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ABSTRACT 

 

BIOPHYSICAL AND COMPUTATIONAL INVESTIGATIONS INTO  

G-QUADRUPLEX STRUCTURAL POLYMORPHISM AND  

INTERACTION WITH SMALL MOLECULES 

Huy Tuan Le 

16 June 2014 

 

In the cell, guanine-rich nucleic acids can self-assemble into unique four stranded 

tertiary structures known as G-quadruplexes. G-quadruplex formation in the telomere leads 

inhibits telomerase, an enzyme activated in cancer cells to maintain the telomere and 

allowing for cancer cells to achieve immortality. G-quadruplex formation in the promoters 

and 5’-untranslated regions regulates the expression of many oncogenes. Furthermore, G-

quadruplex formation during cellular replication promotes genomic instability, a 

characteristic which enables tumor development. Because of their implication in cancer, 

G-quadruplex structures have emerged as attractive drug targets for anti-tumor 

therapeutics. In the current dissertation work, we present three experimental approaches to 

investigate G-quadruplex structures, biophysical properties, small molecule interaction, 

and the thermodynamics of G-quadruplex formation. Current approaches to study G-

quadruplex structures often employ sequence modifications or changes to the experimental 

condition, as a way of resolving the structural polymorphism associated with many  
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G-quadruplex-forming sequences, to select for a single conformation for high-resolution 

structural studies. Our strategy for resolving G-quadruplex structural polymorphism is 

superior in that the experimental approaches do not result in drastic perturbation of the 

system. In the first approach, we employed size exclusion chromatography to separate a 

mixture of G-quadruplex structures formed from a G-quadruplex-forming sequence. We 

demonstrated that it is possible to isolate distinct species of G-quadruplex structures for 

further biophysical studies. In the second approach, we employed hydrodynamic bead 

modeling to study the structural polymorphism of a G-quadruplex-forming sequence. We 

showed that properties calculated from models agreed with experimentally determined 

values and could be used to predict the folding of G-quadruplex-forming oligonucleotides 

whose high-resolution structures are ambiguous or not available. In our third approach, we 

presented a virtual screening platform that was successful in identifying a new G-

quadruplex-interacting small molecule. The results of the virtual screen were validated 

with extensive biophysical testing. Our target for the virtual screen was a G-quadruplex 

structure generated in silico, which represents one approach to receptor-based drug 

discovery when high-resolution structures of the binding site are not available. Taken 

together, our three approaches represent a new paradigm for drug discovery from guanine-

rich sequence to anti-cancer drugs. 
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CHAPTER I 

INTRODUCTION 

 

Within the cell, the predominant tertiary structures of nucleic acid molecules are 

double helices consisting of two complementary antiparallel strands associating through 

hydrogen bond interaction between purine and pyrimidine base pairs, adenine pairs with 

thymine or uracil and guanine pairs with cytosine (Ghosh and Bansal, 2003). Under 

certain conditions, however, guanine-rich nucleic acids can self-assemble to form G-

quadruplexes, non-canonical tertiary structures consisting of four strands (each contains a 

run of two or more guanines) associating through G-quartet formation (Figure 1). In the 

G-quartet arrangement, the N1 and N2 nitrogen atoms of one guanine molecule act as the 

hydrogen bond donors for the O6 oxygen and N7 nitrogen atoms, respectively, of the 

next guanine molecule while its O6 and N7 atoms, in turn, serve as the hydrogen bond 

acceptors for the N1 and N2 atoms, respectively, of a previous guanine molecule. The 

result of this hydrogen bonding pattern is a square planar arrangement of four guanine 

molecules, which can stack onto one another to form a quadruple helix. Over the past 25 

years, G-quadruplexes have emerged from “frequent nuisance[s] in the laboratory” 

(Guschlbauer et al., 1990) into biologically relevant nucleic acid structures with 

significant implications in the regulation of cellular processes and the pathogenesis of  
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cancer and other diseases (Wu and Brosh, 2010, Bryan and Baumann, 2011, Collie and 

Parkinson, 2011, Zhou et al., 2011, Bochman et al., 2012, Bugaut and Balasubramanian, 

2012, Baral et al., 2013, Tarsounas and Tijsterman, 2013, Murat and Balasubramanian, 

2014). For example, G-quadruplex formation in the telomere inhibits telomerase, an 

enzyme responsible for maintaining the length of the telomere (Blackburn, 1991). In over 

90% of cancers, the reactivation of telomerase allow the cells to evade senescence and 

attain immortality (Shay and Bacchetti, 1997), one hallmark of cancer cell transformation 

(Hanahan and Weinberg, 2000, Hanahan and Weinberg, 2011). In addition to enabling 

replicative immortality, G-quadruplex formation is also implicated in six other hallmarks 

of cancer (Table 1). Furthermore, G-quadruplex formation has also been shown to 

contribute to genomic instability and mutation, an enabling characteristic in tumor 

development. The implication of G-quadruplex structures in cancer has led to an interest 

in these structures as potential drug targets for the development of novel anti-cancer 

drugs. However, the structural polymorphism associated with G-quadruplex-forming 

sequences has severely hindered investigation of G-quadruplex biophysical properties, 

small molecule interaction, and the thermodynamics of formation. A critical limitation of 

current strategies for investigating G-quadruplex structures is the artificial reduction of 

structural polymorphism through modifications of the G-quadruplex-forming sequence or 

alterations of experimental conditions. The untested assumption is that such approaches 

select for an existing topology from the ensemble of G-quadruplex species. However, the 

very possible and unintended consequence is that the topology selected is new and either 

might not be representative of or may not be a part of the native ensemble and can have 

significant implication on what can be claimed as biologically relevant.  
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Figure 1. The structure of a G-quartet  
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Table 1. G-Quadruplex Formation and the Hallmarks of Cancer  
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Hallmark of Cancer G-Quadruplex Involvement 

 Sustaining Proliferative Signaling  QF in c-Myc promoter  

(Ambrus et al., 2005) 

 QF in NRAS mRNA (Bugaut et al., 2010) 

 Evading Growth Suppressors  QF in RB mRNA(Xu and Sugiyama, 2006) 

 QF in TP53 mRNA (Marcel et al., 2011) 

 Resisting Cell Death  QF in Bcl-2 promoter (Dai et al., 2006) 

 Enabling Replicative Immortality  QF in the telomere 

 QF in hTERT promoter (Lim et al., 2010) 

 Inducing Angiogenesis  QF in VEGF promoter (Sun et al., 2005) 

 QF in hVEGF mRNA (Morris et al., 2010) 

 Activating Invasion and Metastasis  QF in Wnt1 promoter (Wang et al., 2014) 

 Deregulating Cellular Energetics  QF in HIF-1α promoter  

(De Armond et al., 2005) 

  

Emerging Characteristic of Cancer G-Quadruplex Involvement 

 Genome Instability and Mutation  Polymerase stalls at QF in replication fork 

(Paeschke et al., 2011) 

 QF sites overlap with DNA breakpoints  

(De and Michor, 2011) 

*G-Quadruplex Formation (QF)   
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Recognizing the current limitation in G-quadruplex research, this dissertation 

work presents three examples of experimental approaches, which can be used to probe 

the conformational space surrounding G-quadruplex formation in solution without 

significant disruption or perturbation of the system. The remainder of this introduction 

aims to highlight the significance of G-quadruplex nucleic acids by providing a historical 

review of G-quadruplex research and summarizing the proposed biological functions of 

G-quadruplex structures. The introductions that accompany Chapters II, III, and IV will 

discuss in further details G-quadruplex formation and stability. This introduction 

concludes with a summary of the current dissertation work and surveys the 

accomplishments stemmed from this work. Other applications of G-quadruplex structures 

with regard to aptamer-based therapeutics, biosensor development, supramolecular 

chemistry, and nanotechnology are outside the scope of the current work and will not be 

discussed in this introduction. For a summary of these topics, the readers are referred to 

several published reviews (Davis, 2004, Collie and Parkinson, 2011, Düchler, 2012, Lv et 

al., 2012, Ruttkay-Nedecky et al., 2013) 

 

From Base Pairs to Quartets: The Discovery of G-Quadruplex Structures 

 

The discovery of the molecular structure of DNA is arguably one of the most 

important scientific achievements of the 20th century. The works of Watson, Crick, 

Wilkins, Franklin and colleagues led to a proposed model for DNA structure: a right-

handed double helix consisting of two strands of DNA in antiparallel orientation 

associated through hydrogen bond interaction between complimentary purine/pyrimidine, 

i.e. adenine with thymine (A/T) and guanine with cytosine (G/C), base pairs (Watson and 
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Crick, 1953a, Wilkins et al., 1953, Franklin and Gosling, 1953c). The discovery of the 

double helix structure provided the foundation for modern day molecular biology 

(Watson and Crick, 1953b) and its significance extends far beyond the scientific 

community as the term “double helix” has come to be widely associated with, and in 

some cases is synonymous with, nucleic acid structures among the lay population. 

Indeed, the “B-form” double helix proposed in 1953 is the most common tertiary 

structure adopted by genomic DNA within the cell (Ghosh and Bansal, 2003). However, 

under certain conditions or when containing certain sequences, nucleic acids can also 

assume other tertiary structures (Rich, 1993). For example, the presence of the 2'-OH 

group prevents double stranded RNA from forming the “B-form” double helix, an 

observation that was made by Watson and Crick (1953a) in their original paper. 

Consequently, the structure of the RNA double helix reported by Rich and Davies (1956) 

was observed to resemble the “A-form” double helix that was previously observed by 

Franklin and Gosling for dehydrated DNA (Franklin and Gosling, 1953a, Franklin and 

Gosling, 1953b, Franklin and Gosling, 1953d). This “A-form” double helix has also been 

proposed as a structure for DNA:RNA hybrids formed during transcription and 

replication (Rich, 1960, Wang et al., 1982, Egli et al., 1992). A third class of double 

helix, the left-handed “Z-form”, has been observed under high salt conditions for 

sequences with a high G/C content (Mitsui et al., 1970, Pohl and Jovin, 1972, Wang et 

al., 1979). Four years after the discovery of the double helix, research into the structures 

of double stranded RNA by Felsenfeld et al. (1957) yielded the first observation of a 

triple helix, consisting of one poly(rA) and two poly(rU) strands, which formed in 

solutions containing magnesium. In the model proposed, the poly(rA) and poly(rU) 
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strands associate by Watson-Crick hydrogen bonds, which is indicated in text by a dot, ·. 

The addition of MgCl2 to the solution drives the binding of a second poly(rU) strand to 

the major groove of the poly(rA)·poly(rU) double helix. This third strand interacts with 

the poly(rA) strand by Hoogsteen hydrogen bonds, which is indicated in text by an 

asterisk, * (Hoogsteen, 1959, Hoogsteen, 1963). Aside from the U*A·U triple helix, other 

combinations include (in chronological order of discovery) C*G·C and G*G·C (Lipsett, 

1964), T*A·T (Arnott and Selsing, 1974), A*A·U (Broitman et al., 1987), and A*A·T 

(Howard et al., 1995). In addition, triple helix DNA/RNA hybrids have also been 

reported (Morgan and Wells, 1968, Roberts and Crothers, 1992). Synthetic triplex-

forming oligonucleotides (TFO) can also inhibit gene transcription in the cell by inducing 

triple helix formation through anti-sense binding at sequence-specific sites in the genome 

forming the underlying basis for the anti-gene strategy for controlling gene expression. 

(Hélène, 1991, Praseuth et al., 1999, Knauert and Glazer, 2001, Duca et al., 2008). 

The present day interest in G-quadruplex structures is the consequence of a series 

of findings published in the late 1980’s, which discovered that oligonucleotides 

containing guanine-rich telomeric repeats associate to form G-quadruplex structures in 

solution (Henderson et al., 1987, Williamson et al., 1989, Sundquist and Klug, 1989). 

The origin of G-quadruplex research, however, began much earlier. Levene and Jacobs 

(1909) reported that solutions of guanine riboside or guanosine form highly viscous gels 

at millimolar concentrations. A similar observation was made by Bang (1910) for 

solutions of guanosine monophosphate (GMP). Of the five main bases present in DNA 

and RNA, the gel-forming property appears to be unique to guanine (Chantot and 

Guschlbauer, 1972), which contains two hydrogen bond donor groups. Gel formation is 
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not associated with solutions containing nucleosides and nucleotides of the other four 

bases, i.e. adenine, cytosine, thymine, and uracil, which only contain one hydrogen donor 

group each. This unique property of GMP nucleotides severely hindered initial efforts in 

the 1950’s to synthesize poly(rG) polynucleotides for structural studies. It is in this 

context that poly(rI) polynucleotides were produced. Inosine is a close analogue of 

guanosine and did not form gel in solution (Guschlbauer et al., 1990). The base of inosine 

is hypoxanthine, which is the deaminated derivative of guanine. Rich (1958) performed 

X-ray diffraction of poly(rI) fibers and reported the presence of a helical structure. The 

diffraction pattern was consistent with both a triple helix and a quadruple helix. However, 

the quality of the image at the time did not allow for the conclusive determination of the 

correct structure. Four years later, Gellert et al. (1962) performed X-ray diffraction of 3'-

GMP and 5'-GMP nucleotides fibers and reported the presence of helical structures 

containing a novel substructure now known as the guanine quartets or G-quartets. Davies 

(2005) remarked on this serendipitous discovery, “Marie [Lipsett] originally thought that 

she had been able to make poly(G), but was then disappointed to discover that what she 

had was unpolymerized GMP that was forming a viscous solution that looked just like 

DNA, [the same observation made by Bang (1910) 50 years prior]. As soon as she told 

me this I rushed over and pulled some fibers that gave diffraction patterns that could be 

explained by the formation of G-quartets.” 

Subsequently, Iball et al. (1963) reported that 2-deoxyguanosine (the DNA 

counterpart of guanosine) and 2-deoxyguanosine monophosphate can also form quartets. 

In fact, quartet formation have also been observed for inosine (Brahms and Sadron, 

1966), 8-bromoguanosine, 2',3'-O-diacetylguanosine (Tougard et al., 1973), and over 20 
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guanosine derivatives (Guschlbauer et al., 1990). Having reported the successful 

synthesis of poly(rG) (Fresco and Su, 1962) a year prior, Fresco and Massoulie (1963) 

performed spectroscopic studies of poly(rG) solutions and confirmed the presence of 

multi-stranded helices. However, the structure of which would not be determined until 

over a decade later when Zimmerman et al. (1975) perform X-ray diffraction of poly(rG) 

fibers and reported the first structure of the guanine quadruple helix (G-quadruplex). A 

year prior, Arnott et al. (1974) had repeated the X-ray diffraction of poly(rI) fibers and 

described the structure of the I-quadruplex. Miles and Frazier (1978) later performed 

spectroscopic study of poly(rI) solutions and noted significant differences in the melting 

profiles of different quadruple helices formed in the presence of different metal ions. 

From these findings, it was proposed that certain alkali metal ions can occupy the central 

channel of the helix and coordinate with the O6 atoms of the quartets. The coordination 

of metal ions was later shown to be essential for G- and I-quadruplex formation by 

helping to stabilize the stacking of individual quartet units (Howard and Miles, 1982). 

 

The Biological Functions of G-Quadruplex Nucleic Acids 

 

G-Quadruplex Formation in the Human Telomere 

The interest in G-quadruplex following its discovery was limited, in part due to 

the difficulty of obtaining poly(dG) and poly(rG), as synthesis remains a challenge. Of 

the many potential sites for G-quadruplex formation in the cell, the first to be investigated 

was the telomere. All organisms with linear chromosomes contain telomeres, DNA 

sequences comprise of short (2-8 bases) polynucleotide repeats that cap the ends of 
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chromosomes and allow the cell to distinguish between normal chromosomal ends and 

double strand breaks (Blackburn, 1991). During an investigation into the structure of the 

telomere from different organisms, Henderson et al. (1987) performed non-denatured gel 

electrophoresis of several guanine-rich oligonucleotides and reported that many of these 

sequences contained a second band with increased electrophoretic mobility. The intensity 

of the second band increased at lower electrophoretic temperature. Using thermal 

denaturation analysis by the absorbance method, the authors demonstrated that these 

faster migrating species displayed hyperchromicity at high temperature, consistent with 

helix to coil transformation. Upon further inspection by 31P-NMR spectroscopy, the 

authors concluded that the faster migrating species are intramolecular folded double 

stranded hairpin structures containing non-standard guanine/guanine base pairs. 

Subsequently, Williamson et al. (1989) and Sundquist and Klug (1989) performed 

footprinting experiments on the same sequences, reported that all the guanine N7 sites 

were protected from methylation by chemical agent. In addition, Williamson et al. (1989) 

reported that the protection of N7 sites only occurred in gels containing Na+, K+, and Cs+ 

but not in gels containing Li+ or no added salts. Taken together, these findings were 

consistent with formation of G-quartets and G-quadruplex structures.  

