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ABSTRACT 

REDOX-REGULATED ETHYLENE BINDING TO 

A RHENIUM-THIOLATE COMPLEX 

Kagna Ouch 

November 04,2008 

This thesis reports the reactivity of the rhenium-thiolate complex, tris(2-

diphenylphosphinobenzenethiolato )rhenium(III), [Re(DPPBT)3] (1) and its oxidized 

derivatives with ethylene. The reactivity has been studied by electrochemical, 

spectroelectrochemical, and chemical methods. Based on the cyclic voltammetric data, 

(1) shows two reversible one electron oxidations and a single reduction. The three redox 

events are observed at potentials of 420, -340 and -1620 m V versus a ferrocene reference. 

The events span formal oxidation states from Re(II) to Re(V) although significant ligand 

participation in the redox events makes these formal assignments misleading with respect 

to the electronic structure of the complexes. Bulk oxidation of (1) (Eapplicd = +23 mY) in 

the presence of ethylene yields {[( ethane-l ,2-diylbis(thio-2, I-phenylene )diphenyl­

phosphino )(2-diphenylphosphinobenzenethiolato )]rhenium(lII)} (6) from the addition of 

the alkene across cis sulfur sites. Electronic spectra recorded during the oxidation reveal 

two stages. The first stage is assigned as the one electron oxidation of (1) to tris(2-

diphenylphosphinobenzenethiolato )rhenium(lV) (3), which is indicated by the intensity 

increases at 390 and 581 nm. During the second stage, a reaction occurs between (3) and 

ethylene that yields {[( ethane-l ,2-diylbis(thio-2, I-phenylene )diphenyl-phosphino )(2-
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diphenylphosphinobenzenethiolato)]rhenium(II)} (5), which is oxidized to (6) as shown 

by the intensity loss at 390 and 581 nm and simultaneous intensity gain at 484 nm. The 

formal Re(III)/Re(II) reduction potential of (6) is shifted approximately + 1520 m V 

consistent with the formation of two thioether donors. Complex (6) is stable in solution, 

but reduction at an applied potential of -977 m V initiates C-S bond cleavage and release 

of ethylene. The spectroscopic results reveal the pathway to be the reverse of the C-S 

bond formation. Oxidation of (1) using AgPF6 followed by an ethylene purge yields 

(6)[PF6]. The +ESI-MS of (6) [PF6] shows a parent ion peak at m/z = 547.0710 (z = 2). 

The complex (6)[PF6] crystallizes as a long thin orange plate in the monoclinic space 

group e2k with unit cell dimensions ofa = 29.009(18) A; b = 22.577(18) A; c = 43.99(3) 

A; and P = 96.182(17)°. The kinetic and equilibrium parameters associated with C-S 

bond formation/cleavage were extracted from cyclic voltammograms at multiple scan 

rates using the DigiSim software package. The rate constants for C-S formation between 

(3) and ethylene, kr,. and for C-S bond cleavage for (5), kr , were extracted from 

simulation of the CV data at 7 scan rates ranging from 100 to 1000 mV/s for 3 

independent trials. Average values for Iv and kr are (l.2 ± 0.2) x 10-1 M-1 
S-I and (3.0 ± 

0.4) x 10-2 
S-I, respectively. From these, K2 was calculated as 4.0 ± 0.8 in agreement with 

predictions from the UV-visible study. KI and K3 are equilibrium constants for ethylene 

binding/release between (1) and {[ (ethane-l ,2-diylbis( thio-2, I-phenylene )diphenyl-

phosphino )(2-diphenyl-phosphinobenzenethiolato) ]rhenium(l) } (8), and tris(2-

diphenylphosphinobenzenethiolato)rhenium(V) (4) and (6), respectively. From the redox 

potentials and the equilibrium constant K 2, values for KI and K3 were determined. KI has 

a calculated value of(l.9 ± 0.4) x 10-11 consistent with observation of an unstable C-S 
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bond. In contrast, the calculated value of K3, (2.5 ± 0.9) x 109
, is large and is consistent 

with the observed stability of (6). The large differences in equilibrium constants as a 

function of oxidation state provide a means to easily gate ethylene addition/release. 
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CHAPTER I 

INTRODUCTION 

Ethylene is the simplest unsaturated hydrocarbon and is classified as an alkene or 

olefin. Although small in molecular weight, it is the largest organic molecule in terms of 

industrial production.) As shown in Scheme 1-1, annual U. S production of ethylene has 

averaged 24 million metric tons since 1999, and worldwide production in 2007 was 

estimated as 81 million metric tons.2.3 The large scale production of ethylene is required 

since it is a feedstock for polyethylene, ethylene oxide, ethylene chloride and other 

products. Also ethylene is used for welding, anesthetic agent, and fruit ripening. Ethylene 

is manufactured by various methods such as thermal cracking of hydrocarbons, catalytic 

pyrolysis, membrane dehydrogenation of ethane, and other methods.4 

Mainly, ethylene is produced from thermal cracking of naphtha in the 

petrochemical industry. Scheme 1-2 outlines the basic steps in the process.5 Naphtha 

feedstock is heated up to 750-950 DC. This process converts large hydrocarbons to small 

and unsaturated molecules. Then, this step passes by compression and distillation 

resulting in cracked gas stream. Cryogenic treatment is used to cool down the cracked gas 

stream. The gas stream is then separated by two fractionators. The first is the ethylene 

fractionator, and the second is the propylene fractionator. For this thesis, only the 

ethylene fractionator is of interest. All of the cold cracked gas stream transfers through 

the demethanizer tower which produces an overhead consisting of hydrogen and 
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methane. Methanation is used to purify hydrogen. The pure hydrogen is withdrawn from 

the lowest temperature stage separator. The bottom stream from the demethanizer tower 

goes to the deethanizer tower. This tower contains C2 's that are sent to a C2 splitter. The 

ethylene product obtained from the overhead of the tower is subjected to acetylene 

removal and hydrogenation to purify the ethylene. Ethane is also obtained as base product 

from the C2 splitter. Overall, this process is energy-intensive and costly.6 As world 

energy prices increase and ethylene production remains high, there is increased need to 

improve efficiency. 

U.S. Ethylene Production 

26 
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Scheme 1-1. U.S. ethylene production recorded from 1988 to 2007. Data obtained 
from C&E News. 2,3 
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Scheme 1-2. Flow diagram for separation of ethylene from other thermal 
cracking products. 

An alternated separation technique involves chemically specific reagents that 

react with ethylene reversibly. Several schemes using redox-active metal complexes have 

been studied. The separation of ethylene from poisonous by-products was first studied by 

Suzuki.? Using redox-active salt copper(l) triflate, reacted with vinyl sulfonate anion to 

increase alkene binding affinity, ethylene and other alkenes were separated from alkanes 

in the feed. The binding and release of ethylene were observed by a chemical shift in the 

proton NMR and was followed by purging ethylene and nitrogen through the solution. 

Moreover, the cyclic voltammograms for both nitrogen and ethylene atmospheres showed 

a quasi-reversible Cu(II)/Cu(I) couple that the formal potential shifted more positive. The 
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positive shifts in formal potential are consistent with the proton NMR which indicated a 

weak, reversible complexation of ethylene with the Cu(l). However, CO and H2S 

poisoned the system. This system is interesting as Cu(l) also plays an important role as a 

cofactor for high-affinity ethylene binding in exogenously expressed ETRI receptors. 

ETRI is one of five ethylene receptor proteins in plants. Ethylene serves a plant hormone 

affecting seed germination, fruit ripening, and other processes.8 

Dimeric molybdenum complexes with sulfide ligands were reported by Rakowshi 

DuBois et al. The dimeric complex contains two thiolate bridges and two bridging 

sulfides. The reactive bridging sulfido ligands are constrained in a cis configuration 

resulting in coordination of alkenes (Scheme 1-3). Similar reactions are observed for 

hydrogen and alkynes. However, these systems are not tolerant ofH2S and CO.9 

+ RHC= CHR :;::::::~ 

Scheme 1-3. Reversible addition ofalkenes to (CpMo)2(S2CH2)S2. 

