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ABSTRACT 

MOLECULAR CHARACTERIZATION OF HUMAN PAPILLOMAVIRUS  

IN HEAD AND NECK TUMORS 

Sujita Khanal 

July 15, 2016 

Head and neck cancers (HNCs) are common causes of cancer-related deaths 

worldwide. An increasing incidence of subsets of HNCs is due to human papillomavirus 

(HPV). Other subsets are associated with tobacco and alcohol use. Determination of 

differential biomarkers and molecular mechanisms distinguishing HPV-associated and 

unassociated HNCs should improve diagnostic and therapeutic strategies. This study was 

designed to identify potential biomarkers for HPV detection, and to evaluate viral and host 

genetic and epigenetic mechanisms involved in HPV-associated HNCs. 

Overexpression of a cellular protein, p16
INK4a

, which is widely used as a surrogate 

marker for HPV-positive HNC, is non-specific because some HPV-negative cancers can 

overexpress p16
INK4a

. I found “mitosoid cells” and “HPV E7 serology”, respectively, as 

histologic and serum biomarkers, which would improve diagnosis of HPV-positive head and 

neck (HN) tumors. Mitosoid cells were not only observed in HPV-positive benign epithelial 

hyperplasias but also abundantly present in subsets of pre-malignant tumors (high-grade oral 

epithelial dysplasia, hgOED). P16
INK4a

 could be used as an HPV-surrogate marker only in 

Group 1 hgOED (containing diffuse mitosoid cells), but not in Group 2 (with focal mitosoid 

cells) and Group 3 (lacking these cells). My study revealed that E7 seropositivity 

complements p16
INK4a 

overexpression in HNCs and a decrease in E7 serology potentially 

predicts patients’ response to treatment. To evaluate genetic and epigenetic changes in HPV-

induced malignancy, I assessed viral DNA- integration and -methylation, and viral-induced 
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methylation of host tumor suppressor genes (TSGs). Since viral DNA integration predicts 

malignancy, my data showing integrated HPV in Group 1 and malignant tumors, suggest 

greater malignant transforming potential of Group 1 than the other groups. Although viral 

methylation is another regulatory mechanism for malignancy, the HPV epigenome was mostly 

unmethylated in both premalignant and malignant HN tumors. Screening 38 host TSGs 

identified EREG as a candidate gene, which may be epigenetically regulated, specifically in 

HPV-positive HNC. 

Overall, the present study found that mitosoid cells and E7 serology in combination 

with p16
INK4a

 overexpression are significant markers for HPV-associated head and neck 

malignancy. HPV DNA integration and host EREG gene methylation, but not viral DNA 

methylation, may play roles in HPV-associated head and neck carcinogenesis.  
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CHAPTER I 

INTRODUCTION ON HUMAN PAPILLOMAVIRUS AND HEAD AND NECK TUMORS 

Human papillomavirus (HPV) 

Papillomaviruses are small, non-enveloped, icosahedral DNA viruses that have a 

diameter of 50–60 nm. Papillomaviruses (PVs) are species-specific, and can infect different 

mammals, birds, and reptiles. Human papillomavirus (HPV) are PVs that infect human 

epithelial cells (i.e. they are epitheliotropic in nature) (1). HPV is the most common sexually-

transmitted infection worldwide including the United States (2,3). HPVs are tissue-specific and 

normally infect either cutaneous or mucosal tissue, although some are both cutaneous and 

mucosotropic (1).  In 1974, the German virologist Harald zur Hausen found that the skin wart 

virus, HPV, contributes to the development of cervical cancers (4,5). Almost 10 years later, 

his group isolated HPV type 16 DNA from a cervical squamous cell carcinoma (6). He was 

awarded the Nobel Prize in Physiology or Medicine 2008 for this discovery. Presently, HPV is 

known to cause virtually all cervical cancers. Recent studies have shown that HPV-associated 

cancers are not just limited to the anogenital region. Instead, HPV is a highly prevalent human 

pathogen and causes ~5% of all solid-organ cancers worldwide (7). During the past few 

years, there has been considerable interest in the involvement of HPV in upper aerodigestive 

sites and its etiologic role in causing head and neck tumors. 

HPV genome 

Papillomaviruses contain a circular, double-stranded DNA genome of approximately 8 

kb. HPV genome contains a number of open reading frames (ORFs) classified as either early 

or late depending on the timing of their expression after infection. The genome also includes a 

long control region (LCR) or upstream regulatory region (URR), which lacks ORFs but 

contains cis-responsive elements that govern viral replication and gene expression.
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Figure 1 shows a genomic map of HPV type 16. The six early ORFs [E1, E2, E4 and E5 

(in green) and E6 and E7 (in red)] are expressed from promoter either p97 or p670 (in the 

case of HPV16) at different stages of epithelial cell differentiation. The late ORFs [L1 and L2 

(in yellow)] are also expressed from p670. All the viral genes are encoded on plus (+) strand 

of the double-stranded circular DNA genome. 

 

Figure 1: HPV type 16 genomic map showing early genes (E1, E2, E4, E5, E6, and E7), late 

genes (L1 and L2) and long control region (LCR) (Copyright permission obtained from John 

Wiley and Sons). 

The late genes encode for the structural proteins L1 (major capsid protein) and L2 

(minor capsid protein), which are only expressed in productive infections. During this 

productive infection, HPV genomes are packaged within the capsids for viral assembly and 

release from keratinocytes. The early genes E1, E2, E4-E7 are expressed prior to initiation of 

viral replication, but not the late genes. Among all genes, L1 and E1 genes are highly 

conserved among all papillomaviruses (8). 

E1, in combination with E2, has a regulatory function. E1 encodes a protein with 

ATPase and helicase activities and is essential for viral replication (9). E2 gene encodes a 

DNA-binding protein that binds to target sequences around the viral origin and recruits the E1 

helicase which in turn is involved in replicating the viral genome by recruiting host replication 

proteins (10). In addition to its role in viral DNA replication, the E2 protein functions as a 
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transcriptional repressor for the expression of E6 and E7 oncoproteins. The gene for the E4 

protein overlaps the E2 ORF (10). E4 proteins are expressed relatively late during infection 

before the expression of L2 and L1 and help in the maturation of viral particles (11,12). While 

a definite oncogenic role of E5 is not clear, it is thought to augment oncogenic activities of E6 

and E7 proteins, and allow the continuous proliferation of the host cell delaying differentiation 

(12,13). 

E6 and E7 are the main oncoproteins of high-risk HPVs. The E6 and E7 proteins bind 

and promote the degradation of the host p53 and retinoblastoma (pRb) tumor suppressor 

proteins, respectively (14) (Figure 2). Since most HPV-positive cancer cells harbor wild-type 

TP53 and Rb tumor suppressor genes, these cells have intact but dormant tumor suppressor 

pathways due to the continuous expression of E6 and E7 genes (15). E6 binds the tumor 

suppressor protein p53 and promotes ubiquitin-mediated proteasomal degradation of p53. 

Hence, HPV-infected cells do not undergo apoptosis or cell cycle arrest even if DNA is 

damaged. E6 also activates the expression of hTERT, the catalytic subunit of telomerase and 

increases telomerase activity, contributing to cell immortalization (16,17). E7 is another major 

oncoprotein. E7 binds with pRb protein and its family proteins, p107 and p130, and disrupts 

their ability to form complexes with E2F transcription factors, resulting in increased expression 

of E2F-responsive genes, many of which are required for cell cycle progression. In addition, 

the E7 protein accelerates degradation of hypophosphorylated pRb family members. 

Inactivation of pRb by E7 can be monitored by overexpression of p16
INK4a

 (Figure 3), which is 

often used as a surrogate marker of HPV infection (18). 
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Figure 2: The combined effects of HPV E6 and E7 oncoproteins in malignant transformation. 

E7 and E6 inactivate tumor suppressor proteins pRb and p53, respectively. E6 also increases 

telomerase activity (Copyright permission obtained from Elsevier)   

The long control region (LCR), also called upstream regulatory region (URR) 

regulates the transcription of viral genes, particularly oncogenes E6 and E7. The LCR 

contains viral promoters, enhancers, the replication origin and binding sites for several viral 

and cellular transcription factors, which are important for viral replication and gene expression 

(10).  

The expression of HPV E6 and E7 proteins is inhibited by the viral E2 protein through 

its interaction with the early promoter p97 located in the LCR. This promoter harbors four 

specific E2-binding sites (E2BSs) sharing the consensus sequence 5′-ACCG(N)4CGGT-3′ 

(19) (Figure 3). The three sites proximal to the TATA box, importantly E2BS2, E2BS3, and 

E2BS4, have been shown to be involved in E2-mediated repression of the promoter activity 

(20). Binding of E2 protein to E2BS inhibits the docking of transcription activators, such as 

specificity protein 1 (Sp1) and TATA-binding protein (TBP), from their binding sites, leading to 

a repression of E6 and E7 expression from the early promoter (21) (Figure 3). The integration 

of viral DNA in high-risk forms of HPV has been described as a key step in carcinogenesis 

since it generally results in the disruption of the E2 ORF (22). Additionally, DNA methylation 

on LCR region is shown to inhibit binding of the transcriptional repressor (E2), resulting in the 

overexpression of viral oncoproteins, leading to malignant transformation (23,24). 
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Figure 3: HPV long control region (URR) showing E2 and other transcription factor binding 

sites. Binding of E2 to E2BS causes repression of E6 and E7 expression. 

Classification of HPV types 

Papillomaviruses (PVs) belong to the family Papillomaviridae. Each PV has 

traditionally been referred as “type”. An HPV type is defined as an HPV isolate where the 

nucleotide sequence of the highly conserved viral L1 gene is at least 10% different from any 

known HPV type  (25,26). More than 150 PV types are capable of infecting humans and thus 

are referred to collectively as human papillomaviruses (HPVs).  

Isolates of the same HPV type are referred to as “variants” or “subtypes” when the 

nucleotide sequences of the L1 gene differ by less than 10%. An HPV variant contains a 

unique combination of single nucleotide polymorphisms (SNPs) mainly in E6 and/or LCR 

gene (27). Names of HPV variants are derived from the geographical origin of the human 

populations in which they are most prevalent. For example, HPV type 16 variants have been 

classified into 4 major lineages: European-Asian, African 1, African 2, and Asian 

American/North American (28,29).  

HPV types fall into 5 genera (namely- Alpha, Beta, Gamma, Mu, and Nu) based on 

sequence comparisons of L1 genes (members of the same genus share >60% nucleotide 

sequence identity between L1 genes). Many types of HPV, especially those of the Beta and 

Gamma genera, cause asymptomatic infections without the apparent disease. The most 

clinically significant group is the Alpha genus which includes HPV types that infect cutaneous 
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or mucosal sites. Cutaneous types include HPV2 and HPV57, which cause common warts 

and HPV3 and 10, which cause flat warts. Mucosal HPV types are sub-divided into low-risk 

types and high-risk types depending on the strength of their association with carcinogenesis, 

Table 1 (4,30). High-risk HPV mucosal types (such as HPV16 and 18) are highly associated 

with the development of precancerous and cancerous lesions while low-risk types (such as 

HPV6 and 11) cause benign conditions such as genital warts and respiratory papillomatosis 

(30). HPV is so common that nearly all sexually active people will have it at some point in 

their lives  (2). However, only persistent infections with specific subsets of high-risk HPVs are 

responsible for the development of cancer (31). Among the high-risk HPV types, HPV16 and 

18 are frequently found to be associated with malignancy. Between these two HPV types, 

HPV16 is the most prevalent carcinogenic HPV (32). 

Table 1: High-risk and low-risk HPV types, based on their oncogenic potential 

High-risk HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 

Putative high-risk HPV 23, 53, 66, 67, 68, 73,82 

Low-risk HPV 6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, CP6108 

 

Strategies for HPV detection, their strengths, and limitations 

An ideal test for HPV would be highly sensitive, specific, cost-effective, and simple in 

the application so that it could be easily employed in routine diagnostic pathology practice. 

But none of the currently used HPV testing strategies completely satisfy all of these criteria. 

Depending on the technique used, the results of HPV detection can vary widely. 

Polymerase chain reaction (PCR)-based method of detecting a well-conserved HPV L1 

gene is very sensitive and can detect a large number of HPV types. However, this method is 

relatively more expensive and is not readily available in the routine pathology laboratory, and 

turnaround time is also longer. Also, because of the very high sensitivity, this method requires 

proper handling and processing of samples to avoid  a false positive result due to cross-

contamination (33). Another method of detecting HPV DNA is in situ hybridization (ISH). 

Although ISH is more specific, it is less sensitive than PCR and requires technical expertise to 

interpret results (33,34).  Also, ISH method cannot detect all HPV types using commercially 
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available HPV probe cocktails.  Both PCR and ISH- based HPV DNA detection method are 

unable to detect transcriptionally active HPV (i.e. E6/E7 expression). 

As HPV-driven tumor growth is caused by E6 and E7 expression, PCR detection of 

E6/E7 mRNA is the best method to detect transcriptionally active HPV (34). However, this is 

technically challenging to be used in clinical laboratory and can’t be performed effectively on 

formalin-fixed, paraffin-embedded (FFPE) tissues (35). A recently developed technique, RNA 

in situ hybridization is effective in FFPE tissues and is highly sensitive and specific for 

detecting E6/E7 mRNA (36-42). As this technique is technically cumbersome and is not yet 

commercially available (34), other techniques are often used in clinical practice.  For example, 

immunohistochemical detection of p16
INK4a

 expression in tumor tissue sections is commonly 

used in the clinic as surrogates for HPV status (43). This is based on the premise that HPV 

infection leads to the production of the E7 oncoprotein, which inactivates pRb tumor 

suppressor protein and releases p16
INK4a

 gene from transcriptional inhibition thereby causing 

overexpression of p16
INK4a

 in HPV-associated cancers, Figure 4 (34,44,45). 

Immunohistochemistry (IHC) for p16
INK4a 

is inexpensive, highly sensitive and can be 

performed in virtually any histology laboratory with very quick turnaround (34,46). 

Overexpression of p16
INK4a

 is often used as a surrogate marker of HPV infection in 

oropharyngeal cancers, while its use in oral cavity cancers is not well established, even 

though both are subgroups of HNC (46,47). Current studies show that other non-viral 

mechanism can also increase p16
INK4a

 expression, making it a non-specific marker for HPV 

infection, Figure 5 (18,46,48). This warrants the need for reliable and appropriate biomarkers 

to precisely diagnose HPV status in head and neck tumors or to determine HPV-associated 

cancer progression. 
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Figure 4: Presence of high-risk (HR)-HPV causes overexpression of p16
INK4a

; as such 

p16
INK4a

 immunohistochemistry is used as a surrogate marker of HPV infection.  The 

functional inactivation of pRb by HPV oncoprotein E7 results in the release of the 

transcriptional factor E2F from the pRb–E2F protein complex and lead to the release of the 

p16
INK4A

 gene from its transcriptional inhibition. 

 

 

Figure 5: p16
INK4a

 is not always a surrogate marker of HPV infection. p16
 INK4a

 is also 

overexpressed via non-viral mechanisms 

HPV-associated clinical lesions in head and neck region 

In the head and neck region, the majority of HPV-associated clinical manifestations 

occurs in squamous epithelium and includes benign lesions, premalignant dysplasia, and 

carcinomas.  

 

1. Benign Lesions of the head and neck 

There are many different types of benign oral tumors. In this study, I focused on two types 

of benign lesions of the oral cavity - Multiple Epithelial Hyperplasia (MEH) and squamous 

papilloma. 
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a. Multiple epithelial hyperplasias: MEH is an HPV-associated benign proliferation of oral 

squamous epithelium. It is also known as Heck’s disease or focal epithelial hyperplasia 

(FEH) (49). It commonly occurs in Native Americans in the US but is rare among 

Caucasians. It usually presents in children/adolescents or HIV-infected adults and is 

typically associated with HPV type 13 or 32. It occurs as multiple slightly elevated and 

minimally keratinized papules located mainly on labial and buccal mucosa. A prominent 

feature of MEH is the mitosoid cell; an enlarged cell with a fragmented nucleus 

resembling atypical mitotic figure (50,51). These cells are consistently observed in MEH. 

Although asymptomatic and self-limited in its course, the distinction of MEH from another 

benign oral lesion (for example, squamous papilloma) is important since these lesions 

may have overlapping clinical and histologic features.  

b. Squamous papilloma: Squamous papillomas are common benign epithelial lesions of 

the head and neck region. It has been suggested that many of these lesions have a viral 

origin but the etiology is still controversial. Several reports have demonstrated the 

presence of HPV in squamous papillomas (52,53). However, the presence of HPV in 

these types of lesions varies from one study to another (53-56). Of note, squamous 

papilloma may show some clinical and histologic overlap with MEH.  

 

2. Premalignant lesions of the head and neck 

Dysplasia is defined as an abnormality in maturation of epithelial cells. In other words, 

squamous dysplasia is the precancerous state referring to metaplastic alterations of the 

surface epithelium prior to the invasion of the subepithelial tissues. These changes include 

abnormal cellular organization, increased mitotic activity, and nuclear enlargement with 

pleomorphism. Although terminology varies, atypia limited to the lower one-third of the 

epithelium is generally referred to as mild dysplasia, atypia limited to the lower two-thirds as 

moderate dysplasia, and atypia involving the full thickness of the epithelium as severe 

dysplasia/carcinoma in situ. With progression, the carcinoma in situ breaks through the 

basement membrane and invades the subepithelial connective tissue (57). 

In this study, I focused on high-grade oral epithelial dysplasia (i.e. severe 

dysplasia/carcinoma in situ). These are pre-cancerous lesions which often develop into oral 
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squamous cell carcinoma (SCC), a subset of head and neck SCC (58). Studies of HPV-

associated cervical carcinogenesis have looked at clearly defined stages, including 

asymptomatic infection, cervical intraepithelial neoplasia (CIN) stages I to III, and cancer (59), 

whereas HNC studies conducted to date have mainly focused on primary cancers. As such, 

there are few studies evaluating the presence of HPV in the pre-cancerous lesions.   

3. Head and neck squamous cell carcinoma 

The majority of the cancers in the head and neck region develop from thin, flat cells 

called squamous cells. Cancer that starts in the layer of squamous cells is called squamous 

cell carcinoma. Head and neck squamous cell carcinoma (HNSCC) or head and neck cancer 

(HNC) is the sixth most common cancer and eighth leading cause of cancer-related deaths 

worldwide and it represents about 3% of all cancers in the United States (60,61). It develops 

in the mucosa of the upper aerodigestive sites including oral cavity, oropharynx, hypopharynx 

or larynx (62). Because of anatomic locations associated with the ability to look, talk, eat and 

breathe, these cancers can highly affect the quality of life. There are two major risk factors for 

the development of HNC: exogenous carcinogens (namely tobacco and alcohol exposure) 

and infection with HPV. Cancer-related death ranges widely from 20-60% in patients 

presenting with locally advanced forms of HNC. While many tobacco-related cancers are on 

the decline owing to decreases in smoking among Americans, the number of HPV-related 

HNC cases appears to be increasing (62).  

HPV-associated and unassociated HNCs display differences in clinical outcome: 

patients with HPV-positive HNC respond better to chemo/radiotherapy and have higher 

overall survival rates (63,64). Because of this, many clinicians advocate for a reduction in 

treatment intensity for patients with HPV-induced cancers to minimize post-treatment 

morbidity (65). However, a reduction in treatment intensity risks the possibility of under-

treatment, tumor progression, and metastasis in patients who are HPV negative and may 

have responded to current high-intensity treatments (66). So, a detailed understanding of 

HPV status of HNC patients is warranted to determine appropriate therapies. 

The molecular profiles of HPV-positive HNC are distinct from those of HPV-negative 

cancers. In HPV-positive cancers, HPV oncoproteins E6 and E7 promote the degradation of 
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p53 and pRb tumor suppressors, respectively, and p16
INK4a

 protein is upregulated. 

Overexpression of p16
INK4a

 protein is the result of the effect of the viral E7 protein in 

suppressing the function of pRb. In contrast, in HPV-negative HNC, TP53 is frequently 

mutated and p16
INK4a

 is under-expressed. HPV-negative HNCs are reported to accumulate a 

large number of cellular mutations compared to HPV-positive HNCs (67,68). These molecular 

differences are suggested to be the reasons behind better prognosis of HPV-positive HNC. 

However, the specific mechanisms responsible for improved prognosis/survival in HPV-

positive patients have not been fully elucidated. For these reasons, the knowledge of 

differential mechanisms distinguishing HPV-positive and -negative HNC is very important; 

which may underlie the molecular basis of improved prognosis for HPV-induced cancer as 

well as provide opportunities for new therapeutic development. 

 

 

Figure 6: Pictorial representation of the anatomy of the head and neck cancer showing 

different subgroups (Copyright permission obtained from Terese Winslow LLC, U.S. Govt).  

 

There are different subgroups of HNCs based on anatomic locations (69) (Figure 6). 

HNCs driven by tobacco and alcohol use can occur anywhere throughout the upper 

aerodigestive tract while cancers driven by HPV appear to be mostly localized to the 

oropharynx (34). 
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Oropharyngeal squamous cell carcinoma (OPSCC or OPC): The incidence of OPC 

is increasing as smoking-related cancers decrease (43). This increase is due to HPV, which 

has emerged as the primary etiologic factor in OPC, surpassing tobacco and alcohol as risk 

factors in this type of HNC (70). Cohort studies from the 1990s suggested that approximately 

50% of oropharyngeal cancers were attributable to HPV, while more recent studies suggest 

that HPV accounts for 70 to 80 % of cases in North America and Europe (71). 

An oropharyngeal subsite of the head and neck region most affected by HPV includes 

the soft palate, base of tongue, tonsils, throat walls and oropharynx (72). More specifically, 

HPV infection is most commonly associated with the palatine and lingual tonsils (62). 

Oral cavity squamous cell carcinoma (OCSCC): The possible role of HPV in the 

etiology of OCSCC is currently not well-defined. The role of HPV in carcinogenesis of the oral 

cavity is further obscured by discordant findings between p16
INK4a

 IHC and HPV testing in 

these tumors. While HPV is detected in relatively few OCSCC tumors, the majority of these 

tumors exhibit overexpression of p16
INK4a

 (58,73). Reports show that the majority of p16
INK4a

 -

positive OCSCC were negative for HPV (74-76), suggesting that p16
INK4a

 is not always an 

absolute marker to detect HPV. In OCSCC, non-viral mechanisms appear to stimulate 

p16
INK4a

 overexpression, making it relatively non-specific and therefore an increasingly 

unreliable surrogate marker for HPV detection in OCSCC (74-76).  

Other HNC types are nasopharyngeal, laryngeal and hypopharyngeal carcinoma 

where tobacco and alcohol are the main risk factors/ primary etiologic agents. These types of 

cancers in head and neck region are found to be less likely to be associated with HPV (77).  

Biology of HPV infection   

HPV infections are most frequently seen in the epithelia of the uterine cervix and 

head and neck region. The biology of HPV infection in cervical cancers has been well- 

documented but there is less information available for HNCs.  

In cervical cancer, HPV virions attach to the basement membrane and preferentially 

infect basal cells in cervical transformation zone, located in the boundary between the 
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squamous epithelium of ectocervix and the columnar epithelium of endocervix (called 

squamocolumnar junction) (4). Viruses are known to use the host cell machinery for 

replication. As the HPV-infected keratinocytes differentiate and move toward the epithelial 

surface, different viral genes are expressed, allowing high viral genome amplification and the 

expression of the late region genes that encode the viral capsid proteins necessary to 

complete viral life cycle (78). As the cells reach the surface, the HPV episomes are packaged 

within the capsids for final viral assembly and release (called lytic infection) (79). Abnormal 

cell growth in the lower 1/3 of the cervical epithelium is classified as HPV infection or cervical 

intraepithelial neoplasia 1 (CIN1) and 2/3 of the way from the basal layer as CIN2. These 

CIN1 and CIN2 lesions typically disappear within a few months by the immune system (80). 

However, the persistent infection causes abnormal cell growth to penetrate the entire 

thickness of cervical epithelium causing CIN3 or carcinoma in situ. When abnormal cells 

invade the basal membrane and spread into the tissues beneath, the condition becomes 

cervical cancer (81).  

The biology underlying HPV infections in the head and neck region is largely 

unknown, particularly in areas other than the oropharynx. Oropharyngeal tissues do not 

contain squamocolumnar junctions. However, the palatine and lingual tonsils are lined with 

stratified squamous epithelium and contain numerous tonsillar crypts that extend through the 

full thickness of the tonsil (82,83). These crypts are lined with specialized reticular epithelium 

that has a porous basal cell layer and disrupted basement membranes. It has been proposed 

that the structural porosity of the tonsillar reticulated crypt epithelium allows HPV access to 

the basement membrane and infection of basal cells without the associated trauma observed 

in cervical cancer (57).  

Since tumorigenesis in oropharynx often occurs deep within the crypts, it is difficult to 

identify premalignant precursors on the tissue surface (47). Unlike oropharyngeal cancers 

(OPC), oral squamous cell carcinoma (OSCC) often develops from a clinically apparent 

leukoplakia (84) that shows microscopic evidence of oral epithelial dysplasia. Therefore, oral 

cavity pre-malignant lesions may provide an in vivo model to study the development of head 

and necks involving an HPV etiology. 
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Molecular events associated with HPV malignancy 

Studies in cervical cancer, the most widely characterized HPV-associated 

malignancy, indicate that HPV-driven malignant conversion is associated with specific 

molecular events. HPV-associated carcinogenesis requires continuous overexpression of the 

two main viral oncoproteins E6 and E7, which interact with many cellular proteins leading to 

the induction and maintenance of a transformed phenotype in infected cells (15). E6 and E7 

expression are regulated by the viral E2 protein through the early promoter (termed p97 for 

HPV16) located in the LCR of the viral genome. Overexpression of E6 and E7 is caused 

either by disruption of E2 gene via HPV genome integration or by inhibition of E2 protein 

binding to the LCR via methylation of viral DNA. Therefore, the integration and methylation of 

viral DNA are considered as two main regulatory mechanisms for malignant transformation, 

mainly in the cervical region (85). Additionally, DNA hypermethylation of host genes was 

frequently detected in advanced forms of cervical cancer (86-90). In contrast, molecular 

events culminating in malignant transformation of the HPV-infected head and neck cells are 

largely unknown. 

HPV DNA integration 

HPV DNA may exist in the episomal (extra-chromosomal) form and/or become 

integrated into the host genome (Figure 7A). HPV DNA integration into the host genome has 

been considered to be an important molecular event during HPV-induced cervical 

carcinogenesis (91,92), (Figure 7B). In most invasive cervical cancers, high-risk HPV 

genomes are integrated into the host genome mainly via mechanisms that disrupt the E2 

reading frame (93-95).
 
Lack of E2 results in up-regulation of the viral oncogenes E6 and E7, 

thereby promoting tumorigenesis (Figure 7). In addition to invasive cervical cancers, 

integration of HPV DNA was also found in premalignant cervical intraepithelial neoplasia 

(CIN2/3). In contrast, in benign and low-grade cervical lesions the predominant form of HPV 

DNA is episomal (96,97). Accordingly, different patterns of HPV DNA integration are currently 

used to monitor cancer progression in cervical cancer patients (98,99).  
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While viral integration is thought to play an important role in cervical carcinogenesis 

(92), the relevance of viral DNA integration is controversial in head and neck tumors (100). 

Some studies suggest that viral DNA integration in the head and neck sites plays an 

important role in carcinogenesis (83,101-105), while other studies suggest that episomal HPV 

alone contributes to the development of most HNCs, in contrast to what is observed in 

cervical cancers (100,106-108). Therefore, more research needs to be done to better 

understand the role of HPV DNA integration in head and neck malignancy.  

HPV DNA methylation 

Methylation of DNA is facilitated by a family of DNA methyltransferases (DNMTs) that 

catalyze the addition of methyl group to cytosine located in CpG dinucleotides. Like the 

human genome, the HPV genome is subject to epigenetic regulation through alterations in 

DNA methylation. There are 15 CpG sites in the LCR of HPV16 genome (Figure 8).  

Methylation of these 15 CpG sites (mainly 5 sites) inhibits the binding of E2 protein to E2BS, 

in turn, leads to an overexpression of E6 and E7 from the early promoter, Figure 8. 

Methylation of the five CpGs located in the E2BS3 and E2BS4 and Sp1-binding site (Sp1BS) 

has been suggested as biomarkers for cervical cancer progression (23,24). Such 

hypermethylation has been reported in cervical cancers or high-grade cervical dysplasia 

compared with low-grade CIN (23,109,110). But it is unknown whether or not viral methylation 

in HNC has a similar association with malignancy, although recent studies have suggested 

that there may be some similarities between cervical cancers and HNCs with respect to viral 

methylation (111). In contrast, a large study reported hypomethylation of the LCR of the viral 

genome in oropharyngeal cancers (112). Therefore, more research remains to be done to 

clarify a role of viral methylation in HPV-associated HNCs.  
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Figure 7: (A) Episomal and integrated forms of HPV DNA. Integration of HPV DNA is 

associated with loss or disruption of E2, and subsequent upregulation of E6 and E7 oncogene 

expression. (B) HPV-DNA integration- mediated progression to cervical cancer.  

HPV infects basal cells in the cervix. Low-grade cervical intraepithelial lesions (CIN) support 

productive viral replication. The progression to high-grade CIN and invasive cancer is 

associated with the integration of the HPV genome into the host chromosomes (red nuclei) 

from episomal HPV (dark blue nuclei). (Copyright permission obtained from Nature Publishing 

Group) 

A. 

B. 
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Figure 8: Upstream regulatory region of HPV16. Methylated E2BS inhibits the binding of E2 

transcriptional repressor and in turn, increases E6 and E7 transcription. Fifteen CpG sites are 

shown along with their respective nucleotide positions using an Asian-American variant of 

HPV16 (Genbank accession number: AF402678.1) as a reference sequence.  

Host genomic epigenetic changes 

DNA methylation is one of the most intensely studied epigenetic modifications in 

humans. In normal cells, DNA methylation plays a role in maintaining genome stability and in 

regulating the expression of genes involved in signal transduction cascade pathways, cell 

cycle regulation, angiogenesis, apoptosis, and DNA repair (113). Methylation of DNA typically 

occurs on cytosines located in CpG dinucleotides, which are usually concentrated in large 

clusters called CpG islands. The methylation of cytosine residues is mediated by a class of 

enzymes called DNA methyltransferases (DNMTs) that catalyze the transfer of the methyl 

group from S-adenosyl-methionine to the carbon 5 position of cytosine (Figure 9A). DNA 

methylation often leads to gene silencing after chromatin structure remodeling (114). Methyl-

CpG-binding proteins (MBD) associates with methylated CpG that, in turn, recruits histone 

deacetylases (HDAC). As a consequence, chromatin becomes compacted and gene 

expression is inhibited (113), (Figure 9C).  
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Figure 9: Mechanism of gene silencing mediated by DNA methylation. A) Cytosine 

methylation catalyzed by DNMT in the presence of S-adenosyl-methionine (SAM). B) 

Unmethylated CpGs within the promoter region allows gene expression while methylated 

CpGs causes silencing of genes. C) DNA methylation occurs through the recruitment of 

methyl-CpG-binding proteins (MBD) and histone deacetylases (HDAC) resulting in compacted 

chromatin and gene inhibition (Copyright permission obtained from Elsevier) 

Aberrant methylation of gene promoters, particularly of tumor suppressors can lead to 

their transcriptional repression, thereby resulting in the pro-carcinogenic environment 

(115,116).
 
Recent studies have identified epigenetic alteration, most importantly aberrant 

DNA methylation, as a possible cause of progression of various cancers (116-118). In 

addition, recent evidence revealed that HPV16 induces DNA methylation in infected cells by 

up-regulating DNMTs (DNMT1 and DNMT3a) (119,120). Different studies related to 

epigenetic alterations have been largely investigated in cervical cancers, where 

hypermethylation of viral and host genes was frequently detected in advanced cancers (86-

90). In addition to cervical cancers, aberrant promoter hypermethylation also has been 

identified in the progression of HNCs (121,122). However, the differences in epigenetic 

anomalies between HPV-positive and HPV-negative HNCs are not well-defined (123-125). A 



 

19 
 

better understanding of these abnormalities will help to know the epigenetic mechanism 

regulated by the presence of HPV in HNCs.  

Dissertation Overview 

Overall Goal 

The information summarized above suggests that understanding molecular events 

involved in HPV-associated head and neck cancer progression will have diagnostic and 

prognostic significance. Therefore, it is crucial to study HPV-associated potential biomarkers 

and molecular events that occur early in head and neck cancer progression in order to 

enhance detection. The ability to document an HPV etiology for HNCs can affect therapeutic 

decision-making, factor into a patient’s long-term prognosis, and identify new therapeutic 

targets. 

Hypothesis and Research Aims  

The overall aim of my dissertation is to identify potential biomarkers and ascertain 

underlying molecular mechanisms associated with HPV-positive head and neck malignancy. I 

hypothesized that head and neck tumors display distinct HPV-associated biomarkers and 

oncogenic mechanisms for malignancy, which differ from that of HPV-negative head and neck 

tumors.  

My dissertation includes three major areas of investigation outlined in chapters 2, 3, 

and 4. In chapter 2, I analyzed tumors of the head and neck for the presence of HPV and 

found that HPV-positive tumors were molecularly and histologically distinct. In chapter 2 and 

3, I identified potential clinical biomarkers for the detection of HPV-associated head and neck 

malignancies. Finally, in chapter 4, I focused on the role of HPV DNA integration, HPV 

methylation and host gene methylation in tumors of the head and neck to identify genetic and 

epigenetic mechanisms involved in HPV-mediated malignancy.
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CHAPTER II 

HISTOLOGIC VARIATION IN HEAD AND NECK TUMORS WHEN ASSOCIATED WITH 

HUMAN PAPILLOMAVIRUS 

Chapter Overview 

Recently, HPV has been found to be increasingly implicated as a causative agent in 

different types of tumors in the head and neck region. In this chapter, I determined the 

involvement of HPV in pathologically distinct tumor specimens of the head and neck and 

identified potential histological biomarkers which could be used to detect HPV infection.  

