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ABSTRACT 
TGPTTG FOR OVARIAN CANCER TREATMENT 

Miranda Y. F ong 

May 11,2012 

This dissertation is a hypothesis-driven research oriented study to determine the role of 

the pituitary-tumor transforming gene (PTTG) in ovarian cancer, specifically if it is involved in 

neoplastic transformation leading to tumorigenesis through oncogene activation and the 

involvement of tumor-suppressor gene, p53. Furthermore, generation of a useful ovarian cancer 

mouse model provides a platform technology to screen for ovarian cancer diagnosis and treatment 

options. 

This dissertation is divided into four chapters covering the etiology of ovarian cancer and 

a novel treatment strategy for ovarian cancer. The first chapter reviews the related literature 

encompassing the etiology of ovarian cancer, mouse models of ovarian cancer, the biological 

function of PTTG, the role of PTTG in cancer and diabetes, and mouse models using PTTG as a 

transgene. The second chapter studies the role of PTTG in tumorigenesis in vivo through the 

generation ofa PTTG transgenic (TgPTTG) mouse model observed at various ages, ranging from 

4 to 10 months. The third chapter is a preliminary study investigating the signaling mechanisms 

affected by chemotherapy agent doxorubicin in combination with withaferin A in vitro and in 

vivo for the treatment of ovarian cancer. The fourth chapter is a discussion of the utility of ovarian 

cancer mouse models and the consequences of the lack of a working model. 
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INTRODUCTION 

The ovary is surrounded by a single cell epithelial layer derived from the coelomic 

mesothelium during development. The coelomic mesothelium has the potential to undergo 

neoplastic transformation to a malignant phenotype and differentiate towards many different cells 

types found in the Mullerian tract, including the ovarian stroma, fallopian tube, uterus, and cervix 

[2]. 

The most common form of ovarian cancer is epithelial ovarian cancer (EOC) accounting 

for approximately 90% of cases. Other tumor types include germ cell tumors (5%) [3] and sex 

cord-stromal cell tumors « 5%) [4]. EOC is further sub-divided into distinct histotypes: serous 

(70%), mucinous (5-10%), clear cell (5-10%), and endometrioid (20%) [5]. Furthermore, serous 

carcinomas can be divided into high-grade and low-grade lesions, with the former being the most 

common [6]. 

Ovarian cancer is the most lethal malignancy of the female genital tract, being the 5th 

cause of cancer death in women and 8th most common cancer. If ovarian cancer is diagnosed at 

Stage I, the five year survival rate is 93.5% but drops to 27.6% at Stage IV where a majority of 

cases are diagnosed [7], mainly due to a lack of symptoms and unreliable detection methods. 

Current detection methods include transvaginal ultrasound and serum CA-125 levels. However, 

with transvaginal ultrasound, ovarian cancer can be mistaken for functional cysts in 

premenopausal women, while CA-125 has a high false positive rate [5]. Over the past four 

decades, the incidence of ovarian cancer has slightly decreased but the mortality remains 

relatively unchanged [7]. This is in part due to a lack of understanding of the etiology of ovarian 

cancer and the heterogeneity found across patient tumors, which has made it difficult to produce a 

reliable animal model that represents human EOe. 



CHAPTER 1 

A REVIEW OF THE RELATED LITERATURE 

Etiology of Ovarian Cancer 

Ovarian cancer can be subdivided into three groups based on tissue of origin. Most cases 

are believed to originate from the ovarian surface epithelium (OSE), while stromal cell tumors 

and germ cell tumors are relatively rare [8]. However, recently some debate has arisen that serous 

ovarian cancer originates in the fallopian tube and migrates to the ovary [9] as tubal ligation 

provides a measure of protection against ovarian cancer [ lO]. Despite some progress to define the 

mechanism of the etiology of ovarian cancer, the link between normal to neoplastic 

transformation has not been clearly established, in part due to a lack of a representative model. 

Despite this most animal studies focus on oncogenic activation or tumor repressor gene silencing 

to find the switch from normal healthy cells to transformed tumorigenic cells. Several theories 

have been suggested: the Gonadotropin Theory, chronic inflammation, and cancer stem cells 

(CSCs) all of which will be discussed in detail (Fig. I). Another theory states that the OSE can 

invaginate and form inclusion cysts, which can undergo neoplastic transformation either through 

stromally-derived growth factors or cytokines that would normally be restricted to the tunica 

albuginea [II]. It has also been suggested that incessant ovulation damages the OSE and the 

requisite repairs can lead to genetic mutations, as a reduction in ovulation reduces the risk for 

developing ovarian cancer from conditions such as oral contraception, pregnancy, and lactation 

[2] which ties into inflammation pathways. 

The Gonadotropin Theory 

Coined by Chinmoy K. Bose [12], the Gonadotropin Theory suggest that constant 

excessive exposure to gonadotropins, particularly follicle stimulating hormone (FSH), over-
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stimulate the ovary to cause excessive ovulation resulting in tissue damage. Experiments related 

to this theory have provided conflicting results. One study found that FSH reduced the ability of 

the surface epithelial cells to proliferate [13] while another study showed that FSH increased cell 

proliferation in a cell culture derived from an omental metastasis of epithelial ovarian cancer 

(EOC) [14]. To clarify this issue, serum LH and FSH levels were measured in the serum and 

cystic fluid of patients with ovarian epithelial neoplasms [IS]. There was a significant difference 

between malignant neoplasms and borderline or benign neoplasms. While FSH receptors (FSHR) 

are found in 80% of EOC [16, 17], no experiments have been performed to show that FSH can 

promote anchorage-independent colony formation to demonstrate cellular transformation in vitro. 

Inflammation in cancer 

While bacterial and viral agents have been linked to gastric, liver, and cervical cancer 

[18, 19], several types of inflammation can promote tumor development, although the mechanism 

varies depending on the source of inflammation (reviewed in [20]). With chronic inflammation, 

reactive oxygen species (ROS) are produced, which alters the extracellular matrix by altering the 

MMP:TIMP ratio and promote metastasis [I !5]. In addition, inflammation is known to promote 

cell proliferation, DNA excision and repair, oxidative stress, and a high concentration of 

cytokines and prostaglandins [21]. Pelvic inflan1matory disease has also been linked with EOe 

development [18]. With tumor-associated inflammation, the tumor microenvironment provides a 

niche for immune cells such as tumor-associated macrophages (TAMs), neutrophils, mast cells, 

myeloid-derived suppressor cells, and natural killer T cells which have autocrine and paracrine 

functions to promote tumor growth through the production of cytokines and chemokines [20]. 

TAMs are the frequently found immune cell in the tumor microenvironment and may be 

necessary for angiogenesis, invasion, and metastasis [22]. 

Cancer stem cells (C'SC's) 

Cancer stem cells (CSCs) are described as "multipotent cells capable of forming 

heterogeneous tumors in immunodeficient mice at high efficiency" [23]. Five characteristics are 
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Figure 1. Comprehensive diagram of the etiology theories of epithelial ovarian 

cancer. Adapted from [I]. 

4 



used to identify CSCs: I) self-renewal, 2) restriction to a small percentage of the tumor 

population, 3) ability to reproduce the heterogenous tumor phenotype, 4) multipotent 

differentiation into non-tumorigenic cells, and 5) expression of distinctive cells markers [24-28]. 

As such, CSCs have also been referred to as cancer-ini tiating cells [28] or tumor-initiating cells 

[24] . The origin of CSCs are thought to come from somatic stem cells that have undergone 

mutations transforming them into a cancer phenotype [29], and while evidence has suggested the 

presence of ovarian somatic stem cells, their source differs [30, 31]. Others have suggested that 

CSCs are fomled from differentiated cells with a cancer phenotype that dedifferentiate into CSCs 

[32], a phenomenon that has been seen in cell culture with the epithelio-mesenchymal transition 

(EMT) [30], which lends credence to this theory (Fig. 2). CSCs were first identified in acute 

myeloid leukemia [33] and have since been identified in many types of solid tumors including 

ovarian, breast, prostate, liver, brain, lung, melanoma, colon, and pancreas [26, 28, 34-43] . 

Multipotent stem cell 

Sel f-renewal j 
Neo-plaslic transfonnation 

Cancer tern cell 
(CD133, C044) 

Dedifferentiation 

Self·renewal 

Heterogenous tumor 

Differentiatedllineage 
restricted cell wilh 
cancer phenotype 

Figure 2. Hierarchial model of tumorigenesis from cancer stem cells. 
Adapted from [1] . 
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In an effort to identify CSCs, two markers have been proposed: C0133 and C044. 

COI33++ have been found in the EOC cell lines OVCAR-8, while COI33+i
. has been found in 

the EOC cell lines A2780, PEOI, OVCA432, OVCAR-2, and OV90 [44]. A single C0133' cell 

from A2780 or PEO I was only able to produce cells of the same phenotype. In contrast, a single 

CO 133+ cell from the same cell lines was able to undergo asymmetric division and produce 

C0133+ and C0133' cells. Since a characteristic ofCSCs is to form xenograft tumors, C0133+ 

and C0133' cells isolated from A2780 were injected into nude mice. C0133+ cells formed larger, 

more aggressive tumors with a shorter latency. Immunohistochemistry of the ectopic tumors 

showed that the tumors derived from C0133+ cells contained both positive and negative staining, 

showing not only self-renewal but capability to produce a heterogeneous phenotype. Tumors 

derived from C0133' cells showed none to extremely low staining for C0133. C0133+ cells 

have been isolated from primary ovarian carcinomas [45] and represented less than I % of the 

total population, a defining characteristic of CSCs. The C0133+ cells showed anchorage 

independent growth by forming colonies in soft agar as indicative of tumorigenic properties and 

also had a higher proliferation rate than C0133' cells. Upon comparing the percentage of 

CO 133 + in 8 normal ovaries, 5 benign ovarian tumors, 16 primary ovarian carcinomas, and 25 

omental metastases, ovarian carcinomas have a significantly higher percentage than all the other 

groups [45]. 

The other marker C044+ has been identified in human EOC [28, 29, 36, 37, 46]. CSCs 

derived from primary stage III serous adenocarcinomas showed anchorage-independent growth, 

which clustered into spheres and expressed Oct-4, nestin, Nanog, SCF, Notch-I, and Bmi-I, 

suggesting an undifferentiated phenotype, which were able to differentiate into an epithelial 

morphology [28]. When the spheroids were injected into nude mice, they were able to 

reconstitute the tumor, as hence were designated as CSCs. CD44+/COI17+ cells were highly 

tumorigenic and formed heterogenous tumors reconstituting the original tumor phenotype 

compared to C044-/COIIT. As few as 100 C044+/COI77+ cells resulted in tumor formation 
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with a shorter latency. CD44+ cells isolated from malignant ovarian ascites samples obtained 

from patients with stage IIIIIV ovarian cancer formed spheroids and maintained this phenotype 

over 20 passages, suggesting that they have the ability to self-renew [47]. Furthermore, CD44+ 

cells were injected into nude mice to determine their tumorigenicity. Purified CD44+ cells 

formed tumors that were 10% CD44+ and 90% CD44·, which was representative of the original 

tumor phenotype. A differential global gene expression profile of CD44+ cells and CD44- cells 

showed that there was difference in genes belonging to families associated with control of cell 

death and apoptosis, signal transduction, transcription regulation, and control of cell 

differentiation. In a different study, 19 of 65 clones isolated from the ascite sample of a 

malignant grade IV serous adenocarcinoma were immortalized and showed variations in 

morphology and growth rates [36]. Of the 19, 10 representative clones were selected and showed 

an up-regulation CD44, c-met, epidermal growth factor receptor (EGFR), E-cadherin (9 of 10), 

Snail (2 of 10), and Slug. E-cadherin, Snail, and Slug are known mediators of the EMT [48]. 

Two selected clones underwent transformation, evinced by an increased proliferation rate and 

ability to form organized spheroids. These clones also showed the stem cell markers Nestin, 

Oct4, and Nanog, which was reduced upon tumor formation in nude mice [36]. Mice given 

intraperitoneal injections of EOC cell line SKOV3 formed tumors with a higher proliferation rate 

through the interaction of hyaluronan and CD44 to recruit Nanog into the complex, which 

functionally coupled to Stat-3 to induce transcription of cell proliferation proteins [46]. 

Genetic contribution to ovarian cancer 

Only about 9% of EOC cases are hereditarily linked to BRCAl or BRCA2 mutations [2]. 

Part of what makes the etiology of ovarian cancer hard to elucidate is the heterogeneity that exists 

between tumor types. For example, ovarian cancer can be sub-classified as serous, mucinous, 

endometroid, and clear cell carcinomas depending on histology. Furthermore, the malignancies 

can be classified as high-grade or low-grade, each with its own molecular signals. High-grade 

tumors grow rapidly without a definite precursor lesion and are relative sensitive to 
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chemotherapy. p53 mutations as well as Akt and Her2 overexpression are more common in high

grade malignancies found in 50-90%, 12-30%, and 20-66% respectively, but are rarely found in 

low-grade malignancies [2]. In contrast, low-grade tumors grow more slowly, are relatively 

insensitive to chemotherapy, and share molecular characteristic with low-malignant neoplasms 

[2]. K-Ras, B-Raf, and PTEN mutations are more commonly found in low-grade neoplasms 

found in 30-50% for both K-Ras and B-Raf and 20% for PTEN [2]. Due to stage of the tissue at 

collection, it is imperative to differentiate between pathways that initiate and/or contribute to 

tumorigenesis from those that trigger metastasis. 

Mouse Models of Ovarian Cancer 

Animal models have allowed us to study gene contribution to tumorigenesis through 

overexpression of potential oncogenes or conditional deletion of tumor suppressor genes. There 

have been many different techniques to develop an ovarian tumor model that adequately 

represents human ovarian cancer with variable success. 

Syngeneic mouse models 

Syngeneic models combine in vitro and in vivo methods to generate a tumor model. This 

technique was first used in rats by Godwin et al. [49] and Testa et al. [50] on the spontaneous 

transformation of surface epithelial cells isolated from rats, a technique which has been used by 

numerous investigators for subsequent studies [51-56]. As such, mouse OSE (MOSE) cells are 

isolated from the ovaries of virgin wildtype mice and cultured in vitro before transplantation into 

recipient mice [57]. Perhaps one of the most revealing MOSE studies was conducted by Roberts 

et al. [51], who compared the alterations of the actin cytoskeleton as well as expression of cellular 

adhesion proteins versus the number of passages to study the progression of ovarian 

carcinogenesis, showing that MOSE cells spontaneously transform with repeated passages. Late 

passage cells injected intraperitoneally into immunocompetent C57BL6 mice formed tumors in 

numerous organs, showing the transformation from premalignant to highly malignant phenotype 

with downregulation of E-cadherin and connexin-43. In another example, Greenaway et al. [52] 
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injected a spontaneously tumorigenic MOSE cell line named ID8 into the ovarian bursal cavity of 

C57Bl6 mice. The ID8 cells fonned direct contact with the ovarian stroma, resulting in primary 

tumor fonnation, secondary peritoneal carcinomatosis, and extensive ascites fluid production 

between 80 to 90 days post-exposure. The cytological and architectural features resembled serous 

carcinoma. Interaction between ID8 cells and the ovarian stroma resulted in increased expression 

of proliferative and survival markers, including phosphorylated Akt (p-Akt), proliferating cell 

nuclear antigen (PCNA), and Bcl-2. Vascular endothelial growth factor (VEGF) levels were also 

increased in the serum and ascitic fluid. In conjunction, the pro-apoptotic factor Bax was 

decreased. The study supports the theory that the OSE can undergo invaginations and fonn 

inclusion cysts capable of undergoing neoplastic transfonnation [11]. 

