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ABSTRACT 

THE IMPACT OF ADSORBED CELLULASE INACTIVATION ON ENZYMATIC 

HYDROLYSIS KINETICS 

Zhuoliang Ye 

APRIL 27, 2012 

Several technical and economic obstacles currently hamper the industrial 

development of ethanol from biomass. One of the key bottlenecks is the slow kinetics of 

the enzymatic hydrolysis of cellulose, and the subsequent rate reduction as the reaction 

proceeds. As a result, this research focused on understanding underlying causes for the 

slow kinetics, rate reduction, and low yield during cellulose hydrolysis. Mechanisms 

traditionally thought to cause these results were investigated, such as change of substrate 

properties and deactivation of enzyme due to environmental mechanisms, but neither was 

found to contribute significantly to the slow kinetics and low yield. Inactivation due to 

enzyme-substrate interactions was then proposed as a key factor. Results here show that 

inactivation of adsorbed enzyme played the most significant role for the hydrolysis rate 

reduction and low yield based on the following findings: (1) a kinetic model featuring 

inactivation of adsorbed enzyme accurately accounted for experimental cellulose 

hydrolysis data for two different types of substrates; the enzyme's apparent maximum 

reaction rate was found to decrease with a first order exponential decay function of time 

due to inactivation of the adsorbed enzyme, which has historically always been 
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considered to remain constant. (2) comparison of relative extents of enzyme activity loss 

due to environmental mechanisms (such as thermal and/or mechanical factors) with 

inactivation due to enzyme-substrate interactions revealed that enzyme- substrate 

interactions contributed more towards the overall activity loss than did environmental 

mechanisms; (3) AFM imaging visualized crowding of Cellobiohydrolase 1 (CBHl) on 

cellulose substrate surface and thereafter became inactivated; (4) desorption of inactive 

CBHl was slower compared to desorption of active CBHl, implying that once 

inactivated, CBH 1 cannot dissociate immediately to find another site on a substrate 

surface to start another digestive cycle. 

The overall conclusion is that inactivation of adsorbed enzyme is a pnmary 

contributor to the hydrolysis rate reduction. Near complete conversion (99%) of cellulose 

was predicted by the model to occur within 10-20 hours if inactivation of adsorbed 

cellulase can be prevented, compared to 7-10 days or more to achieve a lower yield when 

inactivation occurs. Finally, factors to consider when developing a cellulose hydrolysis 

process were proposed based on the inactivation mechanism. One important strategy 

proposed is to desorb inactive cellulases from the substrate, such as with the addition of 

GdnHCl. Additionally, a technique for scaling-up separation of CBHl was developed. 

The technique allows for efficient purification of active CBHl from commercial cellulase 

cocktails at a cost of less than 10% compared to the conventional small-scale FPLC 

method. 
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1.1 Background 

CHAPTER I 

INTRODUCTION 

Biologically derived fuels have received increasing attention as an alternative to 

fossil fuels used for transportation due to political, environmental, and economic 

reasons. The ethanol industry in the United State has traditionally used corn as the 

feedstock, which is considered a 15t generation biofuel. However, corn is an important 

food source for both humans and livestock. Increasing demands of corn from the ethanol 

industry will drive up the price of corn as well as other products that depend on corn as 

an intermediate feedstock. Therefore, efforts have focused on producing ethanol from 

cellulosic substrates, such as corn stover, sawdust, bagasse, and other agricultural 

products and residues, which can be hydrolyzed to produce fermentable sugars. Ethanol 

derived from cellulosic substrates is considered to be a 2nd generation biofuel. 

Public policy is driving most of the momentum towards the use of biofuels. The 

Energy Policy Act of 2005 required the use of 7.5 billion gallons of renewable fuel by 

2012. The Energy Independence and Security Act of 2007 increased this renewable fuels 

standard to 36 billion gallons of annual renewable fuel use by 2022. Of this, 16 billion 
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gallons are required to come from cellulosic sources. A joint U.S. Department of Energy 

(DOE)/U.S. Department of Agriculture (USDA) study found that 1.3 billion tons of 

cellulosic feedstock could be produced for biofuels in the U.S. annually with only modest 

changes in farming practices. This quantity of feedstock can be used to make enough 

ethanol to satisfy about one third of current U.S. petroleum demand. 

For cellulosic derived ethanol production, enzymatic hydrolysis IS usually 

employed to release fermentable sugars from cellulose. Other key steps in the process 

include pretreatment prior to hydrolysis and fermentation following hydrolysis. 

Pretreatment is performed to open up the substrate structure for cellulases to attack. After 

cellulose is hydrolyzed, the hydrolysis product, glucose, is fermented to produce ethanol. 

A simplified scheme is shown in Figure 1.1. Pretreatment time is on the order of minutes 

and fermentation time is on the order of hours. However, enzymatic hydrolysis of 

cellulose is on the order of several days. The slow kinetics of enzymatic hydrolysis is a 

key technical and economic obstacle hindering the industrial development of ethanol 

from cellulose. 

The hydrolysis rate during enzymatic hydrolysis of cellulose is known to decrease 

as the reaction proceeds and yield typically does not approach 100% (Dasari and Berson, 

2007; Dasari et aI., 2009; Dunaway et aI., 2010; Nidetzky and Steiner, 1993; Valjamae et 

aI., 1998). The main cause for the rate reduction and low yield is not yet understood, and 

determining the primary mechanism will have important implications in the optimal 

design of an enzymatic hydrolysis process. Several possible reasons for the low rate and 

yield have been suggested in the literature: change of reactivity (Nidetzky and Steiner, 

1993; Zhang et aI., 1999) and physical properties of substrate, such as crystallinity 
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(Betrabet and Paralikar, 1977; Ooshima et al., 1983); change of specific surface area 

(SSA) during the reaction (Hong et aI., 2007); deactivation of enzyme as a result of 

mechanical mixing (Ganesh et aI., 2000; Ghadge et aI., 2005b; Kim et al ., 1982; Reese 

and Mandels, 1980); and inactivation of adsorbed enzymes (Jalak and Valjamae, 2010; 

Ma et aI., 2008; Valjamae et aI., 1998; Xu and Ding, 2007). 

Biomass 
~ Pretreatment 

Glucose Product .c=J 
ermentatior • L-.-R_e_c_Ov_e_ry--J~ .L:J 

Figure 1.1 . A simplified scheme to produce ethanol from cellulosic substrate 

Nidetzky and Steiner (1993) and Zhang et ai. (1999) believed that the hydrolysis 

rate slowed when the easily hydrolyzed part of the cellulose was consumed, and the 

remaining part was less accessible to enzyme. However, this assumption is weakened by 

the fact that accessibility of substrate to enzyme could not be related to any 

physicochemical properties of the substrate, such as crystallinity, surface area, or degree 

of polymerization (Nidetzky and Steiner, 1993). Moreover, this theory was contradicted 

by Ooshima et ai. (1991), Desai and Converse (1997), and Yang et al (2006), who all 

found that the reactivity of substrate changed little during hydrolysis. Also, the two-types 

of cellulose mechanism cannot explain the monophasic first-order reaction for some 

substrates such as cotton and regenerated cellulose (Lenz et aI., 1990; Schurz and Honel, 

1989). 

Effects of change in substrate crystallinity and SSA during the reaction are 

controversial in the literature. Some studies reported that crystallinity increases over the 
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course of cellulose hydrolysis as a result of preferential reaction of amorphous cellulose 

(Betrabet and Paralikar, 1977; Ooshima et aI., 1983). However, Lenze et aI. (1990), 

Ohmine et aI. (1983), PuIs and Wood, (1991) found crystallinity did not increase during 

enzymatic hydrolysis. 

Mosier et aI. (1999) found increasing SSA during Solka Floc hydrolysis, although 

Hong et aI. (2007) found that SSA decreased as the reaction proceeded when working 

with the cellulose substrate A viceI. It is, therefore, desirable to further examine whether 

or not the change of substrate properties such as crystallinity and SSA affect the cellulose 

hydrolysis rate. 

Activity loss of cellulases during the reaction, which is another possible reason 

for the rate reduction and low yield, has traditionally been associated with mechanical 

and/or thermal mechanisms (Kim et aI., 1982; Zhang et aI., 2010). However, several 

studies showed that mechanical/thermal effects on enzyme deactivation were insufficient 

to account for the reduction in the reaction velocity of cellulose hydrolysis (Eriksson et 

aI., 2002; Ooshima et aI., 1991). Furthermore, Levine et al (2010) concluded that an 

enzyme half-life much shorter than that reported for thermal deactivation would be 

needed to account for the slow kinetics of cellulose hydrolysis. It is, therefore, necessary 

to further examine to what extent the deactivation is caused by mechanical/thermal 

mechanisms. 

Product inhibition has been suggested as another reason for the rate reduction 

(Gusakov and Sinitsyn, 1992; Howell and Stuck, 1975). However, Nidetzky and Steiner 

(1993) reported that inhibition by glucose is weak. Additionally, the hydrolysis rate still 

declined significantly when products were continuously removed in a membrane reactor 
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(Converse et aI., 1988; Howell and Mangat, 1978). Valjamae et ai. (1998) and Zhang et 

ai. (1999) also provided evidence against product inhibition affecting hydrolysis kinetics. 

Since there is a lot of evidence against existing theories for the rate reduction, it is 

desirable to explore an alternative mechanism that may offer a better explanation. 

Attention is focused here on activity loss due to enzyme-substrate interactions, 

particularly activity loss of adsorbed enzyme. Such activity loss has been reported to be 

caused by: (1) the cellobiohydrolases becoming stuck on the substrate surface due to a 

crystalline defect or when surrounding cellulose chains prevent further processive action 

(Valjamae et aI., 1998); (2) enzyme jamming on the substrate surface resulting in 

hydrolysis rate reduction (Xu and Ding, 2007); (3) negligibly reversible cellulase binding 

(Ma et aI., 2008); or (4) non-productive binding of adsorbed cellulase (Jalak and 

Valjamae, 2010). Evidence of inactivation of adsorbed cellobiohydrolase 1 (CBH1) was 

presented in recent studies using atomic force microscopy (AFM) by Igarashi et ai. 

(2009; 2011). They observed that some CBHl was inactivated on a substrate surface 

while other active CBHl could freely proceed along the substrate surface. Although these 

individual factors have been studied, a kinetic model linking overall activity loss of 

adsorbed enzyme to cellulose hydrolysis rates and yields has yet to be developed and 

validated experimentally. 

If adsorbed enzyme became inactive, it would necessarily return to the bulk 

solution more slowly (if at all) and be unable to find a new binding site to start another 

hydrolysis cycle immediately. This underlying phenomenon would support the adsorbed 

enzyme inactivation theory, but this has not been examined so far either. Since cellulases 

are composed of several different enzyme species, and different enzymes have different 
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binding characteristics, it is necessary to separate a sufficient amount of a representative 

component to perform mechanistic studies. CBH 1 is the most abundant species and is an 

important processive cellobiohydrolase that hydrolyzes crystalline cellulose. It is 

desirable to first develop a process for separating large amounts of this enzyme from a 

typical cellulase cocktail, and then characterize its deactivation and desorption 

characteristics under reduced activity. 

A mechanism for the rate reduction, which considers inactivation of adsorbed 

cellualses, has been developed and experimentally validated here. Using these results, 

factors to consider when developing a cellulose hydrolysis process were then proposed. 

The specific objectives of this dissertation are summarized below. 

1.2 Objectives 

1. Examine whether change of substrate properties or deactivation of enzyme due to 

environmental mechanisms is more responsible for the rate reduction during enzymatic 

hydrolysis of cellulose. 

2. Develop a mathematical model to describe cellulose hydrolysis that considers activity 

loss of adsorbed enzyme and validate the model experimentally. 

3. Develop a scaled-up process for separating CBHl from a commercial cellulase 

cocktail. 

4. Study deactivation (due to environmental mechanisms) of individual cellulase 

components, such as endo- and exo- glucanases. 

5. Examine desorption of CBH 1 under reduced activity conditions. 

6. Propose factors to consider when developing a cellulose hydrolysis process. 
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CHAPTER II 

LITERA TURE REVIEW 

2.1 Structure of Cellulose 

Cellulose is glucan linked by ~-glycosidic bonds (Figure 2.1). The ~-glycosidic 

linkage (the bonds joining the simple sugars together) is above the plane of the rings. The 

cellobiose unit cell of crystalline cellulose has a length of 1.03nm. Cellobiose units are 

assembled in bundles of three. About 36 cellulose chains are associated to compose an 

elementary fibril with a diameter of 3.Snm. These elementary fibrils are assembled into 

microfibrils with a diameter varying from 10 to 30nm. The microfibrils form macrofibrils 

that range from 60 to 360nm in diameter (Lee et aI., 2000). 

Cellulose has -200-300 glucose units per chain while starch exhibits branches 

every 17 to 26 glucose units (Bertoldo and Antranikian, 2002). Therefore, cellulose has a 

smaller frequency of chain ends and, therefore, a lower fraction of accessible external 

bonds for enzyme than starch. 

Figure 2.1. Structure of cellulose. 
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2.2 Sources of Various Cellulose Substrates 

Common cellulose model substrates include Solka Floc, A vicel, filter paper, 

cotton fiber, bacterium microcrystalline cellulose (BMCC) and phosphoric acid swollen 

cellulose (PASC). Solka Floc, A vicel and filter paper, which are derived from bleached 

wood pulp, are a blend of amorphous and crystalline forms. Particularly, Solka Floc is 

cellulose with 0.2%-0.4% lignin and 2.3% pentosans (Lee and Fan, 1982), while the other 

two substrates are pure cellulose. Dewaxed cotton fibers are one of the purest sources of 

cellulose and BMCC was prepared from cultures of Acetobacter xylinum. These two 

substrates are considered high crystalline cellulose. P ASC is prepared by acid swollen of 

A vicel, which usually is regarded as amorphous cellulose. 

2.3 Types of Crystalline Cellulose 

There are three types of crystalline cellulose. Most native cellulose is a mixture of 

the Ia and I~ structures, with the Ia form being prevalent in cellulose that is produced by 

algae and bacteria, whereas I~ is dominant in higher plants (Wada et aI., 2004). a 

cellulose is resistant to 17.5% and 9.45% sodium hydroxide solution, while ~ cellulose is 

soluble and re-precipitated on acidification of the solution. Cellulose II was produced by 

treating native cellulose I from flax with 23% NaOH, followed by rinsing and drying. 

Cellulose II can also be prepared by precipitation from solution, as in the manufacture of 

rayon, and by bacteria that are either mutants or at low temperature. Cellulose III, results 

from treatment with amines that are subsequently evaporated or rinsed off (Wada et aI., 

2004). Cellulose III has a much larger portion of hydrophobic surface than cellulose I 

(Igarashi et ai. 2011). 
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2.4 Effect of Enzyme Deactivation due to Environmental Mechanisms on Cellulose 

Hydrolysis 

The reaction rate ill enzymatic hydrolysis of cellulose is known to decrease 

significantly as the reaction proceeds (Dasari and Berson, 2007; Dasari et ai., 2009; 

Dunaway et ai., 2010; Nidetzky and Steiner, 1993; Valjamae et ai., 1998). The leading 

cause of this effect has traditionally been associated with enzyme deactivation due to 

thermal/ mechanical mechanisms or variation of substrate properties. 

Zhang et ai. (2010) proposed cellulase deactivation due to the reaction 

environment, which includes thermal and mechanical mechanisms, to be one possible 

reason for the slow kinetics of cellulose hydrolysis. However, the thermal stability of 

cellulases is usually good (Ooshima et ai., 1991). Deactivation of cellulases due to 

mechanical shear was found to be considerable at high shear rate but only in the presence 

of a gas-liquid interface (Kim et al 1981). These findings suggest that deactivation due to 

thermal/mechanical alone is not likely a universal reason for the hydrolysis rate reduction, 

although more significant thermal/mechanical deactivation of some cellulase was found 

by Reese and Mandels (1980), or due to mechanical mixing in a stirred tank. Therefore, 

it must still be determined whether deactivation due to thermal/mechanical mechanisms 

can account for rate reduction in cellulose hydrolysis. 

2.5 Effect of Substrate Properties on Cellulose Hydrolysis 

Variation of substrate properties during the reaction is another factor that may 

affect cellulose hydrolysis. Important substrate properties affecting cellulose hydrolysis 

include: crystallinity, specific surface area (SSA), average size of pore. 
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The role of crystallinity in impacting hydrolysis is controversial so far. Cellulose 

hydrolysis rates mediated by fungal cellulases are typically 3-30 times faster for 

amorphous cellulose as compared to high crystalline cellulose (Lynd et aI., 2002), and the 

increase of crystallinity during the reaction after amorphous cellulose was depleted 

(Betrabet and Paralikar, 1977; Ooshima et aI., 1983) might be one reason for the 

significant rate reduction in hydrolysis. However, Lenze et aI. (1990), Ohmine et aI. 

(1983), PuIs and Wood (1991) found crystallinity did not increase during enzymatic 

hydrolysis. Furthermore, Jalak and Valjamae (2010) found that a common apparent 

hydrolysis rate constant existed for several different substrates such as lignocellulose, 

Avicel, and amorphous cellulose when they were hydrolyzed with a cellobiohydrolase. 

Therefore, it must still be determined whether crystallinity change and variations of 

initial crystallinity affect cellulose hydrolysis. 

Besides crystallinity, surface area is another important physical feature that may 

affect cellulose hydrolysis, as it reflects the capability of substrate to adsorb enzyme. 

Higher surface adsorption of enzyme is expected to yield faster hydrolysis rate. Pore 

volume and average pore size, which indicate the degree of openness of structure 

attacked by enzyme, are also key structures that may affect hydrolysis (Choi et aI., 2007). 

It is therefore desired to know whether these features change during the reaction and 

affect cellulose hydrolysis. 

2.6 Effect of Activity Loss of Adsorbed Enzyme on Cellulose Hydrolysis 

Due to inconclusive or contradictory results reported in the literature regarding 

these previous two mechanisms, it is desirable to explore a new mechanism that is more 

likely to explain the rate reduction. In the recent decade or so, activity loss of adsorbed 
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enzyme has been proposed as a possible reason for this. Adsorbed enzyme can become 

deactivated due to the following possible reasons: (1) the cellobiohydrolases become 

stuck on the substrate surface due to a crystalline defect, or when surrounding cellulose 

chains prevent further processive action (Valjamae et aI., 1998); (2) enzymes jam on the 

substrate: surface resulting in hydrolysis rate reduction (Xu and Ding, 2007); (3) 

negligibly reversible cellulase binding (Ma et aI., 2008) ; or (4) non-productive binding 

of adsorbed cellulase (Jalak and Valjamae, 2010) . Recently, real-time AFM imaging 

revealed that a significant portion of adsorbed Cellobiohydrolase 1 (CBH1) got stuck on 

the substrate surface and became inactivated thereafter (Igarashi et aI., 2009). Any of 

these events that cause inactivation of adsorbed cellulases can result in significant 

hydrolysis rate reduction. Igarashi et aI. (2011) further found that enzyme jamming 

contributed significantly to the hydrolysis rate reduction. 

2.7 Product Inhibition and Mass Transfer Limitation 

Nidetzky and Steiner (1993) reported that inhibition by glucose is weak, although 

Howell and Mangat (1975) and Gusakov and Sinitsyn (1992) reported that product 

inhibition may be a potential reason for the rate reduction. Furthermore, it was found the 

hydrolysis rate still declined significantly when continuously removing products in a 

membrane reactor, (Howell and Mangat, 1978; Converse et aI., 1987). Therefore, product 

inhibition cannot be the reason for the decrease of hydrolysis rate, as also pointed out by 

Valjamae et aI. (1998) and Zhang et aI. (1999). It was shown that the initial hydrolysis 

rate decreased about 84% when the cellobiose product reached a concentration of 60 ~M; 

however, with the presence of 60 ~M initial cellobiose, the hydrolysis rate only decreased 
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less than 10% compared to a control experiment in the absence of initial cellobiose 

(Valjamae et ai. 1998). 

