm in CD>Cl, (Scheme
4.10).

The 'H NMR of mixture DMAP and 2-(9-anthryl)ethanol (1:1) was established in
CDsCls at 25 °C under nitrogen. The -OH peak of free 2-(9-anthryl)ethanol in CsDs
appear at 0.77 ppm in '"H NMR spectroscopy. The addition of phosphinimine 4.5 to 2-(9-
anthryl)ethanol resulted -OH signal shift in the '"H NMR spectroscopy, which indicates
some degree of interaction.
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Scheme 4.10. Synthesis of protonated phosphinimine
The gradual increase of -OH shift in the 'H NMR spectra, going from
phosphinimine 4.5 and 4.6 to phosphinimine 4.7 was observed. Phosphinimine 4.7

resulted in the appearance of a single broad resonance at 6 3.07 ppm, which most likely

represents significantly deshielded alcoholic protons (Table 4.3).

Mixture 8(OH)
3(3P) ppm A3(OH) AS(3P)

Base + Alcohol ppm

4.5+ AnOH 1.61 1.73 0.84 3.31

4.6 + AnOH 2.00 2.79 1.23 4.20
DMAP + AnOH -- -- 1.40 --

4.7+ AnOH 3.07 3.81 2.30 2.83

4.8 + AnOH 2.74 3.92 1.97 2.40

Table 4.3. Alcohol H shift (in blue) by H-hydrogen bonding activation

In contrast, a broad signal is observed at 6 2 ppm in the presence of phosphinimine 4.6.

Most likely, this series of spectra show 2-(9-anthryl)ethanol-phosphinimine complexes in
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different stages of the deprotonation process: the stronger base 4.7 is able to abstract the
proton of the alcohol to a higher degree than 4.5, the weaker base. The electron donating
group dimethylamino (4-NMe,), at 4-postion of phosphine aryl ring was incorporated to
increase the basicity of the phosphinimines. There is no great increase in the basicity
observed going from two 4-NMe» substituted to three 4-NMe; substituted product. The
downfield shift of -OH of 2-(9-anthryl)ethanol 4.5-4.8 were 0.84, 1.23, 2.30 and 1.97
ppm when 2-(9-anthryl)ethanol was reacted with phosphinimines respectively. The
highest -OH shift of 2-(9-anthryl)ethanol was observed in the 4.7 i.e. 2.30 ppm. The
higher number of 4-dimethylamino group in 4-CH3C¢H4N=P(4-CsHsN(CH3)2); 4.8 was
anticipated to result larger -OH shift than 4-CH3C¢H4N=P(4-CsH4sN(CH3)2):Ph 4.7. The -
OH shift of 4.8 was observed lower than 4.7. We consider that steric factor decreases the
-OH shift in case of 4.8. '"H NMR of known system like DBU and TBD was recorded in
CsDgat 25 °C. DBU or TBD was mixed with 2-(9-anthryl)ethanol (AnOH) in 1:1 ratio in
CsDgand "H NMR spectroscopy obtained. The DBU and TBD show the -OH shift of 3.30

and 4.00 ppm shift in the "TH NMR spectroscopy (Scheme 4.9).

4. B. 3. Polymerization of lactide by tolyl-phosphinimines

The catalytic behavior of tolyl phosphinimine 4.5-4.8 in the polymerization of
lactide was studied in deuterated chloroform at 25 °C using 1-pyrene-4-butanol (PyOH)
as the alcohol initiator with 1 equivalents of phosphinimine relative to initiation alcohol
and 100 equivalent of L-lactide. Phosphinimine 4.5-4.8 do not show any catalytic activity
towards ring opening polymerization of lactide when 1 equivalent phosphinimine, 1

equivalent of PyOH and 100 equivalent of L-lactide used for 24 hours at 25 °C under No.
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We tried ROP of lactide using PyOH and 9-anthrylethanol as alcohol initiator and benzyl
bis(4-dimethylaminophenyl)phosphinimine as catalyst. With PyOH as alcohol initiator 95
% conversion in 24 hours in CDCl; of the L-lactide to poly-L-lactide was observed.
Polymerization of L-lactide does not occur when AnOH was used in the similar condition
with PyOH. We consider steric bulk of alcohol plays a role in the ROP of L-lactide.
PyOH as well as 2-(9-anthryl)ethanol both alcohols are solid and easy to handle. We use
2-(9-anthryl)ethanol for most of our alcohol activation reactions. However, 2-(9-
anthryl)ethanol does not show any reactivity with lactide so we used PyOH for all lactide
polymerization reaction. PyOH is expensive ($ 90 per gm) hence we use only in mg scale

polymerization reactions.

OH
1 RS e

1-pyrene-4-butanol (PyOH) 9-anthrylethanol (AnOH)

Figure 4.5. Alcohol initiators for ROP

Even using 4 equivalent of Phosphinimine 4.5-4.7 does not show any catalytic
activity towards ROP of L-lactide for 24 hours at 25 °C under Na. tris(4-
dimethylaminophenyl)phosphinimine 4.8 shows catalytic acitivity towards the ROP of L-
lactide when 4: 1 : 100 (catalyst : PyOH : L-lactide) is used. The rate of ROP is 13 % at 3
hours, 25 % at 9 hours, and 41 % at 24 hrs. The conversion of the lactide monomer to
polylactide chain was measured by the ratio of the integrations of the '"H NMR signal of

the methine proton of the monomer compared to those of the polymers.

4. C. Phenylethyl triarylphosphinimines
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4.C.1. Synthesis of phenylethyl triarylphosphinimines

Series of electron rich phenylethyl phosphimines 4.9-4.12 were synthesized by the
Staudinger reaction of phenylethyl azide and corresponding phosphines respectively.
When phosphines were added to the toluene solution or azides rapid nitrogen evolution
was observed at 25 °C and all reactions were completed in 16 hours at ambient
temperature phenylethyl phosphinimines 4.9-4.10 were isolated as a white solid and 4.11-
4.12 yellow solid. Phosphinimines 4.9-4.12 were characterized with 'H, *C, *'P NMR
(Table 4.1). The *'P NMR chemical shift for the isolated phosphinimines falls in the
range of 4.4-9 ppm which is consistent with the values for the aryl phosphinimines

R

N3 PRR' N=P£FI{R'
CH,Cly, - Ny

25°C, 2-12h 49-412

Scheme 4.11. Synthesis of phosphinimine by Staudinger reaction
reported in the literature.”> Staudinger reaction between phenylethyl azide and
triphenylphosphine  (PPhs) diphenyl(4-dimethylaminophenyl) phosphine; PPhx(4-
CsHaNMe»)2, or phenyl bis(4- dimethyl aminophenyl) phosphine; PPh(4-CsH4sNMe»), or
tris(4-diaminomethylphenyl)- phosphine; P(4-C¢H4NMe2); produce phosphinimines 4.9-

4.12.

4.10
Ph /
) N\ P N
< > /N 2 < > /N 3
4.11 4.12

Figure 4.6. Phenylethyl Phosphinimine 4.8-4.11
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Phenylethyl phosphinimines 4.9-4.12 were synthesized in 1-2 gm scale and obtained
from moderate to high yield. Thus obtained phosphinimines were characterized with 'H,
13C, 3'P NMR (Table 4.3). The single peak of the 3'P NMR from & 0.02 ppm -7.25 ppm

suggest single component in the product obtained.

Compd. Yield(gm) % Yield S(3P) ppm
411 0.8 50 4.4
4,12 0.8 60 5.5
4.13 1.2 60 6.3
4,14 0.8 70 9

Table 4.4. Yield, % Yield and *'P shifts (C¢Ds) of phosphinimines 4.11-4.14

4.C.2. Alcohol activation by phenylethyl phosphinimines

All phosphinimines 4.5-4.8 were mixed with 9-anthrylethanol in 1:1 ratio in
deuterated benzene and 'H and *'P NMR spectroscopy obtained (Table 4.4). The addition
of phosphinimine 4.5 to AnOH resulted -OH signal shift in the '"H NMR spectroscopy,

which indicates some degree of interaction.

_ ' A5-R
N=P; R HO. Ce¢Ds , P
R + O —_— N/
25°C ™
PhI ‘

Scheme 4.12. Activation of phosphinimines with alcohol (AnOH)
The gradual increase of -OH shift in the 'H NMR spectra, going from
phosphinimine 4.9 and 4.10 to phosphinimine 4.11 was observed. Phosphinimine 4.9

resulted in the appearance of a single broad resonance at 6 2.17 ppm, which most likely
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represents significantly deshielded alcoholic protons (entry 4.9, Table 4.4). In contrast, a

broad signal is observed at 6 3.53 ppm in the presence of phosphinimine 4.11. Most

S(3'P) AS(3IP)
Compd. | 8(OH) ppm AS(OH) ppm
ppm ppm
4.11 2.17 4.38 1.40 0.02
4.12 3.10 9.96 2.40 4.46
4.13 4.30 11.60 3.53 5.3
4.14 4.26 16.25 3.49 7.25

Table 4.5. Alcohol H shift (in blue) by H-hydrogen bonding activation

likely, this series of spectra show AnOH-phosphinimine complexes in different stages of
the deprotonation process: the stronger base 4.11 is able to abstract the proton of the
alcohol to a higher degree than 4.10, the weaker base. The downfield shift of the
hydroxyl resonance of the alcohol is the clear indication of the intermolecular hydrogen
bonding between phosphinimines and anthrylethanol. Phenylethyl substituted
phosphinimines enhances basicity vs tolyl substituted as observed in hydroxyl resonance

of the alcohol shift. The least basic phosphinimine i.e; phenylethyltriphenyl
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Figure 4.7. "TH NMR of activation of phosphinimine with alcohol
phosphinimine 4.9 show 1.40 ppm alcohols -OH shift that is comparative with the first
organocatalyst DMAP for ROP of lactide studied by Hendrick et al.

4.C.3. Polymerization of lactide by phenylethyl phosphinimines

The catalytic behavior of phosphinimines towards the polymerization of lactide
was studied in non-hydrogen bonding solvent, deuterated chloroform. 1 equivalent
phosphinimines, 1 equivalent of pyrenebutanol (PyOH) and 100 equivalents of L-lactide
were used, t = 24 hours at 25 °C under N>. Phosphinimine bases 4 equivalents enhance
catalytic activity towards ROP of L-lactide as well as selectivity of the product compared
to 1 equivalent.

The catalytic behavior of phenylethyl trisphenylphosphinimine (PTPP) in the

polymerization of lactide was studied in deuterated chloroform at 25 °C using
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pyrenebutanol as the alcohol initiator with 1 and 4 equivalents of phosphinimine PTPP

relative to initiator alcohol and 100 equivalent of L-lactide at 25 °C under N are shown

o) o)
CDCly OWH\ H
0O —» (e}
@N:p{@) © PyOH +\é)jJ\H\ 25 °C Pyoyj\r 1 9/n
\P)
3 PLLA
4.9 o
L-LA

Scheme 4.13. phosphinimines 4.9 catalyzed ROP of lactide
in the Table 4.6. The catalytic activity of 1 equivalent PTTP show 10 % PLA at 6 hours
and 28 % at 24 hours with 1 equivalent of PyOH and [M]/[I] = 100. 4 equivalents of
PTTP show 60 % PLA in 6 hours 92 % at 24 hours (Figure 4.6).
The side product protonated phosphinimine was observed when 1 equivalent of

phosphinimine was used while 4 equivalent of phosphinimine suppressed the formation

S.N. | Cat.: init.;: L-LA =1:1:100 S.N. | Cat.: init. : L-LA =4:1:100

6 hrs. = 10 % (Protonated
1. 1. 6 hrs. = 60 %

phosphinimine observed)

24 hrs. = 92 % (NO
2. 24 hrs. =28 % 2.
protonated phosphinimine)

Table 4.6. Phosphinimine 4.9 activity toward ROP of lactide

of side product protonated phosphinimine. 4 equivalents of the phosphinimine base
enhance the catalytic activity towards ROP of L-lactide as well as selectivity of the
product compared to 1 equivalent. The catalytic behavior of phenylethyl (4-
dimethylaminophenyl) diphenyl phosphinimine (PDDP) in the polymerization of lactide

was studied in deuterated chloroform at 25 °C using pyrenebutanol as the alcohol initiator
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with 1 and 4 equivalents of phosphinimine PDDP relative to initiator alcohol and 100

equivalent of L-lactide at 25 °C under N».

Ph y Q Q
n H
Phjp_@N \HJ\O oDl OWH\O%
N N +PYOH 4+ 4 25°C 3 n
N3
<:> PLLA

4.10 o
Scheme 4.14. Phosphinimines PDDP catalyzed ROP of lactide

The catalytic activity of 1 equivalent 4.9 show 4 % PLA at 24 hours and 28 % at
24 hours with 1 equivalent of PyOH and [M]/[I] = 100. 4 equivalent of PDDP show 59 %

PLA in 5 minutes 100 % at 30 minutes (Figure 4.7).

Methine region 100 % PLA t = 30 min.
8 =5.15-5.25 ppm A
RN N B
L e B
t =5 min.
PLA I‘ LA
—— A ALk o
1 I T 1 1 1 I T 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 T I 1 1 1 T I 1 1 1 1 I 1
] 7 ] 5 4 3 ) 1

Figure 4.8. '"H NMR showing polylactide (PLA) formation at 5 min and 25 min.

The side product protonated phosphinimine was observed when 1 equivalent of
phosphinimine was used while 4 equivalents of phosphinimine suppressed the formation
DMAP, the first organic catalyst for the ROP of lactide reported that no polymerization

occurred without addition of alcohol nucleophile. Phosphinimine 4.10 also catalyzes the
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phosphinimine

observed)

o Cat. : init. : L- | Cat. :init.: L-LA =4:0:100
S.N. | Cat. :init. : L-LA =1:1:100
LA =4:1:100 (Absence of alcohol)
24 hr = 4 % PLA (protonated 5 min. =12 % PLA
1. 5 min. = 59 %
phosphinimine observed)
PLA
30 min. = 100 %
3 hrs. =100 %
(NO protonated
2. (NO protonated

phosphinimine observed)

Table 4.7. Phosphinimine 4.10 (PDDP) activity toward ROP of lactide

polymerization of LA in the absence of an initiating alcohol with 4 mol % catalyst

loading; LA is polymerized 12% conversion after 5 minutes and 100 % conversion after 3

hours. This is slower than polymerization in the presence of alcohol (100 %, 30 minutes)

//PAr3

R-N /\O PAr3\N O@D

(0] _

oY -

)
O

0} PArs
ROH_ ROMOH + RNTS
0 n

Scheme 4.15. Proposed Nucleophilic activation mechanism

H)\?j\( ]
RN o}
//I, o) n

Ar3P

using phosphinimine 4.10, in agreement with the proposed H bond activation mechanism

is efficient. The mechanism of ROP of lactide was originally proposed via a nucleophilic
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monomer activation mechanism.*2° The computational studies suggest an alcohol

activation mechanism may be favorable.®

Our experiments with phosphinimine bases show that the ROP of lactide proceed
with or without alcohol. However, addition of the alcohol initiator enhances the rate to
the reaction (3 hours vs 30 minutes). Our experiment suggests that both pathways are

accessible for ROP of lactide polymerization.

PAry
@/], /,/PAI'3
R-N R-N®
H_© | o /PAT

Scheme 4.16. Proposed H-bond activation mechanism

The catalytic behavior of phenylethyl-bis(4-N,N-dimethylaminophenyl) phenyl
phosphinimine 4.11 (PDPP) in the polymerization of lactide was studied in deuterated
chloroform at 25 °C using pyrenebutanol as the alcohol initiator with 1 and 4 equivalents
of phosphinimine 4.11 relative to initiator alcohol and 100 equivalent of L-lactide at 25

°C under N; are shown in the Scheme 4.17.

( ) Q 0

N=P N | +PyOH + Q _CDCk Pyo% %O’fn
N2 PLLA

Scheme 4.17. Phosphinimines PDDP catalyzed ROP of lactide
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The catalytic activity of 1 equivalent phosphinimine 4.11 show 25 % PLA at 5 minutes
and 96 % at 24 hours with 1 equivalent of PyOH and [M]/[I] = 100. 4 equivalent of
PDDP show 96 % PLA in 5 minutes Table 4.7.

The side product protonated phosphinimine was observed when 1 equivalent of
phosphinimine was used while 4 equivalents of phosphinimine suppressed the formation

of side product protonated phosphinimine. Phosphinimine Phenylethyl tris-N,N-

S.N. | Cat. :init. : L-LA =1:1:100 Cat. :init. : L-LA = 4:1:100
Smin.=25% 5 min. =96 %

l. (protonated phosphinimine observed) | (NO protonated phosphinimine
6 hrs. =96 % observed)

Table 4.8. Phosphinimine 4.11 activity toward ROP of lactide

dimethyaminolphenyl 4.12 (PTPP) catalyzes the polymerization of L-LA as well
as rac-LA in the in presence of an initiating alcohol; pyrenebutanol with 4 mol % catalyst
loading LA in 5 minutes. Phosphinimine PTTP also catalyzes the polymerization of L-

LA in the presence anthrylethanol as an initiating alcohol.

/ CDCI
N=P N |+pyoH+ LLA — 8 s PLA
orrac-LA 25°C
3 N,
412

Scheme 4.18. Phosphinimines PTPP catalyzed ROP of lactide

However, the reaction rate is slower than that achieved with initiating anthrylethanol
giving i.e. 28 % conversion in 5 minutes. The slow initiation was probably due to the

steric of anthrylalcohol in the closer proximity with the hydroxyl group.
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Commercially available phosphinimine bases 2-tert-butylimino-2-diethylamino-
1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) (Pkgu+(MeCN) = 27.6) and N-
tert-butyl-hexamethylphosphorimidic triamide (P'-t-Bu) have been used for ROP of
lactide. The catalytic activity of BEMP was studied in dry toluene at room temperature
for polymerization with [M]/[I] =100 using pyrenebutanol as the initiator. BEMP (2 mol
%) polymerize L-lactide in 33 hours with 95 % conversion with [M]/[I] =100 using

pyrenebutanol as the initiator. The P!'-t-Bu (1 mol %) polymerize L-lactide in 70 hours

Cat. : 9-
Cat. : init. : L-LA =|Cat. : init. : L-LA /rac-LA
S.N. anthrylethanol: L-LA
1:1:100 = 4:1:100
=4:1:100
5 min. = 28% (sterics)
5 min. = 7% (protonated | 5 min. = 100 % (same with
(protonated
1. phosphinimine observed) rac-LA) (NO protonated
phosphinimine
24 hrs.=9 % phosphinimine observed)
observed)

Table 4.9. Phosphinimine 4.12 activity toward ROP of lactide
with 82 % conversion with [M]/[I] =100 using pyrenebutanol as the initiator.'® The
polymerization activity reported is based on the 'H NMR spectroscopy. However, *'P
NMR of the phosphinimine was not reported in their study. It is not clear whether these
phosphinimines are protonated or not, which is the common side reaction, we observed

with 1 equivalent of phosphinimine in our study.
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Figure 4.9. Chemical structure of phosphinimine bases

4.C.4. Order of reactivity of phenethyl phosphinimines towards ROP of L-LA

(Cat. : initiator : monomer =4 : 1 : 100) /Ar = PhCH>CH>

t = 5 minutes

t = 5 minutes

t = 5 minutes

Tris Bis Mono-4-dimeamino Triphenyl
{@1 / > '.Dhi C / > Fh / @)
Ar—N=P N Ar—N=P N Ar—N:P—@—N Ar—N=pP
N \ ! \
3 , Ph
Least reactive

Most reactive,

H)y=1.4
3(OH) = 3.49 5(OH) =2.4 2O

: d(OH) = 3.53

PTPP (4.12) PDPP (4.11) PDDP (4.10) PTTP (4.9)

t = 5 minutes

L-LA or DL-LA =|PLLA=96% PLLA =59 % PLLA=8%
100 % t= 30 mins. t =24 hrs,
PLA =100% PLA=92%

Table 4.10. Order of reactivity of various phosphinimines
A second method for the ROP of lactide is through bifunctional catalyst system

that makes use of hydrogen bonding to the initiating alcohol as well as electrophilic
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Scheme 4.19. Electrophilic activation by thiourea and H-bonding activation by base

activation of the lactide to facilitate ROP (Scheme 4.20).

Having a cocatalyst that facilitates ester activation towards nucleophilic attack
allows for the use of less basic compounds that cause minimal side reactions during ROP.
The cocatalyst electrostatically interacts with the monomer carbonyl group providing
electrophilic activation for subsequent addition of hydroxyl groups. 4.7 (4 equivalents) in

presence of PyOH in CDCIl3 does not show any catalytic activity toward ROP of lactide.

t=12hr.
L-LA
+ PyBut —> 88 % PLLA
N 3 Nz
H

(4:10:1:100)

Scheme 4.20. Phosphinimines PTTP catalyzed ROP of lactide

The weakly basic tolyl phosphinimine in the presence of thiourea and alcohol
showed catalytic activity. Phospinimine 4.6 alone does not show any catalytic activity but
addition of thiourea, H donor catalyst enhances its activity for ROP of lactide (Scheme
4.21).

4. D. Conclusion
The series of tolyl/phenylethyl phosphinimines are synthesized by Staudinger

reaction between azide and various phosphines 4.5-4.12 in 1-2 gm scale and obtained
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from moderate to high yield. These phosphinimines were characterized with 'H, 1*C, 3'P
NMR. The single peak in the *'P NMR suggests a single component in the product
obtained. In general, the substitution of the electron donating group in the phosphinimine
aryl ring enhances the basicity of the phosphinimines. The correlation between the
basicity of the phosphinimines and the downfield shift of the alcohol hydroxyl group
when activated by phosphinimine was observed. The catalytic activity of these
phosphinimines towards ring opening polymerization of lactide is evaluated by alcohol
hydroxyl proton shift when interact with an alcohol (1:1) in non-hydrogen bonding
solvent CDCI5 at 25 °C under N> atmosphere. These phosphinimines were tested for ROP
of lactides and their correlation with the basicity estimated with alcohol activation was
shown. Phenylethyl phosphinimines 4.9-4.12 represent highly active catalysts for ROP
under N> at ambient temperature. Weakly basic tolyl phosphinimine 4.7 in the presence
of thiourea and alcohol initiator showed catalytic activity. The bifunctioanl catalyst
system makes use of both hydrogen bonding to the initiating alcohol and electrophilic
activation of the cyclic ester to facilitate ROP (Figure 4.21). Having cocatalyst that
facilitates ester activation towards nucleophilic attack allows for the use of less basic
phosphinimines that causes minimal side reactions during ROP. The phosphinimine 4.8
reacts with lactide monomer even in absence of alcohol initiate with reasonable reaction
rate. This experiment revealed that initiating alcohol is not required with phosphinimines
to initiate the ROP of lactide. However, the addition of alcohol enhances the rate of the
reaction. We anticipate that the ease of handling of these catalysts, combined with their

high reactivity on the ROP of lactide will make them useful to the synthetic community.

93



~

10.

REFERENCES

Dove, A. P.; Gibson, V. C.; Marshall, E. L.; Rzepa, H. S.; White, A. J. P
Williams, D. J., Journal of the American Chemical Society 2006, 128 (30), 9834-
0843.

(a) Drumright, R. E.; Gruber, P. R.; Henton, D. E., Advanced Materials 2000, 12
(23), 1841-1846; (b) Gross, R. A.; Kalra, B., Science 2002, 297 (5582), 803-807.
Williams, C. K.; Hillmyer, M. A., Polymer Reviews 2008, 48 (1), 1-10.

Stanford, M. J.; Dove, A. P., Chemical Society Reviews 2010, 39 (2), 486-494.
Platel, R. H.; Hodgson, L. M.; Williams, C. K., Polymer Reviews 2008, 48 (1),
11-63.