ID8 cells have further been used to test the protective effects of a transgene. Transgenic 

mice overexpressing apolipoprotein A-I (apoA-I) were intraperitoneally (i.p.) injected with ID8 

cells and showed an enhanced survival compared to wildtype animals as the median time of death 

in wildtype animals was 86 days vs. 106 days in apoA-I mice. ApoA-I mice also showed 

decreased tumor burden whether injected i.p. or subcutaneously [58] 

Genetically induced mouse models 

One of the first reports to test genetic changes was made by Orsulic et af. [59], who used 

an avian retroviral delivery system. Transgenic mice were established to express the TVA virus 

receptor making them susceptible to infection to a subgroup of replication-competent avian 

leukosis viral-derived vectors (RCAS), thus allowing for the introduction of oncogenes that 

would integrate newly reverse-transcribed DNA into the host genome and allow long-tenn 

expression. The TV A receptor was placed under control of the keratin 5 promoter to direct 

expression to the ovarian epithelium or alternatively under control of the ~-actin promoter to 

direct expression to all cells of the ovary. TVA-transgenic mice were crossbred with p53-1
. mice to 

generate TV Alp53-!-, which were used to study the oncogenes c-Myc, K-Ras, and Akt individually 

and in combination. However, the keratin 5 promoter is constitutively active in the basal layer of 
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stratified and simple epithelia in several organs [60], therefore, it was necessary to isolate the 

expression of the virally delivered oncogenes. The ovaries were removed from the TV Np53·1
-

mice, cultured, and infected in vitro before introduction into recipient mice either by 

subcutaneous or i.p. injection or by transplantation under the ovarian bursa. Once infected, the 

mammalian cells would not produce detectable levels of infectious viral particles, which limited 

spreading to the surrounding tissue. Introduction of any two oncogenes in keratin 5-TV Np53-
1
-

ovarian cells was sufficient to drive tumorigenesis. However, p53·
f
• mice develop tumors, usually 

lymphomas and sarcomas, at approximately 3 months of age, making cross-breeding cumbersome 

as they only produce 1 litter. 

Using a novel approach, Connolly et al. [61] targeted simian virus 40 T antigen (SV40 

TAg) to the epithelial ovarian surface by using the Mullerian Inhibitory Substance Type II 

Receptor (MISIIR) promoter for the production of transgenic animals. While 18 of 36 (50%) 

transgenic mice developed bilateral ovarian tumors resembling serous carcinomas by 6 to 13 

weeks of age, the aggressiveness of the formation of the tumors inhibited reproduction, making it 

extremely difficult to establish a transgenic line via the female founders. One transgenic mice 

also developed a uterine mass and while another developed enlarged polycystic kidneys, possibly 

due to recombination events during transgenic mouse production. Not unexpectedly, 7 of 25 

(28%) transgenic animals developed testicular cancer. Intrapleural invasion of tumors into the 

omentum, the mesentery, and visceral and parietal pleura was also observed, possibly due to the 

invasiveness of the ovarian tumors. However, SV 40 TAg is not known to be a genetic contributor 

to ovarian carcinogenesis [2, 62, 63]. Yet despite these limitations, this model has been used for 

further experiments by establishing a transgenic line through the male founder [64, 65]. 

Based off of the MISIIR -SV 40T Ag transgenic mice, Quinn et al. produced a syngeneic 

mouse model of high-grade serous ovarian cancer [66] by removing the ovarian carcinomas from 

donor transgenic mice and xenografting them into recipient immunodeficient and wildtype 

C57BLl6 mice. The murine ovarian carcinomas cells (MOVCAR) grew only in immunodeficient 
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mice and resulted in consistent SV 40 TAg protein production. As p53 is bound to TAg, it results 

is p53 stabilization. Similar to MISIIR-SV40TAg transgenic mice, xenografted MOVCAR 

resulting is rapid tumor growth with euthanasia necessary within 4-6 weeks as a result of VEGF 

expression. In order to develop a more suitable recipient strain, tumor prone MISIIR-SV40T Ag 

transgenic mice were subjected to three different surgical manipulations: I) bilateral 

oophorectomy, 2) bilateral oophorectomy and salpingectomy, and 3) bilateral oophorectomy and 

salpingectomy with removal of the ovarian bursa. Tumors formation occurred in most mice, with 

mice in the third group developing primary peritoneal carcinomatosis of uncertain origin. While 

this tumor development made these mice unsuitable as MOVCAR recipients, MISIIR-SV40T Ag 

transgenic mice expressing a low amount of TAg are not tumor prone and hence can serve as 

immunocompetent syngeneic recipients for MOVCAR. 

Models that require either ex vivo manipulation or expression of a transgene during 

embryonic development do not accurately represent human EOC, which tends to be spontaneous 

in post-menopausal women. In an effort to mimic spontaneous EOC development, Flesken

Nikitin et al. [67] obtained mice from Anton Berns [68,69] with LoxP sites containing p53 and 

Rb alleles to assess gene inactivation in the initiation of EOC. Mice were homozygous for the 

mutation and crossbred to generate p5JfloxPjl
oxPRbJf'oxPjloxp. To assess the efficiency of Cre 

recombinase (Cre) expression derived by the cytomegalovirus (CMV) promoter, the ovaries were 

removed and cultured prior to exposure to adenovirus infection. Adenoviruses carrying CMV

enhanced fluorescent green protein (AdCMvEGFP) were used as a control against adenoviruses 

carrying CMV-Cre (AdCMVCre). Administration of AdCMVCre resulted in increased cell 

proliferation assessed by BrdU incorporation. To detect the feasibility in targeting the ovarian 

bursal cavity in the mouse, AdCMVEGFP was administered. It was detected only in the OSE for 

21 days, as expected with a transient adenovirus infection. As a result of both p53 and Rb 

inactivation, 33 of 34 mice succumbed to ovarian tumors at a median of 227 days. However, 

administration of an adenovirus to achieve the desired results is cumbersome without generating a 
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reproductive line that would spontaneously form tumors. Targeting the ovarian bursal cavity is 

difficult at best, making this model not a feasible choice for large-scale applications. 

While the previous models developed tumors resembling human serous adenomas, 

Dinulescu et al. [70] generated mice that have a transcriptionally silent oncogenic allele of K-Ras 

(LSL_K_RasG12M) as first developed by Tyler Jacks [71-73], which can be conditionally 

expressed through administration of an adenovirus containing Cre. While the LSL_K_RasG12D 
+ 

mice formed benign endometrosis-like lesions and benign lesion within the OSE upon K-Ras 

activation, the mice did not form ovarian carcinomas. However, when the LSL_K_RasG1][J,+ mice 

were crossed with PTENoxPloxP mice, they developed invasive primary ovarian endometrioid 

adenocarcinomas, a subtype ofEOC, suggesting that phosphate and tensin homologue deletion on 

chromosome 10 (PTEN) plays a role in tumorigenesis when combined with other oncogenes. This 

finding is consistent with PTEN deletion or mutation in other cancer types including 

endometrium, breast, thyroid, intestines, prostate, lung, liver, and T-cell lymphomas [74-78]. 

Concurrent K-Ras and PTEN mutations have also been found in complex endometrial 

hyperplasias, the precursor type of uterine endometrioid adenocarcinomas [79]. PTEN and 

adenomatous polyposis coli (APC) tumor suppressor genes were similarly conditionally deleted 

upon administration of an adenovirus carrying ere to created PTENoxP/loxP mice [80]. APC has 

been shown to regulate Wnt/f3-catenin signaling [81]. PTENoxPlloxP mice were cross-bred with 

APC,"oxP!loxP transgenic mice to determine if there was an interaction between the two pathways. 

The PTEN·i'APC!' animals developed tumors within 6 weeks upon inactivation, with death 

occurring at 19 weeks. These tumors resembled human OEA, with increased signaling through 

Akt. Loss of E-cadherin and cytokeratins indicated that these tumors were undergoing epithelial

mesenchymal transition (EMT), which is consistent with Wntlf3-catenin and PI3KJAkt activation 

[82,83]. 

Clark-Knowles et al. [84] used BrcalloxPiloxP mice, which upon administration of AdCre 

would remove introns 5 through 13 (Brca I L15.13). Conditional deletion of Brca 1 resulted in 

12 



morphological changes, such as surface epithelium hyperplasia and formation of inclusion cysts, 

which was not due to increased proliferation. The incidence of these changes increased over time 

as observed from 60 days post-infection to 240 days. Interestingly, the genes involved in cancer 

initiation and progression p53 [85], E-cadherin [86], and collagen IV [87] were altered in Brcal "'5· 

13 ovaries compared to other tumor models. In Brcal "'5·1.1 ovaries, p53 was absent compared to 

SV40-induced tumors. E-cadherin was also downregulated, consistent with pre-neoplastic 

transformation. Collagen IV expression was found in the basement membrane, regardless of 

morphological changes of the OSE. 

More recently, Liang et al. [88] used the MISIIR promoter to drive expression of murine 

phosphatidylinositol 3-kinase catalytic subunit plIO-alpha (PIK3CA) in transgenic mice. 

Although over-expression of PIK3CA resulted in increased phosphorylated Akt as its 

downstream target and in OSE hyperplasia, after 18 months post-birth of the F 1 generation, 

tumorigenesis did not occur. Interestingly, the authors cultured isolated ovaries from non

transgenic mice and co-transfected them with both PIK3CA and mutant K-Ras or c-Myc to assess 

OSE transformation in vitro. Concurrent overexpression of PIK3C A and mutant K-Ras led to 

increased anchorage-independent growth of cultured OSE cells. Liang et al. [88] acknowledged 

that producing a "bigenic" animal by crossbreeding the transgenic PIK3CA mouse with a 

transgenic mutant K-Ras remains a technical challenge because mutant K-Ras animals develop 

tumors that inhibit reproduction. However, they suggested that a Cre-Iox system of K-Ras 

expression may provide an alternative method of generation. 

A summary of promoters and targeted genes in epithelial ovarian tumorigenesis can be 

found in Appendix 1, Table 1. 

PTTG Expression and Biological Function 

Under normal physiological conditions, the pituitary tumor transforming gene (PTTG) is 

robustly expressed in the adult testes and thymus, with weaker expression in the colon, small 

intestine, brain, lung, pancreas, placenta, and in the embryonic liver [89-91]. PTTG cDNA has 
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been cloned from adult testes and embryonic liver [92, 93]. PTTG earned its name from being 

first cloned from rat pituitary tumor cells as a 974bp mRNA that yielded a 199 amino acid 

protein, which was not expressed in the normal pituitary [90]. Structural homology identified that 

PTTG was identical to human securin [94]. The C-terminal domain of securin binds to the N

terminal domain of separase to inhibit it and thus chromosome separation [94, 95]. Through 

immunoprecipation, the N-terminal domain ofPTTG binds to Ku70, the regulatory subunit of the 

Hu70:Ku80 heterodimer that composes the DNA-dependent protein kinase (DNA-PK). In the 

presence of a double strand bread, Ku~W phosphorylates PTTG to release it from the DNA-PK 

complex and allows for PTTG to block separase, and thus couple DNA damage repair with the 

delay of mitosis [96]. 

Downstream signaling/transactivation activity 

PTTG overexpression induced transcription of p53 by binding to c-myc to activate the 

p53 promoter through its c-myc binding domain and leads to the expression of Bax, a pro

apoptotic protein [97]. Hence in the presence of DNA damage, PTTG induces apoptosis in a p53-

dependent and -independent manner. Cells can evade apoptosis through the continuous 

degradation of PTTG [98]. p53 is a known activator of p21, a cyclin-dependent kinase inhibitor, 

to arrest the cell cycle. In the case of PTTG deletion, p53 levels were not altered, but p21 

expression increased dramatically through promoter activation in a dose-dependent manner [99]. 

In PTTG null pituitary tumors and pancreatic p-cell islets, the ARF /p53/p21 pathway is 

frequently activated to induce pituitary senescence, in part by induction of p 19 which prevents 

p53 degradation by restraining MDM2 [100, 101]. Reports have been conflicting whether PTTG 

deletion promotes or prevents apoptosis [99, 100]. 

PTTG overexpression has been correlated with the promotion of angiogenesis and 

metastasis through increased expression and secretion of several growth factors and stimulators, 

including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and 

interleukin 8 (IL-8) [102-104]. PTTG null mice show decreased vascular invasion by reducing 
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FGF2, its receptor FGF I, and VEGF and reducing metastases by decreasing cell motility [105], 

while PTTG overexpression correlates with increased VEGF and number of blood vessels formed 

[106]. An important signaling molecule downstream of VEGF is inhibitor of DNA binding 3 

(ID3) transcription factor. ID3 is upregulated by the SH3 binding domain of PTTG via kinase 

insert domain receptor (KDR) expression and phosphorylation, leading to MAPK mitogenic 

pathway activation and promotion of angiogenesis [107, lOS]. However, PTTG decreases 

expression of thrombospondin-l (TSP-l), which associates with the extracellular matrix to 

promote angiogenesis, possibly through p53 as it is a positive regulator of TSP-l [108, 109]. In 

the case of metastasis, PTTG overexpression increases matrix metalloproteinase-2 (MMP-2) 

expression and secretion, resulting in increases in cell migration and invasion to promote 

metastasis (110). 

Tumorigenic Potential of PTTG and PTTG Transgenic Mice 

PTTG in cancer 

As PTTG functions as securin, it is not surprising that PTTG has tumorigenic potential, 

as missegregation is predicted to be a major cause of genomic instability with drastic 

consequences in cancer development [Ill]. Furthermore, PTTG overexpression in a follicular 

thyroid cancer cell line correlated with genomic instability [112] and aneuploidy which included 

the presence of micronuclei and multiple nuclei in the absence ofp53 [98]. 

PTTG is overexpressed in a variety of cancers including renal clear cell carcinoma, 

ovary, uterine, pituitary, thyroid, lung, colon, liver, and brain [91, 99, 113-1IS]. Interestingly, 

PTTG overexpression was detected in several tumor cell lines including promyelocytic leukemia 

HL60, cervical adenocarcinoma HeLa cell S3, chronic myelogenous leukemia K562, 

lymphoblastic leukemia MOLT-4, Burkitt's lymphoma Raji, colorectal adenocarcinoma SW480, 

lung carcinoma A549, melanoma G36l, multiple hepatoma cell lines (SH-Jl, SK-Hepl, and 

Huh7), and multiple astrocytoma cell lines (US7MG, U138MG, and LN405). Although PTTG is 

overexpressed in pituitary tumors, a mutational study revealed that PTTG overexpression was not 
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due to promoter mutations [119]. PTTG overexpression, either as a result of degradation failure 

or enhanced accumulation, has induced aneuploidy in the lung cancer cell line H1299 by 

inhibiting mitotic progression and chromosome segregation. Futhermore, PTTG is capable of 

inducing transformation in mouse fibroblast NIH3T3 cells when analyzed using anchorage

independent growth shown by forming larger colonies than control cells [91]. When PTTG 

overexpressing cells were injected into athymic nude mice, all 5 mice developed tumors within 2 

weeks. Mutations in the structure of PTTG resulted in no tumors after 3 weeks of injection [91]. 

This was followed by a similar study using HEK 293 cells to see if PTTG could induce 

transformation in human cells without necessitating a partner oncogene [102]. HEK 293 cells 

stably transfected with PTTG (HEK-PTTG) showed increased cell proliferation, whereas 

mutations in the proline rich region of the sequence (HEK-mPTTG) did not. Soft agar colony 

formation also increased 30% in HEK-PTTG compared to vector only at 2%. HEK-PTTG formed 

poorly differentiated tumors upon subcutaneous injection into athymic mice, suggesting that 

PTTG is a potent oncogene that does not require co-expression of other oncogenes to achieve its 

tumorigenic function. Futhermore, cloning and sequencing of PTTG isolated from tumors shares 

the same sequence homology as that isolated from human testes eDNA suggests that it is 

overexpression and not mutation that contributes to its oncogenic properties [94]. 

