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ABSTRACT 

MARGINAL NONPARAMETRIC INFERENCE FOR WAITING TIMES IN 

MULTISTAGE MODELS: HYPOTHESIS TESTING AND REGRESSION 

Douglas J. Lorenz 

May 14, 2011 

Marginal inference for waiting times in multi-stage time-to-event models is 

complicated by right censoring of observations as well as the prior history of events in the 

model. In general, complications arise due to the evolution of the censoring process in so 

called "calendar time", contrasted with the evolution of the waiting time process 

conditional upon entry into a given stage. Developments in inference for survival data 

under dependent censoring have been extended to the multi-stage framework, and 

non parametric estimators for the cumulative hazard function and survival function for 

waiting times analogous of the classical Nelson-Aalen and Kaplan-Meier estimators for 

survival data have been developed. These estimators were derived under the principle of 

weighting the basic at-risk and event counting processes by the inverse probability of 

censoring. We extend this concept to K-sample hypothesis testing and non parametric 

regression, and define test statistics and regression coefficient estimators analogous to the 

log-rank test and Aalen's nonparametric linear regression estimators for survival data. We 

examine the asymptotic distribution of these statistics, and justify their use via simulation 

studies and analyses of real data sets. 
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CHAPTER I 

INTRODUCTION 

Multi-stage models provide a convenient framework for analyzing event history data, 

in which individuals proceed through a sequence of events in time. Multi-stage models 

generalize traditional survival or time-to-event data, in that individuals potentially 

experience a sequence of events rather than proceeding from a root stage to a single 

terminal au::;uruing stage. The events of multi-stage models are represented as stages and 

the occurrence of the events as transitions between the stages. Survival data, wherein 

individuals start at a root stage and progress to a single absorbing stage, provide the 

simplest example and are termed irreversible two-stage models in the nomenclature of 

multi-stage models. Other simple examples of multi-stage models include the competing 

risks model, in which individuals progress from a root stage to any of a set of absorbing 

stages. In biomedical applications, these states are generally referred to as an "alive" state 

(the root stage) and "death by cause X" (the set of absorbing stages). The three-stage 

illness-death model provides another simple example. Individuals progress from a root 

state ("well") to an intermediary "illness" state and finally to an absorbing "dead" state. 

The multi-stage framework is suitably flexible to allow far more complex networks of 

stages. For example, the topology of the illness-death model can be made more complex by 

allowing direct transitions from the alive state to the dead state or by allowing transitions 

from the illness state back to the well state in an unlimited fashion. 

The analysis of multi-stage data, also referred to as failure time data, is frequently 

complicated by right censoring, the partial observation of the progression through stages in 

the model caused by the exit of an experimental unit from observation before the full 

sequence of events has occurred. For simple survival data, traditional inferential procedures 

such as point and interval estimates of the cumulative hazard and survival functions, 

coefficients from parametric and semi-parametric regression models, and hypothesis test 

statistics, generally assume the statistical independence of survival times and censoring 

times. Practically speaking, this independence assumption provides reasonable assurance 
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that what an experimenter observes - the right-censored survival times - does not 

substantially differ from what actually occurs - the uncensored survival times - and that 

inference based on right-censored data will correspond with inference based on the 

uncensored data. When the independence of right-censoring and survival times cannot be 

safely assumed, inferential procedures requiring the independence assumption can be 

biased. For example, suppose that in an experiment censoring times and survival times are 

negatively correlated. Short survival times are then associated with long censoring times 

and are more likely to be fully observed. Conversely, long survival times are associated 

with short censoring times and more likely to be partially observed (censored). An 

estimator of the cumulative hazard function requiring the independence assumption would 

then overestimate the true cumulative hazard, as the fully observed survival times would 

tend to be shorter, indicating greater hazard, and the censored survival times would tend 

to be longer. 

From an analytical perspective, there are many areas of interest for data derived 

from a multi-stage model - the estimation of stage-to-stage transition probabilities, hazard 

and survival functions for exit from a given stage, hazard and survival functions from a 

given stage to a particular subsequent stage, stage-occupation probabilities, etc. Presently, 

we will focus on the marginal analysis of waiting times for secondary, transient stages in a 

multi-stage model, defined as the time from entry into a given stage until stage exit and 

also referred to as sojourn or gap times. Waiting times are conceptually similar to survival 

times, in that one observes the time until a given event (stage exit) occurs, with the caveat 

that the time to stage exit is observed conditional upon entry into the given stage. Given 

this similarity, a naive approach to a marginal analysis of waiting times would be to apply 

survival data methods - the Nelson-Aalen estimator of the cumulative hazard function or 

Kaplan-Meier estimator of the survival function - on the set of individuals observed to 

enter a given stage, under the assumption that right censoring times are independent of 

stage transition times. However, such an independence assumption is insufficient to 

guarantee the applicability of methods for survival data to waiting times from multi-stage 

models. One must additionally assume the independence of stage transition times, the 

so-called semi-Markov property. 

A heuristic argument can be used to demonstrate the additional need for the 

semi-Markov property. Let T and U denote the true entry and exit times for a given 

transient state in a multi-stage model, and let C denote the right-censoring time. Much of 
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the added complexity of analyzing multi-stage data stems from the fact that the waiting 

time process U - T evolves conditional upon entry into the given stage (i.e. after random 

time T), whereas the censoring process evolves in "calendar time", the time from which 

observation of the multi-stage model commences (i.e. "time 0"). In a marginal treatment 

of waiting times, we are in effect interested only in what happens after entry into the given 

stage, (i.e.) what happens after time T. Hence, the waiting time process, U - T, is 

censored not by C but by the censoring time after entry into the given stage, C - T. 

Assuming the independence of censoring and waiting times for a given stage in a marginal 

analysis thus corresponds to assuming the independence of U - T and C - T. From this, it 

is easily seen that both independent censoring (U, T J.. C) and the semi-Markov property 

(U J.. T) are required. Hence, even when the waiting time U - T can be assumed to be 

independent of the censoring time C in a multi-stage model, dependent censoring can be 

"induced" by dependence between U and T. This heuristic argument is not meant to imply 

that what happens before time T is completely irrelevant to the marginal analysis of 

waiting times; note that it is possible for individuals to be censored prior to entry into the 

stage of interest (C - T < 0). Survival data methods applied to waiting times from a 

multi-stage model would be necessarily carried out on the set of individuals observed to 

enter a given stage, completely ignoring individuals censored prior to stage entry that may 

have entered the given stage and posing an additional problem for their applicability. 

In practice, the semi-Markov property can be restrictive and implausible for 

multi-stage models and in the marginal analysis of waiting times. Inference for survival 

data under dependent censoring and waiting times from multi-stage models under 

dependent censoring and/or transition times has generally focused on adjusting for 

dependent censoring in some capacity. A method that has received particular focus is 

known as inverse probability of censoring weighting (IPCW), first introduced by Robins and 

Rotnitsky [39] in the analysis of survival data. To describe IPCW, we first note that many 

statistics for survival data are functions of two counting processes evolving in time, (1) the 

event counting process, which counts the number of events of interest (failures) that have 

occurred up to a given time, and (2) the at-risk counting process, which counts the number 

of experimental units at risk for the event of interest at a given time. (The counting process 

formulation for the analysis of survival data was first proposed by Aalen [1] in a landmark 

paper, and has received considerable attention since.) The IPCW method operates by 

weighting these basic counting process by the inverse probability of censoring, thereby 
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weighting the statistics that are functions of these counting processes. Thus, observations 

more/less likely to be censored are given greater/lower weight, in turn adjusting for the 

potential bias introduced by dependent censoring. The IPCW method has root in the 

Horvitz-Thompson estimator [19], a popular method in the analysis of sample surveys, 

which weights observations by the inverse probability of an observation being selected. 

The IPCW method has been used to develop dependent-censoring analogues of 

several regular estimators for survival data. Robins and Rotnitsky [40J developed coefficient 

estimators for semi parametric regression models under dependent censoring analogous to 

well-known estimators from the Cox proportional hazards model [9J. Satten and Datta [41] 

demonstrated that the Kaplan-Meier estimator [24] of the survival function had 

representation as an IPCW average, and Satten, Datta and Robins [42, 43J developed 

estimators of the cumulative hazard and survival functIOns under dependent censoring as 

analogues of the classical Nelson-Aalen [1, 36J and Kaplan-Meier estimators. Robins and 

Finkelstein [38] adapted IPCW semi parametric regression estimators to develop IPCW 

Kaplan-Meier estimators and score tests for two group comparisons. We note that in this 

paper, IPCW was used to correct not only for dependent censoring but also non-compliance 

with a given therapeutic regimen in a two-arm study of AIDS treatment. Cain and Cole [7J 

extended these results to correct time-varying non-compliance with treatment. Howe, et al 

[21] have noted limitations in the estimation of survival via IPCW in the presence of strong 

selection bias. Recently, Datta, et al [IOJ developed a broad theory for IPCW U-statistics 

with applications to testing problems for right-censored data. We note that weighted 

estimation for survival data was first considered by Koul, Susarla, and Van Ryzin [28], who 

developed weighted OLS regression estimators for randomly right censored survival data. 

Weighting by the inverse probability of censoring has also been used in the analysis 

of multi-stage data. The IPCW approach has previously been applied to multi-stage data 

to develop estimators of transition hazards and stage occupation probabilities [11, 13J and 

to prove the validity of an Aalen-Johansen-type estimator [5J of the integrated transition 

hazard matrix for non-Markov models [12]. Gunnes, Borgan, and Aalen [18] conducted a 

detailed examination of the Aalen-Johansen and Datta-Satten estimators of stage 

occupation probabilities, and noted that the Datta-Satten estimator remained 

approximately unbiased while the Aalen-Johansen estimator under- or over-estimated stage 

occupation probabilities based on dependent censoring patterns. The authors did note that 

in their simulations, differences between the Datta-Satten and Aalen-Johansen estimators 
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were of practical importance only under very selective censoring mechanisms. For the 

analysis of waiting times from a multi-stage model, Matsuyama and Yamaguchi [35] 

introduced IPCW estimators of marginal survival times for dependent competing risks. 

These estimators were a special case of survival function estimators for waiting times from 

general multi-stage models, which were developed by Satten and Datta [44] as IPCW 

analogues of the Nelson-Aalen and Kaplan-Meier estimators for survival data. The 

application of IPCW methods to multi-stage data have not been limited to being marginal 

in scope. Lahkal-Chaeib, Cook and Lin [29] examined the joint distribution of waiting 

times from multi-stage models, and in particular developed nonparametric estimators for 

correlations between waiting times from consecutive states based on Kendall's T. 

We briefly note that the IPCW method does not represent the only method for 

adjusting for dependent censoring for survival data or dependent transition times in a 

multi-stage model, nor the only method for reweighting to correct for bias. Wang and 

Wells [47] and Lin, Sun, and Ying [32] introduced marginal estimators for waiting times in 

the transient (i.e. second) stage in a three-stage illness death model. Huang [22] and 

Strawderman [46] separately developed accelerated waiting time models for multi-stage data 

as natural extensions of the accelerated failure time model for survival data. Schaubel and 

Cai [45] proposed regression models for the waiting time hazard function (termed gap time 

hazard by the authors). In each of these papers, the authors arrived at model estimators 

through appropriate reweightings of regular estimating equations for survival data. 

In what follows, we employ the principle of IPCW to develop K-sample test statistics 

and nonparametric regression estimators for waiting times from a multi-stage model. The 

test statistics we introduce serve as analogues of the Fleming-Harrington [16] class of 

K-group tests for survival data, which includes the popular log-rank test [34]. Hypothesis 

testing under dependent censoring for survival data has previously been considered by Lin, 

Robins, and Wei [31], who introduced a two-sample test statistic by considering a bivariate 

location-shift model with unspecified underlying distribution for the failure and censoring 

times. Lin and Ying [33] proposed weighted log-rank and Pepe-Fleming [37] type statistics 

for waiting times involving reweighting and conditioning on threshold values for stage entry 

times. Fan and Datta [15] developed IPCW Mann-Whitney statistics for two-group 

comparisons of waiting times from multi-stage models. Additionally, the asymptotic theory 

for the regression models mentioned in the previous paragraphs can provide K -sample 

hypothesis test statistics when the model covariate is K -categorical. As noted above, 
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Robins and Finkelstein [38], in developing IPCW semi-parametric regression and 

Kaplan-Meier estimators, additionally proposed IPCW tests for survival data as score tests 

derived from the estimation of the regression coefficients. 

The nonparametric regression estimators for waiting times from a multi-stage model 

we propose are analogues of the nonparametric regression estimators for survival data 

introduced by Aalen [2, 3, 4]. This model has received considerably less attention than 

other regression models for survival data, such as the semi-parametric Cox model [9], fully 

parametric regression models, and the accelerated failure time (AFT) model. There are 

notable reasons for this lack of attention. Aalen's model directly models the hazard 

function, rather than an exponential or logarithmic transform of the hazard function as 

with the Cox and AFT models. While this makes Aalen's model conceptually simpler to 

define, negative estimates of the hazard are possible. Regression matrices of less than full 

column rank can cause erratic behavior of hazard estimates provided by Aalen's model, 

particularly at later times of observation when the risk set is small. Nevertheless, Aalen's 

non parametric linear model provides unique flexibility in modeling the hazard as it not only 

permits time-varying covariates (like the Cox and AFT models) but defines its regression 

coefficients as functions of time rather than as static values, (i.e.) the regression coefficients 

are time-varying as well. This unique flexibility uncovers an additional drawback in that 

Aalen's model estimates integrated regression coefficients which can be difficult to 

interpret. However, kernel smoothing techniques can be used to generate smoothed 

estimates of the regression coefficient functions and ad hoc solutions to the other difficulties 

- setting a lower bound of zero for model-generated hazard estimates and skipping failure 

times for which the regression matrix is rank deficient [20] - generally perform well and 

mitigate these problems to some degree. Other than the development of tests of covariate 

effects from Aalen's model [17, 30], limited further research into this model has been 

conducted. No direct extensions of Aalen's model to multi-stage data have been proposed. 

We detail our IPCW test statistics and non parametric regression estimators for 

waiting times from multi-stage models in the following chapters, which are organized as 

follows. In Chapter II, we develop our notation, review the principle of IPCW and the 

waiting time cumulative hazard and survival function estimators of Satten and Datta [44], 

define a model for estimating the censoring hazard which is necessary for the practical use 

of our proposed statistics, and establish technical results for use in subsequent chapters. In 

Chapter III, we introduce test statistics for the comparison of waiting time distributions 
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among K-groups. In Chapter IV, we review Aalen's nonparametric linear model for 

survival data and develop nonparametric regression estimators for waiting times. Both 

Chapters III and IV contain the results of simulation studies exploring the asymptotic 

properties of our test statistics and regression estimators as well as the analysis of real data 

sets demonstrating their use. The dissertation concludes with a discussion of our results 

and suggestions for further avenues of research in Chapter V. 
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CHAPTER II 

NOTATION AND PRELIMINARIES 

In this chapter we introduce notation for multi-stage models and review the 

estimators of Satten and Datta [44J for the cumulative hazard and survival function for 

waiting times in a multi-stage model. In so doing, we review the principle of weighting the 

basic counting processes by the inverse probability of censoring, first introduced by Robins 

and Rotnitsky [39, 40]. The purpose of this review is to provide motivation for our 

proposed test statistics and nonparametric regression estimators for waiting times, and to 

establish technical results upon which results later in the text will be based. We note that 

some of the proofs in this chapter follow directly from corresponding proofs previously laid 

out for survival data [12, 41, 43], but have yet to be formally established for waiting times 

in a multi-stage model. Much like the cumulative hazard and survival function estimators, 

the test statistics and regression estimators we propose are simple analogues of statistics 

commonly used for survival data, with basic counting processes for uncensored data 

replaced by their IPCW equivalents. The discussion below largely follows that of Datta 

and Satten [11], Satten, Datta, and Robins [42,43]' and Satten and Datta [44]. Specifically, 

we restrict our attention to continuous waiting time distributions and acyclic network 

structures, (i.e.) networks with no cycles among subsets of the stages. As discussed by 

Satten and Datta [44], a cyclic network can be exploded into an acyclic network by 

considering the unique times of entry into a given stage, (e.g.) the first, second, third, etc. 

entries into a given stage of a cyclic network can be reconstructed as unique stages in the 

model. The authors further note that an exploded stage of an acyclically restructured 

network subsequently can be pooled to generate hazard and survival function estimates for 

"general" stage exit (as opposed to order-specific estimates), so there is no loss of generality. 

We briefly note that the notation and preliminary results outlined in this chapter are 

in the context of a single sample. This notation will be directly applicable for the 

nonparametric regression coefficient estimators proposed in Chapter IV. Chapter III will 

deal with hypothesis testing in the K -sample setting, and will necessarily require extended 
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notation that will be discussed in that chapter. 

Notation 

Since we will consider potentially right-censored data from multi-stage models, it 

will be necessary in defining our notation to delineate "true" quantities from their censored 

counterparts, (i.e.) to differentiate what actually occurs from what is observed by the 

experimenter/analyst. In general, we will denote true quantities and functions thereof with 

an asterisk (*) and their observed (censored) equivalents will not be annotated. 

Let i (1 :::; i :::; n) index individuals and j (1 :::; j :::; J) index the stages in the model. 

Let Iij denote the time individual i enters stage j, and let Utj denote the corresponding 

exit time. Note that Iij = 00 if stage j is never entered and UiJ = 00 if stage j is never 

entered or never exited, for example, if stage j is absorbing. Define 

Ii* = maxj{Iij I Tij < oo} as the time ofthe last transition for individual i. Let 

X ij = I[Iij < 00] be the indicator of individual i ever entering stage j. The values 

Tij, UiJ' Ii*, and X ij can go unobserved due to right censoring. Let Gi denote the censoring 

time for individual i. Define lij = I[Gi ~ Iij] to be the indicator of individual i having 

been observed to enter stage j, and 6ij = I[Gi ~ Uij] the indicator of individual i having 

been observed to leave stage j. Let Ii = min(T;*, Gi ) be the time of the final observed 

transition. Define Tij = min(Iij, Gi) if the data at time t do not imply that X ij = 0 and 00 

otherwise. Note that Ti j = 00 if, for example, an individual proceeds down a path in the 

network from which stage j is unreachable. Let Uij = min (UiJ , Gi) if j is not absorbing and 

the data at time t do not imply that X ij = 0 and 00 otherwise. For the moment, we assume 

that the observed data consist of i.i.d. replicates of {Ii j , Uij' lij, 6ij, 1 :::; j :::; J}. 

In addition to the entry and exit times and indicators, we observe a set of possibly 

time-varying covariates that may impact both the censoring and transition hazards. 

Denote the p-vector of these "external" covariates for individual i by Xi (t), and the history 

of these values up to and including time t by X~(t). Let Ft = {Tij I T;j :::; t} denote the 

history of transitions up to and including time t. Define the vector of "internal" covariates 

as X;(t), which are functions only of F t , and denote the history of the these covariates as 

X~(t). The collection of internal and external covariates for individual i is denoted by Xi(t) 

and its corresponding history as Xi(t). 

