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ABSTRACT 

EVALUATING THE EFFECTS OF AROCLOR 1260 IN NON-ALCOHOLIC 

FATTY LIVER DISEASE: THE ROLE OF XENOBIOTIC RECEPTORS 

 

Banrida Wahlang 

November 17, 2014 

 

Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, 

present in 100% of US adults and dose-dependently associated with non-

alcoholic fatty liver disease (NAFLD) in epidemiologic studies. PCBs are 

predicted to interact with receptors previously implicated in xenobiotic/energy 

metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor 

(AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor 

(CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor and 

farnesoid-X-receptor.  

This study evaluated the hepatic effects of the PCB mixture, Aroclor 1260, 

whose composition mimics human bioaccumulation patterns, in a mouse model 

of diet-induced obesity. Male C57Bl/6J mice were fed a control or 42% high fat 

diet (HFD) and exposed to Aroclor 1260 (20 or 200 mg/kg in corn oil) for 12 

weeks. Aroclor 1260 exposure was associated with decreased body fat in HFD-
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fed mice. Aroclor 1260+HFD co-exposed mice demonstrated increased 

inflammatory foci at both doses while serum cytokines and hepatic expression of 

IL-6 and TNFα were increased only at 20 mg/kg. Aroclor 1260 induced hepatic 

Cyp3a11 (PXR target) and Cyp2b10 (CAR target) expression but Cyp2b10 

inducibility was diminished with HFD-feeding. Cyp1a2 (AhR target) was induced 

only at 200 mg/kg.  

In PXR-/- and CAR-/- mice, Aroclor 1260 exposure resulted in 

steatohepatitis with increased basal hepatic TNFα and IL-6 expression. PXR-/- 

mice had increased % body fat and liver to body weight ratio regardless of 

exposure. HOMA-IR decreased in all groups following Aroclor 1260 exposure. 

PXR-/- mice exposed to Aroclor 1260 showed impaired glucose uptake, increased 

hepatic gluconeogenic and lipogenic gene expression. The knockout groups 

demonstrated increased basal mTOR1 activity while Aroclor 1260 exposure 

increased AMPKα activity. Thus, PXR and CAR participate in hepatic energy 

metabolism and are protective in Aroclor 1260-induced liver injury. 

The study further evaluated Aroclor 1260 and selected congeners as 

potential ligands for human receptors utilizing HepG2 and COS-1 cell lines; and 

primary human hepatocytes. The results suggested that Aroclor 1260 is a human 

AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2 and an 

antagonist for human PPARα. 

In summary, Aroclor 1260 worsened hepatic inflammation in diet-induced 

obesity. HFD decreased the protective CAR/PXR activation illustrating the 

importance of dietary co-exposures in PCB-mediated steatohepatitis.  
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CHAPTER 1 

INTRODUCTION 

Polychlorinated biphenyls (PCBs) 

Polychlorinated biphenyls (PCBs) are polyhalogenated aromatic 

hydrocarbons consisting of up to 10 chlorine atoms attached to a biphenyl group. 

Depending on the number of chlorine atom substituents, there are 209 individual 

PCB congeners that are theoretically possible. PCBs were commercially 

produced during the 1930s-1970s and were used as dielectric and heat transfer 

fluids in electric transformers and capacitors, wax extenders, organic diluents, 

plasticizers, adhesives, flame retardants and as a source of chlorine content (1, 

2). At least 1.3 million tons of PCBs, comprising about 130 identified individual 

congeners, were manufactured worldwide prior to their banning (3). PCB 

production was prohibited by the United States Congress in 1979 under the Toxic 

Substances Control Act and PCB production was banned internationally at the 

Stockholm Convention on Persistent Organic Pollutants in 2001 (4).  

Although PCB production has been banned for over 30 years, their high 

thermodynamic stability make them resistant to chemical and enzymatic 

degradation in the environment (5) and hence, PCBs, belong to the category of 

“persistent organic pollutants” (POPs). Moreover, PCBs persist in our ecosystem 

globally due to PCB seepage into the environment, accidental spills and improper 
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disposal and are found in soil, atmospheric air, lakes, rivers, aquatic wildlife and 

mammals (6-10). In humans, PCBs, primarily the highly chlorinated congeners 

that are resistant to metabolism, bio-accumulate and are detected in the adipose 

tissue, liver, serum and breast milk (11, 12). 

Currently, PCB exposure in humans is thought to occur primarily through 

ingestion of PCB-contaminated food (13, 14) and to a lesser extent, through 

inhalation of PCB-contaminated air (15, 16). In fact, PCBs continue to be present 

in the food supply and the intake in the American diet is estimated to be 

approximately 30 ng/day based on a study from a Dallas supermarket (17). 

Furthermore, PCBs are the 5th most hazardous substances on the Agency for 

Toxic Substances and Disease Registry (ATSDR) 2013 substance priority list. 

The National Health and Nutrition Examination Study (NHANES) indicated that 

100% of adult NHANES participants had detectable circulating PCB levels and 

PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl) had the highest median serum 

concentration in humans amongst all PCB congeners (18). Therefore, although 

PCB production has stopped, these compounds are ubiquitous in the 

environment and their resistance to degradation increases the risk of exposure in 

humans.  

PCBs’structure-activity and toxicity relationship  

The PCB’s structure more or less determines the compound’s activity and 

toxicity. PCBs can be classified as either “planar” or “non-coplanar” depending on 

the number and nature of the chlorine substituents in the two phenyl rings, (Fig. 

1.1). Planar PCBs have chlorine substitutions in either the meta- or para- 
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positions but zero or one substituent in the ortho- positions (19). Non-coplanar 

PCBs have ortho- substituted chlorine atoms, apart from meta- and/or para- 

substitutions (19).  

From a mechanistic standpoint, a PCB’s structure determines its ability to 

interact with various receptors (20). PCB studies have demonstrated that planar 

PCBs such as PCB 77 and PCB 126 interact with the aryl hydrocarbon receptor 

(AhR) similar to the classic AhR ligand, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 

(TCDD) and hence are also known as “dioxin-like” PCBs (21, 22). On the other 

hand, some non-coplanar PCBs such as PCB 153 and PCB 196 are referred to 

as “phenobarbital-like” PCBs suggesting their activation of the constitutive 

androstane receptor (CAR) (22-24). Moreover, a theoretical structure-activity 

relationship study predicted that non-coplanar PCBs can interact with the 

pregnane xenobiotic receptor (PXR), estrogen receptor, androgen receptor, and 

thyroid receptor as well (25).  

Historically, PCB studies have focused on hepatocarcinogenesis and 

other cancer-related endpoints and attributed the mechanism of toxicity to AhR 

activation (26, 27). However, by mass, dioxin-like PCBs are a relatively minor 

component of the total PCB burden in human serum (18). Moreover, PCBs do 

not appear to be as carcinogenic in man as they are in rodents (eg: PCB 126), 

and this may be due to differences in the AhR structure and in the battery of 

target genes between species (28). In contrast to PCB 126, PCB 153 is an ortho-

substituted, non-coplanar PCB. PCB 153 has been studied extensively by the 

National Toxicology Program (NTP) in female Harlan Sprague-Dawley (SD) rats, 
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and the mode of action has been attributed to the compound’s interaction with 

CAR (23). The studies also demonstrated PCB-induced hepatotoxicity.  

Apart from the structure, a PCB congener’s molecular weight which 

corresponds to the degree of chlorination also dictates the type of toxicity. PCB’s 

metabolism is defined by the number of chlorine atoms present. Low molecular 

weight PCBs (mono-, di-, tri- or tetra-chlorinated) are hydroxylated by 

cytochrome P450 enzymes (29). The metabolized PCBs, also known as bio- 

transformed congeners, can form DNA adducts or bind to proteins to exert their 

toxic effects. High molecular weight PCBs, on the other hand, are resistant to 

metabolism, hence they are known as persistent congeners. Some of these 

PCBs’ half-life is >15 years (30). These lipid-soluble PCBs, including the penta-

chlorinated PCB 126 and hexa-chlorinated PCB 153, bio-accumulate primarily in 

the adipose tissue and have the ability to interact with receptors (1). 

Therefore, depending on the molecular weight of the congener and the 

molecular structure, PCBs have a tendency to induce carcinogenesis by forming 

adducts and through AhR activation. PCB exposure can also cause other 

complications, such as endocrine disruption through other PCB-receptor 

interactions. Additionally, apart from PCB-receptor interactions, nutrient-toxicant 

interactions have also been reported to play a role in health disorders such as 

diet-induced obesity/metabolic syndrome (31) and non-alcoholic fatty liver 

disease (NAFLD) (32).  
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Figure 1.1. Chemical structure of PCBs. 
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The PCB mixture, Aroclor 1260 

PCBs were commercially marketed and used as mixtures rather than 

individual congeners. Monsanto, a well-known PCB manufacturer in North 

America, produced PCB mixtures under the brand name “Aroclor” at its 

manufacturing plant located in Anniston, Alabama. Incidences of high-level 

environmental contamination during PCB production resulted in increased PCB 

body burden in the Anniston residents (33, 34). PCB production was global with 

PCB mixtures being manufactured worldwide under different brand names 

including Clophens (Germany), Phenoclors and Pyralenes (France), Fenclors 

(Italy), Fenochlors (Spain), Kanechlors (Japan) and Sovol (former USSR) (2).  

Aroclor 1260, a commercial PCB mixture, contained 60% chlorine by 

weight. It was one of the first generation PCB mixtures produced by Monsanto 

during the early stages of PCB production. Aroclor 1260 was later replaced by 

other Aroclors such as Aroclor 1254, Aroclor 1248 and Aroclor 1242 that had 

lower chlorine content by weight (2). Aroclor 1260 is heavily chlorinated and 

contains a limited amount of coplanar congeners (∼1%) (19). It has 

predominantly non-coplanar and di-ortho substituted PCBs that have either 5, 6, 

7, or 8 chlorines (Table 1). As PCBs with low molecular weight are often 

metabolized and eliminated, PCBs that bio-accumulate in humans are typically 

the highly chlorinated congeners with penta-, hexa-, hepta-, and octa 

substituents (35, 36). Thus, for our PCB studies, we selected the PCB mixture 

Aroclor 1260 because its composition best mimics the PCB bioaccumulation 
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profile found in human adipose tissue, rather than reflecting the actual production 

volume of PCBs (Fig. 1.2). 
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PCB 

congener 
No. of chlorine Ortho substitution % 

180 7 (Non-coplanar, di-ortho) 11.38 

153 6 (Non-coplanar, di-ortho) 9.39 

149 6 (Non-coplanar, tri-ortho) 8.75 

138 6 (Non-coplanar, di-ortho) 6.54 

187 7 (Non-coplanar, tri-ortho) 5.40 

174 7 (Non-coplanar, tri-ortho) 4.96 

170 7 (Non-coplanar, di-ortho) 4.11 

101 5 (Non-coplanar, di-ortho) 3.13 

151 6 (Non-coplanar, tri-ortho) 3.04 

132 6 (Non-coplanar, tri-ortho) 2.90 

141 6 (Non-coplanar, di-ortho) 2.62 

177 7 (Non-coplanar, tri-ortho) 2.57 

95 5 (Non-coplanar, tri-ortho) 2.45 

163 6 (Non-coplanar, di-ortho) 2.42 

183 7 (Non-coplanar, tri-ortho) 2.41 

194 8 (Non-coplanar, di-ortho) 2.07 

179 7 (Non-coplanar, tetra-ortho) 2.03 

136 6 (Non-coplanar, tetra-ortho) 1.46 

203 8 (Non-coplanar, tri-ortho) 1.40 

110 5 (Non-coplanar, di-ortho) 1.33 

146 6 (Non-coplanar, di-ortho) 1.15 

171 7 (Non-coplanar, tri-ortho) 1.11 

196 8 (Non-coplanar, tri-ortho) 1.09 

135 6 (Non-coplanar, tri-ortho) 1.08 

 

 
Table 1. PCB congener composition in Aroclor 1260. 

Selected PCB congeners present in Aroclor 1260 (≥1% of total composition). 

Table adapted from www.atsdr.cdc.gov/toxprofiles/tp17-c4.pdf .  
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Figure 1.2. Congener composition in human fat, Aroclor 1260 and 

manufactured PCBs. 

Pie charts depicting the relative abundance of PCB congeners in human 

adipose tissue, Aroclor 1260 and manufactured PCBs. 
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Effects of PCB exposure in humans 

Historically, PCB toxicity has been linked to cancer, endocrine disruption 

and impaired cognitive development (37-40), but recent epidemiologic studies 

have shown that chronic exposure to these environmental pollutants can result in 

metabolic disorders associated with fatty liver disease, including obesity, insulin 

resistance/diabetes and the metabolic syndrome (18, 34, 41-44). Moreover, other 

complications associated with metabolic disorders such as hypertension and 

cardiovascular disorders have also been associated with PCB exposure (45, 46). 

Furthermore, a follow-up of subjects in the “Yu-cheng” incident in Taiwan 

demonstrated that the mortality rate due to cirrhosis was 2.7-fold higher than 

expected, although pathologic confirmation was not provided (47). The “Yu-

cheng” incident was one of the two known major human PCB intoxication 

episodes, where the victims ingested cooking oil that was highly contaminated 

with PCBs. Additionally; rodent studies have correlated PCB exposures with 

NAFLD, obesity and the metabolic syndrome (48, 49). 

 Our laboratory group recently identified advanced steatohepatitis 

associated with insulin resistance and increased pro-inflammatory cytokines in 

non-obese chemical workers who were subjected to high-level industrial 

chemical exposures (50). The term “toxicant-associated steatohepatitis” (TASH) 

was then coined to describe this condition (51). Our initial work focused on TASH 

in non-obese vinyl chloride workers; in our recent work however, our laboratory 

group identified suspected NAFLD and TASH in the NHANES participants with 

low-level environmental exposures to POPs, including 20 PCBs (18). 
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Epidemiologic studies have reported a positive association between adipose 

tissue concentrations of PCBs and type 2 diabetes (52). High serum PCB levels 

were also associated with elevated serum triglycerides and cholesterol which are 

major risk factors for cardiovascular diseases. Exposure to PCB mixtures has 

also been associated with elevated liver enzymes in plasma and hepatomegaly 

(18, 53). Clearly, environmental exposure to POPs such as PCBs is a major 

health concern, with emerging studies reporting positive associations between 

PCB body burden and suspected liver disease. However, studies involving the 

non-carcinogenic effects of PCB exposure on the liver are scarce and therefore, 

more research is required to evaluate the role of PCB exposure in liver disease, 

particularly NAFLD. 

Non-alcoholic fatty liver disease and xenobiotic receptors 

NAFLD represents a pathological spectrum of diseases ranging from lipid 

accumulation in the hepatocytes (steatosis) to the development of superimposed 

inflammation, leading to non-alcoholic steatohepatitis (NASH) and ultimately 

fibrosis and cirrhosis. NAFLD resembles alcoholic fatty liver disease, although it 

occurs in subjects who do not consume excessive amounts of alcohol. The 

pathogenesis of NAFLD has been reviewed, and key mechanisms included 

altered adipo-cytokines with low adiponectin and high leptin levels (32, 54) and 

elevation of pro-inflammatory cytokines such as TNFα and IL-6 (55). NAFLD 

gives rise to hepatic insulin resistance and systemic inflammation, which in turn, 

exacerbates obesity, diabetes and the metabolic syndrome (56). Because it is 

often seen with insulin resistance and dyslipidemia, NAFLD is generally regarded 
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to be the hepatic manifestation of obesity and the metabolic syndrome. However, 

NAFLD is also exacerbated by diabetes and is associated with obesity (57), 

indicating a vicious cycle between NAFLD, diabetes/insulin resistance and 

obesity.  

NAFLD and NASH were traditionally associated with the inappropriate 

over- or under-activation of nuclear receptors involved in endobiotic metabolism. 

These receptors include the liver-X-receptor (LXR), farnesoid-X-receptor (FXR) 

and peroxisome proliferator-activated receptors (PPARs) which regulate 

cholesterol, bile acid and lipid metabolism respectively (58, 59). Recent studies 

have implicated the role of hepatic receptors involved in xenobiotic detoxification, 

including PXR, CAR and AhR in NAFLD/NASH. Although these receptors were 

initially thought to be involved only with detoxification and xenobiotic metabolism, 

over-activation or antagonism of these receptors may lead to metabolic diseased 

states such as steatosis and obesity (60-62). Notably, PCBs have been 

demonstrated to interact with AhR, CAR and PXR (22-24, 26, 27). Therefore, it is 

pertinent to study the activation of these xenobiotic receptors by PCBs and their 

contribution to NAFLD with PCB exposure. 

The AhR is a member of the Per Arnt Sim (PAS) domain protein family of 

transcription factors and regulates a battery of genes involved in xenobiotic 

detoxification including CYP1A and CYP1B which can, in turn, bio-transform or 

activate pro-carcinogens to their carcinogenic forms (63, 64). Apart from 

xenobiotic detoxification, the AhR also plays a role in the differentiation of 

developmental pathways such as hematopoiesis (65) and in regulating 
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immunological responses (66). Furthermore, previous work also implicated 

dioxins and dioxin-like PCBs in animal models of steatohepatitis (67, 68).  

On the other hand, PXR, also known as the steroid and xenobiotic sensing 

nuclear receptor (nuclear receptor subfamily 1, group I, member 2, NR1I2) and 

CAR (nuclear receptor subfamily 1, group I, member 3, NR1I2NR1I3) belong to 

the class of nuclear receptors; upon activation by ligands, PXR and CAR 

transcriptionally activate numerous target genes that encode enzymes and 

transporters involved in drug and xenobiotic metabolism (69). However, recent 

studies have demonstrated these receptors’ role in energy homeostasis and 

these include regulation of lipid and carbohydrate metabolism (60, 70). CAR was 

recently named as an anti-obesity nuclear receptor, since its activation improves 

insulin sensitivity in a diet-induced obesity mouse model and ameliorates 

diabetes and fatty liver disease in leptin-deficient mice (71, 72). Activating CAR 

and PXR also induced the anti-lipogenic protein, Insig (73). Furthermore, PXR 

and CAR activation also suppressed gluconeogenesis by decreasing 

gluconeogenic gene expression including phosphoenol-pyruvate carboxykinase 

and glucose-6-phosphatase (74). The reported role of PXR in obesity is 

controversial with some studies demonstrating obesity-protecting effects of PXR 

activation (75) and others illustrating that ablating PXR alleviated diet-induced 

obesity (76, 77). CAR and PXR exert these effects through interactions with other 

transcription factors and receptors including direct protein sequestration. 

Activated nuclear receptors bind to the respective DNA-response elements in the 

promoter regions of the target genes using their conserved DNA-binding domains 
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and promote gene expression (78). These response elements are made up of 

hexameric sequences that can be arranged in different configurations to give 

direct repeats (DR) or inverted repeats. CAR and PXR can bind to similar DNA-

response elements in the promoter region, increasing the probability of crosstalk. 

Therefore, CAR and PXR activation can result in crosstalk with other receptors 

and possibly activation of genes that are not necessarily CAR or PXR targets. 

Significance of studying liver disease 

NAFLD affects up to 46% of the US population and approximately 20% of 

the population worldwide and it is the most prevalent liver disease in North 

America (79-81). It is more common in men than women until the age of 60 when 

the prevalence matches and the lower rate of NAFLD in women is attributed to 

the protective nature of estrogen in fatty liver disease. The prevalence of NAFLD 

is still growing and it is higher in the Hispanic population, which can be attributed 

to high rates of obesity and type 2 diabetes in this population (82).  NAFLD is not 

an independent entity by itself but it is closely related to obesity, insulin 

resistance and the metabolic syndrome. The association between NAFLD and 

obesity poses a great concern to human health because obesity has been 

identified as a leading “preventable cause of death” by the World Health 

Organization (WHO), and many health authorities view it as one of the most 

serious health problems of the 21st century. The annual cost of obesity treatment 

in the US alone was recently estimated at $147 billion (83) . According to the 

data from NHANES 2007-2008, 33.8% of US adults are obese (defined by body 

mass index, BMI ≥ 30) with another 34.2% being overweight (defined by BMI ≥ 
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25). Alarmingly, obesity is not restricted to the adult population; 15% of children 

and adolescents in the US are obese (84). Overweight/obesity is one of the 

defining features of the metabolic syndrome, a metabolic disorder which is also 

characterized by insulin resistance, hypertension, and dyslipidemia. The 

prevalence of metabolic syndrome in US adults was recently estimated at 34.3%. 

The obesity epidemic is strongly associated with increased type 2 diabetes which 

is the late stage of insulin resistance. The National Diabetes Fact Sheet obtained 

from the Center for Disease Control and Prevention (CDC, 2011) reports that 

25.8 million Americans have diabetes with another 79 million being insulin 

resistant. Obesity, insulin resistance, and metabolic syndrome can eventually 

lead to target organ damage contributing to  cardiovascular disease, chronic 

kidney disease, and cancer (85-87). Therefore, taking the above mentioned 

statistics into consideration, studying the causal factors of NAFLD is relevant to 

public health. 

Overall goal and specific aims 

The pathogenesis of NAFLD, obesity, insulin resistance, and the 

metabolic syndrome is complex. NAFLD and obesity were linked to high caloric 

intake and over-nutrition, physical inactivity, genetic background, and certain 

medications’ side effects. Interestingly, inflamed and fatty liver conditions are not 

confined to obese individuals only, but other factors can predispose a person to 

steatohepatitis. It is possible that primary factors such as consumption of hyper-

caloric foods can lead to steatosis in normal individuals, thus acting as a ‘first hit’. 

Emerging studies have demonstrated that other factors may play a role in the 
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genesis and development of NAFLD or may act as a ‘second hit’ in the 

progression of hepatic steatosis to steatohepatitis (88). These factors may 

include exposure to environmental contaminants including PCBs, 

bromodichloromethane (BDCM) and organochlorine pesticides, such as, dieldrin 

and dichlorodiphenyltrichloroethane (DDT) (41, 89). Our laboratory group 

recently identified industrial chemicals and environmental pollutants that are 

associated with toxicant-associated fatty liver disease and toxicant-associated 

steatohepatitis (TASH) using two federal databases (90). Such compounds have 

the capacity to act as key players in the development of NASH, obesity and the 

metabolic syndrome but the number of studies on the effects of environmental 

pollutants in liver disease is still modest and needs to be investigated. 

The overall goal of this dissertation is to evaluate the role of PCB 

exposure in fatty liver disease and elucidate the potential PCB-receptor 

interactions that mediate fatty liver disease. The outcomes from this study would 

benefit our understanding of TASH and the underlying mechanisms caused by 

toxicant exposure in TASH. The specific aims of the project are as follows: 

1A. Develop a mouse model for PCB exposure that simulates human 

exposure paradigms.  

1B. Evaluate the effects of the commercialized PCB mixture, Aroclor 

1260, in obesity and NAFLD. 

The congener composition in the PCB mixture, Aroclor 1260, resembles 

bio-accumulated PCBs present in human adipose tissue (Fig. 1.2) and it was 

therefore chosen for this study. Prior to initiating the animal experiments 
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described in this dissertation, there were no documented studies on animal 

models using PCB mixtures that simulate bio-accumulated PCBs and at doses 

relevant to human exposure. Additionally, the effects of Aroclor 1260 in diet-

induced steatosis and obesity have never been assessed.  The purpose of the 

studies in Chapter 2 was to develop a mouse model to study the effects of PCB 

exposure at doses relevant to human exposure. Additionally, the experiments in 

Chapter 2 were designed to determine if Aroclor 1260 exposure by itself could 

induce NAFLD or if it worsens NAFLD and obesity caused by high fat diet 

feeding. 

2. Determine the role of the nuclear receptors, CAR and PXR, in liver 

injury caused by Aroclor 1260 and high fat diet co-exposure. 

CAR and PXR are involved in drug metabolism but recent studies have 

demonstrated in the role of these receptors in maintaining energy homeostasis in 

the body (60-62). Moreover, theoretical structure activity relationship studies 

predicted that non-coplanar PCBs can interact with CAR and PXR (25).  