The discovery of G-quadruplex formation in the telomere renewed interest in 

these structures. Structural investigations of the sequence d(GGGGTTTTGGGG) from 

the telomere of Oxytricha resulted in the first single crystal analysis and X-ray crystals 

structure of a G-quadruplex by Kang et al. (1992) which was followed shortly by the first 

NMR study and solution structure by Smith and Feigon (1992). The first high-resolution 

G-quadruplex structure of a human sequence, d(AGGGTTTAGGGTTAGGGTTAGGG) 
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or hTel22 in sodium, was first solved by Wang and Patel (1993). Parkinson et al. (2002) 

later report a crystal structure of the same sequence, which was the first reported high-

resolution structure of a human sequence in potassium. Within the cell, G-quadruplex 

formation is thought to occur at the distal 3’ end of the telomere, which contains a single-

stranded guanine-rich overhang of approximately 100 to 200 bases (Wright et al., 1997). 

The stabilization of these G-quadruplex structures by a small molecule inhibitor is 

currently being investigated with the aim of bringing a novel class of anti-cancer 

therapeutic to the market (Han and Hurley, 2000, Neidle and Read, 2000, White et al., 

2001, Saretzki, 2003, Ou et al., 2008, De Cian et al., 2008, Balasubramanian and Neidle, 

2009). Small molecules that interact with telomeric G-quadruplexes in vitro were also 

able to inhibit the activity of telomerase in an ex vivo assay. Since telomerase is activated 

in more than 90% of all cancers to maintain the length of the telomere thereby conferring 

immortality upon cancer cells (Shay and Bacchetti, 1997), G-quadruplex-based anti-

telomerase therapy could be an attractive strategy for the development of anti-cancer 

therapeutics. Treating cells with these G-quadruplex-interacting and telomerase-

inhibiting agents have shown to promote telomere dysfunction in the cell resulting in 

cellular senescence and cell death. (Riou et al., 2002, Cuesta et al., 2003, De Cian et al., 

2008, Lopes et al., 2011, Rodriguez et al., 2012). 

 

G-Quadruplex Formation in Oncogene Promoters 

G-quadruplex formation is not just limited to the guanine-rich telomere. Putative 

G-quadruplex-forming sequences (PQS) are found within 1,000 bases of the transcription 

start sites (TSS) (Du et al., 2008, Eddy and Maizels, 2008, Du et al., 2009). In particular, 
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PQS are overrepresented in the promoter regions of many oncogenes, such as c-Myc 

(Ambrus et al., 2005), c-Kit (Hsu et al., 2009, Phan et al., 2007a), Bcl-2 (Dai et al., 

2006), VEGF (Sun et al., 2005), HIF-1α (De Armond et al., 2005), RET (Tong et al., 

2011), and hTERT (Lim et al., 2010), whereas the occurrence of PQS in tumor suppressor 

genes tends to be much lower (Eddy and Maizels, 2006). The concentration of PQS near 

the promoter regions appear to be a conserved trait between several species including 

humans (Rawal et al., 2006, Du et al., 2007, Zhao et al., 2007, Verma et al., 2008). A 

recently study reported that the enrichment of PQS in these positions is the result of 

positive selection suggesting that these sequences conferred an evolutionary advantage to 

the organism (Smith, 2010). A proposed function of G-quadruplex structures in these 

promoter regions is thought to be transcriptional regulation (Brooks et al., 2010, 

Balasubramanian et al., 2011). For example, in the case of the c-Myc oncogene, a 27 

base-pair guanine-rich sequence located in the nuclease hypersensitivity element III 

region 1 (NHE-III1) upstream of the P1 promoter has been demonstrated to form G-

quadruplex structures in solution (Simonsson et al., 1998). The NHE-III1 region is 

thought to be the predominant regulator of c-Myc transcription (Brooks and Hurley, 

2010). In a study employing a cell-based luciferase reporter system, the formation of G-

quadruplex structures in NHE-III1 was proposed as a mechanism for regulating c-Myc 

expression (Siddiqui-Jain et al., 2002). Sequence mutations that destabilize G-quadruplex 

formation in vitro resulted in an increase of c-Myc expression in the cells, while actions 

that promote G-quadruplexes formation, e.g. treating the cell with the G-quadruplex 

stabilizing compound meso-Tetra (N-methyl-4-pyridyl)porphine (TMPyP4) (Grand et al., 

2002) among others (Brown et al., 2011), led to a decrease in c-Myc expression. In 
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addition, overexpression of the protein nucleolin also resulted in a similar decrease in c-

Myc expression (González et al., 2009). The binding of nucleolin to the G-quadruplex 

structure in NHE-III1 has been proposed as a mechanism for normal control of c-Myc 

expression. These findings are significant as c-Myc gene is a particularly important 

oncogene, whose altered expression has been associated with many types of cancer, 

including but not limited to breast, lung, prostate and hematological cancers (Nesbit et 

al., 1999, Nilsson and Cleveland, 2003). 

 

Other Biological Functions of DNA G-Quadruplex Structures 

In addition to regulation of transcription, DNA G-quadruplex structures have also 

been linked to genomic instability and loss of epigenetic control. The first evidence of G-

quadruplex-mediated genomic instability came from the investigation of Dog1 helicase in 

Caenorhabditis elegans worms. In Dog1 deficient cells, massive genome-wide deletions 

were observed at guanine-rich sites (Cheung et al., 2002). Subsequent investigation 

revealed that only sites containing PQS motifs were deleted (Kruisselbrink et al., 2008). 

In fact, sites containing guanine-rich sequences not capable of forming G-quadruplex 

structures (e.g. sites containing CG repeats) remained unaffected. Dog1 was later 

discovered to be the worm homologue of the human FANCJ helicase (Youds et al., 

2008). FANCJ is one of sixteen genes linked to Fanconi Anemia, a rare genetic disease 

characterized by defective DNA repair resulting in hematologic failures. Consequently, 

because of the defective DNA repair, Fanconi Anemia patients often end up developing 

cancers (Rosenberg et al., 2003). In Fanconi Anemia patients with FANCJ deficiency, 

similar genome-wide deletion of PQS sites were observed (London et al., 2008). 

Consistent with the theory that FANCJ resolves G-quadruplex-mediated genomic 
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instability, FANCJ was shown to unwind G-quadruplex DNA with a 5'-to-3' polarity (Wu 

et al., 2008). Investigations of the interaction between the protein Pif1 and G-quadruplex 

structures provided additional evidence of G-quadruplex-mediated genomic instability 

(Paeschke et al., 2013). Pif1 is a DNA helicase that binds to and unwinds G-quadruplex 

structures (Sanders, 2010). In Pif1 deficient Saccharomyces cerevisiae yeast cells, 

replication fork progression stalls at sites containing PQS motifs leading to double strand 

breaks (Paeschke et al., 2011). Replication fork stalling, in addition to impeding the 

successful transfer of genetics information from parent to daughter cells, can also affect 

the transfer of epigenetic control by interfering with histone recycling from parent cell to 

daughter cells (Whitehouse and Smith, 2013). A class of proteins known as Y-family 

translesion polymerase is responsible for restarting stalled replication fork (Edmunds et 

al., 2008). REV1 is a Y-family translesion polymerase. A study carried out in DT40 

chicken cells showed that REV1 deficient cells have distinct transcriptional profiles 

compared to REV1 proficient cells with genes being both up-regulated and down-

regulated (Sarkies et al., 2010). Moving a PQS motif into a silent locus leads to its de-

repression in REV1 deficient cells but not in REV1 proficient cells. The authors 

concluded that, in REV1 deficient cells, DNA synthesis is uncoupled from histone 

recycling, resulting in localized loss of repressive chromatin through biased incorporation 

of newly synthesized histones. The loss of epigenetic controls is worsened in cells with 

mutations in FANCJ (Sarkies et al., 2012). 

 

An Introduction to RNA G-Quadruplex Structures 

In addition to DNA, G-quadruplex formation can also occurs with RNA nucleic 

acids. In fact, in about 20% of human genes, there is an overrepresentation of PQS in 
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non-coding regions that get transcribed into messenger RNA (mRNA) (Huppert et al., 

2008). Compared to DNA, RNA G-quadruplex formation is more favorable. A recent 

assessment of the stability of G-quadruplex structures compared to double helix 

concluded that in the presence of a complementary strand, duplex formation is highly 

favored over G-quadruplex formation (Lane, 2012). During certain aspect of cellular 

function in which the DNA duplex is transiently unwound into two single strands, such as 

during replication or transcription, G-quadruplex formation might be favored as the 

folded G-quadruplex conformation reduces the size of the solvent accessible surface area 

and allows for better shielding of the hydrophobic base from the aqueous environments 

of the cell. Messenger RNA is traditionally single stranded and, once transported out of 

the nucleus, there is no complementary strand. Thus, it follows that an mRNA sequence 

would more likely be able to adopt a G-quadruplex conformation compared to its DNA 

counterpart. In addition, compared to G-quadruplex structures formed from DNA 

oligonucleotides, G-quadruplex structures formed from RNA oligonucleotides of the 

same sequence are more stable (Arora and Maiti, 2009, Joachimi et al., 2009, Zhang et 

al., 2010a). Lastly, for any given genes in which a PQS is present in both the DNA and 

RNA forms, there are only two maximum potential DNA G-quadruplex structures (one in 

each allele) while the number of potential RNA G-quadruplex structures is in the 

thousands. This difference in the number of structures could have significant implication 

in the design of sequence specific small molecule inhibitors. While RNA G-quadruplex 

structures present several advantages over the DNA counterpart, there is one serious 

drawback. DNA G-quadruplex structures are highly polymorphic and have been shown to 

fold into many different topologies, all known structures of RNA G-quadruplex displayed 
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the same parallel topology (Liu et al., 2000, Matsugami et al., 2001, Deng et al., 2001, 

Liu et al., 2002c, Liu et al., 2002a, Liu et al., 2002b, Uesugi et al., 2003, Xu et al., 

2008a, Xu et al., 2008b, Martadinata and Phan, 2009, Lipay and Mihailescu, 2009, 

Martadinata and Phan, 2013). The lack of structural polymorphism regarding RNA G-

quadruplex could have significant implication on the ability of a small molecule to 

distinguish between G-quadruplex structures from different genes. 

 

Biological Functions of RNA G-Quadruplex Structures 

One function of G-quadruplex structures in mRNA is thought to be translational 

repression (Halder et al., 2009, Arora and Suess, 2011). The stabilization of G-

quadruplex structures located in the 5’-untranslated region of the NRAS mRNA by a 

bisquinolone compound was accompanied by decreased translational efficiency (Bugaut 

et al., 2010). NRAS is an important oncogene (Marshall et al., 1982, Hall et al., 1983, 

Shimizu et al., 1983) and a member of the RAS superfamily of proteins. Permanent 

mutation leading to activation of RAS proteins are noted in 20 to 25% of all human 

cancers (Downward, 2003). RNA G-quadruplex structures can also promote translation. 

In the case of the FGF2 (Bonnal et al., 2003) and the hVEGF (Morris et al., 2010) 

mRNA, the PQS in the internal ribosome entry site (IRES) in the 5’-untranslated region 

was found to be essential for IRES-mediated translation initiation. Mutations resulted in 

loss of G-quadruplex formation also resulted in loss of translation initiation. Both FGF2 

(House et al., 2003) and hVEGF (Karkkainen and Petrova, 2000, Holmes et al., 2007) are 

potent growth factors associated with angiogenesis. However, while the role of FGF2 in 

cancer is unclear, overexpression of hVEGF is associated with poor prognosis, high 
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recurrence, and decreased survival in breast cancer (Gasparini, 2000, Guo et al., 2010, 

Heer et al., 2001). In addition to translational regulation, other proposed roles for RNA 

G-quadruplex structures include posttranscriptional processing of mRNA (Christiansen et 

al., 1994), alternative splicing (Marcel et al., 2011), and RNA turnover (Bashkirov et al., 

1997). No discussion of RNA G-quadruplex is complete without mentioning TERRA, the 

guanine-rich mRNA transcribed from cytosine-rich telomeric template strand. Several 

high-resolution structures have been reported which demonstrated that TERRA assumes 

parallel G-quadruplex structures (Xu et al., 2008a, Xu et al., 2008b, Martadinata and 

Phan, 2013). Although the exact cellular function of TERRA is unknown, a recent study 

reported that TERRA can inhibit telomerase activity in an in vitro assay (Schoeftner and 

Blasco, 2008). In addition, using RNA-FISH hybridization, the authors showed that 

TERRA localizes to the telomere. Together, these findings suggest that TERRA may 

function in regulation and protection of the telomere. 

 

Visualization of G-Quadruplex Structures in Human Cells 

Bioinformatics surveys have identified over 370,000 PQS in the human genome 

(Huppert and Balasubramanian, 2005, Huppert and Balasubramanian, 2007). For a select 

set of PQS, G-quadruplex formation has only been observed in vitro and purported 

biological functions have only been demonstrated through a reporter system (e.g. 

luciferase system). Thus, the true biological relevance of such sequences is unknown. 

Recently, Biffi et al. (2013) used an antibody against DNA G-quadruplex structures (anti-

G4) to visualize G-quadruplex formation in the cell and provided the strongest evidence 

to date for the existence of G-quadruplex structures in vivo. When fixed cells were treated 
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with anti-G4 antibody and followed by incubation with a secondary detector antibody and 

a tertiary fluorochrome-containing reporter antibody, fluorescent anti-G4 foci can be 

detected by confocal microscopy. These foci disappeared when the anti-G4 antibody was 

pre-incubated with pre-folded G-quadruplex-forming oligonucleotides (QFO) but not 

when pre-incubated with single stranded oligonucleotides. In addition, the number of foci 

increased when the cells were transfected with pre-folded QFO but not when the cells 

were transfected with single stranded oligonucleotides. Together, these observations 

indicate that the anti-G4 antibody was able to bind to G-quadruplex structures in the cell. 

The number of foci decreased upon treatment of the cell with DNase but not upon 

treatment with RNase implying that the antibody was able to distinguish between DNA 

and RNA G-quadruplexes. Only about 25% of the anti-G4 foci were found to localize to 

the telomere. This observation indicates that formation of G-quadruplex structures in the 

cell occurs primarily in non-telomeric locations, such as oncogene promoters (Huppert 

and Balasubramanian, 2005, Huppert and Balasubramanian, 2007). Consistent with the 

hypothesis that G-quadruplex formation is more likely to occur during replication  as the 

double stranded DNA is unwound by helicase into single strands that can more easily 

fold into the G-quadruplex form (Sarkies et al., 2010), an increase in the number of anti-

G4 foci was observed in the S-phase compared to the other phases in the cell cycle. In 

addition, the number of anti-G4 foci also increased upon treatment of the cell with a G-

quadruplex-stabilizing small molecule. Taken together, these findings strongly suggest 

that G-quadruplex structure indeed form in human cells and that formation of G-

quadruplexes can have significant implications in cellular functions.  
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Summary of Dissertation Works and Accomplishments 

 

In the current dissertation work, we present three experimental approaches for 

investigating G-quadruplex structures. In the first experimental approach, we employed 

size exclusion chromatography (SEC) to separate the G-quadruplex structures formed 

from the G-quadruplex-forming Pu27 c-Myc promoter sequence. Examination by SEC 

revealed that Pu27 exists as a heterogeneous mixture of monomer and higher-order G-

quadruplex structures. We investigated the effect of changing experimental conditions on 

Pu27 structural polymorphism as well as its interaction with the small molecule TMPyP4. 

Lastly, we compared our observation of the Pu27 sequence with four modified sequences 

reported in the literature to determine the effect of sequence modification on Pu27 

structural polymorphism. The findings of this research project was published in Organic 

and Biomolecular Chemistry (Appendix) and is reproduced in Chapter II. 

In our second experimental approach, we employed hydrodynamic bead modeling 

(HBM) to study the structural polymorphism surrounding G-quadruplex formation by the 

hTel22 human telomere sequence. We carried out sedimentation velocity experiments to 

obtained measurements for sedimentation coefficients, translational diffusion 

coefficients, and frictional ratios. To sample G-quadruplex structures for examination by 

HBM, we carried out microsecond timescale molecular dynamics simulations for ten 

different telomeric G-quadruplex forming oligonucleotides. Using our calibrated 

parameters for hydrodynamic bead modeling, we calculated the hydrodynamic properties 

for G-quadruplex structures sampled from MD and compared the calculated values to 

experimentally determined values. We performed cluster analysis on the sampled MD 
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structures using the calculated sedimentation coefficients as the clustering criteria to 

identify different hydrodynamic substates. To conclude our discussion of the telomeric 

G-quadruplex, we carried out grid mappings of water and ions surrounding the G-

quadruplex structures to identify sites of water and ions binding. The findings of this 

research project was published in The Journal of Physical Chemistry B (Appendix) and is 

reproduced in Chapter III.  

In our third experimental approach, we presented a screening platform that was 

successful in identifying a new G-quadruplex-interacting small molecule. In our 

approach, we presented an in silico generated model of an end-pasting site that was used 

for virtual screening. Compound 1 was identified as a G-quadruplex-interacting small 

molecule. Compound 1 binding to G-quadruplex structures was initially confirmed using 

a thermal denaturation analysis of FRET-labeled G-quadruplex DNA. We employed 

fluorescent and circular dichroism spectroscopy to demonstrate that Compound 1 binds to 

G-quadruplex structures by the same end-pasting mechanism identified in the virtual 

screen. Additionally, we submitted Compound 1 for testing with the NCI-60 DTP Human 

Tumor Cell Line Screen to assess the effect of Compound 1 on cancer cells. The findings 

of this. The findings of this research project is currently in submission (Appendix) and 

the manuscript is reproduced in Chapter IV. 
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CHAPTER II 

 

G-quadruplexes, DNA tertiary structures highly localized to functionally 

important sites within the human genome, have emerged as important new drug targets. 