In the present chapter, we will review the Satten and Datta [44] estimators of the 
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waiting time cumulative hazard and survival functions, for which we provide definitions. 

Let Sj(t) = P[Ui} - T;j > tlXij = 1] be the survival function for stage j waiting times and 

let Aj(t) = Jd ,xj(s)ds be the corresponding cumulative hazard function, where 

,xj(t)dt = P[UiJ - T;j E [t, t + dt] lUi} - T;j 2 t] denotes the hazard rate function, the 

conditional probability of stage j exit over an infinitesimal interval given that stage j exit 

has not occurred prior to t units of time after stage entry. 

A Model for the Censoring Hazard 

The principle behind estimation by IPCW for survival data introduced by Robins 

and Rotnitsky [39, 40] is fairly simple. Many traditional estimators for survival data are 

functions of two counting processes - the event process, which counts the number of events 

(i.e. deaths or failures) that occur, and the at-risk process, which counts the number of 

individuals under consideration that remain at risk of the event. The IPCW estimator for a 

given population quantity, such as the survival function, is achieved by replacing the 

counting processes composing a traditional estimator for uncensored data with weighted 

equivalents, where the weights are defined by some estimate of the inverse probability of 

censoring. As will be seen, the IPCW estimators have useful statistical properties but 

remain applicable when independent censoring cannot be assumed. 

In order to formally define IPCW estimators, we must develop a conceptual model 

for the censoring hazard. Following Robins and Rotnitsky [39, 40] and Satten, Datta, and 

Robins [42, 43], we assume a censoring mechanism in our multi-stage model in which 

knowledge of future transition times does not affect the censoring hazard. Specifically, 

letting ,xc (t I .) denote the censoring hazard, we assume that 

where F t is as defined previously. Note that this assumption indicates that the censoring 

hazard, as a function of the history of the external covariates (X~ (t-)) and the history of 

transitions (Ft ), is impacted only by the history of transition times up to just before time t, 

(Ft-). We further assume that the set of internal covariates, X;(t), which are functions 

only of F t , are chosen such that 
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Specifically, we are asserting that the history of the internal covariates (X~ (t- )) fully 

accounts for any impact that the history of transition times (Ft-) may have on the 

censoring hazard. In other words, any information contained in Ft - not contained in 

X~(t-) does not impact the censoring hazard. Define the cumulative hazard of censoring in 

the usual fashion, as N(t I Xi(t)) = J~ ).C(s I Xi(S-) )ds and the product integral of the 

censoring hazard as Ki (t) = TIs:St [1 - dN (s I Xi (s) ) ]. In what follows, we will typically 

write ).Ht) to denote ).C(t I Xi(t-)). A functional form for ).Ht) will be developed in the 

following section. For now, it is sufficient to stipulate that the censoring hazard at time t is 

defined as a function of the covariates (internal and external) up to just before t. 

Marginal Estimators of the Waiting Time Distribution 

For uncensored data, in which the stage entry and exit times are fully observed, one 

could estimate Sj(t) and Aj(t) using the Nelson-Aalen and Kaplan-Meier estimators for 

waiting times. To this end, define the uncensored data counting process for exits from stage 

j as N;(t) = L~=l I[UiJ - ~j ~ t, Xij = 1], and define the corresponding at risk process as 

~*(t) = L~=l I[UiJ - ~j 2: t, Xij = 1]. The uncensored data estimators for the stage j 

waiting time cumulative hazard and survival functions are then 

* rt dN;(s) 
Aj(t) = io ~*(s)' *) II ( dNJ(S)) Sj ( t = 1 - y* () , 

s:St J S 

(2.1) 

where IT denotes the product integral. The estimators in (2.1) cannot be used for censored 

multi-stage data, but establish a useful foundation upon which to base IPCW estimators. 

Estimators for right-censored data could be derived by replacing in (2.1) the uncensored 

data counting processes with their censored data equivalents: 

Nj(t) = L~l I[Uij - ~j ~ t, Oij = 1] and Yj(t) = L~=l I[Uij - Tij 2: t, "iij = 1]. However, as 

noted in Chapter I, the applicability of such estimators generally requires the assumption 

of independent censoring and the semi-Markov property. 

As noted in the previous section, the IPCW estimators of the cumulative hazard and 

survival function for waiting times are derived by replacing the traditional counting 

processes (censored or uncensored) with their weighted equivalents. The Ki(t) defined in 

the previous section serve as our probabilities of censoring, and thus our inverse probability 
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of censoring weights. Define the weighted event and at-risk counting processes as follows: 

Note that we have weighted the censored data counting processes Nj (t) and Yj ( t), since 

weighting the uncensored data counting processes would still require uncensored data and 

be of little practical use. However, the justification for the use of N j and Y j lies in a 

correspondence with the uncensored data counting processes Nj and ~. defined by the 

following theorem. 

Theorem 11.1 Let i be such that E[Ki-2 (i)] < 00 for 1 :S i :S n. Then 

E[Nj(t)] 

E[Yj(t)] 

E[N;(t)], 

E[~·(t)]. 

Before proving Theorem 11.1, we prove a useful technical lemma, that will be used in 

proofs of future theorems as well. The proof of the lemma involves an application of the 

Duhamel equation (cf. Andersen, et al [6], Thm. 11.6.2), and follows the arguments laid out 

in a similar proof by Satten, Datta, and Robins [43] for survival data (as does the proof of 

Theorem ILl). Before proceeding, define 1VNt) = J[Ci :S t, Ci :S ~.] to be the counting 

process of censoring events and MHt) = NiC(t) - I[Ti 2: t]Af(t) to be the associated 

martingale, where Af(t) is the cumulative hazard of censoring as previously defined. Note 

that in defining the censoring event counting process and martingale we have used t to 

denote time, as with the counting processes associated with stage exit. Despite this, it is 

important to distinguish that the stage exit process evolves conditional upon stage entry 

(i.e. after time ~j for individual i) whereas the censoring process evolves in so-called 

"calendar time", after observation begins in the multi-stage system. In other words, the t 

in Nj(t) refers to time t after entry into stage j, whereas the t in NiC(t) refers to time t after 

observation of the multi-stage system begins (at time 0). We will carefully distinguish these 

two time scales (calendar time and time after stage entry) as needed when we layout our 

results. We then have the following: 
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Lemma 11.2 For t ~ Tt, 

I[Ci 2:: t] = 1 _ r~ I[Ci 2:: s] dMns). 
Ki(t-) Jo Ki(S) 

Proof. Note that I[Ci 2:: t] = TIs<t [1 + dXi(s)], where Xi(S) = -I [a; ~ s]. For s < t ~ Tt, 

we have Xi (s) = - I [Ci ~ s, Ci ~ Tt] = - Nic (s ). On the set {Ci 2:: I:*}, we have 

Ki(t-) = TIs<t[l - dX;(s)], where X;(s) = I [Ii 2:: s] AHs). By the Duhamel equation, we 

get 

I[Ci 2:: t] = rt~ I[Ci 2:: s] (dX() dX'()) 
Ki(t-) 1+ Jo Ki(S) ,s + ,s . 

Note that Xi(S) + X;(s) = -NiC(s) + I[T; 2:: s]AHs) = -MiC(s). Hence, 

• 
We make a brief note that this proof also carries through if we replace Ki (t-) by 

some estimator K i ( t- ), with the modification that the right hand side integral is taken 

with respect to dMiC(s), where MiC(s) = Nns) - I[Ti 2:: s]Ai(s) and Ai(t) is the estimator of 

Af(t) generating Ki(t) via the product integral. The quantity MiC(s) also does not define a 

martingale, but will be useful in later results. Note also that the proof of Lemma II.2 made 

no assumption of the relationship between the censoring times Ci and the transition times 

Tij , (i.e.) neither the assumption of independent censoring nor the semi-Markov property 

were required. Lemma II.2 will be used repeatedly in several later proofs. 

Proof of Theorem II. 1. To prove the first equality, note that Uij satisfies the conditions of 

Lemma II.2, i.e. Ui} ~ I:*. Hence, 

Multiplying both sides by I[Ui} - I:j ~ t] produces 

I[Ui} - I:j ~ t, Ci 2:: Ui}] = I[U*. _ T*. < t] _ rU;j- f[Ui} - I:j :; t] dMC( ) 
Ki(Uij-) 'J 'J - Jo Ki(S) , S , 

where the I [Ci 2:: s] term in the integrand on the right hand side can be removed since the 

martingale Mns) vanishes for Ci < s. On the left hand side, the indicator function in the 
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numerator is equivalent to f[Uij - T;j S; t, Ci 2: Ui]]. Further, on the set {Ci 2: Ui]}' we 

have that Ki(Ui]-) = Ki(Uij -) and trivially on the right hand side, f[Ui] - T;j S; t] = 

I[Ui] - T;j S; t, Xij = 1:. Hence, we have 

N .(t) = N*.(t) _ rU;j- I[Ui] - T;j S; t] dMC ( ) 

'J 'J io Ki (s) , S • 

We note that f[Ui] - T;j S; tJlKi(s) is Fs-predictable, and hence the integral on the right 

hand side is a zero-mean martingale (since MiC(s) is). The first equality follows by taking 

the expectation of both sides, under the stated moment condition on Ki(S). 

The proof of the second equality follows similarly, by noting that on the set 

{Ui} - T;j 2: t}, T;j + t satisfies for the conditions of Lemma I.1 so that 

(For times after Ui}' both r:;(t) and Yij(t) are zero.) Multiplying both sides by 

f[Ui] - T;j 2: t] produces 

f[U*' - T* > t. Ci > T* + t] 1T;j+t- f[U*'. - T*· > t] 
'J 'J -, - 'J = f[U*'. _ T* > t] _ 'J 'J - dMC() 

Ki(T;j + t-) 'J 'J - 0 Ki(S) , S . 

The numerator on the left hand side is equivalent to I[Uij - T;j 2: t, Ci 2: T;j], and on the 

set {Ci 2: T;j}, we have that Ki(Tij + t-) = Ki(T;j + t-) and we trivially have that 

f[Ui} - T;j 2: t] = f[Ui]- T;j 2: t,Xij = 1]. Hence, we have that 

1TtJ+t flU'!'. - T*· > tJ 
Y .. (t) = Y*'(t) - 'J 'J - dM~() 

'J 'J 0 Ki (s ) , S . 

Again, the result follows by noting that f[Ui] - T;j 2: t]/Ki (s) is Fs-predictable, the right 

hand side integral is a zero mean martingale, and taking expectations. 

The large sample equivalence of the uncensored data and IPCW counting processes 

indicates that inference based on the IPCW processes will be asymptotically equivalent to 

inference based on the uncensored data processes, a clearly desirable property. In essence, 

N j and Y j "estimate" the uncensored data counting processes N; and ~*., which are 

unobservable when right-censoring is present. However, the reweighted counting processes 
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N j and Y j are of little practical use since they are based upon the quantity Ki(t) which is 

typically unknown. The application of the IPCW counting processes requires an estimator 

for Ki(t). In introducing IPCW, Robins and Rotnitsky [39, 40] used the well-known Cox 

proportional hazards model [9]. Datta and Satten [12] suggested the use of Aalen's linear 

model [2, 3, 4] for the added flexibility of time-varying model coefficients, and we adopt its 

usage here. We briefly note that in suggesting the use of Aalen's linear model, Datta and 

Satten argue that the potential negative side effects of its use (regression matrices with less 

than full column rank and negative estimates of the hazard function) do not impact the 

estimation of the cumulative hazard or survival function for stage waiting times [12,43,44]. 

We now define Aalen's linear model for the censoring hazard in our current 

framework: Af(t) = ,88(t) + l.:~=l ,8;,,(t)Xim(t) , where the ,8;,,(t) are the coefficient functions 

and m indexes both internal and external covariates. Note, in particular, that both the 

regression coefficients ,8;" (t) and covariates X im (t) are time-varying functions rather than 

static values, the source of the unique flexibility of Aalen's model. Define the integrated 

regression coefficients B;,,(t) = J~ ,8;" (s)ds, 0 :::; m :::; p. Aalen's linear model estimates the 

functions BC(t) = (B8(t), .. . ,B~(t)) by 

n 

BC(t) = L J(T; :::; t)(1 - bi)A -l(T;)Xi(Ti), 
i=l 

where bi = J[~* < Gi] and A(t) = l.:~=l J(Ti 2 t)Xi(t)X[(t). Note that we have defined the 

estimator BC(t) in terms of a specific generalized inverse for A(t), namely A -l(t)Xi(i) 

which arises from the least squares principle, and that any generalized inverse of A(t) will 

suffice. We are now able to estimate the censoring hazard and our inverse probability of 

censoring weights, Ai(t) = J~ X[(s)dBC(s) and Ki(t) = TISSt(1- dAi(s)). 

We now define the counting processes Nj(t) = J[Uij - T;j :::; t, bij = Il/Kij(t) and 

Yj(t) = J[Uij - T;j 2 t, "tij = 1l/ Kij(t), which are completely functions of the observable 

data. The Satten and Datta [44] estimators for the cumulative hazard and survival 

functions for stage j waiting times are then 

(2.2) 

As indicated above, the IPCW estimators are simple analogues of the uncensored data 

estimators in (2.1), with the uncensored data counting processes replaced by their IPCW 
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equivalents. These estimators, as functions of the IPCW counting processes, are calculable 

of the observable data. The consistency of these estimators for Aj(t) and Sj(t) is 

established in the following theorem. 

Theorem 11.3 Let T be such that T > T; for all i. Let t be such that E[Ki- 2(t)J < CXl for 

1 ::; i ::; n and assume that for all T < T, SUPtST n- l L?=l IKi(t) - Ki(t)1 ~ o. Then 

Proofs of this theorem (and similar versions for survival data) can be found in the 

literature [11, 42, 43], and are not repeated here. We do note that the proofs are invariant 

to the method of estimation of Ki(t) and when Aalen's linear model is used, invariant to 

the type of gellemli:t;eu invertie of the matrix A(t) selected. These choices do playa role in 

defining the asymptotic distribution of Aj(t), as will be seen below. 

The proof of the consistency of Aj (t) and 5j (t) rests on a martingale representation 

for Aj(t) developed by Satten and Datta [44], which we establish in the following lemma. 

Lemma II.4 Let J;(t) = I[Yj*(t) > OJ. For Aj(t) defined in (2.2), 

rt J;(s) dM*(s) + 
10 Yj*(s) J 

10
00 

(;(s, t) [1 - X(s)A -1(S)XT(s)] dMC(s) + op(n- I/2
), 

(2.3) 

where 

_ [ I[TI > sJ ·Xf(s) ) 
X(s) = : , 

I[Tn > sJ . XJ(s) 
[ 

Ml(s) ) 
MC(s) = : , 

M~(s) 

<Pj ( I[s - t < T;jJ I[s - t < T;jJ 

nKi(S) Sj (t /\ (Utj - T;j)) - Sj ((0 V (s - Tij)) /\ (Uij - T;j)) 

'J' 'J 'J -I [s < U*· W· - T* < tJ) 
(2.4) 

and <Pj = P[Xij = 1J. 
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The proof of Lemma Il.4 is long and fairly technical, and we defer it to the Appendix. We 

note that this expression corrects errors in the limits of integration in the second integral of 

(2.3) and in the definition of (ij(5; t) in (2.4) defined by Satten and Datta [44]. 

The martingale representation (2.3) provides an avenue for deriving the asymptotic 

distribution of Xj(t) and Sj(t) via the martingale central limit theorem (cf. Andersen, et al 

[6], Thm. 11.5.1). As our focus is on K-sample test statistics and nonparametric regression 

coefficient estimators, we do not further explore the asymptotic properties of Xj(t) and 

Sj(t). We do, however, remark that (II.4) is the sum of two martingales which are 

orthogonal with respect to the filtration generated by the observed data, 

O'(Ft, Xi, 1 ::; i ::; n): 

1. a martingale derived as the stochastic integral of a predictable process with respect to 

the waiting time martingale ~ M;(t), 

2. a martingale derived as the stochastic integral of a predictable process with respect to 

the vector-valued censoring hazard martingale ~ MC(t). 

The orthogonality of these martingales is important ~ the asymptotic properties of Xj 

consequently can be derived from those of the two component martingales with no 

consideration of their covariance. This martingale representation will be revisited in 

defining the asymptotic properties of our K -sample test statistics and non parametric 

regression estimators for waiting times in the following chapters. 
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CHAPTER III 

NONPARAMETRIC K-GROUP HYPOTHESIS TESTING 

We now turn our attention to the comparison of stage j waiting time distributions 

among K groups of individuals. The null hypothesis is simply stated, Ho : Alj = ... = AKj , 

where Ahj denotes the stage j cumulative hazard function for group h. We note that Ho is 

equivalent to hypothesizing the equivalence of the K waiting time distributions, given that 

we have assumed continuous waiting time distributions and the functional equivalence 

Ahj(t) = -log Shj(t). Many well-known test statistics for survival data, including the 

log-rank test and the more general class of Fleming-Harrington [16] tests, can be derived as 

the weighted accumulation of differences between estimates of the K group-specific 

cumulative hazards and the overall cumulative hazard [6]. We develop our waiting time 

test statistics analogously. As with the Satten and Datta [44] cumulative hazard and 

survival function estimators for waiting times described in the previous chapter, we proceed 

by introducing test statistics for uncensored waiting time data (adapted from test statistics 

for survival data) and then replacing the uncensored data counting process composing 

these statistics with their IPCW counterparts. 

We begin the chapter with a brief exposition of the extension of our notation and 

the affirmation of the results from the previous chapter to the K -sample setting. We then 

introduce test statistics for uncensored waiting time data as described by Andersen, et al [6] 

for survival data. We then derive our IPCW test statistics and establish their asymptotic 

normality and then proceed to an exploration of their empirical size and power via 

simulation studies for waiting time data. In the validation portion of our simulation study, 

we assess the properties of our test while noting the inadequacy of traditional survival data 

test statistics under violations of the semi-Markov property. In the comparison portion of 

our simulation study, we compare the power of our test with a Mann-Whitney type test for 

waiting times [15] for proportional hazards alternatives, for which the log rank test for 

survival data is most powerful. We conclude the chapter by illustrating the use of our test 

statistics with an analysis of a data set of 154 burn patients [23]. 
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Expansion of Notation 

In general, we will prefix the subscript h (1 ::; h ::; K) to subscripts i, j, and ij to 

denote group membership. The index i for individuals consequently ranges from 1 to nh, 

where nh denotes the number of individuals in group h, and 2:h nh = n. The stage index j 

is unaffected. We summarize the notational expansion in the following list. 

• The uncensored data quantities Thij , Uhij , Thi , and X hi and the censoring times Chi 

are now indexed for subject i in group h, and are otherwise defined identically as 

before. 

