
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2006

Evaluation of MILS and reduced kernel security concepts for Evaluation of MILS and reduced kernel security concepts for

SCADA remote terminal units. SCADA remote terminal units.

Brent L. Guffey 1982-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Guffey, Brent L. 1982-, "Evaluation of MILS and reduced kernel security concepts for SCADA remote
terminal units." (2006). Electronic Theses and Dissertations. Paper 544.
https://doi.org/10.18297/etd/544

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Louisville

https://core.ac.uk/display/143831438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/544
mailto:thinkir@louisville.edu

EVALUATION OF MILS AND REDUCED KERNEL SECURITY

CONCEPTS FOR SCADA REMOTE TERMINAL UNITS

By
Brent L.Guffey

B.S., University of Louisville, 2005

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science
University of Louisville

July 2006

ii

iii

EVALUATION OF MILS AND REDUCED KERNEL SECURITY

CONCEPTS FOR SCADA REMOTE TERMINAL UNITS

By
Brent L.Guffey

B.S., University of Louisville, 2005

A Thesis Approved on

July 2006

by the Following Reading and Examination Committee:

Dr. James H. Graham, Thesis Director

Dr. Dar-Jen Chang

Dr. Patricia Ralston

iv

ACKNOWLEDGMENTS

 The author would like to thank Dr. James H. Graham for his guidance and support

throughout the life of this project, including the initial ideas that got it started. The author

would also like to thank Dr. Dar-Jen Chang and Dr. Patricia Ralston for serving on the

thesis reading and examination committee.

The author would also like to greatly thank Jeff Hieb, as without his insight and

support this project would not have been possible. Mr. Hieb is currently conducting

research on a related project and provided vital code that comprised the RTU used in this

project, along with an MTU application to connect and interact with the RTU.

LynxOS is a registered trademark of LynuxWorks. The author wishes to

acknowledge the contributions of the open source microkernel research community for

providing freely available implementations of the L4 microkernel, such as the Pistachio

kernel utilized for this project created by the System Architecture Group at the University

of Karlsruhe.

v

ABSTRACT

The purpose of this project is to study the benefits that the Multiple Independent

Levels of Security (MILS) approach can provide to Supervisory Control and Data

Acquisition (SCADA) remote terminal units. This is accomplished through a heavy

focus on MILS concepts such as resource separation, verification, and kernel

minimization and reduction. Two architectures are leveraged to study the application of

reduced kernel concepts for a remote terminal unit (RTU). The first is the LynxOS

embedded operating system, which is used to create a bootable image of a working RTU.

The second is the Pistachio microkernel, the features and development environment of

which are analyzed and catalogued to provide the basis for a future RTU.

A survey of recent literature is included that focuses on the state of SCADA

security, the MILS standard, and microkernel research. The design methodology for a

MILS compliant RTU is outlined, including a benefit analysis of applying MILS in an

industrial network setting. Also included are analyses of the concepts of MILS which are

relevant to the design and how LynxOS and Pistachio can be used to study some of these

concepts. A section detailing the prototyping of RTUs on LynxOS and Pistachio is also

included, followed by an initial security and performance analysis for both systems.

vi

LIST OF TABLES

Table 2.1: Evaluation Assurance Levels (EAL) ………………………………………13

Table 3.1: Benefits of Networking via PCS ………………………………………..…24

Table 4.1: LynxOS Features …………………………………………………………. 30

Table 4.2: Important Attribuites of a .spec File ……………………………………… 31

Table 4.3: L4 and Pistachio Features ………………………………………………… 37

Table 5.1: Vulnerabilities Closed with LynxOS ……………………………………... 44

Table 5.2: Vulnerabilities Closed with Pistachio …………………………………….. 47

vii

LIST OF FIGURES

Figure 2.1: A PCS for a MILS RTU …………………………………………………….15

Figure 3.1: A MILS RTU ………………………………………………………………. 22

viii

Table of Contents

ACKNOWLEDGMENTS …………………………………………………………… IV

ABSTRACT …………………………………………………………………………... V

LIST OF TABLES …………………………………………………………………… VI

LIST OF FIGURES …………………………………………………………………. VII

TABLE OF CONTENTS …………………………………………………………... VIII

CHAPTER I: INTRODUCTION...1

1.1 Background Information ...1

1.2 Problem Statement ... 1

1.3 Motivation .. 2

1.4 Organization ... 4

CHAPTER II: LITERATURE REVIEW... 6

2.1 SCADA Systems ... 6

2.1.1 Overview .. 6

2.1.2 SCADA RTUs ... 6

2.1.3 Recent SCADA Security Breaches .. 7

2.1.4 Current SCADA Research ... 8

2.2 SCADA and the Internet ... 9

2.2.1 Usage .. 9

2.2.2 Risks.. 9

2.3 The MILS Security Standard ... 11

2.3.1 Definition... 11

2.3.2 Evaluation of the MILS Kernel.. 12

2.3.3 Properties of NEATness... 13

2.3.4 Partitioning Communication Systems.. 14

ix

2.3.5 Vendors Offering MILS or MILS-Like Products..................................... 15

2.3.6 Current MILS Research.. 16

2.3.7 Current Research on Applying MILS to SCADA.................................... 17

2.4 Microkernels.. 18

2.4.1 General Microkernel Principles.. 18

2.4.2 The L4 Microkernel.. 19

CHAPTER III: DESIGNING A HARDENED RTU WITH MILS............................... 20

3.1 Applying MILS to SCADA RTUs... 20

3.1.1 Current Operating System Security Paradigm.. 20

3.1.2 Communication over the Internet.. 21

3.1.3 Handling of Network Errors in MILS... 23

3.1.4 Attempts to Obtain a MILS Product.. 24

3.2 Implementing an RTU Utilizing MILS Concepts.. 25

3.2.1 Alternatives to MILS... 25

3.2.2 RTU Based on Embedded LynxOS... 27

3.2.3 RTU Based on L4::Pistachio Microkernel.. 28

CHAPTER IV: PROTOTYPING RTUS USING LYNXOS AND PISTACHIO......... 29

4.1 A LynxOS RTU... 29

4.1.1 The LynxOS 4.0 Operating System.. 29

4.1.2 Kernel Downloadable Images... 30

4.1.3 The developer.spec Specification File.. 32

4.1.4 The rc.network File... 34

4.1.5 RTU Code... 35

4.2 A Pistachio Based RTU... 36

4.2.1 The Pistachio Microkernel.. 36

4.2.2 The Basis for a Pistachio RTU.. 37

4.2.3 The Pistachio Development Environment.. 38

4.2.4 The Kenge Build Environment... 39

4.2.5 The SCONS Build System.. 39

x

4.2.6 The QEMU Simulator... 41

4.2.7 Building, Booting, and Running the System.. 42

CHAPTER V: PERFORMANCE AND SECURITY EVALUATION........................ 44

5.1 Quantitative Security Analysis.. 44

5.1.1 Objectives of Analysis.. 44

5.1.2 Vulnerabilities Closed Using LynxOS... 44

5.1.3 Vulnerabilities Closed Using Pistachio.. 46

5.1.4 Remaining Vulnerabilities.. 48

5.2 Performance Analysis.. 49

5.2.1 Latency Analysis for LynxOS RTU... 49

5.2.2 Overhead Incurred from Use of L4.. 50

5.2.3 Kernel Size... 51

CHAPTER VI: CONCLUSIONS AND FUTURE DIRECTIONS.............................. 54

6.1 Conclusions... 54

6.2 Future Directions... 55

6.2.1 Expanding the LynxOS-based RTU... 55

6.2.2 Expanding the Pistachio-based RTU... 57

6.2.3 Toward a MILS Compliant RTU... 59

REFERENCES... 61

APPENDIX I: DEVELOPER.SPEC.. 64

APPENDIX II: RC.NETWORK.. 67

APPENDIX III: LOW-LEVEL SCONSTRUCT... 69

APPENDIX IV: HIGH-LEVEL SCONSTRUCT.. 70

xi

APPENDIX V: RTU.C... 72

APPENDIX VI: SAMPLE OUTPUT FOR RTU.C... 74

APPENDIX VII: TIMING_LOG.TXT.. 75

APPENDIX VIII: LIST OF ACRONYMS.. 76

VITA...77

1

CHAPTER I: Introduction

1.1 Background Information

 This project falls under the umbrella of a larger SCADA research project at the

University of Louisville. The focus of that project is to mitigate the effects of threats

caused by electronic attacks on SCADA systems and has risen from ongoing research at

the University of Louisville that has centered around both SCADA security and

improving the monitoring process for chemical process control systems. The project is in

collaboration with industrial groups such as Hexion Specialty Chemicals, Eon-US Energy

Corp., and the Louisville Water Company. It is funded as part of the Kentucky Critical

Infrastructure Project.

1.2 Problem Statement

 This project aims to produce a framework for a more secure SCADA RTU

(remote telemetry unit or remote terminal unit). At the outset of the project, the focus

was on applying the Multiple Independent Levels of Security (MILS) standard to these

RTUs. However, those plans fell by the wayside as it became apparent that obtaining an

acceptable MILS specific operation system or kernel would not be possible within this

project’s time frame. As full MILS compliance is not currently available, this project

will instead focus on analyzing the security benefits that MILS could provide RTUs and

2

provide an implementation of a hardened RTU which will exhibit some of these security

related features.

 One such attempt was made by creating a minimal kernel using features provided

by LynxOS, a real time embedded operating system. This operating system provides the

means to modify the kernel and custom build bootable images to suit the users needs.

This allowed the creation of a minimal bootable system, providing only the functionality

needed for the RTU and nothing extraneous.

 The second attempt utilized the concept of a predefined microkernel to run the

RTU software. This project uses the Pistachio microkernel created by the L4Ka group at

the University of Karlsruhe, and is based on the L4 microkernel specification. The

reasons each of these alternate approaches was pursued will be explained in detail in later

sections of this document.

1.3 Motivation

SCADA systems are used in critical infrastructure. Increasingly, communication

between the central SCADA master system and the RTUs is occurring over the Internet

or other network connections. The exposure of these RTUs to the network opens them up

to the problems all other networked computers face: attacks from malicious or malignant

entities that desire and attempt to harm the system. Network based attacks such as

intrusion, denial of service, and worms are all serious risks that must be considered when

connecting critical infrastructure equipment to the Internet.

SCADA systems use the DNP-3 protocol for communication between the master

unit and the RTUs. DNP-3 provides data fragmentation, error checking, and other

3

features and operates between the physical layer and the networking layer of the network.

Higher level networking functions are increasingly transmitted using TCP/IP, tying in to

SCADA’s increasing reliance on the Internet. There has been research that falls under

the same umbrella as the parent project of this MILS project, namely the overlying

SCADA research at the University of Louisville, which has focused on enhancing the

DNP-3 protocols [36]. However, even if these protocols are perfect and perfectly secure,

as long as communication occurs over the Internet between the RTU and master unit,

there will be a risk of attacks such as denial of service (DOS) that can bypass DNP-3.

Since it is inevitable that many SCADA systems will utilize the Internet for its

familiarity, ease of use, and wealth of available tools and documentation, a researcher

into security for SCADA systems must focus on ways to make the entire communication

process more secure. The tasks that arise from this need can range from basic networking

security principles such as setting up routers and disabling remote logon, all the way up

to the overall security of the underlying operating system. The latter is the focus of this

project, which began as a way to research the benefits that the MILS standard would

supply to the operating system of the RTU.

The MILS standard provides a verifiably secure kernel, as well as many other

features which, upon inspection, provide security synergy with the functional aspects of

SCADA RTUs. The most important feature to provide this type of synergy is

partitioning. MILS defines a method of brick-wall partitioning of memory, kernel access,

and other system resources. “Brick-wall” means the operations of one partition cannot

affect another partition, meaning any errors occurring in, for example, a dedicated

4

networking partition could not cascade and affect monitoring applications in another

partition.

A verifiably secure kernel can also provide a huge enhancement to the confidence

in security of the overall system. Mathematical verification of most kernels is

impossible, given the size of the code base of many kernels can approach millions of

lines of code. The MILS kernel should provide all base functionality needed for system

operations, but will be small enough for mathematical verification. This principle

removes all extraneous functionality from the kernel, removing with it the problems of

complexity, bloat, and potential security flaws in extraneous methods or code.

These two elements of the MILS standard, namely resource partitioning and a

minimal, verifiable kernel, are what lead to this project’s focus on applying the standard

to SCADA RTUs. If any benefits can be gleaned from such a pairing, infrastructure

monitor and control systems would be safer even with communications occurring over

the Internet.