Stiefel and coworkers reported binding of ethylene to an oxidized nickel 

dithiolene with subsequent release upon reduction (Scheme 1-4 dark lines). 10 Inter-ligand 

addition resulted in formation of an sl- chelate for nickel which was reportedly stable 

unless reduced. However, later studies revealed that the reaction is more complex 

(Scheme 1-4 dashed lines). Deleterious intra-ligand ethylene addition, leading to 

4 



dihydrodithiin and complex degradation, dominates while the desired inter-ligand 

addition is a minor product. II In studies by Geiger, complications regarding the ethylene 

release were noted. The potential required for ethylene release was also able to reduce the 

initial nickel dithiolene leading to decomposition products. 12 
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Scheme 1-4. Redox initiated ethylene binding/release. The solid lines represent the 
desired pathway. The dashed lines show competing paths leading to decomposition. 

Our approach is to use metal thiolate complexes to overcome the problems 

displayed by the dithiolene system. Metal thiolates are found in numerous biological 

systems. The role of the sulfur depends heavily on the identity of the metal and the other 

ligands that are present (Scheme 1-5). For example, zinc finger proteins contain a N2S2Zn 

zinc-dithiolate core which serves structural purposes that is relatively unreactive. 13 MeTe 
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and Ada proteins contain a [S4Zn t core that is utilized in DNA repair. 14 The thiolate in 

these cases is nucleophilic and undergoes S-methylation. Moreover, rubredoxins which 

serve as electron transfer agents contain an [S4Fetcore with a tetrahedral iron 

coordinated by four cysteines.15 

Scys 

I 
__ Zn 

cysS / 'Nhis 
Nhis 

Zinc Finger protein 
from GATA family 

Scys 

I 
__ Zn 

cysS I' Scys 
cysS 

Ada DNA repair 
protein 

Scys 

I 
__ Fe 

cysS I""""" 
Scys 

cysS 

Rubredoxin 

Scheme 1-5. The functional site of zinc and iron proteins with a pseudo-tetrahedral 
cysteine-rich environment. 

The reactivity of the thiolate has been attributed to the interaction of the sulfur p 

lone-pair with a "t2g" metal d-orbital. 16,17 As shown in Scheme 1-6, there are three general 

cases for these interactions depending on the relative energies of the orbitals. When the 

metal d-orbital and sulfur p lone-pair have similar energies, (Scheme 1-6a), there is a 

strong interaction that yields a significantly stabilized 1t-bonding orbital and a 

significantly stabilized 1t-anti-bonding orbital. Each of these orbitals has significant sulfur 

and metal character. Although there is no net 1t-bond, the increased energy of the anti-

bonding orbital "activates" the thiolate nucleophilicity. Further, since the orbital is not 

localized on the metal or sulfur, it is difficult to assign oxidations as metal- or ligand-

centered when an electron is removed. Rather, "metal stabilized thiyl radicals", or 

complexes that enjoy increased stability but maintain some reactive properties of thiyl 

radicals are generated. 
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When the sulfur p lone-pair orbital has higher energy than the h g metal d-orbital 

there is no significant interaction between the two. The higher energy orbital is sulfur-

centered and may be nucleophilic, but it is not "activated" (Scheme 1-6b ).16 Oxidation 

would be expected to be sulfur based. When the h g metal d-orbital is higher in energy 

than the sulfur p-orbital, there is also no significant interaction. The thiolate is not 

expected to be as nucleophilic, and oxidation is regarded as metal-based (Scheme 1-6c). 

"+,, 
I ' , . 

I ' 

-1L: ':+ I r \ I 

E 
, I 

Md', " Sp ,-*,1 

(a) (b) (c) 

Scheme 1-6. Partial molecular diagrams are showing interactions of metal d-orbital 
and sulfur p orbital to generate a x-bonding and x-anti-bonding orbitals. 

Reactions of organic thiyl radicals typically correspond to one of three major 

classes (Scheme 1-7). First, thiyl radicals may react with each other forming a disulfide. 

Second, thiyl radicals can abstract hydrogen from activated C-H bonds. Finally, thiyl 

radicals can react with unsaturated hydrocarbons in a C-S bond forming reaction. 18 

Carbon-sulfur bond formation between organic thiyl radicals and unsaturated 

hydrocarbons has been exploited for cis/trans isomerization, sulfide synthesis, and 

polymerization. In 1958, Helmreich and coworkers reported thiyl radical initiated 

isomerization of cis-alkenes to trans-alkenes in a reversible reaction. 19 The addition of 
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thiyl radicals to alkenes to form C-S bond was utilized by the Ichninose group for the 

synthesis of sulfides.20 Apart from the C-S bond formation reaction, thiyl radicals have 

also been used in the initiation of block polymerization. 

RS· I ) RS-SR 

RS· R'-H) RS-H + R~ 

IR'2C=CR': RSCR'2CR'2 
Scheme 1-7. Three major reactions for organic thiyl radicals. 

The object of this thesis is to use metal-thiolate to promote C-S bond formation by 

hindering disulfide formation and H-atom abstraction. Geometric or steric constraints are 

sufficient to hinder disulfide formation. Hydrogen abstraction from C-H bonds by thiyl 

radicals is only favored for activated hydrogen atoms since the S-H bond enthalpy 

typically is weaker than the C-H bond enthalpy.21 Coordination of the thiolate to a metal 

should further decrease S-H bond enthalpy. 

Previously in the Grapperhaus group, the trithiolate complex [Ru(DPPBT)3r was 

shown to be a good nucleophile, reacting even with CH2Ch to generate a dithioether 

(Scheme 1_8)?2 By combined spectroscopic and electrochemical investigations along 

with computational studies, it was also shown that oxidation yields an intermediate best 

described as a metal-coordinated thiyl radical, as shown in Scheme 1_9.23-26 In acetonitrile 

and most other solvents, the radical slowly decays to a proposed disulfide complex?7 The 

slow rate is attributed to the orthogonally positioned thiolate p orbitals. Poturovic showed 

that the intermediate reacts with methyl ketones to generate new C-S bonds.28 Her work 
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implicated the enol tautomer of the ketone as the reactive species. These suggested 

alkenes should also react with the intermediate. This was confirmed by Venna who 

showed that a variety of alkenes add across the cis sulfur sites to generate dithioether 

complexes. However, these complexes could not be reduced, and the C-S bonds could not 

be cleaved.29 

Scheme 1-8. The reaction of [Ru(DPPBThr with dichloromethane. 

Ph2P ....:;: 

0:; .... 8........ I III . ·8 ........ "R .... 

I ~ /' lU' \ 
Ph2 8 \ 

Ph2 ·• .... ·O 
\~ 

Ligand 
le- oxidation 

Scheme 1-9. Oxidation of [Ru(DPPBT)3] to the reactive intermediate. 

The focus of this thesis will be directed towards understanding oxidation and 

reduction induced C-S formation and cleavage, employing the related rhenium complex 

[Re(DPPBTh] (1) (DPPBT = 2-diphenylphosphinobenzenethiolate) (Scheme 1-10). 

[Re(DPPBT)3] and [Ru(DPPBT)3t, the reactive Ru intermediate, are isoelectronic. 
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Complex (1), previously reported by Dilworth at el., shows two oxidations and one 

reduction making it is a suitable candidate for investigation of a redox-regulated 

reversible alkene binding system.3D 

Scheme 1-10. Stick representation of [Re(DPPBTh] (1). (DPPBT 2-
diphenylphosphinobenzenethiolato ). 
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CHAPTER II 

EXPERIMENTAL METHODS 

Materials and Physical Methods 

All chemicals were purchased from commercial sources (Aldrich, VWR 

chemicals, TCI, Acros Organic, Alfa Aesar, Strem Chemicals) and used without 

purification unless otherwise stated. AgPF6 was obtained from Aldrich and stored in an 

argon filled dry box. The ligand H(DPPBT) was synthesized as the modification as 

described below. 31 The complex as [ReOCb(PPh3)2] and [Re(DPPBT)3] were prepared as 

described in the literature?O,32 Ethylene gas (polymer purity 99.9 %) was obtained from 

Matheson Tri-Gas. All solvents were purified utilizing the standard methods and were 

freshly distilled immediately before use.33 Deuterated chloroform was obtained from 

Cambridge Isotope Laboratories, Inc. and used as received. All reactions were performed 

under anaerobic conditions via standard Schlenk line techniques unless otherwise noted. 

