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ABSTRACT 

REDUCED HyperBF NETWORKS: PRACTICAL OPTIMIZATION, 
REGULARIZATION, AND APPLICATIONS IN BIOINFORMATICS 

Rami Nezar Mahdi 

March 23,2010 

A hyper basis function network (HyperBF) is a generalized radial basis function 

network (RBF) where the activation function is a radial function of a weighted distance. 

The local weighting of the distance accounts for the variation in local scaling and 

discriminative power along each feature. Such generalization makes HyperBF networks 

capable of interpolating decision functions with high accuracy. However, such 

complexity makes HyperBF networks susceptible to overfitting. Moreover, training a 

HyperBF network demands weights, centers and local scaling factors to be optimized 

simultaneously. In the case of a relatively large dataset with a large network structure, 

such optimization becomes computationally challenging. 

In this work, a new regularization method that performs soft local dimension 

reduction and weight decay is presented. The regularized HyperBF (Reduced HyperBF) 

network is shown to provide classification accuracy comparable to a Support Vector 

Machines (SVM) while requiring a significantly smaller network structure. Furthermore, 

the soft local dimension reduction is shown to be informative for ranking features based 

on their localized discriminative power. 
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In addition, a practical training approach for constructing HyperBF networks is 

presented. This approach uses hierarchal clustering to initialize neurons followed by a 

gradient optimization using a scaled Rprop algorithm with a localized partial 

backtracking step (iSRprop). Experimental results on a number of datasets show a faster 

and smoother convergence than the regular Rprop algorithm. 

The proposed Reduced HyperBF network is applied to two problems in 

bioinformatics. The first is the detection of transcription start sites (TSS) in human DNA. 

A novel method for improving the accuracy of TSS recognition for recently published 

methods is proposed. This method incorporates a new metric feature based on 

oligonucleotide positional frequencies. 

The second application is the accurate classification of microarray samples. A new 

feature selection algorithm based on a Reduced HyperBF network is proposed. The 

method is applied to two microarray datasets and is shown to select a minimal subset of 

features with high discriminative information. The algorithm is compared to two widely 

used methods and is shown to provide competitive results. 

In both applications, the final Reduced HyperBF network is used for higher level 

analysis. Significant neurons can indicate subpopulations, while local active features 

provide insight into the characteristics of the subpopulation in specific and the whole 

class in general. 

Vlll 



TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGEMENT ................................................................................................. iv 

ABSTRACT ...................................................................................................................... vii 

LIST OF TABLES ........................................................................................................... xiv 

LIST OF FIGURES .......................................................................................................... xv 

I. INTRODUCTION ...................................................................................................... 1 

1. Machine Learning ..................................................................................................... 2 

2. Supervised Learning ................................................................................................. 4 

3. Risk and Loss Functions ........................................................................................... 5 

4. Empirical Risk: Learning from Examples ................................................................ 6 

5. Overfitting vs. Generalization .................................................................................. 7 

6. Regularization and Complexity ControL ................................................................. 8 

7. Hypothesis Space & Example Classifiers .......................................................... '" ... 9 
7.1. Linear Regression for Classification ........ , ........................................................ 9 
7.2. Radial Basis Function Neural Network (RBF) ............................................... 10 
7.3. Support Vector Machine Networks (SVM) .................................................... 11 
7.4. HyperBF Networks ......................................................................................... 12 

8. Contributions of this Dissertation ........................................................................... 13 

9. Outline of the Dissertation ..................................................................................... 14 

II. BACKGROUND ..................................................................................................... 16 

1. Radial Basis Function Networks ............................................................................ 16 

2. Hyper Basis Function Networks (HyperBF) .......................................................... 17 

3. RBFlHyperBF NN Training ................................................................................... 19 

IX 



4. Regularization ........................................................................................................ 22 
4.1. Bayesian Interpretation ................................................................................... 23 
4.2. Complexity and Error Bounds ........................................................................ 24 
4.3. Regularization Methods: Examples ................................................................ 26 

a) Bridge Regression ........................................................................................ 26 
b) Regularization by Smoothness ..................................................................... 27 

III. METHODS ............................................................................................................. 29 

1. HyperBF Training .................................................................................................. 29 
1.1. Simplified Notation ......................................................................................... 29 
1.2. Network Initialization ..................................................................................... 30 

a) Agglomerative Hierarchal Clustering .......................................................... 31 
b) Clustering with Elliptical Clusters ............................................................... 32 
c) Optimal Number of Clusters / Neurons ....................................................... 33 
d) Post Clustering Initialization ........................................................................ 33 

1.3. Scaled Rprop (SRprop) ................................................................................... 35 
1.4. Iterative Training ............................................................................................ 38 
1.5. Partial Local Backtracking Step: Improved SRprop (iSRprop) ...................... 39 

2. Reduced HyperBF Networks (RHyperBF): Bridge Regression and Soft Local 
Dimension Reduction ............................................................................................. 40 

3. Model Selection ...................................................................................................... 41 

4. Feature Ranking in Reduced HyperBF Based on Saliency .................................... 42 

IV. EXPERIMENTS AND RESULTS ..................................................................... 46 

1. Datasets .................................................................................................................. 47 

2. Experimental Results .............................................................................................. 49 
2.1. Local Dimension Reduction in Handwritten Digits Classification ................. 49 
2.2. Classification Accuracy and Comparison ....................................................... 52 
2.3. Sensitivity to Regularization Parameters ................................... , .................... 54 
2.4. Network Size and Interpretability ................................................................... 56 
2.5. Evaluation ofiSRprop ..................................................................................... 57 

3. Conclusions ............................................................................................................ 60 

V. CASE STUDY: IDENTIFICATION OF TRANSCRIPTION START SITES 
IN HUMAN DNA USING OLIGONULEOTIDE POSITIONAL 
FREQUENCIES .................................................................................................... 61 

x 



1. Motivation .............................................................................................................. 61 

2. TSS Detection Algorithms ..................................................................................... 62 

3. HyperBF-TSS ......................................................................................................... 63 

4. Methods .................................................................................................................. 64 
4.1. Feature Prototype (Local Oligonucleotides Frequencies) ............................... 64 
4.2. Imbalanced Training ............................................................................. '" ....... 66 

5. Experiments and Results ........................................................................................ 67 
5.1. Dataset. ............................................................................................................ 67 
5.2. Training and Model Selection ......................................................................... 68 
5.3. Testing Procedure ........................................................................................... 71 
5.4. Comparison to Other Methods ........................................................................ 74 

6. Higher Level Analysis of HyperBF-TSS ............................................................... 76 
6.1. TSS Subtypes Characteristics ......................................................................... 77 

7. Conclusion .............................................................................................................. 81 

VI. CASE STUDY: FEATURE SELECTION AND SUBTYPE DISCOVERY 
IN MICROARRA Y DATA ANAL YSIS ........................................................... 82 

1. Motivation .............................................................................................................. 82 

2. Overview of Feature Selection Methods ................................................................ 83 
2.1. Filters .............................................................................................................. 84 
2.2. Embedded Feature Selection ........................................................................... 85 
2.3. Wrappers ......................................................................................................... 86 

3. Methods .................................................................................................................. 86 
3.1. Recursive Feature Elimination in Reduced HyperBF Network (Reduced 

HyperBF-RFE) ................................................................................................ 86 
3.2. Seeded Reduced HyperBF-RFE ..................................................................... 87 
3.3. Reduced HyperBF Network for Functional Clustering .................................. 90 

4. Experiments ............................................................................................................ 90 
4.1. Datasets ........................................................................................................... 91 

a) ICMLA 2009 Cancer Dataset ...................................................................... 91 
b) Leukemia Dataset. ........................................................................................ 91 

4.2. Results ............................................................................................................. 92 
a) ICMLA 2009 Cancer Dataset ...................................................................... 92 
b) Leukemia Dataset .............................................................................. , .......... 93 

5. Higher Level Analysis and Discussion .................................................................. 95 

Xl 



6. CONCLUSION ...................................................................................................... 99 

VII. SUMMARY AND CONCLUSIONS .............................................................. 101 

1. Dissertation Summary .......................................................................................... 101 

2. Future Research Directions .................................................................................. 103 

APPENDIX ................................................................................................................... 113 

1. Agglomerative Hierarchal Clustering .................................................................. 113 

2. Equations and Gradient Derivatives ..................................................................... 114 

3. Time and Memory Complexity ............................................................................ 117 

REFERENCES ............................................................................................................. 118 

CURRICULUM VITAE .............................................................................................. 118 

xu 



LIST OF TABLES 

TABLE PAGE 

1. Details of the Datasets Used for Evaluation and Comparisons ................................... .48 

2. Comparison of Classification Error between HyperBF, Reduced HyperBF, and 
SVM networks on Six Datasets .................................................................................. 53 

3. Comparison of auROC Between HyperBF, Reduced HyperBF, and SVM 
Networks in the Classification of CTSS) Sites in Human DNA ................................ .53 

4. Comparison of Model Structure between Reduced HyperBF Networks and SVM 
Networks ..................................................................................................................... 56 

5. Training Time in Minutes for a Hundred iSRprop Iterations for Every Network ........ 60 

6. Sub-Regions and Oligonucleotide Lengths Considered for Feature Extraction ........... 66 

7. auROC ofTSS Detection in the Validation Data Using Reduced HyperBF and 
SVM Networks ........................................................................................................... 69 

8. Effect of Training with Weighted Error on auROC and auPRC of the Validation 
Data and the Number of Resulting Active Neurons ................................................... 70 

9. Number of Positive and Negative Samples as a Result of the Chunking and 
Labeling Approach Used in Testing ........................................................................... 72 

10. Effect of Training with Weighted Error on the auROC and auPRC of Validation 
Data ............................................................................................................................. 73 

11. auROC and auPRC for HyperBF-TSS (Net-2), ARTS and Others ............................ 75 

12. Effect of Removing The Thousandth Highest Scoring Negative Samples on 
Both auROC and auPRC in Both Chunking Cases .................................................... 75 

13. List ofthe top 40 4-mer characteristics ofTSS Sequences for Subtypes N-l and 
N-2 .............................................................................................................................. 79 

14. Number of Samples in Every Class in the ICMLA 2009 Cancer Dataset.. ................ 91 

15. Number of Sample in Every Class in the Leukemia DataseL .................................... 91 

Xlll 



16. Cross-validation and Testing Classification Accuracy of the Three Methods at 
Different Levels of Feature Selection on ICMLA-09 Cancer Dataset ....................... 92 

17. Cross-Validation and Testing Classification Accuracy of the Three Methods at 
Different Levels of Feature Selection on the Leukemia Dataset.. .............................. 94 

18. The Four Probes Sufficient for Accurate Classification in Leukemia Dataset.. ......... 96 

19. Significant Neurons of the Final ICMLA-09 Cancer Reduced HyperBF Network ... 97 

20. Final Structure of the ICMLA-09 Cancer Reduced HyperBF Network ..................... 97 

21. The Four Probes Sufficient for Accurate Classification in ICMLA-09 Cancer 
Dataset ........................................................................................................................ 98 

XIV 



LIST OF FIGURES 

FIGURE PAGE 

1. Structure of an RBF Network ...................................................................................... 1 0 

2. Structure of an RBF Network for a K-Class Network. ................................................ 19 

3. The Exponential Cofactor as a Function ofthe Local Coefficient. .............................. 36 

4. Sample Neurons from a Network Trained to Discriminate Digit 3 from 5 .................. 50 

5. Sample Neurons from Network Trained to Recognize the 10 Digits of MNIST. ....... 51 

6. Sample Neurons from Network Trained to Recognize the 10 Digits of USPS ............ 52 

7. Effect of Regularization Parameters (A,w and Av) on the Cross-Validation 
Classification Error of Each Dataset .......................................................................... 55 

8. Training with both iRprop+, iSRprop, and BPVS of Six Networks ............................. 59 

9. Training Sequences Are Divided Around the TSS with Overlapping Regions ............ 66 

1 o. Average Scores at Positions Around the True TSS vs. Average Scores of 
Negative Examples in Validation Data ...................................................................... 71 

11. Schematic Diagram of the Chunking and Labeling Approach in the Testing 
Phase ........................................................................................................................... 72 

12. Effect of Weighted Training on Testing auROC in both Chunking Cases ................. 73 

13. Effect of Weighted Training on Testing auPRC in both Chunking Cases ................. 74 

14. Final Network Structure of Reduced HyperBF-TSS Network (Net-2) ...................... 76 

15. TSS Subtype-l Characteristics ................................................................................... 80 

16. TSS Subtype-2 Characteristics ................................................................................... 80 

17. Flowchart of Reduced HyperBF-RFE Algorithm ...................................................... 89 

18. Classification Accuracy on the ICMLA 2009 Cancer Dataset of the Three 
Methods ...................................................................................................................... 93 

19. Classification Accuracy on the Leukemia Dataset of the Three Methods .................. 94 

xv 



CHAPTER I 

INTRODUCTION 

The past two decades have witnessed a dramatic increase in the number and quality of 

applications that utilize machine learning and applied statistical methods. Pattern 

recognition, modeling, prediction and analysis tools have found their valuable application 

in various field such engineering, natural science, medicine, marketing and many others. 

In part, this trend was stimulated by the availability of cheap, reliable and relatively fast 

computational resources. Furthennore, new supervised learning tools such as Support 

Vector Machines, learning with kernels, boosting, and regularized models have yielded 

unprecedented predictive accuracy in various applications. Though machine learning 

tools still fall short in competing with human intelligence in recognition and analysis, 

some of these tools have come very close to human perfonnance in specific applications 

such as the recognition of handwritten digits and characters. Moreover, some of these 

tools can outperfonn humans in learning tasks that demand the analysis of large data 

quantities. For example, a human is incapable of analyzing the expression of tens of 

thousands of genes for hundreds of patients in a reasonable timeframe. In contrast, 

supervised or unsupervised learning tools can handle this task efficiently. 

Nonetheless, with the exception of sparse linear regression models such as LASSO, 

most supervised learning approaches do not facilitate higher level analysis. Moreover, 

sparse linear models provide limited higher level infonnation. With the increasing 

1 



availability of data in various fields in addition to increased computation power, it is 

anticipated that interpretable models will increase in their importance within the field of 

statistical and machine leaning. Tools such as clustering analysis, regularization, and 

minimal radial or hyper basis function networks (RBFlHyperBF) possess the potential to 

provide evidence for causation analysis and to uncover sUbpopulation information. Such 

information is of great value in the areas ofbioinformatics and artificial intelligence. For 

example, in bioinformatics, it can provide evidence for biomarkers and uncover 

information about disease subtypes. In artificial intelligence, such models are needed for 

knowledge extraction and decision justification. 

1. Machine Learning 

According to Garbonell, Michalski, and Mitchell [1], "Learning processes include the 

acquisition of new declarative knowledge, the development of motor and cognitive skills 

through instruction or practice, the organization of new knowledge into general, effective 

representations, and the discovery of new facts and theories through observation and 

experimentation" (p 3). These processes are usually fed with large datasets of high 

dimensionality, and hence, the learning process can only be performed by a processing 

machine. In this dissertation, we are only interested in learning processes that utilize 

observed data for the purpose of knowledge inference. 

In machine learning and statistics, phenomena are usually associated with 

observations V:{(Xl, Yl), (X2, y2) .... (xn, Yn)} that are assumed to be generated based on a 

probability distribution W called the generator distribution. Xi usually refers to a 

description of the observation sample while Yi refers to a category or a class to which 
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sample Xi belongs. For example, in the case of developing a system to recognize the type 

of trees in a forest, X can be the visual description of every tree while y refers to the type 

of the tree. 

According to Vapnik, who is one of the most influential figures in the development of 

statistical learning theory, most learning problems can fall into three categories [2]: 

1. Classification: The observed data'D is used to learn a machine capable of 

classifying a new sample Xi into the right category Yi from Y. In the simplest case, 

Y contains only two categories: (-1, 1). 

2. Regression Estimation: Use the observed data 'D to approximate a function to map 

a new sample Xi to a real value YiclRL 

3. Density Estimation: The observed data 'D is used to recover the generator 

distribution W or find an approximation ofW or its characteristics. 

The above three categories are closely related. Classification is a special case of the 

regression estimation where a function is approximated to map samples to one of two real 

values only (i.e. -lor 1). On the other hand, if the true generator distribution W can be 

recovered, a more accurate regression or classification can be approximated as will be 

explained later. 

Although the three types of statistical learning described above are the most prevalent 

in machine learning literature, one can still define other types that might serve a specific 

purpose for some applications. Some of these are: 
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1. Feature Analysis and Ranking: Learn the features that characterize a class and 

give the most discriminative information. Such analysis is valuable in medical 

research such as finding the genes that cause a certain disease. 

2. Clustering Analysis: The goal is to discover potential subtypes of a certain class 

or population. For example, Leukemia might be triggered by different subsets of 

genes and the goal is to discover these subtypes through the analysis of gene 

expression data for a few hundred patients. 

Note that subpopulation analysis and density estimation are related. Density 

estimation is usually performed with the assumption of a mixture of models or mixtures 

of Gaussians. Traditionally, clustering analysis algorithms have been used for subtype 

analysis. 

2. Supervised Learning 

Classification and regression learning are usually referred to as supervised learning. 

The goal is to train a model F: X -7 Y that is capable of guessing with arbitrary accuracy 

the desired output Yi for a new sample Xi. The learning is referred to as supervised or 

informed because the training process utilizes a set of labeled observations referred to as 

training data: 'D:((xJ, YJ), (X2, Y2) .... (XN, YN)). 

In classification problems, the quality of the trained classifier is measured by the 

probability of error or misclassifying new samples as follows: 

L(F) = p(F(xa * Yi) (1) 
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Therefore, F should assign a new sample Xi to the class with the maximum a posterior 

probability: 

Or equivalently 

F(xa = arg max p(Y = Yj IX = xJ 
Yj 

F(xa = arg max p(X = xdY = Yj) x p(Yj) 
Yj 

(2) 

(3) 

In (3), p(X = xdY = Yj) is the likelihood of the randomly selected sample X being Xi 

knowing that the class is Yj, while p(Yj) is the prior probability of class 'Yj. Recovering 

these values or distributions is equivalent to recovering the probability density of the 

generator model W. Therefore, if the density is provided or recovered accurately, the 

decision rule in (3) becomes Bayes optimal. In other words, it will be the best possible 

guess someone can make to classify a new sample Xi' However, the density is unlikely to 

be provided or known a priori. Recovering density with high accuracy is not a trivial 

problem. This is why density based classification methods are not widely used 

particularly when compared to other methods such as Support Vector Machine (SVM) 

and neural networks. 