However activation of CAR and PXR by a PCB mixture and the subsequent 

contribution of these activated receptors to PCB effects and toxicity have not 

been thoroughly evaluated, especially in terms of obesity and NAFLD/NASH. The 

experiments described in Chapter 3 examined the role of CAR and PXR in the 

context of liver injury caused by Aroclor 1260 exposure and high fat diet feeding. 

3. Examine the interactions between Aroclor 1260/selected PCB 

congeners and human receptors in the liver 
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We hypothesized that PCBs may exert some of their toxic effects, such as 

NAFLD, by interacting directly with the endobiotic nuclear receptors (LXR, FXR, 

PPARs) or with xenobiotic receptors (AhR, CAR and PXR). Moreover, the 

interaction between Aroclor 1260 and these receptors that are implicated in 

NAFLD have never been tested. The purpose of the studies in Chapter 4 is to 

evaluate human receptor agonism/antagonism by the PCB mixture, Aroclor 1260, 

and selected PCB congeners that are highly represented in this mixture. We 

determined human receptor activation by utilizing transient transfection assays in 

human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines. 
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CHAPTER 2 

EVALUATING THE EFFECTS OF AROCLOR 1260 IN A DIET-INDUCED 

OBESITY MOUSE MODEL 

INTRODUCTION 

 As aforementioned, previous studies on PCBs were focused on 

carcinogenicity and acute toxicity; however, the effects of chronic low-level 

exposures to PCBs on other pathologies such as NAFLD, diabetes and obesity 

are understudied, especially for PCB mixtures. Epidemiological studies have 

found associations between PCB exposures and metabolic disorders related to 

NAFLD, including obesity, diabetes/insulin resistance and the metabolic 

syndrome. In our recent work, we demonstrated that PCB 153 administration was 

a relevant ‘second hit’ mechanism that worsened NAFLD/obesity occurring in the 

context of a high fat diet (HFD) in male C57Bl/6 mice (48). However, no 

individual is exposed to a single PCB congener alone and therefore studying a 

PCB mixture may better simulate human PCB exposure patterns. Moreover, the 

composition of PCB congeners in Aroclor 1260 mimics human bioaccumulation 

patterns (36).  

The primary toxicity endpoint of PCB exposure has been an increase in 

cancer and is thought to be mediated through PCB interaction with transcription 

factors namely the AhR. Genotoxic carcinogenic mechanisms are activated via 
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induction of the AhR and the carcinogenicity of a PCB mixture is often defined as 

its ability to induce the AhR-dependent gene transcription relative to the potent 

rodent carcinogen and prototypical AhR ligand, TCDD. In addition, “non 

genotoxic” carcinogenic mechanisms may also be induced including 

hepatomegaly by the nuclear receptors, CAR and PXR. Although these receptors 

are primarily involved in xenobiotic detoxification, recent studies have implicated 

their role in metabolic diseased states such as steatosis, obesity and insulin 

resistance (60-62). The role of hepatic receptor-PCB interactions in NASH and 

the metabolic syndrome is understudied and requires further investigation.  

It is therefore pertinent to evaluate the effects of a commercially produced 

PCB mixture whose composition is relevant to human PCB body burden, in a 

normal and hyper- caloric state, and investigate nutrient-toxicant interactions that 

can contribute to liver disease and obesity. We hypothesize that the commercial 

PCB mixture, Aroclor 1260, like PCB 153, can act as an obesogen and 

promote/worsen steatosis and diet-induced obesity. In this study, we utilized a 

mouse model to determine if i) Aroclor 1260 exposures alone are sufficient to 

cause NAFLD and obesity; ii) Aroclor 1260 worsens diet-induced obesity and 

NAFLD by exacerbating insulin resistance, adipocytokine dysregulation, 

alterations in hepatic gene expression, AhR, PXR and CAR activation and other 

implicated mechanisms; and iii) effects observed with Aroclor 1260 

administration are dependent on PCB dose.  

The results of the current study established Aroclor 1260 as a “second hit” 

driving steatosis to steatohepatitis in HFD-fed mice. The results also 
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demonstrated that selective hepatic receptor activation by this PCB mixture was 

dependent on exposure dose and diet, in part, clarifying the mechanism of action 

of PCBs in fatty liver disease. 
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MATERIALS AND METHODS 

Animals and diets 

The animal protocol was approved by the University of Louisville 

Institutional Animal Care and Use Committee. Male C57Bl/6J mice (8 weeks old; 

The Jackson Laboratory, Bar Harbor, ME, USA) were divided into 6 study groups 

(n=10) based on diet and Aroclor 1260 exposure in this 12 week study utilizing a 

2x3 design. Mice were fed either a control diet (CD, 10.2% kCal from fat; 

TD.06416 Harlan Teklad) or a HFD (42% kCal from fat; TD.88137 Harlan 

Teklad). Diet components are described in Table 2. Aroclor 1260 (AccuStandard, 

CT, USA) was administered in corn oil by oral gavage (vs. corn oil alone) at two 

doses; a low dose of 20 mg/kg which was designed to mimic the maximum 

human PCB exposures seen in the Anniston cohort and a high dose of 200 

mg/kg which was similar to that used in rodent carcinogenesis studies (18, 22). 

The 20 mg/kg dose was administered on Week 1 whereas the 200 mg/kg dose 

was administered as four individual doses of 50 mg/kg each on Weeks 1, 3, 5, 

and 7 to ensure that acute toxicity was minimized (Fig. 2.1). Mice were housed in 

a temperature- and light controlled-room (12 hour light; 12 hour dark) with food 

and water ad libitum. A glucose tolerance test was performed at Week 11, and 

the animals were euthanized (ketamine/ xylazine, 100/20 mg/kg body weight, 

i.p.) at the end of Week 12. Prior to euthanasia, the animals were analyzed for 

body fat composition by dual energy X-ray absorptiometry (DEXA) scanning 

(Lunar PIXImus densitometer, WI, USA). Thus six different treatment groups 

were evaluated in this fashion: CD+vehicle, CD+Aroclor 1260 (20 mg/kg), 
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CD+Aroclor 1260 (200 mg/kg), HFD+vehicle, HFD+Aroclor 1260 (20 mg/kg), 

HFD+Aroclor 1260 (200 mg/kg). 
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    Control Diet   High Fat Diet 

%kCal Source %kCal Source 

Protein 20.1 Casein 15.2 Casein 

Carbohydrate 69.8 
Sucrose/Corn 

starch 
42.7 

Sucrose/Corn 

starch 

Fat 10.2 Lard 42 
Anhydrous 

Milkfat 

kCal/g 3.7 4.5 

 

Table 2. Diet composition. 
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Figure 2.1. Experimental design and timeline 

 

 

 

 

 

 

 

 



26 
 

Glucose tolerance test 

On the day of the test, mice were fasted for 6 h (7a.m.-1 p.m.), and fasting 

blood glucose levels were measured with a hand-held glucometer (ACCU-

CHECK Aviva, Roche, Basel, Switzerland) using 1-2 µL blood via tail snip. 

Glucose was then administered (1 mg glucose/g body weight, sterile saline, i.p.), 

and blood glucose was measured at 5, 15, 30, 60, 90 and 120 min post injection. 

Insulin resistance was calculated by homeostasis model assessment using the 

formula: homeostasis model assessment of insulin resistance (HOMA-

IR)=Fasting glucose (mg/dL) x Fasting insulin (µU/mL)/405.   

Histological studies 

Liver and adipose sections were fixed in 10% neutral buffered formalin 

and embedded in paraffin for routine histological examination. Tissue sections 

were stained with hematoxylin-eosin (H&E) or for chloroacetate esterase activity 

[CAE, Naphthol AS-D Chloroacetate (Specific Esterase) Kit, Sigma Aldrich, St. 

Louis, MO, USA] and examined by light microscopy. Photomicrographic images 

were captured using a high-resolution digital scanner at 10x and 40x 

magnification. After H&E staining, adipocyte size was measured using Image J 

software version 1.47 (NIH, Bethesda, MD, USA). 

Cytokine and adipokine measurement 

 Plasma cytokine and adipokine levels were measured using the Milliplex 

Serum Cytokine and Adipokine Kits (Millipore Corp, Billerica, MA, USA) on the 

Luminex IS 100 system (Luminex Corp, Austin, TX, USA), as per the 

manufacturer’s instructions. Plasma aspartate transaminase (AST) activity, 
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alanine transaminase (ALT) activity, low density lipoprotein (LDL), high density 

lipoprotein (HDL), triglycerides and cholesterol levels were measured with the 

Piccolo Xpress Chemistry Analyzer using Lipid Panel Plus reagent discs (Abaxis, 

Union City, CA, USA). 

Measurement of hepatic triglyceride and cholesterol content 

Mouse livers were washed in neutral 1X phosphate buffered saline and 

pulverized. Hepatic lipids were extracted by an aqueous solution of chloroform 

and methanol, according to the Bligh and Dyer method (91), dried using nitrogen, 

and resuspended in 5% lipid-free bovine serum albumin. Triglycerides and 

cholesterol were quantified using the Cobas Mira Plus automated chemical 

analyzer. The reagents employed for the assay were L-Type Triglyceride M 

(Wako Diagnostics, Richmond, VA, USA) and Infinity Cholesterol Liquid Stable 

Reagent (Fisher Diagnostics, Middletown, VA, USA) for triglycerides and 

cholesterol respectively. 

Real-time PCR 

Animal liver and adipose tissue samples were homogenized and total 

RNA was extracted using the RNA-STAT 60 protocol (Tel-Test, Austin, TX, 

USA). RNA purity and quantity were assessed with the Nanodrop (ND-1000, 

Thermo Scientific, Wilmington, DE, USA) using the ND-1000 V3.8.1 software. 

cDNA was synthesized from total RNA using the QuantiTect Reverse 

Transcription Kit (Qiagen, Valencia, CA, USA). Polymerase Chain Reaction 

(PCR) was performed on the Applied Biosystems StepOnePlus Real-Time PCR 

Systems using the Taqman Universal PCR Master Mix (Life Technologies, 
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Carlsbad, CA, USA). Primer sequences for Taqman Gene Expression Assays 

(Applied Biosystems, Foster City, CA) were as follows: tumor necrosis factor 

alpha (TNFα); (Mm00443258-m1), fatty acid synthase (FAS); (Mm00662319-

m1), peroxisome proliferator-activated receptor alpha (PPARα); (Mm00440939-

m1), carnitine palmitoyl transferase 1A (CPT1A); (Mm01231183-m1), sterol 

regulatory element binding protein (SREBP-1c); (Mm00550338-m1), cytochrome 

P450s [Cyp4a10 (Mm02601690-gH), Cyp2b10 (Mm01972453-s1), Cyp3a11 

(Mm007731567-m1), Cyp1a2 (Mm00487224-m1)], CD36 (Mm01135198-m1), 

phosphoenolpyruvate carboxy kinase (PEPCK-1); (Mm01247058-m1), stearoyl 

coenzyme A desaturase1 (SCD1); (Mm00772290-m1), interleukin 6 (IL-6); 

(Mm00446190-m1), monocyte inducible protein 1 (MIP1); (Mm00441258-m1), 

monocyte chemo attractant protein 2 (MCP2); (Mm01297183-m1),  transforming 

growth factor-beta (TGFβ); (Mm01178820_m1), collagen 1α1 

(Mm00801666_g1), tissue inhibitor of metalloproteinases-1 (TIMP-1); 

(Mm00441818_m1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); 

(4352932E). The levels of mRNA were normalized relative to the amount of 

GAPDH mRNA, and expression levels in mice fed control diet and administered 

vehicle were set at 1. Gene expression levels were calculated according to the 

2−∆∆Ct method (92). 

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism version 5.01 

for Windows (GraphPad Software Inc., La Jolla, CA, USA). Data are expressed 

as mean ± SEM. Multiple group data were compared using One Way ANOVA 
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followed by Bonferroni's post-hoc test (for parametric data) or Kruskal-Wallis test 

followed by Dunn’s Multiple Comparison Test (for nonparametric data). P <0.05 

was considered statistically significant. 
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RESULTS 

Aroclor 1260 decreased body weight and visceral adiposity in mice fed 

high fat diet, but had no effect in mice fed control diet 

During the 12-week study, body weight gain was measured and percent 

(%) increase in bodyweight was calculated (Fig. 2.2 A&B). All the HFD groups 

experienced weight gain vs. CD groups. Aroclor 1260 administration did not 

further increase the body weight of mice consuming HFD. Rather, Aroclor 1260 

at 200 mg/kg decreased the body weight gain in HFD-fed mice vs. HFD+vehicle 

group (171.7±8.9% vs. 156.9±11.3%, p <0.05). Aroclor 1260 at 20 mg/kg had no 

effect on body weight in HFD or CD groups. The % body fat composition was 

evaluated by DEXA scanning prior to harvesting the animals (Fig. 2.2 C). HFD 

consumption increased total body fat. Aroclor 1260 at both doses diminished the 

increase in % body fat composition in HFD-fed mice (p <0.05) but not in CD-fed 

mice. In fact, mice co-exposed to HFD and Aroclor 1260 (20 mg/kg) appeared to 

have an increase in lean body mass as compared to HFD-fed mice only (Fig. 2.2 

D). There were no differences in % fat composition in CD-fed mice exposed to 

Aroclor 1260 vs. CD+vehicle group. The pattern of epididymal fat to body weight 

ratio among the six groups was similar to the pattern of body fat composition 

obtained by DEXA scanning, further supporting the observation that Aroclor 1260 

exposure attenuated the increase in % body fat caused by HFD feeding (Fig. 2.2 

E).  

Mean epididymal adipocyte area (µm2) was larger in HFD+vehicle vs. 

CD+vehicle (p <0.05). However, Aroclor 1260 had no effect at any of the doses 
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administered, either in mice fed CD or HFD (Fig. 2.2 F&G). Food consumption 

per mouse per day (g) was calculated over the 12-week period of study. Although 

all the HFD groups of animals consumed more food (approximately 1.7-fold more 

calories) as compared to CD groups, Aroclor 1260 did not alter the food 

consumption rate (Fig. 2.2 H). Thus, Aroclor 1260 exposure at both doses did not 

increase diet-induced adiposity or adipocyte size.  
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Figure 2.2. Effects of Aroclor 1260 exposure on body weight and visceral 

adiposity.  

(A) Increase in body weight with time for C57BL/6 mice (n=10) fed with a 

42% milk fat diet (vs. CD). Body weight measurements were taken from Week 1 

to Week 12 (12 weeks). (B) The % increase in body weight gain with time was 

calculated and the body weight at Week 1 was taken as 100%. (C) The % fat 

composition was measured using the Lunar PIXImus densitometer (DEXA 

scanner). Aroclor 1260 (20 and 200 mg/kg) exposure lowered % fat composition 

in HFD-fed mice vs. HFD+vehicle group. (D) The lean tissue mass (g) was also 

measured using the DEXA scanner. (E) Epididymal weight (EW) to body weight 

(BW) ratio was calculated for all groups of mice. (F & G) Epididymal adipose 

tissue was stained with H&E. and the adipocyte size (µm2) was measured. The 

average cell size of >100 cells for each group was calculated. (H) Food 

consumption throughout the 12-week study was measured. Values are mean ± 

SEM, p <0.05, a- ∆ due to HFD. CD-control diet, HFD-high fat diet, Ar-Aroclor 

1260. Figure adapted from Wahlang et al., Toxicol Appl Pharmacol, 279 (3), 

2014. 
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 Aroclor 1260 exposure caused increased liver injury in HFD-fed mice  

CD-fed mice with or without Aroclor 1260 exposure did not develop 

steatosis or steatohepatitis as seen with H&E staining of the liver sections (Fig. 

2.3 A). Mice fed with HFD developed steatosis in both the unexposed and 

Aroclor 1260-exposed groups. The most striking difference between the HFD and 

HFD+Aroclor 1260 groups was transformation from steatosis to steatohepatitis. 

HFD+Aroclor 1260 co-exposures resulted in scattered foci of mononuclear cells 

and neutrophils (confirmed with CAE stained slides) and hepatocyte necrosis 

which appeared greater in the high dose group (Fig. 2.3 A&B). Aroclor 1260 

exposure was associated with centrilobular enlargement of hepatocytes and 

karyomegaly irrespective of diet type, possibly reflecting hepatic enzyme 

induction in these mice. Liver to body weight ratio was calculated and there were 

no differences among the groups (Fig. 2.3 C). No inflammation was observed in 

Aroclor 1260-exposed mice fed CD. 

Liver injury, as determined by elevated serum ALT levels, was most 

noticeable in the HFD+Aroclor 1260 (20 mg/kg) group (p <0.05) while serum AST 

was unaffected (Fig.  2.3 D&E). Although the higher exposure group (200 mg/kg) 

fed HFD tended to have more inflammatory foci based on histological 

assessment, serum ALT levels were not significantly elevated in this group. In 

the CD-fed mice, Aroclor 1260 exposure did not alter the serum ALT and AST 

levels at either dose. Hepatic expression of fibrotic markers including 

transforming growth factor-beta (TGFβ), collagen 1α1 and tissue inhibitor of 
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metalloproteinases-1 (TIMP-1) were measured (Fig. 2.3 F,G&H) and there was 

no increase in mRNA levels among the HFD groups. 

The HFD+vehicle group showed a significant increase in hepatic levels of 

cholesterol and triglycerides vs. any of the CD groups (Fig. 2.4 A&B). However, 

hepatic cholesterol and triglycerides levels were not significantly increased in the 

HFD+Aroclor 1260 at 20 or 200 mg/kg vs. any of the CD groups. Likewise, 

hepatic cholesterol and triglycerides levels were not significantly increased in the 

HFD+Aroclor 1260 at 20 or 200 mg/kg vs. the HFD group alone. Rather, there 

was a trend towards decreased hepatic cholesterol and triglycerides with Aroclor 

1260 exposure in HFD-fed mice but this was not significant. Taken together, 

these results suggest that Aroclor 1260 exposure did not worsen steatosis 

caused by HFD but augmented inflammation and induced steatohepatitis 

instead. 
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Figure 2.3. Aroclor 1260 exposure caused steatohepatitis in HFD-fed mice 

but had no effect on fibrotic markers. 

 (A) H&E staining of hepatic sections established the occurrence of 

centrilobular hepatocellular hypertrophy, karyomegaly, and multinucleate (arrow 

head) hepatocytes in the CD+Aroclor 1260 (200mg/kg) group [A]. HFD 

consumption resulted in variable, centrilobular, microvesicular lipidosis [B-D], 

while centrilobular hepatocellular hypertrophy was observed in HFD+Aroclor 

1260 (20mg/kg) mice [C]. HFD-fed mice exposed to Aroclor 1260 (200mg/kg) 

exhibited occasional, small areas of necrosis and inflammation (steatohepatitis) 

[D], characterized by neutrophils (arrow head) and pyknotic debris (arrow). (B) 

CAE staining demonstrated neutrophil infiltration in the HFD+Aroclor 1260 (20 

and 200 mg/kg) groups. (C) The liver weight (LW) to body weight (BW) ratio was 

calculated. (D) Serum ALT and (E) AST levels (U/L) were measured (n=10) using 

the Piccolo Xpress chemical analyzer. Real-time PCR experiments were 

performed to measure the hepatic expression of (F) TGFβ, (G) Collagen1α1 and 

(H) TIMP-1, n=10. Values are mean ± SEM, p <0.05, a- ∆ due to HFD, b- ∆ due 

to Aroclor 1260 exposure at 20 mg/kg. CD-control diet, HFD-high fat diet, Ar-

Aroclor 1260, PV-portal vein, CV-central vein. Figure adapted from Wahlang et 

al., Toxicol Appl Pharmacol, 279 (3), 2014. 
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Figure 2.4. Effects of Aroclor 1260 exposure on hepatic cholesterol and 

triglycerides. 

Hepatic levels of (A) cholesterol and (B) triglycerides were quantified 

(µg/mg tissue) in mice (n=5) fed with CD or HFD with or without Aroclor 1260 co-

exposure. Values are mean ± SEM, p <0.05, a- ∆ due to HFD. CD-control diet, 

HFD-high fat diet, Ar-Aroclor 1260. Figure adapted from Wahlang et al., Toxicol 

Appl Pharmacol, 279 (3), 2014. 
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Effects of Aroclor 1260 exposure on serum adipo-cytokines 

HFD consumption alone did not increase serum interleukin 6 (IL-6) or 

tissue plasminogen activator inhibitor (tPAI-1) levels vs. CD (Fig. 2.5 A&B).  

However, HFD-fed mice exposed to Aroclor 1260 at 20 mg/kg displayed 

significantly elevated serum IL-6 and tPAI-1 levels (p <0.05). This exposure-

related elevation in pro-inflammatory cytokines was absent in CD-fed mice. In 

contrast to the lower exposure, Aroclor 1260 at 200 mg/kg did not increase 

serum IL-6 or tPAI-1 levels in either the HFD or CD groups even though 

histological examinations indicated higher levels of hepatic macrophage 

infiltration in HFD fed animals. Serum tumor necrosis factor alpha (TNFα) and 

monocyte chemo attractant protein-1 (MCP1) levels were not affected by either 

diet or Aroclor 1260 exposure (Fig. 2.5 C&D).  

All the HFD groups displayed elevated serum leptin levels as compared to 

CD groups (Fig. 2.5 E, p <0.05) consistent with the increased adiposity observed 

in these groups. Exposure to Aroclor 1260 did not affect leptin levels. 

Interestingly, serum adiponectin levels did not differ between any of the groups, 

irrespective of the diet type consumed (Fig. 2.5 F), leading to an increased 

leptin/adiponectin ratio in HFD-fed animals. Similar to leptin, serum resistin levels 

were increased in mice fed HFD (Fig. 2.5 G, p <0.05). Furthermore, Aroclor 1260 

at 200 mg/kg decreased serum resistin levels in HFD-fed mice vs. HFD+vehicle 

and HFD+Aroclor 1260 (20 mg/kg) groups (p <0.05), indicating a dose-

dependent interaction between Aroclor 1260 and HFD. In summary, Aroclor 1260 
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at the lower dose increased serum pro-inflammatory cytokines in HFD-fed mice, 

while the higher dose caused a decrease in serum resistin levels. 
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Figure 2. 5. Effects of Aroclor 1260 on serum adipo-cytokines. 

Serum (A) IL-6 (pg/mL), (B) tPAI-1 (pg/mL), (C) TNFα (pg/mL), (D) MCP1 

(pg/mL), (E) leptin (pg/mL), (F) adiponectin (µg/mL) and (G) resistin (pg/mL) 

levels were measured using the Luminex IS 100 system (n=10). Values are 

mean ± SEM, p <0.05, a- ∆ due to HFD, b- ∆ due to Aroclor 1260 exposure at 20 

mg/kg, c- ∆ due to Aroclor 1260 exposure at 200 mg/kg. CD-control diet, HFD-

high fat diet, Ar-Aroclor 1260. Figure adapted from Wahlang et al., Toxicol Appl 

Pharmacol, 279 (3), 2014. 
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Effects of Aroclor 1260 on insulin resistance, glucose regulation, and 

serum lipids 

A glucose tolerance test was performed and HOMA-IR was calculated to 

determine if HFD and Aroclor 1260 co-exposure exacerbate HFD-induced insulin 

resistance, a common hallmark of NAFLD. HFD feeding increased HOMA-IR and 

Aroclor 1260 exposure (200 mg/kg) decreased HOMA-IR in HFD-fed mice (Fig. 

2.6 A). The HFD group showed greater area under the curve (AUC) in the 

glucose tolerance test than any of the CD groups (Fig. 2.6 B&C). Aroclor 1260 

though had no additive effect to dietary manipulation alone. Therefore, while 

Aroclor 1260 exposure (200 mg/kg) decreased HOMA-IR, there was no 

difference in the AUC. The decrease in HOMA-IR could indicate impaired 

glucose-stimulated insulin production with Aroclor 1260 exposure. Fasting blood 

glucose levels showed that Aroclor 1260 exposure lowered blood glucose levels 

in the CD-fed mice at both the 20 and 200 mg/kg doses but not in HFD-fed mice 

(Fig. 2.6 D). This observation is consistent with our earlier study where i.p. 

injection of PCB 153 resulted in lowered fasting blood glucose levels in mice fed 

CD (48).  

