
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2006

ARF : an Automated Real-Time Fuzzy Logic Threat Evaluation ARF : an Automated Real-Time Fuzzy Logic Threat Evaluation

System. System.

Jeremy D. Gray
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Gray, Jeremy D., "ARF : an Automated Real-Time Fuzzy Logic Threat Evaluation System." (2006). Electronic
Theses and Dissertations. Paper 526.
https://doi.org/10.18297/etd/526

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/526
mailto:thinkir@louisville.edu

ARF: An Automated Real-Time Fuzzy Logic Threat

Evaluation System

By

Jeremy D. Gray
B.S. University of Louisville, 2005

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree of

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science
University of Louisville

May 2006

Copyright 2006 by Jeremy D. Gray

All Rights Reserved

 ii

ARF: An Automated Real-Time Fuzzy Logic Threat
Evaluation System

By

Jeremy David Gray

B.S. University of Louisville, 2005

A Thesis Approved on

May 2005

By the following Thesis Committee:

Dr. James Graham, Thesis Director

Dr. Ibrahim Imam

Dr. Suraj Alexander

 ii

DEDICATION

To Janet and David Gray:
The two people I want to be like when I grow up.

 iii

ACKNOWLEDGEMENTS

The author would like to thank all the mentors that have given so much over the

past half a decade, the faculty and staff at the Speed Scientific School, as well as the

students who have provided much needed support and encouragement. Special thanks

must be said to my Thesis Director and entire Thesis Committee for taking the time and

patience to help another human being achieve his dreams.

 iv

ABSTRACT

Intrusion Detection has emerged as a powerful component of network security

systems. A wide range of hardware and software components exist to meet most basic

security needs on all platforms. These systems log system usage that could be considered

as a breach of security in many networks. However, signature based intrusion detection

systems have one catastrophic downfall, in that the number of alerts being logged can

quickly outgrow the amount of resources necessary to investigate this anomalous

behavior. This thesis explores the use of a fuzzy logic based analysis engine that gives an

overall threat level of an intrusion detection sensor, prioritizing alerts that are the most

threatening. This application gives security personnel a launching point to determine

where security holes exist and a snapshot of the threats that exist in a system.

 The fuzzy logic system is based on a set of membership functions that define

certain metrics from an alert dataset and a set of rules that determine a threat level based

on the defined metrics. This application functions as a proof of concept prototype for an

administrative tool that can analyze multiple sensors across multiple networks and give a

reasonable output of the threat level across a series of intrusion detection sensors on a

network. Initial testing indicates promising performance results for testing the threat

level of a remote sensor using this methodology.

 v

TABLE OF CONTENTS
DEDICATION... iii
ACKNOWLEDGEMENTS... iv
ABSTRACT.. v
TABLE OF CONTENTS... vi
LIST OF TABLES... ix
LIST OF FIGURES .. x
CHAPTER I - INTRODUCTION .. 1
CHAPTER II - LITERATURE SEARCH.. 2

2.1 Intrusion Detection.. 2
2.1.1 Host Based Intrusion Detection Systems... 3
2.1.2 Network Based Intrusion Detection Systems .. 5
2.1.3 Anomaly and Misuse (Signature) Based Models... 6
2.1.4 The Snort Intrusion Detection System... 7

2.2 Threat Evaluation.. 10
2.3 Fuzzy Logic .. 12

2.3.1 Fuzzy Logic Definitions and Operations ... 15
2.3.2 Fuzzy Logic Controllers .. 19

2.4 Other Methodologies for Intrusion Detection... 20
2.5 Fuzzy Logic Approaches to Intrusion Detection .. 22

CHAPTER III – DESIGN CONSIDERATIONS... 26
3.1 The Problem.. 26
3.2 Goals ... 26
3.3 Setup Requirements .. 28

3.3.1 Network Setup Requirements .. 28
3.3.2 Database Setup Requirements.. 29

3.3.2.1 Remote/Sensor Databases... 29
3.3.2.1 Application Database .. 31

3.4 Application.. 31
3.4.1 Introduction.. 31
3.4.2 Application Flow ... 32
3.4.3 Application Objects ... 33

CHAPTER IV – IMPLEMENTATION ... 34
4.1 Implementation Details... 34

4.1.1 XML Documents .. 34
4.2 System.Windows.Forms Objects .. 35

4.2.1 Purpose.. 35
4.2.2 Add Network Object ... 35
4.2.3 Add Host Object ... 37
4.2.4 ARF_Main Object... 38
4.2.5 Database Connectivity and Synchronization ... 40

4.3 Fuzzy Logic Modules ... 43
4.3.1 Purpose... 43
4.3.2 Snort Adapter ... 43
4.3.3 Fuzzification Interface ... 45

 vi

4.3.4 Fuzzy Inference Machine... 50
4.3.5 Defuzzification Interface ... 52

4.4 Diagrams ... 53
4.4.1 ARF Class Diagram ... 53

CHAPTER V – TESTING.. 56
5.1 Introduction... 56
5.2 Testing Design Parameters ... 56
5.3 Case Study 1 (All Experimental Data).. 57

5.3.1 Overview of Alerts... 57
5.3.2 Rule-Sets Defined .. 58
5.3.3 Membership Functions Defined... 60
5.3.4 Experimental Results ... 61
5.3.5 Analysis.. 62

5.4 Case Study 2 (Low Threat Dataset) .. 62
5.5 Case Study 3 (Medium Threat Dataset).. 63
5.6 Case Study 4 (High Threat Dataset) ... 64
5.7 Final Analysis ... 64

CHAPTER VI – CONCLUSIONS AND FUTURE RESEARCH................................... 67
REFERENCES ... 69
APPENDIX I – TESTING DOCUMENTS.. 73

AllAlerts.xls .. 73
Totals... 73
Experiment 1 – Application State ... 73
Experiment 2 – Application State ... 74
Experiment 3 – Application State ... 76
Experiment 4 – Application State ... 77

HighThreatExperiment.xls.. 78
Totals... 78
Experiment 1 – Application State ... 79
Experiment 2 – Application State ... 79
Experiment 3 – Application State ... 80
Experiment 4 – Application State ... 81

MedThreatExperiment.xls .. 81
Totals... 81
Experiment 1 – Application State ... 81
Experiment 2 – Application State ... 82
Experiment 3 – Application State ... 82
Experiment 4 – Application State ... 83

LowThreatExperiment.xls .. 83
Totals... 83
Experiment 1 – Application State ... 84
Experiment 2 – Application State ... 84
Experiment 3 – Application State ... 85
Experiment 4 – Application State ... 85

APPENDIX II – SOURCE CODE ... 87
ARF_Main.cs .. 87

 vii

AddHost.cs.. 99
AddNetwork.cs ... 103
RevTreeNode.cs.. 104
Interfaces... 106
Objects .. 107
Membership Functions.. 113

Specific Membership Functions ... 113
General Membership Functions.. 116

Rules ... 119
Specific Rules ... 120
General Rules.. 126

FuzzyEngine.cs ... 128
SnortAdapter.cs... 129
RulesBasedInference.cs .. 133
MOMDefuzzify.cs .. 134
MaxDefuzzify.cs... 135

Vita.. 136

 viii

LIST OF TABLES
Table 5.1: Experimental Parameters ... 57
Table 5.2: Experimental Results of Case Study 1 (Entire Alert Log) 62
Table 5.3: Experimental Results of Case Study 2 (Low Threat Alerts) 62
Table 5.4: Experimental Results of Case Study 3 (Medium Threat Alerts) 63
Table 5.5: Experimental Results of Case Study 4 (High Threat Alerts)........................... 64

 ix

LIST OF FIGURES
Figure 2.1: Basic Architecture of the Snort Intrusion Detection System [33].................... 8
Figure 2.2: Crisp Representation of Temperature... 14
Figure 2.3: Fuzzy Representation of Temperature ... 15
Figure 2.4: Fuzzy Union Operation .. 16
Figure 2.5: Fuzzy Intersection Operation ... 17
Figure 2.6: Fuzzy Complement Operation.. 18
Figure 2.7: Laplace Transform vs. Fuzzy Logic Methodology [36]................................. 20
Figure 2.8: RETISS Architecture [34] .. 23
Figure 2.9: FIRE Architecture [31]... 24
Figure 3.1: Typical Intrusion Detection Sensor Placement .. 28
Figure 3.2: Event Table... 30
Figure 3.3: IPHDR Table.. 30
Figure 3.4: Signature Table... 31
Figure 4.1: The AddNetwork object ... 36
Figure 4.2: The AddHost object.. 37
Figure 4.3: The ARF_Main object.. 39
Figure 4.4: Membership Function: Number of Occurrences .. 47
Figure 4.5: Membership Function: Timespan Between Attacks 47
Figure 4.6: Membership Function: Average Time Between Attacks 48
Figure 4.7: Membership Function: Attacks Per IP ... 49
Figure 4.8: Fuzzy Logic Class Diagram ... 54
Figure 4.9: High Level Function of the ARF.. 54
Figure 5.1: Trend for Set of General Membership Functions... 61
Figure 5.2: Experiment 2 Data (General Membership Functions, Specific Rule-Set) 65
Figure 5.3: Experiment 4 Data (Specific Membership Functions, Specific Rule-Set)..... 66

 x

CHAPTER I - INTRODUCTION

In an age where the amount of information being stored and accessed is growing

rapidly, the need for secure environments becomes more than an academic exercise. In

an attempt to increase the speed of service, more and more businesses are turning toward

digital solutions. These solutions can store medical data, control ballast mechanisms on

ships, and operate a dizzying array of other objects that people use in their day-to-day

lives. In these critical systems, a secure environment is a fundamental need to ensure

data integrity and public acceptance of the system.

 Intrusion detection systems are a major component of securing any network.

Analyzing information on the network layer is imperative for realizing and recovering

from security breaches. Most research until now has focused on creating a better

intrusion detection system. Reducing the number of false positives and false negatives

has been of the utmost concern. The focus of the problem at this point shifts toward

finding an intermediate solution until a perfect solution can be found.

 Robust, open-source enterprise level applications exist that can give an extremely

high number of alerts; these alerts can take a vast amount of time to analyze and do not

give an adequate level of threat for a system or network. This document discusses the

feasibility of an analysis engine residing on the application layer that uses fuzzy logic to

determine a threat level. The application in question is designed to be portable, scalable,

and intuitive. The application is described in more detail in chapters 3 and 4, with

preliminary research shown in chapter 2. Lastly, the testing, analysis, conclusions, and

possibilities for future research are documented in chapters 5 and 6.

 1

CHAPTER II - LITERATURE SEARCH

2.1 Intrusion Detection

Intrusion detection systems monitor electronic traffic and compare that traffic

against a pre-existing security policy to confirm that the system is adhering to that policy.

In more general terms they are a burglar alarm for computers and networks that look for

criminals breaking into a computer system and send notification of the intrusion [1]. Just

like a physical burglar alarm that would protect your home, there are many different

types of intrusion detection systems. These different types of systems take into account

specialized security needs.

Intrusion detection had humble beginnings; the detection engine was comprised of

an individual sitting behind a terminal looking for anything out of the ordinary, or in

some cases audit logs were printed on fan-fold paper that often reached heights of five

feet while waiting for human analysis [2]. It should be noted that these were not even

intrusion detection techniques. More realistically, they were system recovery or forensic

techniques since it was highly unlikely that any attacker would be caught in the act.

The first work on a formal intrusion detection system was published in 1980 by

James P. Anderson. His work set a framework for the general design of a system which

provided an initial set of tools to computer system security officers [3]. This paper set

the wheels in motion for computing professionals to look toward the future and realize

that security practices of the day would not be adequate for the computing activities in

the future. This is particularly evident in today’s access control mechanisms that are

 2

installed directly into operating systems that help monitor everything from the power grid

to medical information.

Later, Dorothy Denning published a paper describing a system whose model is

based on the hypothesis that security violations can be detected by monitoring a system's

audit records for abnormal patterns of system usage. The model included profiles for

representing the behavior of subjects with respect to objects. These objects represented

metrics, statistical models, and rules for acquiring knowledge about behavior from audit

records and for detecting anomalous behavior [3]. This framework for an intrusion

detection system described an implementation-specific solution to a problem that had and

will plague computing professionals for years to come, and this framework is the

foundation of almost every intrusion detection system.

Intrusion detection has several flavors, many of which will be described

throughout this document. Host based and network based are the main types of intrusion

detection systems and these systems can be created as anomaly based or misuse

(signature) based. However, since all of these systems are designed for the same

purpose, they all share the same basic components. These universal mechanisms monitor

an information source, detect a threat using an analysis engine, and respond to the

perceived threat [4].

2.1.1 Host Based Intrusion Detection Systems

The first formally developed intrusion detection systems were host-based systems.

Their defining characteristic is that they collect information about a service running on a

host computer. Once the data is collected, it must be processed; this can be done locally

 3

or remotely and still satisfies the requirements for a host-based system because the data

being processed is only pertinent for a single host [7].

An undeniable advantage of a host based intrusion detection system is its ability

to detect the malicious use of a system by an insider. These systems can reside within the

trusted network and can be deployed easily for a variety of services. If a trusted user

attempts an unauthorized action, a host based system has a high probability of detecting

this action. In addition to detecting unauthorized insider activity, host based systems are

also effective at detecting unauthorized file modification [4].

As with any system, there are also downsides to host based systems. First of all,

the amount of raw data to be processed could weigh so heavily on the system that the

service, as well as host, could be rendered useless. This would be apparent in high traffic

services utilized by multiple users. Internal web servers often experience this problem.

Another scenario would be if the system was compromised by an unknown attack, the

audit/security logging functions could be disabled without the knowledge of security

personnel.

The information source for host based intrusion detection systems are the

audit/security logs generated by the service being monitored, usually at the operating

system level [1]. The analysis engine, located on the physical machine, is a set of pre-

programmed rules. The response to an attack is usually to notify security personnel.

These components constitute the main elements of a host based intrusion detection

system: an information source, an analysis engine, and a method of response for alerting

purposes.

 4

2.1.2 Network Based Intrusion Detection Systems

While host based systems monitor traffic for a specific service on a network,

network based systems monitor and analyze packets that are sent over a network, usually

with network devices operating in promiscuous mode [1]. Since this type of system

monitors traffic throughout the network, there are more considerations to take into

account. First of all, placement of the system becomes important because of the nature of

the network based system. These systems examine every packet, therefore prudent

placement could mean the difference between the intrusion detection system delivering

malicious packets or successfully analyzing them and reporting a threat. Because of the

nature and amount of the information to be processed, network based systems tend to be

distributed to handle the analysis of a greater volume of traffic.

Data utilized by network based systems is usually “sniffed” out of network traffic

because TCP and UDP traffic is usually not stored for any noticeable duration of time at

its endpoint. As a result it is imperative that the intrusion detection system analyze

packets en-route.

Unlike host based systems, network based systems are best at detecting

unauthorized outsider access. They also address a flaw in the logic of host based

systems; in a distributed attack, there could be several target hosts. Each, if

compromised, would provide a useful piece of information necessary to compromise the

network or a host within the network. A host based system might not see this iterative

attack as a threat because of the relatively small steps taken over a large number of hosts,

whereas a network-based system looks at the network as a whole.

 5

There are, however, downsides to network-based intrusion detection systems.

High speed networks are not conducive to packet sniffing because of the speed of the

packet going through the network. Examining every packet can prove time consuming

and can undermine the high investment put into high speed data networks due to the

latency issues caused by this examination.

2.1.3 Anomaly and Misuse (Signature) Based Models

Anomaly and misuse models function in very different ways. Anomaly based

models sense “abnormal” system or user behavior to detect anomalies. Behavior is

characterized as “abnormal” if it goes against a pre-existing statistical model that

represents normal user and system behavior. This requires system administrators and

security officers to build and periodically update a profile that corresponds to normal

behavior. This can be advantageous because no prior knowledge of attacks needs to be

known; the model is catered to a specific network with specific needs. However, these

needs are certain to change over time and the model must be updated. In addition to a

need for constant monitoring, imprecise and imperfect models are susceptible to a high

rate of false alarms or a high rate of undetected anomalous behavior [7].

Misuse or signature based models monitor network traffic searching for activity

patterns that match a known attack or other violation of security policy [1]. For example,

an obsolete attack known as the “Land Attack” creates an impossible packet with the

same source and destination IP address, which is the IP of a target machine. In some

older systems, this illegal packet causes an unhandled error and will cause the target

system to crash. Human intervention would be needed to reboot the machine. A single

packet arriving at the target is all that is needed to execute this attack [8]. A misuse

 6

based model with an existing rule for all illegally structured packets would catch this

attack. Since only known vulnerabilities have known signatures and can be recorded into

a rule set, misuse models cannot detect new or unknown attacks [7].

2.1.4 The Snort Intrusion Detection System

Snort is an open source network based intrusion detection system, capable of

performing real time traffic analysis and packet logging on IP networks. The varieties of

tasks performed by this application are limited only by the imagination. Some of the

basic functions include protocol analysis as well as content searching and matching. It

should be noted that any necessary analysis could be performed on network traffic

because of the architecture, but the main functions to date are designed to detect network

intrusions. These functions allow the application to detect numerous kinds of attacks

including, but not limited to, buffer overflows, CGI attacks, and OS fingerprinting

attacks.

The custom rules language that allows network traffic to be screened with a

detection engine allows for a lightweight, flexible product that can be configured to meet

the needs of almost any host. The real-time alerting capabilities of Snort can be

configured to output through a number of different mechanisms including a UNIX

socket, any user specified file, or WinPopup messages.

Snort has three primary uses. It can be used as a straight packet sniffer like

tcpdump(1), a packet logger, or as a full blown network intrusion detection system[28].

This self-proclaimed de-facto standard of intrusion detection systems was first envisioned

by Martin Roesch in November of 1998. The early version of the system was meant to

 7

be a promiscuous mode packet sniffer, but has grown into the most widely deployed

intrusion detection and prevention technology in the world [29].

The basic architecture of Snort is shown below in Figure 2.1

Figure 2.1: Basic Architecture of the S

e.

fined, Snort decodes the IP protocol and

the TCP or UDP packet.

ms

nort Intrusion Detection System [33]

Whenever network traffic comes into contact with a host running Snort, the

execution path is as follows. First, the packet capture module pulls unprocessed layer 2

ethernet frames using LibPcap in a LINUX environment or WinPcap on a Windows

system. Next, the decoder takes the raw layer 2 data packets and decodes each fram

Each frame is classified by the LAN technology, such as Ethernet, Token Ring, Wi-Fi,

PPP, or MPLS. After the LAN technology is de

The preprocessing module of this application takes decoded data and perfor

some basic transformations. Preprocessors can create an alert on, classify, or drop a

packet before sending it to the more computationally expensive detection engine. The

 8

“out of the box” preprocessors check each packet to ensure that its format is valid based

on the RFC standard. An improperly formatted packet is usually mea

network vulnerabilities, such as the obsolete “Land Attack” [8] and will most likely be

considered malicious.

Up until this point, the only actions taken on the input data are its capture and

basic transformation in order to create a standard form for the information to be

nt to expose

process

t

nsible for placing the information in a specified location in a specified

format. This customizable module allows users to output to any desired datasource.

Based on the architecture and nature of this open source application, a customized

trusion detection system can be deployed in less than an hour as a quick fix or as a long

term solution in a network. As stated above, the architecture allows simple customization

in three separate nodes: the preprocessors, the detection plug-ins, and the output plug-ins.

This powerful customization feature allows security personnel to have complete control

over their project from start to finish and provides an ideal environment for research

applications.

ed. The detection engine does the majority of this processing by comparing the

captured and transformed data with the rules based detection plug-in. These rules are

created by the Snort development team with help from public and private sector security

personnel throughout the world and are offered for free download at

http://www.snort.org. It is also possible to create custom rules based on the predefined

format of the application. After the appropriate rules are applied to the data, the outpu

plug-in is respo

in

 9

2.2 Threat Evaluation

On 8 May 1980, the thirty-third World Health Assembly declared that smallpox

had been eradicated globally [9]. The World Health Organization realized that, acros

the world, smallpox was an epidemic that could be handled through an aggressive

monitoring and vaccination program. For the first time in history, mankind had

vanquished a disease. It must be borne in mind, however, that this was not the first

attempt at global disease eradication, but the fifth [10]. The idea of evaluating t

computer systems holds as many complications as dealing with a world-wide spread of

an infectious disease. There are

s

hreats to

several important lessons to be learned from the program

to erad

ould

 Disgruntled

employ to the

at amount of debate over acts that seem as simple as an automated port scan.

icate smallpox; first of all, the threat must be identified. The news of this

identification must propagate through all affected areas and preventative measures sh

be in place to deal with the spreading of this threat. The major difference between a

human disease and a computer vulnerability or threat is the timeline; these activities do

not take place over the course of years, they take place over the course of minutes. A

threat, in general, is regarded as a possible danger [11]. Therefore, all traffic moving in

and out of a host within a network is a threat to the network itself.

ees, uneducated users, or compromised machines all pose potential hazards

functional status of a network.

Servers and networks receive an almost constant bombardment from outsiders;

automated scripts ranging in complexity from port scanning to distributed denial of

service attacks. Information about these automated tasks changes from day to day and is

generally over-simplified or disregarded. Within the field of network security, there is

often a gre

 10

Numbe n

pass

otivated,

educate

,

lem to the safety and scalability of a

modern

 the

multitie vides

rs and figures are hard to come by and are convoluted at best, but what is know

is that computer systems are compromised by outside attackers.

Another type of threat to computer systems is insider abuse. According to

WarRoom Research’s 1996 Information Systems Security Survey, 62.9% of the

companies surveyed reported insider misuse of their organization’s computer systems

[12]. These attacks happen within the network, and in most cases the data does not

through any security mechanism such as a firewall. They are carried out by m

d employees who know the systems they are attacking and the security measures

in place.

The Computer Security Institute’s 1998 Computer Crime Survey, conducted

jointly with the FBI, reported the average cost of an outsider penetration was $56,000,

while the average insider attack cost a company $2.7 million [13]. These types of threats

along with unintentional damage, pose a giant prob

 computer network, and many approaches have been designed and implemented

to mitigate these threats. The most interesting of these methodologies is called the

human immunology method, which is based on the human immune system.

By far, the most complex physical system that exists to date is the human body;

thus the ideas encapsulated during human evolution can be used as a basis for research

into many areas. The most intriguing idea, with respect to Network Security, is

red approach the immune system takes for protecting the body. The skin pro

a defense against external pathogens and is relatively successful in restricting pathogens

from entering the body. But people still get sick.

 11

Because the skin is not 100% successful in restricting access to the body, there

internal systems in place. These internal systems must decide whether or not what th

are analyzing belongs in the body. In other words, the system must classify organisms as

“self” or “non-self” in order to be effective. If the organism is classified as “self” it is left

alone, because it belongs in the body. However, if the entity is classified as “non-self”,

the immune system attemp

 are

ey

ts to purge the body of the unauthorized presence.

n

as a

and molecules. Computer security often involves

protecting multiple sites or networks. In these environments, once a way is found to

void detection in one network, all networks become vulnerable. A better approach

would be to provide each protected location with a unique set of detectors. This concept

makes sense with respect to intrusion detection systems because of the vast differences in

user behavior from one network to another. Thus if one were compromised, others would

likely remain secure [15].

