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ABSTRACT 
 
 
 
Purpose: Continuous flow (CF) left ventricular assist devices (LVAD) support 

diminishes vascular pressure pulsatility. Despite its recent clinical success and 

reliability, CF LVAD support has been associated with adverse events including 

gastrointestinal bleeding, aortic valve insufficiency, and hemorrhagic strokes. To 

overcome these limitations, we have developed flow/RPM modulation algorithms 

to provide vascular pulsatility using a CF LVAD. 

 

Methods: The effects of timing and synchronizing the CF LVAD flow/RPM 

modulation to the native ventricle, modulation amplitude, and modulation widths 

were studied on the native ventricle and vasculature using computer simulation, 

mock loop, and animal model studies. A total of over 100 combinations of flow 

modulation algorithms to modulate CF LVAD flow/RPM were tested for partial 

and full LVAD support modes.  

 

Results: Modulation of CF LVAD flow/RPM resulted in an increased arterial 

pressure pulsatility of up to 50 mmHg during asynchronous modulation and 20 

mmHg during synchronous modulation. Synchronous CF LVAD RPM modulation 

allowed for a range of reduced left ventricular external work (LVEW) as 

compared to un-modulated CF LVAD support conditions. Full support co-
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pulsation (high RPM during systole, low RPM during diastole) created greater 

pulse pressures as compared to counter pulsation (high RPM during diastole, low 

RPM during systole). However, all full support modulation timings yielded higher 

pulse pressure than normal full support CF LVAD flow at low ventricular 

contractilities. Importantly, reduction in LVEW and increase in pulsatility may be 

adjusted to user-defined values while maintaining the same average CF LVAD 

flow rate.  

 

Conclusions: These LVAD flow/RPM modulations may reduce the incidence of 

adverse events associated with the CF LVAD therapy by increasing vascular 

pulsatility and reducing vascular impedance. Further, these methods of CF LVAD 

flow/RPM modulation may enable tailored unloading of the native ventricle to 

provide rest and rehabilitation (maximal unloading to rest followed by gradual 

reloading to wean), which may promote sustainable myocardial recovery. 
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CHAPTER 1 - BACKGROUND 

 

Epidemiology 

 

Approximately 80 million Americans suffer from cardiovascular disease, which 

has become the leading cause of death among both men and women in the 

United States. Cardiovascular disease accounts for over 550,000 deaths per 

year and led to a projected $450 billion in healthcare costs in 2009. Of these 80 

million, six million will develop chronic heart failure (Figure 1) [1]. Furthermore, 

one-year mortality rates for New York Heart Failure Association Class IV patients 

exceed 60%.  

 
Figure 1: Chronic heart failure rates in the United States continue to 
increase, and are extrapolated to reach over 25 million Americans in 

2015[1]. 
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Pathology 

 

In congestive heart failure (CHF), the heart is unable to deliver the necessary 

rate of sufficient blood, oxygen, and metabolites for the metabolic demands of 

organs and tissues. CHF can occur both acutely and chronically depending on 

the etiology of the disease. A patient can develop CHF abruptly in cases such as 

sudden onset of fluid overload, valvular dysfunction or a severe myocardial 

infarction. Chronically, heart failure can result due to persistent elevated work 

requirements of the heart which may be secondary to valve disease, 

hypertension, or ischemia among others. Further, reduced contractility can occur 

due to weakening of the cardiomyocytes or stiffening of the myocardium during 

CHF [2].  

 

 

Physiology  

 

During progression of CHF, mechanisms assist the heart and body to adapt to 

meet metabolic needs. Myocardial contraction increases as diastolic volume 

increases via increase in myosin-actin interaction, as described by the Frank-

Starling Mechanism. Ventricular remodeling occurs as an adaptation in early 
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stages of heart failure in efforts to maintain necessary cardiac output. However, 

this can create an additive effect that eventually results in worsening heart failure. 

Additionally, the autonomic nervous system can release norepinephrine to 

increase the frequency of heart contractions. Similarly, the renin-angiotensin-

aldosterone pathway along with release of natriuretic peptide results in changes 

in filling volumes and pressures. Early symptoms of left-sided failure are often 

associated with pulmonary congestion and edema. Activation of the renin-

angiotensin-aldosterone system, caused by inadequate kidney perfusion, can 

lead to an increase in pulmonary vessel pressure and subsequent onset of 

hypoxia[3]. Furthermore, diminished arterial pressure pulsatility has been shown 

to increase vascular impedance and reduce arterial relaxation [4, 5].  

 

 

Treatments 

 

The gold-standard treatment for these patients, cardiac transplantation, has a 

50% 10-year survival rate. While transplantation significantly improves the 

patient’s quality of life[6], patients are required to take immunosuppressant 

medications, weakening their immune system. The frequency of available donor 

hearts limits the number of transplanted patients with less than 4,000 cardiac 

transplant surgeries are performed in the U.S. annually. Furthermore, over the 
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past five years there has been no significant increase in transplant rates, which 

suggests this therapy is not a practical long-term solution for the majority of CHF 

patients (Figure 2). Thus, these untransplanted patients are viable candidates for 

alternative therapy[7].  

 

 
Figure 2: The number of heart transplant per year has not increased, and in 

recent history has actually been decreasing in frequency [7]. 

 

Alternatives to cardiac transplantation include medicinal therapies, techniques, 

and devices, which slow the deterioration of heart function and improve patients’ 

functional status. Rest and relaxation of the cardiac muscle has long been the 

underlying theme of heart failure treatment. Originally, patients were sequestered 

to bed rest and limited mobility. Thus, while waiting for transplant or other therapy, 

the sick patients had a much-reduced quality of life from a combination of their 

disease and their treatment, including being bed-ridden and a forced reduction in 

their daily activities. Currently, medicinal therapies seek to reduce the afterload 

and disrupt the β-adrenergic receptor blockade. Medicinal therapies include the 
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administration of diuretics, angiotensin-converting enzyme (ACE) inhibitors, 

angiotensin II receptor blockers, beta-blockers, and others[8]. Yet, perhaps the 

most rapidly growing therapy in cardiovascular disease is mechanical circulatory 

support. 

 

 

Development of mechanical circulatory support 

 

In 1964, The National Heart Institute established the Artificial Heart Program. The 

following year, the National Institute of Health requested $40 million for the 

upstart of the program. Dr. Denton Cooley implanted the first American artificial 

heart in 1969 as a bridge to transplant. The device supported the patient for 64 

hours till a heart could be found, however the patient survived little more than 30 

hours post-transplant. Later that year, an NHI sponsored group on Cardiac 

Replacement concluded that left ventricular assist devices (LVAD) would be a 

promising area of research due to the current engineering short comings in 

developing a completely artificial heart (i.e. TETS system, biocompatibility issues, 

durability)[9]. 

 

In the three decades following the suggestion to explore the development of 

LVAD, solutions were found to a number of underlying issues that plagued the 
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original artificial heart programs. Specifically, engineers had sufficiently answered 

the issues of material biocompatibility and the life threatening driveline infections 

to make LVAD a legitimate therapy for end-stage heart failure patients. The use 

of textured titanium surface, titanium alloys, polymers and other biocompatible 

materials allowed for chronic device implantation without the risk of a clinically 

significant reaction[10]. Further, experience with cannula designs and drivelines 

resulted in improvements of the percutaneous lines that exit the body and 

resulted in reducing the infection risk[11].    

 

The majority of devices developed during these three decades were categorized 

by their pulsatile flow that mimicked the native heart. The devices used 

membranes that were actuated, using a fill and eject cycle, similar to the native 

ventricle. The first generation of implantable pulsatile flow LVADs (Thoratec IVAD 

and HeartMate XVE, Worldheart Novacor) weighed up to 1kg and took up to one 

half liter (volume) of space inside the implanted patient abdominal cavity. The 

size restriction excluded smaller males, and most females as candidates for 

therapy [12]. These pulsatile flow mechanical circulatory support devices were 

effective in providing long-term (> 6 months) support. 

 

However, the durability of the pulsatile pumps was sub-optimal (~18 months). 

The pulsatile device has a predictably high incidence of mechanical failure in the 
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second year of support, with the most common failing mechanism being inflow 

valve insufficiency [13]. The challenge of mechanical circulatory assist device 

durability was addressed with the introduction of smaller, compact design, 

second-generation blood pumps. Rotary pumps, which produce continuous, non-

pulsatile flow, have reduced the number of moving parts to a single impeller/ 

rotor. The reduction in moving parts has resulted in clinical experience 

demonstrating improved durability and lower power consumption [14].  

 

Left ventricular assist device (LVAD) implantation has increased in popularity as 

a therapeutic measure for bridging to transplantation in patients with end-stage 

heart failure, and is gaining wider clinical acceptance as destination therapy in 

patients ineligible for transplantation [14-16].  Further, there is hope that these 

devices can be operated in such a way as to promote myocardial recovery. 

During support they have been shown to be capable of partially reversing many 

of the genetic, functional, and morphological hallmarks of the failing heart[17-23], 

in addition to allowing device removal without transplantation in a small fraction 

of patients[24, 25].  Recent evidence indicates that while there are differences in 

the magnitude of unloading between pulsatile flow (PF) and continuous flow (CF) 

pumps, both are capable of achieving normalization of some cellular damage 

markers[26], and continuous flow pumps appear to be just as effective if not 

better than pulsatile flow pumps in bridging patients to transplantation[27]. 



  

8 
 

Furthermore, support in patients who do not meet transplant criteria, destination 

therapy, has shown longer survival in continuous flow as compared to pulsatile 

flow devices[14]. Given the apparent similarity in the survival benefit offered to 

heart failure patients by these devices, CF LVAD has gained greater acceptance 

as they have fewer moving parts, higher mechanical reliability[28], and are 

considerably smaller, minimizing thrombogenic surface area and enabling 

implantation in smaller adults as compare to their pulsatile counterparts. 

 

Amidst the growing popularity of CF LVAD, however, there remain unanswered 

questions regarding the long-term physiological effects of CF LVAD support. CF 

LVAD significantly diminish vascular pressure pulsatility compared to PF LVAD 

and anecdotal reports have indicated the development adverse events including 

gastrointestinal bleeding, hemorrhagic strokes, increased vascular impedance, 

and progression of aortic valve insufficiency in HF patients chronically supported 

by CF LVAD [4, 29-31]. PF LVAD phasically unload the native ventricle, creating 

variable loading of the native myocardium while maintaining end-organ perfusion, 

which may affect weaning and promotion of myocardial recovery [32]. CF LVAD 

continuously unload the native ventricle providing consistent ventricular loading. 

However, this makes it difficult to modulate the myocardial load without altering 

the LVAD flow and subsequently affecting the end-organ perfusion. 
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Gradual reloading of the heart while maintaining end-organ perfusion could be 

achieved by modulation of blood pump motor speeds/flow. Modulation of blood 

pump motor speeds/flow has been suggested as a potential mechanism to 

artificially increase vascular pulsatility in both ventricular assist devices [33-39] 

and total artificial hearts[40-43]. Flow modulation of ventricular assist devices is 

affected by the timing of flow modulation to the native myocardial contraction. 