To explore the role ofPTTG in tumor growth and progression, siRNA against PTTG was 

utilized. In the lung cancer cell line H1299 [120], a 60% reduction in PTTG protein resulted in 

reduced colony formation in soft agar showing that PTTG suppress tumor growth in vitro. 

Untransfected H1299 cells and cells transfected with control siRNA formed tumors upon 

injection into nuJnu mice after 2 weeks. Tumor mass at the end of 4 weeks was 232.12±102.78 

mg from untransfected cells and 231.57±83.76 mg from control siRNA cells. However, cells 

transfected with PTTG siRNA suppressed tumor growth only formed small tumors (67.85±45.87 

mg) in 3 out of the 5 animals. No tumor growth was evident from PTTG siRNA cells before 2 

weeks. A similar study was carried out using an ovarian cancer cell line A2780 with similar 
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results [116]. PTTG deletion resulted in reduced cell proliferation, decreased colony formation in 

vitro, and reduced tumor growth and development ;n vivo. In the invasive sarcoma SH-J I 

hepatoma cell line, PTTG silencing resulted in reduced cell proliferation and apoptosis in vitro 

and reduced tumor formation in vivo [99]. Huh-7 or SH-JI hepatoma cells were injected 

subcutaneously into nude mice. Huh-7 cells mock injected with PBS formed large tumors over 

2cm2 in 2 weeks while growth was inhibited in Huh-7 PTTG siRNA cells. SH-Jl injected into 

nude mice had similar results with I mouse in 7 injected with SH-JI PTTG siRNA cells being 

tumor free. 

lnpuence on cell proliferation in diabetes and cancer 

PTTG null mice were first generated by Wang et af. [121] and showed significant 

metabolic changes resulting from reduced pancreatic ~-cell proliferation with pleiotropic nuclei 

leading to decreased insulin production and elevated blood glucose levels ranging between 150 -

650 mg/dl. ~-cell mass is controlled through several cellular mechanisms: expansion occurs from 

proliferation of existing ~-cells, increase in ~-cell size, and neogenesis from ductal progenitor 

cells. Upon further exploration, the pancreatic ~-cells from PTTG null mice showed reduced 

proliferation measured by PCNA labeling and increased apoptosis by TUNEL assay [10 1]. PTTG 

null males can be rescued from diabetes development by undergoing surgical gonadectomy 

followed by estradiol treatment through increased serum adiponectin levels resulting in increased 

insulin sensitivity [122]. As a follow-up study, the mechanism of reduced pancreatic ~-cells 

proliferation by PTTG deletion was determined [123]. Staining for insulin and the transcription 

factor pancreatic duodenal homeobox 1 (PDX-l) as markers for neogenesis were positive in both 

WT and PTTG null mice indicating that it is defective replication, not differentiation, that is 

responsible for the decreased ~-cells mass. In order to further study this mechanism, murine 

PTTG (mrPTTG) was linked to EGFP (mrPTTG-EGFP) and expression driven using the CMV 

promoter. This constructed was transfected into MIN6 cells. Microscopy was utilized to 

determine localization of mrPTTG-EGFP at interphase in the nuclei and cytoplasm and at 
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anaphase in the cytoplasm only as the nuclear envelop was dissolved. The duration of mitosis was 

directly related to level of mrPTTG-EGFP expression: low expression levels doubled the 

duration, medium expression levels prolonged mitosis 4- to 5-fold, and high expression levels 

blocked mitosis for at least 2 hrs. Cells did not undergo division until all the mrPTTG-EGFP was 

degraded. EGFP alone was indistinguishable from untransfected cells. Futhermore, mrPTTG

EGFP co-immunoprecipitated with V5-separase. These results indicate that mrPTTG functions as 

securin to regulate cell division in pancreatic B-cells. Intracellular insulin levels did not differ 

between groups, suggesting that insulin production was not affected by mrPTTG. 

Rb+ l
- mice develop pituitary tumors with almost complete penetrance [124, 125]. In order 

to investigate whether PTTG deletion could abrogate tumor development, Rb +I-PTTG+- mice 

were crossbred to obtain Rb+"PTTG-1
- animals. Rb+i-PTTG-1

- animals had lower spleen, pancreas, 

testes, and pituitary weights compared to Rb +'-PTTG++ mice. As a result of PTTG deletion, either 

genetically or using shRNA, pituitary corticotroph cells displayed decreased cell proliferation due 

to an increase in p21 mRNA and protein, and resulted in reduced incidence of tumor development 

and increased survival time [126]. 

Mice with mutations in the thyroid hormone B receptor gene (TRBPViPV) exhibit severe 

dysfunction of the pituitary-thyroid axis, impaired weight gains, and abnormal bone development 

consistent with the human syndrome resistance to thyroid hormone (RTH). These mice differed 

from mice with a null phenotype for TRB [127]. However, when TRBPV/PV mice were crossbred 

with PTTG-i- to create doubly-mutant mice, they displayed decreased thyrocyte proliferation 

resulting in decreased thyroid growth and ablation of goiter development as seen with TRBPViPV 

mice. TRBPV/pvPTTG/- mice did not have altered pituitary-thyroid dysregultation. While PTTG 

deletion did not alter follicular thyroid cancer development in TRBPV/PV mice, there was decreased 

vascular invasion trending towards decreased lung metastasis [105]. 



PTTG transgenic mice 

Abbud et al. [128] produced transgenic mIce usmg the common a-subunit of the 

glycoprotein hormones promoter, referred to as the a-subunit of glycoprotein hormone (a-GSU) 

to drive expression of PTTG and enhanced green fluorescent protein (EGFP) to target expression 

to the gonadotrope and thyrotrope cells of the pituitary. Transgenic mice developed enlarged 

pituitaries along with increased serum IGF-I and testosterone. Using scanning confocal 

microscopy to detect EGFP expression on the surface and IOOflm deep, the authors found that 

EGFP-positive cells in transgenic mice were arranged in two bilateral streaks. These streaks were 

arranged next to blood vessels. Some of the transgenic animals with focal PTTG expression 

showed loss of the reticulin network, indicating microadenoma rather than hyperplasia. However, 

the most striking phenotype in transgenic males was urinary tract obstruction secondary to 

prostate hyperplasia at 8-12 months of age with enlargement of the seminal vesicle and showed 

fibromuscular stromal thickening upon histological examination. 

As Rb+l
. were known to develop pituitary tumors, Donangelo et al. [129] crossbred a

GSU-PTTG-EGFP transgenic mice with Rb+' transgenic mice to develop a bitransgenic animal to 

futher understand the role of PTTG in pituitary tumor development. a-GSU-PTTG mice 

displayed normal pituitary cells with the exception of gonadotrophs cells, which showed 

abundant secretory vesicles and very active Golgi complexes. However, a-GSU-PTTGlRb +1. had 

more diverse cell morphology, ranging from minute secretory granules similar to a-GSU-PTTG 

pituitaries to massive grandotroph hyperplasia showing several small and large secretory 

granules. Glycogen p-particles were also present in cytoplasm. Three a-GSU-PTTG/Rb+!· mice 

also developed pituitary tumors. One 5-month old male developed one tumor of gonadotroph 

origin and another derived from a thyrotroph cell. Two females (12- and 13-months old) 

developed gonadotroph neoplasms. Using confocal microscopy, 88% (192 of 217) of a-GSU

PTTG mice expressing EGFP and 95% (97 of 102) of a-GSU-PTTG/Rb+ i
• displayed altered 

nuclei as a result of chromatin reorganization. a-GSU-PTTG/Rb+ l
. also exhibited large nuclear 
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vacuoles. The altered nuclei were compared to wildtype (9%, 19 of 213), mono transgenic Rbi-i
-

(28%, 62 of 222), EGFP negative monotransgenic a-GSU-PTTG (23%, 10 out of 43), and EGFP 

negative bitransgenic a-GSU-PTTGlRb +'. (14%, 13 out of 93) animals. The age of tumor 

development was not significantly different between Rb i"i- and a-GSU-PTTG/Rb +-. However, 

80% (16 out of 20) Rb +/- pituitary tumors originated from the intermediate lobe, 10% (2 out of 20) 

from the anterior lobe, and 10% (2 out of 20) from both lobes. In a-GSU-PTTGlRb +i- only 36% (6 

out of 20) arose from the intermediate lobe, 25% (5 out of 20) originating from the anterior lobe, 

and 45% (9 out of20) from both lobes. 

In a previous experiment through our lab, the construct for targeting PTTG to the ovary 

epithelium used the promoter reported by Connolly el af. [61], MISIIR, to produce MISIIR-PTTG 

transgenic mice [130]. Transgenic ovaries showed an increase in the corpus luteum mass 

accompanied by the increase in serum luteinizing hormone (LH) and testosterone levels. The 

transgenic females also displayed a generalized hypertrophy of the endometrium. This study 

showed that by using the MISIIR promoter, 3 different tissues could be targeted: OSE, granulosa 

cells, and pituitary. However, possibly due to the weak expression of PTTG, the animals failed to 

generate any visible tumors, as the amount of expression is critical in ectopic tumor progression 

[116]. 
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CHAPTER 2 

PTTG TRANSGENIC MICE AS A MODEL FOR OVARIAN CANCER 

PTTG can function as an oncogene when overexpressed and trigger ectopic 

tumorigenesis in nude mice [91, 94], suggesting that it does not require a partner gene in order to 

achieve its tumorigenic potential. As PTTG has also been indentified in ovarian cancer taken 

from patients at the time of surgical resectioning [116], we wanted to identify the in vivo 

tumorigenic potential of PTTG through the development of a transgenic mouse model that could 

faithfully represent spontaneous EOC found in patients through the strong, non-specific 

overexpression of PTTG using the CMV promoter. 

Materials and Methods 

Constme/ion ofCMV-PTTG-EGFP transgene 

Human PTTG (PTTG) cDNA was subcloned into the pEGFP-N3 vector at the multiple cloning 

site between the CMV promoter and downstream enhanced GFP (EGFP) reporter gene. 

Subsequently, the vector was cut using restriction enzymes Ase I and Afl II by incubating each 

restriction enzyme individuaIIy with the vector for 2 hrs at 37°C to reduce the transgene size and 

eliminate unwanted genes. The first restriction enzyme was neutralized with phenoVchloroform 

and DNA was purified before addition of the second restriction enzyme. The restricted vector was 

run on a 0.7% agarose gel to isolate the transgene fragment, CMV-PTTG-EGFP (2.3kb; Fig. I). 

CMV-PTTG-EGFP was excised from the gel and purified using a gel extraction kit (Qiagen). 

CMV -PTTG-GFP was then sent for sequencing to ensure mutation of PTTG had not occurred. 

Animal housing 

Mice were housed in a conventional facility with a 12 hr light: 12 hr darkness cycle. All animals 

were treated in accordance with National Institutes of Health Guidelines for the Care and Use of 
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Laboratory Animals and approved by Animal Use and Care Committee at the University of 

Louisville. 

Generation of transgenic animals 

Purified CMV -PTTG-GFP trans gene was sent to the University of Cincinnati, Transgenic Mouse 

Core, where microinjection was performed into the male pronucleus ofFVB 0.5 day old embryos. 

Embryos were then transplanted into a pseudo-pregnant female to generate founders. Wildtype 

males were bred to positive TgPTTG female founders. TgPTTG FJ males were bred to wildtype 

females to establish a colony line. 

P53+' Mice 

P5r l
. mice on an FVB background were obtained from Jackson Laboratory. A male p53+i

. 

mouse was used to crossbreed with founder 71305 (~). Female p5r' were crossbred with a 

transgenic male to create TgPTTG/p5r' mice. 

Genotyping and screening of transgenic and p53+' mice 

Mice were tail clipped between 21-28 days of age and ear tagged or toe tattooed with an ID 

number. DNA from tail clips was extracted using PCR Extract-N-Amp kit (Sigma). hPTTG-GFP 

(PTTG t
) genotype was identified via PCR using the specific primer: hPTTG 16182: sense 5'

ACT GAG AAG ACT GTT AAA GC-3' or hPTTG 16207: sense 5'-ACG AAT TCA TGG CTA 

CTC TGA TCT ATG T-3', and GFP antisense 23759: 5'- AGA TGA ACT TCA GGG TCA GC-

3' that specifically amplified the transgene sequence. PCR conditions were I) 94°C for 5 min, 2) 

94°C for 30 sec, 3) 58°C for 30 sec, 4) noc for I min, 5) Steps 2-4 repeated for 30 cycles, 6) 

noc for 7 min. P53+ t
• were genotyped via PCR using the specific primers according to Jackson 

Laboratory Protocol: Wildtype: sense 5'-ACA GCG TGG TAC CTT AT-3', Common: sense 5'

TAT ACT CAG AGC CGG CCT -3' ,and Mutant: 5'-CTA TCA GGA CAT AGC GTT GG-3'. 

PCR conditions were I) 94°C for 3 min, 2) 94°C for 30 sec, 3) 64°C for I min, 4) noc for 1.5 

min, 5) Steps 2-4 repeated for 35 cycles, 6) noc for 2 min. 
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RNA isolation and analysis l?{transgene expression via RT-PCR 

Total RNA was isolated from tissues by preserving tissue in RNALater (Sigma) at the time of 

sacrifice. Tissues were homogenized in I ml Trizol (Sigma) and isolated via standard procedure. 

I I1g of total RNA was converted to cDNA using a reverse transcription kit (BioRad). Total 

cDNA was then subjected to PCR as described above for PTTG-EGFP expression. 

Histological analysis and immunohistochemistry 

Tissues samples were fixed in 10% formalin buffer (Fisher Scientific) overnight at RT. After 24 

hr formalin was replaced with 70% ethanol and stored at 4°C until processing. Tissues were 

imbedded in paraffin using standard technique. Six micrometer sections were stained with H&E 

by the Pathology Core Research Laboratory, University of Louisville and evaluated by a licensed 

human pathologist, Hanan 1. Farghaly, MD. For immunohistochemistry, sections were 

deparaffinized in fresh xylene and rehydrated in a graded series of ethanol. Antigen retrieval was 

conducted by incubating the slides in 10 mM Sodium Citrate (pH 6.0) at 95°C for 20 min then 

rinsed twice with PBS. Slides were incubated in 4 drops per section of Image-It FX Signal 

Enhancer (Invitrogen) for 30 min with humidity then rinsed with PBS. Slides were blocked with 

10% goat serum (Sigma) in PBS for 1 hr followed by anti-PTTG I: 1,500 dilution in PBS and 

incubated at 4°C overnight. Slides were then washed in PBS before application of secondary 

antibody Alexa 594 anti-rabbit (Invitrogen) I :500 with 1 drop of goat serum per 5 mL and 

incubated 45 min at RT in the dark, then washed with PBS. Slides were dehydrated in a graded 

series of ethanol, treated with xylene, and mounted with Clarion mount (Sigma). Images were 

acquired on Nikon Eclipse E400 and ACT-I.I imaging software (Huntley, IL, USA). 