This approach to mitigating threats through a network will be discussed in more

detail in later phases of this document. However, the basic goal is clear: creating a

stable, adaptable definition for “self” and using that definition to categorize traffic

through a network as a threat.

the

Some notable features of the human immune system relevant in the study of

computer threat evaluation are diversity across different systems and inexact detectio

[14]. Each copy of the immune system is unique. Each individual in a population h

different set of protective cells

a

2.3 Fuzzy Logic

One of the principal difficulties encountered by people in technical sciences is

need to bridge the gap between human thought and the way machines are told to think.

 12

For instance, it is very easy for a human to look at a group of people and consciously sa

“Most people here are young,” but this same simple observation would be relatively ha

for a machine to deduce. This difficult

y,

rd

y lies in a traditional machine’s inability to assign

a grade

],

giving iven

y are not restricted to the values within boolean logic of true or

false. This concept, at first, resembles ordinary probability theory. An ordinary

probabilistic methodology defines the probability of a true assertion within a set over the

course of time. Membership values within a probability based model are restricted to

either true or false, showing the value is within the set or not. This methodology requires

a crisp definition of entities, usually a square wave or piecewise square function of some

type. On the other hand, fuzzy logic assigns a grade of membership for each specific

 of membership to an entity without rigidly defined boundaries. If the above

statement was given the form “Fifty percent, or more, of the people are over the age of

45,” a computer could very easily give a true or false assertion to the statement.

Zadeh says that humans have a remarkable ability to assign a grade of

membership to a given object without a conscious understanding of how the grade is

calculated [17]. This holds true in cases such as “Is it warm outside?” or with human

constructions such as heavy, light, good, cold, or somewhat. In other areas of computing,

rigid boundaries are defined for imprecise statements like cold. The definition of cold

would vary from person to person, and no precise boundaries could be established for

exactly what is cold and what is not.

A value within a fuzzy set can include all real numbers in the interval [0, 1

a more exact measurement than typical boolean models. The measurements g

are more exact because the

 13

item within the set or the set itself to determine membership. Fuzzy logic membership

functions can use any mathematical model whose values lie in the interval [0, 1].

A typical, crisp machine representation of temperature would look similar to

figure 2.2, shown below.

Figure 2.2: Crisp Representation of Temperature

However, a representation for temperature using a fuzzy approach would be very

different due to the gradual changes between membership areas. This is illustrated in

figure 2.3, shown below.

 14

Figure 2.3: Fuzzy Representation of Temperature

The goal of fuzzy logic is to bridge this gap between human thought and m

function, and it can be defined as a kind of logic using graded or qualified statements

rather than ones that are strictly true or false. The results of fuzzy reasoning are not as

achine

definite as those derived by strict logic, but they cover a larger field of discourse [17].

In order for an effective fuzzy approach to be utilized, a membership function

must be defined. A mathematical function is made to decide on the representation of the

grade of membership of an item within a fuzzy set. This function can be defined in many

ways, such as an expert system or a panel decision [19].

2.3.1 Fuzzy Logic Definitions and Operations

 This section presents a set of definitions for fuzzy logic concepts and operation

and the contents are integral in the development of fuzzy logic systems.

Universe of Discourse: The collection of elements under consideration.

 15

Membership Function: A function that defines the degree of membership of the

elements in a particular set.

Fuzzy Set: A set that can contain elements with only a partial degree of membership, this

set is derived from a particular membership function and each element maps to a real

number on the interval [0,1] representing the elements grade of membership.

nion Operation: Represented as A U B, the result of this operation on two fuzzy sets A

and B is a fuzzy set denoted by A U B whose membership function is given by µAUB =

max(µA(x), µB(x)). This operation is equivalent to the OR operation in Boolean algebra

and can be visually interpreted as shown in figure 2.4.

U

Figure 2.4: Fuzzy Union Operation

Intersection Operation: Represented as A ∩ B, the result of this operation on two fuzzy

ts A and B is a fuzzy set denoted by A ∩ B whose membership function is given by

µ = min(µ (x), µ (x)). This operation is equivalent to the AND operation in Boolean

algebra and can be visually interpreted as shown in figure 2.5

se

AUB A B

 16

Figure 2.5: Fuzzy Intersection Operation

omplement Operation: Represented as Ā where A is the fuzzy subset in which the

comple

his operation is equivalent to the NOT

operation in Boolean algebra

C

ment operation is applied. The result of the operation is a fuzzy set whose

membership function is given by µĀ = 1 - µA. T

and can be visually interpreted as shown in figure 2.6.

 17

Figure 2.6: Fuzzy Complement Operation

Cartesian Product: Represented as A x B where A and B are fuzzy subsets. The

Cartesian product is the binary variable represented by µA x B(u,v) = µA(u) *V* µB(v).

ple, A = {a,b} and B = {c,d,e,f} then the Cartesian product of A and B would be

equivalent to { (a,c),(a,d),(a,e),(a,f), (b,c),(b,d),(b,e),(b,f) }

Fuzzy Singleton: A fuzzy set, A, whose support is a single point x in the universe of

discourse X.

Height of a Fuzzy Set: The height of a fuzzy set, A, is the set of elements defined in the

universe of discourse X at which the membership function µ (x) equals one.

Normal Fuzzy Set: A fuzzy set is called normal if and only if maximal values of its

membership function are equal or larger than α.

rossover Point: The Crossover point of a fuzzy set is the element in U at which its

membership function is 0.5.

For exam

A

C

 18

utivity

2.3.2 Fuzzy Logic Controllers

The basic ideas of what fuzzy logic is, along with the operations listed in the

previous section are used to create fuzzy logic controllers that provide solutions to a vast

number of problems. The applications for fuzzy logic based systems grows by the day

but specifically are used in water quality control [20], automatic train operations [21] and

automotive transmission controls [22].

A fuzzy logic control system is composed of four principal elements: fuzzy rule base,

fuzzification interface, fuzzy inference machine, and defuzzification interface [23].

These components work together to create digital control devices that allow a human

description of a physical system and of the required control strategy to be simulated in a

reasonably natural way [19]. A brief description of these components is listed below:

1. The fuzzy rule base is a collection of rules that define specific actions of the

expert-system. These rules follow a basic IF THEN format.

2. The fuzzification interface maps crisp inputs into their corresponding fuzzy values

based on the appropriate membership function.

3. The fuzzy inference machine performs any number of fuzzy logic operations to

ascertain control action for fuzzy inputs.

4. The defuzzification interface converts manipulated fuzzy values and creates a

crisp output for a control device.

It is noted that DeMorgan’s Law, Associativity, Commutivity, and Distrib

can also be applied in the realm of fuzzy logic.

 19

The idea of fuzzifying crisp inputs, doing calculations to create an output, and

defuzzifing those outputs into crisp values is similar to the methodology of solving a

linear time-invariant system with a Laplace transform as shown in Figure 2.7

Figure 2.7: Laplace Transform vs. Fuzzy Logic Methodology [36]

There have been many attempts to reduce the number of false alarms within

intrusion detection systems. Outside of using fuzzy logic, there are two notable

approaches: data mining and the use of neural networks.

Data mining is the nontrivial extraction of implicit, previously unknown, and

potentially useful information from data [24]. The key ideas are to use data mining

techniques to discover consistent and useful patterns of system features that describe

program and user behavior, and use the set of relevant system features to compute

inductively learned classifiers that can recognize anomalies and known intrusions [25].

This approach to intrusion detection sifts through large amounts of data collected using

the audit capabilities of the host machine and uses this information to create detection

models for the intrusion detection system. The creation of detection models is based on

2.4 Other Methodologies for Intrusion Detection

 20

the fundamental principals of data mining that have been inspired from a wide variety

statistically related fields.

of

Since this approach to intrusion detection is based on a statistical model, it can be

pproached in an implementation free environment. A widely used, hypothetical,

example of data mining would use the transaction history of any large supermarket chain.

Analysis of transactions of goods bought over a defined period of time could find that

two seemingly unrelated products such as beer and diapers are often bought together.

Drawing this conclusion is not intuitive and would be very difficult without data mining

in a large set of data; however, taking advantage of this relationship would be very easy.

Herein lays the strength and weakness of an approach to intrusion detection using data

ining. It requires a large amount of data to be processed for correlations to be drawn.

he necessity for this large amount of data could pose a vulnerability to systems that

have not collected a sufficient audit trail, and the system could be compromised before

the audit trail is of sufficient size. This would make the audit trail itself vulnerable and

taint the results of any analysis.

Another weakness of a data mining approach to intrusion detection is the

foundation of data mining itself. Data mining finds correlation between two seemingly

unrelated entities. Correlation between entities does not imply causation. It is not

uncommon for a data mining set to find over five hundred correlations between data,

while less than ten of them are worthwhile [26]. A typical correlation that could be found

is as follows:

Ice-cream sales are strongly correlated with crime rates.

a

m

T

Therefore, ice-cream causes crime.

 21

While ice cream sales and crime might be strongly correlated, this type of thinking do

not take into account the element of coincidence or other confounding factors. While the

fundamentals of data mining are important in many aspects of computer science, there are

serious flaws for applications involving security.

Neural networks are also an active area of research in the field of computer

science and intrusion detection. The basic idea of a neural network based intrusi

es

on

detection system is that a user leaves a specific print when using a system. The neural

network is utilized to identify this print and identify a user based on their specific

behavior [27]. Most neural network based systems are computationally expensive and

run in offline mode. A single job run at the end of day processes audit logs left on host

computers, finding suspicious behavior and alerting personnel to launch an investigation.

It is also widely speculated that the scalability of neural network based systems

would present a problem when the amount of users exceeds a typical small business.

However, the method of neural networks does an excellent job in building a real time

profile of user behavior that can adapt over tim

e

ation between

anomal

f

e [27].

2.5 Fuzzy Logic Approaches to Intrusion Detection

The first notable intrusion detection system to utilize fuzzy logic is the real tim

security system, RETISS [30]. The system is based on the idea that a correl

ous user behavior and threats. Each rule corresponds to a weight table that

expresses a level of danger for a specific anomaly. These weights, based on level o

danger, are piped through a fuzzy inference module and combined using fuzzy logic to

connote the probability of threat. RETISS uses the following architecture:

 22

Figure 2.8: RETISS Architecture [34]

This system was implemented on a Sun 3/50 workstation with the Common List

programming language and runs on a machine separated from the target system. This

separation avoids overloading the activity of the target system and protects RETISS from

target system users [30]. Even though this platform was chosen by its designers, this

implementation can be adapted for any platform.

Another notable intrusion detection system is the fuzzy Intrusion Recognition

Engine, FIRE, which is a network based intrusion detection system that uses an agent

based methodology [31]. This agent based methodology, based on AAFID developed at

Purdue by Zamboni, et al., allows each individual agent to perform as a separate

fuzzification interface while communicating with a fuzzy inference engine.

 23

As shown below, this agent based system uses three main modules: agents (A),

transceivers (T), and monitors (M). Agents monitor processes of the host, while

transceivers control local agents and act as communication tools between agents and

onitors, while monitors control local and remote entities. Monitors handle correlation

of data be

reat.

gram

m

 and send alarms to the user interface (UI). Agents a1-a5, shown below, would

assigned to different types of traffic such as TCP, UDP, or specific categories of th

These agents would pass information, through a transceiver to a monitor. This dia

dictates that M1 is the monitor for FIRE and M2 is the monitor for AAFID [31].

Figure 2.9: FIRE Architecture [31]

This process, while complex, is an active area of research because of system

expandability. Expanding an agent based system to encompass new threats could be

done by deploying a new agent based on expert knowledge of the threat.

Another approach to the use of fuzzy logic in intrusion detection was introduced

by Yingbing Yu in a dissertation titled, “Anomaly Intrusion Detection and Threat

Evaluation using Artificial Immunity M zzy Logic” [37]. This work proposes odel and Fu

 24

the dete

a

ation

es generalized fuzzy number with a weighted value.

This m

t

f the goals, however, are aimed at reducing the number of false alarms.

ction of threats using a hierarchical fuzzy threat evaluation mechanism. First, a

finite automata is created to model the behavior of users and the system, based on

behavior profile. These behaviors are applied to measure similarity as well as devi

for behavior. After behavior is categorized as self or non-self, a hierarchial fuzzy

reasoning system compares calculat

odel can detect masqueraders and intrusion scenarios in a relatively short

timespan.

There have been other approaches using fuzzy logic, such as the approach

proposed by Jianxiong Luo and Susan Bridges. Their approach integrates the mining of

fuzzy association rules and frequency episodes with fuzzy logic to produce more abstrac

and flexible patterns for intrusion detection [32]. These approaches to fuzzy logic all

introduce elements of architecture and design that allow the achievement of specific

goals. All o

 25

CHAPTER III – DESIGN CONSIDERATIONS

3.1 The Problem

Intrusion detection systems, especially those that are signature based, present

security personnel with vast amounts of alert data. In the case of the open source

intrusion detection tool, Snort, alerts are sent to an output plug-in which presents

information to an authorized person in any m nner they wish to implement. It will be

assumed that in most systems, alerts are logged in a MySQL database. Even though a

relational database is an efficient storage mechanism with production grade read and

write ti ills of

hat

ful output

 threat

e,

n considerations

r ARF. Implementation details will be presented in chapter four.

3.2 Goals

a

mes, the number of logged alerts can quickly grow beyond the analytical sk

any human. The questions at this point become, “how secure is this network?” and “w

alerts are the most critical, so they can be prioritized for patching and upgrades?”

How can someone easily analyze this collected data and give a meaning

with a high probability that the alerts in question do not represent a false positive?

Approaching this problem using fuzzy logic can significantly reduce the workload of

security personnel by evaluating alerts in parallel and giving a reasonable snapshot of a

threat level. An automated real-time fuzzy logic threat evaluation system, the ARF

evaluation system, will be implemented to address this problem. This software packag

will from here on be referred to as, ARF. This chapter addresses desig

fo

 26

ARF is to be written using an interface for every step of the fuzzy process as w

as an interface for the fuzzy rules used in the inferen

ell

ce machine and membership

fun his will allow for a scalable, tunable

app ecific rules and more

com

security personnel to get a

snapshot of the level of threat in a single sensor as well as a comparative view of all

nsors in a network. While little or no knowledge of fuzzy logic is needed to make

inferences about the level ertinent metrics and the

bility

, than if it were outside the

networ

y

ng

e information and

display it through the GUI.

ctions used in the fuzzification process. T

lication that can be easily adapted to allow the addition of sp

plex mathematical calculation.

The GUI should provide an avenue for experienced

se

of threat in a network, knowledge of p

a to create and understand fuzzy rules based on the metrics is required to tune the

application to a certain environment. This application, for instance, would employ a

separate rule base if it were inside the protected network

k.

Due to the proliferation of technology within our society and the variety of

applications and platforms available, the application uses the Extensible Markup

Language (XML) for all non-database persistent storage. This feature will undoubtedl

increase the availability of the analyzed output data for future applications and reporti

mechanisms and provide a simple format for the application to parse th

 27

3.3 Setup Requirements

Intelligent sensor placement should be the first step in deploying any in

3.3.1 Network Setup Requirements

trusion

detection system. A typical intrusion detection sensor placement, according to Earl

Carter of the Cisco Press, is shown below in Figure 3.1.

Figure 3.1: Typical Intrusion Detection Sensor Placement [35]

on

Notice that even within a trusted network there are multiple sensors. In a

commercial setting, it is prudent to use a separate machine on the network acting as a

pass-through device for a sensor. In reality, a sensor is software and could be placed

any machine, including desktops and servers. This is not common practice in

 28

commercial servers because the fear of placing extra computational load on a production

machine directly affects the performance of a server as well as the expense of upgrading

hard drives in a redundant array. It is also not considered a best practice to use a sensor

n a desktop because the data collected would be specific to the traffic on a single

computer. The optimal situation fo dedicated machine with two

etwor

o

onnections on port 3306.

3.

dification. However, the

tables that will be used for analysis by the application are shown below. Only fields

pplicable to the function of the application are shown.

The EVENT table, shown in Figure 3.2, is the most commonly referenced table in

the MySQL database created by Snort. The primary key two-tuple is made up of a sensor

o

r a sensor would be a

n k interface cards acting as a gateway on a branch of a network.

For academic and experimental purposes, a standalone sensor using Snort, Apache,

SSL, PHP, MySQL, and BASE on a computer running an updated version of Fedora

Core 4 is utilized as a data collection agent. The only requirements for this sensor t

operate properly with the proposed application are:

1. Snort must use MySQL to log alerts.

2. MySQL must accept TCP/IP c

For security purposes, MySQL should include a user account with SELECT

privileges for the application to view the alert logs.

3.3.2 Database Setup Requirements

3.3.2.1 Remote/Sensor Databases

Applicable tables in a sensor database require no mo

a

 29

ID, allowing multiple sensors on a network to report to the same database as well as a

command ID that identifies the alert with an auto-incrementing integer. The MySQL

data types for these fields are, respectively, integer(10), integer(10), integer(10), and

atetime, where all integers are unsigned and all fields are required. d

Figure 3.2: Event Table
The IPHDR table, shown in Figure 3.3, has a one to one row relationship with the

event table and holds all IP header information as specified in RFC 791. IP addresses are

stored as integers to reduce space required and can be transformed using the MySQL

methods IP address = inet_ntoa(integer) and Integer = inet_aton(IP Address).

Figure 3.3: IPHDR Table

As alerts are inserted into the MySQL database, Snort checks to see if the alert

gnature already exists within the SIGNATURE table, shown in Figure 3.4. If the

signature do e

si

es not exist, it inserts a row to identify the integer signature recorded in th

EVENT table. In other words, this table shows the textual name of numerical signatures

referenced from other tables.

 30

Figure 3.4: Signature Table

*Note: non-applicable fields have been omitted from Figures 3.2 – 3.4

3.3.2.1 Application Database

A computer running the application to be described requires the presence of a

MySQL server instance. The tables to be created are exact replicas of the tables

mentioned in the previous section with the exception of the primary keys in the event and

IPHDR table. The primary key for the application, or local database is a three-tuple

consisting of (sid,cid,nid) where nid is an alias or other identifier to identify the sensor

with a network. This is necessary because all data from all sensors will be copied to the

application database. Creation of these tables is not a function of the application.

3.4 Application

3.4.1 Introduction

ARF is implemented using the .NET framework 1.1 and the C# (C Sharp)

programming language. Using this framework, it is possible to make use of not only the

object oriented nature of the language and the powerful debugging tools, but also a vast

array of inheritable built-in objects. The application includes one external reference to

the MySQL Connector/NET which implements ADO.NET interfaces allowing for

simple, secure, and high-performance data connectivity to a MySQL database from any

 31

.NET application. MySQL Connector/NET is well documented and available for free

download at h

A fuzzy logic approach to analyzing data collected from Snort is used to work

wards the goal of reducing the

running about

The application exists in two logically separated modules. The GUI with its

associated properties and method t g, connecting to,

display sensor.

l

the fuzzy logic process.

1. class to adapt a DataTable, representing alerts in a remote database, sent by the

UI into predefined metrics.

2. class to fuzzify the metrics calculated from the previous class based on

edefined membership functions.

ttp://www.mysql.org.

to number of false positives in an intrusion detection sensor

 Snort. This approach needs to display pertinent and detailed information

the data being analyzed and output a level of threat based on alerts of the host in question.

These outputs should be organized on a graphical user interface (GUI) and create an

intuitive “snapshot” of many sensors over many networks.

3.4.2 Application Flow

s need o take care of creatin

ing, and synchronizing databases between the application and a selected

Another main module should be the fuzzy logic module that accepts a set of data from

MySQL and returns a floating point number between 0 and 1 that indicates the level of

threat for the sensor.

The fuzzy logic module is comprised of four separate classes, dictated by the logica

steps in

A

G

A

pr

 32

3. values from a base of rules and create

ss for display in the GUI.

4.

]. This outputted value will be displayed on the GUI.

Eac nt an interface designated for the particular

step in s will create an environment in

which t ew functionality and perform basic maintenance will be greatly

reduced.

3.4.3 A ts

hold

t

e order in which they

ect_Name c)
this[int Index]

These methods allow adding of encing the objects within

the collection with an integer index. Any other functionality will not be permitted on

custom collections, as they are meant to be containers for data.

A class to make inferences about the fuzzy

an XML file to log specifics of the proce

A class to defuzzify the output of the previous class, which gives a threat value on

the interval [0,1

h of these classes needs to impleme

the fuzzy process in which they reside. This proces

he effort to add n

pplication Objec

Every step in the fuzzy logic module of the application should output a typed

collection of custom objects for experimental and debugging purposes. The objects

all applicable output calculations from the previous class and serve as an input to the nex

class. A typed collection of custom objects is implemented in order to reduce the

possibility of running the fuzzy logic classes in any order except th

are designed to be run. The collections should implement the methods:

public virtual void Add(Obj
public virtual Object_Name

 objects to a collection and refer

 33

CHAPTER IV – IMPLEMENTATION

4.1 Implementation Details

The implementation of the application, ARF, uses two main categories of

software components. The first component handles all administrative functionality of the

object and is encapsulated into several instances of System.Windows.Forms objects. The

second component handles all fuzzy logic operations and is logically placed inside its

wn namespace arf.fuzzy. These components, to be described fully in later sections of

this chapter, compose the framework for this application.

ml file was created as a logical container to hold applicable

forma

many d ferent uld be achieved by

adding new X

alias fo that n rk it is possible to have zero or many hosts with

all appl able i gment

below.

o

4.1.1 XML Documents

The hosts.x

in tion about sensors. Using this format, it is possible to hold information about

if networks containing many different sensors. This wo

a ML element named network with a single attribute, name, that denotes an

r etwork. Within each netwo

ic nformation. The format of this document is shown in the code se

 34

 <network name="419winkler.com">

 <alias>Thesis Box</alias>
 <ip>localhost</ip>
 <dbname>home_alerts
 <dbuser>root</

 <host>

</dbname>
dbuser>

 <dbpass>password</dbpass>
 </host>
 <host>
 <alias>Test 2</
 <ip>localhost</
 <dbname>poopie</dbname>

4.2.1 Purpose

ding

that inp complete, the

System Forms objects are responsible for displaying any necessary analysis.

transaction management objects.

4.2.2 Add Network Object

This System.Windows.Forms object, AddNetwork, inherits from the .NET object

System.Windows.Forms.Form and has a single purpose. This purpose is to create a new

network alias in the hosts.xml configuration file. The desired output of this function will

insert the following descripti

alias>
ip>

 <dbuser>rewt</dbuser>
 <dbpass>password</dbpass>
 </host>
 </network>

4.2 System.Windows.Forms Objects

The System.Windows.Forms objects are in charge of collecting input and sen

ut to the fuzzy logic engine for analysis. After the analysis is

.Windows.