• The censored data quantities Thij , Uhij , Thi , 'Yhij, and bhij and the covariate vectors 

X hi and histories X hi are now indexed for subject i in group h, and are otherwise 

defined identically as before. The history of transition times Ft is pooled over the K 

groups and remains unchanged. 

• All counting processes - Nhj(t), Nhj(t), N hj, Nhj , Yhj(t) , Yhj(t) , Y hj, and Yhj - are now 

indexed for group h and are otherwise defined identically as before. These counting 

processes pooled over the K groups will be denoted as 

Nj( t) = 2:h Nhj ( t), N.j(t) = 2:h Nhj(t) , etc. 

• The cumulative hazard and survival functions Ahj(t) and Shj(t) are now indexed for 

group h, as are their uncensored data estimators A;'j(t) and Shit) and IPCW 

estimators Ahj(t) and Shj(t). The estimators are defined in terms of the group 

specific counting processes, but are otherwise defined identically as before. The 

corresponding quantities pooled over the K groups are denoted A-j(t), B.j(t), Nit), 

B.j(t), A-j(t), and 5.j(t), with the estimators defined in terms of the pooled counting 

processes, (e.g.) A;'j(t) = J~ dNhj(s)/Yhj(s). 

• The censoring hazard Ahi(t) and corresponding product integral Khi(t) are now 

indexed for subject i in group h, and are otherwise defined identically as before, as 

are the counting processes for censoring events N~i(t) and the associated martingale 

• Aalen's linear model is defined as Ahi(t) = J3o(t) + 2:~=1 J3~(t)Xhim(t) for individual i 

in group h. The integrated coefficient vector BC(t) is estimated by 

:8C (t) = 2:-;;=1 2:~~1 J(Thi ::; t)(l - bhi)A -1 (Thi)Xhi(nd. The cumulative hazard of 
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censoring and product integral estimators are AhJt) = J~ XIi(s)dBC(s) and 

Khi(t) = f1s$t(1- dAhi(s)), analogous to the I-sample setting with the added 

subscripts h. Note that BC(t) is pooled over the K groups; group-specific estimates 

can be obtained by explicitly including a K - 1 vector of covariates indicating group 

status . 

• Group-specific versions of Theorem 11.1, Lemma 11.2, Theorem 11.3, and Lemma II.4 

hold with proofs identical to the one-sample setting. In Lemma 11.4, the matrix X(s) 

and the vector MC(s) are ordered lexicographically, as is the modified vector (f(s, t), 

as follows: 

( I[Tll > S]Xfl(S) \ ( Mrl (s) \ { ({L(s, t) \ 

I[TIllI > S]XfllI (s) MInI (s) ([;Jj(s, t) 

X(s) = , MC(s) = , (f(s,t) = 

I[TKI > S]Xkl(S) M.b(s) (§lj(S, t) 

I[TKllK > S]XkllK(S) M'knK(s) (§nKj(s, t) 

where the functions (!Sj(s, t) are modifications of the functions (ij(S, t) as defined in (2.4): 

x I 1[ - t - m* 1 '1!hj I ::; - <-- -1 hijJ 

nhKhi(S) \Shj(tl\(Uhij-Thij)) 

l[s - t < Thij] 1[s < Uhij , Uhij - Thij :::; t]) 
Shj ((0 V (s - Thij )) 1\ (Uhij - Thij )) - Shj(Uhij - Thij ) , 

where iphj = P[Xhij = 1] denotes the probability of an individual in group h ever reaching 

stage j. Note that the superscript K in (f(s,t) is not an index, rather meant to denote the 

K-sample version the function (j(s, t) defined in (2.4). Further, we extend the martingale 

representation of Aj(t) in (2.3) to the K-sample setting as follows: 

(3.1) 
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We preserve our notational conventions with respect to the quantities and functions of 

interest. Uncensored data quantities (entry and exit times) are marked with asterisks and 

censored data quantities are not marked. Censored data functions (counting processes, 

covariate functions) are marked with asterisks, censored data functions are unmarked, and 

weighted functions (counting processes, estimators) are hatted. With this K -sample 

notation and group-specific results from Chapter II, we now proceed to developing our 

waiting time test statistics. 

Waiting Time Test Statistics for K Groups 

In order to develop our test statistics as weighted accumulations of differences 

between the group-specific and pooled cumulative hazard estimates, we define the 

stochastic weight processes Whj(t), 1 :S h :S K. As in Andersen, et al [6], we constrain 

attention to weight processes of the form Whj(t) = Wj*(t)Yh'j(t), where Wj*(t) is a 

non-negative, locally bounded, predictable function depending only on the pair 

(Nj (t), Y; (t)). This general formulation covers many test statistics for survival data, 

including the log-rank and Fleming-Harrington class of tests, although more general weight 

processes are permitted. 

To test Ho : Alj = ... = AKj for uncensored waiting times, we define the test 

statistics 

The integral in (3.2) accumulates the differences between the estimated group-specific 

cumulative hazard, Ahj(t) = J~dNhj(s)/Yh'j(s), and the pooled cumulative hazard, 

(3.2) 

A":j (t) = J~ dNj (s ) / Y; (s), weighted by Wj* (s ) Yh'j (s ). The statistics Z;'j (t) present a 

reasonable test of Ho at face - large deviations of group-specific cumulative hazards from 

the pooled cumulative hazards produce large values of Z;'j(t) and provide evidence against 

Ho. The weight process provides some flexibility in tailoring Zhit) to a given data set or a 

priori suspicion about the nature of the difference in hazard between groups. For example, 

weight processes can be defined that more heavily weight early differences in the 

cumulative hazard functions. 

Plugging in the Nelson-Aalen estimators Ahj and A":j into (3.2) produces 
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Under the null hypothesis, A'h,j = Aj, so we can add zero in the form of dAj(s) - dA'h,j(s) 

to get 

where M'; = 2:\ Mhj and b.. h1 denotes the Kronecker delta. Based on this martingale 

representation, the predictable covariation process of the Zh,j(t) is 

The expectation of (3.3) provides the covariance of the Z"j(t) and Zk/t), which can be 

estimated by 

(3.4) 

Tests of Ho can be based upon the quadratic form Z;(t)T'Ej-(t)Z;(t), where the vector 

Z;(t) = (Z~j(t), ... , ZKj(t)), 'E;(t) is the matrix with (h, k)ih element defined by (3.4), and 

'E;- (t) is a generalized inverse of 'E; (t). Under mild conditions (see Andersen, et al [6]), 

E;(t) has rank K - 1 and an alternative but equivalent quadratic form can be constructed 

as ZOj(t)T'Eojl(t)ZOj(t), where ZOj(t) is Z;(t) with a single element removed and 'EOj(t) is 

'E;(t) with the corresponding row and column removed. Under mild regularity conditions, 

Z;(t) converges weakly to a normal limit (d. Andersen, et al [6], Thm. V.2.1), so that 

either of the above quadratic forms follows the X2 distribution, providing critical values for 

the test statistic. 

Clearly, Z;(t) is of little use for right-censored multi-stage data being based on 

uncensored data quantities. Further, test statistics based on unweighted, censored data 

counting processes would require independent censoring and the semi-Markov property to 

be valid. Hence, we propose testing Ho with IPCW versions of (3.2) where, as with the 

Satten and Datta [44] estimators described in Chapter II, we replace uncensored data 

quantities with their IPCW counterparts. We can then define IPCW K -sample test 

22 



statistics for waiting times in a multi-stage model as, 

(3.5) 

where Ahj(t) and A.j(t) are as defined in (2.2) in Chapter II. Note that we have redefined 

the weight process Wj(S)Yhj(S) in terms of the IPCW counting process Yhj(s), where Wj(s) 

remains a non-negative, locally bounded, predictable function but now depends on the 

IPCW pair (Nj(t), Yj(t)). We will generally focus on the log-rank weight process 

Wj(s) = ~(s) = I[~(s) > 0]. In particular, we will use this weight process in our 

simulation study of Zhj(t). The formulation of Zhj(t) in (3.5) can alternatively be 

expressed as 

We note that this formulation highlights that Zhj(t) also accumulates differences between 

what is observed for group h and what is expected. Temporarily ignoring the weights 

Wj(t), the first term merely counts the group h exits from stage j, while the second term 

counts exits from stage j for all groups weighted by the IPCW-estimated proportion of 

subjects in group h - Yhj(s)/Yj(s). 

Asymptotic Properties of the Test Statistic 

The use of Z hj ( t) in testing requires derivation of the asymptotic distri bu tion of the 

vector Zj(t) = (Zlj(t), ... , ZKj(t). We begin by deriving a martingale representation for 

the Zhj(t) which follows from the representation for Ahj(t) in (3.1). Under the null 

hypothesis, note that Ahj = A-j, and hence for 1 ::::; h ::::; K, 

Substituting in the martingale representations for Ahj(t) - Ahj(t) and A.j(t) - A.j(t) gives 

~ rt - ~ Jhj(s) * rt - ~ 1.;(s) * 
Zhj(t) = io Wj(S)Yhj(S)Yhj(S) c1Mhj (s) - io Wj(s)Yhj(s)Yj(s) c1M-j(s)-

, foOO{fot Wj (U)Yhj (u)(f (s, du)T} [I - X(s)A -l(S)XT(s)] dMC(s) + 

foOO{fot Wj(u)Yhj(u)(j(s, du)T} [I - X(s)A -l(S)XT(S)] dMC(s) + op(n-1/
2

). (3.6) 
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Note that the first and third terms of (3.6) are the martingale expression for Ahj(t) and the 

second and fourth terms for Aj(t). By exploiting the asymptotic equivalence of Yj*(t) and 

Yj(t) (noted in the proof of Lemma 11.4) and noting that M.; = Lh Mhj , we can further 

simplify (3.6): 

(3.7) 

where ".,f (s, t) is defined by 

As with the expansion of Ahj(t), the martingale representation for Zhj(t) is the sum 

of two martingales, one associated with the stage j exit counting process (Mhj(t)) and one 

with the counting process of censoring events (MC(t)). Further, the martingales are 

orthogonal with respect to the filtration of the observed data. Hence, the asymptotic 

properties of the K-vector of test statistics Zj(t) can be derived from the asymptotic 

properties of the two component martingales via the martingale central limit theorem, and 

covariance considerations can be ignored. It is also noteworthy that the the first term of 

(3.7) directly corresponds to the uncensored data K-group test statistic in (3.2), for which 

conditions required for asymptotic normality are well-defined [6]. 

An immediate consequence of the orthogonality of the two martingales in (3.7) is 

that the predictable covariation process (cf. Eq. 2.3.7, [6]) of two components of Zj(t), say 

Zhj(t) and Zkj(t), can be defined as the sum of the predictable covariation processes of the 

component terms of (3.7). Specifically, 

{t -2 * ( Yki(S)) 
10 Wj (S)Yhj(S) ~hk - Yj(s) Aj(s)ds + 

10
00 

".,f(S,t)T [1-X(s)A-l(S)XT(S)] X 1,),(s) x 

[I - X(s)A -l(S)XT(s)] ".,f (s, t)ds + op(n-1
/

2
), (3.8) 

where 1>.(s) is the matrix diag{I[Tn ~ s]Afl (s), . .. ,I[TKnK ~ S]AKnK(s)}. The asymptotic 

covariance of Zhj(t) and Zkj(t) is then the in-probability limit of (3.8). Let (T~k(t) denote 
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the in-probability limit of the predictable covariation process (3.8) and define the matrix 

:Ej(t) = {O"hk(t)}. Other than establishing a limiting variance for Zj(t), this expression is of 

little practical use as it based upon the uncensored data counting processes Y,;'j(t) and 

Y;(t), the population quantities AAs) and Ahi(S), and ([(s, t), which is constructed from 

the uncensored entry and exit times Thij and Uhij and the population quantities Shj(t) and 

<'Phj . We can estimate (3.8) by the optional covariation process (cf. Eq. 2.3.8, [6]) of Zhj(t) 

and Zkj(t) as follows: 

lot Wf(s) ~j(s) (jj.hk _ ~j(S)) dNj(s) + 
o Yj(s) Yj(s) 

10
00 

i]f (s, t)T [I - X(s)A -l(S)XT(s)] x IN(S) x 

rl - X(s)A -1 (s )XT (s) 1 i]f (s, t), (3.9) 
L ~ -

where i]J(s,t) = JJWj(u)Yhj(u) (([(s,du) - (j(s,du)), IN(S) denotes the diagonal matrix 

diag{dNf1(S), ... , dNKnK(S)}, and the components of ([(s, t) are 

(3.10) 

Note also that (/5/s, t) = :'4.,:: (hij(S, t) to complete the definition of the optional variation 

process (3.9). In (3.10), Shj(t) represents the Satten-Datta estimator and the estimator 1>hj 

can be calculated using the method of Datta and Satten [11]. Denote the optional variation 

process in (3.9) by iThk(t) and define the matrix :Ej(t) = {iThk(t)}. 

Given the variance expressions (3.8) and (3.9) and that Zj(t) is a martingale, being 

the sum of two orthogonal martingales, we can assert the asymptotic normality of Zj(t) by 

imposing the conditions of Rebelledo's martingale central limit theorem. We note that the 

two assumptions required for a martingale to be asymptotically normal (c.f. Thm. II.5.1, 

[6]) are that (1) either its predictable or optional covariation process converges in 

probability to a continuous, deterministic, positive semi-definite limit with positive 

semi-definite increments in time, and (2) the Lindeberg condition, that its "path" in time 

approaches a continuous limit. The following theorem establishes our main result for the 

test statistic Zj (t). 
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Theorem 111.1 Under Ho : Alj = ... = AKj and suitable regularity conditions, 

Jrizj(t) ~ U(t), 

as n --+ 00 where U (t) = (Ul (t), ... , UK (t)) is a Gaussian martingale with covariance 

matrix bj(t) = {O"hk(t)}. 

The definition of the regularity conditions stated in theorem and the proof of the 

theorem are deferred to the Appendix. As a consequence of this result and similarly to the 

uncensored data test statistic, we can establish a K-group test of Ho by calculating the X2 

statistic Zj(t)f:j(t)Zj(t), where f:j(t) is a generalized inverse of f:(t). Again, under mild 

conditions (see, e.g., [6]), this statistic will have rank K - 1, and tests of Ho can 

aiternatively be based upon the chi-square statistic ZOj(t)f:ol(t)ZOj(t), where ZOj(t) is 

Zj(t) with a single row removed, f:o(t) is f:(t) with the corresponding row and column 

removed, and f:ol(t) is an ordinary inverse of f:o(t). We demonstrate the use of this 

chi-square statistic in the following sections. 

Simulation Study - Validation 

In this section, we present the results of a simple simulation study that examined 

the size and power of our proposed test statistic. We compared the size and power of the 

log-rank version of Zj(t), for which Wj(t) = 1;(t) = I[Yj(t) > 0], to that of the log-rank 

test statistic for survival data adapted to stage j waiting times, defined as the vector 

Zj(t) = (Zlj(t) , ... , ZKj(t))T. The components of Zj(t) are defined in terms of the 

censored, unweighted counting processes Yhj(t) and Nhj(t) defined in Chapter II as 

Zhj(t) = Nh;(t) - J~Yhj(s)/Yj(s)dN.j(s). We considered a three-stage tracking model, in 

which individuals entered root stage 0 at time 0 and then progressed through transient 

stage 1 on to absorbing stage 2 or were censored, and analyzed stage 1 waiting times. The 

power of Zl(t) and Zl(t) were calculated as the observed proportion of 10,000 Monte Carlo 

replications in which the null hypothesis of the equality of stage 1 waiting time 

distributions was rejected. Rejection was defined as the test statistic ZOj(t)f:ol(t)ZOj(t) 

exceeding 95th percentile of the xi distribution, where ZOj(t) and f:ol(t) were as defined in 

the previous section. For computational convenience, bootstrap resampling [14] at 250 

loops was used to calculate the standard error of our test statistic, as the covariance 
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estimator (3.8) is computationally intensive, requiring in particular the double integration 

of the bivariate function flf (s, t). We considered per-group sample sizes of 50, 100, and 250 

for two designs under which we altered parameters governing the bivariate distribution of 

stage 0 and 1 waiting times as follows. 

1. Correlated lognormal stage 0 and 1 waiting times. Let (Wo, WI) denote the bivariate 

pair of stage 0 and 1 waiting times. We simulated (log(Wo) , 10g(Wd) as a bivariate 

normal pair, with mean vector (1,1) in group 1 and (1,11) in group 2, where 11 varied 

from 1 to 2.5 to cover the null (11 = 1) and alternative (11 > 1) hypotheses. Marginal 

variances were set equal to I, and the correlation between 10g(Wo) and 10g(Wt) was 

set equal to p, where p took values -0.5, 0, and 0.5. The bivariate pair was then 

exponentiated to produce lognormal waiting times. We crossed the three possible 

correlation values between the two groups, for a total of nine variants of this design. 

2. Markov chain with gamma-distributed waiting times. We simulated Stage 0 waiting 

times from the gamma distribution with shape parameter 2 and scale parameter 1 or 

2, different in each group so that one group experienced longer waits (scale = 2) in 

stage O. We generated stage 1 waiting times that were positively and negatively 

associated with stage 0 waiting times through the equations 

(3.11) 

where Wo represents the waiting time for stage 0, Fr the gamma distribution function 

with group-appropriate shape and scale parameters, U a uniform (0,1) random 

variable, and Pi l the gamma quantile function. In group I, this quantile function 

had shape parameter 2 and scale parameter 1. In group 2, the shape parameter for 

the quantile function ranged from 2 to 3.5, to cover the null (shape = 2) and 

alternative (shape> 2) hypotheses, and the scale parameter was 1. We crossed the 

three design parameters - direction of group 1 association (+ / - ), direction of group 

2 association (+ / - ), stage 0 gamma scale parameter (lor 2) - to produce 8 variants 

of this design. We note that the approximate rank correlations between stage 0 and 

stage 1 waiting times under design 2 were ± 0.67, depending on the direction of the 

correlation induced by the formulas in (3.11). 
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Table 1 

Censoring rates for test statistic simulations under the null hypothesis 

Waiting Time Distributions Censoring Rates (%) 
Design Stage 0 Stage 1 Correlation Stage 0 Stage 1 Never 
1 10g-N(1, 1) 10g-N(1, 1) -0.5 39 39 22 

0 39 33 28 
0.5 39 28 33 

2 r(2, 1) r(2, 1) + 18 13 69 
18 13 69 

r(2, 2) + 42 10 48 
42 14 44 

For each design, censoring times were generat.ecl from the Weibull distribution with 

shape parameter 2 and scale parameter 5, independent of stage waiting times. 