IR spectra were measured with a Thermo Nicolet Avatar 360 spectrometer with a 

resolution of 4 cm- I
. An Agilent 8453 diode array spectrometer was used for all 

electronic absorption measurements utilizing a custom designed cell with a 0.5 cm path 

length. Element analysis was performed by the Midwest Microlab (Indianapolis, IN). 

Mass spectra were collected by the Mass Spectrometry Application and Collaboration 

Facility in the Chemistry Department at Texas A&M University. X-ray crystallography 

was conducted by Dr. Mark Mashuta at the University of Louisville's X-ray diffraction 
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laboratory. X-ray crystallographic data were collected on a Brucker SMART APEX CCD 

diffractometer. CCDC-699464 contains the supplementary crystallographic data for this 

thesis. Data can be obtained free of charge from The Cambridge Crystallographic Data 

Center via www.ccdc.cam.ac.ukJdataJequest.cif. 

Electrochemical Methods 

All electrochemical measurements were performed by usmg a PAR 273 

potentiostat/galvanostat with a three-electrode cell (glassy carbon or platinum mesh 

working electrode, platinum wire/mesh counter electrode, and Ag/ Ag + pseudo reference 

electrode). All reported potentials are relative to ferroceniumlferrocene which was 

observed at +577 m V versus the pseudo reference. 

Cyclic Voltammetry 

For cyclic voltammetry experiments, a Dr. Bob's cell was used as a three 

electrode celL The Dr. Bob's cell kit was purchased from Gamry Instruments. The cell 

contains a platinum wire counter electrode, a 6.5 mm diameter glassy carbon working 

electrode, and an Ag/Ag+ pseudo reference electrode. The Dr. Bob's cell can be used with 

solvent volumes from 2 mL to 50 mL and, in typical experiments; a volume of 10 mL 

was used. 

Prior to addition of analyte, background voltammograms were collected using 10 

mL of dichloromethane with 0.1 M tetrabutylammonium hexafluorophosphate 

(TBAHFP) as supporting electrolyte as described below. Nitrogen gas was bubbled 

through the solution for 5 minutes to remove dissolved oxygen, and then the solution was 

settled for 2 minutes without disturbing under a nitrogen atmosphere. The initial, 

switching and final potentials were set between the solvent limits of -1.5 V to 2.0 V 
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versus the pseudo-reference. Background voltammograms were collected at scan rates of 

100, 150, 200, 300, 400, 600, 800, and 1000 m V Is. The window was scanned from 

negative to positive. 

Cyclic voltammograms of the analyte were obtained at a concentration of 1.0 

mM. Data was collected at multiple scan rates of 100, 150,200,300,400, 600, 800, and 

1000 m V Is with various potential windows. Prior to each scan, the solution was purged 

with nitrogen for several minutes and then held under a nitrogen atmosphere during 

analysis. For experiments with ethylene, a similar protocol was used with ethylene 

replacing nitrogen as the purge and head gas. Three independent samples were analyzed. 

Prior to data interpretation, the appropriate background voltammogram was 

subtracted from the measured sample data. For each set of data, the CV results over all 

scan rates were fit simultaneously with DigiSim software package.34 The DigiSim 

software package was purchased from Bioanalytical Systems. All data were input in a 

text data file format. Existing data files were converted to the .use format as described in 

DigiSim instruction manual. 35 

The results of data analyses under nitrogen and ethylene in the small window and 

larger window are described in chapter III. The methods of analysis are described below. 

The data collected under nitrogen in the "small window" was fit as a single, one electron 

redox event. Uncompensated resistance was estimated using the method of Bond et al.36 

The diffusion coefficient was treated as a variable parameter with an initial setting of 10-6 

cm2/s. The standard rate constant (ks) was treated as a variable parameter with an initial 

guess estimated by equations 1 and 2. The standard half potential was estimated based on 
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the potentials of minimum and maximum current and allowed to refine freely. The 

transfer coefficient, a, was set to 0.7.37
,38 

ks = 'I'*a (1) 

a = (nDofv) 1/2 (2) 

The data collected under ethylene in the "small window" was fit according to an 

ECEE mechanism with three redox events and a single chemical step associated with the 

equilibrium constant K defined by kf and kr . All available parameters from the simulation 

under nitrogen were used as initial settings. The diffusion coefficients of all species were 

treated as single, variable parameter. The concentration of ethylene was set to the 

literature value (0.4642 M) for saturated dichloromethane solutions.39 The parameters K 

and kf were estimated from UV-visible studies and allowed to freely refine. The rate 

constant, kr, was calculated from K2 and kf . 

All fitting parameters were refined simultaneously over all scan rates and reported 

values are of the average of three independently prepared samples. Simulation of data 

collected in the "big window" under nitrogen and ethylene were similarly treated. This 

data is complicated by competing decomposition reactions as described in chapter III. 

Bulk Electrolysis 

A custom built cell was used for bulk electrolysis and/or spectroelectrochemistry. 

The custom cell that was designed by E.Bothe of the Max-Planck Institute fUr 

Bioanorganische Chemie, Mulheim, Germany. The custom cell has a volume of ~ 10 mL 

and two quartz windows with a 0.5 cm path length. The sample holder and cell were 

situated in custom-built Plexiglas box fitted with Dynasil 4000 quartz windows (Pacific 

Quartz) that was purged with nitrogen during low temperature experiments to prevent the 
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condensation of water on the sample holder. A VMR 1190A chiller was used to lower the 

temperature for the cell which was adjusted to -35°C and the inside cell temperature was 

shown to be -15°C. Nitrogen or ethylene gas was bubbled through the solution in order to 

avoid oxygen diffusion and also to mix the solution. A background square wave 

voltammogram was determined in dry dichloromethane with supporting electrolyte prior 

to analyte addition. Bulk electrolysis measurements were performed with platinum mesh 

working electrode and counter electrodes and an Ag/Ag+ pseudo reference electrode. To 

record square wave measurements, the platinum mesh working electrode was replaced 

with a glassy carbon working electrode. 

The coulometric data was plotted as current versus time and/or charge versus 

time. From these plots, a background current and charge could be determined. The 

experimental charge was calculated by subtracting the background charge from the 

measured charge. The number of transferred electron equivalents was determined by 

comparing this value with the theoretical value calculated from Faraday's law. The 

electronic spectra were collected by carefully positioning the purge tube out of the quartz 

window at approximately one tenth of total expected charge intervals. 

Square Wave Voltammetry 

The square wave measurements were performed as described for the bulk 

electrolysis experiment. After each performed oxidation (or reduction), the working 

electrode was switched to a glassy carbon electrode and counter electrode was changed to 

a platinum wire electrode, bubbling was stopped, and a square wave voltammogram was 

obtained. In all cases, the initial potential was held for 15 seconds prior to initiation of the 

scan. Data was collected by two ways. The cathodic scan was obtained by input an initial 
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and final potential from -1.5 V to 2.0 V and anodic scan was vice versa. The resulting 

peaks were plotted as current versus potential. 

Electrochemical Synthesis 

[tris(2-diphenylphosphinobenzenethiolato)rhenium(II)] (2): The spectroelectro­

chemical cell was filled with 10 mL of dichloromethane and 0.387 g (0.1 M) of TBAHFP 

was added to record the backgrounds for both UV-visib1e spectroscopy and cyclic 

voltammetry. Then 3.0 mg (3.0 /lmol) of [Re(DPPBT)3] (1) was added resulting in a 

burgundy colored solution. Nitrogen was bubbled through the solution to ensure proper 

mixing followed by applying a potential of -1877 mY. During the reduction, the pink 

solution was formed as a result of the compound (2) product. This compound (2) is easily 

oxidized to (1) and reliable coulometric results could not be obtained. No efforts were 

made to isolate (2). The observed square wave voltammograms were not changed as 

compared to the original events. The events were shown at 427, -357, and 1600 mY. 

[tris(2-diphenylphosphinobenzenethiolato)rhenium(IV)] (3): All measurements were 

performed as described in the synthesis of compound (2). Next, to the solution was 

applied a potential of +23 mV until the current achieved the baseline. In this first 

oxidation, -160 me (0.86 electron equivalent) of charge was produced. As a result, 

compound (1) was converted to a blue compound referred to as compound (3) (A.max (nm) 

= 390, 581). The square wave voltammogram events were observed at 427, -357, and 

-1600 mY. 