Early LVAD modulation strategies focused on asynchronous modulation of LVAD 

flow, as it was simpler to implement [33, 38].  Cox et al., Letsou et al., and Shi et 

al. simulated sinusoidal synchronous LVAD flow modulation but did not vary the 

timing of LVAD flow modulation [35, 36, 39]. Vandenberghe et al. varied the 

timing of synchronous support but did not vary the LVAD flow modulation 

amplitude or pulse width. Further, Vandenberghe et al. derived model 

parameters from sheep which is different from human values [34] . The effects of 

synchronizing and timing of the modulation of LVAD motor speeds/flow to the 

native myocardium, modulation amplitude, and modulation width have only 

recently been reported as a byproduct of this thesis work [44].  

 

In this study, the effects of timing and synchronizing the LVAD motor speed and 

flow modulation, modulation amplitude, and modulation widths on the native 

ventricle and vasculature are investigated. Experiments were performed using a 

computer simulation model, a mock circulation model, and acute animal studies.    
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CHAPTER  2 – COMPUTER SIMULATION  

 

Introduction 

 

Computer simulation is an important step in the design process for LVAD control 

strategies and has been repeatedly shown valuable in the literature. Testing in 

computer simulation is a financially efficient and time saving way to test multiple 

iterations of various control designs.  Several strategies of LVAD control have 

been studied using computer simulation models including suction detection[45-

47], estimation and control of aortic pressure[48], exercise responsive control[49], 

and preload dependent pump flow[50]. We hypothesized that modulation of 

LVAD flow will increase arterial pressure pulsatility and alter left ventricular 

pressures, volumes, and workloads. Further, the effect on the native ventricle will 

be dependent on timing, amplitude, and pulse width of the LVAD flow modulation. 

The objective of this computer simulation study was to investigate the effects of 

timing and synchronizing LVAD flow modulation on the native ventricle and 

vasculature with varying modulation amplitudes and widths. 
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Methods and Materials 

 

Cardiovascular System Simulation  

 

A previously reported computer simulation model of the human cardiovascular 

system was modified to simulate heart failure using Matlab (Mathworks, MA). 

This computer simulation model was validated and has been used in previous 

studies to develop and test physiologic control strategies for mechanical 

circulatory support devices [4, 51-53]. A more detailed description of the 

simulation model is provided by Giridharan et. al[53].  

 

Briefly, the computer model subdivides the human circulatory system into an 

arbitrary number of lumped parameter blocks, each characterized by its own 

resistance, compliance, pressure, and volume of blood. Two idealized elements, 

resistance and storage, were used to characterize each block. The storage 

element provides zero resistance to flow, whereas the resistive element has zero 

volume. The model has 13 elements: four valves and nine blocks, including left 

and right ventricles, pulmonary and systemic circulations, vena cava, aorta, and 

coronary circulation (Figure 3). Ventricles were characterized by a time varying 
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compliance. The remaining blocks were characterized by passive elements. The 

coronary block consisted of time varying resistive and compliance elements.  

 

Figure 3: Schematic of the lumped parameter human circulatory 
system model. 

 
LVAD Model 

 

A model of a CF LVAD was integrated into previously published computer 

simulation model. Simulations were conducted to predict acute hemodynamic 

responses including coronary flows, ventricular pressure-volume loops, left 

ventricular external work, arterial pressures, and vascular pulsatility parameters 

(mean arterial pressure (MAP), energy equivalent pressure (EEP), surplus 

hemodynamic energy (SHE)) for partial (mean LVAD flow = 2.5 ± 0.1 L/min) and 

full LVAD support (mean LVAD flow = 5.0 ± 0.1 L/min) modes.  
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The LVAD flow modulation waveforms were constructed using a piecewise-

defined function with no LVAD retrograde flows. CF LVAD retrograde flows 

increase vascular pulsatility, but was not considered as they can increase 

hemolysis and lead to higher myocardial loads and ventricular wall stresses. The 

piecewise-defined function was divided into pulse and nadir phases (Figure 4a). 

The pulse width was defined as the portion of the LVAD flow waveform where the 

instantaneous flow equaled or exceeded the mean flow. The nadir phase was 

defined as the portion of the LVAD flow waveform where the instantaneous flow 

was less than or equaled the mean flow. Unification of the pulse and nadir 

phases created one complete LVAD flow waveform. Pulse widths from 20%-80% 

were simulated for each level of synchronous LVAD flow modulation. Pulse 

widths of 40%, 50% and 60% were created with the same flow modulation 

amplitudes and mean flows (Figure 4b). The pulse width conditions of 20%, 30%, 

70%, and 80% required varying flow modulation amplitudes but maintained same 

average flow rates. Both asynchronous LVAD flow modulation (20 beats/min, 40 

beats/min, 60 beats/min) and synchronous LVAD flow modulation (80 beats/min) 

were tested.  
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Figure 4: (a) LVAD flow waveform with a 40% pulse width. (b) LVAD flow 
waveforms with 40%, 50%, and 60% pulse width. (c) LVAD flow waveforms 
with high, medium, and low flow modulation. (d) A 40% pulse width LVAD 
flow waveform with a 40% and 60% time shift. 

 

Different levels of LVAD flow modulation amplitudes were simulated for partial 

and full LVAD support testing. Partial support LVAD flow modulations were 

tested at low pulsatility, medium pulsatility, and high pulsatility. The amplitudes of 

partial support LVAD flow modulations were 1 L/min, 2 L/min, and 4 L/min for low, 
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medium, and high pulsatility modes, respectively. The amplitudes of full support 

LVAD flow modulations were 1 L/min, 4.5 L/min, and 9 L/min for low, medium, 

and high pulsatility modes, respectively (Figure 4c). The effects of timing the 

synchronous LVAD flow modulation to the native myocardial contraction were 

tested by varying the time shift, which represents the timing of the LVAD flow 

modulation in relation to the cardiac cycle (Figure 4d).  Specifically, LVAD flow 

modulation was initiated at 0% (co-pulsation mode - both native ventricular 

contraction and LVAD flow modulation are in unison), 20%, 40% (counter 

pulsation mode-LVAD flow modulation initiated during native ventricular diastole), 

60%, and 80% of the native cardiac cycle, A total over 150 combinations of 

varying pulse widths, beat frequencies, time shifts, and amplitudes of CF LVAD 

flow were simulated. 

 

All simulations were initiated with limit cycle (steady state) values of a failing 

heart. At time t=0, the simulated device was turned on with a flow modulation. 

The model circulatory system reached a limit cycle within 300 cardiac cycles. The 

simulation was continued to 500 cardiac cycles. The mean values of pressures, 

flows, and volumes were reported only for the last 50 beats. The computer model 

was assumed to have no process noise and the deviation in steady-state value 
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was less than 1mmHg for pressures, 0.05L/min for flow rates, and 2mL for 

ventricular volumes. 

 

Results 

 

Effect of level of support 
 
 
Increasing levels of CF LVAD support, irrespective of CF LVAD flow modulation, 

reduced LVEW, pulse pressures, MAP and SHE and augmented diastolic 

coronary flow and myocardial supply demand ratio (CoF/LVEW), from baseline 

heart failure values (no LVAD support) (Tables 1-3). CF LVAD flow modulation 

increased the range of LVEW, pulse pressures, coronary flows, MAP, SHE and 

myocardial supply demand ratios achievable with the same mean CF LVAD flow 

rates, Table 2.  
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Pulse 

Pressure     
(mmHg) 

Mean 
LVAD 
Flow               

(L/min) 

LVEW                   
(mmHg*mL) 

dCoF                           
(mL/min) 

CoF/ LVEW 
(mmHg*mL*10-2)-1  

      
Failure 35 0 2854 59 2 

Partial Support 15 2.5+0.1 1792 64 3 

Full Support 1 5.0+0.1 411 80 14 

 

Table 1: Pulse pressure, left ventricular external work (LVEW), diastolic 
coronary flow (dCoF), and myocardial supply demand ratio (CoF/LVEW) 
obtained during baseline heart failure and with partial and full CF LVAD 
support without any CF LVAD flow modulation. 

 

 
Parameter Pulse Pressure     

(mmHg) 
LVEW                   

(mmHg*mL) 
dCoF                           

(mL/min) 
CoF/ LVEW 

(mmHg*mL*10-2)-1  

      

Sy
nc

hr
on

ou
s 

Full Support 1 - 21 76 - 830 73 - 85 7 - 75 

Partial Support 14 - 21 1417 - 2220 61 - 68 2 - 3 

       

A
sy

nc
hr

on
ou

s  

Full Support 2 - 52 317 - 500 77 - 82 11 - 18 

Partial Support 18 - 26 1562 - 1873 63 - 66 2 - 3 

 
Table 2: Range of pulse pressures, left ventricular external work (LVEW), 
diastolic coronary flow (dCoF), and myocardial supply demand ratio 
(CoF/LVEW) obtained by modulating the CF LVAD flow. These results 
demonstrate that modulation and timing of CF LVAD flow resulted in a 
range of LVEW and CoF without altering the mean LVAD flow, which may 
enable LVAD weaning protocols and myocardial recovery strategies 
without altering mean LVAD flow 
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Effect of flow modulation amplitude: 
 
 
Greater LVAD flow modulation amplitudes increased arterial pressure pulsatility 

and Surplus Hemodynamic Energy (SHE). Synchronous full support LVAD with 

the high flow modulation of 9 L/min (max/min = 10/1 L/min) produced arterial 

pulse pressures up to 19 mmHg while low flow modulation produced an arterial 

pulse pressure of 1.3 mmHg. For asynchronous full support, a maximum arterial 

pulse pressure of 52 mmHg was obtained with an LVAD flow modulation of 

9L/min (max/min = 10/1 L/min) at 20 bpm. Both are significantly greater than 

pulse pressure of 0.7 mmHg when providing full support with CF LVAD with no 

flow modulation. 

 

Increasing LVAD flow modulation augmented the range of LVEW, diastolic CoF, 

and the myocardial supply and demand ratio achievable for both full and partial 

support (Figure 5). At full LVAD support test condition, LVEW range increased 

from 294 – 485 mmHg*mL at low LVAD flow modulation test conditions to 76 – 

830 mmHg*mL at high LVAD flow modulation test conditions. During full LVAD 

support, the range of diastolic CoF and myocardial supply and demand ratio 

increased from 77 - 81 mL/min and 12 - 17(mmHg*mL*10-2)-1 at low LVAD flow 

modulation test conditions to 73 - 85 mL/min and 7 - 75 (mmHg*mL*10-2)-1 at high 

LVAD flow modulation test conditions. During full LVAD support, different levels 
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of flow modulation resulted in a MAP range of 95 - 98 mmHg, EEP range of 96 - 

106 mmHg, and SHE range of 697 – 10863 ergs/cm3.  

