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ABSTRACT

OPTIMIZATION MODELS FOR RESOURCE ALLOCATION UNDER

PERTURBATION

Dongxue Bridgeman

July 26th, 2013

Optimization Models for Resource allocation are investing in how to make the best use of

available but limited resources in order to achieve the best results. In strategic planning,

resource allocation is a plan for using available resources, especially in the near future,

to achieve the goals of the future. It is a process of allocating resources during the entire

planning horizon and among the various units. Resource allocation plans can be decided

by using mathematical programming. In this dissertation, the research has been focused on

how to allocate resources in the uncertain environment. The mathematical programming

formulations for the resource allocation model under severe uncertainty will be studied. In

particular, we will focus on solving the stability issues of the traditional probabilistic mod-

el. We propose an approach consisting of solving a sequence of convex robust optimization

models with unknown-but-bounded random variables along with the stochastic program-

ming to pursue the allocation performance for the expected overall objective value. Our

theoretical results show that the proposed approach can always obtain an equivalent or a

better expected revenue with the corresponding allocation, while significantly reducing the

risk under perturbations. Although this method requires solving two convex mathematical
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programming models, both models are solved within a timely manner thanks to their con-

vex model instances and with effective, and less, computationally demanding algorithms.

With the increasing threats from public health emergencies, such as earthquakes, tornados,

pandemic flus, or terrorist attacks, high attention has been paid to the public health response

to a pandemic from federal to national level, together with local health departments, and

the health-care community. Various organizations cooperate with each other to strengthen

the preparedness for the pandemic and disastrous emergencies, thus to improve the public

health. The Strategic National Stockpile (SNS) is maintained by the Centers for Disease

Control and Prevention (CDC) and the U.S. Department of Health and Human Services

(DHHS) for the United States in the event of a shortage of local medical resources or

other unanticipated supply problems. The SNS is the United States’ national repository of

antibiotics, vaccines, chemical antidotes, antitoxins, and other critical medical equipment

and supplies. It has the capability to supplement or re-supply local health authorities with

necessary materials for relief action within the response time in as little as 12 hours. The

pilot study is done with the support of Kentucky SNS to determine the capacity allocation

plan for each county in order to maximize the health benefit under various uncertainties,

which can never be accurately estimated. We thereby employ a heuristic method named

“resource reservation” to suggest the resource allocation plan for Kentucky SNS.
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CHAPTER 1

INTRODUCTION

1.1. Real-Time Decision-Support System for Health Care and Public Health

Protection Project

The research work presented in this dissertation is funded and part of the real-time, decision-

support system (RTDSS) for health care and public health protection project. The goal of

this project involves developing a RTDSS to help personnel in the health-care and pub-

lic health (HPH), as well as emergency services sectors (ESS), make real-time decisions

relative to allocation and re-allocation of scarce resources in the aftermath of a pandemic

influenza or other viral attack.

Dr. Heragu, as the Project Director, says “some studies indicate that up to 40% of the pop-

ulation could be stricken and hospitals could be operating at 50% of their capacity during

a pandemic attack. During a time of medical surge when we really need HPH as well as

ESS personnel and equipment to be operating at full capacity, the challenge for planners is

to allocate the few resources at their disposal in the most efficient manner in response to

fast changing conditions on the ground so that a large number of people can be served in

as short a time as possible.”
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1.2. The Problem

The idea of the study is the applying scientific approach to improve the decision making

accuracy in order to better prepare for public health emergencies, such as pandemic, es-

pecially using scientific approaches to determine how best to design and operate a system,

usually under conditions requiring the allocation of scarce resources. Large-scale emer-

gencies are of high-consequence, low-probability (HCLP) events such as H1N1 pandemic

that may result in loss of life and severe property damage. In recent years, developing

decision-oriented operations research models to improve preparation for and response to

major emergencies has drawn more and more attention.

We consider “emergency response” as response to catastrophic and disaster events and do

not include daily response of ambulance, police, or fire departments to routine emergency

calls. Large quantities of vaccines or other medical supplies are stored in strategic locations

around the nation. In the event of a large-scale public health emergency that causes local

supplies to run out, these assets will be used to supplement the state and local public health

departments. The decision to deploy SNS assets is a collaborative process decided among

local, state, and federal officials. It starts at the local level when officials identify a potential

or actual problem that they believe will threaten the health of their community.

Traditional public health resource allocation practices and processes, as currently employed

for resource allocation during public health emergencies, are based on the project area’s

population size. As an example, if six million doses total (three million doses of nasal

spray vaccine and three million doses of injectable vaccine) are ready for ordering nation-

ally (as of today) and a state has 10 % of the U.S. population, then their allocation for

today is 600,000 doses total (300,000 doses of the nasal spray vaccine and 300,000 doses

2



of injectable vaccine).

Kentucky SNS administrators and strategic planners face the challenge of determining the

number of doses of vaccines that will be distributed. To date, there is no tool to help them

determine the vaccines distribution under the uncertain scenario. Currently, the resource

allocation policy adopted by Kentucky SNS and other local SNS is to distribute by the de-

mands. If the resources on hand are not enough to satisfy the demands, they will distribute

the available resources by the population sizes of each required area. Under severe uncer-

tain scenario, the real demands may be very different from the predication. Allocating the

scarce resources by the current policy will cause serious losses on the public health.

The basic question of medical resource allocation is how to allocate the right amount of

resources to the right patients at the right time to better utilize the available resources, max-

imize the satisfaction of the public, and minimize the loss of public health. The problem

that this research work aims to solve seems really simple, but the allocation decision is

hard to make because of the incomplete information regarding the future demand, espe-

cially during the pandemic outbreaks. The demands of resources closely depends upon the

number of people that are infected or are going to be infected. The number of people who

become infected also depends on the strain of virus, the severity of disease caused by the

virus, the vulnerability of affected populations, and many other factors. The overall effect

of various factors make the prediction of the future demands of vaccines extremely hard.

We propose to apply a mathematical modeling method to improve the accuracy of tradi-

tional decision making strategy by taking into consideration the uncertainty of the current

estimate of resource demands, and future demands, in order to determine the minimum

3



needs to prepare for distribution, and to reserve the rest of resource for future use in emer-

gency situations, so that the overall impact of the pandemic influenza can be minimized.

Our team also designed and developed a web tool to allow public-health emergency coor-

dinators to easily utilize mathematical models and make vaccine allocation decision.

One basic way to solve the uncertainty problem is to take stochastic demands into account

through expected values, thus yielding a deterministic program that can be easily solved.

However, the drawback of such an approach is obvious, as it ignores any distributional

information about the demands. A common way to attempt to overcome that issue is to

repeatedly solve the linear programming during the planning horizon. While such an ap-

proach may seem intuitive, it turns out that this strategy may actually backfire. In Cooper

(2002), the author shows a counter example where this re-solving linear programming may

lead to lower total revenue.

An alternative way to incorporate demand into the model is by formulating stochastic pro-

gramming models. The stochastic programming models are fundamentally based on the

assumption that the random variables’ distributional information is known. However, the

data are more likely to be perturbed, e.g. incomplete, erroneous, or wrongly estimated da-

ta for stochastic models. Although the perturbation could be minor without significantly

changing the nominal values of the parameter, the impacts on the optimal solution are not

trivial. For example, in Nemirovski et al. (2009), the authors show that a perturbation of

0.1 % - accurate could lead to a violation of up to 450% of the nominal values. This obser-

vation is very counter intuitive because the quite small perturbation can make the obtained

optimal solution meaningless. Perturbation is not rare because new strains will always

come out and any prediction about the demands of a vaccine against a new strain can not

be made based on old strains with ease, especially in prediction of vaccine demands during

4



pandemic outbreaks. In addition, the historical data can not always be available, since there

are a lot of factors that will impact the demands of resources. Therefore, this study works

to resolve the uncertainties, such as the application of scarce resource allocation during

pandemic outbreaks, and will utilize advanced mathematical models to generate reliable

allocation plans that optimized for various scenarios.

In this dissertation, typical stochastic programming methods will be investigated along

with the techniques for solving these models. Particularly, a unique combined optimiza-

tion method named “Resource Reservation” will be proposed, which is designed for the

situations where one or more parameters are severely uncertain, the distributional pattern

of uncertain parameters are not available, or the ranges of uncertain parameters are known.

This proposed method is applied to solve the Kentucky SNS vaccines allocation problem

under uncertain scenarios since vaccines are the most important resources to be allocated

and distributed during the pandemic outbreaks. An intuitive interactive web tool has been

developed and implemented and is available to use 24/7. This web tool is designed to help

public health coordinators determine the way to distribute vaccines under uncertainty and

minimize the consequences of a vaccine shortage. The potential health consequences that

may occur under various vaccine shortages can be the number of confirmed cases, hospi-

talizations, and deaths. In this application, we assume that the consequence of a vaccine

shortage is evaluated by the expected unmet need of a vacancies.

1.3. Key Contribution

The contributions of this research work can be summarized as follows.

• Our proposed resource reservation heuristic has a wide application, especially for

the complicated optimization problems involving uncertain parameters. In this

5



research work, we apply our methodology to solve the Kentucky SNS vaccine

allocation problem, which helps the public health emergency managers or co-

ordinators make better decision on how to allocate scarce resources during the

pandemics, or other types of public health emergencies.

• Only a few analytical models in the literature include the discussion of the effect

of parameter of uncertainty on the vaccination policies. Some researchers apply

the stochastic programming method with chance constraints to determine the vac-

cination policies, which requires the complete information of the epidemiological

characteristics of the virus. However, in reality, the epidemiological information

is not necessarily available before the allocation decision has to be made. Most

of the time, only the rough estimation of the demands will be known when the

public health emergency occurs. Our proposed method does not require the com-

plete epidemiological information or any distributional information to be exactly

known. It is designed for the situation that limited information of disease is known

and the estimation of the demands is under severe uncertainty. Since the models

are designed for the severe uncertainty situation, the resource reservation heuristic

will first determine the “absolutely necessary amount” of resources to release, and

if there are resources left, then it will be reserved for the future use.

• The web tool developed by the RTDSS team is convenient for users to utilize the

models without any mathematical background and industrial engineering knowl-

edge. The user only needs to provide a few data points to make the model work,

such as the amount of available resources, number of new cases, number of cased

identified, and period of times, number of time periods during the whole planning

horizon, and other general information associated with the outbreaks. The user

can also select the projected counties, and then the allocation decision will only

be made among those projected counties. The user can also manually reserve the

6



available doses of resources by selecting “risk level” in the user input interface.

In addition, all the default value that we use in the model is changeable by the

administers.

• The model can also help the public health emergency managers or administers

determine the number of distribution that the current available resources are good

for. For example, in the later part of the dissertation, you will see there are no

resource to be allocated for some multi-time periods allocation. In this case, the

results suggest the number of time periods that the users pre-determined is too

high. Based on the results they get, the user can find out how many time periods

that the available resources can be best utilized and distributed.

• In the dissertation, we also investigate the effect of an uncertainty parameter “θ”

on the conservativeness of the resource allocation plan with an example. Changing

this parameter allows the users to adjust the conservativeness of the allocation

plan. But there is no certain linear relationship between the conservativeness and

the value of “θ” and the feasible range of “θ” varies as the number of selected

counties changes. Therefore, we determine to use 1 as the default value of “θ”

since it works no matter how many counties that the users select.

• Our method perfectly preserves convexity and overcomes the stability issue of the

stochastic programming, therefore it can be efficiently solved by modern interior

point solvers on average desktop computers in milliseconds.

1.4. Background on Resource Allocation

Resource allocation is a major problem in many diversified areas, such as portfolio selec-

tion, airline seat allocation, network logistics and distribution, inventory management and

so on. The best way to allocate resources depends on the nature of the resources, the con-

straints at hand and the organizations mission. Since the nature of the resource allocation
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problem is to seek the best solution among alternatives, quantitative methods like optimiza-

tion is widely applied to solve the resource allocation problems.

Optimization, in the sense of mathematics, computational science, or management science,

refers to the selection of a best solution from some available alternatives. It may use the

mathematical expression of a problem to maximize or minimize some function. The al-

ternatives are frequently restricted by constraints on the values of the variables. A simple

example might be to find the most efficient transport pattern to carry commodities from the

point of supply to the markets, given the volumes of production and demand, together with

unit transport costs. Optimization involves designing a system or process to be as good as

possible in some defined sense. The defined sense varies from organization to organiza-

tion. What is optimal for you - with your goals and values - could be suboptimal for the

next person. Every performance management paradigm, every mission statement, could

point to a different definition of success and therefore to a different way to “optimally al-

locate resources. A resource optimization model should be based on the objective, decision

variables, and constraints. For a certain problem, there may exist particular constraints or

restrictions affecting how to properly assign available capacity of resources to achieve the

best yield in general. There are plenty of factors affecting the effectiveness of the resource

allocation plan, such as the uncertainty of some parameters, the goal that each resource

allocation problem is seeking, how it will take to get a solution ,and etc.

Mathematical optimization is one of the most efficient approaches to evaluate and improve

the efficiency of resource allocation in the public health emergency event. Mathematical

optimization models can explicitly represent the functioning of the system, generally result-

ing in large linear/nonlinear and integer models with significant numbers of variables and

constraints. Optimization applications in public health emergency events address a variety

8



of issues, such as the cost-effectiveness of selected interventions, and portfolio analysis

for policy/decision making besides the efficient use of resources. Public health emergency

events are complex, often involving a variety of factors that influence their efficiency. To

make these events even more complex is the uncertainty of the factor and incompleteness

of the information. Due to the stochastic nature of factors that influence the performance

of public health emergency events, the uncertainty based mathematical optimization model

may be more suitable for the purpose of representation and analysis.

There are many subfields in optimization in general. In this dissertation, stochastic pro-

gramming, and robust programming, will be mainly investigated in order to solve resource

allocation problems in the public health emergency events. Generally, the stochastic pro-

gramming studies the case in which some of the constraints, or parameters, depend on ran-

dom variables. Robust programming is, like stochastic programming, an attempt to capture

uncertainty in the data underlying the optimization problem. This is not done by the use of

random variables, but instead, the problem is solved taking into account inaccuracies in the

input data.

1.5. Background on Strategic National Stockpile

With the increasing threats from large-scale emergencies such as earthquakes, tornados,

pandemic flus, terrorist attacks, and so on, emergency supplies units have been set up

around the United States to provide necessary materials for relief actions to the affect-

ed areas during these large-scale emergencies. One of the units is the Strategic National

Stockpile (SNS). Take the pandemic flu as an example: according to the World Health

Organization (WHO), influenza rapidly spreads around the world in seasonal epidemic-

s and imposes a considerable economic burden in the form of hospital and other health
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care costs and lost productivity. In the United States of America, recent estimates put the

cost of influenza epidemics to the economy at U.S. $ 71-167 billion per year. In annu-

al influenza epidemics, 5-15% of the population are affected with upper respiratory tract

infections. Hospitalization and deaths mainly occur in high-risk groups, such as the elder-

ly and chronically ill. Although difficult to assess, these annual epidemics are thought to

result in between three and five million cases of severe illness and between 250,000 and

50,000 deaths every year around the world.

According to the information on CDC’s website, the strategic national stockpiles, as a phys-

ical form of surplus capacity, have been created to supplement or re-supply state and local

public health agencies in a event of a national emergency anywhere and at any time within

the U.S. or its territories. CDC and DHHS is congressionally mandated to maintain the

stockpiles, which include vaccines, antitoxins, ventilators, and 12-hour Push Packs.

For fast and flexible response, the SNS assets can be categorized into two types: 12-Hour

Push Packs and vendor or SNS, managed inventory. Around 6% of SNS assets are 12-Hour

Push Packages which are located strategically around the United States. Each package

contains:

• Large amount of prepackaged, individual 10-day regiments for over 300,000 peo-

ple

• Intravenous drugs and supplies for administration

• Chemical antidotes and related supplies

• Airway management supplies

• Medical/Surgical supplies

These packages can be delivered anywhere in the United States within 12 hours of a federal

order to deploy. 4% of the SNS assets are vendor managed, which is government owned
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inventory held at vendor warehouses. 90% of the SNS assets are SNS managed inventory,

which is owned by government and held in warehouses controlled by SNS. Those vendor

or SNS managed inventories mainly consists of vaccines, antiviral drugs, and antitoxin.

