
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2005 

Explore the murine cardiac 20S proteasomes : molecular Explore the murine cardiac 20S proteasomes : molecular 

composition and regulation. composition and regulation. 

Chenggong Zong 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

Recommended Citation Recommended Citation 
Zong, Chenggong, "Explore the murine cardiac 20S proteasomes : molecular composition and regulation." 
(2005). Electronic Theses and Dissertations. Paper 1654. 
https://doi.org/10.18297/etd/1654 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1654
mailto:thinkir@louisville.edu


EXPLORE THE MURINE CARDIAC 20S PROTEASOMES: 
MOLECULAR COMPOSITION AND REGULATION 

By 

Ghenggong Zong 

B.S., Ocealn University of China, 2000 

A Thesis 

Submitted to the Faculty of the 

Graduate School of the University of Louisville 

in Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

Department of Physiology and Biophysics 

University of Louisville 

Louisville, Kentucky 

December, 2005 



 
 
 
 

Explore the Murine Cardiac 20S Proteasomes: 
Molecular Composition and Regulation 

 
 
 

By  
 
 
 

Chenggong Zong 
B.S., Ocean University of China, 2000 

 
 
 

A Dissertation Approved on 
 
 
 

November 9, 2005 
Date 

 
 

By the following Dissertation Committee: 
 
 
 

       
 

Dissertation Director 
 
 
 

       
 
 

       
 
 

       
 
 

       

 ii



DEDICATION 

This thesis is dedicated to my parents 

Mr. Qingang Zong 

and 

Mrs. Jiamei Xu 

Who have giving invaluable support and educational opportunities. 

iii 



ACKNOWLEDGEMENTS 

I would like to express my sincelre appreciation to my mentor, Dr. Peipei Ping for her 

extraordinary guidance and consistenGe support and being such a great role model. Her 

dedication, brilliance have been such an inspiration to me. 

I am also very grateful for having a !~reat graduate advisory committee. Dr. Irving Joshua, Dr. 

William Wead, Dr. Stanley D'Souza and Dr. Gregg Rokosh have provided excellent advice and 

support throughout my training process. Many thanks to the rest of faculty and administration stuff 

in Department of Physiology and Biophysics, who have been so helpful. 

My special appreciate to my colleague in Dr. Ping's group for their help and friendship: Dr. Jun 

Zhang, Dr. Thomas Vondriska, Dr. Chris Baines, Dr. Xinan Cao, Dr. Guang-wu Wang, Mr. Ernest 

Cardwell, Dr. Xin Qiao, Dr. Ming Lu, Dr. Aldrin Gomes, Dr. Xiaohai Li, Mr. Glen Young, Dr. Oliver 

Drews, Dr. David Liem, Ms. Dawn PantaIE~on, Mr. Gabe Bernard. 

Finally, I would like to express my appreciation to my parents for unconditional love, support, 

mentorship and even sacrifice. It has been invaluable for me. 

Thank you all! 

iv 



ABSTRACT 

EXPLORE THE MURINE CARDIAC 20S PROTEASOMES: 

MOLECULAR COMPOSITION AND REGULATION 

Chenggong Zong 

November, 2005 

20S proteasome, essential component of protein degradation mechanism, is important to maintain 

homeostasis. Its malfunctions have been associated with several pathological conditions. This 

study presents an extensive study of murine cardiac 20S proteasome. Using biochemical methods, 

20S proteasome have been purified to 95%. Proteomic study identified all 20S proteasome 

subunits. Endogenous phosphorylation was also documented. Furthermore, several associating 

kinases and phosphatase were identified. They regulated its activities. In PKCE over-expression 

mice, 20S proteasome expression level was up-regulated, but its peptidase activities did not 

increase. as crystallin were recruited to PKCE subproteome in the transgenic mice, which also 

associated with 20S proteasome. This association was enhanced in the transgenic mice and has 

been reported to inhibit 20S proteasome activities. It suggested as crystallin playa role in cardiac 

20S proteasome regulation. 
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CHAPTER I 

GENERAL INTRODUCTION AND OVERVIEW 

Literature Review 

Proteasomes: An Essential Protein Degradation Machinery 

The proteasome is a multi-meric protease complex. In the early days of proteasome study, it 

was also known as a "multi catalytic proteinase", "macroxyproteinase" or "alkaline proteinase". 

Further investigations proved all those names associate with the same protein complex. This is an 

essential multimeric complex in cell biology. Its importance is highlighted by the fact that multiple 

subunits of 20S proteasome are essential for yeast survival by knock down study (Heinemeyer, 

Trondle et al. 1994). In the cell, the proteasome exists in multiple forms with different 

sedimentation rates. One form of the proteasome with a sedimentation coefficient of 20S is the 

minimal unit to have proteolytic activities and is called the 20S proteasome or core particle. The 

core particle with a 700kDa regulatory protein complex (regulatory particle or PA700) binding on 

either or both ends has a higher sedimentation coefficient of 26S and is named the 26S 

proteasome, accordingly. Besides the 26S proteasome, the core particle can associate with other 

regulatory protein/protein complex, which all contribute to the plasticity of the proteasome. These 

include the 11 S regulatory complex and PA200. The recruitment of different regulatory complexes 

to the core particle constitutes the variety of proteasome population within the cell, and the choice 



of regulatory complexes is an important mechanism to tune the intracellular protein degradation 

pathway (Coux, Tanaka et al. 1996; Bochtler, Ditzel et al. 1999; Glickman and Ciechanover 2002). 

In depth understanding of the structure, function and regulation of this essential proteolytic 

machinery is of great significance. 

Mechanisms of Intracellular Protein Turn-over 

One of the key features of life is the ability of maintaining homeostasis at the expense of 

energy. Among the several important aspects of it, protein degradation is an indispensable part. 

There are two main proteolytic systems, which execute routine protein catabolism in cells: 

proteasome and lysosome pathways. In addition, there are Ca2+ dependent proteases and 

apoptosis-related proteases, which are involved in specific signaling events (Debigare and 

Price 2003). 

Lysosome degradates membrane proteins and endocytosed proteins. These activities 

correspond to cell membrane receptor regulation and cellular defense mechanism against 

exotic proteins (Glickman and Ciechanover 2002). Mono-ubiquitination serves as tag for 

selective endocytosis. Ubiquitin, as a shared player in both lysosomal proteins degradation 

and proteasomal protein degradation, links these two protein degradation pathways. 

Ubiquitin-dependent lysosomal degradation is recently reviewed (Bonifacino and Traub 

2003). 

Proteasome is responsible for turning over the majority of the cytosolic and nuclear proteins. 

Proteins which are to be degraded, are tagged with poly-ubiquitin chains (poly-Ub) by the 
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cooperation of ubiquitin-activating protein (E1), ubiquitin carrier proteins (E2s) and 

ubiquitin-protein ligases (E3s and E4s) (Hershko and Ciechanover 1998). Poly-ubiquitinated 

proteins are recognized by poly-Ub receptor in the 26S proteasome (Rpn10) or shuttle proteins 

(such as Rad23). The poly-Ub is removed, and the tagged-proteins are degraded (Miller and 

Gordon 2005) into peptides with an average length of 8-9 amino acids. These peptides are either 

further digested by intracellular peptidases (e.g. Tripeptidyl-peptidase II) into amino acids to be 

reused; or transported to the ER then represented by MHC I receptor as epitopes, playing 

important role in immune response (Bochtler, Ditzel et al. 1999). 

The Molecular Components and Structure of Proteasomes 

Proteasome is in fact a collection of multi-meric proteinases, which are subunits of the 

20S core particle. This core particle has been identified in all three branches of organism 

society: archaeal bacteria, eubacteria and eukaryotes (Hoffman, Pratt et al. 1992; Zwickl, 

Kleinz et al. 1994; To and Wang 1997; BochtJer, Ditzel et al. 1999; Shibahara, Kawasaki et al. 

2002; Wang, Bozdech et al. 2003). 

Archaei bacteria contain an ancient form of pro tea some core particle. This particle is 

made up with two subunits with homology, a and B subunits. They form 4 stack of hapto-rings, 

with a subunits, which constitute two outer rings and B subunits, which constitute two inner 

rings (Bochtler, Ditzel et al. 1999). The B subunit is catalytically active, while the a subunit is 

inactive. Crystallography shows both a and B subunits share the same conformation. Two 

layers of 5 strands of the anti-parallel B -sheets form the core of both subunits, flanked by 2 
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anti-parallel IX helices on both ends, with an extra IX helix on the N-terminus of the IX subunits, 

which compares to the mature form of a subunit (Brannigan, Dodson et al. 1995; Oinonen and 

Rouvinen 2000). N-terminal pre-peptide of a subunit precursor is auto-proteolytically removed 

during proteasome assembly, which generates mature a subunit (Zwickl, Kleinz et al. 1994). 

Both structural and biochemical studies suggest that proteasome subunits are distinct from 

well-characterized cysteine proteases, serine proteases, asparic proteases and metalloproteases 

(Lowe, Stock et al. 1995; Kisselev and Goldberg 2001). In fact, they belong to a family of proteins 

called N-terminal nucleophile hydrolases (Ntns). Consistent with the name, N-terminal hydroxyl 

group of proteins in this family serves as catalytic-active site. The extra N-terminal helix in the IX 

subunit explains its functional impotency (Brannigan, Dodson et al. 1995; Oinonen and Rouvinen 

2000). Though catalytically inactive, the IX subunit plays key roles in proteasome assembly and 

substrate specificity. The limited hole (13A) formed in the middle of heptametrical IX ring, only 

allows certain proteins and peptides to access the proteolytic active sites, which is the structural 

basis for substrate specificity (Zwickl, Kleinz et al. 1994). Only a few eubacterial contain 

proteasomes, which are the result of horizontal transfer events (Bochtler, Ditzel et al. 1999). 

Evolution diversifies proteasome subunits in eukaryotes. In yeast, there are 7 distinct IX 

subunits and 7 distinct a subunits. The classification as IX or a family member is both based 

on the homology between these subunits and ancestor archaei bacteria subunits; and the spatial 

arrangement of the subunit in 20S proteasome. Two copies of each subunits form a 28-mer 4 

layers stack (IX 1-7, a 1-7, IX 1-7, a 1-7). Crystallography studies uncovered the spatial relationship 
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among different subunits and proposed an unequivocal nomenclature (Groll. Ditzel et al. 1997; 

Groll. Koguchi et al. 2001). Both a subunits and /3 subunits of yeast proteasome have major 

distinction with arch bacterial proteasomes. Among the 7 /3 subunits. 4 of them have 

N-terminal truncation concurrent with proteasome maturation. and 3 out of these 4 are 

proteolytically active. These proteolytic /3 subunits have distinct preferences towards peptide 

substrates. The specificity of each subunit has been characterized by mutagenesis and inhibitor 

analysis. The /3 1 subunit prefers to digest after acidic amino acids (caspase-like activity); /3 2 

subunit prefers to digest after basic amino acids (trypsin-like activity); /3 5 prefers to digest after 

hydrophobic amino acids (chymotrypsin-like activity). Unique fluorescent-tag recombinant 

peptides were designed to study subunit specific peptidase activities (Leu-Leu-Glu-AMC for /3 1 

subunit; Leu-8er-Thr-Arg-AMC for /3 2 subunit; Leu-Leu-Val-Tyr-AMC for /3 5 subunit) (Arendt 

and Hochstrasser 1997; Heinemeyer. Fischer et al. 1997; Groll. Koguchi et al. 2001; Kisselev and 

Goldberg 2001). Prepeptide removals are achieved autoproteolytically or executed by neighboring 

subunits. Though removed upon maturation. these prepeptides play more important role than that 

in archaebacteria. Delete mutation of yeast /3 5 presequence leads to cell death (Chen and 

Hochstrasser 1996). N-terminal sequences of a subunits are also significantly different from the 

archaebacteria counterpart. They occlude both ends of 208 proteasome. as a direct result of 

elongated a subunits in the N-terminal sequence. This leaves yeast 208 proteasome 

predominantly in a latent form (Groll. Ditzel et al. 1997). There is a dynamic balance between the 

active form and latent form of 208 proteasome. This explains why the 208 proteasome shows 
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basal peptidase activities in an un-induced condition. This balance has be revealed by atomic 

force microscopy (Osmulski and Gaczynska 2002; Furuike, Hirokawa et al. 2003). However, the 

proteasome can be regulated to favor activated form by physiological activators (e.g. PA700, 

Blm10) (Adams, Crotchett et al. 1998; Schmidt, Haas et al. 2005) or biochemical activators (e.g. 

SDS, poly-lysine) (Shibatani and Ward 1995; Coux, Tanaka et al. 1996). 

In mammals, the 20S proteasome is highly homologous to that of yeast. The sequences of 

core particle subunits are conserved. Mammalian 20S proteasome also contains duplex of 7 Cl and 

7 S subunits, organized in 4 stacks of hapto-rings. Both crystal graphic and 

immuno-electron-microscopy studies show the spatial arrangement of subunits are also 

conserved among species (Groll, Ditzel et al. 1997; Kopp, Hendil et al. 1997; Dahlmann, 

Kopp et al. 1999; Unno, Mizushima et al. 2002). Both ends of mammalian 20S proteasome 

are also occluded, which is consistent with the latency of it. The occlusion can be released by 19S 

(homolog of PA700 in yeast) and PA200 (homolog of Blm10 yeast). Besides similarities, there are 

increased complexities in mammalian proteasome to accommodate various functional 

requirements. Three interferon-"y (IFN-"y) inducible proteolytic-active subunits (s 1 i/Lmp2, S 

2i/MECL-1, S5i/Lmp7) are coded and expressed upon stimulation, which is involved in immune 

response. They would replace their constitutive expressing counterparts (S 1, S 2 and S 5 

respectively) under IFN-"y regulation (Groettrup, Ruppert et al. 1995; Gaczynska, Goldberg et al. 

1996). There is another regulatory complex inducible by IFN-"Y unique to mammalian 20S 

proteasome, instead of yeast companion. 11S complex is an ATP-independent proteasome 
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activator involving in immune response (Groettrup, Ruppert et al. 1995; Rechsteiner, Realini et al. 

2000). The co-existence of constitutive 20S proteasome subunits and their inducible counterparts 

in mammals, raise the possibility of multiple "mixed" 20S proteasome forms in mammals. Though 

existence of these forms has been shown, 20S proteasomes comprising either only constitutive 

subunits (constitutive 20S) or only inducible subunits (immuno-proteasome) are the dominant 

forms. Mutational studies show that a subunit prepeptides dictate the preference. Compared to 

constitutive proteasome, immuno-proteasome increases chymotrypsin-like and trypsin-like 

activities and decreases caspase-like activity. The peptides, generated by immuno-proteasome, 

have an average length longer than ones generated by constitutive-proteasome. A higher 

percentage of peptides have a hydrophobic or basic N-terminal amino acid, too. These peptides 

are better represented by MHC-1 receptor, which is consistence with an enhanced presentation of 

epitopes. (Groettrup, Ruppert et al. 1995; Rechsteiner, Realini et al. 2000; Kuckelkorn, Ruppert et 

al. 2002; De, Jayarapu et al. 2003; Kloetzel and Ossendorp 2004; Forster, Masterset al. 2005). 

Ubiquitination and The E1-E4 Cascades 

Ubiquitin (Ub) is a well-conserved 76 amino acid protein in eukaryotes which is always 

synthesized in precursor forms either as a polypeptide containing multiple copies of Ub or 

co-expressed with a ribosomal protein. De-ubiquitinases (DUBs) activate Ub precursor by 

truncating it. C-terminal glycine carboxyl-group of Ub can be activated by E1 in an ATP 

dependent manner. There is one E1 gene in both yeast and mouse. Activated Ub transfers 

from E1 to E2 and then to lysine e -NH2 group of protein substrate forming an isopeptide bond 
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as the result of the interplay between E2 and E3. There are tens of E2s and hundreds E3s 

encoded in mammalian cells to achieve high specificity of Ub tagging. Besides lysine e -NH2 of 

protein substrates, activated Ub can also tag e -NH2 of Ub (K29, K48, K63) linked to substrates, 

thereby forming a poly-Ub chain. Poly-Ub chain linked by G76/K48 serves as a signal recognized 

by 26S proteasome, which targets protein substrates to degradation. The biological context of 

poly-Ub chain formed by G76/K29 or G76/K63 is less well understood. G76/K63 chain has been 

reported to involved in DNA repair signaling (Hershko and Ciechanover 1998; Myung, Kim et al. 

2001; Weissman 2001; Glickman and Ciechanover 2002). E4s are a special group of ubiquitin 

ligases that selectively add extra Ub to preformed G76/K48 chain. U-box proteins function as E4 in 

the cell (Hatakeyama and Nakayama 2003). 