3. Risk and Loss Functions 

An alternative and more commonly used measure for the quality of the classifier is 

the risk. An optimal classifier is the classifier that minimizes the risk of misclassification 

over the space of samples: X x Y on the generator model W: 

5 



~= f L(x,y,F(x))d(x,y) 
XxY 

(4) 

In (4), the function L is the cost or the loss resulting from misclassifying sample x. 

Different loss functions have been used in the literature. The most used ones are the 

square error, the Laplace error and the Hinge error. 

2 
Square Error: L(x, y, F(x)) = (y - F(x)) 

Laplace Error: L(x,y,F(x)) = /ly - F(x)/I 

Hinge Error: L(x,y,F(x)) = {l if Y =1= ~(x) 
o otherWlse 

(5) 

(6) 

(7) 

Of these loss functions, the squared error is the most commonly used, particularly in 

regression problems [3]. Training to minimize the squared error results in a minimal 

variance of the error [3]. Nonetheless, the Hinge error had gain popularity after the 

introduction of Support Vector Machine and maximum margin classifiers. 

Finding a machine F* that minimizes the risk in (4) to the lowest possible risk R* also 

demands knowledge about the generator model of X x Y. Even if such knowledge exists, 

minimizing the continuous integral is a non-trivial problem. 

4. Empirical Risk: Learning from Examples 

Since finding a model that minimizes the true risk is not feasible, one can learn an 

approximate model that minimizes the risk over a set of available and limited 

observations V:((XJ, YJ), (X2, Y2) .... (XN, YN)). In such a case, the learning task becomes to 

find a function F that minimizes the training error: 
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N 

R(V,F) = ~L L(Xi'Yi,F(xa) (8) 

i=l 

In the case of using the squared error as a loss function, the objective function becomes 

the mean squared error (MSE): 

N 
1~ 2 

MSE = N L(Yi - F(Xi)) (9) 

i=l 

Minimizing the MSE in (9) is called the minimization of the empirical risk or learning 

from examples. Learning from examples is motivated by the fact that the observations in 

V are very likely to be generated by the true generator model W. Therefore, a function P 

that minimizes the MSE should provide an approximation to the optimal function F* . 

A different justification for learning from examples was provided by Poggio and 

Girosi in [4;5]. They argued that observations in the real world are characterized by 

redundancy. This means that unseen observations are very likely to have similar 

characteristics to the previously seen or available observations. Therefore, a model that 

fits the training data is also likely to fit yet unseen observations to a certain degree of 

accuracy. 

5. Overfitting vs. Generalization 

The goal of learning from examples is to find a model F that generalizes well. In 

other words, F should be capable of classifying new samples with high accuracy or with a 

small risk R(F). Note that the best possible F is bounded by the optimal risk R* which is 
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not necessarily zero. The optimal risk is not likely to be zero in most real problems 

because different observations of the same x values might belong to different classes y. 

Overfitting is a phenomenon that occurs when the trained model fits the training data 

to high accuracy but fails to generalize well for testing. Complex models demand more 

training samples to be approximated accurately. However, in most learning problems, 

training data is always of limited quantity. Furthermore, for any training data, there is 

always an unlimited number of solutions that minimize the same empirical loss. 

6. Regularization and Complexity Control 

A widely used solution to make the learning problem well-posed and make the trained 

model generalize well for testing is the use of regularization [6-8] or complexity control 

which tries to find the simplest model that fits the training data. This is accomplished by 

adding a penalty term to the empirical loss objective resulting in a functional or 

regularized objective function to be minimized: 

(10) 

In (10), </>[F] is a measure of the complexity of the function F, and A is a positive 

regularization parameter to be determined by cross-validation. Optimal training searches 

for an optimal tradeoff between fitting the training data and minimizing the complexity of 

the solution. In Chapter II, different methods for measuring the complexity of a function 

will be considered. 
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7. Hypothesis Space & Example Classifiers 

The space that contains all possible functions F is usually referred to as the 

hypothesis space. In principle, the hypothesis F can be any function. However, learning 

typically involves narrowing the hypothesis space into a subspace of a specific type of 

functions. Training a model is a search in the hypothesis space for the ideal function that 

fits predefined conditions such low empirical error and low complexity. The following 

subsections (7.1-7.4) provide a brief description of example hypothesis spaces or 

classifiers that can be searched in the training process. 

7.1. Linear Regression for Classification 

Linear regression [3] is one of the oldest and simplest methods for finding a function 

that maps the samples from the input space X c ~z to their desired output Y E IRt A 

linear regression function has the form: 

F(x) = Wx + b (11) 
where W E ~z and b E ~. 

Training a linear regression machine involves estimating the matrix Wand the constant b 

that minimize the loss over the training data such as the empirical least square error. 

N 1, 2 
MSE = N L}Yi - WXi - b ) (12) 

i=l 

In two classes' classification problems, Yi is either + 1 or -1 depending on its true 

class. Once the model is trained, a new sample x is classified as: 

9 



y(X) = sign(F(x)) (13) 

7.2. Radial Basis Function Neural Network (RBF) 

Different nonlinear variants have emerged from the simple linear regression. Most of 

these methods transform the samples from their original representation space X to a new 

space. Afterward, a linear regression is used to predict the desired output. One of the 

popular non-linear regression methods is the RBF network where the output function has 

the form: 

] 

F(Xi) = L Wj~(11 Jlj - Xi II) + b 
j=l 

(14) 

In (14), Jlj is the center of neuronj while Wj is the weight associated with the output 

ofneuronj. hj (II Jlj - Xi II) is the output of the neuronj for a given data sample Xi which 

is a radial function of the distance between the neuron center Jlj and the sample Xi. 

XiI 

Xi2 

• F(Xi) • • • 

Figure 1: Structure of an RBF Network. 

The most widely used radial function is the Gaussian function: 

(15) 

In (15), (J is a scaling parameter often referred to as the width of the function. 
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7.3. Support Vector Machine Networks (SVM) 

SVM is probably the most extensively studied, mature and widely used classification 

tool. Originally, SVM was introduced as a linear classifier with low complexity [9]. 

Later, it was generalized to the non-linear case using the kernel trick [9;10]. In the 

general non-linear case, the output of an SVM network for a new sample x is computed 

as: 

N 

F(x) = I WiK(Xi,X) + b (16) 

i=l 

In (16), K is a similarity function between the new sample x and a sample from the 

training data Xi, Wi is a real valued weight associated with the vector Xi, while b is a 

constant. The function K is typically referred to as the kernel. A commonly used kernel is 

the radial basis function: 

-IIX-XiIl 2 

K(Xi,X) = e u (17) 

where (j is a positive scaling parameter that is selected to minimize the cross-validation 

error, and in some literature it is referred to as the width of the kernel. 

An optimal SVM network is the one that maximizes the separation margin between 

two classes, while at the same time minimizing the classification error. Such training is 

accomplished by solving the following optimization problem: 

(18) 
Subject to 
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In (18), (i are slack variables to account for tolerance to non-separable classes and C 

is a regularization parameter that controls the tradeoff between the maximized margin 

and the training error. An optimal C can be selected through cross-validation. The 

generalization of the SVM machine is also dependent on the selection of the kernel. 

Existing software tools such as Libsvm [11] implement sophisticated methods for 

training and parameter selection of SVM networks. In this dissertation, SVM is used as a 

benchmark. All the reported SVM experiments are performed using Libsvm software. 

7.4. HyperBF Networks 

A generalization of the Gaussian radial basis function in (15) is the hyper basis 

function (HyperBF) introduced by Poggio and Girosi in [4;5]. Unlike (15) which uses the 

Euclidean distance scaled by a single scaling factor 0", a hyper basis function uses a 

Mahalanobis-like distance as follows: 

(19) 

In (19), ~ is a positive definite squared matrix. In the general case, the role of ~ is 

to make the similarity to the neuron invariant to local scaling and orientation of the data. 

A key advantage of using HyperBF networks is the small network structure 

compared to SVM networks (number of neurons vs. number of support vectors). This 

feature makes HyperBF networks competitive solutions for applications where fast 

classification is needed with limited computation resources. 

In spite of being a generalized RBF network, the HyperBF network is still one of the 

least studied and used methods in machine learning applications, particularly when 
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compared to the case of a single scaling factor RBF which is used heavily in RBF neural 

networks and support vector machine networks. The main reasons are: 

1. The high degree of freedom of HyperBF networks leads to overfitting and poor 

generalization. 

2. The training objective function is not convex and hence training will tend to find a 

locally optimal solution instead ofthe globally optimal solution. 

3. Training a HyperBF network is a challenging optimization problem that demands 

a scalable optimization method to estimate the large number of parameters. 

8. Contributions of this Dissertation 

In this dissertation, a new regularization method for training HyperBF networks that 

performs soft local dimension reduction in addition to weight decay is presented. The 

regularization aims at explicitly minimizing the complexity of the network while fitting 

the training data. The regularized HyperBF network is shown to provide classification 

accuracy competitive to SVM while using a significantly smaller network. This smaller 

network structure is the motivation for its name: Reduced HyperBF Network. 

Furthermore, a practical training approach to construct HyperBF networks is 

proposed. A scaled version of the Resilient Propagation algorithm (Rprop) [12] IS 

introduced and used to perform sign based gradient optimization. The proposed Scaled­

Rprop is shown to provide faster convergence while causing less oscillation than the 

regular Rprop. 
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As a result of its small network structure (fewer neurons and fewer locally active 

features), the Reduced HyperBF network is shown to be an effective tool for higher level 

analysis. Active neurons are argued to be indicators of subtypes, while the locally active 

features provide insight into the unique characteristics of each subtype and the whole 

class in general. 

In addition, a new feature selection based a Reduced HyperBF network is proposed. 

On microarray datasets, the proposed feature selection algorithm is shown to be an 

effective tool for feature subset selection that provides very competitive results compared 

to existing methods. 

9. Outline of the Dissertation 

In Chapter II, more literature about RBF and HyperBF networks is presented. 

Existing methods for training RBF and HyperBF networks are described. The chapter 

also details an overview of regularization theory, its explanation, and some commonly 

used regularization techniques. 

Chapter III provides a detailed description of the proposed regularization and training 

algorithm for HyperBF networks. Using the Reduced HyperBF network for feature 

selection is deferred to Chapter V. 

Experiments on seven real world datasets are reported in Chapter IV. The proposed 

optimization algorithm (iSRprop) is compared to the improved Rprop algorithm 

(iRprop+) and the VSBP algorithm. Furthermore, the classification accuracy of the 

proposed regularized network (Reduced HyperBF) is compared to the regular HyperBF 

network and the Support Vector Machine network. 
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Chapter V presents a case study of using the Reduced HyperBF network in the 

detection of Transcription Start Sites (TSS) in human DNA using a new metric feature to 

represent promoter DNA segments. The resulting model (HyperBF -TSS) is compared to 

other TSS detection tools on the same dataset. The compact network structure is utilized 

to extract a simple description ofthe structure ofTSS regions. 

Chapter VI presents a case study of using Reduced HyperBF networks for feature 

selection in microarray analysis. A new algorithm (Reduced HyperBF-RFE) is described. 

The chapter also reviews literature on existing methods for feature selection. 

Experimental results of the new algorithm on two microarray datasets are reported and 

compared to two other methods. 

Finally, Chapter VII outlines a brief summary and discussion of the contributions 

presented in addition to remaining challenges and future research directions that can 

expand on this work. 
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CHAPTER II 

BACKGROUND 

1. Radial Basis Function Networks 

Radial Basis Function (RBF) networks are a special type of feed-forward artificial 

neural networks introduced by Broomhead and Lowe (1988) [13]. An RBF network uses 

a single hidden layer of neurons with RBFs as activation functions (Figure 1). The RBF 

model is motivated by the locally tuned response observed in biological neurons of the 

central nervous system. Such a network topology has been shown to be capable of 

interpolating complex functions. RBF networks have been successfully used in 

applications of function approximation [14-16], classification and pattern recognition 

[16;17], and dynamical modeling and control [18]. Figure 1 shows a typical two class 

RBF network. The output function of such a network is computed as: 

] 

F(xa = L Wj~(11 /lj -Xi II) + b 
j=l 

(20) 

In (20), b is a constant, /lj is the center of neuron j while Wj is the weight associated 

with the output of neuronj. ~ (II /lj - Xi II) is the output of the neuron for a given data 

sample Xi which is a radial function of the distance between the neuron center /lj and the 

sample Xi. 
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Different types of radial functions have been successfully used in literature [19-21] as 

activation functions. Some of these are: 

_r2 

her) = e7 
(21) 

(22) 

(23) 

(24) 

In equations (21), (22), (23) and (24), a is a scaling parameter often referred to as the 

width of the function. The most commonly used radial basis function is the Gaussian 

function (equation (21)). In this case, the output of the neuron peaks to one when the 

given sample is at a zero distance from the center of the neuron and keeps decreasing 

toward zero as the given sample goes further from the neuron, thus acting as a similarity 

measure or a membership function. 

2. Hyper Basis Function Networks (HyperBF) 

A generalization from the Gaussian radial basis function in (21) is the hyper basis 

function introduced by Poggio and Girosi in [4;5]. Unlike (15) which uses the Euclidean 

distance scaled by a single scaling factor a, the hyper basis function uses a Mahalanobis-

like distance as follows: 

(25) 
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In (25), J1j is the center of the neuron, while Rj is a positive definite squared matrix. In 

the general case, the role of Rj is to make the similarity to the neuron independent of any 

local scaling or orientation. However, as described in [22] and depending on the 

application and the dataset, Rj can be constrained to one of the following: 

1. All neurons have spherical shape of the same size: Rj = (:2) Id "i/j where Id is the 

identity matrix. 

2. All neurons have a spherical shape but different size: Rj = (,.;2) Id "i/j. 

3. Every neuron has an elliptical shape with a varying size but with restricted 

orientation aligned with the original input coordinates: Rj = diag (+, + ....... +). 
Ujl uj2 ujZ 

4. Every neuron has elliptical shape with a varying size and orientation: Rj is a positive 

definite square matrix that is not diagonal. 

Though case 4 is the most general and can account for the local correlation between 

the different dimensions, it is computationally expensive to estimate ~ for high 

dimensionality and can lead to severe overfitting due to the high degrees of freedom of 

the model. On the other hand, case 3 makes a good tradeoff between extreme generality 

given by case 4 and the over simplification given by cases 1 and 2. In case 3, the 

coefficients can be interpreted as a local weighting method of the dimensions or as 

scaling factors that ensure the solution to be invariant to the local scaling of the 

dimensions. Note that the scaling of the local distance can also be applied to radial basis 

functions other than the Gaussian function. 
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3. RBFlHyperBF NN Training 

Usually training RBF networks for a two class classification problem involves 

estimating the hidden layer neurons' parameters and optimal weights so that the network 

gives samples from two classes distinctively different scores (i.e. -1 and 1). In the case of 

the squared error loss function, the problem becomes to find all the parameters that result 

in the least squared error over the training data: 

(26) 

In (26), f(xa is the output score of the network for the given sample Xi while ti is the 

desired output which would be -lor 1 depending on Xi. 

An extension for the multiclass classification case (K classes) can be achieved by 

adding a separate output node for every class with its own set of connecting weights to 

the same hidden layer (Figure 2). 

Figure 2: Structure of an RBF Network for a K-Class Network. 

In the ideal case, for a given sample Xi, each output node k should give a score hk that 

is as close as possible to a desired output tik (i.e. tik=1 if Xi E f(h class and 0 otherwise). 

Thus the objective function becomes: 

19 



(27) 

This approach is similar to the one vs. all classification scheme. A one vs. one 

topology could alternatively be implemented. In the later case, a separate network is 

needed for every pair of classes and at the end a probability modeling of the outputs of 

these networks is needed to compute the posterior of every class for a given sample 

[23;24]. 

A large number of methods have already been developed to train RBF networks. Most 

training methods can be categorized as dynamic or static. In static learning, the structure 

of the network is determined a priori followed by parameter estimation. In contrast, 

dynamic learning uses an incremental approach where neurons are added or deleted as 

training and parameter estimation proceeds [15;25]. 

In static training, most training algorithms perform optimization in two phases where 

the neurons centers are chosen first using data summarization methods. Once neurons are 

selected, they are fixed and the weights are estimated in a second phase using gradient 

descent or pseudo-inverse methods [26-30]. 

Different data summarization and clustering methods have been used to initialize the 

centers of the neurons. These methods include: k-means clustering [28;31], fuzzy 

partitioning of the input space [32], fuzzy c-means [27;29], one-pass clustering algorithm 

APe-III [30], decision trees [26] and vector quantization [22]. 

Nonetheless, there is no consensus in the literature on the optimal clustering 

algorithm to initialize RBF networks for optimal classification results. Furthermore, one 

obvious problem with the two phase learning of RBF networks is that neuron selection is 
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not performed to maximize the distinction between the two classes. While the weights are 

chosen to minimize the error after neurons are fixed, neurons are selected without any 

knowledge about the weights' values. Therefore, the resulting networks perform badly in 

classification tasks [33]. 

Training with moving centers and adaptable shapes of the neurons was first described 

by Poggio and Girosi [4;5]. A network that uses neurons with variable shapes and sizes 

was termed a HyperBF network. All parameters in a HyperBF network are optimized to 

minimize training error. Though a HyperBF network still needs to be initialized by a 

clustering algorithm, the final solution is much less sensitive to the choice of clustering 

algorithm. 

A three learning phase approach for constructing a HyperBF network was described 

and evaluated in [22]. Regular two phase methods were used to initialize the network. 