The decision to deploy the SNS assets is a collaborative process decided among local, s-

tate, and federal officials. The decision starts at the local level, when officials identify a

potential or actual problem that they believe will threat the health of their community. The

CDC’s Emergency Operations Center (EOC) will arrange a telephone conference call that

will include representatives from DHHS, SNS, and the requesting state’s governor and rep-

resentatives. The affected state will request the SNS material from the CDC as soon as state

officials, in consultations with local officials, determine it is necessary to do so to protect

the health of the public. The SNS assets can be requested alone, or as part of an overall

request for federal assistance, through the National Emergency Response System.

The requests for the SNS assets, from local to state, can be made through WebEOC, which

is a web-enabled incident management tool used to coordinate the use of state assets and

provide a direct link from the State EOC to local EOCs. The system is used by all state

agencies and local emergency managers to report, track, and respond to incident reports

during an emergency, disaster, or catastrophe. Data is entered and viewed on various sta-

tus boards via WebEOC allowing all authorized federal, state, local, and private agencies

simultaneous access. To be more concise, the sequence of events for the request can be

summarized as follows:

• the state determines the need for SNS assets

• the governor’s office is notified

• the state calls the CDC Emergency Operations Center

• the CDC arranges a telephone conference call
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• the governor makes the formal request during the conference call

Once the request is approved for the SNS materials to be deployed, the CDC will send the

assets to a location in the requesting state. Once the SNS assets arrive in a state, they are

signed for by a state representative where they become the responsibility of the state, and

the received SNS material will be stored in a warehouse until it is picked up and sent out

to the counties for dispensing. The SNS materials will be allocated, or distributed, to the

counties by request, depending on the event. Staff and volunteers in the RSS will pick and

palletize orders to be sent to one local health department and one hospital in each county.

The local health departments in the state are responsible for dispensing the pharmaceuticals

to the population. In a statewide event, the first round of medications from the SNS will

be allocated by population. Once significant amounts of medications arrive from Managed

Inventory. Health departments and hospitals will have the opportunity to request additional

medications and supplies through WebEOC, or by fax.

There are twelve state level SNS sites across the United States which are all managed by

the federal authorities; in the mean while, there are also three local level organizations that

cooperate with the SNS, which are the RSSs and PODs. The two candidate sites serving as

warehouses in the state of Kentucky are responsible for receiving, staging, and storing those

medical supplies. These are called RSSs. There are fifteen health care planning regions and

fifty health department districts in Kentucky. The fifty health department districts are serv-

ing one hundred and twenty counties in Kentucky. The fifty health department districts are

defined as Regional Distribution Nodes (RDNs). Additionally, there are two hundred and

fifty points of dispense (PODs) locations to cover all the population in Kentucky. Each

pod is responsible for certain areas which are categorized by the geographical distribution.

From the introduction above, it is a multi-stage distribution system that consists of one fed-

eral strategic national stockpiles, two RSSs, fifty RDNs and two hundred and fifty PODs.
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The research work in this dissertation is mainly focused and designed for the Kentucky

SNS. The models and platform that we design for the Kentucky SNS can be applied to oth-

er states only with minor changes, since a great level of similarity in operations is shared

by the states.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews the applications of work in operations research in recent years which

is devoted to health care resource allocation. This chapter is separated into three sessions.

The first section summaries the historical research work that has been done by OR/MS re-

searchers on typical health-care system issues with applicable methodologies and applica-

tion provided for illustration. The second chapter reviews what other researchers have done

to solve vaccine allocation problems during pandemics. Last but not least, as mentioned

in Chapter 1, uncertainty will be considered in decision-making on vaccine allocation, so

a review of literatures on various types of optimization models with uncertain parameters

will also be presented.

2.1. Applications of Operations Research in Health-care Delivery

This session will summarize the historical research work that have been done by many

operations researchers. It will cover the categorization of typical health-care system is-

sues that OR/MS research is suitable for, and provide applicable OR/MS methodologies

and application for each topic. Pierskalla and Brailer (1994) reviews the body of work

in operations research in health-care delivery before 1994. Important reservations have

been pointed out about the characteristics of health-care system. Although many problems

faced by operation researchers in health-care are not inartistically different from problems

in other industries, many other are quite unique due to certain characteristics of health care

delivery systems. Some of these are the possibilities of death or low quality of remaining

life, the difficulty in measuring quality and value of outcomes, the sharing of decisions

14



among several decision makers (physicians, nurse and administrators), third party payment

mechanisms for diagnoses and treatments, and the concept of health-care access as a right

of citizens in society. Additionally, Pierskalla and Brailer (1994) summarize and separate

health-care problems into three general categories, where the knowledge of OR/MS can be

used. First is the system design and planning, which deals with large allocation decisions,

both at the policy level and at the operational level. Second is management of operations,

which examines monitoring and control methodologies at the operational and tactical lev-

els. Third is medical management, which involves patient disease detection and treatment

at the policy, and the patient levels. Several main topics that each category frequently deal

with are also provided below, along with applicable OR/MS methodologies and applica-

tions.

(1) System Planning and Strategy

(a) Planning and strategy: typical problems of planning and strategy are optimal

clustering problems (the decision maker attempts to partition the set service

so that some objective is optimized) or resource allocation problems (the cen-

tral authority must plan for and allocate scarce resources to regions or district-

s).

In the early eighties, operations research has been already applied to solve

system design and planning problems in different aspects of health-care field-

s. At the national level, Rizakou et al. (1991) developed a spreadsheet mod-

el based decision support system, and AIDSPlAN to plan for the resources

needed for HIV/AIDS related services in the United Kingdom. The model

incorporated demand forecasting by patient categories, care protocols and re-

source and budget needs for central and local planners in the British National

Health Service. It can also be used with the planning efforts of earlier math
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programming balance of care (BOC) models incorporated in micro-computer

software to determine resource needs and allocations for entire health service

regions and districts.

Pezzella et al. (1981) provides an example of health service districting. In this

paper, the authors developed a model by which local health departments in

Italy are assigned into regional health structures. Dimensions of the analysis

include an analysis of the demand for health services based on demograph-

ic, socio-economic, and geographical information, interviews with experts,

surveys of special disease populations, and an analysis of available hospi-

tal service, which are considered in the proposed mathematical model for

optimal districting. The authors note previous attempts to perform such ra-

tionalization by set partitioning, generalized assignment models, location and

allocation models, and other linear programs. The authors use a linear pro-

gram which has two objectives: to minimize the average distance of indi-

viduals from the nearest center, which improves access, and to minimize the

deviation between proposed and existing districting, which improves poetical

acceptability.

In our RTDSS project, our team also designed a few applications regarding

the system planning. For example, the system planning model in the RTDSS

web tool, is used to allocate critical medical or surgical resources among the

Kentucky hospital network. Another application called the patient allocation

model is developed to improve the patient acceptability depending on the

distance and the availability of resources.
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(b) Demand forecasting: aggregate demand forecasting and daily prediction is

important in improving the efficiency of capital resource use in health-care.

It is a fundamental input to many other analysis in health-care operations re-

search. Health-care operations research tends to employ existing and well

known operations research algorithms from other industrials to perform fore-

casting.

Qualitative approaches such as historical analysis are frequently used in health-

care industry. This technique, while inexpensive and easy to use, ignores en-

vironmental changes and does not support the analysis of new venture deci-

sions. Another qualitative approach Delphi technique is also used in demand

forecasting. Future predictions are extracted from experts and the process is

repeated until a consensus emerges. The Dephi technique is susceptible to

ideological biases which make it difficult to use in settings where predictions

may not conform to standard views of system operation. For more details

on the review and application of these techniques, please refer to Harrington

(1977).

There are many other qualitative techniques that have been employed in health-

care service forecasting as well. For example, least squares regression anal-

ysis has been used to determine the demand for pre-hospital care in order

to make ambulance staffing decisions in Kamenetzky et al. (1982). Kao and

Tung (1980) employ an auto-regressive, integrated moving average (ARIMA)

time series model to forecast demand for inpatient services.
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(c) Location selection: Location of health-care facilities and services has much

in common with the location aspects of many types of facilities or services

which have a geographically dispersed customer base, and where there is a

need to be close enough to customers for ease of access and/or speed of ac-

cess, as well as a need for low cost of sitting and operations. The difference

of health-care facilities and services location problem is health-care facilities

and services may be subject to public control laws and in the case of emergen-

cies, vehicle locations where there are maximum response time requirements,

may need to balance closeness to customers and facilities. The SNS logistics

design model in RTDSS web tool is designed to determine the location of

RRSs, RDNS, and PODs.

(d) Capacity planning: this topic relates to those decisions regarding the appro-

priate levels, equipment and personnel for some demand. In health-care, ca-

pacity planning usually focuses on decisions such as total bed capacity, sur-

gical system capacity, bed capacity allocation to different services, capital

equipment capacities, ancillary service capacity, and factors with which af-

fect capacity utilization such as patient flow, staffing levels, and staff skill

mix. The common goal of capacity planning problems is to seek ways to in-

crease the productivity of existing assets and improve service quality. Many

of the studies drive the capacity planning process with an underlying queue-

ing system and use simulation to obtain solutions.

(2) Management of operations

(a) Management information systems (MIS): MIS’s have the potential to im-

prove decision-making responsiveness, quality of patient care, and produc-

tivity. Quality of care improvements can result from reduced waiting time for
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physicians’ orders to be carried out and results to become available, elimina-

tion of unnecessary services, reduction of errors, and increased provider and

patient satisfaction. Productivity is improved by appropriate data availability

for decisions about staffing patterns, scheduling, use of equipment and ma-

terials, and by elimination of redundant systems and actions. More details

about the benefits of MIS in health-care can be found in Moidu and Wigertz

(1989).

(b) Patient Scheduling: Patient Scheduling can be a very effective way to match

the demand with the supply of services available. The objective of most pa-

tient scheduling problems is to optimize the satisfaction of patients and physi-

cians as well as the utilization of facilities. Many different methodologies are

proposed involving queueing models as represented by Markov and semi-

Markov processes, mathematical programming, heuristic and expert systems,

and simulation.

(c) Workforce planning and scheduling: The management of human resources is

a major activity in health-care organization. Like many service organizations,

the ability to match staffing resources to a fluctuating demand directly affects

operating efficiency and the quality of service. The development of inno-

vative approaches to the organization and management of nursing and other

human approaches to the organization and management of nursing and other

human resources holds great promise for further cost savings in the delivery

of health services.

(3) Medical management
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(a) Screening for diseases, which are tests which detect diseases, have resulted

in advances in medical diagnosis and disease detection. Individual screening

and mass screening are different modeling problems because the objectives of

the decision makers frequently differ and the constraints and parameters af-

fecting the decisions may vary. Operations researchers have been attracted to

this area due to its importance. Current work focuses primarily on descriptive

modeling of disease processes, progression, and causal factors. In the case of

contagious diseases, very complex simultaneous differential equation and/or

statistical models are frequently used to describe the growth, maturity, and

decline of various specific or general types of diseases. Another branch of re-

search focuses on maintainability. The applications include a large variety of

decision models such as mathematical programming, Markov decision, and

simulation. However, more work is needed on the linkages to the epidemiol-

ogy literature and to the construction and evaluation of models which can aid

in decisions that are often based on sparse or incomplete data and incomplete

knowledge of the disease etiology and propagation.

(b) Clinical decision-making:In this area, decision analysis can be used to aid

in the structuring of medical decisions. Performance improvement can also

be used to address the concerns about quality of care and practice efficiency.

Last but not least, the use of operations research techniques and cost effective

analysis (CEA) can be used to analyze health-care policies and those policies

that affect large populations.

So far, we have reviewed the major categories of health-care problems and many opera-

tions researchers’ contribution towards solving problems by the use of knowledge of oper-

ations research. Since the purpose of this dissertation is to explore the resource allocation

20



and/or reallocation for large-scale emergency response, the next session will more focus on

operations research methodologies and applications to address resource allocation and/or

reallocation for large-scale emergency.

2.2. Vaccination Strategies under Parameter Uncertainty for Emergency Response

Vaccination is one of the primary strategies used by public health authorities to control hu-

man infectious disease. The major resources to be allocated and/or reallocated in the SNS

are vaccines. So we have decided to make solving vaccine allocation for pandemic problem

as our primary goal. In this section, we will review a series of recent research work that

have been done by other OR/MS researchers on the similar issue, which can definitely help

us deepen our understanding of the characteristics of our problem and thus provide more

effective solutions.

Mathematical models have long played a major role in identifying and evaluating strate-

gies in order to allocate resources to guarantee maximum effectiveness of vaccination in

controlling infectious disease outbreaks. There are three primary modeling approaches that

have been used in this effort - deterministic analytical models, stochastic analytical models,

and computer simulations.

Very few of these analytical models include discussion of the effect of parameter of uncer-

tainty on the vaccination policies identified and/or evaluated but this uncertainty can have

major consequences. For example, Tanner et al. (2008) presents a stochastic programming

framework for finding the optimal vaccination policy for controlling infectious disease epi-

demics under parameter under uncertainty. They formulated the problem to seek the mini-

mum cost vaccination policy under a chance-constraint. The chance-constraint requires the
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probability that Rx ≤ 1 be greater than some parameter α, where Rx is the post-vaccination

reproduction number. They also show how to formulate the problem in two additional cas-

es: a) Finding the optimal vaccination policy when vaccination supply is limited and b) a

cost benefit scenario. The class of epidemic models for which this method can be used is

also described. Epidemiological models are often formulated as a series of compartments

corresponding to different disease states, e.g.: susceptible, exposed, infectious, recovered,

etc. The models are then referred to by the series of capital letters that corresponds to the

compartments within the basic model structure. For example, an SIR model considers indi-

viduals to be either suspectable (S), infectious(I), or recovered(R), and to progress through

the stages in that order;

Longini Jr et al. (1978) shows that the optimal allocation of vaccines derived from their

influenza model is highly sensitive to both the epidemiological characteristics of the virus

and to the choice of the objective function used in the optimization process. Similar con-

clusions have been drawn by Bansal et al. (2006), who finds that optimal strategy depends

critically on the viral transmission level (reproductive rate) of the virus. They present a

comparative analysis of two classes of suggested vaccination strategies: mortality-based

strategies that target high-risk populations and morbidity-based strategies that target high-

prevalence populations. Applying the methods of contact network epidemiology to a model

of disease transmission in a large urban population, they assume that vaccine supplies are

limited and then evaluate the efficacy of these strategies across a wide range of viral trans-

mission rates and for two different age-specific mortality distributions.

Dushoff et al. (2007) developed a simple mathematical model of an epidemic that includes

assortative mixing between groups of hosts. They evaluate the impact of different vac-

cine allocation strategies across a wide range of parameter values. With this model they
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demonstrate that the optimal vaccination strategy is extremely sensitive to the associativity

of population mixing, as well as the reproductive number of the disease in each group.

Clancy and Green (2007) use a Bayesian-decision theoretic approach and a general stochas-

tic SIR (susceptible → infective → removed) model for the spread of infection through a

closed population under parameter uncertainty. They also mention that in reality, uncer-

tainty over parameter values exists. So they consider the effect upon the optimal policy of

changes in parameter estimates, and of explicitly taking into account parameter uncertainty

via a Bayesian decision-theoretic framework.