Results 

Genera/ion ofCMV-PTTG-EGFP transgenic mice 

As a previous attempt to generate PTTG transgenic (T gPTTG) mice did not result in 

tumorigenesis, we asked whether the level of PTTG expression was sufficient. To this end we 

selected the non-specific strong CMV promoter to drive PTTG expression. Human PTTG 
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(PTTG) was subcloned into the N3 expression vector containing the CMV promoter, a multiple 

cloning site where PTTG cDNA was inserted, and a downstream enhanced GFP (EGFP) marker 

gene (Fig. 3). To test promoter activity, African green monkey kidney fibroblast-like cells 

(COS7) were transfected and GFP fluorescence observed with a fluorescent microscope. In order 

to reduce the transgene fragment size for ideal transgenic mouse production, the N3 vector was 

cut with two restriction enzymes, Ase I and Afl II, that did not impact hP1TG cDNA resulting in 

AseI AtlII Figure 3. Transgene 
constmct made from 
cloning vector 

CMV promoter V40poly Atail N3EGFP. Total 
transgene size is 
2.3kb . 

enseprimer(l) Antisense primer (2) 

the fragment CMV -PTTG-EGFP (Fig. 3). This purified fragment was also transfected into COS7 

cells to determine recombination and then microinjected into the male pronuclei of 0.5 day old 

Friend Virus B-Type (FVB) embryos. Transgenic founders were identified by PCR screening of 

DNA extracted from the tail cl ip of 34 Fo mice using two different sense primers located in PTTG 

and one antisense primers located in EGFP (Fig. 3). This resulted in the identification of 1 male 

(#71288) and 3 female TgPTTG founders (#71282, 71305, and 71309; Fig. 4). The founders were 

Figure 4. Genotype resul ts for u·ansgenic founders using forward primer fo r 
hPITG and reverse primer for GFP. Lane I & 21 = 100 bp ladder. Results 
indicate #71282 (female), #7 1288 (male), #7 1305 (female), & #71309 
(temale) are positive. 
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Figul'e S. Offspring genotype results . Lane I & 21 = 100 bp ladder; lane 2 -7 

= oft'spring from #71282; lane 8-15 = from #71305; lane 16-20, 22-23 = from 
#71288; lane 24-33 = from #7 1309; lane 34-40 = from #71282 . 

cross-bred with wildtype FVB mice and resultant FJ offspring were genotyped by PCR (Fig. 5). 

All founders were fertile and produced an average litter size (Appendix I, Table 2). However, the 

male and I female founder failed to transmit the transgene to their offspring (F I), suggesting that 

the transgene did not integrate in the germ line during homologous recombination events during 

embryo development. TgPTTG males from a single line (founder #7 1309) were cross-bred to 

wildtype females through multiple generations to create Fr F4 to generate a sufficient number to 

TgPTTG mice. Transgenic males were often aggressive by 6 months of age and had to be 

maintained in separate cages. All mice demonstrated hyperactivity during housing. 

PTTG expression in CMV-PTTG-EGFP mice 

TgPTTG mice were sacrificed at 4, 6, 8, 10, and 12 months of age along with the age-

matched controls and tissue harvested for RNA isolation and immunohistochemistry. Tissue 

distribution was determined by promoter expression [131] and examined by reverse transcription 

PCR of RNA samples isolated from the ovary, fallopian tube, uterus, testes, seminal vesicle, lung, 

liver, spleen, kidney, and pituitary (Fig. 6). As expected, PTTG expression was detected in all of 

the tissues with the exception of the pituitary. The strongest expression was seen in the testes, 

with weaker expression in the remaining tissues. 

Specificity of the PTTG antibody to PTTG vs. murine PTTG has been addressed [130] . 

Immunohistochemistry of the ovary, fallopian tube, uterus, and seminal vesicle showed staining 

in the epithelium, while the testes PTTG expression was localized to the seminiferous tubules 

(Fig. 7) in 4 months old animals. 
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Figu"e 6. Reverse-transcription PCR of pecified tissues from WT (W) and transgenic (1) mice. Lane I is 

ladder, lane 2 is empty, lanes 3-end are samples. B = blank negative control of reaction mix without 
template. IT = fallopian tube, SV = seminal vesicle. 

Histology of CMV-hPTTG-EGFP transgenic animal tissues 

Formalin-fixed paraffm imbedded tissues were sectioned and stained with hematoxylin 

and counterstained with eosin (H&E). Evaluation of the histology was performed by a licensed 

pathologist. Tissues were selected based on CMV promoter expression [131] and was as 

additional tissues of interest including ovary, fallopian tube, uterus, and pituitary. While all 

tissues were normal in 4 months old TgPTTG mice, pre-cancer conditions (4 out of 15, 27%) and 

carcinomas (2 out of 15, 13.3%) were observed as early as 8 months of age. A total of 15 females 

and 9 males were included in the transgenic 8 months old group and were compared to 11 

wildtype age-matched controls. PTTG-EGFP expressIon was confirmed usmg 

immunofluorescence (Fig. 8). Pronounced follicular cysts and corpus luteum were observed in 6 

out of 15 (40%) of TgPTTG females. Pre-cancer conditions included one female (#31) developed 

a leiomyoma (Fig. 9a) with chronic inflammation (Fig. 9b). A second female (#286) had 

squamous dysplasia with extensive keratinization at the transformation zone between the uterus 

and the cervix (Fig. 10), while a third female (#436) developed low grade dysplasia with acute 

cervicitis (Fig. 10). PCNA analysis was perfomled to verify hyperplasic conditions. TgPTTG 

#286 revealed 25% positive cells with reverse maturation of the squamous epithelium of the 

cervix, while TgPTTG #436 was 5-10% positive, localizing to the basal cells and also showed a 

pattern of reverse maturation (Fig. 10). These were compared to WT 8 month old cervix (Fig. 10). 

Negative controls with no primary antibody were included in the analysis . An additional female 
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Figure 7. PTTG-EGFP protein expression in tissues from 4 months TgPTTG mice. 
Tissues were formalin-fixed paraffm-embedded and sections cut at 5~m. Sections 
were then incubated with PTTG primary antibody and visualized with Alexa 594 
secondary antibody (red, column I) . EGFP expression was visualized using the 

FITC filter (column 2). Column 3 shows the merging of column I and 2. 
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(#365) developed hyperplasia of the fallopian tube with endothelial atypia (Fig. 10). PCNA 

analysis of #365 fallopian tube was compared to WT fallopian tube and showed 25% positive 

cells that were localized to the epithelial glands (Fig. 10). Three females (#269, 366, and 368; 

20%) had adenomyosis of the uterus. Two females (13.3%) developed ovarian cancer (Fig. 10). 

We decided to use the plus rating system for CD31 staining, where I + means < 25% of tissues 

was stained, 2+ means 25-75% of tissue was stained, and 3+ means> 75% of tissue was stained. 

TgPTTG #434 developed ovarian serous adenocarcinoma with PCNA staining showed 35% 

positivity and CD31 was 2+ (Fig. 11). TgPTTG #436 developed a granulosa tumor and a 

follicular cyst with mitotic figures. In this female, PCNA staining was 5% and CD31 2+ (Fig. 

II). Comparatively, age-matched WT animals showed 1% PCNA staining of the ovary, which 

was localized to the granulosa cells of the follicle as would be expected, while CD31 was 1+ (Fig. 

II). 

TgPTTG 10 month old group included 10 females and was compared to l3 WT age

matched controls. PTTG-EGFP expression was confirmed by immunofluorescence (Fig. 12). One 

female developed a pre-cancerous serous cyst adenoma of the ovary. Another developed serous 

adenocarcinoma of the ovary and fallopian tube (#381, Fig. 13), while an additional female 

developed a tumor of ovarian follicular cells (#383, Fig. 13). PCNA staining was 5-10% in both 

TgPTTG ovaries and 15% in age-matched WT controls which was localized to the follicles (Fig. 

13). CD31 was similar between WT ovaries and TgPTTG ovaries (I +, Fig. 13). Interestingly, 

PTTG expression was higher in the female that developed serous adenocarcinoma vs. the female 

with the follicular cells tumor (Fig. 12). Additionally, lout of 20 (5%) developed an ectopic 

tumors diagnosed as a papillary serous adenocarcinoma that was 75% positive for PCNA and had 

significant (3+) angiogenesis (Fig. 13). Two other females (20%) showed atypia of epithelial cells 

of the fallopian tube. 
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Figure 8. PTTG-EGFP 

protein expression in 
tissues from 8 month 
T gPTTG mice. Tissues 
were formalin-fixed 

paraffin-embedded and 
sections cut at 51lm. 
Sections were then 

incubated with PTTG 

primary antibody and 
visualized with Alexa 
594 secondary antibody 
(red) . Image were 
acquired using confocal 

microscopy at 20X 
power. WT = wildtype, 

FT = fallopian tube. 

TgPTTG 12 months old group included II females and 10 males, which was compared to 

20 wildtype age-matched controls. One female (#185) developed a papillary serous carcinoma of 
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peritoneal ongm along with 

uterine focal hyperplasia. The 

ovanan cells appeared 

luteinized, which IS an 

indication of hyperactivity. 

This was coupled with a 

reduction in stromal tissue. 

Figure 9. a) H&E taining of leiomyoma found on sternum of 

8 months old T gPTTG female #31 , lOX power. b) H&E 

staining of nodule found in omentum showing chronic 

inflammation. lOX Dower. 

Group assignments along with a summary of resu lts can be found in appendix 1, Table 3. 

Transgene copy number was assessed to analyze differences between TgPTTG that 

developed cancer and those that did not. A standard curve was generated using the N3 vector 

containing PTTG (Fig. l4a) using real -time PCR. By calculating the kb size of the vector, a copy 

number could be assessed to the standard curve. Then by taking 100 ng of genomic DNA isolated 

for the tail clip, the gene copy number was extrapolated from the standard curve (Fig. 14b) as 100 

ng of DNA was reported to yield 1.67 x 104 diploid cells [132]. We found no difference in 

transgene copy number between TgPTTG mice that developed cancer and those that did not. 

Crossbreeding of TgPTTG with p53+/' mice and histology 

P53 mutant (p53 Il1ut
) mice were produced by a targeted neo cassette insertion into the p53 

locus in the laboratory of Dr. Tyler Jacks at the laboratory of Dr. Tyler Jacks at the Center for 

Cancer Research at the Center for Cancer Research at the Massachusetts Institute of Technology 

[133] and are available through the Jackson Laboratory. These mice have an 18% incidence of 

adenocarcinomas and a 56% incidence of sarcomas [134]. Based on the 56 mice observed (45 

p53 +/' and 11 p53 -1·, appendix 1, Table 4), four p53+" mice (8.9%) developed sarcomas at between 

3 and II months, while nine p53'/' (8\.8%) develop lymphoma and sarcomas between 9 and 12 

weeks. 

30 



WT ervix 

TgPTIG Cervix 
#286 

TgPTTG ervix 
#436 

TgPTTG Fallopian 
Tube #365 

H&E P A 

Figure 10. Immunohistochemistry ofTgPTTG 8 month old 

mice with pre-cancer conditions compared to age-matched 

WT mice. peNA antibody was incubated overnight then 

visualized with DAB (brown color). 
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Figure 11. Immunohistochemistry of8 months TgPTIG mice with cancer 
compared to age-matched WT mice. PCNA and CD3! antibody was 
incubated overnight then visualized with DAB (brown color). 

Due to the short lifespan of pS3-1- mice, pS3+1
- mice were chosen for crossbreeding to 

increase the incidence, decrease the onset time, and/or possibly change the type of cancer in 

TgPTTG mice. Two male TgPTTG mice from line #71309 were crossbred to pS3+1
- females to 

maximize offspring, resulting in generation F2 (Fig. IS) . PTTG-EGFP expression was analyzed 

by immunofluorescence to determine the level of expression (Fig. 16). One TgPTTG/pS3-1
- mouse 

developed two teratocarcinomas at 7 weeks of age, while another developed lymphoma and 

sarcomas at 12 weeks of age (Fig. 17). One TgPTTG/pS3+1
- mouse developed adenocarcinoma of 

the fallopian tube and sarcomas at 7 months of age (Fig. 17). Group assignments along with a 

summary of results can be found in appendix I , Table S. 
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Figure 12. Immunofluorescence of TgPTTG 10 

months old mice for PTTG-EGFP protein 

expression, PTTG antibody was conjugated with 
Alexa 594 fluorescent antibody (red), Images 

were acquired using confocal microscopy, WT = 

wildtype, FT = fallopian tube, AdC = 

adenocarcinoma, 
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Figure 13. Immunohistochemistry of 10 month TgPTTG mice with 
cancer compared to age-matched WT mice. PCNA and CD31 
antibody was incubated overnight then visualized with DAB (brown 
color) . FT = fallopian tube, AdC = adenocarcinoma. 
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TgPTTGp53 +1· mICe aged to 8 months included 9 females and 8 males. Of the 

TgPTTGp53+1
. females aged to 8 months, 4 of 9 (44%) had severe dysplasia of the cervix 

resulting in carcinomas in situ along with I of 17 (6%) developing a sarcoma. PCNA showed 

intense staining in all sarcomas, congruent with the highly aggressive nature of this tumor type 

(Fig. 14). All sarcomas had microvessel formation determined by CD31 (Fig. 17). 

TgPTTGp53+1
. mice aged to 10 months included 8 females and 6 males. 5 of 8 (63%) 

fema les showed focal to severe cervical dysplasia resulting in carcinomas in situ (Fig. 17), and 3 

of 8 (38%) showed dilation of the fallopian tube. 2 of 14 (14%) developed high grade 

leiomyosarcomas (Fig. 17). Comparatively, p53+1
. mice developed sarcomas between 11 - 12 

months of age (2 of28, 7%). 

The timeline of tumor development in p53mu1 and TgPTTG/p53 mu1 mice is summarized in 

Fig. 18. 

b) 1.5 .,. 
a) 40 '1 , 

35 a. • 130 +.m 1 1.0 , 
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Figure 14. Transgene copy number analysis of TgPTTG mice that developed cancer 

and TgPTTG mice that did not. a) Standard curve generated from N3 cloning vector 

containing PTTG in the multiple cloning site. b) Real-time PCR analysis of transgene 

copy number extrapolated from standard curve plotted as average ± SD. TgPTTG mice 

were selected from 8 months - 12 months. N = 3 for no cancer, N = 6 for cancer. 
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a) 

b) 

Discussion 

Figure 15. Sample genotype of 
crossbred mice. a) p53 
genotype, 400 bp = WT allele 
(+), 600 bp = mutant allele (-). 
b) PTTG-EGFP genotype. 
Lane 1 = ladder, lane 2 = 

empty, lane 3 - 11 = sample 
DNA, lane 12 = negative 
control of master mix wi thout 
template, and lane 13 = 

positive control. 

Ovarian cancer is a heterogeneous disease that is classified based on its tissue of origin: epithelial 

cells (90%), sex-cord stromal cells, and germ cells [135]. Epithelial ovarian cancer (EOC) can be 

further sub-classified as serous (70%), endometriod (20%), mucinous (5-10%), and clear cell (5 -

10%) [5]. However, the most common type of ovarian cancer, high grade serous, often display 

p53 mutations [136]. Gene associated with spontaneous EOC are classified in 4 groups: 1) sex 

steroid hormone pathway genes, 2) cell cycle genes, 3) DNA repair genes, and 4) oncogenes and 

onco-suppressor genes [137]. Mutations of K-Ras, B-Raf, and PTEN have been reported in 

mucinous, endometrioid, and low grade serous. Additionally, approximately 10% of ovarian 

cancer cases have been linked to hereditary alteration of BRCAJ or BRCA2 [138] , however, a 

majority of cases are sporadic in origin [135]. 