Petrus, R.; Sobota, P., Organometallics 2012, 31 (13), 4755-4762.

(a) Chen, H.-Y.; Peng, Y.-L.; Huang, T.-H.; Sutar, A. K.; Miller, S. A.; Lin, C.-C.,
Journal of Molecular Catalysis a-Chemical 2011, 339 (1-2), 61-71; (b) Chuang,
H. J.; Weng, S. F.; Chang, C. C.; Lin, C. C.; Chen, H. Y., Dalton Transactions
2011, 40 (37), 9601-9607.

Sodergard, A.; Stolt, M., Progress in Polymer Science 2002, 27 (6), 1123-1163.
Carothers, W. H.; Dorough, G. L.; Natta, F. J. v., Journal of the American
Chemical Society 1932, 54 (2), 761-772.

Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.;

Hedrick, J. L., Chemical Reviews 2007, 107 (12), 5813-5840.

94



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.;
Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J.
R.; Murphy, R.; Templer, R.; Tschaplinski, T., Science 2006, 311 (5760), 484-489.
Hormnirun, P.; Sumrit, P., Abstr. Pap. Am. Chem. Soc. 2014, 248, 1.

Wheaton, C. A.; Hayes, P. G.; Ireland, B. J., Dalton Transactions 2009, (25), 4832-
4846.

Dijkstra, P. J.; Du, H. Z.; Feijen, J., Polymer Chemistry 2011, 2 (3), 520-527.
Thomas, C. M., Chemical Society Reviews 2010, 39 (1), 165-173.

Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W., Journal of the
American Chemical Society 1999, 121 (49), 11583-11584.

Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.;
Coates, G. W., Journal of the American Chemical Society 2001, 123 (14), 3229-
3238.

(a) Chisholm, M. H.; Patmore, N. J.; Zhou, Z. P., Chem. Commun. 2005, (1), 127-
129; (b) Cai, C. X.; Amgoune, A.; Lehmann, C. W.; Carpentier, J. F., Chem.
Commun. 2004, (3), 330-331.

(a) Ryner, M.; Stridsberg, K.; Albertsson, A. C.; von Schenck, H.; Svensson, M.,
Macromolecules 2001, 34 (12), 3877-3881; (b) Kricheldorf, H. R.; Kreiser-
Saunders, I.; Stricker, A., Macromolecules 2000, 33 (3), 702-709.

Coates, G. W., Chemical Reviews 2000, 100 (4), 1223-1252.

(a) Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.; Mehrkhodavandi, P.,

Organometallics 2009, 28 (5), 1309-1319; (b) Williams, C. K.; Breyfogle, L. E.;

95



22.

23.

24.

25.

26.

Choi, S. K.; Nam, W.; Young, V. G.; Hillmyer, M. A.; Tolman, W. B., Journal of
the American Chemical Society 2003, 125 (37), 11350-11359.

(a) Darensbourg, D. J.; Choi, W.; Karroonnirun, O.; Bhuvanesh, N.,
Macromolecules 2008, 41 (10), 3493-3502; (b) Chisholm, M. H.; Gallucci, J. C.;
Phomphrai, K., Inorganic Chemistry 2004, 43 (21), 6717-6725; (c) Ho, S. M.;
Hsiao, C. S.; Datta, A.; Hung, C. H.; Chang, L. C.; Lee, T. Y.; Huang, J. H.,
Inorganic Chemistry 2009, 48 (16), 8004-8011; (d) Wanna, N.; Kraithong, T.;
Khamnaen, T.; Phiriyawirut, P.; Charoenchaidet, S.; Tantirungrotechai, J.,
Catalysis Communications 2014, 45, 118-123; (e) Hsiao, M. W.; Wu, G. S.; Huang,
B. H.; Lin, C. C., Inorganic Chemistry Communications 2013, 36, 90-95; (f) Hsiao,
M. W.; Lin, C. C., Dalton Transactions 2013, 42 (6), 2041-2051; (g) Clark, L.;
Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Mountford, P.; Townley, J. P.; Wang,
J., Dalton Transactions 2013, 42 (25), 9294-9312.

Garces, A.; Sanchez-Barba, L. F.; Fernandez-Baeza, J.; Otero, A.; Honrado, M.;
Lara-Sanchez, A.; Rodriguez, A. M., Inorganic Chemistry 2013, 52 (21), 12691-
12701.

Chapurina, Y.; Klitzke, J.; Casagrande, O.; Awada, M.; Dorcet, V.; Kirillov, E.;
Carpentier, J. F., Dalton Transactions 2014, 43 (38), 14322-14333.

Klitzke, J. S.; Roisnel, T.; Kirillov, E.; Casagrande, O. D.; Carpentier, J. F.,
Organometallics 2014, 33 (1), 309-321.

(a) Zheng, X.-X.; Zhang, C.; Wang, Z.-X., Journal of Organometallic Chemistry

2015, 783, 105-115; (b) Gao, B.; Li, X.; Duan, R.; Duan, Q.; Li, Y.; Pang, X_;

96



28.

29.

30.

31.

32.

33.

34.

35.

Zhuang, H.; Chen, X., RSC Advances 2015, 5 (37), 29412-29419; (¢) Yi, W.; Ma,
H. Y., Dalton Transactions 2014, 43 (13), 5200-5210.

Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Williams, D. J., Chem.
Commun. 2001, (03), 283-284.

(a) Small, B. L.; Brookhart, M., Journal of the American Chemical Society 1998,
120 (28), 7143-7144; (b) Killian, C. M.; Tempel, D. J.; Johnson, L. K.; Brookhart,
M., Journal of the American Chemical Society 1996, 118 (46), 11664-11665.
Darensbourg, D. J.; Karroonnirun, O., Inorganic Chemistry 2010, 49 (5), 2360-
2371.

Zhang, C.; Sun, W. H.; Wang, Z. X., Eur. J. Inorg. Chem. 2006, (23), 4895-4902.
Hung, W. C.; Huang, Y .; Lin, C. C., J. Polym. Sci. Pol. Chem. 2008, 46 (19), 6466-
6476.

(a) Jensen, T. R.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B., Chem.
Commun. 2004, (21), 2504-2505; (b) Jensen, T. R.; Schaller, C. P.; Hillmyer, M.
A.; Tolman, W. B., Journal of Organometallic Chemistry 2005, 690 (24-25), 5881-
5891.

Fliedel, C.; Vila-Vicosa, D.; Calhorda, M. J.; Dagorne, S.; Aviles, T.,
Chemcatchem 2014, 6 (5), 1357-1367.

Piedra-Arroni, E.; Brignou, P.; Amgoune, A.; Guillaume, S. M.; Carpentier, J. F.;
Bourissou, D., Chem. Commun. 2011, 47 (35), 9828-9830.

Spassky, N.; Wisniewski, M.; Pluta, C.; LeBorgne, A., Macromolecular Chemistry

and Physics 1996, 197 (9), 2627-2637.

97



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T., Chemistry-a European Journal
2007, 13 (16), 4433-4451.

Zhong, Z. Y .; Dijkstra, P. J.; Feijen, J., Angewandte Chemie-International Edition
2002, 41 (23), 4510-+.

Tang, Z. H.; Gibson, V. C., European Polymer Journal 2007, 43 (1), 150-155.

(a) Tang, Z.; Gibson, V. C., European Polymer Journal 2007, 43 (1), 150-155; (b)
Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J.,
Journal of the American Chemical Society 2004, 126 (9), 2688-2689.

Ovitt, T. M.; Coates, G. W., Journal of the American Chemical Society 2002, 124
(7), 1316-1326.

Ovitt, T. M.; Coates, G. W., J. Polym. Sci. Pol. Chem. 2000, 38, 4686-4692.
Ovitt, T. M.; Coates, G. W., Stereoselective ring-opening polymerization of meso-
lactide: Synthesis of syndiotactic poly(lactic acid). Journal of the American
Chemical Society 1999, 121 (16), 4072-4073.

Bian, S.; Abbina, S.; Lu, Z. L.; Kolodka, E.; Du, G. D., Organometallics 2014, 33
(10), 2489-2495.

Garcia-Valle, F. M.; Estivill, R.; Gallegos, C.; Cuenca, T.; Mosquera, M. E. G.;
Tabernero, V.; Cano, J., Organometallics 2015, 34 (2), 477-487.

Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. 1., Chemical
Communications 2002, (7), 744-745.

Burns, C. T.; Shang, S. S.; Thapa, R.; Mashuta, M. S., Tetrahedron Letters 2012,

53 (36), 4832-4835.

98



47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Burns, C. T.; Shang, S. S.; Mashuta, M. S., Organometallics 2015, 34 (10), 1844-
1854.

Wallis, C. J.; Kraft, I. L.; Patrick, B. O.; Mehrkhodavandi, P., Dalton Transactions
2010, 39 (2), 541-547.

Bassin, J. P.; Cremlyn, R. J.; Swinbourne, F. J., Phosphorus Sulfur and Silicon and
the Related Elements 1991, 56 (1-4), 245-275.

Miller, S. C., Journal of Organic Chemistry 2010, 75 (13), 4632-4635.

Blackburn, C.; Achab, A.; Elder, A.; Ghosh, S.; Guo, J. P.; Harriman, G.; Jones,
M., Journal of Organic Chemistry 2005, 70 (24), 10206-10209.

Braun, T. P.; Gutsch, P. A.; Zeitschrift Fur Naturforschung Section B-a Journal of
Chemical Sciences 1999, 54 (7), 858-862.

Farrugia, L. J., J. Appl. Crystallogr. 1997, 30.

Taft, R. W.; Bordwell, F. G., Accounts of Chemical Research 1988, 21 (12), 463-
469.

(a) Xu, X.; Chen, Y. F.; Zou, G.; Ma, Z.; Li, G. Y., Journal of Organometallic
Chemistry 2010, 695 (8), 1155-1162; (b) Tsai, Y. H.; Lin, C. H.; Lin, C. C.; Ko, B.
T., J. Polym. Sci. Pol. Chem. 2009, 47 (19), 4927-4936.

(a) Abbina, S.; Du, G. D., Acs Macro Letters 2014, 3 (7), 689-692; (b) Yao, W.;
Xue, Y. Z.; Liu, T. T.; Gao, A. H.; Wang, Y. F., Chemical Research in Chinese
Universities 2014, 30 (1), 87-90.

Nederberg, F.; Connor, E. F.; Moller, M.; Glauser, T.; Hedrick, J. L., Angewandte

Chemie-International Edition 2001, 40 (14), 2712-2715.

99



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Macromolecules 2010, 43 (5), 2093-
2107.

Bonduelle, C.; Martin-Vaca, B.; Cossio, F. P.; Bourissou, D., Chemistry-a
European Journal 2008, 14 (17), 5304-5312.

Myers, M.; Connor, E. F.; Glauser, T.; Mock, A.; Nyce, G.; Hedrick, J. L., Journal
of Polymer Science Part a-Polymer Chemistry 2002, 40 (7), 844-851.

Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove,
A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L.,
Macromolecules 2006, 39 (25), 8574-8583.

Chuma, A.; Horn, H. W.; Swope, W. C.; Pratt, R. C.; Zhang, L.; Lohmeijer, B. G.
G.; Wade, C. G.; Waymouth, R. M.; Hedrick, J. L.; Rice, J. E., Journal of the
American Chemical Society 2008, 130 (21), 6749-6754.

Kazakov, O. 1; Datta, P. P.; Isajani, M.; Kiesewetter, E. T.; Kiesewetter, M. K.,
Macromolecules 2014, 47 (21), 7463-7468.

Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L.,
Journal of the American Chemical Society 2006, 128 (14), 4556-4557.

Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L.,
Journal of the American Chemical Society 2005, 127 (40), 13798-13799.

Brown Hayley, A.; De Crisci, A. G.; Hedrick, J. L.; Waymouth, R. M., ACS
MACRO LETTERS 2012,1 (9), 1113-1115.

Stukenbroeker, T. S.; Bandar, J. S.; Zhang, X.; Lambert, T. H.; Waymouth, R. M.,
ACS Macro Letters 2015, 853-856.

Kim, E.; Jang, J.; Chung, J. S., Macromolecular Research 2014, 22 (8), 864-869.

100



69.

70.

71.

72.

Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C.
G., Macromolecules 2007, 40 (12), 4154-4158.

Stephan, D. W.; Stewart, J. C.; Guerin, F.; Courtenay, S.; Kickham, J.; Hollink, E.;
Beddie, C.; Hoskin, A.; Graham, T.; Wei, P. R.; Spence, R. E. V.; Xu, W.; Koch,
L.; Gao, X. L.; Harrison, D. G., Organometallics 2003, 22 (9), 1937-1947.
Kennedy, R. D., Chemical Communications 2010, 46 (26), 4782-4784.

du Boullay, O. T.; Marchal, E.; Martin-Vaca, B.; Cossio, F. P.; Bourissou, D.,

Journal of the American Chemical Society 2006, 128 (51), 16442-16443.

101



EXPERIMENTALS

Experimental Section 1: Ligand synthesis
(Chapter 2)

General Experimental

All manipulations were performed under nitrogen or vacuum using Schlenk or
high vacuum techniques or in a nitrogen-filled dry box. Nitrogen was purified by
passage through columns containing activated molecular sieves and Q-5 oxygen
scavenger. Pentane, hexanes, toluene, benzene, and dichloromethane were purified by
passage through columns of activated 4 A molecular sieves. Diethyl ether and
tetrahydrofuran were distilled from Na/benzophenone ketyl. CDCIl; and CD,Cl, were
dried over CaH,, degassed by freeze-pump-thaw cycles, and vacuum transferred to a
storage vessel. N,N-dimethylethylenediamine, PPh;, ZnEt,, ZnMe, (2.0 M in toluene)
were used as received from Aldrich. DL-Lactide (99 %) was used as received from Alfa
Aesar and stored in a nitrogen filled dry box at — 35 °C.  2-Amino-5-
methylbenzenesulfonyl chloride.*® (2.5) was prepared as described in the literature. All
other reagents and solvents were purchased from Aldrich and used without further
purification. 'H, C, >'P NMR spectra were recorded in Teflon valve sealed tubes on
Varian 400 and 500 spectrometers at ambient probe temperature unless otherwise

indicated. 'H and Bc chemical shifts are reported
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versus SiMe, and were determined by reference to the residual 'H and °C solvent peaks.
3P chemical shifts were referenced to external 85% aqueous H;POs.
X-ray crystallography

Crystals of 2.11 were grown by slow diffusion of hexanes into a solution of 4
dissolved in CH,Cl,. A colorless plate 0.39 x 0.19 x 0.08 mm3 crystal of 2.11 was
mounted on a glass fiber for collection of x-ray data on an Agilent Gemini CCD
diffractometer. software package (Version 1.171.36.32) was used to acquire a total of 249
thirty-second frame w-scan exposures of data at 100K to a 26 max = 55.56° using
monochromated MoKa radiation (0.71073 A) from a sealed tube. Frame data were

processed using CrysAlis PRO to determine final unit cell parameters: a = 16.3456(3)
A, b=17.2317(3) A, ¢ = 18.5291(3) A, a=p=y= 90°, V = 5206.7(5) A3, Deyc = 1.321
Mg/m3, Z = 8 to produce raw hkl data that were then corrected for absorption

(transmission min./max. = 0.982/1.000; uw= 0.218 mm'l) using SCALE3 ABSPACK in
CrysAlis PRO. The structure was solved by Patterson methods in the space group Pbca
and refined by least squares methods on F* using SHELXTL, All non-hydrogen atoms
were refined with anisotropic atomic displacement parameters. The amine hydrogen
atom was located by difference maps and refined isotropically, as were the methylene and
phenyl hydrogen atoms. Methyl hydrogen atoms were calculated and allowed to ride on
the attached C atom, and these atoms were assigned U(H) = 1.5 x Ueq. For all 6186
unique reflections (R(int) 0.042) the final anisotropic full matrix least-squares refinement

on F? for 420 variables converged at R1 = 0.037 and wR2 = 0.088 with a GOF of 1.04.
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Crystals of 3.7 suitable for x-ray analysis were grown by slow diffusion of

anhydrous hexanes into a solution of 9 dissolved in anhydrous chlorobenzene. X-ray

structural analysis for 9 was performed on a 0.38 x 0.28 x 0.18 mm3 colorless prism
using a similar data acquisition strategy described above for 4 to acquire a total of 1,256
twenty-second frame w-scan exposures at 100 K to a 20 = 56.32°. 9 crystallizes in the

monoclinic space group I/a with unit cell parameters: a = 17.73980(18) A, b =
16.25738(12) A, ¢ = 23.6267(2) A, = 110.4401(11)°, V = 6384.98(10) A3, Z =4 and
Deac = 1.312 Mg/m3- 15,632 raw independent data were corrected for absorption

(transmission min./max. = 0.802/1.000; u = 0.942 mm‘l) using SCALE3 ABSPACK.
The structure contains two independent molecules of the complex 6 and one 0.60
occupancy chlorobenzene solvate molecule in the asymmetric unit. All non-hydrogen
atoms were refined with anisotropic atomic displacement parameters. All hydrogen
atoms were placed in their geometric equivalent positions and included as fixed
contributions. For all 15,632 unique reflections (R(int) 0.035) the final anisotropic full
matrix least-squares refinement on F> for 726 variables converged at R1 = 0.036 and wR2
=0.102 with a GOF of 1.08 and an absolute structure (Flack) parameter of -0.006(6).

Compounds 2.11 and 3.7, their precursors, and corresponding zinc complexes
bear a sulfonated toluidine parent structure which has an atom-labeling scheme as
follows:

@24 X = NHR (R = CH,CH,NMe,; CH,CH,0H)
° 6 15_x Y = NH,, N3, PhgP=N-

Za\

0" o
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Preparation of compounds

NH, I 2-NH,-5-CH;3C¢H3SO,NH(CH;);N(CH3); (2.9). To a solution of
O//S\\O“H/\/N\ DABCO (2.27 g, 20.27 mmol) and N,N-dimethylethylenediamine
(2.02 mL, 18.43 mmol) in CH,Cl, (112 mL), 2-Amino-5-methylbenzenesulfonyl chloride
(3.79 g, 18.43 mmol) was added in portions at 0 °C. A brown solution was observed.
After 30 minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours,
affording a white suspension. The suspension was separated using a silica gel plug (25 g)
and 9:1 solution of CH,Cl,/MeOH. The fractions (50 mL) were analyzed by UV-Vis,
and those that contained the product (Ry= 0.18) were combined and dried under vacuum
yielding 2 as a dark yellow viscous oil (4.31 g, 91%). 'H NMR (CDCl): & 7.49 (s, 1H,
6-CH of -C¢H3S0,-), 7.10 (dd, J = 7.2, 1.2, 1H, 4-CH of -C¢H3S0,-), 6.64 (d, J = 8.4,
1H, 3-CH of -C¢H3S0;-), 4.69 (bs, 2H, NH,), 2.88 ( m, 2H, -NHCH,CH,;N(CHs),), 2.28
(m, 2H, -NHCH,CH>N(CH3),), 2.24 (s, 3H, 5-CH; of -C¢H3SO»-), 2.06 (s, 6H, -
NHCH,CH,N(CH;),. *C NMR (CDClLy): § 142.8, 134.9, 129.5, 127.1, 121.1, 117.6,
56.7,44.6,40.1, 20.1.
2-N3-5-CH;3C¢H3SO;NH(CH;);N(CH3); (2.10). To a flask

N3
:s /\/,!, containing 2.9 (4.09 g, 15.90 mmol) cooled to 0 °C, a mixture of
—N ~N

oM 5ml water and 5.60 mL HBF, (48% aqueous solution, 42.96 mmol)
precooled to 0 °C was added (This and all other following manipulations in this reaction
were performed in air). After 15 minutes, a solution of NaNO; (1.2 g, 17.50 mmol) in
water (5 mL) precooled to 0 °C was added dropwise with vigorous stirring. A red color

solution was formed immediately. The mixture was stirred for 1 hour at 0 °C. Urea
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(0.18g, 2.97 mmol) was added and stirred for 15 minutes at 0 °C. Charcoal (0.09 g) was
added and stirred for 10 minutes at 0 °C. A red solution was obtained after a rapid
filtration and kept at 0 °C. With vigorous stirring, a 0 °C solution of NaNj3 (1.76 g, 27.05
mmol) dissolved in water (5 mL) was added dropwise to the red solution. The mixture
was stirred for 1 hour at 0 °C and 12 hours at 25 °C. After stirring at 25 °C for 12 hours,
a tan suspension was obtained. A tan solid was isolated by vacuum filtration and washed
with 30 mL 10% K,COs solution at 25 °C. The red solid was dissolved in 100 mL
diethyl ether and dried with Na,SO4. The Na,SO4 was filtered off and the volatiles were
removed under vacuum affording 3 as a tan solid (3.5 g, 64%). 'H NMR (CDClLs): § 7.79
(s, 1H, 6-CH of -C¢H3S0,-), 7.39 (dd, J = 8.4, 1.2, 1H, 4-CH of -C¢H3S0,-), 7.18 (d, J =
8,1H, 3-CH of -C¢H3SO-), 5.56 (bs, 1H, NH), 291 (t, 2H, J = 5.6, 2H, -
NHCH,CH,N(CH3)), 2.38 (s, 3H, 5-CH; of -C¢H3SO»-), 2.32 (t, 2H, J = 5.6, -
NHCH,CH>N(CHs),), 2.12 (s, 6H, -NHCH,CH,N(CH;),). *C NMR (CDCL): § 135.0,
134.8,134.4,131.2, 129.2, 119.1, 56.9, 44.7, 40.5, 20.7.

pn Ph 2-((C6H5)3P=N)-5-CH3C6H3SOzNH(CH2)2N(CH3)2 (2.11). To a

,P—Ph
@-N | solution of PhsP (2.94 g, 11.22 mmol) in toluene (20 mL) at 0 °C,
~_N

~

7 H azide 2.10(2.89 g, 10.19 mmol) dissolved in toluene (10 mL) was
added via cannula. A clear yellow solution was observed immediately after addition was
completed. After stirring for 10 minutes at 0 °C the ice bath was removed and the
solution was allowed to warm to 25 °C. A white suspension was observed after the
reaction was stirred for 12 hours at 25 °C. Compound 4 was obtained after vacuum
filtration and Et,O washes (3 x 10 mL) as a white solid (4.6 g, 87%). "H NMR (CD,CL):
0 7.75 (m, 6H, 2,6-CH of (C¢Hs)3P=N-), 7.59 (m, 4H, 4-CH of (CsHs);P=N- and 6-CH of

_CgH380,-), 7.49 (m, 6H, 3,5-CH of (CsHs)sP=N-), 6.96 (bt, J = 6, 1H, -SO,NHCH,-),
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6.82 (dd, J = 8.4, 2, 1H, 4-CH of -C¢H3S0,-), 6.38 (d, J = 8.4, 1H, 3-CH of -CsH3S0,-),

2.85 (m, 2H, 2H, -NHCH,CH,;N(CH3),), 2.28 (t, J = 6.4, 2H, -NHCH,CH,N(CH3),), 2.20

(s, 3H, 5-CH; of -C¢H3S05-), 1.91 (s, 6H, -NHCH,CH,N(CHs),). *'P NMR (CD,Cl): &

8.8. 3C NMR (CD>CL): & 146.8, 133.2, 132.5 (d, Jpc = 9.9), 132.1 (d, Jpc = 2.3), 130.3,

129.3, 129.2, 128.8 (d, Jpc = 11.3), 125.8, 122.1 (d, Jec = 10.7), 58.1, 44.9, 41.4, 19.9.