2.3. Introduction of Optimization Models under Uncertainty

From the review in 2.2, it is very important to take into account of the uncertainty in vaccine

allocation because the optimal solution is extremely sensitive to the epidemiological char-

acteristics of the virus. Why data uncertainty deserves special treatment can be answered by

this example. The optimal solutions of linear programming problems may become severely

infeasible if the nominal data is slightly changed. This phenomenon has been demonstrated

by studying PILLOT4 from the well-known NETLIB collection, see Ben-Tal and Nemirovs-

ki (2000). It is a linear programming with 1000 variables and 410 constraints; One of the
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constraints (#372) is

aT x =15.79081x826 −8.598819x827 −1.88789x8281.362417x829 (2.1)

1.526049x8300.031883x84928.725555x85010.792065x851

0.19004x8522.757176x85312.290832x854 +717.562256x855

0.057865x8563.785417x85778.30661x858122.163055x859

6.46609x8600.48371x8610.615264x8621.353783x863

84.644257x864122.459045x86543.15593x8661.712592x870

0.401597x871 + x8800.946049x8980.946049x916 ≥ b = 23.387405

The related nonzero coordinates of the optimal solutions x∗ of the problem, as reported by

CPLEX , are as follows:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961

x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900

x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

Most of the coefficients in (2.1) are “ugly reals”. It is natural to assume that the “ ugly

coefficients” are in fact uncertain. Ben-Tal and Nemirovski (2000) proved that quite small

(just 0.1%) perturbations of “obviously uncertain” data coefficients can make the “normal”

optimal solution x∗ heavily infeasible and thus practically meaningless.

The data of real-world optimization problems most likely are uncertain. The sources of

uncertainty may be from measurement errors or estimation errors. In real-world applica-

tions of optimization, one cannot ignore the possibility that even a small uncertainty in the

data can make the nominal optimal solution to the problem completely meaningless from
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a practical viewpoint. Therefore, in optimization, there exists a real need of a methodol-

ogy capable of dealing with uncertain data. Two major mathematical methods, stochastic

programming and robust optimization, can address the data uncertainty issues will be intro-

duced in this chapter. In addition, we propose a novel methodology that is a combination

of two major methods, which can address the optimization problem with uncertain data

overcoming the drawbacks of each method. We apply our proposed methodology on the

vaccine allocation optimization during the pandemic. Vaccine allocation policy assuming

the epidemiological characteristics are not accurate or uncertain, is a very possible sce-

nario that could happen when any pandemic disease occurs. Our proposed methodology is

not only good on vaccine allocation optimization but also applicable on other complicat-

ed uncertainty optimization problems with similar characteristics. This chapter reviews the

theory and methodology that have been developed to cope with the complexity of optimiza-

tion problems under uncertainty. We summarize the evolution of various techniques used to

solve problems under uncertainty, discuss and contrast the advantages and disadvantages of

the classical recourse-based stochastic programming, and robust optimization. The disad-

vantages of each method are the motivation for us in designing our proposed methodology.

2.3.1. Stochastic programming

In mathematical programming, there are a variety of ways to deal with the problems of

uncertainty. The data in the objective f (x) and in the convex constraints gi(x), i = 1, . . . ,m

associated with a convex programming problem:

min{ f (x)|gi(x)≤ 0, i = 1, . . . ,m} (2.2)

are uncertain in most real problems. The easy solution is to replace the “uncertainties” by

nominal values (e.g., expected values) and solve the model thereafter. This approach has
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been shown to be inferior to stochastic solutions through numerous papers (see Birge and

Louveaux (1997a), Ruszczynski and Shapiro (2003), Wets (1996) and references therein).

The classical stochastic approaches are stochastic programming and robust optimization.

The difference between these two approaches is in the way that the constraints are treated.

The most obvious merit of stochastic programming is that uncertainty is constructed explic-

itly as part of the model. It uses random variables as representatives of uncertainty. Since

the basic premise of stochastic programming is that the probability of random variables is

known, the random variables can be generated by their underlying probability. Stochas-

tic programming treats mainly soft constraints where the constraints may be violated with

certain penalty. In the stochastic programming recourse models, for example, the decision

variables are partitioned into two sets. The first is a set of variables that are decided pri-

or to the realization of uncertain events. The second is a set of recourse variables which

represent the optimal solution corresponding to the first stage decision and realized uncer-

tainty. Other penalty methods are the “Scenario Optimization” and the “Entropic Penalty

methods” (see Ben-Tal (1985), Rockafellar and Wets (1991) respectively). It is fair to say

that stochastic programming solves a relaxation of the constraints (see Kall and Wallace

(1994), and references therein).

The purpose of stochastic programming is to minimize the expected objective subject to

some constraints, i.e.

min
x∈X

E[g(x,ξ)] (2.3)

where x ∈ X ⊂ Rn is the feasible region and g : X ×Ω → R is convex of x under every re-

alization of ξ. However, it ignores higher moments of the distribution as risks. Therefore,

the decides of model (2.3) is always risk neutral.
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The first stochastic model was formulated in Dantzig (1955), and the model was named as

the linear programming under uncertainty. The stochastic models can be divided into the

following categories according to the complexity of the problems: linear, nonlinear, two

stage stochastic programming problems, and multistage stochastic programming.

A classic stochastic programming problem “the farmer’s problem” (Birge and Louveaux

(1997b)) will be presented in order to demonstrate how to model uncertainty.

A Farmer’s Problem: A farmer raised wheat, corn, and sugar beets on 500 acres of land.

Before the planting season he wants to decide how much land to devote to each crop. At

least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be

purchased from a wholesaler if not raised on the farm. Any grain in excess of the cattle

feed requirement can be sold at $170 and $150 per ton of wheat and corn, respectively.

The wholesaler sells the grain for 40% more (namely $238 and $210 per ton, respectively.)

Up to 6000 tons of suger beets can be sold for $36 per ton; any additional amounts can be

sold for $10/ton. Crop yields are uncertain, depending upon weather conditions during the

growing season (see Table 2.1). Three scenarios have been identified (“good”, “fair”, and

“bad”), each equally likely. (In this data, only the yields are scenario-dependent, while in

reality the purchase prices and sales revenues from grain would be higher in year with poor

yield, etc.)

Table 2.1. Yields under different weather condition

Scenario Wheat yield (tons/acre) Corn yield (tons/acre) Beet yield (tons/acre)

Good 3 3.6 24

Fair 2.5 3 20

Bad 2 2.4 16
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The general stochastic linear programming model is:

min cx+
K

∑
k=1

pkqkyk

Subject to

Tkx+Wyk = hk,k = 1, . . . ,K; (2.4)

In this example, only Tk varies by scenario, while the cost vector qk and the right-hand-side

hk are fixed. Decision variables are

First stage:

x1 = acres of land planted in wheat

x2 = acres of land planted in corn

x3 = acres of land planted in beets

Second stage:

w1 = tons of wheat sold

w2 = tons of corn sold

w3 = tons of beets sold at $36/T

w4 = tons of beets sold at $10T

y1 = tons of wheat purchased

y2 = tons of corn purchased

The stochastic decision problem is

min 150x1 +230x2 +260x3 +1/3
3

∑
k=1

Qk(x) (2.5)

subject to x1 + x2 + x3 ≤ 500

x j ≥ 0, j = 1,2,3
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Where Qi(x) is the optimal solution of the second stage (recourse) problem after the sce-

nario has been determined, given that the first stage variables x have been selected.

Q1(x) =min −170w1 −150w2 −36w3 −10w4 +238y1 +210y2 (2.6)

s.t. y1 −w1 ≥ 200−3x1

y2 −w2 ≥ 240−3.6x2

w3 +w4 ≤ 24x3

y1 ≥ 0,y2 ≥ 0,w1 ≥ 0,w2 ≥ 0,0 ≤ w3 ≤ 6000,w4 ≥ 0

Q2(x) =min −170w1 −150w2 −36w3 −10w4 +238y1 +210y2 (2.7)

s.t. y1 −w1 ≥ 200−2.5x1

y2 −w2 ≥ 240−3x2

w3 +w4 ≤ 20x3

y1 ≥ 0,y2 ≥ 0,w1 ≥ 0,w2 ≥ 0,0 ≤ w3 ≤ 6000,w4 ≥ 0
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Q3(x) =min −170w1 −150w2 −36w3 −10w4 +238y1 +210y2 (2.8)

s.t. y1 −w1 ≥ 200−2x1

y2 −w2 ≥ 240−2.4x2

w3 +w4 ≤ 16x3

y1 ≥ 0,y2 ≥ 0,w1 ≥ 0,w2 ≥ 0,0 ≤ w3 ≤ 6000,w4 ≥ 0

To formulate a problem in a consistent way, a number of fundamental assumptions should

be made. By χ we denote the space of decision variables. And in most cases χ can be

identified with a finite dimensional vector space Rn. It is assumed that there is a given set

X ⊂ χ of feasible decision and an objective function F(x,ω) of decision vector x ⊂ X and

random element ω. We consider ω as an element of a sample space Ω equipped with a

sigma algebra z. In some cases, the random data is formed by a finite number of parame-

ters. Consequently, the objective function is given in the form F(x,ω) :=V (x,ξ(ω)), where

ξ(ω) is a finite dimensional random vector and V (x,ξ) is a function of two vector variables

x and ξ.

minF(x,ω) (2.9)

where F(x,ω) subject to x ∈ X depends on ω, which does not make much sense. It means

for different realizations of the random parameters, one would get different optimal solu-

tions. But we are not looking to investigate the effects of different realizations on solutions.
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A way to reduce the effects of different realizations is to optimize the objective function on

average. And the new form of (2.9) is

min
x∈X

{ f (x) := E[F(x,ω)]} (2.10)

Since the probability distribution P is known on (Ω,z) as we assumed, the expectation of

f (x) is easy to get by definition.

E[F(x,ω)] =
∫

Ω
F(x,ω)dP(ω) (2.11)

For convenience, we use f (x) to represent the expectation or expected value function.

Since we already have the objective function, the next step is to find out how to model

the constraints. We have assumed that a given set X ∈ χ is a feasible set of decisions.

For instance, the feasible set X can be written in a standard mathematical programming

formulations as follows:

X := {x ∈ X0 : gi(x)≤ 0, i = 1, . . . ,m}, (2.12)

When uncertainty is considered in the constrains, the constraints can be expressed in this

formulation

Gi(x,ω)≤ 0, i = 1, . . . ,m, (2.13)

As previously discussed, stochastic programming treats mainly soft constraints, where the

constraints may be violated with certain penalty. With the help of the mathematical model,

this idea can be demonstrated more clearly. By that, we mean some values of χ may satisfy

(2.13) for some ω and violate these conditions for other ω. It is unlikely to require that

constraints (2.13) hold for all ω ∈ Ω.
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There are several approaches available to include Gi(x,ω) into the formulation of con-

straints. And the most popular one is to consider the expected values as the way to build

the objective function.

gi(x) := E[Gi(x,ω)], i = 1, . . . ,m, (2.14)

To reconcile the problem, as it varies, caused by uncertainty, the stochastic programming

petitioners model the problem into two distinct stages. At the first stage, before a real-

ization of the corresponding random variables become known, one chooses the first stage

decision variables to optimize the expected value of an objective problem which in turn is

the optimal value of the second stage optimization problem.

The two-stage stochastic linear program can be written as follows:

min
x

cT x+E[Q(x,ξ(ω))]

s.t. Ax = b,x ≥ 0, (2.15)

where Q(x,ξ) is the optimal value of the second stage problem

min
y

qT y

s.t. T x+Wy = h, y ≥ 0. (2.16)

Here x and y are vectors of the first and second stage decision variables, respectively.

ξ = ξ(ω) is already defined earlier. In this case, since the solution of the second stage prob-

lem depends on the data ξ := (q, h, T, W) and some or all of the elements can be random,

ξ(ω) is a random vector. The expectation in (2.16) is supposed to be known because it is

depends on ξ(ω). The matrices T and W are called the technology and recource matrices,
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respectively. If the W is fixed, the two-stage stochastic problem is called the problem with

fixed recourse. It is worthwhile to note at this point that the problem (2.16) is a particular

case of the stochastic programming problem.

As it was discussed above, the essence of two stage modeling is that the decision variables

are partitioned into two sets. The value of the first vector x ∈ χ has to be decided before

any realization of the unknown quantities. The observed value are summarized in the data

vector ξ = ξ(ω). The value of the second part, y, can be chosen after the realization of ξ

becomes known and generally depends on the realization of ξ and the choice of x. And

y represents the optimal solution corresponding to the first stage decision and the realized

uncertainty. As a result, at the first stage one has to solve the expectation optimization

problem

min
x∈X

E[F(x,ω)] (2.17)

And in the case of two stage linear problem,

F(x,ω) := cT x+Q(x,ξ(ω)) (2.18)

with Q(x,ξ(ω)) being the optimal value of the second stage optimization problem, which

totally depends on decision variable y.

There is another point to be made: the stochastic programming solves a relaxation of the

constraints and the uncertainties’ distributional information is assumed to be known. As in

the example (2.15), (2.16), we may relax the expectation problem (2.17) by allowing the

first stage decision variables to depend on the random data and then to correct that by some

penalties built in constraints.
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If a comparison is made between the solution of stochastic programming and its corre-

sponding deterministic counterpart, it is noticeable that the solution from stochastic pro-

gramming is well-hedged because of the built-in flexibility in models dealing with uncer-

tainty. Another important observation is the sequencing of decisions and observations are

important. In constructing a stochastic model, it is not enough to just specify the decision

variables. The modeling person must also construct the model in such a way that prevents

decisions that anticipate future uncertainty.

Last but not least, by solving the stochastic models, one can find the optimal solution on

average. However, for a particular realization of uncertainty event, on a particular time

period, the objective value might be vary different from the corresponding expected value.

This is due to the variance in the uncertainty. So the solution from stochastic programming

might not be the best for some scenarios.

2.3.2. Robust Optimization

The perturbation could be minor without significantly changing the nominal values of the

parameter, however, the impacts on the optimal solution are not ignorable. Thus, before

applying stochastic models for any real-world problems, it is always good to validate that

the input data is reliable and perturbation will not happen in the future.

The Robust Optimization (RO) method has become more and more popular since the ear-

ly 2000s. The main reason for its popularity is that the RO model is a decision support

approach without assuming known distributional information. It generates a series of solu-

tions that are progressively less sensitive to realization of the real input data. This method
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seeks the tradeoff between optimality and feasibility. So it is a fitful method for some realis-

tic applications (see Ben-Tal and Nemirovski (1999) and Ben-Tal and Nemirovski (2000)).

Consider the two-stage linear program (2.15), (2.16) In that problem the optimal value

Q(x,ξ(ω)) of the second stage problem is optimized on average. It is not impossible that

for a particular realization ξ of the random data ξ(ω), the corresponding value Q(x,ξ) can

be quite different from the expected value E[Q(x,ξ(ω))].

An “unlucky” realization of ξ(ω) may have disastrous consequences for the user of sto-

chastic programming. Consider a situation: A XY Z company is thinking about investing in

the stock market. Suppose there are two stocks that they are pretty interested in. The first

stock has the same possibility of earning 1 dollar or losing 1 dollar per share with an even

chance. The second stock may earn the company $1001 or lose $1000 per share with the

same possibility. The expectation of the first stock is $0 and the expectation of the second

is greater than $0. According to the expected-value criterion, the company will choose the

second stock. But in fact, it is quite dangerous for the company to invest on the second one

at the risk of losing 1000 per share. This example tells us why it is necessary to investigate

trade-offs between means and variances of costs (or profit).

In order to avoid such disastrous consequences one may try be more conservative and to

reach a compromise between the average(i.e, the mean) and a risk associated with variabil-

ity of Q(x,ξ). A model which integrates means and variance was introduced by Markowitz

in Markowitz (1952) as a weighted mean-risk criterion. It seems natural to add the term

kV[Q(x,ξ)] to the object of the optimization problem, where the coefficient k ≥ 0 repre-

sents a compromise between the expectation and variability of the objective. However, this

35



will destroy the convexity and the second stage optimality of the target problem.

There are two types of robust models in literature. In the 1990s, some researchers placed

the penalty caused by uncertainties in the objective, which is generally a Lagrangian relax-

ation. This method seeks the tradeoff between optimality and feasibility (see Mulvey et al.