This chapter is divided into three sub-headings, based on the study conducted on 

different head and neck tumor specimens: 

1. Benign oral lesions (126)  

2. Premalignant oral lesions (127) 

3. Carcinoma of head and neck 

1. Benign oral lesions 

Introduction 

Multifocal epithelial hyperplasia (MEH) or Heck’s disease is a benign oral condition 

that occurs in Native American children/adolescents or HIV-infected adults in the United 

States but is rare among Caucasians and HPV-negative adults. It is typically associated with 

low-risk HPV infections typically involving HPV type 13 or 32 (49). Histologically, MEH lesions

 

[A study of benign oral lesions was published in 2015 (126) and copyright permission was obtained from 
Elsevier to reuse in this dissertation. A manuscript regarding premalignant lesions is currently under revision for 
publication in Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology; an abstract published in 2016 (127)] 
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are characterized by mild hyperkeratosis and thickening of the epithelium with elongated rete 

ridges. A prominent feature is the presence of a mitosoid cell, an enlarged cell with 

atypical/fragmented nucleus resembling a mitotic figure (50,51). Mitosoid cells are atypical 

mitotic figures, which are usually seen in well-differentiated upper epithelial layers of 

hyperplastic oral mucosa (128). 

Recently, we have identified oral lesions that mimic MEH microscopically but occur in 

adult Caucasian patients who are not known to be HIV positive. Oral squamous papillomas 

are another HPV-associated benign lesion which shows clinical & histological overlap with 

MEH but do not occur in the clinical setting expected for Heck’s disease (i.e. children/ 

adolescents) (52). It is important to distinguish different forms of MEH from one another and 

from squamous papilloma. HPV genotyping could potentially contribute to differentiating 

between these different lesions. Herein, I performed HPV genotyping of oral lesions 

microscopically consistent with MEH and compared these results with those derived for 

squamous papilloma. 

Experimental Procedures 

Patient’s biopsy sample collection: This study was approved by the Institutional Review 

Board (IRB) at the University of Louisville. MEH (N=22, 17 patients) and squamous papilloma 

(N=9, 9 patients) samples were selected based on well-defined histologic criteria. 

Histologically, MEH should have thickening of the epithelium (acanthosis) with elongated rete 

ridges and mitosoid cell(s) within the well-differentiated upper epithelial layer called spinous 

cell layer (Figure 10). The histologic inclusion criteria for squamous papilloma were: 

keratinized stratified epithelium with finger-like surface projection and without the presence of 

any mitosoid cell(s).  

Genomic DNA extraction and HPV detection: Formalin-fixed, paraffin-embedded (FFPE) 

specimens were deparaffinized using xylene, followed by an ethanol wash. DNA was 

extracted using DNAeasy Blood & Tissue kit (Qiagen, USA) as per manufacturer’s 

instructions. HPV DNA detection was performed by PCR amplification using conventional 

degenerate MY09/11 and GP5+/GP6+ consensus primers to a well-conserved HPV L1 gene. 

Both primers can detect a wide range of HPV types. The reaction conditions were as follows: 
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50-100ng of template DNA, HiFi PCR buffer, 50mM MgSO4, 10mM dNTPs, 20µM of each 

primer and 1U of HiFi Taq polymerase (Invitrogen) in a total volume of 20μl reaction mixture. 

PCR reaction consisted of an initial 94°C incubation for 2 min, followed by 44 cycles of 

denaturation at 94°C (45 sec), annealing step at 56°C (for MY product) or 48°C (for GP 

product) for 45 sec, and 68°C (45 sec) and a final elongation step of 1 min at 68°C in a MJ 

Research Peltier Thermal Cycler PTC-200. The PCR amplified products were analyzed by 

electrophoresis on a 3% agarose gel stained with ethidium bromide and observed under 

ultraviolet light. PCR products on gels were purified using QIAquick Gel Extraction Kit 

(Qiagen, USA) and sent for DNA sequencing to the DNA Core Facility at the University of 

Louisville. Sequences obtained were analyzed using NCBI BLASTn database and 

MegAlign®. DNASTAR software (Version 12.0, Madison, WI), and type of HPV was identified. 

The quality of the extracted DNA was checked by amplification of internal control (β-globin).  

For a patient who showed two types of HPV in his/her lesions, HPV-type specific PCR was 

employed (which detects the presence of the E7 region of specific HPV type) to test the co-

infection of HPV6 and 32 in lesions. 

Statistical Analysis: Distributions of the discrete lesion and subject characteristics were 

summarized by frequency and percentage. Fisher’s exact tests were applied to examine 

differences between the MEH cases and squamous papilloma. These studies also assessed 

the types of HPV associated with the MEH lesions in this patient cohort. Means, standard 

deviation, and p-values from Student’s t-tests were reported. All data analyses were 

conducted by SAS /STAT
®
 Software (Version 9.4.,SAS Institute Inc., Cary, NC, USA). 

Results 

Clinical and histologic features of MEH and squamous papilloma lesions  

MEH lesions presented as a well-circumscribed, white plaque or nodule with a finely 

stippled/papillary surface. There was significant differences between MEH and squamous 

papilloma cases in distributions of the number (p=0.006) and site (p<0.0001) of lesions (Table 

2). According to my data, MEH lesions occurred more frequently at multiple anatomic sites 

than squamous papillomas (66.7% vs. 0.0%). The MEH cases were less likely to appear in 
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the soft palate/oropharynx than squamous papillomas (0.0% vs. 55.6%) and were more likely 

to appear in both keratinized oral sites and the labial/buccal mucosa than squamous 

papillomas. Of the MEH lesions that were HPV positive 13/19 (68.4%) occurred on the 

labial/buccal mucosa.  

MEH lesions presented with characteristic histologic features: acanthosis with 

elongation of the rete ridges (Figure 10a) and occasionally altered nuclei typical of mitosoid 

cells in the spinous cell layer (Figure 10b). Squamous papilloma cases, on the other hand, 

showed multiple fingerlike surface projections covered by hyperkeratotic stratified squamous 

epithelium supported by fibrovascular connective tissues. While typical mitotic cells are often 

seen in these lesions they are confined to the basal and parabasal cell layers (Figure 11b). 

HPV status of MEH lesions and squamous papillomas  

Figure 12 shows images of agarose gels of 9 representative samples. When the 

amplicons of MY and GP primers were sequenced, 8 cases were HPV6, and 11 cases were 

HPV32, while one sample was HPV40. Other samples, which did not produce any bands and 

of an inappropriate size for both MY and GP amplicons, were classified as negative for HPV 

DNA. Altogether, 19/22 MEH samples and 1/9 squamous papilloma cases were HPV positive. 

The presence of HPV differed significantly between MEH and squamous papilloma 

specimens (p=0.0002, Table 2). The MEH lesions were more likely to have HPV than the 

squamous papillomas (86.4% vs. 11.1%), especially those involving HPV type 6 (36.4% vs. 

0%) and type 32 (45.4% vs. 11.1%).  

HPV status in MEH lesions 

Analysis of MEH lesions revealed that the number of oral lesions was significantly 

different depending on the HPV type detected (p=0.002). HPV32 lesions occurred 

significantly more often as multiple lesions than HPV6, HPV40, and HPV negative lesions 

(Table 3). Marginal differences in race, HIV status, and duration of the lesion were observed 

across HPV types in MEH cases. A higher proportion of African Americans were observed 

with HPV32 lesions than HPV6, HPV40, and HPV-negative lesions. Subjects who were 

reported as HIV positive had HPV32 but none of the other HPV types. In addition, HPV32 was 

most frequently associated with lesions occurring for a longer duration. 
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I examined more than one lesion, biopsied from different sites, per patient from four 

MEH subjects. All lesions were biopsied from different sites on the same day except in the 

case of patient #15. Three MEH patients were positive only for HPV32 in all of their lesions. In 

contrast, one patient (ID #15) with 3 lesions had HPV6 in two lesions and HPV32 in the other, 

as detected by MY/GP primer-based PCR. In one instance (case #35) sequencing based on 

HPV-type specific primers (HPV6 E7 and HPV32 E7) revealed co-infection with HPV6 and 32. 

  

 

Figure 10: Photomicrographs of MEH lesion showing (A) acanthosis and elongation of 

anastomosis of the rete ridges, H&E 100X; and (B) a mitosoid cell (arrow) in the spinous cell 

layer, H&E 200X magnification 

 

 

Figure 11: Photomicrographs of squamous papilloma showing (A) the characteristic 

hyperkeratosis and finger-like projections, H&E 100X, and (B) normal mitoses in the basal 

and parabasal cell layers, H&E 400X magnification 
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Table 2: Clinical variables of MEH cases and squamous papillomas 

  

  

Variable* 

Squamous papillomas 

(9 Subjects, 9 Lesions) 

MEH Lesions 

(17 Subjects, 22 Lesions) 
p-value 

n % n % 
 

Gender 
    

  

  Female 3 33.3 5 29.4 1.00 

  Male 6 66.7 12 70.6   

Race 
    

  

  African American 1 11.1 3 17.6 1.00 

  Caucasian 8 88.9 12 70.6   

  Unknown* 0 0.0 2 11.8   

Age (Mean ± SD) 46.9 ± 23.9 52.4 ± 16.9 0.50  

  <40 years 3 33.3 5 29.4 1.00 

  40-59 years 4 44.4 7 41.2   

  ≥60 years 2 22.2 5 29.4   

HIV 
    

  

  Negative 9 100.0 13 76.5 0.28
‡
 

  Positive 0 0.0 3 17.6   

  Unknown* 0 0.0 1 5.9   

HPV 
    

  

  Absent 8 88.9 3 13.6 0.0002
†
 

  6 0 0.0 8 36.4   

  32 1 11.1 10 45.5   

  40 0 0.0 1 4.5   

Number of Lesions 
    

  

  Single 7 100.0 7 33.3 0.006
‡
 

  Multiple 0 0.0 14 66.7   

  Unknown* 2 22.2 1 4.5   

Site of Lesion 
    

  

  Soft palate 5 55.6 0 0.0  <0.0001 

  Keratinized oral sites 0 0.0 4 18.2   

  Labial/buccal mucosa 0 0.0 14 63.3   

  Tongue/floor of mouth 4 44.4 4 18.2   

Duration of Lesion 
    

  

  ≤6 months 2 22.2 6 27.3 0.47
‡
 

  >6 months 0 0.0 6 27.3   

  Unknown* 7 77.8 10 45.5   

Size of Lesion 
    

  

  ≤3 mm 6 66.7 10 45.5 0.76
‡
 

  4-6 mm 2 22.2 6 27.3   

  >6 mm 1 11.1 5 22.7   

  Unknown* 0 0.0 1 4.5   

*unknown: clinical information that could not be retrieved from biopsy requisition sheets 
†
Negative (absent) vs. positive (HPV6, 32, and 40) 

‡ 
The unknown value was omitted for analysis. 
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Figure 12: HPV DNA detection in benign oral samples by PCR using MY and GP primers 

showing amplified products of 450bp and 150bp, respectively. Amplified β-globin represents 

the loading control to check the quality of extracted DNA.  

 

MEH lesions in HIV-positive subjects 

In the MEH group, 3 subjects (17.6%) had HIV compared to 0 subjects in the 

squamous papillomas group, although no significant difference was observed between HIV-

status and the groups, Table 2. HIV status was marginally associated with HPV genotyping 

(p=0.07, (Table 3). All 3 HIV-positive MEH patients (total of 5 lesions) were HPV32 positive 

(Table 3). Therefore, HPV6 was not detected in known HIV positive patients. Interestingly, I 

found that one MEH case in an HIV positive patient was on the skin side of the commissure. 

To our knowledge, HPV32 has never been reported in the skin. Since clinical pictures of 

specimens were not available to rule out the possibility that skin infection might be an 

extension from the oral mucosal side, I cannot substantiate my result as the first report of 

HPV32 on the skin surface.  
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Table 3: Clinical variables of MEH lesions based on HPV status 

Variable 

HPV-

negative 

MEH  

HPV-

positive 

MEH 

HPV-positive MEH cases 

p-value* HPV6 HPV32 HPV40 

n % n % n % n  % n % 

Gender                       

  Female 2 66.7 6 31.6 2 25.0 4 40.0 0 0.0 0.62 

  Male 1 33.3 13 68.4 6 75.0 6 60.0 1 100.0   

Race                       

  African American 0 0.0 5 26.3 0 0.0 4 40.0 1 100.0 0.08 

  Caucasian 3 100.0 12 63.2 6 75.0 6 60.0 0 0.0   

  Unknown 0 0.0 2 10.5 2 25.0 0 0.0 0 0.0   

Age                       

  <40 years 0 0.0 8 42.1 5 62.5 3 30.0 0 0.0 0.13 

  40-59 years 1 33.3 7 36.8 3 37.5 4 40.0 0 0.0   

  ≥60 years 2 66.7 4 66.7 0 0.0 3 30.0 1 100.0   

HIV                       

  Negative 3 100.0 13 68.4 7 87.5 5 50.0 1 100.0 0.07 

  Positive 0 0.0 5 26.3 0 0.0 5 50.0 0 0.0   

  Unknown 0 0.0 1 5.3 1 12.5 0 0.0 0 0.0   

Number of Lesions                       

  Single 2 66.7 5 26.3 4 50.0 0 0.0 1 100.0 0.002 

  Multiple 0 0.0 14 73.7 4 50.0 10 100.0 0 0.0   

  Unknown 1 33.3 0 0.0 0 0.0 0 0.0 0 0.0   

Site of Lesion                       

  Skin 0 0.0 1 5.3 0 0.0 1 10.0 0 0.0 0.36 

  Keratinized oral sites 2 66.7 2 10.5 1 12.5 1 10.0 0 0.0   

  Labial/buccal mucosa 0 0.0 13 68.4 6 75.0 6 60.0 1 100.0   

  Tongue/floor of mouth 1 33.3 3 15.8 1 12.5 2 20.0 0 0.0   

Duration of Lesion                       

  ≤6 months 1 33.3 5 26.3 4 50.0 0 0.0 1 100.0 0.07 

  >6 months 1 33.3 5 26.3 1 12.5 4 40.0 0 0.0   

  Unknown 1 33.3 9 90.0 3 37.5 6 60.0 0 0.0   

Size of Lesion                       

  ≤3 mm 1 33.3 9 47.4 3 37.5 6 60.0 0 0.0 0.20 

  4-6 mm 0 0.0 6 31.6 4 50.0 2 20.0 0 0.0   

  >6 mm 2 66.7 3 15.8 1 12.5 1 10.0 1 100.0   

  Unknown 0 0.0 1 5.3 0 0.0 1 10.0 0 0.0   

*analyses between HPV types and variables  
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Discussion 

I studied two types of benign oral lesions (MEH, multifocal epithelial hyperplasia, and 

squamous papilloma) and found a significant difference in HPV infection in these lesions. The 

most important finding from my study is the demographic presentation of MEH lesions. 

Although seen throughout the world, MEH is predominantly seen in Native Americans 

children/adolescents or HIV-infected adults and is typically associated with HPV types 13 and 

32. However, my study demonstrated a novel presentation of MEH with HPV6, 32 and a 

unique type HPV40 in middle-aged to older (31-82 years of age), HIV-negative Caucasian 

adults. Of note, the most widely and frequently published HPV in MEH, i.e.  type 13, (49) was 

not detected in any samples in this study. Future HPV detection protocols should include 

HPV32 as it may be currently overlooked. Another benign lesion i.e. squamous oral 

papilloma, which showed histologic overlap with MEH, was found to be mostly HPV negative.  

Interestingly, different HPV types were noted in a patient with recurrent lesions. This 

patient had an initial HPV6-positive lesion, followed 15 months later by a lesion with HPV6 

and another lesion co-infected with both HPV6 and HPV32. This indicates that more than one 

HPV type may be present in MEH lesions in the same patient. 

Although MEH is asymptomatic and can regress spontaneously without surgical 

intervention, diagnosis of MEH is important to ensure differential diagnosis from other benign 

lesions since these lesions may have overlapping clinical and histologic features. Here I have 

shown that HPV genotyping complements histologic characterization of benign oral lesions 

that are suspected of harboring HPV. 

2. Premalignant oral lesions  

Introduction 

In the head and neck, high-risk HPV infection is most often seen in oropharyngeal 

cancer (OPC), a subset of head and neck cancer that is increasing in incidence worldwide 

(62). While HPV is strongly associated with OPC, the relationship of HPV to oral squamous 

cell carcinoma (OSCC), another subgroup of HNC (58), and its premalignant precursor, high-



 

29 
 

grade oral epithelial dysplasia (hgOED), is still not clearly defined. While some reports have 

indicated that HPV is not commonly found in OSCC (73,129); others indicated ~25% 

prevalence of HPV16/18 in oral dysplasia (130). More recently, a subset of hgOED was 

shown to be strongly positive for high-risk HPV (131,132). In these studies, the authors 

indicated that diffuse atypical mitotic-like structures (herein referred to as “mitosoid” cells) and 

apoptotic cells are unique histologic features warranting the designation “high-risk HPV-

associated oral dysplasia”(132) or “HPV-associated Oral Intraepithelial Neoplasia (HPV-

OIN)”(131).  

In our laboratory, we have also noted hgOED cases that show the widespread 

mitosoid and apoptotic cells recently described (Group 1 for this study) but in compiling such 

cases we have also noted that hgOED may also show focal mitosoid and apoptotic cells 

(Group 2 for this study) while other cases completely lack these features (Group 3). Herein, I 

explore the association of high-risk HPV in these potential subsets of hgOED with the addition 

of HPV genotyping. I hypothesize that a high prevalence of high-risk HPV and strong p16
INK4a

 

expression will be seen in Group 1 cases with intermediate and lower associations for these 

variables in Group 2 lesions and Group 3 respectively.  

Experimental Procedures 

Biopsy sample selection: This study was approved by the IRB at the University of Louisville. 

Reports of biopsies accessioned into the University of Louisville Oral Pathology Laboratory 

were searched for keywords and/or phrases that could be associated with HPV infection (i.e. 

virus, viral, HPV, mitosoid, Bowen, koilocy-, apopto-, multinucleated keratinocyte). All 

retrieved cases whose diagnosis reported premalignant changes (i.e. dysplasia or carcinoma 

in situ) were then evaluated microscopically for the Group 1 histologic inclusion criteria as 

previously reported (near full thickness mitosoid and apoptotic cells) (131). Group 2 included 

cases which had focal mitosoid cells above the basal layer and occasional apoptotic cells (i.e. 

in at least one or more high power fields but not diffusely through the specimen), suggesting a 

possible early or isolated infection of those cells with high-risk HPV. Group 3 cases (N=10) 

lacked these features altogether in the histologic sections studied. 
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Genomic DNA extraction and HPV detection: The microscopic and clinical information for 

all cases were blinded before performing HPV genotyping. Genomic DNA extraction and HPV 

genotyping were performed as described in previously. Type-specific E7 HPV primers were 

used to confirm the presence of HPV6, 16, 33 and 45. 

Immunohistochemistry (IHC) for p16
INK4a

: Immunohistochemistry for p16
INK4a

 expression in 

FFPE specimens was performed by the Special Procedures Laboratory (University of 

Louisville) using an antibody to p16
INK4a

 (CINtec Histology Kit, Roche laboratories). The Leica 

Bond Polymer Refine Detection (DS9800) system and the Leica BOND III automated IHC 

stainer were used for histological staining. Staining for p16
INK4a

 was rated according to criteria 

used by McCord et al (132): grade 2 (strong and diffuse nuclear and cytoplasmic staining of at 

least the half depth of the epithelial thickness); grade 1 (patchy staining with unstained 

epithelial cells interspersed among positive cells); and grade 0 (negative, no staining or 

staining of scattered single cells). This system was modified such that if patchy staining was 

observed but it included >70% of the dysplastic areas, then it was categorized as grade 2. 

Also, grade 1 and grade 2 cases were classified as positive for p16
INK4a

 expression, rather 

than grade 1 cases being “equivocal,” and grade 0 cases were categorized as negative. 

Statistical analysis: Fisher’s exact tests were conducted to evaluate differences between (1) 

all groups, (2) Group 1 vs. Group 3 lesions, (3) Group 2 vs. Group 3 lesions, and (4) Group 1 

vs. Group 2 lesions. As pair-wise intergroup comparisons would produce prohibitively small 

sample sizes, statistical significance was reported for differences across all 3 groups.  As 

Group 2 and Group 3 were more similar histologically than Group 1, their results were pooled 

together for some comparisons and are designated as Group 2/Group 3, where applicable. 

For continuous characteristics, means, standard deviations, and p-values from one-way 

ANOVA or Student’s t-tests comparing groups are reported. To determine if high-risk HPV 

presence correlated with p16
INK4a

 status (negative vs. positive), stratified exact conditional 

logistic regression was conducted. Predictor test variables [histologic features alone (Group 1, 

Group 1 and 2) and in combination with positive p16
INK4a

 expression] of high-risk HPV 

presence were evaluated for sensitivity, specificity, positive predictive value (PPV) and 
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negative predictive value (NPV).  Statistical analyses were conducted in SAS Version 9.4 

(SAS Institute Inc., Cary, NC, USA). 

Results 

Clinical characteristics of hgOED lesions 

The typical clinical appearance for each group consisted of a white or red/white patch 

or plaque with a variably rough/papillary surface texture which most commonly affected the 

lateral tongue or floor of the mouth (Figure 13). Table 4 depicts comparisons among all three 

groups and between Group 1 and Group 2/Group 3. While the lateral tongue and floor of the 

mouth were most commonly affected in all groups, this location was nearly exclusively 

involved in Group 2/ Group 3 (95.8%) whereas Group 1 lesions affected other sites in 37.5% 

of cases (p=0.01). Group 1 lesions were significantly smaller than the Group 2/Group 3 

lesions with the latter tending to be >6mm (p=0.03); although, there were many cases for 

which size data was not available. Patients in Group 1 were typically younger than Group 

2/Group 3 patients by 8 years on average (p=0.03).  

Histologic features of hgOED lesions 

Group 1 hgOED presented with characteristic histologic features as described 

previously (131,132): abundant mitosoid and apoptotic cells throughout the full thickness of 

epithelium (Figure  14). Group 2, on the other hand, showed only focal apoptotic and 

mitosoid cells (Figure 15). Group 3 showed typical dysplastic features but lacked the 

combination of mitosoid and apoptotic cells (Figure 16). 

 

Figure 13: Clinical photograph showing a similar white patch/plaque on the floor of mouth for 

each group. A) Group 1. B) Group 2. C) Group 3 lesions.  
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Figure 14: Group 1 hgOED H&E- stained section showing diffuse apoptotic cells (red arrows) 

and mitosoid cells (black arrows) at A) 200x and B) 400x magnification.  

 

 

Figure 15: Group 2 hgOED H&E- stained section showing A) a focal apoptotic cell (red 

arrow) and mitosoid cells (black arrows) at 200x, and B) at 400x magnification. 

 

 

 

 

 

 

 

Figure 16: Group 3 hgOED H&E- stained section showing dysplastic epithelial features which lack 

mitosoid or apoptotic cells at 200x magnification. 
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HPV status in hgOED lesions 

Statistical significant differences among all groups were observed for HPV presence 

(p=0.02), Table 4. High-risk HPV was found significantly more often in Group 1 (81.3%) 

versus Group 2 (57.1%) and Group 3 (20.0%), (overall p=0.01).  HPV16 was seen in all 

except one HPV-positive case (being HPV33) in Group 1, comprised 7 of 9 (77.7%) of the 

HPV-positive cases in Group 2 (HPV6 and HPV45 seen in the other 2 cases respectively) and 

was the only HPV type seen in the Group 3 (2 cases). When Group 2 and Group 3 were 

combined, Group 1 was significantly more associated with high-risk HPV (p=0.02) and the 

odd ratio of HPV presence were 5.12 (95% CI 0.99, 33.9) times greater for Group 1 lesions 

than combined Group 2/Group 3 lesions. 

Immunohistochemical (IHC) staining for p16
INK4a

 expression 

IHC results for p16
INK4a

 expression between groups are reported in Table 5.  Strong 

and diffuse p16
INK4a

 staining (grade 2) was more common in Group 1 cases (75%) than in 

Group 2 (14.3%) or Group 3 (11.1%), (overall p= 0.0008). Similarly, p16
INK4a

 positive cases 

(grade 1 and 2, as depicted in Figure 17) were significantly higher in Group 1 (93.8%) than in 

Group 2 (42.9%) or Group 3 (33.3%) (overall p=0.001). The odd ratio of p16
INK4a

 positive 

status was 23.3 times greater for Group 1 than Group 2/Group 3 (Table 4). 

 

 

Figure 17: p16
INK4a immunohistochemistry. (A) Grade 2 (strong and diffuse) staining from 

Group 1. (B) Grade 1 (patchy) staining from the Group 3 group, at 200x magnification. 
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Association of p16
INK4a

 status with HPV presence 

Stratified logistic regression analysis (Table 5) showed a significant association 

between p16 expression and high-risk HPV status (p=0.04). Expression of p16 combined with 

high-risk HPV positivity was seen frequently in Group 1 (13/16, 81.3%) compared to Group 2 

(5/13, 38.5%) and Group 3 (1/9, 11.1%). All high-risk HPV-positive Group 1 and Group 3 

samples expressed p16 whereas only 5 of 8 (62.5%) high-risk HPV-positive samples in Group 

2 expressed p16
INK4a

. In Group 2/Group 3 samples, there was a variable association of the 

presence of high-risk HPV and p16
INK4a

 expression. 

Prediction of high-risk HPV presence in hgOED 

Analyses of the use of histologic features either alone or combined with p16 p16
INK4a

 

expression to predict HPV presence in hgOED are shown in Table 6. Histologic features of 

Group 1 and 2 combined (i.e. mitosoid and apoptotic cell(s) diffusely or focally present) were 

91.3% sensitive (95% CI: 72.0%, 99.0%) and 47.1% specific (95% CI: 23.0%, 72.2%) for 

detecting high-risk HPV with a positive predictive value of 70.0% and negative predictive 

value of 80.0%. Analysis of Group 1 histologic features alone to predict for the presence of 

high-risk HPV was more specific at 82.4% (95% CI: 56.7%, 96.2%) but showed a large 

decrease in sensitivity to 56.5% (95% CI: 34.5%, 76.8%).  

The combination of p16
INK4a

 expression and the histologic features of Group 1 lesions 

were 100% sensitive (95% CI: 75.3%, 100.0%) in predicting the presence of high-risk HPV 

with a positive predictive value of 86.7% (95% CI: 59.6%, 98.4%), though specificity was only 

33% (95% CI: 0.84%, 90.6%), Table 6. When Group 1 and 2 were combined then the 

addition of p16
INK4a

 expression was 81.8% sensitive (95% CI: 59.7%, 94.8%) and 62.5% 

specific (95% CI: 24.5%, 91.5%) in predicting the presence of high-risk HPV.  
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Table 4: Clinical variables of hgOED 

  
Group 1 
(N=16) 

Group 2 
(N=14) 

Group 3 
(N=10) 

p-value 
Odds Ratio 
Group1 vs. 

Group2/Group 3 
(95% CI)  Variable N % N % N % Overall 

Group1 vs. 
Group2/Group 3 

Gender          

 Male 13 81.3 11 78.6 9 90.0 0.88 1.00 0.87 (0.12, 
6.93)  Female 3 18.8 3 21.4 1 10.0   

Race 

       
  

 Black 3 18.8 2 14.3 0 0.0 0.72 0.60 2.63 (0.24, 
36.4)  Caucasian 8 50.0 7 50.0 7 70.0   

 Unknown
ǁ
 5 31.3 5 35.7 3 30.0    

Age (median ± 
IQR) 

51.1 ± 10.3 59.0 ± 12.3 59.3 ± 8.5 0.09
†
 0.03

†
  

 <40 yrs 1 6.3 1 7.1 0 0.0   0.38 (0.10, 
1.30)*  40-55 yrs 10 62.5 4 28.6 3 30.0   

 >55 yrs 5 31.3 9 64.3 7 70.0    

Smoking 
       

  

 Current 7 43.8 5 35.7 4 40.0 0.65 0.21 2.85 (0.46, 
21.4)

 ‡
 

  Non 3 18.8 6 42.9 5 50.0 

   Previous 3 18.8 2 14.3 1 10.0 

 
  

Unknown
ǁ
 3 18.8 1 7.1 0 0.0 

 Alcohol 

       
  

 Current 4 25.0 3 21.4 2 20.0 0.50 0.78 0.80 (0.09, 
6.76)

 ‡
  Non 5 31.3 1 7.1 4 40.0  

 Previous 1 6.3 1 7.1 0 0.0  

 Unknown
ǁ
 6 37.5 9 64.3 4 40.0  

HPV 

       
  

 Negative 3 18.8 5 35.7 8 80.0 0.02 0.03 N/A 

 Type 6 0 0.0 1 7.1 0 0.0    

 Type 16 12 75.0 7 50.0 2 20.0    

 Type 33 1 6.3 0 0.0 0 0.0    

 Type 45 0 0.0 1 7.1 0 0.0    

HPV risk 

       
  

 Low-risk HPV 0 0.0 1 7.1 0 0.0 0.01 0.02 5.12 (0.99, 
33.9)

 §
 

 High-risk HPV 13 81.3 8 57.1 2 20.0   

 Negative 3 18.8 5 35.7 8 80.0    

p16
INK4a

 grading 

       
  

  grade 2 12 75.0 2 14.3 1 11.1 0.0008 0.0001 7.06 (2.31, 
31.2)*   grade 1 3 18.8 4 28.6 2 22.2 

 

 

  grade 0 1 6.3 8 57.1 6 66.7 
 

  

p16
INK4a

 status 

       

  

 Positive 15 93.8 6 42.9 3 33.3 0.001 0.001 23.3 (2.50, 
1,050)  Negative 1 6.3 8 57.1 6 66.7   

Site 

       
  

 Tongue/ Floor of 
mouth 

10 62.5 13 92.9 10 100.0 0.13 0.01 N/A 

 Buccal/ labial 
mucosa 

3 18.8 0 0.0 0 0.0    

 
Soft palate 1 6.3 1 7.1 0 0.0 

 
  

 Hard palate/ 
gingiva 

2 12.5 0 0.0 0 0.0    
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Size 

       

  

 >6mm 4 25.0 10 71.4 5 50.0 0.09 0.03 0.24 (0.03, 
1.14)

 
*

,
  4-6mm 5 31.3 1 7.1 0 0.0   

 <4mm 1 6.3 0 0.0 1 10.0   

 Unknown
ǁ
 6 37.5 3 21.4 4 40.0    

Duration 

       
  

  >2 months 4 25.0 5 35.7 4 40.0 0.56 0.36 0.15 (0.00, 
2.83)

 
   ≤2 months 3 18.8 0 0.0 1 10.0 

 

 

  Unknown
ǁ
 9 56.3 9 64.3 5 50.0 

 

  

Abbreviations: IQR, interquartile range; N/A, not applicable; CI, confidence interval 

*Odds ratio computed assuming variable is ordinal 
†
 Wilcoxon rank-sum test p-value 

‡
Current vs. Non; 

§
Positive vs. Negative; 

ǁ 
Unknown level omitted for analysis  

 

 

 

 

 

Table 5: Association between p16
INK4a

 (p16) and high-risk HPV (HR-HPV) in hgOED  

 

Group 1 (N=16) Group 2 (N=13*) Group 3 (N=9) 
p-

value
†
 

P16 | HR-HPV Positive Negative Positive Negative Positive Negative 

p16 positive 
13 

(81.25%) 

2   

(12.5%) 

5 

(38.46%) 

1   

(7.69%) 

1 

(11.1%) 

2  

(22.2%) 

0.04 

p16 negative 
0     

(0.0%) 

1   

(6.25%) 

3  

(23.07%) 

4      

(30.77 %) 

0   

(0.0%) 

6 

(66.67%) 

* 
One low-risk HPV-positive sample omitted for analysis 

†
Stratified exact conditional logistic regression score test mid-p.  
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Table 6: Prediction of the presence of high-risk HPV (HR-HPV) in hgOED 

Predictor variables for 

HR-HPV presence 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

PPV  % 

(95% CI) 

NPV % 

(95% CI) 

Histologic features alone     

Group 1* 
56.5 

(34.5, 76.8) 

82.4 

(56.7, 96.2) 

81.3 

(54.4, 96.0) 

58.3 

(36.7, 77.9) 

Group 1 and 2
†
 

91.3 

(72.0, 99.0) 

47.1 

(23.0, 72.2) 

70.0 

(50.6, 85.3) 

80.0 

(44.4, 97.5) 

Histologic features with p16 expression    

Group 1* 100.0            

(75.3, 100.0) 

33.3              

(0.84, 90.6) 

86.7 

(59.6, 98.4) 

100 

(2.5, 100.0) 

Group 1 and 2
†
 

81.8 

(59.7, 94.8) 

62.5 

(24.5, 91.5) 

81.0 

(58.1, 94.6) 

55.6 

(21.2, 86.3) 

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval 

*Comparison of Group 1 with Group 2/Group 3 

†
Comparison of Group 1/Group 2 with Group 3 

Discussion 

The present study analyzed histologically distinct high-grade oral epithelial dysplastic 

(hgOED) lesions based on the distribution of mitosoid/apoptotic cells: Group 1 hgOED with 

diffuse mitosoid cells, Group 2 with focal mitosoid cells and Group 3 hgOED lacking these 

histologic features. This study is the first study to perform HPV genotyping in histologically 

distinct hgOED lesions and show significant differences in both the presence of high-risk HPV 

and p16
INK4a

 expression between these lesions. In previous studies (131,132), researchers 

employed in situ hybridization (ISH) technique using cocktails of low-risk and high-risk HPV 

probes, which could not identify the specific HPV types as done by PCR-based HPV 

genotyping. 

My  data confirm the previous findings (131,132) that high-risk HPV is strongly 

associated with forms of hgOED with widespread mitosoid and apoptotic cells (Group 1). 