1.4 Organization

Chapter Two focuses on the literature available covering SCADA security, the

MILS architecture, and microkernel design and security. Chapter Three outlines the

concepts of designing a hardened RTU, explain why the MILS standard is appropriate for

such devices, and detail the ideas which produced the two related, but ultimately non-

MILS prototypes created during this project. Chapter Four discusses the details and

implementation of these prototype RTUs, one created using the LynxOS kernel image

creation tools and the basis of another utilizing the L4 Pistachio microkernel. Chapter

5

Five provides analysis and applies metric measurements and performance evaluation on

each of the two base systems, addressing security and performance related questions.

Chapter Six discusses any conclusions determined through the course of this project, as

well as future directions for hardened RTU research, including a fully MILS compliant

RTU and what further benefits that might bring.

6

CHAPTER II: Literature Review

2.1 SCADA Systems

2.1.1 Overview

 Supervisory Control and Data Acquisition (SCADA) systems have been used for

years by industry and infrastructure providers such as power and water plants as a means

of controlling distributed systems from a master location [1]. The typical SCADA

system consists of a centralized master control unit (sometimes called an MTU, or master

terminal unit) and distributed Remote Terminal (or Telemetry) Units (RTUs) that control

and monitor physical equipment and machines such as pumps, latches, and other control

machines. SCADA master units typically run on licensed operating systems such as Unix

and variants, with Microsoft Windows also becoming more widely used. These operating

systems provide the human users with an interface to the SCADA system in order to

monitor and control the overall distributed system from the master unit.

2.1.2 SCADA RTUs

The RTUs provide the distributed backbone of a SCADA system. RTUs are often

hardened computers with some type of connection back to the master via either a serial

port, on board modem [2], or, increasingly, via the Internet or a Local Area Network

(LAN). The functions of the RTU include acting as an arbiter for control functions at a

location remote to the master unit, and monitoring and collecting data from the local site.

7

There are two types of RTUs: ‘single board’ and ‘modular’. A single board RTU

contains all chips and circuitry necessary for I/O and processing on a single board while a

modular RTU has separate modules for CPU, memory, I/O, and other functions [2]. This

project will focus on using a hardened PC to act as an RTU, implying that a modular

RTU approach will be required.

RTUs collect data called points to be sent back to the master unit for storage

inside a database. Each point represents a monitored input or output controlled by the

overall SCADA system. A so-called “hard point” is data that is directly input or output

by the system, while a “soft point” is data derived from mathematical operations, usually

carried out at the RTU. [1] Complex SCADA systems can have as many as 30,000 to

50,000 points at once, indicating the necessity of computers for monitoring and control

purposes. Graphs of the status of certain points are often created to improve

understanding of system states by human administrators and users. [3] The volume of

data also suggests the need for high bandwidth communication from the distributed RTUs

back to the master control unit.

2.1.3 Recent SCADA Security Breaches

 SCADA security is currently a hot-button issue, and many organizations both

industrial and governmental have studied methods for improvement. First of all, a

number of articles have been published in relation to security breaches in plants

providing power and other infrastructure needs. Brown’s article “SCADA vs. the

hackers” [4] provides insight into a number of attacks that would be possible, including

8

wireless leaks and overall OS security breaches. However, there are more concrete

examples of breaches in SCADA security.

 In 2003, the Slammer worm impacted the network of the Davis-Besse Nuclear

Power Plant in Ohio. The worm infected the internal network of the plant via an

unpatched vulnerability in MS-SQL and caused slowdown of the plant network,

ultimately leading to the shutdown of the plants safety monitoring system. [16] In a

separate incident in 2001, hackers attempted, albeit unsuccessfully, to breach the network

of CAL-ISO, the company overseeing much of California’s power grid [17]. These

incidents paint a disturbing picture of the need for a security focus for SCADA systems.

2.1.4 Current SCADA Security Research

 Many groups have conducted research and published findings on SCADA

security in recent years. For example, a paper presented to the 2005 IEEE Systems, Man

and Cybernetics Information Assurance Workshop outlines best practices for next

generation SCADA security systems. Topics include the use of demilitarized zones

(DMZ) between the SCADA system and the Internet, as well as combating denial of

service (DoS) attacks by using a modified TCP protocol for transport level

communication. [18]

 One article that underlines the emerging trend to integrate SCADA systems with

the Internet is [19], which outlines the design of a web-based SCADA system using Java

and XML. This article does not focus on security, which brings forth the need for a

security paradigm to possibly be separate from the implementation of the SCADA

system, such as within the underlying OS and kernel.

9

Other works covering similar themes as these two articles include [20], [21] and

[22], all articles from the past two years dealing with security, both long- and short-term,

for SCADA systems. There are many other such articles in, for example, the IEEE

Xplore article database, indicating the need and desire from the research community to

find better solutions to SCADA security quandaries.

2.2 SCADA and the Internet

2.2.1 Usage

The Internet has become a crucial component of most SCADA systems today. In

fact, it has been stated that, “…it is almost impossible today to buy remote terminal units

or control systems that are not Web- or network-enabled.” [4] The benefits that the

Internet provides to SCADA systems are obvious. First of all, the protocols used in

Internet communication are commonly known, as well as easy to implement and use.

This allows operators setting up SCADA distributed networks to focus on the functions

of the separate components and not how they communicate. It also provided the means

for reliable high-bandwidth data transfer that is essential for large, critical SCADA

systems.

2.2.2 Risks

However, placing SCADA communication over the public Internet has opened up

the potential for many security risks. The possibility of intruders into a SCADA system

cannot be ignored. Indeed, one security survey of a nuclear power plant which used

10

modems for dial-in access revealed several unregistered modems had accessed the

network [4]. Intercepted messages can also be used to gain information about system

operation, and masquerade attacks can be used to plant false commands into an unsecured

communication channel [4]. Basically, any security problem that afflicts the Internet can

be applied to SCADA networks using this resource. RTUs can be taken over, data can be

intercepted, intruders can determine network topography and weak points, and so on.

The use of public standards such as Ethernet and TCP/IP in SCADA systems has

made the possibility of attack more likely. Studies have found that more than one third of

external security incidents use the Internet as the remote point of entry [30]. The same

study found a dramatic increase in the number of security incidents starting in 2001, with

an ever increasing percentage of such incidents being external in nature [30]. The

authors attribute this increase in external incidents to three factors. The first is the rise,

beginning with Code Red in 2001, of the automated worm attack. Such attacks likely

don’t target SCADA systems specifically, but are still a major risk to system stability if

infection were to occur. Second, the use of operating systems and software designed for

business requirements within the network of critical systems, exposing these systems to

common IT attacks such as viruses and backdoor exploits. Third is the increasing

interconnection of SCADA systems, creating interdependencies that can, without proper

study and design, open up new avenues for attack. [30]

Intent by hackers to break into critical infrastructure systems has also been

recently expressed. Such individuals often produce tools to aid in the breach of security

procedures, enabling those who do not have the skills to directly make an attack to do so

with the help of this software. Such tools, combined with an increasingly computer

11

literate world population and the opening of SCADA systems to public standards, make

the difficult task of hacking into a SCADA system slightly easier and will no doubt

increase the frequency of attempts at such attacks. [31]

2.3 The MILS Security Standard

2.3.1 Definition

The acronym MILS stand for Multiple Independent Levels (or Layers) of

Security. MILS is a standard that has been designed to allow mathematical verification

of the security of core systems software by separating security functionality into four

security policies: Information Flow, Data Isolation, Periods Processing, and Damage

Limitation [5]. These functionalities are controlled by a partitioning kernel that oversees

resource and security management for the system. The concept of a separation kernel

used to divide memory into separate partitions for application use was first outlined in [6]

and [7] by John Rushby in the early 1980’s. The four security policies are described

below (paraphrased from [5] and [8]):

� Information Flow control ensures that the flow of data between partitions is

authenticated end-to-end between sender and receiver. Information must arrive

only where intended by the sender.

� Data Isolation ensures that each partition’s data is accessible only by that

partition, and that private data cannot be publicly accessed.

� Periods Processing ensures that exploits using the processor and networking

hardware cannot give an intruder access to the system.

12

� Damage Limitation (or Fault Isolation) ensures that a failure in one partition will

not affect the performance or security of another partition. All failures must be

detected, contained, and recovered from locally.

By ensuring that a kernel is built from the ground up with these principles in mind, the

amount of security critical code can be drastically reduced. This in turn provides the

ability to apply rigorous mathematical tests and inspections to the kernel [8], something

that is not possible with current operating systems whose critical features may contain

millions of lines of code [9].

2.3.2 Evaluation of the MILS Kernel

One of the main objectives of MILS is for the separation kernel to be evaluated at

EAL 7 [9]. The Evaluation Assurance Levels (EALs) are defined by the Common

Criteria, a set of internationally defined and recognized standards for evaluation of secure

software [10]. EAL 7 is the highest possible level of assurance, and states that software

must be formally (mathematically) verified, designed, and tested to attain an EAL 7

rating. By using small code for the separation kernel and security functions, as well as

enforcing NEATness (see following section), components used in MILS implementations

can be evaluated at EAL 6+ [8].

Evaluation consists of the process of verifying and testing, either formally or

informally, a given piece of software to ensure its compliance with the internationally

defined EALs. The following table outlines each EAL from 1 to 7 and provides a brief

description of each. Each EAL builds on the previous, so any tests performed at a lower

13

level of assurance will be included in higher level assurance tests. These criteria are

formally defined and outlined in [10].

Table 2.1 Evaluation Assurance Levels (EAL)
EAL Requirements for Verification
1 Functionally tested. Analyzes behavior and system documentation.
2 Structurally tested. Analyzes more detailed high-level design specifications.
3 Methodically tested and checked. More complete testing process.
4 Methodically designed, tested, and reviewed. Analyzes more detailed design

specifications and an implementation subset.
5 Semi-formally designed and tested. More structured architecture and semi-

formal design description required.
6 Semi-formally verified, designed, and tested. Requires improved analysis of

architecture and improved design description over EAL 5.
7 Formally verified, designed, and tested. More comprehensive testing required.

Formal (mathematical) proof of design and formal representations must be used
to assure security.

 The formal verification required to meet EAL 7 is not currently possible with

today’s monolithic kernels, which can contain millions of lines of source code. The

MILS kernel seeks to alleviate this quandary using two methods. The first is to reduce

the amount of code in the kernel by removing functionality that can be obtained by higher

level applications while still enforcing the principle of NEATness. The second is to

provide brick wall partitioning, allowing for different levels of assurance for applications

running in separate partitions. [9] These concepts will be discussed in more detail later in

this document.

2.3.3 Properties of NEATness

NEATness is essential for an operating system to ensure security. NEAT is an

acronym for Non-Bypassable, Evaluatable, Always Invoked, and Tamperproof [8].

14

These properties allow a high assurance level for overall systems security. These

attributes of secure operating systems are explained below (adapted from [5] and [8]):

� Non-Bypassable means security functions cannot be avoided.

� Evaluatable means that security functions can be formally verified and tested.

� Always Invoked means security functions are invoked each time they are needed.

� Tamperproof means poorly written or subversive code cannot modify security

functions and security related data.

MILS is the first publicly available approach to operating system design that allows for

NEATness in Commercial Off The Shelf (COTS) software and operating systems [8].

2.3.4 Partitioning Communication Systems

A Partitioning Communication System (PCS) is a middleware component of a

MILS OS which has authority over all communication between MILS partitions. While

those familiar with SCADA systems may recognize the acronym “PCS” to stand for

process control systems, this PCS is a MILS specific concept and the two shouldn’t be

confused. The four main policies that MILS is based on (Information Flow, Data

Isolation, Periods Processing, and Damage Limitation) are extended to cover end-to-end

communication between MILS partitions [5]. The MILS PCS uses the separation

kernel’s control over these four policies and applies them to communication between

partitions, and also communicates with network protocols and drivers to ensure the

policies are applied to incoming and outgoing network data [8]. This PCS, combined

with isolation of network components in a single partition, allows a high-assurance

backbone for distributed systems by ensuring tight application of security policies on

15

transmitted data. The following diagram illustrates the function of PCS middleware in a

MILS RTU.

FIGURE 2.1: A PCS for a MILS RTU

2.3.5 Vendors Offering MILS or MILS-Like Products

A number of companies offer operating systems which implement, or will

implement, the MILS separation kernel. Green Hills software offers the INTEGRITY

line of operating systems utilizing MILS [11]. Wind River has been working on its own

real time operating system using the MILS architecture. This implementation uses a

16

Memory Management Unit (MMU) to protect the kernel from applications and to

partition system memory with their VxWorks OS [12].