The pathogenesis of ovarian cancer has been unclear, not only genetic alterations but also 

concerning its site of origin. Traditionally, the epithelial cells of the ovary were thought to be the 

primary site of origin for high grade serous adenocarcinomas but recent studies suggest that these 

tumors may arise from fallopian tube fimbria or fallopian tube-peritoneal junction and 

subsequently metastasize to the ovary as ovarian adenocarcinomas, fallopian tube carcinomas, 

and peritoneal carcinomas are all embryonically derived from MUllerian ducts [139-142]. In our 
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Figure 16. Immunofluorescence of TgPTTG/p53+1
- mice for PTTG

EGFP protein expression . PTTG antibody was conjugated with Alexa 

594 fluorescent antibody (red). Images were acquired using confocal 

microscopy. FT = fallopian tube. 
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Figure 17. Immunohistochemistry of TgPTTG/p53+/· mice at 

various ages. PCNA and CD31 antibody was incubated overnight 
then visualized with DAB (brown color) . FT = fallopian tube. 

Magnification at 20X. 
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TgPTTG model, we observed animals with ovarian adenocarcinomas without fallopian tube 

adenocarcinomas. Furthermore, we noted animals that developed adenomyosis of the uterus, 

suggesting the ovary was the site of origin. However, in TgPTTG/pSrl
- mice we noted a female 

that developed fallopian tube adenocarcinoma without an ovarian precursor lesion. 

PTTG is an oncogene involved in pituitary carcinogenesis [lIS] and is overexpressed in 

ovarian cancer [116]. In a previous attempt to generate an ovarian cancer model representative of 

EOC, PTTG was placed under the control ofMISIIR in an effort to target it to the ovarian surface 

epithelium [130]. However, despite PTTG expression in the ovary and testes, these animals 

developed cystic glandular hyperplasia but failed to develop ovarian adenocarcinomas. However, 

abnormalities in the ovarian structure occurred resulting in an enlarged corpus luteum and 

corresponding hormone serum levels. This was possibly due to the weak promoter strength as the 

level ofPTTG protein expression was crucial for tumor development [116]. Low levels of PTTG 

in the pituitary have been shown to cause senescence [100] rather than increase cell proliferation 

as seen in PTTG transfection ofHEK 293 cells [102]. 

Due to the lack of specific ovarian promoter, we selected a strong non-specific CMV 

promoter, to induce the necessary level of PTTG to achieve this biological function, as the level 

of PTTG is critical for tumorigenesis [116, 120] . However, due to the nature of this promoter, it 

was necessary to analyze other tissues to determine if tumorigenesis has occurred. We found that 

the CMV promoter seems to target the ovary and fallopian tube and that PTTG expression caused 

the development of carcinomas. By using this approach, we were able to generate ovarian tumors 

as early as 8 months of age (Fig. 9) and continued to observe them at 10 months (Fig. 11). 

However, since our incidence of ovarian cancer was -20%, we cross-bred our TgPTTG mice with 

pS3+- mice. Using this approach resulted in earlier tumor development than PTTG or pS3+'- alone 

(Fig. 18) and increased our incidence of high grade leiomyosarcomas from 7% in pS3+1
- mice to 

14% in TgPTTG/pS3+1
-. We also noted a significant incidence of cervical carcinomas of 63% in 

TgPTTG/pS3+!-. Most cases of cervical cancer in women are due to human papilloma virus (HPV) 
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infections that cause inactivation of p53 and Rb, mutations that mainly affect the squamous 

epithelium along the transfomlation zone as HPV infections require cells that are proliferating 

(19]. In our TgPTTG mice, we noticed a reverse maturation of the basal squamous epithelium 

coupled to dysplasia. As PTTG increases cell proliferation as observed by PCNA staining, PTTG 

could serve to prime the basal epithelium, which could make these particular cells more 

susceptible to further neoplastic transformation due to alterations of additional genes, such as 

p53. We also noted a teratocarcinoma in TgPTTG/p53+ i 
•• While little is known about the genetic 

contributions to teratocarcinomas, the field theory states that normal germ cells that are placed in 

an environment that allows expression of the cancer phenotype have the potential to become 

cancerous (143]. 

P53 has been shown to be an important oncogene in ovarian carcinomas. It is frequently 

mutated in 50-70% of ovarian carcinomas [144]. In combination with two other oncogenes c

Myc, K-Ras, and Akt, p5Tf
- mice developed ovarian tumors [59]. Contact mutant p53+

r
- mice 

cross-bred with K-Ras transgenic mice showed that contact mutant p53 +1- acted in a dominant

negative fashion to promote K-Ras initiated lung adenocarcinomas with a subset developing 

sinonasal adenocarcinomas [145]. This was also the case in a p53+i-IK-Ras model of pancreatic 

cancer [146, 147] and pleomorphic rhabdomyosarcoma [148]. 

In conclusion, we show that PTTG is a functional oncogene that is capable of initiating 

transformation of normal tissue to dysplastic. Furthermore, a high expression level of PTTG was 

capable of tumorigenesis in the ovary and lead to tumorigenesis of the fallopian tube. Coupling 

PTTG overexpression with mutation of p53 led us to conclude that the early neoplastic events 

(normal to dysplastic) were independent of p53 as the additional mutation did not enhance our 

incidence of ovarian cancer. This suggests that p53 may not be the correct partner for PTTG, and 

further studies involving other potential oncogenes (K-Ras, B-Raf, c-Myc) and tumor suppressor 

genes (PTEN) in combination with PTTG may provide a better understanding of the 

transformation and tumorigenesis of ovarian cancer. 
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Figure 18. Timeline summary of pre-cancer and cancer results for TgPTTG (red), p53-'-
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CHAPTER 3 

WITHAFERIN A ENHANCES THE THERAPEUTIC EFFECT OF DOXORUBICIN 

THROUGH ROS-MEDIATED AUTOPHAGY IN OVARIAN CANCER CELLS 

It is estimated that $4.4 billion is spent annually in the US for the treatment of ovarian 

cancer [149]. While the mainline treatment of ovarian cancer is cytoreductive surgery followed 

by platinum-based chemotherapy (namely carboplatin and paclitaxel) [150-153], most patients 

relapse after achieving a complete response [154,155]. If the relapse occurs less than 6 months 

after initial treatment, the carcinomas are considered platinum-resistant as is common in relapse, 

which accounts for approximately 70% of patients [155]. Due to the poor survival of women with 

platinum-resistant ovarian carcinomas, an alternative treatment strategy is desperately needed. 

Doxorubicin (Dox) is a broad-spectrum anthracylin isolated from Streptomyces peucetius 

that has been used for the treatment of several cancers, including ovarian, breast, and prostate 

[156]. In fact, anthracylins are the most widely used USDA approved anticancer drugs [157]. 

Doxorubicin's effectiveness has been attributed to its ability to intercalate between the DNA 

strands to act as a topoisomerase II inhibitor and/or bind covalently to proteins involved in DNA 

replication and transcription [157]. However, despite side effects, patients treated with pegylated 

liposomal Dox (commercially known as Doxil) have a greater response rate (28.3%) than more 

conventional therapies [155] during clinical trials in the second-line setting [158-160]. Moreover, 

patients treated with Doxil have a reduction in death compared to patients on topotecan [159] or 

paclitaxel [161]. As such it remains a standard treatment option in patients that have platinum

resistant and recurrent ovarian cancer [162]. In a phase I clinical trial of 30 patients, Doxil was 

combined with bevacizumab in patients with recurrent or refractory ovarian cancer. Patients 
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achieved an overall response rate of 33% and a 6-months progression free survival of 47% with 

no treatment related deaths [162]. Additionally, in a multicenter phase III clinical trial of 976 

patients with recurrent ovarian cancer, combination of Doxil with carboplatin vs. paclitaxel with 

carboplatin was statistically superior resulting in reduced severe nonhematologic toxicity, 28.4% 

vs. 36.8% respectively [161]. 

More recently combination therapy with Dox has garnered more attention. Combining 

Dox with sildenafil resulted in enhanced cell death through the down regulation of Bcl-2 coupled 

to an increase in caspase 3 and enhanced the Dox-induced generation of reactive oxygen species 

(ROS) while attenuating Dox-induced cardiac dysfunction [163]. Dox has also been combined 

with HO-3867, a synthetic curcumin analog, to achieve enhanced cell death and reduced 

cardiotoxicity through the use of lower doses of Dox [164]. Interestingly chebulagic acid, a COX-

2/5-LOX dual inhibitor, lead to increased intracellular accumulation of Dox through modulation 

of multi-drug resistance transporter I (MDRI) to enhance Dox's cytotoxic effects [165]. MDRI 

expression was down regulated in a Cox-2 dependent manner through inactivation of signal 

transduction pathways Akt, ERK, JNK, p38, and NF-KB [165]. However, some chemicals when 

combined have an antagonistic effect, such as sorafenib and Dox [166]. Dox requires that 

Raf/MEKIERK signaling be intact for its mechanism of action to occur [167,168], therefore the 

ERK inhibitor sorafenib acts counter to Dox, resulting in increased cell survival and reduced 

formation of autophagic vesicles [166]. 

Withaferin A (WF A) is bioactive steroidal lactone having withanolide skeleton as its 

basic structure. WF A is isolated from the plant Wifhania somnijeria, which has been a part of 

Indian traditional medicine for centuries and is now available as an over-the-counter dietary 

supplement in the US. It was been used to treat various conditions due to its anti-inflammatory 

[169, 170] and anti-bacterial properties [171]. More recently, it has been suggested as a potential 

anti-cancer compound shown to inhibit tumor growth, angiogenesis, and metastasis [172, 173]. 

Several biological functions have been influenced by WF A including induction of apoptosis 

43 



through inactivation of Akt and NF-KB [174] as well as decrease of the pro-survival protein Bcl-2 

[175, 176], G2/M cell cycle arrest [177], and generation of ROS [178, 179]. 

Autophagy is a dynamic process that is used to degrade large proteins and organelles, 

initiated by environmental stressors resulting in either adaptation and survival, or death [180]. 

This mode of cell death is characterized by the formation of a double membrane structure that 

encloses a portion of the cytoplasm as well as intracellular organelles known as an 

auto phagosome [180]. These autophagosomes then fuse with lysosomes (to form an 

autolysosome) or late endosomes to degrade the contents [181, 182]. The AktimTOR/p70S6K 

signaling pathway acts as one gatekeeper of autophagy that exerts an inhibitory effect by 

activating anti-autophagic transcription and translation [183, 184]. DNA damaging agents lead to 

inactivation of mTOR evident by dephosphorylation of p70S6K and 4E-BP I [185]. Conversely, 

Beclin-l and the class III-type PI3K complex positively regulate autophagy [186]. 

A previous study has shown at WF A enhances the cytotoxic effect of Dox In an 

osteogenic sarcoma (U20S) and breast cancer cell line (MCF-7) using a cell proliferation assay 

[187]. However, the combined effect of Dox and WF A has not been studied in ovarian cancer. 

We proposed that WF A will enhance Dox' s cytotoxic effects so that a suboptimal dose of Dox 

can be used to achieve the same effects. We studied the combined effect of Dox and WFA on 

epithelial ovarian cancer cell lines A2780, A2780/CP70, and CAOV3. In addition, for the first 

time we show that cell death was induced by ROS production and DNA damage leading to the 

induction of autophagy and cell death in a caspase 3 dependent manner. We also show the effect 

of Dox and WF A on in vitro 3D tumors generated from A2780 cells on a human extracellular 

matrix. Furthermore, we examined for the first time the effect of this treatment in vivo on 

proliferation, angiogenesis, autophagy, cell death, and DNA damage using xenograft tumors 

produced from A2780 cells. 
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Materials and Methods 

Materials 

A2780 and A2780/CP70 cells were cultured in RPMI + 10% FBS + I % Penicillin/Streptomycin 

+ 0.05% (v/v) Insulin (Sigma) and maintained at humidified 37°C with 5% CO2. CAOV3 cells 

were cultured in DMEM + 10% FBS + I % Penicillin/Streptomycin. Antibodies to phospho-Akt 

Ser473
, Akt, phospho-p70S6K Thr389

, p70S6K, phospho-BAD Ser136
, Bel-xL, cleaved caspase 3, 

and GAPDH were purchased from Cell Signaling Technology. Ki67 antibody was purchased 

from Santa Cruz Biotechnology, CD31 and LC3B from AbCam. Doxorubicin, withaferin A, N

acetyl-L-cysteine, catalase, superoxide dismutase, and DMSO were purchased from Sigma. 

Cell treatments 

Cells were seeded overnight and treatments were performed in 5% FBS media by adding Dox 

(50,100,200,300,500,1000 nM) and/or WFA (0.1, 0.5,1,1.5,2,3,5 f.lM) and/or 0.1% DMSO 

as a vehicle controL 

Cell proliferation assay 

A27~W, A2780/CP70, and CAOV3 cells were seeded on 96-well plates and treated in triplicates 

for 24, 48, and 72 hI. Treatments were then replaced with MTT reagent (Promega) diluted in 

fresh 5% FBS media in a 1:5 ratio and incubated -1 hr. Color was assessed by an ELISA scanner 

at 492 nM. 

Flow cytometryfor Annexin V 

Treated A2780 cells were dissociated with versene (Invitrogen), washed in PBS, and the pellet 

resuspended in Annexin Binding Buffer to a concentration of I x 106 cells/mL. 2 f.lL of Annexin 

V-FITC (BD Biosciences) was incubated for 15 min in the dark in 100 f.lL of cells. Propidium 

iodide (PI) was then spiked in and 400 f.lL of Annexin Binding Buffer added and immediately run 

on a F ACSCaliber (BD Bioscicnces) and analyzed with FlowJo software. 
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ROS assay 

A2780 cell were seeded on glass bottom 35 mm2 dishes overnight prior to treatment. Treated cells 

were loaded with 2 11M 2',T-dichlorodihydrofluorescein diacetate (H2DCFDA, Invitrogen) in 

growth media for 30 min at 37°C. Cells were then washed with PBS and viewed by confocal 

microscopy. Cells were counted from 3 representative fields at 20X magnification. ROS 

quantification was performed by seeded cells in a 96-well plate in triplicates, counter staining live 

cells with lO I1g/mL Hoechst 33342 for lO min for the total cell count, and reading with a multi

filter fluorometer. 

TUNEL assay 

A2780 cells were seeded on chamber slides and treated cells as described for 24 hr. Cells were 

then assayed for DNA damage via DeadEnd Fluorometric TUNEL assay (Promega) according to 

the manufacturer's protocol. Briefly, cells were fixed with 4% formaldehyde in PBS for 25 min 

and permeabilized with 0.2% Triton X-IOO in PBS for 5 min at RT. After equilibration, cells 

were incubated with dTd reaction mix for 60 min at 37°C. Reaction was stopped with 2x SSC for 

IS min. Cells were counterstained with PI to visualize nuclei. 

TUNEL assay in tissue section was performed using an ApopTag Plus Peroxidase 

Apoptosis Detection Kit (Millipore) according to manufacturer's protocol. 

Protein isolation and Western blotting 

A2780 cells were seeded on 6-well plates and treated with Dox (200 nM), WF A (0.5, 1.5, or 2 

11M) in RPM! + 5% FBS + 0.5% penicillin/streptomycin + Insulin for 24 hr. Lysis buffer [1% 

(v/v) NP-40, 10% (v/v) glycerol, 137 mM NaCl, 20 mM Tris-HCl (pH 7.4), 4 mM PMSF, I mM 

NaN04, and 1% (v/v) Triton X-IOO supplemented with proteinase inhibitor cocktail (Sigma) was 

added directly to the well and incubated on ice for 10 min then collected into a microcentrifuge 

tube and centrifuged at 14,000 rpm for IS min at 4°C and the resulting supernant collected. 