Crystal data and structure refinement for 2.11

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 27.87°
Absorption correction

Max. and min. transmission
Refinement method
Data / restraints / parameters

Goodness-of-fit on F2
Final R indices [[>2sigma(])]

ctb13lta

C29H32N302PS

517.61

100.05(10) K

0.71073 A

Orthorhombic

Pbca

a=16.3430(3) A a=90°.
b=17.2015(14) A p=90°.
c=18.5209(4) A v =90°.
5206.7(5) A3

8

1.321 Mg/m3

0.218 mm-!
2192

0.39 x 0.19 x 0.08 mm3

3.44 t0 27.87°.

-21<=h<=21, -22<=k<=22, -23<=<=24
32739

6186 [R(int) = 0.0420]

99.6 %

Semi-empirical from equivalents

1.000 and 0.982

Full-matrix least-squares on F2
6186/0/420

1.044
R1=0.0371, wR2 =0.0882
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R indices (all data) R1=0.0497, wR2 = 0.0962
Largest diff. peak and hole 0.411 and -0.442 ¢.A-3

2-NH2-5-CH3C6H3SOZNCH3(CH2)2OH (2.6). Toa SOlutiOH Of 1,4-

—< \>—NH2
N ~OH Diazabicyclo[2.2.2]octane (2.9 g, 25.04 mmol) and N-

O// \\O \
cHs methylaminoethanol (2 mL, 21.9 mmol) in dichloromethane (120

mL), 2-amino-5-methyl sulfonylchloride (5.15 g, 25.04 mmol) added portionwise. A
brown solution was observed. The brown reaction mixture stirred for 12 hours at 25 °C.
A brown suspension was observed after stirring 12 hours at 25 °C. The suspension was
separated using a silica gel plug (25 g) with a 7:3 solution of CH,Cl,:hexanes (200 mL)
followed by a 7:3 solution of CH,Cl:EtOAc (200 mL). The 50 mL fractions were
analyzed by UV-Vis, and those that contained the product were combined and dried
under vacuum yielding 5 as yellow oil (5.4 g, 88%). 'HNMR (CDCls): & 7.44 (s, 1H, 6-
CH),7.13 (d,J= 8.4, 1H, 4-CH), 6.67 (d, /= 8.8,1H, 3-CH), 4.82 (bs, 2H, NH>), 3.70 (t,
J=5.6, 2H, -SO,N(CH3)CH>-), 3.29 (t, J = 5.6, 2H, -SO,N(CH3)CH,CH>-), 2.83 (s, 3H,
5-CH;CeHs), 2.25 (s, 3H, -SO,N(CH3)CH,-). >C NMR (CDCly): & 142.9, 135.3, 129.9,
127.6, 119.8.1, 118.3, 59.6, 51.6, 44.6, 34.9, 20.6.

2-N3-5-CH;3C¢H3SO;NCH;3(CH>),OH (2.7). To a flask containing

4< \>*N3
s—N-~OH 2.6 (5.38 g, 22.02 mmol) cooled to 0 °C, a mixture of 8ml water

7\

O o cH
’ and 7.77 mL HBF, (48% aqueous solution) precooled to 0 °C was

added (all manipulations are performed in air). After 15 minutes, a solution of NaNO,
(1.2g, 17.5 mmol) in water (5 mL) precooled to 0 °C was added dropwise with vigorous
stirring. A yellow color solution was formed immediately. The mixture was stirred for 1
hour at 0 °C. Urea (0.29g, 4.8 mmol) added and stirred for 15 minutes. Charcoal added

and stirred for 10 minutes. Clear yellow solution was obtained after quick filtration. With
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vigorous stirring, a cold solution of NaNj3 (2.4 g, 37.4 mmol) in water (8 mL) was added
dropwise to the yellow solution. The mixture stirred for 1 hour at 0 °C and 1 hour at 25
°C. The reaction mixture was extracted with diethyl ether (3 X 30 mL). The organic
layers were combined and dried over Na,SO4 was filtered off and the volatiles were
removed under vacuum affording compound 6 as a yellow viscous oil. (5.3 g, 88%)
'HNMR (CDCls): & 7.76 (s, 1H, 6-CH ), 7.36 (dd, J = 8.4, 1.2, 1H, 4-CH), 7.14 (d, J =
8.4,1H, 3-CH), 3.76 (t, J = 5.2, 2H, -SO,N(CH3)CH>-), 3.38 (t, J = 5.2, 2H, -
SO,;N(CH3)CH,CH>-), 2.91(s, 3H, -SO,N(CH3)CHz-), 2.35 (s, 3H, 5-CH3CsHs), 2.26 (

bs, 1H, OH). °C NMR (CDCly): § 135.2, 134.9, 134.6, 132.1, 128.8, 119.8, 60.4, 52.3,

35.7,20.7.
ph Ph 2-((C6H5)3P=N)-5-CH3C6H3SOZNCH3(CHz)zOH (2.8). To a
P—Ph
N solution of azide 2.7 (3.85 g, 13.98 mmol) in toluene (40 mL),
) ‘N/\/OH
0’0 CH, triphenylphosphine (3.12 g, 14.67 mmol) was added and a clear

yellow solution was observed. The reaction mixture was stirred for 12 hours at 25 °C. A
white suspension was observed after stirring 12 hours at 25 °C. A white solid was
obtained by vacuum filtration and washed with Et,O (3 x 20 ml) affording 7 (4.1 g, 60%).
'HNMR (CDCl): § 7.77 (m, 7H, 2,6-CH of (C¢Hs);P=N- and 6-CH of -CsH3S0,-), 7.54
(3H, 4-CH of (C¢Hs);P=N-), 7.45 (m, 6H, 3,5-CH of (C¢Hs)3:P=N-), 6.79 (dd, J=10.4, 2,
4-CH of -C¢H3S0,-), 6.38 (dd, J =9.2, 0.8, 3-CH of -CcH3S0,-), 4.41 (s, OH), 3.45 (t, J
=104, 5.2, 2H, -SO,N(CH3)CH>-), 3.29 (t, J = 10, 5.2, 2H, -SO,N(CH;3)CH,CH>-),
2.81(s, 3H, -SO,N(CH;3)CH,-), 2.17 (s, 3H, 5-CH3C¢Hs). *'P NMR (CDCls): 8 8.5. °C
NMR (CDCl): & 148, 134, 132.7 (d, J = 36.4), 132.0 (d, J = 8.8), 130.2, 129.7(d, J =

88.4), 129.2, 128. 8 (d, J=48.8), 126.2, 123.7 (d, J = 45.6), 58.6, 51.0, 32.9, 20.2
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Experimental Section 2: Zinc complexes synthesis
(Chapter 3)

0 0 [1’-2-((CsHs);P=N)-5-CH3CsH3SO,N(CH;),N(CH3),]ZnEt  (3.7).
\@sz\n\_,\,\_ A milky suspension of 2.11 (1.00 g, 1.93 mmol) in toluene (50 mL)
Ph’E'h'Ph was frozen at -196 °C using liquid nitrogen. To the frozen suspension

was added 2.9 mL of a Et;Zn solution (1M in toluene, 2.89 mmol). After the Et,Zn
addition, the liquid nitrogen bath was removed and the reaction mixture was allowed to
warm slowly to 25 °C. After 30 minutes the reaction mixture had warmed to 25 °C and
was a white suspension. The reaction mixture was allowed to stir at 25 °C for 12 hours.
After 12 hours at 25 °C, the solvent was removed in vacuum leaving a white solid. The
white solid was washed with dry hexanes (2 x 20 mL) and the wash solutions were
removed by syringe. The residual solvent was removed under vacuum to yield 8 as a
white solid (1.1 g, 92%). "HNMR (CD>CL): & 7.99 (m, 6H, ortho -CH of (C¢Hs);P=N-),
7.65 (s, 1H, 6-CH of -CsH3S0O,-), 7.60 (m, 3H, para -CH of (C¢Hs);P=N-), 7.52 (m, 6H,
meta -CH of (C¢Hs);P=N-), 6.69 (d, J = 7.6, 1H, 4-CH of -CcH3S0,-), 6.46 (d, J = 8.4,
1H, 3-CH of -C¢H3S0,-), 3.11 (bs, 2H, -NHCH,CH,N(CHs),), 2.18 (s, 3H, 5-CH3 of -
CeH3S0;,-), 1.96 (bs, 8H, -NHCH,CH,N(CH3), and -NHCH,CH,N(CHjs),), 0.67 (t, J =8,
3H, -ZnCH,CH3), -0.88 (q, J = 8, 2H -ZnCH,CH3). '"HNMR (CD,Cl,, -60 °C): & 8.03
(m, 6H, ortho -CH of (CsHs);P=N-), 7.63 (m, 3H, para -CH of (C¢Hs);P=N-), 7.60 (s, 1H,
6-CH of -C¢H3S0,-), 7.55 (m, 6H, meta -CH of (C¢Hs);P=N-), 6.70 (d, J =8, 1H, 4-CH
of -C¢H3SO,-), 649 (d, J = 8, 1H, 3-CH of -C¢H3SO,-), 3.19 (m, 1H, -
NHCH,CH;N(CH3),), 3.03 (m, 1H, -NHCH,CH,N(CHj3),), 2.16 (s, 6H, 5-CH;3 of -

C6H3SOQ- and -NCH3 of -NHCHzCHzN(CH3)2), 1.96 (I’Il, IH, -NHCHQCHQN(CH3)2),
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1.81 (s, 3H, -NCH; of -NHCH,CH,N(CH3),), 1.62 (m, 1H, -NHCH,CH,N(CH3),), 0.57
(t, J = 8.5, 3H, -ZnCH,CH;), -0.91 (m, 1H -ZnCH>CH3), -1.20 (m, 1H -ZnCH,CHj).
'HNMR (CD,Cl,, 45 °C): & 8.00 (m, 6H, ortho -CH of (C¢Hs);sP=N-), 7.68 (s, 1H, 6-CH
of -CsH3S0O,-), 7.62 (m, 3H, para -CH of (C¢Hs);P=N-), 7.53 (m, 6H, meta -CH of
(CeHs);:P=N-), 6.70 (dd, J = 8.4, 2, 1H, 4-CH of -C¢H3S0,-), 6.47 (dd, J = 8.4, 2, 1H, 3-
CH of -C¢H380,-), 3.13 (t, J = 5.6, 2H, -NHCH,CH,N(CHs),), 2.20 (s, 3H, 5-CHs of -
CeH3S0,-), 1.98 (bs, 6H, -NHCH,CH,N(CH),), 1.86 (bs, 2H, -NHCH,CH,N(CHj3),),
0.70 (t, J = 8.4, 3H, -ZnCH,CH3), -0.86 (q, J = 8.4, 2H -ZnCH,CH3). *'P NMR
(CD,CL): 8 26.4. *'P NMR (CD,Cl, -60 °C): & 26.4. *'P NMR (CD,Cl, 45 °C): 8
26.4. “C NMR (CD,CL): 8 143.0 (d, Joc = 3.8), 139.5 (d, Jec = 12.9), 133.7 (d, J = 9.9),
132.6 (d, Joc = 2.3), 130.5, 130.3, 128.7 (d, J = 12.2), 127.6, 126.7, 126.2 (d, J = 7.6),
59.6, 45.8, 43.8, 20.2, 13.0 (ZnCH,CHj3), -0.57 (ZnCH-CH;). >C NMR (CD,Cl, -60
°C): § 142.8, 133.8 (d, Jpc = 9.1), 133.0, 130.8, 130.7, 129.0 (d, Jpc = 12.1), 128.6, 128.3,
1263 (d, Joc = 8.4), 1262 (d, Jec = 110.2), 125.4, 78.0, 59.4, 43.9, 20.5, 13.7

(ZnCH,CHs), -0.90 (ZnCH>CH).

0 [K3-2-((C6H5)3P=N)-5-CH3C6H3S()2NH(CH2)2N(CH3)2]ZIlMe
'STN
\©:N’£WN—‘ (3.13). A milky suspension of 2.11 (0.50 g, 0.97 mmol) in toluene (30
NN
Ph/:z'h’Ph mL) was frozen at -196 °C using liquid nitrogen. To the frozen

suspension was added 0.94 mL of a Me,Zn solution (2M in toluene, 1.87 mmol). After
the Me,Zn addition, the liquid nitrogen bath was removed and the reaction mixture was
allowed to warm slowly to 25 °C. After 30 minutes the reaction had warmed to 25 °C
and the solution was clear and colorless. The reaction mixture was allowed to stir at 25

°C for 12 hours. The solvent was removed in vacuum leaving a white solid. The white
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solid was washed with dry hexanes (2 x 20 mL) and the wash solutions were removed by
syringe. The residual solvent was removed under vacuum to yield 9 as a white solid (0.45
g, 78 %). 'HNMR (CD,Cl,): 8 7.97 (m, 6H, ortho -CH of (C¢Hs);P=N-), 7.67 (bs, 1H, 6-
CH of -C¢H3S0O3-), 7.60 ( m, 3H, para -CH of (C¢Hs);P=N-), 7.52 (m, 6H, meta -CH of
(CéHs)3P=N-), 6.70 (dd, J = 8.4, 2, 1H, 4-CH of -CcH3S0,-), 6.46 (dd, J = 8.4, 2, 1H, 3-
CH of -C¢H3S0,-), 3.11 (bs, 2H, -NHCH,CH,N(CH3),), 2.19 (s, 3H, 5-CHj3 of -CsH3S0»-
), 1.90 (bs, 8H, -NHCH,CH>N(CH3), and -NHCH,CH,N(CHs),), -1.76 (s, 3H, ZnCHj).
"HNMR (CD,Cl,, -40 °C): & 8.00 (m, 6H, ortho -CH of (C¢Hs);P=N-), 7.63 (m, 4H, para
-CH of (C¢Hs)3;P=N- and 6-CH of -CsH3S0,-), 7.55 (m, 6H, meta -CH of (C¢Hs);P=N-),
6.72 (d, J = 8, 1H, 4-CH of -C¢H3S0,-), 6.49 (d, J = 8, 1H, 3-CH of -CsH3S0>-), 3.15
(bm, 1H, -NHCH,CH,;N(CHs),), 3.04 (bm, 1H, -NHCH,CH,N(CHs),), 2.18 (s, 6H, 5-
CH; of -C¢H3SO,-), 2.05 (bs, 4H, -NCH; of -NHCH,CH,N(CHj3), and -
NHCH,CH>N(CH3),), 1.70 (s, 3H, -NCH; of -NHCH,CH,N(CHs),), 1.63 (bm, 1H, -
NHCH,CH,N(CH3),), -1.86 (s, 3H, ZnCH;). "HNMR (C4Dg): & 8.26 (s, 1H, 6-CH of -
CsH3S0,-), 8.02 (m, 6H, ortho -CH of (C¢Hs);P=N-), 6.96 ( m, 9H, 3H, para -CH and
6H, meta -CH of (C¢Hs);P=N-), 6.48 (m, 2H, 3-CH and 4-CH of -C¢H3S0»-), 3.62 (bs,
1H, -NHCH,CH,N(CHs)»), 3.19 (bs, 1H, -NHCH,CH,N(CHs),), 1.86 (s, 3H, 5-CHj3 of -
Ce¢H3S0»-), 1.61 (bs, 8H, -NHCH,CH,N(CHj3), and -NHCH,CH,N(CH3),), -1.19 (s, 3H,
ZnCHs). *'P NMR (CD,CL): 8 26.0. *'P NMR (CgDs): 8 25.2. >C NMR (C¢Dy): & 143.4
(d, Jep = 3.2), 141.6 (d, Jep = 11.3), 133.7 (d, Jep = 9.7), 132.6 (d, Jcp = 9.7), 132.2 (d,
Jep = 2.5), 130.3, 129.6 (d, J =12.1), 128.9, 128.5 (d, J = 12.1), 125.6 (d, J = 8), 59.3,
45.3,43.3, 20.1, -14.7 (ZnCHy).

Crystal data and structure refinement for 3.13

Identification code ctb14ltc
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Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 28.16°
Absorption correction

Max. and min. transmission
Refinement method
Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [[>2sigma(])]
R indices (all data)

Absolute structure parameter

Largest diff. peak and hole

/

o} /O/ [K3-2-((C6H5)3P=N)-5-CH3C6H3SOzNCH3(CH2)20]ZnEt (3.5).
~N

C63.60 H71 C10.60 N6 O4 P2 S2 Zn2
1261.53

100.05(10) K

0.71073 A

Monoclinic

Ia

a=17.73980(18) A a=90°.
b=16.25738(12) A B=110.4401(11)°.
¢ =23.6267(2) A v = 90°.
6384.98(10) A3

4

1.312 Mg/m3

0.942 mm-!
2635.2

0.38 x 0.28 x 0.18 mm3

3.24 to0 28.16°.

-23<=h<=23, -21<=k<=21, -31<=1<=31
112102

15632 [R(int) = 0.0353]

99.8 %

Semi-empirical from equivalents
1.00000 and 0.80181

Full-matrix least-squares on F2
15632/2/726

1.085

R1=0.0352, wR2 = 0.1004
R1=0.0365, wR2 =0.1018
-0.006(6)

0.764 and -0.558 e.A-3

A

S
\(:[N,Zln—o solution of phosphinimine ligand 2.8 (0.4 g, 0.79 mmol) in toluene (20
(.

ph~h Ph mL) was cooled to -35 °C and 0.95 mL Et,Zn (1M in toluene, 0.95

Ph
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mmol) was added under nitrogen. The reaction mixture was allowed to warm to room
temperature and stirred 12 hours. After 12 hours of stirring, the solvent volume was
reduced under vacuum to 5 mL. This resulted in a white suspension in the flask. The
white solid was washed with dry hexanes (2 x10 mL) and the wash solutions were
removed by syringe. The remaining solvent was removed under vacuum to yield
compound 10 as a white solid (0.4 g, 80%). 'HNMR (CDCls): § 7.81 (m, 6H, ortho -CH
of (C¢Hs);P=N-) 7.60 (s, 1H, 6-CH of -C¢H3S0,-), 7.44 (9H, para and meta -CH of
(CsHs)3P=N-), 6.71 (dd, J = 10, 1.6, 4-CH of -C¢H3S0,-), 6.34 (d, J = 8.8, 3-CH of -
Ce¢H3S0O,-), 3.78 (t, J = 6.8, 2H, -SO.N(CH3)CH»-), 3.29 (t, J = 6.4, 2H, -
SO,N(CH3)CH,CH>-), 2.82 (s, 3H, -SO,N(CH3)CH»-), 2.09 (s, 3H, 5-CH3CsHs), 1.10 (t,
J =8, 2H of ZnCH,), 0.25 (quartet, J = 8, 3H of ZnCH,CH3). *'P NMR (CDCls): § 3.1.
C NMR (CDCLy): § 148.2, 133.4, 132.6 (d, J = 39.2), 131.7, 130.9, 129.9, 128.6 (d, J =

48.8), 125.2, 124.9, 122.8 (d, J=48.8), 63.5, 53.26, 37.0,20.1, 12.4, -1.4.

0.0 / Reaction of 10 with 9-anthrylmethanol. A
N o
\@ ,zln——o , o O co,cl,  valved NMR tube was loaded with 3.5 (14.3
I 25°C
Ph/EH'Ph O mg, 23.9 umol) and 9-anthrylmethanol (5.0

mg, 23.9 pmol). CD,Cl; (0.75 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N,, the valved NMR tube was sealed, warmed to 25 °C and
shaken until the solids dissolved. 'H and *'P{'H} NMR spectra were obtained after 10
minutes. 'Hand *>'P{'"H} NMR spectra established that 2.11 (24 %) and 2.8 (76 %) were
present in solution. The solution was allowed to sit at 25 °C for 24 hours. 'H and

J'P{'"H} NMR spectra were obtained. 'H and *'P{'H} NMR spectra established that
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complex 10 had reacted with 9-anthrylmethanol to form ligand 2.8. The identity of the
zinc specie(s) present in solution after the formation of 2.11 was not determined.

Reaction of 8 with 9-anthrylmethanol.

0.0
\S/\N
\©: / é r:'\?_ ho ‘ CD,Cl, A valved NMR tube was loaded with 3.7
AN —_—
v Lo | 2°C (150 mg, 245 pmol) and O

anthrylmethanol (5.0 mg, 24.5 umol). CD,Cl, (0.75 mL) was added via vacuum transfer
at -196 °C. After the NMR tube was flushed with N,, the valved NMR tube was sealed,
warmed to 25 °C and shaken until the solids dissolved. 'H and *'P{'"H} NMR spectra
established that 3.7 and 9-anthrylmethanol were the only species present in solution. The
solution was allowed to sit at 25 °C for 24 hours. 'H and *'P{'H} NMR spectra were
obtained. 'H and ’'P{'"H} NMR spectra established that no reaction had occurred

between 8 and 9-anthrylmethanol after 24 hours at 25 °C in CD,Cl,.
Reaction of 8 with 2-(9-

QP
SN OH
\©: | anthryl)ethanol. A valved NMR tube
. Q CD,Cl,

Ph/lll’»Ph Q 25°C was loaded with 3.7 (20.0 mg, 32.7
umol) and 2-(9-anthryl)ethanol (7.0 mg, 32.7 umol). CD,Cl, (0.75 mL) was added via
vacuum transfer at -196 °C. After the NMR tube was flushed with N,, the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. 'H and *'P{'H}
NMR spectra established that 8 and 2-(9-anthryl)ethanol were the only species present in
solution. The solution was allowed to sit at 25 °C for 24 hours. 'H and *'P{'H} NMR
spectra were obtained. 'H and *'P{'H} NMR spectra established that 3.7 (92 %) and

ligand 2.11 (8%) were present in solution after 24 hours at 25 °C in CD,Cl,.
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0 0 Reaction of 8 with ethanol. A valved NMR tube

N

S~N
\©i ,£n~N— + EtOH L was loaded with 3.7 (25.0 mg, 40.9 umol).
N N 25°C

Ph’lzh’Ph e CDClI; (0.75 mL) was added via vacuum transfer
at -196 °C. After the NMR tube was flushed with N,, the valved NMR tube was sealed,
warmed to 25 °C and shaken until the solids dissolved. Via a microsyringe, ethanol (3.6
pL, 61.4 umol) was added quickly after opening the valve of the sealed tube. The NMR
tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was
flushed with N, and warmed to 25 °C to produce a clear colorless solution. 'H and
*'P{'"H} NMR spectra established that 8 and ethanol were the only species present in
solution. The solution was allowed to sit at 25 °C for 24 hours. 'H and *'P{'H} NMR
spectra were obtained. 'H and *'P{'H} NMR spectra established that 3.7 (87 %) and

ligand 2.11 (13%) were present in solution after 24 hours at 25 °C in CD,Cl,.

(ON0)

N

S-N

Q.0 Ho '

S\N /Zn—-N—
| + _— N9 + CyHg
Zn—N\— CD20|2, 25 C Ph/elph

il _ CN Ph

Ph”a ‘Ph
Ph

Generation of [K3-2-((C6H5)3P=N)-5-CH3C6H3SOzNH(CHz)zN(CH3)2] le(4-

CN

OC¢H4CN) (3.10). A valved NMR tube was charged with 3.7 (10 mg, 16.3 mmol), 4-
cyanophenol (2 mg, 16.3 mmol), and CD,Cl, (0.5 mL) was added via vacuum transfer at -
196 °C. After the NMR tube was flushed with N», the tube was sealed, warmed to 25 °C,
and shaken until the solids dissolved. 'H and *'P{'H} NMR spectra established, after 10
min at 25 °C, that 3.10 was the only species present in solution along with ethane.
'HNMR (CD,CLy): & 7.94 (m, 6H, ortho CH of (C¢Hs);P=N-), 7.76 (s, 1H, 6-CH of -

CsH3S0,-), 7.45 (m, 9H, meta and para CH of (C¢Hs);P=N-), 7.14 (m, 2H, ortho CH of
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ZnOCGHLCN), 6.81 (d, J = 8, 4-CH of -C¢H3S05-), 6.65 (d, J = 8, 3-CH of -CsH3S0x-),
6.30 (m, 1H, meta CH of ZnOC4H,CN), 3.17 (¢, 2H, -NHCH,CH,N(CHs),), 2.24 (s, 3H,
5-CH3 of -C6H3SOQ-), 2.00 (bS, 2H, -NHCH2CH2N(CH3)2 and 6H, -NHCHQCHQN(CH3)2),

0.85 (C,He). *'P NMR (CD,Cl,): & 28.7.