Consequently, to estimate Khi(t) and construct the weighted counting processes Nhj(t) and 

Yhj(t), we applied Aalen's linear model with a single time-invariant covariate denoting 

group status, for which Khi(t) is the Kaplan-Meier estimator within each group. We 

selected independent censoring so that are simulations modeled a problem unique to 

multi-stage models, (i.e.) the data generated satisfy the independent censoring assumption 

but do not have the semi-Markov property. Table 1 provides the censoring rates for 

different combinations of the design parameters for designs 1 and 2. Note that in variants 

1-4 of design 2, stage 0 waiting times from group 2 were longer (generated from the r(2, 2) 

distribution) than waiting times from group 1 (generated from the r(2, 1) distribution), 

and vice versa for variants 5-8. 

The empirical size of our test statistic is compared to that of the naive log-rank test 

in Table 2. Note that given 10,000 iterations per estimated empirical size, the standard 

error for each calculated empirical size was no more than 0.005. For size estimates near the 

nominal 5% level, the standard error was approximately 0.002. Our test exhibited size close 

to the nominal size of 0.05, while the naive log-rank test exhibited inflated size under all 

variants of each design. The departure from the nominal size of 0.05 for the naive log-rank 

test was smallest in variants of design 1 in which the correlation between stage 0 and 1 

waiting times was equal in the two groups (variants 1, 5, and 9) for N = 100. The 

empirical size of the naive log-rank test increased with sample size for all variants of both 

designs, and in particular for variants 1, 5, and 9 of design 1, under which the empirical 
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Table 2 

Empirical size estimates of IPCW test and naive log-rank test at nominal 5% level 

Design- Waiting Time Corr. Zl (t) Zl (t) 
Variant Group 1 Group 2 N = 100 200 500 N = 100 200 500 
1-1 -0.5 -0.5 0.049 0.048 0.048 0.064 0.080 0.106 
1-2 0.0 0.052 0.049 0.052 0.193 0.332 0.649 
1-3 0.5 0.049 0.049 0.051 0.449 0.717 0.980 

1-4 0.0 -0.5 0.049 0.048 0.048 0.093 0.142 0.284 
1-5 0.0 0.051 0.050 0.048 0.057 0.056 0.059 
1-6 0.5 0.050 0.051 0.052 0.145 0.224 0.490 

1-7 0.5 -0.5 0.050 0.049 0.050 0.312 0.574 0.932 
1-8 0.0 0.052 0.050 0.051 0.116 0.189 0.412 
1-9 0.5 0.048 0.049 0.052 0.053 0.051 0.054 

2-1 0.049 0.050 0.050 0.126 0.196 0.428 
2-2 + 0.049 0.051 0.050 0.551 0.849 0.997 
2-3 + 0.049 0.049 0.049 0.663 0.917 0.999 
2-4 + + 0.052 0.050 0.049 0.185 0.312 0.644 

2-5 0.050 0.050 0.052 0.120 0.202 0.427 
2-6 + 0.052 0.050 0.048 0.658 0.920 0.999 
2-7 + 0.050 0.050 0.048 0.556 0.850 0.996 
2-8 + + 0.051 0.050 0.049 0.187 0.318 0.644 

size of Zl(t) was near 0.05 for N = 100. Further, as the between-group disparity in the 

correlation between stage 0 and 1 waiting times increased, the size of Zl(t) further inflated. 

Figure 1 provides power curves for our test under design 1 of the simulation study. 

We noted that the power of our test statistic increased both with sample size and with the 

magnitude of the marginal difference between stage 1 waiting times. We consider variant 5 

of design 1 as a reference case, in which waiting times were uncorrelated for both groups. 

Variant 3, in which waiting times were positively correlated in group 2 and negatively 

correlated in group 1, exhibited reduced power relative to variant 5. This was a reasonable 

phenomenon. Under variant 3, longer waits in stage 1 were associated with longer waits in 

stage 0 in group 2. Hence, those in group 2 with long waits in stage 1, (i.e.) those 

providing evidence against the null hypothesis, were more likely to be censored. Conversely, 

longer waits in stage 1 were associated with shorter waits in stage 0, so those in group 1 

with long waits in stage 1, (i.e.) those providing evidence for the null hypothesis, were less 

likely to be censored. The converse was true for variant 7, which exhibited greater power 
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Figure 1. Empirical power of Zl for 9 variants of simulation design 1 
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than the reference case. Individuals in group 2 with long stage 1 waiting had shorter stage 

o waiting times and were consequently less likely to be censored (more evidence against the 

null), while individuals in group 1 with long stage 1 waiting times were more likely to be 

censored (less evidence for the null). In general, when correlations between stage 0 and 

stage 1 waiting times induced censoring that provided additional evidence against the null, 

(i.e.) when observations in support of the alternative were more likely to be fully observed, 

the power of Zl increased relative to the reference case. When stage 0 and stage 1 waiting 

time correlations left observations in support of the null were more likely to be full 

observed, power decreased relative to the reference case. Therefore, we concluded that 

while our IPCW test statistic maintained appropriate size under variants of design 1, it was 
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Figure 2. Empirical power of Zl for 8 variants of simulation design 2 
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not completely immune to dependent censoring patterns, as empirical power varied as a 

function of the waiting time correlation. 

The power of Zl under design 2 was more complexly related to the simulation design 

parameters (Figure 2), although we again noted that the power of our test increased with 

sample size and the marginal difference between stage 1 waiting times between groups. The 

dominating factor in determining the power of the test was the direction of the correlation 

between stage 0 and stage 1 waiting times in the group with longer stage 0 waiting times. 

When stage 0 waiting times were greater in group 2 (variants 1-4), negative correlation 

between stage 0 and stage 1 waiting times in group 2 led to higher power (variants 1 and 

2). Alternatively, when stage 0 waiting times in group 1 were longer (variants 5-8), positive 
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correlation between stage 0 and 1 waiting times in group 1 led to higher power (variants 6 

and 8). Further, the power curves for these four variants (1, 2, 6, and 8) were quite similar, 

indicating that other design parameters were of lesser importance. Variants 3, 4, 5, and 7, 

exhibited reduced power relative to the other four, and had power curves that were similar 

(among themselves). 

The importance of the stage 0 waiting times in determining power under design 2 

was not unexpected. Because censoring evolves in calendar time, longer waits prior to entry 

in stage 1 increase the likelihood of censoring prior to entry into or exit from stage 1 and 

heavier censoring tends to reduce power. Hence, any design parameter that exerted direct 

influence over the censoring rate, such as the stage 0 waiting times, would be expected to 

affect the power. The waiting time correlation, therefore, had a greater impact on power 

when it was altered for the group experiencing longer stage 0 waiting times. For 

simulations in which group 2 exhibited longer stage 0 waits, power was greatest when 

group 2 individuals with long stage 1 waits (supporting the alternative hypothesis) were 

least likely to be censored. This occurred when long stage 1 waits were associated with 

short stage 0 waits, (i.e.) when there were negative correlations as in variants 1 and 2. The 

correlation between waiting times in group 1 did not dramatically affect power since stage 

o waiting times were much less than those for group 2. Conversely, simulations in which 

group 1 exhibited longer stage 0 waits had greater power when group 1 individuals with 

long stage 1 waits (supporting the nUll) were most likely to be censored. This occurred 

when long stage 1 waits were associated with long stage 0 waits, (i.e.) when there were 

positive correlations as in variants 6 and 8. 

Figures 3 and 4 provide comparisons of our test to the naive log-rank test under 

both designs with total sample size N = 500, and illustrate the general inappropriateness of 

the naive log-rank test for multi-stage data. Only for variants 1, 5, and 9 of design 1 were 

the power curves for the naive log-rank test sensible - power increased with the difference 

in marginal stage 1 waiting times, exhibited greater power than our test, and only slightly 

over-inflated in size. For variants 2, 3, and 6 of design 1, in which the group 2 waiting time 

correlation was strictly greater than the group 1 waiting time correlation, power was a 

non-monotonic function of the difference in marginal waiting times between groups - note 

that the power curves achieve minima away from the null hypothesis (1.0 on the plots). For 

variants 4, 7, and 8 of design 1, in which the group 2 waiting time correlation was strictly 

smaller than the group 1 waiting time correlation, the power curves were monotonic 
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Figure 3. Power comparison of Zl and Zl for design 1 at N = 500 

Design 1, N=500 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 1.5 2.0 2.5 

Variant 4 VariantS Variant 6 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 1.5 2.0 2.5 1.0 1.5 2.0 

Stage 1 Group 2 Log Mean 

2.5 

1.0 

0.8 

0.6 

0.4 

0.2 

functions of the difference in marginal waiting times between groups but exhibited greatly 

inflated size. For design 2, the naive log-rank test exhibited non-monotonically increasing 

power for variants 3, 4, 5, and 7 - the same variants under which our test exhibited 

reduced power. Variants I, 2, 6, and 8, fo which our test showed greater power, exhibited 

grossly inflated size. 

From these simulations we can provisionally conclude that our test statistic Zl is an 

appropriate K-sample test for waiting times in a multi-stage model, and that the log-rank 

test for survival data is not an appropriate test of waiting times from a multi-stage model. 

We do note that specification of the model for the censoring hazard used to generate the 

inverse probability of censoring weights may have an impact on the characteristics of our 
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Figure 4. Power comparison of Zl and Zl for design 2 at N = 500 
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test. In our simulations, censoring times were generated uniformly across groups (according 

to the Weibull(2, 5) distribution) and although our censoring hazard model specified 

group-specific hazards, our test statistic performed adequately. It is likely that a 

single-sample hazard model- the simple Nelson-Aalen estimator for the censoring hazard -

would produce similar results, (i.e.) that our test would remain appropriately sized under a 

single-sample censoring hazard estimate. There has been little research into the effect of 

model mis-specification on IPCW statistics, and it could be expected that bias could result 

- indeed, the proofs in this and the previous chapter tacitly assume the correctness of the 

specification of censoring hazard model. Additional studies could evaluate the impact of 

model mis-specification on the size and power of our test statistic, as well as evaluate its 
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performance under more complex multi-stage networks, although this is beyond the scope 

of this dissertation. 

Simulation Study - Comparison 

We performed an additional simulation study comparing Zl to a two-sample IPCW 

Mann-Whitney statistic for waiting times proposed by Fan and Datta [15]. In our notation, 

the Fan-Datta test statistics can be defined as 

(3.12) 

In (3.12), the Ki refer to Kaplan-Meier estimators of the censoring hazard for group i. Fan 

and Datta suggest the test statistic T = 0.5 (012j + 1 - 021j) and prove and illustrate via 

simulation its asymptotic normality. The need for both 012j and 021j stems from the lack 

of symmetry in U12j caused by right censoring. In general, 012j and 1 - 021j will be close 

but not necessarily equal. 

For uncensored data, the log-rank test is optimal (i.e. most powerful) for alternative 

hypotheses that stipulate proportional hazards (see e.g. Andersen, et aI, Sec. V.2.3 [6]). 

Hence, we expect that our IPCW log-rank test statistic Zl will exhibit greater power than 

the Fan-Datta test statistic T under proportional hazards alternatives. We designed our 

simulation comparing Zl and T to test this expectation. The design for this simulation was 

identical to the semi-Markov setup of Design 2 from the previous section. Stage 0 waiting 

times, censoring times, and the correlation between stage 0 and stage 1 waiting times were 

generated as in Design 2 from the previous section. In this simulation, stage 1 waiting 

times, the quantity being tested, were generated from the Wei bull distribution with shape 

parameter fixed at 2. The scale parameter was 2 for group 1 and ranged from 2 to 5.5 for 

group 2, covering the null (scale = 2) and alternative (scale> 2) hypotheses. Note that for 

a fixed common shape parameter, Weibull hazards are proportional with hazard ratio 

(.At/.A2)'I', where .Ai denotes the scale parameter in group i and, the common shape 

parameter. The per-group sample size for our simulated data was 100. 

The results of these simulations are depicted in Figure 5. The empirical power 
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Figure 5. Power comparison of Zl and the Fan-Datta test T 
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function for the naive log-rank test Zl is plotted for reference and to further illustrate its 

inappropriateness for dependent waiting times. Both test statistics maintained appropriate 

size, and for large alternatives (i.e. for Weibull scale parameters 4 and greater), the power 

of the two tests differed little, with our log-rank test exhibiting only slightly greater power. 

The power of our log-rank test did, however, ascend more rapidly to the limiting value of 1, 

and was greater than the power of the Fan-Datta test for moderately-sized alternatives 

(Weibull scale parameters from 2.25 to 3.0) under several of the scenarios. Hence, for this 

particular design of proportional hazards alternatives, we can reasonably conclude that our 

log-rank test was more strongly powered than the Fan-Datta test, and that the gain in 

power was largest for moderately-sized alternative hypotheses. 
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Analysis of Burn Patient Data 

To demonstrate the practical use of our test statistic, we analyzed data from a 

cohort study of 154 burn patients [23]. These data are available online [26, 27] and are 

described in full detail elsewhere [23, 25]. We provide a brief description here in the context 

of a multi-stage model. Patients entered the study at time 0 in stage 1 for the treatment of 

their burns. Subsequently, patients received one of two interventions - excision (stage 2) or 

prophylactic antibiotic treatment (stage 3) - or developed staphylococcus infection (stage 

4). After excision, (i.e.) entry into stage 2, patients either received prophylactic antibiotic 

and entered stage 5 or developed infection and entered stage 6. Following prophylactic 

antibiotic as a first treatment (entry into stage 3), patients either had their wounds excised 

and entered stage 5 or developed staphylococcus infection and entered stage 7. Patients 

developing infection prior to treatment (stage 4) could only have their wounds excised 

(stage 6). Patients having received both treatments prior to infection (stage 5) could then 

develop infection and progress to stage 8 and patients developing infection after antibiotic 

(stage 7) could have their wounds excised and progress to stage 8. Stages 6 and 8 were 

terminal, as stage 8 exhausts all of the events that could occur and patients in stage 6 had 

already developed infection and had no need for prophylactic antibiotic treatment. Table 3 

describes the stages in the model Figure 6 depicts the network structure. 

We assumed that interventions (antibiotic, excision) occurred before staphylococcus 

infection when the two occurred simultaneously and that interventions could occur 

simultaneously. Specifically, two patients developed staphylococcus infections at the same 

time as excision and were treated as having passed through stage 2 with a waiting time of 

zero, while one patient that developed staphylococcus infection at the same time as 

Table 3 

Description of stages in multi-stage burn data model. 

1. Onset of burn treatment 
2. Excision of burn as first intervention 
3. Prophylactic antibiotic as first intervention 
4. Staphylococcus infection prior to excision or antibiotic 
5. Excision and antibiotic (prior to infection) 
6. Excision and staphylococcus infection (no antibiotic) 
7. Staphylococcus infection after antibiotic, no excision 
8. Excision, antibiotic, and staphylococcus infection 
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Figure 6. Network of stages for multi-stage burn patient data 
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Table 4 

Observed transitions of 154 burn patients 

To 
From 1 2 3 4 5 6 7 8 
1 24 ~Q Q() ')0 1(\ () () () 

UU U.:J '-'U .LV V V V 

2 33 0 0 14 6 0 0 
3 12 0 21 0 6 0 
4 17 0 11 0 0 
5 37 0 0 8 
6 17 0 0 
7 2 4 
8 12 

receiving antibiotic was treated as having passed through stage 3 with a waiting time of 

zero. Ten patients simultaneously received excision and prophylactic antibiotic and were 

treated as having passed directly from stage 1 to stage 5. The data set is provided in the 

Appendix. 

Most patients (102 of 154) were treated by excision or antibiotic before infection 

developed or before they were censored (Table 4). Among those who received excision as a 

first treatment (stage 2), most were censored (33 of 53), while the majority of patients 

receiving antibiotic as a first treatment next had their wounds excised (moved to stage 5, 

21 of 39). For the 45 patients receiving both excision and prophylactic antibiotic prior to 

infection, eight developed infection and the remainder were censored. Four of the six 

patients developing infection secondary to antibiotic treatment received excision. 

Twenty-nine patients reached terminal stages in the model - 17 developed infection after 

excision, eight developed infection after both treatments, and 4 received excision after 

prophylactic antibiotic was unsuccessful in preventing infection. 

Our focus was the waiting times for patients entering stage 2, those having received 
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excision as their first intervention prior to infection. We compared stage 2 waiting times 

with our test statistic, Z2(t), among four groups defined by the crossing of two binary 

factors in the data set: (1) receipt of routine bathing or full body cleansing, which was the 

intervention in the study and (2) the experience of a respiratory burn. Fifty-three patients 

entered stage 2 - Table 5 provides the distribution across the 4 groups, the transitions that 

followed entry into stage 2, and the correlation between stage 1 and stage 2 waiting times. 

We noted that patients experiencing respiratory burns (groups 2 and 4) were most likely to 

receive antibiotic as a second intervention (i.e.) move to stage 5 after stage 2 (8 of 16), 

while those not experiencing respiratory burns (groups 1 and 3) were most likely to be 

censored after entry into stage 2 (28 of 37). Censoring rates were roughly equivalent for 

those receiving routine bathing (12/21 = 57%) and those receiving full body cleansing 

(21/32 - 66%), as were transitions into stages G ana u. 
Figure 7 depicts stage 2 waiting times and the Satten and Datta [44] estimator S2(t). 

Empirically, those experiencing respiratory burns (dashed lines) exited stage 2 more rapidly 

than those not (solid lines) as shown by the shorter lines in the left panel of Figure 7 and 

the steeper survival function estimates in the right paneL Differences between those 

receiving routine bathing (dots) and full body cleansing (triangles) were minimaL The 

chi-square statistic on 3 degrees of freedom for the naive log-rank test (Z2(t)) was 7.4, 

indicating marginal significance (p = .06). The chi-square statistic associated with Z2(t), 

for which bootstrap res amp ling at 1000 iterations was used to estimate the variance, was 

9.4, indicating a significant difference among the 4 groups (p = .02). The proximity of the 

p-values for the naive log-rank test and our test suggests that the effect of potential 

dependence in censoring or transition times had only a marginal effect on the comparison 

of stage 2 waiting time distributions. Indeed, the Kaplan-Meier estimates of the survival 

Table 5 

Disposition of 53 patients observed to enter stage 2 in the burn data model 

Next Stage Stage 1 
Group Description N Stage 5 Stage 6 Cens. Correlation 

1 Bath, No Resp. Burn 12 2 1 9 -0.40 
2 Bath, Resp. Burn 9 4 2 3 0.13 
3 Cleanse, No Resp. Burn 25 4 2 19 -0.05 
4 Cleanse, Resp. Burn 7 4 1 2 -0.20 

All 53 14 6 33 -0.16 
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Figure 7. Stage 2 waiting times and survival functions for 4 groups of burn patients. Plotted 
points represent patients who were censored. Patients presented with (dashed line) or without 
(solid line) respiratory burns and received routine bathing (0) or full body cleansing (Ll). 
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Comparison of Kaplan-Meier and Satten-Datta stage 2 survival function estimates 

Group 1 Group 2 Group 3 Group 4 
t S2(t) S2(t) t S2(t) S2(t) t S2(t) S2(t) t S2(t) S2(t) 
1 0.92 0.94 3 0.89 0.93 0 0.96 0.97 0 0.86 0.78 
9 0.83 0.87 4 0.78 079 1 0.88 0.90 7 0.71 0.66 

33 0.55 0.33 8 0.67 0.66 7 0.83 0.86 10 0.57 0.54 
13 0.50 0.53 11 0.74 0.75 24 0.38 0.34 
14 0.25 0.31 25 0.49 0.48 35 0.00 0.00 
17 0.00 0.00 

function for each group in large part differed only slightly from the values provided by the 

Satten-Datta estimator (Table 6), indicating that the effect of adjusting for censoring by 

IPCW was minimal. Note also that although correlations between stage 1 and stage 2 

waiting times varied over the groups, the correlations themselves were not particularly 

strong (Table 5). Additionally, Groups 1 and 4 exhibited the smallest differences in 

Satten-Datta and Kaplan-Meier estimates of S2(t) as well as the largest absolute rank 

correlations, giving some indication that waiting time correlations do have some impact on 

estimation of survival curves. 