For mass transfer in cellulose hydrolysis, Philippidis et ai. (1992) reported that 

products such as cellobiose and glucose are small molecules with high diffusivity and 

their diffusion should not be rate limiting step. Furthermore, it was reported that enzyme 

diffusion is relatively rapid compared to hydrolysis at substrate loading of 5% (w/v) or 

less (Lee and Fan, 1982), although at high solid loading, mass transfer may be the 

limiting step in cellulose hydrolysis (Dasari et aI., 2009). 

2.8 Kinetic Modeling Considering Inactivation of Adsorbed Enzyme to Account for 

Cellulose Hydrolysis 

One methodology to model cellulose hydrolysis is based on empirical equations, 

such as the Response Surface Methodology (Ferreira et aI., 2009; Qi et aI., 2009), and 

this does not provide any insight into the mechanistic details of the process and cannot be 

applied outside the conditions under which they were developed. As a result, mechanistic 

models which reveal rate limiting steps will be more helpful for optimization and 

understanding the process (Bansal et aI., 2009; Zhang et aI., 2010). 

Nidetzky and Steiner (1993) proposed a kinetic model considering heterogeneity 

of substrate as the main reason responsible for slow cellulose hydrolysis, which described 

a slow down of the hydrolysis rate when the easily hydrolyzed part of the cellulose was 

consumed and the less accessible part remained. However, this assumption is weakened 

by the fact that they cannot find any different accessibility of substrate to enzyme related 

to physicochemical properties of substrate, such as crystallinity, surface area, or degree of 

polymerization. Moreover, the assumption of two kinds of cellulose present in substrate 
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was contradicted by Ooshima et aI. (1991), Desai and Converse (1997), and Yang et al 

(2006). It was found that the reactivity of substrate did not change during hydrolysis. 

Meanwhile, the assumption of two kinds of cellulose in substrate cannot explain the 

monophasic first-order reaction for some substrates such as cotton and regenerated 

cellulose (Schurz and Honel, 1989; Lenz et aI., 1990). Therefore, it is desirable to 

develop a model considering change of enzyme activity during the reaction that can 

account for cellulose hydrolysis. 

Kinetic modeling validated by experimental evidence can help resolve possible 

mechanisms. Although previously both Howell and Mangat (1978) and Converse et aI. 

(1988) had developed mathematical models to account for the slow kinetics of cellulose 

hydrolysis by considering deactivation of the adsorbed cellulase, there are some common 

limitations in both of their models. First, Howell and Mangat (1978) proposed a model 

based on the Michaelis-Menten kinetics, which is not appropriate for heterogeneous 

cellulose hydrolysis (Lynd et aI., 2002). The model developed by Converse et aI. (1988) 

assumed adsorption of cellulases to substrate is proportional to the second order of 

substrate concentration, although it has not been validated by experiments. Second, initial 

guesses required for their model are critical since multi-optima occur. These are the two 

disadvantages that new kinetic models should overcome. 

Shen and Agblevor (2008) further pointed out that some drawbacks in previous 

modeling, such as Fan and Lee (1983) and Gan et aI. (2003), were: (1) the models 

consisted of several ordinary differential equations which were too complicated to solve 

analytically; (2) too many parameters could not be uniquely determined in the ODE's; 
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and (3) the values of some parameters were arbitrarily chosen rather than from a fitting 

process based on experiments. 

2.9 Cellulase Structure and Function 

Cellulose hydrolysis usually involves cellulases from T. reesei and some other 

bacteria or fungi. T. reesei cellulases have three major components: endoglucanases 

(EG 1-5), exoglucanases or cellobiohydrolases (CBH 1-2) and ~-glucosidase, which have 

different structures, hydrolysis mechanisms and substrate specificities. The structure of 

CBH 1, CBH2, and EG 1 features a catalytic domain and a cellulose-binding domain 

connected by a glycolysated peptide linker (Zhang and Lynd, 2004). The structure of 

intact CBHI determined by small-angle X-ray scattering is a tadpole shaped enzyme 

18nm long and 4nm wide. Structural determination by X-ray diffraction defined the 

dimensions of the catalytic core to be 6 x 5 x 4nm, containing the substrate binding site 

that was found to be a tunnel 4nm long, with binding sites for 7 glucose units (Lee et al., 

2000). The catalytic domain structures of CBHl and CBH2 are entirely different but both 

feature tunnel-shaped structures (Divne et al., 1994). Cellobiose is the primary product of 

hydrolysis mediated by CBHl and CBH2. The T. reesei CBHl and CBH2 can cleave 

several bonds following a single adsorption event before the dissociation of the enzyme 

substrate complex (Imai et al., 1998). EGI and CBHl have significant homology (45% 

identity) and belong to the same family (Ce17). However, the active site of EG 1 is a 

groove rather than a tunnel, allowing glucan chains to be cleaved randomly to two shorter 

chains (Divne et al., 1994). 

Therefore, endoglucanases decrease the degree of polymerization (DP) of 

substrate by cleaving the substrate at internal sites, whereas exoglucanases release 

14 



cellobiose from ends of the substrate thus gradually decreasing the length of the cellulose. 

~-glucosidase hydrolyzes cellobiose to two molecules of glucose. In order to study 

specific hydrolysis mechanisms of some representative component in more detail, it is 

necessary to separate it from other cellulase components. 

2.10 Separating CBHl from a Commercial Cellulase Mixture 

The relative abundance of the three major cellulases in T. reesei is as follows: 

CBHl - 60%, CBH2 - 20%, EG2 -12% (Zhang and Lynd, 2004). CBHl is the most 

abundant and important cellulase in hydrolysis of crystalline cellulose. The kinetics of 

purified CBHl reacting with cellulosic substrate have been extensively studied (Valjamae 

et aI., 1998; Xu and Ding, 2007), as have hydrolysis from reducing or non-reducing ends 

(Imai et aI., 1998; Stahlberg et aI., 1993), binding reversibility (Bothwell et aI., 1997; 

Kyriacou et aI., 1989; Ma et aI., 2008; Nidetzky et aI., 1994), synergism effects with 

other cellulase components (Irwin et aI., 1993; Mansfield et aI., 1999; Walker et aI., 

1992), processivity (Kipper et aI., 2005; Medve et aI., 1998a) and shear deactivation of 

exoglucanase (Gunjikar et aI., 2001). 

Pure CBHl can be separated from cultured T. reesei (Nidetzky et aI., 1994; 

Walker et aI., 1992), but a good separation of CBH 1 from other cellulase components is a 

complex multistep process, involving a combination of ammonium sulfate precipitation, 

affinity chromatography, and ion-exchange chromatography processes. Medve et aI. 

(1998b) reported a one step separation of CBH 1 from Novozyme cellulases by ion

exchange chromatography which relies on different pIs of cellulases using fast protein 

liquid chromatography (FPLC) and has greatly simplified the separation procedure for 

CBHl. 
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2.11 Scaled-up Separation of CBH1 from a Commercial Cellulase Mixture 

Since specific activities of cellobiohydrolases are lower than other enzyme 

components (Den Haan et aI., 2007), it is desirable to obtain large amounts of CBHl to 

study hydrolysis mechanisms. 

One way to obtain a large amount of purified CBH 1 is to express the gene in other 

bacteria or fungi (Den Haan et aI., 2007; Godbole et aI., 1999; Takashima et aI., 1996). 

However, it is uncertain whether the recombinant enzymes behave differently from the 

native ones due to a possibly different glycosylation (Godbole et aI., 1999; Reinikainen et 

aI., 1992; Takashima et aI., 1998). Medve et aI. (1998b) reported a scaled-up separation 

(50 ml sample compared to a 3 ml sample in their small-scale separation) performed with 

a Pharmacia XK 26/20 column (26 mm 1.0., length of 20 cm) that was developed based 

on their small-scale separation. 

2.12 Investigation of Enzyme-Substrate Interactions Using AFM 

Recently, AFM has been used during the investigation of enzyme-substrate 

interactions. Liu et aI. (2009) used AFM and found that CBHl bound to the hydrophobic 

surface of crystalline cellulose. Igarashi et aI. (2009) recorded video of the processive 

movement of CBHl on a cellulose surface. More recently, Igarashi et aI. (2011) reported 

that traffic jams reduce hydrolytic efficiency of cellulase on a cellulose surface. All these 

results, especially the result by Igarashi et aI. (2011), are breakthrough findings that 

provide direct evidence of cellulase functions, such as binding and processive movement. 

They also showed that inactivation of adsorbed enzyme directly affects cellulose 

hydrolysis rate reduction. 
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2.13 Processivity of Cellobiohydrolase 

Processivity of cellulases has been thoroughly discussed on a structural basis 

(Divne et aI., 1994). Kipper et ai. (2004) reported that hydrolysis of fluorescence-labeled 

celluloses revealed processivity values of 88±1O, 42±1O and 34±2.0 cellobiose units for 

CBH 1 on bacterial cellulose, bacterial microcrystalline cellulose and endoglucanase

pretreated bacterial cellulose substrate, respectively. Using the ratio of produced 

cellobiose to that of the sum of glucose and cellotriose as a measure of processivity, 

Medve et ai. (l998a) found the processivity for CBH 1 to be approximate 5-10 cellobiose 

units on Avicei. Using the same algorithm, a rough estimate of processivity of 

23 cellobiose units was reported for CBHl acting on BMCC (Von Ossowski I et aI., 

2003). Recently, processive movement of CBHl on substrate was directly observed using 

AFM (Igarashi et aI., 2009), with a rate of 7.1 mnls (Igarashi et aI., 2011). 

2.14 Enzyme Adsorption 

Cellulase adsorption is most frequently modeled with the Langmuir adsorption 

equation (Kumar and Wyman, 2008; Kyriacou et aI., 1988; Nidetzky et aI., 1994; Tu et 

aI., 2007), although the assumptions for the Langmuir adsorption, such as each binding is 

equivalent and there is no interaction between adsorbed molecule on adjacent sites, may 

not be valid in some cases. Two site adsorption models (Linder et aI., 1996; Medve et aI., 

1997) and Freundlich isotherms (Medve et aI., 1997) are, therefore, sometimes employed 

for those considerations. 
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2.15 Binding Reversibility 

There is currently a lot of controversy concerning the binding of cellulsase to 

cellulose. Direct measurement of the dissociation rate constant has not been reported 

(Jalak and Valjamae, 2010). A study by Kipper et ai. (2005) implied that at the beginning 

of hydrolysis the dissociation rate of CBH1 is about 0.003 S·1 by studying steady-state 

release of the end-label from the reducing-endlabeled cellulose and assuming that binding 

is fast and recruitment of CBH is limited by the dissociation rate. 

However, cellulase adsorption is reported to be neglibly reversible in many 

studies (lung et aI., 2003; Nidetzky et aI., 1993; Kyriacou et aI., 1989). Contradict to this, 

evidence has also been presented that CBHI is reversibly bound with cellulose by 

experiments showing the exchange of cellulase on the substrate surface (Bothwell et aI., 

1997). In addition, Linder and Teeri (1996) also found that the CBD (cellulose-binding 

domain) of CBHI exhibits reversible adsorption. However, interestingly, Carrard and 

Linder (1999) reported that the CBD of CBHII is initially bound to substrate reversibly, 

but eventually the reversible binding becomes irreversible or negligibly reversible. 

2.16 Deactivation of Individual Cellulase Components 

Deactivation of cellulase mixtures have been well studied, however deactivation 

extents of individual cellulase components and how they affect total deactivation have 

not yet been studied. T. reesei cellulases have three major components: endoglucanases 

(EO 1-5), exoglucanases or cellobiohydrolases (CBH 1, CBH2), and ~-glucosidase, which 

have different substrate specificities. In prevIOUS studies, deactivation of 

cellobiohydrolases was mostly studied indirectly using total cellulase mixtures on the 

substrate Avicel, rather than by using purified CBH1 directly. Hydrolysis of cellulose 
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always involves activity of several different enzymes working in synergy. For example, 

endoglucanases and cellobiohydrolases show a degree of synergism (OS) of 1.4-4.9 

during the hydrolysis of Avicel (Zhang and Lynd, 2004). Therefore, the loss of Avicelase 

activity may not represent the deactivation extent of just cellobiohydrolase, and it is 

unknown whether the deactivation of endoglucanase would affect the measured 

A vicelase activity due to a synergistic effect. 

2.17 Synergism 

When the activity exhibited by mixtures of components is greater than the sum of 

the activity of these components evaluated separately, synergism of different components 

occur. If the degree of synergism (OS) is defined equal to the ratio of the activity 

exhibited by mixtures of components divided by the sum of the activities of separate 

components, the highest OS values are on Bacterium Cellulose (5-10) and cotton (3.9-

7.6) for the synergism between endoglucanases and exoglucanases. Less pronounced but 

still significant synergism is exhibited on Avicel (OS 1.4-4.9), while the smallest 

synergistic effects (OS 0.7-1.8) have been reported on phosphoric acid-swollen and other 

acid-treated amorphous celluloses (Zhang and Lynd, 2004). 

Synergism between endoglucanases and exoglucanases is the most widely studied 

type of synergy and is among the most quantitatively important for hydrolysis of 

crystalline cellulose. Other types of synergism proposed in the cellulose hydrolysis 

include: 1) exoglucanase and exoglucanase 2) endoglucanase and endoglucanase 3) 

exoglucanase or endoglucanase and P -glucosidase, which reduces inhibition by 

cellobiose (Zhang and Lynd, 2004). 
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3.1 Experimental Plan 

CHAPTER III 

EXPERIMENTAL 

In the work presented here, some traditional factors considered to affect cellulose 

hydrolysis, such as enzyme deactivation due to the reaction environment and variation of 

substrate properties, were examined. Deactivation extents of total cellulase mixture were 

studied on several substrates, such as Sigmacell, filter paper and cotton fiber which differ 

in crystallinity and morphology, to examine whether enzyme deactivation due to 

themal/mechanical mechanisms is a universal reason that can explain significant rate 

reduction in cellulose hydrolysis. Also examined were effects of variation of substrate 

properties such as crystallinity, specific surface area and average size of pore on the 

cellulose hydrolysis. Substrates in powdered form, such as Sigmacell, Cellulose, 

microcrystalline, and Solka Floc, which can be conveniently loaded into an X-ray 

diffractometer and adsorption apparatus to measure physical properties, were used. 

In order to study inactivation of adsorbed enzyme, a kinetic model describing 

inactivation of adsorbed enzyme as the main effect for the rate reduction of cellulose 

hydrolysis was developed. The modeling was first applied to account for glucose release 

rates and yields from Solka Floc, a regenerated cellulose containing minor xylan 

contamination, and then the same procedure was applied to Sigmacell Type 20, a 

microcrystalline cellulose, to examine whether the derived parameters were valid for 

20 



substrates with different properties. The relative crystalline indices measured by acid 

hydrolysis for Sigmacell Type 20 (-90%) are much greater than Solka Floc (-45-65%) 

(Weimer and Weston, 1985). Other properties such as degree of polymerization and area 

accessible to enzyme differ among these substrates as well. Then, the relative extent of 

enzyme activity loss from (1) enzyme-substrate interactions and (2) deactivation due to 

thermal/mechanical mechanisms were quantified. 

To study hydrolysis mechanism of individual cellulase, CBHl was separated by 

modification made to the protocol reported by Medve et al. (1998b). A vacuum manifold 

system was used to provide a steady flow through parallel columns to achieve scaled-up 

quantities of CBH 1 from Spezyme CP cellulases. This manifold system used step elution 

in place of the continuous gradient. The modification here employed a straightforward 

way to scale up the process by maintaining the same column length while increasing the 

effective cross-sectional area by operating multiple columns in parallel. To test the 

feasibility of this scale-up method, the purity and specific p-nitrophenyl-~-D-cellobioside 

(pNPC) activity of CBHl were examined and compared to CBHl separated 

conventionally with a FPLC system. Stability was also tested, and adsorption and 

hydrolysis of bacterial microcrystalline cellulose (BMCC) were performed with the 

CBHl separated from the scaled-up process. 

Deactivation extents of cellobiohydrolase, endoglucanase, and a total cellulase 

mixture were studied independently as functions of incubating time (a form of thermal 

deactivation) and mixing intensity. Cellobiohydrolase 1 (CBH 1) was separated from a 

commercial cellulase mixture (Spezyme CP) and then used to study specific CBH 1 

activity loss towards p-nitrophenyl-~-D-cellobioside (pNPC). Endoglucanase activity was 
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studied by usmg total cellulase on Carboxymethyl cellulose sodium salt (CMCNa) 

(CBHl and ~-glucosidase have very little activity towards CMCNa) (Takashima et aI., 

1998). Activity of the total cellulase mixture was studied on phosphoric acid swollen 

cellulose (PASC). Meanwhile, computational fluid dynamics (CFD) was used to quantify 

the shear in a rotating Erlenmeyer flask at different mixing intensity and investigate 

whether there is any correlation between the shear stress in orbiting flask and cellulase 

deactivation. 

If adsorbed enzyme becomes inactive, it would necessarily return to the bulk 

solution more slowly (if at all) and be unable to find a new binding site to start another 

hydrolysis cycle immediately. However, this underlying phenomenon has not been 

examined so far. Directly quantifying desorption of inactive enzyme is difficult since the 

structure of inactive enzyme may be similar to that of active enzyme following 

desorption, making it hard to distinguish inactive enzyme from active enzyme in the bulk 

solution. Alternatively, an indirect method can be used whereby activity is intentionally 

suppressed and then desorption is compared to an unsuppressed control. 

In this study, such desorption studies were performed using CBH 1 as the model 

enzyme species. CBH 1 activity was reduced by one of four treatments: (1) mechanical 

deactivation, (2) addition of a competitive inhibitor, (3) operating at low temperature, or 

(4) addition of a denaturant. 

Finally, guidance for process development is presented based on the mechanistic 

model considering first order inactivation of adsorbed cellulases. Effects of reaction 

temperature, reaction time, accessible surface area of substrate, and desorption of inactive 

enzyme on process improvement are discussed. 
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3.2 Materials 

Solka Floc from FD&S Corporation Urbana, OH, Sigmacell substrates from 

Sigma-Aldrich St Louis, MO, Cellulose, microcrystalline from Alfa Aesar War? Hill, 

MA, dewaxed cotton from Johnson & Johnson New Brunswick, NJ, and filter paper from 

thermo fisher scientific Waltham, MA were purchased. Dewaxed cotton fiber, Sigmacell 

and filter paper were used to assay cellulase activity on substrates since these three 

substrates can represent most substrate forms used in cellulose hydrolysis. Cotton fiber 

and Sigmacell are high crystalline cellulose while filter paper is more amorphous (Zhang 

and Lynd, 2004). Furthermore, dewaxed cotton fiber, Sigmacell and filter paper are in 

quite different shapes as ball, powder and disks, respectively, which may represent 

shapes of most substrates in hydrolysis. 

Since Sigmacell, Cellulose, microcrystalline, and Solka Floc are powder-form 

cellulose, which can be conveniently put into X-ray diffractometer and adsorption 

apparatus to measure physical properties, these three substrates were chosen to study the 

effect of initial difference in substrate physical properties on cellulose hydrolysis. 

Sigmacell, and Cellulose, microcrystalline are high crystalline cellulose. Solka Floc, is a 

regenerated cellulose containing minor xylan contamination. The relative crystalline 

indices measured by acid hydrolysis for Solka Floc (-45-65%) are much smaller than 

Sigmacell Type 20 (-90%) (Weimer and Weston, 1985). 