(1995)). This method is the same as SP in the way to deal with constraints, which treats

mainly soft constraints.

Another RO model is called the “robust counterparts” (Ben-Tal and Nemirovski (1999,

2000), Ben-Tal (1998)), in which the parameters are modeled within a computational tractable

structure such as an ellipsoid or an interaction of finite many ellipsoids. Therefore, the re-

sulting robust counterpart would be efficiently solved by interior method without demand-

ing computationally which it is essential for practical implementations. This approach treat

uncertainty with hard constraints, which means the constraints must be satisfied whatever

is the realization of the input data. In the remaining part of the proposal, RO model is

automatically referred to the robust counterpart method.

In order to better understand the properties of RO models, we will introduce the general

formation of robust counterpart in this part. The RO model is constructed specially for the

uncertain linear programming (LP) problem. Suppose the data A, b within the LP model

min {cT x | Ax ≥ b} (2.19)

are uncertain.

Denoted by U is the “uncertainty set”, which includes all the realization of the data (A, b)

that satisfies the hard constraints. Therefore, the feasibility of a vector x can be interpreted
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as

Ax ≥ b ∀(A,b) ∈ U. (2.20)

As a result, the problem defined by

min{cT x| Ax ≥ b ∀(A,b) ∈ U} (2.21)

is called the robust counterpart of the uncertain LP problem in Ben-Tal and Nemirovski

(1999) and a vector x∗ is called a robust solution of the uncertain problem.

Readers may have a question: how to construct the ellipsoidal “uncertainty set”. Now, we

are going to discuss where the ellipsoidal “uncertainty set” is from. In general, there is no

uniform method that is applicable to every problem. It depends on the particular situation

we meet. If we are given several primary scenarios of the data, we can construct the un-

certainty ellipsoid as the minimal volume ellipsoid that contains these scenarios. There is

another source of the ellipsoid uncertainties which is from statistical considerations. A sim-

ple portfolio problem will be presented in order to explain how robust optimization works.

Portfolio problem as stated by Dantzig and Infanger (1993) is shown below.

Portfolio Selection Problem: The portfolio selection is the problem of allocating capital

over a number of available assents in order to maximize the “return” on the investment

while minimizing the “risk”. For example, $1 is used to invest at the beginning of the year

in a portfolio comprised of n shares. The end-of-the-year return per $1 invested in share i is

pi ≥ 0. At the end of the year, you sell the portfolio. The goal is to determine the amount xi

to be invested in share i, i = 1, . . . ,n, so as to maximize the end-of-the-year portfolio value

∑n
i=1 pixi.
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When the quantities pi are known in advance, the situation is modeled by the following

simple LP program:

max{
n

∑
i=1

pixi|
n

∑
i=1

xi = 1, xi ≥ 0} (2.22)

and the optimal solution is evident: we should invest all we have in the “most promis-

ing”(with the largest pi) share. Assume all the coefficients pi are distinct and p(n) is denot-

ed as the largest coefficient. And the solution will the x(n) corresponding to p(n) should be

equal to 1 and the others will be assigned as 0.

Mostly likely, the coefficients pi are uncertain in reality. Assume that we know the “nomi-

nal” values of these coefficients p∗i , p∗1 ≤ p∗2 ≤ . . . pn
n and bounds σi ≤ p∗i such that the actual

values of pi are within the “uncertainty intervals” ∆i = [p∗i −σi, p∗i +σi]. Moreover, it is

necessary to assume that pi are of statistical nature and that they are iid in ∆ symmetrically

with respect to the nominal value p∗i .

If this problem is solved by the stochastic method, the model can also be represented by

(2.22) with pi replaced by their “nominal” values p∗i ; the “nominal” solution is simply to

invest all the money in the “most promising” share. This policy will generate a random

yield xnom with the expected value

E{xnom}= p∗n (2.23)

In contrast to the stochastic method, if a robust counterpart approach is applied on this

problem, the corresponding robust optimal policy would invest everything in the shares

with the largest worst-case return p∗i −σi. The most important element of this approach

is to construct an uncertainty set. The most straightforward answer is to construct a box.

Each point of the box is a possible value of the uncertain coefficients p. For the simple
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portfolio problem, the uncertainty set can be constructed as follows:

Uθ = {p ∈ Rn|
n

∑
i=1

σ−2
i (pi − p∗i )

2 ≤ θ2}. (2.24)

The parameter θ is used to describe the decision maker’s risk attitude; the larger θ is, the

more risk averse s/he is. There are several important scenarios needed to be payed attention;

• when θ = 0, Uθ shrinks into the singleton U0 = {p∗} which is the nominal data;

• when θ = 1, U1 is the smallest volume ellipsoid containing the box.

• When θ =
√

n, Uθ is the largest volume ellipsoid containing the box.

The robust counterpart of (2.22) with respect to the uncertainty set Uθ:

max{
n

∑
i=1

p∗i xi −θV 1/2(x)|
n

∑
i=1

xi = 1} (2.25)

where V (x) = ∑n
i=1 σ2

i x2
i .

Problem (2.25) can be deemed as the mathematical model of the famous Markovitz portfo-

lio selection model, although in his classical model
√

V (x) is taken placed by V x. As we

mentioned in the beginning (2.3.2), robust optimization is a stable approach built with ro-

bust risk mechanism compared with stochastic programming. Due to the comprise of risk

control mechanism, the optimal solution generated by the robust optimization approach

may be not as optimal as the one from stochastic programming.

2.3.3. Concerns on modeling uncertainty

Modeling uncertainty using the above methods will inevitably encounter computational

tractability issues. By July 2013, the fastest supercomputer ever built was a system called

“Tianhe-2” or “Milky way 2”, and deployed at the National Supercomputer Center in
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Guangzho, China. This system is capable of executing 54.9 petaflops or (54.9 × 1024)

Floating point Operations Per Second (FLOPS)1 When solving programs with n variables,

the computer is actually solving an n×n Newton system of linear equations. With standard

techniques, the cost will be O(n3). 2 Certainly, when special structures, e.g. banded, and/or

sparse, are identified, some factorization method can be applied to significantly reduce the

computational overhead. For example, the Cholesky factorization is a commonly-used ap-

proach which has been available in the Matlab suite (see Matlab user’s manual).

Typical linear programming models in commercial scales always lead to a sparse New-

ton system and as a result, modern supercomputers are able to solve commercial linear

programs with up to 106 variables (see Nemirovski (2000)). Typical nonlinear convex pro-

grams, however, usually lead to dense Newton systems and the supercomputer “Tianhe-2”

is only capable of solving a nonlinear convex programming with up to 108 variables. Of

course, thanks to the long-term trend of computing hardware, as embodied in Moore’s law,

the increasing trend on the maximum number of variables in a tractable dense Newton sys-

tem is not expected to stop for another decade at least (see Kanellos (2009)).

Another issue we are concerned about is the stability of stochastic programming models

under uncertainty. When the underlying distribution associated with random variables and

the perturbed or contaminated constraints are encountered, the quality of the solution be-

comes questionable. The current research focuses on the Lipschitz continuity property on

the optimal values (see Shapiro (2006) and references therein) instead of practical imple-

mentation because of two reasons. Firstly, the real distribution is not available for decision

until revealed afterward; secondly, the Lipschitz constant is extremely difficult to evaluate

1Although FLOPS is a relevant measurement, it is used in most optimization literature.
2In computer science, the big O notation denotes the time complexity. The time complexity of an algorithm
quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing
the input.
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and thereby constructing a tight bound becomes highly impossible.

However, the negative impacts of stability issues on RO models are minimum because RO

uncertainty is modeled as unknown-but-bounded variables without assuming underlying

distributional information. In some literature, the RO model is described as a quantitative

approach to control loss under the worst scenario. It is true that the RO solution cannot

optimize the expected overall objective value compared to stochastic programming. But

the solution is not as bad as it sounds. We need to point out that the term “worst scenario”

does not mean that all the parameters are as “bad” as they could be. The RO model is mod-

eled by an uncertainty set, which is to reflect the fact that the extremely worst values will

not simultaneously happen. Rather than minimizing the first moment with distributional

information, RO model would yield stable, feasible solution which is suitable for practical

implementations.

In most real-world resource allocation problems, the decision maker will most likely prefer

a plan that generates better object value and well controlled risks. Unfortunately, neither

stochastic programming nor robust optimization will yield such a risk averse and a stable

decision under uncertainty with incomplete and/or erroneous distributional information.

By the previous introduction, the RO cannot generate the best optimized objective value,

but the method is risk averse and the negative impacts of unwanted perturbations are mini-

mized for the RO model, because it does not require the distributional information. On the

other hand, the SP is risk neutral and not perturbation-proof, but it can generate optimized

objective value.
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So in response to those concerns and challenges, we propose a combined method, named

as Resource Reservation (RR) for resource allocation problems under uncertainty with per-

turbation. First of all, this combined method is tractable and practical, so that it can be

applied to well diversified uncertainty modeling applications. This method itself will en-

rich the body of knowledge on uncertainty modeling and solution techniques to facilitate

decision making. Secondly, the essence of this method is only allocating a required amoun-

t of resources by the RO model, instead of allocating all the resources at once. And then

the SP model will decide how to assign the required amount of resources to each region

or client. This combined method contains multiple iterations. Within each iteration, we

will solve both the RO and SP for different purposes. The RO model is to determine the

amount of resources to allocate prior to possessing accurate information. By taking the

amount of resource from the RO model, the SP model provides a plan that is used to op-

timize the objective value. The iteration will keep going until all the resources are depleted.

2.3.4. Comparison of the SP and RO methods

In some circumstances, robust optimization has some advantages over alternative approach-

es for dealing with uncertainty and is generally more applicable.

Stochastic programming, however, optimizes only the first moment of the distribution of the

objective value of ξ. It ignores higher moments of the distribution, and the decision mak-

er’s attitude towards risks. The aim of stochastic programming is to optimize the expected

value at each scenario through adjusting the control variables such as resource variables.

Large changes may occur in ξ among different scenarios, but their expected value will still

be optimal.
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The term “perturbed stochastic programming” is a form of stochastic programming with

perturbed, contaminated constraints, and incorrect estimation of the underlying distribu-

tion. Current research frontiers for perturbed stochastic programming problems are stability

theorems and the minimax optimization model. Although they are insightful for theoretical

research, they are unable to provide decision support for business scale problems. In typical

applications of uncertainty modeling, the decision makers demand proactive actions which

are to dynamically adjust the decision yielded by the perturbed stochastic programming

problem.

Robust optimization models will minimize the higher moments as well, such as the vari-

ance of ξ. So the solution provided by the RO model will be a little conservative compared

to stochastic programming with little or no adjustment of the control variables. Here we

borrowed an example from Mulvey et al. (1995) to illustrate the difference in the real-world

problem. For example, the SP and RO models are applied to personnel planning problems.

An SP solution will design a workforce that can be adjusted (by hiring or layoffs) to meet

demand at the least expected cost. In contrast to the SP model, the RO model will design a

workforce that will need few adjustments to cope with demand for all scenarios. However,

the total expected cost will be higher than that of the SP solution.

Stability issues will occur in the SP model when the input data is incomplete, erroneous,

or perturbed. There are two types of stability issues, which are the consistency issue or

qualitative stability issue, and the quantitative stability issue respectively in literature. The

causes of consistency issue are statistical estimation on structural parameter, i.e. fixed

parameter which are not subject to changes, and the perturbation/noisy data input. The

structural parameters are largely coefficients which are used to describe the feasible region.
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Since the structural data is estimated by various statistical methods, preserving consisten-

cy has been a major challenge. Almost surely, the sampling methods, based on the law

of large numbers, are dominating techniques. The concept of ε-convergence has been ex-

tremely useful in theoretical analysis. The consistency issue has been addressed in many

articles (see Pflug et al. (1998), Shapiro (1989, 1990), Vogel (1992)).

Another major stability issue is called quantitative stability in literature and it is caused

by the perturbation on underlying probability measure. In uncertainty modeling, stability

problems are generally caused by the following reason: The measure of ξ on the sample

space (Ω,F ) is Q rather than previously thought P. If the true probability Q is known,

one can get bounds of the error due to approximating Q by another measure P. The idea

is simple: choose in F a suitable metric d that metrizes, at least locally, the weak con-

vergence. The quantitative stability mostly refers to continuity properties of the optimal

objective value and a suitable distance, such as ζ-structure distance in Römisch (1993),

Römisch and Schultz (1996), Römisch and Wets (2006) between the underlying and real

probability measures. If the ζ-structure distance can be defined as follow:

dF (P,Q) = sup f∈F |
∫

Ω
f (ξ)dP(ξ)−

∫
Ω

f (ξ)dQ(ξ)| (2.26)

where f is measurable function in F and ξ ∈ (Ω,F , ·). Typical metrics are, for instance,

bounded Lipschitz metric and Kantorovich metric. For a two stage stochastic programming

model, we have,

|ν(P)−ν(Q)| ≤ L×dist(P,Q) (2.27)

where v(·) is the optimal values of the SP model under corresponding distribution P and

Q. Theoretically, the gap between v(P) and v(Q) can be adjusted by changing Lipschitz
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metric. But in practice, it is not easy to do for the following reasons: first, the real distribu-

tion Q is not available for decision until the event occurs in reality. Secondly, the Lipschitz

metric is extremely difficult to evaluate and thereby constructs a tight bound becomes al-

most impossible.

Compared to the SP model, the stability issue does not affect the effectiveness of the RO

model because the RO method does not depend on the distributional information. Instead, it

is modeled by unknown-but-bounded variables without assuming underlying distributional

information. To be more specific, the uncertainty set, which we already introduce earlier,

is modeled by an ellipsoid, which has little sense to do with the support of the distribution

of ξ.

The RO model has a better control of the variance of solutions than the SP model. The

variance of solutions has been ignored for a long time until Markowitz raised the issue and

attracted researchers’ attention in the application of portfolio management. Hence, he also

won the Noble Prize. The RO model can address the issue directly.

Another aspect that distinguishes a RO model from a SP model is the way to deal with

constraints. The SP model aims to find the decision variables x such that for each realized

scenario, a control variable y is possible that satisfies the constrains. It is even allowed to

have complete recource in the SP models. By which, we mean a feasible solution y exists

for all scenarios and for any value of x that satisfies the control constraints. If there does

not exist a feasible pair (x, y) for each scenario, the SP model will be declared infeasible.

However, the RO model will not allow this to happen. By the first type of RO models,

the scenario-based penalty approach by Mulvey, Vanderbei and Zenios in Mulvey et al.

(1995), the RO model will find a solution that violates the constrains with minimal amount.

45



However, by the other type of RO models, “robust counterparts” developed by Ben-Tal and

Nemirovski in Ben-Tal and Nemirovski (1999), is not allowed to violate the constrains at

all.

When the data is incomplete, erroneous, or perturbed, there will be another distinction from

the RO model to the SP model. For the SP model, stability issues will occur due to the in-

complete, erroneous or perturbed data. The “decision environment”, that we normally deal

with, has uncertainties in some parameters, which are important for modeling the resource

allocation systems. Hence, motivated by the stability issues of the SP model and wide

applications of uncertain systems, we focus on investigating the optimal allocation policy

when the model parameters and the underlying distributional information are perturbed.
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CHAPTER 3

RESOURCE RESERVATION MODELS

The idea of resource reservation methodology is inspired by the following factors:

• Data uncertainty in real-world problem cannot be ignored (see Ben-Tal and Ne-

mirovski (2000)). Even a small uncertainty in the data can make the nominal

optimal solution to the problem completely meaningless in practice. Therefore,

there is a real need of a methodology capable of generating a robust solution that

is immunized against the effect of data uncertainty.

• Two popular methods that are capable of dealing with uncertain data have their

own drawbacks, which limit their applicability. SP models are fundamentally

based on the assumption that the random variables’ distribution information is

known. However, the data in reality are more likely to be perturbed. In contrast,

RO models do not need to assume known distribution information. When the data

are incomplete, erroneous, there will be consistency and stability issues reported

in the literature of stochastic programming.