The putative G-quadruplex-forming sequence (Pu27) in the NHE-III1 promoter region of 

the c-Myc gene is of particular interest as stabilization of this G-quadruplex with 

TMPyP4 has been shown to repress c-Myc transcription. In this study, we examine the 

Pu27 G-quadruplex-forming sequence and its interaction with TMPyP4. We report that 

the Pu27 sequence exists as a heterogeneous mixture of monomeric and higher-order G-

quadruplex species in vitro and that this mixture can be partially resolved by size 

exclusion chromatography (SEC) separation. Within this ensemble of configurations, the 

equilibrium can be altered by modifying the buffer composition, annealing procedure, 

and dialysis protocol thereby affecting the distribution of G-quadruplex species formed. 

TMPyP4 was found to bind preferentially to higher-order G-quadruplex species 

suggesting the possibility of stabilization of the junctions of the c-Myc G-quadruplex 

multimers by porphyrin end-stacking. We also examined four modified c-Myc sequences 

that have been previously reported and found a narrower distribution of G-quadruplex 

configurations compared to the parent Pu27 sequence. The findings reported here 

demonstrate that experimental conditions contribute significantly to G-quadruplex 

formation and should be carefully considered, controlled, and reported in detail. 
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NOT ALL G-QUADRUPLEXES ARE CREATED EQUALLY: 

AN INVESTIGATION OF THE STRUCTURAL POLYMORPHISM OF THE 

C-MYC G-QUADRUPLEX-FORMING SEQUENCE AND ITS INTERACTION WITH 

THE PORPHYRIN MESO-TETRA(N-METHYL-4-PYRIDYL)PORPHINE. 

 

Introduction 

 

A G-quadruplex is a DNA tertiary structure formed by the unimolecular folding 

of a guanine-rich sequence bearing four or more runs containing at least two guanine 

bases (Williamson, 1994). Bi- or tetramolecular G-quadruplexes can form from strands 

containing fewer runs of guanine. A G-quadruplex is typically composed of two or three 

stacked G-tetrads. Each tetrad is composed of four guanines in a square planar 

arrangement stabilized by Hoogsteen hydrogen bonds. A cation, usually sodium or 

potassium, is associated with 1 or 2 stacked G-quartets by coordination with the O6 of the 

guanine molecules, stabilizing the tetrad arrangement and promoting G-quadruplex 

formation (Williamson, 1994, Huppert, 2008). 

Among the first G-quadruplexes studied were those formed from the human 

telomere sequence(Neidle, 2010). Generally recognized as repeats of d(GGGTTA), 

telomeres are DNA sequences that cap the ends of chromosomes and are thought to 

contribute to genetic stability by preventing the ends of the chromosome from being 

eroded away during replication. The human telomere is 5-8 thousand base pairs in length 

with a single stranded 3’ overhang of 100 to 200 bases (Wright et al., 1997). The 

formation of G-quadruplexes in these 3’ overhangs has been shown to decrease the 
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activity of telomerase, an enzyme which is responsible for maintaining the length of 

telomeric DNA. Since telomerase activation has been found to be involved in greater than 

90% of all cancer (Shay and Bacchetti, 1997), G-quadruplex formation in the human 

telomere is an attractive anti-cancer drug target. Small molecules that stabilize G-

quadruplexes formed from telomeric oligonucleotide sequences in vitro have been shown 

to inhibit telomerase activity leading to cellular senescence and cell death in cell-based 

experiments (Riou et al., 2002, Cuesta et al., 2003, De Cian et al., 2008). Although most 

commonly associated with the human telomere, G-quadruplex forming sequences are 

also found throughout the genome (Huppert and Balasubramanian, 2005). A search of the 

human genome has revealed more than 370,000 potential G-quadruplex forming 

sequences (Huppert and Balasubramanian, 2005, Huppert and Balasubramanian, 2007). 

Recent research suggests that G-quadruplex-forming sequences are not randomly 

distributed but are concentrated in functionally important sites (Huppert and 

Balasubramanian, 2005). In particular, the occurrence of potential G-quadruplex-forming 

sequences is much higher in proto-oncogenes such as c-Myc (Ambrus et al., 2005), c-Kit 

(Hsu et al., 2009, Phan et al., 2007a), Bcl-2 (Dai et al., 2006), VEGF (Sun et al., 2005), 

and HIF-1α (De Armond et al., 2005) than in other areas of the genome; whereas the 

occurrence of G-quadruplex-forming sequences in tumor suppressor genes tends to be 

much lower (Eddy and Maizels, 2006). 

The human c-Myc gene is a particularly significant oncogene. Alteration of this 

gene or its expression has been associated with many types of cancer, including but not 

limited to breast, lung, prostate and hematological cancers (Nesbit et al., 1999, Nilsson 

and Cleveland, 2003). A putative G-quadruplex-forming sequence has been discovered in 
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the promoter region of this oncogene. The NHE-III1, a 27 base-pair guanine-rich 

sequence demonstrated to form G-quadruplexes in vitro (Simonsson et al., 1998) and 

located upstream of the c-Myc P1 promoter, is believed to be the predominant regulator 

of c-Myc expression (Brooks and Hurley, 2010). In a study employing a cell-based 

luciferase reporter system, the formation of G-quadruplexes in NHE-III1 was proposed as 

a mechanism for regulating c-Myc expression (Siddiqui-Jain et al., 2002). Sequence 

mutations that destabilize G-quadruplex formation in vitro resulted in an increase of c-

Myc expression in the cells, while actions that promote G-quadruplexes formation, e.g. 

treating the cell with the G-quadruplex stabilizing compound meso-Tetra (N-methyl-4-

pyridyl)porphine (TMPyP4) (Grand et al., 2002) (Figure 2A) among others (Brown et al., 

2011), led to a decrease in c-Myc expression. The binding mechanism of TMPyP4 to c-

Myc and other G-quadruplexes remains an area of investigation (Figure 2B-C) (Anantha 

et al., 1998, Haq et al., 1999, Seenisamy et al., 2004, Freyer et al., 2007, Wei et al., 

2009). We believe that several factors are likely to have contributed to the discrepancies 

regarding the TMPyP4 binding mechanism, which include the lack of examining the 

inherent polymorphism and therefore a lack of definitive structures of the G-

quadruplexes formed from the c-Myc promoter sequence without major perturbation of 

the sequence, general lack of understanding of the binding preferences, and variability 

and a lack of detail in reporting experimental conditions (Seenisamy et al., 2004, 

Seenisamy et al., 2005, Freyer et al., 2007, González et al., 2009, Ou et al., 2011) leading 

to the formation of G-quadruplexes.  
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Figure 2. TMPyP4 binding to G-quadruplex. (A) The chemical structure of the cationic 

porphyrin, TMPyP4 and (B) NMR solution structure (PDB: 2A5R) of TMPyP4 binding a 

unimolecular G-quadruplex formed from the modified c-Myc promoter sequence, Pu24I, 

(C) X-ray crystal structure (PDB: 2HRI) of TMPyP4 binding to the bimolecular G-

quadruplex formed from the human telomere sequence, TAG3T2AG3.  
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G-quadruplex formation can be highly polymorphic (Lane et al., 2008, Dailey et 

al., 2010). In the presence of sodium, it is generally accepted that the human telomere 

sequence, G3(T2AG3)3, folds into a single anti-parallel G-quadruplex topology, often 

termed a “basket” configuration, with a lateral, a diagonal, and a lateral connecting loop 

(Wang and Patel, 1993). In the presence of potassium, the predominant cation inside the 

cell and the nucleus, the same sequence can adopt a number of different topologies with 

variations in connecting loop types, strand/segment orientations, numbers of G-quartets, 

and glycosyl torsion angles depending on the conditions (e.g. buffer composition, the 

presence of organic solvents such as acetonitrile or ethanol, DNA concentration, ion 

concentration, annealing profile, and the presence of various biological molecules). 

While it is a relatively simple G-quadruplex-forming sequence, the human telomere 

sequence can potentially fold into more than 200 intramolecular conformations (Lane et 

al., 2008). For more complex G-quadruplex-forming sequences, such as those commonly 

found in the promoter regions of many oncogenes, this issue can be greatly exacerbated. 

As an example of one such sequence, the c-Myc parent sequence (i.e. Pu27, Figure 3) has 

5 runs of 3 or more guanines and can potentially display a much greater degree of 

polymorphism than in the telomere sequence. Consequently, when a G-quadruplex-

forming sequence is studied, certain steps are usually taken to reduce this inherent 

polymorphism.  
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Figure 3. Sequence information for the c-Myc G-quadruplex-forming sequence and 

reported derivatives. Substituted bases are underlined. Complete NMR structures are 

available for sequences marked with asterisk.  
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The most common approach to reducing the structural polymorphism of G-

quadruplex-forming sequences is through sequence modification (Dai et al., 2008, Yang 

and Okamoto, 2010). Initially, in the case of the parent c-Myc sequence (i.e. Pu27), the 

five runs of three or more guanines are truncated to four runs (Pu18 and Pu19) or 

truncated and then further modified by addition of a base (i.e. Myc-2345 and Pu24). 

Subsequent base substitutions and subtractions, generally reducing the number of 

guanines to exactly four runs of three guanines or forcing certain regions of the sequence 

to be loops, have also been used to yield several sequences with reduced polymorphism 

(i.e. Myc-2345 to MYC22-G14T/G23T, Pu19 to Pu19_A2A11, Myc-1245). Some 

sequences can be further modified by base substitutions with non-canonical bases such as 

inosine (i.e. Pu24 to Pu24I). Among these sequences, only a selected few are sufficiently 

enriched in one particular topology necessary for the determination of the complete 

structure by NMR (i.e. MYC22-G14T/G23T, Pu24I, Pu19_A2A11) (Seenisamy et al., 

2004, Phan et al., 2004, Ambrus et al., 2005, Phan et al., 2005, Mathad et al., 2011). 

Regardless of the approach taken, the results are often new sequences that are markedly 

different from the parent sequence (Figure 3). 

Other sequence modifications include incorporation of 8-methylguanine or 8-

bromoguanine which are known to produce G-quadruplex structures with a syn 

glycosidic configuration (Esposito et al., 2004, Virgilio et al., 2005a, Virgilio et al., 

2005b, Virgilio et al., 2012), while use of O6-methylguanine, inosine, or 6-thioguanine 

have been shown to destabilize G-quadruplex formation(Mekmaysy et al., 2008, Petrovic 

and Polavarapu, 2008, Marathias et al., 1999, Spackova et al., 2004). Incorporation of 8-

aminoguanine and 8-methylguanine promote formation of tetramolecular parallel G-
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quadruplexes such as those formed by TG4T (Gros et al., 2008, Tran et al., 2011). 

Modifications of the sugar-phosphate backbone by insertion of 5’-5’ or 3’-3’ polarity 

inversion have also been shown to have a dramatic effect on G-quadruplex formation and 

stability (Esposito et al., 2005, Esposito et al., 2009, Galeone et al., 2008) and use of 

RNA or LNA force adoption of a anti glycosidic guanosine conformation (Bonifacio et 

al., 2008, Kumar and Maiti, 2007, Tang and Shafer, 2006, Qi and Shafer, 2007). In 

addition to sequence modifications, another common approach to reduce polymorphism 

is by changing the solution conditions. The addition of biological molecules (Sannohe 

and Sugiyama, 2001) (e.g. sugar, proteins), presence of co-solvents (e.g. acetonitrile, 

PEG) (Xue et al., 2007, Miller et al., 2010), choice of divalent versus monovalent cations 

(Blume et al., 1997, Miyoshi et al., 2001), and cation concentration (Gray et al., 2009a, 

Gray et al., 2009b) all play a major role in directing G-quadruplex formation and 

determining stability. 

Among the limitations of the methods described above for resolving the 

polymorphism of G-quadruplex structures is that such an approach can often result in 

drastic and unpredictable perturbation of the system. The untested assumption is that 

these means of reducing polymorphism enriches a member of the ensemble of species 

originally formed by the parent sequence. In fact, it is possible that such a perturbation 

can shift the equilibrium to favor species that might not actually form in vitro or in vivo 

(Lane et al., 2008). G-quadruplex polymorphism has severely hindered investigation of 

G-quadruplex structure, biophysical properties, small molecule interaction, and the 

thermodynamics of G-quadruplex formation. We have reported that techniques 

commonly used to study G-quadruplex DNA are typically too low in resolution to 
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distinguish between species in a mixture, e.g. CD spectroscopy, UV-Vis spectroscopy, 

ultracentrifugation, and gel electrophoresis, while high resolution techniques, e.g. NMR 

spectroscopy, are of limited utility for mixtures containing multiple G-quadruplex 

topologies (Dailey et al., 2010). 

Recently, we reported results for ten different G-quadruplex-forming promoter 

sequences (Miller et al., 2011) (including c-Myc) examined by SEC, a technique that was 

able to show their polymorphism in vitro without perturbing the system by sequence 

modifications (Miller and Trent, 2001). It was discovered that these ensembles of 

structures are more complex than previously thought, a factor masked by the 

determination of single supposedly representative structures. In addition to the diverse 

topologies from individual strands, we observed that G-quadruplexes can associate 

together to form dimers, trimers, and higher-order G-wire structures in vitro (Miller et al., 

2011). We employed SEC to resolve the polymorphism of the c-Kit promoter sequence, 

(CG3)2(CG)2(AG3)2T (PDB: 2KJ2), into three fractions that were revealed by AUC to be 

of a monomer species, a dimer species, and a higher-order G-wire species. 

Here, we examine in detail the structural polymorphism of the c-Myc promoter G-

quadruplex-forming sequence and describe the influence of experimental conditions (e.g. 

DNA concentration, ion concentration, buffer components, annealing conditions, dialysis 

procedure, etc.) on the polymorphism. We observe the interactions of TMPyP4 with the 

c-Myc G-quadruplex ensemble in solution and demonstrate that it binds preferentially to 

some G-quadruplex structures. As a consequence, TMPyP4 perturbs the distribution of 

species within the ensemble. In addition, we also examine several modified c-Myc 

sequences which showed reduced polymorphism compared to the parent Pu27 sequence. 
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However, we cannot definitely conclude whether such G-quadruplex structures existed 

within the original ensemble or were produced as a consequence of sequence 

modification. 

 

Materials and Methods 

 

Oligonucleotide Preparation, Annealing, and Small Molecule Acquisition. 

The c-Myc G-quadruplex-forming sequence (Pu27) was purchased from 

Integrated DNA Technologies (Coralsville, IA) and consists of the sequence: 

5’ – TGGGGAGGGTGGGGAGGGTGGGGAAGG – 3’ 

The standard conditions for Pu27 G-quadruplex formation is described in this section and 

depicted in Figure 3. Deviations from standard conditions were noted accordingly in the 

results section and Figure 3. A stock solution of the Pu27 oligonucleotide was dissolved 

in KPEK 200 (200 mM K+) buffer, which is composed of K2HPO4 (6mM), KH2PO4 

(2mM), KCl (185mM), EDTA disodium salt dihydrate (1mM), pH 7.0. Dialysis was 

performed overnight using Spectrum Laboratories (Rockford, IL, USA) 0.1-0.5 kDa 

MWCO dialysis devices following manufacturer’s instructions. The DNA was quantified 

using a NanoDrop 2000 instrument (Thermo Scientific, Wilmington, DE). Samples were 

made at 200 μM strand concentration (with ε=279,900 L·M-1·cm-1 for the single-strand 

form) by dilution of the dialyzed Pu27 stock solution with KPEK 200. The 

oligonucleotide samples were annealed in a water bath by heating to 100°C, holding the 

samples at temperature for 10 minutes, and gradually cooling to room temperature 

overnight. 
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A 10mM concentrated stock solution of TMPyP4 (Frontier Scientific, Logan, UT) 

was produced by weighing out the compound and dissolving in DMSO. TMPyP4 

concentration was quantified using a NanoDrop 2000 instrument. To prepare TMPyP4 

for titration against Pu27, the stock solution of TMPyP4 was diluted by a factor of 4 in 

DMSO. 10µL of diluted TMPyP4 was mixed with 125µL of 200μM dialyzed and 

annealed Pu27 G-quadruplex (7.4% DMSO final volume) to form the 1:1 

[TMPyP4]:[Pu27] mixture. TMPyP4 was further diluted for the 1:2, 1:4, 1:8, 1:16, 1:32 

samples. A sample without TMPyP4 and 7.4% DMSO was examined by SEC and found 

that the presence of DMSO did not alter the distribution of G-quadruplex species in 

solution. 

 

Size-Exclusion Chromatography (SEC) 

SEC was performed over 600 minutes using a Waters system (Waters 2998 

Photodiode Array Detector and Waters 600 Pump, Waters Corporation, Milford, MA) 

with monitoring of the c-Myc G-quadruplex at an absorbance of 260nm and of DNA-

bound TMPyP4 at an absorbance of approximately 445nm. Two Superdex™ 75 10/300 

columns connected serially (GE Healthcare, Piscataway, NJ) were employed for sample 

separation using a flow rate of 0.05 mL/min with 50µL injection volumes of the sample. 