 

Figure 5: The effect of amplitude modulation and timing on (a)Surplus 
hemodynamic energy (SHE), (b) left ventricular external work (LVEW) and 
(c) myocardial supply and demand ratio (CoF/LVEW. Effects of timing are 
amplified with increased modulation amplitude. Effects are shown for a 
synchronous 60 percent pulse width at low (1L/min), medium (4.5 L/min), 
and high (9 L/min) LVAD flow amplitude modulations. These results 
indicate that higher amplitude modulation leads to higher SHE, and a larger 
variation in LVEW and myocardial supply demand ratio (CoF/LVEW) based 
on LVAD flow modulation timing. 

 



  

20 
 

During partial LVAD support, LVEW range increased from 1675 - 1888 

mmHg*mL at low LVAD flow modulation test conditions to 1417 - 2220 

mmHg*mL at high LVAD flow modulation test conditions. The range of diastolic 

CoF and myocardial supply and demand ratio increased from 63 - 65 mL/min and 

2.5 - 2.8 (mmHg*mL*10-2)-1   at low LVAD flow modulation test conditions to 61 - 

68 mL/min and 2.1 - 3.4 (mmHg*mL*10-2)-1 at high LVAD flow modulation test 

conditions. During partial LVAD support conditions, different levels of flow 

modulation resulted in MAP, EEP, and SHE ranges from 78 - 81 mmHg, 80 - 82 

mmHg, and 333 - 2144, respectively.  

 
 
Effect of Timing: 
 

Timing during synchronous LVAD modulation affected LVEW, diastolic CoF, and 

CoF/LVEW significantly (Figures 5,6,7). Asynchronous LVAD modulation timing 

had negligible effect on any measured parameter, when averaged over several 

cardiac cycles (Figure 5). During synchronous full LVAD support with high 

pulsatile waveforms, the maximum achievable LVEW, occurred at time shift of 

0% and ranged from 407 – 662 mmHg*mL. Minimum achievable LVEW occurred 

at time shifts of 40% to 60%, ranged from 76-149 mmHg*mL. Maximum diastolic 

CoF (up to 85 mL/min) occurred when the apex of the LVAD flow modulation 

waveform occurred during native ventricular diastole (counter pulsation). 
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Minimum diastolic CoF occurred when the apex of the LVAD flow modulation 

waveform coincided with native ventricular systole (co-pulsation). A change in 

time shift from 0% to 40% corresponded with a change in CoF/LVEW ranges of 7 

- 8 (mmHg*mL*10-2)-1 to 26 - 75 (mmHg*mL*10-2)-1 at full LVAD support.  
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Figure 6: The effects of pulse width and timing on (a) Surplus 
hemodynamic energy (SHE), (b) left ventricular external work (LVEW) and 
(c) myocardial supply and demand ratio (CoF/LVEW). Counterpulsation 
(60% pulse width and 40% time shift) produced minimum LVEW and 
maximum CoF/LVEW. Effects are shown for synchronous  high (9 L/min) 
LVAD flow amplitude modulations at each pulse width (40%, 50%, 60%). 
These results indicate that 60% pulse width in co-pulsation mode (0 time 
shift) produces the highest pulsatility (SHE) while counter pulsation  mode 
(40 time shift) produces the highest myocardial supply demand ratio 
(CoF/LVEW). 
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Figure 7: The effects of LVAD flow modulation rate and timing on (a) 
Surplus hemodynamic energy (SHE), (b) left ventricular external work 
(LVEW) and (c) myocardial supply and demand ratio (CoF/LVEW). Slower 
LVAD flow modulations produced higher SHE. Timing showed little effect 
on SHE, LVEW, and CoF/LVEW for asynchronous LVAD flow modulation 
(20 BPM. 40 BPM. 60 BPM) as opposed to the effects seen on synchronous 
LVAD flow modulation (80 BPM). 
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The effects of timing the LVAD flow modulation during partial support test 

conditions were similar to full support test conditions. During partial LVAD 

support, maximum LVEW ranged from 2057 - 2220 mmHg*mL at 0% time shift. 

Minimum LVEW (1417 – 1510 mmHg*mL) were obtained during time shifts of 40-

60%. Maximum diastolic CoF (67 - 68 mL/min) occurred when the maximum 

LVAD flow was during ventricular diastole, while minimum diastolic CoF (61-– 62 

mL/min) occurred when maximum LVAD flow was during ventricular systole. 

CoF/LVEW ranged from 2.1 - 2.3 (mmHg*mL*10-2)-1   at 0% time shifts to 3.2 - 

3.4 (mmHg*mL*10-2)-1 at 40% time shifts.  

 
 
Effect of pulse width 
 
 
Changing the CF LVAD flow modulation pulse width without altering pulse 

amplitude affected LVEW, diastolic CoF, and CoF/LVEW (Figure 6). However, 

the changes are not as pronounced as the effects of timing.  

 

At full LVAD support test condition with synchronous modulation, the ranges of 

LVEW were 149 - 830, 139 - 739, and 76 - 706 mmHg*mL for pulse widths of 

40%, 50%, and 60%. Diastolic CoF changed from 73 - 83, 76 - 84, 75 - 85 

mL/min at 40%, 50%, and 60% pulse widths. CoF/LVEW at 40%, 50%, and 60% 

pulse widths corresponded with ranges of 7 - 38, 8 - 42, and 8 - 75 
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(mmHg*mL*10-2)-1.  Pulse widths of 20%, 30%, 70%, and 80% required alteration 

of the CF LVAD flow modulation amplitude to maintain the average flow rates. 

Thus, the effect of timing could not be independently discerned from the effect of 

altered CF LVAD flow modulation amplitude for these pulse widths. During 

asynchronous modulation at full LVAD support, the ranges of LVEW were 351 - 

500, 355 - 459, and 317 - 420 mmHg*mL for pulse widths of 40%, 50%, and 60%. 

Pressure-volume loops are shown in Figure 8. 

 

Figure 8: Pressure volume loops for no LVAD support, CF LVAD support, 
pure co-pulsation LVAP flow modulation (0% time shift, 40% pulse width), 
pure counter pulsation LVAD flow modulation (40% time shift, 60% pulse 
width, LVAD flow modulation with a 50% pulse width starting at systole 
(50%PW co-pulsation), and LVAD flow modulation with a 50% pulse with 
starting at diastole (50%PW counter-pulsation). Ventricular volumes were 
reduced to normal range during LVAD support irrespective of support 
condition.  
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Diastolic CoF changed from 77 - 80, 78 - 81, and 78 - 82 at 40%, 50%, and 60% 

pulse widths. CoF/LVEW at 40%, 50%, and 60% pulse widths corresponded to 

ranges of 11 - 16, 13-– 16, and 14 - 18 (mmHg*mL*10-2)-1.  

 

During partial LVAD support with synchronous LVAD flow modulation, LVEW 

ranged from 1493 - 2045, 1491-  2117, 1458- 2034, and 1555 - 1944 mmHg*mL 

at 20%, 40%, 60%, and 80% pulse widths respectively. The same pulse widths 

corresponded with diastolic CoF ranges of 62 - 67, 62 - 67, 62 - 68, and 63 - 66 

mL/min, respectively. At 20%, 40%, 60%, and 80% pulse widths, the range of 

myocardial supply and demand ratios varied from 2.3 - 3.2, 2.2 - 3.2, 2.3 - 3.3, 

and 2.4 - 3.0 (mmHg*mL*10-2)-1. 

 

Asynchronous modulation at partial LVAD support produced LVEW ranges of 

1562 - 1873, 1641 - 1856, and 1637 - 1770 mmHg*mL at pulse widths of 40%, 

50%, and 60%. Diastolic CoF was 63 - 66 mL/min for all pulse widths.  The same 

pulse widths corresponded to CoF/LVEW ranges of 2.5 - 3.0, 2.5 - 2.8, and 2.6 - 

2.9 (mmHg*mL*10-2)-1. CF LVAD flow modulation pulse width does not 

considerably alter pulse pressure, MAP, EEP, and SHE.  
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Synchronous vs. Asynchronous Modulation 
 
 
During asynchronous LVAD flow modulation, LVEW, diastolic CoF, LVV and 

CoF/LVEW varied between cardiac cycles in one LVAD flow modulation 

waveform period (Figures 9,10,11) while consistent ranges obtained during 

synchronous LVAD support and continuous flow LVAD support. Decreasing the 

rate of asynchronous full support LVAD flow modulation increased the achievable 

arterial pressure pulsatility, EEP, and SHE. A maximum arterial pulse pressure of 

59 mmHg was achieved at a slow LVAD flow modulation rate of 20 bpm (Figure 

9). This is significantly greater than synchronous full support CF LVAD with high 

flow modulation (19 mmHg at a modulation frequency of 80 bpm). However, 

synchronous full and partial support LVAD flow modulations allowed for a larger 

range of average LVEW, diastolic CoF, and myocardial supply and demand ratio 

ranges compared to asynchronous full and partial support LVAD flow (Tables 

2,3).  
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Figure 9: AoP, LVP, LVV for Normal CF LVAD, Synchronous CF LVAD with 
high flow modulation, and asynchronous CF LVAD with high flow 
modulation. Synchronous CF LVAD modulation increases AoP Pulsatility 
while maintaining consistent ranges of LVP and LVV. Asynchronous CF 
LVAD modulation at 20 BPM increases pulse pressure over synchronous 
modulation while creating varying LVP and LVV. 
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Figure 10: Values of MAP, EEP and SHE for Asynchronous, Synchronous, 
Normal (no CF LVAD flow modulation), and no CF LVAD support. These 
results demonstrate that CF LVAD flow modulation does not affect the 
mean arterial pressure. However, asynchronous CF LVAD flow modulation 
significantly increased SHE. 
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Figure 11: Maximum and minimum values of left ventricular volume (LVV) 
and aortic pressure (AoP), pulse pressure, mean arterial pressure (MAP), 
and ventricular pressure-volume loops showing the varying ventricular 
pressures and volumes for different modulation rates of CF LVAD. 
Specifically, higher left ventricular volume variability occurs at lower CF 
LVAD flow modulation rates. 
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CF LVAD bpm MAP   (mmHg) EEP  (mmHg) SHE 

(erg/cm3) 

     

Fu
ll 

Su
pp

or
t 20 bpm 95.9 - 98.1 103.6 - 106.1 9,976 - 10,863 

40 bpm 95.9 - 98.0 98.5 - 100.8 3,325 - 3,752 

60 bpm 96.0 - 97.9 97.2 - 99.3 1,567 -1,850 

80 bpm 95.6 - 98.0 96.3 - 98.9 697 - 1,301 
     

Pa
rti

al
 S

up
po

rt 20 bpm 79.9 - 80.2 81.3 - 81.6 1,583 - 2.058 

40 bpm 79.6 - 80.4 80.5 - 82.0 1,097 - 2,144 

60 bpm 79.9 - 80.2 80.8 - 81 1,047 - 1,399 

80 bpm 78.6 - 81.3 80.0 - 82.1 333 - 1,899 
 

Table 3: Range of values of mean arterial pressure (MAP), energy 
equivalent pressure (EEP), and surplus hemodynamic energy (SHE) 
obtained with high modulated CF LVAD flow during full and partial support 
at 20, 40, 60, and 80 (synchronous modulation) bpm. 