As opposed to poly-ubiquitination and sequentially degradation of nuclear and cytosolic 

proteins, membrane proteins can be mono-ubiquitinated, which serves as a sorting signal for 

vesicle trafficking process. Some of the vesicles merge with lysosome and membrane 

proteins are degradated. This vesicle trafficking event has been reviewed recently (Katzmann, 

Odorizzi et al. 2002; Horak 2003). 

The specificity of ubiquitin-tagging procedure is exerted by hundreds of E3s. There are 

two kinds of E3s: HECT domain containing E3s and Ring-finger domain containing E3s. 

HECT domain containing E3s have a cysteine in the active site, which accepts activated Ub 

from cognate E2s and passes it to its substrates. Ring-finger domain containing E3s have 

zinc-finger domains instead of active site cysteine. They align cognate E2s and protein 
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substrates and catalyze a direct transfer of Ub between them (Hershko and Ciechanover 

1998; Deshaies 1999; Myung, Kim et al. 2001; Pickart 2001; 8chwechheimer 2004). 

Deubiquitination is another key mechanism regulating the specificity of ubiquitin tagging 

process. As mentioned previous, DUBs are required for maturation of ubiquitin. DUBs 

associates with 268 proteasome removes poly-Ub chains from protein substrates. This 

facilitates the translocation of substrate into the core particle and recycles ubiquitin. 

Non-proteasome-associating DUBs remove non-specific ubiquitination and involves in vesicle 

trafficking/receptor recycle. This partially explains proteins attached by poly-Ub of less than 4 

Ub molecules are poor proteasome substrate. There are 5 families of DUBs reported. They 

work inversely with E3 ligases to make sure proper substrates specificity (Ferrell, Wilkinson et 

al. 2000; Amerik and Hochstrasser 2004). 

The 20S Proteasomes Are Composed of Multiproteln Complexes 

Native gel electrophoresis followed by fluorescent substrate overlay, showed the 

existence of three species of 208 proteasome. Denaturing 8D8-PAGE analysis showed all 

these species contain all subunits of 208 proteasome, while one form with an extra 30kDa 

band, the other with an extra 160kDa band. 208 proteasome species containing either 30kDa 

proteins or 200kDa protein showed enhanced peptidase activity. The 30kDa proteins are 

highly suggested to be 118 subunit a and ~,while 160kDa protein is suggested to be PA200 

(Hoffman, Pratt et al. 1992; To and Wang 1997). Purification of these different forms of 208 

proteasome from cells proposes that 118 and PA200 regulate 208 proteasome activity in vivo. 
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In vert$brates, existence of IFN- 'Y inducible subunits increases the complexity of 

intracellular ~08 proteasome population. Immuno-proteasome is induced by IFN- 'Y and formed 

via de novel> synthesis pathway. It has also been identified in other organs, instead of 

immuno-spe¢ific organs, including the heart. Besides playing a key role in immune response, 

other aspects of regulation evoked by immuno-proteasome induction are not clear (Bose, 

Brooks et a1.12001; Kloetzel and Ossendorp 2004). 

In a 20 ~Iectrophoresis (2DE) gel, purified 208 proteasome show more spots than expected 

according to. the number of gene encoding 208 proteasome subunits (14 for yeast, 17 for 

vertebrate). Mass spectrometry study show several proteasome subunits are each represented by 

multiple spots on the 20 gel, respectively. This indicates the presence of extensive 

post-translational modification regulations and the presence of a population of intracellular 208 

proteasome with different modifications (Eleuteri, Angeletti et al. 2000; Froment, 

Uttenweiler-Jc)seph et al. 2005; Hayter, Doherty et al. 2005). 

Regulation of Proteasomal Activities by Post-translational Modification 

As mentioned above, selective poly-ubiquitination defined substrate specificity of 

ubiquitin-prot~asome system; while the proteasome is only protein complex that turns over 

ubiquitin tagg,d substrates. The 208 proteasome is a stable protein complex that needs a 

long time to a$semble and has a long half-life (yang, Fruh et al. 1995; Meiners, Heyken et al. 

2003). The d~namic regulation of 208 proteasome activity can only be executed by means 

other than trarjlscription level. Post-translational modifications provide dynamic and reversible 
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ways to achieve it. In fact, multiple post-translational modifications have been uncovered at 

20S protea~ome, including N-terminal acetylation (Coux, Tanaka et al. 1996; Bochtler, Ditzel 

et al. 1999), phosphorylation (Castano, Mahillo et al. 1996; Mason, Murray et al. 1998; Bose, 

Mason et all. 1999; Bose, Stratford et al. 2004), HNE modification (Okada, Wangpoengtrakul 

et al. 1999)~ glycosylation (Zhang, Su et al. 2003; Zachara and Hart 2004) and poly-ADP 

ribosylation (Ullrich, Reinheckel et al. 1999). They control proteasome assembly, subcellular 

distribution, C/ctivity and substrate specificity. 

Postulated Rrincipal Regulatory Sites of the 20S and 19S Subunits 

20S pro~easome a subunits play an essential role in 20S proteasome assembly. Besides 

that, it serve$ as a gating mechanism constituting important part of substrate selectivity and its 

association 'll'ith different regulatory protein complexes confers proteasome plasticity (Coux, 

Tanaka et al. 1996; Unno, Mizushima et al. 2002). Corresponding to the multiple functions of IX 

subunits, mo~t reported post-translational modifications were identified from IX subunits. 

According to the structure of 20S proteasome, a subunits form the inner two-layer of a 

four-layer sta¢ked ring structure. This dictates less solvent-exposure-surface compare to IX 

subunits (CoU)(, Tanaka et al. 1996; Unno, Mizushima et al. 2002). Accordingly, less a subunit 

post-translatiqnal modifications were reported. Certain small molecules synthesized by 

microorganism!> can form stable adduct with a subunits of 20S proteasome within the chamber 

of the stack. Tfuis is a unique modification to a subunit, and these small molecules have been 

using as prote*ome inhibitors (Fenteany and Schreiber 1998; Kim, Myung et al. 1999; Kisselev 
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and Goldbe~g 2001; Myung, Kim et al. 2001). 

The si~ A TPases forming the base of 19S proteasome are essential for degradation of 

poly-ubiquiti/1ated proteins. They open the gate constituted by IX subunits, unfold and transfer 

protein substrates to the proteolytic chamber. Mutational study has shown that Rpt2 is an essential 

part for degr~dation of poly-ubiquitinated proteins (Coux, Tanaka et al. 1996; Bochtler, Ditzel et al. 

1999; Glickman and Ciechanover 2002). Post-translational modifications on ATPases serve as 

control mecHanisms for their function (Mason, Murray et al. 1998; Zhang, Su et al. 2003). 

Rpn10 i$ a poly-ubiquitin receptor, and Rpn11 is a de-ubiquitinase (UCH family). Functions of 

other components of 19S proteasome are less defined. Studying the post-translational control of 

these compohents would help characterize their functions. 

Reported Pqst-translational Modifications ofthe 20S and 19S Subunits 

Post-tra~slational removal of N-terminal propeptide from certain 13 subunits ( 13 1, 13 2, 13 5, 

13 7) is one df the first reported post-translational modifications. This is an integral part of 20S 

proteasome j:lssembly. 131, 13 2 and 13 5 propeptides are removed auto-proteolytically. 13 7 

propeptides lis removed by neighboring proteolytic active subunits. Propeptides protect 

N-terminal ac.ive sites from acetyl transferase before maturation and have important implication in 

the bias of assembly (Zwickl, Kleinz et aJ. 1994; Chen and Hochstrasser 1996; 

Seemuller, Lupas et al. 1996; Schmidt, Zantopf et al. 1999; De, Jayarapu et al. 2003). 

Phosphorjylation is another modification addressed by multiple manuscripts. Phosphorylated 

subunits were! detected in the proteasome, purified from yeast and certain mammalian tissues 
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(Bose, Mas~n et al. 1999; Iwafune, Kawasaki et al. 2002). Casein kinase II (CKII) is one of 20S 

proteasomel co-purifying enzymes, both in yeast, human erythrocytes and HEK293 (Ludemann, 

Lerea et al. ~ 993; Castano, Mahillo et al. 1996; Pardo, Murray et al. 1998). Subunits IX 3, IX 7 and 

IX 6 are repqrted substrates of CKII. In mutagenesis studies, Ser258, Ser 263 and Ser264 of the 

IX 7 subunit lare reportedly phosphorylated in yeast; Ser243 and Ser250 of the IX 7 subunit are 

phosphorylaled in rat kidney cell line; and Ser 248 of the IX 3 subunit are phosphorylated in yeast 

(Castano, Mahillo et al. 1996; Fernandez Murray, Pardo et al. 2002; Iwafune, Kawasaki et al. 

2004). The IX 7 subunit phosphorylation stabilizes the 26S proteasome ((Bose, Brooks et al. 

2001). IFN-"y treatment suppresses phosphorylation of 20S proteasome subunits and decreases 

26S proteaspme level in the mammalian cell, simultaneously (Bose, Brooks et al. 2001; Rivett, 

Bose et al. 2~01; Bose, Stratford et al. 2004). The effect of CKII phosphorylation at the perspective 

of 20S prot$asome activity is less addressed. Dr. Arribas group reports that in vitro CKII 

phosphorylat,on of rat kidney 20S proteasome does not affect its activity (Castano, Mahillo et al. 

1996); while pr. Passeron suggests CKII phosphorylation has an impact on yeast 20S proteasome 

activity (Fer~andez Murray, Pardo et al. 2002). PKA is another 20S proteasome co-purifying 

kinases iden1ified both in kidney cell line (HEK293) and bovine pituitary. Radioactive labeling 

suggests twol20S proteasome subunits (27kDa and 28kDa respectively) can be phosphorylated 

by PKA in vito ((Marambaud, Wilk et al. 1996). Moreover, PKA phosphorylation increases a 5 

subunit activi~ of 20S proteasome in vitro (Pereira and Wilk 1990; Marambaud, Wilk et al. 1996). 

Polo-like kin~se cO-immuno-precipitates with 20S proteasome. Reportedly, it increases a 5 
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subunit acti~ity of 20S proteasome in both in vitro and in vivo against fluorescent peptide substrate 

(Feng, Lon~o et al. 2001). Phosphorylations of 19S proteasome subunits are also reported 

(Mason, MUfray et al. 1998; Satoh, Sasajima et al. 2001). However, the phosphorylated sites and 

orresponding kinases are to be further investigated. There is no previous publication that 

addresses ~ndogenous protein phosphatase as part of 20S proteasome regulation mechanism. 

O-linkec;l N-acetylglucosamine modification is a form of glycosylation involved in proteasome 

regulation. this modification has been associated with nutritional censoring mechanism. It 

negatively a~ects the activity of 26S proteasome, while the impact on 20S proteasome activity was 

not significa~t. Rpt2, the critical subunit involved in opening the 20S gate at the bottom, is a 

substrate fon this modification (Sumegi, Hunyadi-Gulyas et al. 2003; Zhang, Su et al. 2003; 

Zachara andlHart 2004). 

HNE is , lipid peroxidation product, which can crosslink proteins. It inhibits 20S proteasome 

activity in vit~o. The subunits are not reported (Okada, Wangpoengtrakul et al. 1999). Oxidative 

stress can in~uce different modifications upon 20S proteasome, including poly-ADP ribosylation 

(Davies and iGoldberg 1987; Grune, Reinheckel et al. 1995; Ullrichk, Reinheckel et al. 1999; 

Radak, Sasv~ri et al. 2000). The comprehensive nature and effects of these modifications need to 

be further inv~stigated and differentiated. 

Regulation 0' Proteolytic Activities By Post-translational Modifications 

As state~ in the above, the regulation of proteasome activity is a collective effect of multiple 

post-translatiqnal tags, reflecting the impact of several control mechanisms. From the structural 
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and functio~al points of view, three types of regulations can be summarized. PTMs at 19S 

supervise repognition and translocation of substrate into the proteolytic active 20S proteasome 

chamber. PliMs at 20S proteasomes ex subunits favor certain proteasome activators/repressors, 

or affect 13 Isubunit proteolytic activities allosterically. PTMs at 20S proteasomes 13 subunits 

regulate 20S1 proteasome activity, allosterically. 

20S prqteasome peptidase activities are not always regulated uni-directionally. Inhibitors 

specific to qertain 20S proteasome subunit are available commercially, which supports the 

possibility of Isubunit specific activity regulation (Kisselev and Goldberg 2001; Myung, Kim et al. 

2001; Kissel~v, Garcia-Calvo et al. 2003). Several publications also report that proteasome 

activities carl be controlled in a subunit specific manner in certain phYSiological/pathological 

settings in Vfvo (Andersson, Sjostrand et al. 1999; Bulteau, Lundberg et al. 2001; Basset, 

Raymond et ~1. 2002). Unfortunately, in multiple early publications, only 13 5 subunit activity was 

assayed as cj measure of overall 20S proteasome activity, which might be misleading. All three 

20S proteasqme subunit specific substrates have to be use to evaluate its overall functionality. 

Clinical Implications of Proteasomal Function 

Proteasomall Dysfunction Associated with Diseased-Phenotypes 

Consistept with the large variety of proteins turned-over by the proteasome, malfunctioning of 

this complex pan result in a an ever growing list of diseases. Cancer is among the first and the 

most importa~t proteasome malfunction-associated diseases reported. To date, a tremendous 

amount of stydies have been conducted into the role of the proteasome in cancer. Bortezomib 
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(previously PS-341) from Millennium Pharmaceuticals has been used in cancer therapy (LeBlanc, 

Catley et al. ~002; Orlowski, Stinchcombe et al. 2002; Chauhan, Li et al. 2003). The involvement 

of Ubiquitin-~roteasome system in cancerous pathogenesis is complicated. Degradation of 

pro-apoptoticlprotein, caspases, is controlled by proteasome (Dallaporta, Pablo et al. 2000; Chen, 

Smith et al. 2~03). Degradation of p53 and other essentially cell cycle proteins are also manifested 

by the protea~ome (Higashitsuji, Higashitsuji et al. 2005; Richardson, Mitsiades et al. 2005). 

The invo,vement of the proteasome in neural degenerative diseases is well recognized, such 

as Alzheimer'ls disease and Parkinson's disease (Glickman and Ciechanover 2002; Dawson and 

Dawson 200~; Ross and Pickart 2004). In fact, parkin is an E3. The Liddle syndrome is the result 

of a mutatio~ at kidney ENaC channel protein, which prevents its turnover (Glickman and 

• 
Ciechanover 12002; Debigare and Price 2003). A mutation at an E3 (E6-AP) occurs in the 

Angelman sy~drome. Ubiquitin-proteasome system disorder also affects immuno-response and 

muscle wasti~g (Glickman and Ciechanover 2002). 

Postulated E~ects of Proteasomes in Ischemic Injury and Protection 

Recently" the effect of proteasome inhibition in cardiac protection came to cardiologist's 

attention. Dr. Kukan recently published a review article (Kukan 2004); in which it stated ischemia 

reperfusion in~uced infarction in brain, heart, kidney and liver can be minimized by application of 

proteasome inhibitors. Several research papers also support the view that inhibition of proteasome 

is a benefit aQainst cardiac infarction upon ischemia/reperfusion insult (Campbell, Adams et al. 

1999; Zhang, iZhang et al. 2001; Luss, Schmitz et al. 2002; Stangl, Gunther et al. 2002; Pye, 
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Ardeshirpol/r et al. 2003). 

Thoug~ there have been consistent reports of proteasome inhibition leading to protection 

against iscHemia, the mechanism remains unknown due to multiplicity of cell types in a target 

tissue and iproteasome involves in multiple cell biological pathways. Nevertheless, several 

hypotheses nave been proposed. 

The fir~t hypothesis is the reduction of immuno-response. In this hypothesis, proteasome 

inhibition dotmregulates NF-kB pathway in endothelial cells and lymphatic cells. Consequently, 

less Iympha~c cells attach and filtrate though micro-vessels formed by endothelial cells, which 

blocks blood Iflow. On the other hand, this downregulation reduces the release cytotoxic cytokines 

and inflamm*ory factors. The effect of NF-kB down regulation in cardiomyocyte is unfortunately 

not addresse~ (Campbell, Adams et al. 1999; Elliott, Zollner et al. 2003; Pye, Ardeshirpour et al. 

2003). 

Secondaty up-regulation of heat-shock proteins (HSPs) after proteasome inhibition is another 

proposed hy~othesis. Over-expression of HSPs is well recognized to be cardioprotective. 