Motivated by the real desire from real-world problems and the applicability of the SP and

RO models, we propose a novel combined approach “Resource Reservation” (RR) to solve

stability issues for vaccine allocation optimization. This method is designed for dealing

with wrong estimation or massive perturbation and thereby resolve the stability issues

raised among the SP models. The negative impacts of the unwanted perturbations are min-

imized for the RO model because the RO uncertainty is modeled as unknown-but-bounded

variables without unrealistic assumptions. RO model is aimed to yield stable, feasible solu-

tion for the practical implementations. However, the RO solution usually cannot optimize
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the expected objective. In our opinion, when the government agency is preventing the loss

of life and optimizing the benefits from the vaccines allocation under uncertainty, neither

RO nor SP models will be solely qualified. Hence, we propose the RR method for vaccines

allocation optimization. It is a combination of the SP and RO models with multiple itera-

tions. The RO part of RR method will effectively control the risk whereas the stochastic

part will optimize the first moment of the objective.

The basic concept of the RR approach is fairly straightforward: when the critical factor such

as the amount of demands that affect the allocation plan is quite uncertain and changing all

the time, people should be more conservative in deciding how to allocate the resources.

In order to avoid the scenario that allocates all the resources and regrets it later, the RR

approach suggests that we only allocate an absolutely necessary amount of resources. The

resources not being allocated can be treated as safety stock in logistics in case there will

be uncertain demands in the future. The absolutely necessary amount of resources will be

determined by the RO approach with the unknown-but-bounded random variables and risk

attitude θ as input information. Since the RO model can minimize loss under the worst

scenario, the corresponding decision from the RO model tends to be conservative with less

amount of resource consumptions than the current available resources. Therefore, the RO

model is suited to make a rough allocation plan prior to possessing accurate information.

The result from the RO model will feed the SP model, which basically includes the total

amount of resources to be allocated. By taking the amount of resources from the RO model,

the SP model provides a plan on to optimally assign those resources to each request, with

best expected objective.

It is encouraging to know that similar research topics have been incorporated in computer

science and network communication (see Resource ReSerVation Protocol, RFC 2205). For
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example, in the multimedia network communication, the CPU, memory, and flash space are

reserved by proactive actions in order to assure that the application with high priorities are

executed smoothly. Although these terminologies are based on different methodologies,

the fundamental similarities are not deniable and their successful implementations ensure

the prospect of our RR method.

3.1. Resource Reservation Heuristic

We propose the RR model to tackle the stability issue of the SP models under unwanted

perturbations. The perturbation can easily invalid the perviously obtained optimal solution.

In order to avoid the later regret, we combine the RO and SP models to formulate the RR

method on the planning horizon t = 1, . . . ,T . At time t, we will solve the RO model first

to obtain the amount of resource for allocation. Then, we will allocate such number of re-

sources by the SP model to optimize the first moment of the objective. We will repeatedly

solve RO and SP with updated, hopefully more accurate demand estimation.

Before proceeding to introduce the RR model in details, it is helpful to define some as-

sumptions to assure that the later discussions are more meaningful.

(1) The feasible region X := {x ∈ Rn
+|Ax ≤ b} where A ∈Rm×n, b ∈Rm is not empty.

(2) The objective g(x,ξ) : X ×Ω → R is convex of x for every ξ and E[g(x,ξ)]< ∞.

(3) The available resource vector b is deterministic and completely known.

(4) ξ’s distribution is unknown but estimable. The underlying distribution in P and

the observed distribution is Q.

First of all, we establish the deterministic linear programming to allocate resources to vac-

cines planning. Consider a situation in which n counties in Kentucky must be supplied
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with doses of vaccines A due to a pandemic. Each of the n is to be supplied from a central

warehouse at different points in time. The following assumptions hold:

(1) Doses of medicine can not be transported from one county to another, but they can

be held over from one time period to the next in the same county.

(2) Half of the people who required the vaccines at the time of the first delivery will

die if they do not receive the medicine at that time; the other half can wait until

the second delivery.

(3) Demands from each county is uncertain but we assume they follow a uniform

distribution with upper and lower limits.

(4) The available resources held in the central warehouse is known and fixed at the

beginning of the distribution.

The deterministic linear programming model is as follow:

min
n

∑
i=1

max{1
2
(di − xi),0} (3.1)

s.t. ∑xi ≤ c

xi ≥ 0

Where i denotes the ith county out of n counties, i = 1, . . . ,n. di denotes the demand of

the ith county. xi denotes the amount of resources that is allocated to the ith county. The

objective function is to minimize the loss of life. We compare the difference between de-

mands and allocated resources and if the difference is larger than 0 which means there are

people who can not get vaccines. Half of the people who do not get vaccines will die. S-

ince this is a deterministic linear programming model, it assumes the demands are accurate.
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We can remove the max by re-writing the model in the following form.

min
n

∑
i=1

[
1
2
(di − xi)] (3.2)

n

∑
i=1

xi ≤ c

1
2
(di − xi)≥ 0

x ≥ 0

We adopt the standard formulation of stochastic programming as follows:

min f0(x)+E[g(x,ξ)] (3.3)

s.t. Ax ≤ b

in order to simplify the notation. In the model above, the random variable ξ ∈ (Ω,F ,P)

where P is the underlying but rough estimation of distributional information of ξ. A ∈

Rm×n, and functions g : Rn ×ω → R, f0(x) : Rn → R are convex with the respect to x.

We are interested in the model performance under the real distribution of ξ in another

measure Q. It is also helpful to define that:

(1) ν(P) := inf{ f0(x)+E[g(x,ξ)] : Ax ≤ b}

(2) X∗
ε (P) := {Ax ≤ b : f0(x)+E[g(x,ξ)]≤ ν(P)+ ε}

(3) X∗(P) := X∗
0 (P) = {Ax ≤ b : f0(x)+E[g(x,ξ)]} where ε ≥ 0

In (2.3.3), we brought up the stability issues with stochastic programming, and in (2.3.4)

the current research, with respect to the stability problem of stochastic programming, is

reviewed. ζ-structure distance can be found in (2.26). In Rachev and Römisch (2002), and

Römisch (2003), the authors study the behavior of stochastic programming problems in

case of the underlying probability distribution is perturbed. They establish stability results

for two-stage and chance-constrained models. One possible useful quantitative stability
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result, with respect to weak convergence of probability measure, plays a very important

role in justifying the stochastic programming as part of our proposed metrology.

Theorem 1. Rachev and Römisch (2002) Let the set {x : Ax ≤ b} be non-empty. Let a

sequence of probability measures {Pn} is weakly convergent to {Q} and

lim
n→∞

dF (Pn −Q) (3.4)

Then the sequence ν(Pn) converges to ν(P) and

lim
n→∞

sup
x∈X∗(Pn)

[
inf

y∈X∗(Q)
{∥x− y∥}

]
= 0 (3.5)

Consider P the first estimation on ξ for the stochastic programming model (3.3). As more

information is revealed, the estimation of ξ becomes more meaningful. Thus, we assume

that the sequence of underlying probability measures Pn, which are the estimation of ξ

with continuous “learning”, converges weakly to the real distribution Q. By Theorem 1,

the sequence of optimal values ν(Pn) will converges to ν(Q), i.e.

Pn → ωP and ν(Pn)→ ν(Q) (3.6)

and

lim
n→∞

sup
x∈X∗(Pn)

[
inf

y∈X∗(Q)
{∥x− y∥}

]
= 0 (3.7)

The decision variables are the amount of resources allocated to each selected county xi,

i = 1, . . . ,n. The demands for the resources are random variables ζik. Thus, the SP model

as part of the RR heuristic is

min
x
{1

2

n

∑
i=1

K

∑
k=1

E[(xik,ζik)] :
n

∑
i=1

xik ≤ c,xik ≤ ζik} (3.8)
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where xik ≥ 0, i = 1, . . . ,n. c denotes the amount of available resources. ζ is the uncer-

tain demand from uniform distributions with upper and lower limits. k = 1, . . . ,K are the

scenarios.

The model (3.8) will provide a resource allocation plan. The typical solution to model

(3.8) is to allocate all of the available resources. However, during a pandemic disease, the

demands of resources are hard to predict and we don’t want to take the risk of allocating all

the resources in the beginning and have nothing left for the future demands. Moreover, the

estimation of ζ could be very rough if it is not worse. The underlying distribution of (3.8)

could be substantially different in reality and consequently, the obtained solution becomes

highly problematic. In order to solve the above issues, we introduce another uncertainty

optimization method called “Robust Optimization” which can solve the stability issue of

the stochastic programming and also it doesn’t require the estimation of distributional in-

formation of ζ. In some articles, the RO model is describe as a quantitative approach to

control loss under the worst scenario and an RO model might seem overly conservative

because of the term, the worst scenario. We need to emphasize that the worst scenario does

not mean the parameters are all as “bad” as they could be. RO models take into account an

uncertainty set, which reflects the fact that the extremely worst values will not simultane-

ously occur.

Rather than modeling the demands on the estimation of distribution information, we model

the demands as unknown-but-bounded random variables, i.e. di ≥ 0 such that di ∈ [d∗
i −

∆di,d∗
i +∆di] where ∆di ≥ 0 is the range of corresponding demand. We assume that d∗

i is

distinct and we define d := [d1; . . . ;di; . . . ;dn] as a n× 1 dimensional demand vector. The
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realized demand is modeled as

di = d∗
i +ui∆di, i = 1, . . . ,n, where ∥u∥ ≤ θ (3.9)

where u := [u1; . . . ;ui; . . . ;un] and ∥ · ∥ is the norm of u. Using l2 norm, the set for possible

demands is an ellipsoid,

uθ =

{
d|

n

∑
i=1

(di −d∗
i )

2

θ2∆d2
i

≤ 1

}
(3.10)

where d∗
i and ∆di are known scalars. The transformation is designed to model the pertur-

bation by unknown-but-bounded random variables. The scale of uncertainty is modeled by

a Euclidean ball in Rn with radius of θ.

In order to remove the uncertainty from the objective to the feasible region, we can con-

struct the RO model into the following form.

min
y,t

t (3.11)

s.t.
n

∑
i=1

yi ≤ c (3.12)

1
2

n

∑
i=1

(−yi +di)≤ t (3.13)

di − yi ≥ 0 (3.14)

yi ≥ 0 (3.15)

where i = 1, . . . ,n and yi are the decision variables.
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Let d∗ :=(d∗
1 ,d

∗
2 , . . . ,d

∗
n)

′ and ∆d :=(∆d1,∆d2, . . . ,∆dn). When incorporating the unknown-

but-bounded random variables,

d =



d∗
1

d∗
2

...

d∗
n


+



∆d1 0 0 . . . 0

0 ∆d2 0 . . . 0

...
...

...
...

...

0 0 . . . ∆dn





u1

u2

...

un


(3.16)

Plug (3.9) into (3.13), then we have

1
2

n

∑
i=1

(−yi +di)≤ t (3.17)

⇐⇒1
2

n

∑
i=1

(−yi +d∗
i +Ui∆di)≤ t (3.18)

Theorem 2. The deterministic constraint (3.18) can be re-written into a conic quadratic

constraint
1
2
[θ

√
n

∑
i=1

∆d2
i −

n

∑
i=1

(yi −d∗
i )]≤ t (3.19)

PROOF.

1
2

n

∑
i=1

(−yi +d∗
i +Ui∆di)≤ t (3.20)

⇐⇒ max
∥U∥2≤θ

n

∑
i=1

(Ui∆di)≤ 2t +
n

∑
i=1

(yi −d∗
i ) (3.21)

⇐⇒θ

√
n

∑
i=1

∆d2
i ≤ 2t +

n

∑
i=1

(yi −d∗
i ) (3.22)

⇐⇒1
2
[θ

√
n

∑
i=1

∆d2
i −

n

∑
i=1

(yi −d∗
i )]≤ t (3.23)

�
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For the constraint (3.14), such that i = 1, . . . ,n, the following constraint must hold under

the “worst-case” scenario.

1
2
(yi −di)≤ 0 =

1
2
(yi −d∗

i −Ui∆di)≤ 0 (3.24)

where ∥U∥ ≤ θ.

Reorganize the equation (3.24) under the “worst-case” scenario

−Ui∆di ≤
1
2
(−yi +d∗

i ) (3.25)

⇐⇒ max
∥U∥≤θ

−Ui∆di ≤
1
2
(−yi +d∗

i ) (3.26)

⇐⇒θ∆di ≤
1
2
(−yi +d∗

i ) (3.27)

⇐⇒θ∆di +
1
2

yi ≤
1
2

d∗
i (3.28)

As an instant result, we move the constraint (3.19) back into the objective, and we place

constraints back into the model.

Corollary 1. The robust optimization version of model (3.11) is

min
1
2
[θ

√
n

∑
i=1

∆d2
i −

n

∑
i=1

(yi −d∗
i )] (3.29)

s.t.
n

∑
i=1

yi ≤ b (3.30)

θ∆di +
1
2

yi ≤
1
2

d∗
i (3.31)

yi ≥ 0 (3.32)

where i = 1,2, . . . ,n.
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There is a fundamental difference between model (3.11) and (3.29). In model (3.11), all of

the parameters are constants and under no uncertainty and perturbations are incorporated.

On the other hand, model (3.29) allows the structural parameters to change with the range

such as d∗
i ±∆di. Therefore, the model (3.29)’s solution is a robust solution with uncertain-

ty and perturbation fully considered.

When introducing the robust optimization technique, we claim that it is designed to mini-

mize the loss under the worst-case scenario. This statement might give us the impression

that the solution of model (3.29) is overly conservative. Actually the conservativeness can

be adjusted by changing the value of θ. As previously discussed, the uncertainly is modeled

by being based on the definition of uncertainty set. The RO model is designed to provide a

robust solution under some less favorable scenarios, which are modeled by the uncertainty

set ∥U∥ ≤ θ, an Euclidean ball with a radius of θ. By adjusting θ, we can either increase or

decrease the perturbation and the corresponding results will be adapted to the adjustmen-

t. To be more specific, When θ = 0, the RO model becomes a linear programming with

nominal parameters. When θ = 1, the worst-case scenarios are defined on the hull of the

uncertainty set, i.e., the ellipsoid. The uncertainty set becomes the largest volume ellipsoid

contained in B := {d||di−d∗
i | ≤ ∆d∗

i }. When θ =
√

n, the uncertainty set enlarges to cover

all the possible scenarios and the uncertainty becomes the minimum volume ellipsoid con-

tained in B . Thus, the value of θ can be understood as a trade-off between less risk averse

and more risk averse. When the volume of the ellipsoid is larger, it means the feasible

region of the solution is larger. For example, for two uncertainty sets U1,U2 with the value

of θ at θ1, θ2 respectively such that θ1 > θ2. Therefore, U1 covers more events than U2

and the worst-case scenario associated with U2 will be “less worse” than the worst-case of

U1.
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Figure 3.1 from the numerical results of the case study proves that the changes of the value

of θ will directly affects the risk attitude of the solutions. The value of θ in the example is

fixed at 3, 2.5 and 1 respectively and other factors keep the same. The graph demonstrates

one of our conclusions that adjusting the value of θ will change the conservativeness of the

results. As the value of θ grows, the feasibility of the uncertainty set expands as well. The

more “worst-case” scenarios will be incorporated by the model, the more conservative the

solutions are likely to become. As we can see in Figure 3.1, when the amount of the avail-

able doses is fixed, the model tends to reserve more resource when the value of θ grows

bigger. In practice, we prefer θ ∈ [0.5,1.5] to remove the concern of risk sensitiveness.

Figure 3.1. Sensitivity analysis: available doses vs reserved resource/avail-
able doses vs θ.
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Suppose y∗ is the optimal solution generated by the RO model (3.29) with certain θ and x∗

is the optimal solution generated by the SP model (3.8). y∗ is a reliable solution even when

the uncertain demand ζ is incomplete or wrong, but the overall performance might be poor.

x∗ is the solution that can maximize or minimize the expected objective with known distri-

butional information. Given the fact that the estimation on ζ could be wrong or incomplete

in reality, especially during some unexpected pandemic diseases, allocating resources by

x∗ could also be problematic.