 

 
Discussion 

 

The results of this computer simulation study establish that arterial pulsatility and 

ventricular work can be affected significantly by modulating CF LVAD flow. 

Arterial and ventricular hemodynamic waveforms were altered by varying the 

timing, amplitude, and width of the CF LVAD flow modulation pulse for the same 

average CF LVAD flow rates. Importantly, a range of LVEW and CoF values can 
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be obtained for the same mean CF LVAD flow rate by altering the CF LVAD flow 

modulation. Currently, to increase LVEW to wean the patient from the device or 

to promote myocardial recovery, the CF LVAD flow rate is lowered, which may 

affect end-organ perfusion. Modulation and timing of CF LVAD flow resulted in a 

range of LVEW and CoF without altering the mean LVAD flow. Thus, modulation 

of CF LVAD flow may be beneficial in developing control strategies for CF LVAD 

to obtain a desired myocardial oxygen supply and work level, particularly towards 

optimizing the myocardial recovery process and developing weaning protocols 

for patients who are likely to experience myocardial recovery without changing 

the average CF LVAD flow and affecting end organ perfusion. 

 

Diminished pressure pulsatility due to CF LVAD support has been reported to 

diminish aortic wall thickness, and volume ratio of smooth muscle cells [4, 54].  

Further, anecdotal reports have indicated the frequent development of adverse 

events including gastrointestinal bleeding, hemorrhagic strokes, increased 

vascular impedance and progression of aortic valve insufficiency in HF patients 

chronically supported by CF LVAD[4, 29-31]. The increase in vascular pulsatility 

due to CF LVAD flow modulation may prevent or help reduce the severity of 

these adverse events associated with diminished pulsatility. 
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Maximum LVEW occurred at 0% time shift (co-pulsation mode) while minimum 

LVEW occurred at 40% time shift (counter-pulsation mode). Counterpulsation 

mode produced higher myocardial supply demand ratio (CoF/LVEW) but reduced 

vascular pulsatility compared to the co-pulsation mode. However, vascular 

pulsatility with counter pulsation  mode was still higher than what was observed 

with no CF LVAD flow modulation. Altering the timing affected the SHE and EEP 

values but the highest values of SHE were obtained during asynchronous 

support with the LVAD modulating at 20 bpm (Figure 7, Table 3). During 

synchronous LVAD flow modulation, co-pulsation mode (0% time shift) resulted 

in higher SHE values compared to the counter pulsation mode (40% time shift). 

These results suggest that some optimization may be needed to tailor the CF 

LVAD flow modulation strategies to individual patients. During asynchronous 

LVAD flow modulation at low frequencies and high flow modulations, maximum 

pressure pulsatility was achieved. However, High LVAD flow over the period of 

several cardiac cycles creates favorable conditions for suction events. Algorithms 

to detect and prevent suction have been developed are currently used in 

LVADs[55, 56]. 

 

A normal human heart produces a peak flow rate of 30-35 L/min and minimum 

flow of ~0 L/min, resulting in an aortic pressure pulsatility of approximately 40 

mmHg. A failing heart produces a peak flow rate of 20-25 L/min, but still results in 



  

34 
 

an aortic pressure pulsatility of 30-35 mmHg due to higher vascular impedance 

[4]. We limited the peak flow rate of the simulated CF LVAD flow waveform to 10 

L/min to keep within the performance limitations of current LVADs. The minimum 

flow rate was limited to 1 L/min to prevent retrograde flow. These limitations in 

simulated peak and minimum CF LVAD flows limited the maximum achievable 

arterial pressure pulse with synchronous CF LVAD support to 19 mmHg. The 

achievable arterial pressure pulse can be significantly increased by allowing 

higher values of peak CF LVAD flow rates with improvement in LVAD technology.  

While retrograde flows also increase aortic pressure pulsatility, it should be 

avoided as it may increase device related hemolysis, LV volumes and LV wall 

stresses[57]. 

 

Limitations 

 

There are several limitations associated with the computer simulation model. The 

performance of the computer simulation during failing heart test condition is 

representative of clinical observations from a purely hemodynamic viewpoint. 

Clearly, a computer simulation is not intended to replace the importance and 

significance of in vivo models and is incapable of replicating all expected clinical 

responses, but it does provide a valuable initial step. For instance, the simulation 

cannot mimic neurohumoral responses, tissue remodeling, activation of 
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regulatory proteins, or changes in genetic phenotype, but it can demonstrate 

feasibility of concepts. However, these limitations have been addressed in the in-

vivo animal model studies detailed in chapter 4.  Computer models rely upon 

many assumptions that may have a dramatic influence upon the interpretation of 

results. For example, the computer model for this study assumes ideal valves 

that open and close instantaneously, Newtonian blood, a constant diastolic 

ventricular compliance, does not account for inertial or gravitational effects, and 

the effects of wave reflection. The effect of LVAD flow modulation in mock 

circulation and animal experiments, presented in chapters 3 and 4, overcome 

some of these limitations. Importantly, blood behaves as a Newtonian fluid at 

higher velocities in large vessels and the LVAD. The computer simulation does 

enable prediction of hemodynamic and ventricular pressure-volume responses. 

The effect of CF LVAD flow modulation can also be quantified in in-vitro mock 

circulation systems and in-vivo animal models. However, these models have 

several significant limitations not present in the computer simulation that may 

affect the accurate quantification of aortic pulse pressure and LVEW. Specifically, 

mock circulation models usually lump total systemic compliance which is 

significantly lower than aortic compliance[58]. The lower value of lumped 

systemic compliance would artificially augment pressure pulsatility, which may 

lead to reports of up to 61 mmHg of pressure pulsatility with less than 5 L/min of 

flow pulsatility [24]. Similarly, animal models have significantly different aortic and 
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arterial compliance values than humans [59]. These altered compliance values 

would lead to an inaccurate estimation of aortic pressure pulsatility, Figures 9, 

20, and 27. Further, in-vitro mock circulation systems typically underestimate the 

reduction in left ventricular peak pressures due to pneumatic/hydraulic drivers, 

which may lead to inaccurate estimation of LVEW. Despite its limitations, a 

computer simulation model with a simulated aorta may be the simplest method to 

adequately quantify the effects of CF LVAD flow modulation. Modulation of CF 

LVAD rpm/flow would increase power consumption and bearing wear which may 

be minimized in next generation magnetically suspended CF LVAD. To ensure 

that the strategies presented in this manuscript are pump independent, we use 

flow modulation instead of rpm/power modulation. Pump inertia, friction, and 

loading profiles will vary from pump to pump and affect the relationship between 

rpm/power modulation and flow modulation. The rpm/power modulation needed 

to achieve the flow modulation will be different for each device in mock circulation 

and animal studies only being representative of the specific pumps used in each 

study.  The values of SHE, EEP, pressures, flows, and work are representative 

and clinically relevant values obtained from literature but may vary due to intra-

patient variability. Despite these limitations, it is hoped that the computer 

simulation findings enable the further development and testing of new control 

strategies, devices, and experimental protocols that can be translated to an in 
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vivo model to validate clinical viability of techniques that promote for myocardial 

recovery. 
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CHAPTER 3 – MOCK CIRCULATION  

 
 

 

Introduction 

 

While they cannot replace in-vivo animal testing and clinical trials, in-vitro mock 

loop testing is an important step in the design process. In-vitro mock loops are 

used for experimental protocol development, device performance testing, 

feedback control algorithm design, as well as training of clinical staff. The in-vitro 

test system has the ability to mimic the Frank-Starling response and produces 

physiologic characteristic hemodynamic measurements and pressure volume-

relationships. The in-vitro mock loop used in this testing has been verified and 

well published with multiple devices having been evaluated using it [58, 60-63]. 

Cases found to yield the most promising results (i.e. co-pulsation and counter-

pulsation) were further tested using this experimental setup. We hypothesized 

that modulation of LVAD RPM will increase arterial pressure pulsatility and 

enable alteration of left ventricular pressures, volumes, and workloads. Further, 

we hypothesized that the magnitude of these effects on the native ventricle will 
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be dependent on LVAD modulation timing. The objective of this mock circulation 

study was to investigate the effects of LVAD RPM modulation on the ventricle 

and vasculature with varying modulation amplitudes, widths, and frequencies and 

compare the results to computer simulation. 

 

Methods and Materials 

 

Mock Circulatory Loop  

 

The mock circulation system used in this experiment consisted of a silicone left 

ventricle, aorta, arterial resistance and compliance, venous reservoir and atrial 

compliance (Figure 12). Ventricular pressure, heart rate, loop volume, 

resistances, and compliances were adjusted to reproduce hemodynamic 

pressure and flow waveforms of the physiology of an adult human in heart failure 

based on clinical findings. Aortic (proximal and distal) and LVAD flows were 

measured using Transonic Flow Probes (Transonic Systems, Ithica, NY). Aortic 

(proximal and distal), and atrial pressures were measured using single tipped 

Millar pressure catheters and left ventricle pressure and volume were measured 

using Millar a pressure-volume conductance catheter (Millar Instruments, TX). 

Ventricle systolic and diastolic time periods and pressure, vacuum, and motor 

percentages were controlled by the pneumatic ventricle driver (LB Engineering, 
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Germany). A HeartWare (Miami Lakes, FL) HVAD was used as the LVAD in this 

study. The centrifugal pump has been implanted regularly in Europe, is currently 

awaiting FDA approval for bridge to transplantation, and is undergoing clinical 

trials for destination therapy in the US [64, 65]. 

 

Figure 12: Mock Circulation loop with (a) left ventricle, (b) HeartWare LVAD, 
(c) arterial compliance, (d) venous reservoir, and (e) atrial compliance.  

 

 

LVAD Controller 

 

The LVAD controller was programmed by engineers at HeartWare under the 

direction of the investigators to enable LVAD pump speed modulation (Figure 
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13). In the mock circulation studies, the controller modulated the LVAD speed up 

and down by the same given RPM step around a user defined base speed. The 

HVAD has pump has operational speed limits of 1800 – 4000 RPM. Delta T was 

defined as the period of time the pump was in high or low RPM (pulse and nadir 

rpm). The pump would be in the high RPM for Delta T and the low RPM for Delta 

T resulting in one modulation period being twice the value of Delta T. For 

example, if a Delta T of 0.4 sec was chosen at a 2900±1100 RPM (mean 

RPM±modulation amplitude) modulation, the pump would operate at 4000 RPM 

for 0.4 seconds followed by 1800 RPM for 0.4 seconds and then repeat the cycle. 

The complete modulation cycle would take 0.8 seconds.   

 

Figure 13: Screenshot of LVAD controller 
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Experimental Protocol 

 

Three ventricle contractilities (high, medium, and low) were used in this study. 