HFD feeding resulted in significantly higher mean serum cholesterol and 

HDL levels vs. CD feeding (p <0.05). Aroclor 1260 exposure at 20 or 200 mg/kg 

did not affect mean cholesterol and HDL levels either in the HFD or CD groups 

(Table 3). In contrast, HFD feeding did not increase mean serum LDL levels vs. 

CD feeding. However, the HFD+Aroclor 1260 (200 mg/kg) group exhibited 

significantly higher mean LDL levels vs. CD+vehicle or CD+Aroclor 1260 (200 
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mg/kg). Mean serum triglyceride levels were unchanged irrespective of diet 

consumed or level of Aroclor 1260 exposure. In summary, HFD was associated 

with insulin resistance and serum hypercholesterolemia, but Aroclor 1260 had no 

observable effect on these parameters. 
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Figure 2.6.HFD increased insulin resistance, and this was unaffected by 

Aroclor 1260 co-exposure. 

 (A) HOMA-IR was calculated from fasting blood glucose and insulin levels 

for all six groups of animals (n=10). (B) Glucose tolerance test was performed, 

and blood glucose levels were measured for mice (n=10) fed with CD or HFD, 

with or without Aroclor 1260 co-exposure. AUC was calculated (C), and the HFD 

groups showed higher AUC levels than the CD groups. (D) Fasting blood glucose 

levels (mg/dL) were measured, and the CD-fed mice co-exposed to Aroclor 1260 

showed lower levels vs. CD+vehicle.Values are mean ± SEM, p <0.05, a- ∆ due 

to HFD, b- ∆ due to Aroclor 1260 exposure at 20 mg/kg, c- ∆ due to Aroclor 1260 

exposure at 200 mg/kg. CD-control diet, HFD-high fat diet, Ar-Aroclor 1260. 

Figure adapted from Wahlang et al., Toxicol Appl Pharmacol, 279 (3), 2014. 
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Cholesterol HDL LDL Triglycerides

CD 70.1 ± 7.7 49.1 ± 6.1 12.3 ± 1.7 44.1 ± 6.1 

CD+Ar 
(20 mg/kg) 

76.0 ± 3.9 52.2 ± 3.0 16.1 ± 1.3 40.2 ± 3.6 

CD+Ar 
(200 mg/kg) 

76.8 ± 3.8 56.0 ± 3.0 12.0 ± 1.6 43.8 ± 6.3 

HFD 122.1 ± 11.4a 96.8 ± 9.8a 17.3 ± 1.8 38.6 ± 3.1 

HFD+Ar 
(20 mg/kg) 

130.4 ± 8.2a 92.2 ± 4.4a 15.5 ± 2.3 53.0 ± 3.3 

HFD+Ar (200 
mg/kg) 

130.0 ± 5.3a 93.1 ± 2.7a 21.8 ± 1.4c 50.0 ± 3.1 

 

Table 3. Serum levels of cholesterol, high density lipoproteins, low density 

lipoproteins and triglycerides. 

Values are mean ± SEM (mg/dL), p <0.05, a- ∆ due to HFD, b- ∆ due to 

Aroclor 1260 exposure at 20 mg/kg, c- ∆ due to Aroclor 1260 exposure at 200 

mg/kg. CD-control diet, HFD-high fat diet, Ar-Aroclor 1260, HDL-high density 

lipoproteins, LDL-low density lipoproteins. Table adapted from Wahlang et al., 

Toxicol Appl Pharmacol, 279 (3), 2014. 
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Aroclor 1260 exposure modulated hepatic fat metabolism 

Liver-X-receptor (LXR) is the key transcription factor that drives lipid 

synthesis and cholesterol metabolism and its over-activation can promote or 

worsen steatosis (93). We were interested in evaluating if Aroclor 1260 exposure 

would increase LXR target gene expression, which in turn, worsens steatosis 

caused by HFD.  There are similarities in the response elements, to which LXR 

and the receptors that PCBs activate (CAR and PXR), bind to. All three receptors 

have the capacity to bind direct repeats (DR-4) response elements suggesting 

that some degree of crosstalk may be possible. HFD feeding did not alter FAS 

hepatic expression vs. CD feeding (Fig. 2.7 A). However, Aroclor 1260 exposure 

at 20 and 200 mg/kg decreased FAS hepatic expression in HFD-fed mice (p 

<0.05). HFD feeding increased SCD1 hepatic expression (Fig. 2.7 B, p <0.05) 

and this result was not affected by Aroclor 1260 exposure. Interestingly, HFD 

feeding alone decreased SREBP-1c mRNA levels but co-exposure to HFD and 

Aroclor 1260 at both doses resulted in increased SREBP1-c mRNA levels (Fig. 

2.7 C, p <0.05), suggesting an interaction between HFD and Aroclor 1260 

exposure. Aroclor 1260 exposure at both doses had no effect on SREBP-1c 

hepatic expression in CD-fed mice. In contrast, Aroclor 1260 exposure at 20 

mg/kg resulted in hepatic upregulation of CD36 in CD-fed mice (Fig. 2.7 D, p 

<0.05). Notably, CD36 is an LXR target gene shared by PXR as well (94). In 

summary, Aroclor 1260 exposure did not increase FAS or SCD1 hepatic 

expression, suggesting that LXR was not activated by the exposure but that 



50 
 

these genes’ expression may have been modulated by CAR or PXR directly or 

indirectly. 

PPARα is a transcription factor for lipid-catabolizing genes including 

CPT1A, CPT2 and Cyp4b10. PPARα activation results in hepatic lipid oxidation 

and may be protective against steatosis. We measured the hepatic expression of 

PPARα as well as its target genes, Cyp4b10 and CPT1A (Fig. 2.8 A, B&C). The 

mRNA levels of PPARα and Cyp4b10 did not differ between any of the groups 

examined. However, CPT1A expression was significantly induced with low dose 

Aroclor 1260 exposure in the HFD group vs. HFD alone. Therefore, Aroclor 1260 

exposure at 20 mg/kg appeared to induce CPT1A in a HFD-setting by 

mechanisms independent of direct PPARα interaction. 
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Figure 2.7. Effects of Aroclor 1260 exposure on genes involved in lipid 

metabolism. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure for (A) FAS, (B) SCD1, (C) 

SREBP-1c and (D) CD36. Values are mean ± SEM, p <0.05, a- ∆ due to HFD, b- 

∆ due to Aroclor 1260 exposure at 20 mg/kg, c- ∆ due to Aroclor 1260 exposure 

at 200 mg/kg. CD-control diet, HFD-high fat diet, Ar-Aroclor 1260. Figure adapted 

from Wahlang et al., Toxicol Appl Pharmacol, 279 (3), 2014. 
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Figure 2.8. Effects of Aroclor 1260 exposure on genes involved in lipid 

oxidation. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure for of (A) Cyp4a10 (B) CPT1A 

and (C) PPARα. Values are mean ± SEM, p <0.05, b- ∆ due to Aroclor 1260 

exposure at 20 mg/kg. CD-control diet, HFD-high fat diet, Ar-Aroclor 1260. Figure 

adapted from Wahlang et al., Toxicol Appl Pharmacol, 279 (3), 2014. 
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Hepatic expression of TLR-4 target genes 

Toll like receptor 4 (TLR-4) activation results in nuclear factor kappa-B 

(NF-κB) activation which in turn causes upregulation of pro-inflammatory 

cytokines (95). We hypothesized that Aroclor 1260 may interact directly or 

indirectly with TLR-4, resulting in monocytic infiltration as observed in liver 

histology and increased serum cytokine levels. We therefore measured the 

hepatic expression of TLR-4 target genes namely TNFα and IL-6. HFD alone did 

not increase TNFα mRNA levels (Fig. 2.9 A). However, exposure to Aroclor 1260 

at 20 mg/kg increased TNFα mRNA levels in HFD-fed mice (p <0.05). Aroclor 

1260 exposure at 200 mg/kg did not increase TNFα hepatic expression in either 

the CD- or HFD-fed mice. Aroclor 1260 exposure at 20 mg/kg in CD fed mice 

resulted in increased IL-6 mRNA levels vs. CD alone (Fig. 2.9 B). Aroclor 1260 

exposure at 200 mg/kg did not increase IL-6 mRNA levels in either the CD- or 

HFD-fed mice. Clearly, Aroclor 1260 exposure at 20 mg/kg led to increased 

TNFα and IL-6 hepatic expressions with either HFD or CD respectively. Neither 

HFD feeding nor Aroclor 1260 exposure had any effect on MCP2 mRNA levels 

whereas MIP1α mRNA levels was increased only with HFD feeding (Fig. 2.9 

C&D). These results appear broadly consistent with the serum cytokine levels 

data, suggesting increased inflammation and possibly sensitization to TNFα-

dependent cell death only at the lower dose of Aroclor 1260 (20mg/kg). 

Furthermore, the results also suggest that cytokine production may be inhibited 

at higher concentrations of Aroclor 1260 (200 mg/kg) by other mechanisms. 
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Figure 2.9. Effects of Aroclor 1260 exposure on TLR-4 target genes. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure for (A) TNFα, (B) IL-6, (C) MCP2 

and (D) MIP1α. Values are mean ± SEM, p <0.05, a- ∆ due to HFD, b- ∆ due to 

Aroclor 1260 exposure at 20 mg/kg. CD-control diet, HFD-high fat diet, Ar-Aroclor 

1260. Figure adapted from Wahlang et al., Toxicol Appl Pharmacol, 279 (3), 

2014. 
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Aroclor 1260 induced hepatic CAR, PXR and AhR target genes 

PCBs are known activators of AhR and CAR, which are involved in 

xenobiotic detoxification (24, 96). Recent studies have demonstrated PCBs’ 

interaction with other nuclear receptors including human PXR and rodent 

peroxisome-proliferator activated receptor alpha (PPARα) (97-99). We 

hypothesized that Aroclor 1260 may interact with these receptors in our animal 

model. We therefore looked at the hepatic expression levels of these receptors’ 

target genes in all animal groups. 

The mRNA levels of Cyp2b10, a CAR target gene, were significantly up-

regulated in all Aroclor 1260-exposed groups (Fig. 2.10 A, p <0.05).  In the CD 

groups, the fold induction of Cyp2b10 was slightly higher in the lower dose (20 

mg/kg) as compared to the higher dose (200 mg/kg) (approximately 1000-fold vs. 

500-fold respectively). Feeding a HFD markedly reduced the fold induction of 

Cyp2b10 with inductions of 4.3-fold and 12-fold being observed at 20 mg/kg and 

200 mg/kg exposures, respectively. Thus the reduction in fold induction caused 

by HFD feeding vs. CD feeding at 20 mg/kg and 200 mg/kg was reduced by 

approximately 235-fold and 41-fold, respectively. These results appear consistent 

with previous studies (100, 101), and indicate that the ability of CAR to activate 

target genes is compromised when animals are fed with HFD. 

Hepatic Cyp3a11 (PXR target gene) expression levels were also 

significantly induced in all Aroclor 1260-exposed groups (Fig. 2.10 B, p <0.05). 

The Cyp3a11 fold induction caused by Aroclor 1260 exposure was significantly 

lower compared to Cyp2b10 (approximately 30- to 34-fold for the 20 mg/kg 
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exposure and 20- to 25-fold for the 200 mg/kg exposure). Contrary to Cyp2b10 

expression, HFD did not affect the fold inducibility of this particular gene. 

However, HFD feeding decreased the basal expression level of Cyp3a11 by 

approximately 8-fold.   

The mRNA levels of Cyp1a2 (AhR target gene) were also measured in all 

the groups to determine Aroclor 1260 activation of the AhR. Hepatic Cyp1a2 

expression was up-regulated in both dietary groups exposed to Aroclor 1260 only 

at 200 mg/kg (Fig. 2.10 C, p <0.05) but not at 20 mg/kg. Feeding with a HFD had 

no effect on either fold inducibility or basal level expression of this gene. These 

results suggest that with Aroclor 1260, the levels of congeners that activate 

CAR/PXR are present in much higher concentrations than those that activate 

AhR and the receptor based-effects of Aroclor 1260 at the lower dose are likely 

to be mediated primarily through CAR/PXR activation. 

In addition to direct targets, both CAR and PXR are capable of binding, 

potentially sequestering and altering the transcriptional activity of the 

transcription factor forkhead box O1 (FOXO1) (74).  FOXO1 is an important 

transcription factor controlling the expression of a wide range of gluconeogenic 

and lipogenic genes.  To examine if FOXO1 mediated gene transcription was 

being affected, we examined the effects of Aroclor exposure on PEPCK-1, a 

prototypical FOXO1 target gene and the rate limiting step in gluconeogenesis. 

HFD feeding did not affect PEPCK-1 mRNA levels alone but Aroclor 1260 

exposure at 20 mg/kg significantly reduced it in the HFD group (Fig. 2.10 D).  
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Figure 2.10. Aroclor 1260 exposure altered hepatic expression of CAR, PXR 

and AhR target genes. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure for (A) Cyp2b10 (CAR target 

gene), (B) Cyp3a11 (PXR target gene), (C) Cyp1a2 (AhR target gene) and (D) 

PEPCK-1 (an indirect target of CAR and PXR). Values are mean ± SEM, p 

<0.05, a- ∆ due to HFD, b- ∆ due to Aroclor 1260 exposure at 20 mg/kg, c- ∆ due 

to Aroclor 1260 exposure at 200 mg/kg. CD-control diet, HFD-high fat diet, Ar-

Aroclor 1260. Figure adapted from Wahlang et al., Toxicol Appl Pharmacol, 279 

(3), 2014. 
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DISCUSSION 

Although several PCB mixtures were commercially produced and used 

widely (e.g. Aroclor(s) 1260, 1254, 1248, 1242 and 1016), Aroclor 1260 was 

selected for this study because of the similarity in its congener composition 

pattern to that in human fat (36). The major congeners in Aroclor 1260 are the 

high molecular weight PCBs that have either 5-, 6-, 7- or 8- chlorine substituents, 

which in turn results in di-ortho substitution, and hence are non-coplanar in 

structure. These high molecular weight PCBs are not well metabolized and 

therefore bio-accumulate in humans (35). PCB toxicity has been associated with 

cancer, endocrine disruption, and impaired cognitive development, but recent 

epidemiologic studies have shown that PCB exposures can also result in 

metabolic disorders associated with NAFLD, including obesity, insulin 

resistance/diabetes, and the metabolic syndrome (41, 42, 102). Occupational 

exposure to PCB mixtures has also been associated with elevated plasma levels 

of liver enzymes (18). Chronic exposures to these chlorinated compounds 

appear to disrupt both lipid and glucose homeostasis and consequently lead to 

diabetes and associated metabolic disorders. The current study investigated the 

effects of environmental pollutant-nutrient interactions, which is clinically relevant 

because all humans are exposed to PCBs and over 75% of the US adult 

population is considered to be either overweight or obese. Exposure to toxicants 

such as PCBs may act as a ‘second hit’ that eventually drives this population to 

steatohepatitis and the metabolic syndrome.  
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PCBs bio-accumulate in the liver and adipose tissue due to their 

hydrophobicity, thus, making these sites principal targets for PCB toxicity. Lipid-

adjusted serum PCB levels were measured in NHANES participants and in the 

PCB exposed Anniston cohort with the highest reported levels ranged from 75-

170 ng/g (18, 46). Additionally, the National Toxicology Program (NTP) studies 

measured PCB levels in a 2-year gavage study in rats. Interestingly, PCB liver 

levels were at least 10-fold higher and adipose levels were at least 200-fold 

higher than lipid-adjusted serum levels irrespective of the dose administered or 

treatment time (22). Although Aroclor 1260 levels were not measured in our 

study, we speculate that the distribution will be similar to other PCBs used in 

NTP studies. In those studies, a 20 mg/kg cumulative dose yielded the following 

levels: serum-176 ng/g, liver-3,663 ng/g and adipose-92,840 ng/g while a 200 

mg/kg cumulative dose yielded levels: serum-1,788 ng/g, liver-34,010 ng/g and 

adipose-1,118,300 ng/g. Thus the 20 mg/kg dose employed is expected to 

produce serum levels similar to the maximum levels reported for the Anniston 

cohort (170.4 ng/g). The 200 mg/kg dose is similar to that used in the NTP TR 

530 for cancer studies. In the present study, we exposed mice to PCBs using 

gavage which was designed to mimic human exposure routes. A potential caveat 

is that these mice received either a single exposure or four separate exposures 

rather than the intermittent exposures that humans encounter from eating PCB- 

contaminated food. We also attempted to have several weeks between exposure 

to PCBs and the measurement of study endpoints to maximize the effects from 

bio-accumulated PCBs rather than any metabolized congeners.      
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The main finding from this study was the Aroclor 1260-mediated transition 

of steatosis to steatohepatitis in the diet-induced obesity model. Paradoxically, 

NASH was associated with decreased % fat composition and increased lean 

body mass at the low dose exposure (Fig. 2.2). Additionally, CD groups showed 

a decrease in body weight gain which may be attributed to stress experienced 

due to oral gavage. None of the CD groups exposed to Aroclor 1260 manifested 

hepatitis (H&E staining). Contrarily, Aroclor 1260 exposure in HFD groups 

worsened liver necro-inflammation (Fig. 2.3). Co-exposure to HFD and Aroclor 

1260 (20 mg/kg) resulted in elevated serum ALT, IL-6 and tPAI-1 and 

upregulated hepatic TNFα expression (Fig. 2.5). However, Aroclor 1260 at 200 

mg/kg did not induce systemic inflammation, despite histologic signs of liver 

injury.  

The results from this study differed markedly from our earlier work on a 

single congener, PCB 153, where HFD+PCB 153 co-exposure worsened 

steatosis and obesity in male C57Bl/6J mice without causing inflammation (48). 

We documented PCB 153-mediated adipokine dysregulation; a phenomenon 

which was absent in the current study. Furthermore, HFD+PCB 153 co-exposure 

altered hepatic expression of genes involved in fatty acid metabolism including 

increased FAS and decreased CPT1A mRNA expression. Although PCB 153 is 

present in Aroclor 1260, other congeners are present in this PCB mixture that 

may contribute to steatohepatitis and yet have no effect on obesity. Thus, 

exposing animals to a mixture can yield outcomes that are entirely different from 

that of a single congener.  
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Hepatic P450s, including Cyp3a11 (PXR target) and Cyp2b10 (CAR 

target), were induced by Aroclor 1260 exposure in both CD and HFD-fed mice 

(Fig. 2.10). PXR and CAR are critically involved in xenobiotic metabolism and 

drug disposition, but recent studies demonstrated the importance of CAR and 

PXR regulation on physiological processes such as glucose and lipid 

metabolism, and this could impact NASH (60, 103, 104). Gao et al. demonstrated 

CAR as an anti-obesity receptor whose activation was protective against diet-

induced obesity and insulin resistance (72). On the contrary, the role of PXR in 

obesity remains controversial with studies reporting either anti-obesity or obesity 

promoting effects (75, 77, 105). Our RT-PCR data strongly suggest CAR 

activation by Aroclor 1260 as indicated by the ~1000- to 500-fold induction of 

Cyp2b10 at both the low and high exposure levels. Cyp3a11 induction is a 

hallmark of PXR activation, but activated CAR can also bind to the Cyp3a11 

response element and drive its expression, albeit, at lower levels. Although 

Cyp3a11 was induced by ~30-fold, this induction may be mediated by CAR 

rather than PXR. These results indicate that Aroclor 1260 exposure activated 

CAR/PXR, hence the possible obesity-protective effects seen in the HFD-fed 

mice exposed to Aroclor 1260.  

Furthermore, CAR/PXR activation suppresses FOXO1-insulin response 

sequence (IRS) binding activity (Kodama et al., 2004) resulting in decreased 

gluconeogenesis and hence the lowered fasting blood glucose levels seen in 

CD+Aroclor 1260 groups (Fig. 2.6). Additionally, FOXO1, is a negative regulator 

of SREBP1 transcription and its sequestration by activated CAR/PXR could 
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result in increased SREBP1 gene expression (74, 106). Notably in our study, 

hepatic SREBP-1c expression was induced in HFD-fed mice exposed to Aroclor 

1260. However, activated CAR and PXR can transcriptionally activate the anti-

lipogenic gene Insig, consequently leading to reduced SREBP1 activity and 

decreased SREBP1 target gene expression such as FAS (73). Hence, the 

decrease in FAS expression observed in this study could possibly be due to loss 

of SREBP1 activity even though the gene was induced.  Additionally, CD36, a 

lipid scavenger receptor and target gene shared by AhR, PXR and LXR was also 

induced by Aroclor 1260 (Fig. 2.7). Other novel findings in this study included 

induction of CPT1A and decreased hepatic FAS expression with Aroclor 1260 

exposure in HFD-fed mice. In concert, the effects of Aroclor 1260 on lipogenesis 

appeared complex, and interactions with CAR/PXR could contribute to the 

observed decrease in % fat composition in HFD+Aroclor 1260 groups. Moreover, 

glucose metabolism was abnormal in HFD-fed mice exposed to Aroclor 1260 

(200 mg/kg), because, while HOMA-IR was lowered, glucose tolerance failed to 

improve. It appears that HOMA-IR and glucose tolerance test may be insufficient 

to evaluate glucose metabolism in PCB studies, given the partially divergent 

effects of PCB exposure in the fed and fasted state. However, these 

observations need to be pursued further to elucidate the mechanisms involved.  

Regardless of Aroclor 1260 exposure, it appeared that HFD consumption 

reduced the induction of CAR/PXR target genes as compared to CD 

consumption and it was only HFD-fed mice exposed to Aroclor 1260 that 

exhibited liver injury. Therefore, it is plausible to say that activation of xenobiotic 



67 
 

receptors such as CAR/PXR protect against PCB toxicity in a low fat diet setting. 

Therefore HFD consumption interferes with CAR/PXR activation by PCBs, and 

therefore attenuates the protective effects of these receptors against PCB toxicity 

with the net result being increased liver injury only in Aroclor 1260+HFD co-

exposed animals. The progression of NAFLD from simple steatosis to 

steatohepatitis requires both hepatic fat accumulation and inflammation. In this 

study, it was observed that in steatotic mice exposed to low dose Aroclor 1260, 

inflammation and liver injury was aggravated, while at the high dose, 

inflammation was suppressed and liver injury was attenuated. Our results 

suggest that it is the inflammatory dysfunction that PCBs induce rather than the 

degree of steatosis observed that may dictate appearance of steatohepatitis. 

Hepatic expression of Cyp1a2 (AhR target gene) was induced only in 

groups receiving Aroclor 1260 at the highest dose tested (Fig. 2.10), suggesting 

dose-dependent activation of this receptor. AhR activation by PCBs is well 

documented with coplanar (‘dioxin-like’) PCBs including PCB 126 being good 

rodent AhR activators. A wasting syndrome and chloracne are characteristic 

features of AhR activation by its classic ligand TCDD (107). AhR activation is 

also associated with immune suppression via AhR interference with NF-κB 

signaling (108). Consistent with these results, animals exposed to Aroclor 1260 

(200 mg/kg) displayed lower body weight and a suppression of serum pro-

inflammatory cytokines and resistin levels (Fig. 2.5). Resistin, also known as the 

adipocyte secretory factor, is secreted by the adipose tissue and appears to 

participate in inflammatory processes as well (109). While reduced body weight 
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has frequently been reported with animals exposed to AhR ligands, in murine 

and human models, steatosis increases, presumably due to a redistribution of 

dietary fat (110). Thus activation of the AhR may lead to increased steatosis but 

decreased steatohepatitis, as a function of its immunosuppressive effects. The 

activation AhR by Aroclor 1260 is likely due to the presence of coplanar 

congeners such as PCB 126 but these compounds exist in relatively low 

percentages in this mixture (<1%), and hence a higher Aroclor 1260 exposure 

level is required to observe the ‘dioxin-like’ effects. Therefore, absence of 

inflammation at the higher dose may be due to the immune-suppressive 

properties of activated AhR. 