However, in tHis specific setting, whether this upregulation is the primary protective mechanism or 

just a side-eff*t, needs further investigation. There is another complicating factor. Several groups 

report oxidize~ proteins, due to free radicals produced in ischemialreperfusion injury, are 

preferably degraded by 20S proteasome independent of ubiquitination. The increased ability in 

preventing pro~ein denaturing by HSPs and the decreased ability in turning-over irreversibly 

oxidative dam~ged proteins must be balanced (Kim, Kim et al. 1999; Luss, Schmitz et al. 2002; 
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Stangl, Guntrer et al. 2002; Aki, Yoshida et aI.2003). 

The pr~teasome is involved in the control of apoptosis-related proteins (such as 

caspases arid p53). The role of this control in the proteasome inhibited cardioprotective model 

need to be studied (Dallaporta, Pablo et al. 2000; Chen, Smith et al. 2003; Higashitsuji, 

Higashitsuji $t al. 2005; Richardson, Mitsiades et al. 2005). There are more hypotheses that can 

be formed, ~aking this model even more complicated. 

In short proteasome-inhibition-induced cardio-protection involves the interplay between 

different cell types and candidate proteins. Simplified models need to be established to 

understand tbe molecular details of this process and help design more specific pharmacological 

reagents. 
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Hypotheses And Aims of This Study 

Hypotheses 

Withlinformation gained from the yeast proteasomes combined with our current 

understan~ing and postulation of the mammalian proteasomes, we have formulated the 

following t~stable hypotheses: 

Hypothesi. I. 

The M,Jrine Cardiac 20S Proteasomes Are A Collection Of Multiprotein Complexes; This 

Sub-organeV/e Is Composed Of Essential Subunits And Key Ancillary Associating Partners. 

Hypothesi~ II. 

The 20$ Proteasomes Hold Multiple Regulatory Sites That Are Essential To The Modulation 

of Cardiac ffroteolytic Activity. Posttranslational Modification (e.g .• Phosphorylation) Of The 20S 

Subunits Cootributes To This Regulatory Process. 

HypotheSiS m. 

The As'f:;ociating Partners of The 20S Proteasomes Facilitate/Assist Isoform-Selective 

Modulation or The Cardiac Proteolytic Activity. 

Aims Of This Study 

To test t~e above hypotheses, we have organized the following specific aims. 

Specific Aim I.!. 

Purificatiqn, Isolation, And Proteomic Characterization Of The Murine Cardiac 20S 

Proteasomes. 

Specific Aim ~1. 
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Charactj9rization Of Key Phosphorylation Events Of The 20S Proteasomes; Determination 

Whether Sucjh Posttranslational Modifications Play Important Roles In The Modulation of Cardiac 

Proteolytic At;tivity. 

Specific Ai~ III. 

Identific$tion And Characterization Of The Associating Partners of The 20S Proteasomes; 

Determination Of Their Roles In The Modulation Of Cardiac Proteolytic Activity. 
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CHAPTER II 

PURIFICATION OF 20S PROTEASOME FROM MURINE HEART 

Introduction 

The set~p of a reproducible large-scale purification protocol is the first critical step to 

systemically $tudy the structural and the functional characters of murine cardiac 20S proteasome. 

Dr. Avram H~rshko, Dr. Aaron Ciechanover from Israel and Dr. Irwin Rose from United States of 

America pionleered the studies in ubiquitin-proteasome degradation pathway. As recognition of 

their contribtlJtions, they shared the Nobel Prize in Chemistry 2004. The highlight of their 

contribution i$ elucidation the mechanism of the selective ubiquitination and discovery of E1, E2, 

and E3 in th~ 80s, which brought controlled protein degradation to the focus of the biological 

community. 110 date, the proteasome is found in all three kingdoms of organisms: archbacteria, 

eubacteria a~d eukaryotes (Coux, Tanaka et al. 1996; Bochtler, Ditzel et al. 1999; Glickman and 

Ciechanover ?002). The primary sequence and quaternary structure of the 20S proteasome show 

great conserv~tion across species. Several purification strategies have been proposed. Based on 

the nature of the methods, they can be classified into three groups: classic biochemical purification 

protocols (re~rred to as the classical method from now on), immunoprecipitation protocols 

(referred to a$ the immunoprecipitation method from now on) and affinity purification protocols 

(referred to a~ the affinity method from now on) (Glickman and Ciechanover 2002; Leggett, 
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In the classical protocol, we purified the 20S proteasome according to its unique biochemical 

properties, iincluding high stability and solubility in high salt solution, high molecular weight and 

charge stat~s at certain pH. Sample prepared by the classical method has the advantage of high 

reproducibilIty, high purity and the possibility of high yield. The disadvantages include a longer 

purification time (3-4 days to finish). Proteins loosely associating with 20S proteasome may be lost 

during the Jl>rocedure. The immunoprecipitation (IP) protocol is usually carried out by IP with 

proteasomelsubunit-specific antibodies. The IP procedure is less time-consuming and offers the 

possibility tq purify a population of endogenous proteasome complexes. However, a simple IP 

procedure ccjnnot match a stringent purity requirement. The IgG light chain has a similar molecular 

weight as some of the 20S proteasome subunits, which makes mass spectrometric study difficult. 

It is also ecpnomically prohibitive to use this method for large-scale purification. The affinity 

protocol com~ines the advantages of the two previous approaches. It provides an economical way 

for large-scal$, high purity, high reproducibility proteasome purification in short period of time. The 

choice of affinity tags is diverse. FLAG, 6X His, protein A have all been proved to be applicable 

(Tongaonkar"Chen et al. 2000; Leggett, Hanna et al. 2002; Iwafune, Kawasaki et al. 2004). 

However, the need to transfect cells with plasmids that would express the tagged protein limits the 

current applic*ions to the cell lines and unicellular organisms (yeast, etc). The choice of protocol 

depends on th~ purpose of the study, nature of the sample and the scale of purification needed. 

20S protej:lsome has a molecular weight between 600-700kDa, depending on the species. It 

is stable in high salt, non-ATP solution. On the other hand, 26S proteasome, with a molecular 

weight rangingl from 1300kDa to 2100kDa (19S-20S or 19S-20S-19S), dissociates in such a 
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solution intq 208 proteasome and other protein complexes in the presence of high salt (Eytan, 

Ganoth et al. 1989; Ugai, Tamura et al. 1993; Fischer, Hilt et al. 1994). 

Existing Protocols To Purify Proteasomes From Yeast 

Yeast i$ a unicellular eukaryotic organism that can be genetically manipulated easily and 

expended in large-scale. All three types of protocols mentioned above are applicable to this 

organism. 

In term ~f classical purification, there are two representative procedures that are very similar 

in nature. Orlle, as described in methods in molecular biology (Leggett, Glickman et al. 2005), 

applies yeast cytosolic proteins to two consecutive anion chromatographies followed with gel 

filtration chrorjnatography. In the other procedure (Groll, Ditzel et al. 1997), yeast 208 proteasome 

are purified tlilrough anion ion-exchange chromatrography, hydroxy-apatite chromatography and 

gel filtration chromatography sequentially. The presence of ATP in the purification buffers greatly 

affected the eM product obtained. Including ATP in the buffer resulted in both singly capped and 

doubly capped 268 proteasome, with the second form usually dominant. When buffers free of ATP 

are utilized, the 208 proteasome isolated from yeast was of a purity that the 208 could be 

crystallized. 

With the power of genetic manipulation, more and more investigators turn to use affinity 

resins to bail affinity tagged yeast proteasome (Tongaonkar, Chen et al. 2000; Leggett, Hanna et al. 

2002; Iwafune, Kawasaki et al. 2004). This approach Significantly Simplifies purification procedure, 

shortens the time needed and lowers the harshness of purification procedure. This preserves 
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salt-labile prPteasome subunit or proteasome associating proteins, which would have been lost 

during classi~al procedure. 

E~isting Protocols To Purify Proteasomes From Mammalian Cell Culture 

There alre two sets of protocols for purifying 208 proteasome from mammalian cells, based 

on the natur$ of the starting material. 

For marlnmalian cell lines, there is no report on large-scale 208 proteasome purification. It 

would be time-consuming and cost-prohibitive to pursue such procedure. 'IP and affinity 

purifications are the methods of choice. IP is a simpler procedure without the needs of 

transformation. However, the introduction of antibody in IP procedure limits the maximal purity we 

can reach. 1"he affinity chromatography promises a quicker purification procedure and the 

potential of reaching higher purity. On the other hand, the transformation procedure would affect 

the status of the cells and affinity-tagged proteasome might have acquired distinct properties 

compared to !the endogenous counterparts. For tissue samples, in most cases, the quantity of the 

sample to stj:lrt with is not the major concern. On the other hand, genetic manipulation needs 

transgenesis j which is a challenging and risky task. To date, the majority of mammalian 208 

proteasome $tudies are done with preparations from reticulocyte, liver, and skeletal muscle, due to 

their easy av~ilability and accessibility (Rivett 1985; Hough, Pratt et al. 1987; Hoffman, Pratt et al. 

1992; Castano, Mahillo et al. 1996; Thomas, Oosthuizen et al. 2002; Hayter, Doherty et al. 2005). 

In the classil:;al procedure, 208 proteasome is purified step by step according to its unique 

biochemical Rroperties: solubility at high salt concentration (ammonium precipitation), charge state 
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(retention tUlle through an anion ion exchange column) and high molecular weight 

(ultra-centrifLjgation or gel-filtration chromatography). There are some applications of the IP 

procedure, which are small scale and just used to study one or two aspects of 208 proteasome 

(8hibatani arid Ward 1995; Feng, Longo et al. 2001). 

Significance of Purifying Proteasomes From Cardiac Tissues 

The prdteasome has been reported to play important roles in cardiac physiology and 

pathology, e~pecially in ischemia/reperfusion condition (Campbell, Adams et al. 1999; Bao, 8ato et 

al. 2001; Pye, Ardeshirpour et al. 2003; Townsend, Cutress et al. 2004). A comprehensive 

understanding of the cardiac 208 proteasome structure, function and regulation is the 

pre-requirem~nt to understand its role in biological context. To gain such knowledge, a highly 

reproducible and large-scale purification protocol has to be established. 

The mOlilse is an indispensable animal model to study cardiac physiology due to its high 

reproduction rate, availability of well-established pathological models, and transgenic lines. 

However, the use of mice also imposed challenges. The size of mouse heart is small (around 

0.15g for an $ week old mouse heart). Moreover, proteasome expression level in cardiac tissue is 

lower than tHat of liver tissue. These arbitrate a criterion to exam the success of purification 

protocol: The Iloss of proteasomes during purification has to be minimized to not be cost-prohibitive. 

Large-scale murine cardiac 208 proteasome purification protocol has not been reported. Murine 

cardiac 208 proteasome purification protocol was able to purify 800119 of >95% pure proteasome 

from 12g of dardiac tissue in a single run. This protocol was optimized from a liver purification 

protocol (Frenlch, Mayer et al. 2001) to fit the nature of cardiac sample and gain higher purity. 
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Materials and Methods 

The Use of Mouse Lines 

8 week old male ICR mice from Harlan were used in all studies. Mice were euthanized 

according t() NIH and UCLA DLAM guidelines. Heart tissue was taken, washed with TBS to 

remove blood and frozen in -80°C freezer until used. 

Isolation of Cytosolic Fraction from Whole Heart Lysate 

12g of mice heart tissue was homogenized with glass potter homogenizer in homogenize 

buffer (20mM Tris-base pH 7.8, 0.1mM EDTA, 1mM Dn, supplemented with protease inhibitor 

cocktail from Roche and phosphatase cocktails from Sigma). Homogenate was forced through 4 

layers of gauge to remove unbroken connective tissues. Cytosolic fraction was collected as the 

supernatant after 2hr centrifugation at 25,000g. 

The Use of Protease and Phosphatase Inhibitors 

Protease inhibitor cocktail (complete, EDTA free) was acquired from Roche. 1 tablet was used 

in 50ml solution. It was essential to minimize the non-specific degradation of proteins by lysosomal 

proteases. Importantly, this cocktail does not inhibit 20S proteasome activities. 

Phosphatillse inhibitor cocktail 1 (serine, threonine phosphatases inhibitors in DMSO) and 

cocktail 2 (acid, alkaline and tyrosine phosphatases inhibitors in aqueous solution) were acquired 

from Sigma Aldrich. Both cocktails are supplied as SOX stock. Use of both inhibitors was important 

to preserve the endogenous phosphorylation state of intracellular proteins during purification. 
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Proteasome Activities Assay and Inhibitors 

10111 of 10X proteasome assay buffer (250mM HEPES, pH 7.5; 5mM EOTA; 0.3% SOS) was 

aliquotted in each well of a 96-well microplate. 70111 water, 10111 of proteasome sample and 10ul of 

10X f1uorphore-linked peptide substrates (500IlM Suc-Leu-Leu-Val-Tyr-AMC, Bachem) were used 

sequentially to each well establishing the assay mixture. The incubatation time was set to 1 hr after 

which the adtivity was measured by fluorometer (Fluoroskan Ascent, Thermo Electron) at an 

excitation wavelength of 390nm and an emission wavelength of 460nm. 

Fast-Pressure Column Chromatography (FPLC) 

All FPLC were conducted using the AKTA Purifier (GE Healthcare, formerly Amersham). 

There are two anion ion-exchange chromatography steps during the purification procedure: 

preparative s¢ale chromatography and analytical scale chromatography. Same receipt of buffer A 

and buffer B were used for both procedures. 

Buffer A: Tris 20mM pH 7.4, MgCI2 5mM, OTT 0.5mM, Glycerol 1 0%; 

Buffer B: Tris 20mM pH 7.4, MgCI2 5mM, OTT 0.5mM, Glycerol 10%, KC1600mM. 

Preparative chromatography: 200ml Q Sepharose Fast Flow resin (from GE healthcare) was 

packed in XK 26/40 column (from Amersham) in-house. Sample was loaded through a 10ml 

Superloop. Then its components were resolved with 3-step stepwise salt gradient elution at flow 

rate 5ml/min: 45% B, until UV280nm monitor reading goes to baseline; 75% B, collect 200ml; 

100% B, until UV280nm monitor goes to baseline. 

Analytical chromatography: Pre-packed Mono Q HR 5/50 column was acquired from GE 
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healthcare. Sample was loaded through a 2ml sample loop. Then it was resolved with a linear salt 

gradient from 0% to 100% B within 17.5 column volume (CV equals 1 ml). 

50S-PAGE and Western-blotting 

SDS PAGE was performed with Bio-Rad Mini-Protean " apparatus according to classic 

laemmli protocol using 12.5% poly-acrylamide gels. Electrophoresis was conduced at 120V DC 

for 1 hr. After that, the gel could either be visualized by Colloidal Coomassie blue G-250 staining 

protocol or transferred to nitrocellulose membrane (transblot) for western-blotting. Transfer 

efficiency was evaluated by Ponceau S staining. 

Western-blotting was proceeded according to standard chemiluminescent procedure: The 

transblot was blocked with 5% milk for 1 hr; incubated with 1 st antibody (1 OOOX dilution in 5% milk, 

1 % Tween-20) for 1 hr; Wash with TTBS (Tris-buffered solution with 1 % Tween-20) for 3x5 min; 

incubated with HRP-linked 2nd antibody (3000X dilution in 5% milk, 1 % Tween-20) for 1 hr; Wash 

with TTBS for 3x5 min; Finally the transblot was incubated with enhanced chemiluminescence 

(ECl) regent ~GE healthcare) for 1min and chemiluminescent signal recorded with film (Kodak). 

20 Electrophoresis and Western-blotting 

20 electrophoresis was conducted using a Bio-Rad 11cm apparatus. Firstly, purified 20S 

proteasome was desalted by TCA/Acetone precipitation. Desalted dry pellet was resuspended 

and resolubilized with IPG rehydration buffer (7M urea, 50mM OTT, 4% CHAPS, 0.2% 3-10 

Bio-Rad ampholytes). 11cm Nl (non-linear) (BioRad) IPG was rehydrated in the IPG rehydration 

solution overnight, and then isoelectrofocusing was conducted with Bio-Rad IEF cell (250V, linear 
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gradient 20 min, 250V, step and hold 5hrs, 3000V, linear gradient 1 hr, 3000V, step and hold 1 hr, 

8000V, linear gradient 1hr, 8000V, step and hold for a total of 49375 Vhrs.). After IEF, proteins in 

IPG strips were reduced by 2% OTT solution and alkylated by 2.5% 1M sequentially for 10 

minutes each. The second dimension electrophoresis was done using Bio-Rad pre-cast Criterion 

gel (12.5%). The resulting 20 gel will be either stained with SYPRO RUBY or transferred to 

nitrocellulose membrane, which is ready to be used in western blotting. 