High contractility produced baseline heart failure pressures in the mock loop with 

no LVAD. High, medium, and low contractility resulted in peak ventricle 

pressures of 142 mmHg, 104 mmHg, and 80 mmHg. The mock circulation cannot 

automatically reduce the contractility based on myocardial load. Thus, different 

ventricular contractilities were simulated to match a range of ventricular 

contractilities that is observed during unloading/ of the native ventricle 

using VAD/LVAD support. The cardiac cycle produced by the driver was 0.795 

sec (75.5 BPM), while the LVAD operated at .800 seconds.  

 

Base speeds for this study were chosen at 2900 and 3200 RPM. A base speed 

of 2900 allowed for maximum RPM modulation (2900±1100 RPM) (base RPM ± 

modulation RPM) and steps of 2900±800 RPM, 2900±500 RPM, and 2900±300 

RPM. 3200 RPM completely unloaded the ventricle and was chosen as a full 

support baseline with no modulation. Modulations were done around a 3200 

RPM base speed at 3200±800 RPM, 3200±500 RPM, and 3200±300 RPM. In 

this experiment, periods of 0.4, 0.5, 0.8, and 1.6 were chosen resulting in cycle 
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periods of 0.8 seconds, 1.0 seconds, 1.6 seconds, and 3.2 seconds. For 

synchronous modulation, the LVAD RPM modulation period was set at 0.4 

seconds. The 0.005 second offset between LVAD cycle period (0.8 seconds) and 

cardiac cycle (0.795 seconds) allowed for the LVAD to pass from co-pulsation to 

counter pulsation LVAD RPM modulation. The small 5 ms difference between the 

native ventricle and the pump produced a slightly asynchronous support that 

would capture the effect of timing of the LVAD to the native ventricle in a 200 

second data set. At each of the three contractilities, the LVAD was modulated at 

the described RPM levels at each of the modulation periods. Additionally data 

sets were recorded for the LVAD running in CF fashion at each contractility in 

100 RPM steps (i.e. 2000 RPM, 2100 RPM, 2200 RPM, etc.  

 

 

Data Analysis  

 

Data was analyzed using Matlab (MathWorks, Natick, MA) and Hemodynamic 

Evaluation and Assessment Research Tool (HEART) program [66]. Pressure, 

flow, and volume waveforms were used to calculate the following hemodynamic 

parameters: cardiac output; aortic systolic, diastolic, and mean pressures; left 

ventricular systolic, end diastolic, and peak pressures; left ventricular external 

work; and aortic and LVAD flows. For synchronous LVAD RPM modulation and 
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no LVAD RPM modulation, all hemodynamic parameters were calculated on a 

beat-to-beat basis. Three beats were averaged for calculating co-pulsation and 

counter pulsation hemodynamics; the beat found to be in pure co-pulsation or 

counter pulsation and the previous and following beats. When evaluating 

synchronous modulation, the hemodynamic values obtained for the modulation 

beats were compared to those when operating the LVAD in a CF fashion at flow 

within 10% of mean LVAD flow. Asynchronous modulation cases were evaluated 

over the full LVAD modulation cycle (i.e. multiple beats) and reported values are 

the average of 200 seconds of RPM modulation. Pressure-volume loops were 

constructed by plotting ventricular pressure against ventricular volume, where 

each loop represents one complete cardiac cycle (one beat). Characterizing 

hemodynamic parameters and pressure-volume loops were calculated for all 

experimental conditions.    

 
 
 
Results 

 

Effects of Contractility 

 

Increased contractility led to greater flow through aortic valve during CF LVAD 

support. Table 4 shows flow through the aortic valve proximal to the LVAD 
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outflow graft, modulation of LVAD flow rates due to ventricle contraction, and 

LVAD speed necessary to achieve mean LVAD flows of 3.0±0.2L/min, 

4.0±0.2L/min, and 5.0±0.2L/min at high, medium, and low ventricle contractilities.  

Decreasing ventricle contractility resulted in lower LVAD speed necessary for 

equivalent LVAD flow. Additionally, increased ventricle contractility resulted in a 

higher change in LVAD flow. At LVAD flow rates of 3.0±0.2L/min, 4.0±0.2L/min, 

and 5.0±0.2L/min, the change in LVAD flow was 2.6L/min, 2.5L/min, and 

2.3L/min for low contractility, 3.6L/min, 3.4L/min, and 3.2L/min for medium 

contractility, and 5.4L/min, 4.8L/min, and 4.4L/min for high contractility.  Further, 

lower ventricle contractility resulted in reduced flow through the aortic valve. At 

an LVAD flow rate of 3.0±0.2L/min, flow through the aortic valve diminished from 

1.7L/min at high contractility to 0.8L/min at medium contractility and 0.4L/min at 

low contractility.  
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Table 4: Flow through the aortic valve proximal to the LVAD outflow graft 
(AoFroot), maximum and minimum LVAD flow rates (max/min VADF), and 
LVAD speed (RPM) necessary to achieve LVAD flows (VADF) of 
3.0±0.2L/min, 4.0±0.2L/min, and 5.0±0.2L/min at high, medium, and low 
ventricle contractilities.  The LVAD was operating in a CF fashion and the 
variation in flow shown in max/min VADF is due to contraction and 
relaxation of the ventricle.  

 

 

During synchronous co-pulsation LVAD RPM modulation, increased ventricular 

contractility increased maximum and minimum LVAD flows (Table 5). Change in 

LVAD flow increased from 9L/min at low contractility to 9.7L/min and 11.1L/min at 

medium and high ventricular contractilities, respectively. In co-pulsation LVAD 

RPM modulation, mean LVAD flow increased as ventricle contractility decreased 

for maximum LVAD speed modulation (2900±1100 RPM). Differing from co-

pulsation LVAD RPM modulation, in counter pulsation mode, LVAD flow did not 

vary greatly between high, medium, and low contractilities with flow rates of 

4.1L/min, 4.3L/min, and 4.1 L/min, respectively. Similarly to continuous flow, 

decreased contractility resulted in a reduction in flow through the aortic valve for 

AoFroot max/min 
VADF

RPM AoFroot max/min 
VADF

RPM AoFroot max/min 
VADF

RPM

3.0±0.2 1.7 5.9/0.5 2800 0.8 4.9/1.3 2400 0.4 4.3/1.7 2200

4.0±0.2 1.0 6.5/1.7 3100 0.2 5.9/2.5 3000 0.0 5.3/2.8 2900

5.0±0.2 0.2 7.3/2.9 3500 0.0 6.6/3.4 3400 0.0 6.1/3.8 3500

VADF 
(L/min) High Medium Low

Contractility 
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both co-pulsation and counter pulsation LVAD RPM modulation. During co-

pulsation LVAD RPM modulation flow through the aortic valve was 1.5L/min, 

0.3L/min and 0.0L/min and during counter pulsation LVAD RPM modulation flow 

through the aortic valve was 1Lmin, 0.1L/min, and 0.0L/min for high, medium, 

and low ventricle contractility, respectively. Low ventricular contractility best 

mimics the effects of LVAD unloading the native ventricle and is used in the 

remaining of the results section, unless otherwise noted. 

 

 

 

Table 5: Flow through the aortic valve proximal to the LVAD outflow graft 
(AoFroot), mean LVAD flow (VADF), and maximum and minimum LVAD 
flow rates (max/min VADF) at high, medium, and low ventricle 
contractilities for co-pulsation and counter pulsation  LVAD flow 
modulation.   

 

Synchronous vs. Asynchronous Modulation 

 

During asynchronous LVAD RPM modulation, LVEW, LVV, and mean LVAD flow 

varied between cardiac cycles occurring during one LVAD RPM modulation cycle 

AoFroot 
(L/min)

VADF 
(L/min)

max/min 
VADF

AoFroot 
(L/min)

VADF 
(L/min)

max/min 
VADF

AoFroot 
(L/min)

VADF 
(L/min)

max/min 
VADF

Co-pulsation 1.5 2.9 8.5/-2.6 0.3 3.5 8.4/-1.3 0.0 3.6 8.2/-0.8

Counterpulsation 1 4.1 5.4/2.5 0.1 4.3 6.0/2.9 0 4.1 6.4/1.9

Synchronous 
LVAD Modulation

Contractility 

High Medium Low
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as compared to consistent ranges obtained during synchronous LVAD support 

and continuous flow LVAD support. Decreasing the rate of asynchronous full 

support LVAD RPM modulation increased the achievable arterial pressure 

pulsatility, EEP, and SHE (Table 6).  

 

Table 6: Range of values of mean arterial pressure (MAP), energy 
equivalent pressure (EEP), and surplus hemodynamic energy (SHE) 
obtained with maximum modulated CF LVAD RPM around base RPMs of 
2900RPM and 3200RPM modulation periods of at 1.6 sec, 0.8 sec, 0.5 sec, 
and 0.4 sec (synchronous modulation). 

A maximum arterial pulse pressure of 65 mmHg was achieved at a slow LVAD 

RPM modulation rate of with a 1.6 second modulation period (3.2 second cycle 

period) of 2900±1100RPM. This is considerably greater than synchronous co-

pulsation CF LVAD with a period of 0.4 seconds (20 mmHg at a modulation) and 
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synchronous counter pulsation CF LVAD (11 mmHg) with a similar RPM 

modulation.  

 

 

Effects of Timing 

 

Co-pulsation and counter pulsation modulation of LVAD RPM (2900±1100RPM) 

both increased pulse pressure 210% and 98%, respectively, as compared to 

normal CF LVAD operation with similar mean LVAD flow. However, counter 

pulsation yielded more than a 50% smaller percent increase from normal CF 

LVAD operation in aortic pressure pulsatility as compared to the greater percent 

increase produced by co-pulsation (Figure 14).   
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Figure 14: Percent change in pulse pressure during co-pulsation and 
counter pulsation LVAD RPM modulation from CF LVAD of similar mean 
flow (mean RPM ± modulation RPM). 

 
As compared to co-pulsation, counter pulsation LVAD RPM modulation resulted 

in higher mean LVAD flow (3.6L/min vs. 4.1L/min) and MAP (76 mmHg vs. 89 

mmHg) at LVAD RPM modulation of 2900±1100 RPM (Figure 15). Co-pulsation 

(2900±1100 RPM) increased stroke volume 12% as compared to CF LVAD at 

similar flow. Alternatively, counter pulsation (2900±1100 RPM) reduced stroke 

volume 20% as compared to CF LVAD at similar flow (Figure 16).  Figure 12 

shows pressure volume loops for co-pulsation and counter pulsation at 

2900±1100 RPM and the corresponding pressure volume loops for CF LVAD 

with similar mean LVAD flow, 2700 RPM and 3000 RPM, respectively. Both co-

pulsation and counter pulsation of LVAD RPM at 2900±1100 RPM decreased 

LVEW nearly 20% from similar mean CF LVAD flow (Figure 17). 
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Figure 15: Aortic pressure, left ventricular pressure, LVAD flow, mean 
LVAD flow and pressure volume loops for (a) co-pulsation LVAD 
modulation at 2900±1100 RPM, (b) CF LVAD at 2700 RPM, (c) counter 
pulsation LVAD RPM modulation at 2900±1100 RPM, and (d) CF LVAD at 
3000  RPM. Co-pulsation at 2900±1100 RPM and CF LVAD at 2700 RPM had 
similar mean LVAD flows. Further, counter pulsation at 2900±1100 RPM and 
CF LVAD at 3000 RPM had similar mean LVAD flows.  
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Figure 16: Percent change in stroke volume during co-pulsation and 
counter pulsation LVAD RPM modulation from CF LVAD of similar mean 
flow (mean RPM ± modulation RPM).  