Moreover, Sigmacell and Solka floc were used In the kinetic modeling 

considering inactivation of adsorbed enzyme to account for cellulose hydrolysis. 

Spezyme CP cellulase enzyme provided by Genencor International, Inc Rochester, NY, 

USA, [lot # 3016295230] was used to hydrolyze the substrate. 
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For separation of CBH 1 from commercial Spezyme CP cellulases, 

triethanolamine (TEA), HC1, D-(+)-cellobiose, p-nitrophenol, pNPC, (3-aminopropyl)

triethoxysilane (APTES) and ammonium acetate were purchased from Sigma-Aldrich 

Co., MO. QUICK START Bradford Dye Reagent Ix was purchased from Bio-Rad 

Laboratories, Hercules, CA. BMCC was a kind gift from Dr. David Wilson, Cornell 

University. Vivaspin centrifuge tubes (10 kDa molecular weight cutoff) were purchased 

from Vivascience, Hannover, Germany. Spezyme CP cellulase used in this study was 

donated from Genencor International, Inc. [lot # 3016295230]. HiTrap Q HP anion 

exchange columns were purchased from GE Healthcare Bio Sciences AB, Uppsala, 

Sweden. 

To study desorption of CBH 1 at reduced activity, D-( + )-cellobiose, guanidine 

hydrochloride (GdnHC1), and potassium hexachloro palladate (IV) (K2PdC16) were 

purchased from Sigma-Aldrich Co., MO. Cellobiose (Henriksson et aI., 1996) and 

GdnHCl (Woodward et aI., 1990) are competitive inhibitors for CBHl, while K2PdC16 is 

a denaturant for CBHl (Lassig et aI., 1995). pNPC from Sigma-Aldrich Co., MO was a 

substrate used to assay CBHl activity. QUICK START Bradford Dye Reagent Ix was 

purchased from Bio-Rad Laboratories, Hercules, CA. and used to assay protein 

concentration. 
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3.3 Procedure: Effect of Enzyme Deactivation due to Environmental Mechanisms 

and Variation of Substrate Properties on Cellulose Hydrolysis 

3.3.1 Cellulase Deactivation from MechanicaVThermal Mechanisms 

0.6 mL of Spezyme CP cellulases with 50 FPU/ml were incubated in 100 ml 

reaction volume Erlenmeyer flask for up to 3 days at 50°C, 150 rpm on an orbital shaker. 

The pH of each flask was adjusted to 4.8 with citrate buffer. Samples were initially 

incubated for for 2, 4, 8, 24, 48 or 72-hours, and 2 g substrate was added for a second 

incubation period for 1 h. The activity of the cellulase was assayed. Released glucose 

content was assayed using an YSI 2700 Select Biochemistry Analyzer. The above 

experiments were performed with duplicate samples and the measurements for each 

sample were repeated twice. 

3.3.2 Characterization of Substrate Crystallinity Using X-Ray Diffraction (XRD) 

Substrate crystallinity were characterized using an X-ray diffractometer (Bruker 

08 Discover; Bruker AXS Co., TX) as reported elsewhere (Rezania et al., 2009). The 

measurement conditions were as follows: Drive = coupled; Steptime = 0.5 s; Stepsize = 

0.05°, Stepmode = Stepscan; Start 28 = 7°; End 28 = 40°; Radiation Cu K 0.154 nm; 

Detector type = Scintillation counter; HV = 774; voltage, 40 kV; current, 40 rnA. 

Crystallinity index (CrI) of different celluloses was calculated by: 

Cr I = [(1002 - lam)! 1002] * 100 (3.1 ) 

where 1002 is the height of the 002 plane peak and lAM is the height of the minimum, 

representing amorphous cellulose, between the 002 and the 101 plane peaks(Choi et al., 

2007). 
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3.3.3 SSA and Pore Size Measurement 

The SSA and pore size of substrates were measured by nitrogen gas adsorption 

and desorption isotherms as reported elsewhere (Choi et aI., 2007) using an adsorption 

apparatus (Micromeritics Instrument Corporation, Tristar 3000). The operating conditions 

are as follows: sample mass was 0.14-0.21 g; temperature was 77.300 K; equilibration 

interval was 5 s. The ranges of SSA, average pore size and total pore volume for various 

cellulose substrates were determined from the nitrogen adsorption and desorption 

isotherms, respectively, with the BJH model. 

3.3.4 Cellulose Hydrolysis 

Cellulose substrate and 0.75 ml of Spezyme CP cellulases (corresponding to 50 

FPU (filter paper unit)/mL cellulases activity or 15 FPU/g cellulose) were incubated for 

up to 3 days. Tests were run at 150 RPM in 250 mL flasks in an Innova 4230 incubator 

shaker. The pH of each flask was adjusted to 4.8 with citrate buffer. To prevent bacterial 

growth, 3 IlLlmL of cycloheximide and 4 IlLlmL of tetracycline were added to the slurry. 

Total operating volume was 50 mL. 

1.5 ml samples were removed to determine the glucose concentration at the 

incubation time of 2, 4, 8, 16, 24, 48, 72 hours. The liquid was tested for dissolved 

glucose and xylose content using an YSI 2700 Select Biochemistry Analyzer. 

3.4 Procedure: Activity Loss of Adsorbed Enzyme 

3.4.1 Examine Relative Extents of Enzyme Activity Loss from Enzyme-substrate 

Interaction and due to ThermallMechanical Mechanisms 

Relative extents of enzyme activity loss were examined on substrate Solka Floc as 

an example. To determine enzyme activity loss due to thermal/mechanical mechanisms, 
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experiments were run where enzyme underwent an initial incubation in a substrate free 

buffer solution. 0.6 mL of Spezyme CP cellulases was initially incubated for the times 

listed above without substrate, and 2 g substrate was added for a second incubation 

period for 1 h. The activity of the cellulase was assayed. The above experiments were 

performed with duplicate samples and the measurements for each sample were repeated 

twice. 

To determine enzyme activity loss from enzyme-substrate interaction, first, 0.1, 

0.2, 0.4, 0.8 and 1.2 g of Solka Floc substrate and 0.6 mL of Spezyme CP cellulases (104 

mg/ml or equal to 50 FPU/mL) were added in the flasks and incubated for 2, 4, 8, 16,24, 

48 and 72 h. This gave concentrations of 300, 150, 75, 37.5 and 25 FPU/g cellulose. The 

glucose released in this period was recorded as Ct. Each set of conditions was run in four 

flasks and duplicate measurements were made for each sample at each time point. 

A second incubation was performed as an activity assay with a second loading of 

substrate. Total substrate amount was brought up to two grams and incubated for 1 more 

hour. The total glucose released after the initial and second incubation was recorded as C2• 

Of the original four flasks, two were used as a control and run without adding fresh 

substrate in the second incubation. The glucose concentration increment in the control 

experiment during the second incubation was recorded as C3. The C3 value is used to 

quantify the amount of sugar released from the original substrate during the second 

incubation. This is an estimate to the amount that is released in the experimental flasks. 

Enzyme's activity following interaction with substrate is defined as the glucose 

concentration increment (gIL) as a result of the freshly added substrate in the second 
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incubation, which is: C2-C1-C3. The procedure to determine the total activity loss as a 

function of incubating time is summarized in Table 3.1. 

3.4.2 Glucose Measurements 

The liquid was tested for dissolved glucose content using a YSI 2700 Select 

Biochemistry Analyzer. For sampling, the slurry was stirred under the laminar flow hood 

and 1.5 mL was removed and heated above 85 DC for 10 minutes to stop the reaction. The 

sample was then centrifuged to separate the liquid out of the slurry. 

Table 3.1 

Summary of experimental procedure ofordetermining total deactivation of enzyme 

following incubation with different amounts of substrate. 

Initial Incubation Second Incubation 

Sample 1 Add initial loading of substrate (0.1 9 -1.2 g) 1. Add second loading of 
2. Add 0.6 mL enzyme in the concentration of 50 substrate (bring total up to 
FPU/ml (this gives 15 FPUlg cellulose when the 2.0g) 
remaining substrate is added for the second 2. Complete the second 
incubation) incubation (1 hour for every 
3. Complete initial incubation (2,4,8, 16,24,48,72 sample) 
hours) 3. Take 2nd sample, C2 
4, Take 1'" sample, C1 

Control 1. Add initial loading of substrate (0.1 9 -1.2 g) 1. Do not add substrate 
2. Add 0.6 mL enzyme in the concentration of 50 2. Complete the second 
FPU/ml incubation (1 hour for every 
3. Complete initial incubation (2,4,8, 16,24,48, 72 sample) 
hours) 3. Take 2nd sample, C3 
4. Take 1 sl sample, C1 

3.5 Procedure: Scaled-up Separation of CBHl from a Commercial Cellulase 

Mixture to Study Hydrolysis and Inactivation Mechanisms 

3.5.1 Preparation of Spezyme CP Sample 

To separate CBH 1 from Spezyme CP cellulases, the initial crude enzyme sample 

was buffer exchanged to pH 7.6 in a 10 mM TEA (Triethanolamine)-HCI buffer by 
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repeated ultrafiltration in 6 ml Vivaspin centrifuge tubes III preparation for 

chromatography as suggested by Medve et al. (1998b). 

3.5.2 Protein Assay 

Unless stated otherwise, protein concentrations were determined at least in 

triplicate according to absorbance at 280 nm (Medve et al., 1998b), with a NanoDrop 

Spectrophotometer (ND-1000, NanoDrop Technologies, Inc. Wilmington, DE). 

The total protein concentration in the Spezyme CP was determined by the 

software with the NanoDrop Spectrophotometer using the effective molecular weight and 

absorption coefficient of the mixtures. Since CBHl, CBH2 and EG2 account for 92% of 

total cellulase protein in the T. reesei cellulases, the effective molecular weight and 

absorption coefficient of the cellulase mixtures can be approximated by Equation (3.2): 

P= P xX rt-P iXX zt-P;xX ) 
X rt-X zt-X) 

(3.2) 

where P represents the effective molecular weight or absorption coefficient of cellulase 

mixtures; subscript 1, 2 and 3 represents the major cellulase components CBH 1, CBH2 

and EG2, and X represents the relative abundance of the three major cellulase component. 

The molecular weights (g/mol), absorption coefficients (mM-I cm-I) at 280 nm, and the 

relative abundance of each of the major proteins are: 64,000, 78.8, 60% (CBHl); 53,000, 

92.0, 20% (CBH2); 48,000, 78.0, 12% (EG2).(Medve et al., 1998b) Then the effective 

molecular weight and absorption coefficient of Spezyme CP cellulases are 59,522 g/mol 

and 81,565 M-Icm-I, respectively, as calculated from Equation (3.2). 

The CBH 1 concentration in the separation was estimated from the absorbance at 

280 nm, using a molecular weight of 64,000 g/mol and absorption coefficient of 78.8 

M -I -I m cm. 
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3.5.3 Continuous Gradient Elution 

The separation of cellulases was first carried out using an AKT A FPLC (fast 

protein liquid chromatography) (Amersham Pharmacia Biotech; Uppsala, Sweden) as 

reported by Medve et ai. (1998b) at 4 Dc. The FPLC system consisted of a pump (P-920), 

UV monitor (UPC-900), a valve (INV-907), a mixer (M-925) and a fraction collector 

(Frac-900/901). 29 mg of Spezyme CP cellulases was loaded onto a 5 ml HiTrap Q HP 

anion exchange column, the contents of which were equilibrated to pH 7, and eluted with 

120 ml 0-33% 1 M salt in 20 mM TEA-HCI (pH 7.0) buffer at a flow rate of 3 ml/min. 

The initial sample contained total protein at 104 ± 1 mg/ml according to 

absorbance at 280 nm and using 1 A(280)= 1 mg/ml with a NanoDrop Spectrophotometer 

(ND-1000, NanoDrop Technologies, Inc. Wilmington, DE). The protein content 

measured here is in the range of reported values of 82 mg/ml (Kim et aI., 2011) and 123 

mg/ml (Kumar and Wyman, 2008) for Spezyme CP cellulase as elsewhere. Unless 

specially mentioned, all tests in this work were repeated at least three times. 

Decreasing the operating pH reduces binding of enzymes with higher PI to an 

anion column, and as a result can better purify CBH 1 from other substances. CBH 1 from 

previous step separations was applied to a lower pH condition (pH = 6) to examine 

whether a second separation was needed to improve the purity of CBH 1 separated in the 

first separation. 

3.5.4 Step Elution (with vacuum manifold) and Scale-up 

The ion exchange column (5 ml HiTrap Q HP column) was connected to a VM 20 

vacuum manifold (Sigma-Aldrich Co.; St. Louis, MO) to achieve a pressure differential 

for enzyme separation. A flow route of the separation system is shown in Figure 3.1a. 
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This manifold system required step elution in place of the continuous gradient. 

Following loading of 29 mg of CBHl (in 10 mM TEA-HCI pH 7.6 buffer) onto each 

anion column, 10 ml of 0.1 M, 15 ml of 0.25 M, or 8 ml of 0.33 M sodium chloride in 20 

mM TEA-HCI pH 7.0 buffer were applied to elute the protein successively following a 

wash of the column with 20 ml of 20 mM TEA-HCI pH 7.0 buffer. The protocol is 

summarized in Table 3.2. With this manifold system (Figure 3.1 b), scale-up can be easily 

achieved by simply connecting several columns in parallel (5 columns were connected to 

vacuum manifold in this study). 

Table 3.2 

Profile for step elution 

Step Species 

Spezyme CP cellulases 

2 20 mM TEA-HCI pH 7.0 buffer (to wash column) 

3 O.lM salt in 20 mM TEA-HCI pH 7.0 buffers 

4 0.25 M salt in 20 mM TEA-HCI pH 7.0 buffers 

5 0.33 M salt in 20 mM TEA-HCI pH 7.0 buffers 
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(per column) 

-30mg 

20 ml 

10 ml 

15 ml 

8 ml 
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2 

1. syringe 2. holder 3. column 4 . sample loop 

5. fradlon colledor 6 . vacumn loop 7. VI.! 20 vacumn manifold 

8 . vacumn pump 

Figure 3.1. Scaled-up separation of CBH 1 by a vacuum manifold system. (a) flow route 

of the separation system; (b) experimental set-up. 

3.5.5 SDS-PAGE Analysis 

The collected fractions were characterized by SDS-PAGE gel electrophoresis. 

The SDS-PAGE was run on a 10% tricine eparating gel with a 4% tricine stacking gel 

and was applied with a 30 rnA constant current using an AE-6450 dual mini slab kit 

system (ATTO Corporation; Tokyo, Japan) for about 3 hours. The protein was stained 

with cooma sie brilliant blue as other report elsewhere (Kotchoni et al., 2006). 

3.5.6 pNPC Activity Assay 

pNPC was used to test the activity of CBHl. A volume of 200 III cellulase sample 

at a concentration of 0.2 mg/ml was incubated with 800 III of 2.5 mmol/l pNPC solution 
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(pH 4.8) at 50°C for 30 min. The reaction was stopped by addition of 1 ml 12.5% 

N a2C03 solution. The concentration of p-nitrophenol produced was determined by light 

absorbance at 410 nm using a N anoDrop Spectrophotometer (ND-lOOO, N anoDrop 

Technologies, Inc. Wilmington, DE). A standard curve was plotted by reading light 

absorbance at 410 nm for concentration standards of p,-nitrophenol between 10-250 

mg/ml. 

To distinguish the pNPC activity induced by EG 1, cellobiose in a concentration 

of 0.02 M was added to the pNPC solution before incubation. With the addition of 

cellobiose, activity of CBH 1 was inhibited. The remaining pNPC activity was due to EG 1. 

The average of six measurements was reported. 

3.5.7 Stability of CBHl 

CBH 1 at 0.2 mg/ml was incubated in a 2 ml reaction volume for up to 2 days at 

50°C and 150 rpm in an orbital shaker. A pNPC assay was used to determine the activity 

of CBH 1. During incubation for 0.5, 1, 2, 4, 8, 24, or 48-hour incubation, 0.2 ml samples 

were continuously removed from the reaction, mixed with 800 ~l pNPC at 2.5 mmolll, 

and incubated at 50°C for 10 min. The reaction was stopped by addition of 1 ml 12.5% 

Na2C03 solution. CBHl activities as a function of reaction time were normalized 

according to activity before reaction. The average of six measurements was reported. 

3.5.8 Adsorption of CBHl on BMCC 

The apparent binding isotherms of CBH 1 adsorbed on BMCC were determined at 

o °c using an ice-water bath with end-over-end mixing. CBH 1 at concentrations of 0.1, 

0.2, 0.4, 0.6, 0.8 and 1.0 mg/ml were incubated with a 0.15% (rn/v) BMCC solution for 

45 minutes. The concentrations of free CBH 1 were determined using the Bradford 
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Protein Assay. The amounts of CBH 1 adsorbed on BMCC were calculated by deducting 

amounts of free CBH 1 from the total initial loadings. The average of six measurements 

was reported. 

0.1, 0.2, 0.3, 0.6 and 1.2 mg/ml bovine serum albumin (BSA) was incubated with 

BMCC as control. The non-specific adsorption of BSA on BMCC was determined and 

compared with CBH1 adsorption. 

3.5.9 Hydrolysis of BMCC 

Liu et al. (2009) used AFM (atomic force microscopy) height images of cellulose 

exposed to CBHI to observe cellulose size reduction during the reaction, which they 

claimed was the result of CBHI hydrolysis. We have carried out a similar analysis, where 

hydrolysis of BMCC by CBH1 was monitored in real-time by imaging with AFM to 

observe cellulose fiber height. BMCC was immobilized on APTES-treated mica via 

vapor deposition as reported elsewhere (Baker et aI., 1998; Crampton et aI., 2005). The 

freshly cleaved mica was placed in a small reaction chamber (i.e. 250 ml glass beaker) 

with 0.5 ml of APTES in a 1 ml glass beaker inside the reaction chamber. The reaction 

chamber was allowed to equilibrate for 2 hours with the APTES to coat the mica. A 

volume of 5 ~l BMCC suspension in a concentration of 0.75 !lg/ml was introduced onto 

the APTES-mica surface for adsorption for 30 minutes. A low concentration of BMCC 

was used so that changes in height can be observed on a single fiber. The cellulose 

adsorbed mica was then gently washed with D.I. water. Enzyme was introduced onto the 

substrate by dropping a small volume of diluted CBH1 solution directly onto the 

cellulose substrate. Once the surface adsorption was completed, the cellulose surface was 

placed in a shallow glass petri dish containing a buffered solution at pH 4.8. The weak 
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buffering helps maintain the pH throughout the experiment but reduces the likelihood that 

salt from the buffer deposits onto the surface and disrupts the imaging process. The petri 

dish was placed into the AFM (model XE-lOO, Park Systems Inc., Santa Clara, CA). 

Images were acquired using the non-contact mode under water. Height, phase and error 

signals were measured with an All-in-One probe cantilever with a nominal force constant 

of 0.2 N/m using scan rates between 0.15-0.25 Hz. 

3.6 Procedure: Deactivation of Individual Cellulase Components 

3.6.1 Effect of Incubating Time on Cellulase Deactivation 

0.1 ml Spezyme CP cellulase samples with 50 FPU/ml or 4.2 mg CBH 1 

(corresponding to the CBH1 content in 0.1 ml Spezyme CP cellulases based on 75 mg/ml 

cellulases and 56% of CBHl content in Spezyme CP as reported elsewhere (Ye et aI., 

2011) were incubated in 100 ml reaction volume Erlenmeyer flask for up to 2 days at 50 

DC, 150 rpm on an orbital shaker or without mixing. The pH of each flask was adjusted to 

4.8 with citrate buffer. Samples were incubated for 2, 4, 8, 24, or 48-hours. 