The mobile phase was consisted of 100 mM KCl, 20 mM K2HPO4, pH 7.0. The 

absorbance of eluted DNA was adjusted by setting the minimum absorbance between 

13.75 and 27.50 mL to 0. Absorbance was normalized by dividing the adjusted 

absorbance by the total area under the curve between 13.75 and 27.50 mL. 
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Circular Dichroism (CD) 

CD experiments were performed on a Jasco J-710 spectropolarimeter (Jasco Inc., 

Easton, MD). CD scanning experiments were performed at an A260 of 0.50 from 340nm 

to 220nm with a data interval of 1nm, band width of 1nm, response of 1 second, scanning 

speed of 200 nm/minute and a total of four accumulated scans. The CD of the mixture 

samples were normalized with respect to strand concentration (ε=279,900 L·M-1·cm-1). 

For the SEC separated fractions, the CD were normalized to the number of G-

quadruplexes based on the MW determined by AUC experiments. 

 

Analytical Ultracentrifugation (AUC) 

AUC was carried out in a Beckman Coulter ProteomeLab XL-A analytical 

ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20°C overnight at 50,000 rpm in 

standard 2 sector cells. Data were analyzed using the program Sedfit (free software: 

www.analyticalultracentrifugation.com). Buffer density was determined on a 

Mettler/Paar Calculating Density Meter DMA 55A at 20.0°C and buffer viscosity was 

calculated using Sednterp software (free software: www.jphilo.mailway.com). For the 

calculation of frictional ratio, 0.55 mL/g was used for partial specific volume and 0.3 g/g 

was assumed for the amount of water bound. 

 

Differential Scanning Calorimetry (DSC) 

DSC was conducted using a MicroCal VP-DSC (MicroCal Inc., Piscataway, NJ) 

for thermal denaturation of the c-Myc oligodeoxynucleotide in 25, 200 and 400 mM total 

potassium conditions. Prior to scanning DNA samples, 25, 200 or 400 mM potassium 
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buffer scans were collected for thermal equilibration of the instrument and collection of 

baseline scans for analysis of DSC thermograms. DNA samples were prepared at 200 μM 

strand concentration under the preparation conditions given above. DSC scan parameters 

included a temperature range of 20°C to 120°C to encompass the melting temperature 

even at high potassium concentrations. Data were collected for both heating and cooling 

scans with a temperature gradient of 30°C/hr to mimic slow annealing conditions. 

Additional scan parameters included zero hold times for pre and post-scan holds and low 

gain to minimize noise with slow scanning conditions. Data analysis was done using 

Origin 7.0 software. Blank buffer scans were subtracted from DNA sample scans and 

normalized for DNA concentration. Further baseline adjustments were made based on 

pre- and post-denaturation regions. 

 

NMR Sample Preparation and Spectroscopy 

 

Fractions of the c-Myc G-quadruplex were separated with a mobile phase 

consisting of 100 mM KCl and 20 mM K2HPO4 (pH=7.0). Fractions were collected at 0.1 

ml intervals. The five to seven fractions corresponding to the maxima for the seven major 

peaks were collected and combined from five separate runs. HPLC fractions were kept 

frozen at -80°C between runs. This material was concentrated using Microcon spin 

columns (Millipore). The concentrated material was then diluted to 330 μL total volume 

with HPLC buffer. 30 μM DSS and 10% D2O were then added. The un-separated c-Myc 

sample was prepared by adding 10% D2O and 30 µM DSS to a 1 mM sample. Samples 

were loaded into 5 mm Shigemi NMR tubes. NMR spectra were recorded using a 5 mm 
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inverse triple resonance (HCN) probe on Varian Inova spectrometer at 14.1 T using a 

cold probe. 

 

Results and Discussion 

 

Examination of the Polymorphism of the c-Myc Promoter G-Quadruplex Forming 

Sequence (Pu27). 

G-quadruplexes formed from a single G-quadruplex-forming DNA sequence can 

sometimes adopt multiple topologies in solution that exist in equilibrium with one 

another (Lane et al., 2008). The complexity of such a G-quadruplex containing system in 

vitro is poorly understood and often underrepresented. The Pu27 sequence has been 

previously demonstrated by non-denaturing gel electrophoresis to form higher-order 

species (Siddiqui-Jain et al., 2002). This observation and its possible implications for 

data analysis are frequently ignored and rarely discussed in many studies, especially 

those examining interactions between small molecules and G-quadruplexes formed from 

the Pu27 sequence (Siddiqui-Jain et al., 2002, Ou et al., 2011). In the current work, we 

prepared the Pu27 sequence by initially rehydrating commercially obtained Pu27 

sequence in KPEK 200 buffer (6mM K2HPO4, 2 mM KH2PO4, 186 mM KCl, 1 mM 

EDTA disodium salt dehydrate, pH 7.0) to a stock solution with a concentration of 

approximately 1 mM. The stock solution was dialyzed overnight (~16 hours) in buffer. 

After dialysis, the sample was diluted to a concentration of 200 μM, annealed in a 100°C 

water bath for 10 minutes, and allowed to cool to room temperature overnight. The 

annealed samples were then analyzed by SEC and NMR at 200 μM or further diluted to 
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0.50 OD (~2 μM) for CD and AUC analysis. These conditions are outlined in detail in the 

Experimental Section and will be referred to throughout the text as the standard 

conditions. Pu27 G-quadruplexes prepared using these conditions were highly 

heterogeneous and shown to contain at least seven species by SEC analysis (Figure 4A). 

Dilution of the sample for AUC did not alter the distribution of species observed (Figure 

5); however, AUC analysis of the same sequence revealed a mixture consisting of at least 

3 species of different sizes (Figure 4B).  
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Figure 4. The structural polymorphism of the c-Myc G-quadruplex-forming sequence 

(Pu27) prepared under standard conditions was examined by (A) SEC, (B) AUC, and (C) 

CD. (A) Absorbance of DNA was monitored at 260 nm and normalized to the area under 

the curve. (B), c(s) is the concentration distribution of sedimenting species based on 

absorbance at 260 nm and normalized to the area under the curve. (C), circular dichroism, 

Δε, was normalized to strand concentration.  
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Figure 5. The distribution of Pu27 G-quadruplex species in sample before and after 100 

fold dilution was examined by SEC. Absorbance of DNA was monitored at 260 nm and 

normalized to the area under the curve.  
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The heterogeneity of the G-quadruplex species was undetectable by CD 

spectroscopy (Figure 4C), a method commonly used to characterize G-quadruplex 

structures. The CD spectrum of the c-Myc G-quadruplex mixtures appeared as one 

species of what had been attributed to an all-parallel G-quadruplex with a positive peak at 

260 nm and a negative peak at 240 nm (Đapić et al., 2003, Karsisiotis et al., 2011). 1D 

1H-NMR analysis was conducted on the mixture and showed a broad spectrum of 

overlapping GN1H resonances in the imino/amino proton region (Figure 6), characteristic 

of the G-quadruplex associated Hoogsteen hydrogen bonds. The overlapping resonances 

indicated that the solution contained either a complex mixture of G-quadruplexes or a 

structure of multiple DNA strands (i.e. G-wire) or both. Lastly, in 5 subsequent Pu27 

samples that were also prepared under the same conditions, we observed the same general 

distribution of the 7 G-quadruplex species with only slight variations within experimental 

reproducibility (Figure 7).  
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Figure 6. 1D 1H-NMR spectrum of the Pu27 G-quadruplex mixtures prepared under 

standard conditions. The imino region from the 1D 1H-NMR spectrum of Pu27 G-

quadruplex-forming sequence prepared under standard conditions demonstrates the 

formation of G-quadruplexes in vitro and the existence of a complex mixture of 

monomers and higher-order species.  
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Figure 7. The distribution of G-quadruplex species from six different commercially 

obtained batches of Pu27 oligonucleotides was examined by SEC. G-quadruplex-forming 

sequences were prepared under standard conditions. Absorbance of DNA was monitored 

at 260 nm and normalized to the area under the curve.  
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Examination of Fractions Obtained from SEC Separation of c-Myc G-quadruplex-

Forming Sequence. 

Chromatographic separation of the Pu27 sequence yielded 7 fractions. 1D 1H-

NMR spectroscopy on the 7 fractions demonstrated GN1H resonances in the 

imino/amino proton region for all 7 fractions indicating that all fractions contained G-

quadruplex structures (Figure 8). Similar to the NMR spectrum of the mixture sample 

(Figure 6), NMR spectra for fractions 1 to 6 all displayed broad overlapping resonances. 

Thus, these fractions could also contain G-wire structures in addition to G-quadruplexes. 

Initial analysis of the fractions was accomplished by individually re-injecting each 

fraction into SEC to examine whether there was re-equilibration between the fractions 

(Figure 9A). Fractions 1 and 7 appeared predominantly as one species with very little re-

equilibration observed for these samples. For fractions 2-6, while also appearing 

predominantly as one species, some minor re-equilibration was observed compared to 

fractions 1 and 7. Furthermore, when analyzed individually by AUC, each fraction 

sedimented essentially as a single species, which indicated that each component was 

thermodynamically stable or that re-equilibration and multimerization occurred very 

slowly at room temperature (Figure 9B). The AUC samples were saved and stored at 

room temperature. Even after one week, the samples remained unchanged (Figure 10) 

with only minor variations within experiment reproducibility. In addition, remixing of 

species separated by SEC did not change the distribution of species upon re-analysis by 

both SEC and AUC (Figure 11).  
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Figure 8. 1D 1H-NMR spectra of the 7 fractions from SEC separation of the Pu27 G-

quadruplex mixtures. The imino region from the 1D 1H-NMR spectra of the 7 fractions 

demonstrated that all 7 fractions contained G-quadruplexes.  
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Figure 9. Seven fractions collected from SEC separation of the Pu27 sequence prepared 

under standard conditions were examined by (A) SEC, (B) AUC, and (C) CD. (A) 

Absorbance of DNA was monitored at 260 nm and normalized to the area under the 

curve. (B), c(s) is the concentration distribution of sedimenting species based on 

absorbance at 260 nm and normalized to the area under the curve. (C), Δε was calculated 

and normalized to G-quadruplex concentration.  
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Figure 10. Fractions from SEC separation of Pu27 G-quadruplex mixtures before and one 

week following AUC analysis were examined by SEC. Absorbance of DNA was 

monitored at 260 nm and normalized to the area under the curve.  
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Figure 11. The distribution of Pu27 G-quadruplex species in a sample obtained by 

remixing SEC separated fractions were examined by SEC (A) and AUC (B). (A) 

Absorbance of DNA was monitored at 260 nm and normalized to the area under the 

curve. (B), c(s) is the concentration distribution of sedimenting species based on 

absorbance at 260 nm and normalized to the area under the curve.  
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AUC analysis of fraction 7 yielded an experimentally determined molecular 

weight of 8,900 Da, which corresponds closely with the calculated molecular weight for 

one Pu27 strand (8,687.6 Da) indicating that this fraction is likely one or more 

unimolecular G-quadruplexes (Table 2). Fraction 6 (14,600 Da) consisted of G-

quadruplex species that appeared to be intermediates between monomer and dimer. 

Fractions 5 (18,100 Da) and 4 (21,200 Da) each appeared to contain dimer G-

quadruplexes while fractions 3 (30,000 Da), 2 (35,700 Da), and 1 (47,600 Da) were 

higher-order trimer, tetramer, and pentamer G-quadruplexes, respectively. This 

confirmed the previous AUC observation (Figure 4B) that the Pu27 sequence existed as a 

mixture between monomers (fraction 7) and higher-order G-quadruplex species (fractions 

1-6). In addition, going from fraction 7 to fraction 1, the frictional ratio increased, which 

indicated that the higher-order Pu27 G-quadruplexes exhibited a more elongated solution 

structure compared to the monomer G-quadruplexes (Table 2). Together, these findings 

suggest the aggregation of lower-order G-quadruplex species to form higher-order G-

quadruplex species in vitro.  
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Table 2. Hydrodynamic Properties of SEC Separated Pu27 c-Myc G-Quadruplex 

Fractions  
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Fraction 

Elution Volume 

(mL) 

Sedimentation 

Coefficient 

(S20,W) 

Molecular 

Weight 

(D) 

Frictional 

Ratio 

1 18.2 5.89 47,600 1.468 

2 19.1 5.22 35,700 1.369 

3 20.3 4.52 30,000 1.408 

4 21.6 3.83 21,200 1.318 

5 22.1 3.61 18,100 1.259 

6 23.1 3.11 14,600 1.264 

7 24.3 2.38 8,900 1.188 
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We employed CD spectroscopy to further characterize the chromatographically 

separated G-quadruplex species. Similar to the mixture, all 7 fractions appeared by CD as 

one species of what has been attributed to an all-parallel G-quadruplex with a positive 

peak at 260 nm and a negative peak at 240 nm (Figure 9C) (Đapić et al., 2003, Karsisiotis 

et al., 2011). The spectrum for the monomer G-quadruplex (fraction 7) had the smallest 

magnitude while the magnitudes of the spectra for the higher-order species (fraction 1-6) 

were greater. Increase in normalized circular dichroism (Δε) is observed for higher-order 

G-quadruplex structures (Petraccone et al., 2011). In the current work, we normalized the 

circular dichroism values with respect to the number of strands using the extinction 

coefficient calculated by the nearest neighbor method. This value corresponded to the 

absorbance of the single-stranded form of the Pu27 sequence. However, the absorbance 

of the G-quadruplex form of a sequence is known to be less than the single-stranded 

absorbance (Mergny et al., 2005) which leads to an underestimation of the G-quadruplex 

concentration and an overestimation of the Δε. This unknown was a limitation to our 

normalization method and prevents us from making any definitive conclusions regarding 

the CD data of the Pu27 G-quadruplex structures from the 7 fractions. 

Lastly, it should be noted that the 7 fractions collected might not represent the 

complete picture of the polymorphism exhibited by the Pu27 sequence. These fractions 

did not account for any G-quadruplex species that might have eluted at less than 18.2 ml, 

as indicated by the shoulder of the SEC chromatogram (Figure 4A). In addition, it should 

be noted that techniques such as SEC and AUC are low resolution techniques that might 

not be able to discern between species which have similar hydrodynamic properties. The 

tailing of the SEC peaks (Figure 9A) and broadening of AUC distribution curve (Figure 
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9B) suggested that several, if not all, fractions may contain more than one G-quadruplex 

species. In fact, fraction 7 was shown by 1D 1H-NMR to be a mixture of at least two 

species (Figure 8). The enrichment by SEC separation allowed for individual GN1H 

resonances to be observed rather than just the broad spectrum that was observed for the 

mixture (Figure 6). However, there were more resonances than expected for one topology 

implying that fraction 7 remained a mixture of several G-quadruplex monomers. The 

NMR spectra of the other fractions revealed that all displayed overlapping GN1H 

resonances indicative of higher order species and/or possibly mixtures of several species. 

 

Effect of Annealing on G-Quadruplex Distribution in vitro. 

The annealing protocol used can play an important role in G-quadruplex 

formation. We conducted several experiments to determine whether different aspects of 

the annealing process may affect the distribution of Pu27 G-quadruplex species in 

solution. Our protocol to prepare samples for AUC and CD analysis called for the 

samples to be diluted from the annealed concentration of 200 μM (~50 A260) to 2 μM 

(~0.50 A260). We asked the question, “Will the distribution of G-quadruplex species 

change if the samples are annealed at 2 μM instead of 200 μM?” When annealed at the 

lower concentration (2 μM), we observed by both SEC and AUC a dramatic increase in 

the amount of monomer G-quadruplexes with a corresponding decrease in the amount of 

higher-G-quadruplexes (Figure 12). To further explore the concentration dependency of 

G-quadruplex formation we examined the distribution of Pu27 G-quadruplexes at three 

different concentrations of 100 μM, 200 μM, and 400 μM (Figure 13). SEC analysis 

revealed a concentration dependent effect between 400 μM and 200 μM with the higher 
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concentration of DNA shifting the equilibrium toward higher-order G-quadruplexes. This 

concentration-dependent effect was not observed between 200 μM and 100 μM.  
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Figure 12. The concentration dependency of G-quadruplex formation was examined by 

SEC (A) and AUC (B). (A) Absorbance of DNA was monitored at 260 nm and 

normalized to the area under the curve. (B), c(s) is the concentration distribution of 

sedimenting species based on absorbance at 260 nm and normalized to the area under the 

curve.  
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Figure 13. The DNA concentration dependency of G-quadruplex formation was 

examined by SEC. Absorbance of DNA was monitored at 260 nm and normalized to the 

area under the curve.  
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In addition to the concentration, we also investigated how the distribution of G-

quadruplex species can be affected by annealing temperature and quenching process. In 

the first experiment, Pu27 G-quadruplex solutions were prepared at 200 μM. One was 

annealed at 100°C in a water bath, one at 120°C under pressure in a silicon oil bath, and 

one was not annealed (room temperature). All were examined by SEC (Figure 14A). 