 

 

Figure 17: Percent change in LVEW during co-pulsation and counter 
pulsation LVAD RPM modulation from CF LVAD of similar mean flow (mean 
RPM ± modulation RPM).  
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Effects of Modulation Amplitude 

 

Decrease in RPM modulation amplitude does not considerably change mean 

VADF. However, during co-pulsation LVAD RPM modulation a decrease in 

modulation amplitude slightly increased mean LVAD flow. Mean LVAD flow 

increased from 3.64 L/min to 3.69 L/min, 3.76 L/min, and 3.82 L/min at RPM 

modulation amplitudes of 1100 RPM, 800 RPM, 500 RPM, and 300 RPM, 

respectively, during co-pulsation LVAD RPM modulation with a base of 2900 

RPM. Alternatively, a decrease in LVAD RPM modulation slightly increased 

mean LVAD flow during counter pulsation LVAD RPM modulation. Changes in 

RPM modulation amplitudes of 1100 RPM, 800 RPM, 500 RPM, and 300 RPM 

with a base of 2900 RPM resulted in mean LVAD flows of 4.10 L/min, 4.08 L/min, 

4.01 L/min, and 3.98 L/min, respectively, for counter pulsation LVAD RPM 

modulation (Figure 18).  
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Figure 18: Mean LVAD flow for co-pulsation and counter pulsation LVAD 
RPM modulation for base RPMs of 2900 RPM and 3000 RPM and for RPM 
modulation amplitudes of 1100 RPM, 800 RPM, 500 RPM, and 300 RPM. 

 

Decrease in RPM modulation amplitude resulted in diminished pulse pressures.  

All co-pulsation LVAD RPM modulations resulted in an increase of pulse 

pressure as compared to CF LVAD with a similar mean LVAD flow. Similarly, 

counter pulsation LVAD RPM modulation resulted in increased pulse pressures 

of 98%, 42%, and 36% for LVAD RPM modulations of 2900±1100 RPM, 

2900±800 RPM, and 3200±800 RPM. However, counter pulsation LVAD RPM 

modulations of 2900±500 RPM, 2900±300 RPM, 3200±500RPM, and 3200±300 

RPM resulted in diminished pulse pressures from CF LVAD with a similar mean 

LVAD flow of -28%, -61%, -10%, and -56%, respectively (Figure 19). Slower 

LVAD RPM modulation resulted in increased pulse pressures (Figure 20). These 
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change in pulse pressure trends resulted in similar trends for SHE. All co-

pulsations resulted in increased SHE from CF LVAD with a similar mean LVAD 

flow. Furthermore during counter pulsation LVAD RPM modulation, SHE 

decreased from CF LVAD with a similar mean LVAD flow of 92% and 92% at a 

base of 2900 RPM and 76% and 94% at a base of 3200 RPM, for RPM 

modulation amplitudes of 500 RPM and 300 RPM, respectively (Figure 21).  

 

 

Figure 19: Percent change in pulse pressure during co-pulsation and 
counter pulsation LVAD RPM modulation from CF LVAD of similar mean 
flow for base RPMs of 2900 and 3200 for RPM modulation amplitudes of 
1100 RPM, 800 RPM, 500 RPM, and 300 RPM.  
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Figure 20: Aortic pressure (AoP), left ventricular pressure (LVP), and LVAD 
flow (VADF) for (a) Normal CF LVAD, (b) Synchronous CF LVAD 
(2900±1100RPM) (mean RPM ± modulation RPM), and (c) asynchronous CF 
LVAD (2900±1100RPM). Synchronous CF LVAD modulation increases AoP 
Pulsatility while maintaining consistent ranges of left ventricular pressure 
and volumes. Slow asynchronous CF LVAD modulation at 19 BPM 
increases pulse pressure over synchronous modulation while creating 
varying left ventricular pressure volumes. 
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Figure 21: Percent change in SHE during co-pulsation and counter 
pulsation LVAD RPM modulation from CF LVAD of similar mean flow for 
base RPMs of 2900 and 3200 for RPM modulation amplitudes of 1100 RPM, 
800 RPM, 500 RPM, and 300 RPM. 

 

During co-pulsation LVAD RPM modulation, change in LVAD flow was 

diminished as RPM modulation amplitude was decreased from 1100 RPM to 800 

RPM, 500 RPM, and 300 RPM. Specifically, for a base of 2900 RPM, change in 

LVAD flow decreased from 9.0 L/min at 1100 RPM to 7.2 L/min, 5.2 L/min and 

4.1 L/min at 800 RPM, 500 RPM, and 300 RPM, respectively. Similarly for base 

RPM of 3200, change in LVAD flow decreased from 7.1 L/min at 800 RPM 

modulations to 5.3 L/min at 500 RPM modulations and 4.1 L/min at 300 RPM 

modulations (Figure 21). These corresponded to changes in LVAD flow from CF 



  

58 
 

LVAD with a similar mean LVAD flow of 242% (±1100 RPM), 176% (±800 RPM), 

112% (±500 RPM), and 60%(±300 RPM)  at base RPM of 2900 and 201%(±800 

RPM), 122%(±500 RPM), and 72%(±300 RPM)  at base RPM of 3200 (Figure 

22).  

 

During counter pulsation LVAD RPM modulation, change in LVAD flow was 

diminished as RPM modulation amplitude was decreased from 1100 RPM to 800 

RPM, 500 RPM, and 300 RPM. Specifically, for a base of 2900 RPM, change in 

LVAD flow decreased from 4.5 L/min (91%) at 1100 RPM to 3.0 L/min (29%), 1.6 

L/min (-36%) and 1.1 L/min (-56%)  at 800 RPM, 500 RPM, and 300 RPM, 

respectively. Similarly for base RPM of 3200, change in LVAD flow decreased 

from 3.3 L/min (42%) at 800 RPM modulations to 2.0 L/min (-14%) at 500 RPM 

modulations and 1.2 L/min (-49%) at 300 RPM modulations where the percent 

change from CF LVAD with a similar mean LVAD flow is in parentheses (Figures 

22 and 23).  
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Figure 22: Change in LVAD flow for co-pulsation and counter pulsation 
LVAD RPM modulation for base RPMs of 2900 RPM and 3000 RPM and for 
RPM modulation amplitudes of 1100 RPM, 800 RPM, 500 RPM, and 300 RPM. 

 

 

Figure 23: Percent change in change in LVAD flow during co-pulsation and 
counter pulsation LVAD RPM modulation from CF LVAD of similar mean 
flow for base RPMs of 2900 and 3200 for RPM modulation amplitudes of 
1100 RPM, 800 RPM, 500 RPM, and 300 RPM. 
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The decrease in LVAD RPM amplitude modulation of 2900±1100 RPM, 800 RPM, 

and 500 RPM and 3200±800 RPM, 500 RPM, and 300 RPM during co-pulsation 

LVAD RPM modulation resulted in attenuation of change in stroke volume from 

CF LVAD of similar mean flow. Specifically, change in stroke volumes of 12%, 

11%, and 6% and 6%, 10%, and 8% resulted from co-pulsation LVAD RPM 

modulations of 2900±1100 RPM, 800 RPM, and 500 RPM and 3200±800 RPM, 

500 RPM, and 300 RPM. Counter pulsation LVAD RPM modulation resulted in 

change in stroke volumes of -20%, -18%, and -16% and     -14%, -11%, and -7% 

for the previously describe cases. Co-pulsation and counter pulsation LVAD RPM 

modulation of 2900±300 RPM resulted in increases of 36% and 35% respectively 

(Figure 24).  
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Figure 24: Percent change in stroke volume during co-pulsation and 
counter pulsation LVAD RPM modulation from CF LVAD of similar mean 
flow for base RPMs of 2900 and 3200 for RPM modulation amplitudes of 
1100 RPM, 800 RPM, 500 RPM, and 300 RPM. 

 
 

Discussion 

 

The results of this study validate the conclusion that established arterial pulsatility 

and ventricular work can be affected significantly by modulating CF LVAD flow 

from previous work [44]. Arterial and ventricular hemodynamic waveforms were 

altered by varying the timing and amplitude of the CF LVAD RPM modulation and 

compared to non-modulation CF LVAD flow with similar mean flows. 
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Diminished arterial pulse pressure has been suggested in a mechanism that 

results in increased bleeding events, acquired von Willebrande syndrome, and 

other adverse events prevalent in the clinical use of CF LVAD [67, 68]. Reduced 

pressure pulsatility that occurs during CF LVAD has been reported to diminish 

aortic wall thickness and volume ratio of smooth muscle cells [4, 54].  Additionally, 

anecdotal reports have indicated the frequent development of adverse events 

including gastrointestinal bleeding, hemorrhagic strokes, increased vascular 

impedance and progression of aortic valve insufficiency in HF patients chronically 

supported by CF LVAD [4, 29-31]. The increase in vascular pulsatility due to CF 

LVAD flow modulation may prevent or help reduce the severity of these adverse 

events associated with diminished pulsatility. Ando et al previously suggested 

that partial support co-pulsation LVAD RPM modulation can increase pulse 

pressure near levels of no support in healthy goats [69]. However, this was 

achieved with considerable retrograde flow through the device, which resulted in 

a 66% increase in end-diastolic LVP suggesting an increase in LVEW. 

Furthermore, at low RPM modulation amplitudes, counter pulsation LVAD RPM 

modulation would actually provide smaller pulse pressures than non-modulated 

CF LVAD flow. This further loss of pressure pulsatility may result in increased 

occurrence of adverse events.   
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Both co-pulsation and counter pulsation LVAD RPM modulation resulted in a 

decreased LVEW as compared to CF LVAD. Further, counter pulsation LVAD 

RPM modulation caused a greater decrease in stroke volume than the same co-

pulsation LVAD RPM modulation and as a percent decrease from CF LVAD with 

similar mean LVAD flows. Alternately, counter pulsation LVAD RPM modulation 

reduced arterial pulse pressure as compared to co-pulsation LVAD RPM 

modulation. Counterpulsing by modulating LVAD RPM resulted in smaller 

variation in flow as the native ventricular contraction caused a high flow during 

systole while high LVAD RPM increased flow during diastole, leading to a smaller 

variation in flow during the cardiac cycle compared to copulsation mode. 