Though not statistically significant, an intermediate level of high-risk HPV was detected in 

Group 2 lesions (57.1%) as compared to Group 1 (81.3%) and Group 3 (20%). HPV16 was 

the most predominant HPV type present in 12/16 (75%) of Group1, 7/14 (50%) of Group 2 

and 2/10 (20%) of Group 3. The focal changes in Group 2 cases could be due to early 
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proliferation of high-risk HPV that could expand throughout the epithelium over time to 

eventually become widespread as in Group 1 lesions. Correlation of these specific histologic 

changes in the presence of high-risk HPV with gene and protein expression profiles could 

help reveal how high-risk HPV infection influences the histologic progression of dysplasia and 

risk for malignant transformation.  

In this study, I showed a significant association between high-risk HPV and p16
INK4a

 

expression in Group 1 lesions. Expression of p16
INK4a

 was 100% sensitive for detecting high-

risk HPV in Group 1 lesions with a positive predictive value of 86.7%. So, p16
INK4a

 

overexpression is a reasonable surrogate marker for high-risk HPV infection in hgOED where 

widespread mitosoid cells and apoptotic cells are noted. However, 2 cases were p16
INK4a

 

positive but negative for high-risk HPV, resulting in only 33.3% specificity (95% CI: 0.84%, 

90.6%). Therefore, p16
INK4a

 expression may not be specific for high-risk HPV in hgOED cases 

that show these unique histologic changes and direct testing for HPV by PCR or in situ 

hybridization (ISH) may be warranted in these instances. My data also show that when these 

unique histologic features are focal or absent (Group 2 and Group 3 respectively), p16
INK4a

 is 

not predictive of the presence of high-risk HPV in hgOED. 

On combining Group 1 and Group 2 lesions, the sensitivity of these histologic 

features for detecting high-risk HPV was improved; point estimates for sensitivity increased 

from 54.2% to 91.7%. However, this was at a cost to specificity—point estimates for 

specificity decreased from 81.3% to 50.0%. Practically speaking, when a pathologist 

evaluates a case of hgOED and sees either diffusely distributed or focally dispersed mitosoid 

and apoptotic cells, there is a high likelihood that high-risk HPV is present and warrants direct 

testing for HPV. Whether focal changes seen in Group 2 lesions are a precursor to more 

widespread changes observed in Group 1 lesions requires further study.  

While a causative role of high-risk HPV is clearly implicated in OPC, its role in OSCC 

is still largely unknown (74) and even less is understood about its role in the development of 

pre-malignancy and subsequent malignant transformation. An initial challenge to studying 

HPV-associated disease progression is to identify high-risk HPV infection in the premalignant 

state. For OPC, tumorigenesis often occurs deep within the crypts without a surface 
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premalignant precursor (47) whereas OSCC often develops from a clinically apparent lesion 

(84) with microscopic evidence of dysplasia. Also, there is no reason to clinically evaluate the 

tonsillar crypts unless there are symptoms (e.g. neck mass, sore throat), which do not occur 

until cancer has already developed. In contrast, routine oral examination (as performed in the 

dental care) allows detection of early oral premalignant lesions thus providing the unique 

opportunity to study how HPV infection may initiate dysplastic changes or propel them 

forward to malignancy. While the mechanisms of HPV-driven neoplasia in the oropharynx 

compared to the oral cavity likely differ, the study of these oral cavity lesions may be the best 

in vivo opportunity to study the evolution of head and neck HPV-associated neoplasia.    

 

3. Carcinoma of the head and neck  

Introduction 

Head and neck cancers are malignant tumors that develop in the upper aerodigestive 

epithelium. A subset of head and neck cancers (HNCs), mostly oropharyngeal cancer, has 

been found to be strongly associated with HPV infection, particularly high-risk HPV types 16 

and 18. Other risk factors for HNC are tobacco and alcohol use (61). Although the prevalence 

of smoking is decreasing in the United States, there has been a recent increase in the 

incidence of HPV-positive oropharyngeal cancers (62). About 72% of oropharyngeal cancers 

are caused by HPV in the United States (62). It is estimated that around 2,400 and 9,400 new 

cases of HPV-associated oropharyngeal cancers are diagnosed in women and men, 

respectively, each year in the US. HPV-associated oropharyngeal cancers now outnumber 

the cases of these cancers attributable solely to smoking or alcohol use (133). 

Immunohistochemical analysis (IHC) for p16
INK4a

 expression is frequently used to 

determine HPV status in the clinic, but many reports have shown that p16
INK4a

 is not always a 

good surrogate for HPV infection (18,46,48). This study assessed the presence of HPV by 

using the PCR-based method to detect HPV DNA and compared the HPV-positive status with 

cancer anatomic site and p16
INK4a

 expression.  
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Experimental Procedures 

Tissue Samples: This study was approved by the IRB at the University of Louisville. Patients 

who attended the Head and Neck multidisciplinary clinic for evaluation of their cancer were 

asked to provide written consent. HNC specimens were classified into one of five categories 

according to anatomical subsites: a. Oral cavity (includes lip, anterior tongue, gum, floor of 

mouth, hard palate); b. Oropharynx (includes the base of tongue, lingual tonsil, soft palate, 

uvula, tonsil, and oropharynx); c. Hypopharynx (includes pyriform sinus, hypopharynx); d. 

Larynx (includes glottis, supraglottis, subglottis); and e. Other unspecified cases (includes 

sites which were not within one of the categories listed above and those of unknown primary 

cancer). This categorization is based on The International Classification of Diseases (134), 

and the method used by Hashibe et. al (135). The clinical stage of each cancer was 

determined using the TNM staging system, 7th edition (136). Demographic and disease 

characteristics of patients were collected from the deidentified database and researchers 

were blinded to the HPV status of the patients before serological analysis. 

Genomic DNA extraction and HPV detection: DNA was extracted from fresh frozen or 

formalin-fixed, paraffin-embedded (FFPE) specimens using DNAeasy Blood & Tissue kit 

(Qiagen, USA) as per manufacturer’s instructions with RNAase (20µl of 20 mg/ml) treatment. 

FFPE samples were deparaffinized using xylene and washed before DNA extraction. HPV 

detection and genotyping were performed, as described previously. β-globin amplification was 

done used for an internal control.   

p16
INK4a 

immunohistochemistry: Immunostaining was performed using standard protocols in 

the UofL pathological laboratory. IHC for p16
INK4a

 was considered positive if there was strong 

and diffuse staining present in >70% of the malignant cells. The results of the p16
INK4a

 IHC for 

malignant specimens were provided by the Cancer Database and Specimen Repository 

(CDSR) at the James Graham Brown Cancer Center, University of Louisville. There were 

cases in which p16
INK4a

 IHC was not performed as part of a patient’s standard diagnostic 

workup and hence were unavailable at the time of analysis. 

Statistical analysis: Distributions of discrete lesion characteristics were summarized by 

frequency and percentage. Fisher’s exact tests or Students t-tests were conducted to 
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evaluate differences between variables using SigmaPlot Version 12.5 (Systat Software, Inc., 

San Jose California, USA). 

Results 

Demographic Information of HNC Patients 

Summary on the distribution of 54 HNC specimens is shown in Table 7. Age ranged 

from 35-87 years and 81.5% of patients were males with two exceptions. HPV-positive HNC 

patients were about 6 years younger than patients whose tumors were HPV-negative 

(p<0.05). No significant difference in cancer stages was found between HPV-positive and 

HPV-negative HNC. 

HPV-positive HNC patients 

HPV DNA was detected in 18 out of 54 HNC specimens (Table 7). When the MY and 

GP amplicons (Figure 18) were sequenced, 16 were genotyped as HPV16 and other two 

were HPV18 and HPV33. Results were further verified using HPV type-specific primers. Of 

note, there were many samples, which produced a band around the size of MY amplicon, but 

were not detected to have HPV DNA after sequencing.  

Correlation of HPV positivity with HNC anatomic sites and p16
INK4a

 status 

HPV-positive cases were significantly associated with oropharyngeal cancer (Table 

7), p<0.001. In this study, only 16.7% of total HPV-positive patients had oral cavity cancers. 

Positive HPV status was also significantly correlated with positive p16
INK4a

 IHC staining 

(p<0.001). 
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Figure 18: HPV DNA detection in HNC samples by PCR using MY09/11 and GP5+/GP6+ 

consensus primers. β-globin was used as the loading control. 

 

Table 7: Demographics of HPV positive and HPV negative HNC patients 

Category 
HPV DNA positive 

(N=18) 

HPV DNA negative    

(N=36) 
p-value 

  
n % n % 

 
Gender 

     

 
Male 16 88.9 28 77.7 NS 

 
Female 2 11.1 8 22.2 

 
Age (years) 55.11± 8.4 61.1 ± 10.8 0.022* 

Anatomic site 
     

 
Oropharynx 11 61.1 3 8.3 <0.001* 

 
Oral cavity 3 16.7 11 30.6 

 

 
Others (Hypopharynx, larynx) 4 22.2 22 61.1 

 

Stage 
     

 
I 0 0.0 1 2.8 NS 

 
II 1 5.6 12 33.3 

 

 
III 4 22.2 13 36.1 

 

 
IVA 9 50.0 4 11.1 

 

 
IVB 0 0.0 0 0.0 

 

 
IVC 0 0.0 0 0.0 

 

 
Unknown

†
 4 22.2 6 16.7 

 
p16

INK4a
 status 

     

 
Positive 13 72.2 3 8.3 <0.001* 

 
Negative 0 0 10 27.8 

 

 
Unknown

†
 5 35.7 23 63.9 

 
*Significant values, NS: non-significant 

†
Unknown

 
values omitted during analysis 
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Discussion 

In this study, an initial characterization of the malignant specimens was done and the 

obtained data was used for their further analysis in subsequent chapters. Malignant tissue 

samples from different histological sites of the head and neck (oropharynx, oral cavity, 

hypopharynx, and larynx) were examined. The median age of HPV-positive HNC patients was 

significantly younger than HPV-negative patients. A similar trend is seen in HPV-positive OPC 

and OSCC patients in younger patients compared to those with HPV-negative cancers 

(62,137). When cases were stratified according to location, the data showed that 

oropharyngeal sites (tonsils, posterior tongue, and oropharynx) were the most common sites 

affected in patients who were HPV-positive. My results were consistent with the increasing 

incidence of HPV infection in oropharyngeal cancers (60%-100%) (62,133,138,139). HPV-

negative cancers were mainly from non-oropharyngeal cancers of the head and neck region. 

Further, the data showing only 16.7% (3/18) of HPV-positive OSCC samples supports the 

findings of previous studies that HPV prevalence is lower in OSCC (13-47%) (58,140,141). As 

expected, HPV type 16 was the predominant type found in our specimens, which was also 

reported in the majority of other studies (69,82,138,142). Other high-risk types- HPV18 and 

HPV33 were also observed. While HPV16 is the most common type detected in OPC, HPV33 

and HPV18 have shown to be rare but significant factors in OPC (32,143,144).  

Results indicated that HPV-positive cancers are significantly associated with positive 

p16
INK4a

 expression, confirming the finding of previous reports, particularly in OPCs (48). 

Studies also suggest that factors/mechanisms other than HPV infection likely stimulate 

p16
INK4a

 expression, mainly in OSCC (46,74,76). 72.2% of the HPV-positive cancers showed 

positive p16
INK4a

 staining, though most could not be evaluated for p16
INK4a

 status. The majority 

of HPV-negative OSCC was p16
INK4a

 negative. Out of 3 HPV-positive OSCC, two showed 

positive p16
INK4a

 staining (the other could not be determined). These data did not reveal any 

obvious results towards positive or negative p16
INK4a

 status in OPC and OSCC because of 

small sample size and limited available data.  

In summary, my study is in agreement with previous results showing a clear 

association of high-risk HPV with HNCs, particularly oropharyngeal cancers. In addition to 
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HPV genotyping and p16
INK4a

 staining, characterization of mitosoid cells would be useful. In 

earlier sections of this chapter, I have shown that mitosoid cells are strong biomarkers of HPV 

infection in benign MEH and distinct subset of pre-malignant oral tumors. It was not possible 

to characterize mitosoid cells in malignant specimens due to unavailability of histological 

slides. Further studies characterizing mitosoid cells in cancerous tissues of the head and neck 

would be useful to determine whether these histological features are consistently present 

during premalignant to malignant transformation. In addition to histologic biomarkers, 

identification of HPV-associated serum biomarker would be non-invasive and early method to 

diagnose HPV etiology in HNCs (discussed in Chapter III). Also, detailed molecular studies 

are needed to determine mechanism how HPV influences malignant transformation in HNCs 

(discussed in Chapters IV and V). 
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CHAPTER III 

POTENTIAL SERUM BIOMARKER FOR DETECTION OF HPV-ASSOCIATED  

HEAD AND NECK MALIGNANCY 

Chapter Overview  

HPV-related head and neck cancer incidence is increasing rapidly worldwide 

including the United States, but there are no standard non-invasive ways to detect HPV in 

these cancers. Although p16
INK4a

 overexpression in tumor tissues is widely accepted as a 

surrogate marker for HPV positivity, studies reported that non-HPV cancers also express 

p16
INK4a

. In chapter II, I have shown that mitosoid cells could serve as a strong histologic 

biomarker of HPV infection in the head and neck tumors. Detection of both p16
INK4a 

expression and mitosoid cells require cancer tissues specimens. Therefore, there is a need to 

identify serum biomarker of HPV infection that could carry the potential of earlier and non-

invasive methods of viral detection. Therefore, in this chapter, I determined whether titers for 

antibody to the HPV E7 protein could also be used as a suitable biomarker for head and neck 

malignancies associated with HPV. To this end, HPV E7 antibody titer was analyzed together 

with p16
INK4a

 staining and HPV genotyping in tumor tissues to access their potential uses as 

biomarkers for the presence of HPV. My data represent the first report that the combination of 

E7 serology and p16
INK4a

 staining represents a strong diagnostic marker for underlying HPV 

etiology in HNCs (145). 

Introduction 

Evidence of an etiologic role for HPV in head and neck squamous cell carcinoma has 

been accumulating, with high-risk HPV16 (and to a lesser extent HPV18) detected in 

carcinomas in this region. The p16
INK4a

 protein is overexpressed in HPV-positive tumors as a 

result of the HPV oncoprotein E7 inactivating the tumor suppressor pRb protein. This 

inactivation leads to increased expression of downstream genes like p16
 INK4a

 normally 

[This study was published in 2015 (145) and copyright permission was obtained from Elsevier to reuse 
in this dissertation] 
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repressed by pRb. HPV DNA detection (by in situ hybridization or PCR) and p16
INK4a

 

immunohistochemistry are currently used to determine HPV status. Both of these tests 

require cancer tissues samples. Novel diagnostic techniques using serum samples could 

carry the potential of earlier and non-invasive methods of detection. 

Studies have been done to evaluate serologic markers of HPV infection in HNC. HPV 

serology studies have focused on detecting HPV16 antibodies and have focused mostly on 

the L1 protein (146-149), with few studies involving E6 and E7 oncoproteins (149-152) or 

E1/E2 proteins (152). Antibodies to HPV16 E6 and/or E7 are suggested to be more specific 

for HNC than L1 antibodies (149,150). The presence of HPV L1 and E2 antibodies may 

indicate benign infection whereas E6 and E7 antibodies are more specific for premalignant 

and malignant lesions (i.e. transcriptionally active HPV infection). Antibodies against E6 and 

E7 proteins are largely HPV type specific. HPV18 DNA has been also detected in HNCs but 

only a few studies have examined the seroprevalence of HPV18 in HNCs (153,154). Some 

studies have suggested a correlation between HPV16 E6/E7 seropositivity and clinical 

outcome of HNC patients (155-157). 

My study examined the presence of HPV16 and 18 specific antibodies to E7 

oncoprotein in sera of HNC patients and compared the seropositive status with anatomic site 

of cancers, p16
INK4a

 IHC positivity, HPV tumor DNA, smoking status and treatment outcome. 

Currently, there are no standard commercially available serologic tests that detect HPV-

antibodies against any HPV proteins. Although HPV serological studies have been reported; 

most of them have focused on HPV16 antibodies (not HPV18) and fewer have conducted 

serology both before and after treatment of HNC patients. 

Experimental Procedures 

Serum samples: This study was approved by the IRB at the University of Louisville. Blood 

was collected from pathologically confirmed HNC patients during the period from 08/27/2009 

to 07/30/2014. Blood samples were kept at room temperature for 30 minutes to clot and then 

were centrifuged at 3,000 rpm for 10 min to obtain serum. Serum aliquots were obtained from 

the Cancer Database and Specimen Repository (CDSR) at the James Graham Brown Cancer 
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Center (JGBCC). I analyzed 92 de-identified serum samples (including 17 follow-up sera) 

from 75 patients. HNC was classified into anatomical subsets, as described previously in 

chapter II. Sera from two cervical cancer patients who were seropositive for HPV16 or HPV18 

were used as positive Group 3. 

E7 proteins of HPV16 and 18: Previously, E7 oncoproteins of HPV16 and 18, fused with 

MBP (maltose-binding protein), were expressed in E.coli and purified on amylose column 

(158). These fusion proteins were employed as antigens for ELISA in this study. 

Serological Analysis by ELISA: Total IgG antibody against E7 oncoproteins of HPV16 and 

HPV18 were examined by direct ELISA using recombinant E7 proteins as antigens. Briefly, 

500ng protein/ well in 100μl of 50mM bicarbonate buffer (pH 9.6) was coated onto Immulon
TM

 

ELISA microplates (Thermo Scientific, USA) using an overnight incubation at 4°C. After three 

washings with 200μl of PBS, wells were blocked with 100μl of 5% PBS-A (PBS containing 5% 

bovine serum albumin) and incubated for 1 h at 37°C. Wells were then washed three times 

with 200μl of PBS. Sera diluted to 1/100 in 1% PBS-A was added for 1 h at 37°C followed by 

the alkaline-phosphatase-(AP-) conjugated goat anti-IgG of human at 1/1,000 dilution in 1% 

PBS-A for 1 h at 37°C. After the addition of 100μl of the AP-chromogenic substrate (Sigma-

104 p-nitrophenyl phosphate substrate; Sigma, St Louis, MO), the absorbance was measured 

at 405 nm using Gen5 Microplate Reader and Imager Software in Synergy™ HT Multi-Mode 

Microplate Reader (BioTek Instruments, Inc., VT, USA). 

All serum samples were analyzed at the same time to avoid experimental variations. 

ELISA for all samples was performed at least three times. Human sera, which had been 

previously tested as positive for HPV16 or HPV18 E7 oncoproteins, were used as positive 

controls for each experiment. Wells without antigen or serum was used as negative control 

and wells containing the only substrate were used as background control. 

HPV DNA detection in HNC tissues: FFPE tumor samples with corresponding serum 

specimens were available HPV DNA detection and genotyping in 11 of the HNC cases. DNA 

was extracted and HPV genotyping was performed, as described previously in chapter II. 

HPV DNA status of the tumor tissues was then correlated with HPV E7 seropositivity. 
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p16
INK4a

 immunohistochemistry (IHC): Immunostaining for p16
INK4a

 results were obtained 

from a deidentified database of the Cancer Database and Specimen Repository (CDSR) at 

the James Graham Brown Cancer Center. IHC for p16
INK4a

 expression was considered 

positive if there was strong and diffuse staining present in >70% of the malignant cells. 

p16
INK4a

 result was then correlated with HPV E7 seropositivity. 

Statistical Analysis: The seropositive and seronegative groups were determined by two 

different methods regarding the distribution of absorbance values. In the first method, 

seropositivity was defined as samples whose absorbance values were 2 standard deviations 

(SD) from the mean value. We noticed that there was no difference in demographics for HPV 

seropositivity for both 2 and 3 SD of the mean. In the second method, absorbance values 

were observed based on quintile plots and two different slopes on the plots were determined 

using the non-linear procedure (158). Thresholds of the seropositive group were determined 

by the cross points of two slopes on the plots, and the samples whose absorbance values 

were greater than or equal to the threshold values. Both methods used to define seropositivity 

were in agreement. The ELISA values greater than the cut-off (1.04 and 0.905 for HPV16 E7 

and HPV18 E7, respectively) were considered seropositive. Once the seropositive group was 

determined, the associations were examined between the seropositive group and all available 

variables using Chi-square test for discrete variables and independent t-test for continuous 

variables at p=0.05. All data analyses were conducted by SAS 9.3 and Microsoft Office Excel. 

Results 

Demographic Information of HNC Patients 

Summary on the distribution of 75 HNC and 25 seropositive patients is shown in 

Table 8. All groups (total, seropositive and seronegative) were the average age of 57 years. 

None of the seropositive cases were less than 40 years. 

HPV E7 Seropositivity of HNC Patients 

Antibodies against E7 oncoproteins of HPV16 and 18 were examined by ELISA in 92 

serum samples, including 17 follow-up samples (Figure 19). Of the 75 patients, 14 and 8 

patients were seropositive for the oncogenic E7 proteins of HPV16 and HPV18, respectively. 
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Three patients were cross-reactive for E7s of both HPV types. Four follow-up sera were 

seropositive (2 for HPV16 E7, 1 for HPV18 E7 and 1 was cross-reactive for both HPV types) 

(Figure 19).  

Correlation of E7 Seropositivity with HNC anatomic sites and p16
INK4a

 status 

I evaluated the association between serology and HNC anatomic sites. Seropositive 

cases were strongly correlated with oropharyngeal cancer (Table 8). Positive HPV serology 

was also significantly associated with positive p16
INK4a

 IHC (Table 8). I further compared HPV 

serology with p16
INK4a

 IHC in oropharyngeal cancer as compared to other anatomic sites of 

the head and neck (Table 9). Only patients whose p16
INK4a

 IHC results were known were 

included, excluding unspecified cases. The association between E7 serology and p16
INK4a

 

IHC was significant in oropharyngeal carcinoma as well as in other HNC sites (Table 9). 

Although the sensitivity of E7 serology as a diagnostic marker in HPV-driven HNC (as defined 

by positive p16
INK4a

 IHC) was only 62.5%, E7 serology showed a high specificity and positive 

predictive value (94.7% and 95.2% respectively) (Table 10). Isolating only oropharyngeal 

cancers, where the role of HPV is much more clearly defined, the positive predictive value 

was 100%. 
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Table 8: Demographics of 75 HNC and 25 HPV E7 seropositive patients 

Category 
Total HNC 

patients (N=75) 

Seropositive 

(N=25) 

Seronegative 

(N=50) 
p-value 

Gender       0.186 

 Male 67 (89.33%) 24 (96%) 43  

  Female 8 (10.67%) 1 (4%) 7   

Age 57 ± 10 57.56 ± 7.75 56.60 ± 11.12 0.7002 

 < 40 yrs 4 0 4  

 40 - 59 yrs 43 16 27  

  ≥ 60 yrs 28 9 19   

Anatomical sites       0.0006* 

 Oropharynx 39 (52%) 20 (80%) 19  

  
Others (Oral cavity, 

Hypopharynx, Larynx) 
36 (48%) 5 (20%) 31   

Stage       0.674 

 II 4 1 3  

 III 15 7 8  

 IVA 48 15 33  

 IVB 2 1 1  

 IVC 3 0 3  

  Undetermined 3 1 2   

p16
INK4a

 status       <0.001* 

 Positive 32 (42.1%) 20 (80%)  12  

 Negative 19 (25.33%) 1 (4%) 18  

  Unspecified
†
  24 (31.57%) 4

‡
 (16%) 20  

Smoking status       0.3556 

 

Past or current 

smokers (>10 pack-

years) 

55(73.33%) 20 (80%) 35 

 

  Never-smokers 20 (26.67%) 5 (20%) 15  

Treatment response       0.45 

 Complete response 33 13 20  

 Partial response 10 4 6  

 Progression 11 2 9  

 Not assessed 21 6 15  

*Significant values 

†
Unspecified p16

INK4a
 status was not considered during statistical analysis 

‡
p16

INK4a
 IHC results were unavailable for 4 seropositive cases.  
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Table 9: E7 serology and p16
INK4a status in oropharyngeal and other HNCs 

Site 
E7 serology 

(HPV16, HPV18 or both) 

p16
INK4a

 status p-value* 

Positive Negative  

Oropharynx Seropositive (N=17) 17 0 0.0030 

(N=34) Seronegative (N=17) 10 7  

 Total 27 7  

Others Seropositive (N=4) 3 1 0.0221 

(N=17) Seronegative (N=13) 2 11  

 Total 5 12  

*Unspecified p16
INK4a

 status was not considered during statistical analysis 

 

Figure 19: Scatter plot of HPV16 and HPV18 E7 antibody titers of 92 serum samples 

from 75 HNC patients. Cut-off lines were drawn at 1.04 for HPV16 E7 and 0.905 for 

HPV18 E7. The values that were higher than the cut-off were considered seropositive. 
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Table 10: Diagnostic measures based on E7 serology and p16
INK4a

 status 

Site 

Sensitivity 

(%) 

Specificity 

(%) 

PPV* 

(%) 

NPV* 

(%) 

Total (n=51)  62.5 (20/32) 94.7 (18/19) 95.2 60 

Oropharynx (n=34) 63 100 100 41.2 

Others (n=17) 60 91.7 75 84.6 

*  PPV and NPV denote positive predictive value and negative predictive value respectively 

 

 

 

 

 
Figure 20: HNC patients (N=11) showing negative HPV16 and HPV18 E7 antibody titers both 

before and after treatment. 
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Figure 21: HNC patients who showed positive antibody titers before treatment revealed a 

significant decrease in titer values after treatment, except in one case (HPV004). Five of 

patients who showed decrease in antibody titer had complete/partial response to treatment 

 

Correlation of E7 Seropositivity with treatment response 

Seventeen follow-up serum samples were available for analysis. Sera (N=11) that 

were seronegative before treatment, also revealed negative serology after treatment (Figure 

20). I evaluated antibody status of the remaining 6 follow-up samples and compared with 

respective seropositive pretreatment samples (Figure 21). Follow-up samples were collected 

at a median of 96 days post-treatment (range 87-170 days). Treatment response at this time 

point was supplied by the biorepository database and was determined clinically and in some 

cases, radiographically, when imaging was available. Post-treatment serum antibody titer 

against HPV16 and 18 E7 decreased significantly compared to those at pretreatment (p 

<0.01) in 5 patients, who had a complete or partial response to treatment. One case 

(HPV004) whose titer was decreased, but not significantly, also showed a complete response 

to treatment. Three patients (HPV011, HPV032, and HPV038) became seronegative during 

follow-up (Figure 21). 
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Correlation of E7 Seropositivity with HPV DNA 

Eleven HNC tissues were available for HPV detection and genotyping (Figure 22). 

When the MY and GP amplicons of these seven samples were sequenced, 6 were genotyped 

as HPV16 and 1 sample as HPV33. A sample (HN027) showing HPV33 was confirmed by 

another PCR using HPV type 33- specific primers against oncogene E7. One sample 

(HN021), which produced a band around the size of MY amplicon, was not detected to have 

HPV DNA after sequencing. Samples (HN013, HN019, and HN025), which did not produce 

bands consistent with MY or GP, were negative for HPV DNA. Altogether, HPV DNA was 

detected in 7 samples out of 11 HNC tissues. Positive HPV DNA in cancer tissue was mainly 

from the oropharynx. 

I correlated HPV DNA status with the HPV serology of the patients whose tissues 

were available for DNA extraction and HPV genotyping. The association of HPV16 E7 

serology was strong among the samples tested positive for HPV16 DNA (N=6), except in one 

case. This exceptional case (HN014) was seronegative in repeated assays even though it 

was HPV16-DNA positive. I verified that detected HPV DNA was not a result of sample 

contamination. There were two cases (HN013 and HN021) in which HPV-DNA was not 

detected in their tissue, but sera were positive for HPV-16 E7. The reason behind this might 

be due to multiple HPV infections in a single patient, that makes MY/GP- PCR method 

inefficient and subsequent typing by sequencing is fraught with difficulties in revealing multiple 

types. The sample (HN027), which was positive for HPV33 DNA, was HPV18 E7 seropositive, 

which might be due to the cross-reactivity between epitopes of HPV33 E7 and 18 E7 proteins. 

A sample (HN025) was negative both for HPV DNA and E7 serology. In overall, the sera of 

86% of HPV DNA-positive patients (6 of 7) gave positive ELISA results. 

Correlation of E7 Seropositivity with smoking status 

I assessed the association of seropositivity with smoking status. I defined “smokers” 

as the past and current smokers who smoked 10 or more pack-years. 73% of the total HNC 

patients were smokers, indicating the high smoking prevalence in our population, regardless 

of HPV positivity. Also, seropositivity did not significantly correlate with smoking status (p 

>0.05), Table 8. Only 20% (5 out of 25) seropositive cases were never smokers. 
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Figure 22: HPV–DNA detection in HNC tissue samples using MY and GP consensus 

primers. β-globin was used as the internal control.  

Discussion 

This study evaluated serological biomarkers for clinical assessment of the role of 

HPV in HNC. Although studies have been done to detect HPV L1 (VLPs) (146-149) and E1/ 

E2 antibodies (152), these antibodies mostly indicate early benign HPV infection or 

vaccination. Since cancer usually develops after years of persistent HPV infection; detection 

of antibodies for E6/E7 oncoproteins may be helpful in the serological diagnosis of malignant 

lesions.  

Serial monitoring of HPV serology may also be useful in predicting a patient’s 

response to treatment. The decline of anti-HPV16 E6 and/or E7 antibodies after treatment 

has been shown in cervical cancers (159-161) and with a few studies in HNC (156,157). From 

our laboratory, Drs. Jenson and Ghim had followed cervical cancer patients with E7 

serological tests and found profound IgG response against E7, which was associated with 

tumor stability or dormancy (162). In a small subset of patients, I observed a significant 

decline in HPV E7 antibodies after treatment, except for one patient. I also observed that sera 

that were seronegative before treatment remained so after treatment of patients. In addition, 

some studies have suggested that HPV16 E6/E7 seropositivity is prognostic of a favorable 

clinical outcome of HNC patients (156,163). HPV status as defined by positive E6/E7 serology 
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and positive tumor HPV status (HPV DNA and p16
INK4a

) is suggested to correlate even more 

strongly with favorable prognosis than tumor HPV status (HPV DNA and p16
INK4a

 IHC) alone 

(163).  

When seropositive cases were examined, I observed a statistically significant 

correlation with oropharyngeal cancer, but not with other anatomic sites of HNC. My results 

were consistent with the increasing incidence of HPV infection in oropharyngeal cancers. I 

demonstrated that HPV serology correlates well with routine methods of testing of HPV status 

(HPV DNA detection and p16
INK4a

 IHC) as 86% (6 of 7) of HPV DNA positive HNC patients 

also displayed positive serology. Further, E7 antibody titer in patients’ sera was strongly 

correlated with p16
INK4a

 positivity in HNC tissue samples. Also, among HNC samples that 

tested positive for HPV16 DNA, the association of HPV16 E7 serology was strong.  

In the present study, HNC patients were of the average age of 57 years, regardless of 

HPV positivity. This population of patients demonstrated a high prevalence of tobacco use, 

with 74% of patients with p16
INK4a

 -positive HNC reporting >10 pack-years. Previous studies 

have suggested that this intermediate risk group has inferior survival compared to non-

smokers with HPV-induced HNC. HPV E7 seropositivity did not correlate with smoking status 

in our study population, possibly secondary to the strikingly high smoking prevalence. Indeed, 

some cases of HNC may be caused by a combination of tobacco and HPV (164). 

In this study, I also found that E7 antibody levels declined with response to treatment 

of a patient, though post-treatment serum was available in a limited subset of patients. This 

study was done with only a single follow-up sample per patient. Therefore, further studies in a 

larger sample size, including longitudinal follow-up of patients could help to identify if serial 

monitoring of E7 serology may be useful in predicting a patient’s respond to treatment. 

In summary, HPV-specific E7 antibody levels in the sera of patients with 

oropharyngeal cancer are complementary to the well-established HPV histological detection 

methods. Given the high positive predictive value of E7 serology for p16
INK4a

 positivity, 

particularly in cancers of the oropharynx, HPV serology may be particularly useful in cases 

when insufficient tissue is available to carry out p16
INK4a

 immunostaining for detection of HPV-

associated disease. Further comparisons between potential tissue and serum biomarkers i.e. 
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expression of p16
INK4a

, presence of mitosoid cells and positive E7 serology, would be useful 

to identify the best HPV-associated biomarker in head and neck tumors. 
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CHAPTER IV 

HPV DNA INTEGRATION AND VIRAL GENE METHYLATION DURING HEAD AND NECK 

CANCER PROGRESSION 

Chapter Overview 

In order to better understand the progression of HPV infection in premalignant lesions 

to head and neck cancers, I aimed to characterize HPV-associated genetic and epigenetic 

alterations involved in head and neck carcinogenesis. Studies in cervical cancer indicate that 

HPV-linked malignant conversion is associated with the specific molecular events i.e. HPV 

integration and HPV methylation. In contrast, little is known regarding malignant progression 

in HPV-linked head and neck cancers. Therefore, frequencies of HPV DNA integration and 

methylation were profiled in the premalignant and malignant head and neck tumors and 

underlying mechanisms associated with head and neck carcinogenesis were studied. 

Introduction 

Head and neck cancer (HNC) comprises squamous cell carcinoma (SCC) of the oral 

cavity (oral squamous cell carcinoma, OSCC), oropharynx (oropharyngeal squamous cell 

carcinoma, OPC), hypopharynx and larynx. In addition to excessive tobacco and alcohol 

consumption, the human papillomavirus (HPV) infection has been established as an 

etiological factor for HNCs, particularly OPC. Patients with HPV-associated cancers display 

better treatment response and survival than patients whose tumors are HPV-negative, 

independent of treatment strategy (63,64). While HPV is strongly associated with OPC, the 

relationship of HPV to OSCC and its premalignant precursor (high-grade oral epithelial 

dysplasia, hgOED) are not clearly defined. Our group (127) and few others (131,132) have
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recently reported that HPV is strongly associated with a certain histologic subset of hgOED. In 

this chapter, I aimed to further characterize these premalignant lesions and their relationship 

with malignant lesions to better understand the underlying molecular mechanisms in HPV-

associated head and neck carcinogenesis. 