Thus, we identified both CAR/PXR and AhR activation as potential 

mode(s) of action of this PCB mixture in NASH. Nonetheless, rodent and human 

receptors may have differences pertaining to ligand binding activity and target 

gene battery. Off target effects are also possible mechanisms in PCB-driven 

NASH, but these were not evaluated in this study. Moreover, the current study 

failed to distinguish between CAR and PXR activation which is a potential 

drawback since the observed Aroclor 1260 effects may be based solely on CAR 

activation. Thus further investigation to distinguish between the CAR an d PXR-

mediated effects using PXR/CAR knockout models is required. The study also 

failed to assess overall metabolism and employing metabolic chambers would 

have been useful in this regard. Furthermore, another drawback in this study was 

using serum ALT/AST as a NASH biomarker based on low sensitivity, and 

evaluating other biomarkers is a possibility in future studies (50). In addition, our 
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studies were performed using male mice; hence it is pertinent to note that the 

observed effects may vary with gender and species.  

In conclusion, Aroclor 1260 exposure caused toxicant-associated 

steatohepatitis in animals fed with HFD. In contrast to our previous study wherein 

a single congener (PCB 153) was used, this PCB mixture neither increased the 

body weight/visceral adiposity nor worsened insulin resistance/diet-induced 

obesity. There was a significant difference between the low and high exposure 

doses in terms of hepatic/systemic inflammation, which could potentially be due 

to AhR activation. Our additional findings demonstrate that Aroclor 1260 

activated CAR and PXR and to a lesser extent AhR, suggesting congener 

composition and exposure levels to be critical in determining a mixture’s mode(s) 

of actions. Lastly, CAR and PXR activation could be protective against PCB-

mediated toxicity but HFD consumption may blunt this protection. More studies 

are needed on the role of PCB-nuclear receptor interactions in steatohepatitis. 
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CHAPTER 3 

EVALUATING THE ROLE OF CAR AND PXR IN AROCLOR 1260-INDUCED 

LIVER INJURY 

INTRODUCTION 

Our initial studies in a diet-induced obesity mouse model demonstrated 

that Aroclor 1260 exposure had modest effects on a control diet but induced 

steatohepatitis when animals were fed with a high fat diet. In animals fed a high 

fat diet, Aroclor 1260 exposure did not exacerbate obesity. However, in the liver, 

Aroclor 1260 exposure (20 mg/kg) activated nuclear receptors, including CAR 

and PXR as the cytochrome P450s, namely, Cyp2b10 and Cyp3a11 were 

robustly induced.  At higher Aroclor 1260 exposures (200 mg/kg), the AhR was 

also activated. Furthermore, PCB activation of the AhR has been well studied 

and its activation has been linked to hepatic cancer. However PCB activation of 

CAR and PXR and the subsequent contribution of these activated receptors to 

PCB effects and toxicity have not been thoroughly evaluated, especially in terms 

of obesity and NAFLD/NASH. 

In this study, the role of CAR and PXR in Aroclor 1260-induced liver injury 

was further characterized. We hypothesized that CAR and PXR play a role in the 

transition of steatosis to steatohepatitis caused by Aroclor 1260 exposure. The 

CAR and PXR knockout mouse models were utilized to demonstrate that both 



71 
 

receptors were required for normal physiology and that they both played a 

protective role in PCB+HFD-induced liver disease. Additionally, in the previous 

study, mice receiving Aroclor 1260 at 20 mg/kg elicited CAR and PXR activation 

as well as NASH; therefore this dose was employed again in the present study. 
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MATERIALS AND METHODS 

Animals and diets 

The animal protocol was approved by the University of Louisville 

Institutional Animal Care and Use Committee. Wild type male C57Bl/6J mice 

(WT, 8 weeks old; The Jackson Laboratory, Bar Harbor, ME, USA) and CAR-/- 

and PXR-/- mice (Taconic, Hudson, NY) were divided into 6 study groups (n=10) 

based on Aroclor 1260 exposure utilizing a 2x3 design. All mice were fed a high 

fat diet (HFD, 42% kCal from fat; TD.88137 Harlan Teklad) in this 12 week study. 

On Week 1, Aroclor 1260 (AccuStandard, CT, USA) was administered in corn oil 

by oral gavage (vs. corn oil alone) at 20 mg/kg. This dose was designed to mimic 

the maximum human PCB exposures seen in the PCB-exposed Anniston cohort. 

Mice were housed in a temperature- and light controlled-room (12 hour light; 12 

hour dark) with food and water ad libitum. During Week 8-9, mice were placed in 

metabolic chambers (PhenoMaster, TSE systems, Chesterfield, MO) overnight to 

assess food/drink consumption and physical activity. A glucose tolerance test 

was performed at Week 11, and the animals were euthanized (ketamine/ 

xylazine, 100/20 mg/kg body weight, i.p.) at the end of Week 12. Prior to 

euthanasia, the animals were analyzed for body fat composition by dual energy 

X-ray absorptiometry (DEXA) scanning (Lunar PIXImus densitometer, WI, USA). 

Thus six different groups were evaluated; WT, WT+Aroclor 1260, CAR-/-, CAR-/-

+Aroclor 1260, PXR-/-, PXR-/-+Aroclor 1260. 

Glucose tolerance test 

See detailed method in Chapter 2. 
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Histological studies 

See detailed method in Chapter 2. 

Cytokine and adipokine measurement 

See detailed method in Chapter 2. 

Measurement of hepatic triglyceride and cholesterol content 

See detailed method in Chapter 2. 

Real-time PCR 

See detailed method in Chapter 2. Additional primer sequences from 

Taqman Gene Expression Assays (Applied Biosystems, Foster City, CA) that 

were utilized in the current study included UDP glucuronosyltransferase 1 family, 

polypeptide A1 (Ugt1a1); (Mm02603337_m1), patatin-like phospholipase domain 

containing 2 (PNPLA2); (Mm00503040_m1), PXR (Mm01344139_m1), CAR 

(Mm01283978_m1), fatty acid binding protein-1 (FABP1); (Mm00444340_m1), 

glucokinase (Gck); (Mm00439129_m1), GLUT-2, (Mm00446229_m1), GLUT-4 

(Mm01245502_m1), glucose-6-phosphatase (G6Pase); (Mm00839363_m1), 

Insig-1 (Mm00463389_m1) and Insig-2 (Mm01308255_m1). 

Immunoblots 

Frozen liver samples (0.1 g) were homogenized in 0.5 mL radio-

immunoprecipitation assay (RIPA) buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 

mM EDTA, 1 mM EGTA, 1 mM β-glycerophosphate, 1 mM sodium vanadate, and 

1% w/w Triton X-100 w/v) containing 1 mM phenylmethylsulphonyl fluoride, 

protease and phosphatase (tyrosine and serine/threonine) inhibitor cocktails 

(Sigma Aldrich, St. Louis, MO, USA). Lysates were sonicated at 4 °C for 4 h and 
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subsequently centrifuged for 5 minutes at 16,000 g. The protein concentration of 

the supernatants was determined using the Bicinchoninic Acid Protein Assay Kit 

(Sigma Aldrich). Total protein was diluted in RIPA buffer and mixed with sample 

loading buffer [250 mM Tris, pH 7.4, 10% sodium dodecyl sulfate (SDS), 20% β-

mercaptoethanol w/v, 40% glycerol, and 0.05% bromophenol blue] and incubated 

at 95 °C for 5 minutes. The samples were loaded onto SDS-polyacrylamide gels 

(Bio-Rad Laboratories, Hercules, CA, USA), followed by electrophoresis and 

Western blotting onto polyvinylidene difluoridemembranes (Immobilon-P; 

Millipore Corp, Billerica, MA, USA). Antibodies against the sterol regulatory 

element binding protein 1 (SREBP1, Abcam, Cambridge, MA, USA), AMP-

activated protein kinase α (AMPKα, Cell Signaling Technology, Danvers, MA, 

USA), phospho-AMPKα (p-AMPKα, Cell Signaling Technology), mammalian 

target of rapamycin (mTOR, Cell Signaling Technology), phospho-mTOR (p-

mTOR, Cell Signaling Technology) and β-actin (Santa Cruz Biotechnology, 

Dallas, TX, USA) were used at dilutions recommended by the suppliers. 

Horseradish peroxidase-coupled secondary antibodies were obtained from 

Abcam and Cell Signaling Technology. Chemiluminescence detection was 

performed using the Pierce ECL2 western blotting substrate reagents (Thermo 

Scientific, Wilmington, DE, USA). Densitometric quantitation was performed with 

the Image Lab software (Bio-Rad Laboratories). 

Statistical Analysis 

Statistical analyses were performed using SigmaPlot version 11.0 (Systat 

Software, Inc., San Hose, CA, USA). Data are expressed as mean ± SEM. 
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Multiple group data were compared using Two Way ANOVA followed by Tukey 

Test for post-hoc all pairwise comparisons. P <0.05 was considered statistically 

significant. 
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RESULTS 

Effects of CAR and PXR on bodyweight and adiposity 

Bodyweight was measured weekly throughout the 12-week study (Fig. 3.1 

A). All groups experienced bodyweight gain until Week 11. The bodyweight drop 

was possibly due to stress caused by the glucose tolerance test that was 

performed on Week 11. Aroclor 1260 exposure had no significant effect on the 

percent (%) increase in bodyweight gain calculated in the WT or PXR-/- groups 

(Fig. 3.1 B). However, the CAR-/- mice exposed to Aroclor 1260 showed a lower 

% increase in the bodyweight gain than any other group. The % body fat 

composition was evaluated by DEXA scanning prior to harvesting the tissues 

(Fig. 3.1 C). Because all groups were on HFD feeding, the average % body fat 

composition among the animals was ~40%. However, the PXR-/- groups 

displayed significantly higher % body fat composition with or without Aroclor 1260 

exposure. The PXR-/- groups also showed significantly lower lean body mass (g), 

irrespective of Aroclor 1260 exposure (Fig. 3.1 D). The liver to bodyweight ratio 

(LW/BW) was calculated and the PXR-/- groups showed significantly higher liver 

mass and LW/BW when compared to any other group (Fig. 3.1 E).  

The epididymal fat sections were stained with H&E (Fig. 3.2 A) and the 

adipocyte size was measured using Image J software (Fig. 3.2 B). The mean 

adipocyte size (µm2) was lower in the CAR-/- groups irrespective of Aroclor 1260 

exposure. There was no difference in the adipocyte size in the WT or PXR-/- mice 

irrespective of Aroclor 1260 exposure. Ad libitum food consumption per mouse 

per day (g) was calculated over the 12-week period of the study (Fig. 3.2 C). 
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There was a drop in the food consumption rate on Week 2 for all groups possibly 

due to the corn oil gavage. During the study period, the CAR-/- and PXR-/- mice 

exposed to Aroclor 1260 showed relatively lower food consumption rate while the 

WT groups showed higher food consumption rate with or without Aroclor 1260 

exposure. 
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Figure 3.1. Effects of Aroclor 1260 exposure on body weight and visceral 

adiposity in CAR-/- and PXR-/- mice. 

 (A) Increase in body weight with time for C57BL/6 (WT), CAR-/- and PXR-/- 

mice (n=10) fed with a 42% milk fat diet. Body weight measurements were taken 

weekly from Week 1 to Week 12. (B) The % increase in body weight gain with 

time was calculated and the body weight at Week 1 was taken as 100%. (C) % 

fat composition and (D) lean tissue mass (g) were measured using the DEXA 

scanner. PXR knockout mice demonstrated a higher % fat composition and 

lowered lean tissue mass vs. WT and CAR-/- groups. (E) Livers were removed 

and weighed at euthanasia and the liver to bodyweight ratio was calculated. 

Values are mean ± SEM, p <0.05, *- ∆ due to Aroclor 1260 exposure, # - ∆ due 

to knocking out CAR or PXR. 
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Figure 3.2. Effects of Aroclor 1260 exposure on the adipocyte size and food 

consumption in CAR-/- and PXR-/- mice. 

(A) The epididymal adipose tissue was stained with H&E. (B) Adipocyte 

size (µm2) was measured and average cell size of >100 cells for each group was 

calculated. (C) Food consumption per mouse per day (g) was measured 

throughout the 12 week period. Values are mean ± SEM, p <0.05, * - ∆ due to 

Aroclor 1260 exposure, # - ∆ due to knocking out CAR or PXR. 
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Metabolic chamber studies  

Animals were placed in metabolic cages at the beginning of Week 8 for 

metabolic assessment. Oxygen consumption (vO2) and carbon dioxide 

production (vCO2) were monitored and the respiration exchange rate (RER, 

vCO2/vO2) was calculated. The measured ratio (RER) was used to estimate the 

respiratory quotient which indicates whether the fuel source/energy expenditure 

is from carbohydrate or lipid metabolism. An RER of 0.70 suggests that fat is the 

predominant fuel source (oxidation of a molecule of fatty acid: 23 O2 + C16H32O2 

→ 16 CO2 + 16 H2O + 129 ATP, RER = vCO2/vO2 = 16 CO2/23 O2 = 0.7), 

whereas an RER of 0.85 indicates a mix of fat and carbohydrates. An RER of 

1.00 or above is indicative of carbohydrate being the predominant fuel source 

(oxidation of a molecule of carbohydrate: 6 O2 + C6H12O6 → 6 CO2 + 6 H2O + 38 

ATP, RER = vCO2/vO2 = 6 CO2/6 O2 = 1.0) and this usually occurs during intense 

physical activity such as exercise.  

The knockout groups that were unexposed to Aroclor 1260 showed a 

lower RER (~0.70), indicating a lipid-driven energy breakdown (Fig. 3.3 A). The 

RER was increased with Aroclor 1260 exposure in the knockout groups in both 

the light and dark cycle, indicating a mix of fat and carbohydrate fuel source. 

There was no difference in the RER in WT mice with or without Aroclor 1260 

exposure. The total energy expenditure (EE) was computed using the following 

modified Weir equation: EE = (3.815 + 1.232 x RER) x VO2 (111). There were no 

differences in the EE between the groups (Fig. 3.3 B). 
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 Movement/physical activity was also assessed using the metabolic 

chambers. The CAR and PXR knockout mice exposed to Aroclor 1260 showed 

increased movement/physical activity during the light cycle relative to the 

unexposed knockout mice (Fig. 3.4 A). Furthermore, the CAR-/- group exposed to 

Aroclor 1260 demonstrated significantly lower food and drink consumption in the 

dark cycle vs. any other group (Fig. 3.4 B&C).  
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Figure 3.3. Assessment of respiration exchange rate and energy 

expenditure utilizing metabolic cages. 

Four mice from each group were taken randomly and placed in metabolic 

cages for 24 h (12 h light and 12 h dark cycle). (A) The respiration exchange rate 

(RER) which is the ratio of CO2 exhaled to O2 consumed was calculated as an 

indicator of energy expenditure. (B) The total energy expenditure (EE, kCal/kg/h) 

was calculated using the values obtained from RER and VO2. Values are mean ± 

SEM, p <0.05, * - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking out 

CAR or PXR. 
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Figure 3.4. Assessment of movement, food and drink consumption utilizing 

metabolic cages. 

Four mice from each group were taken randomly and placed in metabolic 

cages for 24 h (12 h light and 12 h dark cycle). (A) Physical activity was 

measured using infrared beams and sensors. The total movement (counts) which 

is the sum of ambulatory movement (mouse crosses two adjacent beams) and 

fine movement (mouse crosses the same beam twice) was calculated. The 

average amount of (B) food (g)/day and (C) water (mL)/day consumed per group 

was measured. Values are mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 

exposure, # - ∆ due to knocking out CAR or PXR, Ar-Aroclor 1260. 
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The role of CAR and PXR in Aroclor 1260-induced liver injury and steatosis 

All animal groups developed steatosis by the end of the study due to high 

fat feeding. Histological examination of liver sections demonstrated that Aroclor 

1260 exposure induced liver injury in all groups of mice and this injury was 

independent of the presence of CAR or PXR (Fig. 3.5 A). Scattered inflammatory 

foci and neutrophil infiltration were also observed with CAE staining and these 

foci were more pronounced in the PXR-/- mice exposed to Aroclor 1260 (Fig. 3.5 

B). Although exposure to Aroclor 1260 caused liver injury (H&E and CAE 

staining), serum ALT was not significantly elevated (Fig. 3.5 C). Furthermore, 

serum AST was unaffected in all groups (Fig. 3.5 D).  

Hepatic levels of triglycerides and cholesterol were quantified to measure 

the degree of steatosis and there were no significant differences in hepatic lipids 

among the groups (Fig. 3.5 E&F). This was somewhat surprising as the PXR-/- 

mice had a higher body fat composition and higher liver to body weight ratios.  
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Figure 3. 5. Aroclor 1260 exposure caused steatohepatitis in WT, CAR-/- and 

PXR-/- mice. 

 (A) H&E staining of hepatic sections established the occurrence of 

centrilobular hepatocellular hypertrophy, karyomegaly, and multinucleate 

hepatocytes in the Aroclor 1260-exposed groups. High fat diet consumption 

resulted in variable, centrilobular, microvesicular lipidosis while mice exposed to 

Aroclor 1260 exhibited occasional, small areas of necrosis and inflammation 

(steatohepatitis). (B) CAE staining demonstrated neutrophil infiltration in the 

Aroclor 1260-exposed groups. (C). Serum ALT and (D) AST levels (U/L) were 

measured (n=10) using the Piccolo Xpress chemical analyzer. Hepatic levels of 

(E) cholesterol and (F) triglycerides were quantified (µg/mg tissue) in mice (n=10) 

fed with HFD with or without Aroclor 1260 co-exposure. Values are mean ± SEM, 

p <0.05, * - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking out CAR or 

PXR, Ar-Aroclor 1260. 
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CAR and PXR are protective against Aroclor 1260-induced hepatic and 

systemic inflammation 

To further assess the role of nuclear receptors in Aroclor 1260-induced 

steatohepatitis, hepatic expression of toll like receptor 4 (TLR-4) target genes 

including tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), monocyte 

chemo-attractant protein 2 (MCP2) and monocyte inducible factor 1 alpha 

(MIP1α) were measured using RT-PCR. Aroclor 1260 exposure resulted in 

increased TNFα expression in the liver of WT mice (Fig. 3.6 A). Interestingly, the 

basal expression of TNFα in the knockout mice was higher than in the WT mice, 

regardless of Aroclor 1260 exposure. The CAR-/- mice with or without Aroclor 

1260 exposure showed significantly higher TNFα mRNA levels when compared 

to any other group. Likewise, the basal expression of hepatic IL-6 was also 

higher in the knockout groups than the WT group (Fig. 3.6 B).  PXR-/- mice 

exposed to Aroclor 1260 showed the highest hepatic IL-6 mRNA levels among all 

groups. Hepatic expression of MCP2 and MIP1α were not significantly different 

between the groups (Fig. 3.6 C&D). Overall, it appeared that knocking out CAR 

and PXR increased hepatic TNFα and IL-6 expression, irrespective of Aroclor 

1260 exposure. 

Serum cytokines, namely, TNFα, IL-2, interferon gamma (IFNγ), IL-17, 

MCP1 and MIP-1α were measured using the Luminex IS system. Similar to 

hepatic TNFα expression, serum TNFα levels were higher in Aroclor 1260-

exposed WT-mice compared to unexposed mice in the WT group (Fig. 3.7). 

However, there was no significant difference in serum TNFα levels in the Aroclor 
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1260-exposed compared to unexposed mice in the knockout groups. Likewise, 

serum IL-2 and IFNγ were also increased in the Aroclor 1260-exposed when 

compared to unexposed mice in the WT group but there was no difference 

observed in the knockout groups. Notably, the basal levels of serum TNFα and 

IL-2 were higher in the PXR-/- group, irrespective of Aroclor 1260 exposure. There 

was no significant increase in serum IL-17, MIP1α and MCP1 among the groups.  
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Figure 3.6. Effects of Aroclor 1260 exposure on the TLR-4 target genes in 

CAR-/- and PXR-/- mice. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expression caused by Aroclor 1260 exposure and knocking out CAR or PXR for 

(A) TNFα, (B) IL-6, (C) MCP2 and (D) MIP1α. Values are mean ± SEM, p <0.05, 

* - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking out CAR or PXR. 
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Figure 3.7. Effects of Aroclor 1260 exposure on serum cytokines in CAR-/- 

and PXR-/- mice. 

Serum TNFα (pg/mL), IL-2 (pg/mL), IFNγ (pg/mL), IL-17 (pg/mL), MIP1α 

(pg/mL) and MCP1 (pg/mL) levels were measured using the Luminex IS 100 

system (n=10). Values are mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 

exposure, # - ∆ due to knocking out CAR or PXR. 
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Aroclor 1260, CAR and PXR regulation in glucose metabolism and insulin 

resistance 

Fasting blood glucose levels were measured prior to performing the 

glucose tolerance test. There were no differences in fasting blood glucose levels 

between the six groups (Fig. 3.8 A). Glucose tolerance test was then performed 

and the area under the curve (AUC) was calculated to measure the degree of 

glucose uptake and clearance in the fed state (Fig. 3.8 B&C). Aroclor 1260 

exposure had no effect on GTT (AUC) in WT and CAR-/- groups. In contrast, 

Aroclor 1260 exposure caused an increase in the GTT (AUC) in PXR-/- mice.  

Insulin resistance was calculated by homeostasis model assessment 

using the formula: homeostasis model assessment of insulin resistance (HOMA-

IR)=Fasting glucose (mg/dL) x Fasting insulin (µU/mL)/405.  HOMA-IR was 

calculated to determine if CAR and PXR played a role in high fat diet-induced 

insulin resistance, a common hallmark of non-alcoholic fatty liver disease (Fig. 

3.8 D). Aroclor 1260 exposure significantly decreased HOMA-IR in WT, CAR-/- 

and PXR-/- groups, although fasting blood glucose levels were not decreased. 

The reduction in HOMA-IR was due to lower serum insulin levels in all groups 

exposed to Aroclor 1260 (Fig. 3.8 E). These results indicated that Aroclor 1260 

exposure resulted in impaired insulin production and thus, although GTT (AUC) 

was unchanged, HOMA-IR was decreased. Insulin sensitivity was assessed 

using the quantitative insulin sensitivity check index (QUICKI) as follows: 

QUICKI=1 / (log (fasting insulin µU/mL) + log (fasting glucose mg/dL)). 

Interestingly, the Aroclor 1260-exposed, PXR knockout group showed a 
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significantly higher index for insulin sensitivity, indicating a significant interaction 

between Aroclor 1260 exposure and PXR ablation (Fig. 3.8 F). 

Furthermore, to assess gluconeogenesis, the hepatic expression of the 

CAR/PXR indirect targets, phosphoenol-pyruvate carboxykinase 1 (PEPCK-1) 

and glucose-6-phosphatase (G6Pase) were measured (Fig.3.9 A&B). Hepatic 

PEPCK-1 m RNA levels were not affected with Aroclor 1260 exposure in the WT 

group. However, Aroclor 1260 exposure in the knockout groups induced PEPCK-

1 and this induction was highest in the PXR-/- group, which may explain the 

increase in fed-state glucose levels as indicated by the GTT (AUC). Additionally, 

the PXR knockout mice exposed to Aroclor 1260 also showed significantly higher 

G6Pase expression in the liver. These data indicated that the gluconeogenic 

pathway was switched on in this group of mice, thus causing an increase in GTT 

(AUC). 

Hepatic expression of the glycolytic enzyme glucokinase (Gck) was 

induced only in the CAR knockout mice exposed to Aroclor 1260 but not in the 

WT mice (Fig.3.9 C). This could potentially explain the increase in RER with 

Aroclor 1260 exposure in the CAR knockout groups. Hepatic expression of the 

glucose transporter GLUT-2 was increased with Aroclor 1260 exposure in the 

WT and CAR knockout groups but the induction by Aroclor 1260 was lost in the 

PXR knockout group (Fig. 3.9 D). On the other hand, the basal expression of the 

insulin-dependent glucose transporter, GLUT4 was higher in the CAR knockout 

groups but the mRNA levels were decreased with Aroclor 1260 exposure (Fig. 