However, the arterial pulse pressure with counter pulsation LVAD RPM 

modulation at high RPM modulation amplitudes (1100 RPM, 800 RPM) was still 

higher than observed with no LVAD RPM modulation. Altering the timing of 

synchronous LVAD RPM modulation from counter pulsation to co-pulsation mode 

resulted in increased pulse pressure, EEP, and SHE. However, asynchronous 

modulation produced the highest ranges of MAP, EEP, and SHE, as predicted by 

the computer simulation results. Asynchronous LVAD RPM modulation resulted 

in beat-to-beat variances in pressures and volumes of the native ventricle. These 

variations in beat-to-beat pressures and volumes may be counterproductive for 

reversal of heart failure and ultimate recovery of the patient for device 

explantation [32].   
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It should be noted that retrograde flows also increase aortic pressure pulsatility, it 

should be avoided as it may increase device related hemolysis, LV volumes and 

LV wall stresses [57, 69]. Retrograde flow was present in this study during 

asynchronous LVAD modulation with high RPM modulation of 1100 RPM. This 

resulted in prolonged periods of the LVAD operating at its baseline of 1800 RPM. 

Additionally, this occurred during co-pulsation LVAD RPM modulation at 

2900±1100 RPM.  

 

A normal human heart produces a peak flow rate of 30-35 L/min and minimum 

flow of ~0 L/min, resulting in an aortic pressure pulsatility of approximately 40 

mmHg. A failing heart produces a peak flow rate of 20-25 L/min, but still results in 

an aortic pressure pulsatility of 30-35 mmHg due to higher vascular impedance 

[4]. Current LVAD technology is limited in the maximum achievable flows. In this 

study, peak LVAD flows of 8.5 L/min occurred during co-pulsation LVAD RPM 

modulation at 2900±1100 RPM and asynchronous LVAD RPM at 3200±800RPM 

with a period of 1.6 seconds. The current LVAD technology limitations restrict the 

maximum achievable pressure pulse, ventricular unloading, and modulation 

amplitude. With technological improvements, higher flows and RPM modulation 

amplitudes may allow for increased pulse pressure, reduced LVEW, and 

prevention of retrograde flow through the LVAD at maximum RPM modulation.   
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Limitations 

 

There are several limitations associated with the mock circulation model. For 

instance, the mock circulation cannot mimic neurohumoral responses, tissue 

remodeling, activation of regulatory proteins, or changes in genetic phenotype, 

but it can demonstrate feasibility of concepts and allow for design testing and 

improvements without the use of chronic living animal models, which allow for 

nuerohumoral responses, tissue remodeling, activation of regulatory proteins, 

and changes in genetic phenotype. Furthermore, mock circulation models use 

lump total systemic compliance which is significantly lower than aortic 

compliance[58]. The lower value of lumped systemic compliance would artificially 

augment pressure pulsatility, which may lead to reports of up to 61 mmHg of 

pressure pulsatility with less than 5 L/min of flow pulsatility [24]. In our study, we 

minimized this effect by having a large compliance  element with low flow 

resistance near the aortic root. This enabled a close approximation of physiologic 

aortic compliance and approximately 20 mmHg pressure pulsatility with 

synchronous LVAD modulation amplitudes of ~9 L/min, as predicted by computer 

simulation results. Similarly, animal models have significantly different aortic and 

arterial compliance values than humans [59]. These altered compliance values 

would lead to an inaccurate estimation of aortic pressure pulsatility, Figures 9, 

20, and 27. Further, in-vitro mock circulation systems typically underestimate the 
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reduction in left ventricular peak pressures due to pneumatic/hydraulic drivers, 

which may lead to inaccurate estimation of LVEW.  In this study, three levels of 

ventricular contractility were used to mimic the reduced ventricular contractility. 

However, in this mock circulation study, fixed ventricular contractility may have 

resulted in higher calculated LVEW during counter pulsation LVAD RPM 

modulation which resulted in lower stroke volumes than co-pulsation LVAD RPM 

modulation but similar peak pressures.  

 

The computer model assumed ideal valves that open and close instantaneously, 

Newtonian blood, a constant diastolic ventricular compliance, does not account 

for inertial or gravitational effects, and the effects of wave reflection. The mock 

circulation model overcame these limitations as it accounted for variable diastolic 

ventricular compliance, inertial and gravitational effects, and the effects of wave 

reflection. Further, the mock circulation model used mechanical valves which 

model realistic valve opening and closing times. However, mechanical valves 

resulted in ringing during valve closure, which was filtered out during analysis. 

The animal experiments had native valves with realistic opening and closing 

without any valve ringing. The mock circulation used a mixture of plasmalyte 

solution and water, which is also a Newtonian fluid. However, at these high 

velocities, blood acts as a Newtonian fluid. The ventricular contractility in the 

mock circulation model is not affected by the degree of ventricular unloading. We 
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tried to overcome this limitation by manually reducing the ventricular contractility. 

However, a more accurate ventricular volume dependent contractility was 

achieved in the computer simulation and animal experiments.  

 

Modulation of CF LVAD RPM would increase power consumption and bearing 

wear which may be minimized in using the HeartWare HVAD, a magnetically 

suspended CF LVAD. This study only reports the results using the HeartWare 

centrifugal HVAD LVAD. Pump inertia, friction, and loading profiles will vary from 

pump to pump and affect the relationship between RPM modulation and flow 

modulation and the resulting power consumption. The rpm modulation needed to 

achieve specific levels of flow modulation will be different for each device which 

can be calculated from the pump models.  

 

The mock circulation only represents systemic circulation as it was only intended 

to test a LVAD and not a right ventricular assist device or bi-ventricular assist 

device. To test flow modulation to these other devices, a pulmonary circulation 

must be added. The instrumentation used to record hemodynamics possesses 

inherent errors (pressure error = ±1mmHg, flow errors = ±0.5L/min) which the 

authors attempted to minimize by using GLP compliant test equipment and 

calibration techniques.  
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Comparison of Computer Simulation and Mock Circulation Results 

 

Both computer simulation and mock circulation experiments showed similar 

results when comparing non-modulation, synchronous modulation, and 

asynchronous modulated LVAD flow/RPM (Figures 9, 20). However, 

Inconsistencies were present during comparisons of computer simulation [44] 

and mock circulation results. Specifically, in the computer simulation, co-

pulsation of LVAD flow resulted in increased LVEW while mock circulation results 

showed a decrease in LVEW from CF baselines. Additionally, counter pulsation 

LVAD flow modulation produced increased pulse pressures in the computer 

simulation and decreased pulse pressures in the mock circulation as compared 

to non-modulated LVAD flow. It is important to note differences in the study 

design of the experiments and specifically the LVAD used in each, which may 

have resulted in the described inconsistencies. In the computer simulation the 

LVAD was modeled as a flow source in order to allow for back calculation for 

various pump specific RPM for individual LVAD to produce simulated flows. 

Pump inertia, friction, and loading profiles will vary from pump to pump and affect 

the relationship between rpm/power modulation and flow modulation. The 

computer simulation was designed to be applicable to any pump that could 

produce the constructed flow waveforms under the pressure conditions. However, 

this did not allow for simulation of the heart ejecting through the LVAD as  
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various pumps would have differing resistances that were not present in the flow 

source. Conversely, in the mock loop studies the ventricle ejected through the 

pump. This difference may have resulted in the computer simulation showing 

increase in LVEW during co-pulsation LVAD flow modulation and the mock loop 

study showing a decrease in LVEW during co-pulsation LVAD RPM modulation.  

 

Counterpulsing by modulating LVAD RPM resulted in smaller variation in flow as 

the native ventricular contraction caused a high flow during systole while high 

LVAD RPM increased flow during diastole, leading to a smaller variation in flow 

during the cardiac cycle compared to copulsation mode. This, combined with 

ejection through the aortic valve due to higher mock ventricular contractility may 

have produced the diminished pulse pressure present during counter pulsation 

LVAD RPM/flow modulation in the mock circulation experiments as compared to 

the computer simulations. In the mock circulation study, the ventricle ejected 

volume while the LVAD was operating in a low speed resulting in a much higher 

minimum aortic pressure than seen in the computer simulation. Additionally, in-

vitro mock circulation systems typically underestimate the reduction in left 

ventricular peak pressures due to pneumatic/hydraulic drivers, which may lead to 

inaccurate estimation of LVEW and in this instance resulted in lower calculated 

LVEW in the mock circulation loop as compared to the computer simulation. 
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The computer simulation maintained precise control over mean, peak, and 

minimum LVAD flows. Conversely, the HVAD used in the mock loop studies 

could only control RPM and not specific flows. In mock circulation studies, co-

pulsation and counter pulsation LVAD RPM modulation resulted in differing mean 

LVAD flow rates. In this case the two modulation timings could not be directly 

compared as they were in the computer simulation and may have resulted in 

varying degrees of change from non-modulated LVAD flow/rpm baselines. 

Furthermore, the computer simulation allowed for multiple pulse widths which 

enabled pure co-pulsation and counter pulsation LVAD flow modulation. The 

HVAD controller could only produce a 50% pulse width due to programming 

limitations and thus was not in “pure” co-pulsation or counter pulsation. Figure 8 

shows in computer simulations that synchronization with a 50% pulse width 

would yield decreased LVEW as compared to 40% pulse width during co-

pulsation and increased LVEW compared to 60% pulse width during counter 

pulsation. Additionally, since  the HVAD controller could not be triggered off of an 

ECG or pressure waveform, the controller was phased in and out of co-pulsation 

and counter pulsation modes by offsetting the LVAD cycle time (0.8 seconds) 

and the beat time (0.795 seconds) by 0.005 seconds. Future iterations of the 

HVAD controller will include ECG triggering and pulse width features.  
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CHAPTER 4 – Pilot in-vivo ANIMAL STUDY  

 

 

Introduction 

 

Computer simulation and mock circulatory model testing are important steps in 

the development of LVAD control strategies. However, they cannot replace in-

vivo animal testing and clinical trials as they cannot mimic neurohumoral 

responses, tissue remodeling, activation of regulatory proteins, or changes in 

genetic phenotype. Animal model testing is an important step in proving device 

and control strategy safety for the ultimate advancement to clinical therapy. 

However, normal animal models do not adequately simulate a human in heart 

failure to allow for efficacy testing. Thus, we present preliminary findings of LVAD 

RPM modulation in an ischemic bovine heart failure model and normal calf.  We 

hypothesize that modulation of LVAD RPM will increase arterial pressure 

pulsatility and alter left ventricular pressures, volumes, and workloads. Further, 

the effect on the ventricle will be dependent on timing. We hypothesized that 

modulation of LVAD RPM will increase arterial pressure pulsatility and enable 

alteration of left ventricular pressures, volumes, and workloads. Further, we 

hypothesized that the magnitude of these effects on the native ventricle will be 

dependent on LVAD modulation timing.  The objective of this pilot animal study 
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was to investigate the effects of LVAD RPM modulation on the ventricle and 

vasculature with varying modulation amplitudes, widths, and frequencies and 

compare the results to computer simulation and mock circulation results. 