In calculating the test statistic Z2 ( t), we modeled the censoring hazard K hi (t) as a 

function of 14 time-invariant external covariates - type of bathing solution applied (routine 

bath, full body cleansing), sex, race (White or non-white), percentage of body surface area 
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burned, indicator functions for the presence of head, buttock, trunk, upper leg, lower leg, 

and respiratory tract burns, and a four level factor accounting for the type of burn 

(chemical, scalding, electrical; flame) - and time-dependent internal covariates denoting 

stage occupation just before time t. This selection of covariates represents all available 

covariates provided with this data set. We do note that neither interactions of covariates 

nor functions of the internal stage occupation covariates were considered in modeling the 

censoring hazard, mostly to avoid over-specification of the censoring hazard model. In 

general, consideration of such terms requires some biological or clinical justification and we 

can consider our specification to be adequate. 
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CHAPTER IV 

NONPARAMETRIC REGRESSION 

Three of the more commonly-used regression models used for survival data are 

parametric models, the semi-parametric Cox proportional hazards model [9], and the 

accelerated failure time (AFT) model, with the Cox model enjoying considerable 

popularity. Aalen's non parametric linear model [2, 3, 4], which we have used in previous 

chapters as the estimator of the censoring hazard in multi-stage models to generate lPC\\T 

estimators and test statistics, has received far less attention. As noted in the introduction, 

the potential for negative hazard estimates, problems with rank-deficient regression 

matrices, and the difficulty in interpreting integrated regression coefficients are likely 

sources of this lack of attention. Nevertheless, as noted in our discussion of the censoring 

hazard model, Aalen's model provides a very flexible alternative to the more commonly 

used models. This flexibility stems from the fact that Aalen's model defines and estimates 

time-varying regression coefficient functions rather than static coefficient estimates, in 

addition to the allowing for time-varying covariates as the Cox model and versions of the 

AFT model allow. Further, the ad hoc adjustments to hazard estimates derived fro111 

Aalen's linear model noted in the introduction - fixing a lower bound of zero for the 

estimated hazard and ignoring time points for which the regression matrix is of less than 

full column rank - along with kernel smoothing techniques for the coefficient functions have 

been suggested and generally perform well [20]. 

In this chapter, we define nonparametric regression coefficient estimators for waiting 

times from a multi-stage model, analogous to the estimators for Aalen's linear model for 

survival data. As before, we apply the IPCW principle to derive our estimators. We begin 

by defining Aalen's linear model and describing estimators for waiting times from 

uncensored multi-stage data. We then define IPCW coefficient estimators, derive their 

martingale representation, and establish their asymptotic normality. We then conduct a 

simulation study evaluating the performance of our estimators and demonstrating the 

inappropriateness of the use of Aalen's liner model for survival data for multi-stage data. 
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Finally, we demonstrate the use of our estimators through the analysis of a data set of 137 

bone marrow transplant patients [8J. Note that we now revert back to the single-sample 

notation of Chapter II. 

Estimators for Uncensored Data 

We begin by defining some vector and matrix notation for the counting processes 

that will form our coefficient estimators. As before, we establish notation and models for 

uncensored data to provide a foundation for our IPCW estimators. The introduction of 

Aalen's linear model follows the notation and discussion of Andersen, et al [6], who provide 

one of the more extensive treatments of Aalen's model. Although the notation of our model 

for the waiting time hazard will differ from the notation for the censoring hazard model, 

the formulations are equivalent. Define the individual, uncensored data stage exit and at 

risk counting processes Nij(t) = f[U;'j - T;j ::; t,Xij = 1] and 

~j(t) = f[Uij - T;j ;:::: t, Xij = 1J for 1 ::; i ::; n. Note that these individual-level counting 

processes are the quantities summed to produce the aggregate counting processes from 

Chapter II, (i.e.) N;(t) = Zi Nij(t) and }j*(t) = Zi ~j(t). Collect the stage j exit counting 

processes into the vector Nj(t) = (Nij(t), ... , N~j(t)). Recall that the vector of covariates 

for the ith individual is Xi(t) = (l,XiI (t), ... ,Xip(t)) and that X(t) is the n x (p+ 1) 

matrix of covariates for all individuals with ith row Xi (t). Let Y* (t) denote the "at risk" 

covariate matrix, with ith row ~j(t) . (1, XiI (T;j + t), ... ,Xip(T;j + t)). The ith row of Yj(t) 

provides the covariate vector for individual i multiplied by the at risk process for individual 

i. Note that we have necessarily added T;j to the argument of the covariate functions Xik , 

since the covariate processes evolve in calendar time but their impact on the stage j exit 

hazard only occurs after stage j entry, (i.e.) after time Tij. A matrix definition of Yj(t) 

will be useful in developing our results. Abusing notation, we note that 

Yj(t) = diag{(1S.j(t), ... , Y;j(t))} . X(Tj + t), where Tj denotes the vector of true stage j 

entry times. By this notation, we indicate that the ith row of X is evaluated at time T;j + t. 
The model for the hazard of stage j exits is defined as a simple linear model, similar 

to the model for the censoring hazard. At the individual level and in matrix form (again 

abusing notation), we have: 

P 

Aij(t) = (30j(t) + L (3mj(t)Xim (T;j + t), 1::; i ::; n 
m=I 
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where Aj(t) = (A1j(t), ... , Anj(t)) and {3j(t) = ({30j(t), . .. , (3pj(t)). Under the multiplicative 

intensity model for counting processes (see, e.g. Andersen, et al [6]), we have that 

N;(t) = J~ diag{Y1j(s), . .. , Y;j(s)}Aj(s) + M;(t), where we define 

M;(t) = (M{j(t), ... , M~j(t)) to be the vector of individual martingales associated with 

stage j exits. Substituting in the expression for Aj(t) under Aalen's linear model admits 

the martingale estimating equation 

N;(t) = lot Yj(s)dBj(s) + M;(t), (4.1) 

where Bj(t) = (Boj(t), ... , Bpj(t)) is the vector of integrated regression coefficients 

Bmj(t) = J~ 'umj(s)cts, 0::; m ::; p; in particular, we note that dBj(t) = {3j(t)dt. Setting the 

"noise" (i.e. the martingale M;(t)) equal to zero in this equation produces the estimator 

for the integrated regression coefficients for uncensored data, 

(4.2) 

where Y;- (t) is any generalized inverse of Yj(t) and Jj (8) = J[rank(Yj(s)) = p + 1] is 

added to avoid complications from regression matrices of less than full column rank. The 

estimator (4.2) is often referred to as a generalized Nelson-Aalen estimator, given its 

functional similarity 'Nith the Nelson-Aalen estimator. In fact, when the regression matrix 

X(s) is a vector of ones, the coefficient estimator (4.2) is the Nelson-Aalen estimator. 

By the martingale equation (4.1), we have the martingale representation 

(B; - Bj)(t) = J~ Jj(s)Yj-(s)dM;(s), which subsequently provides us with the predictable 

and optional variation processes for B; (t), 

(B; - B j ) (t) 

[B; - B j ] (t) 

lot J;(s)Y;-(s) diag{Aj(s)} Yj-(s)Tds, 

lot J;(s)Y;-(s) diag{dNj(s)} Yj-(s)T, 

(4.3) 

(4.4) 

where Aj(S) = (A1j(S), ... , Anj(S)). Note that the optional variation process (4.4) serves as 

an estimate of the covariance matrix for B;(t). Under suitable regularity conditions on the 

matrix Y;(t), the estimator B;(t) approaches a Gaussian limit with covariance matrix 

given by the expected value of the predictable variation process (4.3). For proof of this 
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result, we refer the reader to Theorem VII.4.1 of Andersen, et al [6J. We do note that the 

regularity conditions required of Y;(t) depend on the choice of generalized inverse, and 

that Andersen, et al utilize a least squares principle and define 

Yj(t) = (Y;(t)TY;(t)tlY;(t)T for their proofs. 

IPCW Estimators 

The estimator B;(t) has no use for right-censored data and the validity of estimators 

based on unweighted, censored data counting processes depends on independent censoring 

and the semi-Markov property. As before, to relax these requirements we propose IPCW 

estimators for the integrated regression coefficients Bj(t) from Aalen's model. The IPCW 

estimators are constructed just as the estimators for the stage j cumulative hazard and 

survival functions from Chapter II, by replacing the counting processes from the 

uncensored data estimators with IPCW analogues. Before establishing our estimators, we 

define the individual IPCW counting processes Nij(t) = I[Uij - Iij :S t, Oij = 1]/ Ki(Uij -) 

for stage j exits and the IPCW stage j at-risk counting processes 

"fij(t) = I[Uij - Iij 2: t,/'ij = I]/Ki(Tij + t-) for 1 :s; i:S; n. Note that the Ki(t) are as 

defined in Chapter II from Aalen's linear model for the censoring hazard. Define the vector 

Nj(t) = (N1j(t), ... , Nnj(t)) and the weighted, modified coefficient matrix 

Yj(t) = diag{Y1j(t), ... , Ynj(t)} . X(Tj + t). Our IPCW estimator for the regression 

coefficient vector is 

Bj(t) = lot Jj(s)Yj(s)dNj(s), (4.5) 

where Yj(t) is a generalized inverse of Yj(t) and Jj(s) = I[rank(Yj(s)) = p + IJ. 
The asymptotic properties of the IPCW estimators of Chapter II and test statistics 

in Chapter III relied on martingale representations and the martingale central limit 

theorem. Hence, to explore the asymptotic properties of Bj(t), we establish its martingale 

representation in the following lemma. 

Lemma IV.1 The estimator Bj(t) defined in (4.5) has martingale representation 

Bj(t) - Bj(t) = lot J;(s)Yj-(s)dM;(s) + 

10
00 

[fotYj-(s)(I - Dy(u, s)P(u))-diag{Q(u, s)}diag{dNj(S)}] x 

P(u)dMC(u) + op(n-1
/

2
), 
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where Dy('u, s) = fooo diag {f[u < ~l + sJl Ki(u)dMHu)}, Q(u, s) is the vector with ith 

element (/[u < Uti] - f[u < Til + sD/ Ki(U), P(u) = I - yC(u)(yc(u)Tyc(U)tlyc(u)T, and 

YC(u) is the N x (p + 1) matrix diag {f[T; 2: u]} X(u). 

The proof of Lemma IV.1 is a "vectorized" version of the proof of the martingale 

representation of the Satten-Datta estimator Aj(t) in Lemma IIA and deferred to the 

Appendix. As before, we note that this representation decomposes Bj(t) into the sum of 

two orthogonal martingales, one related to the counting process for stage j exits (Mj) and 

one for the counting process for censoring events (MC). Further, the first term of the 

martingale representation for Bj(t) - Bj(t) is exactly the martingale representation for 

Bj(t) - Bj(t), the uncensored data estimator. Due to the orthogonality of the component 

martingales, when developing the asymptotic properties of Bj(t) and in particular its 

predictable and optional variation processes we need not consider the covariation between 

these two terms. Subsequently, the predictable and optional covariation processes can be 

defined as 

(Bj(t) - Bj(t») = lot J;(s)Y;-(s) diag{Aj(s)} Yj-(s)Tds+ 

1000 

[lot yj-(s)(I - Dy( u, s)P(u»-diag{Q(u, s )}diag{ dN;(s)}] x 

P(u) diag{N(u)} p(uf [lot Y;-(s)(I - Dy(u, s)P(u)tdiag{Q(u, s)} 

diag{ dNj(s)} r du, 

[.i3 j(t) - Bj(t)] = lot Jj(s)Yj(s) diag{dNj(s)} Yj(S)T+ 

1000 

[lot Yj(s)(I - Dy(u, s)P(u»-diag{Q(u, s)}diag{dNj(s)}] x 

(4.6) 

P(u) diag{dNC(u)} p(uf [lotYj(s)(I - Dy(u,s)P(u)tdiag{Q(u,s)} 

diag{ dNj(s)}r ' 

(4.7) 

where Dy(u,s) = foOOdiag{f[u < T;j + sJlKi(u)dMHu)} and Q(u,s) is the vector with ith 

element (/ [u < Uij ] - f [u < T;j + s]) / Ki ( u). Again, we note that the optional variation 

process (4.7) serves as an estimator of the variance of Bj (t), which is the in-probability 

limit of (4.6). 
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The martingale representation established in Lemma IV.l provides an avenue for 

establishing the asymptotic normality of the IPCW integrated coefficient estimator 13j(t) 

via the martingale central limit theorem. Define the in-probability limit of the predictable 

variation process (4.6): ~B(t) = plimn-+oo (Bj(t) - Bj(t)). We then have the following 

theorem: 

Theorem IV.2 Under suitable regularity conditions, 

where U(t) = (Uo(t), ... , Up(t)) is a (p + I)-variate Gaussian martingale with covariance 

matrix ~B(t). 

The proof of Theorem IV.2 is provided in the Appendix, along with a statement of the 

required regularity conditions. We again note that the conditions for the martingale central 

limit theorem are the convergence of the predictable variation process to a deterministic 

limit and the Lindeberg condition in which the martingale approaches a continuous limit. 

For the proof of Theorem IV.2, these conditions largely focus on the regression matrix 

Yj(t) and the selected form of its generalized inverse. 

Simulation Study 

We conducted simulation studies to evaluate the validity of the IPCW coefficient 

estimator Bj(t). As in the simulation study of the waiting time log-rank statistic in 

Chapter III, we considered a three-stage tracking model with individuals entering root 

stage 0 and proceeded through transient stage 1 to absorbing stage 2 or were censored. We 

simulated data for 100 individuals under several scenarios to evaluate the performance of 

131 (t) - the stage 1 coefficient estimator - for discrete and continuous predictors, both fixed 

and time-varying. Under each scenario, we calculated the estimate B1(t) and the naive 

Aalen model estimator B1(t), defined as B1(t) = IJ J1(s)Y1(s)dN1(s), where N 1(s) is the 

vector of individual level censored data counting processes for stage 1 exits, 

Ni1(S) = f[Ui1 - T;1 ::; s, 8il = 1], Y 1(s) is the n x (p + 1) matrix with ith row 

Yi1(s)(I,Xi1 (S), ... ,Xip(S)) where Yi1(S) is the stage 1 at risk process for censored data 

given by Yi1(S) = f[Uil - Til 2: S,'Yi1 = 1], and J1(s) = f[rank(Y1(s)) = p+ 1] is the 

indicator function for the matrix Y 1 (s) having full column rank. We additionally 
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calculated the variance of .8(t) via the formula for the optional variation process defined in 

(4.7) in order to construct asymptotic pointwise confidence intervals. We did the same for 

the naive estimator B(t), noting that the optional variation process for this estimator is 

J~ J1(s)Yl(s) diag{dN1(s)} Yl(s)T. The three simulation scenarios are described below. 

1. Discrete, fixed covariate. For this design, we simulated data for 4 groups of 

individuals, each group of size 25 and with varying stage 1 hazard. We simulated a 

bivariate normal pair with marginal variance equal to 1 and covariance equal to -0.5, 

0, and 0.5. The mean parameter for the first coordinate in the pair was set equal to 

1, while the mean parameter for the second coordinate was set to k/4 for group k, 

k = 1, ... ,4. These pairs were exponentiated to produce correlated lognormal waiting 

times for stages 0 and 1. The stage 0 and stage 1 correlations were common to all 

groups, so there were three variants of this design. Censoring times were generated 

from the Weibull distribution with shape parameter 2 and scale parameter 6 

independently of the stage waiting times. For this design, approximately 32% of 

individuals were censored before exiting stage 0 and 21 %, 25%, and 29% were 

censored while in stage 1 for waiting time correlations -0.5, 0, and 0.5, respectively. A 

"cell means" version of the linear hazard model under this design is 

(4.8) 

where the X ik are time-invariant indicators denoting membership in group k and the 

i3kl(t) are the lognormal hazard functions for group k which take the form 

<p(1n t - k/4)/1?(ln t - k/4), where <p and 1? represent the density and distribution 

functions of the standard normal distribution. 

2. Discrete, time-varying covariate. This design was identical to design 1, with the 

exception that we introduced the possibility of a group switch after stage 1 entry. A 

random group-switch time was generated for each individual, and at the switch time, 

an individual in group 1 switched to group 4 and vice versa, and an individual in 

group 2 switched to group 3 and vice versa. We generated the data for this design via 

the following procedure . 

• Generate the pair (Lo, Ld from the bivariate normal distribution with mean 

vector (1, ILk)' where ILk is the log-mean for group k, marginal variances equal to 
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1, and correlation equal to p, where p is -0.5, 0, or 0.5 depending on the design 

variant being run. Exponentiate (Lo, L I ) to produce" baseline" stage ° and 1 

waiting times denoted (Wo, WI). 

• Generate the group-switch times 5 from the U(0,5) distribution. 

• For individuals who switched before entering absorbing stage 2 (5 < WI)' 

generate the pair (La, Li) from the bivariate normal distribution with mean 

vector (1, Ilk)' where Ilk is the log-mean for the group to which the individual has 

switched, marginal variances equal to 1, and correlation equal to p, where p is 

-0.5, 0, or 0.5 depending on the design variant being run. Exponentiate (La, Li) 

to produce (WO', Wn. If the new stage 1 waiting time exceeds the switching 

time (W! > 5), then W! replaces WI as the stage 1 waiting time. Otherwise, 

regenerate (La, Dr) under the appropriate distribution until Wt > 5 and replace 

WI with Wr 

• Generate the right censoring times from Weibull distribution with shape 

parameter 2 and scale parameter 6. 

The cell means version of the linear hazard model under this design is similar to 

design 1: 

Ail (t) = ,8ll (t)Xil (1i1 + t) + ,821 (t)Xi2 (1iI + t) + ,831 (t )Xi3 (1i1 + t) + ,841 (t)Xi4 (1i1 + t), 
(4.9) 

where in this design the Xik(t) are time-varying indicators of membership in group k. 