These tasks are completed using native .NET objects with the exception of a specialized

tree node class and the MySQL Connector/NET reference. These

System.Windows.Forms objects also contain powerful database connectivity and

on into the hosts.xml file:

 35

<network name="AnyNetwork.com">

AnyNetwork.com denotes an alias which refers to a network containing sensors with

MySQL databases holding alerts generated by Snort.

The output from the System.Windows.Forms object, AddNetwork is shown below in

figure 4.1

</network>

Figure 4.1: The AddNetwork object

The functionality necessary to append this XML element at the end of a list of networks

within the hosts.xml file is listed below. This method is triggered by a button click

on the form object, and the name of the network is stored in a text box named

txtNetworkName.

if(th

 event

is.txtNetworkName.Text.Trim() != "" && this.txtNetworkName.Text != null)
{
 // Load Existing hosts.xml file
 System.Xml.XmlDocu nt();
 networks.Load(xmlf

;

 // Create New XML Element

 newcatalogattr.Value = this.txtNetworkName.Text;
SetAttributeNode(newcatalogattr);

 // Add XML element at end of node list
networks.DocumentElement.InsertAfter(newcatalogentry,
networks.DocumentElement.LastChild);

 // Save the new XML file to disk

FileStream fs e,FileMode.Truncate,
FileAccess.Wr

networks.Save(fsxml);

 fsxml.Close();
}
// Close the form

ment networks = new XmlDocume
ilename);

 // Create a list of xml nodes with the tag name "network"
 System.Xml.XmlNodeList nl = networks.GetElementsByTagName("network")

 XmlElement newcatalogentry = networks.CreateElement("network");
 XmlAttribute newcatalogattr = networks.CreateAttribute("name");

 newcatalogentry.

xml = new FileStream(this.xmlfilenam
ite, FileShare.ReadWrite);

 36

this.Close();

The code segment shown above loads the hosts.xml document and adds a new network

element to the document. The element added will have the attribute that was typed in

the form shown in figure 4.1.

to

 <ip>Address of MySQL Database Holding Sensor Data</ip>

.

4.2.3 Add Host Object

This System.Windows.Forms object, AddHost, inherits the .NET object

System.Windows.Forms.Form and has a single purpose. This purpose is to create a new

host within a network in the hosts.xml configuration file. The desired output of this

function will insert the following into the specified file:

<host>
 <alias>Sensor_Alias</alias>

 <dbname>Name of Database</dbname>
 <dbuser>Restricted Privilege User</dbuser>
 <dbpass>Restricted User Password</dbpass>
</host>

This information represents all necessary connection information to access the MySQL

database that is being used by snort on a specific sensor. The initial state of the

System.Windows.Forms object, AddHost is shown below in figure 4.2

Figure 4.2: The AddHost object

 37

The functionality of this object is slightly more complex, but nonetheless a

variation on a theme. The list of networks in this form is populated with a list of all th

networks listed in the hosts.xml file, while all other information is provided by the user.

After all information is entered, th

e

ere are two separate functions necessary to complete

the Add e

 to indicate failure.

The second function of this object is to save the information typed in each field

to an XML document. It should be noted that a valid connection is not required for

sertion into the XML file and by default, the “Save Changes” functionality prompts the

ser if the connection is not valid before inserting it into the XML file. Since the

 is basically identical to the AddNetwork object, shown in the previous

ction, code has been omitted in this section and is provided in its entirety in the

append

Forms object, ARF_Main, inherits the .NET object

System ain functionality of the application and

is shown below in Figure 4.3.

Host operation. The first is a method to test the connection to the sensor whos

information was entered. This function creates a connection to the server and instantly

closes it. If these operations are successful, a message is shown to the user indicating

success. If the operations fail a message is shown

in

in

u

functionality

se

ix.

4.2.4 ARF_Main Object

This System.Windows.

.Windows.Forms.Form and contains the m

 38

Figure 4.3: The ARF_Main object

iew

hows a collapsible list of networks and sensors as well as a

System

e TreeView object displays a hierarchical collection of labeled items, each

represented by a System.Windows.Forms.TreeNode or a custom object arf.RevTreeNode.

A netw nd as

well as collaps

of these , is

represe applicable information about the sensor.

This in

to a sen erits from the TreeNode object

The basic components of this object are a System.Windows.Forms.TreeV

object that s

.Windows.Forms.TabControl which organizes data representing a sensor in a

logical format. Data shown in the TabControl is changed when a sensor within the

TreeView object is clicked with a mouse.

Th

ork is represented as a TreeNode that has children. The network can expa

e, it can indicate itself with a picture of a computer, and it has an alias. All

proper ties are native to this built-in .NET object. A sensor, however

nted by a custom object that stores all

formation is pulled from the hosts.xml file and is used for all operations referring

sor on this form. The object, RevTreeNode, inh

 39

and serves as a container for applicable information about a sensor. The image property

of this

he fields in

rts

om a MySQL database.

e Connectivity and Synchronization

e ARF_Main object is connecting to, and

ver installed on the application

n the sensor. Excerpts from some of

se methods are shown below.

 a RevTreeNode, and connects to a MySQL

database. If the connection is s n object is returned to the

alling function, as shown in the segment below.

object can either be set to a red circle or a green check, indicating whether or not

the application has connected to the sensor within the current session.

The first tab, in the TabControl, shows an exact copy of the alerts generated by

Snort for the specific sensor in a System.Windows.Form.DataGrid control. T

this DataGrid are modeled after a basic join of the Snort ‘event’ table and ‘IPHDR’ table.

This textual name for this tab is ‘Raw Host Alerts’ since it shows only unformatted ale

fr

4.2.5 Databas

A major portion of the functionality of th

synchronizing data between, the MySQL database ser

machine and the MySQL database server installed o

the

The first of these database connection methods is ConnectSingleMySql. This

function takes a connection string, stored in

uccessful, a MySqlConnectio

c

 40

/// <summary>
/// Connect to a remote database

/// <param name="conn">The Connection string</param>
/// <returns>The MySQL connection object or null if connection is not

private MySqlConnection ConnectSingleMySql(string conn)
{

 {
 MySqlConnection connection = new MySq

 connection.Close();
 return connection;

/// </summary>

available</returns>

 try

lConnection(conn);
 connection.Open();

 }
 catch
 {
 return null;
 }

This fu

The SyncSingle function has been shown in a pseudo format because of the length

of the function. This function is executed on a RevTreeNode if a valid connection has

been made with the ConnectSingleMySql function. This function is shown below in

pseudo

///<param name="SensorName">Alias of Remote Server to reference in local

private bool SnycSingle(MySqlConnection connection, string SensorName)

 // Create transactions of the alerts from Remote DB to be copied locally
table
able

 // Start the transaction to copy the remote records locally

}

This fu he application

data

 shown below, function acts as a wrapper function for the

previously listed functions. Its purpose is to call other functions, if necessary. This

}

nctionality allows the application to know, with a high degree of certainty, which

sensors are available for analysis.

 format.

///<summary>
/// Sync a remote snort databases alert data to the local MySQL Server
///</summary>
///<param name="connection">Connection String For Remote MySQL Server</param>

database</param>
///<returns>True if the host syncs</returns>

{
 // Find Timestamp of Last Alert Logged Locally for this Sensor

 // --> events
 // --> iphdr t

 // If the transaction succeeds, commit the transaction and return true
 // if the transaction fails, rollback the transaction and return false

nction executes all transactions necessary to synchronize t

bases.

The ConnectSyncSingle,

 41

met ithin a

networ

/// Connects to the specified RevTreeNode and synchronizes data if need be

private void ConnectSyncSingle(arf.RevTreeNode m)

+ m.DatabaseUser + "; PASSWORD=" + m.DatabasePassword + ";";

 // Sync the databases

 if(SnycSingle(SingleConnection, m.Alias))

 m.SelectedImageIndex = 0;

}

e ARF_Main form object. This

nctio re available and synchronizes the data from their

alert databases to the local database.

ark to

/// </summary>

 string conn;

 each

 des)

 ConnectSyncSingle(m);

}

hod is necessary for the functionality, if desired, to synchronize a single host w

k.

/// <summary>

/// </summary>
/// <param name="m">The RevTreeNode of the sensor to synchronize</param>

{
 string conn = "SERVER=" + m.IP + "; DATABASE=" + m.DatabaseName + "; UID="

 MySqlConnection SingleConnection = ConnectSingleMySql(conn);

 if(SingleConnection != null)
 {

 // change the icon

 {
 m.ImageIndex = 0;

 }
 }

The final relevant database connection method, MySqlHostConnect, is triggered

when a button titled ‘Sync Hosts’ is pressed on th

fu n connects to all sensors that a

If a connection was made and data was

synchronized, then the picture next to the sensor name changes to a green check m

show the user success or a red symbol to show failure. This function is shown below.

/// <summary>
/// Connect and Sync all sensors listed for all sites in hosts.xml

private void MySqlHostConnect()
{

MySqlConnection SingleConnection;

orf (TreeNode n in treeView1.Nodes)

{
 foreach(arf.RevTreeNode m in n.No
 {

 }
}

 42

These database functions create an easy way to connect to and synchronize data between

multiple sensors over multiple ne

tworks.

4.3.1 Purpose

The fuzzy logic section of this application creates a standard system of functions

and objects to assign a level of threat to a sensor on a network. There are four separate

steps required in any fuzzy control system, all of which are implemented and outlined

below. The controlling class for the fuzzy logic portion of the application, FuzzyEngine,

receives two inputs: a System.Data.DataSet and a System.Windows.Forms.ListBox. The

DataSet holds applicable data about the sensor and the ListBox serves as mechanism to

s. With this in mind,

4.3.2 Snort Adapter

 be

tran o

ascertain the value of predefined, calculable metrics that can be calculated.

and returns a typed collection of custom objects, to be explained in a later section.

SnortAdapter s = new SnortAdapter(RawAlertDataset);

4.3 Fuzzy Logic Modules

report the status of the fuzzy logic computations during analysi

realize that the entire fuzzy logic component of this application can be invoked with a

single command as shown in the following code segment:

 double d = HostThreatLevel(RawAlertDataset,lstXMLOutput);

Before any type of fuzzy logic operation can be performed, the input data must

sformed. The SnortAdapter class takes the input DataSet and performs operations t

The following command from the FuzzyEngine class invokes these operations

CrispThreatCollection c1 = s.CrispThreats;

 43

Upon receiving the DataSet, the constructor for the class sorts the dataset based on threat

signature and performs calculations on each collection of rows that is returned. The

following metrics were cho

sen on during the design of the application:

1. ple

rom

meSpan object.

3.

t

for future releases of Snort. Currently severity measures do not exist within the

Snort application for all signatures but can be implemented by security personnel

by modifying a configuration file within the application. At the time of writing,

this feature is a planned enhancement for future versions of Snort.

After all calculations are completed, information is stored in a custom object named

CrispThreat. This structure contains the properties:

private int occurances;
 privat

privat

 private int signature;

pes as input. The other takes a

The number of occurrences of the signature, which is calculated from a sim

counting of the rows.

2. The time span of the alerts, which is calculated from the last alert subtracted f

the first alert and expressed as System.Ti

The average time between alerts, calculated from the time span divided by the

number of occurrences.

4. The number of alerts per source IP address, calculated from the number of

occurrences divided by the unique source IP addresses.

5. The severity of the alert: this metric is reserved for future versions of Snort tha

implement this functionality. The application uses a multiplier of one to account

e System.TimeSpan timespan;
e int severity_multiplier;

 private double src_ip_frequency;
 private System.TimeSpan avg_time_between;

The CrispThreat object also contains two constructors, one of which takes all of

the calculated metrics and their respective data ty

 44

CrispThreat object and creates an exact copy. Since there will be a CrispThreat object

reated for every unique signature that occurs in a host, it is necessary to create a

container for these objects. The implementation of a collection of CrispThreat objects,

CrispThreatCollection, is shown in the following set of declarations.

public class CrispThreatCollection : System.Collections.CollectionBase

 {

 get

}
mentation provides the necessary protection for data and application flow as

set out in the design document.

4.3.3 Fuzzification Interface

The fuzzification interface transforms the CrispThreat objects within their

respective collection. Each metric within a CrispThreat object is processed by a

predefined membership function and returns a fuzzy value in the interval [0,1]. The

fuzzification interface is defined as a step in the fuzzy logic process and should not be

confused with a .NET interface.

 p

listed i

 FuzzyThreatCollection GetFuzzyThreats();

c

{
 public virtual void Add(CrispThreat c)

 this.List.Add(c);
 }

 public virtual CrispThreat this[int Index]
 {

 {return (CrispThreat)this.List[Index];}
 }

This imple

A rogrammatic interface is defined for this section of the fuzzy logic module and

n the following code segment.

 public interface IFuzzification
 {

FuzzyThreat MakeFuzzy(CrispThreat c);
 FuzzyThreatCollection MakeFuzzy(CrispThreatCollection i);

 }

 45

The methods described in the interface shown above must be implemented in the class

that is used in the fuzzification process. For example, every method for fuzzification

would be able to:

1. Take a CrispThreat, apply the MakeFu zy function, and return a FuzzyThreat

2. Take a collection of CrispThreats, apply the MakeFuzzy function, and return a

 the

Wit ed that

elevant at this point because actions are

ould be achieved is shown in

uzzificationMembershipFunction(c1);
FuzzyThreatCollection f1 = f.GetFuzzyThreats();

keyword listed above.

A key aspect of the functionality for this module of the fuzzy logic components is

creating membership functi t in the design phase.

The me th the

d to

z

collection of FuzzyThreats.

3. Access the calculated FuzzyThreatCollection from anywhere in the scope of

IFuzzification object.

h this concept in mind, a FuzzificationMembershipFunction class is creat

implements the interface IFuzzification. Functionality in the

FuzzificationMembershipFunction class is not r

taken on the IFuzzification object. A sample of how this w

the code segment below.

IFuzzification f = new F

For future changes of membership functions, all a programmer would need to change in

the fuzzy logic modules of this application would be the name of the class after the new

ons for each metric deemed pertinen

trics and their associated membership functions are listed below, starting wi

number of occurrences of a specific alert signature. The membership function create

model the level of threat based on occurrences of an alert is shown below. Notice the

gradual change in the dependant variable as the independent variable rises.

 46

Figure 4.4: Membership Function: Number of Occurrences

The next membership function represents the span of time from the first occurrence of a

signature and the last signature. This function assigns a greater level of threat if logged

alerts occur in a relatively short period of time.

Figure 4.5: Membership Function: Timespan Between Attacks

The av fined as the time span between the first and last

alert divided by the number of occurrences.

erage time between attacks is de

 47

Another metric that is calculated from the time between attacks and the number

occurrences is defined as the average time between attacks membership function. This

membership function is used in conjunction with other functions to create a rule that

be composed of several different metrics. This allows for a greater degree of control

within a set of rules. The average time between attacks membership function is shown

below.

 of

can

Figure 4.6: Membership Function: Average Time Between Attacks

The final metric is the membership function associated with the frequency of

alerts from a specific IP address. This is defined as a stepwise function, shown below.

This m ng

source IP frequency is low a lower threat

ed that the same entity is trying the

etric is determines the number of different source IP addresses that are generati

alerts based on signature and is used to create composite rules. For example, if the

average time between attacks is low and the

level could be generated because it would be assum

same operation numerous times. The source IP frequency function is shown below in

figure 4.7.

 48

The current mathematical capabilities of the application are membership functions

defined b

Figure 4.7: Membership Function: Attacks Per IP

y a set of points or as a polynomial function. However, this can be easily

ce.

cation interface is a collection of

 following properties:

 double fuzz_src_ip_frequency;
private double fuzz_avg_time_between;

 private CrispThreat crisp;

e double variables are the output of their respective membership

expanded by creating a new class that implements the custom IMath interfa

The output object created by the fuzzifi

FuzzyThreat objects. This structure is represented by the

 private doubl
 private double

e fuzz_occurances;
 fuzz_timespan;

e double fuzz_severity_multiplier; privat
 private

 private int signature;

These privat

functions, outlined above. This object also holds a copy of the CrispThreat object created

in the previous function. The purpose for this feature is to allow for future calculations in

the inference and defuzzification mechanisms.

 49

4.3.4 Fuzzy Inference Machine

The fuzzy inference machine is the heart of the fuzzy logic modules in this

application. It takes the fuzzy objects for each signature, calculated previously, and

applies a set of rules to create a level of threat for a sensor. This step also creates an

XML log file detailing the threat levels of all the objects before they are defuzzified.

The inference machine must implement the interface listed below

public interface IInfere
{

FuzzyThreatLevelCollection
FuzzyInference(FuzzyThreatCollection i);

}

f

Engine.

sing this interface, the following function call is performed in the FuzzyEngine class to

execute this step of the fuzzy logic process.

IInferenceEngine i = new RuleBasedInference(f1);
FuzzyThreatLevelCollection f2 = i.GetFuzzyThreatLevel();

Each IInferenceEngine engine has an associated set of rules. These rules make all

inferences about threat levels. This set of rules maps a threat level to a specific signature

nceEngine

FuzzyThreatLevel FuzzyInference(FuzzyThreat f);
FuzzyThreatLevelCollection GetFuzzyThreatLevel();

The methods described in this interface provide functionality, respectively, to:

1. Take a collection of FuzzyThreat objects and return a collection of

FuzzyThreatLevel objects that are created with a rules-based system.

2. Take a single FuzzyThreat object and return a single FuzzyThreatLevel object

created with a rules-based system.

3. Access the calculated FuzzyThreatLevel collection from anywhere in the scope o

the IInference

U

 50

based on the metrics calculated from the set of alerts. An excerpt from a sample rule is

shown in the code listed below.

//'WEB-MISC /home/www access'
// http://www.snort.org/pub-bin/sigs.cgi?sid=1671
// Low threat
private double WEB_MISC_ACCESS(FuzzyThreat f)
{
 double threat = startlow;
 if(this.IsHigh(f.Src_Ip_Frequency) && this.IsLow(f.Avg_Time_Between))
 threat += .5;

 return threat;
}

This alert was evaluated to have a low threat level, however, it states that if the threat

from the source IP addresses are high and the threat calculated from the average time

between is low, then the threat level should be elevated. These rules, along with all

others, form an integral step in the fuzzy logi process. They dictate how alerts should be

After the FuzzyThreatLevelCollection is created from the set of rules, the contents

of the collection are used to create an XML document for System.Windows.Forms

objects to display as needed. This document follows the format shown below:

4 PM">

 <signature sig="1">

 ……………………
</host>

Since the fuzzy logic modules of the application do not and should not necessitate a

database connection, the signature is outputted in a numerical format. This functionality

gives a more detailed look at exactly what alerts are considered the most threatening with

respect to a sensor on a network.

c

treated, and allow the application to assign a grade of membership in the fuzzy category,

threat.

<host name="Insert Sensor Alias Here" time="4/2/2006 4:28:2

 <fuzzy_value>.64</fuzzy_value>
 </signature>

 51

The output object created by the fuzzy inference mechanism is a collection of

FuzzyThreatLevel obje the following

properties:

double fuzzy_threat_level;
int signature;

This object represents a threat level for a specific signature that has been calculated based

on metrics found in previous objects being subjected to signature-based rule.

 step

plements the interface listed

below.

public interface IDefuzzifier

turns the

 {

 count++;
evel;

 return dValue/(double)count;

cts. This custom structure is represented by

4.3.5 Defuzzification Interface

The final step in the fuzzy logic process is the defuzzification process. This

makes a calculation on each FuzzyThreatLevel object and returns a number that signifies

a level of threat for a sensor. The defuzzification process im

{

double Defuzzify(FuzzyThreatLevelCollection i);
 double GetCrispOutput();
 }

This interface exists because of the number of methods to defuzzify a fuzzy set. The

method chosen to defuzzify the FuzzyThreatLevelCollection object is the Mean of

Maximum. This method takes a simple average of all fuzzy threat levels and re

result.

public double Defuzzify(FuzzyThreatLevelCollection i)

 int count = 0;
 double dValue= 0.0;
 foreach(FuzzyThreatLevel t in i)
 {

 dValue += t.Fuzzy_Threat_L
 }

 }

 52

The value calculated at by the Defuzzify function is the value that is returned to the

c orms o ch is designated as the threat level for the

application.

 ere are several method

method ng

etter. Returning the

maximum value in the fuzzy set would increase the weight on low threat objects in a

milar fashion as higher priority threats, causing a reduction of reliability of output data.

The center of area method could be an appropriate solution but was not chosen due to the

mathematical complexity of the algorithm.

4.4 Diagrams

4.4.

The following diagram shows the basic flow between the fuzzy logic classes. The

the FuzzyEngine class before proceeding to the next step. For this diagram to be

class and each step of the fuzzy logic process. However, it has been determined that the

alling System.Windows.F bject, whi

Th s available for defuzzification, with no clear

ology on how to pick a defuzzification method. Other methods include, returni

the maximum membership value for a fuzzy set and a method to compute the center of

area for all overlaid membership functions with the dependant variable specified on the

appropriate axis. Changing to one of these methods would drastically change the

experimental outputs of this application, not necessarily for the b

si

1 ARF Class Diagram

actual implementation varies slightly from what is shown in one respect. The

FuzzyEngine class is acting as a controlling class and information is actually sent back to

programmatically accurate there would be a call and response between the FuzzyEngine

application flow and object manipulation is described with more detail in the following

diagram, figure 4.8.

 53

Figure 4.8: Fuzzy Logic Class Diagram

Some typical intrusion detection sensor placements are shown in the following diagram,

figure 4.9.

Figure 4.9: High Level Function of the ARF

 54

The application is designed to be able to analyze information in any sensor w

which there is a logical connection. This diagram also illustrates the separation between

ith

fication, the database used for the

plica e a network connection can exist.

the data and application. With a simple modi

ap tion could be positioned anywher

 55

CHAPTER V – TESTING

5.1 Introduction

e rule-sets utilized. The purpose of

s of the rule-sets in

 and

Parameters

yze the fuzzy threat level generated with several

ental parameters will remain the same

throughout the testing process. For each case study, four experiments are to be executed.

ach of these experiments requires two entities. The first of which is a set of

membership functions and the second is a set of rules.

les in a more case

by case natu

The experiments are to be executed in the following pattern as shown in table 5.1, below.

Testing of the ARF threat evaluation system will be demonstrated in a series of

case studies. An experiment will be described in the next section to be executed for each

case study. While these case studies will be informative, it should be noted that the

performance of this application is only as good as th

these tests is to gather evidence that will prove the effectivenes

question. This is necessary because a side-by-side comparison of the Snort alert log

the ARF fuzzy threat level is not feasible.

5.2 Testing Design

Each case study will anal

different combinations of membership functions and rule-sets. A separate dataset will be

utilized for each case study; however, the experim

E

There are two sets of membership functions. The first set of membership

functions is very general and would, theoretically, ship with the application. The second

set of membership functions is specific and takes measures to handle ru

re. The rule-sets also follow this pattern.