3.6.2 Effect of Mixing Intensity on Cellulase Deactivation 

0.1 ml Spezyme CP cellulase with 50 FPU/ml or 4.2 mg CBH1 was incubated for 

one day at 50, 150, and 250 rpm. A sample was incubated without mixing as a control. 

The other conditions were the same as in the previous section. 

The fluid motion inside the orbiting Erlenmeyer flask was modeled using Fluent 

12.1.2 (ANSYS, Inc. Canonsburg, PA), a commercial CFD software package, to 

determine shear stress by the fluid. A 3-D rendering of the flask was created in the 

preprocessor ICEM with dimensions and orbital parameters that mimicked the actual 

flask, which had a base diameter of 8.5 cm, a neck diameter of 3.0 cm, a length from base 
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to neck of 10 cm. The initial fluid height was 2.04 cm. The orbital radius was 1.0 cm. 

Three rotation rates were modeled: 50, 150, and 250 rpm. A mesh with 329,846 

hexahedral computational cells was applied to the volume. The modeling technique, 

convergence criteria, grid optimization, and time needed to reach steady state for the 

transient solution have been described previously (Berson et aI., 2008) and validated 

(Thomas et al., 2011). 

3.6.3 Effect of Enzyme Concentration on Cellulase Deactivation 

0.15,0.3,0.6 and 1.2 ml Spezyme CP cellulase with 50 FPU/ml was incubated for 

1 day at 250 rpm or without mixing. Samples were removed (diluted to 5 FPU/ml) to 

assay for total activity towards PASCo Reaction was run in 100 ml volume. The other 

experimental conditions were the same as in the study of Effect of Incubating Time on 

Cellulase Deactivation. 

3.6.4 Activity Assay 

CBH 1 activity was determined by pNPC assay. Endoglucanase activity was 

assayed by mixing 1 ml enzyme solution removed during the incubation with 1 ml 

containing 5.0% (w/v) CMCNa, and reacted for two more hours. Released glucose 

content was assayed using an YSI 2700 Select Biochemistry Analyzer. An average of six 

measurements was reported. 

Total activity was assayed by mixing 1 ml enzyme solution removed during the 

incubation with I ml containing 5.0% (w/v) PASC substrate, and reacted for two more 

hours. Released glucose content was assayed using an YSI 2700 Select Biochemistry 

Analyzer. 
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3.7 Procedure: Desorption of CBHl at Reduced Activity 

3.7.1 Deactivation by Mechanical Deactivation 

To study enzyme desorption at reduced activity, CBHl activity was first 

suppressed by mechanical deactivation. CBH 1 in a concentration of 0.2 mg/ml was 

incubated with 0.15% (w/v) BMCC in a 2-ml reaction volume micro-centrifuge tube at 

50 DC. Mechanical deactivation was induced by mixing at 150 or 300 rpm on an orbital 

shaker. 0.2 ml samples were removed from the reaction after incubating for 0.5, 1,2,4,8, 

or 24-hours, then assayed for CBH 1 activity and fraction of free enzyme. An average of 

three measurements was reported unless otherwise specified. 

3.7.2 Deactivation by Competitive Inhibitor 

Either 20 mM cellobiose or 0.25 M GdnHCI (Henriksson et aI., 1996; Woodward 

et aI., 1990a) was added to the reaction described in the previous section on a shaker 

platform at 150 rpm to study desorption in the presence of a competitive inhibitor. 

Activity of CBHl and the fraction of free enzyme were assayed. 

3.7.3 Deactivation by Low Reaction Temperature 

The reaction was run at 0 DC (using an ice-water bath) with end-over-end mixing 

for 0.5, 1,2,4, 8, or 16 hours on a shaker platform at 150 rpm. Other reaction conditions 

were similar to that in section of deactivation by mechanical deactivation. The fraction of 

free enzyme was assayed. 

3.7.4 Deactivation by K2PdCl6 (Denaturant) 

Deactivation and desorption of CBHl from BMCC was examined with 50 or 

162.5 /!M of K2PdCl6 (corresponding to 16: 1 or 50: 1 molar ratio of K2PdCl6 to CBH 1), 

which was added and allowed to incubate for 30 minutes prior to initiating the reaction. 
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Deactivated CBH1 was then incubated with 0.15% (w/v) BMCC for another 40 minutes 

to allow adsorption to occur. The samples were centrifuged, supernatant was removed, 

and the solid was re-suspended in 2.0 ml fresh citrate buffer (pH=4.8) in order to 

determine if the inactive adsorbed CBH 1 can desorb from substrate. The fraction of free 

CBH 1 was measured at 40, 100, 220 and 480 minutes. Activity of CBH 1 was determined 

using the pNPC assay. 

3.8 Procedure: Factors to Consider When Developing a Cellulose Hydrolysis 

Process 

3.8.1 Kinetic Modeling to Determine Activation Energy 

In order to examine the effects of reaction conditions such as temperature on 

cellulose hydrolysis, the activation energy of each reaction step needs to be determined 

first. Hydrolysis of Sigmacell were performed at three different temperatures: 50, 35, and 

20°C. Activation energies for the rate limiting steps were determined using an Arrhenius 

plot based on the kinetic model describing inactivation of adsorbed enzyme as the main 

effect for the rate reduction of cellulose hydrolysis. 
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CHAPTER IV 

EFFECT OF ENZYME DEACTIVATION DUE TO ENVIRONMENTAL 

MECHANISMS AND VARIATION OF SUBSTRATE PROPERTIES ON 

CELLULOSE HYDROLYSIS 

4.1 Extent of Total Cellulase Deactivation from the Reaction Environment 

The activity of total cellulases following 72 hours of incubation as assayed 

towards three different substrates is shown in Figure 4.1. Deactivation extents were 

insignificant on all three substrates. Activity loss assayed on cotton fiber was the least, 

with 12% deactivation over the 72 hour incubation; while a little more deactivation was 

observed on filter paper and Sigmacell, with 8-22% and 14-22% deactivation after 48-72 

hours of incubation, respectively. For all tests here, only -20% or less deactivation was 

observed after 72 hours of incubation. Zhang et aI., (2010) suggested that about 80% or 

more deactivation of cellulases from thermal/mechanical mechanisms within 12 hour 

would be needed to account for slow kinetics in cellulose hydrolysis with their 

mathematical modeling, implying that enzyme deactivation alone as determined here is 

not a universal reason that can account for the significant rate reduction in hydrolysis. 

Since these three substrates differ in properties and morphology, for example cotton fiber 

and Sigmacell are high crystalline cellulose while filter paper is more amorphous (Zhang 

and Lynd, 2004), it can be concluded here that substrate crystallinity and morphology did 

not affect deactivation. 
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Figure 4.1. Activities of cellulases after 72 hours of incubation in buffer solution. 

Activities were normalized according to the activities after 2 hours of incubation. 

4.2 Effect of Varying Substrate Properties on Cellulose Hydrolysis 

Effect of varying substrate properties on cellulose hydrolysis was studies in two 

ways: First, effect of substrate property change during the reaction on hydrolysis was 

-studied; Second, effect of initial properties of different substrates on hydrolysis was 

studied. 

Figure 4.2 shows that XRD profiles of cellulose at different hydrolysis time 

overlapped with each other. The calculated CrI varied less than 1 % during the 72-hour 

incubation period. This finding is consistent with results reported elsewhere (Lenz et aI., 

1990; Ohmine et aI., 1983; PuIs and Wood, 1991), which suggested cellulose crystallinity 

is not likely to change and affect cellulose hydrolysis rate. 
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Figure 4.2. XRD profile of Sigmacell during 72-hour reaction. 

Figure 4.3 shows changes of SSA, total pore volume and average pore size during 

the reaction. SSA generally increased during the 72-hour hydrolysis, from 1.512 m2/g at 2 

hour to 2.753 m2/g at 72 hour, about 1.8-fold increase (Figure 4.3a). This finding agrees 

with the trend of SSA change during the reaction for Solka Floc as reported elsewhere 

(Lemos et aI., 2003). Total pore volume increased about 2.6-fold during the same 

hydrolysis period, from 4.63 mm3/g at 2 hour to 12.2 mm3/g at 72 hour (Figure 4.3b). 

Meanwhile, average pore size increased from 11.56 nm at 2 hour to 17.16 nm at 72 hour 

(Figure 4.3c). Larger SSA at the later stage than beginning suggests that the substrate had 

a greater capacity for enzyme to adsorb as reaction goes on. Also, increasing pore volume 

and average pore sizes indicate that the structure of cellulose is more open for enzyme to 

attack. These findings about cellulose structures during hydrolysis are contradictory to 
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the fact that hydrolysis rate slows down significantly as reaction goes on, implying that 

these physical features were not the main factors affecting cellulose hydrolysis rate. 

Effect of initial substrate properties on hydrolysis was studied as in Table 4.1 and 

Figure 4.4. The Cr!, SSA, total pore volume and average pore size were measured for 

three different cellulose substrates, Sigmacell Type-20, Solka Floc and Cellulose, 

Microcrystalline (Table 4.1). The Cr! determined by XRD for these three substrates were 

0.75-0.83, respectively, and increased in the order of Solka Floc, Cellulose, 

microcrystalline and Sigmacell Type-20. The range of SSA was 1.0534-1.8997 m2/g, 

about 1.8-fold difference; Total volume of pores was 3.968-9.302 m2/g, about 2.3-fold 

difference; Average pore size was 13.664-21.030 nm, about 1.5-fold difference for these 

three substrates, respectively. Values of these properties increased in the order of 

Cellulose, microcrystalline, Solka Floc, and Sigmacell Type 20. 
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Figure 4.3. Change of (a) SSA, (b) pore volume and (c) average pore sizes during the 

reaction for Sigmacell. 
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Table 4.1 

Initial physical properties of different substrates 

Substrate 

Crystallinity (CrI) 

SSA(m2/g) 

Pore volume (mm3/g) 

A verage pore size (nm) 

c 
o 

0.6 

0.5 

.Ci5 0.4 
..... 
CD 
> c 0.3 
o 
() 

0.2 

0.1 

Sigmacell 

Type-20 

0.83 

1.77-1.90 

9.16-9.30 

19.29-21.03 

o 20 

Solka Floc 

0.75 

1.67-1.68 

5.73-5.89 

13.67-14.15 

40 60 80 

t(h) 

Cellulose, 

Microcrystalline 

0.81 

1.05-1.16 

3.97-4.07 

13.66-15.44 

100 

Figure 4.4. Comparison of hydrolysis of three different cellulose substrates. 

5% (w/v) cellulose substrate and 0.75 ml of Spezyme CP cellulases 

(corresponding to 50 FPU (filter paper unit)/mL cellulases activity or 15 FPU/g cellulose) 

were incubated for up to 3 days. Enzymatic hydrolysis of various crystalline cellulose 
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substrates is shown in Figure 4.4. The initial hydrolysis of different substrates is very fast, 

while the glucose concentration increment slows down quickly after about 8 hours. It was 

found that hydrolysis kinetics was similar for different substrates although physical 

properties varied. The conversions for different substrates differ mostly less than 10% at 

each time point. The finding here suggested that the differences in the physical properties 

of various cellulose substrates did not affect the hydrolysis rate of cellulose. This finding 

is consistent with that reported by lalak and Valjamae (Jalak and Valjamae, 2010), who 

found a commonly apparent hydrolysis rate constant for several different substrates such 

as lignocellulose, Avicel, and amorphous cellulose when these substrates are hydrolyzed 

by cellobiohydrolase 1 (CBH 1). 

4.3 Summary 

In this chapter, some traditional factors considered to affect cellulose hydrolysis, 

such as enzyme deactiation due to the reaction environment and variation of substrate 

properties, were examined. Deactivation of total cellulases as assayed towards three 

different substrates here was only -20% or less after 72 hours of incubation, which 

suggests that the slow kinetics may not be a result of just enzyme deactivation from the 

reaction environment. Effects of physical property change during the reaction such as 

crystallinity, SSA, pore volume and average pore size on enzymatic hydrolysis of 

cellulose were then also studied. It was found that crystallinity of Sigmacell did not 

change during the reaction; while SSA, pore volume and average pore sizes increased, 

which is contradictory to the fact that hydrolysis rate slowed down significantly as 

reaction went on. Meanwhile, initial physical properties such as crystallinity, SSA, pore 

volume and average pore size of various substrates were characterized to study whether 
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vanance III these initial features affects hydrolysis. Hydrolysis kinetics for these 

substrates was similar although physical properties differ. The findings here imply that 

changes of these physical properties during the reaction and variance in initial physical 

properties of substrates also do not significantly account for the slow kinetics during 

hydrolysis of cellulose. Since both environmental and substrate considerations alone do 

not account for the slow kinetics, deactivation due to interactions between the enzyme 

and substrate should be considered. 
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CHAPTER V 

ACTIVITY LOSS OF ADSORBED ENZYME 

5.1 Cellulose Hydrolysis 

0.1, 0.2, 0.4, 1.2 g and 2 g of cellulose substrate and 0.6 ml of Spezyme CP 

cellulases (50 FPU (filter paper unit)/mL cellulases activity) were incubated for up to 3 

days. The substrate concentrations were purposefully kept low to prevent mass transfer 

and product inhibition effects. Hydrolysis of Solka Floc in concentrations of 1-20 giL 

illustrates the slowdown in rate as the reaction proceeds (Figure 5.1). The initial release 

of product is very fast, while the glucose concentration increment slows down very 

quickly after about 8 hours. A range of 42-53% of the maximum achievable glucose in 72 

hours was obtained within the first 8 hours of the saccharification, which is comparable 

to reported results at higher concentrations (Dasari and Berson, 2007). 
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-- .-. 
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Figure 5.1. Glucose released during 72-hour incubation for Solka Floc. 
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5.2 Theoretical Modeling 

Model development begins with a simple rate equation for cellulose hydrolysis 

without the effect of cellulase activity loss, then builds to include a first order inactivation 

of adsorbed cellulase. Start with a minimal possible mechanism for cellulose hydrolysis: 

E+S~ ES ¢E+P (S.1) 

k.J 

which describes initial binding of enzyme and cellulose to form an active enzyme-

substrate complex followed by the breakdown of the enzyme-substrate complex to form 

product P and release enzyme from the substrate. In this minimal mechanism, the 

cellulase system is represented by a single enzyme. Product inhibition is neglected for 

simplicity since inhibition of cellulases by the final glucose product is insignificant in the 

loading range used here (Nidetzky and Steiner, 1993), with an inhibition constant of 69 

giL (383 mM) (Tolan and Foody, 1999). 

A basic expression for the hydrolysis rate (V) is given: 

dP 
V = - = klx(ES) (S.2) 

dt 

When cellulase adsorption IS described usmg the Langmuir model, the 

concentration of initial enzyme-substrate complex (ES) can be expressed by Equation 

(S.3): 

(ES) = (E) x A m.xX (S) 

(E) + K" 
(S.3) 

where Kd [giL] is the dissociation constant, which for a simple binding mechanism is 

given by kJIk-J. Al1!ux is the maximum adsorption sites per unit substrate (gig). 

The mass balance for enzyme is given by Equation (S.4): 
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(ES) + (E) = (£)o (5.4) 

where (£)o [~Ml is the concentration of total enzyme. Substitute for (£) in Equation (5.3) 

and re-arrange to get: 

[A,naxx(S) + Kd + (£)o - (ES)l x(ES) - (E)o xAmaxx(S) = 0 (5.5) 

Equation (5.5) has two roots for (ES). Substrate concentrations were kept low in 

the experiments performed here, so the adsorbed enzyme (ES) was negligible compared 

to (£)0. Therefore, Equation (5.5) can be simplified to 

(ES) = (E)ox AmaxX (S) 
A maxX (S) + Kd + (E)o 

(5.6) 

Combining Equation (5.2) and Equation (5.6), the hydrolysis rate will be: 

V = dP = kzx(ES) = kzx (E)ox AmaxX (S) 
dt Amaxx(S)+Kd+(E)o (5.7) 

If a nominal Km is defined as 

Km= Kd+(E)o 

Amax 
(5.8) 

and V max, the maximum rate, is defined as the product of k2 and concentration of total 

enzyme (E)o, then the hydrolysis rate can be written as in Equation (5.9): 

V = dP = kzx(ES) = kzx(E)ox(S) = V max X (S) 
dt Km + (S) Km + (S) 

(5.9) 

If Vmax and (or) Km are constants, integration of the differential function of product 

with respect to time gives: 

~_ Km xln 1.1x(S)o-P =t 

V max V max P 
(5.10) 

where the initial substrate concentration, (S)o, can be related to the substrate 

concentration (S) as in Equation (5.11) where 1.1 is the product to substrate mass ratio 

when cellulose is converted to glucose: 

(S) = (S)o - (P) 
1.1 

(5.11) 
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t 
By rearranging Equation (5.10), a plot of p versus 

1 1 1.1x(S)o-P 
-x n IS 
P P 

expected to give a straight line with intercept -KmIV max and slope lIVmax-

However, the data clearly does not fit this linearly for any of the substrate 

concentrations (Figure 5.2). It is speculated here that apparent Vmax, where Vmax=(E)Oxk2, 

is not constant if total enzyme becomes less available since adsorbed cellulases are 

inactivated during the reaction . 

• 100 • 1 giL 
• 2 giL 

.- • • 4 giL 
C> 

12 giL :::J " 
~ 50 • ... 20 giL -- • 
a.. • • 
~ • 

I • • • • • • • • 0 • • 
-2 0 2 4 6 8 10 

(1 IP)*ln[(So -P)/P] (L/g) 

t 
Figure 5.2. A plot of - versus 

P 

1 1 1.1 x (S)o - P -x n----- at substrate concentrations of 1-
P P 

20 giL. 

Next, the real hydrolysis rate (Vr), which considers cellulase activity loss, IS 

defined relative to V according to Equation (5.12): 

Vr kz x (ES )a<fil'e (ES )acril'e 
= = v kzx(ES) (ES) 

(5.12) 

The relation between (ESL·tive, the active enzyme-substrate complex, and (ES) , 

the initial enzyme-substrate complex, is shown in Equation (5.13), which is similar to the 

forms in Fersht (1999): 

(ES )actil'e - t 
---= yo+Aoxexp(ln 2x-) 

(ES) tl/2 
(5.13) 
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where Ao is the extent of inactivation, yo is the residual activity of enzyme, and t1/2 is the 

half life. They can be related to the inactivation rate constant, kf , and the reactivation rate 

constant, k,., by the following equations: 

Ao= 
kr 

kt + k, 

kj 
yo= -

k, +k, 

In2 
t1/2= --

kr +kr 

(5.14) 

(5.15) 

(5.16) 

Rearranging Equation (5.12) and combining with the expression for (ES)actil'e III 
(ES) 

Equation (5.13) and the expression for V in Equation (5.9), the real hydrolysis rate (Vr) 

becomes: 

V
-V (ES)aOil'e 

r- x---
ES 

(S) - t 
= V max X x[ vo + Aoxexp(ln2x-)] 

Km + (S) . tl/2 

Vnwx,app is defined according to Equation (5.18): 

-t 
V max.lIpp = V max x[yo + Aoxexp(ln2x-)] 

tll2 

(5.17) 

(5.18) 

which indicates that the apparent V max decreases with a first order exponential decay 

function of time due to inactivation of adsorbed enzyme. The real hydrolysis rate is then 

expressed as: 

dP (S) 
Vr = - = V max, ap!, X --'--'--

dt Krn + (S) 
(5.19) 

which describes the reduction of the real hydrolysis rate due to the inactivation of 

adsorbed enzyme. 
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5.3 Calculation of the Values of Rate Constants 

First, an empirical second order exponential growth equation (Equation 5.20) was 

used to fit product release as a function of reaction time for the data in Figure 5.1. 

t t 
P = Po + Al x exp(--) + A2xexp(--) (5.20) 

tl tz 

where P is product released (giL), t is reaction time (h), Po (gIL), A] (gIL), A2 (giL), t] (h), 

and t2 (h) are empirical parameters. Values of the parameters are listed in Table 5.1. The 

fittings give R2 greater than 0.995 for all concentrations of substrate. This equation was 

also used by Valjamae et al. (1998), who found that the second order exponential growth 

equation fit their data best among different fitting functions they tried, although this is an 

empirical equation without physical meaning. Second order exponential growth fitting 

gave the best fit here as well among the following functions: first order exponential 

growth, sum of linear and first order exponential growth, and second order exponential 

growth. 