LynxOS-178 from LynuxWorks is a popular embedded real-time Linux variant

which implements MILS partitioning [13]. Via correspondence with the company, it has

been learned that they plan on releasing an OS next year called either LynxSecure which

will add networking functionality out-of-the-box to their MILS compatible Linux variant

operating systems. It is worth noting that none of the above MILS implementations have

yet been verified at an EAL 6 or above, so they are not considered fully MILS compliant.

However, LynuxWorks is expecting an EAL 7 assurance level for their upcoming

product LynxSecure [14], which should allow for full MILS compliance of that operating

system.

Objective Interface Systems provides MILS based middleware components.

PCSexpress, their PCS implementation [15], is their major current contribution to MILS

middleware and could be combined with an aforementioned MILS OS to enable secure

networking capabilities on a PC.

2.3.6 Current MILS Research

 To date, much of the work done on the MILS standard has been research and

theory oriented. There are a number of papers and articles outlining the design of a

MILS system and explaining the benefits such a system should provide for security. The

article by Van Fleet et al [8] is the quintessential example of such an article. This article

is the basis for much of the general knowledge about MILS’ applications and benefits.

The authors mention the current trend of combining MILS with other security

17

applications such as the aviation standard DO-178B and ARINC-653, the Avionics

Application Software Standard Interface. MILS is often combined with other standards

to create a synergy of operation and enhance security. One example of such a

combination is the LynxOS-178 real time operating system (RTOS), which combines a

partitioning kernel with DO-178B certification and uses ARINC-653 style resource

partitioning [23].

 The University of Idaho’s Center for Secure and Dependable Systems (CSDS) is

working on MILS partnered with such groups as the NSA, Lockheed-Martin, and the

aforementioned Objective Interface Systems. The objectives of the CSDS are to provide

mathematical foundations for concepts for MILS, as well as providing architectural

design guidance [24]. While most of the articles published on the CSDS website are

from 2002 and 2003, some of the Center’s members are still active in the MILS research

community.

2.3.7 Current Research on Applying MILS to SCADA

 Little has been published in the way of applying MILS to SCADA systems, so

this project would seem to be leading the way in that regard. However, there has some

cross-pollination of interest in the two areas. Jim Alves-Foss, a prominent member of the

aforementioned CSDS, has also co-authored articles such as [25], which looks at

applications of security to real-time control and SCADA systems. This shows that other

researchers at least have some cross interest in the study of MILS and SCADA systems,

though they still have not yet combined the two.

18

 One of the few mentions of the combination of MILS and SCADA comes in the

form of a newsletter from the Process Control Security Requirements Forum (PCSRF), a

group which focuses on applications of security for SCADA systems and is supported by

the National Institute for Standards and Technology (NIST). The newsletter in question

announces a conference in April of 2006 presenting a demonstration of the MILS

architecture. The newsletter notes that the security potential of MILS could be directly

transferable to critical systems such as SCADA networks, as well as financial, medical,

and consumer electronic areas. [26] This again shows that others are thinking along the

same lines as this project, though they also have still not attempted any implementation

or research directly.

2.4 Microkernels

2.4.1 General Microkernel Principles

 Microkernels have been around for years in many forms. The idea behind such

constructs is to minimize the complexity of the kernel, providing greater security and

performance than more traditional kernels. This is accomplished by removing all

functionality that can be implemented at a higher level from the kernel code, leaving only

essential components inside the kernel. Higher level functionality is controlled by

programs known as servers which run on top of the kernel to provide services that do not

require direct access to the underlying hardware. The server approach provides greater

19

flexibility to microkernel based systems, as any additional functionality can be added by

the creation of a new server for the task, so no modification to the kernel is required. [27]

2.4.2 The L4 Microkernel

 The L4 microkernel is currently at the forefront of microkernel research and

development. This kernel was developed in the mid-nineties by Jochen Liedtke, one of

the main proponents of microkernel-based systems. Prior to L4, microkernels suffered

severe performance hits compared to traditional, monolithic kernels. L4 changed this by

dramatically improving inter process communication (IPC) overhead compared to

previous microkernels such as Mach. L4 does contain some drivers and a scheduler, the

functions of which could be handled by servers. They are included to make development

and setup easier for L4 programmers and users. [28]

 The L4::Pistachio implementation of this microkernel was utilized in this project

as the basis of a secure RTU. Pistachio is maintained by the System Architecture Group

at the University of Karlsruhe, where Liedtke had worked prior to his death in 2001 [28].

Pistachio is the L4 implementation that supports the greatest amount of hardware, and is

licensed under the BSD license [29]. Pistachio was chosen as the L4 implementation for

this project because of the relatively large amount of documentation for it, as well as the

community that provides support for it at both the l4ka.org and l4hq.org websites.

20

CHAPTER III: Designing a Hardened RTU with MILS

3.1 Applying MILS to SCADA RTUs

3.1.1 Current Operating System Security Paradigm

Most operating systems that are currently in wide use employ a “Penetrate and

Patch” [9] a.k.a. “fail-first patch-later” [5,8] system to provide security functions. Under

this paradigm, an operating system is released “into the wild” to be used by businesses

and home users. If a security failure is discovered, for example a hole or backdoor that

has been exploited by a hacker, a patch is released to repair the problem and prevent

future exploits using that particular security exploit. This paradigm allows the multitudes

of worms, viruses, and Trojans that are consistently on the news to cause serious damage

[9].

This approach to OS security is not acceptable for SCADA RTUs. SCADA

systems were created for use in critical systems and infrastructure. By their nature, they

can cause serious damage to property and persons if they are compromised. Therefore, if

a “Penetrate and Patch” situation were to occur, it would already be too late: failures that

cause critical infrastructure to cease operations cannot be tolerated. A security policy

must be enforced that will maximize prevention of security flaws and minimize the

damage any unforeseen flaws can cause. This is where MILS, with its focus on core

security policies and partitioning of system resources can excel.

21

3.1.2 Communication over the Internet

Since communication between RTUs and SCADA master units is occurring

increasingly over the Internet, this project will focus on using MILS to bolster the

security of networked RTUs. MILS is well-designed to allow for enhanced security of

networking functions if networking components are placed inside their own partition

controlled by the separation kernel’s security policies [8]. This means attacks on

networking protocols and features cannot spread damage to other partitions which are

running critical monitoring and control tasks. From [8], the benefits of this approach are

the following:

� “Network facilities can be used by multiple application partitions.
� “Network data is processed in unprivileged user mode, eliminating a vulnerability that is

a common avenue of attack.
� “Complex protocol code such as Internet Protocol (IP) Ver. 6 can be evaluated and

certified independent of the applications using the code, enabling reuse of the evaluation
artifacts.”

The core idea here is to place any communication with the outside world (i.e. the

network) in its own partition, effectively cutting off all access to other applications except

through the middleware and kernel, both of which should be verifiably secure in a true

MILS system. The following diagram illustrates the separation of applications into their

own partitions on a MILS RTU.

22

FIGURE 3.1: A MILS RTU

Figure 3.1 illustrates the overall security environment for a MILS RTU. Each

separate functionality can be placed in its own partition with its own user permissions and

security settings. We see here that networking functionality is contained in a single

partition. Likewise with the control and monitoring software that makes up the core of

the RTU is in its own, separate partition. Since all communication takes place through

the PCS and the secure separation kernel (see figure 2.1 for an illustration of the PCS

system), errors and security breaches cannot cascade from, for example, the networking

partition to the control partition. Also, information from the monitoring software cannot

23

be compromised directly through the network connection. Also, as illustrated in the

middle partition, separate applications, and even operating systems, may also run on the

system with no threat to the control and monitoring software even if they are not verified

or known to be totally secure.

3.1.3 Handling of Network Errors in MILS

MILS provides another important feature to PCs used as RTUs in that severe

networking errors or attacks will not cause a cessation of operations throughout the entire

machine. Since MILS ensures that errors are detected and fixed locally in each partition,

monitoring and control software running in other partitions will not be affected by the

problems in the network-centric partition. The information obtained by these partitions

while the network partition is recovering can be sent to the SCADA master unit when

networking operations have resumed normal functionality, preventing loss of data due to

network component failure. This is especially important if an RTU is providing control

to critical components. As long as the RTU can act independently until the networking

partition has recovered, the hardware and infrastructure controlled by that RTU will not

function any differently than if the connection had stayed constant. Also, the networking

partition can run in unprivileged user mode, removing the potential for administrative

exploits [8].

 A partitioning communication system can be used on both ends of the network

transaction to ensure end-to-end enforcement of security policies. Using a PCS in this

manner provides the benefits outlined in Table 3.1 (from [8]). This setup can be used to

securely synchronize and communicate over a network, as well as reduce the risk of

networking errors by removing backdoors into the communication system.

24

Table 3.1 Benefits of Networking via PCS

1. Strong identity of each MILS node in the network
2. Separation by level or community of interest, MILS nodes connected by MILS cross-
domain servers
3. Secure configuration and validation of consistency of all security databases
4. Secure image loading
5. Secure clock synchronization
6. Provisioning of bandwidth / quality of service
7. Suppression of covert channels (i.e. backdoors)

3.1.4 Attempts to Obtain a MILS Product

 As is evident, this project at the onset had the objective of obtaining a MILS

compliant operating system and using that OS as the basis of an RTU. However, this did

not occur for a number of reasons, and the project has instead shifted to a related focus

that will be explained in sections following. First, an explanation of why a MILS product

could not be obtained in time for the completion of this project.

 In September of 2005 LynuxWorks, the current leader in supplying MILS based

technology, was contacted about acquiring one of their operating systems for research in

this project. After several emails detailing requirements for the research, the

LynuxWorks representative determined that the product we would need is their

LynxSecure OS. This real-time OS is LynuxWorks’ attempt at creating a verified MILS

kernel at EAL 7, which would be the first of its kind. LynxSecure will also feature built-

in secure networking, removing the need for the customer (or, in this case, researcher) to

implement his or her own networking solution.

This product would indeed provide a solid basis for this project’s research, but

unfortunately LynxSecure is still not available at the time of this writing. An analysis of

the market shows that no other comparable MILS-based product is yet available from

25

LynuxWorks’ competitors, companies such as Green Hills and Wind River. LynxSC, an

interim version of LynxSecure designed to be verifiable at EAL 4, was scheduled for a

spring 2006 release. As of June 2006, neither LynxSecure nor LynxSC is available to the

market.

These complications led the researcher and his advisor to consider alternatives to

MILS that could be implemented and researched within the given time frame. This

research would focus on applying some of the security techniques that are defined in

MILS to RTUs. This project will provide a basis for secure RTUs which can be

expanded upon or modified when proper MILS products become available in the future.

3.2 Implementing an RTU Utilizing MILS Concepts

3.2.1 Alternatives to MILS

 Since a MILS product could not be obtained in time, this project was refocused

into researching what benefits MILS would provide an RTU and discovering how to

emulate those benefits with a different system. There were determined to be two major

benefits that a MILS compliant system could provide, and these were abstracted into two

different areas of research.

 First of all, MILS provides hard partitioning of resources, the management of

which is handled by the separation kernel. As discussed earlier, this resource

management scheme allows the system to contain any errors in a single partition,

nullifying the effects of such errors on any applications running in other partitions. If

inter-partition communication is needed, a PCS provides verified means of secure

26

communication between applications in separate partitions by directly invoking the

kernel’s security methods every time communication is required.

 The second major benefit of MILS is the use of a small, hardened, verifiable

kernel to manage the system. The benefits of having a minimal kernel are many, not the

least of which is the reduction of complexity. This reduction of complexity means that

fewer errors should occur in the kernel creation process, as number of errors generally

correlates directly with the number of lines of code (LOC) in the kernel. Coding errors

residing in the kernel source often lead to exploits being discovered by malicious

individuals after the product is released ‘into the wild’. It is therefore desireable to

reduce the potential for errors up front, and a kernel with the minimum amount of

functionality (and therefore LOC) required is a step in this direction. Having a small

code base for the kernel also allows mathematical verification of the system, so a

quantifiable figure can be placed on the security of the system, a feature which is not

possible in a kernel with millions of lines of code.

 With these two features of MILS in mind, a search for technology that would

provide these benefits was conducted. First of all, a version of LynxOS (version 4.0) was

obtained to determine if it was MILS compatible. Unfortunately, it is not as it does not

have a separation kernel. This OS distribution did provide one extremely useful feature,

which will be discussed in the following section.

 Through extensive research, it was determined that brick wall partitioning would

be extremely difficult, if not impossible, without a MILS compliant operating system.

Resource separation has been mentioned in a few placed as a worthy goal even apart

from MILS, but there are few implementations of such available to the public. With this

27

in mind, the project’s focus was shifted to exploring the benefits of a minimal kernel for

RTU security.