Then, in the third phase, centers, scaling factors and weights are estimated simultaneously 

by gradient descent and back propagation so that the network results in the least squared 

error: 

N 

LlWjk = 11 I '1 (XJ(tik - !k(Xi)) 
(28) 

i=l 

(29) 

(30) 

The authors used a back propagation training algorithm called BPVS [34] that uses a 

single variable learning factor for all parameters which is estimated adaptively. However, 
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such a single learning factor is not expected to be appropriate in the case of a large 

number of parameters especially when those parameters belong to three different 

categories: means, scaling factors and weights. Those different parameters are scaled 

differently and hence may demand separate learning rates. 

In this work, a multiple step size gradient algorithm based on the Resilient 

Propagation algorithm (Rprop) is presented. The Rprop is further improved by taking into 

consideration the effect of the changes made to the variables. 

Rprop is a first order method for gradient optimization. It uses a separate step size for 

every variable. Rprop is a sign based method that only uses the sign of the derivative to 

decide the direction of the change while ignoring the magnitude. Rprop has become very 

popular due to its efficiency and ease of implementation. Furthermore, different variants 

have emerged such as iRprop+ [35], JRprop[36], and GRprop[37]. 

4. Regularization 

The generalized formulation of the HyperBF network gives it a high capacity to fit 

training data with high precision. However, from statistical learning theory, it is known 

that such complexity comes with a higher risk of overfitting and poor generalization [38-

41]. Estimating a large number of parameters demands a large training dataset which is 

not the case in most real world applications. As a result, the trained model overfits the 

training data and fails to classify new data samples correctly [6]. A widely used solution 

to make the problem well-posed and make the network generalize well for testing is the 

use of regularization [6-8]. To regularize a trained model, a penalty term is added to the 

objective function that penalizes the complexity of the trained model. In the case of 
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squared error loss function, the resulting objective is referred to as the regularized least 

square and it has the following form: 

N 
1~ 2 1 

Ereg = 2: L (ti - t (xJ ) + 2: A¢ (f] (31) 

i=l 

In (30), ¢(f] is a measure of the complexity of the function t, and A is a positive 

regularization parameter to be determined by cross-validation. In some literature, ¢(f] is 

referred to as a stabilizer [4;5]. 

4.1. Bayesian Interpretation 

The most popular interpretation of minimizing the regularized objective function in 

(30) is that it results in a model with a maximum a posteriori probability (MPA). The a 

posteriori probability of a model F is proportional to the probability of observing the data 

given this model multiplied by the probability of the model itself. 

P(FIV) = P(VIF) x P(F) 

The optimal model F* is the one that has the maximum a posteriori probability: 

or alternatively 

F* = arB max P(VIF) x P(F) , 
F 

F* = arB max lOB(P(VIF) x P(F)) 
F 

(32) 

(33) 

(34) 

It is intuitive to assume that the probability of observing the data V given the model F is 

proportional to how well the model F fits the data and hence P(VIF) can be 

approximated as: 
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(35) 

In (35), 'P is constant. In order to estimate the prior P(F) over all possible functions, a 

priori knowledge about the problem and the likely and unlikely solutions is needed. If 

such knowledge is not available, a best effort guess can be made. According to Occam's 

Razor learning principle [40], simple solutions are the most likely solutions. Furthermore, 

from our experience as human observers, decision rules to distinguish between classes are 

typically simple [4;5;42]. Therefore, a likely modeling of the a priori P(F) is a one that 

is inversely proportional to the complexity of F and hence P(F) can be approximated as: 

-n 
P(F) ::::: eycf>[F] (36) 

In (36), n is a constant and ¢[F] is a measure of the complexity of the model F. By 

substituting (35) and (36) in (34), the result is equivalent to the regularized minimization 

objective function in (10): 

N 
'P,," 2 n 

F* = argmfx-z L(ti - f(xa) - 2¢[F] 
i=l 

(37) 

4.2. Complexity and Error Bounds 

One of the earliest attempts to measure the effect of the complexity of a trained model 

on its generalization was the work ofVapnik and Chervonenkis [39;41]. They studied the 

relationship between empirical error and the generalization error and under which 
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conditions the empirical misc1assification rate Remp (F) of the trained model F uniformly 

converges to the true misc1assification rate as the number of training examples increases: 

lim Remp (F) = ReF) 
N~oo 

(38) 

A model whose empirical classification error converges to its true error as the number 

of training samples goes to infinity is called consistent. The rate at which the difference 

between those two errors decreases as the number of training samples increases is called 

the convergence rate. A significant outcome ofVapnik and Chervonenkis' work was the 

formulation of the VC dimension which is a measure of the complexity of a function that 

enables an estimation of a probabilistic upper bound on the true error of the trained 

model. 

Definition: The VC dimension of a set of indicator functions: {f E .T} is the maximum 

number h of vectors Xl, X2, X3 .... Xh that can be separated into two classes in all 2h 

possible ways using functions from the same set. If for any number N, it is possible to 

find N points Xl, X2, X3 .... XN that can be separated in all the 2N possible ways using 

functions from the same set, then the VC-dimension of the set is infinite. 

Knowing the VC dimension h of the space of functions {f E .T} being searched to fit 

the training data, Vapnik and Chervonenkis showed that with a probability 1 - 0, the 

following upper bound on the generalization misclassification error of the trained model 

holds to be true: 

(39) 
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As a result, a minimal classification risk R (f) on future samples can be achieved by a 

function that fits the training data while having a very small VC dimension. The search or 

the optimization for such a function is called Structural Risk Minimization (SRM) and it 

is very similar to regularized training. 

The VC error bound is a pessimistic loose upper bound and usually estimates an error 

larger than the true one. Since the introduction of the VC dimension and the VC bound, 

many other dimensions and error bounds have been introduced [38;43;44]. Some of these 

bounds were shown to provide tighter error estimation than the VC dimension. 

Nonetheless, estimating the VC dimension or any other complexity measure of a trained 

model is a non trivial task. Moreover, error estimation through leave-one-out or K-fold 

cross-validation is still used to validate these error bounds. 

4.3. Regularization Methods: Examples 

Optimal training should search for an optimal tradeoff between fitting the training data 

'" and minimizing the complexity of the solution. Different methods have been developed to 

realize this principle. Recent surveys about such methods are available in [42;45]. Two of 

the most popular approaches are explored in the next two sections. 

a) Bridge Regression 

Bridge regression is one of the simplest techniques to penalize a regression model 

[45 ;46] . A penalty term is added to penalize the size of the regression coefficients. In the 

case oflinear regressions, the objective function to be minimized becomes: 
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N Z 

MSE = ~ L (Yi - WXi - b)2 + it LlwzlY (40) 

i==l z==l 

In (40), it and y are two positive constants to be estimated by cross-validation or some 

prior knowledge. As it ~ 00, all coefficients Wz go to zero and the model has a zero 

complexity but is incapable of accurate classifications whereas when it ~ 0, the solution 

becomes the unregularized trained model. 

In the case of y = 2, bridge regression becomes the well known Ridge regression and 

the final model contains small coefficients Wz with low variation. When y = 1, bridge 

regression becomes LASSO regression and the trained model contains small coefficients 

Wz with higher variation. Moreover, in the LASSO case or other cases where y :5 1, more 

coefficients Wz will end up with a zero value. Therefore, the resulting solution is invariant 

to many dimensions and hence is easier to interpret. 

Similar techniques to bridge regression were applied to the multi-layer neural network 

where the penalty is applied to the sizes of all weights in all layers [47]. In neural network 

literature, this penalty is usually referred to as a weight decay term and has been shown to 

improve the generalization of the network [44;47]. 

b) Regularization by Smoothness 

A commonly used regularization technique in nonlinear models is to increase the 

smoothness of the approximation function or the separating hyper-plane. Smoothness is 

motivated by the known prior that decision boundaries in the real world are smooth [21]. 

Moreover, smooth functions demand significantly fewer examples to be learned [38;48]. 
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There are a number of different heuristics to measure the smoothness of a function. For 

example, in Hilbert space, the smoothness of a function can be measured by an L2 norm 

operator such as the following [42]: 

[f ( d f 2 dm f 2) ]1 h 
IIfllIHI = X Ifl2 + Idxl + .. + Idxm I dx 

(41) 

A special case of the generalized smoothness norm is the smoothing splines [42;49]. 

Smoothing splines measure the complexity of a function using the integral over the 

second derivative only and it is estimated as: 

Id
2 fl2 N Z 1 d2 f 12 

IIflls = f dx2 dx == II dX
z
2 (xa 

x 1==1 z==l 

(42) 

In (42), Xz refers to the dimension z while Xi refers to the training example i. In the case 

of a HyperBF network, minimizing functionals with either of the above smoothing 

measures is computationally expensive. Moreover, as the regularization parameter A goes 

to infinity, the resulting model becomes a linear classifier and is still able to classify 

training data to some degree. The appendix gives details about the derivatives of the 

resulting functional of the smoothing splines for HyperBF networks as well as the time 

and memory complexity needed. 

In this work, a new functional objective function is presented that combines training 

error, weight decay and local dimension reduction. The proposed regularization yields a 

smaller network structure that takes significantly less time for classification, making it a 

more attractive solution for applications where fast classification is needed. 
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1. HyperBF Training 

CHAPTER III 

METHODS 

Training a HyperBF network demands the weights, centers and local scaling factors 

to be optimized simultaneously to minimize a certain objective function such as the 

regularized least squared error. In the case of a relatively large dataset with a large 

network structure, such optimization becomes computationally challenging. For example, 

training a 10-class network of 100 neurons to perform handwritten digits recognition of 

the MNIST dataset [50] where every sample is represented by 748 feature values, 

requires estimating 157,800 variables. 

In this work, a two stage training approach is proposed. In the first stage, neurons are 

initialized using hierarchal clustering and weights are initialized to an initial value. In the 

second phase, a new gradient optimization based on the Resilient Propagation algorithm 

(Rprop) is used to estimate all parameters simultaneously in a direction to minimize the 

objective function. 

1.1. Simplified Notation 

Though the notation of the scaling matrix Rj in HyperBF networks as a covariance 

matrix is common, it is not unique and sometimes misleading. Many authors erroneously 
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refer to ~ as a covariance while it is not computed like a covariance. The elements of Rj 

can be best described as scaling factors that are estimated to minimize the classification 

error or any other training criteria. Therefore, for simplicity of notation Rj in the diagonal 

case will be represented as: 

l1z ;::: 0 't/ z. (43) 

For the rest of this dissertation, the elements of ~ will be referred to as local 

coefficients since the membership is computed as: 

II; (x,) = exp ( -0.5 X t, Vjz X (x;z - i'jz)2) (44) 

1.2. Network Initialization 

Clustering algorithms are typically used to initialize RBF or HyperBF networks. The 

goal of clustering is to initialize neurons in regions that are rich with samples. Although 

there is scarce literature about HyperBF networks, existing literature on RBF networks 

suggests a number of methods that are efficient initialization tools (see Chapter II). 

However, there is no consensus that a particular algorithm provides better classification 

results. 

In the proposed training, agglomerative hierarchal clustering is used in the first phase 

to locate potential centers within every class independently. Though hierarchal clustering 

is not fast compared to other algorithms such as K -means, it is less sensitive to the 

random initialization of the clustering itself. In addition, the time needed to perform 

hierarchal clustering is usually significantly less than the time needed for the whole 
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network optimization in the second phase and hence does not significantly affect the 

overall complexity of training. 

As will be discussed later in this chapter and illustrated in the experiments in the next 

chapter, the classification accuracy of HyperBF networks is heavily dependent on 

regularization. Generating a regularized HyperBF network is computationally demanding. 

To perform a fair comparison between different initialization methods, a regularized 

network needs to be trained each time with a new search for optimal regularization 

parameters through cross-validation. Due to limited computational resources and limited 

time, such a comparison is not possible. As an alternative, only the proposed initialization 

is used and the classification of the resulting regularized networks is compared to 

unregularized HyperBF networks and to SVM networks. SVM is considered to be the 

state of the art in classification. 

Furthermore, since the second phase of training HyperBF network optimizes all 

network parameters simultaneously including neuron centers and scaling matrices, it is 

anticipated that the final network is less sensitive to the initialization. 

a) Agglomerative Hierarchal Clustering 

Agglomerative hierarchal clustering is typically initialized with a large number of 

clusters. Afterward, the algorithm iteratively merges pairs of similar clusters. As the 

algorithm merges clusters, it functions as a regular k-means algorithm by reassigning 

samples to their closest clusters and updating the corresponding cluster parameters 

including centers and covariances. Different distance measures have been used in 

literature to measure a distance between two clusters (i.e. Single Linkage, Average 
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Linkage, Complete Linkage, Ward's Linkage ... etc) [48]. In all experiments reported in 

this work, Ward's linkage method is used to calculate the distance between two clusters. 

Ward's linkage is based on the analysis of variance (ANOVA) to minimize the sum of 

variances within clusters. The distance between two clusters (8g , 8j ) is computed as the 

increase in the error sum of squares (ESS) caused by the merge: 

Where 
d( 8g , 8j ) = ESS( 8g .j) - ESS( 8g ) - ESS( ~) 

ESS(8j ) = I (Xi - J1.j/ 
Xi E{8j} 

b) Clustering with Elliptical Clusters 

(45) 

(46) 

Since membership to a HyperBF neuron is computed as a function of a weighted 

distance (Mahalanobis distance), the usage of a clustering algorithm with similar 

characteristics should provide a better initialization. Therefore, in order to assign samples 

to clusters, the normalized Mahalanobis distance is used: 

1 

dt = 101Z(Xi -J1.j/ 0-1 (Xi -J1.j) (47) 

In (47), d ij is the distance between sample i and clusterj, Z is the number of dimensions, 

while J1.j and 0 are the center and the covariance matrix of cluster j respectively. The 

normalization of the Mahalanobis distance aims at preventing one cluster from becoming 

very large. The complete clustering algorithm is detailed in the appendix of this 

dissertation. 
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c) Optimal Number of Clusters / Neurons 

There is no theoretical foundation on the optimal number of neurons in an RBF 

network or a HyperBF network. A best effort practice would be to try a different number 

of neurons and select the setting that results in the best cross-validation or leave one out 

classification accuracy. A more practical solution that will be discussed later in this 

chapter is to start the network with a relatively large number of neurons and rely on a 

weight penalty for pruning. Nonetheless, since HyperBF neuron has a rich membership 

function (a Gaussian with a weighted distance), it is anticipated that the number of 

neurons would be much less than what would be needed in a regular RBF network or a 

regular SVM network. Due to the limited computational resources, in all experiments 

reported in this work the initial number of neurons from a class was typically less than 

..jN where N is the number of samples in the same class. 

d) Post Clustering Initialization 

Once clustering is completed, neuron centers are initialized with cluster centers while 

the local coefficient matrices are initialized by the clusters' diagonal covariance after 

being scaled: 

(48) 

In (48), lPz is a positive number used to scale all neurons initialized by clusters from class 

I to satisfy: 

](lllPz) = ~ L L e-O.5(xi-J1j f Rj (Xi-J1j) == 1 

iE{1} j E{l} 
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In (49), i E {l} refers to samples from class I while j E {l} refers to neurons initialized 

from class I. The covariance scaling step is necessary to ensure the weighted distance is 

scaled appropriately. To find <PI effeciently we use the following search algorithm. 

Algorithm 1: 

lnit 
'PI = 1 
Repeat 

Compute j(lI'PI) as given in (49) . 

IfjUI'Pa < 1 
'PI = 'PI X 1.1 

Else 
'PI = 'PI xO.95 

Til/II JUI'PI) - 111 < 0.01 

Furthermore, in the initialization phase, weights connecting neurons to the output 

nodes are initialized to an initial value of appropriate scale. An output node k associated 

with class I is initialized to connect to neurons initialized from the same class with a 

common value WI and to zero to all other neurons. WI is chosen so that it minimizes: 

where 

N 
1~ 2 

E(k) = 2. L (tik - fk(xa) 
i=l 

fk(Xi) = L Wlhj (Xi) 
jE{/} 

The optimal WI that minimizes (50) should satisfy: 

_dE_(_k '_0 = 0 
dWI 
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(53) 

After initializing all network parameters, all weights, means and scaling factors were 

optimized simultaneously by the Improved Scaled Rprop (iSRprop). 

1.3. Scaled Rprop (SRprop) 

In the regular Rprop algorithm, all step sizes are initialized to appropriate values rJinit 

that are neither too small to cause a slow learning start nor too large to cause a jump away 

from the closest local minimum. rJmax serves to limit the size of the step to avoid 

divergence or jumps. Nonetheless, a very small rJmax will be counter- effective leading to 

slow optimization. 

In the proposed Scaled Rprop method, a sufficient tradeoff between safe and fast 

learning is achieved by choosing separate rJinit and rJmax for every variable in the means 

and local coefficients. The values are chosen to be relative to their corresponding variable 

scale and the expected change to the output of the neuron so that the resulting change to 

the network is bounded. In contrast, all weights are treated similar to the regular Rprop 

with rJmax (w) = 2 and rJinit (w) = 0.01 for all weights. In addition, rJmin = 10-10 was 

found to work well for all variables in all experiments. 

For a mean variable Iljz, both 'Ilinit and rJmax are computed to be relative to the 

weighted average distance dzj to the neuron} along the dimension z: 

rJinit (Iljz) = 0.001 x djz + 10-6 (54) 
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TJmax (J..ljZ) = 0.1 x djz + 10-6 (55) 

where 

(56) 

In all experiments, dzj is recomputed every five iterations and is not found to change 

rapidly. 

In the case of the local coefficient factors, both TJinit and TJmax are computed so that 

the change to the membership of samples is bounded. The membership function in (44) 

can be factorized as: 

z 
~(xa = n e-O.5xVjZ X(XiZ-!ljZ/ (57) 

z=1 

Figure 3 shows the changes of the individual exponential factor e -o.s XVjz xd as a function 

of the coefficient Vjz . 

1 

~ 0.8 x 
~ 0.6 
x 
II'! 0.4 
Q 
I 
CU 0.2 

o 
o 0.2 0.4 

Vjz 

Figure 3: The Exponential Cofactor as a Function of the Local Coefficient. 