 56

Memb
Gener

Table 5.1: Experimental Parameters
ership Function Rule-Set Output

al General O1
General Specific O2
Specific General O3

Specific O4

, an output of the alert dataset,

and the final state of all application objects are recorded in this spreadsheet. This serves

as a long-term record of the experiment and will aid in analysis.

5.3 Case Study 1 (All Experimental Data)

This study represents a dataset collected in just under 27 days. There are

approximately two thousand alerts represented in the dataset ranging all levels of threat

from low to high.

5.3.1 Overview of Alerts

ut

hine. These alerts can be as benign as someone searching for a directory

structu

 to exploit a known vulnerability in an application

or system. The outcome of these high threat vulnerabilities varies, but can lead to

xecution of arbitrary code with privileges on a target machine, denial of service, or a

comprom

Specific

After the four experiments outlined above are executed on a dataset defined in

each case study, data for analysis needs to be outputted for analysis. This data will be

written to an Excel spreadsheet. The table shown above

This dataset represents alerts whose threat levels range from low to high. Low

threat alerts are typically defined as actions whose purpose is to collect information abo

the target mac

re of a target machine or can act as a first step to a more serious threat. A high

threat, however, is typically an attempt

e

ised file structure.

 57

5.3.2 Rule-Sets Defined

There are two separat out

These sets can be seen in in the appendices and will be discussed here in a

general fashion. Any set of rules defined in this application must implement the IRule

terface and inherit from the RuleBase class.

functio

el

lert, a

function checks the bou the interval [0,1] and

turns the threat leve

exist. The general rule-set uses a

single rule to inf

le because it must serve a wider spectrum of alerts. Each alert is run through a series of

tests that will increment the threat level in the same fashion that is

described above.

e rule-sets that are used through the testing process.

their entirety

in These two objects allow each rule-set to

n with the same basic operations and allow effortless integration into ARF.

Each set of rules has a general format that should be followed. First, a variable

threat is initialized to a floating point threat level between 0 and 1.0. After that, the threat

level is incremented or decremented based on a set of rules. The rules use the

FuzzyThreat object in question to make a determination of whether or not the threat lev

will be increased or decreased. After all adjustments have been made for the a

nds of the threat to make sure it lies within

re l for the set of alerts. This format would be considered best

practice, but the rule based inference mechanism used by ARF is flexible enough to cater

to any specific changes for each rule.

The specific rule-set defines a rule for every known signature. These rules take

into account the severity of the alert as well as the fuzzified input that is calculated in

previous portions of the application. Unknown alerts can be handled in a uniform

fashion, but for testing purposes unknown alerts do not

er the threat level for an alert. This rule is more descriptive than a single

ru

or decrement

 58

{

 this.IsHigh(f.Src_Ip_Frequency) ||

 // If a lot of different IPs are doing it in a low amount of
 // time...its probably new and needs to be looked at

if(this.IsH
 this.IsLow(f.Avg_Time_Between))

 this.IsMedHigh(f.Avg_Time_Between))

crement the threat level
 if(this.IsLowMed(f.Src_Ip_Frequency) && this.IsLow(f.Timespan))

 (f
 threat -= 1

 threat = CheckBounds(threat);
 return threat;
}

ay

Some examples of rules used in this application are shown below. The first

example is the heart of the general rule-set, acting as a “catch-all” rule for the application.

private double GRule(FuzzyThreat f)

 double threat = startmed;

 // If anything is a high threat, elevate the threat level
 if(this.IsHigh(f.Occurances) ||

 this.IsHigh(f.Timespan) ||
 this.IsHigh(f.Avg_Time_Between)
)
 threat += .1;

igh(f.Src_Ip_Frequency) &&

 threat += .5;

 // If a lot of different IPs are doing over a large timespan
// the threat should be elevated

if(this.IsHigh(f.Src_Ip_Frequency) &&

 threat += .2;

 // If not a lot of people are doing it over not a lot of time,
 // de

 threat -= .3;

 // If it is not happening a lot, decrement the threat level

if(this.IsLowMed .Occurances))
 . ;

As shown in the code listed above, the threat level for an unknown alert is

initialized to .5, run through a series of tests to increment or decrement the threat level,

and checked to make sure the level remains within the interval (0,1). While this rule m

seem verbose, it should be noted that it only needs to be implemented one time and not

for every available alert.

 The specific rules are generally much shorter, as shown in the code listing below.

 59

//'WEB-CGI calendar access'

// Low / No Threat
private double WEB_CGI_CALENDAR_ACCESS(FuzzyThreat f)

// http://www.snort.org/pub-bin/sigs.cgi?sid=882

{
 // This application does not exist on the system
 return 0.0;

This is

h

n

//'WEB-M
/ http://www.snort.org/pub-bin/sigs.cgi?sid=2570
// Hig
private double WEB_MISC_INVALID_HTTP_VERSION_STRING(FuzzyThreat f)
{
 double threat = starthigh;
 if(this.IsMedHi (p_Frequency

+= 2
if(this.IsHigh(f.Timespan))

 threat += .1;
 threat = this.CheckBounds(threat);

}

5.3.3 Membership Functions Defined

There are two separate sets of membership functions used throughout the testing

process. The sets can be seen in their entirety in the appendices and will be discussed

here in a general fashion. Each set ons need only implement the

IFuzzif

}

the rule defined for the specific alert created by the snort development team and

numbered 882. This threat exists as a flaw in an open-source calendar application, whic

does not exist on the target machine, therefore poses no threat. However, the code show

below shows a reasonable rule for a specific alert.

ISC Invalid HTTP Version String' (2570)
/

h Threat

gh f.Src_I))
 threat

 . ;

return threat;

Note that this rule follows the same basic pattern defined previously, an initialization, a

calculation, and a bounds checking mechanism.

of membership functi

ication interface to ensure operability with the application.

Each set of membership functions should also implement functionality to deal

with every metric defined in design phase. Function stubs are shown below:

 60

private double MembershipOccurances(int occurances);

private double MembershipTimeBetween(TimeSpan t);
private double MembershipSrcIPFreq(double ip_fre);

These function stubs take a crisp input and create a fuzzy output based on the operations

performed within the function.

The first set of membership functions to be described is the general membership

functions. These functions follow a straight line pattern show

private double MembershipTimespan(TimeSpan t);

n below in figure 5.1. In

is example, the maximum threat level plateaus at 0.8. th

Figure 5.1: Trend for Set of General Membership Functions

The only variation in the general trend shown in figure 5.1 is the boundary where

the highest threat starts and the subsequent slope of the line that is calculated from the

two points.

For the specific set of membership functions, other graph structures were used

5.3.4 Experimental Results

described in section 5.2 of this document.

and are described in figures 4.4 – 4.7.

The output of each experiment is shown below, in table 5.2, in the format

 61

Table 5.2: Experimental Results of Case Study 1 (Entire Alert Log)

Experiment Number Membership Function Rule Set Fuzzy Thre

at Level
1 General General 0.63
2 General Specific 0.51

4 Specific Specific 0.38

The results of this case study show a declining threat level for the first two

experiments and similar threat levels for the third and fourth experiments. The varying

property for the third and fourth experiments is the rule-set and the similarity of the fuzzy

threat levels would indicate that a general rule set may be all that is necessary for an

effective analysis of data for this mix of results. These results, while unexpected, may

serve to simplify the customization process of ARF over a series of sensors.

5.4 Case Study 2 (Low Threat Dataset)

This case study represents all alerts that are deemed “low threat” that exist in the

dataset collected for case study 1. As previously stated, these threats are considered to

interrogate a system rather than compromise.

All alerts that were deemed as low threats were placed into a separate local

database that represents a sensor with all low threat alerts. This database will be used to

simulate a remote sensor. The output of the experiment on a set of alerts that represents a

low threat is shown below in table 5.3.

Table 5.3: Experimental Results of Case Study 2 (Low Threat Alerts)

Experiment Number Membership Function Rule Set Fuzzy Threat Level

1 General General 0.5

3 Specific General 0.37

5.3.5 Analysis

2 General Specific 0.24
3 Specific General 0.4
4 Specific Specific 0.22

 62

The outputs of this experiment show that the dominant experimental entity in th

he similarity of the Fuz

is

case study is the rule-set. Notice t zy Threat Levels in experiments

 exist in

ow

one and three as well as two and four. This leads to the conclusion that the membership

functions are not as important and could possibly be neglected as a primary area of

research. However, another case is also possible. These results could be grouped in this

particular fashion because the specific rule set has the capability to properly categorize

threats that have been considered low.

5.5 Case Study 3 (Medium Threat Dataset)

This case study represents all alerts that are deemed “medium threat” that

the dataset collected for case study 1. All medium threat alerts from case study 1 were

copied into a local database that represents a sensor with a medium threat level. The

output of the experiment on a set of alerts that represents a medium threat is shown bel

in table 5.4.

Table 5.4: Experimental Results of Case Study 3 (Medium Threat Alerts)

Experiment Number Membership Function Rule Set Fuzzy Threat Level
1 General General 1
2 General Specific 0.67
3 Specific General 0.3
4 Specific Specific 0.57

The results of the experiments for case study 3 are not as clear as the first two

ion

case studies. There is no obvious trend shown in this data and few conclusions can be

drawn from this case study. The proximity of the outputs with varying membership

functions in experiment two and four could serve to solidify the assumption that a general

membership function maybe be utilized to categorize alerts. The amount of difference

between the second and fourth experiment (.1) is relatively high to make this assumpt

 63

based on this study alone. Based on this case study, it can be inferred that a different

approach to medium threat alerts should be investigated in the future.

5.6 Case Study 4 (High Threat Dataset)

This case study represents all alerts that are deemed “high threat” that exist in the

dataset collected for case study 1. All high threat alerts from case study 1 were copied

into a local database that represents a sensor with a high threat level. The output of the

experiment on a set of alerts that represents a high threat is shown below in table 5.5.

Table 5.5: Experimental Results of Case Study 4 (High Threat Alerts)

Experiment Number Membership Function Rule Set Fuzzy Threat Level

1 General General 0.4
2 General Specific 0.8

4 Specific Specific 0.7

Once again, it can be seen from the results that fuzzy threat levels group together

based on the rule-set in question. This follows the trend shown in case study 2. These

results could be grouped in this particular fashion because the specific rule set has the

capability to properly categorize threats that have been considered high. While the

difference in output levels for the second and fourth experiments is relatively high, .1, it

should be noted that they both reside within the interval defined as high.

5.7 Final Analysis

Boundaries for low threats have been defined as a threat level of 0 < threat ≤ .33.

Medium and high threats follow the same pattern: .33 < threat ≤ .66 and .66 < threat <

.99, respectively. It could be assumed that the optimal combination of rule-sets and

3 Specific General 0.43

.

 64

membership functions would be the combination that, over all experiments, would show

an increase in threa

two separate experim nts that follow this pattern. The first of which is experiment 2 that

used a general membership function and a specific set of rules. The second is experiment

4 that used a specific set of m

of these experiments is shown below in figures 5.2 and 5.3.

Figu

Figure t levels of the medium dataset

do n

of a successful test. All

expected values meet the actual values and the escalating threat level across datasets

t level from high threat dataset. There are

e

the low threat dataset to the

embership functions and a specific set of rules. The output

Experiment 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re 5.2: Experiment 2 Data (General Membership Functions, Specific Rule-Set)

All Low Med High
Dataset

5.2 shows a desired trend in data, however the threa

ot fall within the range of (.33,.66].

Figure 5.3, shown below, has all the characteristics

 65

sho

set of rules is the optimal situation for ARF to function effectively.

ws that the combination of a specific set of membership functions as well as a specific

Experiment 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

All Low Med High

Figure 5.3: Experim mbership Functions, Specific Rule-Set)

slightly low

roughly in the m

Dataset

ent 4 Data (Specific Me

The experimental results depicted in Figure 5.3, above, show a threat level that is

er than in Figure 5.2. The low threats as well as the high threat datasets are

iddle of the range that was expected.

 66

CHAPTER VI – CONCLUSIONS AND FUTURE
RESEARCH

The ARF threat evaluation system was developed as an application layer fuzzy

alysis tool. Specifically, the applicatio

logic an n examines the alert logs of multiple

sensors and uses a rule-based fuzzy logic infere

a senso e design called

for an application that could be tuned

existing knowledge of Snort signatures. The

entities, one for all front end database and GUI functionality and another entity dedicated

to the fuzzy logic engine. The brain of th

mem t the

more specific the m ns and rule-sets are, the more accurate the output of

the application becom

area e

boundaries set within each m

system stems could drastically

reduce or elim

could be a self-contained entity usable to anyone, instead of just knowledgeable security

per

 Another

applica s,

publicly available at www.nessus.org can test the vulnerability of a system for a specific

alert. These scripts are used at the kernel level to test the vulnerability of a system and if

the vulnerability does not exist, Snort would not log the alert. While this topic is not

nce engine to generate a level of threat in

r. ARF is designed to be scalable, portable, and customizable. Th

to any environment by someone who has an

design also dictated two separate software

e fuzzy logic engine resides in a set of

bership functions and a set of rules. Through experimentation, it was found tha

embership functio

es. This conclusion, while somewhat intuitive, leads to the first

 of future research. A non-probabilistic learning system that can change th

embership function could be developed. A similar learning

 could be implemented for a set of rules. These learning sy

inate customization in the application. With these systems in place ARF

sonnel.

interesting area of research that would improve the reliability of this

tion is the use of the Nessus Attack Scripting Language (NASL). Existing script

 67

dire

reduce eed up the fuzzy logic process within

AR

 ensor. Further

wor d

attacks cement would essentially

turn ly a

robust network based system.

 ing

time to

method from the fuzzy logic engine. A dynamic

programming approach could possibly be implemented in this application to only analyze

new alerts within the MySQL log. This method of storing results for small portions of

data to be looked up later, instead of being recalculated, could radically decrease

processing time in the application.

ctly related to fuzzy logic, the outcome of this Snort enhancement would work to

the MySQL storage space necessary and sp

F.

In the current state, ARF calculates a threat level for a single s

k could be done to correlate alerts across multiple sensors to check for distribute

 and give a threat level for an entire network. This enhan

 Snort into a hybrid intrusion detection system, giving security personnel not on

host based system but also a

With any application, as the amount of data increases the amount of process

 analyze the data also increases. In the future it will be necessary to adopt a new

 of storing and calculating results

 68

REFERENCES
1. Bace, R.; Intrusion Detection, hnical Publishing, 2nd Edition,

2. Kemmerer, R.A.; Vigna, G.; “Intr tection: A Brief History and

rothy E. D An Intrusio etecti del," sp, p. 118, 1986 IEEE

Symposium on Security and Privacy, 1986.

4. Innella, R.; McMillan, O.; “An Introduction to Intrusion Detection Systems”,

http://www.securit 6-2001, accessed 10-5-

5. Topallar, M.; De ; Anarim, E.; Ciliz, K. “ usion

detection by monitoring Windows registry accesses” IEEE Signal Processing and

Communications Applications Conference, 2004, Publication Date: 28-30 April

20 , On page(s 28 - 731

6. Mukherjee, B.; Heberlein, L.T.; Levitt, K.N.; “Ne rk intrusion detec

IEEE Network,P ication D e: May/ 4, Vo e: 8, Issue: 3, On page(s):

26-41

7. Herringshaw, C.; “Detecting Attacks on Networks”, IEEE Computer, 199

Volume 30, Issue 12, Dec. 1997 Page(s):16 – 17

8. Marchette, D.; “Computer In usion De ction and N twork Monitoring :

pringer Verlag, July 2001

 Macmillan Tec

Indiana, 2000

usion De

Overview”, IEEE Xplore Computer, Volum 35, Issue 4, Part e

Supplement, April 2002 Page(s):27 – 30

3. Do enning. " n-D on Mo

yfocus.com/infocus/1520, updated 12-

2005

pren, M.O. Host-based intr

04): 7

two tion”

ubl at Jun 199 lum

7,

tr te e A

Statistical Viewpoint”, S

 69

9. Fe F et al. S ox and adica Geneva

19

10. Can infectious d s be er ted? osium papers. Reviews of infectious

diseases, 1982, 4: 913-984.

11. The American Heritage® Dictionary of nglish age, Fourth Edi

Copyright © 2000 by Houghton Mifflin Company.

12. WarRoom Resea LC. “1 nform System urity Survey”.

13. Computer Secur Institute’ o puter Crime Survey

, Som jayi A. “Computer Immunology” Communications

f M, 40(97.

15. Immunity by Design: An Artificial Immune System. S. Hofmeyr and S. Forrest.

16. Zadeh, Lofti A. “Fuzzy Logic”, IEEE Computer April 1988, On pages(s): 83-92

17. Zadeh, Lofti A. “Making Co puters T eople”, IEEE Spectrum August

1984, On page(s): 26-32

18. Za h, Lofti A. Logi = Compu o

Fuzzy Systems, Vol 4 No. 2 May 1996, On page(s): 103-111

19. Yan, Jun; Ryan, Michael; Power, Jame “Using Fuz y Logic” Prentice H l

International 1994

20. Yagishita, O., et al e water purification

s a ions of Fu ntrol , M., 1 5, 19-

0

21. Yasunobu, S., et al., “Autom c train o n by icative fuzzy cont , in

Industrial Application of Fuzzy Control, ed. by Sugeno, M., 1985, 1-18

nner mallp its er tion. , World Health Organization,

88

isease adica Symp

 the E Langu tion

rch L 996 I ation s Sec

ity s 1998 C m

14. Forrest S, Hofmeyr S A a

o the AC 10): 88-96, 19

m hink like P

de “Fuzzy c ting with W rds”, IEEE Transactions on

s; z al

., “Application of fuzzy reasoning to th

proves” in Indu trial Applic t zzy Co , ed. by Sugeno 98

4

ati peratio pred rol”

 70

22. Sugeno, M., “Industrial Application of Contr North-Holland, 19

23. Castro, J. L.; “Fuzzy Logic Controllers Are Universal Approximators”, IE

TR SACTION N SYS MS, MA ND C ERNETICS, VOL .

4, APRIL 1995, On page(s): 629-635

24. W. Frawley and G. Piatetsky-Shapiro a Mathe , Knowledge Discov

Databases: An Overview. AI agazine Fall 1992, . 213-228.

ata App rusion

De n”; 7th U IX Se Sym m, 1998 Pp. 79–94 of the

Proceedings.

26. M d Kantarzik, Personal Interview, 2-10-2006

27. Ry ake; Men g Lin; ulai isto; “ ion Detection wi

Ne etwork

28. http://www.snort.org/about_ . Acc 2/21/2

29. http://www.net-security.org/ .php?id=860. Accessed 2/24/2006

30. Carrettoni, F; Castano, S; Martella, G;

Security System or Threat Detection using Fuzzy Logic”

lin Ju a; Kouk soula, Ourania; Dickerson, Julie; “Fuzzy

32. Luo, Jianxiong; Bridges, Susan M.; “Mining fuzzy association rules and f

frequency episod r intrusion detection”; International Journal of Intelligent

Systems; Volum No: 8 ages(s): 687-703; copyright 2000 John Wiley &

Sons, Inc.

Fuzzy ol”, 85

EE

AN S O TE N, A YB 25, NO

nd C. us ery in

 M , pp

25. Lee, Wenke; Stolfo Salvatore J., “D Mining roaches for Int

tectio SEN curity posiu

ehme

an, J g-Jan Miikk nen, R Intrus th

ural N s”

snort/ essed 006

article

Samarati, P; “RETISS: A Real Time

 f

31. Di , John E; Jusckerson kk ou

Intrusion Detection”

uzzy

es fo

e: 15; , p

 71

33. ht frodita.un .edu.c diagrams.html. Created:

April 14, 2005. Accessed: April 24, 2006

34. http://ieeexplore.ieee.org/iel2/575/5225/00202210.pdf?isnumber=&arnumber=20

2210. Created: Oct 6

35. http://www.cisco articles/article.asp?p=2

Created: February 15, 2002. Accessed: April 24, 2006.

36. http://en.wikipedia.org/wiki/ age:LTI.png. Created December 27, 2005

Accessed: April 24, 2006.

37. Yu, Yingbing. “Anomaly Intrusion Det and T t Evaluation using

Ar al Immunity Model and Fuzzy L University of Louisville Graduate

School Dissertation. May 2005.

tp://a icauca o/~cbedon/snort/snortdev

ober 3, 1991. Accessed: April 24, 200

press.com/ 5327&seqNum=4&rl=1.

Im .

ection hrea

tifici ogic”.

 72

APPENDIX I – ESTI G DOCUMENTS
AllAlerts.xls

is docu t serves a log for th experime tal outputs f case study 1. Ther are six
parate e workshee ssociated with this file to be named and described below.

Totals
is work t shows t ut of l four ex riments for this case study
xperim al Outpu
enerate 18/2006 2 PM

perime
mber

Membership
Fun

Rule
Set

Fuzzy Threat
Level

1 Gen General 0.63
2 Gen Specific 0.51
3 Spe General 0.37
4 Spe Specific 0.38

hows the final state of all custom application objects used during the first experiment.