[tris(2-diphenylphosphinobenzenethiolato)rhenium(V)] (4): The blue solution of 

compound (3) was held under nitrogen atmosphere, then the holding potential for second 

oxidation was applied at a potential of +723 m V. During the oxidation, the color of the 
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solution changed to brown fonning compound (4) (Amax (nm) = 477). The current decayed 

until less than 1-5% and the resulting charge was -371 mC (2 electron equivalents). The 

square wave events were detennined at 427, -357, and -1600 mY. 

{[ ethane-l,2-diylbis( (thio-2,1-phenylene )diphenyl-phosphine) ] (2-diphenyl­

phosphinobenzenethiolato)rhenium(II)} (5): Ethylene was purged through a fresh 

solution of compound (3) for 10 minutes in the fume hood. The square wave 

voltammogram was recorded at potential of -1099 m V. The solution was developed to 

purple as the fonnation of compound (5) and electron absorption was measured at (Amax 

(nm) = 323). The square wave voltammograms were displayed under ethylene 

atmosphere and the events were shown at -131, -365, and -1587 mY. 

{[ ethane-l,2-diylbis( (thio-2,I-phenylene )diphenyl-phosphine) ] (2-diphenyl­

phosphinobenzenethiolato)rhenium(III)} (6): Compound (1) was oxidized by an 

applied potential at +23 m V for one electron while ethylene was purged through the 

solution. The current was decayed until the oxidation was completed. The resulting 

orange complex (6) occurred at a potential of -151 m V. The electronic spectra were 

indicated by the intensity increase at 484 nm. The square wave events were revealed at 

-131, -365, and -1587 mY. 

Chemical Synthesis 

{[ ethane-l,2-diylbis( (thio-2,I-phenylene )diphenyl-phosphine) ](2-diphenyl­

phosphinobenzenethiolato)rhenium(III)} hexafluorophosphate (7): To a burgundy 

solution of (1) (30 mg, 28 /lmol) in C6H5CI (5 mL) was added AgPF6 (14 mg, 56 /lmol). 

The resulting solution was bubbled with ethylene during which an orange color 

developed. The mixture was then filtered through wool cotton to remove Ag (s). Within 
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10 minutes (7) precipitates as a fine orange microcrystalline product. The C6HsCl was 

removed via cannula and the product dissolved in a mixture of CH2Ch (1.0 mL) and 

C6HsCl (0.6 mL) under an ethylene atmosphere. Slow evaporation of the solvent yields 

X-ray quality needles. Yield: 12 mg (40%). Element analysis (%) calcd. for 

CS6H46PsF12S3Re: C 48.59, H 3.35, obs: C 48.12, H 3.39; +ESI-MS for Cs6H46PsF12S3Re: 

theoretical m/z (Z = 2),547.0766; observed, 547.0710. 

(2-diphenylphosphinobenzenethiol) (DPPBTH): Benzenethiol (6.6 mL, 7 g, 0.064mol) 

was added dropwise slowly to n-butyllithium solvent (57 mL, 0.142 mol) and N, N, N', 

N'-tetramethylethylenediamine (22 mL, 0.14 mol) in 100 mL (0.142 mol) ofcyc1ohexane 

at room temperature under nitrogen atmosphere. The reaction mixture was heated to 70°C 

for 4 hours under reflux. Filtered precipitate was washed with hexane (100 mL). 

Tetrahydrofuran (100 mL) in acetone-dry-ice bath at -78°C dissolved precipitate (lithium 

2-lithiobenzenethiolate). Treatment of precipitate 10 Ice bath with 

chlorodiphenylphosphine (8.41 mL, 0.045mol) was dropped around 2 hours. The mixture 

was stirred for 24 hours at room temperature. The reaction mixture was 

diphenylphosphine 2-1ithiobenzenethiolate which was quenched with aqueous 

hydrochloric acid (30 mL HCl and 170 mL distilled water) to protonate and dry in vacuo. 

The resulting product was added by distilled water (150 mL) and 300 mL diethyl ether. 

The water layer was extracted with ether. The ether layer was then dried with MgS04 and 

the ether was removed to give the indicated products (2-diphenylphosphinobenzenethiol). 

Yield: 1.308g. IH NMR (CD2Ch): cr (ppm) = 7.3-6.7 (14H, m), 4.00 (1H, SH). 31 p NMR 

(CD2Ch) cr (ppm) = -11.73. 
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[oxotrichlorobis( triphenylphosphine }rhenium(V}] 

phosphine (5 g) in 10 mL ethanol was boiled around 2 hours. A boiling solution of 

perrhenic acid (1 g) and concentrated hydrochloric acid (1 mL) was added to 

triphenylphosphine solution. Then the mixture was heated and stirred for 3-5 minutes. A 

greenish-yellow precipitate formed. Then the product was filtered with the gravity 

filtration method. The indicated product was yellow crystal of [ReOCh (PPh3)2] and the 

green impurity was removed by recrystallization. The product was dried, giving [ReOCh 

(PPh3h] yield 85 % (0.861 g, 0.001 mol). IR (KBr pellet), em-I: 1479 (m), 1434 (m), 

1193 (s), 1095 (m), 972 (m), 751 (m), 694 (m), 523 (m). 

[tris(2-diphenylphosphinobenzenethiolato}rhenium(III}] [Re(DPPBT)3] (I): 0.11 g 

(0.036 mmol) DPPBTH (2-diphenylphosphinobenzenethiol) in 0.7 mL triethylamine was 

added to 0.1 g (0.12 mmol) [ReOCh (PPh3)2] in methanol (25 mL). The mixture was 

heated and stirred under reflux for 30 minutes. The precipitate was filtered under gravity. 

The burgundy product was washed with ethanol and diethyl ether and dried in vacuo. 

Yield: 75 % (0.096 g, 0.09 mmol). The square wave voltammetry showed events at 427 

mY, -357 mY and -1600 mY. 

19 



CHAPTER III 

RESUL TS AND DISCUSSION 

As described in Chapter I, the Ru-thiolate complex [Ru(DPPBT)3] adds ethylene 

and related alkenes upon oxidation to yield stable Ru(II)-dithioether complexes. The C-S 

bond forming reaction is stoichiometric with good yields. However, the complex cannot 

be reduced, and no route for C-S bond cleavage could be identified. In an unrelated study 

by Rothlisberger, C-S bond cleavage for rhenium, technetium, and ruthenium dithioether 

complexes was investigated using computational methods. For the hexathioether 

complexes of [M(9S3h]2+ (M = Re, Tc, and Ru; 9S3 = 1, 4, 7 trithiacyclononane), the 

detailed structural and electronic characterization of these complexes and their reductive 

C-S bond cleavage reactions was determined by Density Functional Theory (DFT) 

calculations and first-principles molecular dynamics studies. Overall, C-S cleavage is 

initiated by metal-centered reduction as shown in Scheme III-I. For Ru(II) complexes, C­

S cleavage is impractical due to the stability of t2g 6 electron configuration. For Re(II) and 

Tc(II), reduction to M(I) results in a stable t2g 
6 electron configuration and occurs more 

readily.40,41 

20 



R R R " .. "~~ " .. 
Ln~~:J S: 

+ le- LnMn~ LnM (n+l)+ .. .- + 

"'S 
.", ." 
~ 

S: 
/ .. 

R/ 
R/" 

R 

Scheme 111-1. Metal centered reduction induces C-S bond cleavage/alkene 

The rhenium derivatives of [Ru(DPPBT)3t+ were previously reported by 

Dilworth et al. from a variety of rhenium sources.30 Tris(2-diphenylphosphino-

benzenethiolato)rhenium(III), [Re(DPPBT)3] (1) can be isolated as dark burgundy 

monoclinic crystals. The UV-vis spectrum displays bands at "max = 323 and 534 nm in 

dichloromethane, and the mass spectrum shows the expected parent peak at rn/z = 1066. 

The cyclic voltammogram of (1) was reported to display two reversible one electron 

oxidations and a reversible one electron reduction. The three reversible redox couples 

were recorded at potentials of -990, +230, and + 10 10 m V versus an Ag pseudo-reference. 

Each was assigned by Dilworth as a metal-based event spanning oxidation from Re(II) to 

Re(V), although the possibility of ligand-centered redox activity was noted. 