Samples were then quantitated using the Bradford method with a BSA standard. Proteins were 

resolved with SDS-PAGE and immersion transferred to a nitrocellulose membrane (GE 
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Healthcare). Proteins were visualized by ECL or ECL plus (GE Healthcare). Blots were then re

probed with GAPDH to normalize differences in loading. 

Xenograft tumor formation 

A2780 cells were injected into 5-6 wk old nu/nu mice (Charles River) and tumors allowed to 

grow for 20 days until they reached I cm2 in size. The mice were then randomized into 6 groups: 

1) negative control with PBS, 2) control vehicle 10% DMSO, 3) Dox 9 mg/kg, 4) Dox I mglkg, 

5) WFA 2 mg/kg, and 6) Dox Imglkg + WFA 2mg/kg. Tumor measurements were taken every 

other day and treatments given i.p. in 100 !!L injections. Mice were sacrificed after 12 days of 

treatment. All treatments were approved by IACUC, University of Louisville. 

Immunohistochemistry 

Xenograft tumors were fixed in 10% neutral buffered formalin and embedded in paraffin for 

sectioning. Slides were deparaffinized in xylene and rehydrated in a graded series of ethanol. 

Antigen retrieval was conducted by incubating the slides in 10mM Sodium Citrate pH 6.0 for 20 

min at 95°C. After washing in PBS, slides were incubated in 0.3% H20 2 in methanol for 20 min. 

Following washing, slides were processed using the Vectastain ABC Elite Anti-Rabbit kit 

(Vector Labs) with overnight incubation of the primary antibody. Color was developed using 

DAB (Vector Labs) and counterstained with hematoxylin QS (Vector Labs) to stain nuclei. 

Primary antibodies used were Ki67 (diluted 1:50, Santa Cruz Biotechnology), CD31 (1:50, 

AbCam), LC3B (I :500, AbCam), and caspase 3 (I :200, Cell Signaling). 

3D in vitro tumor growth 

1.5 x 104 cells were combined with Hubiogel in a 1:4 ratio, dispensed into 10 ilL beads, allowed 

to polymerize, and then warm complete media was added to the cells. After two weeks, the cell 

beads were individually transferred to one well of a 96-well plate and treated twice weekly with 

I) media control, 2) DMSO vehicle control, 3) Dox 0.2 11M, 4) Dox 211M, 5) WFA 0.5 11M, 6) 

WF A 1. 5 11M, 7) Dox 0.2 11M + WF A 0.5 11M, and 8) Dox 0.2 11M + WF A 1. 5 11M for 7 days. 
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MTT assay for 3D tumors 

MTT assay was performed by adding 20 mL MTT stock solution (12 rnM) to each cell bead in a 

96-well plate and incubating for 2 hr until formazan crystals were visible. Then 150 mL of 10% 

SDS solution was incubated overnight and read absorbance at 570 nm. 

Microscopy of 3D tumors 

One cell bead was placed in a 96-well plate and volume corrected to 100 ilL. Calcein AM (0.5 

11M) was added to each well and incubated for 30 min. Images were acquired on Nikon B-2E/C 

FITC filter block (lex 465-495mn, lem 515-555nm). 

Results 

WF A enhances the anti-proi(lerative effect oldoxonlbicin of ovarian cancer cells 

Dox is typically used at 5 11M to mimic the concentration found in plasma of patients 

undergoing Dox treatment [188]. However, at this dose, patients present with serious side effects 

as a concentration of I 11M needs to be maintained for the various mechanism of actions to occur 

[188]. The effect of Dox alone was first assessed in a dose-dependent manner. Cell death was 

assessed by MTT assay. After 24 hr of treatment, Dox alone produced an IC so value of2 11M (Fig. 

19a). To assess if WFA could enhance the effect of Dox, we combined a steady dose of WF A 

(1.5 11M) with Dox. Combination reduced the ICso to 0.3 11M (Fig. 19a). Dose-dependent WFA 

treatment produced an ICso value of3 11M, which was enhanced by the addition of Do x 200 nM to 

1.7 11M (Fig. 19b). 

To assess the efficacy of combination therapy against cisplatin resistant ovarian cancer, 

we used the cisplatin-resistant cell line A2780/CP70. Dox alone produced an IC 50 value of 1.5 

11M after 24 hr of treatment (Fig. 19c). Addition of WF A 1.5 11M to Dox further enhanced cell 

death and reduced the ICo value to 0.7 11M (Fig. 19c). A2780/CP70 cells were less sensitive to 

WF A, requiring 4 11M to achieve 50% cell death (Fig. 19d). Addition of Dox 200 nM enhanced 

this effect and resulted in an IC so value of2 11M (Fig. 19d). 
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We also tested the effect of combination therapy on p53 mutant cell line CAOV3 as p53 

mutations can be found in 50-70% of human ovarian carcinomas [144]. CAOV3 cells were more 

sensitive to Dox, since as little as 0.7 I.J.M was able to cause 50% of cell death after 24 hr (Fig. 

1ge). CAOV3 cells were also extremely sensitive to WF A as 1.6 I.J.M caused 50% cell death (Fig. 

19t). Combination of Dox 200 nM with WF A reduced the ICso value to 1.0 I.J.M. 

After 48 hr of treatment of A2780 cells, Dox 0.8 I.J.M produced 50% cell death (Fig. 20a). 

Combining a steady dose of WF A 1.5 I.J.M in a dose-dependent manner with Dox enhanced cell 

death and reduced the ICso of Do x to 0.161.J.M (Fig. 20a). Dose-dependent concentrations ofWFA 

alone resulted in 50% cell death 4.1 I.J.M (Fig. 20b). However, when combined with Dox 200 nM, 

the ICso of WF A was reduced to 1.5 !lM (Fig. 20b). In A2780/CP70 cells the ICso value for Dox 

was 0.65 I.J.M. However, combination with WFA 1.5 !lM enhanced the ICso of Dox to 0.18 I.J.M 

(Fig. 20c). WF A alone required 6 I.J.M to achieve 50% cell death (Fig. 20d), but was reduced to 

1.2 I.J.M with the addition of Dox 200 nM (Fig. 20d). CAOV3 cells were more sensitive to Dox 

and WF A requiring Dox 300 nM (Fig. 20e) and WF A I I.J.M (Fig. 20t) to achieve 50% inhibition. 

When Dox was combined with WFA 1.5 I.J.M, 50% inhibition was achieved with Dox 50 nM (Fig. 

20e), while WFA was reduced to 0.7 I.J.M when combined with Dox 200 nM (Fig. 20t). A 

summary of ICso values for each cell line in response to Dox, WF A, and in combination can be 

found in Table 1. 

After 72 hr of treatment, the ICso for Dox in A2780 was 0.4 I.J.M, while addition of WF A 

1.5 I.J.M reduced the ICso to 0.1 I.J.M (Fig. 2Ia). WFA 1.7 I.J.M resulted in 50% cells and was 

reduced to 1.3 I.J.M with the addition of WF A 1.5 I.J.M (Fig. 21 b). In A2780/CP70, the ICso for Dox 

was 0.5 I.J.M, while addition ofWFA 1.5 I.J.M reduced the ICso to 0.35 I.J.M (Fig. 2Ic). WFA 2 I.J.M 

resulted in 50% cells and was reduced to 1.3 I.J.M with the addition ofWFA 1.5 I.J.M (Fig. 2Id). In 
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CAOV3, the ICso for Dox was 0.3 ~M (Fig. 21e) and for WFA I ~M, which was reduced to WFA 

0.75 ~ with the addition of Do x 200 nM (Fig. 21f). 
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Figure 19.24 hr cell proliferation of A2780 (a-b), A2780/CP70 (c-d), and CAOV3 (e-f) 

treated with Dox and WF A singly and in combination determined by MTT assay. n = 3. 

*p < 0.05 from control (0 ~, # p < 0.05 from DoX/WF A alone. 

After 72 hr of treatment, addition of WFA 1.5 ~M significantly reduced the cell viability 

when combined with various doses of Dox in A2780 (Fig. 2Ia), A2780/CP70 (Fig. 2Ic), and 

CAOV3 (Fig. 2Ie). In A2780, Dox 500 nM was necessary to achieve 50% inhibition, but when 

Dox was combined with WFA 1.5 ~M, only 100 nM was needed (Fig. 2Ia) . WFA alone 

significantly reduced cell viability in all three cells lines at I ~M (Fig. 21 b, d, f) . Combination of 

Dox 200 nM with WF A significantly improved treatment in A2780/CP70 at nearly all 

concentrations ofWFA (Fig. 2Id). 
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Figure 20. 48 hr cell proliferation of A2780 (a-b), A2780/CP70 (c-d), and CAOV3 

(e-t) treated with Dox and WFA singly and in combination determined by MTT 

assay. n = 3. *p < 0.05 from control (0 f.1M), # p < 0.05 from DoxlWFA alone. 

We performed Annexin V -FITC flow cytometry to determine if apoptosis was the cause 

of cell death in A2780 cells treated with Dox and WF A alone and in combination. Positive 

control samples were produced using UV exposure for 30 sec and analyzing cells after 4 hr, 6 hr, 

and 24 hr after exposure to ensure efficiency of staining (Fig. 22). Analysis of Dox, WF A, and 

Dox + WF A treated samples showed a non-significant increase over control for Annexin V (Fig. 

23), indicating that an alternative pathway is being used to cause cell death. 

Dox enhances the WFA-induced inactivation of Akt pathway 

The effect of WF A on Akt inactivation has been well documented in numerous cell lines 

[174, 189, 190] including ovarian cancer cell lines CAOV3 and SKOV3 [191]. Using A2780, we 

examined the effect of Dox and WF A alone and in combination on Akt phosphorylation. After 

24 hr of treatment, we found phospho_Akt473 (p-Akt) increased with Dox treatment, while there 

were no significant changes in WFA treated cells (Fig. 24). Total Akt did not change significantly 

51 



a) 150 ..,.-------------
• Oox 

b) 150 • 
• "\lEA I SlIM * Dox 100 + .• ..-__ --:--:.- • Oox 200 + WFA 

100 

so 

-"0 0 
.p 0 
c: 50 100 200 300 500 1000 

8 c) 150 -o 
o 

2-
til 

"8 
III 
:c 
III 
:> 

50 

o 

150 
e) 

o SO 100 200 300 500 1000 

. Oox 

100 +-- iii a WFA 1.51lM + Dox 

o 50 100 200 300 500 1000 

Doxorubicin (nM) 

50 

o 
o 0.1 0.5 2 3 5 

d) 150 aWFA 

o 0.1 0.5 1 2 3 5 

f) 150 • a WFA 

100 -hor:-..... f'---

so 

o 
o 0.1 0.5 1 2 3 5 

Wilhaferin (11M) 

Figure 21. 24 hr cell proliferation of A2780 (a-b), A2780/CP70 (c-d), and CAOV3 
(e-f) treated with Dox and WFA singly and in combination determined by MTT 
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Figure 22. Flow 

cytometry for Annexin 

V-FITC in UV 
exposed A2780 cells. 
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Annexin V-FITC and 

PI. Analysis was 

performed with 

FlowJo software. 
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with treatment (F ig. 24). One of the main downstream targets of Akt in mammalian cells is 

mammalian target of rapamycin (mTOR), which is responsible for protein synthesis and cell 

growth through activation by phosphorylation of p70 ribosomal subunit 6 kinase (p70S6K) [192-

195]. We found that phospho-p70S6K389 (p-p70S6K) increased in response to Dox treatment and 

more subtly with WF A alone and was further enhanced with combination treatment in a dose-

dependent manner (Fig. 24). Interestingly, while p-p70S6K markedly increased, total p70S6K 

decreased accordingly (Fig. 24). 

Akt phosphorylates BAD at Ser l36 (pBAD I36
) as a means to regulate apoptosis [196]. 

While investigating apoptosis in our system, we examined pBAD l36 as well as Bel-xL. pBAD 136 

was only significantly increased in Dox + WF A 1.5 11M, while the rest of the treatments did not 

alter expression (Fig. 24). Bel-xL levels did not change (Fig. 24), suggesting that intrinsic 

apoptosis is not responsible for our observed cell death. 
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After 48 hr of treatment WF A led to the inactivation of Akt in a dose -dependent manner 

and addition of Dox enhanced this effect (Fig. 24). Total Akt was not affected until Dox was 

combined with WF A 2 !J.M (Fig. 24). Interestly, we found that Dox 200 nM, WF A 1.5 !J.M, and 

WF A 2 !J.M alone reduced the total amount of p70S6K which was more pronounced with 

combination Dox + WFA 1.5 !J.M (Fig. 24). Combination treatment of Do x + WFA 2 J..lM resulted 

in the complete down regulation of p70S6K (Fig. 24). pBAD l36 was significantly downregulated 

in all treatment groups with the most drastic effect noticed with Dox alone (Fig. 24) . 

24 hr treatment 

o 200 0 200 0 200 0 200 
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- - .... 
ROS-induced cell death 

Dox(nM) 

WFA(I1M) 

pAkt473 

Tota lAkt 

Figure 24. Western blot 

analysis of signaling 

mechanism after 24 hr of 

treatment. Bands were 

quantitated using UN
SCAN-IT software and 

phospho-proteins 

compared to relative 
p-p85S6K412 total protein after 
p-p70S6K389 normalization with 

p85S6K 

p70S6K 

pBAD136 

BcI-xL 

GAPDH 

GAPDH. 

Dox is known to produce ROS as a part of its mechanism [156, 157]. There have also 

been numerous reports about WF A generating ROS production as a part of its apoptotic 

mechanism in various cancer types [175, 178, 179, 190]. Therefore, we asked whether WFA 

could enhance the effect of the low concentration of Dox after 24 hr of treatment using the 

detection agent H2DCFDA, which is a stable non-polar compound that is readily diffused into the 
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cells. This compound is then hydrolyzed by intracellular esterases to form DCFH, which in turn is 

oxidized by hydrogen peroxide to yield the highly fluorescent compound 2'7' -dichlorofluorescein 

(DCF) [190]. Consistent with reports [163, 197], after 6 hr of treatment WFA 1.5 IlM was 

significantly elevated over control cells from 2% to 17% (Fig. 25a-b). Combination of WFA 1.5 

I-lM + Dox 200 nM further increased ROS production to 59% (Fig. 25a-b). After 24 hr of 

treatment Dox 200 nM showed a low level of ROS positive cells, 18% (Fig. 26a-b). While WFA 

0.5 IlM (23%) was not significantly different from Dox, combination of Dox + WF A 0.5 JlM 

increased ROS production to 37%. This effect was even more pronounced with Dox + WF A 1.5 

IlM, which increased to 90% from 40% with WFA 1.5 JlM alone (Fig. 26a-b). However, after 24 

hr of treatment, WF A 2 JlM caused a significant amount of cell death and damaged the cells too 

severely to produce ROS. 
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Figure 25. ROS production in A2780 cells treated for 6 hr. ROS was detected 
with DCF and analyzed by confocal microscopy at 20X. a) Count of DCF 

positive cells averaged from 3 fields . * p < 0.05 from control, S p < 0.05 from 
Dox, & p < 0.05 from WFA. b) Sample confocal images at 20X. 