In order to obtain a balanced resource allocation plan, we present our metrology named “

Resource Reservation”. The idea of reserving a well determined amount of resources will

be an effective way to deal with uncontrollable uncertainty, perturbation, and poor estima-

tions.

The resource reservation method for vaccines allocation with multiple deliveries can be

describe as follows:

Step 1: Collect necessary information from decision makers, such as the amount

of available resources c, selecting resource requesting counties di, predicted in-

fection rates, and estimated error which are used to calculated the upper bound

d∗
i +∆di and lower bound of demands d∗

i −∆di combined with the population of

each selected county.

Step 2: Solve the RO model (3.29) for the amount to be reserved and released.

Step 3: Solve the SP model (3.8) with the released resource. The solution from the

SP model will be the allocation plan for this period.

Step 4: Depending on the number of deliveries that decision makers input and if

the number of distribution is more than one, Step 2 and Step 3 will repeat multiple

times. In the last time period, only the SP model will be used since we are trying to
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release as much of the remaining resources as we can. If the number of distribution

is just one, only the RO model will be ran.

3.2. Solution Technique and Computational Complexity

A solution technique for a class of optimization problems is an algorithm that computes

a solution of the problem (to some given accuracy), given a particular problem form the

class, i.e., an instance of the problem. A large effort has gone into developing algorithms

for solving various classes of optimization problems since the late 1940s (Boyd and Van-

denberghe (2004), Nemirovski (2006), Nesterov and Nesterov (2004)). The effectiveness

of these algorithm varies considerably, and depends on factors such as the particular forms

of the objectives and constraint functions, how many variables and constraints there are,

and special structure, such as “sparsity”. (A problem is “sparse” if each constraint function

depends on only a small number of the variables).

It was proved that generic convex problems, under mild computability and boundedness

assumptions, are polynomially solvable. Consider a family of convex problems (2.2) of

a given analytical structure, like the family of LP problems, or Linearly constrained Qua-

dratic problems, or Quadratically constrained Quadratic ones, etc. Assume p is a problem

instance of a generic mathematical programming problem P with finite-dimensional da-

ta vector D(p). D(p) can be understood as the collection of the numeric coefficients in

analytical expressions for the objective and the constraints. The dimension of the data

vector is called the size L(p) of the problem instance. A solution technique for solving

problems from the family is a routine which, given on input the data vector, generates a se-

quence of approximate solutions to the problem in such a way that every of these solutions

is obtained in finitely many operations of precise real arithmetic, like the four arithmetic

operations, taking square roots, exponents, logarithms and other elementary functions; We
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call a solution technique “convergent”, if, for any positive ε and for any problem instance p

from the family, the approximate solutions xi generated by the method, starting with certain

i = i∗(ε, p), are ε-solution to the problem, i.e., they belong to G and satisfy the relations

f (xi)− f ∗ ≤ ε,gi(xi)≤ ε, j = 1, . . . ,m, (3.33)

where f ∗ is the optimal value in the problem. We call a solution technique “polynomial”,

if it is convergent and the arithmetic cost C(ε, p) of ε-solution, i.e.., the total number of

arithmetic operations at the first i∗(ε, p) steps of the technique as applied to p, admits an

upper bound as follows:

C(ε, p)≤ π(L(p)) ln
(

υ(p)
ε

)
, (3.34)

where π is certain polynomial independent on the data and υ(p) is certain data-dependent

scale factor. The ratio υ(p)
ε can be interpreted as the relative accuracy which corresponds

to the absolute accuracy ε, and the quantity ln
(

υ(p)
ε

)
can be understood as the number of

accuracy digits in ε. With this interpretation, the polynomially of a method means that for

this method the arithmetic cost of an accuracy digit is bounded from above by a polyno-

mial of the problem size, and this polynomial can be thought of as the characteristic of the

complexity of the problem.

Model (3.29) is a convex optimization because the objective is a composition of a norm on

an affine function and the constraints are linear and conic in nature. Thus, the convexity is

perfectly preserved, and model (3.29)’s ε-optimal solution can be obtained within polyno-

mial operational counts.

61



As a result, the robust optimization method outperforms other uncertainty methods due to

its extremely efficient solution techniques. In practice, model (3.29) can be solved by the

modern interior point algorithm in milliseconds.

Speaking of interior-point methods, they are used for solving convex optimization prob-

lems that include inequality constraints,

min f0(x) (3.35)

subject to fi(x)≤ 0, i = 1, . . . ,m

Ax = b,

where f0, . . . , fm : Rn → R are convex and twice continually differentiable, and A ∈ Rp×n

with rankA = p ≤ n. We assume that the problem is solvable, i.e., an optimal x∗ exists. We

denote the optimal value f0(x∗) as p∗. We also assume that the problem is strictly feasible,

i.e., there exists x ∈ D that satisfies Ax = b and fi(x)≤ 0 for i = 1, . . . ,m. This means that

Slater’s constraint qualification holds, so there exist dual optimal λ ∈ Rm, υ ∈ Rp, which

together with x∗ satisfy the KKT conditions

Ax∗ = b, fi(x∗)≤ 0, i = 1, . . . ,m (3.36)

λ∗ ≽ 0

∇ f ∗0 (x
∗)+

m

∑
i=1

λ∗
i ∇ fi(x∗)+AT υ∗ = 0

λ∗
i fi(x∗) = 0, i = 1, . . . ,m.
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Interior-point methods solve the problem (3.35) or (3.36) by applying Newton’s method

to a sequence of equality constrained problems, or to a sequence of modified versions of

the KKT conditions. The barrier method can be applied to find the ε-suboptimal solution.

The convergence analysis and complexity analysis have been done for the barrier method

in Boyd and Vandenberghe (2004).

In terms of the stochastic programming models, typical linear programming models in

commercial scales always lead to a sparse Newton system and as a result, modern su-

percomputers are able to solve commercial linear programs with up to 106 variables (see

Nemirovski (2000)). Typical nonlinear convex programs, however, usually lead to dense

Newton systems and the supercomputer “Tianhe-2” is only capable of solving a nonlinear

convex programming with up to 108 variables. Of course, thanks to the long-term trend of

computing hardware, as embodied in Moore’s law, the increasing trend on the maximum

number of variables in a tractable dense Newton system is not expected to stop for another

decade at least (see Kanellos (2009)).
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CHAPTER 4

CASE STUDY: KENTUCKY SNS VACCINE ALLOCATION

In this chapter, we will show the value of our model by applying our proposed methodol-

ogy to the Kentucky SNS Vaccines Allocation problem. The models presented in Chapter

3 are the general form of an SP and RO model. They can be used for any type optimal

resource allocation under perturbation problem. In Chapter 3, we give the formation of the

RR models for our problem in particular. Given the fact of lacking real data, we conduct

numerical experiments on testing data. Based on the test problem, the formulation of the

models is changed accordingly. All the numerical experiments are performed on Matlab

7.12.0 (R2011a), Windows 7 64 operation system with 4GB RAM. In order to solve the

RR models, we utilize “Optimization Toolbox” within Matlab and a downloadable “CVX

Toolbox”, which is a Matlab-based modeling system for convex optimization developed by

Stanford University. CVX turns Matlab into a modeling language, allowing constraints and

objectives to be specified using standard Matlab expression syntax.

Numerical results from the case study will be presented to show how the model can help

decision makers such as the Kentucky SNS coordinators, to develop Kentucky vaccines al-

location strategies and plans. Moreover, sensitivity analysis is applied to the mathematical

models, which is used to demonstrate the effects of different of risk factor settings on the

output. At last, a user-friendly web application is developed by the RTDSS team and will

be present at the end of this chapter. The interface of the RR heuristic for the Kentucky

SNS is co-designed by Dr. Holman from the department of Industrial Engineering and web

pages are developed by Anala Panit from the Department of Computer Engineering and
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Computer Science at the University of Louisville.

4.1. Numerical Results for One Time Period Resource Allocation

This experiment is conducted for the scenario that only one delivery is required during the

whole planning horizon. When there is only one time period, the RR heuristic only needs

to run the RO model. That is why we want to have a separate session for the experimental

results of one time period resource allocation.

In this experiment, we are investigating the effect of the changes of “Available doses” and

“θ” on the allocation solutions. The population of ten selected counties is available in the

table 4.1, as well as the PIR and “Estimated Error” as user inputs. Column “d∗” and col-

umn “∆di” are the estimated affected populations and its corresponding range, which will

be calculated automatically in our mathematical programming models.

By default, the PIR is calculated by the number of cases to date, and the number of new

cases increased within a certain number of days, which are input by the users. The way to

calculate the PIR can be expressed in this formula:

PIR =
Number of new Cases/Periods of time by days

Number of cases to date
(4.1)

Using the PIR times each selected county’s population, we can get the average estimat-

ed affected population and using the estimated error times, the average estimated affected

population, we can get the upper and lower bound of each estimation. Once again, the ad-

minister is able to change the default PIR, which is automatically calculated by the formula

(4.1) in the web application. We keep the PIR and the “Estimated Error” fixed at 10% and

5%, and change the value of “Available doses” and “θ” gradually. We do not consider the
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effect of the risk level that the user is required to manually select in the web application,

since the essence of the manually selected risk level is to change the actual amount of “

Available doses” input to the RR models.

Table 4.1. Population size of selected counties

County Name Population PIR d∗ Estimated Error ∆di

Adair 18656 10% 1866 5% 93

Allen 19956 10% 1996 5% 100

Anderson 21421 10% 2142 5% 107

Ballard 8249 10% 825 5% 41

Barren 42173 10% 4217 5% 211

Bath 11591 10% 1159 5% 58

Bell 28691 10% 2869 5% 143

Boone 118811 10% 11881 5% 594

Bourbon 19985 10% 1999 5% 100

Boyd 49542 10% 4954 5% 248

The feasible range of θ is [0,
√

n] and n is the number of the decision variables or the num-

ber selected counties. In this case study, we select ten counties, so the feasible range of θ in

this case is [0,
√

10] (
√

10 ≈ 3.16). As we discussed in Chapter 3, we have known that the

value of θ can be understood as a trade-off between less risk averse and more risk averse.

When the volume of the ellipsoid is larger, it means that the feasible region of solution is

larger. The feasible region contains more worse scenarios and thus the solution generated

by the RO model is more conservative.

Suppose only one delivery is needed, depending on the amount of available resource and

estimated demand, two scenarios that could happen in reality: first, when the available re-

source is more than the estimated demand, the allocation plan will reserve a certain amount
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of resource as a safe cushion. In addition, adjusting the value of θ will be able to change the

conservativeness of the results that generated by the RO models (see the results in 4.2, 4.3,

4.4). Table4.2 shows the allocation plans when available doses of a certain type of vaccine

is equal to 40000 and also when the θ is 3, 2.5, and 1 respectively. We repeat the same

experiment with different available doses i.e.: 30000, 20000, and 10000. From the results,

we can see that the allocation plans are affected by the value of θ and “available doses”.

Increasing the amount of available doses of vaccines is not necessarily changing the allo-

cation plan, especially when the available doses are above the absolutely necessary amount.

From Table 4.2, 4.3, and 4.4, we can see even though the amount of available doses is

decreased from 40000 to 30000, and then 20000, the vaccines allocation plan does not nec-

essarily change because the amount of available resources is still higher than the absolutely

necessary amount. However, when the amount of available doses is decreased to 10000,

the vaccines allocation plan changes when θ = 1, because the available doses is no longer

enough to satisfy the absolutely necessary amount.

In general, sensitivity analysis helps to determine how sensitive the optimal solution is to

the changes in data values, which includes analyzing changes in an objective function co-

efficient and a right hand side value of a constraint. For the vaccines allocation problem,

we can utilize the sensitivity analysis to determine how different amounts of available re-

sources and θ would change the rate of the reserved doses by the available doses.

Figure 3.1 summaries the ratio of reserved resources to the available capacity of resources

against the available capacity of resources. The available capacity of resource are changed

from 10000 to 100000. The experiment is tested with different θ values: 3, 2.5 and 1. The

graph once again demonstrates one of our conclusions that adjusting the value of θ will
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Table 4.2. One Time Period Vaccines Allocation Plan Result #1

Available doses 40000

θ 3.0 2.5 1.0

Adair 373 466 746

Allen 399 499 798

Anderson 428 536 857

Ballard 165 206 330

Barren 843 1054 1687

Bath 232 290 464

Bell 574 717 1148

Boone 2376 2970 4752

Bourbon 400 500 799

Boyd 991 1239 1982

Released doses 6781 8477 13563

Released % 16.95% 21.19% 33.91%

Reserved% 83.05% 78.81% 66.09%

change the conservativeness of the results. As the value of θ grows, the feasibility of the

uncertainty set expands as well. The more “worst-case” scenarios will be incorporated by

the model, the more conservative the solutions are likely to become. As we can see in the

graphic 3.1, when the amount of the available doses is fixed, the model tends to reserve

more resource when the value of θ grows bigger. In practice, we prefer θ ∈ [0.5,1.5] to

remove the concern of risk sensitiveness. In the following case study, we will adopt θ = 1

in our model and we will no longer consider the effect of θ on the results any more. An-

other reason that we select θ = 1 is because when the user changes the number of selected

counties, we do not need to worry if the value of θ is valid or not. For example, if the user

only selects four counties, and if we set the value of θ = 2.5, it may not give the user a valid

solution since the default value of θ is out of the valid range for this instance. Therefore, if

we set the default value of θ as one, it will always be valid no matter how many counties
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Table 4.3. One Time Period Vaccines Allocation Plan Result #2

Available doses 30000

θ 3.0 2.5 1.0

Adair 373 466 746

Allen 399 499 798

Anderson 428 536 857

Ballard 165 206 330

Barren 843 1054 1687

Bath 232 290 464

Bell 574 717 1148

Boone 2376 2970 4752

Bourbon 400 500 799

Boyd 991 1239 1982

Released doses 6781 8477 13563

Released % 22.60% 28.26% 45.21%

Reserved% 77.40% 71.74% 54.79%

that the end user selects. If for some reason, the user wants to change the default value of

θ, the user can always log in as the administer to change the default value, if the administer

role is authorized.

All in all, this session gives the readers an idea of how our proposed methodology works

for a one time period resource allocation. More importantly, it shows the effect of θ on the

conservativeness of the RO model and suggest a default value of θ for practice use. In the

next session, we will continue to explore the performance of our proposed methodology on

multiple time periods resource allocation.

69



Table 4.4. One Time Period Vaccines Allocation Plan Result #3

Available doses 20000

θ 3.0 2.5 1.0

Adair 373 466 746

Allen 399 499 798

Anderson 428 536 857

Ballard 165 206 330

Barren 843 1054 1687

Bath 232 290 464

Bell 574 717 1148

Boone 2376 2970 4752

Bourbon 400 500 799

Boyd 991 1239 1982

Released doses 6781 8477 13563

Released % 33.91% 42.39% 67.82%

Reserved% 66.10% 57.62% 32.19%

4.2. Numerical Results for Multiple Time Periods Resource Allocation

In this session, we investigate the performance of our proposed methodology on “Multiple

Time Periods Resource Allocation” due to the difference in models that will be ran. We

will start from two time periods resource allocation and then increase to three time periods,

due to the similarity between multiple time periods resource allocation. We think numer-

ical results from the two time periods resource allocation and three time periods should

be enough to give the reader an overall perspective of how to utilize our methodology and

what to expect from the results.