N/

S~N
|
Y O I:[N/Z\”'NC

i O

S~
'\ll + — . /P'/ + CZHG
_Zn—N— CD,Cl,, 25 °C Ph IghPh
N \\ \

P.
Ph” 1 ‘Ph OH
Ph O

Generation of [K3-2-((C6H5)3P=N)-5-CH3C6H3SOZNH(CHZ)ZN(CH3)2]Zn(4-
OC¢H4C¢Hs) (3.11). A valved NMR tube was loaded with 8 (10 mg, 16.3 mmol), 4-
phenylphenol (2.8 mg, 16.3 mmol), and CD,Cl, (0.5 mL) was added via vacuum transfer
at -196 °C. After the NMR tube was flushed with N,, the tube was sealed, warmed to 25
°C, and shaken until the solids dissolved. After 10 min at 25 °C, integration of the
*'P{'"H} NMR spectra established that 78 % of 3.11 was present in solution along with 22
% of 3.7. After 50 min at 25 °C, 'H and *'P{'"H} NMR spectra established that 3.11 was
the only species present in solution along with ethane. 'HNMR (CD,Cl,): § 7.98 (m, 6H,
ortho CH of (C¢Hs);P=N-), 7.50 (s, 1H, 6-CH of -C¢H3S0O,-) 7.48 (m, 11H, meta, para
CH of (C¢Hs);P=N-) and ortho CH of Zn-OCsH,C¢Hs), 7.35 (t, J = 7.6, 2H, meta CH of
Zn-OC¢H4CsHs), 7.14 (m, 3H, para CH of Zn-OC¢H4CsHs and meta CH of Zn-
OCsH,CeHs), 6.82 (d, J = 7.6, 3—CH of -C¢H3S0,-), 6.65 (d, J = 8.4, 1H, 4-CH of -
C¢H3S0O5-), 633 (bs, 2H, ortho CH of Zn-OCcH4CeHs), 3.20 (s, 2H, -

NHCH,CH;N(CH3),), 224 (s, 3H, 5-CHy of -CgH3SO»-), 2.02 (bs, SH, -
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NHCH,CH,N(CH;),), and -NHCH,CH,N(CH;),), 0.85 (C,He). *'P NMR (CD,CL): §

28.5.

N

S-N
Q.0 OH '
S*N N- 20N
ﬁ b ooz b, O * CaHe
N/Z\n\—N\— 2L, Ph” 1 'Ph QOMB

1 OCH Ph
P. 3
Ph’ﬁr;Ph HyCO OMe

Generation of [K3-2-((C6H5)3P=N)-5-CH3C6H3SOZNH(CHZ)ZN(CH3)2]Zn(3,4-
OC¢H3(OMe),) (3.12). A valved NMR tube was loaded with 8 (10 mg, 16.3 mmol), 3,
4-dimethoxyphenol (2.5 mg, 16.3 mmol) and CD,Cl, (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the tube was sealed,
warmed to 25 °C, and shaken until the solids dissolved. After 10 min at 25 °C, integration
of the *'P{'"H} NMR spectra established that 33 % of 3.12 was present in solution along
with 67 % of 3.7. After 5 h at 25 °C, integration of the *'P{'H} NMR spectra established
that 93 % of 3.12 was present in solution along with 7 % of 3.7. After 12 h at 25 °C, 'H
and *'P{'"H} NMR spectra established that 3.12 was the only species present in solution
along with ethane. "HNMR (CD-CL): § 7.96 (m, 6H, ortho CH of (CsHs);sP=N-), 7.75 (s,
1H, 6-CH of -C¢H3S0;-), 7.52 (m, 3H, para -CH of (C¢Hs);P=N-), 7.44 (m, 6H, meta -
CH of (C¢Hs)3P=N-), 6.77 (d, J = 8, 1H, 4-CH of -CsH3S0,-), 6.62 (d, J = 8.4, 1H, 3-CH
of -C¢H3S0,-), 6.42 (d, J = 6.8, 1H, ortho —CH of -OC¢H3(OCH3),, 5.87 (m, 2H, meta
and ortho —CH of -OC¢H3(OCHzs),, 3.67 (s, 6H, -OC¢H3(OCHs),, 3.16 (t, J = 5.6, 2H, -
NHCH,CH,N(CH3),), 2.23 (s, 3H, 5-CHz; of -CeH3SO,-), 2.00 (bs, 8H.-
NHCH,CH>N(CH;),) and -NHCH,CH,N(CH;),), 0.85 (CoHg). *'P NMR (CD,Cl): &

28.5.
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[’~2-((CsH5)3P=N)-5-CH;3C¢H3SO,NH(CH,),N(CH3),] Zn(4-

g
C[Svm OCH4CN) (3.10). A flask containing 3.7 (300.0 mg, 0.49 mmol)
_Zn—N—

N
'IPhO and 4-cyanophenol (58.5 mg, 0.49 mmol) was charged with
h Z (

=z

Ph”

T~

CN  CH,Cl, (20 mL) and stirred for 1 hour under nitrogen. The solvent
was removed under vacuum leaving 3.10 as a white solid. (250 mg, 73 %). 'HNMR
(CDyCly): 8 7.95 (m, 6H, ortho CH of (C¢Hs);P=N-), 7.76 (s, 1H, 6-CH of -CsH3S0,-),
7.45 (m, 9H, meta and para CH of (C¢Hs);P=N-), 7.13 (d, J = 8.8, 2H, ortho CH of
ZnOCgH4CN), 6.81 (d, J = 8, 4-CH of -CsH3S0,-), 6.63 (d, J = 8, 3-CH of -C¢H3S0,-),
6.28 (d, J = 8.8, 1H, meta CH of ZnOCsH4CN), 3.17 (¢, 2H, -NHCH,CH,N(CHj3),), 2.24
(s, 3H, 5-CH; of -C¢H3SO,-), 2.00 (bs, 2H, -NHCH,CH,N(CH3), and 6H, -
NHCH,CH,N(CH;),). *'P NMR (CD,CL): 8 28.6. °C NMR (CD,CL): & 170.4, 141.8,
138.6 (d, J=48.4), 133.3, 133.2 (d, J = 39.9), 132.8 (d, J = 12), 131.2, 129.8, 129.1(d, J

=48.4), 126.6, 125.8 (d, J=30.4), 125.7, 121.3, 119.3, 95.3, 60.3, 45.5, 43.2, 20.2.

[1c3-2-((C¢Hs);P=N)-5-CH;CsH;SO,NH(CH,),N(CH3),] Zn(4-

Q.0
"N
\©iN,Zp~N\— OC¢H4C¢Hs) (3.11). A flask containing 3.7 (300.0 mg, 0.49
" o
P,
Ph” & /P O mmol) and 4-hydroxybiphenyl (83.5 mg, 0.49 mmol) was

O charged with CH,Cl, (20 mL) and stirred for 12 hours under
nitrogen. The solvent was removed under vacuum leaving 3.11 as a white solid. (200 mg,
55 %). 'HNMR (CD,Cl,): 8 7.98 (m, 6H, ortho -CH of (CsHs);sP=N-), 7.76 (s, 1H, 6-CH
of -C¢H3S0;-) 7.48 (m, 11H, meta and para -CH of (C¢Hs);P=N-) and ortho —CH of Zn-
OCsH,C¢Hs), 7.35 (t,J=7.6, 2H, meta —CH of Zn-OCsH4CsHs), 7.13 (m, 3H, para -CH

of Zn-OC¢H4C¢Hs5 and meta —CH of Zn-OC¢H,Cg¢Hs), 6.18 (dd, J = 2, 8, 3—CH of -
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CeH380,-), 6.65 (dd, J = 4, 8.4, 1H, 4-CH of -CsH3SO,-), 6.31 (d, J = 7.2, 2H, ortho —
CH of Zn-OC¢H4CsHs), 3.19 (t, J = 5.6, 2H, -NHCH,CH,N(CH3),), 2.24 (s, 1H, 5-CH; of
-C¢H3S05-), 2.02 (bs, 8H, of -NHCH,CH;N(CHj3),) and -NHCH,CH,N(CH5),). *'P NMR
(CD,CLy): & 28.6. >C NMR (CD,Cly): & 133.3 (d, J = 39.6), 132.7, 132.6, 132.4, 132.0,
131.0, 129.7, 129.0, 128.9, 128.8, 128.4, 127.2, 126.8, 126.0, 125.9, 125.7, 125.0, 118.8,
60.2, 45.6, 43.3, 20.2.

[k3-2-((C4Hs);P=N)-5-

N

o)
\(:E S- ’T‘ /w CH3C6H3SOzNH(CHz)zN(CH3)2] Zn(3,4-OC6H3(OMe)2)

~Zn-N-
N-ET

Ph/IE'HPhOQ/OMB (3.12). A flask containing 3.7 (250.0 mg, 0.4 mmol) and 3,4-

oMe  dimethoxyphenol (63.0 mg, 0.4 mmol) was charged with
CH,Cl; (20 mL) and stirred for 16 hours under nitrogen. The solvent was removed under
vacuum leaving 3.12 as a white solid. (100 mg, 33 %). "HNMR (CD,Cl,): § 7.96 (m, 6H,
ortho -CH of (C¢Hs);P=N-), 7.92 (s, 1H, 6-CH of -C¢H3SO;-), 7.52 (m, 3H, para -CH of
(C6Hs)3P=N-), 7.44 (m, 6H, meta -CH of (C¢Hs);P=N-), 6.79 (dd, J=8.4,2.4, 1H, 4-CH
of -C¢H3S0,-), 6.62 (dd, J =8, 1.6, 1H, 3-CH of -CcH3S0,-), 6.42 (d, J = 8.4, 1H, ortho —
CH of Zn-OC¢H5(OCHj3),, 5.87 (m, 2H, meta and ortho —CH of Zn-OC¢H3(OCH3),, 3.67
(2s, 6H, Zn-OC¢H3(OCHj3),, 3.16 (t, J = 5.6, 2H, -NHCH,CH,N(CH3),), 2.23 (s, 3H, 5-
CH; of -C¢H3S0,-), 1.99 (bs, 8H,-NHCH,CH>N(CHj3),) and -NHCH,CH,N(CHj3),). *'P

NMR (CD,CL): 8 28.5. *C NMR (CD,CL): § 133.3 (d, J = 42.4), 132.7, 132.6, 131.0,

129.6, 129.0, 128.8, 126.9, 125.8, 103.5, 60.2, 55.2, 45.6, 43.3, 20.2.

2-((CH3)3P=N)-5-CH3C6H3SOzNH(CHz)zN(CH3)2 (2.14). To a

S\N/\/N/
\Q H N solution of 2-N3-5-CH3C6H3SOQNH (CHz)zN(CH3)2 (159 g, 5.61
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mmol) in toluene (10 mL), 6.2 mL of Me;P (1M solution in tolutene, 6.17 mmol) was
added under nitrogen. Red solution and suspension was observed immediately.
Suspension dissolved to give clear brown solution after stirring for 12 hours at 25 °C.
The solvent was removed under vacuum leaving brown solid. The brown solid was
washed with 3x10 mL dry pentane and trace of the solvent was removed under vacuum
yield off white solid (1.6 g, 86 %). 'HNMR (CD,Cl,): & 7.53 (s, 1H, 6-CH), 7.10 (bs,
1H of SO,NH), 7.08 (dd, J = 8.0, 5.6, 1H, 4-CH), 6.53 (dd, J = 7.6, 1.2,1H, 3-CH), 2.77
(m, 2H, -N-CH>), 2.36 (m, 2H, NHCH,CH>), 2.24 (s, 3H, 5-CH3), 2.13 (s, 6H, -N(CHs),
1.67 (d, J = 13.2, 9H, -N=P(CHs)s. >'P NMR (CD,CL): & 12.3. >*C NMR (CD,CL): &
149.2, 135.4, 131.8, 130.9, 127.2, 122.8 (d, J = 48.4), 60.2, 47.1.0, 42.9, 21.8, 17.6 (d, J

=273).

0 2-((CH3);P=N)-5-CH;C¢H;SO,NH(CH,),N(CH;),ZnEt

£
\Q.".‘/é\n\_'\l\_ To a solution of phosphinimine ligand (1 g, 3.01 mmol) in toluene (40

Me/,\F‘,’lléMe mL), 4.5 mL of Et,Zn (1M in toluene, 4.52 mmol) solution was added
at -35 °C under nitrogen. The reaction mixture was allowed to warm to room temperature
stirred 12 hours. The solvent was removed in vacuum leaving yellowish gluey material.
10 mL toluene was added and stirred for 2 hours. Yellow suspension in the solution was
observed. The yellow suspension was washed with 3x10 mL dry hexane and the solvent
was removed under vacuum to yield yellowish white solid (1.14 g, 90%). 'HNMR
(CDyClLy): 0 7.69 (s, 1H, 6-CH), 7.07 (dd, J = 8.0, 2.4, 1H, 4-CH), 6.68 (dd, J = 8.0,
2.8,1H, 3-CH), 2.98 (t, J = 11.6, 6.0, 2H, -N-CH>), 2.31 (s, 3H, 5-CHj3), 2.20-1.90 (bs,

2H, NHCH,CH, and 6H, -N(CH),), 1.68 (d, J = 12.8, 9H, -N=P(CHs)3), 1.28 (t, J = 16,

8, 3H of ~ZnCH,CHj, -0.89 (q, J = 16, 8, 2H of —ZnCH,) . *'P NMR (CD,Cl,): & 35.4.
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PC NMR (CD,Cly): & 143.4, 140.7, 131.4 131.1, 129.2, 127.7, 59.4, 45.4, 43.2, 20.3,

15.8, 13.0, (d, J=273), 0.13.
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Experimental Section 3: phosphinimine synthesis
(Chapter 4)

PPh,(4-C¢H4sN(CH3)2):2 (4.1). Under nitrogen, a 500 mL 3 neck round bottom flask was
charged with magnesium powder (1.43 g, 58.95 mmol). The Mg powder was suspended
in THF (100 mL) and stirred under nitrogen. A water condenser and a 250 mL pressure
equalizing addition funnel were attached to the necks of the 500 mL RBF under nitrogen.
The starting material, 4-bromo-N,N-dimethylaniline (11.80 g, 58.95 mmol) in a separate
250 mL RBF, was dissolved in 100 mL of THF and transferred to the pressure equalizing
addition funnel via cannula. The 250 mL RBF was rinsed with THF (2 x 10 mL) and
both washes were transferred to the addition funnel via cannula. The 4-bromo-N,N-
dimethylaniline/THF solution was added to the Mg/THF suspension dropwise over 25
minutes to maintain a gentle reflux and then refluxed further for 1 hour after the addition
was complete. After 1 of reflux, the brown solution was cooled to 25 °C and the addition
funnel was charged with 20 mL THF, Ph,PCl (5.3 mL, 29.48 mmol), and 20 mL THF.
The grey-brown reaction suspension was cooled to 0 °C and the Ph,PCl /THF solution
was added dropwise over 20 minutes. After the addition was complete the funnel was
rinsed with 20 mL THF into the reaction mixture and the reaction mixture was refluxed
for 1 hour. After 1 hour of reflux, the reaction was cooled to 25 °C and allowed to stir
overnight under nitrogen. The next morning the reaction mixture was cooled to 0 °C and
a 10 % aqueous solution of NH4CI (140 mL) was added dropwise over 10 minutes. After
the NH4Cl addition was completed the reaction mixture was stirred for a further 25
minutes at 25 °C. Toluene (200 mL) was used to transfer the biphasic reaction mixture to
a 1 L sept. funnel. The aqueous layer was extracted with the toluene and then collected in

a 1 L Erlenmeyer flask. The aqueous layer was extracted twice more with toluene (2 x
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200 mL), combined with the first layer, and dried over MgSO,. The MgSO,4 was filtered
off and the volatiles were removed under vacuum affording a white solid and a small
amount of yellow oil. The mixture was suspended in hexanes (50 mL), filtered and
rinsed with 50 mL hexanes yielding 4.1 as a white solid (7.69 g, 85 %). 'H NMR
(CDCl3): 6 7.31 (m, 10 H, C¢Hs Ar-H ), 7.26 (m, 2H, 2-CH of P(4-CsH4sN(CHs),)), 6.71
(d, 2H, J = 8, 3-CH of P(4-C¢Hs;N(CHs),)), 2.98 (s, 6H, -N(CHs),). >C NMR (CDCls): &
C NMR (CDCly): § 152.0, 150.4, 134.5 (d, Jec = 19.8), 133.4 (d, Jpec = 10.7), 128.3,
124.4, 120.1, 118.9, 112.3 (d, Jpc = 7.5), 111.1 (d, Jec = 12.2), 40.3, 40.0. >'P NMR
(CDCl3): -7.3.

PPh(4-C¢H4N(CH3)2)2 (4.2). Under nitrogen, a 500 mL 3 neck round bottom flask was
charged with magnesium powder (2.08 g, 85.74 mmol). The Mg powder was suspended
in THF (80 mL) and stirred under nitrogen. A water condenser and a 250 mL pressure
equalizing addition funnel were attached to the necks of the 500 mL RBF under nitrogen.
The starting material, 4-bromo-N,N-dimethylaniline (17.15 g, 85.74 mmol) in a separate
250 mL RBF, was dissolved in 60 mL of THF and transferred to the pressure equalizing
addition funnel via cannula. The 250 mL RBF was rinsed with THF (2 x 10 mL) and
both washes were transferred to the addition funnel via cannula. The 4-bromo-N,N-
dimethylaniline/THF solution was added to the Mg/THF suspension dropwise over 25
minutes to maintain a gentle reflux and then refluxed further for 1.5 hours after the
addition was complete. After 1.5 hours of reflux, the grey-brown suspension was cooled
to 25 °C and the addition funnel was charged with 20 mL THF, PhPCI, (4.0 mL, 29.48
mmol), and 20 mL THF. The grey-brown reaction suspension was cooled to 0 °C and the

PhPCIl,/THF solution was added dropwise over 20 minutes. After the addition was
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complete the funnel was rinsed with 20 mL THF into the reaction mixture and the
reaction mixture was refluxed for 1 hour. After 1 hour of reflux, the reaction was cooled
to 25 °C and allowed to stir overnight under nitrogen. The next morning the reaction
mixture was cooled to 0 °C and a 10 % aqueous solution of NH4CI (140 mL) was added
dropwise over 10 minutes. After the NH4Cl addition was completed the reaction mixture
was stirred for a further 25 minutes at 25 °C. Toluene (200 mL) was used to transfer the
biphasic reaction mixture to a 1 L sept. funnel. The aqueous layer was extracted with the
toluene and then collected in a 1 L Erlenmeyer flask. The aqueous layer was extracted
twice more with toluene (2 x 200 mL), combined with the first layer, and dried over
MgSO4. The MgSO, was filtered off and the volatiles were removed under vacuum
affording a white solid and a small amount of yellow oil. The mixture was suspended in
hexanes (50 mL), filtered and rinsed with 50 mL hexanes yielding 4.2 as a white solid
(8.54 g, 86%). 'H NMR (DMSO-dq): & 7.30 (m, 3H, C¢Hs Ar-H), 7.13 (m, 2H, C¢Hs Ar-
H), 7.11-7.08 (m, 5H, Ar-H), 6.74-6.69 (m. 4H, Ar-H), 7.08 (m, 4H, 2-CH of P(4-
CeH4N(CH3))), 6.70 (d, 4H, J = 8, 3-CH of P(4-C¢HsN(CHs),)), 2.89 (d, 12H, -
N(CHs),). °C NMR (DMSO-dg): & 150.5, 140.0 (d, Jpc = 11.5), 134.5 (d, Jpc = 21.4),
132.1 (d, Jpc = 18.3), 128.2 (d, Jpc = 6.12), 127.7, 121.8 (d, Jpc = 5.32), 112.3 (d, Jpc =
7.6), 39.7, 39.5. *'P NMR (DMSO-ds): -10.7.

P(4-CcH4N(CH3),)3 (4.3). Under nitrogen, a 1 L 2 neck round bottom flask was charged
with magnesium powder (2.81 g, 115.61 mmol). The Mg powder was suspended in THF
(110 mL) and stirred under nitrogen. A water condenser and a 250 mL pressure
equalizing addition funnel were attached to the 2 necks of the 1 L RBF under nitrogen.

The starting material, 4-bromo-N,N-dimethylaniline (23.07 g, 115.30 mmol) in a separate
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250 mL RBF, was dissolved in 60 mL of THF and transferred to the pressure equalizing
addition funnel via cannula. The 250 mL RBF was rinsed with THF (2 x 10 mL) and
both washes were transferred to the addition funnel via cannula. The 4-bromo-N,N-
dimethylaniline/THF solution was added to the Mg/THF suspension dropwise over 25
minutes to maintain a gentle reflux and then refluxed further for 1 hour after the addition
was complete. After 1 hour of reflux, the grey-brown suspension was cooled to 25 °C
and the addition funnel was charged with 20 mL THF, PCl; (2.5 mL, 28.65 mmol), and
20 mL THF. The grey-brown reaction suspension was cooled to 0 °C and the PCls/THF
solution was added dropwise over 20 minutes. After the addition was complete the funnel
was rinsed with 20 mL THF into the reaction mixture. The reaction was allowed to stir at
25 °C overnight under nitrogen. The next morning the reaction mixture, now containing a
light yellow precipitate, was cooled to 0 °C and a 10 % aqueous solution of NH4CI (140
mL) was added dropwise over 10 minutes. During the NH4Cl addition the yellow solid
changed in color to a white solid and bubbling was observed from the solution. After the
NH4CI addition was completed the reaction mixture was stirred for a further 25 minutes
at 0 °C. Dichloromethane (200 mL) was used to transfer the biphasic reaction mixture to
a 1 L sept. funnel. The aqueous layer was extracted with the CH,Cl, and then collected in
a 1 L Erlenmeyer flask. The aqueous layer was extracted twice more with CH,Cl, (2 x
200 mL), combined with the first layer, and dried over MgSO,. The MgSO,4 was filtered
off and the volatiles were removed under vacuum affording a light orange solid. The
orange solid was suspended in toluene (20 mL), filtered and rinsed with 50 mL hexanes
yielding 4.3 as a light orange solid (8.61 g, 76 %). 'H NMR (CDClL;): & 7.20 (m, 6H, 2-

CH of P(4-CgHsN(CHs),)), 6.68 (d, 6H, J = 8, 3-CH of P(4-CsH4N(CH;),)), 2.94 (s, 18H,
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-N(CH;),). *C NMR (CDCl): & 152.0, 150.4, 134.5 (d, Jec = 19.8), 133.4 (d, Jpc =
10.7), 128.3, 124.4, 120.1, 118.9, 112.3 (d, Jpc = 7.5), 111.1 (d, Jpc = 12.2), 40.3, 40.0.
3P NMR (CDCl3) § -11.3.