 The benefits of such a kernel have already been listed. It should be noted,

however, that this project did not attempt to formally verify either kernel presented at any

EAL as the process is lengthy and, as a proof of concept and first step, the work

presented here was deemed sufficiently constructive for now.

3.2.2 RTU Based on Embedded LynxOS

 As mentioned in the previous section, LynxOS 4.0 provides some interesting

features that proved beneficial for this project. First of all, LynxOS is an embedded, real

time operating system (RTOS) created by LynuxWorks, the company that will release

LynxSecure at some point in the near future.

 LynxOS 4.0 was originally obtained because the researcher was attempting to

determine if it was MILS compliant. It is not, but some interesting ideas arose from the

study of this product. An RTU is much like an embedded device in that it performs

specific tasks, often on specific hardware, and reliability of operation is one of the most

important features of both devices. Also, LynxOS provides real-time scheduling support,

an obviously useful feature for monitor and control in an industrial setting.

 Upon further inspection, an even more enticing possibility was discovered.

Included with the LynxOS demo is LynuxWorks’ Kernel Downloadable Image (KDI)

package. This package allows the user to make any desired modifications to pre-built

kernels or to create his or her own kernel. This KDI can then be booted from in a number

of ways, including from distribution media or over the network. The KDI package was

28

used to strip all unnecessary functionality from the kernel, with RTU code created by Jeff

Hieb used to simulate the monitoring and communication of the RTU. The specific

implementation details of this RTU will be discussed in Chapter IV.

3.2.3 RTU Based on L4::Pistachio Microkernel

The Pistachio microkernel is currently the most widely used and supported

implementation of the L4 microkernel. The MILS principle of having a small,

minimized, verifiable kernel is similar to the idea behind the microkernel. The

microkernel paradigm seeks to strip all functionality from the kernel that can be handled

at a higher level. Applications called servers provide any functionality that does not need

direct access to the hardware, or that can utilize the already-existing kernel primitives for

such access. While the microkernel is not designed to be verified at an EAL, its emphasis

on minimalization and strict kernel control of all calls made to the hardware provide an

interesting parallel to MILS based kernels. For this reason, it was determined that a

microkernel based RTU could provide insights into the benefits of a minimal kernel for

RTU security, and therefore speak to the benefits of MILS for RTUs.

Pistachio was chosen as the microkernel to be studied in this project first for the

amount of documentation and support available. Also, there are user-friendly tools, such

as a comprehensive build system, that enhance and speed up development for Pistachio

systems. This build system, called Kenge, will be discussed in the following chapter,

along with all other implementation details for the Pistachio based RTU.

29

CHAPTER IV: Prototyping RTUs using LynxOS and Pistachio

4.1 A LynxOS RTU

4.1.1 The LynxOS 4.0 Operating System

 LynxOS 4.0 is a real-time embedded POSIX-compliant operating system that was

designed for use in critical systems where deterministic real-time performance is

essential. It was created by LynuxWorks, the company that is working on bringing the

first MILS compatible OS to market in the near future. LynxOS is compatible with

UNIX and is similar in architecture. Like UNIX, LynxOS provides full process and

thread support with fork and exec system calls. This means applications run in their own

protected address space, protecting the kernel from errors created by erroneous

application behavior. Because if this similarity to UNIX, many UNIX applications can

run with little need for alteration on a LynxOS machine with only a recompilation.

LynxOS can also run Linux binaries without the need for recompilation using a built in

Linux ABI compatibility layer.

 The following table lists some of the features of LynxOS that led to the current

research on its suitability for an RTU. These features are listed in this form in the

documentation provided with the LynxOS 4.0 demo which was used in this project.

These features deal with both the operation of the kernel and the development tools

provided with the operating system.

30

Table 4.1 LynxOS Features
Multiprocess and multithreaded environment
Hierarchical, UNIX-like file system
Kernel threads
Industry standard Networking (TCP/IP)
Support for diskless clients
Industry standard GNU tools, UNIX-like utilities and UNIX-like shell scripts
ROM-able kernel
Modular scalable architecture

 Some of these features, such as support for diskless clients and ROM-able kernel,

could be helpful for small, embedded RTUs to be designed in the future. While this type

of RTU is not the basis for this project, it is a potential future benefit of utilizing this OS.

Features such as industry standard networking, as well as GNU and UNIX tools and

utilities, should ease the transition from more traditional development to development for

a real-time OS. These features, combined with the ability to create Kernel Downloadable

Images, make LynxOS a strong candidate for the basis of our prototype RTU.

4.1.2 Kernel Downloadable Images

 A Kernel Downloadable Image (KDI) provides the basis for the bootable RTU

studied in this project. A KDI is an image that contains the LynxOS kernel, a file system,

and any application code specified by the user. This application code consists both of

system utilities that are included in any OS, such as network and file managing utilities,

as well as any code or applications that is desirable for use within the system represented

by the KDI. The KDI, once created, is bootable from flash memory, a disc, or over the

network.

 The creation of a KDI allows the developer to remove any unnecessary modules

from the OS image to ensure that only the necessary applications and utilities are

31

included. This allows the RTU developer to remove bloat, thereby reducing the memory

footprint of the system, and to remove any unforeseen security vulnerabilities that may

arise from unnecessary modules. Using a KDI also allows the RTU developer to instruct

the system to boot directly into the RTU code. This feature was used in this project and

will be discussed in more detail later.

A KDI is created by utilizing the mkimage utility provided by LynxOS. The

mkimage utility leverages a .spec (specification) file which contains information on how

the utility should configure the KDI. This .spec file contains attributes detailing the

initial set of files that should be included in the RAM disk memory image created by the

mkimage utility. Table 4.2 lists some of the more important attributes that were

employed in the .spec file used for this RTU prototype. These attributes are listed in the

mkimage.spec man page and in the LynxOS 4.0 demo documentation, with some slight

modification here for readability.

Table 4.2 Important Attributes of a .spec File

Attribute Description
target=[x86|ppc] The target system
osstrip=[local|all|none] Causes local symbol definitions to be stripped from the kernel

text file.
ostext=[ram|rom] Designates where the kernel resides in the running system.
kernel=<path> The path of the LynxOS kernel to be used in the image.
nodetab=<path> The device node table corresponding to the kernel
root=[ram|rom] Specifies that the root file system is either resident in RAM,

ROM, mounted from the device, or that there is no file system.
directory= A directory on the target file system
file= A file on the target file system
source= Designates a fully qualified path name to a source file to be

copied into the target file system as the file specified in the
file=.

symlink Designates a symbolic link of <pathname1> to <pathname2>.

32

4.1.3 The Developer.spec Specification File

The demo for LynxOS 4.0 that was used for this project was shipped with a few

pre-built KDIs, including their corresponding .spec files. For this project, one of these

pre-built KDIs called “developer” was modified to provide the basis of our RTU KDI.

The developer KDI came with a specification file that included all networking

components and other utilities for a fully functional OS. For this reason, the .spec file for

this KDI, called developer.spec, was modified to conform to the desired functionality of

an RTU prototype. The mkimage utility creates an image ending in a .kdi file extension,

so to the image created in this project is named developer.kdi.

As the developer.spec file contained attributes related to providing full OS

functionality, including and Apache server, this file was modified to remove unneeded

modules from the KDI completely. Therefore, anything unrelated to networking or basic

system functionality was removed. Using the directory= and file= attributes, the

directory structure and included files for the KDI were specified. The original

developer.spec file contained a great many such attributes. Many of these were edited

out of the file in order to exclude them from the KDI. Exclusion of such attributes is

accomplished by commenting out the line in the developer.spec, with a #, that contains

the attribute that should be removed. Appendix I lists the developer.spec file used to

specify the attributes for this project’s KDI. The lines commented out with the # symbol

were attributes that were included in the original developer.spec file. There were actually

many more attributes that were removed for this project, but many of these commented

33

lines were edited out of the file shown in the appendix to reduce the length of the .spec

file, allowing easier modification and readability.

 The directory= attribute signifies a directory to be included in the image, and the

file= attribute does the same for a file. The main additions to the developer.spec file were

made in the directory=/net attribute. This attribute specifies what files and binaries

should be included in the /net directory of the KDI. The following four lines are the only

file= attributes specified for this directory:

file=rc.network source=/tmp/newproj/60.developer/rc.network $(BIN_PERM)
file=rtuDevice source=./rtuDevice $(BIN_PERM)
file=rtu source=./rtu $(BIN_PERM)
file=rtuDevice.h source=./rtuDevice.h $(BIN_PERM)

The purpose of the file=rc.network attribute is to include the file indicated by the path in

the corresponding source= attribute. This source= attribute indicates the path to the file

on the development machine. The file indicated by the source= attribute will be copied

into the /net directory with the name corresponding to the file= attribute, in this case

rc.network. The $(BIN_PERM) flag indicates that the file that is to be included in the

image in a binary and is permanent, i.e. will not be deleted after the system is fully

booted and all modules indicated to begin on startup have are running.

 The rc.network file indicated above is essential for the operation of networking

capabilities for the system. The purpose of the rc.network file, as well as the

modifications to it that were necessary for this project, will be outlined in the following

section. The other three targets of the file=attributes in the line above indicate the files

needed to run the RTU on the machine and will be discussed in the section following the

rc.network section.

34

4.1.4 The Rc.network File

 On UNIX and similarly styled systems, rc files are used to specify startup

commands for certain applications or the operating system itself. In this case there are

two rc files included in this projects KDI, rc.d and rc.network. The rc.d file contains

scripts designed to run any services that are desired upon system startup. This file is was

included in the pre-built developer KDI that was used as the basis for this RTU, and its

significance to the current topic is that it calls rc.network to run with the following lines

of code, which tells the kernel to look at the rc.network file if no scripts from that file are

currently running:

if [-x /net/rc.network]; then
 /net/rc.network
fi

 Of more significance to this project is the rc.network file. This file was also

included in the pre-built developer KDI. However, this file was modified in small but

significant ways that allow the RTU to function. The rc.network file contains scripts to

setup and enable networking on the machine booted with the developer KDI. It runs the

ifconfig and dhclient commands to configure networking for the machine, which explains

the attributes indicating the need to include these files in the developer.spec file. The

following lines of code are used to start the RTU portions of the code:

Start RTU Server

/net/rtuDevice &
start_it /net/rtu

 The ‘/net/rtuDevice &’ start the rtuDevice portion of the code. The & indicates

that the application should run in the background, freeing the kernel up to run the next

script in the rc.network file. The ‘start_it /net/rtu’ command starts the rtu application,

35

which passes connection information to rtuDevice, which handles monitoring and control

for pumps in an industrial plant. The origin and functionality of these applications will

be discussed in the following section. To see the complete listing of the rc.network file,

see Appendix II.

4.1.5 RTU Code

The code created for the RTU in this project was written by Jeff Hieb, a

researcher at the Intelligent Systems Lab at the University of Louisville who is currently

researching SCADA and RTU security. The RTU project created by Jeff was written in

C++ and makes use of several functions and custom headers spread out through many

files. The three code files most important to this project are rtu.cpp, rtuDevice.cpp, and

rtuDevice.h.

The rtu.cpp code creates a process that will listen for incoming connections using

a server socket. Incoming connections are communicated using the DNP3 protocol for

SCADA communication, the support code for which is also included in the RTU project.

A master control unit (MTU) can connect to the RTU via this method.

The rtuDevice.cpp code contains the bulk of what would be considered typical

RTU functionality. It contains data structures and functions used for monitoring and

controlling the levels of pumps in an industrial plant. It accepts connection to an MTU

via the connection initiated with the rtu process. Of course, the program does not

actually monitor or control any physical objects, but instead methods are included to

simulate typical values an RTU in this situation would encounter. There is a .NET based

MTU that can remotely connect to this rtuDevice process through the rtu process. This

36

MTU provides a GUI for providing logon information to the rtu to allow the remote user

to monitor and modify values in the tanks. It also provides information on the latency of

communication signals, which will be discussed in Chapter V.

The rtuDevice.h file is a header file that provides a definition of message structure

for inter-process communication between the rtu and rtuDevice processes. This code

ensures that communication is standardized by providing structures for writing and

reading messages, as well as user and permission lists, among other features.

4.2 A Pistachio Based RTU

4.2.1 The Pistachio Microkernel

 The Pistachio microkernel is an implementation of the L4 microkernel, a high

performance microkernel that improves upon previous attempts at microkernel design.

The L4 API is the design document that defines the requirements for implementing a

microkernel, and the Pistachio microkernel is the first version to implement the L4

Version 4 API. This API provides improvements in a number of ways over its

predecessors, such as 32 and 64 bit support, multiprocessor support, and fast local inter-

process communication (IPC). Table 4.3 lists some of the features provided by an L4

microkernel that could prove beneficial to an RTU, including information from [28] and

[32].