It is evident from Figure 3 that the resulting change to the exponential factor does not 

depend solely on the amount of change to l7jz but also on the current value of Vjz and the 
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Euclidean distance along that dimension. Computing the expected change over all 

samples is computationally expensive. As a rough approximation of the change, the 

expected change is computed for a single virtual sample for which the distance from the 

neuron center along the same dimension z is the weighted average distance djz (equation 

(56)). To find TJmax or TJinit that will result a specific amount of change p to the 

exponential term, the following equation has to be solved for Llvzj: 

( _2) Vjz xdjz 

min p,1 - e -2 if Llvjz < 0 

( _2) Vjz xdjz 

- min p, e -2 if Llvjz > 0 

(58) 

Note that when Llvjz < 0, the exponential term will increase towards one while when 

Lltljz > 0, it will decrease toward zero. The exponential factor cannot go below zero nor 

above one. Thus a minimum term is needed. For all experiments in this dissertation, p 

was set to 10-2 and 10-4 to compute llmax and llinit respectively for every local coefficient 

factor separately. As a result, the exponential term will increase or decrease at most by 

0.01 until it reaches one or zero respectively. Since this method is approximate and the 

distribution of the samples around the neuron center is not known, the change to the local 

coefficients is further constrained as: 

TJmax 
= {m.in ( TJmax' y( Vzj - Vmin) ) if. Llvzj < 0 

mm( TJmax, y( Vmax - VZj) ) If Llvzj > 0 
(59) 

Applying (59) guarantees that Vjz will not go beyond the range [Vmin - v max ] in order to 

avoid numerical errors. This same processing is also applied to the initialization: 

TJ;nit (CTjz). In all experiments reported, Vmin = 0, Vmax = 1020 and in the case of TJ~ax , 
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y = 0.1 while in the case of rJ:nit, Y = 0.01. Those values provide a mild restriction to 

rJmax and rJmin but are protective from worst case scenarios that would lead to numerical 

representation problems. 

The proposed method of selecting rJmax and rJinit for both the means and coefficient 

factors is better than using specific constant values for all variables like the regular 

Rprop. This approach is scale independent and ensures the steps are small enough to not 

cause jumps but large enough to cause significant learning. 

The proposed modification to Rprop can be implemented with any variant of Rprop. 

Due to the proposed changes, oscillation of the network error became so minimal that 

using variants such as iRprop or JProp are of less benefit. All experiments in this work 

are implemented using the variant iRprop+ which adds a backtracking step whenever the 

error of training increases. Furthermore, iRprop+ was shown to outperform the original 

Rprop algorithm [35]. 

1.4. Iterative Training 

Our implementation of both the Rprop and the proposed scaled Rprop updates the 

model in a semi-coordinate descent approach. In every iteration, a single neuron is 

considered at a time. The gradient directions of the considered neuron mean, local 

coefficients, and connecting weights are computed at once and the corresponding 

variables are updated after. Afterward, the output of the neuron and the output of the 

whole network are updated before the next neuron is considered. This approach 

guarantees that the gradient directions of the next neuron take into consideration the 

updates that are already made to previous neurons in the same iteration. 
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Furthermore, during training, the variable b in (20) was set to zero in the first hundred 

iterations. Afterward, it was updated using a coordinate descent with an exact line search 

(see Appendix). This is because the value of b is very influential on the output of the 

network. As a result, slightly larger than needed learning steps by the Rprop can result in 

a significant oscillation of the network error as it is being trained. 

1.5. Partial Local Backtracking Step: Improved SRprop (iSRprop) 

Though changes to the neuron parameters are locally in the right gradient direction, 

there is no guarantee that it is with the right magnitude. As a result, the network error 

might increase after a neuron is updated and hence the derivatives and the changes to the 

next neuron are not optimal. To ease this problem, once a neuron is updated, the error of 

the network is evaluated. If the error has increased, a partial backtracking step is 

performed along every variable (D in the mean and the local coefficients of the same 

neuron whose step size was increased as: 

dE(t-l) dE(t) 

if - x- > 0 
dw dw 

(t) (dE (t)) wet) = wet) + p x 1] x sign -
W dw 

(60) 

The above partial backtrack step is performed only one time whenever needed for a 

neuron. In all experiments reported, p is set to 0.25 which means 25% of the last changes 

to a neuron are backtracked if the network error increases. Note that the signs of the 

derivatives are not recomputed to perform partial backtracking. Once the partial 
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backtracking is performed, memberships of the samples to the neuron are recomputed 

again. Since computing the derivatives and re-computing the memberships of a single 

neuron are of the same time complexity, the partial backtrack step adds 50% more 

computation whenever it is performed. However, the partial backtracking increases the 

probability that the derivatives are in the right global direction and decreases the 

probability of divergence. Scaled Rprop with the local partial backtracking will be 

referred to as iSRprop (improved Scaled Rprop). 

2. Reduced HyperBF Networks (RHyperBF): Bridge Regression and Soft 

Local Dimension Reduction 

HyperBF networks are rich complex models and by using efficient training approach 

they can approximate complex functions with high accuracy. To avoid overfitting and 

ensure a good generalization of the network as explained earlier (Chapter II), two 

regularization terms are added to the objective function: 

The first term in (61) is the regular least square training error in the multi-class/outputs 

case, the second term is the bridge regression penalty (sometimes called weight decay) 

while the third term is the local dimension reduction penalty. Aw and Av are two positive 

regularization parameters estimated by cross-validation. All derivative equations needed 

to optimize (61) using iSRprop are listed in the appendix. 
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The bridge regression term in (61) serves to minimize the values of the weights and 

hence eliminate or reduce the effect of neurons to the corresponding output. The choice 

of Uw affects the solution significantly [45;46]. For example in the case of uw =2 which is 

known as ridge regression, the resulting network will have weights with small values and 

low variation. In contrast, in the case of uw =1 which is known as LASSO, the resulting 

network will have small weights but with higher variation. Moreover, smaller values of 

Uw (i.e. Uw E (0,1]), will be more effective in driving more weights to zero. On the other 

hand, the third term in (61) serves to minimize the local coefficients of the distances 

along the different dimensions for the purpose of reducing or eliminating the effect of as 

many dimensions as possible on the membership to the neuron. The choice of the power 

Uy should also have a similar effect as the choice of Uw ' 

3. Model Selection 

In the ideal case, the four variables Aw, Av, uw , and Uy need to be estimated through 

cross-validation to obtain optimal generalization. However, such training and parameter 

selection is unpractical. In this work, the search is constrained by setting both uw , and Uy 

to one. This choice is motivated by the desire to obtain a small network structure. 

The name Reduced HyperBF is motivated by the fact that the final network will be 

smaller than the initial network in terms of the number of active neurons and number of 

locally active dimensions. For the rest of this paper, the names Reduced HyperBF and 

Regularized HyperBF will be used interchangeably. 

To avoid a greedy grid search to find Aw and Av, we first search for optimal Av while 

setting Aw to zero. Once Av is found, it is fixed and a new search starts for Aw. This search 
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technique is practical though not optimal. Furthermore, the second regularization term is 

found to be more important for generalization. This could be due to the curse of 

dimensionality. The second term makes the network locally invariant to as many input 

features as possible and is expected to become more important as the dimensionality of 

the data increases. Moreover, when optimizing for Aw or A., we start with a very small 

value that increases with small steps. This technique is used to avoid starting a different 

run for each parameter value. 

4. Feature Ranking in Reduced HyperBF Based on Saliency 

The proposed objective function in (61) performs an embedded localized feature 

selection. In this way, it drains every neuron from the effect of as many features as 

possible. As a result, features that are not informative for classification will inevitably 

have a zero or near-zero local weight in most neurons. Using the local weights of the 

feature, easy to compute ranking heuristics can be defined such as: 

] 

Scorel (z) = I Vjz 

j=l 

(62) 

Though a very small value of S corel for feature z indicates that feature z is not 

important for classification, this measure is not accurate in comparing the importance of 

two features unless one of them have a near-zero Scorel (i.e. Scorel (z) < 10-6 for a 

standardized data). This is mainly because the value Vjz also depends on the localized 

scaling and distribution of samples along feature z around the center of neuron j. 
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A more accurate ranking of features is the saliency measure. The saliency of a feature 

is the magnitude of the error increase in the trained network as the underlined feature is 

being eliminated from the model: 

Score2 (z) = !J.E(z) (63) 

In (63), !J.E(z) is the change of the training error when feature z is discarded. A higher 

value of !J.E(z) indicates a higher important of feature z. 

The Optimal Brain Damage algorithm (OBD) [51] is an efficient algorithm to 

approximate the effect of dropping a variable out of a model. OBD approximates the 

importance of a variable using the second derivative of the error surface with respect to 

the variable. OBD has been successfully used for feature selection and variable pruning 

in neural networks [52] and SVM networks [53;54]. 

The Optimal Brain Surgeon (OBS) [55] is a generalized verSIOn of OBD that 

approximates the increase in the network error in addition to an approximation of the 

network adjustment as the variable is being discarded. OBS demands the estimation of 

the inverse of the complete Hessian matrix and hence is a more computationally 

demanding tool. Due to the high number of variables in a HyperBF network, computing 

the Hessian matrix is not practical. 

Fortunately, the saliency of features in HyperBF networks can be computed directly 

and efficiently without a need for approximation. In the two class case, the saliency of a 

feature z can be computed as: 

N 

'<:/j) = I (ti - [{)2 - E (64) 

i=l 
where 
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] 

f{ = L Wjk X hij x exp (~VjZ x (XiZ - /ljz )2) 
j=l 

(65) 

In (64) and (65), the terms E and Wjk x h ij are computed one time only for all 

features making the calculation for scoring a single feature efficient and of order 

O(N xI). 

Furthennore, knowing that a particular feature is to be dropped out of the model, 

some adjustment to the network can be predicted and hence even a more accurate 

prediction of the saliency can be computed. For example, if dropping feature z out of 

neuron j causes a higher error than discarding the whole neuron, then it is intuitive to 

predict that training after discarding the feature will drop the whole neuron out of the 

network. Therefore, a better saliency of feature z can be approximated as: 

] 

Score3 (z) = L min (J).E( l1z = 0), 
j=l 

(66) 

In (66), J).Ew (j) is the error increase in the trained network as neuron j is being discarded. 

Dropping a neuron out of a network can be achieved by either two ways: 1) set Wj = 0 or 

2) set Vjz = 0, 'Vz or alternatively and more efficiently to compute: set hij = 0, 'Vi. It is 

anticipated that, after discarding feature z, training will converge to the case with the least 

error and hence: 

J).E(Wj = 0)) (67) 

Computing J).Ew (j) for all neurons is also very efficient (of order: 0 (N x I)) and needs to 

be computed only one time for all neurons. 
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In Chapter VI, both scores: S corel and S core3 are used to iteratively perform feature 

selection in microarray data. In problems with very large initial dimensionality, Scorel 

can be used to filter and discard all features with very small S corel values. In all 

experiments performed in this work, discarding features with Scorel < 10-6 , had no 

significant effect on the error of the trained model (zero effect in most cases). Once the 

number of features is small enough, Score3 can be used for a better approximation of the 

saliency. 

In Chapter IV, the proposed training and regularization are evaluated on seven real 

datasets and compared to other existing methods. Networks to classify handwritten digits 

are used to visualize the network structure and the effect of the local dimension reduction 

penalty. Chapters V and VI are dedicated to two case studies for utilizing Reduced 

HyperBF networks in bioinformatics applications. The networks are used for both 

accurate classification and higher level analysis. 
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CHAPTER IV 

EXPERIMENTS AND RESULTS 

To evaluate the proposed regularization of the HyperBF network, a number of 

experiments are performed using seven real datasets. First, to visually demonstrate the 

local dimension reduction, a network is trained to perform two-class classification using 

the MNIST handwritten digit dataset (digit 3 versus digit 5). Digits 3 and 5 are very 

similar in the lower part but different in the upper part. Thus, it is anticipated that neurons 

will select the upper pixels of the images as informative. Second, different networks will 

be trained to perform classification on seven different datasets. Cross-validation is used to 

select the regularization parameters. A comparison of classification accuracy between 

Reduced HyperBF, Regular HyperBF and SVM is reported. For every dataset, an SVM 

network is trained with similar settings of cross-validation using Libsvm software [11]. 

The comparison of classification accuracy is made using both cross-validation error and 

testing error. Afterward, a comparison of network size and interpretability is exposed in 

the discussion section. Finally, the proposed training algorithm iSRprop is evaluated and 

compared to the regular Rprop and the VSBP algorithms. 
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1. Datasets 

1) USPS: USPS dataset is a handwritten digits dataset. It was collected from mail 

envelopes in Buffalo, NY [56]. It is composed of 9,298 handwritten digits of the 10 digit 

classes (7,291 for training, 2,007 for testing). As in [57], the images were smoothed with 

a Gaussian kernel of width= 0.75. Every image is of resolution 16 x 16 with pixel 

intensity values ranging from -1 to 1. 

2) MNIST: MINST is an additional handwritten digits dataset [50] available as images 

of 28 x 28 resolution with intensity values at each pixel ranging from 0 to 255. 6,000 

images for every class are available for training and another 1,000 for testing. 

In all experiments reported in this work using USPS or MNSIT dataset, the raw 

intensities of pixels are used as a feature vector. 

3) Human TSS: Transcription start sites (TSS) are specific locations in the DNA where 

the transcription of the DNA starts as an initial step to produce proteins. The dataset is 

composed of 8,508 positive and 85,042 negatives examples. The data was divided into 

50% for training and 50% validation. Every sample is represented by 1,024 features in 

Euclidean space. Furthermore, since the data is unbalanced, the objective function in (61) 

was weighted to give more weight to the minority class (see Chapter VI for more details). 

4) ISOLET: This phonetic dataset is available at the UCI repository 

(http://archive.ics.uci.edu/ml/). It consists of the pronunciation of the 26 English letters 

by 150 different persons. Every sample is represented by 617 attributes of audio features 

that include spectral coefficients, contour features, sonorant features, pre-sonorant 

features, and post-sonorant features [58]. One fifth of the data is left out for testing (see 

Table 1). 
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5) Wisconsin Breast Cancer: This dataset is also available at the UCI repository 

(http://archive.ics.uci.edulml/). The original samples are digitized images of a fine needle 

aspirate (FNA) of a breast mass of 569 different people labeled into two diagnostic 

classes: (M = malignant, B = benign). Every sample is represented by 32 visual features 

of the cell nuclei [59] including: radius, texture, perimeter, area, smoothness, 

compactness, concavity, concave points, symmetry, and fractal dimension. 

6) Protein: This dataset set is available at [60] and it is composed of 24,387 protein 

samples. For every protein sample, given the amino acid sequence, the goal is to predict 

the secondary structure of the protein: (helix, sheet, or coil). For very data point, a feature 

vector of 357 attributes is provided that represents the local amino acids frequencies in 

the given sequence in addition to other related and well aligned proteins [61;62]. 

7) Satimage: This dataset is part of the StarLog database and it is available in [60]. It is 

generated from 6,435 satellite images of land. The learning task is to classify these 

images into one of six classes based on soil type. Every data point is represented by 

multi-spectral values of pixels in 3x3 neighborhoods in the image. 

Table 1 

Details of the Datasets Used for Evaluation and Comparisons. 

Dataset # of Samples # of Classes # of Test Samples # of Features 
MNIST 60,000 10 10,000 784 
USPS 7,291 10 2,007 256 
TSS 93,550 2 N/A 1,024 

ISOLET 6,238 26 1559 617 
W. Breast Cancer 569 2 N/A 32 

Protein 17,766 3 6,621 357 
SatImage 4,435 6 2,000 36 
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2. Experimental Results 

2.1. Local Dimension Reduction in Handwritten Digits Classification 

The first set of experiments was performed using the handwritten digits datasets only 

(USPS and MNIST). All data is normalized so that all attributes are bounded in the range 

[0-1]. For visualization, a neuron is visually represented by four images: 

1. Center Image: This image represents the actual center of the neuron(,uj). In some 

cases, centers can move out of the samples' volume and hence some pixels values 

at the neuron center might become negative. For visualization, negative values in 

,u are set to zero while values larger than one are set to one. 

2. Local Coefficients Image: Intensity of pixel (z) in this image of neuron G) is made 

proportional to the log of the magnitude of (Vjz: local coefficient). Therefore, dark 

pixels correspond to pixels that are not important for classification. 

3. Medoid Image: Image of the sample with the highest membership in the neuron 

(closest sample in space). 

4. Generative Mean Image: In the two classes case with one output, the generative 

mean for a neuron with a positive weight is the weighted average of samples from 

the first class (t = + 1) while the generative mean with a negative weight is the 

weighted average of samples from the second class (t = -1): 

LXiE{t=+1} "i X Xi 

LXiE{t=+l} "i 
LXiE{t=-l} "i X Xi 

LXiE{t=-l} "i 
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In the multi class case, the generative mean is the weighted average of samples 

whose class corresponding output node is connected to the neuron with a positive 

weight. 

In the first experiment a single network was trained to discriminate digit 3 from digit 

5 in the MNIST dataset. The network is initialized with 20 neurons (10 clusters from each 

class). Only local dimension reduction is used for regularization (Aw = 0). With Av = 

0.4, the resulting training and testing error was 0.8% and 0.7% respectively. Figure 4 

shows the details of the first 8 neurons initialized from each class. Every column shows 

the four pictures of a neuron: the center, the local coefficients image, the generative 

mean and the medoid respectively. 

The second row of Figure 4 shows the local coefficients of the corresponding 

dimension (pixels). As can be seen in this row, neurons chose the upper pixels as the most 

informative (as indicated by white pixels). On average, 87% of the pixels ended up with a 

zero local coefficient leading to a greatly reduced network. In addition to having a small 

size, the resulting network has meaning by revealing the informative areas of the images 

that need to be examined in order to discriminate between digit 3 and digit 5. 