Second, the product formation rate (VI' in Equation (5.19)) at different times is 

calculated by differentiation of Equation (5.20) with respect to time, and the substrate 

concentration (S) at different times in the reaction is calculated for varying initial 

substrate concentrations (S)o by using Equation (5.11). 

Third, Equation (5.19) was used to regress nonlinearly the Vmax,app and Kill values 

at a certain time for varying initial substrate concentrations (Figure 5.3). The regressed 

value for Kill is shown in Table 5.2. Kill does not show a clear trend, so the average value 

(16.03 giL) is used to represent Km in the modeling under the assumption that binding 

characteristics of enzyme to substrate does not change during the reaction. This value for 

average Km yields a big standard deviation. Robinson and Tiedje (1983) point out that Km 
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is sensitive to the accuracy of data collected at low substrate concentrations, especially at 

the late stage of hydrolysis, which is the case here. 

Table 5.1 

Parameters from data fitting to second order exponential growth from hydrolysis results 

in Figure 5.1. 

Substrate 1 2 4 12 20 

concentration (giL) 

Po (gIL) 0.700 1.345 2.470 8.310 10.12 

A] (giL) -0.208 -0.396 -0.823 -2.242 -2.737 

t] (h) 3.864 2.296 3.729 4.085 2.851 

A2 (giL) -0.427 -0.999 -1.608 -6.004 -7.651 

t2 (h) 25.61 19.92 23.93 57.67 44.01 

R2 0.9995 0.9997 l.0000 0.9999 0.9956 
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Table 5.2 

}jl/ax.app and Km as functions of reaction time. 

0.7 

0.6 

0.5 
...-... 
:2 0.4 
it 
---1 
::::::- 0.3 
0) ---~ .... 0.2 

0.1 

0.0 

t Vmax.app KI1I 

(h) (g/(L·h)) (gIL) 

2 1.40 ± 0.18 26.1 ± 5.3 

4 0.70 ± 0.02 15.7 ± 0.8 

8 0.32 ± 0.02 10.4 ± 1.3 

16 0.20 ± 0.02 11.2 ± 1.9 

24 0.20 ± 0.01 16.8 ± 1.8 

48 0.14 ± 0.06 18.4 ± 12.6 

72 0.07 ± 0.05 14.2 ± 16.4 

• 2 h nonlinear fitting 
• 4 h . . . .. nonlinear fitting • 
... 8 h --. --- nonlinear fitting 
... 16 h ------ nonlinear fitting 
• 24 h nonlinear fitting 
~ 48 h .. ----- nonlinear fitting Ii 

• 72 h - nonlinear fitting .. • 

.•.. 

° 5 10 15 20 

S (giL) 

Figure 5.3. Regression of Vlllax.app and Kill as a function of time. V,. is calculated by 

differential of Equation (5.20), S is calculated by Equation (5.11). Curves are nonlinearly 

regressed by Equation (5.19) to estimate VlIlax.app and Kill as a function of reaction time. 
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Figure 5.4 shows that regressed values of Vmax,app decreas significantly as a 

function of reaction time, from about 1.5 (g/(L· h)) at 2 hours to less than 0.1 at 72 hours, 

a more than 90% reduction during the 72-hour reaction. This result is consistent with a 

similar curve showing significant decrease in observed catalytic constants reported by 

Jalak and Valjamae (2010). 

The curve in Figure 5.4 was fitted to Equation (5.18) , giving 2.96 (g/(L·h)) for 

Vmax> 0.053 for Yo , 0.95 for Ao, and 1.75 h for t1/2. k2, the apparent hydrolysis rate, can be 

determined by VI/WX divided by the concentration of total enzyme (£)0 as suggested by 

Equation (5.9) . The molar mass of glucose is 180 g/mol, therefore V max is equal to 0.016 

MIh. Spezyme CP contains 82 mg proteinlmL as provided by Genencor (Kim et aI., 

2011). 0.6 mL of Spezyme CP cellulase added in a 100 mL reaction volume gives an 

enzyme concentration of 0.49 gIL. Assuming the average molecular weight of cellulases 

is 60,000 g/M, then the concentration of the total enzyme added is 8.2 /lM. Therefore, 

VII/ax divided by the concentration of total enzyme (£)0 gives a value of k2 equal to 

2.0x103 h' l (or equal to 33 min,I). These values are comparable to the reported values of 

3-30 min' l reported by Klyosov (1988) and 19 min' l by Kremer and Wood (1992) for 

cellulase incubated with A viceI. 

1.5 

- first order exponential decay fitting 
E 1.0 
....J 

~ 
~ 
~' O.5 

::::.~ . . 
o 20 40 00 80 

t(h) 

Figure 5.4. First order exponential decay fitting of Vmax,app as a function of reaction time 

to calculate the inactivation rate constant. 
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When dissociation (enzyme release due to product formation) is likely to limit the 

hydrolysis process, the value of k2 may reflect the dissociation rate constant multiplied by 

the processivity number (Jalak and Valjamae, 2010). Another possible explanation is that 

when dissociation is negligible compared to the adsorption rate constant, the initial 

hydrolysis rate can be written as in Equation (5.21) when (S) is much smaller than K m, so 

that free enzyme (E) approaches total enzyme (E)o: 

V = dP = k2x(ES) = k2x(E)ox(S) "" ~X(E)X(S) 
dt Km + (S) Km 

(5.21) 

where k21Km is the apparent second order rate constant for the reaction of free enzyme 

with free substrate. If initial binding is negligibly reversible, the reaction rate constant of 

the diffusion controlled encounter of the enzyme and substrate will have a magnitude of 

at least 109 M-1s-1 (Fersht, 1999), suggesting k21Km should be of this magnitude. Km is 

16.03 giL glucan unit. The degree of polymerization of Solka Floc is about 600-800 

glucan/unit cellulose. The molar mass of cellulose will be 1.08-1.44 x105 g/mol. 

Therefore, Km is about 1.1-1.5xlO-4 M cellulose. k21Km then equals -2.9-4.0x103 M-1s-1, 

which is several orders of magnitude smaller than the diffusion limited rate constant, 109 

M-1s-1. Therefore, there may be another event that occurs following enzyme adsorption, 

which limits the hydrolysis rate (more on this is discussed in the next section). 

The values of Yo, Ao and t1/2 can be applied to Equations (5.14) - (5.16) to 

calculate the inactivation rate constant (kf) and reactivation rate constant (kr) for the 

adsorbed enzyme. kf and kr calculate to 0.38 h-1 and 0.021 h-1, respectively. The 

inactivation rate constant (kt) is an order lof magnitude arger than the reactivation rate 

constant (kr), therefore increasing amounts adsorbed enzyme becomes inactivated as the 

reaction proceeds. The inactivation rate constant calculated here for adsorbed enzyme is 
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comparable to value of the inactivation rate constant reported by Howell and Mangat 

(1978) (0.235 h- I
) and Converse et al. (1988) (0.4 h- I

). 

5.4 Comparison of Theoretical Model Prediction to Experimental Hydrolysis 

Results 

The proposed minimal theoretical model is summarized in Figure 5.5. After 

substituting for Ao, Yo and t1/2 in Equation (5.17) with k1and kr by Equation (5.14)-(5.16), 

and substituting for Vmax in Equation (5.17) with (E)oxk2, the rate of hydrolysis reaction 

becomes: 

(S) kr kt 
Vr = klx (E)ox x{--+--xexp[-(k;r +kr)xt]} 

Km+(S) kt+kr kr+kr 
(5.22) 

E+S 
kl 

( ) ESactive 
) E+P 

k-l 

ESinactive 

Figure 5.5. Proposed minimal theoretical model to account for cellulose hydrolysis, 

which describes enzyme binding to substrate with association and dissociation rate 

constants kl and k_ 1• Some active enzyme-substrate complex produces product with an 

apparent hydrolysis rate k2 while the other becomes inactive with an inactivation rate 

constant kf and reactivation rate constant kr. 
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P-t curves were generated from Equation (S.22) using the values of k2, kj, kr and 

Km determined above and Equation (S.ll). The curves generated from Equation (S.22) are 

shown in Figure S.6(a), along with actual hydrolysis of Solka floc data. The theoretical 

conversion at 72 hours deviates by 2.9%, 2.8%, 9.9%, -1.4%, 6.4% from experimental 

results for substrate concentrations of 1.0, 2.0, 4.0, 12.0 and 20.0 gIL, respectively. The 

differences between predicted and experimental results are all within 10% or less, 

suggesting the theoretical modeling adequately accounts for Solka Floc hydrolysis, at 

least in this range of initial substrate concentrations. The same modeling method was also 

applied to account for the hydrolysis of Sigmacell as a substrate. Comparison of the 

estimated parameters for Solka Floc and Sigmacell are shown in Table S.3. The rate 

constants (k2, kj, kr) for Sigmacell were within 2.S% of the values for Solka Floc. 

Furthermore, a common value of Vmax implies that the rate-limiting intermediate step 

(discussed above in regards to the expected order of magnitude of k2lKm) would occur for 

any substrate type. One possibility may be an isomerization of enzyme following 

adsorption, which is suggested since it is known to occur in other enzyme-substrate 

systems, such as in the reaction of triosephosphate isomerase (Fersht, 1999). This finding 

is particularly noteworthy, especially if the rate-limiting step can be identified. lalak and 

Valjamae (2010) also reported that a common apparent hydrolysis rate constant was 

found for several different substrates such as lignocellulose, A vice!, and amorphous 

cellulose when these substrates were incubated with a major cellulase, CBHl, from 

Trichoderma reese;. 

Glucose released from hydrolysis of Sigmacell was higher than from Solka Floc 

during the same incubation time (Figure S.6b). For example, after a 72-hour incubation 
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glucose released was 41 %, 44%, 48%, 24% and 41 % higher than that for Solka Floc at 

substrate concentrations of 1, 2,4, 12 and 20 gIL, respectively. This is consistent with the 

lower Km value for Sigmacell (an average value of 6.23 giL from the regression) 

compared to Solka Floc (16.03 giL) since Km appears in the denominator of Equation 

(5.9). 
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Figure 5.6. Comparison of measured and predicted glucose released. (a) Solka Floc; (b) 

Sigmacell. 
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Table 5.3 

Comparison of estimated parameters for Solka Floc and Sigmacell. 

Substrate Solka Floc Sigmacell 

~nax (g/(L·h)) 2.96 2.83 

yo 0.05 0.04 

Ao 0.95 0.96 

t1l2 (h) 2.52 2.50 

Km (gIL) 16.03 6.23 

k2 (min-I) 33 32 

kt' (h- I) 0.38 0.38 

kr (h- I) 0.02 0.02 

The theoretical conversion at 72 hours for Sigmacell deviates by 1.2%, 3.6%, 

5.4%, 9.5%, and -4.3% from experimental results for initial substrate concentrations of 

1.0, 2.0, 4.0, 12.0 and 20.0 giL, respectively, which like the Solka Floc, are also within 

10% or less of experimental results. 

5.5 Relative Extents of Enzyme Activity Loss for Enzyme-Substrate Interactions 

and ThermallMechanical Mechanisms 

The activity loss of cellulases as a result of themallmechanical deactivation, from 

incubating in substrate-free soultions, is shown in Figure 5.7. The activity slowly 

declined during the incubation; activity loss was about 20%, 35% and 40% after 24, 48 
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and 72 hours, respectively. The activity was fitted to a first order exponential model, 

Equation (5.23), which is comparable to Equation (5.13), 

ActivitY=;o_rlm+ Ao_rlm xexP(ln2x -t ) 
tIl2-rlm 

(5.23) 

where the subscript -tim stands for deactivation from thermal/mechanical mechanisms. 

From the fitting function, YO-tim = 0.553, AO-tim = 0.389, and tll2-tim = 21.5 h. Modelling by 

Levine et al (2010) suggested that an enzyme half-life due to thermal deactivation of 

about 4.3 hours or less for endoglucanase2 or 10.6 hours or less for cellobiohydrolasel 

would be needed to account for the slow kinetics of cellulose hydrolysis. The 21.5 hour 

value determined here, therefore, implies that enzyme deactivation due to 

thermal/mechanical mechanisms does not account for the significant rate reduction 

during enzymatic hydrolysis of cellulose. 

1.0 ! 
0.8 f 

~0.6 .s: 
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Figure 5.7. Activity of cellulase on Solka Floc following incubation in buffer solution for 

2-72 hours. All data were nomalized according to the 1 hour cellulase activity without 

initial incubation. 
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The deactivation rate constant, kf-tlm, solved from AO-tlm = 0.389 and t1l2-tlm = 21.5 

h with a relation between Equations 5.l4-5.16 was 0.0123 h- 1
, is more than 30 times 

smaller than the inactivation rate constant (kf = 0.38 h- 1
) for adorbed enzyme determined 

previously, further confirming that enzyme deactivation due to thermal/mechanical 

mechanisms is not the main cause for the slow kinetics of cellulose hydrolysis. 

Next, activity loss of cellulases due to interaction with substrate was determined 

(Figure 5.8). Activity decreased quickly up to -24 hours. For example, at 24 hours, 

remaining activity was about 60% after interaction with 1 gIL substrate and about 10% 

after interaction with 12 gIL substrate. This compares to about 80% remaining without 

any interaction with substrate (Figure 5.7). After 24 hours, activity of cellulases 

following interaction with substrate decreased slowly, dropping to 45% and 10% of its 

original value within 72 hours for the lowest 1 giL and highest 12 giL concentrations 

tested. In summary, the more substrate present, the higher the percentage of cellulase 

becomes inactivated, further implying that enzyme-substrate interactions cause loss of 

activity. 

The relative extent of activity loss due to thermal/mechanical mechanisms (P-tlm) 

in the total activity loss at a specific initial substrate concentration and time point can be 

calculated by equation (5.24): 

1- A-~ 
Ai=-r/m 

P-tlm = As 
1- ------

(5.24) 

Ai,s 

where k tlm is the cellulase activity at a certain time during incubation in a substrate free 

buffer solution, As is the activity of cellulases at a certain time following interaction with 

substrate, Ai-tim is the initial cellulases activity without previous incubation in a buffer 
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solution, and Ai,s is the initial cellulases activity with a certain concentration of substrate. 

Relative extent of activity loss due to enzyme-substrate interactions (PE-S), which may 

represent inactivation of adsorbed enzyme, is calculated by: 
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80 

Figure 5.8. Activity of cellulase following interaction with different amounts of substrate 

during the initial incubation. All data were nomalized by the I-hr cellulase activity 

without initial incubation (Defined as C2 in the Methods Section). Curves are fit to a 1 sl 

order exponential decay. 

Figure 5.9 shows the companson of relative extents of activity loss at three 

selected incubation time points: 4, 16, and 48 hours of the first incubation. At all three 

time points, the more initial substrate added, the more activity loss from inactivation of 

adsorbed enzyme. Except for the case of cellulases incubated with just 1 gIL substrate, 

the dominating effect in activity loss is inactivation of adsorbed enzyme (as opposed to 

thermal/mechanical mechansims). For example, inactivation of adsorbed enzyme has a 
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relative extent of 62% for an initial substrate concentration of 2 giL and 89% for 12 gIL 

at 4 hours. 

Relative activity loss due to thermal/mechanical mechanisms increased as the 

reaction proceeded; the activity loss from enzyme-substrate interactions decreased from 

62% of total activity loss at 4 h to 42% at 48 h for an initial substrate concentration of 

2g/L and from 89% at 4 h to 64% at 48 h for 12 gIL . Activity loss due to enzyme

substrate interactions levels off at about 10 hours (with the highest substrate 

concentration of 12 giL tested here) to 30 hours (with the lowest substrate concentration 

of 1 giL tested here) (Figure 5.8). However, activity loss due to thermallmechanical 

mechanisms is lower compared with that due to enzyme-substrate interactions; for 

example there was only 20% activity loss in substrate free buffer solution at 24 hours 

versus 90% with 12 giL substrate. This trend continued throughout the 72 hour 

incubation. In summary, loss of cellulase activity, especially during the early part of the 

incubation, is mainly from enzyme-substrate interactions, which is likely caused from 

inactivation of adsorbed enzyme. 

5.6 Determination of Apparent Inactivation Rate Constant from Enzyme-Substrate 

Interactions 

Comparing rate constants between enzyme-substrate interactions and 

thermal/mechanical mechanisms provides another means for quantifying the relative 

extent of deactivation. Activity of cellulases in Figure 5.8 was fitted to a first order 

exponential decay model like in Equation (5.13). Parameters for the first order 

exponential decay fitting of activity of cellulases following interaction with substrate are 

listed in Table 5.4, where Yapp, Aapp and tll2,app are apparent residue activity, apparent 
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interactions and thermal/mechanical mechanisms. 
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Table 5.4 

Parameters from the first order exponential decay fitting of activity of cellulases 

following interaction with substrate. 