The work described hereafter was undertaken to investigate reversible C-S bond 

formation/cleavage between ethylene and [Re (DPPBT) 3] (1) and its oxidized derivatives 

as a function of oxidation state (Scheme 111-2). All relevant thermodynamic parameters, 

expressed as redox potentials or equilibrium constants, are detailed in Chapter II 

summarized in Table III-I. 
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Scheme 111-2. Reversible C-S bond fonnation/c1eavage between (1), (8), and 
oxidized derivatives. 
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Scheme 111-3. Square representation of C-S bond fonnation/c1eavage and electron 
transfer. 
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Table III-I. Summary of standard reduction potentials and formal oxidation state 
assignments for (1), (8), and their derivatives. 

Half Formal Re E1/2 ~E (mV) 

reaction Ox. State (mV) 

El (1)/(2) Re (IU)/Re (II) -1610 140 

E2 (3)/(1) Re (IV)/Re (III) -340 117 

E3 (4)/(3) Re (V)/Re (IV) 420 143 

E4 (5)/(8) Re (II)/Re (I) -1010 irreversible 

Es (6)/(5) Re (III)/Re (II) -100 91 

Using the methods reported by Dilworth, (1) was synthesized and purified for 

electrochemical analysis. A 1 mM solution of (1) in CH2Ch (10mL) was prepared with 

0.1 M TBAHFP as supporting electrolyte. Figure 111-1 shows the recorded cyclic 

voltammogram at a scan rate of 200 m V /s under a nitrogen atmosphere. The potentials 

were recorded versus a Ag pseudo-reference and scaled to a ferroceniumlferrocene 

standard by using an internal standard. Overall, our results reproduce those previously 

reported, although the values from the two studies are reported versus different 

references. Versus a ferrocene reference, the oxidation events of (1) were observed at 

-340 mV (E2) for the (3)/(1) couple, 420 mV (E3) for the (4)/(3) couple. A single 

reversible one electron reduction to (2) was also shown at -1610 mV (El). 
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Figure III-I. Cyclic voltammogram of ImM complex (1) obtained under a nitrogen 
atmosphere in dichloromethane at room temperature with 0.1 M TBAHFP as 
supporting electrolyte. The initial and final potentials were set to -2000m V with a 
switching potential of 1000mV. The initial potential was applied for 15 seconds before 
the scan. Potential referred to a ferroceniumlferrocene reference (Eobs = +577m V). * is 
indicated as the impurity. 

For a fresh 1 mM solution of (1) the cyclic voltammogram was recorded under an 

ethylene atmosphere. Ethylene was bubbled through the solution for 1 or 2 minutes, and 

the solution was allowed to stand under an ethylene atmosphere. The voltammogram was 

collected over a wide potential that was scanned from negative to positive potentials. As 

shown in Figure III-2, the CV shows two new peaks in addition to those observed under 

ethylene. 
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Figure 111-2. Cyclic voltammogram of ImM complex (1) obtained under ethylene 
atmosphere in dichloromethane at room temperature with 0.1 M TBAHFP as 
supporting electrolyte. The initial and final potentials were set to -2000mV with a 
switching potential of 1000mV. The initial potential was applied for 15 seconds before 
the scan. Potential referred to a ferroceniumlferrocene reference (Eobs = +577m V). * is 
indicated as the impurity. 

These new events are assigned as redox couples for the dithioether derivatives 

formed upon ethylene addition. The wave at -1010 mV (Es) is assigned a Re(II)/Re(I) 

couple for the dithioether complexes (5)/(8), and the wave at -100 m V (E6) is assigned to 

the respective Re(III)/Re(II) of (6)/(5). The (6)/(5) event shows current in both the anodic 

and cathodic scan, while the (5)/(8) couple only displays cathodic scan current. This is 

because ethylene does not add to the Re-thiolate until oxidation of (1) to (3) has occurred. 

The CV clearly shows the oxidation of (1) to (3) is unaffected by the presence of 

ethylene. Following that oxidation, (3) reacts with ethylene to form (5). This reaction is 

not complete, and both the oxidation of (5) to (6) and the oxidation ofunreacted (3) to (4) 
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are observed. The cathodic current for the (6)/(5) event exceeds the observed anodic 

current because (3), and (4), continue to react with ethylene as the scan continues. This is 

evident when 5 cycles are recorded as in Figure 1II-3. 

.. 

800 500 200 -100 -400 -700 

Potential (m V) 

Figure 111-3. Cyclic voltammogram of ImM complex (1) obtained under ethylene 
atmosphere in dichloromethane at room temperature with 0.1 M TBAHFP as 
supporting electrolyte. The initial and final potentials were set to -700mV with a 
switching potential of 1000mV. The initial potential was applied for 15 seconds before 
the scan. Potential referred to a ferroceniumlferrocene reference (Eobs = +577m V). 
This is 50 m V /s scan rate, and 5 cycles. 

While (1) was unreactive with ethylene, oxidation initiates rapid C-S bond 

formation to yield (5) or (6) as a function of applied potential as described above. The 

formal Re (II) ion of (5) can be oxidized by one electron to Re(III) (6) (E5 = -100 m V) or 
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reduced by one electron to Re(l) (8) (E4 = -1010 m V). Reduction to (8) results in rapid 

ethylene loss and recovery of (1) suggesting KJ ~ 0 is very small (see Scheme 111-3). 

Controlled potential bulk oxidation of (1) to (3) was accomplished by holding an 

applied potential of +23 m V in the spectroelectrochemical cell described in Chapter II. 

When the current decayed to 1-5% of the initial current, the oxidation process was 

considered complete. While the experimental time is dependent on the concentration and 

volume of the analyte and the quality of the working and counter electrode, 10 mL of 0.3 

mM solution is typically oxidized (or reduced) completely after 400s. A plot of charge 

versus time for a typical oxidation of (1) to (3) under nitrogen is shown in Figure 111-

4. 
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Figure 111-4. A plot of charge versus time accomplished during the oxidation of (1) 
to (3) at low temperature. 
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The observed cou10metric charge for the oxidation of (1) to (3) at 0.3 mM is -160 

me after correction for background current, which corresponds to 0.86 electron 

equivalent (as per Faraday's law). Following oxidation, the square wave voltammogram 

of (3) still shows three events at 427 mY, -357 mV and -1600 mY. These events are not 

changed from those observed for (1) which indicates the coordination environment 

around rhenium is not significantly changed upon oxidation, Figure III-5. 
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Figure III-S. Anodic (left) and cathodic (right) square wave voltammograms of (1) A 
and (3) B measured at low temperature versus an Ag pseudo reference electrode. 
Reported potentials are scaled to a ferroceniumlferrocene reference (Eobs = +577 m V). 

The oxidized complex (3) is blue in solution. A trace of the electronic spectra 

recorded during oxidation of (1) to (3), Figure III-6, shows an intensity loss for the bands 

at 329 nm and 535 nm associated with (1) and intensity gain for new bands at 390 nm and 

581 nm associated with (3). Isosbestic points are observed at 368 nm and 551 nm. 

Solutions of (3) are stable under nitrogen gas for several hours at room temperature. 
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Figure III-6.Electronic spectra obtained during bulk oxidation of (1) to (3) under a 
nitrogen atmosphere at an applied potential of 23 mY. Data acquired approximately 
every 0.15 electron equivalents. 

Fresh blue solutions of (3) were prepared by the electrochemical method 

mentioned above. Ethylene addition to blue solutions of (3) rapidly generates a purple 

solution containing a mixture of (3) and the addition product (5), Figure 111-7. Data was 

collected every 30 seconds for 10 minutes. The absorbance at 581 nm associated with (3) 

rapidly decreases from 2.14 to ~ 1.05 within 3 minutes of ethylene purging with no 

further significant changes thereafter. After 10 minutes, the solution was diluted to its 

original volume yielding an absorption value of 0.99 indicating an approximately ratio of 

(3):(5) of 1: 1.2. Assuming ethylene saturation of the solution (0.4642 M in CH2Ch), K2 is 

estimated as 2.5. 
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Consistent with equilibrium binding, the C-S bond of (5) can be easily cleaved by 

nitrogen purge within 10 minutes restoring the initial spectrum of (3), Figure III-S. A 

spectral trace was collected every 30 seconds. The C-S bond formation/cleavage cycle 

was repeated 7 times with no remarkable changes in efficiency, Figure III-9. 