Number Occurances
Timespan

Severity
rc IP

Ave
Bet Signature
50
42
13

 44
10
0

 8
35
7

 36
36
7
36
20

 35
0
0

uzzy Threat Data

Timespan verity
rc IP

ncy
Average Time
Bet ignature
0.80
0.12

T N

Th men s a e n o e
se xcel ts a

Th shee he outp al pe
E ent ts
G d: 4/ :52:44

Ex nt
Nu ction

eral
eral
cific
cific

Experiment 1 – Application State
S
Crisp Threat Data

S

rage Time
ween (seconds) (seconds)

32
frequency
1.50

1 3

03
1 2

2 10 45 1 77.15 4
3 262 9 1 13.10 15
4 9 42 1 4.50 16
5 6 3 1 3.00 882
6 1 0 1 1.00 1002
7 99 20 1 14.14 1070
8 6

35 1 6.00 1112

9 18 21 1 6.00 1113
10 102 20 1 14.57 1248
11 102 20 1 14.57 1288
12 2

2
14 1 2.00

1671

13 10 20 1 14.57 1807
14 61 6 1 1.27 1852
15 187 0 1 6.93 2570
16 2 1 1 2.00 3463
17 2 1 1 2.00 3813

F

S
Number Occurances Se freque

0.28
ween S

1 0.31 0.80 1.00 2
2 0.80 0.80 1.00 0.80 4

 73

3 0.80 0.80 1.00 0.80 0.17
0.58
0.11
0.10
0.21
0.80
0.80

 0.20
0.20
0.10
0.20
0.40
0.11
0.10
0.10

uzzy Threat Level Data

Experiment 2 – Application State
Crisp Threat Data

N
espan

Severity
Src IP
frequency

Average Time
Between (seconds) Signature

1 1 1.50 50 2
2 3 1 77 4
3 2 1 13.10 15
4 9 1 .50 44 16
5 6 1 00 10 882
6 1 1 .00 0 1002
7 99 1 .14 8 1070

15
4 0.73 0.80 1.00 0.63 16
5 0.52 0.12 1.00 0.45 882
6 0.17 0.10 1.00 0.22 1002
7 0.80 0.80 1.00 0.80 1070
8 0.52 0.80 1.00 0.80 1112
9 0.80 0.80 1.00 0.80 1113
10 0.80 0.80 1.00 0.80 1248
11 0.80 0.80 1.00 0.80 1288
12 0.24 0.10 1.00 0.33 1671
13 0.80 0.80 1.00 0.80 1807
14 0.80 0.80 1.00 0.25 1852
15 0.80 0.80 1.00 0.80 2570
16 0.24 0.10 1.00 0.33 3463
17 0.24 0.10 1.00 0.33 3813

F

Threat
Number Level Signature
1 0.5 2
2 1 4
3 1 15
4 0.6 16
5 0.1 882
6 0.1 1002
7 1 1070
8 0.7 1112
9 0.8 1113
10 1 1248
11 1 1288
12 0.1 1671
13 1 1807
14 0.6 1852
15 1 2570
16 0.1 3463
17 0.1 3813

umber Occurances (seconds)
3 32

Tim

 100
 26

45
9

.15 42
13

42 4
3 3.
0 1
20 14

 74

8 6 35 1 6.00 35 1112
9 18 21 1 6.00 7 1113
10 102 20 1248
11 102 20 1 14.57 36 1288

14 1 2.00 1671
13 102 1 57 07

4 185
15 187 0 1 .93 2570
16 2 1 1 .00 3463
17 2 1 1 .00 3813

 Data

ranc ri
 IP Average Time

g
1 0.31 .80 .28 2
2 0.80 .80 .80 4
3 0.80 .80 .80 15
4 0.73 0.80 1.00 0.63 58 16
5 0.52 0.12 1.00 0.45 11 882

0.10 1.00 0.22 10 1002
 1.00 0.80 21 1070

8 0.52 .80 1.00 0.80 80 1112
9 0.80 .80 1.00 0.80 80 1113
10 0.80 .80 1.00 0.80 20 1248
11 0.80 0.80 1.00 0.80 0.20 1288
12 0.24 0. 1671
13 0.80 0.80 1807
14 0.80 0.80 1.00 0.25 0.40 1852
15 0.80 0.80 1.00 0.80 0.11 2570
16 0.24 0.10 1.00 0.33 0.10 3463
17 0.24 0.10 1.00 0.33 0.10 3813

Fuzzy Threat Level Data

Number
Threat
Level Signature

1 0.2 2
2 0.4 4
3 0.6 15
4 1 16
5 0 882
6 0.1 1002
7 0.6 1070
8 0.6 1112
9 0.8 1113
10 0.8 1248
11 0.4 1288
12 0.1 1671
13 0.6 1807

 1 14.57 36

12 2 7
20
6

14.
1.27

36 18
20 1 61 1 2

6 35
2 0
2 0

Fuzzy Threat

ty
Src
frequency Between SiNumber Occu es Timespan Seve nature

0 1.00 0 0.80
0 1.00 0 0.12
0 1.00 0 0.17

0.
0.

6 0.17 0.
7 0.80 0.80 0.

0 0.
0 0.

 0 0.

10 1.00 0.33 0.10
1.00 0.80 0.20

 75

14 0.1 1852
2570
3463

17 0.7 3

 Experiment 3 – Ap
Crisp Threat Data

nces
Timespan
(seconds Severity

Src IP
frequency

Average Time
Betwee conds) Signature

32 1 1.50 50 2
77.15

 1 15
4 9 4.50 44 16
5 6 3.00 10 882
6 1 1.00 0 1002
7 99 20 1 14.14 8 1070

35 1 6.00 35 1112
21 1 6.00 7 1113

0 1 14.57 36 1248
11 102 1 14.57 36 1288
12 2 1 2.00 7 1671
13 102 1 14.57 36 1807
14 61 6 1852
15 187 0 2570

1 1 2.00 0 3463
1 1 2.00 0 81

Fu eat Data

Number Occura s Timespan Severity
S
fr

Average Time
Between Signature

1 0.02 0.20 1 0 0.00 1.00 2
2 1.00 0.20 1 0 0.20 1.00 4

 0.20 1 0 0.20 0.95 15
 0.20 1.00 0.00 0.46 6

 0 1 0 82
6 0.01 1.00 1 0.00 1.00 1002
7 0.97 0.20 1 0.20 0.91 1070
8 0.03 0.20 1 0.00 0.20 1112
9 0.09 0.20 1 0 0.00 0.20 1113
10 1.00 0.20 1.00 0.20 0.91 1248

0.20 1.00 0.20 0.91 1288
. 0.00 1.00 1671

1.00 0.20 0.91 1807
14 0.35 0.20 1.00 0.00 0.67 1852
15 1.00 0.54 1.00 0.00 1.00 2570

6 0. 1.00 1.00 0.00 1.00 3463
7 0.01 1.00 1.00 0.00 1.00 3813

15 1
16 0.7

381

plication State

Number Occur
1 3

a

) n (se

2 1003
3

45
9

1
1

42
3.10 13

4
262

42 1
3 1
0 1

8 6
9 18
1 102 20

20
14
20

1 1.27 20
1 6.93 35

16 2
17 2 3

3

zzy Thr

nce
rc IP
equency

.0

.0
3 1.00
4 0.05

.0
1
85 .03 0.99 .00 .00 1.00

.00

.00

.00

.0

11 1.00
2 0.1

13 1.00
01 1

0.20
00 1.00

1
1

01

 76

t Level Data
at Level Signature

1 0.4 2
 0 4

3 0.3 15
4 0.4 16
5 0.4 882
6 0.4 1 02
7 0.3 1 70

1112
1113

0 0 1248
11 0.3 1288
12 0.4 1671
13 0.3 1807
14 0.5 1852
15 0.5 2570

3463
3813

eriment 4 – A plication State

risp Thr Data

Number Occurances
Timespan
(secon

Average Time
Between
(seconds) Signature

1 3 32 1 1.50 50 2
2 1003 45 1 15 42 4
3 1 13.10 13 15
4 1 4.50 44 16
5 1 3.00 10 882
6 1 1.0 0 1002
7 1 14. 8 1070
8 6 1 .0 1112
9 18 1 00 1113
10 102 1 4.57 1248
11 102 1 .57 1288
12 2 1 1671
13 102 20 1807
14 61 6 1852

 0 1 6.93 2570
16 2 1 1 2.00 3463

7 2 1 1 2 1

Fuzzy Th Data

Number Occurances Timespan Severity
Src IP
frequency

e
Signature

 0.20 1.00 0.00 2

Fuzzy Threa
Number Thre

 2 .2

0
0

8 0.4
9 0.4

1 .3

16 0.4
17 0.4

Exp p

C eat

ds) Severity
Src IP
frequency

77.
 262 9
 9 42
 6 3
 1
 99

0
20

0
14
0 35 6 35

21 6. 7
20 1 36
20
14

14
2.00

36
7

 1 14.57 36
1 1.27 20

15 187 35

0
0 381 .00 3

reat
Average Tim
Between

1 0.02 1.00

 77

2 1.00 0.20 1.00 0.20 4
 1 0.20 1 0.20 15

4 0.05 0.20 1 0.00 16
5 0.03 0.99 1 0.00 882
6 0.01 1.00 1 0.00 1002
7 0.97 0.20 1.00 0.20 1070
8 0.03 0.20 1.00 0.00 1112

0.20 1.00 0.00 1113
10 1.00 0.20 1.00 0.20 0.91 1248

0.20 1.00 0.20 1288
12 0.01 1.00 1.00 1671
13 1.00 0.20 1.00 1807
14 0.35 0.20 1.00 1852
15 1.00 0.54 1.00 2570
16 0.01 1. 3463

 1.00 1.00 0.00 3813

Fuzzy Th t Level D
Number T t Level Signature
1 0 2
2 0.1 4
3 0 15

16
5 0 882

 0 1002
7 0.6 1070
8 0.3 1112
9 0.3 1113
10 0.5 1248
11 0.2 1288

1671
1807
1852

15 0.7 2570
16 0.7 3463
17 0.7 3813

HighThreatExperiment.xls

Totals
Experimental Outputs
Generated: 4/18/2006 3:4

Experimen
Number

Membership
Funct

Rule
Se

Fuz at
Lev

1 Gene General 0.4
2 Gene l Specific 0.8
3 Specific General 0.43
4 Specific Specific 0.7

1.00
0.95 3 .00 .00

.00 0.46

.00 1.00

.00 1.00
0.91
0.20

9 0.09 0.20

11 1.00 0.91
0.00 1.00
0.20 0.91
0.00 0.67

1.00 0.00
00 1.00 0.00 1.00

17 0.01

1.00

rea ata
hrea

4 1

 6 .2

12 0.2
13 0.6

14 0.4

4:52 PM

t
ion t

zy Thre
el

ral
ra

 78

Experiment 1 at

Experiment 2 – Application State

risp Threat Da

 Occurances
Timespa
(seconds Severity

P
ency

Average Time Between
(seconds ignature

0 1 35 70
1 0 63
1 0 3813

zzy Threat Da

Number Occurances Timespan Severity
Src IP
frequency Average Time Between Signature

1 0.80 0.80 2570
0.10 1.00 0.33 0.10 3463
0.10 1.00 0.33 0.10 13

zzy Threat Level Data
mber Threat L Signature

1 2570
3463
3813

– Applic ion State

C ta

Number
n
)

Src I
frequ) S

1 187 6.93 25
2 2 1
3 2

2.00
2.00

34
1

Fu ta

1.00 0.80 0.11
2 0.24
3 0.24 38

Fu
Nu evel
1
2 0.1
3 0.1

 79

xperiment 3 – App ation State

mber Occuran
Timespan
(seconds Severity S c P frequen y

Average Time
Between
(seconds) Signature

187 0 1 6.93 35 70
2 1 1 2.00 0 63
2 1 1 2.00 0 13

S n
ime

0.00
01 0 0.00 1.00

 0 0.00 1.00

uzzy Threat Level Data
umber hreat Level Signature

 2570
 3463

Crisp Threat Data

Number Occurances
Timespan
(seconds)

Average Time
Between
(seconds) Signature

0 1 6.93 35 2570
1 2.00 3463

2 2.00

zzy Threat Da

mber Occuran Timespan Seve S frequen
Average Time
Between ature

0.80 1.00 0.80 0.11 2570
0.10 1.00 0.33 0.10 3463
0.10 1.00 0.33 0.10 3813

zzy Threat Level Data
mber Threat L Signature

1 2570
0.7 3463
0.7 3813

Severity Src IP frequency
1 187
2 2 1

1

0
0

3 1

3813

Fu ta

Nu ces rity rc IP cy Sign
1 0.80
2 0.24
3 0.24

Fu
Nu evel
1
2
3

E lic
Crisp Threat Data

Nu ces

) r I c
1 25
2 34
3 38

Fuzzy Threat Data

Number Occurances
00

Timespan
.54

Severity rc IP freque cy
Average T
Between
1.00

Signature
1 1. 0 1.00 2570
2 0. 1.0 1.00 3463
3 0.01 1.0 1.00 3813

F
N T
1 0.5
2 0.4

 3 0.4 3813

 80

Experiment 4 – Appli n State
isp Threat Dat

s
Timespan
(seconds) S verity Src IP frequenc

Average Time
Between
(seconds) Signature

0 1 6.93 35 570
1 1 2.00 0 463
1 1 2.00 0 813

zzy Threat Da

Number Occurances Timespan
Average Time
Between Signature

1 1.00 0 1.00 2570
1 1.00 1.00 0.00 1.00 463
1 1.00 0.

zzy Threat Level Data

mber
at

vel Signature
70

 .7 463
 .7 813

h r

tals
Experim Outpu
Generated /2006 3:4 M

Experimen
Number

Membership
Function

Rule
Set

uzzy Threat
evel

eneral General 1
General Specific 0.67

 Speci General
4 Speci Specific 0.57

eriment 1 – A pl ation State
isp Threat Dat

Number Occurances
Timespan
(s

Src IP Average Time
etween (seconds) Signature

1 99 2 1070
 20 1 14.57 36 1248

3 102 1 14 36 1807

zzy Threat Data

catio
Cr a

Number ccurance
1 187

O e y
2

2 2 3
3 2 3

Fu ta

Severity Src IP frequency
.54 1.00 0.00

2 0.0
3 0.0

3
3813 1.00

00 1.00

Fu

Nu
Thre
Le

1 0.7 25
2 0 3
3 0 3

MedT reatExpe iment.xls

To
ental ts
: 4/18 4:52 P

t F

L
1 G
2
3 fic 0.3

fic

Exp p ic
Cr a

econds) Severity frequency B
0 1 14.14 8

2 102
20

.57

Fu

 81

Number curances espan S erity
S
fr

A ge Time
B een S re

 0 1.00 0.80 0.21 1070
 .80 .80 1.00 0.80 0.20 1248
 .80 .80 1.00 0.80 0.20 1807

hreat Le

mber
t

Experiment 2 – Application State

nces
Timespan

Severity
Src IP
frequency

Average Time
Between (seconds) Signature

 1 14.14 8 1070
1 14.57 36 1248
1 14.57 36 1807

Fuzzy Threat Data

Number Occurances Timespan Severity
Src IP
frequency

Average Time
Between Signature

1 0.80 0.80 1.00 0.80 0.21 1070
2 0.80 0.80 1.00 0.80 0.20 1248
3 0.80 0.80 1.00 0.80 0.20 1807

Fuzzy Threat Level Data

Number
Threat
Level Signature

1 0.6 1070
2 0.8 1248
3 0.6 1807

Experiment 3 – Application State
Crisp Threat Data

Number Occurances
Timespan
(seconds) Severity

Src IP
frequency

Average Time
Between
(seconds) Signature

1 99 20 1 14.14 8 1070
2 102 20 1 14.57 36 1248
3 102 20 1 14.57 36 1807

Oc Tim ev
rc IP
equency

vera
etw ignatu

1 0.80 0.8
2 0 0
3 0 0

Fuzzy T vel Data

Nu
Threa
Level Signature

1 1 1070
2 1 1248
3 1 1807

Crisp Threat Data

(seconds) Number Occura
1 99 20
2 102 20
3 102 20

 82

Fuzzy Threat Data

Number Occu
e Time
n Signature

1 0.97 0.20 .20 0.91 1070
2 1.00 0.20 .20 0.91 1248
3 1.00 0 1.00 0.20 0.91 1807

Fuzzy

Number Signature
1 0.3
2
3

Experiment 4 – Application State
Crisp T

Number nces
Timespan
(seconds) Severity Src IP frequency

Average Time
Between
(seconds) Signature

1 99 20 1 14.14 8 1070
2 102 1 14.57 36 1248
3 .57 36 1807

Fuzzy

Number
erage Time
tween Signature

1 0.20 0.91 1070
2 0.20 0.91 1248
3 1.00 1.00 0.20 0.91 1807

Fuzzy
Number ure
1
2 0.5
3 0.6 1807

M

Rule Fuzzy Threat

ral

rances Timespan Severity
Src IP
frequency

Averag
Betwee

1.00 0
1.00 0

0.2

Threat Level Data
Threat
Level

1070
0.3 1248
0.3 1807

hreat Data

 Occura

20
102 20 1 14

Threat Data

Occurances Timespan Severity Src IP frequency
Av
Be

0.97 0.20 1.00
0.20 1.00 1.00
0.20

reat Level Data Th
 Threat Level Signat

0.6 1070
1248

LowThreatExperiment.xls

Totals
Experimental Outputs

:44:52 P

Generated: 4/18/2006 3

Experiment
e

Membership
Function Numb r Set Level

1 Gene General 0.5

 83

2 General Specific 0.24
3 Specific General 0.4
4 Specific Specific 0.22

Experiment 1 – Application State
Crisp T

Number Signature
1 10 882
2 35 1112
3 36 1288
4 1671
5 61 1852

Fuzzy Threat Data

Number Timespan Severity frequency Between Signature
1 0.52 0.12 1.00 0.45 0.11 882
2 0.80 0.80 1112
3 0.80 88
4
5 0.80 2

Fuzzy Threat evel
Number Thr
1 0.1
2
3 1
4 0.1
5 0.6

Crisp Threat Data

Number Occurance ds) Signature
1 6 882
2 6 1112
3 1288
4 1671
5 20 1852

Fuzzy

Number ture
1 0.52 0.12 1.00 0.45 0.11 882
2 0.52 1.00 0.80 0.80 1112

hreat Data
Time

 Occurances (seconds) S
span

everity
Src IP
frequency

Average Time
Between (seconds)

6 3 1 3.00
35 1 6.00 6

102 20 1 14.57
2 14 1 2.00 7

6 1 1.27 20

Src IP Average Time

 Occurances

0.52 0.80 1.00
 0.80 1.00 0.80 0.20 12

0.24 0.10 1.00 0.33 0.10 1671
 0.25 0.40 1850.80 1.00

 L Data
 eat Level Signature

882
0.7 1112

1288
 1671

1852

Experiment 2 – Application State

Average Time
s (seconds) Severity frequency Between (secon

0

Timespan Src IP

3 1 3.00 1
35 1 6.00 35

102 20 1 14.57 36
7 2 14 1 2.00

.27 61 6 1 1

Threat Data

 Occurances Timespan Severity frequency
e

Between Signa
Src IP Average Tim

0.80

 84

3
4
5

Fuzzy Thr
Number Threat Level
1 0
2
3
4
5

Crisp T

Number ignature
1
2 1112
3 102 36 1288
4 1
5 61 6 2

Fuzzy

Number
1 0.03
2
3 0.91 1288
4 0.00 1.00 1671
5 0.67 1852

Fuzzy

Number
1
2 0.4
3
4
5 0.5 1852

Crisp Threat Data

Number) Signature
1 882
2 6 1112

0.80 0.80 1.00 0.80 0.20 1288
0.24 1671

1852
 0.10 1.00 0.33 0.10

0.80 0.80 1.00 0.25 0.40

eat Level Data
 Signature

882

0.6 1112
0.4 1288

1 0.1 167
0.1 1852

Experiment 3 – Application State
hreat Data

span Src IP Average Time
 Occurances (seconds) Severity frequency Between (seconds) S

882

Time

6 3 1 3.00 10
6 35 1 6.00 35

20 1 14.57
2 14 1 2.00 7 167

1 1.27 20 185

Threat Data

 Occurances Timespan Severity frequency Between Signature
Src IP Average Time

0.99 1.00 1.00 882
0.03 0.20 0.20 1112

0.00
1.00 0.00
1.00 0.20 1.00 0.20

0.01 1.00 1.00
0.35 0.20 1.00 0.00

Th reat Level Data
Threat
Level Signature
0.4 882

1112
0.3 1288
0.4 1671

Experiment 4 – Application State

Timespan Src IP Average Time
 Occurances (seconds) Severity frequency Between (seconds

6 3 1 3.00 10
35 1 6.00 35

 85

3 102 1288
4 2 14 2.00 7 1671
5 61 20 1852

Fuzzy Thr

Number Occurances Timespan Severity frequency Between Signature
1 1.00 882
2 0.20 1112
3 1288
4 1671
5 1.00 0.00 0.67 1852

Fuzzy

Number
1
2 0.3 1112
3
4
5

20 1 14.57 36
1

6 1 1.27

eat Data

Src IP Average Time

0.03 0.99 1.00 0.00
0.20 1.00 0.00 0.03

1.00 0.20 1.00 0.20 0.91
1.00 0.00 1.00 0.01 1.00

0.35 0.20

Threat Level Data

Threat
ure Level Signat

0 882

0.2 1288
 0.2 1671

0.4 1852

 86

APPENDIX II – SOURCE CODE
ARF_Main.cs

using System;
sing ystem Drawiu S . ng;
using System.Collections;

el;using System.ComponentMod

using System.Net.Sockets
using System.Threading;

namespace arf
{
 /// <summary>
 /// Summary descri
 /// </summary>
 public class ARF_M
 {

 /// </summar
 public ARF_M
 {
 //
 // Required for Windows Form Designer support
 //
 Initia

r the Form Object

onization of all the
xml

using System.Windows.Forms;
using System.Data;
using System.Xml;
using MySQL.Data;
using MySQL.Data.MySqlClient;

nt; using System.Data.SqlClie
using System.Diagnostics;

using System.Net;

;

ption for Form1.

ain : System.Windows.Forms.Form

 /// <summary>
 /// Constructor for the form object

y>
ain()

lizeComponent();

 //
 //
 }

 /// <summary>

 /// Preliminary Setup fo
 /// </summary>

s e) private void Form1_Load(object sender, System.EventArg
 {

teNetworkListBox(); Popula
 treeView1.ExpandAll();

 }

 /// <summary>

 /// Starts the threaded synchr
sensors listed in hosts.