 Fast IPC improves performance of the system, so this would be beneficial to any

operating system or embedded device. The small number of fundamental mechanisms

and kernel defined policies, combined with the small image size for the kernel, provide

37

an opportunity to study the MILS principle of a small, reduced kernel containing only

essential functionality. The privileged threads sigma0, sigma1, and root task are the only

threads that can make certain system calls. Sigma0 and sigma1 deal with memory related

requests, while the root task helps control overall system operation. These privileged

threads separating higher level threads from certain system calls behave similarly to how

MILS is designed to operate as well, as only highly trusted threads and processes have

direct access to the MILS kernel.

Table 4.3 L4 and Pistachio Features

Fast IPC with low overhead
Small number of fundamental mechanisms built in to kernel
Almost no kernel defined policies (such as memory,
protection, and process management)
Small size (from 40 to 200KB)
Privileged threads sigma0, sigma1, and root task

4.2.2 The Basis for a Pistachio RTU

 The success of the LynxOS based RTU did not transfer fully to the Pistachio

microkernel. While the RTU code from Jeff Hieb is a solid foundation on which to build,

it is not yet compatible with Pistachio. A number of difficulties led to this situation, not

the least of which is the complexity of development for Pistachio due to the build system

it uses. Many of the calls used in the RTU code are not available in the C libraries that

are built in to the Pistachio build environment, and networking support is not included in

the kernel as was the case with the previous RTU based on the LynxOS kernel.

38

 Instead of reinventing the wheel and creating services to run on top of the

microkernel to allow full networking support as is required by the currently available

RTU code, this project has instead focused on unraveling the build system and providing

a simple example of how to build programs for Pistachio. A basic code example was

used that was inspired by a previous, greatly simplified version of an RTU created by Jeff

Hieb. It generates some random binary values, transmits them, and simulates some

network delay to compensate for the fact that networking is not currently supported.

Transmission, in this case, it to standard output, but it would be simple to modify this to

transmit over a network connection should one be devised in the future. In this manner,

the basis for a Pistachio based RTU has been established, even if the final product is not

feasible within this project’s time frame.

4.2.3 The Pistachio Development Environment

 The Pistachio development environment, much like the Pistachio microkernel

itself, is primarily a research project. Whereas Pistachio was created and is maintained

by the System Architecture Group at the University of Karlsruhe, the development

environment for Pistachio is a product of the Embedded, Real-Time, and Operating

Systems (ERTOS) group funded by National ICT Australia (NICTA). ERTOS, as the

name implies, focuses on researching various embedded and real-time operating system

technologies. They have also modified the Pistachio microkernel to their own embedded

version, entitled NICTA::Pistachio-embedded, which focuses on embedded system

concerns such as resource utilization and performance. This L4 implementation would

be a strong basis for an RTU, but the greater amount of support and documentation

39

available for regular Pistachio led the project in the more general direction. The build

system developed by ERTOS can be used either on their embedded variation or the

original Pistachio, and was therefore selected to provide the build environment for this

project. This build system and development environment is called Kenge, and consists of

four major components which will be discussed in the following sections.

4.2.4 The Kenge Build Environment

 The Kenge build system is designed to create a bootable image based on the target

machine by compiling user-generated programs together with the Pistachio microkernel,

sigma0, roottask, and any other code specified for the image. The Kenge build system

utilizes four major components, including a scripting language, toolchains, and two

outside applications. Kenge uses the SCONS build system to build projects, the first of

the four components. The build scripts that are used by SCONS based on the Python

scripting language, the second Kenge component. If building occurs on the target

machine, the standard gcc version 3.3 toolchains are used for compilation of code. This

is the third component. The fourth and final component is the QEMU simulator, a full

IA-32 system simulator. [33]

4.2.5 The SCONS Build System

 The SCONS build system is based on the Python programming language. Builds

are controlled by a top-level SConstruct file, which contains functions to set up the build

environment and combine all the separate modules into a final, bootable image. Lower

level SConstruct files are also used to specify how the system should and link build

40

individual modules such as applications and libraries. Two SConstruct files were

essential to the build of the simple example rtu code. As both files are titled SConstruct,

they will be referred to as the high-level SConstruct and the low-level SConstruct.

 The low-level SConstruct used for this project is a Python file which specifies that

this module contains an executable program, in this case the C code file rtu.c. Using the

env.MyProgram() function targeting rtu.c, the low-level SConstruct file specifies to the

build environment that rtu.c should be compiled and treated as an executable file. Using

the information from this low-level specification, the high-level SConstruct can properly

handle the rtu module once the high level build begins. The low-level SConstruct is

listed in Appendix III.

 The high-level SConstruct is more complex, as it specifies the overall build

environment as well as any applications that should be included in the final bootable

image. In this file, the first step is to create the build environment for the machine, called

env as indicated in the low-level SConstruct explanation above. This environment

determines the compilers and flags necessary for the build process on the specified

machine. There are then calls to specify the kernel to be used, in this case the Pistachio

microkernel. The rootservers, special processes that begin at boot time, are specified

next, along with any libraries that are needed to compile programs in the build

environment. This program includes the “c” and “l4” libraries, as the simple rtu code is

written in C and the “l4” library contains code relating to compilation for the L4

microkenel. Any applications that are required to start at boot time are then specified. In

this case, the sigma0 memory manager process and the rtu application are indicated. The

final two scripts combine the kernel and applications into a single bootable image, and set

41

that image as the default boot image for the system. The high-level SConstruct file is

listed in Appendix IV.

4.2.6 The QEMU Simulator

 Kenge uses the QEMU simulator to simulate the runtime operation of bootable

images configured by SCONS. QEMU is a full IA-32 system simulator, meaning it can

run inside another operating system while simulating the functions of the created boot

image. The use of such a simulator eases the development process of a bootable

operating system by running the system within the development environment, eliminating

the need to hard boot the system from a disk, ROM, or a hard drive.

 The Kenge environment is setup to simulate bootable images directly after a build

by setting a “simulate” flag when calling SCONS. One problem with using this method

for simulation was an inconsistency with how Kenge calls QEMU. When the simulate

flag is set, Kenge calls QEMU after the bootable image has been created with the

following command:

 qemu –hda build/c.img –nographic –nics 0

The problem here is the current version of QEMU does not use the –nics flag to specify

the number of network interface cards to simulate, but instead uses a –net nic flag. Even

though this operation ends in an error, the simulate step is necessary to build the c.img

bootable image as specified in the command. This image contains all files necessary for

system boot. After the simulate command has been executed and stopped with an error,

the QEMU simulator can be manually started targeting the created c.img. The command

for this execution will be specified in the next section.

42

4.2.7 Building, Booting, and Running the System

 Once the SConstruct files are created and all needed support tools and files are in

place, Kenge is ready to build the system. The following command builds and links all

modules into a single bootable image:

 scons machine=pc99

The machine=pc99 flag tells SCONS that the target machine is an IA-32 based PC. To

create and simulate the c.img bootable image, the following command is issued:

 scons machine=pc99 simulate

As discussed in the previous sections, this command ends in an error but correctly

produces the c.img file that is needed for simulation. QEMU now should be called

manually with the following command:

 qemu –hda build/c.img –nographic

This command boots c.img in the QEMU simulator. The –hda flag indicates that the

target is a hard disk image, while the –nographic flag starts QEMU without graphical

support. This saves memory and processor resources, as the bootable image created for

this project is purely text driven and has no graphical interface. The –net nic flag is not

needed because the default value is sufficient for this simulation.

 Once the simulator has started, the kernel is booted along with the applications

specified in the high-level SConstruct file. The rtu code is started and begins its

operation by asking the user to press a key to begin. The code then generates and outputs

a pseudo-random binary value represented by hexadecimal, simulates network delay, and

attempts to measure the time needed for the operation. The user can then choose to press

43

x to exit or any other key to end the program. The time measurement does not work

correctly when booted on Pistachio because the system calls needed for the functions in

the time.h header file are not available from the L4 microkernel to this process. The

system boots correctly, processes user input and processes and generates binary output.

Further work that could be done with this microkernel and build system will be discussed

in Chapter VI. The code for the rtu.c file is listed in Appendix V, and a sample output

listing for the run-time operation of this code is provided in Appendix VI. The code was

running in the QEMU simulator on top of the simulated Pistachio kernel.

44

CHAPTER V: Performance and Security Evaluation

5.1 Quantitative Security Analysis

5.1.1 Objectives of Analysis

 The goal of this project from the outset was to determine what benefits, if any,

MILS concepts could provide to RTU security. The LynxOS and Pistachio systems were

utilized for the similarities they shared with certain MILS concepts. This section will

attempt to scrutinize precisely what security vulnerabilities can be closed for each of

these approaches, what vulnerabilities are still open, and which of these open

vulnerabilities could be solved with a fully MILS compliant RTU.

5.1.2 Vulnerabilities Closed Using LynxOS

 Table 5.1 outlines the security vulnerabilities that were closed by implementing a

prototype RTU with the LynxOS KDI development tools. These closed vulnerabilities

are mostly related to MILS concepts, meaning that they are also vulnerabilities that

should be closed by a fully MILS compliant OS and kernel.

Table 5.1 Vulnerabilities Closed with LynxOS

Small kernel, reducing complexity and risk
Increased periods processing protection
RTU applications run in unprivileged user mode
Removal of shell from KDI
Enforcement of remote communication using DNP3 protocol

45

 Most of these security improvements are specific to MILS concepts of secure

communication and processing. First of all, MILS calls for a kernel that is reduced in

complexity from more traditional kernels in order to reduce the complexity, and therefore

unforeseen risks, involved with a kernel containing hundreds of thousands or millions of

lines of code. MILS takes this a step farther and calls for a kernel to be formally and

mathematically verified. While such verification is not possible for the kernel used in

this RTU setup, the kernel nevertheless takes a step in the direction of MILS compliance

compared to more traditional kernels, and therefore increases confidence in the security

performance of the system.

 Periods processing is a MILS concept which states that exploits using the

processor or networking interface cannot grant access to the system to an intruder (for

more, see Chapter II). Periods processing is one of the four security policies that defines

the basis of the MILS standard. The LynxOS based RTU increased assurance in periods

processing in two ways. First, all applications started after boot time run in unprivileged

user mode. This means that an intruder who manages to connect with the code from

rtu.cpp that allows the remote connection to the MTU should not be able to exploit this

connection to cause system changes that require root access.

One argument against this notion would be that an intruder could somehow gain

account information for root and achieve an apparently legitimate login with the stolen

information. This concern is addressed by the removal of the UNIX like shell from the

KDI. The shell is the command line user interface that allows a user to input commands

to the system. By modifying the developer.spec and startup scripts for the KDI, this

functionality was removed from the image in order to reduce system complexity and

46

prevent exploits such as the one outlined above. While the removal of the shell ensures

that the system is secure from command line exploits, it also reduces the overall

usefulness of the operating system for everyday tasks. This was deemed to be a fair trade

off, because RTUs are highly specialized machines with the singular purposes of monitor

and control.

All network communication after the initial DHCP acquisition of an IP address is

handles via the rtu process. This process utilized the DNP3 protocol for SCADA

communication, effectively shutting out any connection attempt not conforming to the

protocol. While attempts by outside forces to connect could cause errors in the operation

of the rtu and rtuDevice processes, functionality could be built in to auto-reboot after

fatal errors or to allow reboots or re-running of applications with faults to be specified

over the network connection with the MTU. See Chapter VI for more on such potential

additions. While this security improvement is not related to MILS concepts, it is a side

effect of the way RTUs and MTUs communicate and is implicit within the operation of

this RTU, and is therefore included in the security analysis.

5.1.3 Vulnerabilities Closed Using Pistachio

The similarity of the microkernel concept to the MILS concept of a secure,

minimized kernel is significant. For that reason, microkernels address many of the

concerns that form the basis of the MILS standard. While this project did not create a

prototype RTU complete with full networking capabilities, many security improvements

resulting from the use of this microkernel setup become apparent on analysis of the

47

features of L4 and Pistachio. Table 5.2 gives a brief overview of these security

improvements, which will be discussed in detail following the table.

Table 5.2 Vulnerabilities Closed with Pistachio
Small, minimally complex kernel
Most functionality provided by user level modules
Privileged threads
Address spaces separate services from one another

The use of Pistachio as the basis of an RTU, similar to the use of the LynxOS

kernel, builds on the concept of a minimal, secure MILS kernel. Pistachio goes beyond

the LynxOS approach to abstract out all non-essential functionality from the kernel and

replaces such functionality with higher level system and user services. As the complexity

of this kernel is greatly reduced compared to monolithic kernels that handle everything

from file systems to networking, this kernel can provide the RTU designer with greater

assurance that kernel functionality will not lead to errors. Pistachio improves over the

LynxOS kernel in this regard, as even that kernel contains much built in functionality and

is more similar to a monolithic kernel, albeit reduced and streamlined for embedded, real-

time use.