329nm 
2 

~ 1 390nm 

of 1 o 
rI.l 

..c 
-< 

1 

581nm 

1 

o~~--~--~~~~~~~ 
300 400 500 600 700 800 900 1000 

Wavelength (nm) 

Figure III-S. Electronic spectra obtained during slow nitrogen purge through a 
solution of (5) at room temperature. 
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Figure 111-9. The relative absorbance at 581 nm following alternating 10 minutes 
purges of ethylene (E) and nitrogen (N) are showing. 

Carbon-sulfur bond cleavage can be thwarted by oxidation of (5) to (6), a formal 

Re(lI) to Re(III) event. The requisite potential, E5, lies slightly above E2, but below E3. 

Thus, solutions of (6) can be generated by bulk oxidation of (1) under an ethylene 

atmosphere via an ECE pathway. During bulk oxidation of (1) (Eapplied = +23 mY) under 

ethylene the color developed from blue to burgundy to purple to orange. UV -visible data 

recorded at -15°C in CH2Ch approximately every 0.15 electron equivalents reveals a two 

step process, Figure 111-10. During the initial stage (1) is oxidized to (3), although the 

isosbestic points observed under nitrogen are obscured. During the second stage, (3) 

reacts with ethylene and is oxidized to (6) as indicated by the intensity loss at 390 and 

581 nm and simultaneous intensity increase at 484 nm attributable to (6). 
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Figure 111-10. Electronic spectra obtained during bulk oxidation of (1) to (6) under an 
ethylene atmosphere at an applied potential of +23 mY. Insets A and B highlight 
changes during the initial and latter stages of oxidation, respectively. Data acquired 
approximately every 0.15 equivalents. 

The transferred total charge during oxidation of (1) under ethylene was 

experimentally determined to be -380 me (1.94 electron equivalents). The progress of the 

bulk oxidation process was plotted as charge versus time in Figure III-II. This process 

was completed within 565 seconds. 
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Figure 111-11. A plot of charge versus time acquired during oxidation of(l) to (6) at 
low temperature. 

Another preparation of (6) is performed by following ECE pathway. The complex 

(1) is oxidized for one electron to form the blue compound (3) under a nitrogen 

atmosphere at an applied potential of +23 m V. A trace of the UV -visible spectra recorded 

during the oxidation shows intensity gain at 390 and 581 nm. After the oxidation, this 

product was purged with ethylene for about 15 minutes to complete the chemical reaction 

to generate compound (5), in equilibrium with (3), as a purple solution. The electronic 

spectra recorded during this process shows intensity loss of 390 and 581nm and intensity 

gain at 329 nm. Then a potential of +23 mV was applied to the purple solution under 

ethylene purge. The coulometric total charge for this second step was measured as -160 

mC which corresponds to 0.75 electron equivalent. The final product is compound (6) as 
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indicated by the orange color of the solution. The electronic spectra were shown in Figure 

III-12. 
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Figure 111-12. Electronic spectra acquired during bulk oxidation (5) to (6) under 
ethylene atmosphere at an applied potential of +23 mY. Data recorded approximately 
every 0.15 electron equivalents. 

A final alternate preparation of (6) was accomplished via an EEC pathway with 

oxidation of (1) by two electrons under nitrogen at an applied potential of 723 mV 

yielded (4). This was followed by ethylene addition to yield (6). These results were less 

satisfactory results as (4) decompose at a rate similar to ethylene addition (vida infra). 

Although (5) adds ethylene reversibly, (6) does not undergo C-S bond cleavage in 

solution or in the solid state. No significant changes in the UV -visible spectrum of (6) are 

observed upon prolonged standing at room temperature for several hours, nitrogen 

purging and holding for two days, or exposure to vacuum via repeated cycles of freeze-
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pump-thaw. C-S bond cleavage is only facilitated by reduction of (6) or (8). Figure III-13 

displays square wave voltammograms of (6), recorded under ethylene atmosphere. The 

potential window spans from +1000 mV to -2000 mY. Both cathodic and anodic scans 

were evaluated with the initial potential held for 15 seconds prior to initiation of the scan. 

Cathodic scans (Einitial = + 1 000 m V) reveal events at -100, -10 1 0, and -1620 m V assigned 

as Es, E4, and E\. Anodic scans (Einitia\ = -2100 mY) show current associated with Es, E2, 

and E\. The results confirm rapid C-S bond cleavage at potentials less negative the 

reduction of (5) to (8) and rapid C-S bond formation at potentials more positive than the 

oxidation of (5) to (6). Additionally, the difference in formal Re (III)/ (II) reduction 

potentials Es and E\ of + 1520 m V is consistent with the modification of two thiolate 

donors in (1) to two thioether donors in (6). Importantly, reversible events were observed 

for this result.22,29,42.43 

-911·'-Kl.--',..-, -~--"'--"--'-Jn=-OO--I:-::"'::-O ~.2OIKl 

Potential (m V) 

1 __ H -= Q,) 

t: • = U 
~I'-"'~-'''''~-O ---"--'''--.1114--''-,-1''-'' -,20114' 

Potential (m V) 

Figure III-B. Anodic (left) and cathodic (right) square wave voltammograms of (6) 
measured at low temperature versus an Ag pseudo-reference electrode. Reported 
potentials are scaled to ferroceniumlferrocene reference (Eobs = +577 m V). * 
impurity due to partial decomposition. 
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As suggested by the square wave voltammograms, the ECE process for the 

formation of (6) from (1) and ethylene can be reversed upon bulk reduction. This was 

accomplished by applying a potential of -977 mV under a nitrogen purge. Figure III-14 

displays a UV-visible trace recorded during the reduction. 

In the first step of the reduction, the band associated with (6) at 484nm decreases 

while new bands for (3) increase at 390 and 581 nm. The second step is consistent with 

the further reduction of (3) to (1). The observed charge transferred the reduction was 

recorded at 365 mC (l.87 electron equivalents) and plotted as current versus time, Figure 

III-IS. 
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Figure 111-14. Electronic spectra obtained during bulk reduction of (6) to (1) under a 
nitrogen atmosphere at an applied potential of -977 mY. Insets A and B highlight 
changes during the initial and latter stages of reduction, respectively. 
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Figure 111-15. A plot of charge versus time accomplished during reduction of (6) to 
(l) at low temperature. 

The kinetic and equilibrium parameters associated with C-S bond 

formation/cleavage were extracted from cyclic voltammograms at multiple scan rates 

using the DigiSim software package.34 The uncompensated resistance was estimated 

using the method at Bond et al as ~ l.5 kn?6 Simulation details and average fitting 

parameters are summarized in Table III-2. 

Cyclic voltammograms recorded under nitrogen in a window from 1200 to -300 

mY, Figure III-16 A, reveal a redox event identified as E2 at -340 mY, which can be 

simulated as a single, reversible event. This single event is simulated as an E mechanism. 

Data collected under ethylene in window from 1200 to -300 mY, Figure III-16 B, display 

two additional events at -100 and -1010 mV assigned as E5 and E4, Figure III-16. As 

shown in the inset, the relative intensity of the new events increases at slower scan rates. 

These voltammograms were simulated with an ECEE mechanism. 
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Table 111-2. Cyclic voltammetry simulation parameters 

Table 81. Cyclic voltammetry simulation parameters 

Nitrogen Atmosphere; E 
Mechanism 

E2(V) a ks Do (cm2/s) Runcomp (0) 
(cm/s) 

trial 1 -0.34 0.700 0.0780 3.48E-06 1500 
trial 2 -0.33 0.700 0.0804 4.28E-06 1200 
trial 3 -0.33 0.700 0.0792 4.07E-06 l300 

Ethylene Atmosphere; ECEE Mechanism 
E2(V) a ks Do (cm2/s) Runcomp (0) 

(cm/s) 
trial 1 -0.34 0.700 0.0780 3.30E-06 1500 
trial 2 -0.340 0.700 0.0800 5.07E-06 1200 
trial 3 -0.35 0.700 0.0788 5.26E-06 l300 

Es(V) a ks Do (cm2/s) Runcomp (0) 
(cm/s) 

trial 1 -0.097 0.700 0.0943 3.30E-06 1500 
trial 2 -0.097 0.700 0.0930 5.07E-06 1200 
trial 3 -0.097 0.700 0.0934 5.26E-06 l300 

E4(V) a ks Do (cm2/s) Runcomp (0) 
(cm/s) 

trial 1 -1.00 0.700 0.0753 3.30E-06 1500 
trial 2 -1.00 0.700 0.0737 5.07E-06 1200 
trial 3 -1.00 0.700 0.0746 5.26E-06 1300 

K2 k/(M-1 k, (S-1) 
S-1) 

trial 1 4.01 0.128 0.0318 
trial 2 4.02 0.132 0.0328 
trial 3 4.00 0.103 0.0259 
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Figure 111-16. Experimental (~) and simulated ( ... ) cyclic voltammograms of (1) 
small window under an atmosphere of nitrogen (A) or ethylene (B) at a scan rate of 
200 m V Is. Insets show experimental voltammograms at multiple scan rates from 100 
to 1000 mV/s. 