P(4-CcH4OCH3); (4.4). Under nitrogen, a 1 L 2 neck round bottom flask was charged
with magnesium powder (2.43 g, 100 mmol). The Mg powder was suspended in THF
(110 mL) and stirred under nitrogen. A water condenser and a 250 mL pressure
equalizing addition funnel were attached to the 2 necks of the 1 L. RBF under nitrogen.
The starting material, Bromoanisole (15.57 g, 83.24 mmol) in a separate 250 mL RBF,
was dissolved in 70 mL of THF and transferred to the pressure equalizing addition funnel
via cannula. The 250 mL RBF was rinsed with THF (2 x 10 mL) and both washes were
transferred to the addition funnel via cannula. The bromoanisole/THF solution was added
to the Mg/THF suspension dropwise over 25 minutes to maintain a gentle reflux and then
refluxed further for 1 hour after the addition was complete. After 1 hour of reflux, the
grey-brown suspension was cooled to 25 °C and the addition funnel was charged with 20
mL THF, PCl; (2.40 mL, 27.30 mmol), and 20 mL THF. The grey brown suspension was
cooled to 0 °C and the PCl3/THF solution was added dropwise over 20 minutes. After the
addition was complete the funnel was rinsed with 20 mL THF into the reaction mixture.
After reflux for 1 hour, the reaction mixture was filtered through celite in the air and a red
solution was obtained. Ice (10 g) and 10% HCI (200 mL) ware added to obtain a yellow
solution. The yellow solution was extracted with diethyl ether (3x100 mL) and the
combined ether washes were reduced under vacuum to give 4.4 as a yellow solid. Yellow
crude solid was recrystallized from ethanol (80 mL) to obtained a yellow solid (5.00 g,

53%). "H NMR (CDCly): 8 7.20 (t, J = 7.6, 6H, 2,6-CH of P(4-C¢HsOCH;)3), 6.88 (d, J =
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8, 6H, 3,5-CH of P(4-CcH4;0CH:)3), 3.79 (s, 9H, -OCH3), °C NMR (CDCls): & 160, 135
(d, Jec = 19.8), 128 (d, Jpc = 10.7), 112.3 (d, Jpc = 7.5), 114 (d, Jpc = 12.2), 55.1 (-
OCHj3). *'P NMR (CDCls): § -10.1.

4-CH;3;C¢H4N=PPh; (4.5). The compound was synthesized
ON:P@) 3 according to a modified literature procedure.’ To a solution of
4-H3CCeH4N3 (1.00 g, 3.00 mmol) in toluene (10 mL), a solution of triphenylphosphine
(2.16 g, 3.30 mmol) in toluene (10 mL) was added dropwise at 0 °C. After 30 minutes,
the reaction mixture was warmed to 25 °C and stirred for 16 hours. Toluene was removed
under vacuum, resulting in a yellow solid. The yellow solid was treated with 1:3 toluene-
hexanes (40 mL) affording a precipitate which was stirred under N,. The stirring was
stopped and the yellow solid allowed to settle. The 1:3 toluene/hexanes was removed
using syringe. Hexanes (10 mL) was added to the solid. The solid was collected by
filtration and rinsed with hexanes (10 mL) to yield 4.5 as a yellow solid (1.00 g, 90%). 'H
NMR (CDCl;): & 7.78 (m, 6H of 3,5-CH of -N=P(C¢Hs)3), 7.52 (m, 3H, 4-CH of -
N=P(C¢Hs)3), 7.44 (m, 6H of 3,5-CH of -N=P(C¢Hs)3), 6.84 (d, J = 7.6, 2H, 2,6-CH of -
P=N(4-CsH4CH3)), 6.72 (d, J = 7.6, 2H, 3,5-CH of -P=N(4-CsH4CH3)), 2.19 (s, 3H, 4-
CH;). 'H NMR (CgDg): 8 7.79 (m, 6H of 2,6-CH of -N=P(C¢Hs)3), 7.14 (d, J = 8, 2H,
2,6-CH of -P=N(C¢H4CH3)), 6.99-6.91 (m, 11H, 3,5-CH of -N=P(C¢Hs);, 4-CH of -
N=P(C¢Hs); and 3,5-CH of -P=N(C¢H4CH3)), 2.14 (s, 3H, -CHs). >'P NMR (CDCL): §
2.82.%'P NMR (C¢Dy): & -1.58. C NMR (CDCL): & 148.2, 132.7, 131.6, 130.6, 129,

128.6, 126.3, 123 (d, Jpc = 17.5), 20.5.
Ot

4-CH3C6H4N=P(4-C6H50CH3)3 (4.6). To a solution of

3
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4-H3;CC¢H4N3 (0.40 g, 3.00 mmol) in toluene (10 mL), a solution of 4- tris(4-
methoxyphenyl)phosphine (1.20 g, 3.30 mmol) in toluene (10 mL), was added dropwise
at 0 °C. A clear colorless solution was observed. After 30 minutes, the reaction mixture
was warmed to 25 °C and stirred for 16 hours. The solvent was removed under vacuum
resulting in a (evaporated to) yellow viscous solid. Diethyl ether (20 mL) was added to
the solid and the suspension stirred for 30 minutes. The solid was collected by filteration
and rinsed with diethyl ether (3x20 mL) to yield 4.6 as a white (0.90 g, 81 %). 'H NMR
(C¢Dg): 8 7.80 (dd, J=11.2, 8.8, 6H of 2,6-CH of -N=P(4-CcHsOCHs)3), 7.27 (d, J = 8.4,
2H, 2,6-CH of -P=N(4-CsH4CH3)), 7.04 (d, J = 7.8, 2H, 3,5-CH of -N=P(C¢Hs)3, 6.61
(m, 6H, 4-CH of -N=P(C¢Hs)3), 3.11 (s, 9H, -OCHs), 2.19 (s, 4-CH, -CH;). *'P NMR

(C6D6)Z 0-1.41.

4-CH;C¢H4sN=P(4-CcH4NCH3),Ph(4.7). To a solution of
: N(P;: : . / bis(4-dimethyl aminophenyl)phenyl phosphine azide

A ) o (0.76 g, 5779 mmol) in toluene, a solution of 4-

H3CCgH4N3 (2.22 g, 6.37 mmol) in toluene (20 mL), was added dropwise at 0 °C. A clear
colorless solution was observed. After 30 minutes, the reaction mixture was warmed to
25 °C and stirred for 16 hours. The solvent was removed under vacuum resulting in a
yellow solid. Diethyl ether (20 mL) was added to the solid and the suspension stirred for
30 minutes. The solid was collected by filtration and rinsed with diethyl ether (3x20 mL)
to yield 4.9 as a yellow solid. Toluene was removed under vacuum, resulting viscous
yellow residue. The yellow solid residue was treated with 1:4 toluene-hexanes (40 mL)
affording a white precipitate which was stirred under N,. The stirring was stopped and

the yellow solid allowed to settle. The 1:4 toluene/hexanes was removed using syringe.
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Hexanes (20 mL) was added to the solid. The solid was collected by filtration and rinsed
with hexanes (2x10 mL) to yield 4.7 as a white solid (1.69 g, 64 %). '"H NMR (CDCls): §
7.80 (m, 2H of 2,6-CH of (C¢Hs)P=N-), 7.57 (dd, J = 11.6, 9.2, 4H, 3,5-CH of -N=P(4-
CsHsN(CH3),, 7.39 (m, 3H, 2,6-CH and 4-CH of -N=P(C¢Hs)), 6.81 (d, J = 8, 2H, 2,6-
CH of -P=N(4-C¢H4CH3), 6.74 (d, J = 8.4, 2H, 3,5-CH of -P=N(4-CsH4CH3)), 6.67 (dd, J
= 8.8, 2, 4H, 3,5-CH of -N=P(4-CcH4N(CHs3)>)2), 2.99 (s, 12H, -NCH;), 2.17 (s, 4-CH,
CH;). 'H NMR (C4D¢): 8 8.12 (dd, J = 11.2, 8.8, 2H of 2,6-CH of (C¢Hs)P=N-, 7.87 (m,
4H, 3,5-CH of -N=P(4-CsHsN(CH3),)), 7.38 (d, J = 8, 2H, 2,6-CH of -P=N(CsHs)), 7.07
(m, 5H, 3,5-CH of -P=N(4-CsH4CHs), 3,5-CH of -N=P(Cs¢Hs) and 4-CH of -N=P(C¢Hs)),
6.35 (dd, J=9.2, 2, 4H, 3,5-CH of -N=P(4-CcH4sN(CHs)>)>), 2.32 (s, 12H, -NCHj3), 2.22
(s, 4-CH, -CH3). *'P NMR (CDClL): & 2.16. *'P NMR (C¢Ds): & 0.98. *C NMR (CDCl)s:
0152, 149.5,134.3,132.7, 131, 129.2, 128, 125, 123, 115.7, 111.5, 40.2, 20.7.

4-CH3C6H4N=P(4-C6H4N(CH3)2)3 (4.8). To a solution of

/
4< >—N:P N
@ \> tris(4-dimethyl aminophenyl) phosphine (2.70 g, 6.90

3
mmol) in toluene (20 mL), a solution of 4-H;CCsH4N3(0.80 g, 6.10 mmol) in toluene (20

mL), was added dropwise at 0 °C. A clear colorless solution was observed. After 30
minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours. The solvent
was removed under vacuum resulting in a yellow viscous solid. Diethyl ether (20 mL)
was added to the solid and the suspension stirred for 30 minutes. The solid was collected
by filtration and rinsed with diethyl ether (2x10 mL) to yield 4.8 as a white solid (2.26 g,
75 %). 'H NMR (CDCL): & 7.57 (dd, J = 112, 88, 6H, 2,6-CH of -N=P(4-
C¢H4N(CH3),)3), 6.67 (m, 4H, 2,6-CH and 3,5-CH of -P=N(4-C¢HsCH3)), 6.65 (m, 6H,

3,5-CH of -N=P(4-C¢H,N(CHs),)3), 2.36 (s, 18H, -N(CHz)»)3), 2.25 (s, 4-CHz). 'H NMR
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(CsDes): 8 8.01 (dd, J = 10.8, 8.4, 6H, 2,6-CH of -N=P(4-CcH4N(CHz3),)3, 7.47 (d, J = &,
2H, 2,6-CH of -P=N(C¢Hs)), 7.11 (d, J = 8, 2H, 3,5-CH of -P=N(CsHs)), 6.44 (m, 6H,
3,5-CH of -N=P(4-CcH4N(CHjs),)3), 2.36 (s, 18H, -N(CH3),)3), 2.25 (s, 4-CH, CH;). *'P
NMR (CDCls): § 6.5. *'P NMR (CgDe): & 1.5. °C NMR (CDCls): § 152, 149, 134, 129,
125, 123 (d, Jpc = 18.2), 117 (d, Jpc = 7.8), 111, 40.2, 20.7.
C¢HsCH,N=PPh; (4.9). The compound was synthesized
@—\N_P according to a modified literature procedure.” To a solution of
@) 3 triphenyl phosphine (3.21 g, 12.24 mmol) in toluene (20 mL), a
solution of PhCH,N3 (1.50 g, 11.10 mmol) in toluene (20 mL), was added dropwise at 0
°C. A clear colorless solution was observed. After 30 minutes, the reaction mixture was
warmed to 25 °C and stirred for 16 hours. The solvent was removed under vacuum
resulting in a (evaporated to) yellow viscous solid. Diethyl ether (20 mL) was added to
the (viscous) solid and the suspension stirred for 30 minutes. The solid was collected by
filtration and rinsed with diethyl ether (3x20 mL) to yield 4.9 as a yellow solid (0.48 g,
12 %). '"H NMR (CDCls): & 7.70 (m, 6H, 2,6-CH of -N=P(C¢Hs)s, 7.41-7.52 (m, 11H of
3,5-CH and 4-CH of -N=P(C¢Hs)3, and 2,6-CH of -CH,(C¢Hs), 7.24 (m, 2H, 3,5-CH of
CHx(CgHs)), 7.13 (m, 1H, 4-CH of CH,(C¢Hs)), 4.40 (d, J = 18, -CH,). '"H NMR (C¢Dg):
0 7.80 (d, J = 7.2, 2H, 2,6-CH of -CH»(C¢Hs), 7.70 (m, 6H, 2,6-CH of -N=P(C¢Hs)3),
7.29 (t, J = 7.6, 2H of 3,5-CH of -CH»(C¢Hs)), 7.12 (m, 1H of 4-CH of -CH»(C¢Hs)),
6.95-7.01 (m, 9H, 3,5-CH and 4-CH of -N=P(C¢Hs)s, 4.68 (d, J = 15.2, 2H, of -CH,). *'P
NMR (CDCls): § 11.3.>'P NMR (C¢Ds): & 5.9.

C6H5CH2N=P(4-C6H4OCH3)3 (4.10). To a solution of

: N:P@OCH3) tris(4-methoxyphenyl)phosphine (1.20 g, 3.40 mmol) in

3
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toluene (10 mL), a solution of PhCH,N; (0.40 g, 3.00 mmol) in toluene (10 mL), was
added dropwise at 0 °C. A clear colorless solution was observed. After 30 minutes, the
reaction mixture was warmed to 25 °C and stirred for 16 hours. The solvent was removed
under vacuum resulting in a yellow viscous solid. Diethyl ether (20 mL) was added to the
solid and the suspension stirred for 30 minutes. The solid was collected by filtration and
rinsed with diethyl ether (3x20 mL) to yield 4.10 as a white solid (0.90 g, 81 %). 'H
NMR (CDCls): 8 7.59 (dd, J = 9.2, 1.6, 6H, 2,6-CH of -N=P(4-CcHsOCH3)3), 7.44 (d, J
=7.2,2H of 2,6-CH of -CH»(C¢Hs)), 7.21 (t, J= 8, 2H of 3,5-CH of -CH»(C¢Hs)), 7.12 (t,
J = 17.6, 1H, 4-CH of -CH,(C¢Hs)), 6.91 (dd, J = 6.4, 1.6, 6H, 2,6-CH of -N=P(4-
CsHsOCH3)3), 4.33 (d, J = 18, 2H, 3,5-CH of -CH,), 3.82 (s, 9H, 4-OCHs). 'H NMR
(CeDes): 0 7.98 (d, J = 7.6, 2H of 2,6-CH of -CH»(CsHs), 7.78 (m, 6H, 2,6-CH of -N=P(4-
Cs¢HsOCH3)3), 7.39 (t, J = 7.6, 2H of 3,5-CH of -CH,(C¢Hs)), 7.20 (m, 1H of 4-CH of -
CH(CeHs)), 6.71 (m, 6H, 3,5-CH of -N=P(4-CcHsOCH3)3), 4.8 (d, J = 15.6, 2H, 3,5-CH
of -CH,), 3.19 (s, 9H, 4-OCH;). *'P NMR (CDCl;): & 11.4. *'P NMR (C¢Dg): & 6. °C
NMR (CDCls): 6 161.8, 146.2, 134.2 (d, Joc = 10.6), 133.8 (d, Jpc = 11.4), 127.7 (d, Jpc
=53.2), 125.3,123.5 (d, Jpc = 98.7), 113.8 (d, Jpc = 12.9), 55.2, 48.9.
C¢Hs(CH;);N=PPh; (4.11). To a solution of triphenyl
@JN_P@)S phosphine (1.10 g, 4.30 mmol), in toluene (10 mL), a
solution of PhCH,CH,N3 (0.63 g, 4.30 mmol) in toluene (10 mL) was added dropwise at
0 °C. A clear colorless solution was observed. After 30 minutes, the reaction mixture was
warmed to 25 °C and stirred for 2 hours. The solvent was removed under vacuum
resulting in a yellow viscous solid. Hexanes (20 mL) was added to the solid and the

suspension stirred for 30 minutes. The stirring was stopped and the yellow solid allowed
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to settle. The hexanes was removed using syringe. Hexanes (10 mL) was added to the
solid. The solid was collected by filtration and rinsed with hexanes (3x10 mL) to yield
4.11 as a white solid (0.80 g, 50 %). "H NMR (CDCl): § 7.62 (m, 6H of 2,6-CH of -
N=P(C¢Hs)3), 7.49 (m, 3H, of 4-CH of -N=P(Ce¢Hs);), 7.42 (m, 6H, 3,5-CH of -
N=P(C¢Hs)3), 7.18 (m, 2H, of 2,6-CH of -CH,CH»(CsHs)), 7.10 (m, 2H, of 3,5-CH and
1H, 4-CH of CH,CH(CsHs) 2), 3.32(m, 2H, -CH of CH>CH,(C¢Hs)), 2.85(m, 2H, -CH of
-CH,CH,(CsHs)). 'H NMR (C¢Ds): 8 7.62 (m, 6H of 2,6-CH of -N=P(C4Hs))s, 7.66 (m,
3H, of 4-CH of -N=P(CsHs)3), 7.25 (d, J = 7.6, 2H, of 2,6-CH of -CH,CH,(C¢Hs)), 7.11
(m, 2H, 3,5-CH of CH,CH»(C¢Hs)), 6.96 (m, 10H, of 3,5-CH of -N=P(C¢Hs)3), 4-CH of -
N=P(C¢Hs)3), and 4-CH of CH,CH»(C¢Hs)z), 3.65 (m, 2H, -CH of CH>CH,(CsHs)), 3.15
(t, J = 7.6, 2H, -CH of -CH,CH,(C¢Hs)). *'P NMR (CDClL): & 11.3. *'P NMR (C¢Dq): 8
4.4. C NMR (CDCly): 5 141.6, 132.5, 132, 131.2, 128.9, 128.4 (J = 11.4), 127.9, 125 .4,
48.2,42.5 (d, Joc = 17.5).
N C¢Hs5(CH,),N=P(4-CcHsN(CH3),),Ph; (4.12). To a solution
of 4-dimethyl aminophenyldiphenyl phosphine (1.00 g, 3.40
N:,;@) mmol) in methylene chloride (10 mL), a solution of
QI 2 PhCH,CH,N3; (0.50 g, 3.40 mmol) in methylene chloride (10
mL) was added dropwise at 0 °C. A clear yellow solution was observed. After 30
minutes, the reaction mixture was warmed to 25 °C and stirred for 3 hour. The solvent
was removed under vacuum resulting in a yellow spongy solid. Diethyl ether (20 mL)
was added to the solid and the suspension stirred for 30 minutes. The solid was collected
by filtration and rinsed with diethyl ether (3x20 mL) to yield 4.12 as a yellow solid (1.20

g, 60 %). 'H NMR (CDCL): & 7.63 (m, 4H of 2,6-CH of -N=P(C,Hs)), 7.41-7.49 (m, 6H,
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3,5-CH and 4-CH of (C¢Hs)P=N- and 2H, 2,6-CH of -N=PCsH4N(CH3),), 7.17 (m, 2H,
3,5-CH of -N=PCcH4N(CH3),), 7.11 (m, 3H, 2,6-CH and 4-CH of -CH,CH,(C¢Hs)), 6.68
(m, 2H, 3,5-CH of -CH,CH»(CsHs)), 3.29 (m, 2H, -CH of -CH,CH,(C¢Hs)), 3.00 (s, 6H, -
N(CHs),), 2.85 (m, 2H, -CH of -CH,CH»(CsHs). '"H NMR (CgDg): & 7.80 (m, 4H of 2,6-
CH of -N=P(C¢H5s)), 7.62 (m, 2H, of -N=PCsH4N(CHs),,) 7.28 (d, J = 7.6, 2H, of -
N=PC¢H4N(CHs3),,) 7.03 (m, 7H, 3,5-CH and 4-CH of (C¢Hs)P=N- and 4-CH of -
CH,CH»(CeHs)), 6.34 (m, 2H, 3,5-CH of -CH,CH»(C¢Hs)), 3.74 (m, 2H, CH of -
CH,CH,(C¢Hs), 3.24 (s, 6H, 2,6-CH of -N=PC¢H4N(CH;),), 2.30 (m, 6H, -NCHs). *'P
NMR (CDCL): & 13. *'P NMR (C¢Dg): & 5.49. °C NMR (CDCl3): & 152.1, 141.8, 133.9,
132.5, 132, 130.8, 128.9, 128.1, 128.3 127.9, 125.3, 111.3 (d, Jec = 12.2), 48.5, 42.6,
39.9.
C¢Hs5(CH,),N=P(4-CcHsN(CH3),),Ph (4.13). To a
N?: : N/ solution  of  bis(4-dimethylaminophenyl)phenyl
@I ' > 2> phosphine (0.90 g, 2.60 mmol) in methylene chloride
(10 mL), a solution of PhACH,CH,N3 (0.38 g, 2.60 mmol) in methylene chloride (10 mL)
was added dropwise at 0 °C. A clear yellow solution was observed. After 30 minutes, the
reaction mixture was warmed to 25 °C and stirred for 1 hour. The solvent was removed
under vacuum resulting in a yellow solid. Diethyl ether (20 mL) was added to the solid
and the suspension stirred for 30 minutes. The solid was collected by filteration and
rinsed with diethyl ether (3x20 mL) to yield 4.13 as a white solid (1.20 g, 60). 'HNMR
(CDCl3): & 7.65 (m, 2H of 2,6-CH of -N=P(C¢Hs), 7.46 (m, 4H, 2,6-CH of -N=P(4-
CsHsN(CHs),),, 7.36-7.42 (m, 3H, 3,5-CH and 4-CH of -P=N(C¢Hs)), 7.17 (m, 2H, 2,6-

CH of -CHy(CeHs)), 7.11(m, 2H, 3,5-CH and 4-CH of -CHy(C¢Hs)), 6.68 (dd, J = 8.4,
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1.6, 4H, 3,5-CH of -N=P(4-CsH;N(CH:),),), 3.29 (m, 2H, -CH of -CH,CHy(C¢Hs)), 2.98
(s, 12H, -N(CH3),)), 2.85 (m, 2H, -CH of -CH,CH,(C¢Hs)). "H NMR (CeDg): & 7.95 (m,
2H of 2,6-CH of -N=P(C¢Hs), 7.46 (m, 5H, 2,6-CH of -N=P(4-CsH;N(CH3),), and of 4-
CH of -N=P(C¢Hs)), 7.34 (d, J = 7.6, 4H, 3,5-CH of -N=P(4-CsH;N(CH3),),, 3.86 (m,
2H, -CH of -CH,CHy(CsHs)), 3.33 (m, 2H, -CH of -CH,CH,(C¢Hs)), 2.32 (s, 12H, -
N(CHs),),). *'P NMR (CDCL): & 14.5. *'P NMR (C¢Ds): & 6.29. °C NMR (CDCly): &
134.1, 133.5, 132.5, 132, 130.9, 129, 128.3, 128, 127.9, 125.3, 117.7, 111, 47.9, 41.9,
39.9.