3.9 E). 
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Figure 3.8. Effects of Aroclor 1260, CAR and PXR in glucose metabolism 

and insulin resistance. 

 (A) Fasting blood glucose levels (mg/dL) were measured and (B) glucose 

tolerance test was performed. Blood glucose levels were measured for mice 

(n=10) fed with high fat diet with or without Aroclor 1260 co-exposure. (C) AUC 

was calculated, and the PXR knockout mice exposed to Aroclor 1260 showed 

higher AUC levels vs. unexposed group and WT exposed mice. (D) Homeostasis 

model assessment of insulin resistance (HOMA-IR) was calculated from fasting 

blood glucose and insulin levels for all six groups of animals (n=10). (E) Serum 

insulin levels were measured using the Luminex IS 100 system. (F) Quantitative 

insulin sensitivity check index (QUICKI) which is an index for insulin sensitivity 

was calculated. Values are mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 

exposure, # - ∆ due to knocking out CAR or PXR. 
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Figure 3.9. Effects of Aroclor 1260, CAR and PXR on genes involved in 

glucose metabolism. 

Hepatic (A) PEPCK-1, (B) G6Pase, (C) glucokinase, (D) GLUT-2 and (E) 

GLUT-4 mRNA levels were quantified by RT-PCR. Values are mean ± SEM, p 

<0.05, * - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking out CAR or 

PXR. 
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CAR and PXR ablation altered serum adipokine levels 

Serum adipokines were measured to evaluate the effects of knocking out 

CAR/PXR on the adipose tissue. Serum leptin levels were not changed with 

either Aroclor 1260 exposure or by knocking out CAR/PXR. In contrast, serum 

adiponectin levels were increased in the knockout mice, regardless of Aroclor 

1260 exposure, leading to a decreased leptin/adiponectin ratio in the knockout 

mice (Fig.3. 10 A). This finding was consistent with the decreased adiposity 

observed in the CAR knockout group. However, the decreased leptin/adiponectin 

ratio was a paradoxical finding in the PXR knockout groups because the mice in 

these groups did not show a decrease in adiposity. Serum tissue plasminogen 

activator inhibitor-1 (tPAI-1) levels were not changed between the groups (Fig. 

3.10 B). Serum lipids were also measured, including cholesterol and triglycerides 

(Fig. 3.10 C&D). Serum cholesterol levels were higher in the unexposed, PXR 

knockout group whereas serum triglycerides levels were not altered between the 

groups.  
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Figure 3.10. CAR/PXR knockout mice demonstrated altered serum 

adipokine levels. 

(A) Serum leptin (pg/mL) and adiponectin (pg/mL) were measured using 

the Luminex IS 100 system and the leptin to adiponectin ratio was calculated. (B) 

Serum tPAI-1 levels were measured using the Luminex IS 100 system. Serum 

(C) cholesterol and (D) triglycerides were quantified with the Piccolo Xpress 

chemical analyzer.  Values are mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 

exposure, # - ∆ due to knocking out CAR or PXR. 
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Aroclor 1260, CAR and PXR modulated hepatic lipid metabolism and 

energy expenditure  

Liver-X-receptor alpha (LXRα) is a key transcription factor in lipid 

synthesis and cholesterol metabolism and its over-activation can promote or 

worsen steatosis. In the previous study, we demonstrated that Aroclor 1260 

exposure modulated hepatic fat metabolism by either upregulation or 

downregulation of genes involved in fatty acid synthesis and breakdown. 

Moreover, CAR and PXR can bind to the direct repeat 4 (DR-4) elements which 

are similar to the response elements that LXRα binds to in the promoter regions 

of target genes. Therefore, looking at LXRα target genes in this study may 

determine if crosstalk between these three receptors is a significant interaction 

altering steatosis.  

The hepatic expression of fatty acid synthase (FAS), a classic LXRα target 

gene was decreased with Aroclor 1260 exposure in WT mice (Fig. 3.11 A). In 

contrast, FAS mRNA levels were up-regulated in the PXR knockout groups with 

or without Aroclor 1260 exposure. Similar to FAS, the expression levels of 

stearoyl coenzyme A desaturase1 (SCD1), another LXRα target gene, was 

decreased with Aroclor 1260 exposure in the WT group (Fig. 3.11 B). However, 

SCD1 expression was upregulated in the CAR knockout groups with or without 

Aroclor 1260 exposure.  

The hepatic expression of CD36, a fatty acid binding protein and a 

common target gene of LXRα, PXR, AhR and PPARγ, was also assessed (Fig. 

3.11 C). Interestingly, Aroclor 1260 exposure resulted in an increase in CD36 
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expression in the WT group compared to the unexposed mice. The PXR-/- groups 

showed relatively higher basal CD36 mRNA levels than any other group and 

Aroclor 1260 exposure significantly induce CD36 in PXR-/- mice. The hepatic 

expression of the fatty acid binding protein 1 (FABP1), another protein required 

for fatty acid uptake and transport across the cell membrane was increased in 

the CAR knockout groups and the exposed, PXR knockout group (Fig. 3.11 D). 

Additionally, apart from the LXRα target genes that are involved in fat synthesis, 

hepatic expression of the lipolytic gene, papatin like phospholipase domain 

containing 2 (PNPLA2) was measured. Aroclor 1260 had no effect on PNPLA2 

expression in WT mice (Fig. 3.11 E). However, Aroclor 1260 exposure induced 

PNPLA2 in CAR-/- mice. In contrast, Aroclor 1260 exposure did not induce 

PNPLA2 in PXR-/- mice but the basal levels of PNPLA2 expression were 

elevated.  

The sterol regulatory element binding protein (SREBP-1c) is a 

transcription factor required for fatty acid biosynthesis and another transcriptional 

regulator for lipogenic genes including FAS and SCD1. SREBP-1c cleavage to its 

active form and subsequent translocation to the nucleus is controlled by many 

factors. One of these factors is CAR and PXR inhibition of SREBP-1c cleavage 

to its active form in the endoplasmic reticulum through the anti-lipogenic gene, 

Insig (73). Insig binds to the SREBP cleavage activating protein (SCAB) and 

prevents the cleavage of the SREBP precursor protein to its active form (112). 

We hypothesized that CAR and PXR would induce Insig and subsequently inhibit 

SREBP-1c cleavage to its active form (Fig. 3.12 A). Hepatic expression of 



108 
 

SREBP-1c was analyzed and the PXR-/- mice exposed to Aroclor 1260 exhibited 

higher SREBP-1c mRNA levels (Fig. 3.12 B). Hepatic expression of Insig-1 and 2 

isoforms were therefore measured. Insig-1 mRNA levels were lower in the 

Aroclor 1260 exposed mice in the WT and PXR knockout groups (Fig. 3.12 C). 

Interestingly, CAR and PXR ablation also lowered Insig-1 hepatic expression. In 

contrast, Insig-2 expression levels did not differ among the groups (Fig. 3.12 D). 

To further investigate the underlying mechanisms that resulted in decreased 

lipogenic gene expression (FAS, SCD1) in the exposed WT group but not in the 

knockout groups, we measured the protein levels of SREBP1 in the mouse liver 

(Fig. 3.12 E&F). Contrary to our hypothesis, CAR and PXR activation by Aroclor 

1260 in the WT group did not result in lowered active SREBP1 isoform. Rather, 

Aroclor 1260 exposure caused an increase in SREPB1 cleavage from the 

inactive, precursor form that binds to the SREBP cleavage activating protein 

(SCAB)-Insig complex. 

 However, as mentioned before, SREBP1 transcriptional activity is also 

regulated by other factors such as the mammalian target of rapamycin complex 1 

(mTORC1) (113). The total and phosphorylated mTOR1 protein levels in the liver 

were quantified and the phosphorylated to total mTOR1 ratio which was 

indicative of mTOR1 activation was calculated (Fig. 3.13 A). The knockout 

groups demonstrated an increase in mTOR1 activation irrespective of Aroclor 

1260 exposure. The phosphorylated to total AMP-activated protein kinase α 

(AMPKα) protein levels were also quantified to assess AMPKα activation (Fig. 
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3.13 B). Aroclor 1260 exposure activated AMPKα in the WT and PXR knockout 

mice. The CAR knockout mice showed an increase in basal AMPKα active form. 
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Figure 3.11. Effects of Aroclor 1260, CAR and PXR on hepatic expression of 

lipogenic and lipolytic genes. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure alone and/ or by ablating CAR or 

PXR for (A) FAS, (B) SCD1, (C) CD36, (D) FABP1 and (E) PNPLA2. Values are 

mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking 

out CAR or PXR. 
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Figure 3.12. Effects of Aroclor 1260, CAR and PXR on hepatic SREBP-1c 

expression and protein levels. 

 (A) Schematic diagram depicting CAR and PXR regulation on SREBP 

through Insig. The diagram was adapted from Hellard et al., Molecular 

Psychiatry, 14, 2009. Real-time PCR experiments showed the changes in 

hepatic mRNA expressions caused by Aroclor 1260 exposure alone and/or by 

ablating CAR or PXR for (B) SREBP-1c, (C) Insig-1 and (D) Insig-2. (E & F) 

Immunoblots for precursor and cleaved SREBP1 were performed, n=5. Active 

SREBP1 protein levels were quantified. Values are mean ± SEM, p <0.05, * - ∆ 

due to Aroclor 1260 exposure, # - ∆ due to knocking out CAR or PXR. 
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Figure 3.13. Effects of Aroclor 1260, CAR and PXR on mTOR1 and AMPKα 

protein levels. 

(A) Immunoblots for mTOR1 and phosphorylated mTOR1 were performed. 

The phosphorylated to total mTOR1 ratio was quantified. (B) Immunoblots for 

AMPKα and phosphorylated AMPKα were performed. The phosphorylated to 

total AMPKα ratio was quantified. Values are mean ± SEM, p <0.05, * - ∆ due to 

Aroclor 1260 exposure, # - ∆ due to knocking out CAR or PXR. 
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Effects of CAR/PXR on peroxisome proliferator-activated receptor alpha 

target genes 

Peroxisome proliferator-activated receptor alpha (PPARα) drives the 

transcription of genes involved in breaking down fatty acids such as carnitine 

palmitoyl transferase (CPTs) and Cyp4a10. Hepatic expression of PPARα as well 

as its target genes, CPT1A and Cyp4a10 was measured. The PPARα mRNA 

levels were higher in the Aroclor 1260-exposed mice compared to the unexposed 

mice in the WT and PXR-/- groups (Fig. 3.14 A). Although unexposed CAR-/- mice 

had increased PPARα mRNA levels vs. unexposed WT mice, Aroclor 1260 had 

no effect on PPARα expression in CAR-/- mice. In contrast, CPT1A was induced 

with Aroclor 1260 in all three groups irrespective of CAR/PXR ablation (Fig. 3.14 

B). Additionally, the Aroclor 1260-exposed PXR-/- mice showed the highest 

induction, and there was a significant interaction between PXR ablation and 

Aroclor 1260 exposure which was consistent with PPARα induction. Furthermore, 

Aroclor 1260 induced Cyp4a10 only in CAR-/- mice (Fig. 3.14 C). Also, PXR 

ablation induced Cyp4a10 in the exposed mice.  
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Figure 3.14. Effects of Aroclor 1260 exposure and CAR/PXR ablation on 

hepatic PPARα expression and its target genes. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions caused by Aroclor 1260 exposure alone or by ablating CAR or PXR 

as well for (A) PPARα, (B) CPT1A and (C) Cyp4a10. Values are mean ± SEM, p 

<0.05, * - ∆ due to Aroclor 1260 exposure, # - ∆ due to knocking out CAR or 

PXR. 
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CAR and PXR target gene induction 

CAR hepatic mRNA levels were measured and as anticipated, there was 

no CAR mRNA in the CAR-/- mice. Aroclor 1260 exposure increased CAR mRNA 

expression (~2-fold) in WT mice (Fig. 3.15 A).  PXR ablation also increased CAR 

mRNA expression by ~10-fold as compared to WT groups. There was also a 

significant interaction between PXR ablation and Aroclor 1260 exposure in CAR 

induction. The mRNA levels of Cyp2b10, a CAR target gene, were significantly 

up-regulated in Aroclor 1260-exposed mice in the WT and PXR-/- groups (Fig. 

3.15 B). Moreover, the basal mRNA levels of Cyp2b10 were higher in the 

knockout groups, indicating a compensatory mechanism was driving CAR target 

gene expression in the absence of CAR. Notably, Aroclor 1260 did not induce 

Cyp2b10 in the CAR-/- group. 

Hepatic expression of PXR was also evaluated, and as expected, there 

was no PXR mRNA in the PXR-/- mice (Fig. 3.15 C). Aroclor 1260 did not induce 

PXR mRNA expression in the WT mice. In contrast Aroclor 1260 exposure did 

increase PXR expression (~17-fold) in the CAR-/- mice. Hepatic Cyp3a11 (PXR 

target gene) mRNA levels were up-regulated with Aroclor 1260 exposure in the 

CAR-/- group but not in the WT group (Fig. 3.15 D). Akin to Cyp2b10 expression, 

the Cyp3a11 basal expression levels were higher in the knockout groups. 

However, Aroclor 1260 did not induce Cyp3a1 in the PXR-/- group. Besides 

Cyp3a11, the hepatic expression of Ugt1a1, a predominant PXR target gene 

which also happens to be a CAR target gene, was measured (Fig. 3.15 E). 

Aroclor 1260 induced Ugt1a1 in the WT and CAR-/- groups. Interestingly, Ugt1a1 
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basal expression levels were higher only in the in the PXR-/- group but not in the 

CAR-/- group.  

Apart from CAR and PXR targets, the hepatic expression of Cyp1a2, an 

aryl hydrocarbon receptor (AhR) target gene was also measured (Fig. 3.15 F). 

There were no significant differences in the Cyp1a2 mRNA levels between the 

groups indicating that the AhR was not activated by Aroclor 1260 at the dose 

used and there was no effect of CAR or PXR ablation on AhR target gene 

expression. 
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Figure 3.15. Aroclor 1260 exposure altered hepatic expression of CAR and 

PXR target genes. 

Real-time PCR experiments showed the changes in hepatic mRNA 

expressions for (A), CAR, (B) Cyp2b10 (CAR target gene), (C) PXR, (D) 

Cyp3a11 (PXR target gene), (E) Ugt1a1 (PXR/CAR target gene)and (F) Cyp1a2 

(AhR target gene).  Values are mean ± SEM, p <0.05, * - ∆ due to Aroclor 1260 

exposure, # - ∆ due to knocking out CAR or PXR. 
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DISCUSSION 

Aroclor 1260 was one of the first PCB mixtures manufactured and was 

later replaced by PCB mixtures with lower chlorine content. Although constituting 

only 11% of PCB mixtures manufactured, Aroclor 1260 was selected for this 

study based on its similarity to human PCB bioaccumulation patterns. The PCB 

congener composition in Aroclor 1260 consists of high molecular weight PCBs 

such as 5-, 6-, and 7-chlorinated congeners that are either not or very poorly 

metabolized so these congeners bio-accumulate in human and other biota. Most 

PCB studies in the past literature focused on occupational acute exposures that 

were associated with cancer-related endpoints and AhR activation. More 

recently, epidemiologic studies have revealed that PCB-exposed human cohorts 

showed signs of cardiovascular disorders, obesity, diabetes/insulin resistance 

and elevated liver enzymes (46, 52, 114).  

Clearly, chronic exposures to PCBs appear to disrupt lipid and glucose 

homeostasis and consequently lead to increased symptoms of diabetes and the 

metabolic syndrome in the exposed subjects (34, 52). Mechanistically, PCB 

action is thought to be mediated by the AhR and CAR. However, PCBs have also 

been shown to interact with endocrine and thyroid receptors as well as additional 

hepatic nuclear receptors including the PXR (97-99). Albeit being xenobiotic 

receptors, CAR and PXR are also involved in energy metabolism by acting 

directly or indirectly on enzymes involved in lipid and glucose metabolism (60-

62). We previously demonstrated that Aroclor 1260 induced liver injury in 

conjunction with HFD feeding. We also demonstrated that Aroclor 1260 activated 



124 
 

CAR and PXR in C57Bl/6 mice at 20 mg/kg exposure. The current study aimed 

at examining the role of CAR and PXR in Aroclor 1260-induced liver injury by 

using diet-induced obese CAR and PXR knockout mice.  

The findings from the study demonstrated that PXR was important in 

maintaining lower fat mass and liver weight because ablating this receptor 

resulted in increased adiposity/liver weight (Fig. 3.1). CAR ablation did not 

appear to interfere with adiposity. In fact, Aroclor 1260 exposure decreased 

bodyweight gain in CAR knockout mice, which may be due to increased physical 

activity and less food consumption displayed by this group. Interestingly, PXR 

was also over-expressed in this group. Presence of CAR and PXR also appeared 

crucial in maintaining energy homeostasis because ablating these receptors 

decreased the RER relative to WT mice, indicating only a lipid-metabolism state 

(Fig. 3.3). However, activation of either receptor by Aroclor 1260 restored the 

RER to a level similar to WT groups.  

When inflammation was examined, CAR and PXR ablation did not 

improve steatohepatitis induced by Aroclor 1260. Both CAR and PXR knockout 

mice showed signs of hepatic inflammation on high fat diet feeding alone, as 

evident by the TNFα and IL-6 basal expression levels (Fig. 3.6). These results 

suggested that both CAR and PXR play an inhibitory role in inflammation and 

activating these receptors by Aroclor 1260 is a protective mechanism in 

attenuating Aroclor 1260-induced toxicity. The role of PXR in inflammation is well 

documented relative to CAR (115). It is well known that exposure to xenobiotic 

chemicals such as rifampicin compromises the immune function and recent 
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studies have investigated the molecular mechanisms involved between PXR 

activation and inflammation. Zhou et al demonstrated that the interaction 

between PXR and nuclear factor kappa B (NF-κB) appeared to be reciprocal with 

both transcription factors mutually inhibiting each other (116). Enhanced 

expression of NF-κB target genes including TNFα, IL-2 and IL-6 was observed in 

the small bowel and liver of PXR knockout mice which was consistent with 

observations in the current study. Hu et al also showed increased hepatic 

expression of inflammatory cytokines in PXR knockout mice and demonstrated 

that liganded PXR was SUMOylated in hepatocytes in response to TNFα (117). 

Intriguingly; the SUMOylated PXR protein suppressed NF-κB target gene 

expression but had no effect on PXR target gene expression such as CYP3A4. 

The relationship between CAR and the inflammatory process is poorly 

understood, although some observations have implied its basal repression 

activity on NF-κB signaling (115). In the present study, it should be noted that 

even though Aroclor 1260 activated CAR/PXR in WT mice, their activation was 

not sufficient to protect the mice from hepatic and systemic inflammation, 

implying that Aroclor 1260 may affect liver injury by mechanisms other than the 

classically-defined receptor mechanisms.   

Cell culture studies indicated that activators of CAR and PXR repress 

hepatic gluconeogenic enzymes and therefore, CAR/PXR modulation of glucose 

metabolism possibly resulted in lowered blood glucose levels (71, 75). CAR and 

PXR inhibit gluconeogenic gene transcription, including PEPCK-1 and G6Pase, 

by directly binding to the transcription factor, forkhead boxO1 (FOXO1) and 
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preventing its transcriptional activity (74). CAR can also interfere with 

gluconeogenic gene expression by competing with the hepatocyte nuclear factor 

4 alpha (HNF4α) for binding at the PEPCK-1 promoter region. Also, CAR and 

PXR target the common co-activator utilized by numerous transcription factors, 

peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), 

resulting in the ‘squelching’ of PGC1α (118, 119). 

In the current study, hepatic expression of PEPCK-1 was enhanced in 

both CAR and PXR knockout mice (Fig. 3.9), implicating the loss of CAR- and 

PXR-inhibitory effect on PEPCK-1 transcription. PEPCK-1 was also induced with 

Aroclor 1260 exposure in the knockout mice, noticeably in PXR-/- mice, 

suggesting that PCB exposure increased gluconeogenic gene expression in 

absence of either CAR or PXR. Although fasting blood glucose levels were 

unchanged, all Aroclor 1260-exposed groups showed decreased serum insulin 

and HOMA-IR levels (Fig. 3.8). This observation is consistent with findings from 

our previous studies, associating compromised insulin secretion with PCB 

exposure, independent of CAR and/or PXR presence and activation. Thus the 

PXR knockout mice exposed to Aroclor 1260 showed increased AUC in a 

glucose tolerance test, potentially due to increased gluconeogenesis and 

decreased insulin synthesis required for glucose uptake. 

Another compelling observation in this study was the decreased 

leptin:adiponectin ratio in CAR and PXR knockout mice (Fig. 3.10). Circulating 

leptin:adiponectin ratio is considered a potential surrogate biomarker for obesity-

related conditions with higher leptin levels being observed consistently with 
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metabolic syndrome and diabetes/insulin resistance (120). In this study, serum 

adiponectin levels were higher in the knockout mice whereas leptin levels were 

not altered between the groups. Nonetheless, PXR knockout mice did not show 

any improvement in diet-induced obesity, despite the favorable leptin:adiponectin 

ratio while the CAR knockout mice displayed reduced adipocyte size.  

Aroclor 1260 exposure resulted in decreased FAS expression in WT mice 

(Fig. 3.11). However, the PXR knockout mice showed increased FAS basal 

levels indicating that activated PXR repress FAS transcription. Likewise, SCD1 

expression was decreased with Aroclor 1260 exposure; however its basal levels 

were increased only in CAR knockout mice suggesting that CAR could be a 

transcriptional repressor of SCD1. This supports other studies documenting 

decreased hepatic expression of lipogenic genes such as FAS and SCD1 during 

CAR activation (71, 72). Moreover, CAR suppression of LXRα transcriptional 

activity has also been reported, which could then cause downregulation of 

lipogenic gene expression (121). Additionally, Aroclor 1260 did not induce FAS or 

SCD1 in CAR knockout mice, therefore, this PCB mixture may not be a direct 

LXRα activator. In contrast, SREBP-1c was significantly induced only in PXR 

knockout mice exposed to Aroclor 1260, suggesting an interaction between PCB 

exposure and PXR ablation. However, simply measuring SREBP-1c expression 

alone may not be sufficient to determine the CAR/PXR effects on lipogenesis 

since both CAR and PXR also affect SREBP-1c activity through the anti-lipogenic 

gene, Insig (73). Therefore, it was more appropriate to measure active SREBP-

1c levels in the liver.  
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Contrary to our hypothesis, there was no reduction in active SREBP1 

protein levels with Aroclor 1260 exposure (Fig. 3.12). Rather, the Aroclor 1260 

exposed groups in the WT and CAR knockout mice had higher cleaved SREBP1 

protein levels than the unexposed group. Additionally, since the exposed groups 

did not show an increase in hepatic Insig-2 expression either, it appeared that 

CAR/PXR activation and ablation did not modulate hepatic gene expression 

through the Insig2-SCAB-SREBP1 pathway. Notably, hepatic Insig-1 expression 

was decreased in the Aroclor 1260 exposed groups. Insig-1 regulates the SCAB-

SREBP2 complex and its expression is regulated in part by nuclear SREBP 

levels and sterol deprivation (122). Furthermore, although it has been reported 

that CAR and PXR regulate lipogenesis by inducing Insig-1, the SREBP1 

retention in the endoplasmic reticulum has also been reported to be via Insig-2 

binding (123). However, Insig-2 expression did not differ among the groups. 