Western-blotting (WB) was carried out either according to the standard chemiluminescent 

procedure (described in II.B.6) or another fluorescent procedure using the Odyssey. Odyssey 

fluorescent scanner (Licor) was used to fluorescent WB: Block the transblot with 1 % gelatin for 1 hr; 

Probe with 1st antibody (1000X dilution in 1% gelatin, 0.5% Tween-20) for 1hr; Wash with TTBS 

(Tris-buffered solution with 1 % Tween-20) for 3x5 min; Probed with Fluorphore-linked 2nd 

antibody (3000X dilution in 1% gelatin, 0.5% Tween-20) for 1hr; Wash with TTBS for 3x5 min; 

Finally the transblot was scanned. Scanned images were overlaid with SYPRO ruby stain image of 

the counterpart. 

HPLC Coupled Tandem Mass Spectrometry 

Proteins resolved by electrophoresis were digested with trypsin (Promega) and extracted 

from the gel. The tryptic peptides were resolved with RP-HPLC column coupled online to a mass 

spectrometer, which identified proteins have been digested. Three types of mass spectrometers 

have been used in this study: Q-STAR (Applied Biosystems, Q-Tof) , LeQ Oeca XP (Thermo 

Electron, lon-trap) and LTQ (Thermo Electron, linear ion-trap). All setups were conducted with LC 
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flow rate at 200nl/min and mass spectrometer set at data-dependent-acquisition mode. Spectra 

acquired were searched against IPI mouse database using MASCOT search engine (Matrix 

Science). Only proteins identified with more than two peptides (peptide score higher than 25 each) 

and protein score higher than 80 were reported as positive. 

Electron-microscopic Study of Murine Cardiac 20S Proteasome 

Carbon~coated copper grid was positively charged. 1 O~I purified murine cardiac 20S 

proteasome at 0.15~g/~1 in 20mM Tris-HCI (pH 7.5) was allowed to.bind to the grid for 15min. The 

grid was washed with 20mM Tris-HCI (pH 7.5) and then stained with 4% uranic acid (depleted) for 

2min. Stained grid was left dry for 15min before ready for electro-microscopic (EM) study. Murine 

cardiac 20S proteasome images were recorded with film. 

Summary Of the Salient Steps/Reagents That Assured Successful Purifications 

Introduction of protease and phosphatase inhibitor cocktails were important to maintain 20S 

proteasome in its endogenous state. All purification steps were conducted at 4°C, 10% glycerol 

was included in all buffers to minimize denaturation and inactivation of 20S proteasome during 

purification. Ultra-centrifugation is used to separate high molecular weight protein complexes from 

the rest of the sample instead of using gel-filtration chromatography. This would reduce the loss of 

20S proteasome at the expense of longer separation time. 
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Results 

The Expression of 20S Proteasome In the Murine Heart Versus That In The Liver 

20S proteasome has been purified from liver (French. Mayer et al. 2001). The expression 

level of the 20S proteasome in the heart and liver showed the 20S proteasome level in the heart is 

Significantly less than that of the liver (Figure 1). 

Flow-Chart of Murine Heart 20S Proteasome Purification 

20S proteasome was reproducibly purified on large-scale from murine cardiac tissue 

according to its biochemical properties: high stability and high solubility at high salt concentration 

(ammonium sulfate precipitation): unique charging properties at certain pH (anion ion-exchange 

chromatography) and high molecular-weight (ultra-centrifugation). The detailed protocol is shown 

in a flowchart (Figure 2). This protocol reproducibly gained 20S proteasome with purity higher than 

95% from murine heart. 

Chromatographic Purification Steps 

There were two anion ion-exchange chromatographic steps in the purification procedure. 

In preparative scale ion-exchange chromatography. pooled murine cardiac homogenate 

cytosolic fraction was resolved through a 200ml column (total volume). 3-step salt concentration 

gradient elution resulted in 3 peaks detected with UV280nm monitor. The first peak was the flow 

through fraction. which represented contaminant proteins with less negative charges at pH 7.5. 

The second peak enriched with murine cardiac 20S proteasome. The last peak enriched with 

RNAs and highly negative charged proteins at pH 7.5. 
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In the final analytical chromatography, sample was resolved over a 1 ml column with a linear 

salt concentration gradient from 0% B to 100% B (OmM KCI to 600mM KCI). 20S proteasome was 

recovered in fractions at around 60% B (360mM KCI), which were collected at fraction size of 

0.3m!. According to the UV280nm of chromatogram, 20S proteasome is well separated from other 

proteins, resulting in purity higher than 95%. 

50S-PAGE and Western-Blot Identification of 205 Proteasome Enriched Fractions 

Fractions enriched in murine cardiac 20S proteasome peak, suggested by UV280nm 

chromatogram, were resolved by SOS-PAGE in duplicate. One replica was stained with 

Coomassie blue G-250 to visualize total proteins in the gel (Figure 4, Panel A). It reproduced 

characteristic pattern of 20S proteasome, in which multiple bands corresponding to 20S 

proteasome subunits were packed between 20kOa and 30kOa. Western-blot over the other replica 

using antibodies specific to multiple 20S proteasome a subunits, confirmed the murine cardiac 

20S proteasome were enriched in the same fractions (Figure 4, Panel B) as indicated in 

Coomassie stain. 

The Purified 205 Proteasome is Proteolytically Active 

Fractions enriched with murine cardiac 20S proteasome were aliquotted and stored at -80°C. 

20S proteasome p5 subunit activity assay was conducted over these fractions. The activity curve 

gained (Figure 5) was consistent with UV280nM, Coomassie stain and western-blot. This 

documented that these fractions were indeed enriched with murine cardiac 20S proteasomes and 

they were catalytically active. 
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Electron-microscopic (EM) images of murine cardiac 208 proteasome revealed that they 

were intact. The bottom and the side view of the protein complex under EM were consistent with 

the theoretical shape gained from X-ray crystallography study (Figure 7). 

20 Electrophoresis and LC-MS/MS Characterization of The Molecular Components In The 

Murine Cardiac 20S Proteasomes 

Murine cardiac 208 proteasome preparation was resolved by 20 electrophoresis and then 

stained with SYPRO ruby. All major spots in the 20 gel were sequenced with LC/MS/MS to gain 

protein IDs. All 20S proteasome constitutive subunits and one inducible subunit were identified 

(Figure 6). The other two inducible subunits were identified in a parallel 10 SOS-PAGE and 

LC/MS/MS study (data not shown). Summary of murine cardiac 20S proteasome LC/M8/M8 data 

is shown in Table 1. 

Theoretical 20 map of murine cardiac 20S proteasome and yeasts 20S proteasome was 

generated (Figure 6). Theoretical isoelectric points and molecular weights were obtained using 

bioinformatic tools available from the Swiss Institute of Bioinformatics (www.expasy.org). 

20 Electrophoresis and Western-blotting Reveals Post-translation Modifications on 

Multiple 20S Proteasome Subunits 

20 electrophoresis followed by immunoblotting suggested certain type of PTMs 

(phosphor-theonine, phosphor-serine, phosphor-tyrosine) occurred endogenously at multiple 20S 

proteasome subunits (Figure 8, Panel A). Phospho-threonine specific antibody (Santa Cruz) 
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recognized a 1, 6 and ~ 3, 7 subunits. Phospho-serine specific antibody (Zymed) recognized a 1, 

6, 7 and ~ 2, 3, 7 subunits. Phospho-tyrosine specific antibody (Santa Cruz) recognized 1,2,6 

subunits, and 3, 7 subunits (Figure 8, Panel A). 

Serine phosphorylation of a7 subunits was confirmed with mass spectrometry. The 

phosphorylation site was identified to be C-terminal serine-249 residue. 

10 Electrophoresis and LC·M5/M5 Analysis Identifies Critical 205 Proteasome Associating 

Partners 

Comprehensive proteomic study was conducted over purified murine cardiac 20S 

proteasome with high throughput LC-MS/MS sequencing. This uncovered casein kinase II (CK2), 

cAMP-dependent protein kinase (PKA) and protein phosphatase 2A (PP2A) (Figure 9) as 20S 

proteasome associating partners (Table 2). 

34 



Discussion 

205 Proteasomes Can Be Purified as An Intact Complex from Murine Heart 

20S proteasome is protein complex with unique properties, which can be used to isolate it 

from a compl'ex mixture such as tissue homogenate. It has high molecule weight, high stability and 

solubility at high salt concentration and high affinity to anion ion-exchange resin at pH 7.5. In a 

classical biochemical purification procedure, these unique properties facilitate its purification. In 

SDS-PAGE and 2D gel electrophoresis, subunits of purified murine cardiac 20S proteasome 

showed the same stoichiometry, which indicated 20S proteasome could be purified from murine 

heart intact. On the other hand, Coomassie blue stain showed the absence of 26S proteasome. 

Electro-microscopic images gained from further analysis of the purification preparation provided 

unquestionable evident that 20S proteasome was intact and 26S proteasome was absent. 

The Purified 205 Proteasome is Proteolytically Active 

The 20S proteasome has two copies of three catalytic active subunits ([31, [32 and (35) with 

distinct peptidase activities (Caspase-Iike activity, trypsin-like activity and chymotrypsin-like activity, 

respectively). Recombinant peptides with covalent-linked f1uorophore (Z-Leu-Leu-Glu-AMC, 

BZ-Leu-Ser-Thr-Arg-AMC, and Suc-Leu-Leu-Val-Tyr-AMC) were used to assay 20S proteasome 

activities (Caspase-Iike activity, trypsin-like activity and chymotrypsin-like activity, respectively). 

Besides substrate specificity, there are three more characteristics that distinguish eukaryotic 20S 

proteasome from other proteinases/peptidases. It has unique high molecular weight; it is 

endogenously in a latent form and this latency can be relieved biochemically with detergent in vitro; 

It can be specifically inhibited by inhibitors (epoxomicin and Lactacystin) designed to inhibit 

N-terminal hydrolase (Ntn) family proteinase. 20S proteasome purified from murine heart was 

shown to be enzymatically active. 
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Differential 205 Proteasome Complexes Co-exist in Murine Heart 

As shown from the LC-MS/MS sequencing study, both constitutive and inducible 20S 

proteasome subunits existed in the murine cardiac purification preparation. Moreover, SYPRO 

Ruby staining and Western blot of murine cardiac 20S proteasome resolved with 20 gel indicated 

the presence of endogenous PTMs on 20S proteasome subunits. This gave a sense on the 

complexity of 20S proteasome population in murine heart, which suggested this mega-protease is 

under the joint control of multiple mechanisms. Despite a variety of PTMs, phosphorylation is the 

most interesting due to its ubiquitous and dynamic nature. A comprehensive proteomic study 

combining the power of western blot with specific antibodies and mass spectrometry, showed that 

phosphorylation is an important regulator of the 20S proteasome activity endogenously. 

205 Proteasome Associating Partners May Play Regulatory Roles 

Elucidated by the purification flow chart (Figure 2), the whole purification is a three-day 

procedure including one salt precipitation, one dialysis, one ultra-centrifugation and two 

ion-exchange chromatography steps. The purity of 20S proteasome in the final preparation is 

higher than 95%. In this stringent condition, only proteins that associate with 20S proteasome 

fairly strong would have remain in the final preparation. In fact, the well-known 20S proteasome 

stoichiometric associating partner, the 19S, cannot survive this procedure. 20S proteasome 

associating proteins consistently identified form the purification preparation should have significant 

impact on 20S proteasome functions. Indeed, several proteins have been consistently identified in 

the purification preparation and correspond to previous reports. Among them, PKA, CK2 and 

PP2A are kinases or phosphatase that regulate protein phosphorylation status and possibly 

responsible for endogenous 20S proteasome phosphorylation control. 
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Summary 

Large scale 208 proteasome purification from murine heart was established according to 

classic biochemical protocol. There were optimizations within the chromatography steps and 

ultra-centrifugation step. Murine cardiac tissues were more precious than rat liver tissue and 208 

proteasome expression level was lower in the heart than that of the liver, these optimizations have 

been proved to be important. In the final chromatography step, 208 proteasome was recovered as 

a single peak without overlapping with others. The purity of the preparation was further evaluated 

by multiple methods. 8taining of purified murine cardiac 208 proteasome resolved with 808 PAGE 

or 20 electrophoresis documented the purity higher than 95%. Electronic-microscopy image 

showed the shape of 208 proteasome in the preparation was consistent with that documented in 

X-ray study, which served as a measure of the integrity of 208 proteasome in the preparation. 

Proteasome activity assay proved its activity had been preserved during the preparation 

procedure. 

In a proteomic study of purified murine cardiac 208 proteasome, the complexity of this 

seemingly simple protein complex emerged. Besides all 14 constitutive expressing subunits, 

inducible subunit PSi was also identified within the 20 gel. The other two inducible subunits, P1i 

and P2i, were identified by mass spectrometer, after resolving purified murine cardiac 208 

proteasome with 808 PAGE. In addition, several 208 proteasome subunits were each 

represented by multiple spots in the 20 gel, which was a clear indication of the existence of PTMs. 

Consistent to this notion, the pi of purified murine cardiac 208 proteasome was 5.2, which is 0.8 

unit lower than the value predicted with bioinformatic tools for un-modified 208 proteasome. In a 
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subsequent western blot study, these PTMs appear to at least include serine-phosphorylation, 

threonine phosphorylation and tyrosine phosphorylation. a7 subunit was identified to be 

phosphorylated at serine-249 by mass spectrometry. 

Several enzymes, regulating 20S proteasome phosphorylation status, have been identified 

with purified cardiac 20S proteasome preparation, namely, PKA, CK2 and PP2A. PKA and CK2 

have been identified in other tissue as 20S proteasome associating proteins, while PP2A has been 

suggested as potential 20S proteasome associating protein by a yeast-2-hybrid experiment. The 

functional impacts of these enzymes on 20S proteasome are discussed in detail in the following 

section. 
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Figure 1. The Expression of 205 Proteasome In the Murine Heart and Liver. Murine heart and 

liver cytosolic proteins were resolved by SDS-PAGE. Western blot was conducted using antibody 

that recognize multiple 205 proteasome a subunits (Biomol). 205 proteasome expression level in 

the heart is much lower than that of liver (absorption density analysis showed heart 20S 

proteasome expression level is 1/3 of that of liver). 
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Figure 2. Flow-Chart of Murine Heart 20S Proteasome Purification. Murine cardiac 20S 

proteasome purification is a classical biochemistry purification procedure, which purify the 20S 

proteasome according to its biochemical property. 
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Collect Cytosolic Fraction from Heart Tissue Homogenate by Centrifugation 

Ammonium Sulfate Precipitation (Coliect 40-60% Pellet) 

Q Fast Flow lon-exchange Chromatography (3 Steps Elution) 

Ultra-centrifugation (200,000g, 19 hrs at 4 °C), Collect Pellet 

Mono Q lon-exchange Chromatography, Murine Cardiac 20S Proteasome (95% pure) 
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Figure 3. Chromatographic Purification Steps. Panel A. Preparative scale Q 8epharose Fast 

Flow anion ion exchange chromatogram. 3 steps salt concentration was used. 45% B (270mM KCI) 

to let majority of contaminant protein flow through the column without binding; 75% B (45mM KCI) 

to elute semi-pure 208 proteasome from the column; 100% B (600mM KC!) to remove RNA bound 

to the column. Panel B. Analytical scale Mono Q HR 5/50 anion ion exchange chromatogram. 

Linear salt concentration gradient was used to resolve proteins in the sample. All the peaks (UV 

280nm) were well separated and 208 proteasome was represented with the highest absorbance. 

43 



PanelA. 

mAU --- UV 280 --- UV 280 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

a 

Panel B. 

mAU 

500 

400, 

300 

200 

0 100 

~ 
! \ 

\ 
\ 

--- UV280 

0,0 5,0 

200 300 

Conducr.!Vity 

/1 

10,0 15,0 

--- Salt Concentration 

400 500 600 ml 

/' 

20,0 25,0 30,0 ml 

44 



Figure 4. 50S-PAGE and Western-Blot Identification of 205 Proteasome Enriched Fractions. 