 The major viral oncogenes E6 and E7 are generally thought to be responsible for 

HPV-associated malignancy, as shown in Figure 2. Their expression is mainly regulated by 

viral protein E2, which is a transcription factor that binds to the early promoter p97 at specific 

E2-binding sites (E2BSs) located within the long control region (LCR) of HPV and can repress 

the expression of HPV E6 and E7 oncogenes (20,21), Figure 3. Overexpression of E6 and 

E7 can be caused either by disruption of E2 gene via HPV genome integration or by inhibition 

of E2 protein binding to the LCR via HPV methylation (85). Therefore, viral integration and 

methylation are considered as two main regulatory mechanisms for malignant transformation 

(23,24,91,92), Figure 7 and Figure 8. 

Integration of HPV into the genome of an infected host cell has been extensively 

characterized in cervical cancers that are the widely acknowledged as HPV-associated 

cancers (96,97). In HNC, studies are mostly limited to cancer cell lines with few studies in 

patient specimens (83,100-105) and data on premalignant lesions are limited. While viral 

integration is thought to play an important role in cervical cancer (92), the relevance of viral 

integration is controversial in head and neck carcinogenesis (100). My first objective in this 

chapter is to address the role of viral integration in the development of cancers of the head 

and neck by determining the integration status in histologically distinct premalignant and 

malignant lesions. 

Methylation of the HPV genome, which contains 15 CpG sites in the long control 

region (LCR), has been suggested as a biomarker for cervical cancer progression (23,24). 

Hypermethylation within HPV-LCR has been reported in cervical cancers or high- grade 

cervical dysplasia compared with low-grade CIN (23,24). In cervical cancer, it is shown that 

methylation of HPV inhibits binding of the transcriptional repressor (E2), resulting in 

overexpression of viral oncoproteins and leading to malignant transformation. However, very 

few studies have evaluated HPV methylation status in HNC specimens and their results are 
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inconsistent (111,112). To date, there is no information about the methylation pattern in 

premalignant hgOED lesions. My second objective in this chapter is to address the role of 

HPV DNA methylation in malignant transformation in head and neck tumors. 

Toward these ends, I analyzed the physical integration of HPV DNA into the host 

chromosomes and presence of potential DNA methylation sites in the HPV epigenome in 

patients with premalignant and malignant tumors of the head and neck. Profiling of these 

genetic and epigenetic events may help to better understand the complex mechanisms of 

HPV-mediated head and neck carcinogenesis.  

Experimental Procedures 

Tissue specimens and cell lines: This study was approved by the IRB at the University of 

Louisville. Premalignant specimens from 40 patients were obtained from Biorepository of 

University of Louisville Oral Pathology Laboratory (as mentioned in Chapter II). HNC 

specimens from 50 patients were collected from Cancer Database and Specimen Repository 

at the James Graham Brown Cancer Center (as mentioned in Chapter II subheading 3). HNC 

cell lines were established at the University of Michigan and carry the heading, University of 

Michigan Squamous Cell Carcinoma (UMSCC). The HPV-negative cell line (UMSCC-1) and 

HPV-positive cell lines (UMSCC-47 and UMSCC-104) were purchased from EMD Millipore 

Corporation (Temecula, CA, USA), and cultured using standard protocols. Cervical cancer 

cell lines, CaSki and SiHa, were cultured as suggested by American Type Culture Collection 

(ATCC, Manassas, VA, USA).  

DNA extraction and HPV detection: DNA was extracted from fresh frozen or FFPE 

specimens using DNAeasy Blood & Tissue kit (Qiagen, USA) as per manufacturer’s 

instructions with RNAase (20 µl of 20mg/ml) treatment. FFPE samples were deparaffinized 

and washed before DNA extraction. HPV detection and genotyping were performed, as 

previously described (126). β-globin was used as an internal control. Sixteen of the 50 HNC 

specimens were HPV16 positive (Table 7 for demographics). In premalignant lesions, HPV16 

DNAs were present in 12/16 of Group 1, 7/14 of Group 2 and 2/10 of the Group 3. HPV type 

16 is known to be the most common carcinogenic HPV type in cervical cancer development. 
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Similarly, HPV16 was the predominant form of HPV in specimens and cell lines derived from 

head and neck tumors. I used HPV16-positive premalignant and malignant samples for 

further analysis. 

HPV integration and viral load by quantitative PCR: I employed a previously described 

real-time quantitative PCR assay to evaluate viral load and integration in cell lines and HNC 

specimens (165). The primers and probes were designed for specific amplification of the E2 

hinge regions which are known to be disrupted most frequently during the process of viral 

integration (165). E6 primers and probes were also designed accordingly. β-globin was used 

as an internal control. In a total volume of 20 µl, the final primer, probe and DNA template 

concentrations were 0.3 µM, 0.1 µM, and 20 ng respectively. TaqMan™ Universal Master Mix 

II, with UNG (Uracil-N-glycosylase), was used according to the manufacturer’s instructions 

(Thermo Fisher Scientific, USA). HPV16 plasmid cloned in a pBR322 vector (300 pg to 0.3 

pg) was used to plot a standard curve. The relative viral load was estimated by calculating the 

ratio of a copy of E6 found in the specimen to copy of E6 present in SiHa cell because SiHa 

cells are known to contain a well-defined viral copy number (165). HPV integration status was 

evaluated using E2/E6 ratio. The ratio of E2 to E6 equal or greater than 1 indicates the 

presence of HPV DNA in the episomal state with no integrated forms of viral DNA. An E2/E6 

ratio of 0 indicates HPV DNA in an integrated state with no episomal forms of viral DNA. An 

E2/E6 of 0.5 shows the presence of equal copies of integrated and episomal forms of HPV 

DNA. Samples were categorized as predominantly integrated if the E2/E6 ratio was less than 

0.5 and predominantly episomal if the ratio was greater than 0.5. Cervical cancer cell lines 

(CaSki and SiHa) were used as positive controls for studying HPV genome integration in HNC 

cell lines and different head and neck tumor lesions. Water controls were included in each 

run. All experiments were performed in duplicates at least three times. 

Determination of E2 Gene Integrity: The integrity of the E2 gene was determined by 

amplification of the full-length E2 ORF (nucleotide 2755 to 3852 of NC_001526.2; primers 

16E2a and E2b listed in Table 11). Disruption of this region was defined as an absence of the 

full-length E2 amplicon on agarose gel electrophoresis and positive signals of parallel β-actin 

amplification. Positive signals for amplification of the ~1 kb full-length E2 amplicon from CaSki 
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DNA were used as a control because CaSki cells are known to carry an intact E2 gene. Also, 

amplification of first half of E2 (primers 16E2a and 16E2c) and last half of E2 region (primers 

16E2d and 16E2b) was performed for further confirmation of E2 integrity. 

Bisulfite-sequencing: Purified genomic DNA was bisulfite converted using an EpiTect ® 

Plus Bisulfite Kit (Qiagen, CA, USA) according to the manufacturer’s protocol. In this 

treatment, unmethylated cytosine residues are converted to uracil whereas 5-methylcytosine 

is unaffected. Target DNA is then amplified by PCR in which uracil residues are converted to 

thymine. The DNA methylation status of HPV DNA was then evaluated by the direct 

sequencing of PCR products. Because HPV type 16 have different variants (categorized 

based single nucleotide polymorphisms present in LCR and/or E6), an Asian-American 

variant of HPV type 16 (Genbank accession number: AF402678.1) was used as reference 

HPV16 sequence for primer design and further analysis. The bisulfite-treated DNA was 

amplified by PCR using different sets of primers designed to target the 15 CpG sites in LCR 

region of HPV (Figure 8, Table 11). Primers were designed within the consensus sequences 

among different variants of HPV16 (Genbank accession numbers: AF402678.1, AF125673.1, 

AY686584.1, NC_001526.2, and KF954093.1). Different secondary primer sets were adopted 

in cases where PCR amplification was negative using primary primers. As an internal control 

for the presence of bisulfite-modified DNA, primers specific to a modified region of the β-actin 

(ACTB) gene containing no CpG sites was used. PCR reaction mixtures consisted of 10X HiFi 

PCR buffer, 50mM MgSO4, 10 mM dNTPs, 20 µM of each primer and 1 U of HiFi Taq 

polymerase (Thermo Fisher Scientific, USA) in a total volume of 20 µl. PCR conditions were 

95°C (2 min); 45 cycles of 45 sec at 95°C, 45 sec at 52°C and 45 sec at 68°C, followed by 10 

min at 68°C. PCR products were run on 3% agarose gel and extracted using QIAquick Gel 

Extraction Kit (Qiagen, USA) and sent for sequencing to the DNA Core Facility at the 

University of Louisville. Amplified products were directly sequenced using the same primers. 

Sequencing data was analyzed using NCBI BLAST database and SeqMan Pro program 

(Lasergene 12, DNAstar Inc., Wisconsin). 

RNA extraction and qRT-PCR analysis: Total RNA was isolated from cultured UMSCC-1, 

47 and 104 cells by using PureLink® RNA Mini Kit (Thermo Fisher Scientific, USA), with 
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DNase I treatment, according to manufacturer's instructions. Single-stranded complementary 

DNA (cDNA) was synthesized from 1 μg of total RNA using SuperScript® VILO cDNA 

Synthesis Kit (Thermo Fisher Scientific, USA) according to the manufacturer's instructions. 

Quantitative real-time reverse transcription–polymerase chain reaction (qRT-PCR) was 

performed in separate 20-μL reaction volumes to evaluate the expression of HPV16 E6, E7, 

and E2 genes, and cellular genes p16 (CDKN2a/INK4a), EGFR and β-actin. To investigate 

the expression of E2 gene, primers were designed near the 5’ end and upstream of the 

frequent E2 breakpoint to monitor the relative expression of truncated E2 mRNA. qRT-PCR 

was performed in triplicate using 100 ng of cDNA as template, the gene-specific forward and 

reverse primers (0.3 μM each) (Table 11), and the Power SYBR® Green Supermix (Thermo 

Fisher Scientific, USA) in an Applied Biosystems VIIa
TM

 7 Real-Time PCR detection system 

(Thermo Fisher Scientific, USA). The amplification program for all primer sets was 95°C for 3 

minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60 seconds. Real-time 

PCR amplification data were analyzed and threshold cycle (Ct) numbers were automatically 

determined by VIIa
TM

 7 software v1.2.4 (Thermo Fisher Scientific, USA). The relative 

expression of each mRNA was calculated by the ΔCt method (166,167). Endogenous β-actin 

mRNA levels were used for normalization of RNA expression. Due to the small amounts of 

RNA recovered from clinical biopsies, qRT-PCR was only performed on cell lines and not on 

clinical biopsy samples. 

Statistical analysis: Comparisons were performed using Student’s t-test or Fisher’s exact 

test or Mann-Whitney Rank Sum Test. SigmaPlot Version 12.5 (Systat Software, Inc., San 

Jose California, USA) and Microsoft Excel 2013 (Microsoft Corporation, Redmond WA) were 

used for data computation and statistical analysis. Statistical significance was established at 

p-value ≤0.05 (*p<0.05; ** p<0.01; ***p<0.001).  
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Table 11: List of primers employed to detect HPV DNA, HPV integration, E2 gene integrity, 

bisulfite sequencing and qRT-PCR. 

Target Primer Sequence (5’-3’) 

HPV detection  

L1 MY09
*
 (For) CGTCCMARRGGAWACTGATC 

 MY11
*
 (Rev) GCMCAGGGWCATAAYAATGG 

L1 GP5+ (For) TTTGTTACTGTGGTAGATACTAC 

 GP6+ (Rev) GAA AAATAA ACTGTAAATCATATTC 

β-globin GH20 (For) GAAGAGCCAAGGACAGGTAC 

 PC04 (Rev) CAACTTCATCCACGTTCACC 

HPV integration by qPCR  

E2 16E2F AACGAAGTATCCTCTCCTGAAATTATTAG 

 16E2R CCAAGGCGACGGCTTTG 

 16E2probe (FAM)-CACCCCGCCGCGACCCATA-(TAMRA) 

E6 16E6F GAGAACTGCAATGTTTCAGGACC 

 16E6R TGTATAGTTGTTTGCAGCTCTGTGC 

 16E6probe 
(FAM)-CAGGAGCGACCCAGAAAGTTACCACAGTT-
(TAMRA) 

E2 gene Integrity  

E2 (full length) 
16E2a (For) ATGGAGACTCTTTGCCAACGTT 

16E2b (Rev) TCATATAGACATAAATCCAGTAGAC 

E2 (first half) 
16E2a (For) ATGGAGACTCTTTGCCAACGTT 

16E2c (Rev) TTATTCTTTGATACAGCCAGTGTTG 

E2 (last half) 
16E2d (For) CCTCACTGCATTTAACAGCTCA 

16E2b (Rev) TCATATAGACATAAATCCAGTAGAC 

Bisulfite sequencing   

5’-LCR, enhancer  
(2F+3R) For GTGTATGTGTTTTTAAATGTTTGTGT 

(2F+3R) Rev CACAATATACATAATAATTCAATAATTAC 

enhancer  (4F+4R) For GTAATTATTGAATTATTATGTATATTGTG 

 (4F+4R) Rev CACACACCCATATACAATTTTACAA 

promoter  (5F+5R)For TTGTAAAATTGTATATGGGTGTGTG 

 (5F+5R) Rev ACAACTCTATACATAACTATAATAACT 

5’-LCR and  BSP-6 (For) TAAATTATATTTGTTATATTTTGTTTTTGT 

enhancer BSP-6 (Rev) TAATTAACCTTAAAAATTTAAACCTTATAC 

β-actin mACTB (For) TGGTGATGGAGGAGGTTTAGTAAGT 

 mACTB (Rev) AACCAATAAAACCTACTCCTCCCTTAA 

Gene expression by qRT-PCR  

 E6 For CAGCAATACAACAAACCG 

  Rev GCAACAAGACATACATCG 

 E7 For CAGAGGAGGAGGATGAAATAG 

  Rev AGGTCTTCCAAAGTACGAATG 

 E2 For TGATAGTACAGACCTACGTGACCATATAGA 

  Rev CCCATTTCTCTGGCCTTGTAAT 

 p16
INK4a

 For CATAGATGCCGCGGAAGGT 

  Rev CCCGAGGTTTCTCAGAGCCT 

 EGFR For GGAGAACTGCCAGAAACTGACC 

  Rev GCCTGCAGCACACTGGTTG 

 β-actin For CCATCGTCCACCGCAAAT 

  Rev GCTGTCACCTTCACCGTTCC 

 IPO8 For CAGTGCATTCCACTCTTCGT 

  Rev ACGAAGCTCACTAGTTTTGACC 
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Results 

Frequency of viral DNA integration in HNC cell lines 

HPV16 DNA integration into the host genome is known to be strongly associated with 

HPV-induced cancer progression, and different integration patterns were reported in two 

cervical cancer cell lines (168). In this study, using an absolute quantification method with 

qPCR confirmed 2 copies of HPV16 DNA from SiHa cell line as previously reported (169). 

SiHa cells were then used as a reference for estimating the relative viral copy number in other 

cell lines and human tissue specimens (165). I found 325 copies of HPV16 DNA in CaSki, 

although different HPV DNA copy numbers (60–600) were previously reported in this cell line 

(169). 

Integration of HPV16 DNA in the HNC cell lines and tumor tissues was examined 

using a method that was designed to provide a ratio of E6 to E2 gene copy number (165). 

The disruption of the E2 gene upon viral integration is known to be associated with HPV-

induced cancer malignancy and was, therefore, the major focus of this study. The E2/E6 ratio 

was 0.0 in SiHa, indicating that both copies of HPV16 DNA were integrated into chromosomal 

DNA on this cell line as reported previously (169). CaSki cells showed the E2/E6 ratio of 0.12, 

indicating that the majority of HPV DNA in this cell line is integrated. These results were 

further confirmed by amplifying E2 ORF with nested PCR primers (Table 11). No full length of 

E2 was found in SiHa while small 3’- or 5’- E2 fragments were amplified (Figure 23C). In 

CaSki, both full length and small fragments of E2 ORF were amplified confirming the 

presence of mixed forms of intact and disrupted E2 DNAs (Figure 23). 

UMSCC-47 and 104 cell lines, originated from tumors of the anterior tongue and floor 

of the mouth, respectively, were classified as oral cavity cancers according to the anatomy-

based classification of HNCs (170,171). HPV16 DNAs were detected from both cell lines 

while no DNA was found from the cell line UMSCC-1, which also originated from an oral 

cavity tumor. Relative to SiHa, the number of viral copies in HPV16-positive HNC cell lines 

(UMSCC-47 and UMSCC-104) was 2 (Figure 26). However, no full length of E2 was 

amplified in both cell lines, suggesting both contained only integrated HPV16 DNA (Figure 

23). HPV DNA integration was confirmed by evaluating E2/E6 ratio from these cell lines. 
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E2/E6 ratio values obtained from UMSCC-47 and UMSCC-104 (0.0 and 0.045 respectively) 

suggested that in both cell lines contained integrated HPV as the predominant species 

(Figure 26). 

Characterization of HNC cell lines with integrated HPV DNA 

Because the disruption of the E2 gene upon HPV DNA integration causes robust and 

chronic expression of the viral E6 and E7 oncogenes in cervical cancer, the expression of E2, 

E6, and E7 genes was profiled in HNC cell lines. Quantitative RT-PCR assays showed that 

E6/E7 mRNA levels varied considerably between the two HPV-positive HNC cell lines studied 

(Figure 24). E7 expression was significantly higher in UMSCC-104 compared to UMSCC-47 

(p<0.001); however the latter showed higher E6 expression than the former (p<0.05). 

Expression of E2 was analyzed using the primers designed to anneal upstream of the 

frequent E2 breakpoint and both cell lines showed similar levels of E2 expression. 

Additionally, the expression of p16
INK4a

 and EGFR has been associated with HNCs (172,173), 

so their expression was also examined in HNC cell lines. The expression of p16
INK4a

 was 

similar in HPV-positive HNC cell lines and significantly higher than that in the HPV-negative 

UMSCC-1 cell line. EGFR expression was relatively higher in UMSCC-104 than UMSCC-1, 

but was not significantly different between UMSCC-47 and UMSCC-1 (Figure 24). 
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Figure 23: Determination of E2 gene integrity (A) by using HPV16 E2 primers (16E2 a, b, c, 

and d, Table 11) which detect intact and disrupted E2 gene. (B) Agarose gel image showing 

the full length of E2 in CaSki and disrupted E2 sequences in SiHa, UMSCC-47, and UMSCC-

104. (C) Schematic representation of integrated HPV DNA in CaSki, SiHa, UMSCC-47 and 

UMSCC-104 cell lines. 
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Figure 24: Relative expression of E6, E7, E2, p16 and EGFR in UMSCC-47 and UMSCC-104 

head and neck cell lines (Significance level at *p<0.05 and **p<0.01) 
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Differential HPV16 DNA integration rates in head and neck tumors collected at the 

different stages of malignant progression 

In chapter II, I classified three different groups of premalignant oral samples based on 

their histological features. Briefly, Group 1 contained diffuse mitosoid/ apoptotic cells while in 

Group 2 and Group 3, histological features were focal or lacking. Group 1 was found to be 

strongly associated with the presence of HPV and higher levels of p16
INK4a

 expression when 

compared with specimens in Group 2 and Group 3. Here, I evaluated HPV copy number and 

integration status to determine if there was a relationship between these parameters in the 

differently staged groups. HPV copy number was detected at variable levels in premalignant 

lesions and was significantly higher in Group 1 lesions compared to Group 2 (p <0.001) and 

Group 3 (p= 0.04, Mann-Whitney test, Figure 25). Relative to SiHa, the HPV copy number in 

Group 1 lesions ranged from 1-47 with one exception of 0.1 copies. In contrast, all 

premalignant samples in Group 2 and Group 3 groups showed relative viral loads less than 

0.1 (Figure 25). When I analyzed the integration state of HPV genome in HPV16 positive 

premalignant lesions, I observed a significant difference in the physical state of the viral DNA 

among the study groups (p=0.006, Table 12). The specimens in Group 1 contained a 

significantly higher level of integrated HPV DNA (90.9%) compared to Group 2 (28.6%) and 

Group 3 (0%). In contrast to Group 1, where integrated DNA was the predominant species, 

both episomal and integrated forms of HPV DNA were found in samples in Group 2. 

HPV DNA copy number and integration status were also analyzed in 16 HNC 

specimens (malignant forms) and compared with those of premalignant tumors. Relative to 

SiHa, variable viral loads between 0.1 and 205 copies/cell (two cases had less than 0.1) were 

found in malignant specimens (Figure 25). 75% of these HNC specimens had integrated HPV 

as the predominant species, whereas only 6.25% of these HNC specimens had episomal 

DNA as the predominant species (Table 12). The patterns of HPV genome integration were 

similar between malignant and premalignant lesions of Group 1. Similarly, there was also no 

significant difference in viral load between Group 1 premalignant lesions and malignant 

specimens (p= 0.79).  
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Figure 25: Box plot showing viral load in malignant (N=16) and different groups of 

premalignant [Group 1 (N=11), Group 2 (N=7) and Group 3 (N=2)] tumors, expressed in a 

number of times the level in SiHa cells. The bottom and top of the box show the first and third 

quartiles respectively, the solid line inside the box is the second quartile (i.e. the median), and 

the dashed line shows the mean value. Whiskers in the box plot represent the highest and 

lowest values excluding outliers as shown by dots. Long whisker in the case of the malignant 

specimen shows high variability in HPV copy number.  In the case of Group 2 and Group 3 

tumors, the values for mean, median and quartiles were almost same, so only solid lines are 

seen in the plot. (Significance level *p<0.05, **p<0.01, NS- non-significant, Mann-Whitney 

Rank Sum Test) 
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Figure 26: Assessment of HPV16 DNA integration by analyzing E2/E6 ratio in (A) 

premalignant (Group 1, Group 2 and Group 3) tumors and (B) cancer cell lines (cervix-CaSki 

and SiHa; and head and neck, UMSCC-47 and 104), and malignant head and neck tumor 

specimens.  
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Table 12: HPV DNA integration in HPV16 positive premalignant hgOED and HNCs 

HPV DNA integration status 

Premalignant hgOED 

HNC 

(malignant) 
Group 1 Group 2 Group 3 

Overall 

p-value 

Solely or predominantly integrated 10 (90.9%) 2 (28.6%) 0 (0.0%) 

0.006 

12 (75%) 

Episomal or predominantly 

episomal 
1 (9.1%) 3 (42.9%) 1 (50%) 

1 (6.25%) 

Both episomal and integrated 0 (0.0%) 2 (28.6%) 1 (50%) 3 (18.75%) 

 

 

Table 13: Methylation pattern of HPV16 cervical and HNC cell lines and HNC specimens* 

Sample*  | 

CpG sites    

% 

Methyla

tion 
  

E2BS1 Enhancer E2BS2 SP1 E2BS3 E2BS4 

7428 7434 7455 7461 7535 7553 7676 7682 7694 7862 31 37 43 52 58 

SiHa 0 U U U U U U U U U U U U U U U 

CaSki 93.33 M M M M M M M M M U M M M M M 

UMSCC-47
†
 

76.92 M mutated M M M M U U M U mutated M M M M 

UMSCC-104 0 U U U U U U U U U U U U U U U 

HN08-T 93.33 M M M M M M M M M U M M M M M 

HPV037 60.0 M M M M U U U U U U M M M M M 

HN022 26.67 U U U U U M U U U U M U U M M 

U denotes unmethylated; M denotes methylated. 

*The remaining 13 HNC and 20 premalignant hgOED specimens were unmethylated at 

all 15 CpG sites. 
†
UMSCC-47 only has 13 CpG sites due to two point mutations at nucleotides 7434 CG>CA 

and 31 CG>TG.  
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HPV LCR methylation in head and neck malignant progression 

Methylation of the HPV genome has emerged as a biomarker for cancer progression 

in cervical cancer (23,24). To determine the role of HPV methylation in head and neck 

carcinogenesis, I first localized CpG sites within the HPV16 LCR.  This region contains a 

promoter for transcription of viral early genes that includes E2 binding sites (E2BS) 1 to 4 and 

an SP-1 binding site (Figure 8 and Table 13). There were 15, 15, 13 and 15 CpG sites in 

SiHa, CaSki, UMSCC-47 and 104 LCRs, respectively. UMSCC-47 had less CpG numbers 

than other cell lines tested because of its two point mutations [nucleotide (nt.) 7434 CG>CA 

and nt. 31 CG>TG], as reported previously (174). A variety of methylation patterns on the 

promoter within the LCR were found in four HPV cancer cell line derived from HPV16 

infections. CaSki and UMSCC-47 cells showed hypermethylation (93.33% and 76.92% of 

available CpGs, respectively). The CpG at nt.7862 within E2BS-2 was unmethylated in both 

cell lines. UMSCC-47 had additional unmethylated CpGs at nucleotides 7676 and 7682. In 

contrast, UMSCC-104 and SiHa cell lines showed unmethylated CpG at all 15 sites within 

LCR. Consequently, two different HPV cancer cell lines (CaSki and UMSCC-47) showed 

hypermethylation and the other two (SiHa and UMSCC-104) showed hypomethylation 

patterns. 

The methylation patterns on viral LCR were then profiled in premalignant and 

malignant lesions of the head and neck in specimens where DNA integration rates were 

analyzed (Table 13). The methylation patterns of CpG were not different among premalignant 

specimens between the histologically distinct groups. Indeed, all CpG sites within the LCR 

were unmethylated in all premalignant specimens. Moreover, all HNC specimens were 

predominantly unmethylated, except three malignant samples which contained methylated 

CpG (93.33%, 60%, and 26.67% methylation, respectively). From these results, I observed 

overall hypomethylation pattern of HPV epigenome from samples of HNC patients.   

Discussion 

The molecular determinants of HPV-associated HNC development and progression 

are not well-defined. Viral integration and methylation could potentially play a role in HPV-

induced head and neck carcinogenesis as seen in HPV-associated cervical cancer. However, 
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limited studies have addressed this highly relevant issue and are mostly done using HNC cell 

lines with few studies in patient tumor samples and even fewer in pre-malignant specimens. 

In this study, I have analyzed histologically characterized HPV-positive tumors, collected at 

different stages of malignancy, with a goal of elucidating mechanisms of HPV-associated 

head and neck malignancy. 

I used cervical and head and neck cancer cell lines to collect reference data that are 

useful for the analysis of clinical samples. HNC cell line UMSCC-47 contained integrated HPV 

with disruption of the E2 gene, similar to SiHa. Further, UMSCC-104 showed a low E2/E6 

ratio with no amplified product for the full length of E2 (Figure 23), indicating that HPV had 

integrated (Figure 26). These results were consistent with data from other researchers (168) . 

However, one study suggested the presence of only episomal HPV in UMSCC-104 (175). 

This discrepancy might be due to the use of a different set of primers that do not target full-

length E2. According to Akagi et. al, in UMSCC-104, the integration breakpoint is at the far 3’ 

end of E2 gene, which differs from the frequent breakpoint site as seen in SiHa and UMSCC-

47 (168). This unexpected location of the breakpoint likely explains why this was missed by 

Olthof et. al (175). 

Methylation is another mechanism by which expression of the HPV oncogenes can 

be reduced and contribute to malignant progression (176-179) , therefore I also studied 

promoter methylation in HPV cell lines and patient samples.  I began by studying promoter 

methylation in HPV-positive HNC cell lines (UMSCC-47 and -104) and compared with that in 

cervical cancer cell lines (CaSki and SiHa). The SiHa cell line where HPV DNA had integrated 

was hypomethylated within the LCR, whereas CaSki containing both integrated and episomal 

HPVs was hypermethylated (Table 13, Figure 23 and Figure 26). Surprisingly, the pattern of 

methylation and its correlation with integration status showed exactly the opposite in the two 

HNC cell lines: UMSCC-47 with only integrated DNA (similar to SiHa) showed 

hypermethylation pattern (resembling CaSki), and UMSCC-104 containing predominantly 

integrated HPV DNA showed hypomethylation pattern (Table 13, Figure 23 and Figure 26). 

Therefore there was no correlation between integration status and promoter methylation of 

HPV DNA between the different cancer cell lines used in this study. 
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As mentioned earlier, viral integration and methylation are considered as two different 

mechanisms to interfere with E2 function thereby increasing oncogene expression and 

potentially leading to malignant transformation.  Both HPV- positive HNC cell lines used in this 

study showed integrated HPV DNA, therefore it was not possible to correlate viral oncogene 

expression with integration status. However, the UMSCC-104 cell line which was derived from 

a recurrent tumor showed significantly higher E7 expression compared to UMSCC-47. In 

contrast, the UMSCC-47 cell line with hypermethylated HPV showed higher E6 levels than 

UMSCC-104, which contained hypomethylated HPV DNA. These data show no clear pattern 

relating promoter methylation to oncogene expression, except to possibly suggest that there 

may be differences between oncogenes in this regard.  More studies are necessary to 

determine whether changes in methylation patterns in the LCR influence the expression of the 

HPV oncogenes, E6 and E7. 

Overexpression of p16
INK4a

 has been correlated with HPV-positive cancers (172,173). 

As expected, p16
INK4a

 expression was significantly higher in both HPV- positive HNC cell lines 

compared to HPV-negative UMSCC-1 cell line. EGFR is also frequently overexpressed in 

HNC independent of HPV etiology (180,181). Overexpression of EGFR is considered a poor 

prognostic factor in HNCs (182). Accordingly, compared to UMSCC-1 (which is HPV-negative 

HNC cell line), I found significantly higher EGFR expression in UMSCC-104 cells which was 

isolated from an HPV-positive tumor that did not respond to treatment (170).  

Integration of high-risk HPV DNA into host cells in severe dysplasia or carcinoma in 

situ of the cervix has been suggested as the first epidemiological marker of malignancy (183-

186). Therefore, for the first time, I analyzed HPV integration status in HPV16-positive 

samples collected at different malignant stages of tumors from the head and neck region, 

mainly by incorporating pre-malignant lesions in the study. I found that HPV integration status 

differed significantly between histologically distinct premalignant hgOED groups. Although the 

consequences of HPV DNA integration in oral dysplastic cells remains unexplored, I found 

that Group 1 (having diffuse mitosoid/ apoptotic cells) was more likely to have integrated HPV 

DNA (90.9%) than Group 2 and Group 3 (where histological features were focal or lacking). 

Group 1 had mostly integrated HPV DNA, which may confer higher malignant transformation 
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potential of Group 1 to HPV-associated cancer than Group 2 or Group 3. Therefore, the 

presence of an abundance of mitosoid cells in any premalignant squamous lesion could 

indicate the potential development of an HPV-associated oral cancer, though further research 

is warranted to confirm this hypothesis. In the malignant specimens, I also observed 

integration of HPV DNA in a significant proportion of HPV-positive HNCs, which was as 

expected based on the results from cell lines. These observations obtained from malignant 

specimens were also consistent with the results from other studies (104,105). 

In the case of cervical cancerous and pre-cancerous lesions, higher CpG methylation 

in E2BS was seen in samples containing only episomal HPV16 compared to those with 

integrated HPV16 genomes (178). So, HPV LCR methylation was considered as an 

alternative mechanism to HPV integration for cervical malignancy. However, HPV epigenome 

of head and neck tumors was mostly hypomethylated in contrast to what was observed in 

cervical lesions (23,24). This is also in contrast with a small study consisting of 3 HPV-

positive HNCs, which showed hypermethylation in LCR regions (111). However, a study in a 

large number of malignant samples reported hypomethylation of LCR in OPSCC (112), which 

is consistent with the results obtained in this study. Moreover, my analyses showed no 

significant differences in the methylation pattern between head and neck premalignant and 

malignant specimens with or without integration. In malignant specimens containing 

predominantly episomal HPV DNA, I didn’t find any methylation for CpG sites. Additionally, 

since all 15 CpG in premalignant specimens were unmethylated, I could not find any 

difference in methylation pattern among 3 groups, although they varied in integration status. 

Consequently, my results indicated that integration status of tumor lesions of the head and 

neck did not seem to correlate with HPV methylation pattern. This warrants further extensive 

research to determine the relationship of HPV genome methylation and integration in head 

and neck carcinogenesis. 

Overall, this is the first study to show differential HPV integration pattern in 

histologically distinct premalignant samples. This study revealed that HPV DNA integration 

might play a role in the process of HPV-induced head and neck carcinogenesis but not HPV 

methylation.
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CHAPTER V 

HOST EPIGENETIC CHANGES BY HPV INFECTION 

Chapter Overview 

DNA methylation is an important epigenetic modification in human cells. Both viral 

genomic and host chromosomal DNA can undergo methylation. In chapter IV, I found that 

promoter methylation of HPV DNA (HPV epigenome) gave no consistent patterns in head and 

neck cancer. In this chapter, I focused on characterization of host epigenetic changes to 

better understand cancer progression driven by HPV infection in the head and neck. For this 

study, an array of tumor suppressor genes was selected based on the data available from 

PubMed that seem to be implicated in HPV carcinogenesis. Results of my study showed that 

EREG is a candidate target gene for epigenetic regulation by HPV in HNC cells. 

Introduction 

Epigenetic modification, such as DNA methylation, histone modification, chromatin 

remodeling and microRNA, are essential for normal cellular differentiation, development and 

gene expression (187). Therefore, abnormal epigenetic modifications may contribute various 

pathological states. In particular, gene silencing through aberrant promoter methylation is 

considered as an important cause of tumorigenesis (118,188). Unmethylated cytosines in 

CpG island within the promoter region allows gene expression while methylated CpG causes 

silencing of genes. Methylated CpG binds with methyl-CpG-binding proteins and in turn, 

recruit histone deacetylases, resulting in transcriptional inactivation and loss of gene 

expression, as described in Figure 9 (113,189). Methylation of DNA is catalyzed by a group 

of enzymes called DNA methyltransferases (DNMTs), Figure 9A. DNMT1 is mainly 

responsible for maintenance methylation in which the methylation pattern is transmitted 

during cell division (190). The DNMT3 group of methyltransferases, particularly DNMT 3a and
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DNMT3b performs de novo methylation in which previously unmethylated cytosines are 

modified (113). There is growing evidence that the DNA methylation is a target for epigenetic 

changes induced by HPV E7 and E6 oncogenes (119,191). It has been shown that HPV16 

infection is associated with an up-regulation of DNMT1 and DNMT3a (119). Therefore, 

different studies related to epigenetic alterations have been largely investigated in cervical 

cancers, where hypermethylation of viral and host genes were frequently detected in 

advanced cancers (86-90,192). Accordingly, epigenetic alteration (particularly, promoter 

hypermethylation of the tumor suppressor genes) are known to play a major role in the 

development of HNCs (121,122,125,193,194). Although studies have shown epigenetic 

modulation in HNCs (121,122,195), it is unknown the extent to which these changes 

contribute to HPV-mediated carcinogenesis and progression. A better understanding of the 

epigenetic differences between HPV-positive and HPV-negative HNCs will help to identify 

molecular signatures involved in HPV-mediated HNC carcinogenesis. 