CAR and PXR ablation appeared to activate the mTOR1 complex pathway 

and Aroclor 1260 exposure appeared to activate AMPKα (Fig. 3.13). These are 

intriguing observations because mTOR and AMPK are considered as ‘energy 

sensors’ that regulate carbohydrate and lipid metabolism, thereby maintaining 

energy homeostasis at the cell and whole body level (124, 125). mTOR activation 

occurs during high nutrient availability or ‘fed’ state and usually favors anabolic, 

ATP-consuming processes that facilitate storage of nutrients such as lipogenesis 

and protein synthesis. Regulation of lipogenic SREBP1 by mTOR1 occurs at 

multiple levels (126). It has been demonstrated that high insulin levels can 

activate the mTOR1 complex through the Akt phosphorylation pathway (127). 
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Phosphorylated mTOR can phosphorylate the phosphatidic acid phosphatase 

Lipin-1, a transcriptional coactivator (113). Nuclear localized, dephosphorylated 

Lipin-1 inhibits SREBP1 nuclear localization and subsequently SREBP1 

transcriptional activity. Hence mTOR1 activation eventually leads to increased 

SREBP1 nuclear localization and activity. In this study, mTOR1 activation in the 

knockout groups possibly resulted in observable inductions of lipogenic gene 

expression. Interestingly, the WT mice exposed to Aroclor 1260 showed lower 

FAS and SCD1 expression which corroborated with lower phosphorylated 

mTOR1 levels. Moreover, the Aroclor 1260-exposed mice had lower insulin 

levels and this may have led to decreased phosphorylated mTOR1 levels 

compared to the unexposed mice in the WT group. However, this effect was lost 

with CAR and PXR ablation and the mechanisms related to this observation need 

to be investigated further. 

In contrast to mTOR1, AMPKα activation occurs during low nutrient 

availability or ‘fasted’ state and favors catabolic processes such as glycolysis 

(128). Besides, downstream AMPK signaling also inhibits anabolic processes 

that consume ATP. The mechanism involving AMPKα activation by Aroclor 1260 

exposure in the current study is unclear. However, AMPKα activation could be 

the reason for the increase in RER in the Aroclor 1260 exposed, PXR knockout 

mice. The same explanation could not be applied to the CAR knockout group 

because CAR ablation appeared to activate AMPKα irrespective of Aroclor 1260 

exposure. Also, it has been reported that metformin, an AMPK activator, inhibits 

CAR nuclear translocation and activation, indicating a complex relationship 
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between CAR and AMPK (129). Therefore more studies are necessitated with 

regard to PCB exposure and the mTOR and AMPK activation pathway. 

Aroclor 1260 induced CD36, a shared target gene of PXR, AhR and LXRα 

in WT mice (Fig. 3.11). It is known that PXR activators such as rifampicin can 

promote steatosis independent of the SREBP1 pathway by up-regulating hepatic 

CD36 (130). Interestingly, ablating PXR increased CD36 basal expression, 

implying that there may be some compensatory mechanisms affecting CD36 

expression in the absence of PXR. Furthermore, CD36 was also induced in the 

absence of PXR, indicating that Aroclor 1260 had other targets related to CD36 

induction and not restricted to PXR activation. Apart from lipogenic genes, the 

lipolytic gene PNPLA2 (adipose triglyceride lipase) was also evaluated. PNPLA2 

is expressed primarily in the adipose tissue as well as in the liver (131); it is 

involved in breaking down triglycerides to free fatty acids and one of its 

transcriptional mediators is FOXO1 which is in turn controlled by many factors 

including sirtuins (SIRT1) and insulin (132, 133). Being a FOX01 target gene, we 

assumed that hepatic PNPLA2 expression pattern in our study would be similar 

to that of PEPCK-1. Aroclor 1260 induced PNPLA2 in CAR knockout mice, 

similar to PEPCK-1. However in PXR knockout mice, the basal levels of hepatic 

PNPLA2 were increased and Aroclor 1260 induction was not observed, 

suggesting that PXR rather than CAR may be dominant in the sequestration of 

FOXO1 under basal conditions. Moreover, PEPCK-1 basal levels were also 

higher in PXR knockout mice when compared to CAR knockout mice.   
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Another distinct finding in this study was the regulation of PPARα target 

genes by CAR/PXR and Aroclor 1260 exposure (Fig. 3.14). Aroclor 1260 by itself 

increased PPARα expression in WT and PXR knockout mice but not in CAR 

knockout mice, suggesting that Aroclor 1260 exposure induced PPARα but 

activated PXR negatively regulates this induction. Interestingly, Aroclor 1260 

induced CPT1A, a PPARα target gene and rate limiting enzyme of mitochondrial 

fatty acid β-oxidation, in all three groups, and this was highest in the PXR 

knockout mice. Studies have shown the repression of CPT1A and other β-

oxidation related genes with PXR and CAR activation and their enhanced 

expression in knockout models (72, 77, 134). Apart from PPARα, CPT1A 

transcription is also mediated by the forkhead box protein A2 (FOXA2 ) and 

HNF4α (135, 136). PXR is a known inhibitor of FOXA2, and hence its ablation 

increased FOXA2 basal expression and inducibility by Aroclor 1260 (105). 

FOXA2 activity is also positively regulated by low levels of insulin which was 

displayed by all the Aroclor 1260-exposed groups (137). Another plausible 

mechanism for increased CPT1A expression in the knockout mice could be the 

increased availability of the peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PCG1α) for HNF4α transcriptional activity. Cyp4a10, another 

PPARα target and enzyme involved in peroxisomal fatty acid oxidation, was 

induced with Aroclor 1260 exposure in CAR knockout mice. This finding is 

consistent with studies by Ueda et al, demonstrating that CAR is a negative 

regulator of Cyp4a10 expression and hence knocking out CAR enhanced 

Cyp4a10 induction by Aroclor 1260 (134). 
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Overall, our studies strongly indicated that CAR and PXR played a role in 

energy metabolism and validated previous findings that demonstrated xenobiotic 

receptor activation acts as an important factor in fatty liver disease and the 

metabolic syndrome (Fig. 3.16). In the current model, CAR and PXR activation 

appear to protect rather than augment Aroclor 1260-induced liver injury evident 

with worsened inflammation in CAR and PXR knockout mice. Moreover, the 

concept that CAR is an anti-obesity receptor and PXR is an obesity-promoting 

receptor may not reflect the complexity of Aroclor 1260 or environmental 

contaminant interaction with these transcription factors. It appears that both 

receptors are required for normal physiology and function and that they both 

portray similar if not identical outcomes on activation. Furthermore, our studies 

are consistent with previous observations on the effects of CAR and PXR in 

glucose and lipid metabolism. In contrast to the previous studies that employed 

model CAR and PXR ligands, this study used an environmental pollutant with 

multiple potential targets, which may also influence the end results of the study. 

These studies used knock out models to evaluate the distinct effects of these 

nuclear receptors in energy metabolism but it appears that Aroclor 1260 

exposure also causes other effects such as compromised insulin levels. In 

conclusion, nuclear receptors CAR and PXR are not merely detoxification 

receptors but they also have an important role in inflammation and endobiotic 

metabolism as well; both CAR and PXR play an important protective role in liver 

injury caused by environmental pollutant, Aroclor 1260.  
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Figure 3. 16. Effects of CAR and PXR on hepatic energy metabolism. 

A schematic diagram depicting the potential therapeutic role of CAR and PXR 

activation in the metabolic syndrome. Figure adapted from Gao, et al., Trends 

Pharmacol Sci, 33 (10), 2012.  
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CHAPTER 4 

HUMAN RECEPTOR ACTIVATION BY AROCLOR 1260 AND INDIVIDUAL 

PCB CONGENERS 

INTRODUCTION 

NAFLD and NASH were traditionally associated with the inappropriate 

over- or under-activation of nuclear receptors involved in endobiotic metabolism. 

These receptors include the LXR, farnesoid-X-receptor (FXR) and PPARs which 

regulate cholesterol, bile acid and lipid metabolism respectively (58, 59). Recent 

studies have implicated the role of hepatic receptors involved in xenobiotic 

detoxification, including PXR, CAR and the AhR in NAFLD/NASH. Although 

these receptors were initially thought to be involved only with detoxification and 

xenobiotic metabolism, over-activation or antagonism of these receptors may 

lead to metabolic disease states such as steatosis and obesity (60-62). 

Historically, PCB toxicity has been linked to cancer, endocrine disruption 

and impaired cognitive development, but recent studies have shown that chronic 

exposure to these environmental pollutants can result in metabolic disorders 

associated with NAFLD, including obesity, insulin resistance/diabetes and the 

metabolic syndrome (41, 102). Additionally, rodent studies have correlated PCB 

exposures with NAFLD, obesity and the metabolic syndrome suggesting the 

involvement of distinct nuclear receptors in PCB-mediated toxicity (48). It 
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remains unclear if the liver disease caused by PCB exposure is due to the direct 

involvement of receptors that regulate endobiotic metabolism such as LXR and 

FXR or if the disease process is linked to the activation/inhibition of xenobiotic 

receptors such as PXR and CAR.  

We hypothesized that PCBs may exert some of their toxic effects, such as 

NAFLD, by either interacting directly with the endobiotic nuclear receptors (LXR, 

FXR, PPARs) or through interaction with xenobiotic receptors that cross-talk with 

endobiotic receptors to otherwise modify their respective interactions with DNA 

response elements. Moreover, the interaction between Aroclor 1260 and these 

receptors that are implicated in NAFLD have never been tested. The purpose of 

this study is to evaluate the receptor agonism/antagonism by the PCB mixture, 

Aroclor 1260, and selected PCB congeners that are highly represented in this 

mixture. For the purpose of the studies, we collaborated with Dr. CJ Omiecinski 

from Penn State University to study PCB activation of the human CAR variants 

using COS-1 cells.  

The study demonstrated selective activation by Aroclor 1260 and selected 

PCB congeners on human AhR, PXR and CAR, and inhibition of PPARα. We 

postulate that hepatic transcription factor activation is part of the mode of action 

of these organo-chlorine pollutants. 
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MATERIALS AND METHODS 

Materials 

Aroclor 1260 was purchased from AccuStandard (New Haven, CN, USA) 

and PCB congeners were obtained from Ultra Scientific (North Kingstown, RI, 

USA). T0901317 (N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-

(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide), GW3965 (2-(3-(3-((2-chloro-

3-(trifluoromethyl)benzyl)(2,2-diphenylethyl)amino)propoxy)phenyl) acetic acid 

hydrochloride), GW4064 (3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-

methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl] benzoic acid) and pioglitazone 

were obtained from Tocris Bioscience (Bristol, UK). Dimethyl sulfoxide (DMSO) 

was acquired from Fisher BioReagents (Thermo Fisher Scientific, Pittsburg, PA, 

USA) while 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-

dichlorobenzyl)oxime (CITCO), rifampicin (RIF), benz[a]anthracene (BA) and 3-

(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) were from 

Sigma Aldrich (St. Louis, MO, USA). Restriction endonucleases and T4 DNA 

ligase were purchased from New England BioLabs (Ipswich, MA). Lipofectamine 

and Opti-MEM were obtained from Life Technologies Inc (Carlsbad, CA, USA). 

Oligonucleotides were purchased from Integrated DNA Technologies (Coralville, 

IA, USA). 

Plasmid construction 

The reporter plasmids for human (h) PXR (pGL3-DR4-Luc), hFXR (pGL3-

IR1-Luc) and hPPARα (pGL3-DR1-Luc) were constructed by using two copies of 

a direct repeat 4 (DR4), an inverted repeat 1 (IR1) and a direct repeat 1(DR1) 
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response element (RE) respectively. The top strand oligonucleotide was  5’ 

AGAGTTCATGAGAGTTCATGAGAGTTCATGAGAGTTCATG 3’ for pGL3-DR4-

Luc, 5’ AGAGGTCATTGACCTTTAGAGGTCATTGACCTTT 3’ for pGL3-IR1-Luc 

and 5’ AACTAGGTCAAAGGTCAAACTAGGTCAAAGGTCAAA 3’ for pGL3-DR1-

Luc. Both the bottom complementary strands had Kpn1 and Xho1 overhangs at 

the 5’ and 3’ positions respectively. The oligonucleotides were annealed and 

inserted into Xho1 and Kpn1 restriction sites in the polycloning region of a 

modified version of pGL3 promoter vector (Promega, Madison, WI, USA). 

Reporter plasmid for AhR (pXRE-SV40-Luc) was synthesized using the 

oligonucleotide 5’ TCAGGCATGTTGCGTGCATCCCTGAGGCCAGCC 3’ 

inserted into the EcoR1 site of a modified version of pGL3 promoter vector. 

Expression vectors pSG5-hLXRα, pSG5-hPXR and pSG5-hFXR and reporter 

plasmid pTK-LXRE-Luc were a generous gift from John Y. Chiang (Department 

of Integrative Medical Sciences, Northeast Ohio Medical University). Expression 

vectors pCMV6-hPPARα, pCMV6-hPPARγ and pCMV6-hCAR (CAR2) were 

purchased from Origene (Rockville, MD, USA). The vectors, pTracer CMV2-

hCAR1, pTracer CMV2-hCAR2, pcDNA 3.1-RXRα, and pGL3- basic/TK 

CYP2B6-dervied XREM/PBREM were described previously (138). pTracer 

CMV2-CAR3 was also reported previously (139). pRL-CMV, the expression 

plasmid encoding Renilla luciferase, was purchased from Promega (Madison, 

WI, USA) and used in the Dual-Glo (Promega) assay system according to the 

manufacturer’s protocol to normalize for transfection efficiencies in cultured cells. 
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Prior to transfection, plasmids were prepared using the Qiagen Plasmid Plus Midi 

Kit (Qiagen, Valencia, CA, USA). 

Cell culture 

HepG2 cells: The human hepatoma-derived cell line (HepG2) was 

obtained from the American Type Culture Collection (ATCC, Manassas, MD, 

USA). Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, 

HyClone Laboratories Inc, Thermofisher, Waltham, MA, USA) supplemented with 

10% fetal bovine serum (FBS) and 1% antimycotic/antibiotic solution (Mediatech, 

Manassas, VA, USA). The cells were incubated in a 5% carbon dioxide 

atmosphere and 95% humidity at 37 °C and subcultured every 2 days. 

 COS-1 cells: COS-1 cells (Simian virus-40–transformed African green 

monkey kidney cells) were obtained from the ATCC and maintained in DMEM 

plus GlutaMAX-I with 10% FBS,10mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 1mM sodium pyruvate, 13 non-essential 

amino acids, and 1% penicillin/streptomycin. COS-1 cells were cultured at 37 °C 

in a humidified atmosphere containing 5% carbon dioxide. All cell culture 

reagents were purchased from Life Technologies (Grand Island, NY, USA).  

Cell viability assay 

HepG2 cells were seeded in 96-well tissue culture plates at a seeding 

density of 10,000 cells per well. Cells were treated with graded concentrations of 

Aroclor 1260 made up as 500X stocks in DMSO. Controls received DMSO only. 

After 24 h incubation, MTT (0.2 mg/ml) was added to the cells and incubated for 

3-4 h. The media were removed from the plates by aspiration and formazan dye 
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was liberated by adding 50 µL DMSO. MTT, a yellow tetrazole, was reduced to 

an insoluble product formazan by mitochondrial reductases, indicative of cell 

viability. Presence of formazan, a purple precipitate, was determined 

spectrophotometrically at 540 nm using a Bio-Tek Synergy HT multi-mode micro 

plate reader (Winooski, VT, USA).  

Transfection 

HepG2 cells were plated in Thermo Scientific Nunc 24-well plates and 

transfected at 40-60% confluence. Unless otherwise specified, the transfection 

mix per well contained 150 ng β-galactosidase expression plasmid (pCMV-β, 

Stratagene, CA) as a transfection control, 50 ng receptor expression plasmid and 

150 ng reporter plasmid. All cells were co-transfected by lipofection using 

Lipofectamine reagent according to the manufacturer’s instructions and Opti-

MEM (reduced serum medium) as the transfecting medium. After 4 hour 

incubation, the medium was changed to DMEM supplemented with 10% FBS 

and 1% antimycotic/antibiotic solution and cells were allowed to recover 

overnight. DMEM supplemented with charcoal/dextran treated FBS (HyClone 

Laboratories Inc, Thermofisher, Waltham, MA, USA) was used for PPAR 

activation assays. Compounds of interest were then added to the cells (n=4) and 

cells were incubated for 24 h. DMSO was used as a carrier for all compounds 

(final concentration <0.5%). For COS-1 cells, all media components remained the 

same except that FBS was replaced with 10% dextran/charcoal-treated FBS 

(HyClone, Logan, UT, USA). The details of the luciferase reporter assays were 

described previously (138-140). Briefly, approximately 1 h prior to transfection, 
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cells were trypsinized and plated onto 48-well plates (~50,000 cells per well). For 

determination of transcriptional activity of the hCAR constructs, cells were 

transfected using Fugene 6 (Promega) according to the manufacturer’s 

recommendations with a co-transfection plasmid mix consisting of 10 ng pRL-

CMV (Renilla luciferase) for normalization, 25 ng pcDNA 3.1-RXRα, 100 ng of 

pGL3-basic/TK XREM/PBREM luciferase reporter plasmid, and 25 ng of pTracer 

vectors containing the various CMV2-CAR expression constructs. Each condition 

was performed in quadruplicate. Aroclor 1260 and each of the PCBs were 

evaluated at 10 µM. DMSO was used as a solvent control. CITCO, 5 µM, was 

used as a positive control. Androstanol (ANDR), a known inverse agonist of 

human CAR, was used as a control for CAR1.  

Reporter assay 

HepG2 cells: Cells were washed twice with Phosphate Buffered Saline 

(1X), harvested using 50 µL cell lysis buffer (Promega, Madison, WI, USA) and 

subjected to a single freeze-thaw event.  For β-galactosidase assays, cell 

extracts (5 µL), were incubated with chlorophenol red β-galactopyranoside 

(CPRG, Roche Diagnostics, Indianapolis, IN) at 37 °C for 30-60 minutes. The 

enzyme activity was determined spectrophotometrically at 595 nm using the Bio-

Tek Synergy HT multi-mode micro plate reader. Luciferase activity assays were 

performed on cell extracts (5 µL) using the Luciferase Assay System (Promega). 

Luminescence was measured using the Orion L micro plate luminometer 

(Berthold Detection Systems, Pforzheim, Germany) over a 10 second period. 

Receptor activation was measured by luciferase activity and results were 
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normalized to the amount of β-galactosidase expressed. COS-1 cells: Luciferase 

assays were performed using the Dual-Glo Reporter Assay System (Promega) 

and a Veritas Microplate Luminometer (Turner Biosystems, Sunnyvale, CA, 

USA). Firefly (Photinus pyralis) luminescence data values were recorded for 

each replicate and normalized luciferase activities were then calculated by 

dividing the raw luciferase values by the Renilla luciferase signals to correct for 

any differences in transfection efficiency among the assay wells. 

Validation of receptor activation in primary human hepatocytes 

Human hepatocytes were obtained from BioreclamationIVT (Baltimore, 

MD, USA).  Hepatocytes were thawed and plated in 12-well plates according to 

the supplier’s protocols and the compounds of interest were added. The cells 

were incubated for 24 h and RNA was extracted using RNA STAT-60 protocol 

(Tel-test, Austin, TX, USA). RNA purity and quantity were assessed with the 

Nanodrop (ND-1000, Thermo Scientific, Wilmington, DE, USA) using the ND-

1000 V3.8.1 software. cDNA was synthesized from total RNA using the 

QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA, USA). Polymerase 

chain reaction (PCR) was performed on the Applied Biosystems StepOne Plus 

Real-Time PCR Systems using the Taqman Universal PCR Master Mix (Life 

Technologies, Carlsbad, CA, USA). Each PCR mix (20 µL) contained: Taqman 

Universal PCR Master Mix (10 µL), 20X Gene Expression Assay Mix (1 µL), 

cDNA sample (2 µL) and nuclease-free water (7 µL). Primer sequences from 

Taqman Gene Expression Assays (Applied Biosystems, Foster City, CA, USA) 

were as follows: cytochrome P450s [CYP3A4 (Hs00604506_m1), CYP2B6 
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(Hs04183483_g1), CYP1A1 (Hs01054797_g1)], CD36 (Hs01567185_m1), fatty 

acid synthase (FAS) (Hs01005622_m1), carnitine palmitoyl transferase 1A 

(CPT1A), (Hs00912671_m1), small heterodimeric partner (SHP) 

(Hs00222677_m1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Cycle conditions were maintained according to the Applied Biosystems guide. 

The levels of mRNA were normalized relative to the amount of GAPDH mRNA, 

and expression levels in DMSO-exposed cells were set at 1%. Gene expression 

levels were calculated according to the 2-∆∆Ct method (92).  

Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 5.01 

(San Diego, CA, USA). In general for all assays, data are expressed as means ± 

SEM. Quantitative data for two group comparisons were assessed using an 

unpaired t-test. Multiple group data were examined by one way analysis of 

variance followed by the Dunnett’s post hoc test to compare all groups to the 

control sample. Multiplicity adjusted p values are reported in the Results section. 

P <0.05 was considered statistically significant. 
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RESULTS 

Cell viability assay for Aroclor 1260 

MTT assays were performed to determine the optimal concentration for 

Aroclor 1260 that does not cause toxicity in HepG2 cell culture experiments. 

Cells were exposed to this PCB mixture at concentrations ranging from 1.25 - 

250 µg/mL. The optical density for formazan, representative of cell viability, was 

plotted against Aroclor 1260 concentrations. The toxicity threshold (concentration 

that caused 50% cell death) was determined to be 26.0 ± 3.7 µg/mL (Fig. 4.1). 

Concentrations of Aroclor 1260 at 5, 10, 15 and 20 µg/mL were selected for 

subsequent experiments. 
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Figure 4.1. Cell viability assay for Aroclor 1260. 

HepG2 cells were exposed to Aroclor 1260 at concentrations ranging from 

1.25 - 250 µg/mL and the optical density for formazan was measured.  
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Aroclor 1260 activation of the human aryl hydrocarbon receptor  

 Coplanar PCBs (PCBs 126 and 77) activate AhR in rodents and hence 

are classified as “dioxin-like” PCBs. Coplanar congeners comprise only ~1% of 

the total composition in Aroclor 1260. HepG2 cells, co-transfected with pXRE-

SV40-Luc, were exposed to various concentrations of Aroclor 1260 for 24 h and 

the normalized luciferase activity was measured. As anticipated, AhR was 

activated by its polycyclic aromatic hydrocarbon ligand BA (10 µM), and Aroclor 

1260 exposure resulted in a significant increase in luciferase activity (3.5-fold at 

20 µg/mL, p <0.0001) compared to DMSO-exposed cells (Fig. 4.2 A). However, 

this fold induction was relatively low when compared to that of BA. These results 

indicate that Aroclor 1260 has a weak AhR agonistic activity that is likely due to 

the presence of coplanar congeners at lower concentrations in the mixture. AhR 

activation by BA was assessed in the presence of increasing concentrations of 

Aroclor 1260 to evaluate for any potentiation or antagonism effects. Cells co-

exposed to BA and Aroclor 1260 showed no difference vs. BA-exposed cells only 

(Fig. 4.2 B).  

Next, we selected ten non-coplanar congeners that are more highly 

represented in Aroclor 1260 mixture (≥1%) as well as two coplanar congeners 

(PCBs 126 and 118) and tested the ability of these compounds to individually 

activate AhR at a concentration of 10 µM. Although PCB 126 (no ortho) 

constitutes ~0.002% of the total PCB composition in Aroclor 1260, it was 

selected for this study because it is a good AhR activator (141). PCB 118 (mono-

ortho) was chosen because it was one of the coplanar congeners with the 
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highest composition in Aroclor 1260 (0.48%). Among the selected congeners, 

coplanar PCB 126 and non-coplanar PCB 138 significantly induced luciferase 

activity (17-fold, p <0.0001 and 4-fold, p =0.0006 respectively), while coplanar 

PCB 118 did not induce luciferase activity (1.2-fold) compared to DMSO-exposed 

cells (Fig. 4.2 C). Thus it appeared that PCB 118 did not activate AhR at the 

concentration used, unlike PCB 126. Besides, AhR activation was not restricted 

to only coplanar congeners because PCB 138 modestly activated AhR. 
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Figure 4.2. Aroclor 1260 activation of the human AhR. 