 

Methods and Materials 

 

Animals 

 

Male, mixed-breed calves (n=2) were used in this study.  Heart failure was 

induced in the two animals using micro-embolization techniques and implanted 

with HeartWare LVAD 60-days later for LVAD RPM modulation testing while 

under anesthesia. The HeartWare HVAD centrifugal LVAD was used in this study. 

All animals received humane care and were handled in accordance with National 

Institutes of Health and the University of Louisville animal care committee 

guidelines.  All experimental procedures were approved by the University of 

Louisville Institutional Animal Care and Usage Committee.  

 

LVAD Controller 

 

The LVAD controller was programmed to modulate LVAD RPM by engineers at 

HeartWare under the direction of the investigators (Figure 25). For the in-vivo 
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animal studies, the controller modulated the LVAD speed up and down by user 

given RPM steps around a user defined base speed. The HeartWare HVAD has 

pump defined speed limits of 1800 – 4000 RPM. The controller allowed for 

modulation periods with a minimum of 0.20 seconds in 0.01 second increases. 

The pump would be in high RPM (base RPM plus high RPM modulation 

amplitude) for the high RPM period and the low RPM (base RPM minus low RPM 

modulation amplitude) for the low RPM period. For example, if a high RPM 

period of 0.35 sec was chosen with an 1100 RPM modulation amplitude, a low 

RPM period of 0.4 sec with an 800 RPM modulation amplitude, and a base RPM 

of 2900, the pump would operate at 2100 RPM for 0.4 seconds followed by 4000 

RPM for 0.35 seconds and then repeat the cycle. The complete modulation cycle 

would take 0.75 seconds. The controller also allowed for ECG-triggered 

modulation. Once the ECG signal went above a user defined threshold, the 

LVAD would operate through the modulation cycle and then wait for the next 

instance where the ECG threshold was exceeded before operating through the 

modulation cycle again.  
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Figure 25: Screenshot of LVAD controller 

 

Terminal Study 

 

Sixty-days after micro-embolization (n=2) a terminal study was performed to 

measure the acute hemodynamic effects of LVAD RPM modulation. Anesthesia 

was induced and maintained in the proper fashion.  The animal was placed on 

the operating table in right lateral recumbency.  Fluid-filled arterial and venous 

catheters were placed in the left carotid artery and jugular vein for blood 

sampling.  A left thoracotomy was performed.  Ribs #4 and #5 were 

resected.  The pericardium was opened and the LVAD implanted.    
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At the start of the LVAD RPM modulation experiment, a single-tip, high-fidelity 

micromanometer catheter (Millar Instruments, Houston,TX) was placed in the 

aorta and a dual pressure-volume conductance catheter (Millar Instruments, 

Houston, TX) was advanced from the left atrium across the mitral valve into the 

left ventricle for simultaneous measurement of aortic, left atrial, and left 

ventricular blood pressures.  A transit-time ultrasonic flow probe (Transonics, 

Ithaca, NY) was placed around the pulmonary artery to measure cardiac output.  

 

Data Reduction 

 

All transducers were pre- and post-calibrated against known physical standards 

to ensure measurement accuracy. Calibration curves for the volume conductance 

catheter were constructed using static and dynamic tests pre- and post-

experiment.  Hemodynamic data were collected at 400Hz, signal conditioned, 

and A/D converted for digital analysis using our GLP compliant data acquisition 

system. 

 

To determine the acute effects of LVAD RPM modulation, pressure and flow 

waveforms were used to derive heart rate, left ventricular end-diastolic pressure, 

left ventricular peak-systolic pressure, ±dP/dt, mean aortic pressure, systolic 

aortic pressure, diastolic aortic pressure, aortic pulse pressure, HR x LVPpeak 
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systolic, a standard index of cardiac metabolic demand, pulmonary artery flow as 

an index of cardiac output, and CO normalized to animal weight.  Hemodynamic 

indices were calculated on a beat-to-beat basis for each 30 second data set with 

the Hemodynamic Evaluation and Assessment Research Tool (HEART) program 

developed in Matlab (Version 6.5, MathWorks, Natick, MA).  All analyzed beats in 

each data set (approximately 30 to 50beats/30 second data set) were averaged 

to obtain a single representative mean value for each calculated variable. 

 

Preliminary Results 
 

LVAD RPM modulation was tested in two animals. In one animal, no data sets of 

non-modulated flow were taken for comparison. In one animal non-modulated 

LVAD RPM (2900RPM) and counter pulsation LVAD RPM modulation were 

compared (2900±1100RPM) (mean RPM ± modulation RPM).  Mean and 

diastolic coronary flows were increased 24% and 80%, respectively, during 

counter pulsation LVAD RPM modulation. However, systolic coronary flow was 

decreased by 30%. Aortic pulse pressure was increase from 2 mmHg at CF 

LVAD to 15 mmHg at counter pulsation LVAD RPM modulation. However, in 

these two cases, heart rate, mean LAVD flow, and cardiac output were 20% 

greater during LVAD RPM modulation than during non-modulated CF LVAD 

(Table 7).  Additionally, ventricular volume was decreased during counter 
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pulsation LVAD RPM modulation as compared to non-modulated LVAD RPM 

(Figure 26).  During asynchronous LVAD RPM modulation, pressures and 

volumes varied on a beat to beat basis and pulse pressure of up to 10 mmHg 

were achieved (Figure 27). 

 

 

 

 

Table 7: Heart rate (HR), stroke volume (SV), cardiac output (CO), mean 
LVAD flow (VADF), left ventricular end diastolic pressure (LVPed), peak 
systolic left ventricular pressure (LVPpks), mean aortic pressure (MAP), 
aortic pulse pressure (AoPpulse), mean coronary flow (CAFmean), mean 
systolic coronary flow (CAFavsys), and mean diastolic coronary flow 
(CAFavdias) for CF LVAD and counter pulsation LVAD RPM modulation 
with same mean VADF.  

 

 

Condition HR SV CO VADF LVPed LVPpks MAP AoPpulse CAFmean CAFavgsys CAFavdias
CF VAD 2900 RPM 70 66 4.6 4.4 8 34 44 2 163 143 163
Counter pulse 2900 + 1100 85 65 5.5 5.3 9 53 41 15 202 100 294

% change 20 -1 19 20 13 54 -6 793 24 -30 80
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Figure 26: Aortic pressure, left ventricular pressure, LVAD flow, coronary 
artery flow (CAF), ECG, and pressure volume loops for counter pulsation 
LVAD RPM modulation (2900±1100RPM) (mean RPM ± modulation RPM) 
and non-modulated LVAD RPM (2900RPM).  
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Figure 27: Aortic pressure, left ventricular pressure, left ventricular volume 
for Normal CF LVAD, Synchronous CF LVAD (3200±800RPM), and 
asynchronous CF LVAD (3200±800RPM) (mean RPM ± modulation RPM). 
Synchronous CF LVAD modulation increases AoP Pulsatility while 
maintaining consistent ranges of left ventricular pressure and volumes. 
Asynchronous CF LVAD modulation at 19 BPM increases pulse pressure 
over synchronous modulation while creating varying left ventricular 
pressure volumes. 
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Discussion 
 
 
The pilot animal study produced similar results as the computer simulation and 

mock circulation studies in proving that LVAD RPM modulation can reduce left 

ventricular volumes and increase arterial pulse pressure. Additionally, animals 

studied showed increased pressure pulsatility with slow asynchronous LVAD 

RPM modulation.  

 

Unfortunately, the hemodynamic state of the animal cannot be held constant 

through all measurement sets due to changes in medications, deterioration of the 

surgical preparation, loss of blood volume, and other factors. Further, full 

unloading was not always achieved with the calf model as the calf has a 

significantly higher cardiac output compared to humans. Thus, in Figure 26 

synchronous LVAD RPM modulation is only providing partial support, and thus 

results in a higher pulse pressure than non-modulated LVAD flow, which is fully 

unloading the ventricle. Additionally, Figure 27 (a) CF LVAD 3200RPM and (c) 

Asynchronous LVAD 3200±800RPM are from a different animal than (b) 

Synchronous LVAD 3200±800RPM. These data sets were chosen as they were 

the only three cases of full support showing their respective LVAD RPM 

modulation. The initial pilot study is severely limited in its ability to show 

comparative results and draw definitive conclusions. However, we have shown 
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that preliminary findings in an in-vivo animal model produce similar results to 

those seen in computer simulations and mock circulation models.  

 
 
Limitations   
 
Animal models are not as stable of a testing platform as the computer simulation 

and mock circulation studies due to deterioration of the surgical preparation, 

effects of drugs, and variabilities in heart rates, ventricular contractilities and 

resistances due to physiologic and neurohormonal responses and other 

mechanisms. This results in increased variation between data sets and a 

diminished ability to directly compare data sets, which was minimized by 

collection of several intermediate baselines to facilitate comparisons. The acute 

animal model incorporates neurohumoral responses, and activation of regulatory 

proteins which are absent in the computer simulation and mock circulation 

studies. Animal models have significantly different aortic and arterial compliance 

values than humans [59]. Specifically, the calf model has a significantly higher 

compliance compared to humans. These altered compliance values would lead 

to a lower and inaccurate estimation of aortic pulse pressure due to LVAD 

modulation compared to computer simulation and mock circulation experiments, 

Figures 9, 20, and 27.  

 



  

83 
 

Modulation of CF LVAD RPM increased power consumption and potentially 

increases bearing wear which may be minimized in using the HeartWare HVAD, 

a magnetically suspended CF LVAD. This study only reports the results using the 

HeartWare centrifugal HVAD LVAD. Pump inertia, friction, and loading profiles 

will vary from pump to pump and affect the relationship between RPM modulation 

and flow modulation and the resulting power consumption. However the 

principles of RPM/flow modulation and increasing vasculature pulsatility is pump 

independent as evinced by the computer simulation study. The instrumentation 

used to record hemodynamics possesses inherent errors (pressure error = 

±1mmHg, flow errors = ±0.5L/min) which the authors attempted to minimize by 

using GLP compliant test equipment and calibration techniques.  
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Conclusions 

 

The results of this study establish that arterial pulsatility and ventricular work can 

be affected significantly by modulating CF LVAD flow. Arterial and ventricular 

hemodynamic waveforms were altered by varying the timing, amplitude, and 

width of the LVAD flow modulation pulse for the same average LVAD flow rates. 

Importantly, a range of LVEW and CoF values can be obtained for the same 

mean CF LVAD flow rate by altering the LVAD flow modulation without 

significantly affecting end-organ perfusion. Thus, these LVAD flow/RPM 

modulations may reduce the incidence of adverse events associated with the CF 

LVAD therapy by increasing vascular pulsatility and reducing vascular 

impedance. Further, these methods of LVAD flow/RPM modulation may enable 

tailored unloading of the native ventricle to provide rest and rehabilitation 

(maximal unloading to rest followed by gradual reloading to wean), which may 

promote sustainable myocardial recovery. 
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