In order analyze the methylation status of tumor suppressor genes (TSGs) and 

identify epigenetic changes specific for HPV-positive HNCs, I surveyed publicly available 

resources- NCBI Epigenomics and PubMed literature. Thereby, I selected 38 candidate TSGs 

thought to be hypermethylated and repressed on cervical cancers and HNC (125,193-210). 

There were only a few reports on the relationship between HPV infection and methylation of 

host genes in HNCs (104,195,211-215) and results varied among studies. Herein, I 

hypothesized that presence of HPV infection leads to methylation of host genes and thereby 

reduces expression of distinct unique tumor suppressor genes in HNCs. 

Experimental Procedures 

Cell culture: Head and neck cancer cell lines; UMSCC-1 (HPV-negative) and UMSCC-47 

(HPV-positive); were purchased from EMD Millipore Corporation (Temecula, CA, USA) and 

cultured as per manufacturer’s instructions. UMSCC-1 and -47 originated from the floor of the 

mouth and anterior tongue, respectively, such that they are classified as oral cavity cancers 

(subsets of HNCs).  
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DNA isolation: DNA was isolated from cultured UMSCC-1 and 47 cells using DNAeasy® 

Blood & Tissue kit (Qiagen, USA) as per manufacturer’s guidelines. The same method was 

applied to isolate DNA from 5-aza-2′-deoxycytidine treated cells. 

RNA isolation and cDNA synthesis: Total RNA was extracted from all samples by using 

PureLink® RNA Mini Kit (Thermo Fisher Scientific Inc, USA), with DNase I treatment, 

according to manufacturer's instructions. To detect mRNA expression, single-stranded 

complementary DNA (cDNA) was synthesized from 1 µg total RNA by using SuperScript® 

VILO cDNA Synthesis Kit (Thermo Fisher Scientific Inc, USA) according to the manufacturer's 

guidelines.  

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis: Quantitative 

RT-PCR was conducted on a ViiA7 Real-Time PCR system (Applied Biosystems, Thermo 

Fisher Scientific Inc, USA). Expressions of DNMTs were quantified using Power SYBR Green 

PCR Master Mix (Thermo Fisher Scientific Inc, USA) and normalized against expression of a 

β-actin housekeeping gene. Each sample was measured two times at least and fold changes 

in mRNA expression levels were calculated using the comparative threshold (Ct) cycle 

method. Expressions of DNMTs were also measured using pre-designed TaqMan primers 

and probes in TaqMan array plate. Results were consistent from both Sybergreen assay and 

TaqMan array assay plate. 

Quantification of global DNA methylation: DNA was isolated as described previously in 

earlier chapter II. Global methylation levels were assayed using Methylamp™ Global DNA 

Methylation Quantification Ultra Kit (Epigentek) following the manufacture’s protocol. In this 

assay, DNA is immobilized to the well which is specifically coated with DNA binding 

substance. The methylated fraction of DNA is recognized by 5-methylcytosine antibody and 

quantified through an ELISA-like reaction.  

Selection of endogenous control for Taqman gene expression studies: TaqMan® 

Human Endogenous Control array (Applied Biosystems, Thermo Fisher Scientific Inc, USA) 

was used to identify appropriate endogenous controls that are invariably expressed in 

different samples being compared (i.e. 5-aza-dc treated and untreated UMSCC-1 and 

UMSCC-47 cells). This array card contains a panel of 16 endogenous control gene 
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candidates (probe/primer sets preloaded into the array card), Table 14. cDNA from each 

sample were synthesized from 1 µg total RNA and equal concentration (200 ng in each well) 

were loaded in triplicates into the endogenous control array card according to manufacturer’s 

specifications, centrifuged and run on a ViiA7 Real-Time PCR system (Applied Biosystems, 

Thermo Fisher Scientific Inc, USA). Accordingly, three genes- namely 18S rRNA, GAPDH, 

and IPO8 were selected (since their standard deviations were less than 0.5 Ct) and added in 

TaqMan custom array plate.  

Customized TaqMan® Array Plate: Assorted from various previous studies, 38 tumor 

suppressor gene (TSG) candidates that showed to be hypermethylated with decreased 

expression in cervical and HNCs were selected and added in custom array plate (Table 15). 

In addition, the plate also contains three DNMTs (DNMT1, DNMT3a, and DNMT3b); four 

HPV-affected genes (TP53, RB1, p16
INK4a

, EGFR) and three internal control genes (18S, 

GAPDH, IPO8; which was selected from TaqMan Endogenous Control Arrays). Relative 

changes in gene expression in UMSCC-47 versus UMSCC-1 and relative changes on 5-aza-

dc treatment as compared to untreated (DMSO treated) control cells was analyzed using 

normalization with IPO8.  

5-aza-2′-deoxycytidine (5-aza-dc) treatment: The de-methylation reagent 5-aza-dc 

treatment assay was used to analyze the functional effect of gene methylation on its 

expression in HNCs. 5-aza-dc (Sigma Aldrich Inc., St. Louis, MO) was dissolved in DMSO to 

make a stock solution of 20 mM and stored in aliquots at −80°C until use. From the stock 

solution, it was diluted directly in the culture medium to obtain desired final concentrations. 

Cells were treated with 5-aza-dc at different concentrations (0.5–30 μM) for 96 h. The culture 

medium containing freshly prepared 5-aza-dc was replaced every 24 h. Control cells were 

treated in parallel with DMSO only. Cell viability and global methylation were tested to 

determine optimal 5-aza-dc concentration for each cell type. Cells were harvested, and DNA 

and RNA were isolated. 

Cell viability: Cell viability before and after 5-aza-dc treatment was assessed by crystal violet 

staining method. Briefly, cells were seeded in each well of a 24-well plate and were allowed to 

grow for 24 h or 70 % confluence before treatment. Cells grown in monolayer were treated 
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with various doses of 5-aza-dc for 96 h.  After treatment, cells were washed with PBS, fixed 

with ice-cold methanol and stained with 0.5% crystal violet (prepared in 50% methanol) for 15 

mins and then washed with PBS and air-dried for 10 mins. Cells were then destained with 

10% acetic acid for 5 mins in the rocker. Absorbance was measured at 595nm using Gen5 

Microplate Reader and Imager Software (BioTek Instruments, Inc., VT, USA). For the 

evaluation of cell viability, the average absorbance of the control (5-aza-dc untreated) wells 

was regarded as 100%, and the percentage of cell growth in each well was calculated (% of 

control). 

Promoter Methylation Detection: DNA samples were subjected to bisulfite treatment using 

an EpiTect ® Plus Bisulfite Kit (Qiagen, CA, USA) following the manufacturer’s protocol. In 

this treatment, methylated cytosine remains unaffected whereas unmethylated cytosine 

residues are converted to uracil, which gets converted to thymine during PCR amplification. 

Methylation-specific PCR (MS-PCR) was performed to identify promoter methylation of 

EREG, GRB7, SMG1, RUNX3, and CHFR in HNC cell lines. Ensemble database was used to 

find and retrieve promoter sequences of these genes. Nucleotide sequences from ~1 kbp 5'-

flanking sequence to ~500 bp downstream of the transcription initiation site (TSS) of the gene 

was entered into MethPrimer program (http://www.urogene.org/methprimer/) (216). Primers 

specific for methylated sequences and unmethylated sequences of the gene were designed 

using MethPrimer program (Table 16). To control for the presence of bisulfite-modified DNA, 

primers specific to a modified region of the β-actin (ACTB) gene containing no CpG sites were 

used (mACTB Forward primer: TGGTGATGGAGGAGGTTTAGTAAGT and Reverse primer: 

AACCAATAAAACCTACTCCTCCCTTAA). The amplified products were resolved on 3% 

agarose gel and visualized under Bio-Rad ChemiDoc™ imaging system using ChemiDoc™ 

XRS software. Results of promoter methylation of SMG1, RUNX3 and CHFR are included in 

an appendix so as not to distract from the focus of the study.  

Statistical analysis: Data was analyzed by Students t-test or Analysis of Variance (ANOVA). 

One-way ANOVA or Student’s t-test was employed to test the effect of treatment on 

expression of each gene on each cell line individually. Two-way ANOVA was done to test the 

effect of treatment across the two cell types for each gene (i.e. the interaction between 

http://www.urogene.org/methprimer/
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“Treatment” and “Cell type”). Bonferroni p-value correction was designed to test the 

interaction effect across seven genes and to correct the Type 1 error rate (i.e. false positive 

result) for multiple comparisons. The analysis was performed using SigmaPlot Version 12.5 

(Systat Software, Inc., San Jose, CA, USA), GraphPad Prism Version 7 (GraphPad Software, 

Inc., La Jolla, CA, USA) and Microsoft Excel 2013 (MS Corp, Redmond WA). P values ≤ 0.05 

were considered statistically significant (*p<0.05, **p<0.01 and ** p<0.001). Error bars 

represented standard deviations of the mean fold change.  

Table 14: Endogenous control genes contained on Applied Biosystems (ABI) Human 

Endogenous Control Array 

Gene name 

Gene symbol with ABI 

product reference number 

Eukaryotic 18S rRNA 18S-Hs99999901_s1 

Actin, beta ACTB-Hs99999903_m1 

Beta-2-microglobulin B2M-Hs99999907_m1 

Glyceraldehyde-3-phosphate dehydrogenase GAPDH-Hs99999905_m1 

Glucuronidase, beta GUSB-Hs99999908_m1 

Hydroxymethylbilane synthase HMBS-Hs00609297_m1 

Hypoxanthine phosphoribosyltransferase 1 HPRT1-Hs99999909_m1 

Importin 8 IPO8-Hs00183533_m1 

Phosphoglycerate kinase 1 PGK1-Hs99999906_m1 

Polymerase (RNA) II polypeptide A, 220kDa POLR2A-Hs00172187_m1 

Peptidylprolyl isomerase A (cyclophilin A) PPIA-Hs99999904_m1 

Ribosomal protein, large, P0 RPLP0-Hs99999902_m1 

TATA box binding protein TBP-Hs99999910_m1 

Transferrin receptor (p90, CD71) TFRC-Hs99999911_m1 

Ubiquitin C UBC-Hs00824723_m1 

Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide YWHAZ-Hs00237047_m1 

 

 



 

83 
 

Table 15: Genes present in the custom TaqMan Array Plate including three endogenous 

controls (18S, GAPDH and IPO8) 

 

Table 16: Methylation-specific PCR primers 

Genes Primers for methylated sequence Primers for unmethylated sequence 
Amplicon size (bp); 

(Methylated, M; 
Unmethylated, U) 

EREG Met-Forward UnMet-Forward 154 (M) and 153  (U) 

 
GTTTTTTAGTTATTGTCGCGAGTTC TTTTTAGTTATTGTTGTGAGTTTGT 

 

 
Met-Reverse UnMet-Reverse 

 

 
TTATCTCCTCTTTAAAACGACCG TTATCTCCTCTTTAAAACAACCAAA 

 
GRB7 Met-Forward UnMet-Forward 197 (M) and 196  (U) 

 
TTTTTTATTATTTGTAGAGAAGCGG  TTTTTTATTATTTGTAGAGAAGTGG 

 

 
Met-Reverse UnMet-Reverse 

 

 
AACACAACCTAAAACCCTAATACGA  ACACAACCTAAAACCCTAATACAAC 

 
CSF3 Met-Forward UnMet-Forward 154 (M) and 153  (U) 

 
GATCGTGATTATTTTGGTTAATACG ATTGTGATTATTTTGGTTAATATGG 

 

 
Met-Reverse UnMet-Reverse 

 

 
 CTCACTACAAACTCTACCTCTCGAA CTCACTACAAACTCTACCTCTCAAA 

 
SMG1 Met-Forward UnMet-Forward 177 (M) and 178  (U) 

 
GCGTACGTGAATTTAAGGGTAC GGTGTATGTGAATTTAAGGGTATGT 

 

 
Met-Reverse UnMet-Reverse 

 

 
AACAAAAAATCTCCACTACTACGAC AACAAAAAATCTCCACTACTACAAC 

 
RUNX3 Met-Forward UnMet-Forward 180 (M) and 178  (U) 

 
ATTTTTTGAAGGGTTGAAAATTTTC TTTTGAAGGGTTGAAAATTTTTG 

 

 
Met-Reverse UnMet-Reverse 

 

 
 CAAAACGATCAATAAAAAAACGTA CCAAAACAATCAATAAAAAAACATA 

 
CHFR Met-Forward UnMet-Forward 165 (M) and 166  (U) 

 
TTTTGTGATAATATATTTTTTTCGT TTTTTGTGATAATATATTTTTTTTGT 

 

 
Met-Reverse UnMet-Reverse 

 

 
ATAATCTTAATCTCCTAACCTCGTA ATAATCTTAATCTCCTAACCTCATA 
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Results 

Increased DNMT1a and DNMT3a expression in UMSCC-47 cells 

As an initial characterization of epigenetic modifications associated with HPV-positive 

HNC cells, DNA methyltransferase activity, and the global DNA methylation were quantified in 

UMSCC-47 (HPV-positive) and UMSCC-1 (HPV-negative) cells. Significantly higher 

expressions of DNMT1a and DNMT3a were found in HPV-positive UMSCC-47 cells as 

compared to HPV-negative UMSCC-1 cells (Figure 27A). This result supports the finding that 

shows up-regulation of  DNMT1 and DNMT3a induced by HPV16 infection (119). However, 

DNMT3b expression was decreased in the UMSCC-47 cell line. As expected, global DNA 

methylation in UMSCC-47 cells was significantly higher compared to UMSCC-1 cells (Figure 

27B). These results were consistent with a study done by Lechner et al. which showed 

increased mRNA expression of both DNMT1 and DNMT3a in HPV-positive HNC cell lines 

(213). Consistent results were also found in E6- and E7-transfected HNC cell lines (213). 

Gene expression profiling of tumor suppressor genes in HPV-positive and negative 

HNC cells  

In this study, I selected 38 tumor suppressor genes, which were reported previously 

to be altered in either cervical cancer or HNC; although it should be noted that HPV-specific 

alteration in the expression of host genes has been poorly characterized and results varied 

from one study to another. Some of these genes that were previously shown to be 

hypermethylated and/or inactivated in HNCs are -- GRB7, CDH11, SFRP4 (212); CDH8, 

CDH13, PCDH10 (213); PAX1 (125); SFRP4 (197); SMG-1 (214); MT1G (198); PHF21B 

(199); RUNX3 (200); MGMT, RASSF1A (194); RASSF1 (201,202); CADM1/IGSF4 (203); 

DAPK1 (202,215); S100A2 (206); CDH1, EDNRB, RARB, APC, DCC, NDRG2 (193); TUSC3 

(207,212); TCF21 (211); GALC (209); EREG (195); FITH (195,210). There were genes that 

were previously found to be hypermethylated and inactivated specifically in HPV-positive 

HNCs (or were more hypermethylated in HPV-positive HNCs than HPV-negative HNCs); such 

as CCNA1 (211,212) RUNX2, SPON2, PREX1, IRS1 (195), TIMP3, CHFR (215); GATA4, 

IRX4 (104,208). 
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 The expression levels of these 38 tumor suppressors were analyzed in a custom 

array plate that I designed. No significant changes in the expression of CCNA1, SPON2, 

PREX1, IRS1, TIMP3, GATA and IRX4 were found between the HPV-positive (UMSCC-47) 

and HPV-negative (UMSCC-1) cell lines. Nevertheless, six genes (GRB7, RUNX3, RUNX2, 

CHFR, RARB, and EREG) showed significantly reduced expression in the HPV-positive HNC 

cell line compared with the HPV-negative HNC cell line (Figure 28). In addition, one gene, 

SMG-1 was marginally reduced in HPV-positive cell line as compared to HPV-negative cell 

lines (p=0.08). 

 

 

Figure 27: Relative expression of DNMT (A) and global methylation (B) in head and neck 

cancer cell lines. HPV-positive cell line (UMSCC-47) showed significantly higher DNMT1 and 

DNMT3a expressions and greater percentage global methylation than HPV-negative cell line 

(UMSCC-1). (Significance level at *p<0.05, **p<0.01 and NS non-significant) 
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Figure 28: Gene expression profile of six tumor suppressor genes that showed reduced 

expression in HPV-positive cell line (UMSCC-47) as compared to that of HPV-negative cell 

line (UMSCC-1). (Significance level at *p<0.05, **p<0.01, **p<0.001 and NS non-significant) 

 

Determination of optimal de-methylation condition using 5-aza-dc treatment 

Seven tumor suppressor genes showing decreased expression in HPV-positive HNC 

cell line were selected to test whether their decreased expression corresponds with promoter 

methylation using the de-methylation agent (5-aza-dc). Initially, I determined optimal 

conditions for de-methylation using 5-aza-dc by testing cell viability and global methylation.  

When cells are treated with 5-aza-dc (a nucleoside analog of cytidine), it gets incorporated 

into DNA during replication forming azacytosine-guanine dinucleotide. DNA methyltransferase 

(DNMT) recognizes this dinucleotide as a natural substrate for methylation and subsequently 

gets covalently bound (i.e. trapped) to DNA, thereby inactivating its enzymatic function (217). 

Since 5-aza-dc does not actively de-methylate the DNA, but rather inhibits the methylation of 

new DNA during cell division, cells were treated with 5-aza-dc for a relatively long period of 

time (4 days with re-treatment every day due to poor stability of the drug). Further, since 

different cell lines vary in terms of toxicity to this drug, as well as their response in de-

methylation, I treated cell lines with different concentrations (0.5–30 μM) of 5-aza-dc.  I found 
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that treatment with 5 μM 5-aza-dc for 96 hours showed optimal de-methylation potency based 

on global methylation (67% and 75% reduction in global methylation in UMSCC-1 and 47 

respectively) with ~60 and 70% cell viability (Figure 29 and Figure 30).  

 

Figure 29: Cell viability of HPV-positive (UMSCC-47) and HPV-negative (UMSCC-1) cell 

lines with increasing dosage of 5-aza-dc treatment for 96 hours. 

 

 

Figure 30: Changes in global methylation (%) in HPV-negative (UMSCC-1) cell line (A) and 

HPV-positive (UMSCC-47) cell line (B) after treatment with increasing dosage of 5-aza-dc for 

96 hours. 
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Changes in expression of candidate tumor suppressor genes in de-methylation 

condition after 5-aza-dc treatment 

To identify candidate genes whose expression is significantly increased upon de-

methylation, HNC cell lines were treated with 5 µM 5-aza-dc for 96 hours and expression of 

the seven target genes was analyzed. As described in experimental procedures, the effect of 

treatment was statistically analyzed for each gene on each cell type individually as well as 

across the two cell types (i.e. Bonferroni corrected interaction), Figure 31. Out of 7 genes, 5 

were less likely to be regulated specifically in HPV-positive HNCs. For example, SMG1 was 

up-regulated upon de-methylation treatment only in HPV-negative UMSCC-1 cell line 

(p=0.02), but not in HPV-positive UMSCC-47 cell line (p=0.795).  Although the significant 

change in expression of CHFR, RUNX3, and RARB was found on 5-aza-dc treatment, these 

alterations were observed in both cell lines. The expression of the fifth gene, RUNX2 was 

unchanged in both cell lines on 5-aza-dc treatment.  

With a goal to identify a gene that is epigenetically regulated specifically in the HPV-

positive environment, I found two genes, GRB7 and EREG that showed significant change on 

de-methylation as putative targets of HPV-mediated promoter methylation. De-methylation 

treatment significantly increased the expression of GRB7 and EREG in HPV-positive 

UMSCC-47 cell line (p<0.05 and p<0.001 respectively) with no evidence of an effect in the 

HPV-negative UMSCC-1 cell line (p=0.33 and p=0.21 respectively), Figure 31. When the 

effect of 5-aza-dc treatment was analyzed across the two cell types (i.e. overall effect), I 

found no significant effect on GRB7 and EREG expression across cell types (Bonferroni 

corrected interaction p=0.26 and p=1.0, respectively). This result further confirms that 5-aza-

dc treatment has an effect on GRB7 and EREG expression in cell-type specific manner but 

not in overall interaction across the cell lines. 
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Figure 31: Changes in expression of tumor suppressor genes on de-methylation treatment (5 

µM 5-aza-dc for 96 hours) in HPV-negative (UMSCC-1) and HPV-positive (UMSCC-47) cell 

lines. Statistical bars represents the changes on gene expressions on each cell line 

individually as well as Bonferroni corrected interaction of treatment across the two cell types 

(Significance level at *p<0.05, **p<0.01, **p<0.001 and NS non-significant) 

EREG promoter was methylated in the HPV-positive HNC cell line and was 

hypomethylated after 5-aza-dc treatment 

To further determine whether the silencing of EREG expression was due to promoter 

methylation, I examined the methylation status of the EREG promoter region in HPV-positive 

UMSCC-1 and HPV-negative UMSCC-47 cell lines using methylation-specific PCR (MS-

PCR), which covered the CpG island in the promoter region of EREG (Figure 32A). MS-PCR 

assay revealed distinct differences in CpG methylation of the EREG promoter between 

UMSCC-1 and UMSCC-47 cell lines. A methylated band (lanes indicated by M) was identified 

in UMSCC-47 whereas an unmethylated band (lanes indicated by U) was observed in 

UMSCC-1 (Figure 32B). To further confirm methylation-mediated transcriptional silencing of 

EREG, cell lines were treated with a de-methylation agent (5-aza-dc). After 5 μM 5-aza-dc 
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treatment, the unmethylated band (U) was observed in UMSCC-47 cells, while no change 

was found in UMSCC-1 cells (Figure 32C). This suggests that the restoration of EREG 

mRNA expression following 5-aza-dc treatment in UMSCC-47 was likely caused by de-

methylation of the hypermethylated CpG sites in the EREG promoter. 

Methylation of GRB7 promoter in both HPV-positive and HPV-negative cell lines 

Methylation-specific PCR analyses showed the presence of both methylated and 

unmethylated GRB7 promoters in both cell lines, indicating partial methylation of GRB7 in 

these cell types. Even on de-methylation treatment, there was no change in methylated and 

unmethylated bands on the agarose gel (Figure 33B). The promoter of GRB7 contains CpG 

sites (Figure 33A) but does not seem to contain CpG island as predicted by MethPrimer 

software (Criteria used for CpG island prediction was Island size > 100 and GC% > 50.0). 

Therefore, I further checked for the presence of an upstream promoter, which can possibly 

affect the expression of GRB7. A study reported that methylation of CSF3 promoter 

significantly correlates with GRB7 expression; both GRB7 and CSF3 are on chromosome 17q 

and are commonly amplified together (218). Methylation-specific PCR of CSF3 promoter also 

revealed similar results as observed from the GRB7 promoter. Both methylated and 

unmethylated bands (lanes M and U respectively) of CSF3 promoter were seen in UMSCC-1 

and UMSCC-47 cell lines (Figure 33D and 33C). This indicates that epigenetic regulation of 

GRB7 may not be specific to the HPV-positive environment. This result reduces enthusiasm 

for GRB7 as a candidate gene for epigenetic regulation in HPV-associated HNCs.  
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Figure 32: Methylation status of EREG promoter (A) EREG promoter showing CpG island. 

The locations where methylated and unmethylated methylation-specific PCR (MS-PCR) 

primers anneal are indicated by the rectangular box; MF1-MR1 (methylated- forward and 

reverse primers) and UF1-UR1 (unmethylated- forward and reverse primers). TSS indicates 

transcription start site. (B)  MS-PCR of EREG in bisulfite-modified DNA from HPV-negative 

(UMSCC-1) and HPV-positive (UMSCC-47) cell lines. (C) MS-PCR of EREG after 5-aza-dc (5 

µM for 96 hours) treatment. MS-PCR of β-actin serves as an internal control for bisulfite-

modified DNA. No template DNA serves as negative control. 
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Figure 33: Methylation status of GRB7 and CSF3 promoters. A) GRB7 promoter showing 

CpG sites and the locations of methylated and unmethylated methylation-specific PCR (MS-

PCR) primers. MS-PCR of GRB7 (B) and CSF3 (C and D) in bisulfite-modified DNA from 

HPV-negative (UMSCC-1) and HPV-positive (UMSCC-47) cell lines with or without 5-aza-dc 

(5 µM for 96 hours) treatment. No template DNA serves as negative control. (Note: CSF3 

promoter methylation is known to regulate GRB7 expression) 

Discussion 

Epigenetic changes are considered as important mechanisms in HNC progression, 

but how these changes differ between HPV-positive and HPV-negative cancers are less 

defined. I conducted a study that helps to identify an epigenetic mechanism that is specific to 

HPV-positive HNCs. For this, I screened 38 tumor suppressor genes to identify a putative 

candidate regulated by promoter methylation.  

From gene expression profile of 38 tumor suppressors in the custom array, I selected 

7 genes (GRB7, RUNX3, RUNX2, CHFR, RARB, EREG, and SMG-1) as the targets for 

further studies, which showed reduced expressions in HPV-positive cell line than HPV-

negative cell line (Figure 28). To determine whether the reduced expression of these genes 

is due to promoter methylation, I treated cell lines with a de-methylation agent, 5-aza-2′-

deoxycytidine (5-aza-dc).  It is shown that 5-aza-dc is able to re-express genes that are 
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silenced by DNA methylation; although, this reactivation can vary from gene to gene and 

different tissue/cell types (217). On 5-aza-dc treatment, I found different expression profiles of 

tumor suppressor genes in two HNC cell lines. Out of 7 genes, only EREG and GRB7 genes 

expression was significantly increased upon de-methylation treatment specifically in HPV-

positive UMSCC-47 cell line. Although GRB7 expression was increased on 5-aza-dc 

treatment only in UMSCC-47, without any significant change in expression in UMSCC-1, 

GRB7 promoter was found to be methylated in both cell lines. This indicates that epigenetic 

regulation of GRB7 may not be specific to the HPV-positive environment. Further analyses 

quantifying the methylation status between UMSCC-1 and UMSCC-47 cell lines may help to 

better understand the relationship between gene methylation and transcriptional regulation in 

specific cell type.  

In the case of EREG, I found a high correlation between gene expression and 

promoter methylation. Methylated EREG promoter was detected in UMSCC-47 (Figure 32B) 

where EREG was down-regulated (Figure 28). When these cells were treated with 5-aza-dc, 

EREG expression was restored (Figure 31) and the unmethylated band was seen (Figure 

32C). In contrast, higher expression of EREG was found in the UMSCC-1 cell line (Figure 

28), which corresponded with its unmethylated promoter (Figure 32B). Also, 5-aza-dc 

treatment showed no significant change in EREG expression in the UMSCC-1 cell line. 

Consequently, these results suggest that EREG is regulated via promoter methylation 

specifically in HPV-positive UMSCC-47 cell line. Subsequently, EREG was identified as a 

putative candidate gene for being a driver of the carcinogenic process specific to HPV-

positive HNCs. Consistent with my results, a genome-wide methylation study done using two 

HPV-negative HNC cell lines (UMSCC-4 and UMSCC-74A) and an HPV-positive HNC cell 

line (UMSCC-47) have shown enrichment in EREG gene for hypermethylation and decreased 

expression in a UMSCC-47 (195). However, authors did not discuss the functional 

characterization of EREG in their study.  

EREG gene encodes for Epiregulin protein, which is a member of the epidermal 

growth factor (EGF) family of proteins. Epiregulin was originally purified from the conditioned 

medium of the mouse fibroblast-derived tumor cell line and identified as a tumor growth 
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inhibitor, which induced morphological changes in HeLa cells (219). Epiregulin functions as 

one of the ligands for the ErbB family receptors, namely EGF receptor (EGFR or ErbB1) and 

ErbB4 (220). Studies suggested that epiregulin has dual biological activity (219,221,222). On 

one hand, it stimulates proliferation of fibroblasts, hepatocytes, smooth muscle cells, and 

keratinocytes (223-225) and EREG is overexpressed in many human cancers (226-228). On 

the other hand, EREG inhibits the growth of several epithelial tumor cells (219,221,229) and 

not all cancer cells have high levels of EREG expression (230). While the oncogenic function 

of epiregulin is known to involve the activation of PI3K/AKT and MAP kinase cell signaling 

pathways (228), little is known regarding the mechanism by which epiregulin functions as a 

tumor suppressor in epithelial cancers. It is suggested that epiregulin inhibits the binding of 

EGF (a potent mitogenic ligand of EGFR) to EGFR on epithelial tumor cells, which might be 

the reason for growth inhibition of these cells (219).  

Little is known about the role of EREG in the development of HNCs. A study showed 

that epiregulin expression is higher in oral squamous cell carcinoma (OSCC) specimens than 

in normal gingiva and oral dysplasia (231), thereby indicating that epiregulin expression may 

be associated with cancer progression. Although authors did not determine HPV status of 

these OSCC specimens, I would expect mostly HPV-negative because my study and others 

(58,137) have shown that HPV prevalence is extremely low in OSCC. Another study done in 

two HPV-negative HNC cell lines showed that  increased transcription of epiregulin was 

associated with the metastatic phenotype (232). Based on these findings, there is a high 

possibility that increased EREG expression is related to HPV-negative HNCs, but not to HPV-

positive cancers. My study and Sartor et. al (195) showed the promoter methylation and 

transcriptional inactivation of EREG in HPV-positive HNC cell line, but not in HPV-negative 

HNC cell lines. This opens up a possibility that EREG may act as a tumor suppressor in HPV-

positive HNC and as an oncogene in HPV-negative HNC. Further studies on HPV-positive 

and HPV-negative HNC cell lines and tissue specimens are required to confirm this 

hypothesis. Additionally, further studies have to be conducted to elucidate the role of EREG in 

HNC development. 
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Studying the role of EREG in head and neck carcinogenesis would be beneficial for 

the better application of treatment based on HPV status of a patient. Since HPV-positive HNC 

patients have better therapy response than HPV-negative HNC patients, clinical trials are 

undergoing to de-intensify the current treatment standards to reduce associated toxicities 

(173,233). So, de-intensification of chemotherapy has been implemented by replacing with 

cetuximab, a monoclonal antibody that inhibits EGFR. This is because EGFR is frequently 

overexpressed in HNCs independent of HPV etiology (180,181). Interestingly, some studies 

showed that the effect of cetuximab can be enhanced in cells with high levels of EGFR 

ligands such as EREG (221,230). In colorectal cancer, patients with high EREG expression 

benefit more from cetuximab therapy compared with low EREG expression (234). A study 

done in HNC cell lines also showed that expression of epiregulin (along with other EGFR 

ligands) is correlated with responsiveness to cetuximab (235). Because my study and Sartor 

et. al (195) showed that HPV presence in HNC cell lines causes decreased EREG 

expression, there is a possibility that HPV presence may decrease the efficacy of cetuximab 

therapy in HPV-positive HNCs. The further in-depth study is required to address this highly 

relevant issue and to determine whether 5-aza-dc induction of EREG expression increases 

sensitivity to cetuximab in HPV-positive HNCs. 

There is a growing interest to use 5-aza-dc (also called decitabine) as a therapeutic 

agent for cancers in which epigenetic silencing of critical regulatory genes has occurred 

(217,236). Consequently, decitabine has been used in clinical trials for hematological and 

solid malignancies (237,238). The U.S. Food and Drug Administration (FDA) has approved 

decitabine for the treatment of myelodysplastic syndrome, a pre-leukemic bone marrow 

disorder (239). One group has investigated the efficacy of decitabine in combination with 

cisplatin in HNCs (240). However, studies are not yet done to explore the possibility of 

combinational therapy of a de-methylation agent decitabine and an EGFR-inhibitor cetuximab, 

which may be an effective therapeutic strategy for treating HNCs; particularly HPV-positive 

ones. 

A major limitation of this study is that results were drawn based on two selected 

model cell lines representing HPV presence (UMSCC-47) and HPV absence (UMSCC-1) in 

HNCs. So, further studies are necessary using more HPV-positive/negative cell lines and 
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human HNC specimens to confirm whether EREG epigenetic regulation is specific to HPV-

positive HNCs. Moreover, since HPV E7 is known to increase DNMT1 and DNMT3a activity 

(119), additional studies should be done by silencing E7 in HPV-positive cells or 

overexpressing E7 in HPV-negative cells to determine whether epigenetic inactivation of 

EREG is due to HPV E7 oncoprotein (see Appendix). Another limitation of this study is that 

the effect in gene expression using 5-aza-dc in combination with histone deacetylases 

(HDAC) inhibitor was not determined. Studies have indicated that 5-aza-dc in combination 

HDAC inhibitors can produce a synergetic reactivation of some genes (241,242), so future 

studies should be aimed using HDAC inhibitor alone or in combination with 5-aza-dc which 

would provide a better picture of the genes regulated by promoter methylation in HNCs. 

Overall, in this chapter, I attempted to better characterize the methylation differences 

between HPV-positive and HPV-negative head and neck cancers. My finding concurs with the 

observation of Sartor et. al (195) that promoter hypermethylation may possibly contribute to 

down-regulation of EREG gene in the HPV-positive HNCs. This study should be continued to 

determine whether epigenetic inactivation of EREG plays a role in HPV-associated head and 

neck tumorigenesis. 
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CHAPTER VI 

CONCLUDING REMARKS 

My dissertation identifies the potential biomarkers and genetic and epigenetic 

mechanisms associated with HPV in head and neck tumors, as illustrated in Figure 35.   