There were only minor differences between the chromatograms of the sample annealed at 

100°C and the sample that was not annealed. However, with the sample annealed at 

120°C, a dramatic shift occurred and a decreased amount of higher-order G-quadruplex 

species was observed with the complementary increased amount of lower-order and 

monomer species. It is possible that at 120°C, the structures of some of the higher 

melting G-quadruplexes were disrupted. When these G-quadruplexes refolded while 

cooling, a new equilibrium was established resulting in an altered composition of G-

quadruplex species in solution. In addition to the annealing temperature dependency, we 

also observed a change in distribution of G-quadruplex species with a higher amount of 

monomer species when the annealed sample was quenched on ice for 10 minutes rather 

than allowed to slowly cool to room temperature overnight (Figure 14B). The findings 

from these three experiments highlight the importance of experimental protocol and 

annealing in determining the distribution of G-quadruplexes in solution.  
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Figure 14. The (A) annealing temperature dependency and (B) quenching protocol 

dependency of G-quadruplex formation were examined by SEC. Absorbance of DNA 

was monitored at 260 nm and normalized to the area under the curve.  
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Effect of Sample Preparation on G-Quadruplex Distribution in vitro. 

In addition to annealing, preparation of G-quadruplex samples often involves 

dialysis to remove small fragments remaining from synthesis of the oligonucleotide 

sequence and to facilitate the folding of the oligonucleotides into G-quadruplexes. An 

experiment was conducted to determine the effect of dialysis conditions on Pu27 G-

quadruplex species distribution. Four different batches of Pu27 oligonucleotide were 

prepared by rehydrating the sample in KPEK 200 to a concentration of 1000 μM. One 

sample was kept without dialysis while three samples were dialyzed overnight in KPEK 

200, one using a 0.1-.0.5 kDa MWCO membrane, one using a 0.5-1.0 kDa MWCO 

membrane, and one using a 3.5-5.0 kDa MWCO membrane. All four samples were 

diluted to a concentration of 200 μM, annealed at 100°C for 10 minutes, slowly cooled 

overnight to room temperature, and analyzed using SEC. A greater amount of higher-

order species was observed in dialyzed samples compared to samples not dialyzed 

(Figure 15). In addition, as the MWCO of the dialysis membrane was increased, an 

increase in higher-order species was observed. The A260 of the sample from before and 

after dialysis differed by only about 5-10%, which is within the standard for typical 

recovery from dialysis, indicating that the increased amount of larger G-quadruplex 

species observed was not due to the smaller species being dialyzed out of solution. 

Rather, it suggests some type of interactions between G-quadruplex structures and the 

dialysis membrane leading to the formation of higher-order structures. These interactions 

could be specific to the particular dialysis membrane being used in this study and it is 

possible that a different set of results could be obtained if a different type of dialysis 

membrane was utilized.  
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Figure 15. The dialysis dependency of G-quadruplex formation was examined by SEC. 

Absorbance of DNA was monitored at 260 nm and normalized to the area under the 

curve.  
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We also observed that the distribution of G-quadruplexes species formed from the 

Pu27 sequence was sensitive to other minor, seemingly innocuous, changes in sample 

preparation. For example, DNA obtained commercially is usually shipped lyophilized. 

We observed more monomeric G-quadruplexes when the lyophilized DNA was initially 

dissolved in deionized water instead of KPEK (Figure 16). In addition to changes in 

sample preparation processes, minor differences in buffer composition can have 

significant effect on G-quadruplex formation (Figure 17). When the acid form of EDTA 

was substituted for the disodium salt dihydrate form, more monomeric species were 

observed. These findings further supported that G-quadruplex formation can be affected 

at any step of the sample preparation process and the procedure employed should be 

carefully reported.  
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Figure 16. The rehydration of oligonucleotide protocol dependency of G-quadruplex 

formation was examined by SEC. A greater proportion of monomeric and dimeric G-

quadruplex species were produced when the lyophilized DNA was initially dissolved in 

deionized water instead of KPEK. Absorbance of DNA was monitored at 260 nm and 

normalized to the area under the curve.  
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Figure 17. The EDTA dependency of G-quadruplex formation was examined by SEC. 

When the acid form of EDTA was substituted for the disodium salt dihydrate form, more 

monomeric species were observed. Absorbance of DNA was monitored at 260 nm and 

normalized to the area under the curve.  
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Effect of Potassium Concentration on G-Quadruplex Distribution in vitro. 

The concentration of potassium in solution has been known to play a large role in 

G-quadruplex stability and formation (Gray et al., 2009b). We examined the effect of 

altered potassium concentration on the distribution of Pu27 G-quadruplexes in solution. 

The Pu27 sequence was prepared in buffers with varying concentrations of potassium 25 

mM, 200 mM, and 400 mM. The potassium concentration of 25 mM was chosen because 

it has been previously demonstrated that this is the minimum concentration of potassium 

required for G-quadruplex formation (Gray et al., 2009b). The Pu27 samples were 

initially rehydrated and dialyzed in the corresponding buffer, diluted to 200 μM, annealed 

at 100°C for 10 minutes with slow cooling, and analyzed by SEC or further diluted to 2 

μM for AUC analysis. In high potassium conditions (400 mM), the distribution was 

predominantly higher-order species while in low potassium conditions (25 mM) it was 

predominantly monomers (Figure 18A-B). Additionally, 1H-NMR analysis of the sample 

in 25 mM potassium revealed a GN1H resonance pattern similar to that of fraction 7 

(Figure 19). These findings suggest that, in addition to stabilization of the G-quartet stem, 

potassium ions also interacts with G-quadruplexes externally and help drive the 

formation of higher-order G-quadruplex species.  
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Figure 18. The potassium concentration dependency of G-quadruplex formation was 

examined by SEC (A), AUC (B), and DSC (C). (A) Absorbance of DNA was monitored 

at 260 nm and normalized to the area under the curve. (B), c(s) is the concentration 

distribution of sedimenting species based on absorbance at 260 nm and normalized to the 

area under the curve. (C) Excess heat capacity measurement for DSC was normalized 

with respect to strand concentration (200 μM).  
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Figure 19. 1D 1H-NMR spectrum of the Pu27 G-quadruplex mixtures prepared under low 

potassium conditions (25 mM K+).  The imino region from the 1D 1H-NMR spectrum of 

the Pu27 G-quadruplex mixtures in low potassium conditions (25mM) displayed 

individual resonances indicating a mixture of monomers G-quadruplexes. This NMR 

spectrum highly resembles the 1D 1H-NMR spectrum of SEC separated fraction 7 (Figure 

8G).  



84 

  



85 

The sample of G-quadruplexes in 400 mM K+ was diluted in a low potassium 

buffer until the potassium concentration was reduced to 25 mM. In order to account for 

any effect the dilution process might have on G-quadruplex equilibrium, another sample 

was diluted while keeping the potassium concentration at 400 mM. Similarly, the 25 mM 

K+ sample was diluted in high potassium buffer to bring the final potassium 

concentration to 400 mM for the test sample or kept at 25 mM K+ as a control. The 

process of dilution alone did not alter the distribution of G-quadruplex species (Figure 

20). Going from high potassium conditions (400 mM) to low potassium conditions (25 

mM) resulted in less of the higher-order species and more of the lower-order species such 

as monomers while a change to higher potassium concentration led to lesser amount of 

monomers and higher amount of higher-order G-quadruplexes (Figure 21). It should be 

noted that this is a very slow process. These changes were only observable after nearly 

two weeks of incubation as one day of incubation revealed no changes.  
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Figure 20. The distribution of Pu27 G-quadruplex species in (A) low potassium 

conditions (25 mM K+) and (B) high potassium conditions (400 mM K+) before and after 

dilution was examined by SEC. Dilution of the c-Myc G-quadruplex-forming sequence 

did not alter the distribution of G-quadruplex species. Absorbance of DNA was 

monitored at 260 nm and normalized to the area under the curve. The findings here agree 

with previous observations that dilution after annealing does not alter the distribution of 

G-quadruplex species even after more than two weeks at room temperature.  
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Figure 21. Changes in distribution of Pu27 G-quadruplex species when (A) potassium 

concentrations were increased from 25 mM to 400 mM and (B) potassium concentrations 

were decreased from 400 mM to 25 mM were examined by SEC. Absorbance of DNA 

was monitored at 260 nm and normalized to the area under the curve. It should be noted 

that significant changes in distribution of Pu27 G-quadruplex species were only 

observable more than two weeks after potassium concentrations were altered. In addition, 

it should also be noted that these samples were annealed prior to the changes in 

potassium concentration. There was no annealing after the potassium concentrations were 

altered.  
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The effect of potassium concentration on G-quadruplex formation was also 

examined using DSC melting (Figure 18C). Under standard conditions in 200 mM K+ 

buffer, the Pu27 G-quadruplexes were extremely stable, requiring superheating past the 

boiling point of water to melt. The high melting temperature was an indicator of the 

stability of the G-quadruplex structures. In addition, the large change in excess heat 

capacity of the system between 80°C to 120°C further indicated the stability of these G-

quadruplex structures. The DSC data agreed with previous observations by SEC that 

annealing at 100°C is not at a sufficiently high enough temperature to unfold some of the 

higher-order G-quadruplex species (Figure 14A). Compared to the thermogram at 200 

mM K+, the thermogram under high potassium conditions (400 mM) shifted to the right 

to indicate increased stability while the thermogram under low potassium conditions (25 

mM) shifted to the left to indicate decreased stability. This observation correlates with 

that seen by SEC and AUC that in high potassium (400 mM) there is an increase in 

higher-order, presumably more stable, G-quadruplex species, while in low potassium (25 

mM), there are more of lower-order, presumably less stable G-quadruplexes. It should be 

noted that the presence of additional cations alone could result in an increase in melting 

temperature. Therefore, from the data we were not able to determine how much of the 

increase in melting temperature was due to the increase in higher-order structures and 

how much was due to the stabilizing effects of higher potassium concentration. However, 

these findings indicate that, in additional to sample preparation protocols (e.g. annealing, 

dialysis, etc.), experimental conditions are also important and that detailed reporting of 

methodology is necessary when studying with G-quadruplex structures. 

 



91 

Interaction of TMPyP4 with the Pu27 G-Quadruplex-Forming Sequence. 

As the discovery of small-molecule G-quadruplex-based inhibitors is one goal of 

G-quadruplex research, we examined the effect of the polymorphism of a G-quadruplex-

forming sequence on in vitro small molecule binding experiments by looking at the 

interactions of TMPyP4 with the Pu27 sequence. TMPyP4 displayed a preference for the 

higher-order subpopulations of the Pu27 G-quadruplex distribution (Figure 22). The 

species that eluted at 20.3 and 21.6 mL, corresponding to fractions 4 and 5 (i.e. dimer G-

quadruplex species) were the most preferred and their association with TMPyP4 can be 

seen at as low as a 1:32 [TMPyP4]:[Pu27] molar ratio. The next preferred subset was the 

monomer species that eluted at 24.3 mL, corresponding to fraction 7, followed by the 

higher-order species that eluted at less than 20.0 mL, corresponding to fraction 1, 2, and 

3. Lastly, it is interesting to note a lack of observed TMPyP4 interaction with the species 

that eluted at 23.1 mL, corresponding to fraction 6 (i.e. the monomer/dimer intermediate 

G-quadruplex species), but it does not rule out possible TMPyP4 binding to these species 

at higher concentrations. These results indicate that small molecules may not bind the 

different G-quadruplex forms within the same sequence distribution equally, a significant 

finding when contemplating using structure-based drug design.  
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Figure 22. The interactions of TMPyP4 with Pu27 G-quadruplexes at different molar 

ratios were examined by SEC. The DNA bound form of TMPyP4 were monitored at 445 

nm and normalized to the area under the curve.  
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Another important observation is that TMPyP4 not only prefers to bind to higher-

order species but it also directly alters the polymorphic distribution of G-quadruplex 

towards formation of these higher-order species (Figure 23). The addition of TMPyP4 to 

the Pu27 system resulted in lower amounts of the species that eluted 24.3 mL, 23.1 mL, 

22.1 mL, 21.6 mL and 20.3 mL and greater amounts of the species that eluted at 19.1 mL 

and 18.2 mL as well as other higher-order species that elute before 18.2 mL. This 

observation is important as it suggests that there is induced change in the original 

distribution thus altering the baseline and potentially altering the response in any given 

experiment. On the other hand, the findings from this and previous experiments were able 

to provide some insight into the binding mode of TMPyP4. These findings suggest that 

TMPyP4 binds to Pu27 c-Myc, and possibly other G-quadruplexes, through end-pasting 

which is consistent with previous reports (Wei et al., 2006, Freyer et al., 2007). This 

binding mode facilitates TMPyP4 stabilization of G-quadruplex aggregation by the 

TMPyP4 interactions between G-quadruplexes.  
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Figure 23. The effect of TMPyP4 interactions with DNA on the distribution of Pu27 G-

quadruplexes in solution were examined by SEC. Absorbance of DNA was monitored at 

260 nm and normalized to the area under the curve.  



96 

  



97 

Polymorphism of Modified c-Myc G-Quadruplex-Forming Sequences. 

We end our discussion by examining four modified c-Myc G-quadruplex forming 

sequences reported in the literature (Myc-1245, Myc-2345, MYC22-G14T/G23T, and 

Pu24). These sequences were prepared under the same standard conditions that we used 

for the Pu27 sequence and analyzed using NMR (Figure 24), SEC, AUC and CD (Figure 

25). The 1D 1H-NMR spectra for the four sequences were comparable to previously 

reported spectra. Individual resonances were observed for all four sequences compared to 

the broad overlapping resonances observed for the Pu27 sequence. The NMR data were 

in agreement with SEC and AUC findings which demonstrated the enrichment of 

monomer G-quadruplexes (Figure 25A-B). In fact, of the four sequences, MYC22-

G14T/G23T was enriched the most in single monomeric species and yielded the cleanest 

NMR spectrum (Figure 24C). In addition, the G-quadruplex structures from the modified 

sequences did not aggregate to the same extent as the G-quadruplex structures from the 

Pu27 sequence, suggesting some fundamental differences between the two systems. This 

observation was further supported by CD spectroscopy, which showed a Δε spectrum of 

greater magnitude for the Pu27 sequence compared to the modified sequences (Figure 

25C).  
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Figure 24. 1D 1H-NMR spectra of G-quadruplexes formed from derivatives of the Pu27 

G-quadruplex-forming sequence. The imino region from the 1D 1H-NMR spectra of the 

modified c-Myc G-quadruplex-forming sequence Myc-1245 (A), Myc-2345 (B), 

MYC22-G14T/G23T (C), and Pu24 (D) shows marked reduction in polymorphism 

compared to the parent Pu27 sequence (Figure 5). The spectra here agreed with 

previously reported spectra for these sequences.  
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Figure 25. The polymorphism of c-Myc G-quadruplexes formed from the Pu27 sequence 

and four derivative sequences prepared under standard conditions was examined by (A) 

SEC, (B) AUC, and (C) CD. (A) Absorbance of DNA was monitored at 260 nm and 

normalized to the area under the curve. (B), c(s) is the concentration distribution of 

sedimenting species based on absorbance at 260 nm and normalized to the area under the 

curve. (C), circular dichroism, Δε, was normalized to strand concentration.  
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Furthermore, it should be noted that the monomer G-quadruplexes formed from 

the modified sequences eluted and sedimented more slowly than the monomer G-

quadruplexes formed from the Pu27 sequence. One possible explanation is that the 

modified sequences are smaller (22-25 bp) than the parent sequence (27 bp). However, 

another possible explanation is that sequence modifications did not select for a G-

quadruplex topology from the original ensemble but induced a new topology altogether. 

While we were not able to make a definitive comparison between the G-quadruplex 

structures formed by the modified sequences and the G-quadruplex structures formed by 

the parent sequence, these findings further emphasized the limitation of sequence 

modification in that a new topology can potentially be induced that is not part of the 

original distribution, or, at the very least, a topology is artificially selected that might not 

be preferred in vivo (Lane et al., 2008). 

 

Conclusion 

 

The c-Myc sequence in solution is a highly polymorphic ensemble of structures 

containing a mixture of monomers and higher-order G-quadruplexes. We demonstrated 

that the higher-order species always exist in vitro. Even in the low potassium conditions 

(25 mM) where the monomers are predominant, a small fraction of the G-quadruplex 

species still existed in the higher-order form. The existence of higher order c-Myc G-

quadruplex structures in vitro is a critical detail often ignored since it is believed that only 

the monomers are relevant in vivo. It also leads to the question “What is the relevance of 

an affinity constant measured for a compound against the c-Myc G-quadruplexes if the 
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compound prefers the higher order species in vitro?” With careful controls and taking 

into account the polymorphism a more realistic measurement can be reported. 