CsHs(CH,);N=P(4-CcH,N(CH3);) (4.14). To a
/

N=P N
@J @ \> solution of tris(4-dimethyl aminophenyl) phosphine

3
(2.70 g, 6.90 mmol) in methylene chloride (10 mL), a solution of PhCH,CH,Nj3 (1.20 g,

3.30 mmol) in methylene chloride (10 mL) was added dropwise at 0 °C. A clear
yellowish solution was observed. After 30 minutes, the reaction mixture was warmed to
25 °C and stirred for 1 hour. Solvent was evaporated to yellow viscous solid. Diethyl
ether (20 mL) was added to the solid and the suspension stirred for 30 minutes. The solid
was collected by filtration and rinsed with diethyl ether (3x20 mL) to yield 4.14 as a
yellow solid (1.20 g, 70 %). 'H NMR (CDCl;): & 7.48 (m, 6H, 2,6-CH of -N=P(4-
CsHsN(CH3),)3, 7.18 -7.08 (m, 4H, 2,6-CH, 3,5-CH and 4-CH of (C¢Hs)CH,CH,-, 6.66
(m, 6H, 3,5-CH of -N=P(4-CcH4sN(CH3)2)3, 3.23 (m, 2H, -CH of -CH,CH(CsHs)), 2.89
(m, 2H, -CH of -CH,CH, (CsHs)), 2.98(s, 18H, -N=P(4-C¢H;N(CHs),);).'H NMR
(CsDes): & 7.98 (m, 6H, 2,6-CH of -N=P(4-CcH4N(CHz3)»)3, 7.35 (d, J = 7.6, 2H, 2,6-CH
of -CH»(CeHs)), 6.98 (t, J = 7.2, 2H, 3,5-CH -CH»(C¢Hs)), 6.43 (m, 7H, 2,6-CH and 4-

CH of -N=P(4-C¢HuN(CH3)»)s, 3.84 (m, 2H, -CH of -CH>CH»(CgHs)), 3.40 (t, J = 7.6,
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2H, -CH of -CH,CH, (C¢Hs)), 2.33 (s, 18H, -N=P(4-C¢H4sN(CHs),)3). *'P NMR (CDCl5):
§ 22. *'P NMR (C¢Dg): 8 9. °C (CDCL): & 152, 134.6 (d, Joc = 11.4), 133.3 (d, Jpc =
10.7), 129 (d, Joc = 120.7), 128, 127.7, 111.6 (d, Jpc = 12.9), 111 (d, Jec = 12.9), 40 (d,

Jpc = 106)

Generation of [4-CH3CcH/sHN=P(4-CcHsNCH3),Ph][BF4] (4.15) by the protonation
of 4-4-CH3C6H4N=P(4-C6H4NCH3)2Ph (4.7) with [PyH] [BF4]

A valved NMR tube was loaded with 4.7 (31.7 mg, 70 wmol),

Q_
OWE@N\) HPyBF, (11.7 mg, 70 wmol) and CD,Cl, (1 mL) was added

BEF, 2
4.15 via vacuum transfer at -196 °C. After the NMR tube was

flushed with N,, the tube was sealed, warmed to 25 °C, and shaken until the solids
dissolved. After 30 minutes, 'H,*'P, ''B, and "°F spectra were recorded. 'H and *'P NMR
spectra showed that 4-CH3;CsHsN=P(4-CsH4sNCHj3),Ph was completely protonated to
generate [4-CH;C¢H4HN=P- (4-C¢H4NCH;),Ph][BF,] and release free pyridine. '"H NMR
(CD,Cl,): 6 8.54 (d, 2H, , 2,6-CH of CsHsN), 7.75 (m, 1H, 4-CH of CsHsN and 3,5-CH
and 4-CH of (C¢Hs)P=N-), 7.61 (m, 2H of 2,6-CH of (C¢Hs)P=N-), 7.48 (dd, J =12, 8.8,
4H, 2,6-CH of -N=P(4-CcH4N(CHs),, 7.33 (t, J = 6, 2H, 3,5-CH of -N=P(C¢Hs)), 6.96 (d,
J =18, 2H, 2,6-CH of -P=N(4-CsH4CH3), 6.83-6.77 (m, 7H, 3,5-CH of -P=N(4-CsH4CH3,
3,5-CH of -N=P(4-CcH4N(CH3),)2), and —NH), 3.06 (s, 12H, -NCH5), 2.22 (s, 4-CH, -
CHs). *'P NMR (CD,CL): & 32. ’F NMR (CD,CL): & -151.7. "B NMR (CD,CL): & -
1.12. °C NMR (CD,CLy): & 154.6, 149.6, 137.2, 136.3, 135.4, 134.7, 134.1, 133.5, 130.2,

130, 124.5,121.7, 112.4, 103 (d, Jpc = 116.9), 40.2, 20.9.
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Generation of [4-CH3C6H HN=P(4-CcHsN(CH3),);][BF4] by the protonation of 4-
CH3C6H4N=P(4-C6H4N(CH3)2)3 (4.16) with [PyH] [BF4]

A valved NMR tube was loaded with 4.8 (29.7 mg, 59.9

@ /
—< >—N=P<E< >—N
) \>3 umol), HPyBF4 (10 mg, 59.9 umol) and CD,Cl, (1 mL) was

416 BF4
added via vacuum transfer at -196 °C. After the NMR tube was flushed with N, the tube

was sealed, warmed to 25 °C, and shaken until the solids dissolved. After 30 minutes, 'H,
’'p, 'B, and "F spectra were recorded. 'H and *'P NMR spectra showed that 4-
CH;CsHaN=P(4-CcH4N(CHs),)3 was completely protonated to generate [4-
CH3C6H4HN=P(4-CsH4N(CH3),);3][BF4] and release free pyridine. 'H NMR (CD,CL): &
8.54 (d, J=4.4, 2H, , 2,6-CH of CsHsN), 7.72 (t, J = 8, 1H, 4-CH of CsHsN), 1H, 4-CH
of CsH;sN), 7.47 (dd, J = 12, 8.8, 6H, 2,6-CH of -N=P(4-C¢H4N(CHs),)3), 7.31 ((dd, J =
7.6, 2, 2H, 4-CH of CsHsN),, 2H, 3,5-CH of CsHsN), 6.96 (m, 2H, 2,6-CH of -P=N(4-
C¢HsCH3)), 6.76 (m, 8H, 3,5-CH of -N=P(4-C¢H4N(CH3),)3) and 3,5-CH of -P=N(4-
Ce¢HsCH3)), 6.31 (d, (t, J = 8, -P=NH), 3.05 (s, 18H, -N(CHz),)3), 2.22 (s, 4-CHs). *'P
NMR (CD,CL): & 31.7. "F NMR (CD,CL): & -152.2. "B NMR (CD,CL): & -1.13. °C
NMR (CD,CL): 6 154.3, 149.6, 137.1, 136.7, 135, 133, 130.3, 124.5, 121.3, 112.2, 104
(d, Jec =116.9), 40.2, 20.8.

Generation of [CcHsCH,NH=P(4-CcH,OCH3;);][CsHsCOO] by the protonation of 4-
CH3C¢HsN=P(4-CcHsN(CH3),);3 (4.10) with [CiHsCOOH]

A valved NMR tube was loaded with 4.17 (11 mg, 24 umol), CéHsCOOH (40 mg, 24
umol) and CD,Cl, (1 mL) was added via vacuum transfer at -196 °C. After the NMR tube
was flushed with N, the tube was sealed, warmed to 25 °C, and shaken until the solids

dissolved. After 30 minutes, 'H, °*'P, spectra were recorded. "H and *'P NMR spectra
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CBH5COO@ ShOWGd that 4-CH3C6H4N=P- (4-C6H4N(CH3)2)3 (410) was

Q—\ﬁ=P<®*OCH3> completely protonated to generate [CsHsCH,- NH=P(4-

i C¢H4OCH;);][CéHsCOO]. 'H NMR (CD,CL):'H NMR
(CDCl3): 6 11.55 (bs, -NH), 7.98 (d, J = 6, 2H), 7.68 (m, 5H), 7.55 (bs), 7.25 (m, 6H),
7.10 (d, J= 7.2, 3H), 6.96 (d, J = 8.4, 6H), 4.31 (d, J = 16, 2H), 3.8 (s, 9H). *'P (CDCL;):

0 36 (96 %, protonated 4.10), 28.6 (4 %, Phosphine oxide).

'HNMR (C4Dg) of alcohols

'"H NMR of alcohols were taken in non-hydrogen bonding solvent, C¢Ds. The 'H
NMR resonance peaks were assigned. The -OH proton peak is observed in these free
alcohols in "H NMR (C¢Ds).
(a) 9-Anthracenethanol
A valved NMR tube was loaded with 9-Anthracenethanol (10.0 mg, 44.98 mmol)
and C¢Dg (0.75 mL) was added via vacuum transfer at -196 °C. After the NMR
tube was flushed with N, the valved NMR tube was sealed, warmed to 25 °C and
shaken until the solids dissolved. After 10 minutes, 'H spectra was recorded.
"H NMR (C¢Ds): 8 8.107 (s, 1H, 9-CH), 8.10 (d, 2H, J = 8.8, 8-CH), 7.77 (m, 2H,
4, 6-CH), 7.11-7.26 (m, 4H, 2,3,7,8-CH ), 3.64 (m, 2H, -CH,OH), 3.55 (m, 2H, -
CH,CH,OH), 0.77 (s, -OH). “C NMR (C¢De): & 131.7, 130.8, 130.5, 129.1,

126.3,125.4,124.7, 124.5, 62.8, 31.1.

(b) 9-Anthracenmethanol
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(c)

A valved NMR tube was loaded with 9-Anthracenmethanol (5.0 mg, 24.00 mmol)
and C¢Dg (0.75 mL) was added via vacuum transfer at -196 °C. After the NMR
tube was flushed with N, the valved NMR tube was sealed, warmed to 25 °C and
shaken until the solids dissolved. After 10 minutes, 'H spectra was recorded. 'H
NMR: 8.19 (d, J = 8.8, 2H, 8-CH), 8.10 (s, 1H, 9-CH), 7.757 (d, J = 8.4, 2H, 4, 6-
CH), 7.21(m, 4H, 2,3,7,8-CH), 5.2(s, 2H, -CH,OH), 0.97 (s, -OH).

1-octadecanol

A valved NMR tube was loaded with 1-octadecanol (10.0 mg, 36.96 mmol) and
CsDg (0.75 mL) was added via vacuum transfer at -196 °C. After the NMR tube
was flushed with N, the valved NMR tube was sealed, warmed to 25 °C and
shaken until the solids dissolved. After 10 minutes, 'H spectra was recorded. 'H
NMR (C¢Dg): 8 3.3 (t, J =6, 2H, -CH,OH), 1.36-1.21 (m, 32H, -CH,), 0.871(m, -
CH;), 0.56 (s, -OH). >C NMR (C¢Ds): 8 62, 32.8, 31.9, 29.8, 29.7 29.52, 29.43,

25.8,22.7.

"HNMR ( C¢Dgs) of Nitrogen bases of the known system

(a)

(b)

4-Dimethylaminopyridine (DMAP)

A valved NMR tube was loaded with DMAP (10.0 mg, 81.85 mmol) and C¢Ds
(0.75 mL) was added via vacuum transfer at -196 °C. After the NMR tube was
flushed with N, the valved NMR tube was sealed, warmed to 25 °C and shaken
until the solids dissolved. After 10 minutes, 'H spectra was recorded. 'H NMR
(CeDg): 0 8.42 (d, J = 6, 2H, 2,6-CH of -NCsH4N(CHs)»), 6.07 (q, J = 1.6, 3,5-CH
of -NCsHy;N(CHs),), 2.19 (s, -CHz), “C NMR (C¢Dg): § 150, 106.5, 37.9.

Triazabicyclodecene (TBD)
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A valved NMR tube was loaded with TBD (5.0 mg, 35.91 mmol) and Cs¢Ds¢ (0.75
mL) was added via vacuum transfer at -196 °C. After the NMR tube was flushed
with N, the valved NMR tube was sealed, warmed to 25 °C and shaken until the
solids dissolved. After 10 minutes, 'H spectra was recorded. "H NMR (C¢Dg):
8 5.55 (bs, -NH), 3.09 (m, 4H, -CH,), 2.53 (m, 4H, -CH>), 1.48 (m, 4H, -CH>).
(c) 1,8-Diazabicyclo[5.4.0]Jundec-7-ene (DBU)
A valved NMR tube was loaded with DBU (5.0 mg, 32.84 mmol) and Cs¢D¢ (0.75
mL) was added via vacuum transfer at -196 °C. After the NMR tube was flushed
with N, the valved NMR tube was sealed, warmed to 25 °C and shaken until the
solids dissolved. After 10 minutes, 'H spectra was recorded. '"H NMR (C¢Dg):
83.34 (t, J = 5.6, 2H, -CH,), 2.73 (t, J = 6.4, 2H, -CH>), 2.65 (t, J = 4.8, 2H, -
CH,), 1.47 (m, 4H, -CH>), 1.26 (m, 2H, -CH), 1.15 (m, 2H, -CH,).
Alcohol activation of literature reported systems.

(2) DMAP+ 9-Anthrylethanol

A valved NMR tube was loaded with DMAP (5.0 mg, 40.92 mmol) and 9-
Anthrylethanol (9.0 mg, 40.92 mmol). Ce¢Ds (0.75 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 10
minutes, 'H spectra was recorded. "H NMR (CgDg): 0 8.33 (dd, J =4.8, 1.6, 2H),
8.15 (m, 1H), 8.08 (s, 1H), 7.23 (m, 4H), 6.01 (dd, J=4.8, 1.2, 2H), 3.79 (m, 2H),
3.68 (m, 2H), 2.17 (s, -OH), 2.15 (s, 6H, -CH3). -OH proton shift in '"H NMR
Ad(OH): (2.17-0.77) ppm =& 1.4 ppm.

(b) DMAP+ 9-Anthrylmethanol
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A valved NMR tube was loaded with DMAP (4.0 mg, 32.74 mmol) and 9-
Anthrylmethanol (6.8 mg, 32.74 mmol). C¢Dg (0.75 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 10
minutes, 'H spectra was recorded. "H NMR (C¢Dg): & 8.35 (d, J = 8.4, 2H), 8.26
(d, J=5.2,2H), 8.11 (s), 7.76 (d, J = 8, 2H), 7.22 (m, 3H), 7.106 (s), 5.96 (d J =
5.6, 2H, -CH,), 5.39 (s, 2H, -CH>), 2.94 (s, -OH), 2.11 (s, 6H, -CH3), 1.94 (s). -
OH proton shift in '"H NMR A§(OH): (2.94 - 0.97) ppm =& 1.97 ppm.

(c) DMAP+ 1-octadecanol

A valved NMR tube was loaded with DMAP (5.0 mg, 40.92 mmol) and 1-
octadecanol (11.0 mg, 40.92 mmol). C¢Dg (0.75 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 10
minutes, 'H spectra was recorded. '"H NMR (C¢Ds): & 8.38 (m, 2H), 7.113 (s),
6.03 (m, 2H), 3.47 (t, J = 6.4, 2H), 2.17 (s, 6H, -CH3), 1.88 (s, -OH), 1.47 (m,
2H), 1.29-1.25 (m, 27H, -CH>), 0.86 (t, J = 6.8, 3H). -OH proton shift in "H NMR
Ad(OH): (1.88 = 0.56) ppm =& 1.33 ppm.
(d) TBD+ 9-Anthrylethanol

A valved NMR tube was loaded with TBD (5.0 mg, 35.91 mmol) and 9-
Anthrylethanol (8.0 mg, 35.91 mmol). CsDs (0.75 mL) was added via vacuum

transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR

tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 10
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minutes, 'H spectra was recorded. "H NMR (C¢Dg): & 8.32 (d, J = 8.8, 2H), 8.09
(s, 1H), 7.78 (d, J = 8.4, 2H), 7.21 (m, 4H, -CH>), 5.03 (s, 2H, -OH), 4.03 (m, 2H-
CH>), 3.90 (m, 2H-CH>), 2.79 (m, 3H), 2.43 (m, 3H), 1.29 (m, 3H). -OH proton
shift in '"H NMR A8(OH): (5.03 - 0.77) ppm = 4.26 ppm.

(e) TBD+1-octadecanol

A valved NMR tube was loaded with TBD (5.0 mg, 35.91 mmol) and 1-
Octadecanol (9.7 mg, 35.91 mmol). Cg¢Ds (0.75 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 10
minutes, 'H spectra was recorded. "H NMR (C¢D¢): & 4.8 (s, -OH), 3.66 (t, J =
6.8, 2H), 2.97 (t, J = 5.6, 4H, -CH,), 2.45 (t, J = 6.4, 4H, -CH>), 1.61 (m, 2H),
1.43 (m, 7H), 1.28 (m, 32H, -CH,), 0.85 (m, 4H, -CH>). -OH proton shift in 'H
NMR Ad(OH): (4.80 - 0.56) ppm = 4.24 ppm.

(f) DBU + 9-Anthrylethanol

A valved NMR tube was loaded with DBU (3.47 mg, 22.79 mmol) and 9-
Anthrylethanol (5.0 mg, 22.79 mmol). C¢Ds (0.75 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR
tube was sealed, warmed to 25 °C and shaken until the solids dissolved. After 1S0
minutes, 'H spectra was recorded. 'H NMR (Ce¢D¢): §833(d, J = 6,
2H), 8.10, 7.78 (dd, J = 8.8, 1.6, 2H), 7.26 (m, 4H), 4.07 (bs, -OH), 4.02 (t, J = 8§,

2H), 3.89 (t, J = 8, 2H, -CHa), 2.58 (t, J = 6.4, 2H, -CH>), 2.51 (t, J = 5.2, 2H, -
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CH,), 2.28 (t, J = 5.2, 2H, -CH>), 1.40 (m, 4H), 1.17(m, 2H, -CH>), 1.04 (m, 2H, -

CH>). -OH proton shift in '"H NMR A§(OH): (4.07 - 0.77) ppm = 3.30 ppm.
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Experimental Section 4: Activation of 9-anthrylethanol
(Chapter 4)

HO ‘
P CeDs
-0, . OO -
A valved NMR tube was loaded with 4.5 (16.5 mg, 45.0 mmol), 9-anthrylethanol (10 mg,
45.0 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N», the tube was sealed, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted
compared to that of 9-anthrylethanol. 'H NMR: & 8.12 (t, J = 10.8, 3H4-CH of -
N=P(C¢Hs)3)), 7.78 (m, 8H, 3,5-CH of -N=P(C¢Hs)3)), 7.24 (m, 4H), 7.19 (d, J = 6.4,
2H), 6.97 (m, 11H), 3.74 (m, 4H, -CH,), 2.17 (s, 3H), 1.61 (s, -OH). *'P NMR: 1.73

(single peak). -OH proton shift in "H NMR AS(OH): (1.61- 0.77) = 0.84 ppm

o~
P OCH; O CsDs
/7 + 2 .
_< >_N 3 O 25°C
4.6

A valved NMR tube was loaded with 4.6 (7.7 mg, 18.0 mmol), 9-anthrylethanol (4 mg,
18.0 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N,, the tube was secaled, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted
compared to that of 9-anthrylethanol. "H NMR (C¢De): & 8.25 (d, J = 6.4, 2H), 8.20 (s,
1H), 7.91 (m, 8H, 2,6-CH of -N=P(4-C¢HsOCH3);), 7.38 (m, 8H), 7.16 (d, J = 6.4, 2H),

6.73 (m, 6H, 4-CH of -N=P(CsHs)3), 3.87 (m, 2H, -CH>), 3.79 (m, 3H, -CH>), 3.23 (s,
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9H, -OCH3), 2.31 (s, 3H), 2.00 (bs, -OH). *'P NMR (CeD¢): & 2.78 (single peak). -OH

proton shift in "H NMR AS(OH): (2.00 -0.77) = 1.23 ppm.

Ph / HO ‘
//P N\ O CeDe
<:> N 27 O 25°C
47
A valved NMR tube was loaded with 4.7 (10.3 mg, 22.5 mmol), 9-anthrylethanol (5 mg,
22.5 mmol) and Ce¢Ds (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N», the tube was sealed, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted
compared to that of 9-anthrylethanol. "H NMR (C¢Ds): & 8.19 (d, J = 1.96, 2H, 2,6-CH of
(C6Hs)P=N-), 8.17 (s, 2H), 8.09 (m, 6H), 7.80 (m, 6H), 7.37 (d, J = 8.4, 2H), 7.24 (m,
4H), 7.05 (s, 8H), 6.30 (m, 4H), 3.78 (m, 4H, -CH>), 3.07 (bs, -OH), 2.28 (s, 12H, -
NCH;), 2.19 (s, 3H, -CHz). >'P NMR (C¢Ds): & 3.81 (single peak). -OH proton shift in

"H NMR A8(OH): (3.07 - 0.77) = 2.30 ppm.

// \ CgDg
— 3+ O YT

25°C

®

A valved NMR tube was loaded with 4.8 (11.17 mg, 22.5 mmol), 9-anthrylethanol (5 mg,
22.5 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N,, the tube was secaled, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of -OH group shift was noted
compared to that of 9-anthrylethanol. '"HNMR: 8.236 (d, J = 8.4, 2H), 8.12 (s, 1H, -CH),
7.99 (m, 6H, 2,6-CH of -N=P(4-CcHsN(CHs),)3),), 7.81 (m, 2H), 7.5 (d, J = 8.4, 2H),

7.27 (m, 4H), 7.11(d, J = 7.6, 2H), 6.43 (m, 6H, 3,5-CH of -N=P(4-C¢H;N(CHs),);), 3.84
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(m, 4H, -CH>), 2.74 (bs, -OH), 2.34 (s, 18H, -NCHs), 2.24 (s, 3H, -CH3). >'P NMR: 3.92

(98%), 11.32. -OH proton shift in '"H NMR AS(OH): (2.74 - 0.77) = 1.97 ppm

©/ ¥ O 25°C

4.9

A valved NMR tube was loaded with 4.9 (8.2 mg, 22.5 mmol), 9-anthrylethanol (5 mg,
22.5 mmol) and Ce¢Ds (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N», the tube was sealed, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of -OH group shift was noted
compared to that of 9-anthrylethanol. 'H NMR (C¢D¢): & 8.14 (m, 2H, -CH), 8.07 (s, -
CH), 7.78-7.66 (m, 10H, 2,6-CH of -N=P(C¢Hs)3), 7.28-7.21 (m, 6H, 3,5-CH of
CHy(C¢Hs)), 7.11 (s, 5SH), 7.0-6.95(m, 9H), 4.65(d, J = 16.4, 2H, -CcHsCH,), 3.76-3.64
(m, 4H, -CH>), 2.537 (bs, -OH). *'P NMR: 8.536 (98 %). -OH proton shift in 'H NMR

Ad(OH): (2.54 - 0.77) = 1.77 ppm.

o]
O Y e
, U
4.10
A valved NMR tube was loaded with 4.10 (5.5 mg, 22.5 mmol), 9-anthrylethanol (5 mg,
22.5 mmol) and C¢Ds (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N», the tube was sealed, warmed to 25 °C, and shaken until

the solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted

compared to that of 9-anthrylethanol.
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"H NMR (C¢Ds): & 8.18 (d, 2H, J = 8.8, 2H -CH), 8.06 (s, 2H -CH ), 7.87 (d, J = 7.6, 2H,
H, -CH ), 7.71 (m, 6H, 2,6-CH of -N=P(C¢Hs)3), 7.31 (t, /= 7.6, 2H -CH ), 7.22 (m, 3H,
-CH), 6.65 (dd, J= 8.6, 1.6, 6H, 3,5-CH of CH,(C¢Hs)), 4.72 (d, J= 17, 2H —CH,), 3.76-
3.80 (m, 2H, -CH,), 3.73 (m, 2H, -CH>), 3.15 (bs, -OH). *>'P NMR: 8.86 (93 %). -OH
proton shift in "H NMR A8(OH): (3.15 - 0.77) = 2.38 ppm.
(o),
P
ot X
4.1 O

A valved NMR tube was loaded with 4.11 (8.6 mg, 22.5 mmol), 9-anthrylethanol (5 mg,

CeDe
—_—
25°C

22.5 mmol) and Ce¢Ds (0.5 mL) was added via vacuum transfer at -196 °C. After the
NMR tube was flushed with N,, the tube was secaled, warmed to 25 °C, and shaken until
the solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted
compared to that of 9-anthrylethanol. 'H NMR (C¢Ds): & 'H NMR: 8.14 (m, 2H, -CH),
8.14 (s, -CH), 7.78 (m, 7H, 2,6-CH of -N=PPh3)), 7.38 (m, 2H, 2,6-CH of -
CH,CH»(CeHs), 7.30 (m, 5H), 7.16 (m, 6H, 3,5-CH of -N=PPhj3), 6.46 (m, 4H), 4.22 (bs,
-OH), 3.78 (m, 2H, -CH,), 3.69 (m, 2H, -CH,), 3.56 (m, 2H, -C¢HsCH,), 3.14 (m, 2H, -
CsHsCH,CH,), 2.16 (bs, -OH). *'P NMR (CeDs): & 6.35 (98%), 25.64 (2 %, Phosphine

oxide). -OH proton shift in "H NMR A§(OH): (2.16 — 0.77) = 1.40 ppm.