Rate constant for C-S bond formation between (3) and ethylene, kf, and for C-S 

bond cleavage for (5) were extracted from simulation of the CV data at 7 scan rates 

ranging from 100 to 1 OOOm V /s for 3 independent trials. Average values for kf and kr are 

(1.2 ± 0.2) x 10-1 M-1 
S-I and (3.0 ± 0.4) x 10-2 

S-I, respectively. From these, K2 was 

calculated as 4.0 ± 0.8 in agreement with predictions from the UV-visible study. Under 

the pseudo-first conditions of ethylene saturation (0.4642 M), the apparent first-order of 

rate constants for ethylene addition to (3) is (5.6 ± 0.9) x 10-2 
S-I. Although ethylene 

addition to (4) was observed in cyclic voltammograms with a larger scan window, 
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attempts to determine reliable rate constants were hampered by decomposition of(4). The 

simulated and experimental events were shown in Figure III -17 . 
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Figure 111-17. Experimental (-) and simulated ( ... ) cyclic voltammograms of (1) 
large window under a nitrogen atmosphere (A) and ethylene (B) at a scan rate of 200 
mY/so Insets show experimental voltammograms at multiple scan rates from 100 mV/s 
to 1000 mY/so 

From the redox potential E2, E3, E4, and E5 and the equilibrium constant K2, 

values for KI and K3 were determined.44 KI has calculated value of (1.9 ± 0.4) x 10-11 

consistent with observation of an unstable C-S bond. In contrast, the calculated value of 

K3, (2.5 ± 0.9) x 109
, is large and consistent with the observed stability of (6). The large 

differences in equilibrium constants as a function of oxidation state provide a means to 

easily gate ethylene addition and release. In the most reduced form, (l )/(8), equilibrium 
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strongly favors the (1) and free ethylene. The ratio of the one electron oxidized pair 

(3)/(5) is a function of ethylene concentration and is approximately 1:2 in saturated 

solutions. Finally, the equilibrium of two electron oxidized pair (4)/(6) strongly favors (6) 

with tight ethylene binding. 

In addition to electrochemical methods, (6) can be prepared by chemical oxidants 

via the ECE pathway. To solution of (1) in chlorobenzene was added AgPF6 (2.0 equiv.) 

resulting in a rapid oxidation to (3) as observed by a blue color. Introduction of a slow 

ethylene purge for approximately five minutes followed by filtration to remove Ag(s) 

yields the desired product (6) as the hexafluorophosphate salt, as orange microcrystals. 

X-ray quality crystals were obtained by slow evaporation of a CH2Ch/C6HsCI solution of 

(6). The (+)ESI-MS of crystalline (6) displays a parent peak at m/z = 547.0710 consistent 

with the expected value of 547.0766 and a smaller peak due to ethylene dissociation, at 

m/z = 533.0642 (z = 2) in agreement with the theoretical value of 533.0610, Figure 111-

18. From this characterization, the product identify of (6) is further confirmed. 
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Figure III-18. (+)ESI-MS of (6). 

The structure of (6) has been determined by single-crystal X-ray techniques.45
-
52 

The complex of (6) crystallizes as a long thin orange plate in the monoclinic space group 

C2/c with unit cell dimensions of a = 29.009(18) A; b = 22.577(18) A; c = 43.99(3) A; P 

= 96.182(17r, V = 28,643(35) A3
; Deale = 1.413 Mg/m3

, and Z = 8. An ORTEP 

representation of the rhenium containing cation of the asymmetric unit is shown in Figure 

III -19 with selected bond distances and angles provided in the figure caption.53 The 

asymmetric unit of (6) contains two crystallographic ally independent cation molecules. 

All non-hydrogen atoms in both cations, as well as the hexafluorophosphate anions were 

refined with anisotropic atomic displacement parameters. The structural model has one 

full occupancy and three partial occupancy chlorobenzene solvate molecules. 
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The Re ion sits in pseudo-octahedral P3S3 donor arranged in an environment with 

phosphorus and sulfur donors arranged in a meridional fashion. The thioether sulfur 

donors S2 and S3 are bridged by the ethylene linker, while S 1 is a thiolate donor. The Re­

S thioether bond lengths for Re-S2 and Re-S3 are 2.434(3) A and 2.432(3) A, 

respectively, which are slightly longer than the Re-S thiolate bond lengths of 2.303(S) 

and of2.269(S) A in (1). To compensate shorter, the Re-Sl bond length is 2.209(3) A and 

is slightly shorter than the value of Re-Sthiolate of 2.477(S) A in (1).30 A similar trend is 

noted in the Re-P distances. The Re-P2 and Re-P3 in thioether bond lengths are 2.4S7(3) 

A and 2.467(3) A, respectively. Then the Re-P in a thiolate bond length is 2.420(3) A. 

The C-C and C-S bonds associated with the ethylene bridge are consistent with single 

bond character with values of 1.491(14) A, 1.864(11) A and 1.831(10) A for C(SS)­

C(S6), S(2)-C(SS), and S(3)-C(S6), respectively. These values are very close to expected 

values for a C-C single bond. 
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Figure 111-19. ORTEP representation of (6). Selected bond distances (A): Re(l)-S(l) 
2.209(3); Re(l)-S(2) 2.434(3); Re(l)-S(3) 2.432(3); Re(l)-P(l) 2.420(3); Re(l)-P(2) 
2.457(3); Re(I)-P(3) 2.467(3); Selected bond angles CO): S(1)-Re(I)-S(3) 169.97(9); 
P(l)-Re(l)-S(2) 174.00(9); P(2)-Re(1)-P(3) 162.68(9); S(3)-Re(I)-S(2) 84.37(10). 

The system described herein displays reversible C-S bond formation/cleavage 

regulated by the oxidation state of the complex with access to "locked on", "locked out", 

or concentration dependent ethylene addition. The kinetics of ethylene C-S 

formation/cleavage allows facile trap and release of ethylene over the period of several 

minutes. 
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Scheme IV -1: Overview of ethylene addition. 

In the study, we report reversible C-S bond formation/cleavage between ethylene 

and the rhenium derivative [Re(DPPBT)] (1) and its oxidized derivatives (Scheme IV -1). 

The equilibrium constants for ethylene binding are oxidation state dependent. The 

equilibrium constants were evaluated by cyclic voltammetric methods in ethylene 

saturated solution. The E2 and E4 were obtained from the experimental data and the 

equilibrium constant K2 was defined by kf and kr from the simulation in the small window 

ECEE mechanism. Then the equilibrium constant K1 was calculated as 1.9 x 10-11 
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consistent with observation of an unstable C-S bond. This smaller value provides a mean 

to release ethylene; however, it is impossible to insert ethylene from the initial rhenium 

thiolates. In contrast, the calculated value of equilibrium constant K3 was determined as 

2.5 x 109 by E3, E5, and K2 and this value is large regarded as the observed stablility of 

(6) complex. The C-S bond formation is strongly favored. The large difference in 

equilibrium constants as a function of oxidation state can be exploited as means to easily 

gate ethylene addition and release. 