 87

 /// </summary>
 private void button1_Click(object sender, EventArgs e)
 {
Thread startSync = new Thread(new ThreadStart(StartHostConnect));
 startSync.Start();
 }

s.Text = "";

e.Now.ToString() +"\r\n";

Text += "Ending Sync " +
ring() +"\r\n";

ort databases to local MySQL Server

 /// <param name="SensorN to
ocal

>
gle(MySqlConnection connection, string

// to be copied locally
 // --> events ta
 // --> iphdr tab
 // Start the tran

// locally

n and return true
 // if the transaction fails, rollback the

// tr

 // Ope
 // Create insert snapshot sql statement

 // Save Resu
 // clo

 // Open local connection

o event monitor
 connection

 /// <summary>
 /// Starts the threaded synchronization process
 /// </summary>
 public void StartHostConnect()
 {
 //txtSyncStatu

txtSyncStatus.Text = "Starting Sync " +
System.DateTim

MySqlHostConnect();

 txtSyncStatus.
System.DateTime.Now.ToSt

 }

 /// <summary>
 /// Sync a remote sn
 /// </summary>
 /// <param name="connection">Connection String For Remote

MySQL Server</param>
ame">Alias of Remote Server
database</param> reference in l

 /// <returns>True if the host syncs</returns
 private bool SnycSin

SensorName)
 {
 // Find Timestamp of Last Alert Logged Locally for Sensor
 // Create transactions of the alerts from Remote Database

ble
le
saction to copy remote records

on succeeds, commit the // If the transacti
 // transactio

ansaction and return false

n remote connection

 // execute statement
ltset

 se connection

 // insert saved result int
 // close Local

 88

 // **
 FIND timestamp of last alert logged locally

 // **
n LocalConnection =

tTime = "SELECT MAX(timestamp) from

RE sensor_alias = '" +

ction);

Command.ExecuteReader();

ateTime = tempDateTime.AddSeconds(-
1.0);

MM-dd

se
LastTime = "";

ime != "")

 else
= "";

.Close();

MOTE ALERTS TO BE COPIED

ure, e.timestamp, '";

 //

 MySqlConnectio

this.MySqlConnect();
 LocalConnection.Open();

 string LastAler
event ";

LastAlertTime += WHE
SensorName + "'";

 string LastTime = "";
string Options = "";

MySqlCommand LastTimestampCommand = new

MySqlCommand(LastAlertTime,LocalConne
 MySqlDataReader LastTimestampReader;
 LastTi

LastTimestamp
mestampReader =

 MySQL.Data.Types.MySqlDateTime tempMySqlDate;
 System.DateTime tempDateTime;
 while(LastTimestampReader.Read())
 {
 tempMySqlDate =

LastTimestampReader.GetMySqlDateTime(0);

 if(!tempMySqlDate.IsNull)
 {
 tempDateTime =

tempMySqlDate.GetDateTime();
 tempD

 LastTime = tempDateTime.ToString("yyyy-
HH:mm:ss");

 }
 el

 }

 if(LastT

Options= " where timestamp >= '"+LastTime+ "'";

 Options

 LocalConnection
 LastTimestampReader.Close();

 //***************
 // SELECT ALL RE
 //***********************

-------------------------------- // -----
 //EVENTS table
 // --------------------------------
 string mySelectQuery = "SELECT e.sid, e.cid,

e.signat

 89

mySelectQuer
Option

= new
ection);

nnection.Open();
MySqlDataReader myReader;

roper format in remote database

false;

 while (myRea

Time d =
teTime(3);

stem.DateTime dt = d.GetDateTime();

sertStatements.Add("INSERT IGNORE INTO
sid, cid, signature,
alias) VALUES (" +

myReader.GetString(0) + ", " +
myReader.GetString(1) + ", " +

.GetString(2) + ", '" +
', '" +

GetString(4) + "')");

etString(0) +
" AND cid= "+ myReader.GetString(1) + ")";

IPHDR table

, i.cid,
 ";

p_tos,i.ip_len, i.ip_id,
i.ip_ttl,i.ip_proto, ";

 home_alerts.iphdr i

ring t = "";

y += SensorName + "' FROM event e " +
s;

RE 0=1 "; string pkey = " WHE
 ArrayList In

sertStatements = new ArrayList();

 MySqlCommand myCommand
MySqlCommand(mySelectQuery,conn

 co

 // make sure p
 try
 {
 myReader = myCommand.ExecuteReader();

 }
catch

 {
 return
 }

der.Read())
 {
 MySQL.Data.Types.MySqlDate

myReader.GetMySqlDa
 Sy

In
arf_monitor.event (
mestamp, sensor_ti

myReader
dt.ToString("yyyy-MM-dd HH:mm:ss") + "
myReader.

pkey += "OR (sid = " + myReader.G

 }
myReader.Close();

 connection.Close();

 // ----------------------
 //

 // -------------------------------------

Query2 = "SELECT i.sidstring mySelect
i.ip_src, i.ip_dst, i.ip_ver, i.ip_hlen,
mySelectQuery2 += i.i
ip_flags,i.ip_off,i.

mySelectQuery2 += i.ip_csum FROM
" + pkey;

 st

 90

 ArrayList InsertStatementsIP = new ArrayList();

tion);

 MySqlDataReader der2;

atabase

 myReader2 = myCommand2.ExecuteReader();
 }

 }

tor.iphdr (sid,

ip_proto, ip_csum, sensor_alias) VALUES (";

t+= myReader2.GetString(0) + ", " +

 + ", " +

tring(9) + ", " +
String(10) + ", " +
tString(11) + ", " +
tString(12) + ", " +
tString(13) + ", '" + SensorName +

"'";

ata to local machine

 // *********

 LocalConnect

 MySqlCommand

LocalConnection.CreateCommand();
 MySqlTransac

 // Start a l

 MySqlCommand myCommand2 = new

and(mySelectQuery2,connecMySqlComm
 connection.Open();

myRea

 // make sure proper format in remote d
 try
 {

 catch
 {

 return false;

 wh ile (myReader2.Read())
 {

t = "INSERT IGNORE INTO arf_moni
cid, ip_src, ip_dst, ip_ver, ip_hlen, ip_tos,
ip_len, ip_id, ip_flags, ip_off, ip_ttl,

myReader2.GetString(1) + ", " +
myReader2.GetString(2) + ", " +
myReader2.GetString(3) + ", " +
myReader2.GetString(4)
myReader2.GetString(5) + ", " +
myReader2.GetString(6) + ", ";

 +t+= myReader2.GetString(7) + ", "

myReader2.GetString(8) + ", " +
myReader2.GetS

etmyReader2.G
myReader2.Ge
myReader2.Ge
myReader2.Ge

= ")"; t+

 InsertStatementsIP.Add(t);
 }
 myReader2.Close();
 connection.Close();

**** // **
 // Copy All new d

ion.Open();

 LocalCommand =

tion myTrans;

ocal transaction

 91

 myTrans = LocalConnection.BeginTransaction();
n

ements)

 LocalCommand.CommandText = s;
 LocalCommand.ExecuteNonQuery();

 InsertStatementsIP)
{

d.CommandText = s;

 }

 ion
failed...rolled back\r\n";

if (myTrans.Connection != null)

nsaction
ack\r\n";

bug.WriteLine("An exception of
 was

roll back the transaction.");

 }

Debug.WriteLine("An exception of type " +
e.GetType() + " was encountered while
inserting the data.");

 Debug.WriteLine("No records were written to
database.");

 txtSyncStatus.Text += "An exception of type " +
e.GetType() + " was encountered\r\n";

 return false;

 {
 LocalConnect

 // Must assign both transaction object and connectio
 // to Command object for a pending local transaction

calConnection; LocalCommand.Connection = Lo
 LocalCommand.Transaction = myTrans;

 try
 {
 foreach(string s in InsertStat
 {

 }
 foreach(string s in

 LocalComman
 LocalCommand.ExecuteNonQuery();

 }
 myTrans.Commit();
 return true;

 catch(Exception e)
 {
 try

{
 myTrans.Rollback();

 txtSyncStatus.Text += "transact

 }
 catch (MySqlException ex)
 {

 {
 txtSyncStatus.Text += "tra

not roll bfailed...could

De
type " + ex.GetType() + "
encountered while attempting to

 }

}
finally

ion.Close();

 92

 }

 /// <summary>
 /// Connects to the specified RevTreeNode and

/// synchronizes data if need be
 /// </summary>

/// <param name="m">The RevTreeNode of the sensor to
synchronize</param>

 private void ConnectSyncSingle(arf.RevTreeNode m)
 {

string conn = "SERVER=" + m.IP + "; DATABASE=" +
m.DatabaseName + "; UID=" + m.DatabaseUser + ";
PASSWORD=" + m.DatabasePassword + ";";

 MySqlConnection SingleConnection =
ConnectSingleMySql(conn);

 if(SingleConnection != null)
 {
 //txtSyncStatus.Text += "connected\r\n";
 // Sync the databases
 // change the icon

 if(SnycSingle(SingleConnection, m.Alias))
 {
 txtSyncStatus.Text += "success\r\n";
 m.ImageIndex = 0;
 m.SelectedImageIndex = 0;
 }
 else

 txtSyncStatus.Text += "synchronization

fail

 }

 {
 txtSyncStatus.Text += "connection failure\r\n";
 }
 }

 /// <summary>
 /// Connect and SNYC to all hosts listed for the

/// site in hosts.xml
 /// </summary>
 private void MySqlHostConnect()
 {

 int count
 string
 foreach(TreeNode n in treeView1.Nodes)
 {
 i = 1;
 count = n.Nodes.Count;
 foreach(arf.RevTreeNode m in n.Nodes)
 {

 }

 {

ure\r\n";
 }

else

int i = 1;
= 0;

message="";

 93

message = "connecting to " + m.Alias + "
@ " + n.Text + " " + i.ToString() + " of
" + count.ToString() + "...";

txtSyncStatus.Text += (message);

 ConnectSyncSingle(m);
 i++;

 }
 }

 /// <summary>
 /// Connect to a remote database
 /// </summary>
 /// <param name="conn">The Connection string</param>

/// <returns>Th

 private MySqlConnection ConnectSingleMySql(string conn)
 {
 try
 {
 MySqlConnection connection = new

MySqlConnection(conn);
 connection.Open();
 connection.Close();
 return connection;
 }
 catch
 {
 return null;
 }
 }

 /// <summary>
 /// Connects to the local mysql database
 /// </summary>
 /// <returns>The mysql connection object</returns>
 private MySqlConnection MySqlConnect()
 {

string MyConString = "SERVER=localhost;

 MySqlConnection connection = new
MySqlConnection(MyConString);

 return connection;
 }

 /// <summary>
 /// Opens a form to add a new host
 /// /
 privat k(object sender,

System.EventArgs e)
 {
 AddHost Child = new AddHost();
 Child.ShowDialog();
 PopulateNetworkListBox();
 }

 }

 e mysql connection object or
null if connection is not available</returns>

DATABASE=arf_monitor; UID=root; PASSWORD=XXXX;";

 < summary>

e void menuItem4_Clic

 94

 /// <summary>
 /// Opens a form to add a new network
 /// </summary>
 private void menuItem5_Click(object sender,

System.EventArgs e)
 {
 AddNetwork Child = new AddNetwork();
 Child.ShowDialog();
 }

 /// <summary>
 /// Creates the Tree View object from the hosts.xml

file, storing all pertinent
/// information about each host in the RevTreeNode
object

 /// </summary>
 private void PopulateNetworkListBox()
 {
 System.Xml.XmlDocument xmldoc = new XmlDocument();

 xmldoc.Load(xmlfilename);

 treeView1.ImageList = this.NetworkImages;
 XmlNodeList xmlnetworks =

xmldoc.GetElementsByTagName("network");
 XmlNodeList xmlhosts;

 System.Windows.Forms.TreeNode m;
 System.Windows.Forms.TreeNode [] n;
 System.Windows.Forms.TreeNode o;

 string alias;
 string ip;
 string dbn;

 str

 for(int i=0;i<xmlnetworks.Count;i++)
 {
 xmlhosts = xmlnetworks[i].ChildNodes;
 osts.Count];
 for s.Count;j++)
 {
 // Each Host within a network

nnerText;
ip =
xmlhosts[j].ChildNodes[1].InnerText;
dbn =

;

xmlhosts[j].ChildNodes[3].InnerText;
dbp =
xmlhosts[j].ChildNodes[4].InnerText;

 string dbu;
ing dbp;

 n = new TreeNode[xmlh
(int j=0;j<xmlhost

 alias =
xmlhosts[j].ChildNodes[0].I

xmlhosts[j].ChildNodes[2].InnerText
dbu =

 95

 o = new
arf.RevTreeNode(alias,ip,dbn,dbu,dbp,1,1); // Image Default:Off(Red)
 n[j] = o;

 }
 m = new
TreeNode(xmlnetworks[i].Attributes[0].Value,2,2,n);
 treeView1.Nodes.Add(m);
 }
 }

 private void ChangeRawHostAlertTable(object sender,
System.Windows.Forms.TreeViewEventArgs e)
 {
 string sql = "";

sql += "SELECT e.sid, e.cid, e.timestamp, s.sig_sid

ip_src, inet_ntoa(i.ip_dst) as ip_dest ";

 sql += "FROM event e ";
 sql += "INNER JOIN signature s ";
 sql += "ON e.signature = s.sig_id inner join iphdr i

using (sid,cid) ";
 sql += "w

 RawAler
 .GetType().ToString() == "arf.RevTreeNode")
 {

 MySqlConnection conn = this.MySqlConnect();
 MySqlDataAdapter adapter = new

MySqlDataAdapter();
 adapter.SelectCommand = new MySqlCommand(sql,

conn);
 adapter.Fill(RawAlertDataset);
 //dataGrid1.DataSource = RawAlertDataset;

 dataGrid1.SetDataBinding(RawAlertDataset,"Table");

 // Fuzzy Alert For Host
 lblSensor_Network.Text =

treeView1.SelectedNode.FullPath;
 double d =

arf.fuzzy.FuzzyEngine.HostThreatLevel(Raw
AlertDataset,lstXMLOutput);

 lblSensorThreat.Text = d.ToString("f");
 }
 }

 /// <summary>
 /// Gets the string representation of the signature

/// from the local MySQL Database
 /// </summary>

/// <param name="sigId">integer ID (in string

as signature, s.sig_name, inet_ntoa(i.ip_src) as

here e.sensor_alias = '" +
treeView1.SelectedNode.Text + "' ";

tDataset = new DataSet("event");
if(e.Node

 96

for at) of the signature in question</param>
 ///
 publ string GetSnortSignatureName(string sigId)
 {
 string MyConString = "SERVER=localhost;

DATABASE=arf_monitor; UID=root; PASSWORD=XXXX;";
 MySqlConnection LocalConnection = new

MySqlConnection(MyConString);
 LocalConnection.Open();

string GetSignatureName = "SELECT s.sig_name FROM
signature s where sig_sid = " + sigId.ToString();

 string Si
 SqlC

MySqlCommand(GetSignatureName,LocalConnection);
 MySqlDataReader GetSignatureReader;
 GetSignatureReader =

ExecuteReader();

 while(GetSignatureReader.Read())
 {
 SigName = GetSignatureReader.GetString(0);
 }
 LocalConnection.Close();
 GetSignatureReader.Close();

 return SigName;
 }

 /// <summary>
 /// Wrapper Function to call the Hex Encoding Functions
 /// </summary>
 /// <param name="hexString">Hexidecimal String holding a

packet payload</param>
 /// <returns>a byte array represneting the Hexidecimal

 public byte[] He
 {
 int discarded;

 byte[] byteArray =

HexEncoding.GetBytes(hexString, out discarded);
 return byteArray;

 }

 /// <summary>
 /// Get the IP address of this computer in a.b.c.d format
 /// </summary>
 /// <returns>This Computers IP Address</returns>
 private string GetMyIp()
 {
 string hostName = Dns.GetHostName();
 Console.WriteLine("Host Name = " + hostName);
 IPHostEntry local = Dns.GetHostByName(hostName);
 string ip = local.AddressList[0].ToString();

m
 <returns>string name of the signature</returns>
ic static

gName = "";
My ommand GetSignatureCommand = new

GetSignatureCommand.

string in bytes</returns>

xEncoder(string hexString)

 97

 return ip;

 }

 /// <summary>
 /// Syncrhonizes a Single, selected sensor
 /// </summary>
 private void button6_Click(object sender, EventArgs e)
 {
 Thread startSync = new Thread(new

ThreadStart(StartSingleHostConnect));
 startSync.Start();
 }

 /// <summary>
 /// Start the thread to sync a single, selected host
 /// </summary>
 public void StartSingleHostConnect()
 {
 try
 {

 if(this.treeView1.SelectedNode.GetType().ToString()

== "arf.RevTreeNode")
 {
 this.txtSyncStatus.Text = "Connecting to " +

this.treeView1.SelectedNode.Text + "...";

 ConnectSyncSingle((arf.RevTreeNode)this.treeView1.SelectedNode);
 }

 }
 tch
 {
 MessageBox.Show("Select a sensor");
 }
 }

 /// <summary>
 ///Runs the experiment as described in the testing section
 /// </summary>
 private void menuItem7_Click(object sender, EventArgs e)
 {
 arf.fuzzy.FuzzyExperiment.Experiment();
 }

 /// <summary>
 /// Opens an external link to www.snort.org to view more

/// details of an alert
 /// </summary>
 private void ViewSignatureDetails(object sender,

System.Windows.Forms.KeyPressEventArgs e)
 {
 string full =

this.lstXMLOutput.SelectedItem.ToString();

ca

 98

 int startnum = full.IndexOf("|");

 string num = full.Substring(++startnum, (full.Length-

1)-startnum);

 try
 {
 int i = int.Parse(num);

System.Diagnostics.Process.Start(http://www.sno
rt.org/pub-bin/sigs.cgi?sid= + i.ToString());

 }
 catch

 ure not found, is it in

this format |10|?");
 }

 }
 }

}

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windo
using System.Xml;
using MySQL.Data;
using MySQL.Data.MySqlClient;
using System.IO;

namespace arf
{
 /// <summary>
 /// Summary description for AddHost.
 /// </summary>
 public class AddHost : System.Windows.Forms.Form
 {

 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Con
 /// / mmar
 public AddHost()
 {
 //

 InitializeComponent();

 {
MessageBox.Show("Signat

AddHost.cs

ws.Forms;

 structor for the form object
 < su y>

// Required for Windows Form Designer support
//

 99

 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }
 /// <summary>
 /// WRAPPER: Tests a connection to a remote database
 /// </summary>
 private void btnTest_Click(object sender, EventArgs e)
 {
 TestDBConnection();
 }

 /// <summary>
 /// Tests a connection to a remote database
 /// </summary>
 /// <returns

otherwise</returns>
 private bool TestDBConnection()
 {
 lblSuc or.Gray;
 try
 {

string MyConString = "SERVER=" +
this.txtIP.Text + "; DATABASE=" +
this.txtDBName.Text + "; UID=" +
this.txtDBUser.Text + "; PASSWORD=" +
this.txtDBPass.Text + ";";

 MySqlConnection connection = new
MySqlConnection(MyConString);

 connection.Open();
 connection.Close();
 lblSuccess.BackColor =

System.Drawing.Color.Green;
 }
 catch
 {
 lblSuccess.BackColor =

System.Drawing.Color.Red;
 return false;
 }

>True if connection is valid, false

cess.BackColor = System.Drawing.Col

return true;
 }

 100

 /// <summary>
 ///Adds some default values to the form for debugging

 /// purposes
 /// </summary>
 private void btnDebug_Click(object sender, EventArgs e)
 {
 this.txtAlias.Text = "Thesis Box";
 this.txtIP.Text = "localhost";
 this.txtDBName.Text = "arf_monitor";
 is.t
 this.txtDBPass.Text = "donkeylips";
 }

 /// <summary>
 /// Sets up the form for data input
 /// </summary>
 private void Ad
 {
 // Find Host ID's
 // Bind Names to DropDown cboNetwork

 System.Xml.XmlDocument hosts = new XmlDocument();
 hosts.Load(xmlfilename);

 System.Xml.XmlNodeList nl =

 cboNetwork.Items.Clear();
 foreach(System.Xml.XmlNode n in nl)

 cboNetwork.Items.Add(n.Attributes["name"].Value);

 cboNetwork.SelectedIndex = 0;
 }

 /// <summary>
 /// Inserts entered data into hosts.xml
 /// </summary>
 private void InsertHostIntoXML()
 {
 System.Xml.XmlDocument xmldoc = new XmlDocument();

 xmldoc.Load(xmlfilename);

 XmlElement newcatalogentry =

xmldoc.CreateElement("host");

 XmlElement firstelement =

xmldoc.CreateElement("alias");
 firstelement.InnerText = this.txtAlias.Text;
 newcatalogentry.AppendChild(firstelement);

xmld ip");
 secondelement.
 newcatalogentry.AppendChild(secondelement);
 XmlElement thirdele

xmldoc.CreateElement("dbname");

th xtDBUser.Text = "root";

dHost_Load(object sender, EventArgs e)

hosts.GetElementsByTagName("network");

XmlElement secondelement =
oc.CreateElement("

InnerText = this.txtIP.Text;

ment =

 101

 thirdelement.In BName.Text;
 newcatalogentry.AppendChild(thirdelement);
 XmlElement fourthelemen

eElement("
 fourthelement.InnerText = this.
 newcatalogentry.AppendChild(fourthelement);
 XmlElement fifthelement =

xmldoc.CreateElement("dbpass");
 fifthelement.InnerText = this.txtDBPass.Text;
 newcatalogentry.AppendChild(fifthelement);

 System.Xml.XmlNode refNode = null;
 System.Xml.XmlNodeList nl =

xmldoc.GetElementsByTagName("network");
 foreach(System.Xml.XmlNode n in nl)
 {
 if(n.Attributes["name"].Value ==

(string)this.cboNetwork.SelectedItem)
 {
 refNode = n;
 break;
 }
 }

 refNode.AppendChild(newcatalogentry);

FileStream fsxml = new
FileStream(this.xmlfilename,FileMode.Truncate,
FileAccess.Write, FileShare.ReadWrite);

 xmldoc.Save(fsxml);
 fsxml.Close();
 }

 /// <summary>
 /// Accepts the data entered into the form
 /// </summary>
 private void btnAccept_Click(object sender, EventArgs e)
 {
 DialogResult result;
 if(!TestDBConnection())

result = MessageBox.Show("This Connection is
not working, Insert Anyway?","Database
connection unavailable",
System.Windows.Forms.MessageBoxButtons.YesNo,
System.Windows.Forms.MessageBoxIcon.Warning);

 else
 result = DialogResult.Yes;

 if(result == DialogResult.Yes)
 InsertHostIntoXML();

 this.Close();
 }
 }
}

nerText = this.txtD

t =
xmldoc.Creat dbuser");

txtDBUser.Text;

 102

AddNetwork.cs
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Xml;
using System.IO;

namespace arf
{
 /// <summary>
 /// Summary description for AddNetwork.
 /// </summary>
 public class AddNetwork : System.Windows.Forms.Form
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Constructor for the form object
 /// </summary>
 public AddNetwork()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// / mmar
 protected overr
 {
 if(disposing)
 {
 if(components != null)
 {
 components.Dispose();
 }

 base.Disp
 }

 /// <summary>
 /// WRAPPER: Adds the network to hosts.xml
 /// </summary>
 private void btnAddNetwork_Click(object sender,EventArgs e)
 {

 // Close
 this.Close();
 }

 < su y>

ide void Dispose(bool disposing)

}
ose(disposing);

AddNetworkToXML();
the form

 103

 /// <summary>
 /// Actually adds the name to the hosts.xml file
 /// </summary>
 public void Add
 {
 if(this.txtNetworkName.Text.Trim() != "" &&

this.txtNetworkName.Text != null)
 {
 // Load Existing hosts.xml file
 System.Xml.XmlDocument networks = new

XmlDocument();
 networks.Load(xmlfilename);

 me "network"
 System.Xml.XmlNodeList nl =

networks.GetElementsByTagName("network");

 // Create New XML Element
 XmlElement newcatalogentry =

networks.CreateElement("network");
 XmlAttribute newcatalogattr =

networks.CreateAttribute("name");
 newcatalogattr.Value =

this.txtNetworkName.Text;

 newcatalo n y.Se

 // Add XML element at end of node list

networks.DocumentElement.InsertAfter(newcatalog
entry, networks.DocumentElement.LastChild);

 // Save the new XML file to disk

FileStream fsxml = new
FileStream(this.xmlfilename,FileMode.Truncate,
FileAccess.Write, FileShare.ReadWrite);

networks.Save(fsxml);

 fsxml.Close();
 }
 }
 }
}

RevTreeNode.cs

using System;
using System.Windows.Forms;

namespace arf
{
 /// <summary>
 /// A custom TreeNode object that holds all applicable

information about intrusion detection /// sensors
 /// </summary>

NetworkToXML()

//Create list of nodes with tag na

ge tr tAttributeNode(newcatalogattr);

 104

 public class RevTreeNode : TreeNode
 {
 private string alias;
 private string ip;
 pri t stri
 private string
 private string dbpass;

 /// <summary>
 /// A name to call the sensor
 /// </summary>
 public string Alias
 {
 t{re
 }

 /// <summary>
 /// The IP address of the sensor in a.b.c.d format
 /// </summary>
 public string IP
 {
 get{return ip;}
 }