The privileged threads sigma0, sigma1, and roottask provide another level of

abstraction between high level modules and certain system calls. As long as these

threads cannot be exploited, the system calls they are associated with cannot be exploited

either. This plays to the MILS idea that small, verifiable applications can run on top of

the kernel to provide another degree of security between non-verified modules and the

system. If the code behind these privileged threads is written correctly and is free of

security holes, intruders cannot gain access to any system calls these threads are

associated with.

48

The idea of address spaces also supports a MILS concept, that being the idea of

resource partitioning to prevent error propagation throughout the system. Through the

microkernel’s inter-process communication (IPC) system, programs can reside in

separately assigned address spaces and still communicate through certain kernel IPC

calls. This also brings to mind the concept of a partitioning communication system

(PCS) for a MILS based OS. However, the microkernel IPC system is built in to the

kernel while the PCS is a middleware component that runs between user level processes

and the kernel. Also, while address spaces protect processes from damaging and being

damaged by errors in other memory spaces, there is no support for brick wall partitioning

of processor resources. Therefore this feature, while useful from a preventative security

standpoint, is not a substitution for the partitioning provided by a fully MILS compliant

system.

5.1.4 Remaining Vulnerabilities

 Though these two approaches close many security vulnerabilities extant in current

networked RTUs, there are vulnerabilities still open that could be addressed by a full

MILS system. The first of these is the absence of resource partitioning between the

networking code and the monitor and control applications. An attack on system memory

could effect the LynxOS based RTU, while an exploit of the processor could effect either

system. The use of address spaces protects the Pistachio based system from some

memory errors, but is not as rigidly enforced as MILS brick-wall partitioning.

 Another vulnerability is the lack of a verifiably secure means for end-to-end

network communication such as a partitioning communication system (PCS). While the

49

DNP3 protocol provides a network interface between the RTU and MTU, it is not

verified like a PCS could be. A security verified PCS would provide the additional

benefit on a MILS system of securely handling partition-to-partition communication,

providing an additional layer of separation between the networking partition and monitor

and control partitions.

5.2 Performance Analysis

5.2.1 Latency Analysis for LynxOS RTU

 As mentioned in Chapter IV, the creator of the RTU code used on the LynxOS

prototype also created an MTU to remotely connect to the rtuDevice process via the rtu

process. This MTU provides a graphical interface that allows the user to provide logon

information, logon to the RTU, and remotely begin the operation of the RTU. The user

can then monitor and change values in pumps simulated by the program. The MTU

constantly polls the rtuDevice to determine if any changes have taken place, and it

provides mechanisms to record and store latency measurements. Sample output from the

latency measurement of this program for a short connection session is listed in Appendix

VII.

 Ignoring outliers due to loss of packets, which occurred only once during the data

gathering process, some analysis on the latency data is possible. The latency

measurement is time between a request for information from the MTU and the arrival of

the response from the RTU. It takes into account transmission time to and from the RTU

50

as well as any processing that is required of the RTU once the request has arrived. The

output listed by the MTU is measured in milliseconds.

 The data for this test ranges from 1.504661ms to 1.808051ms, with a median of

1.559416ms. The mean value for the latency represented by this data is 1.580219ms with

a standard deviation of 0.050565. The small standard deviation suggests that the data is

clustered closely around the mean, an assumption which is borne out by the proximity of

the mean and median values. These round-trip latency times fall below the sampling

time in most SCADA systems, showing the performance of this system is sufficient at

least over a LAN connection.

 This test was conducted via a local area connection with the MTU and RTU

machines in fairly close proximity. A system distributed at greater distances would affect

performance, as would a connection over the Internet as opposed to intra-network

communications. However, the data obtained suggest efficient performance for the

LynxOS based RTU, performance which should be more than sufficient for most

SCADA communication.

5.2.2 Overhead Incurred from Use of L4

Microkernels, in their early days, were stigmatized for poor performance

stemming from the design principals that guided there creation. The L4 kernel was

created as a response to such criticisms as a way to determine if microkernel architecture

truly could provide performance comparable to that of other kernels. Studies conducted

on the performance of L4 can be applied to this project to determine if use of the

51

Pistachio microkernel is feasible in terms of performance for the overall RTU

architecture.

Studies conducted by porting Linux to the L4 microkernel showed throughput to

be only 5% lower than that recorded from native Linux. Load testing determined that the

Linux L4 port, titled L4Linux, is 8.3% slower than native Linux if all loads are averaged

and 6.8% slower if only maximum load is accounted for. This is a huge improvement

over previous microkernels, which could perform up to 60% slower than native Linux,

but this data still does not lend itself well to high-performance applications. [34]

An empirical study of a full featured RTU would need to be conducted to

determine if a Pistachio can provide the required performance under run time conditions.

As with all improved security measures, the trade off of performance for security may be

necessary to ensure confidence in RTU operations over a network. An average 8.3%

performance hit should theoretically not be a problem for most RTUs as much of the

processing of data is handled by the centralized MTU, requiring less processor power and

fewer hardware resources than would be required otherwise. This is a reasonable trade

off for enhanced RTU security, but again an empirical analysis of performance, not to

mention analysis of costs if better hardware is needed for the L4 based RTU, would be

required before the deployment of such an RTU to the field.

5.2.3 Kernel Size

 The size of the kernel used in an RTU can be a vital statistic in certain situations.

For example, an RTU based on a LynxOS KDI can be booted from flash memory or over

a network on a diskless system. This means the kernel and all application and support

52

data must fit into the system’s flash memory, ROM, or RAM. The memory footprint

required for the kernel should therefore be minimal while still providing all required

functionality for the system. This brings to mind again the MILS concept of a

minimalized kernel containing only basic system calls and operations.

 The size of the Pistachio kernel for IA-32 systems is 163,983 bytes, or about

160.14KB. This is within the typical 40 to 200KB range of microkernels sizes. The size

of this kernel should not be an issue, as it could fit on many cell phones with extra room

for application data. Of course, enough room must be provided for any servers providing

functionality not in the kernel as well as RTU code, so kernel size is not the only size

measurement that could be applied before deployment of an RTU design. It should also

be noted again that, with the decreased size of this microkernel, a certain performance

penalty is incurred which should be considered whenever obtaining a hardware

configuration for the RTU.

 The LynxOS kernel is configured for the hardware on which it is running. For the

machine used in this project, the size of the LynxOS kernel is 1,246,244 bytes, or

1.1885MB. This is a significant increase over the size of the Pistachio microkernel

caused by the more traditional monolithic architecture of the LynxOS kernel. Even with

an increase of over 7.5 times, this kernel is still small and should easily fit within most, if

not all, memory configurations feasible for an RTU machine. It is also a significant

improvement over the size of more traditional monolithic kernels, such as the Linux

kernel.
 As an indirect comparison, it can be noted that the latest full version of the source

for the 2.4 Linux kernel comprises almost 37MB worth of code and build rules in a

53

compressed format. When uncompressed, the source measures over 167MB. While this

is not a direct comparison of kernel size, it demonstrates the difference in scale and scope

of a monolithic kernel compared to an embedded kernel or microkernel.

54

CHAPTER VI: Conclusions and Future Directions

6.1 Conclusions

This project, upon initiation, set out to analyze what security benefits, if any,

MILS could provide for SCADA RTUs. Although a fully MILS compliant system was

not studied, the shift of focus toward architectures that provide features similar to MILS

allowed the researcher to study some of the security concepts that form the basis of

MILS. Because of this, the project has generally accomplished its initial goals. Several

vulnerabilities were closed by these systems, indicating that MILS could indeed prove

useful for RTU security, and that these alternatives could serve productively in the

interim.

The greatest success of this project came in the form of a fully functional RTU

running on top of the embedded LynxOS kernel. This RTU demonstrates how reducing

underlying system complexity, a MILS concept, can provide the basis for a fully

functional RTU while improving security by closing certain vulnerabilities. This system

allowed a quantitative analysis of closed security vulnerabilities as well as performance

analysis via a remotely connected MTU application. Since this RTU is based on a kernel

developed for embedded real-time applications, performance is high and overall required

resources are low, both desirable qualities for an RTU.

Because of the research presented in this project, the future RTU researcher has a

clear base from which to build upon to develop an RTU running on top of the Pistachio

microkernel. The concept of a microkernel is similar to the MILS concept of basing

55

security around a minimal, secure kernel. The L4 microkernel goes so far as to provide

some small amount of resource protection via address spaces for resident memory

applications.

Even with the success of much of the research conducted during this project,

much remains to be done. There are many further avenues of study available such as

expanding the LynxOS RTU, developing a full-fledged RTU on top of Pistachio, and

studying a fully MILS compliant system, all of which would address valid questions not

answered by this project. Such future work is discussed in detail in the following section,

which should provide some guidance for future research on this topic, whether or not that

research builds upon this project.

6.2 Future Directions

6.2.1 Expanding the LynxOS-based RTU

 While the creation of a prototype RTU utilizing the LynxOS kernel downloadable

image (KDI) creation tools was a success, there are many avenues still open for research

and expansion. First and foremost, a strong series of tests should be conducted to

determine the exact security strength of the networking code native to the operating

system. LynxOS uses many customized functions such as its TCP stack to provide

networking capabilities. Because any KDI inherits the portions of the LynxOS kernel

and major functionality as specified during KDI creation, thorough analysis of such

features would be required before any deployment of a LynxOS based RTU.

56

 A more robust performance evaluation would also be a beneficial addition to the

knowledge base for this RTU. Better access to kernel documentation and kernel

performance analysis from LynuxWorks would greatly aid this process. Currently,

LynuxWorks is rather closed regarding information about the inner workings of the

LynxOS demo on which the RTU is based. Advanced kernel performance evaluation

tools would allow measurements on the number of clock cycles needed for certain

operations as well as the amount of context switching, memory, and transfer time needed

for such operations. This information would allow the RTU designer to choose the

optimum hardware for each RTU design, thereby improving efficiency, utilization, and

performance yield for the unit.

 As the RTU running on this system has no shell for command line user input,

mechanisms will need to be created to allow the system to recover from errors. For

example, the system could auto-reboot if the kernel encounters a fatal error, or a remote

reboot of a faulty application could be an option from the MTU controlling the RTU. It

would be impractical to perform a hard reboot every time a process, or even the entire

system, encounters a fatal error it cannot handle on its own, so such options would be

vital additions for future researchers to study. Another feature that would need to be built

into the communication code between the RTU and MTU would be the ability to

retransmit or recover dropped packets, as drops can occur even over a LAN as

demonstrated by the data in Appendix VII.

 A future path of study for this machine would be customization of the LynxOS

kernel itself, as opposed to simply creating KDIs utilizing the default LynxOS kernel.

LynxOS provides the ability to accomplish this by modifying the kernel directory and

57

supporting scripts and makefiles. According to the LynxOS 4.0 demo documentation, the

kernel can be modified for performance, size, and functionality. Such modifications

could reduce the complexity of the kernel and bring this system a step closer to the target

MILS concepts upon which this project is based.

6.2.2 Expanding the Pistachio-based RTU

Of the two RTU architectures researched for this project, the RTU based on the

Pistachio version of the L4 microkernel demonstrates the most room for improvement.

First and foremost, a robust networking interface for Pistachio must be developed as the

basis of communication for the RTU. The networking features should be in the form of

servers, separate modules running on top of the microkernel, instead of integrated in the

kernel itself. This setup, the basis for microkernel design, ensures future extensibility and

eases the maintenance and expansion of the networking modules in the future. It also

follows the MILS specification of a secure, minimally complex kernel to control the

system.

The code created for this project to work with the Pistachio build system and

environment is not an RTU, but instead simulates some operations of an RTU as a proof

of concept for microkernel use. If research in this area is to continue, it will need to build

upon the design and prototyping work presented in Chapters III and IV of this document

to create a robust, fully featured RTU based on Pistachio. A difficulty encountered

during the research into the Pistachio microkernel is the lack of clear, efficient

documentation to outline the features of the system. This is true even for Pistachio,

which appears to have the greatest amount of documentation support from the

58

microkernel development community. For this reason, the work presented in this

document will help the future researcher by demystifying development for a Pistachio

based system.