We have shown that the distribution of G-quadruplex species is highly sensitive to 

variability in sample preparation. Small differences in experimental conditions can lead 

to dramatic differences in the system being studied. The concentration of ions and DNA 

played major roles in determining the distribution between higher-order and monomer 

species of G-quadruplexes. Preparation of G-quadruplex samples often involves dialysis 

to remove small fragments left over from synthesis, and annealing at high temperature to 

unfold the DNA allowing for G-quadruplex formation as the sample cools. We show here 

that the choice and method of dialysis and annealing protocol can greatly influence the 

distribution of c-Myc G-quadruplex species. EDTA is often added to the DNA buffer as a 

chelating agent to deplete metal ions, i.e. Ca2+ and Fe3+, as these divalent cations could 

affect G-quadruplex stabilities by directly interacting with the DNA(Blume et al., 1997, 

Miyoshi et al., 2001) or by acting as cofactors for metal-dependent DNA hydrolytic 

enzymes. However, the addition of EDTA to the sample buffer can result in significantly 

different G-quadruplex populations. The polymorphism observed becomes even more 

complicated when ligands are introduced. It was demonstrated that not only does 

TMPyP4 prefer one species of the G-quadruplex population over another but that the 

ligand itself actively plays a role in changing the equilibrium between the species. With 

so many different factors to consider and multiple opportunities along the way to 

introduce new variability, it is not difficult to see why there are differences in reports 

regarding TMPyP4 interactions with G-quadruplexes. 
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The biological relevance of such in vitro G-quadruplex systems is currently 

unknown. However, these findings indicate that sample preparation should be carefully 

considered, controlled, and reported when working with G-quadruplexes. G-quadruplexes 

represent an exciting area in the future of anticancer therapy. An understanding and 

appreciation of the complexity associated with G-quadruplex would result in higher 

reproducibility of data and more efficient targeted drug discovery.  
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CHAPTER III 

 

Guanine-rich oligonucleotides can adopt non-canonical tertiary structures known 

as G-quadruplexes, which can exist in different forms depending on experimental 

conditions. High-resolution structural methods, such as X-ray crystallography and NMR 

spectroscopy, have been of limited usefulness in resolving the inherent structural 

polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous 

nature of, currently available high-resolution structural data, in turn, have severely 

hindered investigations into the nature of these structures and their interactions with 

small-molecule inhibitors. We have used molecular dynamics in conjunction with 

hydrodynamic bead modeling to study the structures of the human telomeric G-

quadruplex-forming sequences at the atomic level. We demonstrated that molecular 

dynamics can reproduce experimental hydrodynamic measurements and thus can be a 

powerful tool in the structural study of existing G-quadruplex sequences or in the 

prediction of new G-quadruplex structures. 
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AN INVESTIGATION OF G-QUADRUPLEX STRUCTURAL POLYMORPHISM 

IN THE HUMAN TELOMERE USING A COMBINED APPROACH OF 

HYDRODYNAMIC BEAD MODELING 

AND MOLECULAR DYNAMICS SIMULATION 

 

Introduction 

 

In solutions with physiological Na+ and K+ concentration, single-stranded 

guanine-rich oligonucleotide sequences can self-assemble and fold into unimolecular G-

quadruplexes, noncanonical DNA tertiary structures comprised of a four-stranded helical 

stem and three interconnecting loops (Burge et al., 2006). Within the human genome, 

over 370,000 putative G-quadruplex-forming sequences have been identified and most of 

these are observed to localize to genomic regions with important cellular functions, such 

as the telomere, immunoglobulin switch regions, proto-oncogene promoters, and mRNA 

untranslated regions (Huppert and Balasubramanian, 2005, Huppert and 

Balasubramanian, 2007). Many of these sequences are found to be evolutionarily 

conserved between humans, mice, and rats (Verma et al., 2008) suggesting that G-

quadruplex structures play important regulatory roles within the cell. The formation of G-

quadruplex at the distal 3’ end of the human telomere region (Wright et al., 1997), which 

contains a single-stranded guanine-rich overhang of approximately 100 to 200 bases, has 

been investigated as a potential target for novel small molecule-based anti-cancer 

therapy. Small molecules that stabilize telomeric G-quadruplex structures have been 

shown to decrease the activity of telomerase in vitro (Riou et al., 2002, Cuesta et al., 
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2003, De Cian et al., 2008, Lopes et al., 2011, Rodriguez et al., 2012). Since telomerase 

is activated in more than 90% of all cancers (Shay and Bacchetti, 1997), G-quadruplex-

based anti-telomerase therapy could be an attractive strategy for the development of anti-

cancer therapeutics. 

Despite considerable research being devoted to targeting telomeric G-

quadruplexes (Balasubramanian and Neidle, 2009, De Cian et al., 2008, Han and Hurley, 

2000, Neidle and Read, 2000, Ou et al., 2008, Saretzki, 2003, White et al., 2001), the 

development of small-molecule G-quadruplex-based inhibitors has progressed slowly 

with only one candidate drug making it to clinical trials (Drygin et al., 2009). A challenge 

to the rational design of small molecules that bind specifically to G-quadruplexes is the 

lack of, or the ambiguous nature of, high-resolution structural data for many putative G-

quadruplex-forming sequences. In fact, the hTel22 sequence, 

AGGGTTAGGGTTAGGGTTAGGG, which is often used as an in vitro model for G-

quadruplex formation in the human telomere (Wang and Patel, 1993, Parkinson et al., 

2002), has been found to exist in many forms depending on experimental conditions and 

sequence composition (Table 3). In the presence of sodium, it is widely accepted that this 

sequence folds into an antiparallel “basket” topology (Wang and Patel, 1993) which 

consists of three stacked G-tetrads with one diagonal and two lateral loops. In the 

presence of potassium, it exists as an ensemble of structures, which includes two mixed 

“hybrid” topologies, i.e. hybrid-1 (Luu et al., 2006, Dai et al., 2007b, Phan et al., 2007b) 

and hybrid-2 (Dai et al., 2007a, Phan et al., 2007b), a parallel “propeller” topology 

(Parkinson et al., 2002), and a new antiparallel “basket” topology (Lim et al., 2009, 

Zhang et al., 2010b). Hybrid-1 consists of three stacked G-tetrads with a double chain-
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reversal loop followed by two lateral loops. Hybrid-2 also consists of three stacked G-

tetrads but with reversed loop order, two lateral loops followed by a double chain-

reversal loop. The parallel “propeller” topology consists of three stacked G-tetrads and 

three double chain-reversal loops. Lastly, the K+ antiparallel “basket” topology consists 

of two stacked G-tetrads with a diagonal and two lateral loops.  



109 

Table 3. G-Quadruplex-Forming Sequences for HYDROPRO Calculations  
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Sequence1 ID2 Fold3 Type Cations 

AGGGTTAGGGTTAGGGTTAGGG 143D Basket NMR Na+ 

AGGGTTAGGGTTAGGGTTAGGG 1KF1 Prop X-Ray K+ 

TTGGGTTAGGGTTAGGGTTAGGGA 2GKU Hyb-1 NMR K+ 

AAAGGGTTAGGGTTAGGGTTAGGGAA 2HY9 Hyb-1 NMR K+ 

TAGGGTTAGGGTTAGGGTTAGGG 2JSM Hyb-1 NMR K+ 

TTAGGGTTAGGGTTAGGGTTAGGGTT 2JPZ Hyb-2 NMR K+ 

TAGGGTTAGGGTTAGGGTTAGGGTT 2JSL Hyb-2 NMR K+ 

GGGTTAGGGTTAGGGTTAGGGT 2KF8 Basket NMR K+ 

AGGGTTAGGGTTAGGGTTAGGGT 2KKA-G Basket NMR K+ 

AGGGTTAGGGTTAIGGTTAGGGT 2KKA-I Basket NMR K+ 

1G-quartet stem residues (bold) and flanking residues (italic). Noncanonical residues 

(underline).2Protein Data Bank code (www.pdb.org). 3Hyb-1 is hybrid-1, Hyb-2 is 

hybrid-2, and Prop is propeller  
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The inherent structural polymorphism associated with G-quadruplex formation 

has severely hindered investigations of G-quadruplex structures and their formation. As a 

consequence, steps are usually taken to artificially reduce the structural polymorphism 

with the goal of enrichment of one species for NMR structure elucidation (Dai et al., 

2008, Yang and Okamoto, 2010). Sequence modification, as seen with human telomere 

sequence, is one common approach. The reported sequence variants for the human 

telomere sequence (Table 3) demonstrate how small changes with respect to the flanking 

bases can result in dramatically different dominant topologies. While each sequence 

contains the identical G-quadruplex-forming core GGGTTAGGGTTAGGGTTAGGG, 

the flanking bases differ from the hTel22 sequence (5’-A-core-3’), which contains a 

mixture of G-quadruplex structures, compared to the hybrid-1 dominant sequences 

(2GKU: 5’-TT-core-A-3’, 2HY9: 5’-AAA-core-AA-3’, and 2JSM: 5’-TA-core-3’) (Luu 

et al., 2006, Dai et al., 2007b, Phan et al., 2007b), the hybrid-2 dominant sequences 

(2JPZ: 5’-TTA–core-TT-3’, 2JSL: 5’-TA-core-TT-3’) (Dai et al., 2007a, Phan et al., 

2007b), and the antiparallel dominant sequences (2KF8: 5’-core-T-3’, and 2KKA: 5’-A-

core-T-3’) (Lim et al., 2009, Zhang et al., 2010b). In addition to changes in the flanking 

bases, G-quadruplex-forming sequences can also be truncated or elongated. Often, 

sequence modifications also involve the incorporation of non-canonical bases, as is the 

case with the 2KKA sequence which contains an inosine substitution for guanine. A list 

of G-quadruplex modifying constituents and their effects on G-quadruplex formation can 

be found in a recent review (Sagi, 2013). 

Aside from sequence modification, another common approach to reduce the 

structural polymorphism is by changing the solution conditions. The presence of 
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biological molecules (Sannohe and Sugiyama, 2001) (e.g. sugar, proteins), co-solvents 

(e.g. acetonitrile, PEG) (Xue et al., 2007, Miller et al., 2010, Buscaglia et al., 2013), the 

use of divalent versus monovalent cations (Blume et al., 1997, Miyoshi et al., 2001), and 

cation concentration (Gray et al., 2009a, Gray et al., 2009b, Le et al., 2012), all play a 

major role in determining G-quadruplex stability. The parallel topology of hTel22 clearly 

illustrates the effect of experimental conditions on G-quadruplex formation. This 

topology was first reported in potassium conditions as a crystal structure (Parkinson et 

al., 2002). It was later determined that this is not the predominant topology in solution (Li 

et al., 2005, Buscaglia et al., 2013, Hänsel et al., 2011) and accounts for only about 14% 

of the total G-quadruplex structures (Buscaglia et al., 2013). However, under the effect of 

dehydration (Miller et al., 2010) or in the presence of PEG (Buscaglia et al., 2013) (both 

factors present in the crystallization conditions), the parallel topology is enriched to 

become the predominant form. In fact, as proof of this principle, a recently reported 

NMR solution structure (Heddi and Phan, 2011) for hTel22 in 40% polyethylene glycol 

(PEG 200) was similar to the previously reported crystal structure. 

The unintended consequence of sequence modification or alteration of 

experimental conditions is that such an approach can result in an unpredictable 

perturbation of the system and the selection of a topology which may or may not be 

representative of the original ensemble of topologies (Lane et al., 2008). However, these 

approaches for the artificial reduction of the structural polymorphism are used because of 

the limitations of traditional biophysical methods with regard to elucidating G-

quadruplex structure. Low-resolution spectroscopy methods, such as circular dichroism 

or UV-Vis spectroscopy, usually cannot distinguish between the different topologies 
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within the ensemble (Dailey et al., 2010, Le et al., 2012), while high-resolution structural 

methods, such as NMR spectroscopy and X-ray crystallography, are often of limited 

utility when it comes to resolving the structural polymorphism of G-quadruplexes. As 

observed with hTel22, a definitive structure cannot be obtained by NMR spectroscopy 

because this sequence exists as a mixture of multiple G-quadruplex species in solution 

(Burge et al., 2006). The alternative method, X-ray crystallography, may not be 

appropriate either, as under dehydrating crystallization conditions, this sequence adopts a 

topology that may not be representative of the ensemble in solution (Buscaglia et al., 

2013) or in vivo (Hänsel et al., 2011). This has a significant effect on what structure or 

structures can be claimed as “biologically relevant”. Thus, there is a need for new 

experimental approaches that can explore the conformational space surrounding the G-

quadruplex topologies without significantly disrupting or perturbing the system. 

We propose an alternative approach for the unperturbed investigation of G-

quadruplex structures, hydrodynamic bead modeling (HBM). HBM has emerged as a 

useful tool for studying biological macromolecules and their complexes for which high-

resolution structural data are either unavailable or ambiguous (Byron, 2008). HBM has 

been used, in a limited scope, to study G-quadruplex structures. Niermann et al. (1999) 

used HBM to calculate the rotational and translational diffusion coefficients for the 

Watson-Crick double helical B-DNA, the single-stranded duplex “hairpin,” and the 

tetramolecular G-quadruplex structures. Li et al. (2005) employed HBM to demonstrate 

that the crystal structure of the hTel22 telomere sequence in potassium is not the 

predominant topology in solution. More recently Petraccone et al. used HBM to study 

higher-order G-quadruplex formation by the human telomeric sequence (T2AG3)nT2 (n = 
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4, 8, 12) (Petraccone et al., 2010, Petraccone et al., 2011, Petraccone et al., 2008). The 

purpose of the current work is to use hydrodynamic bead modeling in tandem with 

molecular dynamics (MD) simulations to explore the structural polymorphism of the 

human telomere G-quadruplex sequence. In particular, we exploited recent advances in 

computing hardware, which makes it feasible for routine microsecond-timescale 

simulations through traditional MD methods. Compared to shorter nanosecond 

simulations, longer simulations are better at sampling conformations while avoiding the 

bias of the starting structures (Islam et al., 2013). Using MD, we explored the 

conformational space surrounding the five different folding topologies associated with 

the human telomere sequence. HBM was used to calculate sedimentation coefficients 

(s20,W) and other hydrodynamic properties for “snapshot” structures obtained by MD 

simulations. Overall, the calculated hydrodynamic values agreed with experimental 

values obtained via analytical ultracentrifugation (AUC) studies. Clustering of the MD 

trajectories using s20,W values revealed the existence of different hydrodynamic substates 

within the ensemble of structures. Using principal component analysis (PCA) of the MD 

trajectory, the key motions of the G-quadruplex structures that are responsible for 

variations observed by hydrodynamic measurements were identified. Grid mapping of 

water and cations around the DNA also provides valuable insights into the role of 

hydration and ion binding in hydrodynamic measurements. Lastly, a novel use for HBM 

is proposed to estimate the number of counterions bound to a particular G-quadruplex 

structure when accurate information about the size and shape of the DNA is known. This 

work demonstrates that hydrodynamic bead modeling in conjunction with MD 

simulations is a powerful technique to study G-quadruplex structures. 
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Materials and Methods 

 

Molecular Dynamics (MD) Simulation 

Molecular models of G-quadruplex structures were obtained from the Protein 

Data Bank using the PDB IDs in Table 3. For structures containing multiple models, the 

first model in the file was selected for AMBER MD simulations. Appropriate 

coordinating ions were added to the stacked G-tetrads of each model and additional ions 

were added to neutralize the G-quadruplex structures. The system was solvated in a 

truncated octahedral box of TIP3P water molecules with 10Å buffer. The system was 

heated and equilibrated using the following protocol: (i) minimize water and ions (1000 

steps - 500 steepest descents) holding the DNA fixed (50 kcal/mol/Å), (ii) 50ps MD 

(heating to 300 K) holding the DNA fixed, (iii) repeat step (i), (iv) minimize all atoms 

(2500 steps - 1000 steepest descents), (v) repeat step (ii), (vi) 50ns MD (T = 300K) 

equilibration holding the DNA fixed (50 kcal/mol/Å), and (vii) 50 ns MD to finish the 

equilibrium period. Production runs of 1μs after the final equilibration step were carried 

out to obtain snapshots at 100-ps interval for a total of 10,000 snapshots. Simulations 

were performed in the isothermal isobaric ensemble (P = 1atm, T = 300K) using sander 

and GPU version of pmemd. Periodic boundary conditions and Particle-Mesh-Ewald 

algorithms were used. A 2.0 fs time step was used with bonds involving hydrogen atoms 

frozen using SHAKE. Analysis of the trajectory was performed using the cpptraj module 

of the AmberTools 13 Package. Calculations of hydrodynamic properties were done 

using the program HYDROPRO. All AMBER and HYDROPRO calculations were 
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conducted in part using the resources of the University of Louisville's research computing 

group and the Cardinal Research Cluster. 

 

Oligonucleotide Preparation and Annealing 

The human telomere G-quadruplex-forming oligonucleotide, dAG3(T2AG3)3, and 

its derivatives (Table 3) were purchased from Integrated DNA Technologies (Coralsville, 

IA). A stock solution (1mM) of each oligonucleotide was prepared by dissolving the 

lyophilized DNA in TBAP buffer (10mM tetrabutylammoniumphosphate monobasic, 

1mM EDTA, pH 7.0). The DNA was quantified using a Nanodrop 2000 instrument 

(Thermo Scientific, Wilmington, DE). Molar extinction coefficient (ε) for each 

oligonucleotide was calculated via the nearest-neighbor method. Prior to sedimentation 

velocity experiments, the DNA samples were diluted in TBAP buffer to an A260 of 0.5 

and salt was added to the solution to bring the final concentration of NaCl or KCl to 

400mM. The oligonucleotide samples were annealed in a water bath by heating to 100°C, 

holding the sample at temperature for 10 minutes, and gradually cooling to room 

temperature overnight. 

 

Analytical Ultracentrifugation (AUC) 

AUC was carried out in a Beckman Coulter ProteomeLab XL-A analytical 

ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20.0 °C overnight at 50,000 rpm in 

standard 2 sector cells. Data were analyzed using the program Sedfit (www.sefit.com). 