 /// <summary>
 ///Name of the MySQL database sensor information resides
 /// </summary>
 public string DatabaseName

 get
 }

 /// <summary>
 ///The restricted privelage user used to copy sensor data

 get{retur
 }

 /// <summary>
 /// Cleartext password for the user listed above
 /// </summary>
 public string DatabasePassword

 /// <summary>
 /// Creates a Tree Node Object
 /// </summary>
 /// <param name="a">Alias of the Node (shown in

tree)</param>
 /// <param name="ipaddr">IP address of the node</param>
 /// <param name="dn">MySQL database name</param>

va e ng dbname;
dbuser;

ge turn alias;}

{
{return dbname;}

/// </summary>
public string DatabaseUser
{

n dbuser;}

{
 get{return dbpass;}
}

 105

 /// <param name="du">MySQL database user</param>
 /// <param name="dp">MySQL database password</param>
 /// <param name="imageIndex">Index of the Image to use to

represent the node</param>
 /// <param name="SelectedImageIndex">Which Image is

selected in the list</param>
public RevTreeNode(string a, string ipaddr, string dn,
string du, string dp, int imageIndex, int
selectedImageIndex)

 {
 base.Text = a;
 alias = a;
 ip = ipaddr;
 dbname = dn;
 dbuser = du;
 dbpass = dp;
 base.ImageIndex = imageIndex;
 base.SelectedImageIndex = selectedImageIndex;
 }
 }
}

Interfaces
namespace arf.fuzzy.interfaces
{

 public interface IFuzzification
 {
 FuzzyThreatCollection MakeFuzzy(CrispThreatCollection i);
 FuzzyThreat MakeFuzzy(CrispThreat c);
 FuzzyThreatCollection GetFuzzyThreats();
 }

 public interface IInferenceEngine
 {
 FuzzyThreatLevelCollection

FuzzyInference(FuzzyThreatCollection i);
 FuzzyThreatLevel FuzzyInference(FuzzyThreat f);
 FuzzyThreatLevelCollection GetFuzzyThreatLevel();
 }

 public interface IDefuzzifier
 {
 double Defuzzify(FuzzyThreatLevelCollection i);
 double GetCrispOutput();
 }

 public interface IRule
 {
 double FindFuzzyThreatLevel(FuzzyThreat f);
 }

 public interface IMath
 {

 106

 double solve (double d);
 }
}

Objects
namespace arf.fuzzy.objects
{
 #region Crisp Threat Objects (CrispThreat, CrispThreatCollection)

 public struct CrispThreat
 {
 #region Properties

 private int occurances;
 private System.TimeSpan timespan;
 private int severity_multiplier;
 private double src_ip_frequency;
 private System.TimeSpan avg_time_between;
 private int signature;

 #endregion

 #region Property Accessors

 /// <summary>
 /// Number of times an alert has been generated
 /// </summary>
 public int Occurances
 {
 get{return occurances;}
 set{occurances = value;}
 }

 /// <summary>

 public Sy n Timespan
 {
 get{return timespan;}
 set{ timespan=value;}
 }

 /// <summary>
 /// A future-use severity multiplier
 /// </summary>
 public int Severity_Multiplier
 {
 get{return severity_multiplier;}
 set{ severity_multiplier=value;}
 }

 /// <summary>
 /// The frequency of IPs that are generating this alert
 /// </summary>
 public double Src_Ip_Frequency
 {

/// The Timespan between the first and last alert
/// </summary>

stem.TimeSpa

 107

 get{return src_ip_frequency;}
 set{src_ip_frequency=value;}
 }

 /// <summary>
 /// The Averate timespan between alerts
 /// </summary>
 public System.TimeSpan Avg_Time_Between
 {
 get{return avg_time_between;}
 set{avg_time_between=value;}
 }

 /// <summary>
 /// The SNORT signature of the alert
 /// </summary>
 public int Signature
 {
 get{return signature;}
 set{signature=value;}
 }
 #endregion

 #region Constructors

 /// <summary>
 /// Creates a CrispThreat Object from scratch
 /// </summary>

public CrispThreat(int num_occurances, System.TimeSpan
alert_avg_timespan, int severity_mult, System.TimeSpan
average_time_between_attacks, int alert_signature, double
source_ip_frequency)

 {
 occurances = num_occurances ;
 timespan = alert_avg_timespan;
 severity_multiplier = severity_mult;
 src_ip_frequency = source_ip_frequency;
 avg_time_between = average_time_between_attacks;
 signature = alert_signature;
 }

 /// <summary>
 /// Creates a copy of a crisp threat object
 /// </summary>
 /// <param name="t">The CrispThreat Object to Copy</param>
 public CrispThreat(CrispThreat t)
 {
 occurances = t.occurances;
 timespan = t.timespan;
 severity_multiplier = t.severity_multiplier;
 src_ip_frequency = t.src_ip_frequency;
 avg_time_between = t.avg_time_between;
 signature = t.signature;
 }
 #endregion
 }

 108

 public class CrispThreatCollection :
System.Colle

 {
 /// <summary>
 /// Add a CrispThreat to a Collection
 /// </summar
 /// <param name="c"></param>
 public virtual void Add(CrispThreat c)
 {
 this.List.Add(c);
 }

 /// <summary>
 /// Index a CrispThreat within a Collection
 /// </summary>
 public virtual CrispThreat this[int Index]
 {
 get
 {return (CrispThreat)this.List[Index];}
 }
 }

 #endregion

 #region Fuzzy Threat Objects (Fuzzy Threat,

FuzzyThreatCollection)

 /// <summary>
 ///Same fields as CrispThreat Object, except values are doubles
 /// </summary>

 public struct FuzzyThreat
 {
 #region Properties

 // *************************************
 // HOLDS Y-VALUE OF MEMBERSHIP FUNCTION
 // *************************************
 private double fuzz_occurances;
 private double fuzz_timespan;
 private double fuzz_severity_multiplier;
 private double fuzz_src_ip_frequency;
 private double fuzz_avg_time_between;

 // *************************************
 // HOLDS X-VALUE OF MEMBERSHIP FUNCTION

 private C

 private int signature;

 #endregion

 #region Property Accessors

ctions.CollectionBase

y>

// *************************************
rispThreat crisp;

 109

 public CrispThreat crispThreat
 {
 get{return crisp;}
 }

 public double Occurances
 {
 get{return fuzz_occurances;}
 set{fuzz_occurances = value;}
 }
 public double Timespan
 {
 get{return fuzz_timespan;}
 set{ fuzz_timespan=value;}
 }
 public double Severity_Multiplier
 {
 get{return fuzz_severity_multiplier;}
 set{ fuzz_severity_multiplier=value;}
 }

 public double Src_Ip_Frequency
 {
 get{return fuzz_src_ip_frequency;}
 set{fuzz_src_ip_frequency=value;}
 }
 public double Avg_Time_Between
 {
 get{return fuzz_avg_time_between;}
 set{fuzz_avg_time_between=value;}
 }
 public int Signature
 {
 get{return signature;}
 set{signature=value;}
 }
 #endregion

 #region Constructors

public FuzzyThreat(CrispThreat c,double
fuzz_num_occurances, double fuzz_alert_avg_timespan, double
fuzz_severity_mult, double
fuzz_average_time_between_attacks, int alert_signature,
double fuzz_source_ip_frequency)

 {
 fuzz_occurances = fuzz_num_occurances ;
 fuzz_timespan = fuzz_alert_avg_timespan;
 fuzz_severity_multiplier = fuzz_severity_mult;
 fuzz_src_ip_frequency = fuzz_source_ip_frequency;
 fuzz_avg_time_between =

fuzz_average_time_between_attacks;
 signature = alert_signature;

 crisp = c;
 }
 public FuzzyThreat(FuzzyThreat f)
 {

 110

 fuzz_occurances = f.fuzz_occurances;
 fuzz_timespan = f.fuzz_timespan;
 fuzz_severity_multiplier =

f.fuzz_severity_multiplier;
 fuzz_avg_time_between = f.fuzz_avg_time_between;
 signature = f.signature;
 fuzz_src_ip_frequency = f.fuzz_src_ip_frequency;
 crisp = f.crisp;
 }
 #endregion

 }

 public class FuzzyThreatCollection :
System.Collections.CollectionBase

 {
 public virtual void Add(FuzzyThreat c)
 {

 }

 public virtual FuzzyThreat this[int Index]
 {
 get
 {return (FuzzyThreat)this.List[Index];}
 }
 }

 #endregion

 #region Fuzzy Threat Level Objects (FuzzyThreatLevel

FuzzyThreatLevelCollection)

 /// <summary>
 /// All fuzzy metrics combined with a defuzzification method

/// form a single value
 /// </summary>

 public struct FuzzyThreatLevel
 {
 #region Properties

 double fuzzy_threat_level;
 int signature;

 #endregion

 #region Property Accessors
 public double Fuzzy_Threat_Level
 {
 get{return fuzzy_threat_level;}
 set{fuzzy_threat_level = value;}
 }
 public int Signature
 {

this.List.Add(c);

get{return signature;}

 111

 #endregion

 #region Constructors

 public FuzzyThreatLevel(double threat_level, int sig)
 {
 fuzzy_threat_level = threat_level;
 signature = sig;
 }
 public FuzzyThreatLevel(FuzzyThreatLevel f)
 {
 fuzzy_threat_level = f.fuzzy_threat_level;
 signature = f.signature;
 }

 #endregion

 }

 public class FuzzyThreatLevelCollection :
onBase

 {
 p
 {
 this.List.Add(c);
 }

 public virtual FuzzyThreatLevel this[int Index]
 {
 get
 {return (FuzzyThreatLevel)this.List[Index];}
 }
 #region Methods

 public System.Xml.XmlDocument CreateXML()
 {
 XmlElement signatureNode;
 XmlElement fuzzyNode;
 XmlText fuzzyText;

 XmlDocument xmlDoc = new XmlDocument();
 XmlDeclaration xmlDeclaration =

xmlDoc.CreateXmlDeclaration("1.0","utf-8",null);

 // Create the root element
 XmlElement rootNode = xmlDoc.CreateElement("host");
 rootNode.SetAttribute("name","Insert Host Name

Here");

 rootNode.SetAttribute("time",System.DateTime.Now.ToString());
 xmlDoc.InsertBefore(xmlDeclaration,

xmlDoc.DocumentElement);

set{signature = value;}
 }

System.Collections.Collecti

ublic virtual void Add(FuzzyThreatLevel c)

 xmlDoc.AppendChild(rootNode);

 112

 foreach(FuzzyThreatLevel ftl in this.InnerList)
 {
 // Create the <signature> element
 signatureNode =

xmlDoc.CreateElement("signature");

 // Set attribute name and value
 signatureNode.SetAttribute("sig",

ftl.Signature.ToString());

 xmlDoc.DocumentElement.AppendChild(signatureNode);

 // Create the Fuzzy Value Node
 fuzzyNode =

xmlDoc.CreateElement("fuzzy_value");
 fuzzyText =

xmlDoc.CreateTextNode(ftl.Fuzzy_Threat_Le
vel.ToString());

 signatureNode.AppendChild(fuzzyNode);
 fuzzyNode.AppendChild(fuzzyText);
 }

 // Save to the XML file
 xmlDoc.Save("a.xml");
 return xmlDoc;
 }

 #endregion
 }

 #endregion

}

Membership Functions

Specific Membership Functions
using System;
using arf.fuzzy.objects;
using arf.fuzzy.interfaces;
using arf.math;

namespace arf.fuzzy.membershipfunctions
{
 /// <summary>
 /// Specific Set of Membership Functions for the application
 /// </summary>
 public class FuzzificationMembershipFunction : IFuzzification
 {
 #region Properties

 public FuzzyThreatCollection fuzzyThreats = new

FuzzyThreatCollection();

 #endregion

 113

 #region Constructors

 public

FuzzificationMembershipFunction(CrispThreatCollection i)
 {
 fuzzyThreats = MakeFuzzy(i);

 }
 #endregion

 #region IFuzzification Members

 public FuzzyThreatCollection GetFuzzyThreats()
 {
 return fuzzyThreats;
 }

 public FuzzyThreatCollection

MakeFuzzy(CrispThreatCollection i)
 {
 FuzzyThreat f;
 foreach(CrispThreat t in i)
 {
 f = new FuzzyThreat(MakeFuzzy(t));
 fuzzyThreats.Add(f);
 }
 return fuzzyThreats;
 }

 public FuzzyThreat MakeFuzzy(CrispThreat c)
 {
 double fuzz_occurances =

this.MembershipOccurances(c.Occurances);
 double fuzz_timespan =

this.MembershipTimespan(c.Timespan);
 double fuzz_severity_multiplier =

this.MembershipSeverity(c.Severity_Multiplier);
 double fuzz_avg_time_between =

this.MembershipTimeBetween(c.Avg_Time_Between);
 double fuzz_source_ip_frequency =

this.MembershipSrcIPFreq(c.Src_Ip_Frequency);
 int signature = c.Signature;

return new
FuzzyThreat(c,fuzz_occurances,fuzz_timespan,fuzz_seve
rity_multiplier,fuzz_avg_time_between,signature,fuzz_
source_ip_frequency);

 }
 #endregion

 #region Helper (Private) Methods
 private double MembershipOccurances(int occurances)
 {
 double [,] points = new double[11,2];

 points[0,0] = 0; points[0,1] = .0;

 114

 points[1,0] = 10; points[1,1] = .05;
 points[2,0] = 20; points[2,1] = .1;
 points[3,0] = 25; points[3,1] = .14;
 points[4,0] = 30; points[4,1] = .2;
 points[5,0] = 38; points[5,1] = .3;
 points[6,0] = 43; points[6,1] = .32;
 points[7,0] = 50; points[7,1] = .35;
 points[8,0] = 80; points[8,1] = .35;
 points[9,0] = 100; points[9,1] = 1;
 points[10,0] = double.PositiveInfinity ;

points[10,1] = 1;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(occurances);
 return fuzz;
 }
 private double MembershipTimespan(TimeSpan t)
 {

 // OLD: [[0,1],[172800,.2],[172800*2,1],[infinity,1]]
 // NEW: [[0,1],[172800*2,.2],[infinity,.2]]

 double [,] points = new double[3,2];
 points[0,0] = 0; points[0,1] = 1;
 points[1,0] = 172800*2; points[1,1] = .2;
 points[2,0] = double.PositiveInfinity; points[2,1] =

.2;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(t.TotalSeconds);
 return fuzz;
 }
 private double MembershipSeverity(int s)
 {
 return 1;
 }
 private double MembershipTimeBetween(TimeSpan t)
 {

 double [,] points = new double[6,2];
 points[0,0] = 0; points[0,1] = 1;
 points[1,0] = 3600; points[1,1] = 1;
 points[2,0] = 86400; points[2,1] = .2;
 points[3,0] = 172800; points[3,1] = .2;
 points[4,0] = 432000; points[4,1] = 1;
 points[5,0] = double.PositiveInfinity;

points[5,1] = 1;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(t.TotalSeconds);
 return fuzz;
 }
 private double MembershipSrcIPFreq(double ip_fre)
 {

 double [,] points = new double[11,2];
 // MAPLE - set of points

 115

 // [0,0],[10,0],[10,.2],[25,.2],[25,.5],[80,.5],
 // [80,.8],[100,.8],[100,1],[150,1],[infinity,1]

 points[0,0] = 0; points[0,1] = 0;
 points[1,0] = 10; points[1,1] = 0;
 points[2,0] = 10; points[2,1] = .2;
 points[3,0] = 25; points[3,1] = .2;
 points[4,0] = 25; points[4,1] = .5;
 points[5,0] = 80; points[5,1] = .5;
 points[6,0] = 80; points[6,1] = .8;
 points[7,0] = 100; points[7,1] = .8;
 points[8,0] = 100; points[8,1] = 1;
 points[9,0] = 150; points[9,1] = 1;
 points[10,0] = double.PositiveInfinity ;

points[10,1] = 1;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(ip_fre);
 return fuzz;
 }

/// <summary>
/// For testing purposes only
/// </summary>
/// <returns>a random number in the set [0,.25,.5,.75,1]</returns>
 private double R()
 {
 System.Random r = new Random();
 int temp = r.Next(1,5);
 if(temp == 1)
 return 0.0;
 else if(temp == 2)
 return 0.25;
 else if(temp == 3)
 return 0.5;
 else if(temp == 4)
 return 0.75;
 return 1.0;
 }
 #endregion
 }
}

General Membership Functions
using System;
using arf.fuzzy.objects;
using arf.fuzzy.interfaces;
using arf.math;

namespace arf.fuzzy.membershipfunctions
{
 /// <summary>
 /// General Set of Membership Functions for the
Application

 116

 /// </summary>
 public class GeneralMembership : IFuzzification
 {
 #region Properties

 public FuzzyThreatCollection fuzzyThreats = new

FuzzyThreatCollection();

 #endregion

 #region Constructors

 public GeneralMembership(CrispThreatCollection i)
 {
 fuzzyThreats = MakeFuzzy(i);
 }

 #endregion

 #region IFuzzification Members

 public FuzzyThreatCollection

MakeFuzzy(CrispThreatCollection i)
 {
 FuzzyThreat f;
 foreach(CrispThreat t in i)
 {
 f = new FuzzyThreat(MakeFuzzy(t));
 fuzzyThreats.Add(f);
 }
 return fuzzyThreats;
 }

 public FuzzyThreat MakeFuzzy(CrispThreat c)
 {
 double fuzz_occurances =

this.MembershipOccurances(c.Occurances);
 double fuzz_timespan =

this.MembershipTimespan(c.Timespan);
 double fuzz_severity_multiplier =

this.MembershipSeverity(c.Severity_Multiplier);
 double fuzz_avg_time_between =

this.MembershipTimeBetween(c.Avg_Time_Between);
 double fuzz_source_ip_frequency =

this.MembershipSrcIPFreq(c.Src_Ip_Frequency);
 int signature = c.Signature;

return new
FuzzyThreat(c,fuzz_occurances,fuzz_timespan,fuzz_seve
rity_multiplier,fuzz_avg_time_between,signature,fuzz_
source_ip_frequency);

 }

ion GetFuzzyThreats()

 public FuzzyThreatCollect
 {
 return fuzzyThreats;

 117

 }

#region Helper (Private) Methods

 double fuzz = f.solve(t.TotalSeconds);

 points[1,0] = 172800/2; points[1,1] = .8;

points[2,1] = .8;

 #endregion

 private double MembershipOccurances(int occurances)
 {
 double [,] points = new double[3,2];

 points[0,0] = 0; points[0,1] = .1;
 points[1,0] = 10; points[1,1] = .8;
 points[2,0] = double.PositiveInfinity;

points[2,1] = .8;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(occurances);
 return fuzz;
 }
 private double MembershipTimespan(TimeSpan t)
 {
 double [,] points = new double[3,2];

 points[0,0] = 0; points[0,1] = .1;
 points[1,0] = 172800; points[1,1] = .8;
 points[2,0] = double.PositiveInfinity;

points[2,1] = .8;

 IMath f = new SetOfPointsFunction(points);

 return fuzz;
 }
 private double MembershipSeverity(int s)
 {
 return 1;
 }
 private double MembershipTimeBetween(TimeSpan t)
 {
 double [,] points = new double[3,2];

 points[0,0] = 0; points[0,1] = .1;

 points[2,0] = double.PositiveInfinity;

points[2,1] = .8;

 IMath f = new SetOfPointsFunction(points);
 double fuzz = f.solve(t.TotalSeconds);
 return fuzz;
 }
 private double MembershipSrcIPFreq(double ip_fre)
 {
 double [,] points = new double[3,2];

 points[0,0] = 0; points[0,1] = .1;
 points[1,0] = 6; points[1,1] = .8;
 points[2,0] = double.PositiveInfinity;

 118

 IMath new SetOfPointsFunction(points);
 double fuzz = f.solve(ip_fre);
 return fuzz;
 }

 #endregion
 }
}

Rules
 public class RuleBase
 {
 protected const double startlow = .2;
 protected const double startmed = .5;
 protected const double starthigh = .7;

 protected double CheckBounds(double a)
 {

)
 return 0;
 else

 }
 protected bool IsNone(double FuzzyValue)
 {
 if(FuzzyValue == 0)

 }
 protected bool IsLow(double FuzzyValue)
 {
 if(FuzzyValue <= .33 && FuzzyValue > 0)
 return true;
 return false;

 d(double FuzzyValue)
 {
 if(FuzzyValue <= .66 && FuzzyValue > .33)
 return true;
 return false;
 }
 protected bool IsHigh(double FuzzyValue)
 {
 if(FuzzyValue <= .99 && FuzzyValue > .66)
 return true;
 return false;
 }
 protected bool IsDefinate(double FuzzyValue)

f =

 if(a > 1)
 return 1;
 else if(a < 0

 return a;

 return true;
 return false;

}
protected bool IsMe

{
 if(FuzzyValue == 1.0)
 return true;

 119

 return false;
 }
 protected bool IsMedHigh(double FuzzyValue)
 {
 if(this.IsHigh(FuzzyValue) || this.IsMed(FuzzyValue))
 return true;
 return false;
 }
 protected bool IsLowMed(double FuzzyValue)
 {

 }

Specific Rules
using System;
using arf.fuzzy.interfaces;
using arf.fuzzy.objects;

namespace arf.fuzzy.rules
{

 public class Rules : RuleBase, IRule
 {

 public Rules()
 { }

 {
 double ftl = 0.0;
 #region Signature Switch
 switch(f.Signature)
 {
 case 1671: //'WEB-MISC /home/www access'
 ftl = this.WEB_MISC_ACCESS(f);
 break;
 case 15:
 ftl =

this.HTTP_INSPECT_OVERSIZE_REQUEST(f);
 break;
 case 4:
 ftl =

this.HTTP_INPECT_BB_UNICODE_ENCODING(f);

this.WEB_MISC_DIRECTORY_TRAVERSAL(f);
 break;
 case 1113:

if(this.IsLow(FuzzyValue) || this.IsMed(FuzzyValue))
 return true;
 return false;
 }

#region IRule Members

public double FindFuzzyThreatLevel(FuzzyThreat f)

 break;
 case 1112:
 ftl =

ftl =
this.WEB_MISC_DIRECTORY_TRAVERSAL(f);

 120

 break;
 case 882:
 ftl = this.WEB_CGI_CALENDAR_ACCESS(f);
 break;
 case 16:
 ftl =

this.HTTP_INSPECT_OVERSIZE_CHUNK_ENCODING(f);
 break;
 case 2:
 ftl =

this.HTTP_INSPECT_DOUBLE_DECODING_ATTACK(f);
 break;