Panel A. Fractions collected by analytical Mono Q FPLC were resolved by SOS-PAGE and then 

stained with coomassie blue. 20S proteasome subunits have unique pattern in SOS-PAGE, in 

which multiple bands clustered between 20KOa and 30KOa. The proteasome-enriched fraction 

shown in SOS-PAGE Coomassie stain was consistent with UV280 chromatogram. Panel B. Same 

fractions collected by analytical Mono Q FPLC were resolved by SOS-PAGE and transferred to 

nitrocellulose membrane. Western blot was conducted with antibody recognizing multiple 20S 

proteasome a subunits (a1, 2, 3, 5, 6, 7). The proteasome-enriched fraction shown in western blot 

was consistent with both UV280 chromatogram and Coomassie blue staining pattern. 
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Figure 5. The Purified 205 Proteasome is Proteolytically Active. 208 proteasome pS subunit 

activity was measured with fractions collected by analytical Mono Q FPLC. The 

proteasome-enriched fraction shown in the assay was consistent with UV280 chromatogram, 

Coomassie stain and western blot. This suggested that purified 208 proteasome from murine 

heart are catalytically active. 
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Figure 6. 20 Electrophoresis and LC-MS/MS Characterization of The Molecular 

Components In The Murine Cardiac 20S Proteasomes. Panel A. Theoretical 20 map of murine 

20S proteasome. Isoelectric point and molecular weight of 20S proteasome subunits were 

predicted with bioinformatic tool (www.expasy.org). Panel B. SYPRO Ruby stain of murine cardiac 

20S proteasome resolved by 20 Electrophoresis. Spots from the 20 gel were picked and identified 

with mass spectrometer. Several 20S proteasome subunits were represented by multiple spots in 

the 20 gel, which is a clearly indication of post-translational modification. Panel C. Theoretical 20 

map of murine 20S proteasome. Isoelectric point and molecular weight of 20S proteasome 

subunits were predicted with bioinformatic tool (www.expasy.org). 
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Table 1. Murine cardiac 20S proteasome subunits Identified by LC/MS/MS. All 208 

proteasome subunits were identified from murine heart, including constitutive subunits and 

inducible subunits. Theoretical pI of murine 208 proteasome is 6.0 (www.expasy.org), however, 

the experimental pI of murine cardiac 208 proteasome was 5.2. This indicated that 208 

proteasome is post-translational modified in murine heart. 

51 



Gene 
Names 

Common # 
Names a.a 

Theoretical Estimated Sequence 
M W 20E MW Coverage 

52 

208 Proteasome PI 

Theoretical: 
6.0 
Experimental: 
5.2 



Figure 7. Electro-microscopic Analysis of Murine Cardiac 20S Proteasome. Murine cardiac 

20S proteasome was imaged with Electro-microscopy after negative staining with uranic acid. The 

images were taken at 100,OOOX magnitude. 

• 
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Electro-microscopic Image of 20S Proteasome (100,000X) 
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Figure 8. 20 Electrophoresis and Western-blotting Reveals Post-translation Modifications 

on Multiple 20S Proteasome Subunits. 25ug of purified Murine cardiac 20S proteasome each 

was resolved by 20 electrophoresis (Bio-Rad), a total of 4 gels were run in parallel. Three of which 

was then transferred onto nitrocellulose membrane and immunoblotled with antibodies 

recognizing the phospho-Threonine, phospho-Serine, or phospho-Tyrosine proteins. Signal to 

noise ratio was set to be 2.5 folds highe,...than that of the background. The fourth 20 gel was 

stained with Sypro Ruby. The signals of phospho-proteasome subunits were identified by 

comparing/overlaying the 20 image of Sypro Ruby with that of the phospho-antibody gel. 

PanelA. 

Upper membrane: Monoclonal antibody against phospho-threonine was purchased from Santa 

Cruz, which recognized subunits (alpha 1, 6 and beta 3,7) 

Middle membrane: Polyclonal antibody against phospho-ser was purchased from Zymed, which 

recognized subunits (alpha 1,6,7 and beta 2,3,7). Although alpha7 signal was below our pre-set 

threshold, it has been confirmed with LC/MS/MS: 

Lower membrane: Monoclonal antibody against phospho-tyr was purchased from Santa Cruz, 

which recognized a 1,2,6 subunits, and b 3, 7 subunits. 

Panel B. Endogenous phosphorylation site of 20S proteasome ex 7 subunit was identified with 

mass spectrometry to be Serine 249 residue at the C-terminal. 
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Figure 9. Protein Phosphatase 2A (PP2A) Associates with Murine Cardiac 205 Proteasome. 

Purified murine cardiac 20S proteasome were resolve in SDS-PAGE in duplicate. Panel A. 

LC-MS/MS analysis of proteins resolved in one replica identified all three subunits of PP2A. The 

mascot report for subunit A was shown. Panel B. Western blot analysis of the other replica 

confirmed the presence of PP2A subunit C. 

" 
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Table 2. 10 Electrophoresis and LC·MS/MS Analysis Identifies Critical 20S Proteasome 

Associating Partners. 
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Biophys 
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11,13 subunit 268:17413-7 
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CHAPTER III 

PHOSPHORYLATION AS A KEY REGULATORY MECHANISM OF 

THE CARDIAC 20S PROTEASOME 

Introduction 

The 20S proteasome is a stable protein complex with long half-life. On the other hand, the 

20S proteasome assembly process is also prolonged for an enzyme. The dynamic regulation of 

20S proteasome activities has to be achieved post-translation ally for rapid responses, especially 

under stress conditions. Several forms of post-translational modifications (PTMs) occur on the 

proteasome. They could occur Simultaneously or alternatively, including replacement of 

constitutive 20S proteasome subunits with inducible counterparts; selective association with 

activating/inhibiting protein complexes; and covalent PTMs (Coux, Tanaka et al. 1996; Rivett, 

Mason et al. 1997; Baumeister, Walz et al. 1998; Bochtler, Ditzel et al. 1999; Glickman and 

Ciechanover 2002). 

Phosphorylation is the covalent post-translation addition of a phosphate group that has been 

drawing the most attention from biologists. The ubiquity of this modification and instant, reversible 

nature of this modification, justify this bias. Protein kinases transfer the y-phosphate group of an 

ATP to certain amino acid residues of a protein substrate. Such modification mostly occurs at 

serine, threonine and tyrosine residues. Phosphorylations on histidine and aspartate residues also 
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occur, but are rare. Hundreds of kinases have been identified so far. They have great sequence 

diversity, but all share two homogenous domains for ATP binding and catalyzing phosphate group 

transfer, respectively. The remaining part of the kinase sequence dictates its binding affinity with 

other proteins and substrate preference. Consequently, a kinase can only phosphorylate the 

consensus sequence in certain substrates. The chemical property of hydroxyl groups is similar 

between serine and threonine residues, which are distinct from that of tyrosine. Accordingly, 

kinases are catalogued into two families: serine/theonine kinases preferably phosphorylate serine 

and threonine residues and tyrosine kinases preferably phosphorylate tyrosine residues of a 

protein. The specificity of the kinase enables it to play an important role in certain signaling 

cascades. Protein phosphatases are a group of enzymes that counteract the function of kinases 

by removing a phosphate group from phosphorylated-protein substrates. Serine/threonine 

phosphatases, tyrosine phosphatases, alkaline phosphatases and acid phosphatases constitute 

four families of phosphatases. Compared to kinases; the substrate bias is much lower for 

phosphatases. Correspondingly, there are fewer protein phosphatases than kinases within the 

cells. The phosphorylation status of a protein affects its enzymatic activity, subcellular localization, 

and half-life. Kinases and phosphatases coordinately control intracellular phosphorylation 

signaling cascades, which is important for the cell to maintain homeostasis and response to 

environmental changes (Johnson and Lewis 2001). 

Phosphorylations have been identified in the 20S proteasome purified from both yeast and a 

few mammalian tissues, such as kidney, liver, etc. The phosphorylation profile of the 20S 

proteasome from the murine heart is lacking (Pereira and Wilk 1990; Castano, Mahillo et al. 1996; 

Bose, Mason et al. 1999; Feng, Longo et al. 2001; Fernandez Murray, Pardo et al. 2002; Iwafune, 

Kawasaki et al. 2002; Bose, Stratford et al. 2004). According to the stUdies described in 
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previously section, the 208 proteasome was endogenously phosphorylated in the murine heart. 

The study presented in this chapter further confirmed the murine cardiac 208 proteasome was 

phosphorylated. Moreover, attempts have been made to put these phosphorylations into a 

biological context. 

In certain mammalian tissues, casein kinase II (Ck2), PKA and polo-like kinases have been 

reported as 208 proteasome associating kinases, which could directly control the 208 proteasome 

phosphorylation state (Pereira and Wilk 1990; Castano, Mahillo et al. 1996; Marambaud, Wilk et al. 

1996; Feng, Longo et al. 2001). However, there is no such study for mammalian cardiac tissue. 

PKA and polo-like kinases have been reported capable of increasing 208 proteasome p5 subunits 

activity. The effect of CK2 phosphorylation on the 208 proteasome function has been contradicting 

in different reports. In part II of this thesis, CK2 and PKA have been identified as 208 proteasome 

associating kinases in murine heart, which is consistent with other tissues. Protein phosphatase 

2A (PP2A) has been identified as the 208 proteasome associating phosphatase in murine heart. A 

yeast-two-hybrid study suggested PP2A might interact with 208 proteasome. There is no previous 

proteomic study reported PP2A interacting with 208 proteasome in mammalian tissues. A 

comprehensive 208 proteasome functional study is needed to uncover how murine cardiac 208 

proteasome are regulated functionally by these kinases/phosphatase. 
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Materials and Methods 

Purified Murine Heart 20S Proteasome 

10g of mice heart tissue was homogenized by a potter homogenizer in homogenize buffer 

(Tris 20mM pH 7.8, EOTA 0.1 mM, OTT 1 mM, with protease inhibitor cocktail from Roche and 

phosphatase cocktails from Sigma). Cytosolic fraction was collected as the supernatant after 2hr 

centrifugation at 25,000g. Cytosolic fraction was then fractionated by ammonium sulfate 

precipitation. The pellet collected between 40% to 60% ammonium sulfate saturation was 

re-suspended in 10ml dialysis buffer (Tris 20mM pH 7.4, MgCI2 5mM, on 0.5mM). The 

re-suspended fraction was dialyzed again with 4L dialysis buffer overnight, to remove ammonium 

sulfate from it. The dialysate was fractioned with preparative-scale strong-anion-ion-exchange 

column (Q FastFlow resin packed in XK 26/40 column from GE healthcare) by stepwise salt 

concentration gradient elution at flow rate 5mllmin (45% B, until UV280nm monitor reading goes to 

baseline; 75% B, collect 200ml; 100% B, until UV280nm monitor goes to baseline. Buffer A: Tris 

20mM pH 7.4, MgCI2 5mM, on 0.5mM, Glycerol 10%; Buffer B: Tris 20mM pH 7.4, MgCI2 5mM, 

on 0.5mM, Glycerol 10%, KCI 600mM). 75% B fraction enriched in 20S proteasome. This 

fraction was centrifuged at 5°C 42,OOOrpm (Ti45 fixed angel rotor from Beckman) for 19hr. The 

pellet was collected, re-suspended in buffer A and resolved with analytical-scale 

strong-ion-exchange column (Mono Q HR5150 from GE healthcare) with a linear salt concentration 

gradient from 0% B to 100% B through 17.5 column volume. The purified 20S proteasome was 

recovered in fractions around 60%B. 

Calf Intestinal Alkaline Phosphatase 

Calf Intestinal Alkaline Phosphatase (ClAP) was purchased from Promega; Agarose 

crosslinked ClAP was purchased from Sigma. 10X ClAP assay buffer (0.5M Tris-HCI pH 8.5, 

10mM MgCI2, 1mM ZnCI2) was prepared using reagents obtained from Sigma. 
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Phosphatase Inhibitors 

The protein phosphatase 2A specific inhibitor, okadaic acid, was purchased from Calbiochem. 

Okadaic aci¢l does not affect tyrosine phosphatase, acid phosphatase and alkaline phosphatase. 

Its specificity towards protein phosphatase 2A is 100 folds higher than that towards protein 

phosphatase 1 (PP1). 

Kinase Inhibitors 

PKA specific inhibitor, H-89, was purchased from Calbiochem. 

CK2 specific inhibitor, 4,5,6,7-Tetrabromobenzotriazole, was purchased from Calbiochem. 

ClAP Treatment of 20S Proteasome 

ClAP treatment of 205 proteasome: To different wells of a 96-well microplate, 0.0651lg 

purified murine cardiac 205 proteasome incubated with ClAP at 37°C. Then 10X 205 proteasome 

assay buffer and 10X 205 proteasome substrate stock were added immediately or after 30min 

incubation. After 1 hr incubation at 37°C, the proteasome activity was measured using 

fluorescently labeled substrates. 

CIAP-agarose treatment of 205 proteasome: To each micro-centrifuge tube, 0.0651lg purified 

murine cardiac 205 proteasome incubated with ClAP at 37°C for 30min. CIAP-agarose was 

removed by centrifugation; supernatant was transferred to 96-well microplate. Then 10X 205 

proteasome assay buffer and 10X 205 proteasome substrate stock were added. After 1 hr 

incubation at 37°C, proteasome activity was measured using fluorescently labeled substrates. 

Phosphorylation of 20S Proteasome 

205 proteasome was incubated with PKA (5igma) in assay buffer (50mM Tris-HCI, pH 7.5, 

20mM MgCI2, 1mM Dn, 2mM ATP) at 35°C for 15min. Then the reaction mixture was dispensed 

into 96-well microplate, complemented with 10X assay buffer and 10X substrate stock. After 1 hr 
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incubation at 37°C, the proteasome activity was measured using f1uorescently labeled substrates. 

20S pnoteasome was incubated with casein kinase II (New England Biolabs) in assay buffer 

(SOmM Tris-HCI, pH 7.S, 20mM MgCI2, 1 mM on, 2mM ATP) at 3SoC for 1Smin. Then the reaction 

mixture was dispensed into 96-well microplate, added with 10X assay buffer and 10X substrate 

stock. After 1hr incubate at 37°C, proteasome activity was measured using f1uorescently labeled 

substrates. 

Fluorescent Peptide Substrates and 20S Proteasome Activities Assay 

Z-Leu-Leu-Glu-AMC from Sigma was used to measure 131 subunit activity. (10X assay buffer: 

2S0mM HEPES, pH 7.S; SmM EOTA; O.S% NP-40; 0.01 % SOS). Boc-Leu-Ser-Thr-Arg-AMC from 

Sigma was used to measure 132 subunit activity. (10X ssay buffer: 2S0mM HEPES, pH 7.S; SmM 

EOTA; O.S% NP-40; 0.01% SDS). Suc-Leu-Leu-Val-Tyr-AMC from Bachem was used to measure 

13S subunit activity. (1 OX assay buffer: 2S0mM HEPES, pH 7.S; SmM EDTA; 0.3% SDS). 

Different concentrations of substrate (0, 2, 10, 20, SO, 100, 200, SOOIlM) were used in 20S 

proteasome activity assays to generate substrate concentration dependent activity curves. 

SDS-PAGE and Phosphor-protein Detection by Pro-Q Staining 

Purified murine cardiac 20S proteasome incubated with CIAP-agarose or albumin-agarose 

resin at 37°C for 30min. Then the beads were removed by centrifugation. Supernatant were 

collected and resolved by SDS-PAGE. The proteins in the gel was fixed and stained with 

phospho-protein specific dye according to standard protocol from the vendor (Pro Q Diamond from 

Molecular Probes). 

Statistical Analysis 

All data are presented as Mean±S.E. Groups are compared using the student's t test for 

unpaired data. A P value of less than O.OS was considered significant. 
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Results 

ClAP Treatment Removes Phosphate Groups from Phosphorylated 20S Proteasome 

Purified murine cardiac 20S proteasome were treated with ClAP (buffer only treatment serves 

as negative control). Then the 20S proteasome was resolved with SDS-PAGE and stained with a 

phosphor-protein specific dye (Pro-Q Diamond from Molecular Probes) and total protein stain 

(SYPRO Ruby from Molecular Probes) sequentially. The fluorescent signal of SYPRO Ruby stain 

showed no intensity differences between the treated and negative control (Figure 10, Panel 8). 

However, between the same two groups, Pro-Q Diamond staining resulted in distinct fluorescent 

signals (Figure10, Panel A). The murine cardiac 208 proteasome was phosphorylated 

endogenously and these phosphate groups could be removed by ClAP treatment. 

ClAP Treatment Selectively Increases 20S Proteasome Peptidase Activities 

ClAP treatment also regulates 20S proteasome peptidase activities. Two ClAP treatment 

protocols were used. According to the first protocol, 20S proteasome and ClAP were added to the 

microplate simultaneously with 20S proteasome assay buffer and 20S proteasome substrate, 

which was set as time O. Fluorescent signals from cleaved substrates were recorded in an hour at 

37°C to measure peptidase activities. The result showed ~1 subunit activity did not change 

significantly. P2 subunit activity increased significantly, while ~5 subunit activity was slightly 

inhibited (Figure 11, Panel A). 