Figure 4: Sample Neurons from a Network Trained to Discriminate Digit 3 from 5. The first 
eight neurons were initialized from class 3 and the remaining eight from class 5. 
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Initially, it was thought that the resulting neuron centers would be subprototypes and 

should be similar to centers of clusters. Surprisingly that was not the case. It is evident 

from Figure 4, the resulting centers did not look like any of the digits. This could be due 

to the fact that the resulting centers are discriminative centers and not summarization 

centers. In other words, they move based on what is common between a class samples 

that make them different from other classes. This is unlike clustering centers which group 

samples mainly based on what is similar among them. 

In the second experiment, two different regularized networks of size 200 were 

initialized to classify the ten digits ofMNIST and USPS separately. In each case, neurons 

were initialized by 20 clusters from each class. Figures 5 and 6 show subsets of the 

neurons from the MNIST network and USPS network respectively. In each case, the first 

four neurons initialized from the same class are displayed. 

Figure 5: Sample Neurons from Network Trained to Recognize the 10 Digits of MNIST. 
From every class, the first four initialized neurons are listed. Every neuron is represented in a 

column by four images. 
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Figure 6: Sample Neurons from Network Trained to Recognize the 10 Digits of USPS. From 
every class, the first four initialized neurons are listed. Every neuron represented in a column by 

four images. 

2.2. Classification Accuracy and Comparison 

To evaluate the generalization of the proposed regularization, a Reduced HyperBF 

network is trained for every dataset. In addition, regularization parameters are selected 

through cross-validation (see methods). Table 2 lists the classification error of HyperBF, 

Reduced HyperBF and SVM networks. The classification error is reported over both the 

cross-validation and the testing data. In five of the datasets, la-fold cross-validation is 

performed. In the MNIST dataset case, only 5-fold is performed due to the huge size of 

data. In the Wisconsin Breast dataset case, only cross-validation is reported since the data 

is not available with standard testing set. A la-fold cross-validation by itself is a credible 

measure for classifier evaluation since the selection of the two regularization variables 

(Aw and Ivy) is unlikely to cause overfitting over the 10 left out folds. Similarly, all SVM 

networks are trained with the same cross-validation and parameter selection settings 

using Libsvm software and according to the best practices guide offered by the authors 

of the tool [11;63]. In addition, all SVM networks are trained with a parameterized 
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Gaussian RBF kernel (equation (17)), where both, the width of the kernel ((J in equation 

(17)) and the regularization parameter (C in equation (18)) are selected through a grid 

search to minimize the cross-validation error [63]. 

Table 2 

Comparison of Classification Error between HyperBF, Reduced HyperBF, and SVM 
networks on Six Datasets. Best results for every dataset are face-bolded. 

~'i;. ',<'~ ::-,11, ,·C,.' , '~\:~;~'-'f'G-'-':~~ ;.- . " ,' CV Er~or·Y., Test E'"I"o,'% 
">'d)ata Set ' . ,.K! Folds · -: -, . -:- - .-~: . -:: -- _. ~- . .-
~~'~~~~_ilii!!!!fu~~_ H_-III!t:._ ._ SVM 
USPS 10 2.47 1.37 1.74 5.83 4.38 4.78 
MNIST 5 3.33 2.29 1.52 3.23 2 1.4 
ISOLET 10 4.44 3.03 2.45 6.54 3.78 3.21 
Breast 10 4.04 1.67 1.93 N/A N/A NA 
Protein 10 38.61 31.27 29.56 38.07 30.04 29.9 
SATIMAGE 10 9.8 8.71 7.86 10.7 9.5 8.8 

Table 3 lists the auROC in TSS classification using HyperBF, Reduced HyperBF, and 

SVM networks. The TSS data is significantly imbalanced (~ 1 0 times more negative 

samples). Therefore, classification accuracy is not well suited for evaluation. In this 

experiment, regularization parameters in both cases of Reduced HyperBF and SVM 

networks were selected so that area under the Receiver Operating Characteristic curve 

(auROC) is maximized in the classification of the validation data. 

Table 3 

Comparison of auROC Between HyperBF, Reduced HyperBF, and SVM Networks in the 
Classification of (TSS) Sites in Human DNA. Best result is face-bolded . 
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Tables 2 and 3 show that Reduced HyperBF networks consistently and significantly 

outperformed the regular HyperBF networks. Furthermore, Reduced HyperBF networks 

have resulted in competitive classification accuracy when compared to SVM networks. In 

terms of cross-validation accuracy, Reduced HyperBF outperformed SVM in two datasets 

out of six. In the other four datasets, with the exception of Protein dataset, SVM 

outperformed Reduced HyperBF networks with a small difference: (0.77%, 0.58%, 1.7%, 

and 0.85%). In terms of testing, the average difference of classification accuracy was 

0.32% for the sake of SVM. Furthermore, in the case of TSS detection, SVM 

outperformed Reduced HyperBF in terms of auROe by 0.36% only. Nonetheless, as will 

be shown and discussed later in section 2.4, the resulting Reduced HyperBF networks had 

1-3 orders of magnitude smaller network structure than their SVM counterparts. 

2.3. Sensitivity to Regularization Parameters 

To select the optimal regularization parameters, an exhaustive grid search was 

performed, and for every pair of values of Aw and Av a network was trained for every 

training partition of the data. Figure 7 shows the classification error for each grid search 

for six of the datasets in Table 1. 

It is evident from Figure 7 that the regularization parameters have improved the 

classification accuracy of HyperBF networks. Furthermore, the local dimensionality 

reduction penalty term is shown to be more important than the weight decay term. 

Searching for Avalone improves classification better than searching for Awalone. 
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Figure 7: Effect of Regularization Parameters (Aw and lv) on the Cross-Validation 
Classification Error of Each Dataset: a) USPS, b) Protein, c) Wisconsin Breast Cancer, d) 

Satimage, e) MNIST, and f) ISOLET. Starred boxes are the ones with the highest CV accuracy. 
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2.4. Network Size and Interpretability 

A critical feature of the proposed Reduced HyperBF network is the small network 

size. For example, in the case ofthe TSS dataset, the reported result was obtained using a 

network of 30 neurons, while the SVM results were obtained by 14,554 support vectors. 

Furthermore, due to the localized dimensionality reduction, on average 87.3% of the 

dimensions were completely locally ignored. Therefore, the resulting network is about 

1,900 times smaller than the SVM network, and is hence a better choice for fast 

classification. Table 4 shows a comparison between the regularized HyperBF networks 

and the SVM networks in terms of the number of neurons/support vectors used in 

addition to the percentage of active features in Reduced HyperBF network neurons. The 

table also shows the size ratio of the two networks based on the number of significant 

variables in each network. 

Table 4 

Comparison of Model Structure between Reduced HyperBF Networks and SVM Networks 

, . #. of Suppo'rt - , ;.. 

"". Dataset ;,' :.:'~ .t...;~: Vectors ' ,.: . Active DiillS Ufo. "' # of' Neurons ~Size Ratio 

USPS 1,464 0.36 200 1 :10 

MNIST 18,162 0.24 200 1:172 
ISOLET 3,956 0.29 260 1:26 
Breast 79 0.084 40 1:12 

Protein 12,019 0.15 60 1:668 

SATIMAGE 1,322 0.46 60 1:24 

TSS 14,554 0.13 30 1:1 ,900 

The small network structure of the Reduced HyperBF provides an effective tool for 

higher level analysis. For example, in the case of initializing the network with 30 

neurons, due to the weight decay term, only three neurons end up with a positive weight 
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greater than 0.001. Since those neurons are the reason why the network gives positive 

samples a score of one, it is intuitive to argue that those are centers of sUbpopulations of 

TSS samples. Furthermore, the active local dimensions (dimensions with non-zero local 

coefficients) provide insightful information about the unique characteristics of a 

subpopulation in specific and the whole class in general. The case of (digit 3 versus digit 

5) network is an example of this type of information. Chapters V and VI of this 

dissertation are dedicated to two case studies for utilizing this interpretability of the 

Reduced HyperBF networks in bioinformatics applications. 

2.5. Evaluation of iSRprop 

Figure 8 shows the network error as a function of the training iterations on six 

different unregularized networks using iSRprop, iRprop+ and BPVS algorithms 

separately. The Y-axis is scaled to the log2 because the initial error is very high. 

Both iRprop+ and iSRprop are almost of the same time and memory complexity (see 

appendix). However, the localized partial backtracking adds extra computation when 

executed. On average, it was found that iSRprop demands 5-10% extra computation time 

per iteration which is not a significant increase. On the other hand, BPSV demands more 

computation because it tries multiple learning rate values in the same iteration. 

From Figure 8, it is evident that both iRprop+ and the proposed iSRprop outperform 

the BPVS. Furthermore, the proposed iSRprop in all experiments converges faster than 

iRprop+ and suffers less oscillation. Oscillation in the training might propagate into 

divergence. The behavior of the iRprop+ in the Protein dataset case (Figure 8e) is an 

example of such a possible divergence of regular Rprop training algorithms. A proof of 

57 



whether or not the proposed iSRprop guarantees convergence is beyond the scope of this 

dissertation. Nonetheless, as explained analytically in Chapter III, and demonstrated 

experimentally in Figure 8, the proposed iSRprop is less likely to cause significant 

oscillation, and hence is more likely to converge. 

Note that the modifications to the iSRprop are even more significant than it appears in 

Figure 8. In fact, the used implementation of the regular iRprop+ is semi-scaled. We 

found the default values of iRprop+ as given in [35] to result in unstable training that 

diverged in many cases. Therefore, in our implementation of the regular iRprop+, llmax 

and llinit for all means' variables were set to be the average of those in the iSRprop while 

llmax and llinit for all local coefficients were set to be proportional for the same values as 

for the mean variables. 

Table 5 lists the time in minutes needed to finish a hundred training iterations on a 

single core (Xeon processor: 2.4 GHzl2MB cache memory). The total time depends on 

the stopping point which varies between datasets. In most cases, iSRprop converged in 

less than 400 iterations. All experiments reported in this chapter demanded approximately 

two weeks of computation on a machine of 24 processing cores running in parallel (Xeon 

processor 2.4 GHzl2MB cache memory). Most of the computations were spent on the 

search for the regularization parameters. The MNIST dataset had the highest share of 

computation time though the search for parameters was limited. We should mention that 

training and parameter selection of SVM on MNIST dataset using Libsvm software was 

also time consuming, and it took about two weeks of computation on six cores running in 

parallel. 
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Figure 8: Training with both iRprop+ (solid line), iSRprop (dashed line), and BPVS (dotted 
line) of Six Networks (a) USPS network with 100 neurons, (b) TSS network with 30 neurons, (c) 

MNIST network with 100 neurons, (d) Breast Cancer network with 40 neurons, (e) Protein 
network with 30 neurons, and (f) Satimage of60 neurons. The X-axis is the number of iterations 

and the Y-axis is network error scaled to 10g2• 
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Table 5 

Training Time in Minutes for a Hundred iSRprop Iterations for Every Network 

~~'~~ ... /.~::7 '!:'";.I,\~. ~, ' 
.' . ',_, _.t! _ ,_ .' . 

Time in Minutes / .. ; 
.1>-' ',. 

,~:);,)L ~, J)aJ~~cf, : .. .:,;;' .. ,: .,~ #lQf,]~.cun)~~;; ~LJ'~,. : .. ' " !OQ.J t<;l)ltions ._ 
USPS 200 14 

MNIST 200 190 

ISOLET 260 70 
Breast 40 1 
Protein 60 50 

SATIMAGE 60 2 
TSS 30 21 

3. Conclusions 

Reduced HyperBF network was shown to provide a classification accuracy 

competitive to SVM networks while requiring a significantly smaller network structure. 

Furthermore, the resulting compact network representation gives a powerful tool for 

higher level analysis. Significant centers can be argued to be centers of subpopulations of 

the class, while the locally significant dimensions provide information about the unique 

properties of the subpopulation. 

On the other hand, the proposed iSRprop training algorithm (scaled Rprop with 

localized partial backtracking) results in a smoother training that is less likely to diverge. 

In all experiments presented in this dissertation, the proposed training algorithm did not 

diverge a single time. Furthermore, the proposed scaling and the local partial 

backtracking in Rprop training are general concepts and can be applied with necessary 

modifications to different optimization problems. 
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CHAPTER V 

CASE STUDY: IDENTIFICATION OF TRANSCRIPTION START SITES 

IN HUMAN DNA USING OLIGONULEOTIDE POSITIONAL 
FREQUENCIES 

1. Motivation 

The accurate identification of promoter regions and transcription start sites (TSSs) is 

an important step for in-silico gene discovery and understanding of the transcription 

regulation mechanisms. Every eukaryotic gene has a core promoter region in the 5' 

untranslated region (UTR) that contains, at a minimum, one TSS signal. Most eukaryotic 

genes are transcribed by RNA Polymerase 2 (Pol-II) which binds at the TSS segment. 

Promoter regions are found to share common subtle patterns or models known as motifs 

that act as binding sites where other transcription factors (TFs) attach to facilitate or 

regulate transcription. For example, up to 80% of human promoters contain an initiator 

element (Inr) located at the transcription start site with a consensus sequence of 

YCAYYYYY, where Y represents a pyrimidine base C or T [64]. Roughly 30% of 

human core promoters are found to contain a TATA box at position of -20 to -30 from 

the TSS with the consensus TATAAA [64]. The TATA box tends to be surrounded by 

GC rich sequences. Promoter signals with greater variation are found in the promoter 

region proximal to the TSS, where motifs such as the CAAT, GC, E, and GATA boxes 
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are located [65]. More details about compositional characterization of known human 

promoter motifs can be found in [65]. 

Many recently published methods have achieved high identification accuracy of TSS. 

However, models providing more accurate modeling of promoters and TSS are needed. 

In this chapter, a novel identification method for identifying transcription start sites that 

improves the accuracy of TSS recognition for recently published methods is proposed. 

This method incorporates a metric feature based on oligonucleotide positional 

frequencies, taking into account the nature of promoters. A Reduced HyperBF is trained 

and employed as a classification algorithm. Using non-overlapping chunks (windows) of 

size 50 and 500 on the human genome, the proposed method achieves an area under the 

Receiver Operator Characteristic Curve (auROC) of 94.75% and 95.08% respectively, 

providing increased performance over existing TSS prediction methods. 

2. TSS Detection Algorithms 

A number of algorithms for promoter and TSS recognition are currently available. 

Each attempts to model promoter pattem( s) using features such as CpG islands and 

known transcription factor binding sites (TFBS) to distinguish promoters from non­

promoters. Some methods such as Autogene [66] and Promoter Scan [67] use position 

weight matrices (PWM) to signal the presence of a high density of binding sites 

indicating potential promoters. However, it has been shown that both the location and 

combination of different binding sites are important for promoter recognition [68;69]. 

Eponine [70] improves recognition by associating every PWM with a probability 

distribution based on its position relative to the TSS. A more recent tool that tries to 

62 



model the oligonucleotide positional densities is described in [71]. However, this 

particular design employs a naIve Bayes classifier that assumes every oligonucleotide's 

positional distribution is independent, and is therefore unable to capture the co­

occurrence of a specific combination of binding sites. 

In a recent study, Bajic and colleagues conducted a large scale comparison study of 

eight known TSFs [72]. They demonstrate that a number of these tools perform well, yet 

leave a lot of room for improving detection accuracy. Among the most successful tools 

identified were Eponine [70], McPromoter [73], FirstEF [74] and DragonGSF[75]. 

A more successful approach is the ARTS tool developed by Sonnenburg and 

colleagues [76] which uses a support vector machine (SVM) with multiple advanced 

sequence kernels. ARTS is able to achieve a high accuracy with the area under the ROC 

curve of 92.77% and 93.44% for genomic DNA chunk sizes of 50 and 500 respectively, 

demonstrating a superiority to Eponine [70], McPromoter [73] and FirstEF [74]. As part 

of the ARTS system, a large training and testing dataset was constructed along with 

measures for testing and evaluating promoter detection approaches in a consistent 

fashion. This dataset and methodologies are used to compare the results of our approach, 

RBF-TSS, to ARTS, which has been shown to be the best performing approach 

previously available. In the comparison section, the performance measures of ARTS, 

Eponine, McPromoter and FirstEF are listed as they were reported in [76]. 

3. HyperBF -TSS 

In this dissertation, a new method is presented to model the positional frequency of 

oligonucleotides to form a single feature to represent the given sequences for promoter 
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detection. Unlike [77], which measures the frequency at every single base pair position 

from the TSS, our approach takes the sequence around the TSS and divides it into 

overlapping windows for which the frequency of oligonucleotides of specific length are 

measured. A number of different combinations of window sizes, varying overlapping 

lengths and oligonucleotides length were examined. The combination resulting in the 

largest area under the ROe curve in classifying the validation data was chosen for the 

testing phase. The extracted positional frequency feature is used as an input into a 

HyperBF network for training. 

The same experimental setting published to test the ARTS method and others in [76] 

is used to evaluate HyperBF-TSS. The proposed method showed to be superior to the 

ARTS in terms of the area under the ROe curve but not in terms of the area under 

precision recall curve (PRe). However, the PRe might not be a suitable measure of the 

performance of promoter identification tools since some samples labeled as true 

negatives might indeed be novel promoter regions that are not discovered yet. For 

example, the removal of 100 negative samples out a million causes the area under the 

PRe to increase by 6.36% and 10.86% with chunk sizes of 50 and 500, respectively, 

while the area under the ROe remains nearly identical. 

4. Methods 

4.1. Feature Prototype (Local Oligonucleotides Frequencies) 

Promoter regions function as such due to the co-occurrence of a specific set of motifs 

at specific yet flexible distances from the TSS [68;69]. However, none of the published 
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studies or tools has found a single common pattern that can explain all promoters, 

indicating the likelihood of multiple promoter patterns. 

In order to capture the characteristics of the given promoter sequences, training 

sequences with known TSS are divided into overlapping regions (Figure 9). Either 4-mer 

or 3-mer oligonucleotide frequencies are measured in every sub-region. All of these sub­

frequencies are combined to form a feature vector to describe and represent the given 

sequence sample. This approach is a compromise between methods that use the 

frequencies of all oligonucleotides around the TSS regardless of their positions, and those 

that measure positional densities at every single base relative to the TSS. Knowing the 

region in which each oligonucleotide occurs yields approximate positional information 

about the motifs. 