A more thorough performance evaluation should be conducted on this

microkernel to determine its suitability for monitor and control applications. Since the

inception of microkernels, there has always been concern over their performance. Many

of these issues have been addressed in one way or another, but precise measurements

should be recorded to determine if the overall greater amount of context switching

required for operations with a microkernel could prove too detrimental to the

performance of the system. The reverse should also be researched to determine if

microkernels could provide performance increases in certain areas.

There are many implementations of the L4 microkernel and, as progress with this

kernel is currently carried out through research and academic institutions, each

implementation differs and can provide better functionality in certain areas. The

Pistachio implementation was chosen because of its current popularity for use in research

and its relatively strong amount of documentation. As mentioned previously, the

NICTA::Pistatchio-embedded L4 implementation would be a good fit for an RTU, as its

focus in on further reducing kernel complexity and memory footprint. The Fiasco

microkernel is also popular in the research world. While this microkernel is not a direct

L4 implementation, it was designed to be compatible with L4 as it was created to serve as

a new basis for a pre-existing L4 project focusing on operating system quality of service

requirements. The l4hq.org website is the central hub for obtaining information about

59

current and legacy L4 projects, and should be consulted in the future if a desire for

furtherance of the use of L4 in a SCADA RTU context exists.

One upcoming L4 project should prove of interest to the researcher willing to

investigate the use of L4 for RTUs. That project is the Secure Microkernel Project (seL4)

from ERTOS and NICTA [35]. The goal of this microkernel is to use formal methods

and computations to provide a high degree of security assurance in the kernel itself to

provide the basis of trustworthy embedded systems. This seems to take a page directly

from the MILS concept of kernel verification, and could be looked at in the future if

research in this direction continues.

6.2.3 Toward a MILS Compliant RTU

 This intent of this project at the outset was to study the benefits gained by

applying the MILS standard to SCADA RTUs. As the focus of the project was forced to

shift away from directly applying MILS to an RTU, the objective of applying MILS

concepts to an RTU remained unchanged. This project has demonstrated how some of

these concepts may improve RTU security, but the work in this direction has only just

begun.

 This project was not able to study the impact of brick-wall resource partitioning

for RTU security. This feature of MILS would appear to be its strongest aspect in the

face of network security threats, as discussed in Chapter III of this document. Such

partitioning would ensure networking errors could not propagate to effect control and

monitoring applications and would provide a greater amount of confidence in the overall

system.

60

 As mentioned in Chapter II, a number of vendors are offering products currently

or in the near future that are designed to utilize MILS concepts. Green Hills and Wind

River are two embedded OS developers offering products with MILS-like separation

kernels. LynuxWorks also offers such products, and plans to introduce the world’s first

verified MILS kernel in the near future. The researcher who desires to study a true MILS

system should watch for this product.

61

REFERENCES

[1] Fact Index, SCADA Systems. http://www.fact-index.com/s/sc/scada.html
Accessed August 2005

[2] Tek Soft Consulting. “SCADA RTU’s.”

http://members.iinet.net.au/~ianw/rtu.html Accessed August 2005

[3] Tek Soft Consulting. “SCADA Primer”

http://members.iinet.net.au/~ianw/primer.html Accessed November 2005

[4] Brown, A.S. “SCADA vs. the hackers.” Mechanical Engineering. Dec. 2002.

http://www.memagazine.org/backissues/dec02/features/scadavs/scadavs.html Accessed
August 2005

[5] Objective Interface Systems. “MILS White Paper.” http://www.ois.com/mils/

Accessed August 2005

[6] Rushby, John. "The Design and Verification of Secure Systems." ACM

SIGOPS Operating Systems Review. v 15, n 5, Dec. 1981, pp. 12-21.

[7] Rushby, John. "Proof of Separability: A Verification Technique for a Class of
Security Kernels." Computer Science 137: (1982) 352-367.

[8] Vanfleet, M.W., J.A. Luke, R.W. Beckwith, C. Taylor, B. Calloni, G.

Uchenick. “MILS:Architecture for High-Assurance Embedded Computing.” Crosstalk:
The Journal of Defense Software Engineering. Aug. 2005.
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.html Accessed August
2005

[9] Singh, I.M. “Homeland security and embedded software.” Embedded

Computing Design. 2004. http://embedded-computing.com/articles/singh2/
Accessed August 2005

[10] “Common Criteria.” http://www.commoncriteriaportal.org/ Accessed

November 2005

[11] Green Hills Software, Inc. “Products.” http://www.ghs.com/products.html

Accessed November 2005

[12] Joint Tactical Radio System (JTRS). “Technology Awareness Bulletin.” Vol.

2 no. 6. June 2004.

[13] LynuxWorks. “Embedded Systems.”

http://linuxworks.com/products/overview.php3 Accessed November 2005

62

 [14] “LynuxWorks to Demonstrate LynxSecure Separation Kernel at Embedded
Systems Conference (ESC)”
http://www.lynuxworks.com/corporate/press/2005/lynxsecure-demo.php Accessed
November 2005

 [15] Objective Interface Systems. “PCSexpress for Military and Aerospace.”
http://www.ois.com/images/PCS_BROCHURE.pdf Accessed September 2005

 [16] Poulsen, Kevin. “Slammer worm crashed Ohio nuke plant network.”
SecurityFocus. August 2003. http://www.securityfocus.com/news/6767 Accessed March
2006

 [17] “Hackers attempted to breach California power grid.”
http://archives.cnn.com/2001/TECH/internet/06/09/california.energy.hackers/ Accessed
March 2006

 [18] Bowen, C.L. III, T.K. Buennemeyer and R.W. Thomas. “Next generation
SCADA security: best practices and client puzzles.” Proc. IEEE Systems, Man and
Cybernetics (SMC) Information Assurance Workshop 2005. June 2005. pp 426-427.

 [19] Fan, R., L. Cheded and O. Toker. “Interned-based SCADA: a new approach
using Java and XML.” Computing & Control Engineering Journal. v 16, n 5, Oct.-Nov.
2005, pp 22-26.

 [20] Whitlock, Steve. “Harnessing SCADA without undermining security.”
Journal of the American Water Works Association, v 96, n 7, July, 2004, p 51-53+111.

 [21] Abshier, J. and J. Weiss. “Securing control systems: what you need to
know.” Control, v 17, n 2, Feb. 2004, p 43-8.

 [22] Hauser, C.H., D.E. Bakken and A. Bose. “A failure to communicate: next
generation communication requirements, technologies, and architecture for the electric
power grid.” IEEE Power & Energy Magazine, v 3, n 2, March-April 2005, p 47-55.

 [23] LynuxWorks. “RTOS for Software Certification: LynxOS-178.”
http://www.lynuxworks.com/rtos/rtos-178.php Accessed September 2005

 [24] CSDS MILS Project. http://www.csds.uidaho.edu/mils.shtml Accessed
October 2005

 [25] Oman, P., A. Krings, J. Alves-Foss and D.C. De Leon. “Analyzing the
security and survivability of real-time control systems.” Proceedings from the Fifth
Annual IEEE System, Man and Cybernetics Information Assurance Workshop, SMC,
2004, p 342-349

63

 [26] Stouffer, Kieth. “{PCSRF} Upcoming meetings.” PCSRF Newsletter. April
05, 2006.

 [27] National Information and Communications Technology Australia (NICTA).
“Microkernels.” http://ertos.nicta.com.au/research/l4/microkernels.pml Accessed
February 2006

 [28] NICTA. “About L4.” http://www.ertos.nicta.com.au/research/l4/about.pml
Accessed May 2006

 [29] L4HQ. “Kernel APIs.” http://l4hq.org/kernels/ Accessed May 2006

 [30] Byres, E. and J. Lowe. “The Myths and Facts behind Cyber Security Risks
for Industrial Control Systems.” VDE Kongress, Berlin, Germany. 2004.

 [31] Fernandez, J.D. and A. E. Fernandez. “SCADA systems: vulnerabilities and
remediation.” Journal of Computing Sciences in Colleges. v 20, n 4, April 2005, pp 160-
168.
 [32] System Architecture Group. “The L4Ka::Pistachio Microkernel white paper.”
May 1, 2003. http://l4ka.org/projects/pistachio/pistachio-whitepaper.pdf Accessed May
2006

 [33] ERTOS. “Externel tools needed.”
http://www.ertos.nicta.com.au/software/kenge/build-tools/latest/required_tools.pml
Accessed May 2006

 [34] Liedtke, J. et al. “The Performance of µ-Kernel-Based Systems.” 16th ACM
Symposium on Operating System Principles. October 5-8, 1997. http://os.inf.tu-
dresden.de/~jork/papers/sosp97.pdf Accessed June 2006

 [35] ERTOS. “Secure Microkernel Project (seL4).”
http://www.ertos.nicta.com.au/research/sel4/ Accessed June 2006

 [36] Patel, Sandip Chunilal. Secure Internet-Based Communication Protocol for
SCADA Networks. Doctoral Dissertation. Department of Computer Engineering and
Computer Science, University of Louisville. May 2006.

64

APPENDIX I: Developer.spec File

The developer.spec file is used to specify the desired components for a bootable

image created by the mkimage utility and kernel downloadable image (KDI) creation

tools. This is the file that allows the developer to include any applications or code that

should be executed on the target machine. Some comments were edited out for length

and readability. Attributes attached to unwanted files are commented out to exclude

those files from the final bootable image. This file is modified from the developer.spec

file included with the demo version of LynxOS 4.0 that was used for this project.

Kernel
target=$(TARGET_ARCH)
osstrip=false
ostext=rom

kernel=$(BSP_DIR)/a.out
nodetab=$(BSP_DIR)/nodetab

Boot-up method
#flags=a

File System
free=200
inodes=10
root=rom

#Text Files:
strip=none
text=rom
resident=false

KDI files

directory=/ $(DIR_PERM)
 file=init source=$(ENV_PREFIX)/init $(BIN_PERM)
 file=KDI.sh source=$(PROJECT_DIR)/KDI.sh $(FILE_PERM)

directory=/bin $(DIR_PERM)
file=netstat source=$(ENV_PREFIX)/bin/netstat $(BIN_PERM)
file=tcpdump source=$(ENV_PREFIX)/bin/tcpdump $(BIN_PERM)
 file=ps source=$(ENV_PREFIX)/bin/ps $(BIN_PERM)
file=vi source=$(ENV_PREFIX)/bin/vi $(BIN_PERM)
file=chmod source=$(ENV_PREFIX)/bin/chmod $(BIN_PERM)
 file=hostname source=$(ENV_PREFIX)/bin/hostname $(BIN_PERM)

65

 file=ifconfig source=$(ENV_PREFIX)/bin/ifconfig $(BIN_PERM)
 file=drivers source=$(ENV_PREFIX)/bin/drivers $(BIN_PERM)
 file=devices source=$(ENV_PREFIX)/bin/devices $(BIN_PERM)
 file=ping source=$(ENV_PREFIX)/bin/ping $(S_PERM)
 file=dhclient source=$(ENV_PREFIX)/bin/dhclient $(BIN_PERM)
file=ls source=$(ENV_PREFIX)/bin/ls $(BIN_PERM)
file=login source=$(ENV_PREFIX)/bin/login $(S_PERM)
 file=reboot source=$(ENV_PREFIX)/bin/reboot $(BIN_PERM)
 file=sh source=$(ENV_PREFIX)/bin/bash $(BIN_PERM)
 file=tset source=$(ENV_PREFIX)/bin/tset $(BIN_PERM)
 file=mount source=$(ENV_PREFIX)/bin/mount $(BIN_PERM)
file=drinstall source=$(ENV_PREFIX)/bin/drinstall $(BIN_PERM)
file=devinstall source=$(ENV_PREFIX)/bin/devinstall $(BIN_PERM)
 file=umount source=$(ENV_PREFIX)/bin/umount $(BIN_PERM)

directory=/usr/bin $(DIR_PERM)

directory=/etc $(DIR_PERM)
file=passwd source=./passwd $(FILE_PERM)
file=starttab source=./starttab $(FILE_PERM)
file=hosts source=$(PROJECT_DIR_PORT)/hosts
 $(FILE_PERM)
 file=dhclient-script source=$(ENV_PREFIX)/etc/dhclient-script
 $(FILE_PERM)
 file=dhcpd.conf source=$(PROJECT_DIR_PORT)/dhcpd.conf
 $(FILE_PERM)
 file=inetd.conf source=./inetd.conf $(FILE_PERM)
file=protocols source=$(ENV_PREFIX)/etc/protocols
 $(FILE_PERM)
file=services source=./services $(FILE_PERM)
file=resolv.conf source=./resolv.conf $(FILE_PERM)
file=hosts.equiv source=./hosts.equiv $(FILE_PERM)
file=fstab source=./fstab $(FILE_PERM)

directory=/etc/rc.d
 file=rc source=$(PROJECT_DIR_PORT)/rc $(BIN_PERM)

directory=/net $(DIR_PERM)
file=inetd source=$(ENV_PREFIX)/net/inetd $(BIN_PERM)
 file=rc.network source=/tmp/newproj/60.developer/rc.network
$(BIN_PERM)
file=rtu_server source=./rtu_server $(BIN_PERM)
 file=rtuDevice source=./rtuDevice $(BIN_PERM)
 file=rtu source=./rtu $(BIN_PERM)
 file=rtuDevice.h source=./rtuDevice.h $(BIN_PERM)
file=rshd source=$(ENV_PREFIX)/net/rshd $(BIN_PERM)
file=telnetd source=$(ENV_PREFIX)/net/telnetd $(BIN_PERM)
file=routed source=$(ENV_PREFIX)/net/routed $(BIN_PERM)
file=ftpd source=$(ENV_PREFIX)/net/ftpd $(BIN_PERM)
file=rlogind source=$(ENV_PREFIX)/net/rlogind $(BIN_PERM)
file=irshd source=$(ENV_PREFIX)/net/irshd $(BIN_PERM)
file=portmap source=$(ENV_PREFIX)/net/portmap $(BIN_PERM)
file=rc.local source=./rc.local $(BIN_PERM)
file=unfsio source=$(ENV_PREFIX)/net/unfsio $(BIN_PERM)

directory=/mnt $(DIR_PERM)