According to the second protocol, the 20S proteasome was pre-treated with ClAP for 30min 

at 37°C. At time 0, proteasome assay buffer and substrate were added to evaluate proteasome 
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activities within an hour at 37°C. In this setup, ~1 subunit activity remained unchanged. ~2 subunit 

activity was enhanced dramatically. Notably, the ~5 subunit activity was upregulated in this 

condition (Figure 11, Panel B). 

Removal of ClAP from the De-phosphorylated 205 Proteasome 

Increases the Peptidase Activities Greater than When ClAP is Present 

Agarose-crosslinked ClAP was obtained from Sigma. This form of ClAP could be removed 

after treatment with a simple centrifugation procedure. This enabled us to isolate the 20S 

proteasome from the ClAP. 

Purified murine cardiac 20S proteasome was pre-treated with CIAP-agarose beads for 30min 

at 37°C. At time 0, CIAP-agarose beads were removed; proteasome assay buffer and substrate 

were added to evaluate proteasome activities within an hour at 37°C. ~1 subunit activity showed 

no significant difference. ~2 subunit activity was enhanced significantly. Importantly, in this 

condition, ~5 subunit activity was enhanced the most significantly (Figure 12, Panel A). 

In another assay, purified murine cardiac 20S proteasome was pre-treated with 

CIAP-agarose for 30min at 37°C. At time 0, CIAP-agarose beads were removed; proteasome 

assay buffer and substrate were added along with recombinant ClAP. After 1 hr incubation at 3]oC, 

20S proteasome activities were measured via recording fluorescent emission. ~1 subunits showed 

no significant difference. ~2 subunit activity was induced significantly. Importantly, ~5 subunit 

activity was enhanced less significantly than previous setup, which mimicked the results of 

recombinant ClAP pre-incubation (Figure 12, Panel 8). 
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Casein Kinase II Co-purifies with 205 Proteasome 

Purified murine cardiac 20S proteasome were pre-incubated with various amount of CKII 

(Trace amount of CKII had been showed to co-purify with murine cardiac 20S proteasome) at 

35°C for 15min in phosphorylation buffer (50mM Tris-HCI, pH 7.5, 20mM MgCI2, 1 mM on, 2mM 

ATP). At time 0, proteasome assay buffer and substrate were added to evaluate proteasome 

activities within an hour at 3rC. Data showed all three proteasome peptidase activities were 

enhanced by this treatment (Figure 13). 

Phosphorylation of 205 Proteasome Changes 205 Proteasome Activities 

Purified murine cardiac 20S proteasome were pre-incubated with various amount of PKA 

(Trace amount of PKA had been showed to co-purify with murine cardiac 20S proteasome) at 

35°C for 15min in phosphorylation buffer (50mM Tris-HCI, pH 7.5, 20mM MgCI2, 1mM on, 2mM 

ATP). At time 0, the proteasome assay buffer and substrate were added to evaluate proteasome 

activities within an hour at 3rC. Data showed all three proteasome peptidase activities were also 

enhanced by this treatment (Figure 14). 

Protein Phosphatase 2A Co-purifies with 205 Proteasome, Which may Regulate 205 

Proteasome Activities by Removing Phosphate Groups from the 205 Proteasome in vivo 

Purified murine cardiac 20S proteasome were pre-incubated with various amount of PP2A 

inhibitor, okadaic acid (PP2A had been showed to co-purify with murine cardiac 20S proteasome) 
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at 35°C for 30min. At time 0, proteasome assay buffer and substrate were added to evaluate 

proteasome activities within an hour at 37°C. Treatment of purified murine cardiac 20S 

proteasome with PP2A inhibitor significantly increased all ~ subunit activities, especially ~1 and ~5 

(Figure 15, Panel A). 

Purified murine cardiac 20S proteasome were pre-incubated with various amount of PP2A at 

35°C for 15min. At time 0, proteasome assay buffer and substrate were added to evaluate 

proteasome activities within an hour at 37°C. Treatment of purified murine cardiac 20S 

proteasome with PP2A significantly decreased ~1 and ~5 subunit activities (Figure 15, Panel B). 
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Discussion 

205 Proteasome is Phosphorylated in vivo 

20S proteasome has been shown to be phosphorylated endogenously in yeast, rice and 

several mammalian tissues. Several subunits are phosphorylated in a similar fashion in all these 

samples, while there are also subunits showing clear distinction on phosphorylation status among 

samples. 

As described in detail in part II, the murine cardiac 20S proteasome was purified and western 

blotting with phosphor-protein specific antibodies and mass spectrometric showed that this cardiac 

20S proteasome was phosphorylated endogenously. In a ClAP de-phosphorylation/Pro-Q 

phosphor-protein stain study; this was further confirmed. Phosphorylation is one of the important 

mechanisms to regulate 20S proteasome in murine heart. 

The Choice of Detergents has an Effect on 205 Proteasome Activities Assay 

The 20S proteasome is a latent protein complex with peptidase activities. The two 

seven-subunits ex rings impose this latency. In latent state, N-terminal sequences of ex subunits 

block the entrance for substrates to reach the catalytic core. In vivo, this latency can be relieved by 

activator protein complexes, including 19S regulatory particles, 11S and PA200, which can open 

the entrance by inducing conformation changes of these N-terminal sequences. In vitro, this 

activation can be mimicked with detergents, which can also induce conformational changes. Out 

of the various choices of detergents, SOS is most commonly used, even though, there are reports 

that show that SDS is not optimal for all subunit activity assays. The popularity of SDS has both a 

historical reason and an economical reason. During the early days of proteasome activity studies, 

the pS subunit activity assay was used as single criteria to evaluate the function of this protein 
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complex, and 8D8 was optimal for this assay. As more and more researchers realize the needs of 

comprehensive evaluation of 208 proteasome activities by measuring all three 208 proteasome 

peptidase activities, it required the establishment of optimal assay protocols for each peptidase 

activity assay. NP-40 is another detergent that has been used in proteasome activity assay. The 

efficiency of 808 and NP-40 in inducing the 208 proteasome peptidase activities was compared. 

Data showed NP-40 was a better detergent for P1 and P2 subunit activity assays, while 808 was 

the better detergent for the pS subunit activity assay. 

ClAP Treatment Removes the Phosphorylation-dependent Inhibition of 205 Proteasome 

ClAP treatment removed serine, threonine phosphorylation and tyrosine phosphorylation. As 

to its name, Calf Intestinal Alkaline phosphatase has optimal enzymatic activity at alkaline pH, 

which is 9.3. However, 208 proteasome is less stable beyond pH 8.5. Excess molar amount of 

ClAP has to be used to de-phosphorylate 208 proteasome completely. Pro-Q diamond is a 

fluorescent dye that selectively recognizes phospho-proteins. Pro-Q diamond staining showed 

ClAP treatment could efficiently remove phosphate groups from 208 proteasome. 

Comparing 208 proteasome activities with or without ClAP complete de-phosphorylation, it 

showed phosphate conjugation having Significant functional significance. P1 subunit activity was 

not altered by complete de-phosphorylation with ClAP. The P2 activity was significantly enhanced 

while the effect on the pS subunit activity was relative complicated. The pS activity was slightly 

decreased if activity assay was conducted simultaneously with ClAP treatment, while its activity 

was significantly increased if proteasome activity assay was conducted after 30min ClAP 

pre-treatment. This raised the possibility that ClAP can be degraded by 208 proteasome. As a 

substrate, ClAP competes proteolytic active sites with peptide substrates, which would decrease 

208 proteasome activity measured with peptide substrates. In an inhibition study, the pS subunit 
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was reported as the main subunit responsible for protein degradation. Its inhibition resulted in 50% 

less in protein degradation rate. Several proteins have been reported to be degradated by 20S 

proteasome independent of ubiquitin. This could be the explanation for distinct effects with 

different treatment protocols. ClAP pre-incubation partially separated proteasome assay 

procedure from the ClAP treatment procedure. 

Removal of ClAP after Treatment of the 20S Proteasome is Important to Characterize the 

Full Effects of De-phosphorylation on the 20S Proteasome Activities 

The commercial availability of agarose resin crosslinked ClAP enabled us to completely 

separate the ClAP treatment procedure from the proteasome assay procedure. After treatment, 

this resin could be easily removed from a reaction mixture by a simple centrifugation procedure. 

The effect of ClAP resin treatment was consistent with previous data gained using recombinant 

ClAP. P1 activity showed no change; P2 and p5 activities significantly induced. The dramatic 

increase in p5 activity supported our hypothesis that recombinant ClAP could be a substrate of 

20S proteasome and act as competitive inhibitor for p5 subunit activity assay. The further test this 

hypothesis; A parallel experiment was conducted. The 20S proteasome was treated with 

CIAP-agarose resin. This time, after removal of the resin, recombinant ClAP was added back to 

the reaction mixture at time 0 of the 20S proteasome activity assay. As expected, in this parallel 

experiment, the p5 activity increased at a significant lower magnitude compare to when the ClAP 

was removed. In short, complete de-phosphorylation of the 20S proteasome with excess ClAP 

significantly enhanced its trypsin-like (P2) and chymotrypsin-like (P5) peptidase activities, while 

caspase-like activity was not significantly affected. However, recombinant ClAP could be 

degraded by 20S proteasome and ClAP has the effect as a competitive inhibitor.of the p5 activity. 
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Potential Kinases Which Regulates the 205 Proteasome Activities in vitro and in vivo 

208 proteasome purified from murine heart was endogenously phosphorylated. This is 

consistent with the finding from yeast and other mammalian tissues. The identification of kinases 

and phosphatases involved is a critical step toward elucidating signaling cascades that regulate 

208 proteasome activities. This would help us understand 208 proteasome functions in 

physiological and pathological conditions and design specific pharmacological agents. 

The improvement of mass spectrometry technologies makes systemic characterization of 

208 proteasome associating kinases and phosphatases possible. The state-of-the-art mass 

spectrometers have the ability to detect proteins at higher sensitivity than most protein dyes 

commercially available. Taking advantages of the advance in technology, we identified CKII, PKA 

and PP2A as 208 proteasome associating proteins. The identification of CK2 and PKA were 

consistent with reports from other tissues and species. In a high-throughput yeast-two-hybrid study, 

PP2A is suggested as a potential 208 proteasome interacting protein, while there is no previous 

direct report on PP2A as endogenous 208 proteasome associating protein. In this study, mass 

spectrometry and western blot confirmed that PP2A was one of the 208 proteasome associating 

proteins. 

Kinases and Phosphatases Coordinately Regulate the Activities of 205 Proteasome in vivo 

As mentioned in previous section, CKII, PKA and PP2A were identified as 208 proteasome 

associating proteins in murine heart. The regulation of 208 proteasome by these enzymes is an 

important part of its biochemistry. PKA, CKII and PP2A all have been reported to have important 

roles in cardiac physiology. PKA is a component of ~-adrenergic receptor cascade. CKII 

participates in apoptotic pathway. PP2A has been reported to be involved in hypertrophy. 

Both CKII and PKA phosphorylations increased 208 proteasome activities while PP2A 
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showed the opposite effect. Both PKA and CKII belong to serine/threonine kinase family. PP2A is 

one of the few serine/threonine phosphatases. Both PKA and CKII are serine/threonine kinases 

and PP2A is serine/threonine phosphatase. ClAP is a member of another family of phosphatase, 

alkaline phosphate. It is capable of removing serine, threonine and tyrosine phosphorylation in a 

less specific manner. The ClAP treatment effect suggested there are more 

kineases/phosphatases involved in 208 proteasome regulation. These enzymes were not 

identified in the purified 208 proteasome preparation from Murine heart, probably due to less 

affinity and/or lower stoichemistry to the 208 proteasome. 
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Summary 

205 proteasome has been proved to be phosphorylated in the murine heart by multiple 

methods, including proteomic method, western blot and biochemical method. As a stable protein 

complex with long half-life, phosphorylation modifications are necessary to accommodate this 

mega-protease to signaling cascades. 

Being the final and only executor of ubiquitin-proteasome system, 205 proteasome is 

controlled by different signaling pathways. The complexity of murine cardiac 205 proteasome 

phosphorylation profiles reflects this coordinated control scenario. Proteomic part of this study has 

identified several kinases and phosphatase as 205 proteasome interacting proteins, including 

CKII, PKA and PP2A, which are candidates controlling its phosphorylation profile and activities in 

the murine heart. CKII and PKA have been reported as 205 proteasome associating proteins in 

other tissue, but not in the heart. The studies of their impact on 205 proteasome activities are 

incomplete and even controversial in the case of Ckll. PP2A has just been suggested in a 

yeast-two-hybrid experiment as 205 proteasome associating protein. The functional impact of this 

association has not been demonstrated at the tissue level before. 

In this study, two approaches have been taken to study the regulatory roles of 

phosphorylation on murine cardiac 205 proteasome. One approach was to globally 

de-phosphorylated 205 proteasome with ClAP and observe its outcome. Further studies were 

conducted to study the effect of particular kinases or phosphatase. 

ClAP is a phosphatase with limited speCificity. Its treatment has been proved to remove 

phosphate groups from 205 proteasome. There are two intriguing observations. This treatment 

significantly enhanced 205 proteasome P2 subunit activity. Using different treatment protocols, pS 
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subunit activity was affected differentially. With the availability of agarose-linked ClAP, the 

de-phosphorylation step and 20S proteasome activity assay step could be separated. This 

documented global de-phosphorylation with ClAP increased both P2 and p5 subunits activities and 

ClAP were degraded by 20S proteasome. 

Compared to global de-phosphorylation study, studies with specific kinases and phosphatase 

are of more biological significance. PKA and CKII both are serine/threonine kinases. PKA is part of 

~-adrenergic receptor signaling cascade; CKII involves cell survival signaling. PP2A is a 

serine/threonine phosphatase, and it has been suggested as a tumor suppressor. PKA and CKII 

treatment both enhanced the peptidase activities of 20S proteasome. On the contrary, inhibition of 

20S proteasome co-purifying PP2A also enhanced its peptidase activities. These results 

uncovered the control of 20S proteasome and put it in the context of phosphorylation cascades, 

which is important to study its role in cardiac physiology. 
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Figure 10. ClAP Treatment Removes Phosphate Groups from Phosphorylated 20S 

Proteasome. Purified murine cardiac 20S proteasome were treated with ClAP for 30min at 37°C 

and then resolved with SDS-PAGE. Panel A. The gel was stained with phospho-protein specific 

dye (Pro-Q Diamond from Molecular Probes). Compare to the non-ClAP treated 20S proteasome. 

the 20S proteasome was de-phosphorylated by this treatment. Panel B. After Pro-Q Diamond 

staining. the fluorescence from the gel was bleached with light and then the same gel was stained 

with SYPRO Ruby total protein stain. The SYPRO Ruby stain pattern was not significantly different 

between the ClAP treated and non-treated 20S proteasome. 
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Figure 11. ClAP Treatment Selectively Increases 20S Proteasome Peptidase Activities. 

Panel A. Purified murine cardiac 208 proteasome was co-incubated with both ClAP (Promega) 

and subunit specific 208 proteasome substrates (Z-Leu-Leu-Glu-AMC for P1 subunit; 

Boc-Leu-8er-Thr-Arg-AMC for P2 subunit; 8uc-Leu-Leu-Val-Tyr-AMC for p5 subunit) at 37°C for 

1 hr. Proteasome activities were measured according to AMC fluorescence emission after it was 

released from the recombinant peptides. ClAP treatment in this manner induced no significant 

difference in P1 subunit activity, while P2 subunit activity was significantly enhanced and p5 

subunit activity inhibited. Panel B. Purified murine cardiac 208 proteasome was pre-incubated 

with ClAP (Promega) at 3rC for 30min. Then subunit specific 208 proteasome substrates 

(Z-Leu-Leu-Glu-AMC for P1 subunit; Boc-Leu-8er-Thr-Arg-AMC for P2 subunit; 

Suc-Leu-Leu-Val-Tyr-AMC for p5 subunit) were added and the mixture were incubated at 37°C for 

1 hr. Proteasome activities were measured according to AMC fluorescence emission released from 

the recombinant peptides. ClAP treatment in this manner induced no significant difference in P1 

subunit activity, while both P2 and p5 subunit activities were significantly enhanced. 
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Figure 12. Removal of ClAP from the De-phosphorylated 20S Proteasome Increases the 

Peptidase Activities Greater than When ClAP is Present. Panel A. Purified murine cardiac 20S 

proteasome was pre-incubated with agarose-crosslinked ClAP (Sigma) at 37°C for 30min. ClAP 

agarose was removed and subunit specific 20S proteasome substrates (Z-Leu-Leu-Glu-AMC for 

131 subunit; Boc-Leu-Ser-Thr-Arg-AMC for 132 subunit; Suc-Leu-Leu-Val-Tyr-AMC for 135 subunit) 

were added. The mixtures were incubated at 37°C for 1 hr. Proteasome activities were measured 

according to AMC fluorescence emission after it was released from the recombinant peptides. 