Eight combinations of region lengths and overlap sizes are tested to extract separate 

features, including seven with oligonucleotide of length four and one with 

oligonucleotide of length three. The overlapping regions considered for each of these 

combinations are listed in Table 6, with the position relative to the known TSS. These 

regions are further illustrated in Figure 9 for combination 7. In general, regions and 

overlap areas close to the TSS are short and increase in length as they go farther from the 

TSS. This is due to our knowledge that common motifs in the core promoter region (close 

to the TSS) are found to have more strict positions than common motifs found in the 

promoter proximal region area (farther from the TSS) [68;69]. After each combination is 

considered, the one resulting in a classifier with the highest area under the ROC for the 

validation data is selected for testing. 
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Table 6 

Sub-Regions and Oligonucleotide Lengths Considered for Feature Extraction. 

mf~!!a~ ~Dr~·~i)£i!;g1r;',!~ran~s~(R~ia!iv.c t~ t.~~· TS~) .... " Oligon uclcoti~t.c 
1 (-500,-230),(-300,-50),( -100,20),( -20,99) 

2 (-500,-220),(-310,-40),( -110,30),( -30,99) 

3 (-500,-240),(-290,-60),( -90,10),( -10,99) 

4 (-600,-230),( -280,-40),( -70, 70),(40,199) 4 mer 
5 (-600,-240),(-270,-50),( -60,60),(50,199) 

6 (-600,-280),(-330,-110),( -150,20),(-20,149) 

7 (Figure 9) (-600,-230),( -280,-40),( -70,70),(40,249) 

8 (-650,-490),(-550,-400),( -450,-310),( -350,-220), 3 mer 

TSS 3' 5' 
?S =z<::l-X= ~ ~ I I I 0. I I 

! ! ! I I ! 
-60.0. -280. -230. -70. -40. 40 70. 249 

Figure 9: Training Sequences Are Divided Around the TSS with Overlapping Regions. This 
specific subdivision shows feature 7 settings, as described in Table 6. 

4.2. Imbalanced Training 

Since the training data is imbalanced (nearly 10 times more negative samples), the 

minority class might have a minimal effect on the resulting network leading to 

unsatisfactory results. A well known and used approach to counter-effect this property 

[78] is to weight the training error in the objective function in (61) to give higher weight 

to the minority class as: 

N ] ] z 

Ereg = ~ I u(ti ) x (ti - fiJ2 + Aw III") II + Av I I Vjz (69) 

i=l j =l j=l z 
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In (61), u(ti ) is a weight dependent on the class. In this case of training TSS network, 

uCta will be 1 for positive samples and 0.1 for negative samples. Two other networks are 

trained with different weighting (1,0.33) and (1, 1). 

5. Experiments and Results 

5.1. Dataset 

The dataset used for evaluating ARTS [76] was downloaded from 

(http://www.fml.tuebingen.mpg.de/raetsch/projects/arts) and used to evaluate RBF-TSS. 

This dataset is divided into three parts: training, validation and testing. As a summary of 

the ARTS paper, the training and validation were extracted from the dbTSS version 4 

(dbTSSv4) [79] which is based on the UCSC human genome sequence assembly and 

annotation version 16 ("hgI6") [80]. RefSeq [81] identifiers from dbTSSv4 were used to 

extract the corresponding mRNA using NCBI nucleotide batch retrieval. Afterward, they 

aligned all the retrieved mRNA from NCB I to hg16 genome using BLAT [82]. The best 

alignment position at the genome was compared to the putative TSS positions as stated in 

dbTSSv4. Sequences whose positions did not meet the following checks were discarded: 

1. Chromosome and strand of the TSS position and of the best BLAT hit match. 

2. The TSS position is within 100 base pairs from the gene start as found by the 

BLAT alignment. 

3. There is not any processed putative TSS is within 100bp ofthe current one. 

As a result, 8,508 genes were accepted and positive examples were extracted as a 

window of size [-1200, + 1200] around the TSS. 
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For this dataset, 85,042 negative samples were created by randomly extracting 10 

subsequences of window length [-1200, +1200] from the interior of every gene between 

100bp downstream of the known TSS and the end of the gene [72]. This method is 

arguable since it cannot be guaranteed these negative samples do not contain promoters. 

However, it is near certain most of the extracted negative samples are true negatives since 

TSS are found to be rare compared to the size of the genome. Furthermore, there is not 

any other natural method of recognizing true negatives in the genome. 

The 8,508 positive and 85,042 negatives examples were both divided into 50% for 

training and 50% for validation. The testing dataset was extracted as the set of all new 

genes from dbTSSv5 [83] which is based on hg17 and did not appear in dbTSSv4. Genes 

that have more than a 30% mRNA overlap are removed from consideration. 

5.2. Training and Model Selection 

Eight different features were extracted as described in the "Feature Prototype" 

section. Clustering to initialize the HyperBF network was performed using hierarchal 

clustering within the positive class only and all weights were initialized to be positive. 

Furthermore, since the data is unbalanced, the objective function in (61) was weighted as 

described in [78] to give more weight to the minority class. 

Initially, for every feature, a separate HyperBF network of 30 neurons was 

constructed without regularization. The two best performing features in classifying 

validation data in terms of the auROC were chosen for further training. Those two 

features were four and seven (Table 6). Both features were extracted by measuring the 

frequency 4-mers in four overlapping sub-regions of the given sequences as described in 
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Table 6. Afterward, a parameter selection through cross-validation was performed with 

both features 7 and 4 separately (see methods in Chapter 3). Feature 7 was found to make 

the best performance in terms of area under the ROC. 

Finally, two different networks of two different SIzes (30 and 60 neurons) were 

trained with cross-validation. Table 10 lists the auROC for the training and validation 

datasets for both networks in addition to the auROC from an SVM network. The table 

also lists the number of neurons/support vectors used in every network. The SVM 

network was trained for the same problem using Libsvm [11]. In both cases of the 

regularized HyperBF and the SVM network, regularization parameters were selected to 

maximize the area under the ROC for the validation data. Furthermore, in both cases the 

objective function was balanced to give more weight for the minority class (weight of 1 

for positive samples and 0.1 for negative samples). 

Table 7 

auROC ofTSS Detection in the Validation Data Using Reduced HyperBF and SVM 
Networks. 

aIlIH>C Nctworl.: SiZl': # of . ·· Netw(lI·k . 
'~"::'~~\~:';""'':';~'''~:'' ,;,.:1, ...... ~raJ~!nJ; _ .... .t.~~~i_dati(~I~ _ NCllrons/SllppOI·t Vectors - .. 

RHBF-30 96.84% 94.06% 30 
RHBF-60 96.1% 94.1% 60 

SVM 99.79% 94.42% 14554 

Though, as shown in Table 10, SVM slightly outperformed the best regularized 

HyperBF network, HyperBF network is about three orders of magnitude smaller than the 

SVM network. Furthermore, a network of 60 neurons did not provide any substantial 

improvement over a network of 30 neurons. 

To investigate the effect of imbalance in the training data, two more networks were 

trained with cross-validation with different weightings where the positive examples had a 
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weight of 1 in both of them whereas negative samples had a weight of 0.33 and 1. Table 8 

lists the auROe and auPRe of the validation data in each case. Table 8 also lists the 

number of active positive and active negative neurons (neurons with significant weight 

value (larger than 0.001)). 

Table 8 

Effect of Training with Weighted Error on auROC and auPRC of the Validation Data and 
the Number of Resulting Active Neurons (with positive and negative weights (+/-)) . 

. )~-;~:;~:t;";,i\- -:.' :: Ncg~,ti,'e:'";';", . ,: Wof ACtive '. Training Validation 
_~g~~~'~I~OG:l. ~_a_lIr.HiL ._,_~!uRQ~ ~uPRC 

Net-l 0.1 5/3 97.08 83.7 94.06 77.18 
Net-2 0.33 2/3 96.53 83.82 93.86 78 
Net-3 1.0 3/4 96.18 85.04 93.43 78.28 

It is evident from Table 8 that a small weight for the negative samples increased the 

auROe while a larger weight of the negative samples decreased the auROe and 

increased the auPRC. The results on the validations are also consistent with the testing 

results (Table 10). Furthermore, due to the LASSO penalty on the weights, most neurons 

became insignificant and only a fraction of them end with non-zero weight and hence 

making the classification faster and the whole model easier to interpret. 

Figure 10 shows the average single base validation data score of the network (Net-2) 

in the range [-600 to 600] around the known TSS position compared to the average score 

for negative examples. At every base, the feature vector was extracted using sub-regions 

as if that base was the TSS. It is clear from the curve that the classifier is able to produce 

output scores capable of distinguishing positive from negative examples. These scores get 

significantly higher the closer we get to the true TSS. 
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Figure 10: Average Scores at Positions Around the True TSS vs. Average Scores of Negative 
Examples in Validation Data. The x-axis represents the relative position to the true TSS within 

the positive examples. 

5.3. Testing Procedure 

We performed the same testing procedure as described in [76]. Every chromosome 

strand was divided into non-overlapping chunks of size 50 and 500 bases (Figure 11). 

Any chunk that falls within 20bp from any known TSS position of any of the testing 

genes was considered as a positive sample (Figure 11). Any chunk that falls between 

+20bp downstream of the start of any of these genes to the end of the same gene and was 

not labeled positive was considered a negative sample (Figure 11). On the other hand, 

non- ACGT bases (i.e. long N-sleds) were randomly substituted by A, T, C or G. Table 

10 lists the number of true positive and true negative samples as a result of the employed 

chunking and labeling approach. 
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Figure 11: Schematic Diagram of the Chunking and Labeling Approach in the Testing 
Phase. (a) Chunking the DNA sequence into non-overlapping Sequences of Length 50. (b) 

Chunking the DNA sequence into non-overlapping sequences of length 500. 

Table 9 

Number of Positive and Negative Samples as a Result of the Chunking and Labeling 
Approach Used in Testing. 

~L\ ~ .. ~; _ .. '. ,.~./rrue, P~~itiYe (T.1~) .. ~., T."ue Negative .:. . 
50 1588 1,087,666 

500 943 108,782 

For every chunk, a feature vector was extracted at every single base as if that base 

was the TSS position. A network score is computed at every base and each chunk is 

assigned the maximum value found for any of the bases contained within it. This may 

result in chunking and labeling of positive samples despite being up to 20bp away from 

the true TSS. This design acknowledges the flexibility of POL-II which does not always 

bind to a specific single base but rather anywhere in the range [-20, +20] from the start of 

the TSS. Table 10 shows the auROC and auPRC in the testing phase for the three 

networks. 
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Table 10 

Effect of Training with Weighted Error on the auROC and auPRC of Validation Data. 

'~I~;.··-' NC(J~iti\'(' . Chull~ SO ChunkSOO 

,~~~,Qf .. ~' ~~!l;!!f~,,,.t<.~~~!lR.:.~:\\<: .;r.~.u1.~9£ :,_ .':."~,".~~~~ ., allPI~C\:,' 
..... -,~ .. -

Net-1 0.1 95 .09 19.09 43.43 94.95 44.7 57.67 

Net-2 0.33 94.83 24.11 49.23 95.01 53.96 66.24 

Net-3 1.0 93.61 26.16 50.77 94.66 55.81 66.99 

A comparison of these rates is shown in Figures 12 and 13. The true positive rate 

(TPR) for TSS identification was calculated as the percentage of positive samples 

identified as such by HyperBF -TSS while the false positive rate was calculated as the 

percentage of true negative samples mistakenly labeled as positive. The positive 

predictive value (PPV) is calculated as the ratio of the positive samples whose true label 

is positive to the total number of samples classified as positive. As illustrated in Figure 5, 

the area under the precision recall curve is relatively low due to the fact that the ratio of 

negative to positive samples is very high, and varies widely between the two cases of 

chunk size of 50 and 500. 
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Figure 12: Effect of Weighted Training on Testing auROC in both Chunking Cases: a) 
Chunk Length = 500. b) Chunk Length = 50. N-w refers to the weight assigned to negative 

samples (majority class). 

73 



(a) 
1 

0.8 

(b) 

••••• N-w: 0.1 

- - N-w:0.33 
+----------1 -N-w: 1.0 

c: 0.6 
.2 

Vl 

'g 0.4 
.... 
~ 

0.2 

0 

0 0.2 OA 0.6 0.8 1 0 0.2 0.4 0.6 0.8 

Recall 

Figure 13: Effect of Weighted Training on Testing auPRC in both Chunking Cases: a) 
Chunk Length = 500. b) Chunk Length = 50. N-w refers to the weight assigned to negative 

samples (majority class). 

5.4. Comparison to Other Methods 

1 

For comparison with other methods, Net-2 is used since it provides a trade-off 

between auROC and auPRC as compared to the other two networks. The performance of 

HyperBF -TSS was compared to other methods using both auROC and auPRC measures 

(Table 11). Note that results for the ARTS, Eponine, McPromoter and FirstEF methods 

are taken as reported in [76] which employed the same testing procedure used here. As 

seen in Table 11, the proposed method has better performance in terms of area under the 

ROC curve in both chunk size cases 50 and 500. Furthermore, the similar performance 

between chunks of size 50 and 500 indicates high locality of the proposed method for 

locating the TSS positions as compared to the other methods. 
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Table 11 

auROC and auPRC for HyperBF -TSS (Net-2), ARTS and Others. 

On the other hand, the proposed method fails to exceed the ARTS method when using 

area under precision recall curve. This should be of no surprise since it has been 

analytically shown in [84] that optimizing the area under the ROC curve is not 

guaranteed to optimize the area under the PRC curve. 

The precision recall curve is found to be very sensitive to having few negative 

samples with high scores with HyperBF-TSS. For example, the removal of 0.001 of the 

negative samples with the highest network scores results in a big change in the auPRC 

from 24.44% to 49.23% and 53.96% to 66.24% for chunk sizes of 50 and 500 

respectively. In contrast, the change in the auROC was minimal, increasing from 95.01 to 

95.05and 94.83% to 94.9% for chunk sizes of 50 and 500 respectively. 

Table 12 

Effect of Removing The Thousandth Highest Scoring Negative Samples on Both auROC 
and auPRC in Both Chunking Cases. 

The removal of 0.001 of the negative samples illustrates the sensitivity of the auPRC. 

The use of the auPRC should be considered with caution as an evaluation measure of 
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TSS finders since the PRC has a demonstrated sensitivity. Labeled negative samples 

could be unknown TSS, which is shown to potentially have a significant effect on the 

auPRC. 

6. Higher Level Analysis of HyperBF -TSS 

A key advantage of the proposed method is that once training the HyperBF network is 

finished, the set of resulting neurons with positive weights can be perceived as a mixture 

of Gaussians providing an approximation of the TSS samples probability distribution in 

the new Euclidean space. Such knowledge can pave the way for a higher level analysis in 

the time space. For example, having many promoter sequences with high membership to 

one neuron indicates that they belong to one cluster and hence share many of their of 

oligonucleotides ' frequencies in the same sub-regions. Figure 14 shows the details of the 

fmal network structure of Net-2. 

x;z~ 

. 
"'-0.11 
. . . . 

{

1+l:TSS 

1-1 : Non-TSS I 

Figure 14: Final Network Structure of Reduced HyperBF-TSS Network (Net-2). 
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As shown in Figure 14, due to the wieght decay penalty, 25 or the initial 30 neurons 

ended up with a near zero weight value and hence their removal would have no 

significant effect on the classification accuracy. Two of these neurons are connected with 

positive weights to the output. Positive neurons give insight into what are the 

characteristics of TSS samples while negative neurons give insight into the characters of 

none-TSS samples. Since the classification accuracy of this network is relatively very 

high, we can use it as a supportive evidence of the existence oftwo types of TSS. 

6.1. TSS Subtypes Characteristics 

By analyzing the active features in each positive neuron, we can deduce the 

characteristics of the corresponding subtype of TSS samples that makes them different 

from non-TSS samples. Active features indication which oligonucleotides' positional 

frequencies are important in discrimination. First, in every neuron, active features are 

ranked base on how much their removal would increase the training error (see methods in 

Chapter III). Afterward, the weighted mean of positive samples flpU,Z) and the mean of 

negative samples flNU,Z) along every feature (z) in neuron G) are computed separately 

as: 

(j
.) Lil1'{TSS} Xiz x ~ (xa 

flN Z = 
, Lil1'{TSS} ~ (xa 

(70) 

(71) 

If the weighted mean along feature (z) of TSS samples around neuron (j) is higher than 

that of the negative samples, then it is the relative over-representation of the feature (z) 
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oligonucleotide in the corresponding region in TSS that make them different from non­

TSS. Note that the over/under-representation is a simplified analysis. It is possible that a 

neuron might fall in the middle of negative samples and hence the over/under­

representation labeling is inappropriate. In the later case, the value of the weighted mean 

of positive samples itself can be used to describe the characteristics of the subtype. 

However, for simplicity of description in this dissertation, the over/under-representation 

of oligonucleotides' regional frequencies is used to describe the characteristics of the two 

subtypes ofTSS. Table 13 shows the most important 35 features in positive neurons (N-l 

and N-2) from Net-2 and whether they are over-represented or under-represented. Figures 

15 and 16 show a simplified description of the characteristics of subtype 1 and 2 

respectively. Each figure shows the most important 12 oligonucleotides which are 

regionally over-represented and the most important 12 oligonucleotides which are 

regionally under-represented in TSS samples as compared to negative samples. 
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Table 13 

List of the top 40 4-mer characteristics ofTSS Sequences for Subtypes N-l and N-2. Over 
represented oligonucleotides in TSS samples are denoted by + 1 while underrepresented 

oligonucleotides are denoted by -1. 