Initial 

substrate 1 2 4 8 12 

(giL) 

Yapp 0.415±0.033 0.397±0.040 0.264±0.047 0.241±0.060 0.121±O.044 

Aapp 0.613±0.038 0.583±0.053 0.68±0.093 0.719±0.118 0.869±O.099 

tll2,app (h) 11.01±1.92 7.72±1.93 2.63±0.94 2. 13±O.80 1.37±0.38 

R2 0.98206 0.95976 0.91989 0.90454 0.95141 

inactivation extent, and apparent half life following inactivation due to enzyme-substrate 

interactions, respectively. The apparent half-lifes are 11.01,7.72,2.63,2.13 and 1.37 hrs 

and apparent residual activity are 41.5%,39.7%,26.4%,24.1% and 12.1% following an 

initial incubation with cellulose in concentrations of 1.0, 2.0, 4.0, 8.0, 12.0 gIL, 

respectively. Both half-life and residue activity were reduced significantly by addition of 

substrate in increasing amounts. This is a clear indication of cellulase activity loss due to 

enzyme-substrate interactions. The apparent inactivation extent following enzyme-

substrate interactions generally increased as a function of increasing substrate 

concentration. Equation (5.13) can be re-arranged to determine the inactivated en!'.yme-

substrate complex, (ES)inactive, as a fraction of the total intial enzyme-substrate complex: 

(E5)illaCfi\'e _ (E5) - (E5)acfire _ A [1 (1 2 ~)] 
-'----'--- - - 0 - exp n x 

(E5) (E5) tll2 
(5.26) 

Combining Equation (5.6) and (5.26) and normalizing by (E)o gives 
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(ES)illactil'e A maxX S - t = x Ao[1- expOn 2 x -)] 
(E)o + Kd + A maxX S tl/ 2 (E)o 

(5.27) 

Apparent inactivation extent Aapp therefore can be defined as: 

A 
AmaxxS A 

app = X 0 
(E)o+ Kd + AmaxxS 

(5.28) 

The apparent inactivation rate constant kf,app can be calculated from: 

k 
Aapp 

r.lIpp = 
. ln2xt1l2 (5.29) 

kf,app increased with increasing initial substrate concentration (Figure 5.10), from 

about 0.0386 h- I for 1 giL initial substrate to 0.440 h- I for 12 giL initial substrate. The 

values are 3-36 times higher compared to kf-tlm, which further confirms the finding that 

activity loss due to enzyme-substrate interactions is more significant than from 

thermal/mechanical mechanisms. 

kf,app can be related to the inactivation rate constant (kf) for adsorbed enzyme by: 

kJ = Ao 
In 2Xtll2 

Aapp (E)o+ Kd + S x Amax k (E)o+ Kd + S xAmax ----x = j',lIppX--------

In 2 x til 2 S x A max S x A max 

(5.30) 

Furthermore, when the enzyme concentration is overloaded compared to substrate, 

and when combining with Equation (5.8), Equation (5.30) can be simplified as: 

k.r = kr. app x (E)o + Kd = kf, lIpp X Km 
SxAmax S 

(5.31) 

When kf,app is plotted against substrate concentration, the ratio between kf,app and S 

(Figure 5.10) is 0.035 l/(g·h). Km is 16.03 giL, resulting in kf equal to 0.56 h- I
. The value 

calculated here is comparable to 0.38 h- I
, which was derived previously in the section 

Calculation of the Values of Rate Constants. This value is 46 times greater than the 

inactivation rate constant for enzyme deactivation due to thermal/mechanical mechnisms 

(kf-tlm = 0.0123 h- I in the section of Relative Extents of Enzyme Activity Loss for 
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Enzyme-Substrate Interactions and Thermal/Mechanical Mechanisms), further evidence 

that inactivation of adsorbed enzyme from enzyme-substrate interactions is more 

significant than from thermal/mechanical mechanisms. The result here is also comparable 

to values reported by Converse et aI., (1988) (0.4 h-') and Howell and Mangat (1978) 

(0.235 h- 1
) for inactivation of adsorbed enzyme. 
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Figure 5.10. A plot of apparent inactivation rate constantant kf,app versus substrate 

concentration to calculate the inactivation rate of adsorbed enzyme, kf-

5.7 Summary 

A mathematical model incorporating a first order inactivation of adsorbed 

cellulases was developed that accurately describes cellulose hydrolysis kinetics. The 

enzyme's apparent maximum rate decreases with a first order exponential decay function 

of time, and it is speculated here that this is due to inactivation of adsorbed enzyme. The 

model predicted enzymatic hydrolysis results within 10% of experimental results for both 

So~ka Floc and Sigmacell substrates. The apparent hydrolysis rate (k2) and inactivation 

rate (kj ) constants were 33 min-1 and 0.0063 min-' (0.38 h- 1
), respectively, comparable to 
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values reported elsewhere. The rate constants were within 5% for the two different 

substrates, further strengthening the value of the model, and implying a common but yet 

undefined rate-limiting step associated with loss of enzyme activity likely exists in the 

pathway of cellulose hydrolysis. 

The relative extents of activity loss due to enzyme-substrate interactions and 

deactivation from thermallmechanical mechanisms were compared, and enzyme-substrate 

interactions contributed more towards the overall deactivation than did 

thermal/mechanical mechanisms, especially during the initial hours. Regarding enzyme

substrate interactions, the decrease in activity was seen to be a function of both time and 

initial substrate concentration, with the activity dropping to 45% of its original value 

within 72 hours for 1 giL and dropping to 10% of its original value for 12 gIL. Three 

independent metrics were compared to quantify the relative extent of deactivation: (1) 

Relative deactivation due to enzyme-substrate interactions was 62% (for 2 giL initial 

substrate) and 89% (12 giL) at 4 hours, and 42% (2 gIL) and 64% (12 giL) at 48 hours. (2) 

The apparent half-life of enzyme following interaction with substrate (tIl2,app) was 1.37-

11.01 hours, which is much shorter than the half life as a result of thermallmechanical 

deactivation (tll2-tlm), which was 21.5 hours. (3) The apparent inactivation rate constant 

for enzyme-substrate interactions (kf,app) was about 3-36 times higher compared to the 

deactivation rate constant of thermal/mechanical mechanisms (kf-tlm). It is concluded here 

that enzyme-substrate interactions is the main cause of activity loss of cellulases and 

contributes significantly to the slow kinetics of cellulose hydrolysis. 
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CHAPTER VI 

SCALED-UP SEPARATION OF CBHl FROM A COMMERCIAL CELLULASE 

MIXTURE TO STUDY HYDROLYSIS AND INACTIVATION MECHANISMS 

6.1 Assay of Total Protein Concentration in the Spezyme CP cellulases 

With the NanoDrop Spectrophotometer, the total protein concentration in the 

Spezyme CP cellulases was determined to be 75 ± 1 mglml by absorbance at 280 nm 

using the effective molecular weight and absorption coefficient of 59,522 glmol and 

81,565 M-Icm-I, respectively, for the Spezyme CP cellulases_ This value is comparable to 

82 mglml (Kim et ai., 2011) as provided by Genencor International, Inc. 

6.2 Identification of CBHl in the Spezyme CP cellulases 

CBH 1, molecular weight equal to 64,000 glmol, is the major component of 

Spezyme CP cellulases (Kabel et ai., 2006), and was identified by SDS-PAGE (Figure 

6.1). CBH 1 was represented by the band with the highest intensity between the molecular 

marker weights of 66 and 55 kDa. The next highest molecular weight is EG 1 at 55,000. 

If the major band were EG 1, then there would have to be another band above it 

representing CBH 1. The fraction of CBH 1 is -60% compared to less than 8% for EG 11, 

so that band would have to be more prominent. The fraction of CBH 1 of the total 

Spezyme CP proteins was determined to be 56 ± 9% by processing the images of the five 

enzyme loadings shown in Figure 6.1. Proteins were quantified by densitometry of the 
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coomassie-stained gel, usmg Image] software (Mizunoya et aI., 2008). The fraction 

determined here is comparable with reported 60 ± 5% content of CBHl in total cellulase 

proteins from T. reesei cellulase system, I from which the Spezyme CP cellulase is made. 

MW {KDa) 
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36 

31 
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211Q 411g 811g 10llg 
-------------------------------, 

Figure 6.1. SDS-PAGE of the crude Spezyme CP cellulases. The molecular weight of 

each band is indicated on the left. The amount of protein loaded in each well is indicated 

above the gel. 

6.3 Continuous Gradient Elution 

CBHl was first separated with the anion exchange column at pH 7 by continuous 

gradient elution with a FPLC system. The chromatography result is shown in Figure 6.2a. 

Since CBHl has the lowest pI value among cellulases from T. reesei, it is expected that it 

would bind to an anion column most tightly, and as a result would eluted at the highest 

ionic strength (in the third peak here). Enzymes were recovered from each of the three 

peaks, and the compositions of enzymes in each pool were characterized by SDS-PAGE 

(Figure 6.2b). Enzyme recovered in the third peak appears as a single band and had a 

molecular weight corresponding to CBHl , as was identified in Figure 6.l. The protein 

yield, 70% for CBH 1, was calculated as the amount of protein present in the desired pool 

divided by the amount of CBHl present in the initial crude mixture. The separated CBHl 

was further applied to the same column, but at a lower pH of 6, to examine whether its 
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purity could be further improved by a second separation. CBHI exhibited a single large 

symmetric peak (Figure 6.2c), confirming good purity of CBH 1 from the initial 

separation run at pH 7. 

6.4 Step Elution and Scale Up 

From Figure 6.2a it was estimated that CBHI began to elute at a salt 

concentration of 0.25 M. A step elution profile was developed as follows. A buffer with a 

salt concentration of 0.25 M was used to elute the contaminants appearing in the first and 

second peaks in a continuous . gradient elution, while CBHI was recovered by a buffer 

with a salt concentration of 0.33 M. A large amount of elution buffer with 0.25 M salt 

causes loss of CBHI in the undesired fraction. Therefore, buffer with 0.10 M salt was 

first used to elute some easily removable contaminants. In this way, the contaminants 

could still be effectively removed while most of the CBHI could be recovered in the 

fraction eluted with 0.33 M salt. The yield of CBH 1 was calculated using Equation 6.1. 

Yield of CBHl = CBHl Concentration x Volume of CBHl fraction 
Initial loading of Spezyme CP x Content of CBHl 

(6.1) 

The yields of CBHl separated from the vacuum manifold system and FPLC are 

summarized in Table 6.1. The yield differed by less than 6% between the vacuum 

manifold system and the FPLC system. 
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Figure 6.2. Separation of CBHl by a FPLC system. (a) Separation of CBHI from 

Spezyme CP cellulases with a continuous salt gradient at pH 7. (b) SDS-PAGE of the 

fractions collected in the three peaks as shown in (a) Lanes contain: (1): fractions in 1st 

peak, (2) fractions in 2nd peak, (3) fractions in 3rd peak, and (4) molecular weight marker. 

(c) The separated CBHl was applied at pH=6 to examine its purity and whether a second 

separation is needed. 
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Table 6.1 

Comparison of protein yields of CBH1 separated by FPLC, a single column vacuum system, and scaled-up vacuum manifold system. 

Initial loading of Spezyme CP cellulases was 40 mg to each column. 

Test Protein Yield ofCBH1 (0/0) Total activity Activity due to Specific pNPC 

Column Column Column Column Column (U/mg) EG1 (U/mg) Activity (U/mg) 

1 2 3 4 5 

FPLC 70 ± 5 0.059 ± 0.002 0.012 ± 0.001 0.047 ± 0.002 

Vacuum manifold 73 ± 1 0.070 ± 0.002 0.018 ± 0 0.052 ± 0.002 
"d' 
I"'-

Vacuum manifold (scale-up) 70±2 68 ±O 68 ± 1 71 ±O 64±0 0.074 ± 0.007 0.021 ± 0.006 0.053 ± 0.001 



The purity of CBH I separated from the manifold system was compared with that 

of CBHl separated from the FPLC system (Figure 6.3a). CBHl separated by both 

methods showed a single band on the SDS-PAGE gel, which suggests good purity of 

CBHl separated by either method. With 5 columns connected in parallel, a total of 55 mg 

CBHl was separated from 145 mg Spezyme CP cellulase at once. In the scale-up 

separation, both the yields (Table 6.l) and purities of CBHl (Figure 6.3b) were 

repeatable and comparable to a single column separation. There are 20 ports available for 

the connection of columns in the VM 20 vacuum manifold, so scale-up can be performed 

with this system for three to four times the volume tested here. Not all 20 columns can 

run in parallel at one time since 2-4 ports are needed to adjust the vacuum pressure, 

depending on how many columns are in use. 
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Figure 6.3. Examination of the purity of CBHl separated by the vacuum manifold 

system. (a) Comparison of SDS-PAGE of CBHl separated by FPLC and vacuum 

manifold. Lanes contain: (1): CBHl separated by FPLC, (2) CBHl separated by vacuum 

manifold, and (3) molecular weight marker. (b) SDS-PAGE of the scaled-up separation 

by step elution. Lanes contain: (1) fraction eluted by buffer with 0.1 M salt, (2) fraction 

eluted by 0.25 M salt buffer, (3)-(7) fractions eluted by 0.33 M salt buffer and 5 columns 

in parallel, and (8) molecular weight marker. 
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Medve et. aI.' s separation procedure required about 46 minutes as calculated from 

their elution volume of 137 ml with a flow rate of 3 mllmin and about 65 minutes as 

calculated from their elution volume of 520 ml with a flow rate of 8 mLlmin. The time 

for separation with the vacuum manifold system presented here is about 33 minutes as 

calculated from a total elution volume of 33 mLlcolumn with a flow rate of 1 mLlmin, 

plus an additional approximately 10 minutes total for addition of buffer between each 

step elution. The nature of the parallel manifold system results in separations on a larger 

scale in about the same order of time as the smaller-scale FPLC, and the required time is 

maintained on further scale-up. 

6.5 pNPC assay 

It is difficult to remove EG 1 completely (estimated about 1-2% contaminant) 

from CBHl since EGI has a pI closer to CBHl than any of the other cellulase 

components. EGI and CBHl have significant sequence homology (45% identity) (Zhang 

and Lynd, 2004) but EG 1 has a 30-times higher pNPC activity than CBHl (Takashima et 

aI., 1998; Takashima et aI., 1996). A small contaminant of EG 1 in a separated CB HI 

sample may give an overestimate of the specific pNPC activity for CBHl in this assay. 

Since CBH 1 is strongly inhibited by cellobiose, which has a Ki of 20 JlM (Henriksson et 

aI., 1996) and EGI displays less inhibition by cellobiose (Du et aI., 2010). 0.02 M 

cellobiose was added during the reaction to completely inhibit CBHl activity in the 

pNPC assay, so that any activity due to EG 1 would stand out. The specific pNPC activity 

for CBHl is determined from Equation (6.2): 

Cpr-c) - Cp(+c) 
Specific activity of CBHl = ---.------------

ReactlOn time x Concentration of CBHl 

(6.2) 
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where Cp(-c) is the concentration of p-nitrophenol generated without addition of cellobiose, 

and Cp(+c) is the concentration of p-nitrophenol generated following addition of cellobiose. 

The specific CBH 1 activity along with EG 1 and total activities are summarized in Table 

6.2. The specific activity of CBHl separated from the vacuum manifold system (0.052 

U/mg) was similar to that separated by FPLC (0.047 U/mg). These values are similar to 

other report elsewhere. Takashima et al. (1996) reported the specific pNPC activity of 

CBH 1 separated by expressing a CBH 1 gene in Aspergillus oryzae to be 0.0543 U/mg. 

An ammonium acetate (pH 7) buffer was used to examine whether the TEA-HCI 

buffer used here had an adverse effect on CBHl activity. The CBHl separated by the 

FPLC system with an ammonium acetate buffer showed a similar specific pNPC activity 

(0.039 U/mg) as the CBHl separated using the TEA-HCI buffer, which suggests that the 

TEA-HCI buffer, which was also used by Medve et al. (1998b) in their separation, does 

not adversely affect CBH 1 activity. 

6.6 Stability of CBHl 

The stability of CBH 1 at 50°C with stirring at 150 rpm was tested for 2 days 

(Figure 6.4). The normalized activity of CBHl did not decrease significantly in the first 8 

hours, and about 85% of the initial activity was retained following 2 days of incubation. 

Therefore, there was no significant deactivation of CBH 1 at the tested conditions. 

6.7 Adsorption of CBHl on BMCC 

Binding isotherms of CBH 1 on BMCC were measured to determine the affinity of 

separated CBHl for substrate (Figure 6.5). As CBHl loading increased, bound CBHl 

increased until reaching a plateau of about 4 Ilmol/g BMCC. In the control test, 

adsorption of BSA on BMCC was much smaller as compared with CBHl adsorption, 
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with less adsorbed protein on BMCC and more protein free in solution. BSA is 

negatively charged at pH 7, and showed minimal and concentration-independent binding 

toBMCC. 

The binding isotherms of CBHl were regressed using a 'Langmuir-type' model: 

Ea = A maxX Ka x Er 
1+ KaxEr 

(6.3) 

where Ea is the concentration of bound CBHl, Amax is the maximum adsorption capacity 

(~mol/g BMCC), Ka is the association constant (LI~mol), and Ef is the concentration of 

free CBHl. 

With a nonlinear regression, the values of Amax and Ka were found to be 3.69 ± 

0.24 ~mol/g BMCC and 5.55 ± 2.34 ~M -I, respectively. The results here are comparable 

with the findings of Srisodsuk et al. (1993) who reported an Amax of 4.2 ~mol/g BMCC 

and Ka of 7 .14 ~M -I for a CBH 1 expressed in a E. coli strain. 
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Figure 6.4. Stability of CBH 1 at 50°C and 150 rpm. All data were normalized according 

to the initial pNPC activity. 
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Figure 6.5. Binding isotherms of CBH1 and BSA on BMCC at 0 0c. CBH1 and BSA at 

concentrations of 0.1, 0.2, 004, 0.6, 0.8 and 1.0 mg/ml were incubated with 0.15% (rn/v) 

BMCC solution for 45 minutes. The concentrations of free protein were determined by 

the Bradford Protein Assay. The amounts of protein adsorbed on BMCC were calculated 

by deducting amounts of free CBH 1 from the initial total loadings. 

6.8 Hydrolysis of BMCC 

Figure 6.6a-d shows the changing height of an imaged BMCC fiber throughout 

the hydrolysis reaction. The width of the fiber is -1 !-lm, which is 25 times greater than 

the width of an individual fibril of 40 nm (Jervis et aI., 2005), so it is likely that the 

imaged fiber is a bundle of individual fibrils. The initial maximum height of the bundle of 

fibrils is -45 nm. During the reaction (Figure 6.6b-6d) a reference point on the mica 

surface was marked with a cursor. A horizontal line was drawn across this reference point 

so that a comparison of fiber height at the same location can be made over time. Another 

cursor was set at the left edge of the fiber. During the reaction the height of the fiber was 
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reduced to -30 nm after 45 minutes (Figure 6.6b), -15 nm after 1.5 hours (Figure 6.6c), 

-8 nm after 2.5 hours (Figure 6.6d) and almost nothing remained after 3 hours. 

Hydrolysis of BMCC cellulose by the separated CBH1 was fast, confirming that the 

CBH 1 after separation retained a high activity towards crystalline cellulose and, therefore, 

is useful for studying various aspects of cellulose hydrolysis such as binding and kinetics. 

Only the height of the BMCC fiber changed during the reaction, and not the width. 

This indicates that CBHI tends to hydrolyze cellulose only from certain surfaces, which is 

consistent with other observations that the binding domain of cellulases only binds to 

certain surfaces on crystalline cellulose (Lehtio et al., 2003; Liu Y. S., 2010; Tormo et al., 

1996). 

6.9 Inactivation of Adsorbed Enzyme 

Crowding of adsorbed enzyme (highlighted in circles) was visualized on phase 

images using AFM (Figure 6.7). In Figure 6.7, the images at 45, 90 and 150 minutes are 

related to the topography images at the same time points. The width of the fiber 

(indicated by the arrow) is -1 !lm as observed in the topography image (Figure 6.6). It is, 

therefore, estimated here that the dimension of the crowding is on the order of -100 nm, 

which is much larger than a single CBH1 molecule with dimensions of of 4 by 18 nm. 

The crowding is likely due to jamming of CBH1 as reported by Igarashi et al. (2011), 

which prevented CBH 1 from proceeding along the substrate surface and causing 

inactivation of adsorbed enzyme. The finding here helps support the hypothesis of the 

inactivation step of adsorbed enzyme as proposed in Chapter V. 
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Figure 6.6. Height change of cellulose fiber during the reaction. (a) Height of cellulose 

fiber before reaction. The fiber is pointed out by a pair of cursors. (b) Height of cellulose 

fiber after 45 minutes of reaction. A reference point on the mica surface was marked with 

a cursor. A horizontal line was drawn across this reference point so that a comparison of 

fiber height at the same location can be made over time in the following reaction. 

Another cursor was set at the left edge of the fiber. (c) Height of cellulose fiber after 1. 5 

hours of reaction (Note that the baseline of height for mica surface is about -5 nm in this 

figure) . (d) Height of cellulose fiber after 2.5 hours of reaction (Note that the baseline of 

height for mica surface is about 4 nm in this figure). 
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Figure 6.7 Phase images of inactivation of CBHl on a BMCC substrate surface. Arrows 

point to the edge of the fiber. The phase images at 45, 90 and 150 minutes are related to 

the topography images at the same time points. Crowding of enzyme is highlighted in 

circles. 