HPV-positive HNCs are characterized as a distinct entity from HNCs that are linked to 

tobacco and alcohol use, and lack HPV-related etiology. Of note, HPV-positive HNC patients 

are found to have more favorable treatment response and better survival than patients whose 

tumors are HPV-negative. As HPV detection has huge diagnostic and prognostic significance, 

there should be a suitable biomarker which precisely diagnoses HPV infection and a 

personalized treatment regimen based on HPV status. For these reasons, the knowledge of 

genetic and epigenetic profiles in HPV-positive HNCs is very important. This will help to 

distinguish the underlying molecular basis between HPV-associated and –unassociated 

carcinogenesis that may lead to the development of novel therapeutic strategies. 

As the progression of HPV infection in premalignant lesions to HNCs is unknown, in-

depth clinical, histologic and molecular characterization of HPV-associated head and neck 

tumors is needed. In chapter II, pathologically distinct tumors of the head and neck (benign, 

premalignant and malignant) were characterized both histologically and molecularly. I found 

that benign head and neck tumors i.e. multiple epithelial hyperplasias (MEH) are caused by 

low-risk HPV types (126), whereas premalignant and malignant head and neck tumors are 

caused by high-risk HPV types, predominantly HPV type 16 (127). Other benign lesions 

called oral squamous papillomas were mostly HPV negative. Additionally, I found that 

“mitosoid cells”, which were previously thought to represent an HPV-associated cytopathic 

effect in benign MEH, can also be found in HPV-positive premalignant head and neck tumors 

(127). My results strongly support that “mitosoid cells” in head and neck tumors are histologic 

biomarkers for HPV infection.  
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The identification of serum biomarkers of HPV infection is equally important, which 

could lead to the development of early and non-invasive methods of HPV detection. In 

chapter III, I assessed serum HPV E7 antibody titer as a potential serological biomarker. I 

have shown for the first time that the combination of HPV E7 seropositivity and p16
INK4a

 

expression is a strong diagnostic biomarker for HPV-associated head and neck malignancy 

(145). HPV E7 serology may be particularly useful in cases when a tissue specimen is not 

sufficient for histological tests (e.g. immunostaining of p16
INK4a

 or detecting mitosoid cells). 

Further, serial monitoring of decline in HPV serology may be useful in predicting a patient’s 

response to treatment. 

In chapter IV, I extrapolated knowledge of HPV-induced oncogenicity in cervical 

cancer to understand molecular determinants of HPV-associated HNCs. I analyzed whether 

HPV DNA - integration and -methylation might play important roles in HPV-linked head and 

neck carcinogenesis as seen in HPV-associated cervical cancers. I found that integration of 

HPV DNA into the host genome appears to be essential for neoplastic transformation of 

premalignant lesions; however, HPV DNA methylation might not play a role in the process of 

HPV-induced head and neck carcinogenesis. I also suggest that Group 1 premalignant 

lesions which contain diffuse mitosoid cells might have higher malignant transforming 

potential, though further long-term follow-up studies are required to appropriately address any 

trends towards malignant transformation. 

Study of HPV epigenetics indicated that viral DNA methylation might not be involved 

in head and neck carcinogenesis (Chapter IV). Therefore, in chapter V, I studied epigenetic 

changes (i.e. promoter methylation and transcriptional inactivation) of host genes specific to 

HPV- associated head and neck malignancy. For this, 38 tumor suppressor genes were 

selected based on literature and screened to identify a putative candidate. I found that HPV-

positive HNC cell lines showed promoter hypermethylation and transcriptional inactivation of a 

candidate tumor suppressor gene EREG. It suggests that epigenetic regulation of EREG may 

be specific to HPV-positive HNCs and may play a role in the development of HPV-associated 

HNCs. This result needs to be put in a broader context using human cancer specimens and 

understanding the role of EREG in head and neck carcinogenesis. The EREG gene encodes 
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a ligand of the epidermal growth factor receptor (EGFR). Further studies on EREG gene 

could provide insights into possible treatment strategies using EGFR inhibitors (i.e. 

cetuximab, the Food and Drug Administration (FDA)-approved drug for HNC patients). Future 

studies are also needed to explore the possibility of using combinational therapy of two FDA-

approved drugs - cetuximab and decitabine (5-aza-dc) for treating HNCs, particularly HPV-

positive cancers. 

Overall, in this dissertation, I found variation in HPV presence among pathologically 

distinct head and neck tumors. I also identified potential biomarkers of underlying HPV 

etiology in head and neck malignancy. This study also provides better insights into the 

putative genetic and epigenetic mechanisms by which HPV triggers head and neck 

carcinogenesis, though further studies are required to explore this highly relevant issue.   
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Figure 34: A schematic representation of a summary of the dissertation.  

Different types of head and neck tumors were associated with the distinct type of HPV. 

Benign tumors, particularly multiple epithelial hyperplasias (MEH) were caused by low-risk 

HPV types. Pre-malignant (mainly Group1 lesions) and malignant (particularly oropharyngeal 

cancers, OPC) were caused by high-risk HPV types. Potential serum and tissue biomarkers 

for underlying HPV etiology were identified (shown in quotation marks). Mitosoid cells 

represented not only an HPV-associated cytopathic effect in benign MEH but also a subset of 

premalignant tumors. p16
INK4a

 may serve as a surrogate marker only in Group 1 lesions 

compared to other premalignant lesions. E7 serology complements p16 expression as a 

strong biomarker for HPV-associated malignancy. Integration of HPV DNA and epigenetic 

inactivation of host gene EREG may play a role in HPV-associated malignancy. But, viral 

DNA methylation may not be required for transformation of premalignant lesions to malignant. 

  



 

101 
 

REFERENCES 

1. de Villiers, E. M. (1989) Heterogeneity of the human papillomavirus group. Journal of 
virology 63, 4898-4903 

2. (2015) Human Papillomavirus (HPV). Available at 
http://www.cdc.gov/hpv/parents/questions-answers.html. Centers for Disease 
Control and Prevention (CDC). Last update: 12/28/2015; Accessed: 06/30/2016. 

3. Forman, D., de Martel, C., Lacey, C. J., Soerjomataram, I., Lortet-Tieulent, J., Bruni, L., 
Vignat, J., Ferlay, J., Bray, F., and Plummer, M. (2012) Global burden of human 
papillomavirus and related diseases. Vaccine 30, F12-F23 

4. Powell, N. G., and Evans, M. (2015) Human papillomavirus-associated head and neck 
cancer: oncogenic mechanisms, epidemiology and clinical behaviour. Diagnostic 
Histopathology 21, 49-64 

5. Hausen, H. Z., Meinhof, W., Scheiber, W., and Bornkamm, G. W. (1974) Attempts to 
detect virus‐specific DNA in human tumors. I. Nucleic acid hybridizations with 
complementary RNA of human wart virus. International Journal of Cancer 13, 650-
656 

6. Dürst, M., Gissmann, L., Ikenberg, H., and Zur Hausen, H. (1983) A papillomavirus 
DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from 
different geographic regions. Proceedings of the National Academy of Sciences 80, 
3812-3815 

7. Parkin, D. M. (2006) The global health burden of infection‐associated cancers in the 
year 2002. International journal of cancer 118, 3030-3044 

8. García-Vallvé, S., Alonso, Á., and Bravo, I. G. (2005) Papillomaviruses: different genes 
have different histories. Trends in microbiology 13, 514-521 

9. Sakakibara, N., Mitra, R., and McBride, A. A. (2011) The papillomavirus E1 helicase 
activates a cellular DNA damage response in viral replication foci. Journal of virology 
85, 8981-8995 

10. McBride, A. A. (2008) Replication and partitioning of papillomavirus genomes. 
Advances in virus research 72, 155-205 

11. Doorbar, J. (2013) The E4 protein; structure, function and patterns of expression. 
Virology 445, 80-98 

12. Rautava, J., and Syrjänen, S. (2012) Biology of human papillomavirus infections in 
head and neck carcinogenesis. Head and neck pathology 6, 3-15 

13. Venuti, A., Paolini, F., Nasir, L., Corteggio, A., Roperto, S., Campo, M. S., and 
Borzacchiello, G. (2011) Papillomavirus E5: the smallest oncoprotein with many 
functions. Molecular cancer 10, 1 

14. Klingelhutz, A. J., and Roman, A. (2012) Cellular transformation by human 
papillomaviruses: lessons learned by comparing high-and low-risk viruses. Virology 
424, 77-98 

15. McLaughlin-Drubin, M. E., and Münger, K. (2009) Oncogenic activities of human 
papillomaviruses. Virus research 143, 195-208 

16. Fu, B., Quintero, J., and Baker, C. C. (2003) Keratinocyte growth conditions modulate 
telomerase expression, senescence, and immortalization by human papillomavirus 
type 16 E6 and E7 oncogenes. Cancer research 63, 7815-7824

http://www.cdc.gov/hpv/parents/questions-answers.html


 

102 
 

17. Xu, M., Katzenellenbogen, R. A., Grandori, C., and Galloway, D. A. (2013) An 
unbiased in vivo screen reveals multiple transcription factors that control HPV E6-
regulated hTERT in keratinocytes. Virology 446, 17-24 

18. El‐Naggar, A. K., and Westra, W. H. (2012) p16 expression as a surrogate marker for 
HPV‐related oropharyngeal carcinoma: A guide for interpretative relevance and 
consistency. Head & neck 34, 459-461 

19. Romanczuk, H., Thierry, F., and Howley, P. (1990) Mutational analysis of cis elements 
involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 
promoters. Journal of virology 64, 2849-2859 

20. Thierry, F. (2009) Transcriptional regulation of the papillomavirus oncogenes by 
cellular and viral transcription factors in cervical carcinoma. Virology 384, 375-379 

21. Tan, S.-H., Leong, L., Walker, P. A., and Bernard, H.-U. (1994) The human 
papillomavirus type 16 E2 transcription factor binds with low cooperativity to two 
flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. 
Journal of virology 68, 6411-6420 

22. Arias-Pulido, H., Peyton, C. L., Joste, N. E., Vargas, H., and Wheeler, C. M. (2006) 
Human papillomavirus type 16 integration in cervical carcinoma in situ and in 
invasive cervical cancer. Journal of clinical microbiology 44, 1755-1762 

23. Clarke, M. A., Wentzensen, N., Mirabello, L., Ghosh, A., Wacholder, S., Harari, A., 
Lorincz, A., Schiffman, M., and Burk, R. D. (2012) Human papillomavirus DNA 
methylation as a potential biomarker for cervical cancer. Cancer Epidemiology 
Biomarkers & Prevention 21, 2125-2137 

24. Jacquin, E., Baraquin, A., Ramanah, R., Carcopino, X., Morel, A., Valmary-Degano, S., 
Bravo, I. G., de Sanjosé, S., Riethmuller, D., and Mougin, C. (2013) Methylation of 
Human Papillomavirus Type 16 CpG Sites at E2-Binding Site 1 (E2BS1), E2BS2, and 
the Sp1-Binding Site in Cervical Cancer Samples as Determined by High-Resolution 
Melting Analysis–PCR. Journal of clinical microbiology 51, 3207-3215 

25. Bernard, H.-U., Burk, R. D., Chen, Z., van Doorslaer, K., zur Hausen, H., and de Villiers, 
E.-M. (2010) Classification of papillomaviruses (PVs) based on 189 PV types and 
proposal of taxonomic amendments. Virology 401, 70-79 

26. De Villiers, E.-M., Fauquet, C., Broker, T. R., Bernard, H.-U., and zur Hausen, H. (2004) 
Classification of papillomaviruses. Virology 324, 17-27 

27. Cornet, I., Gheit, T., Iannacone, M., Vignat, J., Sylla, B., Del Mistro, A., Franceschi, S., 
Tommasino, M., and Clifford, G. (2013) HPV16 genetic variation and the 
development of cervical cancer worldwide. British journal of cancer 108, 240-244 

28. Ho, L., Chan, S. Y., Burk, R. D., Das, B., Fujinaga, K., Icenogle, J. P., Kahn, T., Kiviat, N., 
Lancaster, W., and Mavromara-Nazos, P. (1993) The genetic drift of human 
papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the 
movement of ancient human populations. Journal of virology 67, 6413-6423 

29. Ho, L., Chan, S., Chow, V., Chong, T., Tay, S., Villa, L. L., and Bernard, H. (1991) 
Sequence variants of human papillomavirus type 16 in clinical samples permit 
verification and extension of epidemiological studies and construction of a 
phylogenetic tree. Journal of clinical microbiology 29, 1765-1772 

30. Munoz, N., Bosch, F. X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K. V., 
Snijders, P. J., Meijer, C. J., and International Agency for Research on Cancer 
Multicenter Cervical Cancer Study, G. (2003) Epidemiologic classification of human 
papillomavirus types associated with cervical cancer. The New England journal of 
medicine 348, 518-527 

31. Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-
Tallaa, L., Guha, N., Freeman, C., and Galichet, L. (2009) A review of human 
carcinogens—Part B: biological agents. The lancet oncology 10, 321-322 



 

103 
 

32. Kreimer, A. R., Clifford, G. M., Boyle, P., and Franceschi, S. (2005) Human 
papillomavirus types in head and neck squamous cell carcinomas worldwide: a 
systematic review. Cancer Epidemiology Biomarkers & Prevention 14, 467-475 

33. Robinson, M., Sloan, P., and Shaw, R. (2010) Refining the diagnosis of oropharyngeal 
squamous cell carcinoma using human papillomavirus testing. Oral oncology 46, 
492-496 

34. Bishop, J. A., Lewis, J. S., Jr., Rocco, J. W., and Faquin, W. C. (2015) HPV-related 
squamous cell carcinoma of the head and neck: An update on testing in routine 
pathology practice. Seminars in diagnostic pathology 32, 344-351 

35. Westra, W. H. (2014) Detection of human papillomavirus (HPV) in clinical samples: 
evolving methods and strategies for the accurate determination of HPV status of 
head and neck carcinomas. Oral oncology 50, 771-779 

36. Rooper, L. M., Gandhi, M., Bishop, J. A., and Westra, W. H. (2016) RNA in-situ 
hybridization is a practical and effective method for determining HPV status of 
oropharyngeal squamous cell carcinoma including discordant cases that are p16 
positive by immunohistochemistry but HPV negative by DNA in-situ hybridization. 
Oral Oncol. 55, 11-16 

37. Bishop, J. A., Ma, X. J., Wang, H., Luo, Y., Illei, P. B., Begum, S., Taube, J. M., Koch, W. 
M., and Westra, W. H. (2012) Detection of transcriptionally active high-risk HPV in 
patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 
mRNA in situ hybridization method. Am. J. Surg. Pathol. 36, 1874-1882 

38. Mirghani, H., Casiraghi, O., Amen, F., He, M., Ma, X. J., Saulnier, P., Lacroix, L., 
Drusch, F., Ben Lakdhar, A., Saint Guily, J. L., Badoual, C., Scoazec, J. Y., and Vielh, P. 
(2015) Diagnosis of HPV-driven head and neck cancer with a single test in routine 
clinical practice. Mod. Pathol. 28, 1518-1527 

39. Schache, A. G., Liloglou, T., Risk, J. M., Jones, T. M., Ma, X. J., Wang, H., Bui, S., Luo, 
Y., Sloan, P., Shaw, R. J., and Robinson, M. (2013) Validation of a novel diagnostic 
standard in HPV-positive oropharyngeal squamous cell carcinoma. Br. J. Cancer 108, 
1332-1339 

40. Ukpo, O. C., Flanagan, J. J., Ma, X. J., Luo, Y., Thorstad, W. L., and Lewis, J. S., Jr. 
(2011) High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ 
hybridization assay strongly correlates with p16 expression and patient outcomes in 
oropharyngeal squamous cell carcinoma. Am. J. Surg. Pathol. 35, 1343-1350 

41. Wang, F., Flanagan, J., Su, N., Wang, L. C., Bui, S., Nielson, A., Wu, X., Vo, H. T., Ma, X. 
J., and Luo, Y. (2012) RNAscope: a novel in situ RNA analysis platform for formalin-
fixed, paraffin-embedded tissues. The Journal of molecular diagnostics : JMD 14, 22-
29 

42. Morbini, P., Alberizzi, P., Tinelli, C., Paglino, C., Bertino, G., Comoli, P., Pedrazzoli, P., 
and Benazzo, M. (2015) Identification of transcriptionally active HPV infection in 
formalin-fixed, paraffin-embedded biopsies of oropharyngeal carcinoma. Hum. 
Pathol. 46, 681-689 

43. Vokes, E. E., Agrawal, N., and Seiwert, T. Y. (2015) HPV-Associated Head and Neck 
Cancer. Journal of the National Cancer Institute 107, djv344 

44. Giarre, M., Caldeira, S., Malanchi, I., Ciccolini, F., Leao, M. J., and Tommasino, M. 
(2001) Induction of pRb degradation by the human papillomavirus type 16 E7 
protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. 
Journal of virology 75, 4705-4712 

45. Zur Hausen, H. (2002) Papillomaviruses and cancer: from basic studies to clinical 
application. Nature Reviews Cancer 2, 342-350 



 

104 
 

46. Wang, H., Sun, R., Lin, H., and Hu, W. h. (2013) P16INK4A as a surrogate biomarker 
for human papillomavirus‐associated oropharyngeal carcinoma: Consideration of 
some aspects. Cancer science 104, 1553-1559 

47. Westra, W. H. (2015) The pathology of HPV-related head and neck cancer: 
implications for the diagnostic pathologist. Seminars in diagnostic pathology 32, 42-
53 

48. Smith, E. M., Wang, D., Kim, Y., Rubenstein, L. M., Lee, J. H., Haugen, T. H., and 
Turek, L. P. (2008) P16 INK4a expression, human papillomavirus, and survival in head 
and neck cancer. Oral oncology 44, 133-142 

49. Said, A. K., Leao, J. C., Fedele, S., and Porter, S. R. (2013) Focal epithelial hyperplasia–
an update. Journal of Oral Pathology & Medicine 42, 435-442 

50. Syrjänen, S. (2003) Human papillomavirus infections and oral tumors. Medical 
microbiology and immunology 192, 123-128 

51. Garlick, J. A., Calderon, S., Buchner, A., and Mitrani‐Rosenbaum, S. (1989) Detection 
of human papillomavirus (HPV) DNA in focal epithelial hyperplasia. Journal of Oral 
Pathology & Medicine 18, 172-177 

52. Syrjänen, K. J., and Syrjänen, S. M. (2000) Papillomavirus infections in human 
pathology, Wiley 

53. Zeuss, M. S., Miller, C. S., and White, D. K. (1991) In situ hybridization analysis of 
human papillomavirus DNA in oral mucosal lesions. Oral surgery, oral medicine, oral 
pathology 71, 714-720 

54. Castro, T. P., and Bussoloti Filho, I. (2006) Prevalence of human papillomavirus (HPV) 
in oral cavity and oropharynx. Brazilian journal of otorhinolaryngology 72, 272-282 

55. Eversole, L., and Laipis, P. (1988) Oral squamous papillomas: detection of HPV DNA 
by in situ hybridization. Oral surgery, oral medicine, oral pathology 65, 545-550 

56. Feller, L., Khammissa, R., Wood, N., Marnewick, J., Meyerov, R., and Lemmer, J. 
(2011) HPV-associated oral warts. SADJ: journal of the South African Dental 
Association= tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging 66, 82-85 

57. Pai, S. I., and Westra, W. H. (2009) Molecular pathology of head and neck cancer: 
implications for diagnosis, prognosis, and treatment. Annual review of pathology 4, 
49 

58. Lingen, M. W., Xiao, W., Schmitt, A., Jiang, B., Pickard, R., Kreinbrink, P., Perez-
Ordonez, B., Jordan, R. C., and Gillison, M. L. (2013) Low etiologic fraction for high-
risk human papillomavirus in oral cavity squamous cell carcinomas. Oral oncology 
49, 1-8 

59. Woodman, C. B., Collins, S. I., and Young, L. S. (2007) The natural history of cervical 
HPV infection: unresolved issues. Nature reviews. Cancer 7, 11-22 

60. Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002. 
CA: a cancer journal for clinicians 55, 74-108 

61. Boscolo-Rizzo, P., Del Mistro, A., Bussu, F., Lupato, V., Baboci, L., Almadori, G., MC, 
D. A. M., and Paludetti, G. (2013) New insights into human papillomavirus-associated 
head and neck squamous cell carcinoma. Acta otorhinolaryngologica Italica : organo 
ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale 33, 
77-87 

62. Chaturvedi, A. K., Engels, E. A., Pfeiffer, R. M., Hernandez, B. Y., Xiao, W., Kim, E., 
Jiang, B., Goodman, M. T., Sibug-Saber, M., Cozen, W., Liu, L., Lynch, C. F., 
Wentzensen, N., Jordan, R. C., Altekruse, S., Anderson, W. F., Rosenberg, P. S., and 
Gillison, M. L. (2011) Human papillomavirus and rising oropharyngeal cancer 
incidence in the United States. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology 29, 4294-4301 



 

105 
 

63. Fakhry, C., Westra, W. H., Li, S., Cmelak, A., Ridge, J. A., Pinto, H., Forastiere, A., and 
Gillison, M. L. (2008) Improved survival of patients with human papillomavirus-
positive head and neck squamous cell carcinoma in a prospective clinical trial. 
Journal of the National Cancer Institute 100, 261-269 

64. Chen, S. F., Yu, F. S., Chang, Y. C., Fu, E., Nieh, S., and Lin, Y. S. (2012) Role of human 
papillomavirus infection in carcinogenesis of oral squamous cell carcinoma with 
evidences of prognostic association. Journal of oral pathology & medicine : official 
publication of the International Association of Oral Pathologists and the American 
Academy of Oral Pathology 41, 9-15 

65. Owadally, W., Hurt, C., Timmins, H., Parsons, E., Townsend, S., Patterson, J., 
Hutcheson, K., Powell, N., Beasley, M., and Palaniappan, N. (2015) PATHOS: a phase 
II/III trial of risk-stratified, reduced intensity adjuvant treatment in patients 
undergoing transoral surgery for Human papillomavirus (HPV) positive 
oropharyngeal cancer. BMC cancer 15, 1 

66. Kimple, R. J., and Harari, P. M. (2014) Is radiation dose reduction the right answer for 
HPV-positive head and neck cancer? Oral oncology 50, 560-564 

67. Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., 
Fakhry, C., Xie, T. X., Zhang, J., Wang, J., Zhang, N., El-Naggar, A. K., Jasser, S. A., 
Weinstein, J. N., Trevino, L., Drummond, J. A., Muzny, D. M., Wu, Y., Wood, L. D., 
Hruban, R. H., Westra, W. H., Koch, W. M., Califano, J. A., Gibbs, R. A., Sidransky, D., 
Vogelstein, B., Velculescu, V. E., Papadopoulos, N., Wheeler, D. A., Kinzler, K. W., and 
Myers, J. N. (2011) Exome sequencing of head and neck squamous cell carcinoma 
reveals inactivating mutations in NOTCH1. Science 333, 1154-1157 

68. Nichols, A. C., Chan-Seng-Yue, M., Yoo, J., Xu, W., Dhaliwal, S., Basmaji, J., Szeto, C. 
C., Dowthwaite, S., Todorovic, B., Starmans, M. H., Lambin, P., Palma, D. A., Fung, K., 
Franklin, J. H., Wehrli, B., Kwan, K., Koropatnick, J., Mymryk, J. S., Boutros, P., and 
Barrett, J. W. (2012) A Pilot Study Comparing HPV-Positive and HPV-Negative Head 
and Neck Squamous Cell Carcinomas by Whole Exome Sequencing. ISRN oncology 
2012, 809370 

69. (2013) National Cancer Institute-Head and Neck Cancers. U.S. Department of Health 
and Human Services, National Institutes of Health National Cancer Institute, 
USA.gov, http://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet 

70. Sturgis, E. M., and Ang, K. K. (2011) The epidemic of HPV-associated oropharyngeal 
cancer is here: is it time to change our treatment paradigms? Journal of the National 
Comprehensive Cancer Network : JNCCN 9, 665-673 

71. O'Sullivan, B., Huang, S. H., Su, J., Garden, A. S., Sturgis, E. M., Dahlstrom, K., Lee, N., 
Riaz, N., Pei, X., Koyfman, S. A., Adelstein, D., Burkey, B. B., Friborg, J., Kristensen, C. 
A., Gothelf, A. B., Hoebers, F., Kremer, B., Speel, E. J., Bowles, D. W., Raben, D., 
Karam, S. D., Yu, E., and Xu, W. (2016) Development and validation of a staging 
system for HPV-related oropharyngeal cancer by the International Collaboration on 
Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. The 
Lancet. Oncology  

72. Cohan, D. M., Popat, S., Kaplan, S. E., Rigual, N., Loree, T., and Hicks, W. L., Jr. (2009) 
Oropharyngeal cancer: current understanding and management. Current opinion in 
otolaryngology & head and neck surgery 17, 88-94 

73. Harris, S. L., Thorne, L. B., Seaman, W. T., Neil Hayes, D., Couch, M. E., and Kimple, R. 
J. (2011) Association of p16INK4a overexpression with improved outcomes in young 
patients with squamous cell cancers of the oral tongue. Head & neck 33, 1622-1627 

74. Mirghani, H., Amen, F., Moreau, F., and St Guily, J. L. (2015) Do high-risk human 
papillomaviruses cause oral cavity squamous cell carcinoma? Oral oncology 51, 229-
236 

http://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet


 

106 
 

75. El-Mofty, S. K., and Lu, D. W. (2003) Prevalence of human papillomavirus type 16 
DNA in squamous cell carcinoma of the palatine tonsil, and not the oral cavity, in 
young patients: a distinct clinicopathologic and molecular disease entity. The 
American journal of surgical pathology 27, 1463-1470 

76. Poling, J., Ma, X.-J., Bui, S., Luo, Y., Li, R., Koch, W., and Westra, W. (2014) Human 
papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the 
lateral tongue. Oral oncology 50, 306-310 

77. Isayeva, T., Li, Y., Maswahu, D., and Brandwein-Gensler, M. (2012) Human 
papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature 
review. Head and neck pathology 6, 104-120 

78. Münger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., 
Grace, M., and Huh, K. (2004) Mechanisms of human papillomavirus-induced 
oncogenesis. Journal of virology 78, 11451-11460 

79. Doorbar, J. (2006) Molecular biology of human papillomavirus infection and cervical 
cancer. Clinical science 110, 525-541 

80. Doorbar, J., Egawa, N., Griffin, H., Kranjec, C., and Murakami, I. (2015) Human 
papillomavirus molecular biology and disease association. Reviews in medical 
virology 25, 2-23 

81. Jenkins, D. (2007) Histopathology and cytopathology of cervical cancer. Disease 
markers 23, 199 

82. Syrjänen, S. (2004) HPV infections and tonsillar carcinoma. Journal of clinical 
pathology 57, 449-455 

83. Kim, S. H., Koo, B. S., Kang, S., Park, K., Kim, H., Lee, K. R., Lee, M. J., Kim, J. M., Choi, 
E. C., and Cho, N. H. (2007) HPV integration begins in the tonsillar crypt and leads to 
the alteration of p16, EGFR and c‐myc during tumor formation. International Journal 
of Cancer 120, 1418-1425 

84. Chi, A. C., Day, T. A., and Neville, B. W. (2015) Oral cavity and oropharyngeal 
squamous cell carcinoma—an update. CA: a cancer journal for clinicians 65, 401-421 

85. Gupta, A. K., and Kumar, M. (2015) HPVbase–a knowledgebase of viral integrations, 
methylation patterns and microRNAs aberrant expression: As potential biomarkers 
for Human papillomaviruses mediated carcinomas. Scientific reports 5 

86. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. 
(2006) Discovery of novel methylation biomarkers in cervical carcinoma by global 
demethylation and microarray analysis. Cancer Epidemiology Biomarkers & 
Prevention 15, 114-123 

87. Woo, H. J., Kim, S. J., Song, K.-J., Kim, S. S., Yoon, C.-H., Choi, B.-S., and Rhee, J. E. 
(2015) Hypermethylation of the tumor-suppressor cell adhesion molecule 1 in 
human papillomavirus-transformed cervical carcinoma cells. International journal of 
oncology 46, 2656-2662 

88. Narayan, G., Arias-Pulido, H., Koul, S., Vargas, H., Zhang, F. F., Villella, J., Schneider, 
A., Terry, M. B., Mansukhani, M., and Murty, V. V. (2003) Frequent promoter 
methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its 
relationship to clinical outcome. Molecular cancer 2, 1 

89. Zhang, Y., Chen, F., Sun, Y., Zhou, S., Li, T., and Chen, R. (2011) Effects of DNMT1 
silencing on malignant phenotype and methylated gene expression in cervical cancer 
cells. J Exp Clin Cancer Res 30, 98 

90. Kalantari, M., Calleja-Macias, I. E., Tewari, D., Hagmar, B., Lie, K., Barrera-Saldana, H. 
A., Wiley, D. J., and Bernard, H.-U. (2004) Conserved methylation patterns of human 
papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. 
Journal of virology 78, 12762-12772 



 

107 
 

91. Williams, V. M., Filippova, M., Soto, U., and Duerksen-Hughes, P. J. (2011) HPV-DNA 
integration and carcinogenesis: putative roles for inflammation and oxidative stress. 
Future virology 6, 45-57 

92. Hopman, A. H., Smedts, F., Dignef, W., Ummelen, M., Sonke, G., Mravunac, M., 
Vooijs, G. P., Speel, E. J. M., and Ramaekers, F. (2004) Transition of high‐grade 
cervical intraepithelial neoplasia to micro‐invasive carcinoma is characterized by 
integration of HPV 16/18 and numerical chromosome abnormalities. The Journal of 
pathology 202, 23-33 

93. Hudelist, G., Manavi, M., Pischinger, K. I., Watkins-Riedel, T., Singer, C. F., Kubista, E., 
and Czerwenka, K. F. (2004) Physical state and expression of HPV DNA in benign and 
dysplastic cervical tissue: different levels of viral integration are correlated with 
lesion grade. Gynecol Oncol 92, 873-880 

94. Vinokurova, S., Wentzensen, N., Kraus, I., Klaes, R., Driesch, C., Melsheimer, P., 
Kisseljov, F., Durst, M., Schneider, A., and von Knebel Doeberitz, M. (2008) Type-
dependent integration frequency of human papillomavirus genomes in cervical 
lesions. Cancer research 68, 307-313 

95. Ziegert, C., Wentzensen, N., Vinokurova, S., Kisseljov, F., Einenkel, J., Hoeckel, M., 
and von Knebel Doeberitz, M. (2003) A comprehensive analysis of HPV integration 
loci in anogenital lesions combining transcript and genome-based amplification 
techniques. Oncogene 22, 3977-3984 

96. Andersson, S., Safari, H., Mints, M., Lewensohn-Fuchs, I., Gyllensten, U., and 
Johansson, B. (2005) Type distribution, viral load and integration status of high-risk 
human papillomaviruses in pre-stages of cervical cancer (CIN). British journal of 
cancer 92, 2195-2200 

97. Badaracco, G., and Venuti, A. (2005) Physical status of HPV types 16 and 18 in 
topographically different areas of genital tumours and in paired tumour-free 
mucosa. International journal of oncology 27, 161-167 

98. Shin, H.-J., Joo, J., Yoon, J. H., Yoo, C. W., and Kim, J.-Y. (2014) Physical status of 
human papillomavirus integration in cervical cancer is associated with treatment 
outcome of the patients treated with radiotherapy. PloS one 9, e78995 

99. Tornesello, M. L., Buonaguro, L., Giorgi-Rossi, P., and Buonaguro, F. M. (2013) Viral 
and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and 
cancer. BioMed research international 2013 

100. Olthof, N. C., Speel, E.-J. M., Kolligs, J., Haesevoets, A., Henfling, M., Ramaekers, F. 
C., Preuss, S. F., Drebber, U., Wieland, U., and Silling, S. (2014) Comprehensive 
analysis of HPV16 integration in OSCC reveals no significant impact of physical status 
on viral oncogene and virally disrupted human gene expression. PloS one 9, e88718 

101. Lace, M. J., Anson, J. R., Klussmann, J. P., Wang, D. H., Smith, E. M., Haugen, T. H., 
and Turek, L. P. (2011) Human papillomavirus type 16 (HPV-16) genomes integrated 
in head and neck cancers and in HPV-16-immortalized human keratinocyte clones 
express chimeric virus-cell mRNAs similar to those found in cervical cancers. Journal 
of virology 85, 1645-1654 

102. Ragin, C. C. R., Reshmi, S. C., and Gollin, S. M. (2004) Mapping and analysis of HPV16 
integration sites in a head and neck cancer cell line. International journal of cancer 
110, 701-709 

103. Hafkamp, H. C., Speel, E. J., Haesevoets, A., Bot, F. J., Dinjens, W. N., Ramaekers, F., 
Hopman, A. H., and Manni, J. J. (2003) A subset of head and neck squamous cell 
carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A 
and p53 in the absence of mutations in p53 exons 5–8. International journal of 
cancer 107, 394-400 



 

108 
 

104. Parfenov, M., Pedamallu, C. S., Gehlenborg, N., Freeman, S. S., Danilova, L., Bristow, 
C. A., Lee, S., Hadjipanayis, A. G., Ivanova, E. V., and Wilkerson, M. D. (2014) 
Characterization of HPV and host genome interactions in primary head and neck 
cancers. Proceedings of the National Academy of Sciences 111, 15544-15549 

105. Begum, S., Cao, D., Gillison, M., Zahurak, M., and Westra, W. H. (2005) Tissue 
distribution of human papillomavirus 16 DNA integration in patients with tonsillar 
carcinoma. Clinical Cancer Research 11, 5694-5699 

106. Wiest, T., Schwarz, E., Enders, C., Flechtenmacher, C., and Bosch, F. X. (2002) 
Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with 
unaltered p53 status and perturbed pRb cell cycle control. Oncogene 21, 1510-1517 

107. Gao, G., Johnson, S. H., Kasperbauer, J. L., Eckloff, B. W., Tombers, N. M., Vasmatzis, 
G., and Smith, D. I. (2014) Mate pair sequencing of oropharyngeal squamous cell 
carcinomas reveals that HPV integration occurs much less frequently than in cervical 
cancer. Journal of Clinical Virology 59, 195-200 