-1 2:TTTT -1 
3:ATGT -1 

11 2:GATC 
12 3:GAGC 
13 4:AGGC +1 
14 2:CGAC +1 -1 
15 -1 3:GCGG +1 

+1 3:ATCT -1 
-1 3:TATT -1 

3:ATTA 
4:GTCC 
2:GTGT 
3:TAGT -1 
l:AATA -1 2:TGCT -1 
2:CACC +1 3:AATT -1 
4:TGAG -1 3:TTGT -1 
4:GTGG +1 3:GTGT -1 

-1 4:TAAT -1 
-1 3:TATC -1 

32 -1 -1 
33 3:GGAA +1 2:TTCC +1 
34 4:CACG +1 3:GAAC -1 
35 3:GAAG +1 4:TTTA -1 
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I 26:CACC I 
I 14:CGAC I 

35:GAAG 

33:GGAA 

16:CGAC 

12:GAGC 

34:CACG 

28:GTGG 
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18:AGGT 

13:AGGC 

l:GGTA 
TSS 3' 
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: :: 0: : 
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3:TAAG 

4:AAAA 

5:GTAA 

6:AAGA 

15:TAGG 

17:ATAA 

Figure 15: TSS Subtype-l Characteristics. An oligonucleotide above a region indicates a 
relative over- representation in that region while an oligonucleotide below a region indicates a 

relative under-representation in that region. Oligonucleotides are numbered based on their rank of 
importance. 
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Figure 16: TSS Subtype-2 Characteristics. An oligonucleotide above a region indicates a 
relative over- representation in that region while an oligonucleotide below a region indicates a 

relative under-representation in that region. Oligonucleotides are numbered based on their rank of 
importance. 
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7. Conclusion 

A new novel feature is presented that transforms the problem from sequences and 

temporal space to Euclidean space. Such a feature makes it possible to cluster promoter 

sequences and build a HyperBF neural network. 

The proposed HyperBF -TSS method has demonstrated high accuracy performance in 

detecting transcription start sites and proven to be very competitive to the high 

performing ARTS tool and others. The proposed method achieved an area under the ROC 

of95.01 % and 94.83% for chunks of size 50 and 500 as compared to 92.77% and 93.44% 

achieved by the ARTS using the same dataset and testing procedure. The high 

performance of the proposed method with chunk size of 50 proves that HyperBF -TSS has 

increased the classification accuracy over previously described TSS prediction 

algorithms, and performs well with high locality precision. 

Finally Reduced HyperBF is shown to be an informative tool for higher level 

analysis. In that significant neurons are indicators of potential subpopulations that group 

sample based on discriminative information only. In addition, active local features 

provide insight into the characteristics of each subpopulation in specific and the whole 

class in general. 
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CHAPTER VI 

CASE STUDY: FEATURE SELECTION AND SUBTYPE DISCOVERY 
IN MICROARRA Y DATA ANALYSIS 

1. Motivation 

Microarray technology is used for measuring the expression level of genes under a 

particular condition by looking at the presence of mRNA tags. The expression of the 

mRNA is an indicator of the level of abundance of individual proteins in a cell and hence 

is a determinant of the functionality of the cell. Every healthy functional tissue in an 

organism is known to occupy a certain stable expression levels of genes with some 

tolerated variation. Analysis of micro array data provides insightful information about the 

functionality of genes and their interactions as it relates to conditions such as 

development, disease, or response to stimuli. 

Disturbances in gene expression levels can factor in disease development such as 

cancer. A comparison of gene expression levels between a group of sick people 

(condition) and a group of healthy people (control) has the potential to pinpoint genes 

that may playa role in the development of the disease. Furthermore, clustering methods 

have the potential to pinpoint different subtypes of the same disease in that, the same 

phenotype or symptoms might be triggered by completely different mechanisms. 

Recovering this type of information about a disease may help develop effective drugs in 
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addition to developing accurate tools for diagnosis and prediction of the susceptibility to 

future occurrence of the disease. 

Due largely to the experimental expenses and in some cases scarcity of volunteers, 

microarray samples are usually available in small quantities (tens to a few hundred 

samples) where every sample is represented by a profile of tens of thousands genes 

expressions. As a result, regular classification and clustering tools are likely to suffer 

from overfitting and discover patterns that have nothing to do with the disease. With such 

high dimensionality, feature selection as a preprocessing step is a necessity. 

Considering the small number of samples, the high dimensionality and the complexity 

of interactions and correlations between genes expressions, feature selection in 

micro array data analysis is one of most challenging variable and feature selection 

problems [85]. In this chapter, a new feature selection algorithm based on a Reduced 

HyperBF network is proposed. The proposed algorithm is applied to two microarray 

datasets and is shown to select a minimal subset of features with high discriminative 

information. The proposed algorithm is compared to two other algorithms (ReliefF and 

SVM-RFE) and is shown to have very competitive results. Moreover, since a HyperBF 

network uses a mixture of Gaussians to represent each class, significant neurons in the 

final penalized networks can be used as an evidence of multiple subtypes of the disease. 

2. Overview of Feature Selection Methods 

Feature selection in classification problems is a learning task that aims at finding the 

smallest possible subset of features that enables accurate classification (preferably the 

most possible accurate classification). Feature elimination does not necessarily mean a 
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loss of interesting information. For example in gene expreSSIOn problems, feature 

elimination can be justified under two main arguments: 

Irrelevant features: For example a certain gene is not related to the disease and 

hence information about this gene only adds noise to the learning task. 

Redundant Information: For example, the expression of two genes might be 

correlated or dependent on each other. As a result, discarding one of them does 
I 

not involve a loss of information. 

Simple feature selection approaches measure the goodness of every feature 

separately, and select the features with the most discriminative information [54]. More 

sophisticated techniques aim at evaluating subsets of features and hence measuring the 

goodness of every feature as it is being used in combination with others. The later 

approach is more general and is less likely to select features with redundant information. 

However, a search for an optimal subset of discriminative and non redundant features is 

computationally expensive. Most feature selection approaches can be classified into three 

categories [54;85]: filters, wrapper and embedded. 

2.1. Filters 

Filters are generic feature ranking and selection methods that are typically used in the 

preprocessing phase before applying a classification algorithm. These methods usually 

employ a heuristic or a certain information criterion to rank features in an effort to 

estimate their discrimination power. Examples of such methods are the F -Test measure 

[86], the Chi-Squared measure [87], the Relief algorithm [88] and its improved version 

ReliefF [89]. Feature subset ranking and selection filters methods have also been 
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developed. An example is the CFS algorithm [90]. CFS starts by evaluating features 

individually. Afterward, features with the highest discrimination power and the least 

redundancy (correlation) with the already selected features are incrementally selected. 

Although filters have not proven to outperform more sophisticated techniques such as 

wrappers [91], their ease of use and fast computation still make them a practical and 

efficient option. Furthermore, in high dimensionality problems, using filters as a 

preprocessing step to applying wrappers or embedded feature selection is a common 

practice to make computation practical [54]. 

2.2. Embedded Feature Selection 

The common theme between methods in this category is the definition of an object 

function that combines fitting the training data while penalizing the usage of more 

features [54]. Fitting training data can be achieved by any loss function such as the 

squared error while the penalty of using features depends on the structure of the model 

being trained. Such a function would have to be practical to minimize and not be 

sensitive to local minimum issues. An example of such methods is the penalized linear 

regression such as bridge regression [45]: 

N Z 

MSE = ~ I (Yi - WXi - b)2 + II. IIWzlY (72) 
i=l z=l 

In (72), W is a vector of the linear regression coefficients, b is a constant, Yi is the 

desired output for sample Xi' while II. and yare two positive constants to be estimated by 

cross-validation. Optimizing (72) with 0 < y :::; 1 will drive many coefficients of the 
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regressIOn to zero making the classification decision invariant to the corresponding 

features. 

2.3. Wrappers 

Wrappers are simple but computationally expensive feature selection tools [91]. A 

wrapper typically performs feature subset selection for a specific classification tool in a 

direction to either fit the training data with a minimal set of features or to maximize the 

prediction accuracy ofthe classification algorithm in a lel:\ve-one-out or a cross-validation 

setting. Wrappers select features through either a forward selection or a backward 

elimination. In forward selection, an initial set of one or few features is created and the 

algorithm incrementally adds new features. In a backward elimination, the algorithm 

starts with all features and iteratively discards those that will not hurt classification. The 

linear SVM with recursive feature elimination (SVM-RFE) algorithm proposed in [53] is 

one such example. 

3. Methods 

3.1. Recursive Feature Elimination in Reduced HyperBF Network (Reduced 

HyperBF-RFE) 

Reduced HyperBF on its own is an embedded feature selection method and once 

training is finished, all features that do not help in classification are discarded. The 

localized feature penalty in a HyperBF network is motivated by the real world 

observation that many patterns are recognized to belong to one class due to the co-
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occurrence of specific values along a specific set of features. Furthermore, one class is 

very likely to be composed of multiple sub- models that are different in their 

characteristics. 

Nonetheless, Reduced HyperBF classification performance and the elimination of 

features is sensitive to the regularization parameters: Aw and Av. At a certain stage of 

training and parameter selection, specific values of Aw and Av might be optimal for cross­

validation classification accuracy. Once a significant number of features are discarded 

from the model, it is likely that a different pair of values of Aw and Av are needed for 

optimal classification. 

Furthermore, as discussed in Chapter III, the saliency measure (score3) is a more 

accurate ranking measure than the magnitude of the local coefficients. Therefore, 

simultaneous recursive feature elimination based on saliency ranking and a continued re­

selection of Aw and Av is anticipated to provide better feature selection. 

3.2. Seeded Reduced HyperBF -RFE 

Due to the very high dimensionality of the microarray data, an initial feature selection 

using a filter method is a necessity. Seeding Reduced HyperBF-RFE by a filtered subset 

is unlikely to downgrade the overall selection as long as the filtered subset of features is 

relatively large. 

Furthermore, the first round of training a Reduced HyperBF network results in an 

elimination of a large number of features. For example, in the Leukemia dataset, RelietF 

was used to rank 7,129 features and only 512 of them were seeded to training a Reduced 

HyperBF network. The resulting network only used 35 features and the elimination of 
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477 features caused no increase in the training regression error (tJ.E < 10-7). There is no 

guarantee that such a subset is optimal or unique. And more importantly, there is no 

guarantee that from this subset we can find a smaller optimal subset that we cannot find 

in the 477 features set. To ease the sub-optimality problem, if a significant number of 

features is eliminated by applying Reduced HyperBF-RFE, the next iteration can be 

seeded with the selected subset from the current Reduced HyperBF-RFE in addition to a 

limited set of features from the top of the filter ranked list that were not selected by the 

current Reduced HyperBF. This re-seeding from the filter can only improve the subset 

selection of Reduced HyperBF-RFE since it provides a bigger pool of features for 

selection. In addition, the filter ranking of features is only computed one time at the first 

initialization. 

In all experiments reported in this chapter, the re-seeding was only applied after the 

first round of training Reduced HyperBF mainly because the resulting network 

eliminated a large percentage of features (more than 90% of the features had 0 local 

coefficient in every neuron). Algorithm 2 shows the details of the Reduced HyperBF­

RFE. 
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Algorithm 2: Reduced HyperBF-RFE Algorithm 

Init 
Rank features using a filter method (i.e. ReliefF alg.) 

Select a subset of features {S} with the highest rank. 
(i.e. 1 000 features) 

Search for optimal Av and Aw that minimize the CV error. 
{S} ~ {S} - {all discarded features from resulting network} 
If size(S) is very small 

{S} ~ {S} U {Small set from top of the Filter-Ranked List} 

Loop 
Set q and Q based on lSI = size(S): 

(i.e. Q= ISII2, q = ISlIlO) 

Loop 
Train a Reduced HyperBF network with {S}, Av and Aw 

Rank features based on saliency (score3) 
{S} ~ {S} - { The q Features with the smallest saliency (score3)} 

Until size(S) ~ Q 

Re-Search for optimal Av, Aw that minimize the CV error. 

Until 1 feature is remaining 

Filter features 
by ReliefF 

Save results 
and CV error 

Search for 

o timal A A 

Eliminate the q features 
with the least saliency 

Re-train with 
remaining features 

Figure 17: Flowchart of Reduced HyperBF-RFE Algorithm. The re-seeding step is omitted 
for simplicity of visualization. 
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3.3. Reduced HyperBF Network for Functional Clustering 

There is a striking similarity between RBF IHyperBF networks and density estimation 

approaches in the case of mixture of Gaussians. Nonetheless, RBF/HyperBF network is 

not a density estimation method in its classical sense. Density estimation methods or their 

alternative clustering algorithms aim at grouping samples from one population based on 

their similarity in order to recover an estimation of the generator models. A significant 

cluster is thought to be a sub-model or subpopulation of the whole class. 

Clustering algorithms are unlikely to be useful for micro array analysis of diseases. 

This is mainly because samples of the sick group share a high similarity along so many 

features that are not related to the disease. In contrast, HyperBF networks only use the 

characteristics that make the two classes different and therefore results in clusters of 

interest in studying the disease. 

4. Experiments 

The proposed algorithm is applied to two microarray datasets. For comparison the 

ReliefF algorithm and the SVM-RFE algorithm are applied to the same datasets using the 

Weka data mining tool. In both cases of ReliefF and SVM-RFE, an SVM classification 

network using Libsvm [11] is trained to evaluate the resulting feature selection of both 

methods. On the other hand, the performance of SVM-RFE on the leukemia dataset is 

listed as it is reported in [53] by the original authors of the algorithm. 
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4.1. Datasets 

a) ICMLA 2009 Cancer Dataset 

This dataset contains microarray scans taken from samples belonging to three 

different types of cancer: breast, colon, and lung. That dataset is available at 

(http://www.icmla-conference.orglicmla09/) and is divided into 400 training samples and 

250 testing samples (Table 14). Every sample is represented by 54,613 probes (gene and 

other DNA transcript expressions). 

Table 14 

Number of Samples in Every Class in the ICMLA 2009 Cancer Dataset 

;~v/~· 5-· ": . . . B,·cas' Colon Lung 
~~-.~---~~~~---

# of Training Samples 200 130 70 

# of Testing Samples 100 100 50 

b) Leukemia Dataset 

This dataset contains mIcro array scans of 47 patients with acute lymphoblastic 

leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). Every sample is 

represented by 7,129 probes (gene expressions and other DNA transcript expressions). 

The samples are divided into training dataset of 38 samples and a testing dataset of 34 

samples (Table 15). 

Table 15 

Number of Sample in Every Class in the Leukemia Dataset 

.. ALL " ... "AlYlL : _ , 
# of Training Samples 27 11 

# of Testing Samples 20 14 
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4.2. Results 

a) ICMLA 2009 Cancer Dataset 

Table 16 and Figure 18 list the classification accuracy of the three algorithms 

(Reduced HyperBF-RFE, SVM-RFE, and ReliefF) on the ICMLA-09 cancer dataset. 

Classification accuracy is reported on the testing dataset and the cross-validation in the 

training dataset. For efficiency of computation, SVM-RFE was seeded by 5,000 features 

selected by ReliefF while Reduced HyperBF -RFE was initially seeded by 800 features 

selected by ReliefF. At 800 features, 5-fold cross-validation was performed for 

regularization parameters selection for both Reduced HyperBF and SVM. In the 

remainder of the cases, 20-fold cross-validation was used. 

Table 16 

Cross-validation and Testing Classification Accuracy of the Three Methods at Different 
Levels of Feature Selection on ICMLA-09 Cancer Dataset. Best rates in each iteration are 

face-bolded. 

i~!!i~r~·~::~ i:,:~!~~!~~i£~IJI):p(~r .nF:' RJF: .~ "~c SyM ~ __ SV~-RFF: _ SVM - Rdic" 
~""'."'-~ , ~~. ~sh~i",,~CY""· ),' .. -., Test . . CV Test 

~ ~ • ..Jo'tL.""':.l. .. l..~'\;.-..:. .. t, ... _ ... , 

800 92.75 93.6 97.75 93.6 93 90 
100 93 .75 93.6 98.75 92 91.5 89.6 
60 93.75 94 97.75 95.6 91.25 90 
40 94.75 94.8 96.5 93.2 90 91 
30 94.25 95.6 96.25 93.2 90 91 
20 94.75 94.8 96.75 94.8 89.75 90.75 
10 94.25 94.4 94 94 87.75 84 
5 94.25 95.6 93.5 93.6 85.25 86.4 
3 92.75 94.4 93.5 93.75 78.75 76 
1 78 76 77.75 75.2 79.75 78.8 
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Figure 18: Classification Accuracy on the ICMLA 2009 Cancer Dataset of the Three 
Methods. (a) Leave-one-out cross-validation and (b) Test data. 

, 

From Table 16 and Figure 18, both algorithms Reduced HyperBF-RFE and SVM-

RFE consistently outperformed the ReliefF filter algorithm in terms of the cross-

validation and the testing classification error. On the other hand, SVM-RFE resulted in 

the best cross-validation accuracy in general. Nonetheless, Reduced HyperBF -RFE 

resulted in slightly better results with the testing dataset. Moreover, at a very low number 

of features (10, 5, 3), Reduced HyperBF-RFE has a slight upper edge over SVM-RFE 

with both the cross-validation and testing dataset. 

b) Leukemia Dataset 

Table 17 and Figure 19 list the classification accuracy of the three algorithms 

(Reduced HyperBF-RFE, SVM-RFE, and ReliefF) on the Leukemia dataset. Due to the 

very small number of training samples (38), a leave-one-out is performed for parameter 

selection for both Reduced HyperBF and SVM (38-fold cross-validation). Classification 

accuracy is reported on the testing dataset and the cross-validation in the training dataset. 
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For efficiency of computation, features were initially filtered to 512 features by ReliefF. 

Classification results for SVM-RFE are listed as reported by the original authors of the 

algorithm. 