6.10 Summary 

CBHl separation from Spezyme CP cellulases was successfully scaled-up by 

incorporating a vacuum manifold system and step elution to an ionic chromatography 

method. The CBHl separated by this technique exhibited comparable purity and yield to 

CBHl separated on a smaller scale by a conventional FPLC system. With five columns 

running in parallel, about about 55 mg CBHl was separated from 145 mg Spezyme CP 

cellulases at once, and the system can be easily scaled-up further by adding additional 

columns. Separated CBHl was identified as a single band on the SDS-PAGE gel, and 

showed good stability during a 2-day incubation at 50 °C. It had a maximum adsorption 

at 0 °C on BMCC of about 4 I1mol/g, and a Ka of 5.55 11M) . The activity of CBHl 

towards pNPC from the scaled-up system (0.052 U/mg) was comparable to that measured 

in a FPLC (0.047 U/mg) and as reported elsewhere. 

The results suggest that CBHl separated by this system is of good quality for 

studying CBHl/substrate interactions, and this separation protocol can facilitate research 

in the investigation of CBHl interactions with cellulose by providing large-scale 



quantities of purified CBH 1, which is an important component in the study of enzymatic 

hydrolysis of cellulose. Moreover, the vacuum manifold system can be setup for less 

than 10% of the cost of a FPLC system. 

The CBH1 was then used to examine hydrolysis and inactivation mechanisms on 

BMCC substrate using AFM imaging. The degradation of BMCC by CBH 1 was fast as 

determined by real-time AFM imaging. The maximum fiber height was reduced from 45 

nm initially to about 8 nm after 2.5 hours of enzymatic hydrolysis, which is a reduction of 

about 80%, confirming good activity of separated CBH 1. Only the height of the BMCC 

fiber changed during the reaction, indicating that CBHI tends to bind and hydrolyze 

cellulose from certain surfaces. Crowding of adsorbed CBH 1 on the substrate surface was 

observed in phase images, which provided supporting evidence for the inactivation of 

adsorbed enzyme proposed in Chapter V. 
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CHAPTER VII 

DEACTIVATION OF INDIVIDUAL CELLULASE COMPONENTS 

7.1 Effect of Incubating Time on Cellulase Deactivation 

The effect of incubation time on cellulase deactivation was studied for two cases, 

with mixing (150 rpm as an example) and without mixing. The CBH1, endoglucanases, 

and total activities were all normalized according to their maximum values, regardless of 

mixing or no mixing. The maximum values occurred at 4 hours with mixing for CBH 1 

and total cellulase, and at 4 hours without mixing for endoglucanases. 

With mixing, activities of CBH 1, endoglucanases, and total cellulases all 

increased to a peak level before eventually decreasing (Figure 7.1a), which is likely 

indicative of an acclimation process for the cellulases before deactivation begins to occur. 

Activities then decrease before becoming stable by 24 hours. CBHl and total activities 

both peaked at 4 hours while endoglucanases activity peaked at 8 hours, implying that 

total activity may be more directly influenced by CBHl than by endoglucanases. The 

extents of activity loss were 35% for CBHl and 20% total cellulases after 48 hours of 

incubation, while endoglucanase activity did not decrease much, only 8% after 48 hours, 

further implying that the decrease in total cellulase activity is more closely related to the 

decrease of CBHl activity. This may simply be because T. Reesei cellulases contain 

much more CBHl (about 56%) (Ye et aI., 2011) than endoglucanases (about 10%) 
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(Takashima et aI., 1998). Gunjikar et aI. (2001) also found that exoglucanase was the 

component most prone to de-activation and could account for the overall loss in cellulase 

activity. 

Without mixing, activities of eBH 1, endoglucanases, and total cellulases also first 

increased before eventually decreasing and then leveled off by 24 hours, indicating a 

similar acclimation process for the cellulases (Figure 7.1 b). Without mixing, the 

maximum eBHl and total activities were about 84% and 93% of those with mixing, 

respectively, which suggests that mixing (at 150 rpm) had little effect on activity of 

eBH 1 and thus total cellulase activity. Without mixing, the extents of activity loss were 

35% for eBHl, 8% for endoglucanases and 22% for total cellulases after 48 hours of 

incubation, while with mixing the extents of activity loss were 35%, 8% and 20% for 

eBH 1, endoglucanases and total cellulases, respectively, further implying that long-term 

deactivation of eBH 1 and total cellulases were independent of mixing, at least at this 

intensity. 

The deactivation extent for total cellulases was only about 20% after 48 hours of 

incubation both with and without mixing, which suggests that the slow kinetics may not 

be a result of just enzyme deactivation. Levine et al (2010) concluded that an enzyme 

half-life (due to thermal deactivation) much shorter than reported would be needed to 

account for the slow kinetics of cellulose hydrolysis, also implying that enzyme 

deactivation alone does not account for the slow kinetics. Hatfield (2010) reported that 

cellulase deactivation from enzyme-substrate interactions was more significant than from 

mechanisms related to the incubating environment. 
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Figure 7.1. (a). Activities of cellulases after incubation at 150 rpm. (b). Activities of 

cellulases after incubation (without mixing). pNPC and PASC activities were normalized 

according to the activities after 4 hours of incubation at 150 rpm; CMC activity was 

normalized according to the activity after 4 hours of incubation without mixing. 

7.2 Effect of Mixing Intensity on Cellulase Deactivation 

The effect of mixing speed, and hence shear exposure, on cellulase deactivation is 

shown in Figure 7.2. Endoglucanases activity did not change significantly with rotating 

speed, but CBHl activity was 20-25% higher at 250 rpm compared to lower speeds. 

Similarly, total cellulase activity was highest at 250 rpm, which is consistent with the 

correlation between CBH 1 activity and total cellulases activity. 

The time-dependent change of CBHl activity is compared for different mixing 

speeds in Figure 7.3. The peak values of CBHl activity clearly increased with mixing 

speed. The peak value at 150 rpm was 16% higher than that without mixing while the 

peak value at 250 rpm was 26% higher than without mixing. This general trend was 

maintained for the first 24 hours. After that relative activity remained highest (79%) at 

250 rpm, while relative activity converged for 150 rpm and no mixing (65%), indicating 

that a minimum amount of mixing is needed once a certain reaction extent is reached. 
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Samaniuk et al. (2011) also reported higher conversion was achieved in the presence of 

some gentle mixing compared to no mixing. 
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Figure 7.2. Effect of mixing speed on cellulase deactivation after 24-h incubation. 
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Figure 7.3. Time dependent deactivation ofCBHl for different mixing conditions. 

Shear stress, as determined by CFD simulations, is quantified in terms of (1) 

maximum shear, which occurs at the wall of the flask where there is a large velocity 

gradient due to the swirling motion imparted by the shaker, and (2) mass-averaged shear 

throughout the flask (Table 7.1). The maximum shear imparted by the fluid for 50, 100, 

and 150 rpm were 0.226, 7.38, and 18.7 Pa. Although, relatively little of the enzyme 
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experienced the maximum shear since there was only a very small region of shear at this 

magnitude on the wall of the flask (red area in Figure 7.4). The bulk of the enzymes were 

exposed to the mass-average shear stress, with values of 0.00427, 0.234, and 0.221 Pa for 

the three speeds tested. 

Table 7.1 

Effect of rotating speed on the generated shear stress in a flask 

Rotating speed (rpm) 

50 

150 

250 

Maximum shear stress (Pa) Mass-average shear stress (Pa) 

0.226 0.00427 

7.38 0.234 

18.7 0.221 

The data in Figures 7.2 and 7.3, which show less deactivation of CBHl in higher 

rpm Erlenmeyer flask, is contrary to other findings where increased mixing resulted in 

more deactivation of cellulase activity (Ghadge et aI., 2005a). That data, though, was 

generated in a system using a stirred reactor with moving parts for mixing, and the 

average stress in a stirred tank is typically greater than 50 Pa (Ghadge et aI., 2005a), 

which is more than two orders higher than the 0.2 Pa in the Erlenmeyer flask. Brethauer 

et ai. (1998) reported that high shear in a stirred tank caused shear sensitive deactivation 

of cellulase and, therefore, lower yields for hydrolysis of Avicel and corn stover in the 

stirred tank reactor compared to those with flask. 
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Figure 7.4. Wall shear stress (pa) in an orbital shaking flask at 250 rpm. 

7.3 Effect of Enzyme Concentration on Cellulase Deactivation 

Effect of enzyme concentration on deactivation was studied at two conditions, 

without mixing and with mixing at 250 rpm (Figure 7.5). Enzyme deactivation without 

mixing appears to be concentration independent. About 20-25% of the initial total 

cellulases activity was lost following 24 hours of incubation for all enzyme doses. On the 

other hand, deactivation decreased from about 24% at 0.15 FPU/ml to about 2% at 0.75 

FPU/ml at 250 rpm mixing, suggesting that cellulase concentration affects activity in the 

presence of mixing. Ganesh et al . (2000) also found that as the concentration of the 

enzyme increased, the amount of deactivation decreased when cellulase loading was 

greater than 1 FPU/ml in the presence of mixing in a stirred tank reactor. This 

phenomenon may be due to the difference in the amount of exposure of enzyme at the 

air-liquid interface for different enzyme concentrations as suggested by Kim et al. (1982). 

They found that deactivation of cellulases was more significant with a combination of 



shear and enzyme exposure at an air-liquid interface than with shear only, and attributed 

this to a smaller ratio of enzyme present in the surface region to that in the bulk region for 

higher enzyme concentrations. 
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Figure 7.5. Effect of enzyme concentration on deactivation. The incubation time was 24 

hours. 

7.4 Summary 

Deactivation of CBH 1, endoglucanases, and total cellulases was studied here 

independently of each other. Based on activities peaking simultaneously and closer levels 

of deactivation, it is inferred that decrease in total cellulase activity was more closely 

associated with decrease of CBHl activity than decrease of endoglucanase activity. Shear 

stress in an Erlenmeyer flask was more than two orders smaller than in a stirred tank as 

quantified by CFD. CBH 1 and total cellulase activities were higher at 250 rpm than at 

lower mixing speeds. Deactivation was enzyme concentration-independent without 
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mixing, while higher concentrations resulted in less deactivation with mixing between 

0.15-0.75 FPU/ml. 
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CHAPTER VIII 

DESORPTION OF CBHt AT REDUCED ACTIVITY 

8.t Effect of Mechanical Deactivation 

Little deactivation of CBHl occurred at 150 rpm, while at 300 rpm about 70% of 

CBHl activity was lost after 24 hours (Figure 8.1(a)). The fraction of free CBHl at 150 

rpm increased from about 25% at 0.5 hours to 95% at 24 hours (Figure 8.1 (b)). However, 

under higher intensity mixing at 300 rpm, the fraction of free CBHl decreased at eight 

hours compared to that at four hours, and continued to decrease throughout the duration 

of the test. After 24 hours, the fraction of free CBHl was less than 20% of the fraction of 

free CBHl at 150 rpm. Desorption of CBHl appears to have slowed under the more 

intense mechanical shaking and reduced activity. Reesei et aI. (1980) also found that 

shaking reduced the activity of T. reesei cellulases and A vicelase (cellobiohydrolase) as 

well as their desorption from substrate. 

8.2 Effect of Inhibitors on CBH1 desorption 

CBHl is strongly inhibited by cellobiose, which has an inhibition constant Ki of 

20 11M (Henriksson et aI., 1996). When 20 mM cellobiose was added, 65% of the total 

enzyme desorbed at 24-h, and desorption was apparently slower compared to the control 

experiment where no inhibitor was present (Figure 8.2). Similarly, when another (but 

weaker) competitive inhibitor, 0.25 M GdnHCl (K= 12 mM) (Woodward et aI., 1990a), 
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was added to the reaction, 84.4% ± 2.3% of pNPC activity was inhibited (Data not 

shown). Free CBHl was about 25% less than the control experiment prior to 24 hours 

(Figure 8.2), although most CBHl des orbed by 24 hours in the presence of GdnHCl. 

These results further confirm the correlation between enzyme activity and desorption, 

implying that when CBHl activity was reduced, desorption of CBHl from substrate was 

inhibited or, at least, slowed. 
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Figure 8.1. Effect of mechanical deactivation on CBHl activity and desorption. (a) 

Activity of CBHl at 150 and 300 rpm. Data were normalized according to the activity of 

CBH 1 at 2 hours and 150 rpm. (b) Fraction of free CBH 1 during desorption, which was 

normalized according to total enzyme added in the reaction. 
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Figure 8.2. Effect of competitive inhibitors on CBHl desorption. Fractions of free CBHl 

were normalized according to total enzyme added in the reaction. 

8.3 Effect of Temperature on Desorption 

Figure 8.3 shows desorption of CBHl at 0 0c. 25% of the total enzyme desorbed 

after two hours, and there was no further desorption. Since the reaction rate increases 

with temperature, CBH 1 has much less activity at 0 °c compared to at 50°C. Less 

desorption at 0 °c compared to at 50°C (Figure 8.3) again implies a correlation between 

the amount of activity and the amount of desorption. 
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Figure 8.3. Desorption of CBHl at 0 and 50°C. Fractions of free CBHl were normalized 

according to the total enzyme added in the reaction. 
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8.4 Effect of K2PdCl6 (Denaturant) on CBHl Desorption 

Lassig et al. (1995) reported that K2PdCl6 can irreversibly deactivate CBHl. 

When 50 and 162.5 ~M were added to the reaction, activity dropped about 70% and 63%, 

which was consistent with Lassig et aI's results showing that a 50: 1 ratio of K2PdCl6 to 

CBH 1 resulted in higher deactivation. Less than 10% of CBH 1 desorbed during a time 

period of up to eight hours (Figure 8.4), further indicating that desorption of CBHl 

correlated with enzyme activity. 
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Figure 8.4. Effect of K2PdCl6 on CBH 1 desorption. 

8.S Summary 

Desorption of CBH 1 was compared under conditions of reduced and normal 

activity levels. CBH 1 activity was reduced by each of the following methods: (1) 

mechanical deactivation, (2) addition of inhibitor, (3) low reaction temperature, and (4) 

deactivation with a denaturant. Decreasing desorption of CBH 1 occurred when activity 

was reduced. Compared to almost complete desorption of CBH 1 under little mechanical 

deacti vation at 150 rpm, less than -20% CBH 1 desorbed following 24 hours of 
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incubation at 300 rpm when 70% of the activity was lost due to more intense mechanical 

deactivation. After addition of 20 mM cellobiose inhibitor, only about 65% of CBHl 

desorbed after 24 hours. Desorption was about 25% less after being inhibited with 0.25 M 

GdnHCI compared to that in the absence of the inhibitor. At 0 DC, only 25% of the total 

enzyme desorbed within 24 hours at 150 rpm, compared to nearly 100% at 50 DC . Less 

than 10% desorption occurred for CBHl treated with K2PdCI6. 

These results suggest that when CBHl activity was reduced, regardless of the 

deactivation mechanism, much less enzyme des orbed and returned to solution as 

compared to active enzyme. This implies that more CBHl remains bound to substrate, 

cannot dissociate and find new binding sites immediately to start another cycle, and 

therefore becomes inactive. The results here help support the relationship between the 

slow kinetics and inactivated enzyme predicted by the kinetics model developed in 

Chapter V. 
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CHAPTER IX 

FACTORS TO CONSIDER WHEN DEVELOPING A CELLULOSE 

HYDROL YSIS PROCESS 

9.1 Kinetic Modeling to Determine Activation Energy 

In order to examine the effects of reaction conditions such as temperature on 

cellulose hydrolysis, the activation energy of each reaction step needs to be determined 

first. 

The mechanism in Figure 9.1 is used to represent cellulose hydrolysis here, which 

is similar to that proposed in Chapter V. In this mechanism, enzyme binds to substrate 

with association and dissociation rate constants kl and k_ l . Some of the active enzyme-

substrate complexes produce product with an apparent hydrolysis rate k2, while other 

complexes become inactive with an inactivation rate constant k( and active again with a 

reactivation rate constant kr. 

E+S 
kl 

~(====z) E 5 active 
) E+P 

k-l 

ESinactive 

Figure 9.1. Proposed minimal theoretical model to account for cellulose hydrolysis. 
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Using the modeling procedure as reported in Chapter V, the rate equation of 

cellulose hydrolysis can be written as: 

dP (S) kr kJ - = Vr = kzx (E)ox x{--+--xexp[-(kr +kr)xt]} 
dt Km + (S) kJ + kr kr + kr 

(9.1) 

where, Vr is the real hydrolysis rate, k2 is the rate for breakdown of the enzyme-substrate 

complex, (£)0 is initial enzyme concentration, (S) is substrate concentration, kj is the 

inactivation rate constant for adsorbed enzyme, kr is the reactivation rate constant, t is 

reaction time, and Km is derived from the Langmuir adsorption model as defined in 

Chapter V. Parameters in the model were determined as reported in Chapter V for three 

different temperatures: 50, 35, and 20 Dc. Activation energies for the rate limiting step (k2) 

and the inactivation step (kj ) were determined using an Arrhenius plot. 

9.2 Activation Energies for Hydrolysis and Inactivation Steps 

0.1 g, 0.2 g, 0.4 g, 1.2 g, 2 g and 5 g of cellulose substrate and 0.6 ml of Spezyme 

CP cellulases (50 FPU (filter paper unit)/mL cellulases activity) were incubated for up to 

three days at three temperatures: 50, 35 and 20 DC (Figure 9.2). Model parameters and 

rate constants in Table 9.1 were regressed using the procedure as reported in Chapter V. 

Theoretical predicted P -t curves in Figure 9.2 were generated from the rate Equation (9.1) 

using the parameters in Table 9.1, and compared to the experimental results. The 

theoretically predicted results were generally within one standard deviation of 

experimental results, implying that the theoretical modeling with the determined 

parameters can accurately account for hydrolysis at the three temperatures. 

Activation energies for the hydrolysis step (k2) and the inactivation step (kj ) were 

determined using Arrhenius plots (Figure 9.3). Activation energy is equal to (-slopexR), 

98 



where R (1.985 cal K- l mor l
) is the gas constant. The activation energies for the k2 and kf 

steps are 16.3 kcal mol- l and 18.0 kcal mol-I, respectively. The activation energy for the 

k2 step is within the typical range of 4-20 kcal mor l for enzymatic reactions (Shuler and 

Kargi, 1992). The activation energy for the inactivation (kj ) step is close to that of the 

hydrolysis (k2) step, implying that increasing the reaction temperature may cause a 

significant increase in the inactivation rate in addition to the catalytic reaction rate. 

Optimizing strategies are proposed and discussed below based on this kinetic model. 

Table 9.1 

Parameters for the cellulose hydrolysis model (Equation 9.1). 

Temperature 50 35 20 

(Oe) 

Vmllx (g/(L·h)) 2.83 1.016 0.212 

Km (giL) 6.23 9.51 5.81 

k2 (h- l
) 2000 721 150 

kj(h- l
) 0.38 0.169 0.0231 

kr(h- l
) 0.02 0.0280 0.0009 
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Figure 9.2. Comparison of experimental and predicted glucose released for Sigmacell at 

(a) 50 DC; (b) 35 DC; (c) 20 DC. 
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Figure 9.3. Arrhenius Plots for determining activation energies for (a) hydrolysis step and 

(b) inactivation step. 

9.3 Effect of Reaction Temperature on Cellulose Hydrolysis 

V I1U1x,app was about seven times higher at two hours and a temperature of 50 DC than 

that at the same time at 20 DC, and two times higher than at 35 DC (Figure 9.4a). However, 

VI/UlX,llPP decreased significantly as the reaction proceeded, and the decrease was more 

significant at higher temperatures. This is consistent with the model predictions in 

previous section. Vmllx,app approached about the same value for all three temperatures by 

24 hours. 

The decrease in V I1U1x,app implies that there would be little improvement in the 

hydrolysis rate after 24 hours, which is apparent in Figure 9.4b. After 24 hours of 

incubation, the hydrolysis rate (slope of the P-t curves) at 50 DC was similar to that at 35 

or 20 DC, while the rate at 50 DC is greater prior to 24 hours. The same trend was observed 

for hydrolysis of 0.1 % (w/v) Sigmacell (Figure 9.4c). Increasing the reaction temperature 

appeared to only be effective in improving the hydrolysis rate during the first few hours. 