108. Mellin, H., Dahlgren, L., Munck‐Wikland, E., Lindholm, J., Rabbani, H., Kalantari, M., 
and Dalianis, T. (2002) Human papillomavirus type 16 is episomal and a high viral 
load may be correlated to better prognosis in tonsillar cancer. International journal 
of cancer 102, 152-158 

109. Sun, C., Reimers, L. L., and Burk, R. D. (2011) Methylation of HPV16 genome CpG 
sites is associated with cervix precancer and cancer. Gynecologic oncology 121, 59-
63 

110. Mirabello, L., Schiffman, M., Ghosh, A., Rodriguez, A. C., Vasiljevic, N., Wentzensen, 
N., Herrero, R., Hildesheim, A., Wacholder, S., and Scibior‐Bentkowska, D. (2013) 
Elevated methylation of HPV16 DNA is associated with the development of high 
grade cervical intraepithelial neoplasia. International Journal of Cancer 132, 1412-
1422 

111. Wilson, G. A., Lechner, M., Köferle, A., Caren, H., Butcher, L. M., Feber, A., Fenton, 
T., Jay, A., Boshoff, C., and Beck, S. (2013) Integrated virus-host methylome analysis 
in head and neck squamous cell carcinoma. Epigenetics 8, 953-961 

112. Park, I.-S., Chang, X., Loyo, M., Wu, G., Chuang, A., Kim, M. S., Chae, Y. K., Lyford-
Pike, S., Westra, W. H., and Saunders, J. R. (2011) Characterization of the 
methylation patterns in human papillomavirus type 16 viral DNA in head and neck 
cancers. Cancer Prevention Research 4, 207-217 

113. Kulis, M., and Esteller, M. (2010) DNA methylation and cancer. Advances in genetics 
70, 27-56 

114. Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and Herman, 
J. G. (2001) Aberrant patterns of DNA methylation, chromatin formation and gene 
expression in cancer. Human molecular genetics 10, 687-692 

115. Robertson, K. D. (2001) DNA methylation, methyltransferases, and cancer. Oncogene 
20 

116. Sharma, S., Kelly, T. K., and Jones, P. A. (2010) Epigenetics in cancer. Carcinogenesis 
31, 27-36 

117. Takai, N., and Narahara, H. (2008) Array-based approaches for the identification of 
epigenetic silenced tumor suppressor genes. Current genomics 9, 22-24 

118. Costello, J. F., Frühwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., 
Wright, F. A., Feramisco, J. D., Peltomäki, P., and Lang, J. C. (2000) Aberrant CpG-
island methylation has non-random and tumour-type–specific patterns. Nature 
genetics 24, 132-138 

119. Burgers, W., Blanchon, L., Pradhan, S., De Launoit, Y., Kouzarides, T., and Fuks, F. 
(2007) Viral oncoproteins target the DNA methyltransferases. Oncogene 26, 1650-
1655 



 

109 
 

120. Chalertpet, K., Pakdeechaidan, W., Patel, V., Mutirangura, A., and Yanatatsaneejit, P. 
(2015) Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter 
methylation. Cancer science 106, 1333-1340 

121. Bennett, K. L., Karpenko, M., Lin, M.-t., Claus, R., Arab, K., Dyckhoff, G., Plinkert, P., 
Herpel, E., Smiraglia, D., and Plass, C. (2008) Frequently methylated tumor 
suppressor genes in head and neck squamous cell carcinoma. Cancer research 68, 
4494-4499 

122. Worsham, M. J., Chen, K. M., Stephen, J. K., Havard, S., and Benninger, M. S. (2010) 
Novel approaches to global mining of aberrantly methylated promoter sites in 
squamous head and neck cancer. Otolaryngology-Head and Neck Surgery 143, 116-
121. e119 

123. Bennett, K. L., Lee, W., Lamarre, E., Zhang, X., Seth, R., Scharpf, J., Hunt, J., and Eng, 
C. (2010) HPV status‐independent association of alcohol and tobacco exposure or 
prior radiation therapy with promoter methylation of FUSSEL18, EBF3, IRX1, and 
SEPT9, but not SLC5A8, in head and neck squamous cell carcinomas. Genes, 
Chromosomes and Cancer 49, 319-326 

124. Demokan, S., and Dalay, N. (2011) Role of DNA methylation in head and neck cancer. 
Clinical epigenetics 2, 123-150 

125. Guerrero-Preston, R., Michailidi, C., Marchionni, L., Pickering, C. R., Frederick, M. J., 
Myers, J. N., Yegnasubramanian, S., Hadar, T., Noordhuis, M. G., and Zizkova, V. 
(2014) Key tumor suppressor genes inactivated by “greater promoter” methylation 
and somatic mutations in head and neck cancer. Epigenetics 9, 1031-1046 

126. Khanal, S., Cole, E. T., Joh, J., Ghim, S. J., Jenson, A. B., Rai, S. N., Trainor, P. J., and 
Shumway, B. S. (2015) Human papillomavirus detection in histologic samples of 
multifocal epithelial hyperplasia: a novel demographic presentation. Oral surgery, 
oral medicine, oral pathology and oral radiology 120, 733-743 

127. Shumway, B., Khanal, S., Trainor, P., Zahin, M., Ghim, S., Joh, J., Rai, S., and Jenson, 
A. (2016) Histologic Variation in High-Grade Oral Epithelial Dysplasia When 
Associated With High-risk Human Papillomavirus. International journal of radiation 
oncology, biology, physics 4, 944 

128. Walker, D. (1998) Histological Typing of Cancer and Precancer of the Oral Mucosa. 
Pathology 30, 87 

129. Bussu, F., Sali, M., Gallus, R., Vellone, V. G., Zannoni, G., Autorino, R., Dinapoli, N., 
Santangelo, R., Martucci, R., and Graziani, C. (2013) HPV infection in squamous cell 
carcinomas arising from different mucosal sites of the head and neck region. Is p16 
immunohistochemistry a reliable surrogate marker&quest. British journal of cancer 
108, 1157-1162 

130. Jayaprakash, V., Reid, M., Hatton, E., Merzianu, M., Rigual, N., Marshall, J., Gill, S., 
Frustino, J., Wilding, G., and Loree, T. (2011) Human papillomavirus types 16 and 18 
in epithelial dysplasia of oral cavity and oropharynx: a meta-analysis, 1985–2010. 
Oral oncology 47, 1048-1054 

131. Woo, S.-B., Cashman, E. C., and Lerman, M. A. (2013) Human papillomavirus-
associated oral intraepithelial neoplasia. Modern Pathology 26, 1288-1297 

132. McCord, C., Xu, J., Xu, W., Qiu, X., McComb, R. J., Perez-Ordonez, B., and Bradley, G. 
(2013) Association of high-risk human papillomavirus infection with oral epithelial 
dysplasia. Oral surgery, oral medicine, oral pathology and oral radiology 115, 541-
549 

133. (2014) HPV-Associated Oropharyngeal Cancer Rates by Race and Ethnicity. Available 
at http://www.cdc.gov/cancer/hpv/statistics/headneck.htm. Centers for Disease 
Control and Prevention (CDC). Last update: 06/05/2014; Accessed: 06/30/2016.  

http://www.cdc.gov/cancer/hpv/statistics/headneck.htm


 

110 
 

134. Organization, W. H. (2004) International statistical classification of diseases and 
related health problems, World Health Organization 

135. Hashibe, M., Brennan, P., Benhamou, S., Castellsague, X., Chen, C., Curado, M. P., 
Dal Maso, L., Daudt, A. W., Fabianova, E., and Wünsch-Filho, V. (2007) Alcohol 
drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk 
of head and neck cancer: pooled analysis in the International Head and Neck Cancer 
Epidemiology Consortium. Journal of the National Cancer Institute 99, 777-789 

136. Paleri, V., Mehanna, H., and Wight, R. (2010) EDITORIAL: TNM classification of 
malignant tumours 7th edition: what’s new for head and neck? Clinical 
Otolaryngology 35, 270-272 

137. Chaturvedi, A. K., Engels, E. A., Anderson, W. F., and Gillison, M. L. (2008) Incidence 
trends for human papillomavirus–related and–unrelated oral squamous cell 
carcinomas in the United States. Journal of Clinical Oncology 26, 612-619 

138. Gillison, M. L., D'Souza, G., Westra, W., Sugar, E., Xiao, W., Begum, S., and Viscidi, R. 
(2008) Distinct risk factor profiles for human papillomavirus type 16–positive and 
human papillomavirus type 16–negative head and neck cancers. Journal of the 
National Cancer Institute 100, 407-420 

139. Allen, C. T., Lewis, J. S., El‐Mofty, S. K., Haughey, B. H., and Nussenbaum, B. (2010) 
Human papillomavirus and oropharynx cancer: biology, detection and clinical 
implications. The Laryngoscope 120, 1756-1772 

140. Koh, J., Cho, N., Kong, G., Lee, J., and Yoon, K. (1998) p53 mutations and human 
papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis. 
British journal of cancer 78, 354 

141. Laco, J., Vosmikova, H., Novakova, V., Celakovsky, P., Dolezalova, H., Tucek, L., 
Nekvindova, J., Vosmik, M., Cermakova, E., and Ryska, A. (2011) The role of high-risk 
human papillomavirus infection in oral and oropharyngeal squamous cell carcinoma 
in non-smoking and non-drinking patients: a clinicopathological and molecular study 
of 46 cases. Virchows Archiv 458, 179-187 

142. Syrjänen, S. (2010) The role of human papillomavirus infection in head and neck 
cancers. Annals of oncology 21, vii243-vii245 

143. Michaud, D. S., Langevin, S. M., Eliot, M., Nelson, H. H., Pawlita, M., McClean, M. D., 
and Kelsey, K. T. (2014) High‐risk HPV types and head and neck cancer. International 
Journal of Cancer 135, 1653-1661 

144. Melchers, L., Mastik, M., Cameron, B. S., van Dijk, B., de Bock, G., van der Laan, B., 
van der Vegt, B., Speel, E., Roodenburg, J., and Witjes, M. (2015) Detection of HPV-
associated oropharyngeal tumours in a 16-year cohort: more than meets the eye. 
British journal of cancer 112, 1349-1357 

145. Khanal, S., Joh, J., Kwon, A. M., Zahin, M., Perez, C. A., Dunlap, N. E., Silverman, C. L., 
Tennant, P. A., Potts, K. L., Kloecker, G. H., Bumpous, J. M., Ghim, S. J., Jenson, A. B., 
and Redman, R. A. (2015) Human papillomavirus E7 serology and association with 
p16 immunohistochemistry in squamous cell carcinoma of the head and neck. 
Experimental and molecular pathology 99, 335-340 

146. Kirnbauer, R., Hubbert, N. L., Wheeler, C. M., Becker, T. M., Lowy, D. R., and Schiller, 
J. T. (1994) A virus-like particle enzyme-linked immunosorbent assay detects serum 
antibodies in a majority of women infected with human papillomavirus type 16. 
Journal of the National Cancer Institute 86, 494-499 

147. Ferguson, M., Heath, A., Johnes, S., Pagliusi, S., and Dillner, J. (2006) Results of the 
first WHO international collaborative study on the standardization of the detection 
of antibodies to human papillomaviruses. International journal of cancer 118, 1508-
1514 



 

111 
 

148. Coseo, S. E., Porras, C., Dodd, L. E., Hildesheim, A., Rodriguez, A. C., Schiffman, M., 
Herrero, R., Wacholder, S., Gonzalez, P., and Sherman, M. E. (2011) Evaluation of the 
polyclonal ELISA HPV serology assay as a biomarker for HPV exposure. Sexually 
transmitted diseases 38, 976 

149. Smith, E. M., Ritchie, J. M., Pawlita, M., Rubenstein, L. M., Haugen, T. H., Turek, L. P., 
and Hamsikova, E. (2007) Human papillomavirus seropositivity and risks of head and 
neck cancer. International journal of cancer 120, 825-832 

150. Herrero, R., Castellsagué, X., Pawlita, M., Lissowska, J., Kee, F., Balaram, P., 
Rajkumar, T., Sridhar, H., Rose, B., and Pintos, J. (2003) Human papillomavirus and 
oral cancer: the International Agency for Research on Cancer multicenter study. 
Journal of the National Cancer Institute 95, 1772-1783 

151. Schwartz, S. M., Daling, J. R., Madeleine, M. M., Doody, D. R., Fitzgibbons, E. D., 
Wipf, G. C., Carter, J. J., Mao, E.-J., Huang, S., and Beckmann, A. M. (1998) Oral 
cancer risk in relation to sexual history and evidence of human papillomavirus 
infection. Journal of the National Cancer Institute 90, 1626-1636 

152. Anderson, K. S., Wong, J., D'Souza, G., Riemer, A. B., Lorch, J., Haddad, R., Pai, S., 
Longtine, J., McClean, M., and LaBaer, J. (2011) Serum antibodies to the HPV16 
proteome as biomarkers for head and neck cancer. British journal of cancer 104, 
1896-1905 

153. Zumbach, K., Hoffmann, M., Kahn, T., Bosch, F., Gottschlich, S., Görögh, T., Rudert, 
H., and Pawlita, M. (2000) Antibodies against oncoproteins E6 and E7 of human 
papillomavirus types 16 and 18 in patients with head‐and‐neck squamous‐cell 
carcinoma. International journal of cancer 85, 815-818 

154. Furniss, C., McClean, M., Smith, J., Bryan, J., Applebaum, K., Nelson, H., Posner, M., 
and Kelsey, K. (2009) Human papillomavirus 6 seropositivity is associated with risk of 
head and neck squamous cell carcinoma, independent of tobacco and alcohol use. 
Annals of oncology 20, 534-541 

155. Smith, E. M., Rubenstein, L. M., Ritchie, J. M., Lee, J. H., Haugen, T. H., Hamsikova, E., 
and Turek, L. P. (2008) Does pretreatment seropositivity to human papillomavirus 
have prognostic significance for head and neck cancers? Cancer Epidemiology 
Biomarkers & Prevention 17, 2087-2096 

156. Koslabova, E., Hamsikova, E., Salakova, M., Klozar, J., Foltynova, E., Salkova, E., 
Rotnaglova, E., Ludvikova, V., and Tachezy, R. (2013) Markers of HPV infection and 
survival in patients with head and neck tumors. International journal of cancer 133, 
1832-1839 

157. Rubenstein, L. M., Smith, E. M., Pawlita, M., Haugen, T. H., Hamsikova, E., and Turek, 
L. P. (2011) Human papillomavirus serologic follow-up response and relationship to 
survival in head and neck cancer: a case-comparison study. Infectious agents and 
cancer 6, 9 

158. Storey, R., Joh, J., Kwon, A., Jenson, A. B., Ghim, S.-j., and Kloecker, G. H. (2013) 
Detection of immunoglobulin G against E7 of human papillomavirus in non-small-cell 
lung cancer. Journal of oncology 2013 

159. Baay, M., Duk, J., Burger, M., De Bruijn, H., Stolz, E., and Herbrink, P. (1999) Humoral 
immune response against proteins E6 and E7 in cervical carcinoma patients positive 
for human papilloma virus type 16 during treatment and follow-up. European 
Journal of Clinical Microbiology and Infectious Diseases 18, 126-132 

160. Di Lonardo, A., Marcante, M. L., Poggiali, F., and Venuti, A. (1998) HPV 16 E7 
antibody levels in cervical cancer patients: before and after treatment. Journal of 
medical virology 54, 192-195 

161. Hamšíková, E., Ludvíková, V., Tachezy, R., Kovařík, J., Břoušková, L., and Vonka, V. 
(2000) Longitudinal follow‐up of antibody response to selected antigens of human 



 

112 
 

papillomaviruses and herpesviruses in patients with invasive cervical carcinoma. 
International journal of cancer 86, 351-355 

162. Ghim, S., Basu, P. S., and Jenson, A. (2002) Cervical cancer: etiology, pathogenesis, 
treatment, and future vaccines. Asian Pacific journal of cancer prevention : APJCP 3, 
207-214 

163. Liang, C., Marsit, C. J., McClean, M. D., Nelson, H. H., Christensen, B. C., Haddad, R. I., 
Clark, J. R., Wein, R. O., Grillone, G. A., and Houseman, E. A. (2012) Biomarkers of 
HPV in head and neck squamous cell carcinoma. Cancer research 72, 5004-5013 

164. D'Souza, G., Kreimer, A. R., Viscidi, R., Pawlita, M., Fakhry, C., Koch, W. M., Westra, 
W. H., and Gillison, M. L. (2007) Case–control study of human papillomavirus and 
oropharyngeal cancer. New England Journal of Medicine 356, 1944-1956 

165. Peitsaro, P., Johansson, B., and Syrjänen, S. (2002) Integrated human papillomavirus 
type 16 is frequently found in cervical cancer precursors as demonstrated by a novel 
quantitative real-time PCR technique. Journal of clinical microbiology 40, 886-891 

166. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the 
comparative CT method. Nature protocols 3, 1101-1108 

167. Livak, K., and Schmittgen, T. (2001) Analysis of relative gene expression data using 
real-time quantitative PCR and the 2− ΔΔCT Method. Methods.[Internet]. 25: 402–
408.   

168. Akagi, K., Li, J., Broutian, T. R., Padilla-Nash, H., Xiao, W., Jiang, B., Rocco, J. W., 
Teknos, T. N., Kumar, B., and Wangsa, D. (2014) Genome-wide analysis of HPV 
integration in human cancers reveals recurrent, focal genomic instability. Genome 
research 24, 185-199 

169. Ramamoorthy, S., Liu, Y.-T., Luo, L., Miyai, K., Lu, Q., and Carethers, J. M. (2010) 
Detection of multiple human papillomavirus genotypes in anal carcinoma. Infectious 
agents and cancer 5, 17 

170. Tang, A. L., Hauff, S. J., Owen, J. H., Graham, M. P., Czerwinski, M. J., Park, J. J., 
Walline, H., Papagerakis, S., Stoerker, J., McHugh, J. B., Chepeha, D. B., Bradford, C. 
R., Carey, T. E., and Prince, M. E. (2012) UM-SCC-104: a new human papillomavirus-
16-positive cancer stem cell-containing head and neck squamous cell carcinoma cell 
line. Head & neck 34, 1480-1491 

171. Brenner, J. C., Graham, M. P., Kumar, B., Saunders, L. M., Kupfer, R., Lyons, R. H., 
Bradford, C. R., and Carey, T. E. (2010) Genotyping of 73 UM‐SCC head and neck 
squamous cell carcinoma cell lines. Head & neck 32, 417-426 

172. Young, R. J., Rischin, D., Fisher, R., McArthur, G. A., Fox, S. B., Peters, L. J., Corry, J., 
Lim, A., Waldeck, K., and Solomon, B. (2011) Relationship between epidermal 
growth factor receptor status, p16INK4A, and outcome in head and neck squamous 
cell carcinoma. Cancer Epidemiology Biomarkers & Prevention 20, 1230-1237 

173. Kang, H., Kiess, A., and Chung, C. H. (2015) Emerging biomarkers in head and neck 
cancer in the era of genomics. Nature reviews. Clinical oncology 12, 11-26 

174. Zhang, C., Deng, Z., Pan, X., Uehara, T., Suzuki, M., and Xie, M. (2015) Effects of 
Methylation Status of CpG Sites within the HPV16 Long Control Region on HPV16-
Positive Head and Neck Cancer Cells. PloS one 10, e0141245 

175. Olthof, N. C., Huebbers, C. U., Kolligs, J., Henfling, M., Ramaekers, F. C., Cornet, I., 
van Lent-Albrechts, J. A., Stegmann, A. P., Silling, S., Wieland, U., Carey, T. E., 
Walline, H. M., Gollin, S. M., Hoffmann, T. K., de Winter, J., Kremer, B., Klussmann, J. 
P., and Speel, E. J. (2015) Viral load, gene expression and mapping of viral 
integration sites in HPV16-associated HNSCC cell lines. Int J Cancer 136, E207-218 

176. Cheung, J. L., Cheung, T. H., Yu, M. Y., and Chan, P. K. (2013) Virological 
characteristics of cervical cancers carrying pure episomal form of HPV16 genome. 
Gynecol Oncol 131, 374-379 



 

113 
 

177. Mazumder Indra, D., Singh, R. K., Mitra, S., Dutta, S., Chakraborty, C., Basu, P. S., 
Mondal, R. K., Roychoudhury, S., and Panda, C. K. (2011) Genetic and epigenetic 
changes of HPV16 in cervical cancer differentially regulate E6/E7 expression and 
associate with disease progression. Gynecol Oncol 123, 597-604 

178. Chaiwongkot, A., Vinokurova, S., Pientong, C., Ekalaksananan, T., Kongyingyoes, B., 
Kleebkaow, P., Chumworathayi, B., Patarapadungkit, N., Reuschenbach, M., and von 
Knebel Doeberitz, M. (2013) Differential methylation of E2 binding sites in episomal 
and integrated HPV 16 genomes in preinvasive and invasive cervical lesions. 
International Journal of Cancer 132, 2087-2094 

179. Ghosh, D. D., Bhattacharjee, B., Sen, S., Premi, L., Mukhopadhyay, I., Chowdhury, R. 
R., Roy, S., and Sengupta, S. (2012) Some novel insights on HPV16 related cervical 
cancer pathogenesis based on analyses of LCR methylation, viral load, E7 and E2/E4 
expressions. PloS one 7, e44678 

180. Maiti, G. P., Mondal, P., Mukherjee, N., Ghosh, A., Ghosh, S., Dey, S., Chakrabarty, J., 
Roy, A., Biswas, J., and Roychoudhury, S. (2013) Overexpression of EGFR in head and 
neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A 
genes. PloS one 8, e63440 

181. Lassen, P., Overgaard, J., and Eriksen, J. G. (2013) Expression of EGFR and HPV-
associated p16 in oropharyngeal carcinoma: correlation and influence on prognosis 
after radiotherapy in the randomized DAHANCA 5 and 7 trials. Radiotherapy and 
Oncology 108, 489-494 

182. Zimmermann, M., Zouhair, A., Azria, D., and Ozsahin, M. (2006) The epidermal 
growth factor receptor (EGFR) in head and neck cancer: its role and treatment 
implications. Radiation oncology 1, 1 

183. Cullen, A. P., Reid, R., Campion, M., and Lörincz, A. (1991) Analysis of the physical 
state of different human papillomavirus DNAs in intraepithelial and invasive cervical 
neoplasm. Journal of virology 65, 606-612 

184. Daniel, B., Mukherjee, G., Seshadri, L., Vallikad, E., and Krishna, S. (1995) Changes in 
the physical state and expression of human papillomavirus type 16 in the 
progression of cervical intraepithelial neoplasia lesions analysed by PCR. Journal of 
general virology 76, 2589-2593 

185. Klaes, R., Woerner, S. M., Ridder, R., Wentzensen, N., Duerst, M., Schneider, A., Lotz, 
B., Melsheimer, P., and von Knebel Doeberitz, M. (1999) Detection of high-risk 
cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts 
derived from integrated papillomavirus oncogenes. Cancer research 59, 6132-6136 

186. Pirami, L., Giache, V., and Becciolini, A. (1997) Analysis of HPV16, 18, 31, and 35 DNA 
in pre-invasive and invasive lesions of the uterine cervix. Journal of clinical pathology 
50, 600-604 

187. Handy, D. E., Castro, R., and Loscalzo, J. (2011) Epigenetic modifications basic 
mechanisms and role in cardiovascular disease. Circulation 123, 2145-2156 

188. Herman, J. G., and Baylin, S. B. (2003) Gene silencing in cancer in association with 
promoter hypermethylation. New England Journal of Medicine 349, 2042-2054 

189. Holliday, R. (2005) DNA methylation and epigenotypes. Biochemistry (Moscow) 70, 
500-504 

190. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L., and Khavari, P. A. (2010) DNMT1 
maintains progenitor function in self-renewing somatic tissue. Nature 463, 563-567 

191. Leonard, S., Collins, S., Pereira, M., Diyaf, A., Constandinou-Williams, C., Young, L., 
Roberts, S., and Woodman, C. (2012) Oncogenic human papillomavirus imposes an 
instructive pattern of DNA methylation changes which parallel the natural history of 
cervical HPV infection in young women. Carcinogenesis, bgs157 



 

114 
 

192. Wentzensen, N., Sherman, M. E., Schiffman, M., and Wang, S. S. (2009) Utility of 
methylation markers in cervical cancer early detection: appraisal of the state-of-the-
science. Gynecologic oncology 112, 293-299 

193. Demokan, S., and Dalay, N. (2011) Role of DNA methylation in head and neck cancer. 
Clinical epigenetics 2, 123-150 

194. Koutsimpelas, D., Pongsapich, W., Heinrich, U., Mann, S., Mann, W. J., and Brieger, J. 
(2012) Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor 
genes in head and neck squamous cell carcinoma: pharmacological genome 
demethylation reduces proliferation of head and neck squamous carcinoma cells. 
Oncology reports 27, 1135-1141 

195. Sartor, M. A., Dolinoy, D. C., Jones, T. R., Colacino, J. A., Prince, M. E., Carey, T. E., 
and Rozek, L. S. (2011) Genome-wide methylation and expression differences in HPV 
(+) and HPV (-) squamous cell carcinoma cell lines are consistent with divergent 
mechanisms of carcinogenesis. Epigenetics 6, 777-787 

196. Nikolaidis, C., Nena, E., Panagopoulou, M., Balgkouranidou, I., Karaglani, M., 
Chatzaki, E., Agorastos, T., and Constantinidis, T. C. (2015) PAX1 methylation as an 
auxiliary biomarker for cervical cancer screening: A meta-analysis. Cancer 
epidemiology 39, 682-686 

197. Marsit, C. J., McClean, M. D., Furniss, C. S., and Kelsey, K. T. (2006) Epigenetic 
inactivation of the SFRP genes is associated with drinking, smoking and HPV in head 
and neck squamous cell carcinoma. International journal of cancer 119, 1761-1766 

198. Tokumaru, Y., Yamashita, K., Osada, M., Nomoto, S., Sun, D.-I., Xiao, Y., Hoque, M. 
O., Westra, W. H., Califano, J. A., and Sidransky, D. (2004) Inverse correlation 
between cyclin A1 hypermethylation and p53 mutation in head and neck cancer 
identified by reversal of epigenetic silencing. Cancer research 64, 5982-5987 

199. Bertonha, F. B., de Camargo Barros Filho, M., Kuasne, H., dos Reis, P. P., da Costa 
Prando, E., Muñoz, J. J. A. M., Roffé, M., Hajj, G. N. M., Kowalski, L. P., and Rainho, C. 
A. (2015) PHF21B as a candidate tumor suppressor gene in head and neck squamous 
cell carcinomas. Molecular oncology 9, 450-462 

200. Tsunematsu, T., Kudo, Y., Iizuka, S., Ogawa, I., Fujita, T., Kurihara, H., Abiko, Y., and 
Takata, T. (2009) RUNX3 has an oncogenic role in head and neck cancer. PloS one 4, 
e5892 

201. Dong, S. M., Sun, D.-I., Benoit, N. E., Kuzmin, I., Lerman, M. I., and Sidransky, D. 
(2003) Epigenetic inactivation of RASSF1A in head and neck cancer. Clinical cancer 
research 9, 3635-3640 

202. Choudhury, J. H., and Ghosh, S. K. (2015) Promoter hypermethylation profiling 
identifies subtypes of head and neck cancer with distinct viral, environmental, 
genetic and survival characteristics. PloS one 10, e0129808 

203. Chen, K. M., Stephen, J. K., Havard, S., Mahan, M., Divine, G., and Worsham, M. J. 
(2015) IGSF4 Methylation as an Independent Marker of Human Papillomavirus–
Positive Oropharyngeal Squamous Cell Carcinoma. JAMA Otolaryngology–Head & 
Neck Surgery 141, 257-263 

204. Agodi, A., Barchitta, M., Quattrocchi, A., Maugeri, A., and Vinciguerra, M. (2015) 
DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a 
Meta-Analysis. PloS one 10, e0135078 

205. Henken, F. E., Wilting, S. M., Overmeer, R. M., van Rietschoten, J. G., Nygren, A. O., 
Errami, A., Schouten, J. P., Meijer, C. J., Snijders, P. J., and Steenbergen, R. D. (2007) 
Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. 
British journal of cancer 97, 1457-1464 



 

115 
 

206. Lee, J., Wysocki, P. T., Topaloglu, O., Maldonado, L., Brait, M., Begum, S., Moon, D., 
Kim, M. S., Califano, J. A., and Sidransky, D. (2015) Epigenetic silencing of S100A2 in 
bladder and head and neck cancers. Oncoscience 2, 410 

207. Colacino, J. A., Dolinoy, D. C., Duffy, S. A., Sartor, M. A., Chepeha, D. B., Bradford, C. 
R., McHugh, J. B., Patel, D. A., Virani, S., and Walline, H. M. (2013) Comprehensive 
analysis of DNA methylation in head and neck squamous cell carcinoma indicates 
differences by survival and clinicopathologic characteristics. PloS one 8, e54742 

208. Koffler, J., Sharma, S., and Hess, J. (2014) Predictive value of epigenetic alterations in 
head and neck squamous cell carcinoma. Molecular & Cellular Oncology 1, e954827 

209. Peng, J., Chen, B., Shen, Z., Deng, H., Liu, D., Xie, X., Gan, X., Xu, X., Huang, Z., and 
Chen, J. (2015) DNA promoter hypermethylation contributes to down-regulation of 
galactocerebrosidase gene in lung and head and neck cancers. International journal 
of clinical and experimental pathology 8, 11042 

210. Stephen, J. K., Chen, K. M., Havard, S., Harris, G., and Worsham, M. J. (2012) 
Promoter methylation in head and neck tumorigenesis. Cancer Epigenetics: Methods 
and Protocols, 187-206 

211. Weiss, D., Basel, T., Sachse, F., Braeuninger, A., and Rudack, C. (2011) Promoter 
methylation of cyclin A1 is associated with human papillomavirus 16 induced head 
and neck squamous cell carcinoma independently of p53 mutation. Molecular 
carcinogenesis 50, 680-688 

212. van Kempen, P. M., Noorlag, R., Braunius, W. W., Stegeman, I., Willems, S. M., and 
Grolman, W. (2014) Differences in methylation profiles between HPV-positive and 
HPV-negative oropharynx squamous cell carcinoma: a systematic review. Epigenetics 
9, 194-203 

213. Lechner, M., Fenton, T., West, J., Wilson, G., Feber, A., Henderson, S., Thirlwell, C., 
Dibra, H. K., Jay, A., and Butcher, L. (2013) Identification and functional validation of 
HPV-mediated hypermethylation in head and neck squamous cell carcinoma. 
Genome med 5, 15 

214. Gubanova, E., Brown, B., Ivanov, S. V., Helleday, T., Mills, G. B., Yarbrough, W. G., 
and Issaeva, N. (2012) Downregulation of SMG-1 in HPV-positive head and neck 
squamous cell carcinoma due to promoter hypermethylation correlates with 
improved survival. Clinical Cancer Research 18, 1257-1267 

215. Kempen, P. M., Bockel, L., Braunius, W. W., Moelans, C. B., Olst, M., Jong, R., 
Stegeman, I., Diest, P. J., Grolman, W., and Willems, S. M. (2014) HPV‐positive 
oropharyngeal squamous cell carcinoma is associated with TIMP3 and CADM1 
promoter hypermethylation. Cancer medicine 3, 1185-1196 

216. Li, L. C., and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs. 
Bioinformatics 18, 1427-1431 

217. Stresemann, C., and Lyko, F. (2008) Modes of action of the DNA methyltransferase 
inhibitors azacytidine and decitabine. Int J Cancer 123, 8-13 

218. Rønneberg, J. A., Fleischer, T., Solvang, H. K., Nordgard, S. H., Edvardsen, H., 
Potapenko, I., Nebdal, D., Daviaud, C., Gut, I., and Bukholm, I. (2011) Methylation 
profiling with a panel of cancer related genes: association with estrogen receptor, 
TP53 mutation status and expression subtypes in sporadic breast cancer. Molecular 
oncology 5, 61-76 

219. Toyoda, H., Komurasaki, T., Uchida, D., Takayama, Y., Isobe, T., Okuyama, T., and 
Hanada, K. (1995) Epiregulin. A novel epidermal growth factor with mitogenic 
activity for rat primary hepatocytes. The Journal of biological chemistry 270, 7495-
7500 



 

116 
 

220. Komurasaki, T., Toyoda, H., Uchida, D., and Morimoto, S. (1997) Epiregulin binds to 
epidermal growth factor receptor and ErbB-4 and induces tryosine phosphorylation 
of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 15 

221. Lee, D., Pearsall, R. S., Das, S., Dey, S. K., Godfrey, V. L., and Threadgill, D. W. (2004) 
Epiregulin is not essential for development of intestinal tumors but is required for 
protection from intestinal damage. Molecular and cellular biology 24, 8907-8916 

222. TOYODA, H., KOMURASAKI, T., UCHIDA, D., and MORIMOTO, S. (1997) Distribution 
of mRNA for human epiregulin, a differentially expressed member of the epidermal 
growth factor family. Biochemical Journal 326, 69-75 

223. Shirakata, Y., Komurasaki, T., Toyoda, H., Hanakawa, Y., Yamasaki, K., Tokumaru, S., 
Sayama, K., and Hashimoto, K. (2000) Epiregulin, a novel member of the epidermal 
growth factor family, is an autocrine growth factor in normal human keratinocytes. 
Journal of Biological Chemistry 275, 5748-5753 

224. Taylor, D. S., Cheng, X., Pawlowski, J. E., Wallace, A. R., Ferrer, P., and Molloy, C. J. 
(1999) Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced 
by angiotensin II, endothelin-1, and thrombin. Proceedings of the National Academy 
of Sciences 96, 1633-1638 

225. Toyoda, H., Komurasaki, T., Ikeda, Y., Yoshimoto, M., and Morimoto, S. (1995) 
Molecular cloning of mouse epiregulin, a novel epidermal growth factor-related 
protein, expressed in the early stage of development. FEBS letters 377, 403-407 