66

directory=/tmp $(TMP_PERM)
directory=/usr/tmp $(TMP_PERM)

symlink /bin/sh /bin/bash
symlink /etc/rc.d/rc /bin/rc

67

APPENDIX II: Rc.network File

The rc.network file contains scripts associated with running networking features

at system startup. The calls to the rtuDevice and rtu processes are contained within this

file. Extraneous comments have also been removed from this file to reduce length and

improve readability. This file was modified from the rc.network file included with the

pre-build developer KDI.

#/bin/sh

$Header: /cm/src/net/inetd/RCS/rc.network,v 5.46 2002/01/29 23:37:08
mooring Exp $

A little start up routine to capture errors.
start_it()
{
 echo "Running $1"
 $@ || echo " failed with exit code $?"
}

Network startup procedure

'cuz of the bash propensity to want a TERM variable at all costs,
and the fact that the networking daemons really don't want
one, we nuke it right here and now.

unset TERM

cd /net

Configure the software loopback device "lo" with hostname "localhost"

/bin/ifconfig lo0 localhost

my_name is used for Ethernet interfaces
bplane_name is used for the SCMP interface (only on 68k, PowerPC)

my_name="lynxdemo"
#bplane_name="insert-your-bplane-name-here"

Change hostname appropriately to coincide with /etc/hosts

68

NOTE: If there is only the SCMP interface available, change
"my_name" in the next line to "bplane_name".

hostname "$my_name"
#echo "hostname is `hostname`"

This starts the 3COM EtherLink XL 3C90X
start_it /bin/ifconfig elxl0 up
dhclient

echo Network interface configured

#[-f /etc/syslog.conf] &&\
#start_it /bin/syslogd

Start network daemons

#start_it /net/inetd

Start RTU Server

#start_it /net/rtu_server
/net/rtuDevice &
start_it /net/rtu

Commands for NFS Server support
Edit the /etc/exports file to specify the directories that are to be
exported for mounting by remote machines.

#start_it /net/portmap

#start_it /net/mountd

#[-s /etc/exports] &&\
#echo exporting directories for remote mount &&\
#start_it /bin/exportfs -av

#start_it /net/nfsd

#start_it /net/rpc.statd

#start_it /net/rpc.lockd.svc

#start_it /net/rpc.lockd.clnt

Source a local script if it's there
Here's a very good place to start xntpd

#[-x /net/rc.local] && . /net/rc.local

69

APPENDIX III: Low-level SConstruct

 This is the SConstruct file used to include the rtu.c code in the build conduced by

the Kenge build environment. This was modified from a similar SConstruct file included

with the Hello project from ERTOS.

SConstruct file for rtu.c module
Modified from file included in Hello program by ERTOS
Import("*")
obj = env.MyProgram("rtu",
 LIBS=["c"],
 CPPDEFINES=[("RTU", "\\\"%s\\\"" %
args["phrase"])])
Return("obj")

70

APPENDIX IV: High-level SConstruct

 This SConstruct file is used by the Kenge build system to link together all

modules with the kernel to form a single bootable image, which can then be simulated or

used as a system boot option. This file was also modified from a similar SConstruct file

included in the ERTOS Hello project.

High level SConstruct
modified from Hello project by ERTOS

First step is to include our real build tools
tools/build.py includes the KengeEnvironment
try:
 execfile("tools/build.py")
except IOError:
 print
 print "There was a problem finding the tools directory"
 print "This probably means you need to run:"
 print " $ baz build-config packages"
 print
 import sys
 sys.exit()

phrases detoning language
phrases = {
 "english" : "Hello, world",
 "dutch": "Hello, wereld",
 "german": "Hallo, Welt",
 "french": "Bonjour, monde",
 "italian": "Ciao, mondo",
 "spanish": "Hola, mundo"
 }

add_config_help("Options:\n")
add_config_list("lang", "Which language do you want to compile for",
"english", phrases.keys())

setup the build environment
env = KengeEnvironment()

specify the kernel to use as "pistachio"
l4kernel_env = env.Copy("kernel")
#l4kernel = l4kernel_env.Pistachio()
l4kernel = l4kernel_env.Application("pistachio")

Add support libraries for rootserver
rootserver_env = env.Copy("rootserver", LINKFLAGS=["-r", "-N"])
rootserver_env.AddLibrary("l4")
rootserver_env.AddLibrary("c", system="l4_rootserver")

71

setup the applications to run
sigma0 = rootserver_env.Application("sigma0")
rtu = rootserver_env.Application("rtu", phrase=phrases[lang])

combine the kernel and applications
into a single boot image
bootimage = env.Bootimage(l4kernel, sigma0, rtu)

Default(bootimage) # This is the default build target

72

APPENDIX V: Rtu.c

 This code simulates some simple functions of an RTU, such as outputting data

and measuring transmission time. It is simply used as a stub to support the proof of

concept of a Pistachio based RTU.

/* rtu.c */

#include <stdio.h>
#include <stdint.h>
#include <time.h>

uintptr_t _stack[128];
void * _stack_top = (void*) &_stack[255];
char bytes[30];
char press;
char escape;

int main(void)
{
 escape = 'x';
 press = 'y';
 for(int i = 0; i< 30; i++)
 {
 bytes[i] = 0x61;
 }
 int i = 3;
 time_t t1, t2;
 printf("Press any key to begin.\n");

 while (press != escape)
 {
 press = getchar();

 t1 = time(NULL);

 bytes[i]=bytes[i]+i;

 printf("RTU: ");
 printf("%d\n",i);
 printf("0x%x\n",bytes[i]);
 i = (i + 771) % 30;

 /*insert some delay to account for transfer time*/
 for(int j=0; j<999; j++)
 {
 (void) time(&t2);
 }

 printf("Time: %d\n", (int) t1);

73

 printf("Press x to exit or any other key to continue.\n");
 }

 printf("Goodbye!\n");

 return 0;
}

74

APPENDIX VI: Sample Output for Rtu.c

 Listed below is some sample output created by booting the project image, which

will run the rtu.c program after the kernel and all other necessary tasks have loaded.

Notice the time is always output as 0. This is because Pistachio does not support the

system calls and variables that allow the code in the time.h header to work properly.

Also note the code prompts the user to continue or exit after each output of a generated

value. This was done to give the user a feel for the execution time and input for the

Pistachio based system and could easily be modified to run more autonomously. The

value after RTU: is the current, pseudo-randomly generated index of the byte array that

stores all hexadecimal output values. The hexadecimal values listed are the pseudo-

randomly generated output values.

RTU: 3
0x64
Time: 0
Press x to exit or any other key to continue.
RTU: 24
0x79
Time: 0
Press x to exit or any other key to continue.
RTU: 15
0x70
Time: 0
Press x to exit or any other key to continue.
RTU: 6
0x67
Time: 0
Press x to exit or any other key to continue.
RTU: 27
0x7c
Time: 0
Press x to exit or any other key to continue.

75

APPENDIX VII: Timing_log.txt

 The following is sample output of the latency measurements of communication

between the RTU and MTU programs. The value denoted by the ‘*’ indicates an outlier,

and is likely caused by a dropped packet during transmission. The data has been

formatted in a table for readability. Measurements are in milliseconds.

1.659708147
1.564444643
1.554387499
1.558019245
1.517511304
1.523657336
1.517231939
1.514158922
1.514717653
1.504660509
1.656914496
1.579530359
1.536787497
1.565841469
1.567797024
1.552711308
1.55718115
1.551314483
1.553549404
1.651047829
1.641549415
1.563885913
1.65495894
1.540698608
1.544889085
1.66529545
1.555784325
1.552431943
1.563047818
1.552711308
1.639873224
1.558298611
1.553270039
1.656076401
1.561092262

1.542095434
1.552431943
1.55662242
1.552152578
1.559416071
1.55662242
1.552152578
1.559416071
1.611657348
1.56807639
1.552711308
1.619479571
1.672838308
1.549358927
1.634285922
1.554108134
1.561092262
1.552711308
1.66641291
1.560254166
1.661943068
1.554946229
1.554666864
1.60467322
1.552152578
1.541816069
1.550197022
1.549638292
1.75106054
1.564165278
1.554666864
1.652724019
1.550755752
1.559416071
1.552711308

1.566679564
1.550476387
1.536508132
1.735416093
1.574781152
1.550197022
1.636800208
1.554108134
1.554666864
1.520863685
1.561371627
1.672000212
1.565841469
1.738768475
1.662781164
1.569473215
1.550476387
1.56919385
1.56807639
1.553549404
1.559974801
1.554108134
1.557460515
1.739327205
1.565282738
1.556901785
1.561371627
1.549917657
1.559974801
1.55662242
1.550755752
1.53259702
1.559974801
241.9408053 *
1.570590676

1.557460515
1.635962113
1.553549404
1.560254166
1.557460515
1.65440021
1.512203367
1.604393855
1.643225605
1.561371627
1.554108134
1.669485926
1.539022418
1.554108134
1.55606369
1.55773988
1.563047818
1.555784325
1.641549415
1.560812897
1.555784325
1.551314483
1.554108134
1.563047818
1.547962101
1.561092262
1.556343055
1.55606369
1.743238317
1.575060517
1.555504959
1.614171634
1.548241466
1.569473215
1.566679564

1.538184322
1.652444654
1.534552576
1.611657348
1.564444643
1.559416071
1.538463687
1.553549404
1.65384148
1.570311311
1.558019245
1.566400199
1.553828769
1.647974812
1.689041484
1.555504959
1.550755752
1.573663692
1.552990673
1.656355766
1.559695436
1.572266866
1.557460515
1.808051023
1.56807639
1.558857341
1.651885924
1.515835113
1.572266866
1.54405099
1.563606548
1.559695436
1.661104973
1.625904968
1.521981146

76

APPENDIX VIII: List of Acronyms

Acronym Meaning
API Application Programming Interface
COTS Commercial Off The Shelf
DHCP Dynamic Host Configuration Protocol
DNP-3 Distributed Network Protocol version 3
EAL Evaluation Assurance Level
ERTOS Embedded, Real-time, and Operating Systems
IPC Inter-Process Communication
KDI Kernel Downloadable Image
LOC Lines of Code
MILS Multiple Independent Levels of Security
MTU Master Terminal Unit
NEAT Non-bypassable, Evaluatable, Always Invoked and Tamperproof
NICTA National Information Communication Technology Australia
PCS Partitioning Communication System
POSIX Portable Operating System Interface
RTOS Real Time Operating System
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
TCP/IP Transmission Control Protocol/Internet Protocol

77

VITA

NAME: Brent Guffey

ADDRESS: Department of Computer Engineering and Computer Science
 University of Louisville
 Louisville, KY 40292

DOB: Somerset, KY – July 5 1982

EDUCATION &
TRAINING: B.S. Computer Engineering and Computer Science
 University of Louisville
 2001-2005

EMPLOYMENT: CECS Co-op at Bardstown Cable Internet
 Bardstown, KY
 2001-2003

Software development position at Keane, Inc.
Frankfort, KY

 2006-

AWARDS: Recipient of Provost Hallmark Scholarship, Graduated with High Honors

	Evaluation of MILS and reduced kernel security concepts for SCADA remote terminal units.
	Recommended Citation

	GuffeyThesis