HepG2 cells were transiently transfected with the reporter plasmid pXRE-

SV40-Luc. Benz[a]anthracene (10 µM, BA) was used as a positive control. (A) 

Cells were exposed to Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL and luciferase 

induction was normalized and compared to DMSO-exposed cells (0 µg/mL 

Aroclor 1260). (B) Cells were exposed to 10 µM BA or BA plus Aroclor 1260 at 0, 

5, 10, 15 and 20 µg/mL. The luciferase induction was normalized to that of cells 

exposed only to DMSO solvent carrier (as in A, not shown). Luciferase activity in 

cells exposed to BA and Aroclor 1260 was compared to that of BA-exposed cells. 

(C) Cells were exposed to selected PCB congeners (10 µM) present in Aroclor 

1260 and the induction was compared to DMSO-exposed cells. Data were 

normalized to luciferase activity in cells exposed only to DMSO and are 

expressed as mean ± SEM, n=4, * p <0.05. Figure adapted from Wahlang et al., 

Toxicol Sci, 140 (2), 2014. 
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Aroclor 1260 activation of the human pregnane xenobiotic receptor  

Non-coplanar PCBs, including PCBs 153 and 196, have been predicted to 

activate the nuclear receptors PXR and CAR, and these PCBs are often referred 

to as “phenobarbital-like”. Apart from regulating xenobiotic metabolism, PXR 

activation is implicated in weight gain and obesity (60, 142). Moreover, since 

PXR and CAR do share similar ligands to an extent, it is therefore likely that 

Aroclor 1260, being largely composed of non-coplanar PCBs, will activate PXR. 

HepG2 cells, co-transfected with pSG5-hPXR and pGL3-DR4-Luc were 

exposed to various concentrations of Aroclor 1260 for 24 h. RIF (10 µM), a PXR 

ligand, was used as a positive control. RIF activated PXR-driven luciferase 

activity (2.6-fold, p <0.0001) whereas Aroclor 1260 activated the receptor in a 

concentration-dependent manner with a Km value of 8.75 µg/mL (Fig. 4.3 A). 

Cells exposed to Aroclor 1260 at 5 µg/mL showed no significant induction in 

luciferase activity as compared to cells exposed to DMSO only. However, the 

induction was significant at concentrations of 10 (1.9-fold, p =0.0024), 15 (2.1-

fold, p =0.0001) and 20 (2.7-fold, p <0.0001) µg/mL. When transfected cells were 

exposed to both RIF and Aroclor 1260 (5 µg/mL and above) simultaneously, 

there was a slightly higher induction (~18%) compared to RIF-exposed cells 

alone (Fig. 4.3 B) but this was not significant. These data suggest that Aroclor 

1260 activated the PXR reporter system at concentrations of 10 µg/mL and 

higher and that the mixture did not significantly potentiate or antagonize PXR 

activation by the receptor ligand, RIF. We then evaluated the ability of selected 

PCB congeners to activate PXR (Fig. 4.3 C). Of the congeners tested, non-
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coplanar PCBs that significantly increased luciferase activity at 10 µM included 

PCBs 149 (2.1-fold, p <0.0001), 138 (1.7-fold, p =0.0006), 187 (2.0-fold, p 

<0.0001), 174 (2.3-fold, p <0.0001), 151 (1.6-fold, p =0.0062), 183 (1.6-fold, p 

=0.0067) and 196 (1.6-fold, p =0.0036). Notably, these congeners in total 

represent more than 30% of the Aroclor 1260 mixture by mass. Interestingly, 

PCB 126, a well-known AhR ligand and a coplanar congener also activated 

human PXR (1.9-fold, p <0.0001), indicating that a PCB’s non-coplanar structure 

is not solely required for this receptor’s activation. 
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Figure 4.3. Aroclor 1260 activation of the human PXR. 

HepG2 cells were transiently transfected with the expression plasmid 

pSG5-hPXR and reporter plasmid pGL3-DR4-Luc. Rifampicin (10 µM, RIF) was 

used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 10, 15 

and 20 µg/mL and luciferase induction was normalized and compared to DMSO-

exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 10 µM RIF or 

RIF plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. The luciferase induction was 

normalized to that of cells exposed only to DMSO solvent carrier (as in A, not 

shown). Luciferase activity in cells exposed to RIF and Aroclor 1260 was 

compared to that of RIF-exposed cells. (C) Cells were exposed to selected PCB 

congeners (10 µM) present in Aroclor 1260 and the induction was compared to 

DMSO-exposed cells. Data were normalized to luciferase activity in cells 

exposed only to DMSO and are expressed as mean ± SEM, n=4, * p <0.05. 

Figure adapted from Wahlang et al., Toxicol Sci, 140 (2), 2014. 
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Aroclor 1260 activation of the human constitutive androstane receptor  

In these experiments, HepG2 cells were co-transfected with pCMV6-

hCAR (CAR2) and pGL3-DR4-Luc and the ability of Aroclor 1260 to transactivate 

CAR2 was evaluated. CAR 2 is a human splice variant of the CAR1 reference 

form of the receptor, but unlike the reference form, CAR2 is not constitutively 

active; rather, it is a ligand activated receptor (138). Although somewhat modest, 

the human CAR agonist CITCO and Aroclor 1260 (10 µg/mL) significantly 

activated CAR2 (2.8-fold, p <0.0001 and 1.6-fold, p =0.0240 respectively) (Fig. 

4.4 A). However, increasing the concentration of Aroclor 1260 did not lead to 

further CAR2 activation (1.1-fold at 15 µg/mL and 1.4-fold at 20 µg/mL 

respectively). Rather, this PCB mixture appeared to antagonize CAR2 activation 

by CITCO (Fig. 4.4 B). Aroclor 1260, at 20 µg/mL, significantly reduced the 

induction produced by CITCO by 51% (p =0.0314). These results suggested that 

Aroclor 1260 may bind to CAR2 and either activate CAR2 or inhibit CAR2 

activation by CITCO in a concentration-dependent manner. Interestingly, two of 

the selected congeners, PCBs 187 (p =0.0042) and 126 (p =0.0031), increased 

luciferase induction significantly at 10 µM concentration (Fig. 4.4 C), indicating 

that some of the PCB congeners in Aroclor 1260 may be CAR2 agonists. 

Given the apparent impact of these PCB congeners on human CAR, we 

designed a complimentary series of assays to further corroborate and better 

characterize these effects using the primate-derived cell line, COS-1. These 

results are presented in Figure 4.5. Due to the high constitutive activity of CAR1, 

any ligand interactions with the receptor tend to be masked. In these respects, it 
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is notable that PCB 174 significantly inhibited the constitutive activity of CAR1 (p 

<0.05), though not as remarkably as ANDR (p <0.001), a known CAR inverse 

agonist (Fig. 4.5 A). Although the level of activation of CAR2 did not reach the 

level of the CITCO positive control (5.4-fold, p <0.001), Aroclor 1260 as well as 

several other PCB congeners demonstrated significant CAR2 activation in the 

COS-1 cell assays (Fig. 4.5 B). Exhibiting a fold change of 2.4 (p <0.001), PCB 

126 elicited the greatest response - even greater than Aroclor 1260 (1.7-fold, p 

<0.05). Four additional congeners also activated CAR2: 180 (1.7-fold, p <0.05), 

149 (1.9-fold, p <0.01), 187 (2.0-fold, p <0.001) and 196 (1.8-fold, p <0.01). 

CAR3, another ligand activated human splice variant, which likely maintains a 

conserved ligand binding pocket with CAR1, was also tested and exhibited 

significant activation effects with Aroclor 1260 (7.6-fold, p <0.001) (Fig. 4.5 C). 

Several other PCB congeners also demonstrated significant CAR3 activation 

including PCB 187 (17.1-fold, p <0.001; comparable to CITCO at 18.5-fold, p 

<0.001), PCB 153 (6.0-fold, p <0.01), PCB 149 (10.6-fold, p <0.001), PCB 138 

(8.3-fold, p <0.001), PCB 151 (5.5-fold, p <0.01), and PCB183 (15.1-fold, p 

<0.001).    
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Figure 4.4. Aroclor 1260 activation of the human CAR2 transcript. 

HepG2 cells were transiently transfected with the expression plasmid 

pCMV6-hCAR (CAR2) and reporter plasmid pGL3-DR4-Luc. CITCO (10 µM) was 

used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 10, 15 

and 20 µg/mL and luciferase induction was normalized and compared to DMSO-

exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 10 µM CITCO 

or CITCO plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. The luciferase 

induction was normalized to that of cells exposed only to DMSO solvent carrier 

(as in A, not shown). Luciferase activity in cells exposed to CITCO and Aroclor 

1260 was compared to that of CITCO-exposed cells. (C) Cells were exposed to 

selected PCB congeners (10 µM) present in Aroclor 1260 and the induction was 

compared to DMSO-exposed cells. Data were normalized to luciferase activity in 

cells exposed only to DMSO and are expressed as mean ± SEM, n=4, * p <0.05. 

Figure adapted from Wahlang et al., Toxicol Sci, 140 (2), 2014. 
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Figure 4.5. Aroclor 1260 activation of the human CAR variant transcripts in 

COS-1 cells. 

COS-1 cells were transiently transfected with expression plasmid 

pTracerCMV2 containing either (A) CAR1, (B) CAR2 or (C) CAR3 transcripts, 

together with the reporter plasmid, pGL3-2B6XREM/PBREM-TKLuc. Cells were 

exposed to selected PCB congeners (10 µM) present in Aroclor 1260 and the 

induction was compared to DMSO-exposed cells. CITCO (5 µM) was used as a 

positive control. ANDR (10 µM), a CAR inverse agonist, was used as a negative 

control for CAR1. Data were normalized to luciferase activity in cells exposed 

only to DMSO and are expressed as mean ± SEM, n=4, * p <0.05. Figure 

adapted from Wahlang et al., Toxicol Sci, 140 (2), 2014. 

 

 

 

 

 

 

 

 

 

 

 

 



159 
 

Effect of Aroclor 1260 on the human liver-X-receptor alpha  

The human LXRα is a subtype of LXR that is expressed in the liver and its 

under- or over-activation eventually leads to steatosis (143). We therefore 

hypothesized that Aroclor 1260 may activate LXRα and this activation may 

subsequently promote hepatic steatosis and NAFLD. HepG2 cells, co-transfected 

with pSG5-hLXRα and pTK-LXRE-Luc, were exposed to various concentrations 

of Aroclor 1260 for 24 h and the normalized luciferase activity measured. 

T0901317, a synthetic LXRα ligand was used as a positive control. Compared to 

the fold induction by T0901317 (100 nM), Aroclor 1260 did not activate LXRα nor 

antagonize LXRα activation by T0901317 at any concentration tested (Fig. 4.6 

A&B), thus indicating that this PCB mixture is neither an agonist nor antagonist of 

the nuclear receptor LXRα.  
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Figure 4.6. Aroclor 1260 activation of the human LXRα. 

HepG2 cells were transiently transfected with the expression plasmid 

pSG5-hLXRα and reporter plasmid pTK-LXRE-Luc. T0901317 (100nM, T) was 

used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 10, 15 

and 20 µg/mL and luciferase induction was normalized and compared to DMSO-

exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 100 nM T or T 

plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. Luciferase activity in cells 

exposed to T and Aroclor 1260 was compared to that of T-exposed cells. Data 

were normalized to luciferase activity in cells exposed only to DMSO and are 

expressed as mean ± SEM, n=4, * p <0.05.  
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Effect of Aroclor 1260 on the human farnesoid-X-receptor 

The ability of Aroclor 1260 to activate FXR, a key regulator of bile acid and 

energy metabolism was evaluated. HepG2 cells, co-transfected with pSG5-hFXR 

and pGL3-IR1-Luc were exposed to various concentrations of Aroclor 1260 for 

24 h. GW4064 (0.5 µM), a synthetic FXR agonist, was sed as a positive control. 

GW4064 activated FXR whereas Aroclor 1260 did not induce a response at any 

of the concentrations tested. In studies to test antagonism, all concentrations 

tested were without effect on the activation of human FXR (Fig. 4.7 A&B). Thus, 

this PCB mixture is neither an agonist nor antagonist for the human FXR. 
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Figure 4.7. Aroclor 1260 activation of the human FXR. 

HepG2 cells were transiently transfected with the expression plasmid 

pSG5-hFXR and reporter plasmid pGL3-IR1-Luc. GW4064 (0.5 µM, GW) was 

used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 10, 15 

and 20 µg/mL and luciferase induction was normalized and compared to DMSO-

exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 0.5 µM GW or 

GW plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. Luciferase activity in cells 

exposed to GW and Aroclor 1260 was compared to that of GW-exposed cells. 

Data were normalized to luciferase activity in cells exposed only to DMSO and 

are expressed as mean ± SEM, n=4, * p <0.05.  
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Effect of Aroclor 1260 on the human peroxisome-proliferator activated 

receptors  

 PPARs are a group of nuclear receptors that mediate peroxisomal 

proliferation with subtype alpha (α) playing a distinct transcriptional role in lipid 

metabolism in the liver and the subtype gamma (γ) in the adipose tissue. It was 

therefore important to evaluate the effect of Aroclor 1260 on PPARs α and γ 

activation. HepG2 cells were co-transfected with pCMV6-hPPARα and pGL3-

DR1-Luc. Nafenopin was used as a positive control. Aroclor 1260 did not activate 

PPARα at any of the concentrations (Fig. 4.8. A). In studies to test antagonism, 

Aroclor 1260 at the highest concentration (20 µg/mL) significantly antagonized 

PPARα activation induced by nafenopin (27%, reduction, p =0.0222, Fig. 4.8. B). 

Possible antagonism of PPARα by individual PCB congeners also was tested at 

10 µM concentration (Fig. 4.8. C). However, none of the selected congeners 

reduced the induction by nafenopin significantly, suggesting that a combination of 

the congeners is required to produce a marked effect or that other congeners 

present in this mixture may contribute to this effect.  

For PPARγ activation, HepG2 cells were co-transfected with pCMV6-

hPPARγ and pGL3-DR1-Luc. Pioglitazone was used as a positive control. 

Aroclor 1260 did not activate PPARγ nor antagonize PPARγ activation by 

pioglitazone at any of the concentrations tested (Fig. 4.9. A&B). 

 

 



166 
 

 



167 
 

Figure 4.8. Aroclor 1260 activation of the human PPARα.  

HepG2 cells were transiently transfected with the expression plasmid 

pCMV6-hPPARα and reporter plasmid pGL3-DR1-Luc. Nafenopin (50 µM, N) 

was used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 

10, 15 and 20 µg/mL and luciferase induction was normalized and compared to 

DMSO-exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 50 µM N 

or N plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. The luciferase induction was 

normalized to that of cells exposed only to DMSO solvent carrier (as in A, not 

shown). (C) Cells were exposed to selected PCB congeners (10 µM) present in 

Aroclor 1260 and the induction was compared to DMSO-exposed cells.  

Luciferase activity in cells exposed to N and Aroclor 1260 was compared to that 

of N-exposed cells. Data were normalized to luciferase activity in cells exposed 

only to DMSO and are expressed as mean ± SEM, n=4, * p <0.05. Figure 

adapted from Wahlang et al., Toxicol Sci, 140 (2), 2014. 
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Figure 4.9. Aroclor 1260 activation of the human PPARγ. 

HepG2 cells were transiently transfected with the expression plasmid 

pCMV6-h PPARγ and reporter plasmid pGL3-DR1-Luc. Pioglitazone (10 µM, P) 

was used as a positive control. (A) Cells were exposed to Aroclor 1260 at 0, 5, 

10, 15 and 20 µg/mL and luciferase induction was normalized and compared to 

DMSO-exposed cells (0 µg/mL Aroclor 1260). (B) Cells were exposed to 10 µM P 

or P plus Aroclor 1260 at 0, 5, 10, 15 and 20 µg/mL. Luciferase activity in cells 

exposed to P and Aroclor 1260 was compared to that of P-exposed cells. Data 

were normalized to luciferase activity in cells exposed only to DMSO and are 

expressed as mean ± SEM, n=4, * p <0.05. 
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Aroclor 1260 exposure and gene expression in human hepatocytes  

To confirm our findings, we tested the effects of Aroclor 1260 exposure on 

target gene expression profiles in human hepatocytes. Primary hepatocytes were 

exposed to Aroclor 1260 at 5, 10, 15 and 20 µg/mL and gene expression was 

measured by RT-PCR. The mRNA expression of target genes namely CYP1A1, 

CD36, CYP3A4, CYP2B6, CPT1A, FAS and SHP were significantly induced by 

the respective receptor agonists in primary human hepatocytes (Fig. 4.10. A). 

Expression levels of CYP1A1, an AhR target gene were significantly 

increased when hepatocytes were exposed to Aroclor 1260 (15 µg/mL, p 

=0.0018, and 20 µg/mL, p =0.0066, vs. unexposed cells) (Fig. 4.10. B). Contrary 

to CYP1A1, CD36, another AhR target gene was not induced by Aroclor 1260 

exposure, suggesting that CD36 is not as inducible as CYP1A1 (Fig. 4.10. C). 

CD36 expression, however, is regulated by other transcription factors in addition 

to AhR (94). Furthermore, CYP3A4 (PXR target gene) mRNA expression was 

upregulated by Aroclor 1260 exposure at 15 µg/mL (p =0.0083) and 20 µg/mL (p 

=0.0303) (Fig. 4.10. D). Irrespective of the CAR2 antagonism observed in 

transfection assays, Aroclor 1260 induced CYP2B6 (CAR target gene) at 15 

µg/mL (p =0.0114) and 20 µg/mL (p =0.0036) (Fig. 4.10. E). Expression levels of 

other genes including FAS (LXR target gene), SHP (FXR target gene) and 

CPT1A (PPARα target gene) were not affected by Aroclor 1260 exposure (Fig. 

4.10. F, G&H respectively), thus confirming our results obtained from the HepG2 

and COS-1 series of experiments.  
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Figure 4.10. Effects of Aroclor 1260 on target genes in primary hepatocytes. 

Primary human hepatocytes were exposed either to receptor ligands or 

different concentrations of Aroclor 1260. After a 24 hour incubation, RNA was 

isolated and RT-PCR was performed. (A) The mRNA levels of selected receptor 

target genes were upregulated by receptor ligands (positive control) namely BA 

(10 µM) for CYP1A1 and CD36, RIF (10 µM) for CYP3A4, CITCO (10 µM) for 

CYP2B6, T0901317 (100 nM) for FAS, nafenopin (50 µM) for CPT1A and 

GW4065 (0.5 µM) for SHP. Relative mRNA levels of target genes were 

measured in Aroclor 1260-exposed cells namely (B) CYP1A1, (C) CD36, (D) 

CYP3A4, (E) CYP2B6, (F) FAS, (G) SHP and (H) CPT1A. Figure adapted from 

Wahlang et al., Toxicol Sci, 140 (2), 2014. 
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DISCUSSION 

Our laboratory recently identified suspected NAFLD and toxicant-

associated steatohepatitis in NHANES participants with low-level environmental 

exposures to POPs, including 20 PCBs (18). Epidemiologic studies have shown 

a positive association between adipose tissue concentrations of PCBs and type 2 

diabetes (42, 144). High serum PCB levels were also associated with elevated 

serum triglycerides and cholesterol which are major risk factors for 

cardiovascular diseases (145). Exposure to PCB mixtures has also been 

associated with elevated liver enzymes in plasma and hepatomegaly (53). 

Clearly, chronic exposures to these chlorinated compounds appear to disrupt 

both lipid and glucose homeostasis and consequently lead to diabetes and 

associated metabolic disorders such as NAFLD. Therefore, identifying 

mechanisms by which PCB exposure can lead to such deleterious effects is 

relevant to public health. 

Environmental exposure to POPs such as PCBs is a major health 

concern, although subtly different from occupational exposure. The health effects 

from occupational exposures are more related to the smaller more metabolizable 

congeners and the subsequent formation of reactive potentially genotoxic 

metabolites. In contrast, the effects produced by the non-metabolizable PCBs in 

the body are expected to be chronic and life-long since they are not eliminated 

from the system. Aroclor 1260 production represented approximately 10.6% of 

total PCB production in the US between 1958-1977 which is modest compared to 

Aroclor 1242 (51.7%) (146). Nonetheless, Aroclor 1260 was selected for this 
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study because of the resemblance of congener composition pattern to that of 

human fat (36).  

Lipid-adjusted serum PCB levels were measured in NHANES participants 

and the PCB exposed Anniston cohort and reported to range from 75-170 ng/g 

(0.1 - 0.5 µM) (18, 46). Additionally, National Toxicology Program (NTP) studies 

reported the following PCB levels in a 2-year gavage study in rats: lipid-adjusted 

serum-4,650 ng/g; liver-64,593 ng/g; and adipose-2,495,994 ng/g (23). In these 

studies, PCB liver levels were at least 10-fold higher and PCB adipose levels 

were at least 200-fold higher than lipid-adjusted serum levels irrespective of the 

dose administered. In our experiments, we used Aroclor 1260 at concentrations 

ranging from 5-20 µg/mL (~10-50 µM) and selected congeners at 10 µM. These 

concentrations should approximate the range seen in bio-accumulated 

organs/tissues such as the liver and adipose tissue.  

Almost all PCB animal studies have been performed in rodents, where 

chronic toxicity is generally regarded as a function of the PCBs’ ability to interact 

with AhR and nuclear receptors. There are clear differences in the ligand affinity 

of these receptors, in rodents and humans, toward model ligands and xenobiotic 

compounds, including PCBs. In order to understand more clearly the involvement 

of PCBs in human NAFLD as demonstrated in human epidemiological studies 

such as NHANES, it is important to understand specific interactions between 

PCBs and human receptors. The findings from the current study demonstrate 

that Aroclor 1260 activates PXR (Fig. 4.3) and to a lesser extent AhR (Fig. 4.2), 

suggesting that congener composition is critical in determining a mixture’s 
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mode(s) of action. The effect of Aroclor 1260 on the AhR is likely due to the 

presence of coplanar congeners such as PCB 126. However, because these 

coplanar compounds are only a small fraction of this mixture, a higher 

concentration of Aroclor 1260 would be required to observe the “dioxin-like” 

effects. PCB 138, a non-coplanar congener, may also be responsible for the 

Aroclor 1260 effect on the AhR. Parkinson et al demonstrated that some di-ortho 

substituted PCBs can induce hepatic microsomal benzo[a]pyrene hydroxylase, 

consistent with AhR activation. Thus, coplanarity does not necessarily define 

“dioxin like” PCBs from “non-dioxin like” ones (147).  

The interaction between Aroclor 1260 and the AhR is further confirmed by 

the CYP1A1 induction at higher exposure levels in primary hepatocytes (Fig. 

4.10). The CYP1A1 induction by Aroclor 1260 however was much less than the 

1000-fold induction by the AhR ligand, BA. Furthermore, CD36, another AhR 

target gene was not induced by Aroclor 1260 vs. BA exposure in primary 

hepatocytes, further suggesting that a higher concentration of Aroclor 1260 may 

be required for “dioxin-like” effects. In contrast to AhR, Aroclor 1260 appears to 

be a relatively good human PXR agonist as observed through transient 

transfection assays and CYP3A4 induction in primary human hepatocytes. PXR 

is a transcription factor that plays a distinct role in drug metabolism and recent 

studies demonstrated its role in maintaining energy homeostasis in the body. 

PXR activation is associated with decreased expression of genes involved 

in lipid catabolism namely carnitine palmitoyltransferase-1a and 3-hydroxy-3-

methylglutaryl-CoA-synthase and increased expression of the lipogenic gene 
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stearoyl-CoA desaturase1 which could contribute to NAFLD (105). Exposure to 

PXR agonists also decreases blood glucose levels in fasting mice and this effect 

is related to forkhead box O1 (FoxO1) sequestration by PXR (74). A recent study 

by He et al. reported that ablation of this receptor in mice was protective against 

diet-induced and genetic obesity and improved insulin resistance (77). PXR 

activation clearly leads to disruption in the body’s energy balance and this may 

be one of the mechanisms through which PCBs exert their effects on hepatic 

energy metabolism. Using transient transfection assays, Tabb et al. 

demonstrated that highly chlorinated PCBs including PCBs 184 and 197 inhibited 

human PXR (148). However, PCB 184 is not a component of Aroclor 1260 and 

PCB 197 accounts for only 0.07% of its total congener composition. This 

concentration is not likely sufficient to inhibit human PXR. In our study, the 

majority of PCBs in Aroclor 1260 appear to be PXR agonists.  