Two Time Periods Resource Allocation
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Table 4.5. One Time Period Vaccines Allocation Plan Result #4

Available doses 10000

θ 3.0 2.5 1.0

Adair 373 466 447

Allen 399 499 484

Anderson 428 536 527

Ballard 165 206 176

Barren 843 1054 1203

Bath 232 290 258

Bell 574 717 750

Boone 2376 2970 4202

Bourbon 400 500 485

Boyd 991 1239 1466

Released doses 6781 8477 9998

Released % 67.81% 84.77% 99.98%

Reserved% 32.19% 15.23% 0.02%

If the number of distribution is more than one, for each time period except the last one,

the RR model will need to run both the RO and SP models for solutions. The RO model

will determine the absolutely necessary amount to be distributed for each time period and

the SP model will further determine how to allocate the absolutely necessary amount of

resources to each selected county in order to achieve better overall performance. In the last

time period, only the SP model will be used to determine how to allocate all the remaining

resources. Most of the input parameters that the RR model takes in are listed in Table 4.6.

The value of θ that we use in the RO model is 1. Since we already discussed the effect

of adjusting the value of θ in last session, we only need to demonstrate how the resource

allocation plans change as the available doses change.
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Table 4.6. Inputs to RR models for two time period resource allocation

Time Period 1 Time Period 2

Population PIR d∗
i Est.Error ∆di PIR d∗

i Est.Error ∆di

Adair 18656 10% 1866 5% 93 10% 1866 5% 93

Allen 19956 10% 1996 5% 100 10% 1996 5% 100

Anderson 21421 10% 2142 5% 107 10% 2142 5% 107

Ballard 8249 10% 825 5% 41 10% 825 5% 41

Barren 42173 10% 4217 5% 211 10% 4217 5% 211

Bath 11591 10% 1159 5% 58 10% 1159 5% 58

Bell 28691 10% 2869 5% 143 10% 2869 5% 143

Boone 118811 10% 11881 5% 594 10% 11881 5% 594

Bourbon 19985 10% 1999 5% 100 10% 1999 5% 100

Boyd 49542 10% 4954 5% 248 10% 4954 5% 248

Table 4.7 shows the results for two time periods vaccines allocation when the available

doses are 10000 and 20000. When the amount of available doses are equal to 10000 and θ

is equal to 1, the available resources barely meet the absolutely necessary amount for the

first time period, so there are not many resources to be reserved for the second time period.

When we increase the number of 20000, we can see that there are some vaccines for the

second time period allocation. As we discussed earlier, the absolutely necessary amount

for each time period is generated by the RO model and that the factors that influence the

results, including the population size of selected counties, PIR, Estimated Errors, and θ.

After the absolutely necessary amount is determined, the SP model will take in this amount

as the available dose, and then further determine how to allocate the available does to each

selected county in order to achieve better overall performance. Since there is no reason

for us to reserve any resources in the last time period, we will just apply the SP model to

determine how to allocate all the remaining resources.

72



Table 4.8 is the results of RR models when the available doses increase to 30000, and

40000. We can get similar allocation plans for the time period #1, but since we have more

available resources to allocate during the second time period, the SP model will generate

different allocation plans based on the amount of available resources.

When we increase the available doses to 50000, and 60000, we notice that there are still

some resources remaining even after the allocation for the second time period is done. This

result may suggest that the available doses at hand are enough to cover the demands even

under uncertain scenarios.

Table 4.7. Two Time Period Vaccines Allocation Plan Result #1

Available doses 10000 20000

Time Period #1 Time Period #2 Time Period #1 Time Period #2

Adair 48 0 67 21

Allen 53 0 76 22

Anderson 60 0 94 24

Ballard 0 0 13 10

Barren 868 0 1795 35

Bath 28 0 35 12

Bell 104 0 537 34

Boone 7266 0 8381 6195

Bourbon 53 0 76 22

Boyd 1518 0 2488 62

Released doses 9998 0 13562 6437

Reserved doses 2 2 6438 1

Released % 99.98% 0.00% 67.81% 99.98%

Reserved% 0.02% 100.00% 32.19% 0.02%
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Table 4.8. Two Time Period Vaccines Allocation Plan Result #2

Available doses 30000 40000

Time Period #1 Time Period #2 Time Period #1 Time Period #2

Adair 67 419 68 1178

Allen 75 520 78 1325

Anderson 93 626 99 1488

Ballard 13 50 13 133

Barren 1793 2231 1801 3507

Bath 35 122 35 410

Bell 535 1152 551 2236

Boone 8388 7929 8350 10626

Bourbon 76 522 78 1328

Boyd 2488 2865 2489 4207

Released doses 13563 16436 13562 26438

Reserved doses 16437 1 26438 0

Released % 45.21% 99.99% 33.91% 100.00%

Reserved% 54.79% 0.01% 66.10% 0.00%

Three Time Periods Resource Allocation

Suppose three deliveries are planned in the beginning of allocation, and the “PIR” and the

“Estimated Error” are the same as the previous two time periods. Depending on the avail-

able doses, the RR models will generate solutions accordingly. For example, when the

amount of available doses is equal to 10000, there are no vaccines allocated to the second

and third time period (see Table 4.10). This is because the available resources barely meet

the absolutely necessary amount for the first time period. The results indicate it might not

be a good idea to distribute the available resources in three different times under the current

prediction of demands. If the prediction of demands still holds, the users may either seek
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Table 4.9. Two Time Period Vaccines Allocation Plan Result #3

Available doses 50000 60000

Time Period #1 Time Period #2 Time Period #1 Time Period #2

Adair 67 2063 67 2618

Allen 76 2195 75 2754

Anderson 94 2345 92 2907

Ballard 13 920 13 1106

Barren 1796 4473 1791 5023

Bath 35 1342 35 1791

Bell 539 3087 530 3653

Boone 8380 12465 8397 12814

Bourbon 76 2198 75 2757

Boyd 2489 5234 2487 5770

Released doses 13565 36322 13562 41193

Reserved doses 36435 113 46438 5245

Released % 27.13% 99.69% 22.60% 88.71%

Reserved% 72.87% 0.31% 77.40% 11.29%

ways to increase the inventory or reduce the number of deliveries.

When we increase the available resources to 50000 or 60000, we can see there are enough

resources for three deliveries in Table 4.11. The resource allocation plan for each selected

county can be clearly seen from Figure 4.1.

It is also very interesting to compare the results generated by the RR heuristics with one

delivery and two deliveries if the rest inputs are the same. Figure 4.2 presents the solutions

from the RO model and the RR models side by side when the available dose is 10000 and

θ = 1. From the Figure 4.2, we can clearly see the results generated by the RO model

is more conservative, because the solution spreads the risk to counties, which have less
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Table 4.10. Three Time Periods Vaccines Allocation Plan Result #1

Available doses 10000 20000

Time Period #1 Time Period #2 Time Period #3 Time Period #1 Time Period #2 Time Period #3

Adair 46 0 0 68 20 0

Allen 51 0 0 77 22 0

Anderson 58 0 0 94 23 0

Ballard 0 0 0 13 11 0

Barren 869 0 0 1789 39 0

Bath 27 0 0 36 12 0

Bell 105 0 0 531 32 0

Boone 7271 0 0 8395 6168 0

Bourbon 51 0 0 77 22 0

Boyd 1519 0 0 2484 86 0

Released doses 9997 0 0 13564 6435 0

Reserved doses 2 2 2 6436 1 1

Released % 99.97% 0.00% 0.00% 67.82% 99.98% 0.00%

Reserved% 0.03% 100.00% 100.00% 32.18% 0.02% 100.00%

Table 4.11. Three Time Period Vaccines Allocation Plan Result #2

Available doses 50000 60000

Time Period #1 Time Period #2 Time Period #3 Time Period #1 Time Period #2 Time Period #3

Adair 65 67 738 67 66 1809

Allen 74 76 862 76 75 1935

Anderson 91 94 1007 94 92 2077

Ballard 13 13 115 13 13 800

Barren 1791 1796 3095 1794 1791 4089

Bath 34 35 120 35 35 1124

Bell 528 540 1746 537 531 2782

Boone 8405 8376 10511 8382 8397 11521

Bourbon 74 76 865 76 75 1938

Boyd 2489 2490 3814 2488 2487 4804

Released doses 13564 13563 22873 13562 13562 32879

Reserved doses 36436 22873 0 46438 32876 -3

Released % 27.13% 37.22% 100.00% 22.60% 29.20% 100.01%

Reserved% 72.87% 62.78% 0.00% 77.40% 70.80% -0.01%

estimated demands. While, the SP model tends to allocate more resources to the counties,

which have highest estimated demands in order to pursue better performance.

As we continue to increase the inventory to 70000 or 80000, there are unused resources

appearing at the end of the third time period. If this happens, the user could either save the
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Figure 4.1. Vaccines allocation plan when available doses = 50000

(a) RO result when available doses = 10000, θ= 1(b) RR result when available doses = 10000, θ= 1

Figure 4.2. Compare RO and SP results with the same available dose and θ

inventory for future use or increase the value of the “PIR” of any desired time periods.
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There are some advantages of the RR heuristics that we want to point out:

(1) The most obvious advantage of the RR heuristic is to make resource allocation

plans with the consideration of uncertainty. The RO model helps to determine the

“absolutely necessary amount” of resources to be allocated for each time period

based on the “ PIR”, the “Estimated Error”, and θ, which are the most important

factors for constructing the uncertainty set. On the other hand, the SP model fur-

ther determines how to allocate the “absolutely necessary amount” of resources to

achieve better performance, due to the conservativeness of the RO models. The SP

model also takes the uncertainty into consideration but requires the distributional

information to be known.

(2) The RR heuristic can also help decision makers to determine a better resource

allocation plan. It can be used for one time period resource allocation planning or

multiple time periods resource allocation planning. Depending on the outputs, the

users are able to tell if the available amount of resources are good enough for the

pre-determined number of deliveries. If there are no resources to be distributed

for some time periods, then the decision makers can utilize RR models to work

out a more realistic plan to better use the available resources.

(3) The RR heuristic in combination of the web application allows users to select any

affected counties. It is also very easy to apply the RR models to other states.

4.3. Model Interface on the Web Application

The web application is an effective way to allow the users in health-care field to comfort-

ably utilize the models that are developed by industrial engineering researchers. It will help

the health-care decision makers improve the decision effectiveness and make better deci-

sions. Moreover, it will substantially reduce the decision cycle time. Some functions in the

web application will give the decision makers more control on the outputs. For example,
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Table 4.12. Three Time Period Vaccines Allocation Plan Result #3

Available doses 70000 80000

Time Period #1 Time Period #2 Time Period #3 Time Period #1 Time Period #2 Time Period #3

Adair 67 67 2475 68 66 2801

Allen 76 76 2610 77 75 2938

Anderson 95 94 2761 96 93 3090

Ballard 13 13 945 12 13 1175

Barren 1795 1795 4866 1795 1795 5198

Bath 35 35 1682 35 35 1922

Bell 539 538 3503 541 537 3835

Boone 8377 8382 12646 8373 8383 12937

Bourbon 77 76 2613 78 75 2941

Boyd 2488 2489 5610 2487 2490 5941

Released doses 13562 13565 39711 13562 13562 42778

Reserved doses 56438 42873 3162 66438 52876 10098

Released % 19.37% 24.04% 92.62% 16.95% 20.41% 80.90%

Reserved% 80.63% 75.96% 7.38% 83.05% 79.59% 19.10%

the decision makers can manually reserve a certain percentage of resources by selecting

different risk levels. The snapshots of the web application are presented below and we will

provide step-to-step instructions on how to utilize the application to generate the solution.

Figure 4.3 provides an overview of this web application and from there the users can assess

different models. If the user clicks “Planning and Analysis Tools”, it will show all the tools

Figure 4.3. Home page of RTDSS web application
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available under this category (see Figure 4.4 ).

Figure 4.4. Available Planning and Analysis Tools

Users will enter different tools by clicking different buttons. The button “SNS resource

reservation” is the one we are going to demonstrate. If the user clicks this button, then s/he

will be brought to this page (see Figure 4.5). This is the place where authorized users or

administers log in, in order to access the model or change default parameters. Suppose the

Figure 4.5. Vaccine Distribution Estimator - Page 1:User login

80



user logs in as a user, then s/he will see this page (see Figure 4.6). “Show Saved Alloca-

tion” is used when users want to revisit the solution generated previously. We are going to

click “Create New Allocation” in order to demonstrate how to generate solutions from the

beginning. After clicking “Create New Allocation” button, users should be able to see a

Figure 4.6. Vaccine Distribution Estimator - Page 2

page with blank input fields and instructions (see Figure 4.7). In the web application, there

is a function that allows the end users to manually reserve resources from the available

resources based on their knowledge of the risk level of the disease or disaster. By default,

if the user selects “high risk”, then 10% of the available doses of vaccines will be reserved

for the future or the next time period. The RR heuristic will further determine how to allo-

cate 90% of the available does of vaccines. Depending on the uncertain demands, it might

reserve some resources from 90% along with 10% manually reserved. “Medium-high”

means 80% of the available doses will be provided as the input to the RR models and 20%

of the available doses will be reserved for the future or next distribution. “Medium-low”

indicates 70% of the available doses will be sent to the RR models for determination and

30% will be reserved. “Low” indicates 60% of the available doses will the sent to the RR
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Figure 4.7. Vaccine Distribution Estimator - Page 3: User Inputs

models for further determination and 40% will be reserved manually. If the end user logs

into the web application as an administer, the administer can change the default setting.

With that said, the administer is able to change the percentage of resources to be manually

reserved for each risk level based on the type of the epidemics or diseases. This function

gives the users more power and control on the allocation plans and hopefully the allocation

plans will work better in reality.

All of the date entries need to follow mm/dd/year format. After all the fields have been

filled as it shows in Figure 4.8, click “Set Demand”. The application will bring the user to

another page shown in Figure 4.9, and 4.10. The user can select the counties that require

vaccines on this page. By default, all the counties are selected. When there are only a

few counties that request vaccine supply, the user can uncheck the check mark on the left

side of “County name”, so all the check marks by the counties will disappear. It will be

easier for the user to select the counties that request vaccines. “Priority” is an option for the

users to expedite the shipping date. If any selected county requests a fast shipping delivery
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date, then the user should check this priority box and then the estimated shipping date

will be expedited. There is another column called “Estimated Error”, which measures the

prediction accuracy and also are useful to generate the upper and lower bounds of predicted

infectious populations. The default value of “Estimated Error” is 5% for all the counties

and it can be changed by administers. After the regional demand is properly set, the user

clicks “Save and Close” button and then the results will pop up.

Figure 4.8. Vaccine Distribution Estimator - Page 3: Inputs Are Filled
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Figure 4.9. Vaccine Distribution Estimator - Page 4: User Inputs
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Figure 4.10. Vaccine Distribution Estimator - Page 4: User Inputs continued
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CHAPTER 5

CONCLUSION

Public-health emergencies, such as bioterrorist attacks or pandemics, demand fast, effi-

cient, large-scale dispensing of critical medical countermeasures (i.e., vaccines,drugs, and

therapeutics). This large-scale dispensing is complex and requires careful planning and

coordination from multiple federal, state, and local agencies. The multifaceted nature of

dispensing and the complexity of the public-health emergencies make the process highly

unpredictable. The impact of such events might be tremendous to the public health. Thus,

it is necessary for emergency managers and public-health administrators to make quick and

effective response as an emergency occurs.

In strategic planning, resource allocation is a plan for using available resources to achieve

the goad or generate better performance. The optimization model is a powerful way to

determine resource allocation in an efficient and effective fashion. Uncertainty cannot be

ignored, especially in dealing with the pandemic and emergency disasters. We have shown

that even a small uncertainty in the data can make the optimal solution to the problem com-

pletely meaningless in practice.

In order to improve KY SNS to better prepare for public-health emergencies and better

utilize the scarce resources, we propose to include the data uncertainty in the demands as

a factor to make strategic resource allocation plan. There are two popular methods that

are capable of dealing with uncertain data in optimization, which are the stochastic pro-

gramming and robust optimization. SP models are fundamentally based on the assumption
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that the random variables’ distribution information is known. However, the data in reality

are more likely to be perturbed. When the data are incomplete, erroneous, there will be

consistency and stability issues reported in the literature of stochastic programming. In

contrast, RO models do not need to assume known distribution information. The negative

impacts of unwanted perturbations are minimized for the RO models because the uncertain

data is modeled as unknown-but-bounded variables without unrealistic assumptions. RO

model is aimed to yield stable, feasible solution for the practical implementation. However

the RO solution usually cannot achieve better expected objective than the corresponding

SP solution. In our opinion, when the government agency is preventing the loss of life

and optimizing the benefits from the vaccines allocation under uncertainty, neither RO nor

SP models will be solely qualified. Therefore, we propose the RR heuristic to solve the

vaccines allocation problem during the public-health emergencies.