Ph

I /  HO ‘
7O
l\/l/ \ CsDs
—_—
o Y
4.12

A valved NMR tube was loaded with 4.12 (7.7 mg, 18.0 mmol), 9-anthrylethanol (4 mg,

18.0 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the

NMR tube was flushed with N», the tube was sealed, warmed to 25 °C, and shaken until
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the solids dissolved. After 10 min at 25 °C, the proton of -OH group shift was noted
compared to that of 9-anthrylethanol. "H NMR: § 8.21 (m, 2H, -CH), 8.08 (s, -CH), 7.76
(m, 5H, 2,6-CH of -N=P(C¢Hs)), 7.60 (m, 2H), 7.22 (m, 6H, 3,5-CH and 4-CH of
(C¢Hs)P=N-), 7.1 (m, 7H), 7.02 (m, 6H), 6.31 (m, 2H), 4.22 (s), 3.85 (m, 2H), 3.72 (m,
4H, -C¢HsCH,), 3.22 (m, 2H, -C¢HsCH,CH,), 3.1 (bs, -OH), 2.28 (s, 6H, -N(CHs),, *'P
NMR: §9.95 (96%), 26.83 (5%, Phosphine oxide). -OH proton shift in 'H NMR

Ad(OH): (3.1 - 0.77) = 2.4 ppm.

Ph_ /
P N HO ‘
4 \ CeDs
N 2 + e
25°C
413

A valved NMR tube was loaded with 4.13 (9.6 mg, 18 mmol), 9-anthrylethanol (4 mg, 18
mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the NMR tube
was flushed with N, the tube was sealed, warmed to 25 °C, and shaken until the solids
dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted compared to
that of 9-anthrylethanol. '"H NMR: 8.36 (m, 2H, of 2,6-CH of -N=P(C4Hs), 8.16 (s), 7.82
(m, 7H), 7.38 (m, 2H), 7.30 (m, 5H), 7.16 (m, 6H), 6.46 (m, 4H), 4.22 (bs, -OH,), 3.97
(m, 2H, -CH,), 3.87 (m, 3H, -CH), 3.78 (m, 2H, CH,), 3.33 (t,J=7.2, 2H), 2.29 (s, 12H,
-C¢HsCH;). *'P NMR: 11.61 (82%), 27.25 (Phosphine oxide). -OH proton shift in 'H

NMR Ad(OH): (4.22-0.77) = 3.43 ppm

A valved NMR tube was loaded with 4.14 (11.4 mg, 18 mmol), 9-anthrylethanol (4 mg,

18 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -196 °C. After the NMR
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tube was flushed with N,, the tube was sealed, warmed to 25 °C, and shaken until the
solids dissolved. After 10 min at 25 °C, the proton of —OH group shift was noted
compared to that of 9-anthrylethanol. "H NMR (C¢D¢): & 8.32 (d, J = 8.8), 8.07 (s), 7.78
(m), 6.38 (d, J = 8.0), 4.17 (bs, -OH), 3.99 (m, 8H, -CH,), 3.90 (m, 2H, -CH>), 3.77 (m,
2H, CH>), 3.4 (m, 2H, CH,), 2.3 (m, 2H, -CHs). >'P NMR (C¢D¢): & 16 (54%), 27.82

(Phosphine oxide). -OH proton shift in "H NMR AS(OH): (4.17 - 0.77) = 3.46 ppm.

A NNT
N
HO ‘
N CeDe
I JF o
N O 25°C
DMAP

A valved NMR tube was loaded with 4-dimethylaminopyridine (DMAP) (5 mg, 40.9
mmol), 9-anthrylethanol (9.1 mg, 40.9 mmol) and C¢D¢ (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the tube was sealed,
warmed to 25 °C, and shaken until the solids dissolved. After 10 min at 25 °C, the proton
of -OH group shift was noted compared to that of 9-anthrylethanol. '"H NMR (C¢Dg):
0 8.33 (dd, J=4.8, 1.6, 2H), 8.15 (m, 1H), 8.08 (s, 1H), 7.23 (m, 4H), 6.01 (dd, J = 4.8,
1.2, 2H), 3.79 (m, 2H), 3.68 (m, 2H), 2.17 (s, -OH), 2.15 (s, 6H, -CH3). -OH proton shift
in '"H NMR A8(OH): (2.17 - 0.77) ppm = 1.4 ppm.
Solug U

H O 25°C

TBD

A valved NMR tube was loaded with triazabicyclodecene (TBD) (5 mg, 40.9 mmol), 9-
anthrylethanol (8 mg, 40.9 mmol) and C¢Dg (0.5 mL) was added via vacuum transfer at -
196 °C. After the NMR tube was flushed with N, the tube was sealed, warmed to 25 °C,

and shaken until the solids dissolved. After 10 min at 25 °C, the proton of -OH group
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shift was noted compared to that of 9-anthrylethanol. '"H NMR (C¢D): & 8.32 (d, J = 8.8,
2H), 8.09 (s, 1H), 7.78 (d, J = 8.4, 2H), 7.21 (m, 4H), 5.03 (s, 2H), 4.03 (m, 2H, -CH,),
3.90 (m, 2H), 2.79 (m, 3H), 2.43 (m, 3H, -CH;), 1.29 (m, 3H, -CH,). -OH proton shift in

"H NMR A8(OH): (5.03 — 0.77) ppm = 4.26 ppm.

Co Y

66
e
U

DB
A valved NMR tube was loaded with 1,8-Diazabicyloundec-7-ene (DBU) (3.47 mg, 22.5

mmol), 9-anthrylethanol (5 mg, 22.5 mmol) and C¢Dg (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N,, the tube was sealed,
warmed to 25 °C, and shaken until the solids dissolved. After 10 min at 25 °C, the proton
of —OH group shift was noted compared to that of 9-anthrylethanol. "H NMR (C¢Dy):
0 8.33(d, J =6, 2H), 8.10, 7.78 (dd, J = 8.8, 1.6, 2H), 7.26 (m, 4H), 4.07 (bs, -OH), 4.02
(t, J =8, 2H), 3.89 (t, J = 8, 2H), 2.58 (t, J = 6.4, 2H), 2.51(t, J = 5.2, 2H), 2.28 (t, J =
5.2, 2H), 1.40 (m, 4H), 1.17(m, 2H), 1.04 (m, 2H). -OH proton shift in 'H NMR

AS(OH): (4.87 — 0.77) ppm =4.07 ppm.
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Experimental Section 5: Ring opening polymerization of L-lactide
(Chapter 4)

General Experimental

The percent conversion of polymerization of the lactide is calculated by integration of the
methane protons of the both polymer and the monomer and comparison of their relative
integration values. The methane peak of the monomer is observed at ~5.04 ppm while the
methane peaks of the polymer are observed at 5.13-5.25 ppm the % conversion of the

monomer is determined using the following formula below,

% conversion of LA = (integration of PLA CH resonance/integration of PLA CH

resonance + integration of unreacted LA CH resonance)* 100

O :
/ \Hko cocl
/P N + 1-Pyrene | —~=~3 , NoPLA
< > N/ \ 2 butanol O\[H\ t=24 hrs.
o} 25 °C, No
4.7 (4: 1: 100)
L-LA

A valved NMR tube was loaded with 4.5 (0.77 mg, 3.64 mmol), pyrenebutanol (1 mg,
3.64 mmol), and L-Lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. '"H NMR spectra
established at 24 hours show no polymer formation. *'P{'H} spectra established that
there is formation of protonated phosphinimine. 'H NMR (CDCl;): § 5.01-5.06 (L-LA

monomer, -CH), 5.13-5.25 (L-LA monomer, -CH).
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25°C

Q CFs t=12hr.
+ L-LA
P N/> Q S ) e o
N NJ2  FC N~ N s N2
< > H H
47

(4:10:1:100) Cocatalyst

A valved NMR tube was loaded with 4.7 (4.84 mg, 14.56 mmol), thiourea (13.5 mg, 36.4
mmol pyrenebutanol (1 mg, 3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL)
was added via vacuum transfer at -196 °C. After the NMR tube was flushed with N, the
valved NMR tube was sealed, warmed to 25 °C and shaken until the solids dissolved. 'H
NMR spectra established at 12 h hours show that 88 % L-LA monomer respectively.
*'P{'H} spectra established that there is no formation of protonated phosphinimine. 'H

NMR (CDCL): 8 5.01-5.06 (L-LA, -CH), 5.13-5.25 (88%, PLLA, -CH).

0O

//P*@Ni > , 1-Pyrene \('))J\O CBCs  _ s1%pLa
< > N 3 butanol \IH\ t=24 hrs.
5 25°C, N,
(4:1:100)
L-LA

A valved NMR tube was loaded with 4.8 (3.72 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. 'H NMR spectra
established at 12 h hours show that 41 % L-LA monomer respectively. °'P{'H} spectra
established that there is no formation of protonated phosphinimine. 'H NMR (CDCl;): &

5.01-5.06 (L-LA, -CH), 5.13-5.25 (41 %, PLLA, -CH).
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0O

\Hko CDCl,
N=P + 1-Pyrene . - =
butanol O\[H\ t=24 hrs.
3 25°C, N
o 2
1 (1: 1: 100)

A valved NMR tube was loaded with 4.11 (10.82 mg, 3.64 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. 'H NMR spectra
established at 12 h hours show that 28 % L-LA monomer respectively. °'P{'H} spectra
established that there is formation of protonated phosphinimine. 'H NMR (CDCl3): &

5.01-5.06 (L-LA, -CH), 5.13-5.25 (28 %, PLLA, -CH).

O
+ 1-Pyrene O &»
@J butanol O\[(\ t=24 hrs.
25°C, N,

(@]

(4: 1: 100)

A valved NMR tube was loaded with 4.11 (43.28 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. '"H NMR spectra
established at 24 h hours show that 92 % L-LA monomer respectively. °'P{'H} spectra
established that there is no formation of protonated phosphinimine. 'H NMR (CDCl3): &

5.01-5.06 (L-LA, -CH), 5.13-5.25 (92 %, PLLA, -CH).

153



< ) 0
/ \)ko CDCl,

- 1-P 8 .

@J N_PON\+ butanol * Om)\ t=24 hrs,

@ S 25°C, N,

(1: 1: 100)
4.12

A valved NMR tube was loaded with 4.12 (1.54 mg, 3.64 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. . "H NMR spectra
established at 24 h hours show that 4 % L-LA monomer respectively. *'P{'H} spectra

established that there is no formation of protonated phosphinimine. '"H NMR (CDCl;): &

5.01-5.06 (L-LA, -CH), 5.13-5.25 (4 %, PLLA, -CH).

0}

N=P N/ + 1-Pyrene +\)ko CDCl >
@J ( > \ butanol O\[(j\ t = 30 min.
@ 25°C, N,

o
(4: 1: 100)
412

A valved NMR tube was loaded with 4.12 (6.16 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCIl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. 'H NMR spectra
established at 30 minutes show 100 % PLLA formation. *'P{'H} spectra established that
there is no formation of protonated phosphinimine. '"H NMR (CDCls): & 5.01-5.06 (L-

LA, -CH), 5.13-5.25 (100 %, PLLA, -CH).
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o]

; + 1-Pyrene | %O CDCly >
< > / butanol Om/\ t=6 hrs.
25 °C, N,

(1: 1: 100)

A valved NMR tube was loaded with 4.13 (1.26 mg, 3.64 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. 'H NMR spectra
established at 6 hours show 96 % PLLA formation. *'P{'H} spectra established that there
is a formation of protonated phosphinimine. '"H NMR (CDClLs): & 5.01-5.06 (L-LA, -CH),

5.13-5.25 (100 %, PLLA, -CH).

0O

; + 1-Pyrene \)J\O —>CDC|3
@J butanol O\[(j\ t=5 min.

8 25°C, N,
(4: 1: 100)

A valved NMR tube was loaded with 4.13 (5.04 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. '"H NMR spectra
established at 5 minutes show 96 % PLLA formation. *'P{'H} spectra established that
there is no formation of protonated phosphinimine. '"H NMR (CDCls): & 5.01-5.06 (L-

LA, -CH), 5.13-5.25 (96 %, PLLA, -CH).
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A valved NMR tube was loaded with 4.13 (5.04 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. '"H NMR spectra
established at 3 hours show 100 % PLLA formation. *'P{'H} spectra established that
there is no formation of protonated phosphinimine. '"H NMR (CDCls): & 5.01-5.06 (L-

LA, -CH), 5.13-5.25 (100 %, PLLA, -CH).

(@]
N=P N/ + 1-Pyrene %O %,
@J = \ butanol O\H)\ t =24 hours
3 I 25°C, N,
4.14

(1: 1: 100)

A valved NMR tube was loaded with 4.14 (0.98 mg, 3.64 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. 'H NMR spectra
established at 24 hours show 9 % PLLA formation. *'P{'H} spectra established that there
is a formation of protonated phosphinimine. '"H NMR (CDCls): & 5.01-5.06 (L-LA, -CH),

5.13-5.25 (9 %, PLLA, -CH).
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P\ eyene , N9 o0
N=P N + + ,
@J \ butanol O% t=5min.
3 I 25°C, N,
4.14 (4: 1: 100)

A valved NMR tube was loaded with 4.14 (3.92 mg, 14.56 mmol), pyrenebutanol (1 mg,
3.64 mmol), and I-lactide (100 mg, 0.7 mol). CDCl; (0.5 mL) was added via vacuum
transfer at -196 °C. After the NMR tube was flushed with N», the valved NMR tube was
sealed, warmed to 25 °C and shaken until the solids dissolved. '"H NMR spectra
established at 5 minutes show 100 % PLLA formation. *'P{'H} spectra established that
there is no formation of protonated phosphinimine. '"H NMR (CDCls): & 5.01-5.06 (L-

LA, -CH), 5.13-5.25 (96 %, PLLA, -CH).
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NMR SPECTRA
CHAPTER 2 & 3
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—77.326
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56.783
44.674
40.165
20.183

160 140 120 100 80 60 40 20 ppm

PULSE SBEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

5000 repetitions

OBSERVE C13, 100.4967040
DECOUPLE H1, 399.6701178
Power 40 4B
continuocusly on
WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz
FT size 65536
Total time 3.2 hours

rtmnr7l2c

Solvent: odelld

! Temp. 25.0 C¢ / 298.1 K
Sample #11, Operator: rt
File: CARBON 001

VNMRS -400 "ulnmr4 00"
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rtnmr524

Sample Name  rtnmr524
Date collected  2013-01-10

Pulse sequence PROTON Temperature 25 Study owner rt
Solvent edel3 Spectrometer  ulnmr400-vnmrs400 Operator rt
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rtnmr505¢

Sample Name  rtnmr505¢ Pulse sequence  CARBON Temperature 2§
Date collected  2012-12-10 Solvent edel3 Spectrometer  ulnmr400-vnmrs400
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PULSE SEQUENCE OBSERVE H1, 399.6684195 DATA PROCESSING rtnmr713

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 2.556 sec
Width 5410.3 Hz

8 repetitions

T size 32768
otal time 1 minute

Solvent: cdcl3

Temp. 25.0 C f 298.1 K
Operator: rt

File: PROTON 001
VNMRS-400 "ulnmr400"
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PULSE SEQUENCE EOBRVB Cl3, 100.4967040 ATA PROCESSING rtamr?13c

Relax. delay 1.000 sec {DECOUPLE H1, 399.670117¢ Line broadening 2.0 Hz H

Pulse 45.0 degrees Power 40 4B FT size 65536 Solvent: odel3

Acq. time 1.311 sec
Width 25000.0 Hz
512 repetitions

continuously on otal time 19 minutes

WALTZ-16 modulated

| Temp. 25.0 C / 298.1 K
Sample #11, Operator: rt
! File: CARBON 001

| VIMRS-400 "ulnmr4 00"
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rtnmr534

Sample Name  rtnmr534 Pulse sequence PROTON Temperature 25 Study owner rt
Date collected 2013-01-19 Solvent cdel3 Spectrometer  ulnmrd00-vnmrs400 Operator rt
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rtnmr534c

Sample Name rtnmr534c Pulse sequence CARBON Temperature 25 Study owner rt
Date collected  2012-12-10 Solvent edel3 Spectrometer  ulnmrd00-vnmrs400 Operator rt
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150 140

PULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

5000 repetitions

120,229
\\—128.797

DECOUPLE HI1,
Power 40 4B

o m v NN e m g un A
o o v NN O W @« a bl
N o oo v M H ® @ m =
o o GO omomoa W o
N g PO T T T BT R R -
| J AL ETE T
Ph, I
,P—Ph
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120 110 100 90 80 70 60 50 40 30 20 ppm
{OBSERVE (C13, 100.4985542 DATA PROCESSING rinmr496
399.6774758 Line broadening 2.0 Hz
FT size 65536 Solvent: cd2cl2
continuocusly on Total time 3.2 hours Temp. 25.0 C / 298.1 K

WALTZ -16 modulated

Sample #5, Operator: rt
File: CARBON 001
VINMRS -400 "ulnmr400"
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180 160

PULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 0.813 sec
Width 40322.6 Hz

64 repetitions

140 120

{OBSERVE P31, 161.7917203
|DECOUPLE H1, 399.6777758
Power 40 4B

on during acquisition
off during delay
WALTZ-16 modulated

100 80 60

DATA PROCESSING

Line broadening 0.5 Hz
FT size 65536
Total time 1 minutes

-20 ppm

rtumr496

Solvent: cd2ecl2

Temp. 25.0 C / 298.1 K
Sample #11, Operator: rt
File: PHOSPHORUS 001
VNMRS -400 "ulnmr400"
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rtnmr516dry

Sample Name  rtnmr516dry Pulse sequence  PROTON Temperature 25 Study owner rt
Date collected 2012-12-27 Solvent edel3 Spectrometer  ulnmrd400-vnmrs400 Operator rt
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rtnmr516dry

Sample Name rinmr516dry

Pulse sequence  CARBON

Temperature 25

Study owner

rt

Date collected  2012-12-27 Solvent edel3 Spectrometer  ulnmrd00-vnmrs400 Operator rt
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rtnmr516dry

Sample Name  rtnmr§16dry Pulse sequence  PHOSPHORUS Temperature 25 Study owner rt
Date collected 2012-12-27 Solvent cdel3 Spectrometer  ulnmr400-vnmrs400 Operator rt

8.513
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PULSE SEQUENCE OBSERVE Cl3, 100.4958970 DATA PROCESSING rtanrsé8c

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

5000 repetitions

DECOUPLE HI1, 399.5708852 Line broadening 2.0 Hz

Power 40 dB
continucusly on
WALTZ -16 modulated

FT size 65536
Total time 3.2 hours

Solwvent: cd2cl2

Temp. 25.0 C / 298.1 K
Sample #12, Operator: rt
File: CARBON 001
VIMRS-400 “"ulnmr400"
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—26.467

26.437

180 160

PULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 0.813 sec
Width 40322.6 Hz

64 repetitions

140 120

EOBRVE P31, 161.7890524
{DECOUPLE H1, 399.6711852
! Power 40 dB

é on during acquisition

i off during delay

| WALTZ-16 modulated

100 80 60

| DATA PROCESSING

Line broadening 0.5 Hz
FT size 65536
Total time 1 minutes

40

20

0 -20

! rtomrése

ppm

Solvent: cd2cl2

Temp. 25.0 C f 298.1 K
Sample #5, Operator: rt
File: PHOSPHORUS 001
VIMRS-400 "ulnmr400"
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PULSE SEQUENCE OBSERVE H1l, 399.6295263 DATA PROCESSING rtnmrll24

Relax. delay 30.000 sec
Pulse 45.0 degrees

Acg. time 2.556 sec
Width 6410.3 Hz

4 repetitions

FT size 32768
Total time 2 minutes

Solvent: c6dé

Temp. 25.0 C / 298.1 K
Sample #7, Operator: rt
File: PROTON 001
VNMRS-400 "ulnmr400"
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140 120 100 80 60 40 20 0 ppm
PULSE SEQUENCE BSERVE C13, 100.4869243 DATA PROCESSING rtnmrll24

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acg. time 1.232 sec
Width 26595.7 Hz

10000 repetitions

O
D

ECOUPLE H1, 399.6312245
Power 41 dB
continuously on
WALTZ-16 modulated

Line broadening 2.0 Hz
FT size 65536
Total time 6.2 hours

Solvent: céde

Temp. 25.0 C / 298.1 K
Sample #7, Operator: rt
File: CARBON 001
VNMRS-400 "ulnmr400"
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180 160

140 120

100 80 60

0 -20

ppm

PULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acg. time 0.813 sec
Width 40322.6 Hz

64 repetitions

OBSERVE P31, 161.7729975
DECOUPLE H1, 399.6315245
Power 41 dB
on during acquisition
off during delay
WALTZ-16 modulated

DATA PROCESSING

Line broadening 0.5 Hz
FT size 65536

Total time 1 minutes

rtnmrll24

Solvent: cédeé

Temp. 25.0 C / 298.1 K
Sample #7, Operator: rt
File: PHOSPHORUS_001
VNMRS-400 "ulnmr400"
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"ulnmr4 00"

T
cd2el2
25.0 ¢ f 298.1 K

Sample #91, Operator: rt
PROTON 001

File:
VINMRS -4 00

T
| rtnnrose
Solwvent:

000°2

I
2

zve'e J

8ST €— [~ 2
ZLT " E— flﬂ L }ser

98T €—

CN

Zp—N—
o}
"’Ph

S~
1)

Q.0
N/
|F|>

Ph”
Ph

T

DATA PROCESSING
size 32768

Total time 2 minutes

sZE'S = | adbaemne e

399.6619266

H1,

OBSERVE

time 2.556 sec

Relax. delay 30.000 sec
Width 6410.3 Hz
4 repetitions

Pulse 45.0 degrees

PULSE SBEQUENCE

Acq.