Alkene addition to oxidized metal-sulfur complexes has been previously reported, 

although a metal-coordinated thiyl radical was not invoked in the mechanism. Most 

notably, the addition of alkenes to nickel dithiolenes upon oxidation was reported by 

Stiefel and Wang in 2001. Then, reduction of the nickel dithiolene derived thioether 

resulted in alkene dissociation (Scheme 1-4). This process was proposed to be of 

potentially great industrial importance in olefin purification. 10 

The electronic structure of the oxidized dithiolene complex was studied by 

Wieghardt and determined to be a diradical [Ni(II)(L")2], (L = dithiolene).54 Upon 

introduction of an alkene, the diradical reacts resulting in C-S bond formation. In the 

reverse direction, controlled by switching the potential for a one electron reduction, C-S 

bond cleavage regenerates the original nickel complex and releases the alkene. However, 

later studies revealed the reactivity is more complex. Fekl and coworkers showed that the 

reactions of simple alkenes with nickel dithiolene do not proceed selectively to give the 

interligand alkene adduct. Competitive pathways leading to intraligand product interfere 

(Scheme 1-4). The intraligand alkene adduct that is formed, further decomposes into 

dihydrodithiin and metal-decomposition products. I I 
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For nickel dithiolenes, intraligand is preferred by symmetry. 54 As noted above and 

III Scheme IV -2, the electronic structure of nickel dithiolene has radical character. 

Further, alkene binding is dependent on the diradical ligand character of the Ni(II) 

complex. To prevent decomposition associated with the intraligand alkene adduct, we 

have used an alternate ligand as described in this thesis. The aromatic mixed thiol-

phosphine ligand (DPPBTH = diphenylphosphinobenzenethiolate) has been reported, 

previously, together with a limited amount of their coordination chemistry.31 The 

[Ru(DPPBT)3r complex was first studied by Dilworth et al as the HNEt3 + salt.55 The tri-

thiolate ligand environment and an electron rich metal center makes it a suitable 

candidate to investigate metal versus ligand centered reactivity. The bulky ligand 

environment increases the possibility for radical stabilization. In the Grapperhaus group, 
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Scheme IV-2. Electronic structure ofnickel-dithiolenes has radical character. 

the HNEt3 + counter-ion of this complex was substituted with PPN+ (PPN 

bis(triphenylphosphoranylidene)ammonium) to improve the solubility.22 

Previous results from our laboratory have shown that oxidation of [Ru(DPPBT)3r 

[lar proceeds in two one-electron steps?9 Recent density functional theory (DFT) 
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investigations by Frye in the Grapperhaus group have determined the ground state of the 

reactive intermediate [Ru(DPPBT)3( The ground state of [Ru(DPPBT)3t is best 

considered as a singlet diradical, which is consistent with experimental data.56 A 

qualitative overview of the frontier molecular orbitals shows 1t interactions between Ru d­

orbitals and S p-orbitals in the xz, yz, and xy planes (Figure IV-I). 
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Figure IV-I. A qualitative overview of the frontier molecular orbitals shows 1t interactions 
between Ru d-orbitals and S p-orbitals in the xz, yz, and xy planes. 

The configuration of ground state [Ru(DPPBT)3t is shown as (S2(px) - S6(Pz)i, 

(dxz - S2(px) - S6(pz))I, and (dxz - S3(py))I. This diradical ground state has unpaired 

electrons de localized over the metal and sulfur donors in nearly orthogonal orbitals. 

Although [Re(DPPBT)3] and [Ru(DPPBT)3t are isoelectronic, addition of ethylene 
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proceeds for the ruthenium, but not the rhenium complex. This may be due to a lower 

lying excited state of ruthenium that is reactive or a change in orbital ordering between 

the two metals. Moreover, one oxidation of [Re(DPPBT)3] results in C-S bond formation 

and gives the expected configuration as (S2(px) - S6(Pz))J, (dxz - S2(px) - S6(pz))I, and 

(dxz - S3(py))I. It is proposed that [Re(DPPBT)3t reacts with ethylene as shown in 

Figure IV-2. The filled 1t*-orbital of sulfur reacts with LUMO empty 1t-orbital of C-C 

double bond (Figure IV, left) and also vacant orbital of sulfur correlates with higher 

orbital HOMO of1t-bond alkene (Figure IV, right). C-S bond formation between ethylene 

and the oxidized rhenium complex may be either stepwise or concerted mechanism. This 

will be determined in further work. 

c 
IHO c 

xz-plane xz-plane 

Figure IV-2. Views of the xz-planes highlighting interactions between S p orbitals and 
C-C bond orbitals. 

Density Functional Theory (DFT) has been applied by Rothlisberger to 

investigate the basis of C-S bond cleavage upon reduction of metal-thioethers. He found 

that C-S bond breaking requires donation of two electrons from a metal t2g-orbital into the 

1t-bond of the departing ethylene. The relative energies of the frontier orbitals for the 

50 



metal-thioether reactant (left of each panel) and the metal thiolate product (right of each 

panel) and the rr-bonding orbital of ethylene (denoted with a *) is shown as in Figure IV-

Re(l) Ru(ll) 

-6 r-------.....,-6 
* -7 -7 

-8 -8 
-9 -9 
-10 --10 
-11 -11 
-12 -12 
-13 -13 
-14 ""'---____ ----1 ""'-----------1 -14 

Figure IV-3. Eigenvalues (eV) of five highest molecular orbitals of the metal­
thioether complex for Re(I)-thioether and Ru(II)-thioether on the left side of each 
panel and the metal-thiolate complex for Re(lII)-thiolate and Ru(IV)-thiolate on the 
right side of each panel are obtained. A * represents rr-bonding orbital of ethylene. 

The left side of each panel shows the five highest occupied molecular orbitals of 

the metal-thioether complex for a Re (I)-thioether. The top three orbitals are based on the 

metal h g orbitals and the bottom two orbitals consist of sulfur lone pairs. The right side of 

each panel represents the Re(lII)-thiolate and Ru(lV)-thiolate orbital energies plus an 

orbital marked with a * for the rr-bonding orbital of ethylene. Rapid C-S bond cleavage 

for Re (I)-thioethers can occur because there is no significant energy difference between 

the higher energy of metal t2g orbitals and the rr-bonding orbital of ethylene. However, the 
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more positive charge of Ru (II) lowers the energy of the t2g-orbital in the other case. As a 

result there is no energy match between metal orbitals and 1t-bonding orbital of ethylene. 

This makes the Ru (II)-thioether complex more stable than Re (I)-thioether complex. 

Overall, the main factor governing the reaction energy is the overall charge of the 

complex. 

Reversible carbon-sulfur bond formation/cleavage between a rhenium-thiolate 

complex and ethylene was reported in Chapter III. By regulation of the oxidation state 

and therefore the charge of the complex, the affinity of the complex for ethylene can be 

tuned. The ethylene can be "locked on" in the higher oxidation state or "locked off' in 

the lower oxidation state. Ethylene binding to the intermediate oxidation state is 

concentration dependent, Scheme IV-3. 

n=2 

n=l 

n=O 

Scheme IV-3. Reversible C-S bond formation/cleavage between (1), (8), and oxidized 
derivatives. 

The results are consistent with the theoretical prediction of Rothlisberger. The 

original rhenium (III) trithiolate complex (l) is oxidized in one electron step at applied 

potentials of +23 m V and 723 m V during the bulk electrolysis, providing rhenium (IV) 

(3) and rhenium (V) (4), respectively. These products in higher oxidation state eventually 
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react with ethylene to obtain thioether complexes. Upon reduction, the C-S bond cleaves 

immediately. 

Past investigations the Grapperhaus group revealed that an oxidized ruthenium 

thiolate formed a carbon-sulfur bond with alkenes including I-hexene, styrene, 

cyclohexene, and norbornene as shown in Scheme IV -4. In the future directions, bulkier 

alkenes will be investigated with referred to their addition to rhenium. Moreover, the 

selectivity of alkenes and the binding mechanism, whether concerted or stepwise, will be 

further determined. 

For the nickel dithiolene complex reported by Stiefel and Wang, the oxidized 

reactive species were reported not be poisoned by gases including hydrogen, carbon 

monoxide, acetylene, or hydrogen sulfide. These gases are important contaminants that 

must be removed industrially during olefin purification. These potentially reactive gases 

will also be investigated for the rhenium thiolate system reported in this thesis. 
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Scheme IV -4. [Ru(DPPBT)3] reacts with various alkenes to yield respective Ru (II)­
dithioether compounds. 
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