 (f);
 break;
 case 3813:
 ftl = this.WEB_CGI_COMMAND_EXECUTION(f);
 break;
 case 3463:
 ftl = this.WEB_CGI_AWSTATS_ACCESS(f);
 break;
 case 1070:
 ftl = this.WEB_MISC_WEBDAV_SEARCH(f);
 break;
 case 1807:

ftl =
this.WEB_MISC_CHUNKED_ENCODING_TRANSFER(f);

 break;
 case 1248:
 CESS(f);

ftl =
this.WEB_FRONTPAGE_VTI_BIN_ACCESS(f);

 break;
 case 1002:
 ftl = this.WEB_IIS_CMD_ACCESS(f);
 break;
 case 2570:

ftl =
this.WEB_MISC_INVALID_HTTP_VERSION_STRING(f);

 break;
 default:
 ftl = -1.0;
 break;
 }
 #endregion
 return ftl;

 #endregion

 Signature
 /*
 f.Occurances;
 f.Timespan;
 f.Avg_Time_Between; (timespan / occurances)
 f.Src_Ip_Frequency; (# IPs / occurnaces

 case 1852:
 ftl = this.WEB_MISC_ROBOTS_ACCESS

 ftl = this.WEB_FRONTPAGE_DLL_AC
 break;
 case 1288:

}

#region RulesBy

 121

 */

 //'WEB-MISC /home/www access'

 {
 double threat = startlow;

 if(this.IsHigh(f.Src_Ip_Frequency) &&

this.IsLow(f.Avg_Time_Between))
 threat += .5;
 if(this.IsHigh(f.Src_Ip_Frequency) &&

!this.IsLow(f.Avg_Time_Between))
 threat += .2;

 if(this.IsHigh(f.Timespan))
 threat -= .2;

 threat -= .1;

 threat = CheckBounds(threat);

 return threat;
 }

 //'(http_inspect) OVERSIZE REQUEST-URI DIRECTORY' (15)
 private double HTTP_INSPECT_OVERSIZE_REQUEST(FuzzyThreat f)
 {
 double threat = startlow;

 if(this.IsHigh(f.Occurances))
 threat += threat*2;
 if(this.IsLow(f.Timespan))
 threat -= .2;
 threat = this.CheckBounds(threat);
 return threat;
 }
 //'(http_inspect) BARE BYTE UNICODE ENCODING' (4)
 private double HTTP_INPECT_BB_UNICODE_ENCODING(FuzzyThreat
f)
 {
 double threat = startlow;

 if(
 threat += .2;
 if(this.IsLowMed(f.Src_Ip_Frequency))
 threat -= .1;

 threat = this.CheckBounds(threat);

 }

 //'WEB-MISC http directory traversal' (1112)

// http://www.snort.org/pub-bin/sigs.cgi?sid=1671
// Low threat
private double WEB_MISC_ACCESS(FuzzyThreat f)

 if(this.IsLow(f.Timespan))

this.IsHigh(f.Occurances))

return threat;

 122

 // http://www.snort.org/pub-bin/sigs.cgi?sid=1112
 // Low Threat
 private double WEB_MISC_DIRECTORY_TRAVERSAL(FuzzyThreat f)
 {
 double threat = startlow;

 if(this.IsHigh(f.Occurances))
 threat += .3;
 if(this.IsLowMed(f.Occurances))
 threat += .1;

 if(this.IsLow(f.Src_Ip_Frequency))
 threat -= .2;
 if(this.IsHigh(f.Src_Ip_Frequency) &&

this.IsHigh(f.Avg_Time_Between))

 threat = CheckBounds(threat);
 return threat;
 }

 //'WEB-CGI calendar access'
 // htt
 // Low
 privat B_CGI_CALENDAR_ACCESS(FuzzyThreat f)
 {
 // This application does not exist on our system
 return 0.0;
 }

 //'(http_inspect) OVERSIZE CHUNK ENCODING'
 // Unknown Threat
 private double
HTTP_INSPECT_OVERSIZE_CHUNK_ENCODING(FuzzyThreat f)
 {

 }

 //'(http_inspect) DOUBLE DECODING ATTACK'
 // Unknown Threat
 private double
HTTP_INSPECT_DOUBLE_DECODING_ATTACK(FuzzyThreat f)
 {
 double threat = startlow;
 if(this.IsHigh(f.Occurances))
 threat += .2;
 if(this.IsLow(f.Timespan))
 threat -= .2;
 threat = this.CheckBounds(threat);
 return threat;
 }

 //'WEB-MISC robots.txt access'
 // http://www.snort.org/pub-bin/sigs.cgi?sid=1852
 // Low Threat

 threat += .3;

p://www.snort.org/pub-bin/sigs.cgi?sid=882
 / No Threat
e double WE

return 1.0;

 123

 private double WEB_MISC_ROBOTS_ACCESS(FuzzyThreat f)
 {
 double threat = startlow;
 if(this.IsHigh(f.Avg_Time_Between))
 threat += .2;
 if(this.IsLowMed(f.Src_Ip_Frequency))
 threat -= .1;
 return threat;
 }

 //'WE-CGI awstats.pl configdir command execution attempt' (3813)
 // http://www.nessus.org/plugins/index.php?view=single&id=16189
 // High Threat
 private double WEB_CGI_COMMAND_EXECUTION(FuzzyThreat f)
 {
 double threat = starthigh;

 if(this.IsMedHigh(f.Timespan))
 threat += .2;
 if(this.IsMedHigh(f.Occurances))

 threat = CheckBounds(threat);
 return threat;
 }

 //'WEB-CGI awstats access' (3463)
 //
http://www.nessus.org/plugins/index.php?view=single&id=16456
 // High Threat
 private double WEB_CGI_AWSTATS_ACCESS(FuzzyThreat f)
 {
 double threat = starthigh;
 if(this.IsHigh(f.Avg_Time_Between))
 threat += .1;
 if(this.IsMedHigh(f.Timespan))
 threat += .2;
 if(this.IsMedHigh(f.Occurances))
 threat += .3;

 threat = CheckBounds(threat);
 return threat;
 }

 //'WEB-MISC WebDAV search access' (1070)
 // ttp://www.snort.org/pub-bin/sigs.cgi?sid=1070
 // d
 pri t
 {
 double threat = startmed;
 // Possible DOS for unpatched (out of the box) WebDAV
Service

 if(this.IsHigh(f.Avg_Time_Between))
threat += .1;

 threat += .3;

h
Me ium Threat
va e double WEB_MISC_WEBDAV_SEARCH(FuzzyThreat f)

 124

 if(this.IsHigh(f.Avg_Time_Between))
 threat += .1;
 if(this.IsHigh(f.Src_Ip_Frequency))
 threat += .1;
 if(this.IsLowMed(f.Occurances))
 threat -= .2;

 threat = this.CheckBounds(threat);
 return threat;
 }

 //'WEB-MISC Chunked-Encoding transfer attempt' (1807)
 // http://www.snort.org/pub-bin/sigs.cgi?sid=1807
 // Medium Threat
 private double
WEB_MISC_CHUNKED_ENCODING_TRANSFER(FuzzyThreat f)
 {
 double threat = startmed;
 if(this.IsMedHigh(f.Avg_Time_Between))
 threat += .1;
 if(this.IsHigh(f.Src_Ip_Frequency))

+= .1;

 threat = this.CheckBounds(threat);
 return threat;
 }

 //'WEB-FRONTPAGE rad fp30reg.dll access' (1248)
 // http://www.snort.org/pub-bin/sigs.cgi?sid=1248
 // Medium Threat
 private double WEB_FRONTPAGE_DLL_ACCESS(FuzzyThreat f)
 {
 double threat = startmed;

 if(this.IsHigh(f.Occurances))

 threat -= .1;
 if(this.IsHigh(f.Src_Ip_Frequency))
 threat += .2;

 re
 }

 //'WEB-FRONTPAGE /_vti_bin/ access' (1288)
 //
http://www.nessus.org/plugins/index.php?view=single&id=11032
 // Low threat
 private double WEB_FRONTPAGE_VTI_BIN_ACCESS(FuzzyThreat f)
 {
 double threat = startlow;
 if(this.IsHigh(f.Src_Ip_Frequency))
 threat += .2;

 threat

 threat += .1;
 if(this.IsLowMed(f.Occurances))

 threat = this.CheckBounds(threat);
turn threat;

 125

 threat = this.CheckBounds(threat);
 return threat;
 }

 //'WEB-IIS cmd.exe access' (1002)
 // http://www.snort.org/pub-bin/sigs.cgi?sid=1002
 private double WEB_IIS_CMD_ACCESS(FuzzyThreat f)
 {
 double threat = startlow;
 if(this.IsHigh(f.Src_Ip_Frequency))
 threat += .2;
 if(this.IsLowMed(f.Timespan))
 threat -= .1;
 threat = this.CheckBounds(threat);
 return threat;
 }

 //'WEB-MISC Invalid HTTP Version String' (2570)
 // http://www.snort.org/pub-bin/sigs.cgi?sid=2570
 // High Threat
 private double
WEB_MISC_INVALID_HTTP_VERSION_STRING(FuzzyThreat f)
 {
 double threat = starthigh;
 if(this.IsMedHigh(f.Src_Ip_Frequency))
 threat += .2;
 if(this.IsHigh(f.Timespan))
 threat += .1;
 threat = this.CheckBounds(threat);
 return threat;
 }

 #endregion
 }
}

General Rules
using System;
using arf.fuzzy.interfaces;
using arf.fuzzy.objects;

namespace arf.fuzzy.rules
{
 /// <summary>
 /// General Set of Rules for the application
 /// </summary>
 public class GeneralRules : RuleBase, IRule
 {
 public GeneralRules()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 126

 #region IRule Members

 public double FindFuzzyThreatLevel(FuzzyThreat f)
 {
 double ftl = 0.0;
 ftl = GRule(f);
 return ftl;
 }

 #endregion

 private double GRule(FuzzyThreat f)
 {
 double threat = startmed;

 // If anything is a high threat, elevate the threat level
 if(thi) ||

this.IsHigh(f.Src_Ip_Frequency) ||
this.IsHigh(f.Timespan) ||
this.IsHigh(f.Avg_Time_Between))

threat += .1;

// If a lot of different IPs are doing it in a low
amount of time...its probably new and // needs to be
looked at
if(this.IsHigh(f.Src_Ip_Frequency) &&
this.IsLow(f.Avg_Time_Between))

 threat += .5;

// If a lot of different IPs are doing over a large
timespan the threat should be
// elevated
if(this.IsHigh(f.Src_Ip_Frequency) &&
this.IsMedHigh(f.Avg_Time_Between))

 threat += .2;

// If not a lot of people are doing it over not a lot
// of time, decrement the threat level
if(this.IsLowMed(f.Src_Ip_Frequency) &&
this.IsLow(f.Timespan))

 threat -= .3;

 // If not happening a lot, decrement the threat level
 if(this.IsLowMed(f.Occurances))
 threat -= .1;

 threat = CheckBounds(threat);
 return threat;
 }

 }
}

s.IsHigh(f.Occurances

 127

FuzzyEngine.cs
using System;
using System

using arf.fuzzy.objects;
using arf.fuzzy.interfaces;
using arf.fuzzy.rules;
using arf.fuzzy.me

using MySQL.Data.M

namespace arf.fuzzy

 /// <summary>
 ///The main Wrapper for fuzzy Logic Operations...a starting point

 public class FuzzyEngine
 {

/// <summary>
 /// Finds a Threat Level for a host (sensor)
 /// </summary>
 /// <returns>The threat level for the sensor</returns>
 public static double HostThreatLevel(DataSet ds,

System.Windows.Forms.ListBox l)
 {
 XmlDocument xmlDoc = new XmlDocument();

 SnortAdapter s = new SnortAdapter(ds);
 CrispThreatCollection c1 = s.CrispThreats;

 IFuzzification f = new
 FuzzificationMembershipFunction(c1);
 FuzzyThreatCollection f1 = f.GetFuzzyThreats();

 IRule r = new Rules();
 IInferenceEngine i = new RuleBasedInference(f1,r);
 FuzzyThreatLevelCollection f2 =

i.GetFuzzyThreatLevel();

 xmlDoc = f2.CreateXML();
 FormatLog(xmlDoc, l);

 IDefuzzifier MeanOfMaximum = new MOMDefuzzify(f2);
 double o = MeanOfMaximum.GetCrispOutput();
 return o;
 }

 /// <summary>
 /// Basic Logging Function to show specific steps of the

/// application to the GUI
 /// </summary>
 /// <param name="xmldoc"></param>
 /// <param name="l"></param>

.Data;
using System.Collections;

mbershipfunctions;
using System.Xml;

using MySQL.Data;
ySqlClient;

{

 /// </summary>

 128

 /// <returns></returns>
 private static string FormatLog(XmlDocument xmldoc,
System.Windows.Forms.ListBox l)
 {

 l.Items.Clear();
 XmlNodeList xmlnode =

xmldoc.GetElementsByTagName("signature");
 string s = "";

 for(int i=0;i<xmlnode.Count;i++)
 {
 XmlAttributeCollection xmlattrc =

xmlnode[i].Attributes;
l.Items.Add(xmlnode[i].FirstChild.Name + ": "+
xmlnode[i].FirstChild.InnerText + " -> " +
arf.ARF_Main.GetSnortSignatureName(xmlattrc[0].
Value) + " |" + xmlattrc[0].Value + "|");

 }

 return s;
 }
 }

}

SnortAdapter.cs
using Sys m
using Sys em.Data;
using System.Collections;
using arf;
using arf.fuzzy.objects;

namespace arf.fuzzy
{
 /// <summary>
 /// Creates a CrispThreat object based on a common snort event

/// log dataset
 /// </summary>
 public class SnortAdapter
 {
 private ArrayList dataRows = new ArrayList();

// An arraylist of (DataRow []) objects
 private DataSet hostAlerts;
 private CrispThreatCollection crispThreats = new

CrispThreatCollection();

 public CrispThreatCollection CrispThreats
 {
 get{return crispThreats;}
 }

 public SnortAdapter(DataSet HostAlerts)
 {
 ArrayList SortedDataRows = new ArrayList();

te ;
t

 129

 hostAlerts = HostAlerts;
 DataRow [] AllDataRows;
 DataRow [] SortedSignatureRows;
 int [] signatures;
 int UniqueSignatures = 0;

 DataTable d = CreateEventTable();
 DataTable temp;
 d = HostAlerts.Tables["Table"];

 AllDataRows = d.Select("0=0","signature desc");
 temp = SelectDistinct("event",d,"signature");
 UniqueSignatures = temp.Rows.Count;
 signatures = new int[UniqueSignatures];

 for(int i = 0; i <temp.Rows.Count; i++)
 {
 signatures[i] =

Parse(temp.Rows[i].ItemArray[0].ToString());
 }

 for(int i = 0; i < UniqueSignatures; i++)
 {
 SortedSignatureRows = d.Select("signature = " +

signatures[i].ToString());
 SortedDataRows.Add(SortedSignatureRows);
 }

 CrispThreat c;
 for(int i = 0; i < SortedDataRows.Count; i++)
 {
 t(CalculateThreat((DataRow

[])SortedDataRows[i]));
 crispThreats.Add(c);
 }

 }

 private CrispThreat CalculateThreat(DataRow [] d)

 int occurances = d.Length;
 System.TimeSpan t;
 System.TimeSpan a;

 System.DateTime first = new DateTime(1);
 System.DateTime last = new DateTime(1);
 bool IsFirstIteration = true;
 double avg = 0.0;
 string signature = "";
 ArrayList IPs = new ArrayList();
 int UniqueIP = 0;
 double ip_per_alert = 0.0;

 System.DateTime current;
 foreach(DataRow r in d)

 c = new CrispThrea

 130

 {
 current =

DateTime.Parse(r.ItemArray[2].ToString();
 if(IsFirstIteration)
 {
 first = current;
 last = current;
 signature = r.ItemArray[3].ToString();
 }
 if(current < first && !IsFirstIteration)
 first = current;
 if(current > last && !IsFirstIteration)
 last = current;

 IsFirstIteration = false;

 // Find unique IP's
 if(!IPs.Contains(r.ItemArray[5]))
 IPs.Add(r.ItemArray[5]);

 }
 t = last.Subtract(first);
 avg = t.TotalSeconds/(double)occurances;
 a = new TimeSpan(0,0,(int)avg);
 UniqueIP = IPs.Count;
 ip_per_alert = (double)occurances / (double)UniqueIP;

CrispThreat c = new
CrispThreat(occurances,t,SeverityFinder(signature),a,
int.Parse(signature),ip_per_alert);

 return c;

 }

 #region Private (Helper Functions)
 //copied from
http://support.microsoft.com/default.aspx?scid=kb;en-us;326176
 public DataTable SelectDistinct(string TableName, DataTable
SourceTable, string FieldName)
 {
 DataTable dt = new DataTable(TableName);
 dt.Columns.Add(FieldName,
SourceTable.Columns[FieldName].DataType);

 object LastValue = null;
 foreach (DataRow dr in SourceTable.Select("",
FieldName))
 {
 if (LastValue == null ||
!(ColumnEqual(LastValue, dr[FieldName])))
 {
 LastValue = dr[FieldName];
 dt.Rows.Add(new object[]{LastValue});
 }
 }
 if (hostAlerts != null)
 hostAlerts.Tables.Add(dt);

 131

 return dt;
 }

 //copied from
http://support.microsoft.com/default.aspx?scid=kb;en-us;326176
 private bool ColumnEqual(object A, object B)
 {

 // Compares two values to see if they are equal. Also
compares DBNULL.Value.
 // Note: If your DataTable contains object fields,
then you must extend this
 // function to handle them in a meaningful way if you
intend to group on them.

 if (A == DBNull.Value && B == DBNull.Value) //
both are DBNull.Value
 return true;
 if (A == DBNull.Value || B == DBNull.Value) //
only one is DBNull.Value
 return false;
 return (A.Equals(B)); // value type standard
comparison
 }

 private DataTable CreateEventTable()
 {
 DataTable dt = new DataTable("event");

 DataColumn dc = new
DataColumn("sid",System.Type.GetType("System.Int32"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 dc = new
DataColumn("cid",System.Type.GetType("System.Int32"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 dc = new
DataColumn("signature",System.Type.GetType("System.Int32"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 dc = new
DataColumn("timestamp",System.Type.GetType("System.DateTime"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 dc = new
DataColumn("sensor_alias",System.Type.GetType("System.String"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 dc = new
DataColumn("ip_src",System.Type.GetType("System.String"));
 dc.AllowDBNull = false;

 132

 133

 dt.Columns.Add(dc);

 dc = new
DataColumn("ip_dest",System.Type.GetType("System.String"));
 dc.AllowDBNull = false;
 dt.Columns.Add(dc);

 return dt;
 }
 private int SeverityFinder(string signature)
 {
 return 1;
 }
 #endregion
 }
}

RulesBasedInference.cs
using System;
using arf.fuzzy.objects;
using arf.fuzzy.interfaces;
using arf.fuzzy.rules;

namespace arf.fuzzy
{
 /// <summary>
 /// Maps the ruleset to a signature
 /// </summary>
 public class RuleBasedInference : IInferenceEngine
 {
 #region Properties

 private FuzzyThreatLevelCollection fuzzyThreatLevels = new

FuzzyThreatLevelCollection();
 private IRule r;
 #endregion

 public RuleBasedInference(FuzzyThreatCollection f, IRule

RuleSet)
 {
 r = RuleSet;
 fuzzyThreatLevels = FuzzyInference(f);

 }

 #region IInferenceEngine Members

 public FuzzyThreatLevelCollection

FuzzyInference(FuzzyThreatCollection i)
 {
 FuzzyThreatLevel ftl;
 foreach(FuzzyThreat t in i)
 {
 ftl = new FuzzyThreatLevel(FuzzyInference(t));
 fuzzyThreatLevels.Add(ftl);

 134

 }
 return fuzzyThreatLevels;
 }

 public FuzzyThreatLevel FuzzyInference(FuzzyThreat f)
 {
 FuzzyThreatLevel ftl = new

FuzzyThreatLevel(r.FindFuzzyThreatLevel(f),f.Signature);
 return ftl;
 }

 public FuzzyThreatLevelCollection GetFuzzyThreatLevel()
 {
 return fuzzyThreatLevels;
 }

 #endregion

 }
}

MOMDefuzzify.cs
using System;
using arf.fuzzy.objects;
using arf.fuzzy.interfaces;

namespace arf.fuzzy
{
 /// <summary>
 /// Mean of Maximum Defuzzifier
 /// </summary>
 public class MOMDefuzzify : IDefuzzifier
 {
 double output;

 public MOMDefuzzify(FuzzyThreatLevelCollection i)
 {
 output = Defuzzify(i);
 }

 #region IDefuzzifier Members

 public double GetCrispOutput()
 {
 return output;
 }

 public double Defuzzify(FuzzyThreatLevelCollection i)
 {
 int count = 0;
 double dValue= 0.0;
 foreach(FuzzyThreatLevel t in i)
 {
 count++;
 dValue += t.Fuzzy_Threat_Level;

 135

 }
 return dValue/(double)count;
 }

 #endregion
 }
}

MaxDefuzzify.cs
using System;
using arf.fuzzy;
using arf.fuzzy.objects;
using arf.fuzzy.interfaces;

namespace arf.fuzzy
{
 /// <summary>
 /// Returns the Maximum Fuzzy value
 /// </summary>
 public class MaxDefuzzify : IDefuzzifier
 {
 double output;
 public MaxDefuzzify(FuzzyThreatLevelCollection i)
 {
 output = Defuzzify(i);
 }
 #region IDefuzzifier Members

 public double Defuzzify(FuzzyThreatLevelCollection i)
 {
 double largest = 0.0;

 foreach(FuzzyThreatLevel t in i)
 {
 if(t.Fuzzy_Threat_Level > largest)
 largest = t.Fuzzy_Threat_Level;
 }
 return largest;
 }

 public double GetCrispOutput()
 {
 return output;
 }

 #endregion
 }
}

 136

Vita

Jeremy Gray

419 Winkler Ave, Louisville, KY 40208
Education

University of Louisville
Louisville, Kentucky
• B.S. Computer Engineering and Computer Science, May 2005

Experience
Aircraft Maintenance and Engineering Applications Support 2002-2003
TUPS T

• Primary responsibilities included design and development of enterprise web applications

• Enhanced and tested airline applications using Visual Basic

• Emphasis on software lifecycle documentation and capability maturity model (CMM)

Teaching Assistant – Design of Computer Algorithms May 2005 – December 2005
TUniversity of Louisville T

• A graduate level course covering the engineering design of efficient computer algorithms

• Preparing course materials and examples covering a range of topics in computer algorithms

Deputy Sheriff October 2004 – June 2006 (present)

Jefferson County Sheriff’s Office
• Perform security assignments in the Jefferson County Hall of Justice and at various community

functions, such as church picnics, Kentucky Derby events, and charity fundraisers

• Exposure to a wide array of training courses, including communication skills and cultural diversity

• Deployed for seven days to Louisiana as part of Hurricane Katrina relief effort in September 2005

 Casino Games Dealer September 2003 – June 2006 (present)

 TCasino Entertainment T

• Dealing craps, blackjack, and poker games, in a Monte Carlo style

• Providing an entertaining environment while teaching gaming fundamentals

	ARF : an Automated Real-Time Fuzzy Logic Threat Evaluation System.
	Recommended Citation

	ACKNOWLEDGEMENTS