Traditional resource allocation practices adopted by the State SNS during public health e-

mergencies are based on the projected area’s demands. If the resources are not enough to

satisfy the demands, the resources will be allocated by the projected area’s population size.

Since the demands of some public health emergencies are highly unpredictable, allocating

the scarce resources by the current policy may cause serious losses on the public health.

We propose a “Resource Reservation” heuristic to improve the accuracy of traditional de-

cision making strategy by taking the consideration of uncertainty of demands. The basic

concept of the RR heuristic is fairly straightforward: when the critical factor such as the

amount of demands that affect the allocation plan is quite uncertain and changing all the

time, people should be more conservative in deciding how to allocate the resources. In or-

der to avoid that scenario that allocates all the resources and regrets it later, the RR heuristic

suggests that we only allocate an absolutely necessary amount of resources. The resources
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not being allocated can be treated as safety stock in logistics in case there will be uncertain

demands in the future.

The resource reservation heuristic is a combination of robust optimization and stochastic

programming with multiple iterations. The absolutely necessary amount of resources will

be determined by the RO model with the unknown-but-bounded random variables and risk

attitude as input information. Since the RO model can minimize loss under the “worst sce-

nario”, the corresponding decision from the RO model tends to be conservative. Therefore,

the RO model is suited to make a rough allocation plan prior to possessing accurate infor-

mation. The absolutely necessary amount will feed the SP model, which basically includes

the total amount of resources to be allocated. By taking the amount of resources from the

RO model, the SP model provides a plan on to optimally assign those resources to each

request, with best expected objective.

By adjusting θ, we can either increase or decrease the perturbation and the corresponding

results will be adapted to the adjustment. To be more specific, When θ = 0, the RO model

becomes a linear programming with nominal parameters. When θ = 1, the worst-case sce-

narios are defined on the hull of the uncertainty set, i.e., the ellipsoid. The uncertainty set

becomes the largest volume ellipsoid contained in B := {d||di−d∗
i | ≤∆d∗

i }. When θ=
√

n,

the uncertainty set enlarges to cover all the possible scenarios and the uncertainty becomes

the minimum volume ellipsoid contained in B . Thus, the value of θ can be understood as a

trade-off between less risk averse and more risk averse. When the volume of the ellipsoid

is larger, it means the feasible region of the solution is larger. Figure 3.1 further prove the

theoretical conclusion that adjusting the value of θ will change the conservativeness of the

results. As the value of θ grows, the feasibility of the uncertainty set expands as well. The

more “worst-case” scenarios will be incorporated by the model, the more conservative the
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solutions are likely to become. As we can see in Figure 3.1, when the amount of the avail-

able doses is fixed, the model tends to reserve more resource when the value of θ grows

bigger.

In this dissertation, we also demonstrated how to incorporate uncertainty into stochastic

programming models and robust optimization models by two examples: a farmer’s prob-

lem and a portfolio selection problem. We made a thorough comparison of the SP and

RO methods, and then brought the concerns on computational complex, stability issue of

stochastic programming, and the conservativeness of robust optimization. All the concerns

can be addressed by our proposed RR heuristic with solid theoretical proof.

After we demonstrated the RR heuristic, we applied this method to the KY SNS vaccines

allocation problem. In order to help the public-health coordinators or administers easily

access and utilize the models, our team developed a real-time decision support web tool.

Authorized users can log in to the website, fill in the required information, run the models

and the results can be shown on the web tool. The data collected from the users will be

processed in certain way in order to satisfy the requirement by the model. For example,

PIR is used to calculate the nominal demands of decision variables and it can be obtained

by this equation (4.1). In addition, the users need to determine how many time periods

that the available resources will be distributed. Depending on the number of time periods

that the public-health coordinators or administers determine, the RR heuristic will run the

RO model and/or SP model by the number of time periods. For example, if only one time

period is determined, the RR heuristic will only call the robust optimization model once.

If only the RO model is run, the solution tends to spread the risk among the decision vari-

ables, and therefore the result of the allocation plan will be rather conservative. If two or

more time periods are determined, the RR heuristic will call the RO model first, in order
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to calculate the amount to be reserved for each time period, and then call the SP model to

further determine how to allocate the released resources in order to achieve better perfor-

mances for each time period.

In order to evaluate the performance, we conduct numerical experiments on the RR models

with testing data. We tested the RR models on one time period allocation, two time peri-

ods allocation, and three time periods allocation. With each number of time periods, we

also gradually changed the number of available resources and observe the changes of the

results. Additionally, for the one time period allocation, we also tested the effect of θ on

the conservativeness of the results. The results can suggest how many resources need to be

reserved under the “worst-case” scenario. Depending on the different combinations of the

amount of available resources and estimated demands, the vaccine allocation plan varies.

For example, sometimes there are a lot of resources to be reserved, and sometimes there

will not be any resource to be reserved.

In our opinion, our research distinguishes itself as follows:

• Our proposed resource reservation heuristic has a wide application, especially for

the complicated optimization problems involving uncertain parameters. In this

research work, we apply our methodology to solve the Kentucky SNS vaccine al-

location problem, which helps the public health emergency managers or coordina-

tors make better decision on how to allocate scarce resources during the pandemic,

or other types of public health emergencies.

• Only a few analytical models in the literature include the discussion of the effect

of parameter of uncertainty on the vaccination policies. Some researchers apply

the stochastic programming method with chance constraints to determine the vac-

cination policies, which requires the complete information of the epidemiological
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characteristics of the virus. However, in reality, the epidemiological information

is not necessarily available before the allocation decision has to be made. Most

of the time, only the rough estimation of the demands will be known when the

public health emergency occurs. Our proposed method does not require the com-

plete epidemiological information or any distributional information to be exactly

known. It is designed for the situation that limited information of disease is known

and the estimation of the demands is under severe uncertainty. Since the models

are designed for the severe uncertainty situation, the resource reservation heuristic

will first determine the “absolutely necessary amount” of resources to release, and

if there are resources left, then it will be reserved for the future use.

• The web tool developed by the RTDSS team is convenient for users to utilize the

models without any mathematical background and industrial engineering knowl-

edge. The user only needs to provide a few data points to make the model work,

such as the amount of available resources, number of new cases, number of cased

identified, and period of times, number of time periods during the whole planning

horizon, and other general information associated with the outbreaks. The user

can also select the projected counties, and then the allocation decision will only

be made among those projected counties. The user can also manually reserve the

available doses of resources by selecting “risk level” in the user input interface.

In addition, all the default value that we use in the model is changeable by the

administers.

• The model can also help the public health emergency managers or administers

determine the number of distribution that the current available resources are good

for. For example, in the later part of the dissertation, you will see there are no

resource to be allocated for some multi-time periods allocation. In this case, the

results suggest the number of time periods that the users pre-determined is too
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high. Based on the results they get, the user can find out how many time periods

that the available resources can be best utilized and distributed.

• In the dissertation, we also investigate the effect of an uncertainty parameter “θ”

on the conservativeness of the resource allocation plan with an example. Changing

this parameter allows the users to adjust the conservativeness of the allocation

plan. But there is no certain linear relationship between the conservativeness and

the value of “θ” and the feasible range of “θ” varies as the number of selected

counties changes. Therefore, we determine to use 1 as the default value of “θ”

since it works no matter how many counties that the users select.

• Our method perfectly preserves convexity and overcomes the stability issue of the

stochastic programming, therefore it can be efficiently solved by modern interior

point solvers on average desktop computers in milliseconds.
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APPENDIX A

MATLAB CODE

function []= RR_main(cap ,num ,t,distrate ,PIR ,esterror ,MyArray ,Kd)

% function []= main ( cap , num , t , PIR , SF , TNC1 , NNC , PT , Stob , Stov , Etov )

% function []= main ( cap , num , t , Var , PIR , SF , Kd )

% MUST INPUT PARAMETERS TO RUN THE PROGRAM

% CAP = capacity ; The number of vaccines to be distributed

% N = NUM : NUMBER OF TIME PERIODS for distribution

% t = theta

% PIR = Pred_inf : Predicted Infection Rate

% size =1* n triangular distribution or input by user

% Esterror = scalefactor ; size =1* V

capacity = cap; % the quantity of available doses of vaccincine

n = num; % number of time periods in the entire planning horizon

theta = t; % risk parameter from 0 .5 to 2

distr=distrate /100; % percentage of resource to be distributed

% in the first time period

% High : 90% release , medium - high 80% release ,

% medium - low 70% release , low 60% release

PopulationArray=MyArray;

% MyArray = population of vaccines - requested counties ,

% size = 1* V , V = Var = number of counties

Var=length(PopulationArray );

V=Var;
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Pred_inf=PIR;

% size : 1* n predicted infection rates are generated by user input

m=ones(n ,1);

scalefactor =(m*esterror) '; % size of scalefactor = V * n

population = PopulationArray '; % size = V *1

rev_r = distr*capacity;

% resource to be released for the first time period. size =1*1

K=Kd;

% the number of realizations of random variable ;

u_nom = population*Pred_inf;

% predicted demands of resource in each time period and for each county ;

% size : V * n

u_range = u_nom .* scalefactor;

% range of demands in each time period and for each county ; size : V * n

if n==1

TP=1;

% When Time Period is equal to 1,

% all the resource must be allocated to each county.

x=RO(V,theta ,u_nom ,u_range ,rev_r ,TP);

x_rd= round(x);

rev_r = capacity - min(rev_r , sum(x_rd ));

% Check if there is any reserved resource.

dlmwrite( ' singlerelease.txt ' , x_rd , ' newline ' , ' pc ' ,' - append ' );

% Released resource for single time period planning

dlmwrite( ' singlereserve.txt ' , rev_r , ' - append ' );

% Reserved resource after planning

else

for TP = 1:n-1

% u_n = [ u_nom ; zeros (1, n )];
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% u_r = [ u_range ; zeros (1, n )];

% V_n = V +1;

% x = ROnew ( V_n , theta , u_n , u_r , rev_r , TP );

% rel_r = rev_r - round ( x ( V_n ,1));

x=RO(V,theta ,u_nom ,u_range ,rev_r ,TP);

rel_r = sum(round(x));

% use RO model to determine the absolutely necessory demand

% rev_r = rev_r - rel_r ;

upperbd = u_nom(:,TP) + u_range (:,TP);

lowerbd = u_nom(:,TP) - u_range (:,TP);

y = SP(V,K,rel_r ,u_nom ,u_range ,TP ,upperbd ,lowerbd );

% use SP model to further determine how to

% allocate the absolutely necessory demand

y = round(y(1:V));

rev_r= rev_r -sum(y)+ (1-distr )* capacity;

% calculate the available resource for next round allocation

distr =1;

string1=strcat( ' multirelease ' , num2str(TP));

filename1 = strcat(string1 , ' .txt ' );

string2= strcat( ' multireserve ' , num2str(TP));

filename2 = strcat(string2 , ' .txt ' );

dlmwrite(filename1 ,y, ' newline ' , ' pc ' );

% Released resource from 1 to n -1 time period Size :120*1

dlmwrite(filename2 ,rev_r );

% Reserved resource corresponding to each time period Size :1*1

end
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for TP=n

% x = RO ( V , theta , u_nom , u_range , rev_r , TP );

% x_rd = round ( x );

% rev_r = rev_r - min ( rev_r , sum ( x_rd ));

% rev_r = rev_r - sum ( x_rd );

upperbd = u_nom(:,TP) + u_range (:,TP);

lowerbd = u_nom(:,TP) - u_range (:,TP);

y = SP(V,K,rev_r ,u_nom ,u_range ,TP ,upperbd ,lowerbd );

y = round(y(1:V));

% rev_r = rev_r - min ( rev_r , sum ( y ));

% Check if there is any reserved resource.

rev_r=rev_r -sum(y);

string1=strcat( ' multirelease ' , num2str(TP));

filename1 = strcat(string1 , ' .txt ' );

string2= strcat( ' multireserve ' , num2str(TP));

filename2 = strcat(string2 , ' .txt ' );

% dlmwrite ( filename1 , x_rd ,' newline ', 'pc ');

% Released resource for nth time period Size :120*1

dlmwrite(filename1 ,y, ' newline ' , ' pc ' );

dlmwrite(filename2 ,rev_r );

% Reserved resource for nth time period Size : 1*1 ( Should be 0) .

end

fprintf (1, ' Done ! \ n' );

end

function x=RO(V,theta ,u_nom ,u_range ,rev_r ,TP)
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cvx_begin

variable x(V,1)

minimize(theta * norm(diag(u_range (:,TP))) -sum(x- u_nom(:,TP )));

subject to

sum(x)<= rev_r;

2* theta * u_range (:,TP)+x <= u_nom(:,TP )/2;

-x <= zeros(V ,1);

cvx_end

end

function x = ROnew(V_n ,theta ,u_n ,u_r ,rev_r ,TP)

cvx_begin

variable x(V_n ,1)

minimize(theta * norm(diag(u_r(:,TP)))-sum(x-u_n(:,TP )));

subject to

sum(x)<= rev_r;

x+2* theta * u_r(:,TP) <= u_n(:,TP)/2 ;

-x<= zeros(V_n ,1);

cvx_end

end

function y =SP(V,K,rel_r ,u_nom ,u_range ,TP ,upperbd ,lowerbd)

A = zeros(V*K+1,V*(K+1));

A (1,1:V)= ones(1,V);

d = zeros(V*K+1 ,1);

d(1 ,1)= rel_r; % release the released resource previous allocated by RO model
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for k=0:(K -1);

A((V*k+2):(V*(k+1)+1) ,1:V) = - eye(V);

d((V*k+2):(V*(k+1)+1) ,1)= - round(lowerbd + (upperbd - lowerbd )* rand (1 ,1));

end

A(2:(V*K+1), (V+1):V*(K+1))= - eye(V*K);

dlmwrite( ' demands.txt ' , d, ' newline ' , ' pc ' ,' - append ' , ' roffset ' , 1)

f = zeros(V*(K+1) ,1);

f((V+1):V*(K+1), 1)= (1/(2*K))* ones(V*K ,1);

lb=zeros ((V+1)*K ,1);

% lb = zeros ( V );

y= linprog(f ',A,d,[],[],lb);

% y = linprog ( f ',A , d );

end

102



CURRICULUM VITAE

NAME: Dongxue Bridgeman

ADDRESS: Department of Industrial Engineering

Speed School of Engineering, University of Louisville

Louisville, KY 40292

DOB: Shenyang, Liaoning Province, China - Jan.12, 1986

Education

• B.E., Logistics Engineering

Beijing University of Posts and Telecommunications

2004 - 2008

• M.S., Industrial Engineering

University of Louisville

2008 - 2009

• Ph.D., Industrial Engineering

University of Louisville

2008 - 2013

Awards & Honors

103



• Graduate Research fellowship

University of Louisville

August 2008 - March 2012; April 2013 - July 2013

Professional Membership

• Student Chapter of INFORMS at University of Louisville

• Institute of Industrial Engineers

• APICS The Association for Operations Management

Professional Experiences

• Research Fellow

Rtdss Project, University of Louisville,

August 2008 - March 2012; April 2013 - July 2013

Publications

• “Rehabilitation Planning by Highway Contractors: A Robust Optimization

Approach ”

Lijian Chen, Qingbin Cui, Yujie Lu, and Dongxue Ma,

Structure and Infrastructure Engineering

104


	Optimization models for resource allocation under perturbation.
	Recommended Citation

	tmp.1423685735.pdf.UyGmV