As its name implies, wild type CAR is a constitutively active receptor due 

to a truncation that prevents internalization of the transactivation domain (AF2) 

and results in recruitment of co-activators. In vivo, CAR is regulated through its 

sequestration in the cytosol by chaperone proteins. Upon ligand binding, the 

receptor translocates to the nucleus and binds to its respective gene response 

elements. The cytosolic localization process is absent in immortalized cell lines. 

Consequently, performing transactivation studies in cell lines using in vitro 

reporter-based systems can be challenging due to the absence of ligand 

activation effect normally exhibited by CAR. However, in humans, the CAR 

transcript is spliced into several variants, in particular CAR2 and CAR3 that 
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constitute approximately one third of the CAR mRNA pool and encode functional 

CAR proteins (138, 140). Interestingly, both CAR2 and CAR3 splice variants 

have additional amino acids within the receptor’s ligand binding or 

heterodimerization domain that function to configure these variants as ligand-

activated receptors, unlike the parent CAR. Aroclor 1260’s interaction with 

human CAR is perhaps crucial, given the fact that non-coplanar PCBs, such as 

PCB 153, activate murine CAR target genes, including Cyp2b10. Of further 

interest, CAR has recently been identified as an anti-obesity nuclear receptor 

whose activation prevents obesity and improves type 2 diabetes through 

inhibition of lipogenesis and improved insulin sensitivity (72). 

A recent study by Al-Salman et al. demonstrated that non-coplanar PCBs, 

namely PCBs 153, 180 and 194, are agonists for the human PXR and CAR at 10 

µM (97). In that study, a receptor activation assay was performed in Huh7 cells 

using Checkmate mammalian two hybrid system where activated PXR/CAR bind 

to the DNA-binding domain of the NR Gal4 fusion plasmid. In the current 

investigation, we deployed a series of transactivation assays to evaluate the 

potential role of various PCB congeners to activate human CAR/PXR directly. In 

HepG2 cells, Aroclor 1260 activated CAR2 at 10 µg/mL but not at higher 

concentrations (Fig. 4.4). The mixed agonism/antagonism observed with CAR2 

appeared concentration-dependent with antagonism seen at higher 

concentrations. In additional studies conducted with COS-1 cells, the results 

obtained with CAR3 were particularly intriguing, in that several PCB congeners 

were identified as human CAR activators (Fig. 4.5), in particular, PCBs 187, 183, 
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149, 138, as well as Aroclor 1260 (ranked in decreasing order of potency). CAR3 

is likely a highly sensitive and reasonable surrogate for CAR1, based on previous 

reports that include modeling of the receptors’ ligand binding pockets (140, 149), 

whereas CAR2 appears to possess subtle alterations within its binding pocket 

that modify its ligand interaction profile compared with CAR1 (150). 

In other experiments, Aroclor 1260 exposure induced the CAR target 

gene, CYP2B6 in human hepatocytes, indicating that this agent acts primarily as 

a CAR activator and not antagonist. This result is consistent with the activation 

profile exhibited by Aroclor 1260 on human CAR3 in the transactivation assay. 

However, it should be noted that ligand binding to CAR is not the sole 

mechanism by which CAR is activated. Recently, Mutoh et al. reported that 

phenobarbital, a well-known CAR agonist, indirectly activated CAR by inhibiting 

the epidermal growth factor receptor signaling which subsequently 

dephosphorylated CAR and mediated its translocation into the nucleus (151). We 

anticipate that some of the PCB congeners may not directly interact with CAR, 

but may act through the same mechanism as phenobarbital. Further studies will 

be required to test this possibility.   

Previous studies showed that co-exposure to PCB 153 and high fat diet 

worsened NAFLD and obesity in male C57Bl/6 mice through upregulation of fatty 

acid synthase, an LXRα target gene (48). However in the current study, Aroclor 

1260 interacted with neither LXRα nor FXR. Although there was no direct effect 

by PCBs on either LXRα or FXR, we cannot rule out the possibility of an indirect 

interaction via cross-talk or alterations in nuclear receptor expression. However, 
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nuclear receptor cross-talk is complex and not well established especially in 

relation to PCBs. Therefore more studies are required to elaborate on the 

possibility of cross-talk. Aroclor 1260 did not activate PPARα but it antagonized 

PPARα activation by nafenopin at higher concentrations (Fig. 4.8). However, 

none of the congeners tested at 10 µM exhibited any antagonism. Robertson et 

al. reported the suppression of peroxisomal enzyme activities and CYP4A 

expression in male Sprague-Dawley rats treated with co-planar PCBs, including 

PCBs 77, 122, 126 and 169 (98). Considering the fact that Aroclor 1260 has a 

lesser percentage of coplanar PCBs than non-coplanar structural components, 

we may reconcile the possibility that a higher concentration of this PCB mixture 

may be required to antagonize PPARα whereas PPARγ remained unaffected.  

In summary, Aroclor 1260 is an activator of human PXR and CAR 2/3 

variants. It also appears to activate human AhR and to antagonize human 

PPARα at higher concentrations. The current study is clinically relevant because 

human receptor activation by a PCB mixture that simulates PCB bioaccumulation 

in humans was examined at relevant concentrations. Furthermore, the effects of 

PCBs on human nuclear receptors such as LXRα and FXR and in human 

hepatocytes have never been assessed before. Additionally, this is the first study 

to evaluate PCB activation on the CAR variants. Because PCB exposures have 

been associated with obesity, NAFLD and metabolic syndrome and these 

disorders are intimately involved with nuclear receptor activation, the results 

clearly provide new insight into potential mode(s) of PCB action in human 

NAFLD.  
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CHAPTER 5 

OVERALL SUMMARY 

Overall goal and specific aims 

PCBs are persistent organic pollutants that dose-dependently increase the 

risk for liver injury as observed from epidemiologic studies. These poly-

halogenated compounds persist in the ecosystem and the heavily chlorinated 

congeners bio-accumulate in living organisms. As stated previously, the 

commercial PCB mixture, Aroclor 1260 has a congener composition 

representative of bio-accumulated PCBs. Aroclor 1260 was therefore chosen for 

this dissertation project to simulate human PCB exposure patterns. Furthermore, 

PCBs are predicted to interact with most receptors previously implicated in 

xenobiotic/energy metabolism and NAFLD. These receptors include the AhR, 

PXR, CAR, PPARs, LXRα and FXR. To determine if PCB exposure play a causal 

role in the development of NAFLD and steatohepatitis, and to gain insight into the 

mechanisms involved, the in vivo studies were undertaken using Aroclor 1260 at 

doses that correlated to human PCB body burden. The overall objective of the 

dissertation project was to evaluate the role of PCB exposure, using Aroclor 

1260, in fatty liver disease and to elucidate the potential PCB-receptor 

interactions that mediate fatty liver disease. To fulfill our objective, the following 

specific aims were proposed and carried out. 
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1A. Develop a mouse model for PCB exposure that simulates human 

exposure paradigms.  

1B. Evaluate the effects of the commercialized PCB mixture, Aroclor 1260, 

in obesity and NAFLD. 

2. Determine the role of the nuclear receptors, CAR and PXR, in liver 

injury caused by Aroclor 1260 and high fat diet co-exposure. 

3. Examine the interactions between Aroclor 1260/selected PCB 

congeners and human receptors in the liver 

Major findings of this dissertation 

The experiments described in Chapter 2, 3 and 4 addressed Specific Aim 

1, 2 and 3 respectively. The major findings from each Chapter are discussed in 

the following paragraphs. 

1. Evaluating the effects of Aroclor 1260 exposure in a diet-induced obesity 

mouse model 

Prior to initiating the animal studies, there were no documented studies on 

chronic HFD+PCB co-exposed animal models that simulate human exposure 

patterns. We therefore developed an animal model for studying the effects of 

PCB exposure at doses that were relevant to human exposure. Aroclor 1260 was 

administered to C57Bl/6 mice at 20 or 200 mg/kg via oral gavage in corn oil. The 

low dose (20 mg/kg) was designed to mimic the maximum human PCB 

exposures seen in the Anniston cohort and the high dose (200 mg/kg) was based 

on doses used in the NTP rodent carcinogenesis studies (18, 22).  



182 
 

It was observed that relevant doses of Aroclor 1260 along with HFD co-

exposure caused toxicant-associated steatohepatitis in a mouse model of diet-

induced obesity. In contrast to our previous study wherein a single congener 

(PCB 153) was used, this PCB mixture neither increased the body 

weight/visceral adiposity nor worsened insulin resistance/diet-induced obesity. 

On the contrary, Aroclor 1260 exposure was associated with decreased body fat 

in HFD-fed mice but had no effect on blood glucose/lipid levels. In fact, Aroclor 

1260 at higher doses appeared to reduce diet-induced obesity by decreasing the 

% increase in bodyweight gain (Fig. 2.2). Paradoxically, Aroclor 1260+HFD co-

exposed mice demonstrated increased inflammatory foci at both doses while the 

degree of steatosis did not change. Serum cytokines (Fig. 2.5) and hepatic 

expression of IL-6 and TNFα (Fig. 2.9) were increased only at 20 mg/kg, 

suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg 

exposure. Aroclor 1260 exposure induced hepatic expression of cytochrome 

P450s including Cyp3a11 (PXR target gene) and Cyp2b10 (CAR target gene) but 

Cyp2b10 inducibility was diminished with HFD-feeding (Fig. 2.10). Cyp1a2 (AhR 

target gene) was induced only at the higher dose (200 mg/kg). There was a 

significant difference between the low and high exposure doses in terms of 

hepatic/systemic inflammation, which could potentially be due to AhR activation. 

Aroclor 1260 activated CAR and PXR and to a lesser extent AhR, suggesting 

congener composition and exposure levels to be critical in determining a 

mixture’s mode(s) of actions. 
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2. Evaluating the role of CAR and PXR in liver injury caused by Aroclor 

1260 exposure in conjunction with HFD 

In Chapter 2, it was demonstrated that Aroclor 1260 at 20 and 200 mg/kg 

activated nuclear receptors CAR and PXR (152). In chapter 3, the role of CAR 

and PXR in Aroclor 1260+HFD-induced steatohepatitis was further evaluated. 

C57Bl/6 (WT), PXR knockout and CAR knockout mice were exposed to Aroclor 

1260 (20 mg/kg) and fed a high fat diet (42% kCal fat) for 12 weeks. Consistent 

with our previous findings, Aroclor 1260 exposure resulted in the transition of 

diet-induced steatosis to steatohepatitis and this was independent of the mouse 

genotype (Fig. 3.5). Basal hepatic TNFα expression was increased in the 

knockout groups independent of exposure (Fig. 3.6), indicating an anti-

inflammatory role of these receptors in NASH. Moreover, the PXR knockout mice 

had increased % body fat accompanied with decreased lean tissue mass and 

increased liver to body weight ratio, regardless of exposure (Fig. 3.1).  

An intriguing finding from this study was that Aroclor 1260 exposure 

decreased serum insulin levels and HOMA-IR in all groups (Fig. 3.8). This finding 

correlated with findings from the Anniston Community Health Survey studies 

where serum insulin decreased with increasing PCB body burden (153). This 

was a paradoxical finding, because PCB exposure was associated with diabetes 

in this population and diabetes is normally associated with an increase in HOMA-

IR, hence increased insulin levels and insulin resistance. The results suggested 

that PCBs may have an effect on insulin secretion and pancreatic function. 

Interestingly, a recent chronic exposure study using Aroclor 1254 reported 
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hyperinsulinemia in lean and diet-induced obese mice (49). However, the 

congener composition in Aroclor 1254 is strikingly different from that of Aroclor 

1260 (146), with the former containing higher amounts of dioxin like PCBs. 

Therefore, congener composition as well as the dose used may play a role in the 

observed hyperinsulinemia.  

The PXR knockout mice exposed to Aroclor 1260 showed a robust 

increase in hepatic gluconeogenic gene (PEPCK-1, G6Pase) expression (Fig. 

3.9), suggesting that PXR may be a major repressor of the gluconeogenic 

transcription factor, FOXO1. In terms of lipogenic gene expression, Aroclor 1260 

exposure decreased FAS and SCD1 mRNA levels in the WT group. However, 

the knockout groups had higher levels of basal FAS and SCD1 expression 

irrespective of Aroclor 1260 exposure (Fig. 3.11). This could be explained by the 

increase in basal mTOR1 activity in these groups as activated mTOR1 

corresponds to an increase in lipogenesis through nuclear localization of the 

lipogenic transcription factor, SREBP1 (113). On the other hand, Aroclor 1260 

exposure resulted in AMPKα activation which was consistent with an increase in 

hepatic expression of the glucose transporters (Fig. 3.13). AMPKα activation by 

Aroclor 1260 was manifested by the increase in RER in the knockout groups that 

were exposed to Aroclor 1260 (Fig. 3.3). Furthermore, both knockout groups 

demonstrated increased movement in the light cycle with Aroclor 1260 exposure, 

suggesting that this increase in physical activity may have driven AMPKα 

activation. However, the exact mechanism as to why Aroclor 1260 exposure 

caused hyperactivity in these animals remains to be investigated.  
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In summary, CAR and PXR activation appeared to be protective with 

regard to inflammation, lipogenesis and gluconeogenesis. However, CAR and 

PXR activation was not sufficient to protect the animals from developing NASH. 

This was possibly due to mechanisms independent of CAR and PXR activation 

such as compromised insulin levels and no improvement in obesity inspite of the 

improved leptin to adiponectin ratio. Moreover, the NASH symptoms that were 

observed in these animals such as insulin resistance and steatosis were 

uncoupled as compared to typical NASH hallmarks. We conclude that although 

CAR /PXR activation played a protective role in NASH induced by PCB+HFD, 

there are other receptor-based mechanisms responsible for the development of 

NASH that need to be addressed in this PCB/HFD model. 

3. Human receptor activation by Aroclor 1260 and selected individual PCB 

congeners 

 The studies in this Chapter evaluated Aroclor 1260 and selected 

congeners, as potential ligands for human receptors utilizing human hepatoma-

derived (HepG2) and primate-derived (COS-1) cell lines, and primary human 

hepatocytes. It is important to differentiate between rodent and human receptor 

activation because, although these receptors are highly conserved between 

species, some of these receptors such as the AhR vary in terms of ligand binding 

sites and target genes that they induce. The observed data suggested that 

Aroclor 1260 is a human AhR (Fig. 4.2), PXR (Fig. 4.3), a mixed 

agonist/antagonist for CAR2 (Fig. 4.4), a CAR3 agonist (Fig. 4.5) and an 

antagonist for human PPARα (Fig. 4.8). This study is clinically relevant because 
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human receptor activation by a PCB mixture that simulates PCB bioaccumulation 

in humans was examined at relevant concentrations. Furthermore, the effects of 

PCBs on human nuclear receptors such as LXRα and FXR and in human 

hepatocytes have never been assessed before. Additionally, this is the first study 

to evaluate PCB activation on the human CAR variants. Because epidemiologic 

studies have reported associations between PCB exposure and NAFLD, and 

since these disorders are intimately involved with nuclear receptor activation, the 

results clearly provide new insight into potential mode(s) of PCB action in human 

NAFLD.  

Strengths of this dissertation 

There is much strength in this dissertation. First and foremost, an animal 

model that simulated human PCB exposure patterns was developed. Secondly, 

we have identified steatohepatitis caused by PCB exposure in a diet-induced 

obesity mouse model and validated that the effects of a PCB mixture (Aroclor 

1260) vary from that of a single congener (PCB 153). The work has also provided 

insights in the underlying mechanism associated with PCB exposure such as 

dose- and diet-dependent activation of human and murine receptors including the 

AhR, CAR and PXR. Additionally, the results in this dissertation also answered 

key questions related to the role of CAR and PXR in hepatic energy metabolism 

and demonstrated the protective role of these receptors in PCB+HFD-induced 

liver injury.  

Another major strength of this dissertation includes the identification of 

PCB-mediated NASH effects that are dissociated from typical NASH hallmarks 
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such as the absence of insulin resistance. Furthermore, our observations of 

PCB-mediated NASH that resulted in a unique animal phenotype correlated with 

the observations seen in the PCB-exposed human population studies (153). 

Inspite of focusing on CAR and PXR, we have also distinguished other factors 

that play a role in PCB+HFD-induced liver injury such as the energy sensors, 

mTOR1 and AMPKα. The knockout studies demonstrated that chronic 

dysregulated receptor activation ensues in the PCB/HFD model that impact 

energy metabolism and liver injury. 

Limitations of this dissertation 

The primary limitation of this dissertation is that the hepatic and adipose 

concentrations of PCBs have not yet been quantified. This could potentially be 

done in the future using mass spectrophotometry. Quantifying the amount of 

PCBs in liver and fat will give us an idea of PCB compartmentalization in either a 

low fat diet or HFD setting.  Another limitation in the animal studies is that the 

pancreatic tissues were not harvested for analysis. Therefore, we failed to look at 

the effects of Aroclor 1260 exposure on pancreatic function and subsequently, 

insulin secretion. An additional caveat in the experimental design of the in vivo 

studies is that the mice received Aroclor 1260 either at a single exposure (20 

mg/kg) or four separate exposures (50 mg/kg) rather than the intermittent 

exposures that humans encounter from eating PCB- contaminated food. 

Furthermore, another drawback of this dissertation was using serum ALT/AST as 

a NASH biomarker based on low sensitivity, and evaluating other biomarkers is a 

possibility in future studies (50). In addition, for the knockout animal studies, a 
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2x2 ANOVA using SigmaPlot was used for statistical analysis. However, a more 

rigorous approach would be using the SAS/SPSS Programs to perform contrast 

and multiple correction tests and this will be accomplished in the near future. 

Lastly, all our in vivo studies were performed using male mice; hence it is 

pertinent to note that the observed effects may vary with gender and species, 

especially since PCBs may also modulate the estrogen receptor.   

Future directions 

Although the studies described in the dissertation have answered 

numerous questions related to the effects of PCB exposure on NAFLD and 

obesity, the research studies have also raised a number of questions that need 

to be addressed further.  Future research studies directed form this work are as 

follows: 

1. Evaluate the underlying mechanisms that resulted in decreased serum 

insulin levels with Aroclor 1260 exposure. 

The animal studies clearly pointed out that Aroclor 1260 exposure was 

associated with a decrease in serum insulin levels. However the exact 

mechanisms that led to decreased insulin levels were not evaluated in these 

studies. Insulin is synthesized within the β-cells of the Islets of Langerhans in the 

pancreas and its secretion is triggered by various stimuli including increased 

blood glucose levels (154). A 2-year study on a binary mixture of PCB 126 and 

PCB 153 by the NTP reported the development of pancreatic cancer in female 

SD rats (22). However, till date there are no studies reporting the effects of PCB 

exposure on pancreatic function, either in experimental animal models or in 
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epidemiologic studies. Therefore, the first logical step toward understanding the 

mechanisms behind the PCB-mediated decreased serum insulin levels is to 

examine the effects of PCB exposure on pancreatic structure and function.   

2. Define the direct vs. indirect PCB activation of CAR. 

In Chapter 2 and 3, we demonstrated that Aroclor 1260 exposure 

activated CAR by inducing its target gene, Cyp 2b10. CAR activation can occur 

either by direct binding to the receptor itself or indirectly through epidermal 

growth factor receptor (EGFR) signaling. Phenobarbital, a prototypical CAR 

ligand activates CAR indirectly by inhibiting the EGFR signaling which 

subsequently dephosphorylated CAR and mediated its translocation into the 

nucleus (151). We anticipate that some of the PCB congeners may not directly 

interact with CAR, but may act through the same mechanism as phenobarbital. 

Further studies will be required to test this possibility.  Interestingly, EGFR 

signaling promotes pancreatic β-cells expansion in response to a high nutrient 

state and in pregnancy (155, 156). It would be insightful to look at PCB-EGFR 

interactions since this may also answer questions related to the impact of PCB 

exposure on pancreatic function and insulin secretion.  

3. Investigate the effects of HFD feeding on CAR and PXR activation. 

Regardless of Aroclor 1260 exposure, it appeared that HFD consumption 

reduced the induction of CAR/PXR target genes as compared to CD 

consumption. HFD feeding reduced Cyp2b10 induction by approximately 235-

fold and 41-fold vs. CD feeding at 20 mg/kg and 200 mg/kg, respectively. These 

results appear consistent with previous studies (100, 101), and indicate that the 
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ability of CAR to activate target genes is compromised when animals are fed with 

HFD. We speculate that dietary components may interfere with CAR/PXR 

activation and therefore, it would be interesting to look at the effects of other diets 

such as high fructose diet. Another possibility is that the diet-induced steatosis 

may alter PCB compartmentalization and therefore PCB concentrations in the 

liver may vary, leading to lowered CAR/PXR target gene induction. 

4. Study the neurological effects of PCB exposure pertaining to physical 

activity. 

Because metabolic chamber studies indicated that Aroclor 1260 exposure 

increased movement in the knockout mice, it is worthwhile to study the PCB-

mediated effects in the brain. Studies have shown different PCB congeners 

interacting with the ryanodine receptor (157, 158), as well as dopamine and 

GABA neurotransmission (159, 160), and this could potentially impact motor 

activity. Although looking at PCB-mediated neurological effects is beyond the 

scope of an environmental liver disease laboratory, we can however collaborate 

with other groups that study PCB-mediated effects on the central and peripheral 

nervous system. 

5. Elucidate the role of the AhR in PCB+HFD-induced liver disease.  

The role of the AhR in steatosis and NAFLD has been investigated with 

studies showing that AhR activation is consistent with upregulated CD36 and 

SCD1 (110, 161). Using an AhR knockout or an AhR/CAR/PXR triple knockout 

mouse model will provide insight into the role of the AhR in our PCB/HFD mouse 

model. Another approach in this context is to use a binary mixture of Aroclors 
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such as Aroclor 1260 that has primarily non-dioxin like PCBs and Aroclor 1254 

that has mostly dioxin like PCBs. This will result in a PCB mixture that has 

approximately 15 to 30-fold more AhR activity than the one currently studied. 

6. Translate the animal findings to the PCB-exposed human population. 

The objective of this dissertation is to understand the role of PCB 

exposure in NAFLD, diabetes and obesity using animal models. We aim to 

translate our animal findings to the PCB-exposed human population so as to 

identify potential therapeutic targets that could be utilized to address the health 

disorders associated with this population. We will be using humanized AhR, CAR 

and PXR mice in our future studies to obtain data that is more relevant toward 

evaluating the PCB effects in humans. 

Conclusion 

Overall, Aroclor 1260 exposure resulted in the transition of steatosis to 

steatohepatitis in HFD-fed mice, thereby acting as a ‘second hit’ in diet-induced 

steatohepatitis. Aroclor 1260-induced NASH could involve activation of novel 

PCB receptors such as CAR and PXR or even non-receptor based modes of 

action. Both PXR and CAR are required to maximally attenuate Aroclor 1260-

induced changes in body composition, carbohydrate/lipid metabolism and 

inflammation in NASH. This is in stark contrast to hepatic steatosis induced by 

dioxin which is dependent on AhR activation (161). Also, CAR and PXR 

activation appeared to be protective in PCB-mediated toxicity but HFD 

consumption decreased the protective CAR/PXR activation, illustrating the 

importance of dietary co-exposures in PCB-related NASH (Fig. 5). Lastly, PCBs 
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also interact directly with human receptors, implicating the potential role of these 

receptors as therapeutic targets for NASH and environmental liver disease. 
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Figure 5.1. Environmentally-relevant PCB-diet interactions mediate the 

transition of steatosis to steatohepatitis. 
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