The ,8kl(t) are the same lognormal hazard functions as in (4.8), and there were 3 

variants of this design based on the 3 correlation values for stage 0 and 1 waiting 

times. Censoring rates under this design were the same as under design 1. 

3. Continuous, fixed covariate. For this design, we simulated a simple regression model 

with fixed, continuous covariate. The linear hazard model for these simulations was 

(4.10) 

where ,8Ol(t) was the intercept function, ,8n(t) the "slope function", and XiI the 

fixed, continuous covariate. To generate these data, we simulated the pair (Lo, L1 ) 

from the normal distribution with zero marginal means, unit variance, and correlation 
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-0.5, 0, and 0.5, as in designs 1 and 2. We then calculated (Uo, U1) from the marginal 

distributions of the Li, Ui = <!>i(Li), where <!> is the standard normal distribution. We 

then calculated the stage 0 and 1 waiting times as Fi -
1(Ui ), where ~-l represents the 

quantile function for the exponential distribution. For stage 0 waiting times, FO-
1 was 

the exponential quantile function with rate parameter 0.25. For stage 1 waiting 

times, F1-
1 was the exponential quantile function with rate parameter 0.25 + {3oXi , 

where (30 took the value 0.05 and Xi represented the covariate value for patient i, 

generated from the uniform distribution on the interval (-2,2). Censoring times were 

generated from the Wei bull distribution with shape parameter 2 and scale parameter 

6. Under this design, 33% of all individuals were censored before stage 1 entry, and 

36%, 32%, and 27% of individuals were censored while in stage 1 for stage waiting 

time correlations -0.5, 0, and 0.5, respectively. The function POI (t) was the constant 

function 0.25 (the exponential hazard rate) and the function (311 (t) the constant 

function 0.05. 

Under each design, censoring times were generated independently of stage waiting times 

and uniformly for all individuals. Hence, we used the Kaplan-Meier estimator to estimate 

the probability of censoring Ki(t) for the inverse probability of censoring weights. One 

thousand Monte Carlo iterations were run for each variant of each design. 

Before conducting a detailed examination of the performance of the IPCW and naive 

coefficient estimators, we briefly take an empirical look at the raw results of our 

simulations. Figures 8 and 9 depict the IPCW and naive estimates for selected regression 

coefficients and variants of designs 1 through 3 (row 1 through 3 respectively). Variants in 

which stage 0 and 1 waiting times were negatively correlated are plotted in the left column 

and variants with positive correlation in the right column. The selected regression 

coefficients for each design are noted in the y-axis label of each panel of each plot. The 

IPCW estimator appeared approximately in all situations, but did exhibit greater variance 

than the naive estimator as illustrated by the greater scatter in the integrated coefficient 

estimators. The naive estimator seemed to underestimate the true integrated regression 

coefficient functions for variants in which stage waiting times were negatively correlated -

most of the estimated integrated regression functions were below the true values. 

Conversely, the naive estimator overestimated the true regression coefficients when stage 

waiting times were positively correlated. We do not show plots from variants in which stage 
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Table 7 

A verage bias for IPCW and naive coefficient estimators, simulation designs 1 and 2 

Design- IPCW Estimator Naive Estimator 
Variant Corr. t 13ll(t) 1321 (t) 1331 (t) 1341 (t) Bll(t) B21 (t) B31 (t) B41 (t) 
1-1 -0.5 2 0.037 0.012 -0.007 0.008 -0.244 -0.209 -0.198 -0.149 

4 0.061 0.072 -0.059 0.063 -0.247 -0.191 -0.213 -0.176 

1-2 0 2 0.019 0.022 0.015 0.003 0.009 0.011 0.000 0.000 
4 0.010 -0.007 -0.047 -0.018 -0.009 -0.028 -0.046 -0.009 

1-3 0.5 2 0.033 0.020 -0.008 -0.023 0.325 0.280 0.215 0.151 
4 0.033 -0.026 -0.031 -0.054 0.187 0.170 0.129 0.091 

2-1 -0.5 2 -0.064 0.008 0.008 0.048 -0.270 -0.187 -0.134 -0.091 
4 -0.029 -0.017 -0.062 0.054 -0.534 -0.393 -0.240 -0.138 

2-2 0 2 -0.069 0.010 0.012 0.023 -0.066 -0.004 0.010 0.035 
4 -0.039 -0.020 0.010 -0.037 -0.396 -0.231 -0.103 -0.040 

2-3 0.5 2 -0.044 -0.024 0.003 -0.028 0.149 0.190 0.185 0.179 
4 -0.052 -0.033 -0.019 0.011 -0.257 -0.101 0.024 0.064 

waiting times were uncorrelated, but do note that both the IPCW and naive estimators 

appeared approximately unbiased. 

To further investigate the bias and variance associated with each estimator, we 

selected interim time points at which to calculate the integrated coefficient estimates and 

associated asymptotic 95% confidence intervals, times t = 2 and t = 4. In Table 7, we 

present the average bias of our IPCW coefficient estimator and the naive coefficient 

estimator for each variant of simulation designs 1 and 2. The IPCW estimator was 

approximately unbiased for each variant - the biases for (31 (t) listed in Table 7 represent 

less than 6% of the true values at the given time points. While overestimation was more 

likely at time t = 2 (14 of 24 estimates) and underestimation at time t = 4 (14 of 24) for 

the IPCW estimator, this pattern was not consistent over groups or variants. The naive 

estimator was approximately unbiased for variant 2 of designs 1 and variant 2 of design 2 

at time t = 2, for each of which the waiting time correlation parameter was O. The naive 

estimator underestimated the true hazard at time t = 4 for variant 2 of design 2, where 

stage waiting times were uncorrelated. 
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Figure 8. IPCW coefficient estimators for selected variants of simulation designs 1-3. The 
left/right column plots variants with negatively/positively correlated waiting times (denoted 
by -/+). Design 1 estimates are plotted in row 1, design 2 in row 2, and design 3 in row 
3. Sixty Monte Carlo iterates are plotted in each, and regression coefficient estimator is 
identified by the y-axis label. True cumulative hazard estimates for each model parameter 
are plotted with a solid line. 
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Figure 9. Naive coefficient estimators for selected variants of simulation designs 1-3. The 
left/right column plots variants with negatively/positively correlated waiting times (denoted 
by -/+). Design 1 estimates are plotted in row 1, design 2 in row 2, and design 3 in row 
3. Sixty Monte Carlo iterates are plotted in each, and regression coefficient estimator is 
identified by the y-axis label. True cumulative hazard estimates for each model parameter 
are plotted with a solid line. 
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Table 8 

Coverage probabilities for asymptotic 95% CI, simulation designs 1 and 2 

Design- IPCW Estimator Naive Estimator 
Variant Corr. t Bll (t) B2dt) 1331 (t) B41 (t) 13ll(t) 1321 (t) 1331 (t) 1341 (t) 
1-1 -0.5 2 0.955 0.960 0.960 0.951 0.922 0.888 0.832 0.863 

4 0.947 0.950 0.954 0.953 0.796 0.813 0.837 0.831 

1-2 0 2 0.961 0.967 0.961 0.951 0.954 0.960 0.957 0.959 
4 0.952 0.948 0.955 0.956 0.950 0.954 0.956 0.970 

1-3 0.5 2 0.953 0.957 0.961 0.956 0.913 0.909 0.914 0.910 
4 0.967 0.966 0.962 0.960 0.950 0.880 0.901 0.873 

2-1 -0.5 2 0.961 0.955 0.954 0.944 0.850 0.904 0.934 0.947 
4 0.945 0.954 0.966 0.953 0.852 0.887 0.937 0.966 

2-2 0 2 0.962 0.951 0.950 0.946 0.950 0.959 0.962 0.955 
4 0.933 0.954 0.963 0.960 0.923 0.919 0.913 0.906 

2-3 0.5 2 0.965 0.954 0.951 0.946 0.940 0.921 0.917 0.908 
4 0.947 0.953 0.963 0.961 0.849 0.850 0.946 0.946 

The naive estimator additionally exhibited substantial bias when stage 0 and 1 

waiting times were correlated - (31(t) underestimated the true cumulative hazard for 

negatively correlated waiting times and overestimated for positively correlated waiting 

times. This bias pattern was reasonable for our designs. When waiting times were 

negatively correlated, longer stage 1 waiting times - which signified lower hazard - were 

less likely to be censored since they were associated with shorter stage 0 waiting times. 

Conversely, shorter stage 1 waiting times - which signified greater hazard - were more 

likely to be censored, being associated with longer stage 0 waiting times. These effects led 

to the underestimation of the stage 1 cumulative hazard function. An opposite effect was 

seen for positively correlated stage waiting times - shorter stage 1 waiting times (greater 

hazard) were more likely to be censored being associated with shorter stage 0 waiting times 

and vice versa leading to overestimation of the stage 1 cumulative hazard. The presence of 

a time-varying covariate did not have a substantial impact on the bias exhibited by the 

IPCW and naive estimators - there were no consistent patterns in bias when comparing 

designs 1 and 2. 
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Table 9 

Bias and coverage probabilities for asymptotic 95% CI, simulation design 3 

Bias Coverage Probability 
Design- IPCW Naive IPCW Naive 
Variant Corr. t Ell (t) B21 (t) 1311 (t) 1321 (t) Ell (t) E21 (t) 13ll(t) 1321 (t) 
3-1 -0.5 2 0.032 0.007 -0.160 -0.021 0.937 0.936 0.476 0.913 

4 -0.030 0.006 -0.259 -0.024 0.938 0.952 0.623 0.917 

3-2 0 2 0.006 0.001 0.000 0.002 0.953 0.944 0.944 0.947 
4 0.011 0.008 -0.006 0.009 0.958 0.954 0.957 0.957 

3-3 0.5 2 -0.028 0.001 0.180 0.029 0.965 0.942 0.730 0.892 
4 0.008 -0.009 0.401 0.100 0.974 0.968 0.998 0.997 

Table 8 provides coverage probabilities for the nominal asymptotic 95% confidence 

intervals for the IPCW and naive estimators. Confidence intervals for the IPCW estimator 

were close to the nominal 95% level and, if anything, were slightly overly conservative. 

Coverage probabilities were fairly consistent with no apparent patterns over the designs, 

variants, or selected time points. Confidence intervals for the naive estimator were at the 

nominal level for variant 2 of designs 1 and 2 (no correlation between stage 0 and 1 waiting 

times), but provided generally did not provide nominalcoverage when waiting times were 

correlated. This aberrant coverage generally can be attributed to the bias associated with 

naive estimator. Coverage of the naive confidence intervals was generally poorest when the 

true hazard was underestimated. The coverage bias was lower for overestimated hazards, 

partly because the variance of the naive estimator is a function of the cumulative hazard 

itself. Hence, when hazards were overestimated, variances tended to be overestimated, 

partially (but not completely) correcting the bias in the confidence intervals. Again, the 

presence of a time-varying covariate seemed to have no impact on the observed coverage of 

the naive and IPCW confidence intervals, as no patterns emerged when comparing coverage 

rates for designs 1 and 2. 

Table 9 provides the bias and coverage probabilities for the IPCW and naive 

estimators for variants of design 3. The IPCW was approximately unbiased for all variants 

of design 3 - the bias estimates in Table 9 represent less than 8% of the true coefficient 

estimates. The coverage probabilities associated with the asymptotic confidence intervals 

for the IPCW estimator were close to the nominal 95% level. The intervals tended to 
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exhibit less than nominal coverage for variant 1, where waiting times were negatively 

correlated, and greater than nominal coverage for variant 3, where waiting times were 

positively correlated. The naive estimator was unbiased and its asymptotic confidence 

intervals close to the nominal level only when waiting times were uncorrelated (variant 2). 

As noted in the empirical examination (Figure 9), the naive estimator underestimated the 

true integrated regression coefficient function when stage waiting times were negatively 

correlated (variant 1), and overestimated the true integrated regression coefficient function 

when stage waiting times were positively correlated (variant 3). The bias estimates in Table 

9 were as high as 50% of the true values for the naive estimator. The coverage exhibited by 

the asymptotic confidence intervals for the naive estimator was poor. Interestingly, at time 

t = 4 for variant 3 the naive confidence intervals exhibited over-coverage, with probabilities 

approaching 1. vVe again note that the asymptotic variance of the naive estimator is a 

function of the estimated hazard - overestimated hazards are in turn accompanied by 

overestimated variances, which partially explains the overcoverage of these intervals. 

Analysis of Bone Marrow Transplant Data 

To demonstrate the use of our regression coefficient estimator for waiting times, we 

analyzed data from an intervention study 137 bone marrow transplant with acute 

myelocytic leukemia (AML) and acute lymphoblastic leukemia (ALL) [8]. All patients in 

the study were treated with a regimen of bulsufan 4 mg/kg over 4 days and 

cyclophosphamide 60mg/kg over 2 days followed by bone marrow transplantation from a 

sibling. Following transplantation, patients were tracked and the time to five events were 

noted - return of platelet counts to a sustainable level, onset of acute 

graft-versus-host-disease (GVHD), onset of chronic GVHD, relapse of AML or ALL, and 

death. Data for additional prognostic indicators and treatment characteristics were 

collected - patient age, sex, and cytomegalovirus (CMV) status (positive or negative), 

donor age, sex, and CMV status, waiting time to transplant, the French-American-British 

(FAB) classification of morphological status, treating hospital, and administration of a 

prophylactic combining methotrexate (MTX) with cyclosporin and (possibly) 

methylprednisolone. These data are available online [26, 27] and are described in further 

detail elsewhere [8, 25]. 

The stages in the multi-stage model are described in Table 10 and depicted in Figure 
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Table lO 

Description of stages in multi-stage bone marrow transplant model. 

1. Bone marrow transplantation 
2. Acute GVHD as first event 
3. Platelet recovery as first event 
4. Platelet recovery secondary to acute GVHD 
5. Acute GVHD secondary to platelet recovery 
6. Chronic GVHD 
7. Death or relapse of AMLj ALL 

10. After transplantation (stage 1, time 0), patients either developed acute GVHD (stage 

2), exhibited platelet recovery (stage 3), developed chronic GVHD (stage 6), or relapsed or 

died (stage 7). Patients initially developing acute GVHD (stage 2) could then experience 

platelet recovery (stage 4), develop chronic GVHD, or relapse or die in any sequence 

allowed by the model. Similarly, patients initially exhibiting platelet recovery (stage 3) 

could then develop acute GVHD (stage 5), develop chronic GVHD, or relapse or die in any 

sequence allowed by the model. Note that we have defined the multi-stage model in this 

fashion, with two orderings of platelet recovery and acute GVHD, so that the defined 

network was acyclic. More extensive models are possible by considering distinct orderings 

of these platelet recovery, acute GVHD, and chronic GVHD, but paths under such 

orderings would exhibit sparse sample sizes. Further, we note that follow-up continued for 

patients that relapsed prior to death and times to the other events (platelet recovery, acute 

GVHD, chronic GVHD) were tracked. However, we treated death or relapse as an 

absorbing stage and gave no further consideration of events occurring after death or relapse. 

The observed transitions for these data are provided in Table 11. The vast majority 

of patients (117) experienced platelet recovery immediately following transplantation 

(entered stage 3 from stage 1), and very few (7) experienced acute GVHD initially. Overall, 

platelet levels recovered for 120 patients, twenty-six patients developed acute GVHD, and 

fifty-nine developed chronic GVHD. Eighty-three of the 137 patients (61%) were followed 

until death or relapse, with twenty patients censored after platelet recovery (in stage 3), 

two after acute GVHD secondary to platelet recovery (in stage 5), and thirty-two after the 

onset of chronic GVHD (in stage 6). 

The focus of our analysis was on waiting times in stage 6, the time from onset of 
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Table 11 

Observed transitions of 137 bone marrow transplant patients 

To 
From 1 2 3 4 5 6 
1 0 7 117 0 0 1 
2 0 0 3 0 2 
3 20 0 19 44 
4 0 0 1 
5 2 11 
6 32 
7 

Figure 10. Network of stages for multi-stage bone marrow transplant data 
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chronic GVHD until death or relapse. We modeled stage 6 cumulative hazards as a 

function of one continuous internal covariate, the time to onset of chronic GVHD after 

transplantation, one continuous external covariate, patient age, and one three-level discrete 

external covariate, patient disease group (ALL, low risk AML, high risk AML). Letting -Xi6 

denote the hazard of stage 6 exit for patient i, our model for this analysis was 

(4.11) 

In this model, we selected the ALL disease group to be the baseline group, and 

XiI = Ti6 - Til represented the time to stage 6 entry, X i2 represented patient age at 

transplantation, X i3 was an indicator for low risk AML, and X i4 an indicator for high risk 
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AML. This model provides information on whether patient age and the time to onset of 

chronic GVHD impacted the risk of death or relapse after chronic GVHD onset, and 

whether differences in death or relapse hazard after chronic GVHD hazard were observed 

between disease groups. Our motivation for this specification was to include a variety of 

types of covariates - continuous and discrete, internal and external. 

To construct the inverse probability of censoring weights necessary for our analyses, 

we modeled the censoring hazard via Aalen's linear model as a function of 14 fixed external 

covariates mentioned above - patient disease group (ALL, low risk AML, high risk AML), 

patient age, sex, and cytomegalovirus (CMV) status (positive or negative), donor age, sex, 

and CMV status, waiting time to transplant, an indicator function for the FAB 

classification of morphological status (1 if FAB grade was 4 or 5 and the patient had 

AML), a categorical factor for the treating hospital, and an indicator representing 

administration of a prophylactic combining methotrexate (MTX) with cyclosporin and 

(possibly) methylprednisolone. Additionally, we included a 6-vector of internal covariates 

denoting stage occupation at time t. This model specification exhausted all covariates 

included in the data set. Interactions among the external covariates and extended functions 

of the internal covariates were not included in the censoring hazard model to avoid model 

over-specification and for lack of biological justification. 

Of the 59 patients developing chronic GVHD, twenty had ALL, eight of whom died 

or relapsed, 21 had low risk AML (9 deaths or relapses), and 18 had high risk AML (10 

deaths or relapses). The average age was 28 years, which ranged from 11 to 50, and the 

median time to chronic GVHD was 140 days (min = 76, max = 487). Figure 11 provides 

an empirical look at the data in the context of our model, plotting stage 6 waiting times 

against each of the covariates in model (4.11). We noted that longer times to chronic 

GVHD were seemingly associated with longer times to death or relapse after chronic 

GVHD onset, although the association was not strict and came with substantial variability. 

There appeared to be no relationship between patient age and the post-chronic GVHD 

time to death or relapse, and the disease groups did not appear to significantly differ with 

respect to post-chronic GVHD time to death or relapse. 