178
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160 140 120 100 80 60 40 ppm
PULSE SEQUENCE OBSERVE C13, 100.4950714 DATA PROCESSING rtumr?58
Relax. delay 1.000 sec DECOUPLE H1, 399.6636249 Line broadening 2.0 Hz
Pulse 45.0 degrees Power 41 dB FT size 65536 Solvent: cd2cl2
Acq. time 1.311 sec continucusly on Total time 69 minutes | Temp. 25.0 C / 298.1 K

Width 25000.0 Hz
1800 repetitions

WALTZ-16 modulated

Sample #91, Operator: Gowvi
File: CARBON 001
VMMRS-400 "ulnmr400"
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180 160 140 120 100 80 60 40 20 0 -20 ppm
PULSE SBEQUENCE EOBRVB P31, 161.7861134 DATA PROCESSING .x.'mmr'}SB
Relax. delay 1.000 sec {DECOUPLE H1, 399.6639249 Line broadening 0.5 Hz
Pulse 45.0 degrees Power 41 dB FT aize 65536 Solwvent: cd2ecl2

Acq. time 0.813 sec
Width 40322.6 Hz
64 repetitions

on during acquisition
off during delay
WALTZ-16 modulated

Total time 1 minutes

Temp. 25.0 C / 298.1 K
Sample #91, Operator: rt

File: PHOSPHORUS 001

VINMRS -4 00

"ulnmr4 00"
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DATA PROCESSING

FT size 32768

H1l, 399.6540383

OBSERVE

Relax. delay 1.000 sec
Pulse 45.0 degrees

PULSE SEQUENCE

cd2cl2

L
]
:
L=
o]
w

Total time 1 minute

0C /f 298.1K

Sample #91,

25

time 2.556 sec
Width 6410.3 Hz

g repetitions

Acq.

rt

Operator:

PROTON 001

-400

"ulnmr4 00"

VIMRS




« H @ w0
nom e w
oS onow
NN
Mmomomom
o oo

—142.092
/ —138.896
—132.132
\—131.714
—131.076

¢8l1

140 130

PULSE SBEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

5000 repetitions

—128.905
127.143
125.876

\ —125.033

—118.845

120 110 100

{OBSERVE C13, 100.4910280
{DECOUPLE H1, 399.6475448

i
H
H

Power 41 dB
continucusly on
WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz
FT size 65536

Total time 3.2 hours

60.234

—53.925

. \—52.839

\\—47.616
\ \—45.589

\—43.349

20.269

rtunréSle

Solvent: cd2cl2

Temp. 25.0 € f 298.1 K
Sample #10, Operator: rt
File: CARBON 001

VNMRS -400 "ulnmr400"
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180 160 140 120 100 80 60 40 20 0 -20 ppm

PULSE SEQUENCE {OBSERVE P31, 161.7829202
Relax. delay 1.000 sec i DECOUPLE H1, 399.6560366

DATA PROCESSING rtnmre51l

Line broadening 0.5 Hz

FT size 65536
Total time 1 minutes

Solwvent: cd2cl2

Temp. 25.0 C f 298.1 K
Sample #91, Operator: rt
File: PHOSPFHORUS 001
VMMRS-400 "ulnmr400"

Pulse 45.0 degrees Power 41 4B

Acq. time 0.813 sec on during acquisition
Width 40322.6 Hz off during delay

64 repetitions WALTZ-16 modulated
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DATA PROCESSING

FT size 32768
Total time 1 minute

399.6540383

H1l,

RVE

OB&]

2.556 sec

time

Relax. delay 1.000 sec
Width 6410.3 Hz
e repetitions

Pulse 45.0 degrees

Acq.

PULSE SEQUENCE
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PULSE SBEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

3000 repetitions

T

103.585

15 =2l I R S ) I T X

110 100

OBSERVE C13, 100.4910280
DECOUPLE H1, 399.6475448
Power 41 dB
continuously on
WALTZ-16 modulated

R
N/éxn/jN_
Ph/lFl)"Pr? OMe
Ph
OMe
[ ETtR ] 20 o 2ol
90 80 70

DATA PROCESSING

Line broadening 2.0 Hz
FT size 65536
Total time 115 minutes

—60.227
/ —55.202

—52.830

45.566
43.289

| rtnnres?

Solwvent:

VINMRS -4 00

cd2el2

Temp. 25.0 C / 298.1 K
Sample #12, Operator:
; File: CARBON 001

"ulnmr4 00"

rt

20.254
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180 160 140 120 100 80 60 40 20 0 -20 ppm

PULSE SBEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 0.813 sec
Width 40322.6 Hz

64 repetitions

{OBSERVE P31, 161.7829202
{DECOUPLE H1, 399.6560366

Power 41 dB

on during acquisition

off during delay
WALTZ-16 modulated

DATA PROCESSING

Line broadening 0.5 Hz
FT size 65536
Total time 1 minutes

| rtnnres?

Solwvent: cd2ecl2

Temp. 25.0 C / 298.1 K
Sample #92, Operator: rt
File: PHOSPHORUS 001
VINMRS-400 "ulnmr400"
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7.784

rtnmr1181

Sample Name rtnmr1181
Date collected 2015-07-07

7.464

+
n
©~
©~

7.460

7.445

Pulse sequence PROTON
Solvent edcl3

6.841
6.821
6.729
6.709

Temperature 25
Spectrometer  ulnmr400-vnmrs400

Study owner
Operator rt

rt

2.191
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SISHHLNAS ANIININIHdSOHd

8
iy
6.00 6.09
2.92

b
2.00

1.97
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rtnmri1181

Sample Name  rtnmr1181 Pulse sequence CARBON Temperature 25 Study owner rt
Date collected  2015-07-07 Solvent cdcl3 Spectrometer  ulnmr400-vnmrs400 Operator JMR

132.695
132.604
131.655
131.594
131.564
130.668
129.233
128.694
128.610
128.496
77.321
77.207
77.002
76.684

128.443

126.340

123.250
123.075

148.192

20.528

|
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150 140 130 120 110 100 90 80 70 60 50 40
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rtnmr1181

Sample Name  rtnmr1181
Date collected 2015-07-07

Pulse sequence  PHOSPHORUS Temperature 25 Study owner rt

Solvent cdcl3

Spectrometer  ulnmr400-vnmrs400 Operator rt

2.825

e

180

160 140

120 100 80 60 40 20

0 -20

Ppm
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rtnmr900

Sample Name rtnmr900

Pulse sequence  PROTON

Temperature 25

Study owner 1t

Date collected  2014-06-04 Solvent c6d6 Spectrometer ulnmr400-vnmrs400 Operator rt
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rtnmr1182

Sample Name  rtnmr1182 Pulse sequence  CARBON Temperature 25 Study owner
Date collected 2015-07-07 Solvent cdcl3 Spectrometer  ulnmrd400-vnmrs400 Operator
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PULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acg. time 0.813 sec
Width 40322.6 Hz

32 repstitions

OBSERVE P31, 161.7793080
DECOUPLE H1, 399.6471134
Power 41 4B

on during acquisition
off during delay
WALTZ-16 modulated

DATA PROCESSING

Line broadening 0.5 Hz
FT size 65536

Total time 1 minute

rtnmr900

Solvent: cédé

Temp. 25.0 ¢ / 298.1 K
Sample #91, Operator: rt
File: PHOSPHORUS 001
VNMRS-400 "ulnmr400"
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EMD-NMR-027

Sample Name EMD-NMR-027 Pulse sequence PROTON Temperature 25 Study owner  burnsUG
Date collected  2014-07-05 Solvent cdel3 Spectrometer  ulnmr400-vnmrs400 Operator burnsuG
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EMD-NMR-029

Study owner  burmsUG

Operator rt

Temperature 25

Pulse sequence CARBON

Sample Name EMD-NMR-029

Spectrometer  ulnmrd00-vamrs400

edel3

Solvent

2014-07-05

Date collected
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EMD-NMR-027

Sample Name EMD-NMR-027
Date collected  2014-07-05

Pulse sequence  PHOSPHORUS

Solvent edel3

Temperature 25

Spectrometer

29,712

ulnmrd00-vnmrs400

Study owner

Qperator

rt
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—5.608

96.45
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EMD-NMR-051

Sample Name EMD-NMR-051

Pulse sequence PROTON

Temperature 25 Study owner burnsUG

Date collected 2014-07-17 Solvent cdcl3 Spectrometer ulnmr400-vnmrs400 Operator  burnsUG
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EMD-NMR-030

Sample Name EMD-NMR-030 Pulse sequence  CARBON Temperature 25 Study owner  bumsUG
Dale collected  2014-07-06 Solvent  cdel3 Spectrometer  ulnmrd00-vnmrs400 Operator rt
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EMD-NMR-051

Sample Name EMD-NMR-051
Date collected  2014-07-17

Pulse sequence  PHOSPHORUS
Solvent edcl3

Temperature 25
Spectrometer  ulnmrd400-vnmrs400

Study owner  bumsUG

Operator nt
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EMD-NMR-038

Sample Name EMD-NMR-038 Pulse sequence PROTON Temperature 25 Study owner burnsUG
Date collected 2014-07-07 Solvent c6d6 Specirometer  ulnmr400-vnmrs400 Operator  burnsUG
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EMD-NMR-038

Sample Name EMD-NMR-038 Pulse sequence  PHOSPHORUS Temperature 25 Study owner burnsUG
Date collecied 2014-07-07 Solvent ¢6d6 Spectrometer ulnmr400-vnmrs400 Cperator  burnsUG
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tnmr957

Sample Name rtnmr9gs7
Date collecied 2014-07-28

Pulse sequence PROTON Temperature 25
Solvent ¢6d6 Specirometer  ulnmr400-vnmrs400

Study owner rt
Operator rt
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rtnmr1186

55.295

48.955

Sample Name  rthmr1186 sequence CARBON Temperature 25 Study owner rt
Date collected 2015-08-05 1t cdcl3 Spectrometer ulnmr400-vnmrs400 Operator rt
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rtnmr957

Sample Name rtnmr957 Pulse sequence  PHOSPHORUS Temperature 25 Study owner rt
Date collected 2014-07-28 Solvent ¢6d6 Spectrometer  ulnmr400-vnmrs400 Operator rt
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rt
rt

Study owner
Operator

ulnmr400-vnmrs400

Temperature 25
Spectrometer

Fulse sequence  PROTON
cdcl3

Solvent

Sample Name  rtnmr1182
Date collected  2015-07-07

rtnmr1182
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rtnmri1182

Sample Name  rtnmr1182 Pulse sequence  CARBON Temperalure 25 Study owner rt

S0¢

Date collected  2015-07-07 Solvent  cdcl3 Spectrometer  ulnmr400-vnmrs400 Operator JMR
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rtnmr1182

Sample Name  rtnmr1182
Date collected  2015-07-07

Pulse sequence  PHOSPHORUS
Solvent edcl3

28.985

Temperature

25

Spectrometer  ulnmr400-vnmrs400

Study owner rt
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rtnmr1183

Study owner rt

Temperature 25

Pulse sequence  CARBON

Solvent

Sample Name  rtnmr1183

JMR

Operator

ulnmr400-vnmrs400

Spectrometer

cdcl3

Date collected  2015-07-07

BB6°6E
605" 2% L
9L9"Z¥
697 8% -
$TIL 9L
£€0°LL
BEZ"LL )
ZSE"LL
9LZ TTT
86" TTT
89€°SZT -
ZI6°LET
6ET"BZT
8027 82T
£52°82T
62€° 82T
L96°82T }
G98°0ET \\ww
SE0'ZET =
€ET 2ET |w
627 ZET
€16 ZET
8L6°EET —
SB0°FET
ZZ8 TIPT
20T 25T
SzT-ZST -

208

Ppm

150 140 130 120 110 100 920 80 70 60 50 40 30

160



60¢

rtnmr1183

Sample Name rtnmr1183 Pulse sequence  PHOSPHORUS Temperature 285

Study owner rt
Date collected  2015-07-07 Solvent cdel3

Spectrometer  ulnmr400-vnmrs400 Operator rt
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tnmri184

14
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S

mperature 25
Spectrometer  ulnmr400-vnmrs400
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rt

Study owner
Operator  JMR

ulnmr400-vnmrs400

mperature 25
Spectrometer

CARBON
cdel3

Pulse sequence

Solvent

Sample Name  rtnmr1184
Date collected  2015-07-08

rtnmr1184
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rtnmr1184
Study owner rt

Sample Name  rtnmr1184 Pulse sequence PHOSPHORUS Temperature 25
Date collected  2015-07-07 Solvent cdcl3 Spectrometer  ulnmr400-vnmrs400 Operator rt
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rtnmr1002
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DPULSE SEQUENCE

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.311 sec
Width 25000.0 Hz

5000 repetitions

OBSERVE C13, 100.4888450

DECOUPLE H1, 399.6388631
Power 41 dB
continuously on
WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz
FT size 65536
Total time 3.2 hours

rtnmrlo02
aug 22, 14

Solvent: cdcl3
Ambient temperature
Sample #9, Operator:
File: CARBON 001
VNMRS-400 "ulnmr400"

rt
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rtnmr1002

Sample Name  rtnmr1002
Dale collected  2014-08-22

Pulse sequence  PHOSPHORUS

Solvent  edel3

Temperature 25
Spectrometer  ulnmrd00-vnmrs400

Study owner
Operator rt
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EMD-NMR-031

burnsUG

Operator  burnsUG

ure 25
Specirometer ulnmr400-vnmrs400

Temperat

Pulse sequence  PROTON

Solvent

Sample Name EMD-NMR-031

Date collected

Study owner

cdzcl2

2014-07-06
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216
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EMD-NMR-031

Sample Name EMD-NMR-031
Date collected 2014-07-06

Pulse sequence PHOSPHORUS

Solvent

cd2cl2

Temperature 25

Specirometer ulnmr400-vnmrs400

Study owner burnsUG

Operator

burnsUG

32.070
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EMD-NMR-031

Sample Name EMD-NMR-031 Pulse sequence BORON Temperature 25 Study owner burnsUG
Date collected 2014-07-06 Solvent cd2¢l2 Spectrometer  ulnmr400-vnmrs400 Operator  burnsUG

-1.128
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EMD-NMR-031

Sample Name EMD-NMR-031 Pulse sequence FLUORINE Temperature 25 Study owner burnsUG
Date collected  2014-07-06 Solvent cd2cl2 Spectrometer  ulnmr400-vnmrs400 Operator  burnsUG
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EMD-NMR-032

burnsuUG

Study owner
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Spectrometer

Pulse sequence PROTON

Solvent

Sample Name EMD-NMR-032

Date collected
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EMD-NMR-032

Sample Name EMD-NMR-032 Pulse sequence  PHOSPHORUS Temperature 25 Study owner burnsUG
Date collected 2014-07-06 Solvent cd2cl2 Specirometer ulnmr400-vnmrs400 Operator  burnsUG
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EMD-NMR-032

Sample Name EMD-NMR-032 Pulse sequence BOQRON Temperature 25 Study owner burnsUG
Date collected  2014-07-06 Solven! cd2cl2 Spectrometer  ulnmr400-vnmrs400 Operator burnsUG

-1.133
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EMD-NMR-032

Sample Name EMD-NMR-032 Pulse sequence FLUORINE Temperature 25 Study owner burnsUG
Date collected 2014-07-06 Solvent cd2cl2 Spectrometer  ulnmr400-vnmrs400 Operator  burnsUG
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9-Anthracenethanol in C¢Dg

rtnmr86s

Study owner 1t
Operator it

Temperature 25
Speciromeler  ulnmr400-vnmrs400

PROTON

Pulse sequence
Solvenl c6d6

Sample Name rtnmr865

Date collecied  2014-05-05

CHAPTER 4

ALCOHOL ACTIVATION

SPECTRA
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rtnmr1058

Sample Name rtnmr1058 Pulse sequence PROTON Temperature 25 Study owner rt
Date collected  2014-10-23 Solvent c6d6 Spectrometer ulnmr400-vnmrs400 Operator rt
9-Anthracenmethanol in Cg¢Dg¢
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rinmr866

Sample Name rtnmr866 Pulse sequence PROTON Temperature 25 Study owner rt
Date collected 2014-05-05 Solvent  c6df Spectrometer  ulnmrd00-vnmrs400 Operator rt
1-Octadecanol in C¢Dg
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rtnmr870_dmap

Sample Name rtnmr870_dmap

Pulse sequence  PROTON

Temperature 25 Study owner 1t DMAP il'l C6D6

Date collecied 2014-05-07 Solvent cBdb Specirometer  ulnmr400-vnmrs400 Operator 1t
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tnmr871_thd

Sample Name rtnmr871_thd

Pulse sequence PROTON

Temperature 25

Study owner rt

Date collected  2014-05-07 Solvent c¢6d6 Spectrometer  ulnmr400-vnmrs400 Operator rt
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rtnmrd39

n

Study owner

ure 25
Spectrometer ulnmr400-vnmrs400

Temperat

Pulse sequence PROTON

Solvent

Sample Name rtnmr939

Date collected

Operator rt
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Pulse sequence PROTON

Solvent

Sample Name rtnmr868
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rtnmr1061

Sample Name rtnmri1061 Pulse sequence  PROTON Temperature 25 Study owner rt
Date collected 2014-10-27 Solvent ¢6d6 Spectrometer  ulnmr400-vnmrs400 Operator rt

DMAP+9-Anthrylmethanol
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rtnmr869

Sample Name rtnmr869 Pulse sequence PROTON Temperature 25 Study owner rt DMAP+1- Octadecanol

Dale collected 2014-05-07 Solvent c6df Spectrometer  ulnmr400-vnmrs400 Operator rt
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EMD-NMR-035

Sample Name EMD-NMR-035
Date collected 2014-07-06

Pulse sequence  PHOSPHORUS
Solvent c6d6

Temperature 25
Spectrometer  ulnmrd00-vnmrs400

Study owner burnsUG
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Sample Name EMD-NMR-053 Pulse sequence PHOSPHORUS Temperature 25 Study owner burnsUG
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EMD-NMR-033

Sample Name EMD-NMR-033 Pulse sequence PHOSPHORVUS Temperature 25 Study owner burnsUG
Date collected  2014-07-06 Solvent c6d6 Spectrometer  ulnmr400-vnmrs400 Operator  burnsUG
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Sample Name rtnmr958
Date collected 2014-07-28

Pulse sequence PHOSPHORUS
Solvent c6db

Temperature 25
Spectrometer  ulnmr400-vynmrs400

Study owner rt
Operator rt
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Sample Name rtnmr997 Pulse sequence PHOSPHORUS Temperature 25 Study owner rt
Date collected 2014-08-21 Solvent c6db Spectrometer ulnmr400-vnmrs400 Operator rt
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Sample Name rtnmr1032
Date collected 2014-09-10

Pulse sequence PHOSPHORUS
Solven! ¢6d6

Temperature 25
Spectrometer  ulnmrd00-vnmrs400

Study owner
Operator rt

rt

26.828




rtnmr1028

t

25

emperat

=
o
=
o
74
o
o
S
5
o
o
©
©

rtnmr1028

Sample Name

Date co

Study owner
Operator

ulnmr400-vynmrs440

r

&

cbdb

=

2014-09-08

ZLZ'T
£62°¢C
TLE" €
6TE"E
6¥E" €
£FLTE
¥OL"E
¥8L"E

§08°¢€
§Z8°¢€
2987 ¢
ZL8" ¢
068°¢€
0s6°¢€
696" €
986° €

6TE"9
¥ze'9
4 20

Z5€79

LSE"9 T
¥LE"D
6LE"9
0004
8T0"L
S¥0°4
§50° 4
09074
FLOTL
¥60° 4
OTT 4
S8T "L
96T L
0024
TLe 4
T2 L
922" L
LET "L
¥ L
S82°L
¥0€°L
£0L°L
OEL L

4.13-AnOH complex

€547 L

09L7 L

SLL"L
£08°L
ZL8°L
888°L

968° L

248

JTLv8

%mm..ﬁ

(420
00°¢

68°0



6¥¢

rtnmr1028

Sample Name rtnmr1028 Pulse sequence PHOSPHORUS Temperature 25 Study owner rt
Date collected 2014-09-08 Solvent c6db Spectromeier  ulnmr400-vnmrs400 Operator rt
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rtnmr1027

Sample Name rtnmr1027
Date collected 2014-09-09

Pulse sequence PHOSPHORUS
Solvent ¢6d6

Temperature 25
Spectrometer  ulnmr400-vamrs400

Study owner rt
Operator rt
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CURRICULUM VITAE

Department of Chemistry 776 David Fairleigh ct. # 2
University of Louisville Louisville, KY 40217
2320 South Brook Street rajeshthapa@hotmail.com
Louisville, KY 40292 Phone: 502-291-8651
Objective:  To utilize my skills and knowledge as a synthetic organic chemist in

designing and synthesizing novel compounds for catalysis. I would like to
develop my synthetic chemistry skill to explore and develop new material
technologies for the benefit of mankind.

Pertinent Skills:

Education

2010 - 2015

2007-2009

Design, Synthesis of organic compounds and metal complexes for
catalysis

Development of new methodologies for application of organic synthesis
Synthesis and manipulation of air and moisture sensitive organic
compounds and metal complexes using nitrogen filled glove box, high
vacuum and schlenk line technique

Organic compound identification, isolation and characterization by using
NMR, IR, UV-Vis, GC/MS, HPLC, column chromatography etc.
Scientific paper writing and presentation

Strong written and verbal communication skills necessary to convey
technical details

PhD in Organometallic Chemistry

Advisor: Christopher T. Burns

University of Louisville, Louisville, KY

Dissertation Title: Neutral phosphinimines and zinc phosphinimine
catalyst towards ring opening polymerization of cyclic esters.

MS in Organic Chemistry

Advisor: Richard T. Taylor,

Miami University, Oxford, OH

Thesis Title: Regioselectivity in free radical bromination by NBS towards
unsymmetrical dimethyl pyridine.
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1995-1997  B.S. in Organic Chemistry
Tribhuvan University, Kirtipur, Kathmandu, Nepal

Experience

2011- 2015 Graduate Teaching Assistant
University of Louisville, Louisville, KY
Summer2010 CHEM 209 (chemical analysis III)
January 2010-May 2010 CHEM 343 (Organic I)
2012- Present CHEM 344 (Organic II)

2007-2008  Graduate Teaching Assistant
Department of Chemistry
Miami University, Oxford, OH
Organic Chemistry Course CHM 244
CHM 245, CHM 245H

01/2009- Graduate Research Assistant

05/2009 Miami University, Oxford, OH
Funding Celsus Laboratory
Cincinnati, Ohio

2000-2006  Chemistry Instructor
Capital College and Research Center
Kathmandu, Nepal

Awards
e Chemistry Departmental Fellowship
University of Louisville, Louisville, KY (2010-2011)
e The Follett’s Miami Co-op Book Store Award for English as a Second
Language-Honorable Mention — Miami University
Department to English (2009)
Publications

1. “Phosphinimine Zinc Complexes for Ring Opening Polymerization of Cyclic
Esters” Burns, Christopher T.; Thapa, Rajesh (manuscript ready for submission)

2. “Electron rich phosphinimines: organocatalysts for Polymerization for Cyclic
esters” Burns, Christopher T.; Thapa, Rajesh (writing manuscript)

3. “Regioselectivity in free radical bromination of unsymmetrical dimethylated
pyridines” Thapa, Rajesh; Brown, Jordan; Balestri, Thomas; Taylor, Richard T.
Tetrahedron Letters (2014), 55(49), 6743-6746
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4.

“Synthesis of air-stable zwitterionic 2-phosphiniminium-arenesulfonates”
Burns, Christopher T.; Shang, Suisheng; Thapa, Rajesh; Mashuta, Mark
S. Tetrahedron Letters (2012), 53(36), 4832-4835

“Synthesis of mesoporous birnessite-MnO, composite as a cathode electrode for
lithium battery”

Thapa, Arjun Kumar; Pandit, Bill; Thapa, Rajesh; Luitel, Tulashi; Paudel, Hem
Sharma; Sumanasekera, Gamini; Sunkara, Mahendra K.; Gunawardhana, Nanda;
Ishihara, Tatsumi; Yoshio, Masaki, Electrochimica Acta (2014), 116, 188-193

“Polythiophene Mesoporous Birnessite-MnO,/Pd Cathode Air Electrode for
Rechargeable Li-Air Battery”

By Thapa, Arjun Kumar; Pandit, Bill; Paudel, Hem Sharma; Thapa, Rajesh; Ida,
Shintaro; Jasinski, Jacek B.; Sumanasekera, Gamini U.; Ishihara,

Tatsumi, Electrochimica Acta (2014), 127, 410-415

Rajesh Thapa; “Regioselectivity in free radical bromination of unsymmetrical
dimethylated pyridines” MS Dissertation, 2009, Miami University, Oxford, OH

Presentation

e Poster presentation on “Synthesis of air-stable zwitterionic 2-
phosphiniminium-arenesulfonates” at Ohio Inorganic Week, University
of Cincinnati, Cincinnati, OH

e Poster presentation on “Regioselectivity in free radical bromination of
unsymmetrical dimethylated pyridines” at 2008 REEL (Research

Experiences to Enhance Learning) Student Symposium and University
of Cincinnati, ACS meeting 2008.
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