To confirm that ROS are responsible for cell death, we co-treated A2780 cells with 5 rnM 

N-acetyl-L-cysteine (NAC), or with enzymatic inhibitors 500 V/ml catalase or 100 V/ml 

superoxide dismutase (SOD) with Dox and WF A treatments for 24 and 48 hr. While NAC did not 

block celI death induced by Dox (Fig. 27a-b), it was very effective in blocking cell death induced 
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Figure 26. ROS production in A2780 cells treated for 24 hr. ROS was detected with 

DCF and analyzed by confocal microscopy at 20X. a) Count ofDCF positive cells 
averaged from 3 fields .* p < 0.05 from control, $ p < 0.05 from Dox, & p < 0.05 from 

WFA. b) Sample confocal images at 20X. 

by WFA (Fig. 27c-d) after 24 hr. However, after 48 hr NAC resulted in a partial blockage of Dox 

(Fig. 28a-b) while blocking the effect by WF A (Fig. 28c-d). SOD specifically catalyzes 

superoxide anions (02 -) [198], while catalase is used by cells to degrade hydrogen peroxide 

(H20 2) [199]. We saw no blockade of cell death in cells treated with catalase; however, SOD 

provided a significant reduction of cell death in Dox and WF A treated cells in monotherapy and 

combination therapy, demonstrating that O2 - are the major ROS produced (Fig. 29a-d). 

As ROS causes DNA damage, we performed the TUNEL assay to visualize the extent of 

DNA damage when treated with Dox and WF A alone and in combination. After 24 hr of 

treatment, Dox 200 nM resulted in a few positive cells while WF A 1.5 ~ alone increased the 

number of positive cells (Fig. 30). Treatment with Dox 200 nM + WF A 1.5 ~ significantly 

increased the number of positive cells causing DNA damage in nearly every cell (Fig. 30). 
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Figure 27. Co-treatment ofNAC blocks ROS production in WFA treated A2780 cells 

and inhibits cell death after 24 hr of treatment. * p < 0.05 from control, # p < 0.05 

between NAC and no NAC. 
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Figure 28. Co-treatment ofNAC blocks ROS production in Dox and WFA treated 

A2780 cells and inhibits cell death after 48 hr of treatment. * p < 0.05 from control, # 
p < 0.05 between NAC and no NAC. 
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Figure 30. TUNEL assay of 
A2780 cells treated for 24hr. 

TUNEL positive cells were 
labeled with dTd-FITC (green) 

and counterstained with PI. 
Images were obtained using 
confocal microscopy at 20X. 



Dox and WF A induce cell death by autophagy 

The Akt/mTORJp70S6 kinase signaling pathway acts as one gatekeeper of autophagy that 

exerts an inhibitory effect by activating anti-autophagic transcription and translation [183, 184]. 

DNA damaging agents lead to inactivation of mTOR evident by dephosphorylation of p70S6K 

and 4E-BPI [185]. Therefore investigating the role of chemotherapy agent Dox combined with 

WF A in autophagy is an avenue of interest. Electron microscopy revealed control cells treated 

with DMSO have intact mitochondria (black arrows) and nuclear envelop (Fig. 29). While WFA 

0.5 11M alone had little to no effect, WF A 1.5 and 2 11M showed some autophagosomes but left 

the mitochondria intact. Dox alone produce fonnation of autophagosomes containing cytoplasm 

with little mitochondria. Dox with WF A 0.5 11M or l.5 11M produced an enhanced effect in a 

dose-dependent manner. Dox + WF A 2 11M showed intense autophagic vacuoles, collapse of the 

nuclear envelop, and absence of mitochondria (Fig. 31). 

To confirm that cells were undergoing autophagy, the canonical marker of 

autophagosome formation microtubule-associated protein-l light chain 3B (LC3B) [166] was 

evaluated. Western blot analysis showed two specific bands: an upper band (18 kDa) representing 

LC3B-I and a lower band (16 kDa) corresponding to LC3B-II (Fig. 32). Cytosolic LC3B-I is 

converted to LC3B-II through lipidation and allows LC3B-II to become associated with 

autophagic vesicles [200]. Treatment with Dox induced production of LC3B-II (Fig. 32), while 

WF A alone stimulated production of the pre-cursor LC3B-I as well as LC3B-II (Fig. 32). 

Combination treatment enhanced LC3B-II in a dose-dependent manner with Dox + WFA 2 !lM 

showing the greatest intensity (Fig. 32). Furthermore, we investigated cleaved caspase 3 as a 

marker for cell death. Western blot analysis showed a modest increased in Dox 200nM treated 

cells. WF A 0.5 11M showed no indication of cell death, while WF A alone showed a dose

dependent increase in the amount of cleaved caspase 3. Furthermore, combination treatment 

enhanced cell death in a dose dependent manner (Fig. 32). 
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Figure 31. Electron microscopy of A2780 cells treated for 24hr showing vacuole 
formation upon treatment as an indication of autophagy. Scale bar is 1 /lm. 5,600X power. 
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Figu re 32. Western blot analysis of autophagy marker LC3B-II and cell 
death marker cleaved caspase 3 in A2780 cells treated with Oox and WF A. 

Quantitation was performed using UN-SCAN-IT software. Values were 
normalized to GAPOH and fold change calculated by comparing to OMSO 

control (0 J..lM) . 

Effect of Dox + WF A on xenograft tumorigenesis 

A2780 cells (2 x 106
) were subcutaneously injected bilaterally in the ventral flank of 5-6 

week old nu/nu mice. Tumors were allowed to grow until they reach 1 cm2 in size. At day 20 

post-cell injection, mice were randomized into 6 treatment groups of 5 mice each: 1) negative 

control with PBS, 2) vehicle control of 10% OMSO, 3) Dox 9 mg/kg, 4) Oox I mg/kg, 5) WFA 2 

mg/kg, and 6) Oox 1 mg/kg + WF A 2 mg/kg. Tumors were measured every other and mice given 

100 J..LL i.p treatment for 12 days for a total time of 32 days. Mice receiving Oox 9 mg/kg 

appeared uncomfortable after the first treatment and died after 4 treatments . Mice in the other 

treatment groups tolerated receiving the treatment. The tumor volume was not significantly 

different between vehicle, Oox 1 mg/kg, and WF A 2 mg/kg. However mice receiving Oox 1 

mg/kg + WF A 2 mg/kg showed a significant reduction in tumor growth (Fig. 33a). Similarly, 

tumor weight measured at day 32 showed a drastic decrease in the Oox 1 mg/kg + WF A 2 mg/kg 

group (Fig. 33b). 
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Figure 33. a) Xenograft tumor growth of A2780 cells injected into 5-6 week old nu/nu 
mice. Treatments were given i.p. every other day. b) Scatter plot distribution of tumor 
weight at day 32. Line indicates the mean. Number above group indicates number of sites 
that developed a twnor post-treatment vs . total number of sites . 

H&E analysis identified the twnors as serous adenocarcinoma (Fig. 34). Vehicle group 

tumors were high grade with extensive necrosis . Dox I mg/kg group also had extensive necrosis. 

However, WFA 2 mg/kg and Dox I mglkg + WFA 2 mg/kg were poorly differentiated with 

tumor necrosis. Immunohistochemistry for Ki67, a proliferation marker, showed intense staining 

in the vehicle group with less intense staining in Dox 1 mglkg and WF A 2 mg/kg. Dox 1 mg/kg + 

WF A 2 mg/kg showed no staining for Ki67, showing that combination therapy effectively 

reduces tumor growth (Fig. 32). Microvessel marker CD3l has also stained. Vehicle control 

tumors showed a high amount of microvessel formation, which was reduced in Dox 1 mglkg and 

WFA 2 mg/kg. Dox 1 mglkg + WFA 2 mg/kg tumors were no significantly different from Dox or 

WFA alone (Fig. 34). 

We also performed immunohistochemistry for autophagy marker LC3B. Tumors 

receiving vehicle control showed a nest of positive cells whereas tumors receiving Dox 1 mglkg, 

WF A 2 mg/kg, or combination showed more dispersed staining (Fig 34). Staining for caspase 3 

showed a low level of staining in DMSO and WF A 2 mg/kg treated tumors . Caspase 3 was 
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increased in Dox I mg/kg and further enhanced in Dox I mglkg + WF A 2 mglkg treated tumors 

(Fig. 34). 

TUNEL assay in tumors revealed positive cells in animals receiving Dox I mglkg with a 

lower amount in WFA 2 mglkg (Fig. 32). However, combination of Do x Img/kg + WFA 2 mg/kg 

showed enhanced staining over monotherapy along (Fig. 34). 

E./Ject of Dox + WF A on 3 -D tumors in vitro 

Hubiogel has been shown to represent the human matrix more accurately than Matrigel 

in order to predict preclinical endpoints [20 I]. A2780 cells were cultured to 70-80% confluency 

and IS,OOO cells were mixed with Hubiogel in a 1:4 ratio to form 10 I1L beads that were 

suspended in warm complete media and given the following doses twice weekly: I) Dox 0.2 11M, 

2) Dox 2.0 11M, 3) WFA O.S 11M, 4) WFA 2.0 11M, 5) Dox 0.2 11M + WFA O.S 11M, and 6) Dox 

0.2 11M + WFA 211M. Measurements were taken at day 1, 3, and 7 for MTT assay and 

microscopy. Media and DMSO treated cells continued to grow throughout treatment, whereas 

Dox 0.2 11M had their growth halted at day 7 (Fig. 3Sa). Dox 2.0 11M and WF A 2.0 11M treated 

cells showed reduced tumor growth and showed a more pronounced effect with Dox 0.2 11M + 

WFA 2.0 11M (Fig 3Ia). Dox 0.2 11M + WFA O.S 11M achieved a drastically reduced growth 

compared to mono therapy of either compound (Fig. 3Sa). Microscopy images from day 3 and day 

7 are shown in Fig. 31 c and 31 c respectively. 

Discussion 

The cytotoxic activity of WF A was been established as an ICso of ~S !!hl after 72 hr in a 

panel of cancer cell lines and transformed fibroblast cell line [202], however this did not include 

an ovarian cancer cell line. WF A doses less than SOO nM did not affect cell proliferation [202]. 

However, in our study we noticed that as little as WF A 300 nM resulted in a noticeable decrease 

in cell proliferation in A2780 as well as CAOY3 cells (Fig. 19-21). Consistent with previous 

reports on Dox and WFA, we confirm that both agents produce ROS. Combination of Do x + 
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Figure 34. Immunohistochemistry of A2780 xenograft tumors. Tumors were fixed in 
formalin and paraffin embedded. Primary antibody was incubated overnight and developed 

with DAB (brown color). TUNEL was performed with ApopTag Plus Peroxidase 

Apoptosis Detection Kit. Images acquired at 20X power. 
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Figure 35. 3D tumor growth in HuBioGel generated from A2780 cells 
and treated with Dox and WFA. a) MTT assay of tumor growth 
measured at Day 1, 3, and 7 of treatment. Microscopy images of tumor 
growth at day 3 (b) and day 7 (c). 
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WFA further enhanced ROS production (Fig. 25-26). As a result of ROS production, DNA 

damage was increase as assessed by TUNEL assay (Fig. 30), resulting in autophagic cell death 

(Fig. 31, 32). WFA also reduces in vivo tumor growth of human pancreatic [203] and breast 

cancer cells [172]. Here we show a low dose of WF A alone did not affect in vitro or in vivo tumor 

growth, however combining a low dose of WF A with a low dose of Dox resulted in significant 

inhibition (Fig. 33, 34). 

Akt functions as one of the main pro-survival pathways and is frequency dysregulated in 

cancer [204]. Furthermore, it has been reportedly over expressed in ovarian carcinomas [205]. 

Dox has been shown to inactivate of Akl [165]. The effect of WFA on Akt phosphorylation and 

apoptosis intrinsic cascade has been well documented. WF A downregulates Notch-l signaling 

resulting in the down regulation ofp-Akt and subsequent downstream molecules IKK-a, NF-KB, 

p-p70S6 kinase, and 4E-BP in vitro in colon cancer [176]. In ovarian cancer cell lines CAOV3 

and SKOV3, WFA resulted in dephosphorylation of Akt in a dose-dependent manner [191]. In 

our cell line A2780, we found that after 24 hr treatment with Dox increased pAkt while WF A did 

not (Fig 24). This discrepancy could be due to the p53 status of the cells. A2780 cells have WT 

p53, while CAOV3 have mutant p53 and SKOV3 are p53-null, which affects expression of 

PIK3CA, the gene that codes for the catalytic subunit pll0a of PBK which in tum 

phosphorylates Akt [206]. Furthermore, WFA has been shown to directly affect the ability ofNF

KB to bind to DNA [174, 2071 and that in tum directly affects transcription of downstream target 

molecules such as c-FLIP [179], IL-6, IL-8, MCPl, A20, cyclin D, VEGF, MDR-l, and Bfl-l 

[207]. In prostate cancer, NF-KB inhibition was dependent of proapoptotic protein prostate 

apoptosis response-4 (Par-4) [208]. Coupled with down regulation of Bcl-2, colon cancer cells 

were more sensitive to apoptosis [176]. WFA has also been shown to trigger the intrinsic 

apoptosis cascade in melanoma with generation of ROS and down regulation of Bcl-2, showing 

that WF A exhibits the properties of two pharmacological agents used in clinical trial (Disulfiram 
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and Oblimersen) [175]. In fact, Bcl-2 overexpression in leukemia cells was able to block the 

induction of apoptosis induced by WF A, demonstrating that Bcl-2 is important for WF A -induced 

apoptosis [189]. In ovarian cancer, we have been unable to detect endogenous amounts of Bcl-2 

and perhaps because of the lack of Bcl-2, the action of WF A preferentially uses autophagy rather 

than apoptosis to achieve cell death. 

Apoptosis was thought to be the principle mechanism by which chemotherapy agents kill 

cancer cells. Apoptosis is a highly conserved cellular program that eliminates damaged and 

infected cells and consists of two major pathways: the extrinsic pathway that is mediated by death 

receptors and the intrinsic pathway that is mediated by the mitochondria. Both pathways lead to 

activation of caspases, cysteine proteases that cleave different substrates and cause cellular 

breakdown [209]. However, more recent evidence suggests that anticancer agents also induce 

other forms of non-apoptotic cell death including necrosis, mitotic catastrophe, autophagy, and 

senescence [210-212]. Various anticancer chemotherapies have been shown to induce autophagy 

which cooperates with apoptosis to induce cell death [209, 213-216]. Autophagy enables cells to 

survive harsh conditions such as chemotherapy treatment and thus conferring resistance [209]. 

This adaptive response is signified by a high level of autophagy as inhibition of autophagy allows 

chemotherapy agents to more effectively kill cancer cells in various cell types exposed to various 

drugs [180]. As such, it is still unclear why autophagy participates in cell death is some instances 

while preventing it in other, especially since both effects can be observed with the same 

anticancer compound. However, autophagy can have tumor suppressive functions. One proposed 

pathway suggests that autophagy eliminates damaged organelles that may produce a high level of 

ROS and therefore limit chromosomal instability [217]. We found that treatment with Dox + 

WF A increased ROS production as early as 6 hr of treatment with continued increase production 

with 24 hr of treatment (Fig. 25, 26). This is consistent with previous reports that both Dox and 

WFA as a monotherapy both produce ROS [156, 157, 175, 178, 179, 190]. ROS-mediated 

autophagy has been observed in a number of different carcinoma cell lines [218-220]. 
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Additionally, blocking ROS production with ROS scavengers and antioxidants reduced 

autophagic cell death is various solid tumors cell lines [220, 221]. Mitochondrial ROS damage 

the mitochondrial membrane and result in leakage of ROS to the cytosol where they can damage 

other organelles as well as cause DNA damage and oxidation of amino acids and polydesatured 

fatty acids [222, 223]. Electron microscopy revealed the presence of autophagic vacuoles which 

we confirmed with Western blot analysis of LC3B (Fig. 31, 32). In order to determine the major 

pathway of action for Dox + WF A, we analyzed p-Akt levels as well as p70S6K and observed a 

decrease of both proteins. Cell death was confirmed with Western blot analysis of caspase 3 (Fig. 