The results of our analysis for model (4.11) are depicted in Figure 12 and confirmed 

empirical observation of Figure 11. The intercept term, had little clinical interpretation 

and is not plotted, representing the cumulative hazard of ALL patients with zero values for 

the continuous covariates (age and time to chronic GVHD). We first noted that all stage 6 
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Figure 11. Plots of stage 6 waiting times against covariates included in model (4.11) - time 
to chronic GVHD onset, patient age, and disease group. Filled points represent observed 
deaths or relapses and open points represent censored observations. 
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exits occurred within 1000 days upon stage 6 entry and that relatively few observations 

were censored prior to 1000 days (plotted points in Figure 12). Hence, we can conclude 

that the patients not having died or relapsed after 1000 days of observation were at 

negligible risk of death or relapse. Further, only two exits from stage 6 occurred after 600 

days, so that the risk of relapse or death 600 days after chronic GVHD onset was low. 

The regression coefficient B16(t) progressed in a negative direction, indicating that 

patients with longer waiting times to chronic GVHD onset experienced a reduced hazard of 

death or relapse (i.e. longer stage 6 waiting times) after chronic GVHD onset. This effect 

was apparently significant, judging by the pointwise 95% confidence limits which excluded 
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the null value 0 beyond 200 days after chronic GVHD onset. A normal test of the integrated 

regression coefficient B16(t) at the end of observation (day 2102, the last censoring time) 

was strongly significant (z = 3.59,p = .0003). Patient age at transplantation had no 

apparent effect on the risk of death or relapse secondary to chronic GVHD. The integrated 

coefficient function B26 (t) was non-monotonic and remained close to zero, with large 

Figure 12. Estimates of integrated regression coefficients from model (4.11) of bone marrow 
transplant data. The IPCW estimate is provided by a solid line, the naive estimate by a 
dotted line, and approximate pointwise 95% CI for the IPCW estimate by dashed lines. 
Plotted points are censored waiting times. 
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confidence intervals containing 0 over all observed waiting times. The normal test of B26 (t) 

was non-significant (z = 0.63,p = 0.53). The low risk and high risk AML groups were at 

greater risk of death or relapse secondary to chronic GVHD, as shown by the positive 

integrated regression coefficients B36 (t) and B46 (t). However, these differences were small 
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relative to the variability of the hazard estimates and were non-significant based on a 

normal test (low risk AML: z = l.31,p = .19; high risk AML: z = 0.92,p = .36). 

Additionally, a comparison of all three groups was non-significant (xi = 2.57,p = .11). 

The IPCW regression coefficient estimates did not substantially differ from the naive 

estimates (dotted lines, Figure 12). The maximum differences between the IPCW and 

naive estimates of the five integrated regression coefficients (intercept included) were 0.12, 

0.0003, 0.0019, 0.06, and 0.02, respectively. These maximal differences occurred at or close 

to the largest stage 6 waiting times and represented less than 10% of the IPCW coefficient 

estimates. These small differences in estimates suggested that any dependencies among 

censoring and transition times had a minimal effect on our marginal analysis of stage 6 

waiting times. 

From a clinical perspective, our results demonstrated that neither patient age nor 

disease group (ALL, low risk AML, high risk AML) were significant determinants of the 

risk of death or relapse following the onset of chronic GVHD. Previous analyses [25J of 

these data demonstrated that low risk AML patients exhibited significantly lower hazard of 

death or relapse than ALL and high risk AML patients, both marginally and after 

adjusting for patient age (which was non-significantly associated with the death/relapse 

hazard). However, the results of this analysis have little bearing on our present analysis, as 

it considered death/relapse hazards after transplantation, (i.e.) the hazard of death/relapse 

from stage l. We have additionally demonstrated that patients who more rapidly 

developed chronic GVHD exhibited significantly greater hazard of death or relapse after 

chronic GVHD onset. It would be reasonable to speculate, then, that patients with rapid 

onset chronic GVHD should be closely monitored for the risk of death or relapse. We note 

that there was some covariation among our selected predictors. Among the 59 patients that 

developed chronic GVHD, patient ages significantly differed (Kruskal-Wallis test, p = 

.005), with the ALL group exhibiting lower ages (mean age = 23) than the low an high risk 

AML groups (mean ages 30 and 31, respectively). Further, the time to onset of chronic 

GVHD was significantly different among groups (Kruskal-Wallis test, p = .02) - ALL 

patients most rapidly developed chronic GVHD (median wait = 120 days), followed by 

high risk AML patients (150 days) and low risk AML patients (180 days). Patient age and 

time to chronic GVHD onset were marginally significantly related (Spearman correlation = 

0.23, p = .07). However, our empirical inspection of the association between stage 6 

waiting times (Figure 11) and our model covariates seemed to illustrate no marginal 
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association between patient age, disease group, and stage 6 waiting times, and we so 

suspect no confounding relationships among our covariates. 
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CHAPTER V 

CONCLUSION 

In this research, we have applied the principle of inverse probability of censoring 

weighting (IPCW) to develop K-sample test statistics and non parametric regression 

coefficient estimators for waiting times from multi-stage models. In Chapter III, we 

introduced K -sample test statistics for waiting times in a multi-stage model that were 

analogous to traditional test statistics for survival data, such as the log-rank test. The 

simulation studies we conducted demonstrated that our test statistics, via the IPCW 

approach, were robust against violations of the typically-required assumptions of 

independent censoring and the semi-Markov property. Further, the simulations 

demonstrated that test statistics for survival data were generally inappropriate for waiting 

times from a multi-stage model, exhibiting inflated size and non-monotonic relationships 

with the effect size implied by the alternative hypothesis. The simulations also illustrated 

that our test statistic exhibited greater power than a generalized IPCW Mann-Whitney 

statistic for waiting times under proportional hazards alternatives. This corresponded with 

the well-known result for survival data that log-rank tests are optimal for proportional 

hazards alternatives. 

In Chapter IV, we introduced a nonparametric regression model for waiting times 

corresponding to Aalen's linear model for survival data. Our simulation studies in Chapter 

IV demonstrated that the IPW coefficient estimator was approximately unbiased in several 

situations, particularly under violations of the semi-Markov property. Further, as expected, 

the unadjusted, naive coefficient estimators exhibited substantial bias when waiting times 

from successive stages in the multi-stage model were correlated. These results were 

contemporary with the results of the simulation study of the hypothesis test statistic - that 

IPCW statistics perform adequately under violations of the typical assumptions made of 

multi-stage models and the statistics adapted from survival data can be significantly biased. 

A significant advantage of the IPCW approach is its relative simplicity. As 

frequently noted above, the IPCW principle itself is quite simple - replacing the 
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uncensored data counting processes used for traditional estimators with their IPCW 

equivalents. Hence, armed with reasonable estimates of the probability of censoring, IPCW 

estimators and test statistics are fairly simple to construct. However, calculating estimates 

of the probability of censoring to use as weights can be fairly complicated and requires 

some attention. A detailed analysis of censoring patterns should be conducted before 

generating the weights for IPCW statistics, particularly in the context of a multi-stage 

model. Such an analysis would ensure that as accurate an estimate of censoring 

probabilities is generated. In some capacity, the complexity of such a preliminary analysis 

of censoring patterns is related to the complexity of the multi-stage network, particularly if 

stage-dependent censoring is suspected. Nevertheless, the IPCW statistics we have 

introduced were of closed form and calculable from the available data as were estimates of 

variance, regardless of the observed censoring patterns. 

Another advantage of the IPCW approach is its generality. The IPCW principle of 

replacing uncensored data counting processes with IPCW analogues applies directly to 

waiting times from multi-stage data just as with survival data, for which it was initially 

developed. The IPCW method does not make unnecessary assumptions about censoring 

patterns nor the independence of transition times from a multi-stage model. Further, the 

proof of the asymptotic equivalence of IPCW counting processes and uncensored data 

counting processes was independent of the method used to estimate the probability of 

censoring, (i.e.) the proofs were based on any estimate of the probability of censoring 

rather than a particular estimates. Therefore, any asymptotically consistent estimator of 

the probability of censoring can be used. Our use of Aalen's linear model for the censoring 

hazard was predicated by the unique flexibility it possesses via its coefficient functions. We 

do recall that the selection of estimate for the probability of censoring does playa role in 

the asymptotic distribution of IPCW statistics, but this dependence largely impacted 

expressions for the asymptotic variance and estimators thereof. 

Aalen's linear model has received only minimal attention, and to our knowledge the 

results of Chapter IV are the first attempt at extensions under dependent censoring or for 

multi-stage models. As noted in the introduction, there are several methods for hypothesis 

testing of survival times and waiting times from a multi-stage model under dependent 

censoring. We note that the test statistics of Lin, Robins, and Wei [31], Lin and Ying [33], 

and Fan and Datta [15] were developed explicitly for two populations, whereas our 

proposed test statistics apply to K > 2 populations. The regression estimators by several 
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authors detailed in the introduction can provide tests for K > 2 populations as well. The 

IPCW U-statistic proposed by Datta, et al [10] provide a very general result with broad 

applicability. In the same way many common statistics from classical statistics can be 

expressed as traditional U -statistics, we expect that many IPCW statistics and estimators 

have representation as IPCW U -statistics. 

As noted in Chapter II, the IPCW principle has been previously applied to develop 

estimators of the cumulative hazard and survival functions for waiting times in a 

multi-stage model [44]. In this research, we have developed K-sample log-rank-type test 

statistics and nonparametric regression estimators. Each of these statistics are analogous to 

their survival data counterparts - the Nelson-Aalen estimator for cumulative hazards, the 

Kaplan-Meier estimator for survival functions, the log-rank test, and Aalen's linear model. 

As noted earlier, perhaps the most popular regression model for censored survival data is 

the Cox proportional hazards model [9]. The Cox model specifies a multiplicative hazard 

function, in which the hazard of an event is modeled as the product of a "baseline" hazard 

function and an exponentiated linear combination of model covariates. While IPCW 

estimators akin to those from the Cox model have been developed for censored survival 

data, extensions to waiting times from multi-stage models have not been pursued. This 

provides an avenue for further research, and we briefly motivate it below. 

In our notation, the Cox model adapted to waiting times from a multi-stage model 

specifies the multiplicative hazard function 

(5.1) 

where AOj(t) denotes a baseline hazard for stage j exits and {3 is the vector of regression 

coefficients. (A more general formulation, referred to as a "relative risk" model, replaces 

the exponential function with a general risk function r({3, Xi).) Again, we note that the 

covariate vector is evaluated at Ii; + t since the covariate processes evolve in calendar time 

but our interest is in modeling what occurs after stage j entry. The baseline hazard AOj(t) 

is left completely unspecified. Omitting the details of the derivation (see Andersen, et al [6] 

for a detailed treatment), the coefficient vector (3 is estimated as a solution to the score 

equation U~({3) = 0, where 

n r r 
U~({3) = ~ 10 Xi(Iij + t)dNij(t) - 10 E({3, t)dN;(t), (5.2) 
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where the covariate vectors Xi(t) and stage j uncensored data counting process Nij(t) and 

N;(t) are as defined in the text, T represents a sufficiently large time point to accumulate 

all exits from stage j, and the vector E*(,6, t) is 

where 

8{l)*(,6, t) 

* 8(1)*(,6, t) 
E (,6, t) = S(O)*(,6, t)' 

n 

L exp (,6TXi(I:j + t)) ~j(t) 
i=l 

n 

L Xi(I:j + t)exp (,6TXi(I:j + t)) ~j(t), 
i=l 

(5.3) 

(5.4) 

and the }~; are the uncensored data stage j at risk processes. The covariance matrix of the 

estimator ,6* arrived at via the score equation (5.2) can be estimated by 1;(,6), where 

1;(,6) = loT V*(,6, t)dN;(t), (5.5) 

where V*(,6, t) = 8(2)*(,6, t)/S(O)*(,6, t) - E*(,6, t)E*(,6, t)T, and 

n 

8(2)*(,6, t) = L Xi(I:j + t)Xi(I:j + t)Texp (,6TXi (I:j + t)) ~j(t). (5.6) 
i=l 

Finally, the baseline cumulative hazard AOj(t) = J~ AOj(s)ds can be estimated by 

(5.7) 

where J;(s) = J[Yj*(s) > 0]. 

Under suitable regularity conditions on the functions S(O)*, 8(1)*,8(2)*, E*, and V*, it 

can be shown that a solution ,6* to U;(,6) = 0 exists and is unique with probability 

approaching 1 and ,6* converges in probability to the "true" value of the covariate vector 

(see Condition VI1.2.1 and Theorem VI1.2.1 of Andersen, et al [6]). Under an additional 

Lindeberg assumption on the covariate processes Xi(t), the covariate estimator ,6* can be 

shown to be asymptotically normal with covariance matrix consistently estimated by 

n- l l;(,6*) (see Condition VII.2.2 and Theorem VII.2.2 of Andersen, et al [6]). A similar 

weak convergence result holds for the estimator (5.7) of the cumulative baseline hazard 

function. 
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As expected, the applicability of the Cox model for right censored survival data 

hinges in some part on the independence of censoring times from survival times. Further, a 

waiting time Cox model would require independent censoring and the semi-Markov 

property. We therefore propose IPCW estimators of the model coefficients and baseline 

cumulative hazard function for waiting times in a multi-stage model. As before, the 

definition of these estimators is simply the replacement of uncensored data counting 

processes in the uncensored data estimators with their IPCW equivalents. In detail, define 

the following quantities: 

Eca, t) 

n 

L exp (rPXi(Iij + t)) Jlij(t) 
i=l 

n 

L Xi(Iij + t)exp (rPXi(Iij + t)) Jlij(t) 
~1 . 

n 

L Xi(Iij + t)Xi(Iij + tfexp (rPXi(Iij + t)) Jlij(t) 
i=l 

8(1)(,6, t) 

§0(,6, t) 

~ foT Xi(Iij + t)dNij(t) - foT E(,6, t)dNj(t), (5.8) 

where Nij , Nj , Jli j , Y:; are the stage j exit and at risk IPCW counting process defined before. 

We then suggest IPCW estimators j3 as the solutions to the score equation UT (,6) = O. We 

additionally suggest an IPCW estimator for the baseline hazard function 

~ lot ].(s) -A . t - ) dN· s 
0) ( ) - 0 §CO) (,6, s) ) ( ), (5.9) 

where Jj(s) = J[Y:;(s) > 0]. 

The consistency and asymptotic normality proofs for the estimator ,6* for 

uncensored data partially rest upon a martingale representation for the score function. In 

particular, the kth component of the score vector U t(,6) has representation 

(5.10) 

where the X ik and E'k are the components of Xi and E*, respectively, and k = 1, ... ,p. A 

related martingale representation for the baseline hazard estimator is also the foundation 

for the proof of its asymptotic normality. We expect that a martingale representation for 
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the IPCW score function U T (,I3) can be achieved and asymptotic results derived therefrom. 

The martingale representations we derived for IPCW statistics in this dissertation 

decomposed into the sum of two orthogonal martingales - (1) a stochastic integral of a 

predictable process with respect to the martingale associated with the uncensored data 

counting process for stage j exits, and (2) a stochastic integral of a predictable process with 

respect to the martingale associated with the counting process for censoring events. 

Further, the first martingale of these decompositions corresponded directly to the 

martingale associated with a given uncensored data estimator/test statistic. Based on these 

results, we expect that such a decomposition could be achieved for the IPCW score process 

U T (,I3), and that the first summand of said decomposition would be precisely the score 

process U;(,I3). Further, we expect that the asymptotic variance of IPCW Cox model-type 

estimators would be the sum of the uncensored data variance expression I; (,13) and the 

predictable covariation process of the second martingale of the decomposition. 

For asymptotic considerations, the conditions required for the consistency of fj 

would include those conditions required for ,13*, but would likely require additionally 

assumptions guaranteeing the asymptotic negligibili,ty of the second martingale from the 

decomposition. Similarly, the conditions required for asymptotic normality of fj would 

include those for ,13* but would require additional assumptions on the second martingale, 

Practically speaking, these weak convergence assumptions will likely be a function of the 

method of estimation for the inverse probability of censoring. For our results, they were 

regularity conditions on the vector of covariates used to estimate the censoring hazard via 

Aalen's linear model. These concepts, of course, need more formalization and investigation, 

but do provide a fruitful direction for additional research into inference for multi-stage 

models under dependent censoring and violations of the semi-Markov property. 
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APPENDIX 

Proofs of Lemmas and Theorems 

Proof of Lemma II.4· 

We first note that Aj(t) - Aj(t) can be decomposed as follows: 

rt ~d(Nj(s) _ N;(s)) + it (~_ y*l( )) dNj(s) + 
10 Yj(s) 0 Yj(s) j s 
rt dN;(s) .,' 

Jo Yj:(s) - i\jlt). (A.I) 

Denote the three summands of the right hand side of (A.l) sum as I, II, and III. By 

standard martingale methods, we then have that 

it J*(s) 
III = _J_' -dM*(s) + 0 (n- 1/ 2) 

o Yj*(s) J P , 
(A.2) 

where where J;(s) = I[Yj*(s) > OJ. We note that ~9j(t) = Sj(t) + op(n-1
/

2
), by the 

following chain of argument: (1) 9j(t) ~ Yj(t) by the consistency of B(t) under Aalen's 

linear model, (2) Yj(t) = Y*(t) + op(n- 1/ 2 ) hy Theorem ILl, (3) ~}j*(t) ~ Sj(t) by the 

law of large numbers. Hence, we have that the first term satisfies 

n 1 (I[U~. - T*· < tJ5·· ) 
" tJ_ 1) - 1) _ I[U*. _ T':. < t X· = IJ + 0 (n-1/2) 
~ nS.(U*. - T*.) K(U .. -) tJ lJ - , lJ P 
1=1 J lJ tJ t lJ 

Using Lemma II.2 (and the note directly following it), the consistency of K i , and the law of 
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large numbers, we get 

_ _.;:... I[Utj - ~j S t]1>j roo l[s < Uij] -C() (-1/2) 
- L..... ln dM S + op n . 

i=l nSj(UiJ - ~J) 0 Ki(S) 1 

(A.3) 

We next note that ~N~(t) = 1 - SAt) + op(n- 1
/

2
) by the same chain of argument asserting 

that ~Yj(t) = Sj(t) + op(n- 1/ 2 ). We now observe that 

By Lemma 11.2, the consistency of K i , and the law of large numbers we have 

II = _ ';:'''It 
1[Uij - ~j ~ s]1>j 1Tij +

s
- _I_dM- C ( ) dS.( ) + (-1/2) 

L..... S2( ) K.() 1 U J S op n . 
i=l 0 n j S 0 1 U 

Interchanging the order of integration on the right hand side produces 

I ~ r .) r ij ij - U J .() __ -C( ) (-1/2 n T*.+t- {t I[U* - T* > ]1>. } 1 
I = f;;;;.lo lOV(S-Tij) nSJ(u) dSJ U Ki(s)dMi S +op n ) 

where 

.. ( ) _ 1>j ( 1[s - t < ~j] _ l[s - t < ~j] ) 
91J S, t - . 

nKi (S ) Sj (t 1\ (UiJ - ~J) ) Sj ((0 V (s - TiJ )) 1\ (UiJ - ~J) ) 
(A.4) 

Combining the expressions (A.3) and (A.4) for terms I and II of (A.I) produces 

where (ij(S, t) is as previously defined in (2.4). By the definitions of Mf(s) and Mf(s), we 
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I + II = ~ {foc)Q (;j(S, t)dM;C(s) - 10
00 

(ij(S, t)1[T; 2: s] d[A~ - A~](S)} + op(n-I/2). 