ClAP treatment in this manner induced no significant difference in 131 subunit activity, while both 132 

and 135 subunit activities were significantly enhanced. The increase in 135 subunit activity was 

higher than that of 132 activity. Panel B. Purified murine cardiac 20S proteasome was 

pre-incubated with agarose-crosslinked ClAP (Sigma) at 37°C for 30min. ClAP agarose was 

removed and subunit specific 20S proteasome substrates (Z-Leu-Leu-Glu-AMC for 131 subunit; 

Boc-Leu-Ser-Thr-Arg-AMC for 132 subunit; Suc-Leu-Leu-Val-Tyr-AMC for 135 subunit) were added 

along with recombinant ClAP. The mixtures were incubated at 37°C for 1 hr. Proteasome activities 

were measured according to AMC fluorescence emission after it was released from the 

recombinant peptides. ClAP treatment in this manner induced no significant difference in 131 

subunit activity, while both 132 and 135 subunit activities were significantly enhanced. The increase 

in 132 subunit activity was higher than that of 135 activity. 
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Figure 13. Casein Kinase II Co-purifies with 205 Proteasome and Regulates Its Activities. 

Purified murine cardiac 20S proteasome was incubated at 35°C with CKII in phosphorylation 

buffer (50mM Tris-HCI, pH 7.5, 20mM MgCI2, 1mM OTT, 2mM ATP) for 15min. Then proteasome 

peptidase activities were measured with fluorescently labeled recombinant peptide substrates. All 

three peptidase activities were enhanced after the incubation. 
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Figure 14. Phosphorylation of the 20S Proteasome by PKA Changes 20S Proteasome 

Activities. Purified murine cardiac 208 proteasome was incubated at 35°C with PKA in 

phosphorylation buffer (50mM Tris-HCI, pH 7.5, 20mM MgCI2, 1mM DTT, 2mM ATP) for 15min. 

Then the proteasome peptidase activities were measured with fluorescently-Iabeled recombinant 

peptide substrates. All three peptidase activities were enhanced after the incubation. 
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Figure 15. Inhibition of the Murine Cardiac 205 Proteasome Co-purifying Protein 

Phosphatase 2A Enhances Proteasome Peptidase Activities. Panel A. Purified murine cardiac 

20S proteasome was incubated at 35°C with okadaic acid (inhibited 20S proteasome co-purifying 

PP2A) for 30min. Then proteasome peptidase activities were measured with recombinant peptide 

substrates. All three peptidase activities were enhanced after the incubation. Panel B. Purified 

murine cardiac 205 proteasome was incubated at 3SoC with PP2A for 1Smin. Then proteasome 

peptidase activities were measured with recombinant peptide substrates. P1 and pS subunit 

activities were decreased after incubation. 
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CHAPTER IV. 

ASSOCIATION OF aB·CRYSTALLIN MODULATES 20S PROTEASOME ACTIVITES 

Introduction 

In the cell, 20S proteasome interacts with various proteins. These interactions regulate both 

the activity and the subcellular localization of the 20S proteasome. Based on their distinct 

biological functions, these 20S proteasome-associating proteins can be cataloged into different 

groups. 19S, 11S and PA200 are well known as 20S proteasome activators (Coux, Tanaka et al. 

1996; Bochtler, Ditzel et al. 1999; Glickman and Ciechanover 2002). They bind to either bottom of 

20S proteasome and activate it by establishing a channel for substrate to access the proteolytic 

core. Kinases and phosphatases belong to another group, which can regulate the 20S 

proteasome by post-translational modifications (Pereira and Wilk 1990; Castano, Mahillo et al. 

1996; Feng, Longo et al. 2001). They have been discussed in previous section. Members of heat 

shock proteins (HSPs) have also been reported as 20S proteasome associating proteins(Conconi, 

Petropoulos et al. 1998; Conconi, Djavadi-Ohaniance et al. 1999; Verma, Chen et al. 2000; 

Boelens, Croes et al. 2001). The significance of such associations are not well understood. 

Consistent with the nomenclature, HSPs are proteins that are upregulated in the cell after a 

heat stress. Most of them are chaperones, which can prevent protein denaturation and/or help 

denatured protein refold. The main families of HSP include HSP100, HSP90, HSP70, HSP60 and 
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small HSPs (sHSPs). Proteins from different families vary both in sequence and functions. HSP60, 

HSP70 and HSP90 are important for protein folding and maturation. HSP60 exists as multimer 

and HSP70 as monomer and are both key chaperones involved in the folding of diverse proteins. 

HSP90 monomer is important to maintain the native conformation limited set of proteins, most of 

them are signaling proteins. sHSPs and HSPOO are primarily involved in stress response. The 

former prevents protein denaturation and the latter rescues proteins for aggregation (Rutherford 

2003). 

sHSPs family has multiple members: alpha crystallin A (aA crystallin), alpha crystallin B (aB 

crystallin), HSP 27, etc. They all have a homologous crystallin domain. aB crystallin and HSP27 

expressed in the heart, while aA crystallin does not. aB crystallin over-expression protects the 

heart against ischemia insult (Martin, Mestril et al. 1997; Latchman 2001; Rutherford 2003; Taylor 

and Benjamin 2005). 

PKC€ over-expression mouse line is a well-established cardio-protected model. Upon 

ischemia insult, this model shows significant reduction of cardiac infarction (Pass, Zheng et al. 

2001). As part of the effects to elucidate the mechanism for this protection, Dr. Ping's group 

identifies 93 proteins within the PKCe subproteome combining the power of immuno-precipitation, 

gel electrophoresis and mass spectrometry (Ping, Zhang et al. 2001; Vondriska, Klein et al. 2001). 

In subsequent research, several members within this subproteome were studied. Kinases, such as 

Lck, Src, Bmx, Erk; transcriptional factors, such as NFKB, AP1; mitochondrial proteins, such as 

ANT, VDAC play roles in the protection (Ping, Zhang et al. 1999; Ping, Zhang et al. 1999; Li, Ping 

et al. 2000; Ping, Song et al. 2002; Zhang, Ping et al. 2003; Zhang, Ping et al. 2004). However, 

regulation of proteasome, the protein degradation machinery, was not covered by the previous 

study. The PKCe subproteome study did not identify 20S proteasome subunits within these protein 
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complexes. This could be the result of these subunits having similar molecular weight as the IgG 

light chain, used in immuno-precipitation or their low abundance within these complexes. 

Nevertheless, one of the well-known 20S proteasome binding proteins, aB crystallin, was shown 

to be part of this subproteome. 

This current study represents the first characterization of 20S proteasome within PKC& 

over-expression, cardio-protected model. aB crystallin, as a stress-induced protein associating 

with both 20S proteasome and PKC&, was screened for its potential as a 20S proteasome 

regulator in the heart. 
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Materials and Methods 

Generation and Characterization of PKCETransgenic Mouse Lines 

Standard techniques were used for the production and generation of PKCE over-expression 

mouse. Briefly, a cardiac specific a-myosin heavy chain promoter was used to drive the 

expression of PKCE cONA mutants in FVB/N mice. An HA tag was inserted into the 5' end of the 

construct, which allowed differentiation of transgene expression from that of endogenous PKCE. 

Constitutively active PKCE (AE-PKCE) is created by an A 159E mutation at the pseudosubstrate 

domain. Mouse line expresses low level of the PKCE transgenic protein and is inherently protected 

from cardiac ischemic injury. The phenotype of this transgenic mouse line has been previously 

characterized. 

Purified Murine Heart 205 Proteasome 

10g of mice heart tissue was homogenized by a potter homogenizer in homogenize buffer 

(Tris 20mM pH 7.8, EOTA 0.1 mM, on 1 mM, with protease inhibitor cocktail from Roche and 

phosphatase cocktails from Sigma). Cytosolic fraction was collected as the supernatant after 2hr 

centrifugation at 25,000g. Cytosolic fraction was then fractionated by ammonium sulfate 

precipitation. The pellet, collected between 40% to 60% ammonium sulfate saturation, was 

re-suspended in 10ml dialysis buffer (Tris 20mM pH 7.4, MgCI2 5mM, on 0.5mM). 

Re-suspended fraction was dialyzed again 4L dialysis buffer overnight to remove ammonium 

sulfate from it. The dialysate was fractioned with preparative-scale strong-anion-ion-exchange 

column (Q FastFlow resin packed in XK 26/40 column from GE healthcare) by stepwise salt 

concentration gradient elution at flow rate 5mllmin (45% B, until UV280nm monitor reading goes to 

baseline; 75% B, collect 200ml; 100% B, until UV280nm monitor goes to baseline. Buffer A: Tris 

20mM pH 7.4, MgCI2 5mM, on 0.5mM, Glycerol 10%; Buffer B: Tris 20mM pH 7.4, MgCI2 5mM, 
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on O.SmM, Glycerol 10%, KCI 600mM). 7S% B fraction enriched in 20S proteasome. This 

fraction was centrifuged at SoC 42,000rpm (Ti4S fixed angel rotor from Beckman) for 19hr. The 

pellet was collected, re-suspended in buffer A and resolved with analytical-scale 

strong-ion-exchange column (Mono Q HRS/SO from GE healthcare) with a linear salt concentration 

gradient from 0% B to 100% B through 17.S column volume. The purified 20S proteasome was 

recovered in fractions around 60%B. 

2D-electrophoresis and LC-MS/MS 

20 electrophoresis was conducted using Bio-Rad 11cm apparatus. Firstly, purified 20S 

proteasome was desalted by TCA/Acetone precipitation. The desalted dry pellet was resuspended 

and resolubilized with IPG rehydration buffer (7M urea, SOmM on, 4% CHAPS, 0.2% 3-10 

BioRad ampholytes). 11cm NL (non-linear) (BioRad) IPG was rehydrated in this solution overnight, 

and then isoelectrofocusing was conducted with BioRad IEF cell (2S0V, linear gradient 20 min, 

2S0V, step and hold Shrs, 3000V, linear gradient 1 hr, 3000V, step and hold 1 hr, BOOOV, linear 

gradient 1 hr, BOOOV, step and hold for a total of 4937S Vhrs.). After IEF, proteins in IPG strips were 

reduced by 2% on solution and alkylated by 2.S% IAA sequentially for 10 minutes each. The 

second dimension electrophoresis was run with Bio-Rad pre-cast Criterion gel (12.S%) at 200V for 

4Smin. The gel was fixed and stained with SYPRO Ruby protein dye (Molecular Probes). 

Gel plugs stained by SYPRO Ruby were cut out with robotic gel cutter from Bio-Rad. Proteins 

within these spot were digested with trypsin (Promega). The resulting peptides were resolved with 

RP-HPLC column coupled online to a mass spectrometer (QSTAR from Applied Biosystems), 

which would be able to generate mass spectra and search them against protein database, 

identifying proteins within the original gel plugs. 
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SOS-PAGE and LC-MS/MS 

SOS PAGE was performed with Bio-Rad Mini-Protean II apparatus according to classic 

laemmli protocol using 12.5% poly-acrylamide gels. Electrophoresis was conduced at 120V OC 

for 1 hr. After that, the gels were fixed and visualized by Colloidal Coomassie blue G-250 staining. 

Gel plugs stained by Coomassie blue G-250 were cut out manually. Proteins within these spot 

were digested with trypsin (Promega). The resulting peptides were resolved with RP-HPlC 

column coupled online to a mass spectrometer (QSTAR from Applied Biosystems), which would 

be able to generate mass spectra and search them against protein database, identifying proteins 

within the original gel plugs. 

Western-Blotting 

Proteins resolved with SOS-PAGE were transferred in solution to nitrocellulose membrane 

(Pall Life Sciences, O.45~M pore diameter). The transfer efficiency was checked by staining the 

blot with Ponceau S (BioRad), which could be removed by Tris-Buffered Saline with 1 % Tween-20 

(TTBS) washing. The remaining procedure was as follows: Block the transblot with 5% milk for 1 

hour; Probe with 1st antibody (1000X dilution in 5% milk, 1% Tween-20) for 1 hour; Wash with 

TTBS (Tris-buffered solution with 1 % Tween-20) for 3 times of 5 minutes each; Probed with 

HRP-linked 2nd antibody (3000X dilution in 5% milk, 1 % Tween-20) for 1 hr; Wash with TTBS for 3 

times of 5 minutes each; Finally the transblot was incubated with ECl reagent (GE healthcare) for 

1 minute and chemiluminescent signal recorded with film (Kodak). 

Immuno-precipitation 

Hearts taken from 8 weeks old PKCE over-expression mice and wild type mice were 

homogenized in buffer contains protease cocktail and phosphatase cocktail with potter 

95 



homogenizer. Cytosolic fractions were collected by centrifuge at 100,000g for 1 hour. 300/lg 

proteins from each of these fractions were pre-cleared by incubate with 20/l1 protein AlG beads 

from Santa Cruz for 30 minutes at 4°C. Supernatants were recovered and incubated overnight 

with 20/l1 protein AlG beads and 3/l1 primary antibody (0.2S/lg//lI) at 4°C. Beads were washed 

three times for S minutes each with 1 ml TTBS. Beads were then boiled with 200ul SOS PAGE 

loading buffer for S minutes. Supernatants were collected and ready to use for subsequent SOS 

PAGE and western blot study. 

Fluorescent Peptide Substrates and 20S Proteasome Activities Assay 

Z-Leu-Leu-Glu-AMC from Sigma was used to measure [31 subunit activity. (10X assay buffer: 

2S0mM HEPES, pH 7.S; SmM EOTA; O.S% NP-40; 0.01% SOS). Boc-Leu-Ser-Thr-Arg-AMC from 

Sigma was used to measure [32 subunit activity. (10X ssay buffer: 2S0mM HEPES, pH 7.S; SmM 

EOTA; O.S% NP-40; 0.01% SOS). Suc-Leu-Leu-Val-Tyr-AMC from Bachem was used to measure 

13S subunit activity. (10X assay buffer: 2S0mM HEPES, pH 7.S; SmM EOTA; 0.3% SOS). 

Proteolytic activities of 20S proteasome were compared among heart samples from different 

animal models (wild type mice, PKCE over-expression mice). 10/lg of protein from cytosolic 

fraction of murine heart homogenate was used. The specific proteasome inhibitor, Epoxomicin 

(Boston Biochem), was used in a parallel study as negative control for 20S proteasome activity 

assay. 

Statistical Analysis 

All data are presented as Mean ± S.E. Groups are compared using two samples t test for 

unpaired data. A P value of less than O.OS was considered significant. 
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Results 

aB-Crystallin Co-purifies with 20S Proteasome from ICR Murine Heart 

Purified murine cardiac 20S proteasome was resolved by 2D electrophoresis (Figure 16, 

Panel A). The aB crystallin was identified within the 2D gel as a 20S proteasome associating 

protein by mass spectrometry (QStar from Applied Biosystems). The spectra generated were 

searched against IPI database using Mascot search engine (Matrix Science). 50% of aB crystallin 

sequence was obtained and it's N-terminal was determined to be acetylated (Figure 16, Panel B). 

PKCE Over-expression Mice have Increased Expression of 20S Proteasome Subunits; 

While the Expression of 19S Subunits is Largely Unaffected 

Proteasome subunits expression levels were compared between PKCE over-expression mice 

and wild type control mice. This comparison was conducted with quantitative western blotting. The 

expression levels of the 20S proteasome subunits a3, a 7 and p5 were significantly up-regulated in 

PKCe over-expression mice (Figure 17, Panel A); on the other hand, the expression levels of the 

19S proteasome subunits Rpt1 and Rpn2 showed no significant changes (Figure 17, Panel B). 