The discrete noninteracting species model in Sedfit were used to determine experimental 

values for s20,W and Dt20,W for comparison with HYDROPRO. The concentration-
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dependent distributions of sedimenting species were calculated using the c(s) continuous 

distribution model using measured values for buffer density and viscosity. Buffer density 

was determined on a Mettler/Paar Calculating Density Meter DMA 55A at 20.0 °C and 

viscosity was measured using an Anton Parr AMVn Automated Microviscometer. For the 

calculation of frictional ratio, 0.55 mL/g was used for partial specific volume and 0.3 g/g 

was assumed for the amount of water bound. 

 

Calibration of HYDROPRO Parameters  

The atomic element radius (AER), or bead size, of the primary HYDROPRO 

hydrodynamic model was calibrated to the Stokes radius of the DNA obtained by AUC. 

In HYDROPRO, the Stokes radius is reported as the equivalent translational radius, 

defined as the radius of the sphere with equivalent translational diffusion coefficient 

value. The calculated values were taken as an average over the number of poses available 

in the Protein Data Bank. For 143D, 6 poses were deposited in the PDB record. For 

2GKU, 12 poses were deposited. For 2HY9, 2JPZ, 2JSL, 2JSM, and 2KF8, 10 poses 

were deposited. The experimental values were determined as previously described. The 

calculated values were fitted to the experimental values using a global-fit approach 

(Equation 1) described in the latest HYDROPRO calibration report(Ortega et al., 2011). 

∆
2

=
1

N
G-Quadruplex

∑ [
calculated -experimental

experimental
]

2N
G-Quadruplex

 Equation 1 

The Δ value is the root mean-square relative difference between the calculated values and 

the experimental values with 100Δ representing the percent difference typically used to 

characterize the goodness of prediction.  
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Hierarchical Agglomerative Cluster Analysis 

Cluster analysis was performed using the cpptraj module of the AmberTools 13 

Package. In hierarchical agglomerative clustering, each data point began in its own 

cluster and the two closest clusters were merged into a new cluster following after one 

run of the clustering iteration. The clustering process stopped when a certain number of 

clusters remained. In order to determine the optimum number of clusters, cluster analyses 

were performed until one to nine clusters remained. For each cluster analysis, ANOVA 

was employed to calculate the sums of squares. The percent of variance explained by the 

clustering was determined by dividing the regression sum of squares by the total sum of 

squares. The cluster number corresponding to the greatest increase in the percent of 

variance explained was taken as the optimum number of clusters. For instance, if the 

greatest increase in percent variance occurred when the number of clusters increased 

from two to three, three was designated the optimum cluster number. Following cluster 

analysis, the “snapshot” structures from each cluster were extracted for further 

investigation. 

 

Free Energy Calculation 

Free energy calculations were performed using the MMPBSA module of the 

AmberTools 13 Package. Solvation free energies were estimated with a nonlinear 

Poisson-Boltzmann electrostatic continuum method with a hydrophobic component from 

a surface area-

with linear dimensions ∼50% larger than the longest dimension was applied with 0.25 Å 

grid spacing; potentials at the boundaries of the finite-difference lattice were set to a sum 
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of Debye-Huckel potentials. Salt effects were set to be 0.400 M, which corresponded to 

the salt concentration of sodium and potassium used in the sedimentation velocity 

experiments. To estimate the nonpolar contributions to solvation, ΔGnonpolar, the solvent 

accessible surface area (SASA) algorithm of Sanner was used in a parameterization 

where ΔGnonpolar = γ(SASA) + β, where γ = 0.00542 kcal/Å2 and β = 0.92 kcal/mol. 

 

Principal Component Analysis (PCA) 

PCA was performed using the cpptraj module of the AmberTools 13 Package. 

The eigenvectors and eigenvalues were calculated from the diagonalization of the 

covariance matrix which contained the atomic positional fluctuation, about the average 

structures, in Cartesian coordinate spaces for all three coordinate axes. The covariance 

matrix is a 3N × 3N matrix with 3N – 6 eigenvectors possible, where N is the number of 

atoms in the system(Hayward and Groot, 2008). The eigenvectors describe the nature of 

the fluctuation while the eigenvalues describe the contribution of each eigenvector to the 

overall atomic fluctuation. The results were the partition of the atomic positional 

fluctuations reported in the previous section into individual components in a way that all 

components are orthogonal to each other and that the first component accounts for the 

most variance possible and that each subsequent component, in turn, accounts for the 

highest variance possible while remaining orthogonal to the preceding components. 

 

Radial Distribution Functions (RDF) and Grid Mapping 

RDF and grid mapping were performed using the cpptraj module of the 

AmberTools 13 Package. The number of water molecule bound to the G-quadruplex 
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structure was calculated by integrating the RDF function up to the first minimum, which 

represents the boundary of the primary hydration shell. Prior to grid mapping, the 

trajectory was prepared using the autoimage command. The structures were RMS fit to 

the bases of the G-tetrads. Grid mappings of water and cation distributions were 

calculated by binning atom positions at 100-ps intervals into 0.5×0.5×0.5 Å3 grids over 1-

μs duration of the trajectories. In other words, the value of each grid element represents 

the number of times the coordinates of the center of a particular atom of interest (i.e. 

water oxygen) were within the 0.5×0.5×0.5 Å3 represented by that particular grid 

element. For 10000 frames, the expected number of waters per grid element, assuming 

bulk water density (55.5 M), was 42. The reference density was 6 M for sodium and 4 M 

for potassium, which represents the solubility of NaCl and KCl in water, respectively. 

This corresponded to an expected 4.5 sodium atoms and 3.0 potassium atoms per grid 

element. 

 

Results and Discussion 

 

Molecular Dynamics Simulations of Telomeric G-quadruplex Structures 

The aim of this research was the detailed evaluation and parameterization of 

HBM in the study of G-quadruplex structural polymorphism. To that end, MD 

simulations were performed to sample the conformational spaces around the human 

telomere G-quadruplex structures and to produce “snapshot” structures for subsequent 

hydrodynamic calculations. Simulations were performed on ten different G-quadruplex 

structures representing the five folding topologies (Table 3): the antiparallel “basket” in 
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sodium, the parallel “propeller”, the mixed “hybrid-1”, the mixed “hybrid-2”, and the 

antiparallel “basket” in potassium. For the parallel “propeller” topology, the crystal 

structure originally reported by Parkinson et al.(Parkinson et al., 2002) was used. In 

addition, simulations were performed on two separate models of the 2KKA 

structure(Zhang et al., 2010b). The 2KKA-I model, which contains an inosine 

substitution for guanine at position 14, is the model deposited in the PDB database. 

2KKA-G is a model created by changing the inosine residue back to guanine in order to 

study the effect of inosine substitution on G-quadruplex formation. 

The best-fit root mean-square deviations (RMSD) over the full 1μs of the MD 

trajectories for the G-quadruplexes indicated that the stem structures are rigid and the 

loop and flanking structures are more flexible (Figure 26). The stem of two or three 

stacked G-tetrads, held together by Hoogsteen hydrogen bonds and supported by the π-π 

stacking interaction between adjacent G-tetrads and the electrostatic interaction between 

the centrally coordinated cations, was the more rigid structural feature (average RMSD of 

1.0 Å). The lower RMSD values that were observed for just the guanine bases alone 

(average RMSD of 0.5 Å) compared to the complete stem can be attributed to the more 

flexible phosphate backbone. Compared to just the stem alone, the RMSD for the G-

quadruplex as a whole was much higher, with RMSD values as high as 4.5 Å. To 

highlight the mobility of different structural components in the G-quadruplex structures, 

the atomic positional fluctuations were calculated on a per-atom and per-residue basis 

(Figures 27 and 28) and mapped to representative structures from the MD trajectories 

(Figure 29). The fluctuation calculation is a better indicator of mobility, whereas the 

RMSD calculation, which measures the deviation from a reference set of coordinates, is a 
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better indicator of individual substates. The stacked G-tetrad stems were observed to 

remain remarkably rigid during the course of the simulation (Figure 29, colored red and 

orange) with an average positional fluctuation of about 0.5 Å (Figures 27 and 28). This 

observation agreed with previously reported MD results (Haider et al., 2008) and helps 

explain the stability of these structures in vitro (Lane et al., 2008, Chaires, 2010, Lane, 

2012). In contrast to the rigid stems, the loop and flanking bases were found to be more 

flexible (Figure 29, colored yellow and green). The thymine loop residues were observed 

to be more mobile than the adenine loop residues, which have been previously shown to 

have possible stacking interactions with the G-tetrad stem (Haider et al., 2008, Haider 

and Neidle, 2010). In addition, different degrees of fluctuation were observed for 

different loop types. The diagonal loops, which transverse the G-tetrad and are more 

likely to stack with the G-tetrad bases, appeared more rigid (Figure 29A, H, I) compared 

to the chain-reversal loops (Figure 29B-G). These findings regarding loop dynamics have 

significant implications for ligand recognition as it is theorized that interaction with loop 

and flanking bases contribute to a ligand’s G-quadruplex selectivity.  
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Figure 26. Root mean square deviations with fitting, compared to the first frame, for 

143D (A), 1KF1 (B), 2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 

2KKA-G (I), and 2KKA-I (J). RMSD calculations were carried out for all non-hydrogen 

atoms in the G-quadruplex structures (black), in the stacked G-tetrads only (red), and 

only for G-tetrad guanine bases excluding sugars and phosphate groups (green).  
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Figure 27. Per-atom atomic positional fluctuations over 10,000 frames for 143D (A), 

1KF1 (B), 2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), 

and 2KKA-I (J).  
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Figure 28. Per-residue atomic positional fluctuations over 10,000 frames for 143D (A), 

1KF1 (B), 2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), 

and 2KKA-I (J).  
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Figure 29. Representative structures from MD trajectories for 143D (A), 1KF1 (B), 

2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 

2KKA-I (J). Residues and atoms are colored by atomic fluctuation units calculated by 

AMBER cpptraj module with the color gradient progressing from low fluctuation values 

to high fluctuation values (red-green, respectively).  
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Determination of Hydrodynamic Values by Sedimentation Velocity Experiments 

MD simulations provided a detailed picture of the G-quadruplex structures in 

silico. Sedimentation velocity experiments were carried out by AUC to obtain 

experimental information about the G-quadruplex structures. The 2KKA-I sequence was 

excluded because of the inosine substitution in order to limit experimental measurements 

to sequences containing only canonical bases. AUC experiments were performed for the 

unsubstituted 2KKA-G sequence, which served as an experimental reference for both the 

2KKA-G and 2KKA-I MD models. As the data will show, the calculated hydrodynamic 

values for the 2KKA-I model agreed with the experimental values for the 2KKA-G 

sequence suggesting that the inosine substitution did not substantially alter the 

hydrodynamic behavior of the 2KKA-G sequence in solution. Sedimenting mixtures of 

polyelectrolytes often exhibit non-ideal behaviors due to the electrostatic interaction 

between different charged components resulting in smaller measured molecular weights 

and sedimentation coefficients (Yphantis and Roark, 1971). To reduce the effect of non-

ideality, AUC experiments were carried out in high salt (400 mM NaCl/KCl) buffers to 

“swamp out” the electrostatic interactions. The distributions of sedimenting species are 

shown in Figure 30 (black lines). The Stokes radius (aT), molecular weight (MW), and 

frictional ratios (f/f0) were calculated from the diffusion (Dt20,W) and sedimentation 

coefficients (s20,W) (Table 4). The frictional ratio is a dimensionless value comparing the 

observed translational diffusion coefficient of a macromolecule with the translational 

diffusion coefficient of an equivalent sphere of the same molecular weight with the 

higher frictional ratios being indicative of a more asymmetric and less spherical shape 
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(Smith, 1988, Harding, 2002). The value for f is determined from the experimental 

measurement of Dt20,W using Equation 2: 

𝑓 =
𝑅𝑇

𝑁𝐴𝐷𝑡20,𝑊
 Equation 2 

where R is the gas constant and NA is Avogrado’s number. The value for f0 is determined 

from the molecular weight using Equation 3: 

𝑓0 = 6𝜋𝜂20,𝑊 (
3𝑀(𝜐̅+𝛿 𝜌20,𝑊⁄ )

4𝜋𝑁𝐴
)

1
3⁄

 Equation 3 

where η20,W is the viscosity of water at 20°C, ῡ is the partial specific volume, δ is a 

uniform expansion factor to account for hydration, ρ20,W is the density of water at 20°C, 

and M is the molecular weight determined by the Svedberg equation (Equation 4): 

𝑀 =
𝑠20,𝑊𝑅𝑇

𝐷20,𝑊(1−𝜐̅𝜌20,𝑊)
 Equation 4 

From these equations, it becomes apparent that the frictional ratio of a macromolecule is 

dependent on its shape, flexibility, and the amount of hydration associated. In the current 

work, the amount of associated hydration or δ was assumed to be 0.3 g of water/g of G-quadruplex. 

For nucleic acids, a value of 0.3-0.35 g/g is typically used although this parameter can be 

quite difficult to determine with accuracy (Fernandes et al., 2002).  
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Figure 30. Comparison of experimentally determined and HYDROPRO calculated 

sedimentation coefficient distributions for 143D (A), 1KF1 (B), 2GKU (C), 2HY9 (D), 

2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), and 2KKA [2KKA-G red, 2KKA-I blue] (I). 

For each G-quadruplex structure, sedimentation coefficients (s20,W) were determined 

experimentally by AUC (black) and calculated from MD “snapshots” using HYDROPRO 

(red and blue).  
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Table 4. Hydrodynamic Values Determined by Sedimentation Velocity Experiments  
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G-quadruplex s20,W
1,2 Dt20,W

1,2 aT
2,3 MW4 f/f0

5 

143D 1.90 1.42 1.50 7199.97 1.10 

1KF1 1.97 1.45 1.48 7330.24 1.07 

2GKU 2.05 1.45 1.48 7644.45 1.06 

2HY9 2.14 1.44 1.49 8039.62 1.05 

2JSM 2.02 1.61 1.33 6779.45 1.00 

2JPZ 2.15 1.45 1.48 8049.02 1.05 

2JSL 2.11 1.41 1.52 8113.66 1.07 

2KF8 1.98 1.54 1.39 6975.38 1.03 

2KKA-G 2.06 1.58 1.35 7021.38 1.02 

1s20,W and Dt20,W were calculated from sedimentation velocity data using discrete non-

interacting species model of Sedfit; 2s20,W expressed in units of 10-13 s, Dt20,W expressed in 

units of 10-6 cm2/s, aT (Stokes radius) expressed in units of 10-7 cm; 3aT calculated from 

Dt20,W, solvent viscosity, and temperature; 4MW is calculated from Dt20,W, solvent 

density, temperature, and 0.55 mL/g value for partial specific gravity; 5f/f0 calculated using 

0.3 g/g water bound and 0.55 mL/g value for partial specific gravity.  
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For each of these sequences, the G-quadruplex structures sedimented as one 

species (Figure 30), including the hTel22 sequence in potassium and the 2KKA-G 

sequence, which are known to exist as a mixture of multiple G-quadruplex species(Dai et 

al., 2008, Zhang et al., 2010b). The inability of AUC to resolve the existence of different 

G-quadruplex species in solution can be attributed to the low-resolution nature of the 

technique. Overall, the G-quadruplex structures formed from different telomeric 

sequences all assumed similar spherical shapes (f/f0 = 1.00-1.10). The G-quadruplex 

structures formed by the hTel22 sequence in sodium (143D) sedimented at a lower rate 

(s20,W = 1.90) than G-quadruplex structures in potassium (1KF1) (s20,W = 1.97), which 

indicated the sodium form is less compact than the potassium form. Since the sequences 

are identical in both cases, the difference in sedimentation might be attributed to a change 

in shape. In fact, the sodium form appeared more elongated (f/f0 = 1.10) when compared 

to the potassium form (f/f0 = 1.07). It is important to note, however, that the difference 

between the two sequences might not be distinguishable as it falls within the precision 

limit of 5% for the experimental technique. For the 2JSM, 2KF8, and 2KKA-G 

sequences, the changes in sedimentation were also attributed to differences in shape. The 

sequence has a lower mass compared to the hTel22 sequence but are more compact in 

shape (f/f0 = 1.00-1.03) and thus sedimented at a higher rate (s20,W = 1.98-2.06). The 

differences in frictional ratios of these sequences compared to the 1KF1 sequence were 

distinguishable as this difference is greater than the 5% precision limit of the 

experimental technique. In contrast, the changes in sedimentation for the 2GKU, 2HY9, 

2JPZ, and 2JSL sequences compared to the hTel22 sequence can be attributed mainly to 

difference in sequence sizes. These sequences appeared to be of similar shape or more 
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compact (f/f0 = 1.05-1.07) yet sedimented at a higher rate (s20,W = 2.02-2.15) due to the 

increased sequence molecular weight. Taken together, these findings indicated that AUC 

can be informative when used to study G-quadruplex structures. 

 

Calculation of Hydrodynamic Properties using the Program HYDROPRO 

To determine if the in silico models can reproduce the hydrodynamic values 

observed experimentally, HYDROPRO (Ortega et al., 2011) was used to calculate the 

hydrodynamic values (i.e. s20,W, Dt20W) for each “snapshot” structure obtained from MD 

simulations. Prior to calculating the hydrodynamic properties, the optimum size of the 

beads in the primary hydrodynamic model was determined using the procedure 

previously described(Ortega et al., 2011). In brief, the size of the beads (termed the 

atomic element radius or AER in the HYDROPRO input file) was varied and the AER 

that yielded the smallest difference between HYDROPRO calculated Stokes radius (aT) 

and the Stokes radius determined by AUC experiments was accepted as the optimum 

bead size (Figure 31 and Table 5). For the atomic-level model, where each non-hydrogen 

atom is replaced with the beads, the physical meaning of AER can be thought of as the 

radius of a typical non-hydrogen atom plus a uniform expansion to account for hydration. 