(A.5) 

From Aalen's linear model and our choice of generalized inverse for the matrix A(t), we 

have that for T; 2: s, 

where X;(u),Xi(u),X(u),A(u), and MC(u) are as defined in the text. We then have that 

(A.5) becomes 

Finally, adding in expression (A.2) for term III, we arrive that 

the desired martingale representation, thus completing the proof of Lemma IIA. 

Proof of Theorem 111.1. 

We first recall the martingale representation and predictable covariation process of 

• 

(A.6) 
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Given the orthogonality [43] of the two terms of the martingale representation of the 

hth component of Zj(t) in (A.6), we prove Theorem III.l by demonstrating the weak 

convergence of each term to a normal limit. The first term, 

(A.8) 

directly corresponds to the martingale representation of K-sample test statistics for 

counting processes as detailed in [6] (cf. Equation 5.2.3, p. 346). The conditions required 

for weak convergence defined therein (cf. Theorem V.2.1, p. 360) are the existence of 

deterministic functions Y~j' ... 'YKj' yj'l/;j such that for all h, k, t 

• 'l/;JY*)lj is integrable, 

• n J~ W](s)Y,;'j(S)Ykj(S)(Y;(S))-l Aj(s)ds ~ J6 'l/;J(s)Yhis)Ykj(S)(Yj(s)t1 Aj(s)ds, 

(convergence of the predictable covariation process to a continuous, deterministic 

limit) 

• nJ6 W](s)I [/y'nWj(s)/ > E] Yj(s)Aj(s)ds ~ O. (Lindeberg condition) 

Under these assumptions, the conditions of the Rebelledo martingale central limit theorem 

are satisfied, and the K-vector of terms (A.8) converges in distribution to a normal limit 

with covariance defined by the first integral of (A. 7) [6]. 

We now consider the second term of (A.6) for the hth component of y'nZj(t), 

(A.9) 

Both ([ (s, t) and (j(s, t) in the definition of 'TI[ (s, t) are deterministic. Further, up to 

op(n-l/2) terms, Yhj(t) = nhShj(t); hence, we write 

We now make two assumptions regarding the asymptotic behavior of 'TI[ (s, t), in particular 

imposing further conditions on the function 'l/;j defined above such that for all h, 

• 'l/;j(U)Shj(U) (([(s,du) - (j(s,du)) is integrable with respect to u, 
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• nh f~ Wj( U)Shj(U) ((f (s, du) - (j(s, du)) ~ f~ 'ljJj (U)Shj (U) ((f (S; du) - (j(s, du)), 

Let 11f*(s, t) = f~ 'ljJj(U)Shj ( u) ((f (s, du) - (j(s, du)). 

We consider the (h, kyh component of the predictable covariation process for (A.9) 

in two parts. The first term is nfooo 11f(s,t)TI>.(S)11f(s,t)ds, where I>.(s) is as defined in 

(A. 7). Performing the multiplication produces 

We assume that for all iand l 

• ry{£* (s, t)2 Ali (s) is integrable 

where the ryf5* are the components of 11::*. 
For the second term of (A.9), we assume the existence, finiteness, and 

non-singularity of the matrix a(s) = E [Xhi(S)X~(s)]. Then 

y'ri .10
00 

11f (s, t)X(s)A -l(S )XT (s )dMC( s) 

In 10
00 

11:: (s, t)X(s)(n- 1 A(S))-lXT(S)dMC(s) 

In 10
00 

11f (s, t)X(s)a-1(s)XT (s)dMC(s) + op(n-1
/

2
) 

1 (00 

v'n 10 11f (s; t)P(s )dMC( s) + op(n-1
/
2

), 

where P(s) = plimn--+ooX(s)a-1(s)XT(s), which we assume to exist. The second term of 

the (h, k)th component of the predictable covariation process for (A.9) is then 

11000 

- 11f (s, t)P(s )I>.(s )P(s )11f (s, t)ds. 
n 0 

We now assume that 

1 1000 

p 1000 

- 11.f (s, t)P(s)I>.(s)P(s)11.f (s, t)ds ----. 11.f*(s, t)P(s)l>. (s)P(s)11.f* (s, t)ds 
n 0 0 

Collecting our results thus far gives us that 
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10
00 

TJf*(s, tfl>.(s)TJf*(s; t)ds-

1000 

TJf*(s, t)Tp(s)I>.(s)P(s)TJf*(s, t)ds, 

(i.e.) that the predictable covariation process of Zj (t) approaches a deterministic limit. 

We now make a general assumption to satisfy the Lindeberg condition of the 

martingale central limit theorem for the second term (A.9) (the Lindeberg condition for 

(A.8) has been addressed). Let Hf (s, t) = Vn "If (s, t)T [I - X(s)A -l(S)XT(s)], and note 

that the second term of (A.6) can be expressed as 

'.vhere H tfj (5, t) are the lexicographically ordered components of Hf (s: t) We then assume 

(cf. eq. 2.5.8, [6]) that 

(i.e.) we assume that the second term (A.9) of the hth component of Zj(t) approaches a 

continuous limit. This assumption, coupled with convergence of the predictable covariation 

process to a deterministic limit, guarantees the convergence of (A.9) to a normal limit. 

Putting the weak convergence of (A.8) and (A.9) while recognizing their orthogonality 

proves Theorem 111.1. 

• 
Proof of Lemma. IV.1. 

We begin by "vectorizing" the results from the proof of Theorem ILl. Specifically, 
- ~---Theorem ILl asserts that Nij(t) = Nij(t) - Nij(t) fo '1 Ki(S)-ldMiC(s) and 

~ T*.+t- - - . . 
}ij(t) = Y;j(t) - Y;j(t) fo'1 Ki(S)-ldMi(s). The correspondmg vector/matrIx results are 

diag {fij(t)} X(Tj + t) - diag {Y;;(t)} X(T; + t) 

diag {fij(t)} X(Tj + t) - diag {Y;;(t)} X(T; + t) + 

diag {fij(t)} X(T; + t) - diag {fij(t)} X(T; + t) 
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diag {fij(t) - ~;(t)} X(T; + t) + 

diag {fij(t)} (X(Tj + t) - X(T; + t)) 

diag {fij(t) - ~;(t)} X(T; + t) 

-diag {~j(t) t)O 1[s < T;j + t]dMt(S)} X(Tj + t). 
10 Ki(S) 

-diag _ 'J dMiC(s) Y*(t) {lOO l[s < T* + t] - } 
o Ki(S) J 

(A.1l) 

We note that the fourth line of the derivation of the result for Yj(t) - Yj(t) asserts that 

diag { fij (t) } (X(T j + t) - X(Tj + t)) is a zero matrix; we briefly illustrate this. The 

(i, k)th element of this matrix expression is fij(t) (Xik(T;j + t) - Xik(T;j + t)). For 

T;j s: Gi, we note that T;j = T;j and hence Xik(T;j + t) = Xik(T;j + t) and the (i, k)th 

element is zero. For T;j > Oi, Yij(t) = f[Uij - T;j 2': t, T;j s: Gd/ Ki(T;j + t-) = 0 and again 

the (i, k)th element is zero. Therefore, diag {fij(t)} (X(Tj + t) - X(Tj + t)) = o. 
Both (A.lO) and (A.1l) involve stochastic integration with respect to the function 

dMHs). The equality dMiC(u) = dMiC(u) - 1[T; 2': u] d[Ai - Ai](u) noted in the proof of 

Lemma 1I.4 takes vector form dMC(u) = dMC(u) - diag {1[T; 2': u]} d [Ac - AC] (u). By 

Aalen's linear model for the censoring hazard, we have that 

WhArp. YC(r) is as defined in the statement of the theorem. Therefore, we have that 

dMC(u) = P(u)dMC(u), where P(u) is as in the statement of the theorem, and (A.IO) and 

(A.II) become 

(A.I2) 

(A.I3) 
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where DN(S) and Dy(s, t) are as in the statement of the theorem. We briefly note here the 

product commutativity of symmetric matrices (such as P(u)) and diagonal matrices, which 

will be used below. From (A.13), we note that a generalized inverse of Yj(t) is given by 

and that a useful generalized inverse of 1 - Dy(s; t)P(u) is given by the matrix 

(I + (I - Dy(s, t)P(u))-Dy(s, t)P(u)). 

We now note that based on (A.12) and (A.13), 

lot Yj(s)dNj(s) - Bj(t) 

rt *- ( T> I \~I .\\-T> I \..-,.1 \ \ 10 Y j (s)\J+(I-.LJnu,s;.qu)j J.Jn"U,s)r~u)) x 

(I - DN(u)P(u))dNj(s) - Bj(t) + op(n-l/2). 

Expanding this expression produces 

Bj(t) - Bj(t) = lot Yj-(s)dNj(s) - Bj(t) + 

lot Y;-(s) (I - Dy(u, s)P(u))- Dy(u, s)P(u)dNj(s) -

Ioty;-(s) (DN(U)P(U) + (I - Dy(u,s)P(u))-Dy(u,s)P(u)x 

DN(U)P(U)) dNj(s) + op(n-l/2). (A.14) 

Label the three summands of (A.14) as I, II, and III. By standard martingale methods (see 

Eq. 7.4.7 of Andersen, et al [6]), the first term satisfies 

(A.IS) 

For term II, we note that the diagonal matrix Dy( u, s) and the symmetric matrix P (u) 

commute, and that we can interchange the implied order of integration to produce 

II = 
['XJ r _ . {f[U < Tt + s] * } io io Yj-(s) (I - Dy(u, s)P(u)) dIag K

i
(:) dNij(s) P(u)dMC(u) + 

op(n-1/2) (A.16) 
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Factoring the third term produces 

which, after interchanging the order of integration implied by DN(U) and dNj(s) and 

substituting in a simplified version of (I - Dy( u, s )P( u))-, becomes 

III = 

Putting (A.I6) and (A.17) together produces 

II-III = J~C)C [J~tYj-(S)(1-DY(U,S)P(U))-diag{ (I[:~~ij] 

f[u < ~j + sJ) *}] C -1/2 Ki(U) dNij(s) P(u)dM (u) + op(n ), 

lX) [l Yj-(s)(I - Dy(u, s)P(u))-diag{Q(u, s)}diag{dNj(s)}] x 

P(u)dMC(u) + op(n- 1
/

2
), (A.I8) 

Adding (A.I5) to (A.I8) produces 

Bj(t) - Bj(t) = l Jj(s)Yj-(s)dM*(s) + 

10
00 [lot Yj-(s)(1 - Dy(u, s)P(u))-diag{Q(u, s)}diag{ dNj(S)}] x 

P(u)dMC(u) + op(n-1
/
2
), (A.19) 

and the lemma is proven. 

Proof of Theorem fV.2. 

We recall the martingale representation of Bj(t) given above (A.I9) and its 

predictable variation process: 

et 
(Bj(t) - Bj(t)) = J Jj(s)Yj-(s) diag{Aj(s)} Y;-(s)Tds+ 

Jo 

10
00 [lot Yj-(s)(1 - Dy(u, s)P(u))-diag{Q(u, s)}diag{ dNj(S)}] x 
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P(u) diag{ ,\C( u)} p(uf [lot Y;- (s)(1 - Dy(u, s)P(u))-diag{Q(u, s)} 

diag{dNj(s)}r du, (A.20) 

As with the proof of Theorem IlL I , we consider the two martingales composing 

B j (t) - B j (t) separately given their orthogonality. We first note that the first term of 

(A.19) directly corresponds to the martingale representation of Aalen's linear model for 

counting processes as described in Andersen, et al [6] (d. Equation 7.4.7, pg. 564). The 

conditions required for the weak convergence of this martingale are defined therein, which 

we state here: 

1. the existence of continuous functions Y)~2 (s), Y)~21 (s), and Y;~2Im (s), such that for all 

O:S k,l,m:S pas n --+ 00 

• sUPsE[a,t] I~ 2=~=1 Yj~ik(S) - Y)~2(s)1 ~ 0 

• sUPsE[a,t] I~ 2=~=1 1J:ik(S)Yj:il(s) - Y)~21(S)1 ~ 0 

• sUPsE[a,t] '~2=~1 Yj~ik(S)Yj:il(S)Yj:im(S) - Y;~2Im(s)1 ~ 0, 

where Yj:kl denotes the (k, l)fh element of the matrix Yj; 

2. for alll = 0, ... ,p, 

n-
1
/

2 sup SE[a,t] IYj~kl(S)1 ~ 0; 
k=l, ... ,n 

3. the matrix yY) (s) = {Y)~21 (s) } is non-singular. 

Under these conditions, the martingale yin fJ J; (s )Yj- (s )dMj (s) defined in the first term 

of (A.19) converges to a normal limit with covariance matrix defined by the first integral of 

(A.20). The details of the proof can be found in the proof of Theorem VIl.4.1 in Andersen, 

et al [6]. Note that although these conditions look somewhat esoteric, they directly 

correspond to the conditions necessary for the application of the martingale central limit 

theorem. Condition 1 establishes a law of large number for the products of the matrix 

Yj(s) that form the least squares generalized inverse (Y;(s)TYj(S))-lYj(s)T, guaranteeing 

their convergence to a continuous, deterministic limit which in turn guarantees the 

convergence of the predictable covariation process to a continuous, deterministic limit. 

Condition 2 is a Lindeberg condition on the elements of the covariate matrix Y; (s), and 

condition 3 guarantees that Y;(s)Ty;(S) converges to an invertible limit. Additional 
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assumptions on the covariates generally lead to more explicit conditions for weak 

convergence, such as assuming that the counting (N;j, Y;j) and covariate processes (Xi) are 

together i.i.d. (see Andersen, et al [6], Ex. VIII.4.4 for further details). 

We now turn attention to the second term of (A.19), 

Vn fooo [f~ Y;-(s )(1 - Dy(u, s)P( ll)tdiag{ Q('tL s) }diag{ dNj(s)}] P(u)dMC(u). 

(A.21) 

For notational convenience, let R( u, s) = (I - Dy (u, s )P( u)) By assumptions 1 and 3 on 

the least squares generalized inverse of Y;(s) from the previous page, we note that 

of Yj-(s)R(u, s ).-diag{Q(u, s )}diag{ dNj(s)} 

= ~ rt (n-lYj(s)TYj(S) r 1 
Yj(s)TR(u, s)-diag{Q(u, s)}diag{ dNj(s)} 

n 10 
2. rt y)2)(S)-1 [Y j (s)TR(ll,s)-diag{Q(u;s)}diag{dNj(s)}] + op(n-l/2) 
n 10 

where y;2) (s) is the matrix defined in condition 1 on the previous page. Performing the 

stochastic integration implied above produces the (p + 1) x n matrix with (k, l)th element 

(A.22) 

generalized inverse of R( u, s), and yY2i (s) the (k, i)th element of y?). We now assume the 

existence, finiteness, and continuity (in u) of the quantity 

p 

2: yY2i(Utj ·- Tz'j)-l E [Ql(U, UiJ - Tz'j)Yhi(Utj - Tzj)Rhi(u, U1j - Tz'j)] , 
i=O 

to which (A.22) converges via the law of large numbers. In summary, we have that the 

inner integral of (A.21) converges to a (p + 1) x n matrix which we denote ~(u, t). 

We now turn attention to the matrix P(u). Since P(u) is a matrix product arising 

from the estimation of the censoring hazard via Aalen's linear model, we can impose the 

technical conditions previously used for Yj (s) onto YC( s): 

1. the existence of continuous functions Yhcl
) (s), Yhc,;)(s), Yh~)(S), and Yh~~~(s) such that 

for all 0 :::; h, k; l, m :::; p as n -t 00 
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• SUPsE[O,t] I~ L~l YS,(s) - y~c1)(S)1 ~ 0 

• SUPSE[O,t] I~ L~=l y;,,(S)y;,,(S) - y~~2\S)1 ~ 0 

• SUPSE[O,tj I~ L~=l y;,,(S)Y;k(S)Y;[(S) - Y~~~\S)I ~ 0, 

• SUPsE[O,tj I~ L~l y;,,(s)Y;k(s)Y;Hs)Y;~(s) - y~~~~(s)1 ~ 0, 

where Yk1 denotes the (k, l)th element of the matrix YC; 

2. for all l = 0, ... ,p, 

n-1
/

2 sup sE[O,t] IYk1(s)1 ~ 0; 
k=l, ... ,n 

3. the matrix y(c2) (s) = {Yk~2) (s)} is non-singular. 

We note that the fourth assumption for condition 1 is required since peu) involves a 

4-product of the matrix Yc(u). These conditions ensure that P(u) approaches a 

continuous, deterministic limit denoted p( u) as follows: 

peu) 1- YcCu) (Yc(ufYc(U) r 1 
Yc(U)T 

1 ( )-1 1- ;; Yc(u) n-lYc(u)Tyc(u) Yc(u)T 

1 
1- - Yc(U)y(C2)(U)-lYc(u)T + op(n- 1/ 2 ) 

n 
1- y(cl)(U)y(C2)(U)-ly(cl)(uf + op(n- 1/ 2 ) 

p(u) + op(n- 1
/

2
). 

We then have that the second term of the martingale representation (A.21) is 

where we note that ~(u)p(u), being continuous and deterministic, is predictable and hence 

its stochastic integral with respect to the zero-mean martingale dMC(u) is also a zero-mean 

martingale with variance given by the continuous, deterministic predictable covariation 

process 

(A.23) 

to which the predictable covariation process (A.20) converges. 

We make a general assumption to satisfy the Lindeberg condition required for 
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asymptotic normality. Let H(u, t) denote the (p + 1) x n matrix 

H(u, t) = yin [l y;- (5 )(1 - Dy('ll: 5 )P('ll)t diag{Q(u, 5)}diag{ dN;(s)}] P( u). 

Then the second term of the martingale representation for Bj(t) - Bj(t) in (A.21) can be 

expressed as foCXlH(u,t)dMC(u). The kth term of this vector is 

We then assume (cf. eq. 2.5.8, [6]) that 

(A.24) 

for all k, (i.e.) we assume that each of the p + 1 components of the second term (A.21) 

approaches a continuous limit (that the "jumps" of the associated martingale are 

asymptotically arbitrarily small). The convergence of the predictable covariation process 

(A.20) to a continuous, deterministic limit (A.23) coupled with Lindeberg condition (A.24) 

ensures that the second term (A.21) in the martingale expansion of Bj(t) - Bj(t) converges 

weakly to a normal limit. This result, coupled with the weak convergence of the first term 

of (A.19) to a normal limit, while recognizing the orthogonality of the two terms of (A.19), 

proves Theorem IV.2. 

• 
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