Table 17 

Cross-Validation and Testing Classification Accuracy of the Three Methods at Different 
Levels of Feature Selection on the Leukemia Dataset. Best rates in each iteration are face­

bolded. 

~~~!~~fl'~i '~1~~~dut~~?~y.~,!~_F- , .(, S~M - .SVM-r~FE SVM - Relief 
~~.iiii1ffi£~11~t.w.~~:.~,':"I£st.c.t""'~"~"='~Y . . Test .. 

;:.... 
u 
til .... 
::l 
u 
u 
< 
c 
0 .;:: 
til 
u 

:E 
CIl 
CIl 

...:2 
U 

512 100 92.10526 97 88 100 85.29 

64 97.36842 97.36842 100 94 94.73 91.176 

16 100 97.36842 100 100 97.36 97.06 

8 100 97.36842 100 100 100 94.11 

4 100 97.36842 97 91 100 97.06 

2 97.36842 94.73684 97 88 94.73 97.05 

1 92.10526 92.10526 92 79 94.73 79.411 
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Figure 19: Classification Accuracy on the Leukemia Dataset ofthe Three Methods. (a) 
leave-one-out cross-validation and (b) test data. 

The result on the leukemia dataset shows Reduced HyperBF -RFE to produce by a 

slight margin the best results on the leave-one-out validation data. In the testing set, 

Reduced HyperBF always failed to classify one of the samples correctly which made it 
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appear less accurate than SVM-RFE. Nonetheless, the classification results of Reduced 

HyperBF-RFE are more stable and oscillate less than the other two methods. 

5. Higher Level Analysis and Discussion 

Once a minimal set of genes are indentified and proven to be sufficient for 

satisfactory classification, a biologist can use this list of genes for further analysis to 

recover the true causes of the disease. Furthermore, by using the Reduced HyperBF 

network the significant neurons can be studied for potential sUbtypes of the disease. 

Unfortunately, in the two datasets studied in this chapter, there is no control group. 

Thus, all classes contain only patients with some form of cancer. Therefore, the role of an 

important gene in classification is ambiguous. For example in the leukemia case an 

important gene for classification could be involved in either AML or ALL and we cannot 

tell which one for sure. Moreover, supervised discriminative analysis cannot recover 

genes that are common between the two diseases. 

In the case of the leukemia dataset, with four features and a network initialized with 

four neurons (two from each class), the resulting network had a 0% leave-one-out 

classification error and 2.6% testing classification error. The fmal network had only one 

active neuron with a positive weight (ALL class). Such simple structure with high 

accuracy is an indicator that there are no potential ALL subtypes. Table 18 lists the four 

features used by the final network for classification. 
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Table 18 

The Four Probes Sufficient for Accurate Classification in Leukemia Dataset. 

,*,-.,,:J.'~ :, ::.' ,;' , ' .. Gene " Chromosomal 
;. ': P ' Ii ' ' S b' I " 'J>.: .' DC,scription ~.:;~ i. ... I~Q .... ~~:.-, r_" -:4.: __ ym_.<L ,.k~ ..;' __ ';'~:.f-,_ 91ittloni~~,"~ '_" .... h/f '4' , 

M29932 s at ADRB3 8p12 Adrenergic, Beta 3-, Receptor 

M23114 at ATP2A2 12q23-q24.1 
ATPAse, CA++, Transporting, Cardiac 

Muscle, Slow Twitch 2 
Y12478 at NRL 14ql1.2 Neural Retina Leucine Zipper 
M95925 at WRB 21q22.3 Tryptophan Rich Basic Protein 

For further analysis, each of the resulting probe identifiers were converted to gene 

symbols using the DAVID gene ID conversion tool (http://david.abcc.ncifcrf.govl) 
I 

[92;93]. Subsequently, we used the gene symbols as inputs into the NCBI's Online 

Mendelian Inheritance in Man (OMIM) database [94] to search for known relationships 

to leukemia, specifically acute myeloid leukemia (AML) and acute lymphoblastic 

leukemia (ALL). At first glance, none of the four features show a relationship to ALL or 

AML. However, both of these diseases are known to be affected by chromosomal 

translocations [95-97]. As it turns out, three of these features occur in regions affected by 

these translocations, including the ADRB gene which is close to WHSCILI (NSD3) 

[98], known to be involved in gene fusion events associated with AML; NRL, which is 

close to the CEBPE gene associated with ALL [97]; and WRB that lies in an AML 

familial leukemia region close to the AMLI oncogene [95]. The remaining factor, 

ATP2A2 was shown by Golub et al [99] to be one of the 50 genes most highly correlated 

with the ALL-AML class distinction with high expression levels in ALL and low 

expression in AML. As a result, the four features selected fit into the story of AML and 

ALL leukemia, albeit by an indirect mechanism. 
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In the case of the ICMLA-09 cancer dataset, with five features and a network 

initialized with fifteen neurons (five from each class), the resulting network had a 5.75% 

20-fold cross-validation classification error and 4.4% testing classification error. The 

final network contains five active neurons only (saliency > 2). Table 20 lists the 

significant weights (lwl>0.02) connecting important neurons to the output layer while 

Table 19 lists the importance of every neuron in terms of saliency (increase of error at the 

output if the neuron is removed). 

Table 19 

Significant Neurons of the Final ICMLA-09 Cancer Reduced HyperBF Network: Saliency 
of every neuron is listed for every output (only high saliencies are listed: S > I) 

.\:,;/ ~Neruroli', ' 
~ . ~~ ~ - .-... ~~' ... -.- ',,' ,'.breast .' ... ', , .'. colon lung 

2 85.8 14.9 -
6 2.3 - -
7 1.1 1.8 -
8 - 4.9 14.2 
12 - 16.7 -

Table 20 

Final Structure of the ICMLA-09 Cancer Reduced HyperBF Network: Only significant 
weights connecting significant neurons to every output are listed (lwl>0.02). 

~~~~~ 
2 1.0 -0.4 -
6 -0.6 0.2 0.1 
7 -0.3 0.4 -
8 - 0.4 -0.7 
12 - -0.6 -

Neurons that connect to the output of breast cancer with a positive weight are 

representative of what distinctively describe ' breast cancer samples whereas negative 

neurons describe what is not a breast cancer sample. Therefore, Tables 20 and 19 indicate 

one type of breast cancer, two types oflung cancer and three types of colon cancer. 
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The previous analysis though can be considered by a biologist, it is not very accurate 

and the network is somewhat ambiguous. For example, neuron 6 is shared between colon 

and lung cancer output. Furthermore, the resulting network does not take in consideration 

all the genes that are active in the development of the three diseases. Table 21 lists the 

five genes active in the final network and some of the known information about them. 

Table 21 

The Four Probes Sufficient for Accurate Classification in ICMLA-09 Cancer Dataset. 

)t', Probc '::->' ,'.Gene S~mbol . . ." '. DescriptiOil " 
-..:.!!:~~ ~ __ ....... !L.'!..:.."'S'''O'':''..,<'-':l _Sa.~ .. ~.:.i....:. _ "",:-- ~'_:'P>LJ-' -=-',~""",,~ ... ' _)-~~." ~ .. ~, ,,=-~ ~".~~~..!:~~a·_ ... _._ ,,!., -- .. ~ - ~ . 
210302 s at MAB21L2 MAB-21-Like 2 
230772 at EST Sequence N/A 
209810 at SFTPB Surfactant, Pulmonary-Associated Protein B 
209604 s at GATA3 GAT A Binding Protein 3 
209708 at MOXD1 Monooxygenase, DBH-Like 1 

For further analysis, each of the probe identifiers were converted to gene symbols 

using the David gene ID conversion tool as with the AML-ALL data. Gene symbols were 

used as inputs into OMIM as a first pass. One of the features, 209810_at, fits perfectly 

into this dataset as it is associated with coating the lungs as a pulmonary surfactant 

protein. Further analysis of 209810_ at shows that this protein is often associated with 

respitory distress and/or injury [100], indicating it can be affected by lung cancer. Feature 

209604 s at has been shown to be involved in invasive breast carcinomas as well as 

hormone-dependent breast cancer [101 ;102]. The remaining three probes were examined 

for EST expression profiles using NCBI's Unigene [81]. Of these, 210302_s_at shows a 

high expression in neuroectodermal tumor tissues, but its relationship to lung, breast and 

colon cancer is unclear. Feature 209708 _at shows a high expression in lung tissue. Thus, 

it may be associated with lung cancer. An alternative is that since there are not any 
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controls, this simply differentiates lung tissue from breast and colon tissue. The 

remaining sequence, 230772_at does not belong to a known gene, but is rather an 

expressed sequence tag (EST) that comes from a protein's precursor. This EST was 

originally sequenced from a colon tumor, and thus is likely to have a relationship with 

that group since its expression profile is otherwise low. 

6. CONCLUSION 

Compared to the other two algorithms (ReliefF and SVM-RFE), Reduced HyperBF­

RFE results in a consistent and stable classification accuracy. On two microarray 

datasets, the Reduced HyperBF -RFE significantly outperforms the ReliefF algorithm 

while being very competitive with SVM-RFE. Furthermore, the Reduced HyperBF-RFE 

yields in more stable results than SVM-RFE. For example, the classification accuracy for 

Reduced HyperBF oscillates less than SVM between the different iterations of feature 

elimination. This can be mainly due to the fact that Reduced HyperBF has embedded soft 

feature selection and always makes the solution invariant to many of the features it uses 

for training. 

A small subset of features generally facilitates the work of a biologist or a medical 

investigator to discover the factors of a certain disease. However, it can be more 

informative to have a bigger set of genes that are correlated with the disease for novel 

discovery of subtle mechanisms at work. One way to obtain a bigger set of genes is to 

stop the feature elimination in the early iterations of Reduced HyperBF-RFE. An 

alternative approach is to eliminate the first minimal set of features and restart the search 

for another set of genes and so forth. 
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In both of the datasets, Reduced HyperBF -RFE selected a small subset of features 

with high discriminative power. This minimum feature set can be useful in assembling an 

accurate diagnostic tool. Based on further research in public databases, these features 

show meaningful associations at least as far as the presented data is concerned. One 

caveat is that the dataset does not include any normal controls, making the model 

somewhat ambiguous to interpret. In addition, it is difficult to rule out other associations 

and detection of features shared between types of cancers. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

1. Dissertation Summary 

By employing a multi-scaled Gaussian activation function, HyperBF networks 

possess a great capacity to learn complex decision boundaries using a small network 

structure. The localized weighted distance in a HyperBF network can uncover 

information about the local variation in scaling and the discriminative power of every 

feature. Nonetheless, a HyperBF network model suffers multiple problems. First, 

estimating such a complex model is a computationally challenging optimization problem. 

Second, the high capacity of the network is coupled with a tendency to overfit training 

data. Third, the optimization problem is non-convex and usually the solution converges to 

a local minimum. 

In this work, two of these problems were addressed. A new regularization method 

that performs soft local dimensionality reduction in addition to weight decay is proposed 

and evaluated. In all experiments reported, Reduced HyperBF networks are shown to 

provide classification accuracy that is competitive to SVM networks while requiring a 

significantly smaller network structure. Furthermore, the resulting compact network 

representation gives a tool for higher level analysis. Significant centers can be argued to 

101 



be centers of subpopulations of the class while the locally significant dimensions provide 

information about the unique properties of the subpopulation. 

t 

On the other hand, the proposed iSRprop optimization algorithm (scaled Rprop with 

localized partial backtracking) results in a smooth training that is less likely to diverge 

than regular Rprop algorithms. In all experiments presented in this dissertation, the 

proposed training algorithm did not diverge a single time. Furthermore, the proposed 

scaling and the local partial backtracking in Rprop training are general concepts and can 

be applied to Rprop with necessary modifications to different optimization problems. 

Another contribution in this dissertation is the development of a new feature selection 

algorithm: Reduced HyperBF-RFE. Reduced HyperBF-RFE iteratively eliminates 

features that have the least effect on the training error of the Reduced HyperBF network. 

It is motivated by the localized dimensionality reduction in Reduced HyperBF networks 

which takes in consideration the localized discriminative power of each feature in 

addition to the co-occurrence of specific values along a specific set of features. Based on 

experimental results, the proposed Reduced HyperBF-RFE algorithm is shown to be an 

effective tool in selecting a minimal subset of discriminative features in microarray 

analysis. Reduced HyperBF-RFis also anticipated to have similar performance on other 

datasets of high dimensionality such as text document categorization. 

In two different case studies of bioinformatics applications: Transcriptions Start Site 

(TSS) detection in human DNA and micro array analysis, Reduced HyperBF is shown to 

be useful for both accurate classification and higher level analysis. The resulting 

recognition tools were shown to either outperform other existing methods or result in 

very competitive results. 
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2. Future Research Directions 

In spite of the significance of the contributions presented in this dissertation, many 

questions remain unsolved and need to be handled in future research. Methods to ease or 

avoid the local minimum problem such as simulated annealing [103] need to be 

investigated. Also, determining the optimal number of neurons remains an unsolved 

question. One possible solution is to start the network with a large number of neurons and 

use the weight decay to eliminate most of them so that the cross-validation error is 

minimal. 

Moreover, training a Reduced HyperBF network demands a search for regularization 

parameters which is computationally demanding and time consuming. Future research 

should investigate the development of regularization path finding algorithms [45] which 

should cut the time for such a search significantly. 

Furthermore, all methods and experiments in this dissertation ignore the importance 

of the non-diagonal elements of the scaling matrices. As a result, the localized correlation 

between features is not taken in consideration. This is mainly due to the prohibitive 

memory and computation time needed to handle such an optimization problem. 

Nonetheless, full scaling matrices for low dimensionality problems can be practical. In 

addition, a selective approach to non-diagonal elements of scaling matrices can also be 

practical. Future research should investigate the two lateral cases. 
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APPENDIX 

1. Agglomerative Hierarchal Clustering 

Agglomerative hierarchal clustering is used to initialize all HyperBF networks 

reported in this dissertation. Wards' distance is used to measure similarity between 

clusters. The algorithm iteratively merges similar clusters while simultaneously 

performing k-means clustering to assign samples to clusters and update clusters 

parameters. The employed k-means clustering algorithm uses the normalized 

Mahalanobis distance to assign samples to clusters. After every iteration of assigning 

samples to their closest clusters, the center and the covariance of each cluster are updated 

as follows: 

(73) 

~!V_l u·· x ex· - /1.)2 C = L...l- I] I J 
1 ~N 

L...i=l Uij 
(74) 

Where 

U .. = {l if Xi E cluster j 
I] 0 otherwise 

In (73) and (74), Uij is the membership of sample i in clusterj. 
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Init 
Set number of desired clusters: csCount. 
Set initial number of clusters: initCsCount (i.e. initCsCount = 5 x csCount) 
Initialize initCsCount clusters randomly. 

Loop 
Start k-Means clustering 

Loop: 
Assign samples to their closest clusters 
Update clusters parameters (mean and covariance) 

Until convergence or fixed number of iterations 
End k-Means. 

Merge the closest two clusters based on Wards distance. 

2. Equations and Gradient Derivatives 

In the multi class case (N samples, Jhidden neurons and K outputs/classes), the output 

of the HyperBF network at the J(h output node is computed as: 

] 

fik = A(xa = I Wjk X hij + bk 
j=l 

(75) 

where Wjk is the connection weight from hidden neuronj to output node k while hij is the 

output of neuron j for the given sample Xi and it is computed as: 

(76) 

where dijz = (XiZ - J1jz) and Vjz > 0 "iIz 

The training error of the network in the multiclass case is: 
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(77) 

The gradient direction of the network error with respect to weights ("'J'k), scaling factors 

('VjZ)' and centers' variables (/ljz) is computed as: 

(78) 

N K 

dE 12: 2 2: - = - h" x d.. x W'k(t'k - F'k) dv, 2 lj IjZ J I J i 
jZ i=l k=l 

(79) 

N K 

dE = _ " h .. x v' x d .. x" Wk(t'k - F'k) d/l' L lj JZ IjZ L J I Jt 
JZ i=l k=l 

(80) 

The reduced HyperBF objective function is as follows: 

(81) 

Computing the gradient direction of the regularized network error with respect to weights 

("'J'k), scaling factors (Vjz), and centers' variables (/ljz) is as follows: 

dEreg dE II Il a w-1 , -d-- = -d- + II.w x aw x Wjk x Stgn("'J'k) 
Wjk "'J'k 

(82) 

dEreg dE 1 
--=--+11. Xa Xv' a v-
dVjz dVjz v v JZ 

(83) 

(84) 

The HyperBF objective function with smoothing splines regularization is: 
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where 

where d ijz is computed as in (76). 

N Z 

dEss dE I I dSikz -----+il. S"k x--
dWk - dWk 1 z dW"k 

] ] i=l z ] 

N K 
dEss dE I I dSkzi --=--+il. Sk" x--
dVzj dVzj i=l k=l Zl dVjz 

N K 
dEss dE I I dSikz -----+il. S"k x--
d/ljz - d/ljz i=l k=l 1 z d/ljz 

dSikz _ [2 2 ] 
-d- - h ij X Vjz X d ijz - Vjz 

Wjk 

dSikz [VjZ 2 X dijz 4 3 x Vjz X d ijz 2 1 
-- = w- x h"" x + - 1 dv" ]Z I] -2 2 

]Z 

dSikz _ 2 [2 ] 
-d- - V\.}k x Vjz x hij X d ijz X Vjz X d ijz - 3 

/ljz 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

In all trained HyperBF networks reported in this dissertation, the variable bk was set to 

zero for the first hundred iterations. Afterward, it was updated by solving the minimum: 

(93) 
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However, in the experiments, where iSRprop was compared to iRprop+, bk was set to 

zero in all networks for both algorithms. 

3. Time and Memory Complexity 

Both the proposed regularized and the unregularized networks have the same time and 

memory complexity for each training iteration. In the multi-class case, the time needed to 

compute all the derivatives and to re-compute all memberships in one iteration is of order 

OeN x I x Z x K) where N, J, K and Z are the number of samples, the number of 

neurons, the number of outputs and the number of dimensions respectively. On the other 

hand, for efficient implementation, the output from the hidden neurons and output 

neurons for every sample needs to be stored in memory and hence the training demands 

an extra memory of order 0 eN x [I + K]). 

If smoothing splines is used for regularization, the time needed to compute the 

derivatives, re-compute the membership matrix and re-compute the matrix Skzi is also of 

order OeN xl x Z x K) but with more multiplication operations in each iteration. To 

store the three dimensional matrix Skzi in memory, an extra memory of order OeN x Z x 

K) is needed. Iterating through such a large matrix repetitively is so inefficient due main 

memory being much slower than the processor and the cache memory is small in most 

processors. 
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