32). However, we observed no change in the level of Bcl-xL (Fig. 24) or in Annexin-V flow 

cytometry (Fig. 23). Taken together this suggests that cell death is being mediated principally 

through autophagy and not apoptosis. 

Dox or its derivative Doxil has been used in combination with several other compounds 

in various cancer types. Doxil used in combination with bevacizumab in patients with recurrent 

ovarian cancer achieved a 33% response rate [162]. In prostate cancer Dox has been combined 

with si I de na fil , which promoted apoptosis through enhancement of the intrinsic pathway 

including down regulation of anti-apoptotic proteins Bel-xL and reduced phosphorylation of pro

apoptotic protein BAD as well as induction of pro-a pop to tic protein Bax [163]. This combination 

therapy resulted in the generation of reactive oxygen species (ROS), but attenuated the 

cardiotoxic action of doxorubicin. Here, we show that Dox alone affected pBAD 136
, an effect that 

was attenuated with the addition of WF A (Fig. 24). Chebulagic acid acts synergistically with Dox 

by increasing the Dox accumulation intracellularly through down regulation of MDR-I 

transporter to enhance its cytotoxicity on hepatocellular carcinoma cell line HepG2 and thereby 

decreasing the necessary dosage of Dox to achieve a reduction in cell proliferation [165]. MDR-l 

down regulation was achieve through inactivation of signaling pathways Akt, ERK, p38, JNK, 

and NF-KB in a COX-2 dependent manner. A synthetic analog of curcumin HO-3867 has also 

been used in the same manner to achieve a complementary outcome with Dox to increase cancer 



cell toxicity without cardiotoxicity [164]. Using this combination therapy, they were able to 

decrease the concentration of Dox from 50llM to 2.51lM to achieve the same anti-proliferative 

effect in Dox-resistant breast cancer cell line MCF-7 MDR and showed decreased expression of 

Bcl-2 and pAkt. This lowered combination treatment resulted in better cardiac performance in 

treated mice. Combining arsenic trioxide with conventional therapies including Dox reduced 

cancer stem-like cells in hepatocellular carcinoma cell line and thereby sensitize the carcinoma to 

chemotherapy agents [224]. 

In our study, combination of Dox with WF A resulted in cell death not through apoptosis 

(Annexin V, pBAD136
, and BcI-xL), but through ROS-mediated autophagy (p70S6K, LC3B, 

caspase 3). We have also demonstrated the efficacy of Dox + WFA for the treatment of ovarian 

cancer in vivo using a xenograft tumor model and in vitro using a 3D tumor growth model on a 

human extracellular matrix. In both cases, Dox + WF A combination treatment resulted in 

inhibited tumor growth. In the case of xenograft tumors, we confirmed this with Ki67 and CD3l 

immunohistochemistry . 
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CHAPTER 4 

CONCLUSIONS 

One of the main barriers to developing an ovarian cancer mouse model is the genetic and 

epigenetic heterogeneous nature of this disease. At least 17 oncogenes (Appendix I, Table 6), 16 

tumor suppressor genes (Appendix I, Table 7), and 7 signaling pathways have been implicated 

[225] to be involved in the pathogenesis of ovarian cancer. These pathways include aberrations in 

cell proliferation, apoptosis, autophagy, and cell adhesion and motility. Oncogene expression 

alterations utilize various mechanisms including gene amplification, mutation, and 

overexpression, while tumor suppressor gene are mutated or go through loss ofheterozygocity for 

silencing protein functionality [144]. In addition, the expression many genes are controlled 

through epigenetic alterations such as hypomethylation of DNA, promoter methylation, and 

histone modification [144, 225]. Furthermore, micro-RNAs (mi-RNAs) playa role in controlling 

RNA stability and thus protein translation, participating in vital pathways including development, 

differentiation, cell cycle, apoptosis, metabolism, and proliferation [226]. Similarly to genes, mi

RNAs can be classified as oncogenes or suppressor genes depending on the pattern of their 

alteration. The mi-RNA shown to be overexpressed in ovarian carcinomas are miR-200a, miR-

141, miR-200c and miR-200b [225]. On the other hand, miR-199a, miR-140, miR-145 and miR-

125b1 were among the most down-regulated mi-RNAs [225]. With so many genetic alterations 

present in a histologically diverse disease, the challenge of developing a spontaneous reliable 

model that accurately reflects human EOe becomes immense. 

In our transgenic model, TgPTTG, we observed ~20% incidence of localized ovarian 

cancer in 8 month old mice (Fig, 7) and continued to observe them in lO month old mice (Fig. 9) 
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as the CMY promoter seemed to target the ovary and fallopian tube. Since our incidence of 

ovarian cancer was low, we cross-bred our mice with p53+ i
- mice, as p53 is mutated in 50-70% of 

human ovarian carcinomas [2, 144]. Using this approach resulted in earlier tumor development 

than PTTG or p53+!' alone (Fig. 13) and increased our incidence of high grade leiomyosarcomas 

from 7% in p53+!- mice to 14% in TgPTTG/p53+!-. We also observed tetratocarcinomas in 

PTTG/p53-'- that were not present in p53-1
- alone. We also noted a significant incidence of cervical 

carcinomas of 63% in TgPTTG/p53+1
- at both 8 and lO months, suggesting that this combination 

provides an attractive model for studying cervical cancer. 

Having a reliable mouse model that accurately reflects the spontaneous human 

counterpart would provide a monumental amount of knowledge of the genetic alterations that 

occur during tumorigenesis as well as metastasis. In addition, the model would be a useful 

method of testing new chemotherapy treatment strategies. But in order for the model to the 

reliable, several criteria have been suggested: 1) mice must carry the same mutation that occurs in 

human tumors, 2) mutations should be engineered within the endogenous locus, 3) mutated genes 

should be silent during embryogenesis and early postnatal development, except in models of 

inherited pediatric tumors, 4) mutations should be within the specific target tissues in selected cell 

types, and 5) mutations must occur in a limited number of cells [227]. However, the advantage of 

using genetically altered mice is the tumor exists in the presence of a competent immune system. 

As it stands, it is not surprising that the most used model for testing treatment strategies is the 

xenograft tumor model generated in immune compromised nude mice in which human cancer 

cells are injected under the skin and form a tumor over time. Xenograft tumors provide a more 

accurate tumor response to a patient's response despite the lack of a functional immune system 

[227]. However, these human tumors are generated using a mouse extracellular matrix (ECM), 

and thus do not accurately reflect patient response. To address this concern, we generated human 

3D tumors using human ECM (Hubiogel) to test tumor response to our combination Dox + WF A 

therapy. As such, we tested the tumor response to substandard dose of chemotherapy agent Dox 
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in combination with WFA to enhance cell death. 3D in vitro and xenograft in vivo tumors 

responded to treatment and showed delayed tumor progression when treated with suboptimal 

doses of Dox + WFA (Fig. 31, 33). We also demonstrated the mechanism of cell death in 

response to Dox and WF A was DNA damage and production of ROS (Fig. 23-27) leading to the 

induction of autophagy and leading to cell death in a caspase-3 dependent manner (Fig. 29,30). 
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APPENDIX I 

Table 1. Summary of promoters and targeted genes in epithelial ovarian cancer transgenic mouse 

models. Adapted from [228]. RCAS = replication-competent avian leukosis viral-derived vectors, 

MISIIR = Mullerian Inhibitory Substance Type II Receptor, AdCre = adenovirus carrying Cre 

recombinase, FSHR = follicule stimulating hormone receptor. 

Authors Promoter Targeted gene Tumorigenesis 

Orsulic et aL (2002) keratin-5, RCAS TVA, p53-1
-, oncogenes Yes 

Connolly et aL (2003) MISIIR SV40 TAg Yes 

Flesken-Nikkita et aL (2003) AdCre p53-1- & Rh-/- Yes 

Dinulescu et al. (2005) AdCre K-Ras & PTEW- Yes 

Wu et al. (2007) AdCre PTEN-- & APC- Yes 

Chondankar et al. (2005) FSHR Cre, BRCAl-- No 

Clark-Knowles et al. (2007) AdCre BRCAll>5-J3 No 
EI-Naggar et al. (2007) MISIIR PTTG No 
Liang et al. {2(09) MISIIR PIK3CA No 

Table 2. Breeding summary of TgPTTG founders. WT = wildtype 

Number of Total number of Number of positive 
Founder breedings offs~ring mice in Fl 

71282 5 (WT) 37 None 
71288 5 (WT) 43 None 
71305 5 (WT) 42 16 
71309 4 (WT) 36 19 
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Table 3. PTTG transgeruc (TgPTTG) mice group assignments. Number in columns indicate 

number of mice assigned to each group. 

Age Female Male Female Male TgPTTG 
Control Control TgPTTG TgPTTG Died 

1 month I 
3 months 1 
4 months 2 I 2 2 I 
6 months 1 1 3 3 3 
8 months 4 7 15 9 1 
10 months 6 7 10 10 
12 months 10 10 11 11 

Table 4. p53mu, mice group assignments. Number in columns indicate number of mice assigned 

to each group. Genotype of mice as indicated in parentheses next to numbers. 

Age 
9 weeks 
3 months 
4 months 
5 months 

Female p53mu, 

2 (-1-) 

...----;7:;"'months 
~-~~---~~~ 

8 months 
10 months 
11 months 

Male J153
0lu, 

2 -1-
9 (-1-), 2 (+1-) 

1 -1-

Died 
2 
11 

Table 5. Group assignments of TgPTTG/p53mu, crossbred mice. Nwnber in columns indicate 

number of mice assigned to each group. Genotype of mice as indicated in parentheses next to 

numbers. 

Age Female TgPTTG/p53mut Died 
7 weeks 
9 weeks 
3 months 
4 months 
8 months 8 +1-
10 months 6(+1-) 
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Table 6. Oncogenes involved in the pathogenesis of ovarian cancer, adapted from [2, 144] with 

contributions from [229]. AURKA, aurora kinase A; CCNE1 , cyelin EI ; eEFlA, eukaryotic 

elongation factor I-a; EGFR, epidermal growth factor receptor; FGF 1, fibroblast growth factor I; 

IGFR, insulin-like growth factor receptor; PIK3CA, PBK catalytic subunit; PRKCI, protein 

kinase C. 

Oncogene % Gene % Overexpressed % Mutated Function 
Am(!lification 

AKTI NA 12-18% Inhibits a 0 tosis 
AKT2 12-27% 12% Cytoplasmic serine-

threonine rotein kinase 
AURKA 10-15% 48% Nuclear serine-threonine 

rotein kinase 
B-RAF 30-50% Promotes growth through 

MAPK 
CCNEl 12-36% 42-63% C clin 
eEFIA 30% Protein elongation factor 
EGFRI 11-20% 9-28% <1% Protein tyrosine kinase 

wth factor rece tor 
ERBB2 6-11 % 4-12% Protein tyrosine kinase 

growth factor receptor 
FGFI 51% Growth factor for cancer and 

angiogenesis 
!GFR 21-25% Promotes growth 
K-RAS 5% 30-52% 2-24% CyjO lasmic GTPase 
MYC 20% 41-66% Transcri tion factor 

NOTCH3 20-21% 62% Cell surface growth factor 
rec tor 

PIK3CA 9-11 % 32% 8-12% Cyto lasmic Ii id kinase 
PRKC! 44% 78% Cytoplasmic serine-

threonine rotein kinase 
RAB25 54% 80-89% Cytoplasmic GTPase and 

apical vessel trafficking 
Src 80-90% Promotes growth, 

an io enesis, and survival 
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Table 7. Tumor suppressor genes dysregulated in ovarian cancer, adapted from [ 144]. ARLl1 , 

ADP-ribosylation factor-like 11; DAB2, disabled homologue 2; DLECl , deleted in lung and 

esophageal cancer I ; DSB, double strand break; EGF, epidermal growth factor ; GPI, 

glycosylphosphatidylinositol ; GRB2, growth factor receptor-bound 2; ILK, integrin-Iinked 

kinase; JNK, JUN N-terminal kinase; LOH, loss of heterozygosi ty; OPCML, opioid-binding 

protein/cell adhesion molecule- like; PEG3, paternally expressed 3; PLAGLl , pleiomorphic 

adenoma gene-like 1; RPS6KA2; ribosomal protein S6 kinase 2; SPARC, secreted protein, acidic, 

cysteine-rich; ST AT3, signal transducer and acti vator of transcription 3; TNF, tumour necrosis 

factor- ; TPA, tissue plasminogen activator. 

Gene 

ARHI(DlRAS3) 

ARLI] 

BRCA] 

BRCA2 

DAB2 (DOC2) 

DLECI 

OPCML 

% of cancers 
downregulated or 
inactivated 
60% 

62% 

6-8% 

3-6% 

58-85% 

73% 

56-83% 

Mechanism of 
downregulation 

Imprinting; LOH; 
promoter methylation; 
transcription 
downregulated by 
E2FI and E2F4 

Promoter methylation 

Function 

26 kDa GTPase; inhibits 
proliferation and motility; 
induces autophagy and 
dormancy; upregulates p21; 
inhibits cyelin 01, PI3K, Ras-
Ma k si Ilin and ST A T3 
ADP ribosylation factor; induces 
a 0 tosis =---..-", 

Mutation; LOH E3 ubiquitin ligase that 
participates directly in repair of 
DNA DSBs through homologous 
recombination; regulates ABL1; 
induces p53, androgen receptor, 

Mutation; LOH 
~_~oe~strogen rece tor and MYC 

Binds RAD51 during repair of 
DNA double strand breaks 

Transcription Binds GRB2, preventing Ras 
and MAPK activation; prevents 
FOS induction and decreases 
ILK activity; contributes to 
anoikis; inhibits proliferation; 
inhibits anchorage-independent 

owth and tumori enici 
----~~ 

Promoter 
hypennethylation and 
histone 
h oacetylation 

Inhibits anchorage-dependent 
growth 

-.,....-,,.......,.----..,= 
Promoter methylation; GPI-anchored IgLON family 
LOH; mutation member; induces aggregation; 
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inhibits proliferation and 
tumorigenici 

PEG3 75% Imprinting; LOR; Induces p53-dependent apoptosis 
promoter methylation; 
transcri tion 

PLAGLl 39% Imprinting; LOR; Inhibits proliferation and 
(LOTl) transcription tumorigenicity 

downregulated by 
EGF and TPA 

PTEN 20% Promoter methylation; decreases proliferation, 
LOR; mutation migration, and survival through 

Akt; decreases cyclin D; 
Increases 27 

RASSFJA 60% Rypermethylation Inhibits proliferation and 
tumorigenicity; interacts with 
Ras inhibiting and 
downregulating cyelin D and 
signaling through JNK; 
stabilizes microtubules; regulates 
spindle checkpoint; regulates 
C095- and TNF -induced 
a 0 tosis 

RPS6KA2 64% Monoallelic Inhibits growth; induces 
expressIOn ill ovary; apoptosis ; decreases Erk 
LOR phosphorylation and cyelin D 1 ; 

Increases 21 and 27 
SPARe 70-90% Transcription Binds GRB2, preventing Ras 

and MAPK activation; prevents 
FOS induction and decreases 
ILK activity; contributes to 
anoikis; inhibits proliferation; 
inhibits anchorage-independent 

owth and tumori enici 
TP53 50-70% Mutation Induces p21 leading to cell cycle 

arrest and promotion of DNA 
stability; induces apoptosis 

WWOX 30-49% LOR; mutation Decreases anchorage-
independent growth and 
tumorigenicity; mouse 
homologue required for 
a~o~tosis 
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