Therefore, it may be possible to lower the temperature after a few hours to reduce (1) 

inactivation, and (2) the amount of energy required for the cellulose hydrolysis process. 
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Figure 9.40 (a) Vmax.app as a function of incubating time at three different temperatures for 

Sigmacell; (b) effect of temperature on product formation for Sigmacell substrate with a 

solid concentration of 200% (w/v); (c) effect of temperature on product formation for 

Sigmacell substrate with a solid concentration of 001 % (w/v)o 
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9.4 Effect of Incubation Time on Cellulose Hydrolysis 

Hydrolysis was fast initially, but slowed down after about 24 hours (Figure 9.2). 

This can be quantified in terms of V rnax,app , which is defined as: 

kr kJ 
V max,app = k2x (E)ox{-- + --xexp[-(kJ + kr)Xt]) 

kt+kr kr+kr (9.2) 

which was similar to the definition reported in Chapter V. Vrnax,app decreased 

significantly throughout the reaction (Figure 9.4a); the value at 72 hours was only about 

20% or less as compared to at 2 hours for all three temperatures. Since the reaction rate 

slows while inactivation continues, it is recommended to reduce the hydrolysis reaction 

time while performing the reaction at higher enzyme loading. Since the half-life of 

enzymatic activity is about 2.5 hours following interaction with substrate, this strategy 

should allow fast conversion of substrate before a large amount of enzyme becomes 

" 
inactive. Igarashi et aI. (20ll) reported that BMCC can be completely hydrolyzed by 

CBHlICBH2 at high enzyme loading (about 100 times higher than typical enzyme 

loading) in less than one hour. However, the high enzyme cost (30 to more than 100 US 

cents per gallon ethanol produced) (Zhu et aI., 2009) has limited the application of this 

strategy in cellulose hydrolysis so far. It may be practical to adopt this strategy when the 

cost of cellulases is significantly reduced; for comparison, the cost of starch-hydrolyzing 

enzymes is about 2-5 cents per gallon of starch-derived ethanol produced. 

9.5 Effect of Substrate Surface Area on Cellulose Hydrolysis 

The effect of substrate surface area on cellulose hydrolysis may depend on 

substrate concentration. When the substrate concentration (S) is much higher than Kill, the 

hydrolysis rate equation may be simplified as reported in Chapter V: 

V = bx(E)ox(S) "" bx(E)o 
Kill + (S) 
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In this case, the hydrolysis rate is the product of the apparent hydrolysis rate 

constant and the initial enzyme concentration. No term reflecting substrate properties 

remains in the simplified rate equation, suggesting that the hydrolysis reaction is not 

affected by accessible surface area. 

When the substrate concentration (S) is not much greater than K m, hydrolysis is 

governed by Equation (9.1). The substrate surface area is important since it affects the 

maximum adsorption capability (Amax) of the enzyme, which is inversely proportional to 

Km as defined in Chapter V. Since Km appears in the denominator of Equation (9.1), the 

substrate surface area is expected to affect the hydrolysis rate. 

At a substrate loading of 5% (w/v), the substrate concentration is equal to 50 giL. 

At this condition, (S) is much greater than Km for Sigmacell (6.23 giL) and Solka Floc 

(16.03 giL) as determined in Chapter V. The conversions of Solka Floc and Sigmacell 

were close in value to each other at each time point (Figure 9.5a), as was the conversion 

of microcrystalline cellulose, which implies that microcrystalline cellulose may have a 

relatively small value of Km as well. However, cotton fiber likely has a large value of Km 

since hydrolysis of cotton fiber shows much lower conversion and it has been reported to 

have low accessible surface area to enzyme (Grethlein et aI., 1984). When hydrolyzed at 

a solid concentration of 0.1 % (w/v) (substrate concentration equal to 1 gIL which is much 

less than Km), cotton fiber also showed much lower conversion compared to the other 

substrates (Figure 9.5b), consistent with the expectation that the surface area will affect 

the hydrolysis rate. 

The surface areas accessible to a molecule the size of an enzyme (51 A) 

(Grethlein et aI., 1984) for different cellulose substrates are listed in Table 9.2. Substrate 
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converSIOns did not increase exactly according to the order of increasing accessible 

surface area for the low (S) cases. For example, microcrystalline cellulose has smaller 

accessible surface area (Table 9.2) but its hydrolysis rate was faster compared to Solka 

Floc. This may be because the binding domain of the major cellulase species CBH 1 binds 

to hydrophobic surfaces of crystalline cellulose, which accounts for only a small portion 

of the total surface area of natural Cellulose Ia (Lehtio et aI., 2003) or IfJ (Mazeau and 

Rivet, 2008). Therefore, accessible surface area alone may not exactly reflect the 

capability of substrate to adsorb cellulases. Exposure of hydrophobic surfaces appears to 

be a more important factor for the affinity of enzyme to bind to substrate (Igarashi et aI., 

201la; Liu et aI., 2011). 

Table 9.2 

Accessible surface area for different substrates 

Substrate Sigmacell Solka Floc Cellulose, Cotton fiber 

Type-20 microcrystalline 

Accessible surface 
0.91-1.1 0.73-0.94 0.46-0.52 0.22-0.29 

area (m2/g) 
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Figure 9.5. Comparison of hydrolysis of different substrates at (a) 5% solid (w/v); (b) 

0.1 % solid (w/v). 

Further, as discovered here, the accessible surface area of substrate did not affect 

hydrolysis when (S) » Km . High substrate concentration is desirable during enzymatic 

hydrolysis in order to maximize the product concentration in the sugar stream, minimize 

water and energy use, and minimize reactor volume, which all work to enhance the 

economic viability of the cellulosic fuel process. Therefore, it is then desirable to increase 

hydrophobic surface area rather than just total surface area. Transforming natural 

cellulose Ia to Cellulose 1111 using supercritical ammonia pretreatment was found to be a 

way to increase hydrophobic surface area and therefore increase the hydrolysis rate 

(Igarashi et aI., 2011). 

9.6 Effect of Enzyme Binding Characteristics on Cellulose Hydrolysis 

As reported in Chapter VIII, dissociation of inactive enzyme from substrate may 

be a limiting step in cellulose hydrolysis. It is important to examine how cellulose 

hydrolysis may be theoretically improved if desorption of the inactivated cellulase can be 

improved, thereby freeing up binding sites. 
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To simulate hydrolysis results in the absence of inactivated adsorbed cellulase, the 

inactivation term in Equation (9.1) was omitted: 

dP =Vr=kzx(E)ox (S) 
dt Km + (S) (9.4) 

Predicted P-t curves (Figure 9.6) were generated usmg Equation (9.4) and 

parameters from Table 1 for 50 Dc. The predicted times required for 99% conversion of 

each substrate were 11.8, 11.8, 11.8, 15.9 and 18.2 hours for substrate concentrations of 1, 

2, 4, 12, and 20 gIL, respectively. With inactivation of adsorbed cellulase, however, the 

actual conversions were only 88%,84%,80%, 73% and 54% after 72 hours, respectively. 

The predicted improvement in the hydrolysis rate in the absence of inactivation is 

significant and more so at higher solids concentrations. Therefore, it would be very 

beneficial to somehow desorb the unproductive cellulase. Developing such a process 

would (1) provide more evidence for the proposed mechanisms and (2) improve the 

overall cellulose hydrolysis process. Woodward et al. (1990b) reported that inactive 

CBH 1 could be desorbed from substrate using 4 M GdnHCI, then recovered after 

dialyzing out the denaturant, at which point the enzyme became active again. Such a 

process may be modified and integrated into the cellulose hydrolysis process to improve 

desorption and hydrolysis. 
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Figure 9.6. Predicted conversion of Sigmacell at 50 DC in the absence of inactivation of 

adsorbed enzyme. 

9.7 Summary 

Factors to consider to improve enzymatic hydrolysis of cellulose were discussed 

here based on a model considering first order inactivation of adsorbed cellulases. Using 

the model, the activation energy determined for the hydrolytic step (k2) is 16.3 kcal mor l
, 

which is in the typical range of 4-20 kcal mor l for an enzymatic reaction. The activation 

energy for the inactivation step (kf) is 18.0 kcal mol-I, implying that increasing reaction 

temperature may also cause a significant increase in the inactivation rate in addition to 

the catalytic reaction rate. Due to more significant inactivation at higher temperature, 

increasing reaction temperature appeared to only be effective in improving hydrolysis 

rate during the first few hours. Therefore, it may be possible to lower the temperature 

after a few hours to reduce inactivation while also reducing the energy input needed for 

the cellulose hydrolysis process. 
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Vmax.app was only 20% or less at 72 hours compared to at two hours as a result of 

inactivation of adsorbed cellulases, suggesting prolonged hydrolysis is not an efficient 

way to improve cellulose hydrolysis. A potential way to avoid long hydrolysis time is to 

perform the reaction at high enzyme loading. 

At high solids loading, the hydrophobic surface area of the substrate may have a 

bigger affect on the hydrolysis rate than the total accessible surface area of substrate. 

However, if cellulose hydrolysis is carried out at low substrate loading, it may be 

beneficial to increase the surface binding area of substrate (by some pretreatment method) 

in order to improve the hydrolysis rate. 

If inactivation of adsorbed cellulase can be prevented, near complete conversion 

(99%) of cellulose is predicted to occur within 10-20 hours for initial substrate 

concentrations of 1-20 giL, which is much higher than typical conversions achieved after 

72 hours of incubation when adsorbed cellulases become inactivated. One proposed 

optimization strategy is to improve desorption of inactive cellulases from the substrate, 

for example by adding GdnHCI, in order to increase the conversion rate. 
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CHAPTER X 

CONCLUSIONS 

The rate of the enzymatic hydrolysis of cellulose reaction decreases significantly 

as the reaction proceeds, and inactivation of adsorbed enzyme was found to playa key 

role in affecting the hydrolysis rate. 

First, in Chapter IV, some factors traditionally thought to substantially affect 

cellulose hydrolysis, such as enzyme deactivation due to the reaction environment and 

variation of substrate properties, were first examined, but it was found that these factors 

were not sufficient to account for the rate reduction during cellulose hydrolysis. 

In Chapter V, a mathematical model incorporating a first order inactivation of 

adsorbed cellulases was developed that accurately describes cellulose hydrolysis kinetics. 

The enzyme's apparent maximum rate surprisingly decreased with a first order 

exponential decay function of time due to inactivation of adsorbed enzyme. The model 

predicted enzymatic hydrolysis results within 10% of experimental results for both Solka 

Floc and Sigmacell substrates. The rate constants were within 5% for the two substrates, 

further strengthening the value of the model and implying a common but yet undefined 

rate-limiting step associated with loss of enzyme activity likely exists in the pathway of 

cellulose hydrolysis. Activity loss due to some form of enzyme-substrate interaction was 

further validated since decrease in activity was seen to be a function of increasing initial 

substrate concentration. The relative extents of activity loss due to enzyme-substrate 
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interactions and deactivation from thermal and mechanical mechanisms were compared, 

and enzyme-substrate interactions were found to contribute more towards the overall 

deactivation than did thermal and mechanical mechanisms. This was evident from the 

comparisons of three independent metrics: the relative extents of activity loss, half-lifes 

of enzyme, and inactivation rate constants. 

To obtain a large amount of the purified cellulase component CBHl needed for 

mechanistic studies, a technique for scaling-up separation of CBH 1 from the commercial 

Spezyme CP cellulase cocktail was successfully developed by incorporating a vacuum 

manifold system and step elution to an ionic chromatography method. The CBHl 

separated by this technique exhibited comparable purity and yield to CBH 1 separated on 

a smaller scale by a conventional FPLC system. Meanwhile, separated CBHl was 

identified as a single band on the SDS-PAGE gel, and showed good stability during a 24 

hour incubation period at 50°C. This separation protocol can facilitate research in the 

investigation of CBH 1 interactions with cellulose by providing large-scale quantities of 

purified CBHl for less than 10% of the cost of a FPLC system. Hydrolysis and 

inactivation mechanisms were examined on BMCC substrate using AFM imaging. The 

degradation of BMCC by CBHl was fast, confirming good activity of separated CBHl. 

Only the height of the BMCC fiber changed during the reaction, indicating that CBHI 

tends to bind and hydrolyze cellulose only from certain surfaces. At the meantime, 

crowding of adsorbed CBH 1 on substrate surface was observed on phase images, which 

provided supporting evidence for inactivation of adsorbed enzyme proposed in Chapter V. 

In Chapter VII, deactivation of individual cellulase components (CBHl and 

endoglucanases) due to environmental mechanisms was studied relative to deactivation of 
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a total cellulase cocktail. The decrease of total cellulase activity was more closely 

associated with the decrease of CBHl activity than the decrease of endoglucanase activity. 

Shear stress in an Erlenmeyer flask was determined by computational fluid dynamics and 

found to be more than two orders smaller than in a stirred tank. The deactivation of 

individual and total cellulases from thermal and mechanical mechanisms in the 

Erlenmeyer flask was insufficient to account for the hydrolysis rate reduction. This 

confirms the slow kinetics may not be a result of just enzyme deactivation due to 

environmental mechanisms. 

If adsorbed enzyme becomes inactive, it would necessarily return to the bulk 

solution more slowly (if at all) and be unable to find a new binding site to start another 

hydrolysis cycle immediately. This underlying phenomenon was examined in Chapter 

VIII. Decreasing desorption of CBHl was found when activity was reduced in any of the 

following four ways: (1) mechanical deactivation, (2) addition of competitive inhibitors, 

(3) low reaction temperature, or (4) deactivation with a denaturant. These results suggest 

that when CBHl activity was reduced, regardless of the deactivation mechanism, much 

less enzyme desorbed and returned to solution as compared to active enzyme. This 

implies that more CBH I remains bound to substrate, cannot dissociate and find new 

binding sites immediately to start another cycle, and therefore becomes inactive. The 

results here help support the relationship between the slow kinetics and inactivated 

enzyme predicted by the kinetics model developed in Chapter V. 

Factors to consider when developing a cellulose hydrolysis process were 

discussed in Chapter IX. Increasing reaction temperature was found to cause a significant 

increase in the inactivation rate in addition to the catalytic reaction rate. Due to the 
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inactivation dependence on temperature, increasing the reaction temperature appeared to 

only be effective in improving the hydrolysis rate during the first few hours. Therefore, it 

may be possible to lower the temperature after a few hours to reduce inactivation while 

also reducing the energy input needed for the cellulose hydrolysis process. Prolonged 

hydrolysis time is not an efficient way to improve cellulose conversion due to 

inactivation of adsorbed enzyme. A potential way to avoid long hydrolysis time is to 

perform the reaction at high enzyme loading, provided the cost of enzymes is eventually 

reduced. 

At high solids loading, the hydrophobic surface area of the substrate may have a 

bigger affect on the hydrolysis rate than the total accessible surface area of substrate. 

However, if cellulose hydrolysis is carried out at low substrate loading, it may be 

beneficial to increase the surface binding area of substrate (by some pretreatment method) 

in order to improve the hydrolysis rate. 

If inactivation of adsorbed cellulase can be prevented, near complete conversion 

(99%) of cellulose is predicted to occur within 10-20 hours for initial substrate 

concentrations of 1-20 giL, which is much higher than typical conversions achieved after 

72 hours of incubation when adsorbed cellulases become inactivated. One proposed 

optimization strategy is to improve desorption of inactive cellulases from the substrate, 

for example by adding GdnHCI, in order to increase the conversion rate. 
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CHAPTER XI 

RECOMMENDATIONS FOR FUTURE STUDY 

Experiment 1: Determine Optimal Operating Temperature Curve for Enzymatic 

Hydrolysis 

In Chapter IX, it was proposed that it may be possible to lower the temperature 

after a few hours to reduce (1) inactivation, and (2) the amount of energy required for the 

cellulose hydrolysis process. The experimental plan to determine an optimal operating 

temperature curve is given here. 

1. Hydrolysis of cellulose can be carried out for substrate in concentrations of 1-

20 giL as in Chapter V, at reaction temperatures of 50,45, 40, 35, 30, 25, 20, 

and 15 Dc. 

2. The Vnwx,app at different time points can be determined using the modeling 

procedure described in Chapter V for the reaction temperatures listed in Step 

1. Product sampling should be more frequent initially during hydrolysis since 

Vnwx,app decreased with an exponential decay function as reported in Chapter 

V. For example, sampling for glucose release measurements can be every 20 

minutes in the first two hours, and then the frequency can be reduced to every 

half or one hour from two to eight hours, and then further reduced to every 

two to eight hours after the first eight hours of incubation. 
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3. Determine the time point at which Vmax,app at a higher temperature is just equal 

to or less than the V max,app at a lower temperature. Repeat this for several time 

points throughout the reaction. From this a curve can be generated showing 

optimal temperature versus time. 

4. Run two reactions simultaneously. In (1), adjust the temperature periodically 

according to the curve generated in Step 3. In (2), run at a constant 50°C 

(typical hydrolysis temperature) as a control to compare results for this 

temperature optimization strategy. 

Experiment 2: Determine Efficiency of Cellulose Processing at High Enzyme 

Loading 

As determined in Chapter V, Vmax,app decreased exponentially with a half life of 

only 2.5 hours. It is desirable to achieve high conversion of substrate before a large 

amount of enzyme becomes inactive. A strategy proposed here is to perform enzymatic 

hydrolysis at an enzyme loading based on an efficiency incorporating conversion and 

reaction time. Following is an experimental plan to investigate how much improvement 

in hydrolysis can be achieved at high enzyme loading. 

1. Hydrolysis of cellulose should be carried out for substrate in concentrations of 

1-20 giL at a reaction temperature of 50°C (as in Chapter V) using enzyme 

loadings of 15, 30, 75, 150, 300 and 1500 FPU/g cellulose substrate (15 

FPU/g is typical). 

2. Determine the conversion after an incubation time of 24 hours for an enzyme 

loading of 15 FPU/g as a baseline. This is the approximately amount of time 
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it took for V,nax,app to drop from its maximum to its minimum value (see 

Figure 5.4). 

3. Determine the times required to achieve the same conversion as in Step 2 for 

the other enzyme loadings. Calculate the "hydrolysis efficiency" for each 

enzyme loading, which is the conversion divided by the reaction time to 

achieve that conversion for each enzyme loading. 

4. Plot hydrolysis efficiency against enzyme loading. If the slope is larger than 1, 

this suggests that the increase in hydrolysis rate is high relative to the increase 

in enzyme loading, which supports the hypothesis that increasing the enzyme 

loading can avoid loss of activity associated with long hydrolysis time. 

Experiment 3. Investigating the Effect of Improved Enzyme Desorption on Cellulose 

Hydrolysis 

As proposed in Chapter IX, improved enzyme desorption may increase the overall 

enzymatic hydrolysis efficiency. To test this hypothesis, the following experiment is 

proposed. 

1. Hydrolysis of cellulose should be carried out for substrate concentrations of 1-

20 giL at 50°C as in Chapter V. 

2. Every 2.5 hours, when half of the active enzyme becomes inactive (half life is 

2.5 hour), add 4 M GdnHCI to the reaction to desorb enzyme. After desorption 

for 10 minutes, centrifuge samples to remove supernatant. 

3. The supernatant will then be dialyzed in 20 mM citrate buffer (pH 4.8) to 

recover and reactivate the enzyme. 
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4. After dialyzing, apply the active enzyme back to the sample to resume the 

reaction. 

5. Compare glucose released to a control experiment run without desorption of 

enzyme to examine the effect of increasing desorption on cellulose hydrolysis. 
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