226. Hu, K., Li, S.-l., Gan, Y.-h., Wang, C.-y., and Yu, G.-y. (2009) Epiregulin promotes 
migration and invasion of salivary adenoid cystic carcinoma cell line SACC-83 
through activation of ERK and Akt. Oral oncology 45, 156-163 

227. Zhuang, S., Yan, Y., Daubert, R. A., and Schnellmann, R. G. (2007) Epiregulin 
promotes proliferation and migration of renal proximal tubular cells. American 
Journal of Physiology-Renal Physiology 293, F219-F226 

228. Riese, D. J., 2nd, and Cullum, R. L. (2014) Epiregulin: roles in normal physiology and 
cancer. Seminars in cell & developmental biology 28, 49-56 

229. Eltarhouny, S., Elsawy, W., Radpour, R., Hahn, S., Holzgreve, W., and Zhong, X. 
(2008) Genes controlling spread of breast cancer to lung “gang of 4”. Experimental 
oncology 30, 91-95 

230. Yun, J., Song, S. H., Park, J., Kim, H. P., Yoon, Y. K., Lee, K. H., Han, S. W., Oh, D. Y., Im, 
S. A., Bang, Y. J., and Kim, T. Y. (2012) Gene silencing of EREG mediated by DNA 
methylation and histone modification in human gastric cancers. Laboratory 
investigation; a journal of technical methods and pathology 92, 1033-1044 

231. Shigeishi, H., Higashikawa, K., Hiraoka, M., Fujimoto, S., Mitani, Y., Ohta, K., Takechi, 
M., and Kamata, N. (2008) Expression of epiregulin, a novel epidermal growth factor 
ligand associated with prognosis in human oral squamous cell carcinomas. Oncology 
reports 19, 1557-1564 

232. John, K., Lahoti, T. S., Wagner, K., Hughes, J. M., and Perdew, G. H. (2014) The Ah 
receptor regulates growth factor expression in head and neck squamous cell 
carcinoma cell lines. Molecular carcinogenesis 53, 765-776 

233. Dok, R., and Nuyts, S. (2016) HPV Positive Head and Neck Cancers: Molecular 
Pathogenesis and Evolving Treatment Strategies. Cancers 8, 41 

234. Jonker, D., Karapetis, C., Harbison, C., O'Callaghan, C., Tu, D., Simes, R., Malone, D., 
Langer, C., Tebbutt, N., and Price, T. (2014) Epiregulin gene expression as a 
biomarker of benefit from cetuximab in the treatment of advanced colorectal 
cancer. British journal of cancer 110, 648-655 

235. Oshima, G., Wennerberg, J., Yamatodani, T., Kjellen, E., Mineta, H., Johnsson, A., and 
Ekblad, L. (2012) Autocrine epidermal growth factor receptor ligand production and 



 

117 
 

cetuximab response in head and neck squamous cell carcinoma cell lines. Journal of 
cancer research and clinical oncology 138, 491-499 

236. Badar, T., Kantarjian, H. M., Ravandi, F., Jabbour, E., Borthakur, G., Cortes, J. E., 
Pemmaraju, N., Pierce, S. R., Newberry, K. J., Daver, N., and Verstovsek, S. (2015) 
Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-
risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or 
blastic/acute myeloid leukemia phase. Leukemia research 39, 950-956 

237. Daskalakis, M., Blagitko-Dorfs, N., and Hackanson, B. (2010) Decitabine. in Small 
Molecules in Oncology, Springer. pp 131-157 

238. Viet, C. T., Dang, D., Ye, Y., Ono, K., Campbell, R. R., and Schmidt, B. L. (2014) 
Demethylating drugs as novel analgesics for cancer pain. Clinical Cancer Research 20, 
4882-4893 

239. Kantarjian, H., Issa, J. P. J., Rosenfeld, C. S., Bennett, J. M., Albitar, M., DiPersio, J., 
Klimek, V., Slack, J., De Castro, C., and Ravandi, F. (2006) Decitabine improves 
patient outcomes in myelodysplastic syndromes. Cancer 106, 1794-1803 

240. Viet, C. T., Dang, D., Achdjian, S., Ye, Y., Katz, S. G., and Schmidt, B. L. (2014) 
Decitabine rescues cisplatin resistance in head and neck squamous cell carcinoma. 
PloS one 9, e112880 

241. Primeau, M., Gagnon, J., and Momparler, R. L. (2003) Synergistic antineoplastic 
action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase 
inhibitor depsipeptide on human breast carcinoma cells. Int J Cancer 103, 177-184 

242. Murakami, J., Asaumi, J., Maki, Y., Tsujigiwa, H., Kuroda, M., Nagai, N., Yanagi, Y., 
Inoue, T., Kawasaki, S., Tanaka, N., Matsubara, N., and Kishi, K. (2004) Effects of 
demethylating agent 5-aza-2(')-deoxycytidine and histone deacetylase inhibitor 
FR901228 on maspin gene expression in oral cancer cell lines. Oral oncology 40, 597-
603 

243. Shukla, P., Solanki, A., Ghosh, K., and Vundinti, B. R. (2013) DNA interstrand cross‐
link repair: understanding role of Fanconi anemia pathway and therapeutic 
implications. European journal of haematology 91, 381-393 

244. Rieckmann, T., Tribius, S., Grob, T. J., Meyer, F., Busch, C.-J., Petersen, C., Dikomey, 
E., and Kriegs, M. (2013) HNSCC cell lines positive for HPV and p16 possess higher 
cellular radiosensitivity due to an impaired DSB repair capacity. Radiotherapy and 
Oncology 107, 242-246 

245. Lu, S.-L. (2011) Fanconi Anemia/Brca Pathway and Head and Neck Squamous Cell 
Carcinomas.  

  

  



 

118 
 

APPENDICES 

Introduction 

During the course of my dissertation work, some supporting experiments were not 

completed and some of the studies did not produce significant results. Therefore, I had to 

change research aims and/or experimental focus. These results are not included in 

dissertation chapters and therefore are shown in the appendix. 

 

I. Determine the presence of Fanconi anemia genes mutation(s) in HPV-positive 

head and neck cancer specimens 

Introduction 

My original thesis proposal was to study whether a defect in Fanconi Anemia (FA) - 

DNA repair system is associated with HPV-induced HNCs and whether this defect is linked 

with improved prognosis in HPV-positive HNCs. This was based on the studies which have 

shown a defect in FA-DNA repair pathway is implicated in hypersensitivity to DNA cross-

linking agents (243) and HPV-induced HNC exhibit improved sensitivity to chemo/radio 

therapies (244). While there is evidence for a DNA repair defect in HNCs, it is not well 

documented whether this is specific to the HPV-positive environment. Sixteen proteins 

encoded from 16 Fanconi anemia (FANC) genes are involved in a DNA-repair pathway 

known as the Fanconi Anemia-DNA repair pathway (245) (Figure S1). Based on these 

findings, I hypothesized that HPV-positive HNCs contain mutations in Fanconi genes that are 

not present in HPV-negative HNCs and this defect in Fanconi anemia-DNA repair pathway is 

implicated in improved prognosis in HPV-positive HNCs. 
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Figure S1: Fanconi anemia (FA)-DNA repair pathway showing into three groups of FA 

proteins: 1) Core complex proteins (FANCA, B, C, E, F, G, L and M); which in response to 

DNA damage is required for mono-ubiquitination of  2) ID complex (FANCI and FANCD2); 

and 3) DNA repair foci proteins [FANCD1/BRCA2, FANCJ/BRIP1, FANCN/PALB2, FANCO/ 

RAD51C, FANCP/SLX4 and FANCQ/XPF4/ERCC4] participate directly in DNA interstrand 

crosslink repair. Accessory proteins such as MHF1/2 and FAAP24 (not shown here) help 

FANCM to recruit core complex to the sites of DNA damage. The monoubiquitinated FANCD2 

is the center of the pathway and a measure of functional FA pathway. BRCA1 is currently not 

considered to be a true FA protein though it is an essential part of the FA-DNA repair 

pathway.  

Experimental Procedures 

I had a plan to test all coding exons of 16 FANC genes (total 303 exons) by PCR-based 

amplification using primers spanning intron-exon junctions. I had started with the amplification 

and sequencing of 9 exons of FANCO/RAD51C; 14 exons of FANCL; 23 exons of FANCM; 

14 exons of FANCG and 43 exons of FANCD2. Primers, PCR conditions and the target PCR 

product for each exon of FANC genes were tested first by using HeLa cell DNA. By optimizing 

PCR conditions, I amplified the respective exons in the HNC samples. Then, target PCR 

products were excised from an agarose gel, purified, and sequenced.  
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When a gene is known to produce multiple transcripts, the primers for shared exons and 

primers unique for the spliced exon were designed. Multiple primer pairs were employed if the 

coding exons were larger than 450bp. Primers were designed using Primer 3 software or IDT 

PrimerQuest tool to cover at least 15bp at each 5’and 3’ sides of the exons. I ordered primers 

(either forward or reverse) tagged with M13 primer (5’-GTAAAACGACGGCCAGT-3’) so that 

all amplified products can be sequenced using a single M13 primer. 

Data analysis 

Sequencing data was analyzed for variant detection using Mutation Surveyor software 

(SoftGenetics LLC., PA, USA). All sequences were compared to the related NCBI reference 

sequences. The chromatograms of all the computationally determined variants were checked 

manually for confirming the existence of those variants. SeqMan Pro program (Lasergene 12, 

DNAstar Inc., Wisconsin) was used to align and compare the sequences from all the samples 

analyzed. The identified variants were searched in NCBI dbSNP for Human to find their 

related rs#, and those, which was not found, was considered as novel variants. Human 

Splicing Finder website (http://www.umd.be/HSF/) was used to determine whether the 

detected intronic and exonic mutations lead to splicing defects.  

All insertion and deletions in the gene coding region, nonsense variants, and variants 

located at the splice site consensus sequences were considered as potentially deleterious. 

Missense variants first were searched in UniProt Database for determining their functional 

effects. If their functional effect was not known, bioinformatics tools were utilized to predict 

their effect. For predicting the functional effect of the missense variants, PolyPhen and SIFT 

tools were used. Missense variants predicted to be deleterious by Polyphen or SIFT 

algorithms and having a minimum allele frequency (MAF) >0.5% was considered as 

potentially deleterious variants. The MAF > 0.5% was used to exclude singleton mutations 

(private mutations seen in a single individual) which do not provide enough power for 

analysis. The predicted potentially deleterious variants were planned to genotype in more 

cases and controls. 

Following mutational analysis, each putative mutation was independently re-amplified in 

tumor DNA (to eliminate artifacts). I compared the sequencing results of each patient’s tumor 

http://www.umd.be/HSF/
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to their matched tissue samples in order to eliminate background germline variations and to 

focus on somatic alterations unique to the tumor genome. The comparison was done with 

HPV-negative samples to establish a link between FANC mutation and HPV infection.  

Results and Discussion 

I analyzed two HPV-positive HNC samples with their matched normal tissues, and two 

HPV− samples (altogether 6 samples). In 6 samples, I had sequenced 9 exons of 

FANCO/RAD51C; 14 exons of FANCL; 23 exons of FANCM; 14 exons of FANCG and 43 

exons of FANCD2. I was unable to get useful sequencing results from FANCD2 Exons 18, 19, 

20, 22 and 26 amplified products. Although the primers were designed to target exons, some 

intergenic and intron regions adjacent to exons were also amplified and sequenced. Variants 

unique to HPV-positive HNC cases are shown in Table S1 and Table S2.  

The majority of mutations that were observed were heterozygous synonymous. Mutations 

that were heterozygous non-synonymous were mostly present in both tumor and normal 

matched tissues, showing germline variations instead of somatic alterations unique to the 

tumor genome. These mutations include FANCD2 c.2219C>CT (or p.P714PL); RAD51C 

c.439C>CA (or p.Q133QK); FANCM ----c.437A>AC (or p.T118TP) c.5268C>CG (or 

p.A1728AG) and c.5273C>CG (or p.Q1730QE); FANCG --- c.816G>GC (or p.E108ED), 

c.923G>GC (or p.G144GA) and c.2197G>GC (or p.A569AP).  

Heterozygous non-synonymous mutation of FANCG c.819G>GC (or p.Q109QH) and 

heterozygous deletion of FANCM c.2379het_delT were found in HPV+ tumors but not in 

matched normal. However, these mutations were not observed in additional HPV-positive 

cases and FANCG c.819G>GC was also present in additional HPV-negative cases; 

suggesting these alterations were not exclusively specific for the HPV-positive environment.  

Most of the intronic variants were heterozygous and were also present in matched 

normal. Heterozygous deletion of RAD51C c.947-74het_delG was found in one HPV-positive 

tumor but there wasn’t predicted potential splice site, making this mutation non-significant. 
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Table S1: Exonic variants identified in 5 FANC genes in DNA of only HPV-positive HNC 

cases 

No. Gene Exon 
Nucleotide 
Change* 

Amino Acid 
Change 

Mutation type Total Samples 

1 FANCD2 14 c.1200A>AG p.V374VV 
Heterozygous 
synonymous 

2 (tumor+ matched 
normal) 

2 FANCD2 17 c.1587C>CT p.N503NN 
Heterozygous 
synonymous 

2 (tumor+ matched 
normal) 

3 FANCD2 23 c.2219C>CT p.P714PL 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

4 FANCD2 42 c.4176T>TG p.L1366LL 
Heterozygous 
synonymous 

2 (tumor+ matched 
normal) 

5 RAD51C 2 c.439C>CA p.Q133QK 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

6 FANCL 6 37214T>TG p.G145GG 
Heterozygous 
synonymous 

4 (tumors+ matched 
normal) 

7 FANCM 1 c.437A>AC, p.T118TP 
Heterozygous non-

synonymous 
4 (tumors+ matched 

normal) 

8 FANCM 1 c.484T>TC p.P133PP 
Heterozygous 
synonymous 

2 (tumor+ matched 
normal) 

9 FANCM 13 c.2379het_delT 

 

Heterozygous deletion 
1 (tumor) 

10 FANCM 20 c.5268C>CG p.A1728AG 
Heterozygous non-

synonymous 
4 (tumors+ matched 

normal) 

11 FANCM 20 c.5273C>CG p.Q1730QE 
Heterozygous non-

synonymous 
4 (tumors+ matched 

normal) 

12 FANCM 21 c.5470T>TG p.C1795CW 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

13 FANCM 21 c.5550T>TG p.V1822VG 
Heterozygous non-

synonymous 
4 (tumors+ matched 

normal) 

14 FANCM 21 c.5554T>TG p.G1823GG 
Heterozygous 
synonymous 

3 (2 tumor+ 1 matched 
normal) 

15 FANCM 23 c.6749A>AC 
 

Heterozygous 
3 (2 tumors+ 1 matched 

normal) 

16 FANCM 23 c.6880A>AC 
 

Heterozygous 
4 (tumors+ matched 

normal) 

17 FANCM 23 c.6883T>TC 
 

Heterozygous 
3 (2 tumors+ 1 matched 

normal) 

18 FANCG 4 c.816G>GC p.E108ED 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

19 FANCG 4 c.819G>GC p.Q109QH 
Heterozygous non-

synonymous 
2 tumors 

20 FANCG 4 c.923G>GC p.G144GA 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

21 FANCG 4 c.927G>GC p.L145LL 
Heterozygous 
synonymous 

2 (tumor+ matched 
normal) 

22 FANCG 13 c.2197G>GC p.A569AP 
Heterozygous non-

synonymous 
2 (tumor+ matched 

normal) 

*A mutation in the mRNA region is prefixed with a “c” and a mutation in the protein sequence is prefixed 

with a “p”.  
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Table S2: Intronic variants identified in 5 FANC genes in only HPV-positive HNC cases 

No. Gene Intron 
adjacent 
to exon 

Nucleotide 
Change* 

Mutation 
type 

Total Samples Prediction using 
Human Splicing 

Finder 

1 FANCD2 5 c.455+155T>TG Heterozygous 2 (tumor+ matched 
normal) 

Potential donor splice 
site 

2 FANCD2 7 c.517-16A>AG Heterozygous 2 (tumor+ matched 
normal) 

None 

3 FANCD2 13 c.1068-38C>CG Heterozygous 2 (tumor+ matched 
normal) 

Potential acceptor 
splice site 

4 FANCD2 16 c.1357-76A>G Homozygous 1 (tumor) Potential donor splice 
site 

5 FANCD2 17 1492-149A>AG Heterozygous 2 (tumor+ matched 
normal) 

None 

6. FANCD2 30 c.2938-4A>AC Heterozygous 3 (2 tumors+1 
matched normal) 

Potential acceptor 
splice site 

7. FANCD2 42 c.4263+33T>TC Heterozygous 2 (tumor+ matched 
normal) 

None 

8 RAD51C 1 c.17C>CT Heterozygous 2 (tumor+ matched 
normal) 

None 

9 RAD51C 7 c.947-74het_delG Heterozygous 
deletion 

1 (tumor)  

10 FANCL 6 c.537+27T>TG Heterozygous 2 (tumor+ matched 
normal) 

Potential acceptor 
splice site 

11 FANCL 6 c.537+97A>G Homozygous 2 (tumor+ matched 
normal) 

None 

12 FANCL 9 c.758-27A>C Homozygous 2 (tumor+ matched 
normal) 

Potential acceptor 
splice site 

13 FANCM 9 c.1666+194het_delT Heterozygous 
deletion 

2 (tumor+ matched 
normal) 

Potential acceptor 
splice site 

14 FANCM 12 c.2245+97G>GA Heterozygous 4 (tumors+ matched 
normal) 

None 

15 FANCM 21 c.5801+36T>G Homozygous 4 (tumors+ matched 
normal) 

Potential donor splice 
site 

16 FANCG 2 c.667+24G>GC Heterozygous 2 (tumor+ matched 
normal) 

Potential donor splice 
site 

*A mutation in the mRNA region is prefixed with a “c”. A mutation that is called outside of an mRNA 

region is assigned as plus or minus the number of bps by which it resides away from the closest 

nucleotide of the mRNA 

 

Next gene sequencing data 

 Next gene sequencing (NGS) using Ion AmpliSeq™ Comprehensive Cancer Gene 

Panel (Ion Torrent, Thermo Fisher Scientific) was done in two samples (one HPV negative 

HNC sample and one HPV positive HNC sample). This panel contained 7 FANC genes-- 

namely FANCA, FANCC, FANCD2, FANCF, FANCG, BRIP1, and ERCC4. 
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 Table S3 shows SNPs (Single nucleotide polymorphisms) which were identified in the 

HPV-positive sample. FANCD2 c.1179T>C and ERCC4 intronic mutations were found in both 

HPV-positive and HPV-negative samples.  

 Interestingly, FANCD2 (c.1214A>G missense mutation) was seen only in an HPV-

positive HNC sample, not in an HPV-negative sample. Sanger sequencing was conducted for 

further verification. But, this mutation in that particular location was not observed in the same 

sample. So, FANCD2 (c.1214A>G missense mutation) obtained from NGS seems to be a 

false positive SNP. This is probably because Next Gene sequencer has problems in the 

regions of repeated bases in the sequence. Indeed, the location of c.1214A>G mutation was 

found in the region where there were repeats of A (the sequence was: aagaaataag). 

Table S3: SNPs identified from an HPV-positive sample 

Gene Mutation* Classification 
Genotype Type

†
 Location Coding 

Amino acid 

Change 

Variant 

effect 

FANCD2 c.1214A>G 
Suspected 

Deleterious 
A/G SNV exonic c.1214A>G p.Asn405Ser missense 

FANCD2 c.1179T>C Unknown T/C SNV exonic c.1179T>C WT synonymous 

FANCD2 c.1170C>T Unknown C/T SNV exonic c.1170C>T WT synonymous 

ERCC4 

 

Unknown A/A SNV intronic 

   

*A mutation in the mRNA region is prefixed with a “c”.  
†
single nucleotide variants (SNVs)  

 

Overall results obtained from mutational analysis of Fanconi-anemia-DNA repair genes 

suggest that mutations in FANC genes may not be specific to HPV-positive head and neck 

cancers, though further studies on larger number of specimens are required. 
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II. E7 knockdown or overexpression to determine whether viral oncoprotein E7 

mediates promoter methylation and transcriptional inactivation of a candidate 

gene EREG 

Introduction: 

The work presented in chapter V suggested a hypothesis that promoter methylation 

and inactivation of EREG is mediated by HPV presence in head and neck cancers. Since 

HPV16 E7 oncoprotein has been shown to upregulate DNMT1 and DNMT3a (119); I 

rephrased the above hypothesis as − E7 oncoprotein causes promoter methylation of EREG. 

To test this hypothesis, I attempted to perform lentiviral knockdown of E7 in HPV-positive 

UMSCC-47 cell line and lentiviral-based overexpression of E7 in HPV-negative UMSCC-1 cell 

line. 

Experimental Procedures 

Cloning and production of lentiviral plasmids for overexpression of E7: The E7 coding 

region containing EcoRI and XhoI restriction sites was obtained from PCR-amplification of 

HPV16 purified plasmid (i.e. a plasmid containing full genome of HPV16 cloned in the 

pBR322 vector). Amplification was done using primers against the full length of E7 (forward 

primer with EcoRI site: aaagGAATTCatgcatggagatacacctac and a reverse primer with XhoI 

site: aaaaCTCGAGttatggtttctgagaacagatg). Amplified product was gel purified, digested with 

EcoRI and XhoI and then ligated with a pLUTdNB lentiviral vector which was also digested 

with the same restriction enzymes. This pLUTdNB vector is pTRIPZ base modified 

doxycycline-inducible expression vector. pLUTdNB plasmid ligated with E7 cDNA was then 

transformed into XL10-Gold Ultracompetent cells (Agilent Technologies, CA, USA) using β-

mercaptoethanol to increase transformation efficiency, according to the manufacture’s 

protocol.  After transformation, the plasmid was isolated and then sequenced to confirm the 

cloning of full-length of HPV16 E7 cDNA into a pLUTdNB lentiviral expression vector.  

Production of E7 overexpressing lentiviral particles: Lentivirus packaging protocol was 

followed as described by Applied Biological Materials Inc. (Richmond Canada) with some 

modifications. HEK 293T cells were co-transfected with the lentiviral constructs pVSV-G 

(envelope vector) and psPAX2 (packaging vector) (Addgene) along with a pLUTdNB plasmid 
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expressing full length of E7 (expression vector). Empty vector was used as a control and 

transfected into HEK 293T cells. Transfections were carried out using TurboFect Transfection 

Reagents in Opti-MEM® Reduced-Serum Medium (Thermo Fisher Scientific). Later, the 

culture medium was centrifuged at 3,000 rpm for 15 mins at 4°C. The filtered supernatant was 

used for lentiviral infection. 

HPV16 E7 shRNA lentiviral particles: HPV 16 E7 shRNA lentiviral particles and control 

shRNA lentiviral particles were purchased from Santa Cruz Biotechnology, Inc, USA. HPV 16 

E7 shRNA lentiviral particles contain a pool of concentrated, transduction-ready viral particles 

containing 2 target- specific constructs that encode 19-25 nucleotide shRNA designed to 

knock down gene expression. Control shRNA Lentiviral Particles encodes for a scrambled 

shRNA sequence suitable as a negative control for shRNA lentiviral transduction experiment.  

Lentiviral particles transduction: A protocol for lentivirus particles transduction was 

followed as described by Santa Cruz Biotechnology, Inc. Before lentiviral transduction, the 

working concentration of puromycin was determined for the selection of transduced UMSCC-

1 (HPV-negative) or UMSCC-47 (HPV-positive) cell lines. For this, in a separate experiment, 

UMSCC-1, and UMSCC-47 cells were treated with varying concentrations of puromycin 

dihydrochloride (Santa Cruz Biotechnology, Inc) from 1 µg/ml to10 µg/ml. Then, an optimal 

concentration of puromycin (2 µg/ml) was selected as the lowest concentration that kills 100% 

of non-transfected cells in 2-3 days.  

For lentiviral infection, cells were seeded in a 12-well plate 24 hours prior to viral 

infection. Next day, media was replaced with Polybrene (Santa Cruz Biotechnology, Inc) 

containing media to enhance binding of pseudo-viral capsid to the cell membrane. Then, cells 

were infected with lentiviral particles (E7 over-expressing particles in UMSCC-1; and E7 

shRNA lentiviral particles in UMSCC-104 cell lines). After cells underwent lentiviral 

transduction, stably transfected clones were selected using 2 μg/ml puromycin. After antibiotic 

selection, cells were expanded for stable E7 cDNA or E7 shRNA expression in UMSCC-1 and 

UMSCC-47 respectively. Cells stably expressing control shRNA or control empty vector was 

also isolated via puromycin selection. 
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E7 mRNA expression: Total RNA was isolated and cDNA was synthesized following the 

same protocol as described in chapter IV using primers against E7 by SYBR Green assay.  

Western Blot Analysis: Cells were lysed and total protein was extracted using RIPA buffer 

(Cell Signaling Technology) and protease inhibitors as per the protocol. Total protein 

concentration was determined using the Bio-Rad Bradford protein assay reagent (Bio-Rad 

Laboratories, USA) with bovine serum albumin (BSA; Pierce, USA) as a standard.  Extracted 

protein samples were mixed with sodium dodecyl sulfate (SDS) loading buffer (20% glycerol, 

4% SDS, 100 mM Tris, pH 6.8, 0.002% bromophenol blue), and heated at 95°C for 5 min. 

These proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gels 

(NUPAGE 10% Bis-TRIS, Invitrogen, USA) and transferred to polyvinylidene difluoride 

(PVDF) membrane (Immobilon-P transfer membrane, EMD Millipore, USA), which were 

blocked with 5% nonfat dry milk in Tris-buffered saline containing 0.05% Tween 20 (TBST) for 

1 h at room temperature. The membrane was then incubated with mouse monoclonal anti-E7 

antibody (Abcam / Santa Cruz Biotechnology, USA) or rabbit polyclonal anti-β-actin (Genetex) 

antibodies overnight at 4 °C. After washing with TBST for 3 times, membranes were 

incubated with 1:5000 diluted secondary antibodies [horseradish peroxidase (HRP)- 

conjugated goat anti-mouse IgG or HRP-conjugated mouse anti-rabbit IgG (Thermo Scientific 

Pierce, USA)] for 1 h at room temperature. Proteins were detected by chemiluminescence 

(SuperSignal West Dura Extended Duration Substrate; Thermo Scientific Pierce, USA) and 

bands were visualized on X-ray film (CLXPosure Film, Thermo Scientific Pierce, USA) using 

an SRX-101A processor (Konica Minolta Medical Imaging USA, Inc).  

 

Results and Discussion 

Cloning of E7 into lentiviral expression vector 

HPV16 E7 cDNA was amplified and cloned into a pLUTdNB lentiviral expression 

vector (Figure S2). After cloning, isolated plasmid was digested using EcoRI and XhoI, which 

gave ~300bp product in an agarose gel, which corresponded to the full length of HPV16 E7 

(Figure S2-D). For verification, the sequence of cloned vector was compared with other 

sequence variants of HPV16 (such as AF402678.1, AF125673.1, AY686584.1, NC_001526.2, 
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and KF954093.1) using SeqMan Pro program (Lasergene 12, DNAstar Inc., Wisconsin) and 

NCBI BLASTN database. The obtained full-length nucleotide sequence was then translated 

into an amino acid sequence using EditSeq (DNASTAR) software and compared with other 

sequences using NCBI BLASTP database. 100% sequence identity was obtained between 

the cloned sequence with protein sequences of HPV16 E7 (accession no. AAO85409.1), 

suggesting the successful cloning of HPV16 E7 cDNA into lentiviral expression vector 

pLUTdNB. 

 

Figure S2: Cloning of E7 into a pLUTdNB lentiviral expression vector. A) Gel image showing 

EcoRI and XhoI digested E7 DNA, which was initially PCR-amplified from HPV16 plasmid. 

This DNA band was purified from the gel and used to ligate with digested pLUTdNB. B) Gel 

image showing EcoRI and XhoI digested pLUTdNB vector, which was purified from the gel. 

Restriction digested E7 and pLUTdNB DNAs were ligated and cloned into E. coli. C) Gel 

image showing cloned E7-pLUTdNB plasmid DNAs (Lanes #1 and #3) isolated from 

transformed E. coli. (Lane #2 showed the absence of cloned plasmid) D) Cloned plasmids 

were digested with EcoRI and XhoI that produced the fragments of ~300 bp (shown by the 

arrow), which corresponded to the full-length of E7. 

 

Lentiviral knockdown of E7 in HPV-positive HNC cell line  

After lentiviral transduction, puromycin selection was done to obtain UMSCC-47 cells 

stably expressing E7 shRNA. Puromycin-resistant cells were obtained, indicating successful 

lentiviral transduction. However, as shown in Figure S3, knockdown of E7 did not 

significantly reduce E7 mRNA in UMSCC-47 cells as compared to cells stably expressing 

scrambled control shRNA. To confirm above results, E7 protein levels was tested by 
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immunoblotting, but could not be detected. Even a positive control (i.e. purified E7 protein) 

was not detectable in the immunoblot. This may be due to the low quality of commercial E7 

antibodies. However, the immunoblot was positive for house-keeping protein (β- actin). So, 

further experiments have to be done to obtain effective knockdown of E7 in HPV-positive 

UMSCC-47 cell line. 

 

Figure S3: E7 expression in UMSCC-47 cells after the lentiviral shRNA-mediated 

knockdown, showing unsuccessful knockdown of E7 compared to scrambled control shRNA.  

Lentiviral transduction of E7 cDNA in HPV-negative HNC cell line 

 E7 overexpressing lentiviral particles were produced and then transduced in HPV-

negative UMSCC-1 cell line. However, transduced cells started dying after treatment with 2 

μg/ml puromycin (similar to non-transduced cells), indicating unsuccessful lentiviral 

transduction. This may be due to the poor quality of lentiviral particles or due to other 

reasons. So, experiments should be repeated troubleshooting the relevant issues.  

  



 

130 
 

III. Epigenetic changes in host tumor suppressor genes SMG1, RUNX3, and CHFR in 

HNCs 

In chapter V, I selected 7 genes (GRB7, RUNX3, RUNX2, CHFR, RARB, EREG, and 

SMG-1) from 38 tumor suppressors as the targets for further studies and then focused on the 

promoter methylation status of GRB7 and EREG, since they were the potential candidate 

genes regulated in HPV-positive HNC cell lines. I have not included the promoter methylation 

status of other genes as not to distract from the focus of the project, therefore have discussed 

in this part of the appendix. 

Correlation of DNA methylation status of SMG1, RUNX3 and CHFR promoters with their 

expression 

The methylation status of promoters of SMG1, RUNX3 and CHFR and the effect of 

de-methylation treatment were analyzed using MS-PCR method. Both HPV-positive 

(UMSCC-47) and HPV-negative (UMSCC-1) HNC cell lines contained methylated as well as a 

unmethylated SMG1 promoter (Figure S4 A-B). RUNX3 and CHFR methylation status was 

detected in both cell lines (Figure S4C-F). Even on de-methylation treatment, there was no 

change in bands of all three genes- SMG1, RUNX3, and CHFR (Figure S4). These results 

suggest that epigenetic regulations of SMG1, RUNX3 and CHFR may not be specific to HPV-

positive HNCs. 

Expressions of SMG1, RUNX3, and CHFR genes were higher in UMSCC-1 than 

UMSCC-47 (Figure 28), but promoter methylation status was found similar in both cell types 

(Figure S4). This result indicated that in the case of these 3 genes, the correlation between 

increased promoter methylation and decreased expression tended to be low. There was also 

no change in methylation status of the promoter of these genes even after de-methylation 

treatment (Figure S4), although 5-aza-dc caused increased SMG1 expression in UMSCC-1, 

and increased expression of RUNX3 and CHFR in both cell types (Figure 31).These results 

additionally indicate that methylation-mediated gene silencing of SMG1, RUNX3, and CHFR 

may not be cell-type specific.  
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Figure S4: Methylation status of SMG1, RUNX3, and CHFR promoters. Promoter regions of 

SMG1 (A), RUNX3 (C) and CHFR (E), showing CpG island and the locations of methylation-

specific PCR (MS-PCR) primers. Agarose gel images showing MS-PCR of SMG1 (B), 

RUNX3 (D) and CHFR (F) in bisulfite-modified DNA from HPV-negative (UMSCC-1) and 

HPV-positive (UMSCC-47) cell lines with or without 5-aza-dc (5 µM for 96 hours) treatment. 

No template DNA serves as negative control. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

5-aza-dc  5-aza-2′-deoxycytidine 

CIN   Cervical intraepithelial neoplasia  

CpG   5'- Cytosine-phosphate-Guanine-3' 

DNA   Deoxyribonucleic acid 

DNMT   DNA methyltransferase 

E2BS   E2 binding sites 

E2F-TF   E2 factor family of transcription factors   

EGFR   Epidermal growth factor receptor 

EREG   Epiregulin 

FFPE   Formalin-fixed, paraffin-embedded 

hgOED   High-grade oral epithelial dysplasia 

HN   Head and Neck 

HNC   Head and Neck carcinoma/ cancers 

HNSCC   Head and Neck squamous cell carcinoma 

HPV   Human papillomavirus 

H&E   Hematoxylin and eosin staining 

IHC   Immunohistochemistry 

ISH    in situ hybridization 

LCR   Long control region 

MEH   Multiple epithelial hyperplasia 

MS-PCR  Methylation-specific PCR 

OCSCC  Oral Cavity Squamous Cell Carcinoma 

OPSCC or OPC  Oropharyngeal Squamous Cell Carcinoma 

OPC   Oropharyngeal cancer 

ORF   Open Reading Frame 

PCR   Polymerase Chain Reaction 

PV   Papillomavirus 

qRT-PCR  Quantitative Reverse Transcription-PCR 

Rb    Retinoblastoma 

SCC   Squamous Cell Carcinoma 

SNPs    Single nucleotide polymorphisms 

TBP   TATA binding protein 

TSG(s)   Tumor suppressor gene(s) 

URR    Upstream Regulatory Region 
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