20S Proteasome Peptidase Activities are not Significantly Altered in 

PKCE Over-expression Mice 

Peptidase activities of 20S proteasome within cytosolic fractions were compared among 

PKCe over-expression mice and wild type control mice. The 20S proteasome specific inhibitor was 

used to minimize proteolytic activities contributed from other intracellular proteases. Despite the 

higher population of 20S proteasome subunits within PKCe over-expression mice, all three 

peptidase activities of 20S proteasome showed no significant difference over wild type control 
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mice (Figure 18). 

aB-Crystallin Expression is Upregulated in PKC& Over-expression Mice 

as crystallin expression level was compared between PKC& over-expression mice and wild 

type control mice with western blot. In the cytosolic fraction. PKC& over expression mice showed 

small but significant up-regulation of as crystallin (Figure 19). 

aB-Crystallin Immunoprecipitation, 205 Proteasome Western Blotting 

The association between as crystallin and 205 proteasome was compared between PKC& 

over-expression mice and wild type control mice by immuno-precipitate as crystallin containing 

protein complexes followed with western blot a7 subunit of 205 proteasome. The 

chemiluminescent signal was significant stronger in PKC& over-expression mice compare to the 

wild type mice (Figure 20). which suggests more 205 proteasome and as crystallin association in 

the transgenic mice. 

205 Proteasome Immunoprecipitatlon, PKC& Western Blotting 

The association between PKC& and 205 proteasome was also compared between PKC& 

over-expression mice and wild type control mice. This was conducted by immuno-precipitation of 

the 205 proteasome containing protein complexes followed with western blotting with PKC&. In the 

PKC& over expression mice. more PKC& was present in the 205 proteasome containing protein 

complexes (Figure 21). 
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Discussion 

aB-Crystallin Associates with 20S Proteasome 

Consistence with previous study in other tissues, aB crystallin was also found to co-purify 

with 208 proteasome from murine heart. In an in vitro study, a7 was suggested to be the subunit of 

208 proteasome interacting with aB crystallin. This study in the heart provided further evidence 

that the interaction between 208 proteasome and aB crystallin are ubiquitous among tissues. 

As reported by Dr. Conconi (Conconi, Petropoulos et al. 1998; Conconi, javadi-Ohaniance et 

al. 1999), purified latent rat liver 208 proteasome can be inhibited by aB crystallin, while activated 

liver 208 proteasome can not. We were unable to reproduce this using in vitro biochemical 

experiment with murine cardiac 208 proteasome. This could be due to the difference in the 

biochemical properties between rat liver 208 proteasome and murine cardiac 208 proteasome, or 

most likely due to variations in purification protocols. Nevertheless, the association between 208 

proteasome and aB crystallin has been confirmed by immuno-precipitation experiments of this 

study. 

In PKCE Overexpression Mice, the Expression Level of 20S Proteasome Subunits 

are Upregulated, but the Total 20S Proteasome Peptidase Activities 

do not Change Significantly 

This study presented the first characterization of proteasome regulation in a cardio-protected 

phenotype, PKCE over-expression mouse line. Ubiquitin-proteasome system is responsible for the 

turnover of the majority of intracellular proteins, among them, including lots of transcriptional 

factors, signaling proteins. Proteasome is the final executer of this pathway. The contribution of its 

regulation to accommodate a cardio-protected phenotype is sure of great significance. 
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Three 20S proteasome subunit expression levels have been shown to be up-regulated in this 

cardio-protected model; while the expression level of two 19S proteasome subunits showed no 

significant difference. This is consistence with the fact that 20S proteasome subunits and 19S 

proteasome subunits are under different transcriptional control mechanisms. Activation of NFKB 

has been known leading to the up-regulation of 20S proteasome. Dr. Ping's group has reported 

NFKB activation as one of the result of PKCE expression (Li, Ping et al. 2000). Even the 20S 

proteasome subunit expression levels were increased in transgenic mice, its peptidase activities 

showed no significant difference in non-stressed condition compare to the wild type mice. This 

suggested there is an inhibitory mechanism within the transgenic model in such condition. 

aB-Crystaliin is a Key Stress-response Protein Regulated in PKCE Overexpression Mice, 

Which Associates with 20S Proteasome 

aB crystallin is a member of sHSP family expression in the murine heart. Ubiquitin, key 

component of ubiquitin-proteasome system, is also a heat-shock protein. aB crystallin is a 

chaperone and its over-expression has been shown to be protective upon cardiac ischemic insult. 

Indeed, in the cardio-protected transgenic mice, under non-stressed condition, there is a small but 

significant up-regulation of aB crystallin expression level. Its protective effect has been attributed 

to its ability to prevent protein denaturation. Even aB crystallin has been well known as 20S 

proteasome associating protein, its potential of regulating 20S proteasome under stress has not 

been tested. 

As the first step to s,tudy the effect of aB crystallin regulating cardiac 20S proteasome in 

resisting ischemic insult, their association has been compared between cardio-protected model 

and wild type control. There are more 20S proteasome associating with aB crystallin in the 
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protected model. Previous reports documented latent 208 proteasome could be inhibited with aB 

crystallin, which would partially explain 208 proteasome inhibition in the protected model. 8uch 

effect was not reproduced in vitro with purified cardiac 205 proteasome. This could be due to the 

difference between the two 208 proteasome purification protocols. 

In the Cardio-protected Mice, More PKC& Associates with 20S Proteasome 

Immuno-precipitation study showed more PKC& was recruited to 208 proteasome containing 

protein complexes in the cardio-protected model. In the purified murine cardiac 208 proteasome 

preparation, however, PKC& was not shown as 208 proteasome associating proteins. aB crystallin, 

as a well-known 208 proteasome associating protein, is recruited to PKC& subproteome in the 

cardio-protected model. As reported in previous section, there are meanwhile significantly more 

208 proteasome associating with aB crystallin in the cardio-protected model. This supported the 

hypothesis proteins within PKCE subproteome regulated 208 proteasome activity. The availability 

of aB crystallin mice enables us to test this in the near future. 
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Summary 

20S proteasome associating proteins have impacts on its functions. as crystallin is member 

of sHSP family, well known associating with 20S proteasome. This has been confirmed by this 

study in the murine heart. Significantly, as crystallin has also been reported playing a significant 

role in cardio-protection against ischemialreperfusion injury. 

PKCE over-expression mouse is a well-established cardio-protected model. Since it was 

generated, extensive studies have been conducted to uncover the mechanisms that are 

responsible for this phenotype. Several key proteins have been identified. These included 

signaling proteins, transcriptional factors and apoptosis related proteins. However, protein 

degradation and stability control pathway, specifically proteasome and heat shock proteins, have 

been largely overlooked. This study represented a first report in this area. 

In the transgenic cardio-protected mouse, the expression levels of 20S proteasome subunits 

were significantly induced, while those of 19S proteasome subunits were un-affected. NFKS has 

been showed as the transcriptional factor that induces the expression of 20S proteasome subunits. 

This is consistence with previous report from Dr. Ping's group that NFKS was activated in this 

transgenic model (Li, Ping et al. 2000). In spite of enhanced 20S proteasome expression level, its 

peptidase activities showed no significant increase in transgenic mice. There must be certain 

mechanism prevented this augment in transgenic mice. 

as crystallin has been reported as a 20S proteasome aSSOCiating protein that could inhibit its 

activity. The study showed only latent 20S proteasome, which is its in vivo conformation, could be 

inhibited by as crystallin, while the activated counterpart was not affected by as crystallin. This 

inhibitory effect was not reproduced with murine cardiac 20S proteasome. This could be explained 

by that purified 20S proteasome was in an activated state. Nevertheless, the association between 
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208 proteasome and aB crystallin was significantly enhanced in the transgenic model. In the 

transgenic model, aB crystallin was recruited to PKCE subproteome compare to the wild type. In 

this study, we have also seen increased association between 208 proteasome and PKCE. Proteins 

within PKCE subproteome could be responsible for the inhibition of 208 proteasome in the heart. 

The availability of aB crystallin transgenic mice would enable us to clarify this phenomenon in the 

near future. 
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Figure 16. a.B-Crystallin Co-purifies with 20S Proteasome from ICR Murine Heart. Panel A. 

Purified murine cardiac 20S proteasome was resolved by 2D electrophoresis using Bio-Rad 

apparatus. 2D gel was fixed, stained with SYPRO Ruby protein dye and image recorded with 

Bio-Rad fluorescent imager. All spots shown on the gel were cut and proteins within them 

identified with Qstar LC/MS/MS from Applied Biosystems. Panel B. Spectrum of a.B-Crystallin 

N-terminal peptide acquired with Qstar LC/MS/MS, which is shown as underlineD balded red 

character within its sequence. All other peptides with spectra recorded with the mass spectrometer 

were shown as red underlined characters. 
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Figure 17. PKCE Over-expression Affects Proteasome Subunits Expression Levels. 

Proteasome subunit expression levels in the cardiac tissue cytosolic fractions were compared 

between PKCE over-expression mice and wild type control mice by western blot. Panel A. 20S 

proteasome subunits, a3, a7 and ~5, were all upregulated in the transgenic mice. Panel B. 

Expression levels of 19S proteasome subunits, Rpt1 and Rpn2, showed no significant difference 

between transgenic mice and non-transgenic mice in non-stressed condition. 
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Figure 18. 20S Proteasome Peptidase Activities are not Significantly Altered in PKCE 

Over-expression Mice. 10119 of cytosolic fraction of heart homogenate were used in the 

proteasome activity assays. LLE-AMC was used as substrate to evaluate ~1 activity; LSTR-AMC 

was used to evaluate P2 activity; LLVY-AMC was used to evaluate p5 activity. After adding 

substrates, the reaction mixtures were incubated 1 hr at 37°C. The free AMC fluorescence was 

measured using a fluorometer (excitation 390nm; emission 450nm). Parallel experiments were 

conducted use 20S proteasome speCific inhibitor, epoxomicifl, to minimize background. * p<0.05 

compare to WT. n=3 in all experiments. Data are expressed as mean±S.E. 
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Figure 19. aB-Crystallin Expression is Up-regulated in PKCe Over-expression Mice. 

Cytosolic fractions were recovered from supernatant after 1 hour centrifugation at100,000g. The 

expression level of aB-Crystallin was compared among PKCe over-expression mice and control 

mice. Transgenic mice showed small but statistically significant up-regulation of as-Crystallin 

expression level. 
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Figure 20. Comparison of aB-Crystallin, 205 Proteasome Association. Association of aB 

crystallin and 20S proteasome between PKCE overexpression mice and wild type control mice was 

compared by immuno-precipitating aB crystallin containing protein complexes from the cytosolic 

fraction followed by western blooting against the 20S proteasome a7 subunit. Transgenic mice 

showed Significantly higher association. 
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Figure 21. Comparison of PKCE, 205 Proteasome Association. Association of aB crystallin 

and 20S proteasome between the PKCE over-expression mice and wild type control mice was 

compared by immuno-precipitating 20S proteasome containing protein complexes from the 

cytosolic fraction followed with PKCE western blotting. Transgenic mice showed significantly 

higher association. 
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CHAPTER V 

SUMMARY AND DISCUSSION 

The completion of Human Genome Project, the biggest achievement in basic biological 

science within the last decade, provided us a blue print of human being, however, we are still far 

from fully understanding it. Proteins serve as building blocks of life. They functions as cell 

skeletons, enzymes, transporters, ion channels and hormones. Compared to -30,000 genes 

identified and sequenced from Human Gnome Project, there are far more proteins being 

generated by human, as results of alternative splicing and post-translational modifications. 

Proteins are regulated at multiple levels, including alternative splicing, transcriptional control, 

translational control, post-translational control, translocation and degradation. This thesis 

represents a first comprehensive characterization of major component within murine cardiac 

protein degradation pathway, 20S proteasome: composition, function and regulation. 

Intracellular protein turnover mainly operates through two systems. The well-known lysosome 

pathway, turnovers membrane proteins and pathogens. They are enclosed in a vesicle structure 

called endosome. The fusion of endosome with lysosome exposes its content to lysosomal 

proteases. The majority of nuclear and cytosolic proteins are turned over by proteasome related 

pathways into peptides. These peptides are either transferred to cell surface as antigens or further 

degraded by Tripeptidyl Peptidase II (TPP II) into amino acid to replenish cytosolic pool. Several 
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proteasome-involved protein degradation mechanisms have been proposed. The elucidation of 

poly-ubiquitin tagging pathway won Nobel Prize in Chemistry 2004. Ornithine decarboxylase and 

cyclin 01 are targeted for 268 proteasome after binding to antizyme. Protein degradation by 268 

proteasome independent of both ubiquitin and antizyme has also been reported. 208 proteasome 

is known to degrade oxidative damaged proteins. It can turn over native proteins at in vitro setting. 

Regulation of proteasome protein degradation process is complex. The regulation can be 

accomplished selectively at protein substrate level. Its ubiquitination, post-translational 

modification and binding partner, impact its half-life. This regulation can also be achieved at 

proteasome level. Its post-translational modification, associating partner and assembly de~ermine 

its proteolytic activities and selectivity towards groups of substrates. 

Establishment of large-scale 208 proteasome purification protocol from murine heart is a 

pre-requirement for its characterization. Considering the nature of sample, cost, possibility of 

genetic manipulation, biochemical method is optimal. The high stability, high molecular weight and 

highly charged properties of 208 proteasome were utilized along the purification procedure to 

reach a final purity higher than 95%. Moreover, 208 proteasome in the preparation has been 

proved to be structurally intact and functionally active. Purified 208 proteasome was analyzed by 

mass spectrometer after in-solution digestion or in-gel digestion following gel electrophoresis, 

including 10 808 PAGE, 20 electrophoresis and blue native gel electrophoresis. All these 

approaches have been proven to be complementary. 10 SOS PAGE provided higher 

reproducibility, higher sample loading capacity and possibility of analyzing all proteins resolved 

throughout one lane. 20 electrophoresis separated all 20S proteasome subunits, including 
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post-translational modified subunits across the gel. This enabled us to analyze each subunit 

individually and provides unique advantage when to identify post-translational modified residues. 

Blue native gel electrophoresis resolved populations of 20S proteasome containing protein 

complex while keeping them intact. Different species of 20S proteasome and its components could 

be studied independently. Direct in-solution digestion skipped peptides extraction step, which was 

mandatory for in-gel digestion procedure. High hydrophobicity peptides were difficult to extract. 

In-solution digestion overcame this bias. As a result, all 17 subunits of 20S proteasome have been 

identified, including 14 constitutive and 3 inducible subunits. Catching unique sequence within a 

protein was sufficient for protein identification, however a high sequence coverage by mass 

spectrometer was necessary for post-translational analysis. The pi of murine cardiac 20S 

proteasome was 0.8 units lower than theoretical value, which suggested the existence of 

post-translational modifications. Several subunits were represented with multiple focused spots in 

2D gel. This fortified the idea that 20S proteasome was post-translational modified. 

20S proteasome were phosphorylated endogenously. Both immuno-blotting and mass 

spectrometric analysis showed purified 20S proteasome subunits were phosphorylated. As a first 

study of such modifications, phosphorylations were removed globally by ClAP. ClAP treatment 

enhanced 132 and 135 subunits activities significantly. Within in vitro system, ClAP could also be 

degraded by 20S proteasome serving as competitive peptidase assay inhibitor. PP2A, PKA and 

CKII have been identified as murine cardiac 20S proteasome associating enzymes. PKA and CKII 

could phosphorylate 20S proteasome to enhance its peptidase activities, while serine/threonine 

phosphatase, PP2A, was a negative regulator of 20S proteasome activities. 
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20S proteasome associating proteins can also regulate 20S proteasome. In PKCE 

over-expression transgenic mice, 20S proteasome subunits, represented by a3, a? and P5, were 

up-regulated. However, 19S subunits, represented by Rpt1 and Rpn2, showed no change. 

Surprisingly, up-regulation of 20S proteasome subunits expression levels did not lead to its 

significant activity change. 20S proteasome subunit and 19S subunits are under different 

regulatory control. Dr. Ping's group reported PKCE activation induces NFKB, which has been 

reported as 20S proteasome transcriptional activator. These over-expressed 20S proteasome 

existed in a suppressed state to maintain an unchanged overall 20S proteasome activity in the 

cytosol. aB crystallin is a small heat shock protein associating with and inhibiting 20S proteasome. 

This association has been confirmed with heart sample in this study. aB crystallin is also a 

component of PKCE subproteome. In the PKCE over-expression transgenic model, it is recruited to 

PKCE subproteome compared to wild type control. In the transgenic model, increased association 

of 20S proteasome with aB crystallin and PKCE subproteome was evidenced with 

co-immuno-precipitation study. 

aB crystallin knockout mice will be used as an important model to further study the functional 

impact of this small heat shock protein over 20S proteasome. Murine cardiac 20S proteasome 

from the transgenic models will be obtained and compared with that from the control model at 

proteomic level. The regulation of relative population of proteasome species and its effect toward 

phenotype are other important directions to follow. 
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