For the residue-level calculations, where each residue (or nucleotide) is replaced with a 

bead, the physical meaning of AER is the size of the nucleotide plus a uniform expansion 

to account for hydration. The calibration was done using previously reported NMR 

structures (PDB ID: 143D, 2GKU, 2HY9, 2JPZ, 2JSL, 2JSM and 2KF8). All structural 

poses deposited in the PDB database were used for HYDROPRO calibration. For the first 

calculation mode where the non-hydrogen atoms were replaced by a collection of 
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overlapping spheres and the hydrodynamic values were calculate using a shell-model 

methodology(Bloomfield et al., 1967), the best-fit AER was determined to be 2.19 Å 

(Table 5) with a difference of 2.35 % between the predicted hydrodynamic values and the 

experimental values. For a non-hydrogen atom, the atomic radius is approximately 1.8 Å 

(Ortega et al., 2011). The determined best fit AER suggests a hydration sphere of about 

0.4 Å which is less than the 1.1 Å typically used in hydrodynamics calculations to 

estimate hydration (Garcı́a De La Torre, 2001). When the default AER (2.84 Å) was used 

instead of the best fit AER, the difference increased from 2.35 to 6.32 % (Table 5). For 

the second calculation mode where each residue is replaced by a sphere instead of each 

atom and the hydrodynamic values are also calculated using a shell-model methodology, 

the best fit AER was 3.98 Å with an difference of 2.50% compared to the 4.84 Å for the 

standard AER (7.78% difference). For the third calculation mode, which calculates the 

hydrodynamic values directly on the primary bead models from the second calculation 

mode, the best fit AER was 5.04 Å with a difference of 2.60% compared to 6.11 Å for the 

standard AER (8.10% difference). Overall, the calibrated AERs were able to reproduce 

the experimental hydrodynamic values better than the standard default AERs. While the 

three modes to calculate hydrodynamic properties provide the same general information 

about the structure being modeled, the residue-level models were much faster in the 

amount of time required for calculation and could be useful for preliminary analysis of 

large MD simulations where thousands of structures are sampled.  
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Figure 31. HYDROPRO parameters calibrated by global fitting of translational 

equivalent radii with AUC data. Translational equivalent radius is also known as the 

Stokes radius. The values for 100ΔX and 100Δ as a function of the atomic element radius 

(AER) for the primary hydrodynamic model as calculated using the seven G-quadruplex 

structures formed from the human telomere sequence. Hydrodynamic properties of G-

quadruplexes were calculated using the atomic-level hydrodynamic shell-model 

calculation (A), residue-level shell-model calculation (B), and residue-level bead-model 

calculation (C).  
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Table 5. Results of HYDROPRO global fit analysis  
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Calculation Mode AER (Å) % Difference aT % Difference s20,W % Difference Dt20,W 

Atom, shell model 2.19 2.35 1.19 2.24 

Atom, shell model 2.84 6.32 4.27 5.83 

Residue, shell model 3.98 2.50 1.39 2.42 

Residue, shell model 4.84 7.78 5.59 7.12 

Residue, bead model 5.04 2.60 1.41 2.50 

Residue, bead model 6.11 8.10 5.86 7.38 
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Ten thousand “snapshot” structures were sampled from each MD trajectory and 

hydrodynamic properties were calculated for each structure using the calibrated AER 

values. The average calculated hydrodynamic values for each of the MD simulations are 

shown in Table 6. The hydrodynamic values calculated using MD snapshots agreed with 

previously calculated values using reported NMR structures with a difference of 1.85 % 

for the atomic-level/shell model mode, 1.89 % for residue-level/shell model mode, and 

1.88 % for the residue-level/bead model mode (Table 7). In general, all three modes of 

calculation by HYDROPRO were able to accurately predict the hydrodynamic values of 

the G-quadruplex structures (Table 8). The distributions of the s20,W values calculated 

using the HYDROPRO atomic-level model shell-model calculation mode (Figure 30, 

colored lines) are shown with the concentration-dependent c(s) experimental s20,W 

distributions (Figure 30, black line). For the c(s) experimental s20,W distributions, the 

width of the distribution curve is related to the homogeneity of species in solution 

(Schuck et al., 2002, Dam and Schuck, 2004). Samples containing multiple species that 

sediment at similar rates will have broad s20,W distributions while highly homogenous 

samples with a single predominant species (accounting for more than 90% of total 

ensemble) will have narrow s20,W distributions. In general, it was observed that sequences 

(143D, 2GKU, 2HY9, 2JPZ, 2JSL, and 2KF8) for which there was enough enrichment of 

a major species for NMR structure elucidation have narrower distributions compared to 

sequences for which NMR structure elucidation was not possible (1KF1 and 2KKA). The 

only exception was the 2JSM sequence, which was highly enriched (>70% of the total 

ensemble) (Phan et al., 2007b) in a major species yet has a broad s20,W distribution. 

Electrostatic interaction, which contributed to the non-ideal behaviors of the DNA at 
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lower salt concentrations, does not affect the width of the distributions but will shift the 

distribution to the left (lower apparent s20,W). At higher concentrations of ions, the 

hydrodynamic behavior became more ideal, the distribution shifts to the right, and the 

apparent s20,W approaches the true s20,W. Compared to the experimental distributions, the 

calculated s20,W distributions were narrower and in certain cases were asymmetric. The 

shape of the calculated distributions is determined by the sampling capability of MD 

simulations which is on a much shorter timescale (1 µs) compared to the sampling 

capability of AUC experiments (~6 hours). The time-course graph of s20,W values for the 

2JPZ model highlight the effect of sampling time on the distributions peak shape (Figure 

32F). The distributions of calculated s20,W values across the full 1 µs of MD simulation 

was bimodal (Figure 32F). However, had the simulation completed within the first 500 

ns, the distribution would have been narrower and unimodal.  
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Table 6. Summary of HYDROPRO Calculated Hydrodynamic Values  
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G-quadruplex Atom/shell Residue/shell Residue/bead 

143D 
s20,W

1 = 1.97 ± 0.02 1.94 ± 0.01 1.92 ± 0.01 

Dt20,W
1  = 1.51 ± 0.01 1.49 ± 0.01 1.48 ± 0.01 

1KF1 
s20,W = 1.83 ± 0.02 1.89 ± 0.01 1.87 ± 0.03 

Dt20,W  = 1.40 ± 0.02 1.45 ± 0.03 1.44 ± 0.03 

2GKU 
s20,W = 2.06 ± 0.03 2.03 ± 0.01 2.02 ± 0.01 

Dt20,W  = 1.45 ± 0.02 1.44 ± 0.01 1.43 ± 0.01 

2HY9 
s20,W = 2.12 ± 0.04 2.15 ± 0.02 2.14 ± 0.02 

Dt20,W  = 1.38 ± 0.02 1.40 ± 0.01 1.39 ± 0.01 

2JSM 
s20,W = 1.97 ± 0.02 1.95 ± 0.01 1.94 ± 0.01 

Dt20,W  = 1.45 ± 0.02 1.44 ± 0.01 1.43 ± 0.01 

2JPZ 
s20,W = 2.19 ± 0.04 2.17 ± 0.02 2.17 ± 0.02 

Dt20,W  = 1.43 ± 0.02 1.42 ± 0.01 1.42 ± 0.01 

2JSL 
s20,W = 2.09 ± 0.03 2.08 ± 0.01 2.08 ± 0.01 

Dt20,W  = 1.42 ± 0.02 1.41 ± 0.01 1.41 ± 0.01 

2KF8 
s20,W = 1.95 ± 0.02 1.91 ± 0.01 1.89 ± 0.01 

Dt20,W  = 1.49 ± 0.01 1.46 ± 0.01 1.45 ± 0.01 

2KKA-G2 
s20,W = 2.02 ± 0.03 2.00 ± 0.01 1.99 ± 0.01 

Dt20,W  = 1.49 ± 0.02 1.47 ± 0.01 1.47 ± 0.01 

2KKA-I2 
s20,W = 2.02 ± 0.03 2.00 ± 0.01 1.99 ± 0.01 

Dt20,W  = 1.49 ± 0.02 1.47 ± 0.01 1.46 ± 0.01 

1Dt20,W expressed in units of 10-6cm2/s and s20,W expressed in units of 10-13s; 

2Experimental values for 2KKA-G and 2KKA-I were obtained with the oligonucleotide 

sequence dAG3(T2AG3)3T.  
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Table 7. Comparisons of s20,W Calculated from MD Simulations and NMR Structures  
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Structure 
% Diff. 

Atom/shell 

% Diff. 

Residue/shell 

% Diff. 

Residue/bead 

143D 3.05 % 0.06 % 0.34 % 

2GKU 0.32 % 1.87 % 2.03 % 

2HY9 5.30 % 3.04 % 3.38 % 

2JPZ 1.17 % 0.31 % 0.28 % 

2JSL 0.09 % 0.98 % 0.71 % 

2JSM 1.35 % 3.61 % 3.11 % 

2KF8 2.44 % 2.64 % 2.69 % 

Weighted average1 1.85 % 1.89 % 1.88 % 

1Average weighted by number of poses deposited in PDB Database (143D – 6 poses, 

2GKU – 12 poses, 2HY9 – 10 poses, 2JPZ – 10 poses, 2JSL – 10 poses, 2JSM – 10 

poses, 2KF8 – 10 poses)  



150 

Table 8. Comparison of HYDROPRO-Calculated and Experimental s20,W  
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Structure 
% Diff. 

Atom/shell 

% Diff. 

Residue/shell 

% Diff. 

Residue/bead 

143D 3.76 1.96 1.19 

2GKU 0.30 0.83 1.23 

2HY9 0.90 0.35 0.16 

2JPZ 1.70 0.95 0.61 

2JSL 1.15 1.46 1.68 

2JSM 2.23 3.23 3.60 

2KF8 1.95 3.95 4.59 

1KF1 7.23 3.80 4.91 

2KKA-G1 1.88 2.67 3.11 

2KKA-I1 1.98 2.98 3.45 

1Experimental values for 2KKA-G and 2KKA-I obtained with the oligonucleotide 

sequence dAG3(T2AG3)3T.  
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With the exception of the hTel22 sequence in potassium (1KF1, the HYDROPRO 

calculated hydrodynamic values agreed with the experimental values (Table 8). As 

hydrodynamic experiments are essentially low-resolution measurements, a difference 

between calculated and experimental values by 5% (the precision limit for hydrodynamic 

measurements (Fernandes et al., 2002)) can be considered acceptable. The % difference 

in Table 8 was determined by comparing the HYDROPRO calculated values from Table 

6 with the experimental values in Table 4 using Equation 1. For the seven models in used 

in the HYDROPRO calibration procedure, the calculated distributions agreed with the 

experimental distributions (0.30-3.76% difference) as shown in Table 8. With the 143D 

model, it appeared initially that the model does not agree with the experimental data 

(Figure 28A), however, the difference of 3.76% (Table 8) was still within the 

experimental precision limit. Of the three models which were excluded from the 

calibration procedure, the calculated distribution of 1KF1 did not agree with the 

experimental distribution with a difference of 7.23% (Table 8). The current findings 

agreed with previously report data, which demonstrated that the parallel form of 1KF1 

have different hydrodynamic behaviors compared to the ensemble of structures in 

solution (Li et al., 2005). The conclusion that the 1KF1 structure was distinct from the 

1KF1 sequence in solution was made on the basis of the calculated s20,W value alone and 

not Dt20,W value, which appeared to agree better the experimental value than the s20,W. 

The reason that Dt20,W was not used for that purpose was that in solution contain multiple 

species, the differential migrations of different species result in a broadening of the 

sedimentation boundary leading and an incorrect apparent Dt20,W (Schuck et al., 2002, 

Dam and Schuck, 2004). For the 1KF1 structures in solution, there is a mixture at least 
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three to four G-quadruplex species in solution (Buscaglia et al., 2013). For that reason, 

the apparent Dt20,W value determined by experimental measurement might not be 

representative of the structures in solution and was reported only to complete the data 

even though it might not be appropriate to use it to rule in or rule out a certain structure in 

solution. For the other two models (2KKA-G and 2KKA-I), the calculated hydrodynamic 

values differed from the experimental values only slightly (1.88-1.98 % difference). It 

should be noted that the unsubstituted 2KKA-G (1.88 %) model agreed better with 

experimental results than the inosine-substituted 2KKA-I (1.98 %) model. However, this 

difference is too small to draw any definitive conclusion regarding possible difference 

between the two models. These findings highlighted a major limitation of HBM, which is 

that hydrodynamic measurements are inherently low resolution. The model that 

accurately predicts the hydrodynamic parameters measured in solution is not necessarily 

representative of the definitive structure for that molecule but rather one of the possible 

conformations amongst many others (Byron, 2008). Thus it can be concluded that the 

2KKA-G and 2KKA-I models represent a possible set of conformations for the G-

quadruplex structures in solution. However, this prediction should be confirmed by non-

hydrodynamic experiments (e.g. 2-aminopurine fluorescence spectroscopy to probe the 

solvent accessibility of adenine bases or DMS footprinting to probe guanine base-pairing 

interactions), such as was done by Li et al. (2005) Overall, the present findings 

demonstrated that HYDROPRO calculations can accurately predict the correct 

hydrodynamic properties and can be used as a screening tool to initially rule out 

“incorrect” structures associated with other G-quadruplex-forming sequences. 
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Clustering of Molecular Dynamics Trajectories into Hydrodynamic Substates 

The results of HYDROPRO calculations revealed that sedimentation rates can 

differ dramatically between different “snapshot” structures within the same MD 

trajectory (Figure 32). To identify different hydrodynamic substates within the MD 

trajectories, hierarchical cluster analysis were performed using HYDROPRO calculated 

s20,W values as the clustering criterion. The results of the cluster analysis indicated that 

heterogenous mixtures of G-quadruplex structures were present in simulations (Figures 

33-42). Cluster analysis was able to identify key differences between the 2KKA-G model 

and the 2KKA-I model which were not apparent by s20,W calculation alone (Figure 30I). 

The 2KKA G-quadruplex structures consist of a two-stack G-tetrad stem that is capped 

by a triple-base cap and a double-base cap on either end. In the 2KKA-I model, the G-G-I 

triple-base cap was slightly offset from the G-tetrad bases (Figure 42) while in the 

2KKA-G model, the G-G-G triple-base cap was directly on top of the G-tetrads (Figure 

41). It was unclear whether the direct triple conformation is simply a new stable 

conformation or if it is an indication of the G-quadruplex structure transitioning to a new 

folding topology as it is beyond the current capacity of MD to model such phenomenon. 

The current findings clearly demonstrated that the substitution of inosine for guanine 

played a critical role in stabilizing the selected G-quadruplex structures. In addition, these 

findings raised the need for additional experimental investigation into the role of these 

noncanonical bases in selecting for a G-quadruplex topology from an ensemble of 

structures.  
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Figure 32. Hydrodynamics substates identified by clustering of HYDROPRO calculated 

sedimentation coefficients (S20,W) for 143D (A), 1KF1 (B), 2GKU (C), 2HY9 (D), 

2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), and 2KKA (I). The most populated cluster for 

each model was colored black and the second most populated cluster was colored red. 

Additional clusters were colored accordingly (green, blue, cyan, and magenta) in the 

order of decreasing population density.  
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Figure 33. Cartoon depictions of representative structures from cluster analysis of the 

143D MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Sodium ions are colored purple.  
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Figure 34. Cartoon depictions of representative structures from cluster analysis of the 

1KF1 MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 35. Cartoon depictions of representative structures from cluster analysis of the 

2GKU MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 36. Cartoon depictions of representative structures from cluster analysis of the 

2HY9 MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 37. Cartoon depictions of representative structures from cluster analysis of the 

2JSM MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 38. Cartoon depictions of representative structures from cluster analysis of the 

2JPZ MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 39. Cartoon depictions of representative structures from cluster analysis of the 

2JSL MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 40. Cartoon depictions of representative structures from cluster analysis of the 

2KF8 MD trajectory. The clusters are shown from the most populated cluster to the least 

populated cluster. Nucleotides are colored according to NDB formats: guanine is green, 

adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 41. Cartoon depictions of representative structures from cluster analysis of the 

2KKA-G MD trajectory. The clusters are shown from the most populated cluster to the 

least populated cluster. Nucleotides are colored according to NDB formats: guanine is 

green, adenine is red, and thymine is blue. Potassium ions are colored purple.  
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Figure 42. Cartoon depictions of representative structures from cluster analysis of the 

2KKA-I MD trajectory. The clusters are shown from the most populated cluster to the 

least populated cluster. Nucleotides are colored according to NDB formats: guanine is 

green, adenine is red, and thymine is blue. Potassium ions are colored purple.  
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In addition to the HYDROPRO calculated hydrodynamic values, free energy 

values (ΔG) and the number of water bound were also determined for each cluster (Table 

9). Free energy was calculated using the MMPBSA method and is the sum of all the 

molecular mechanics energies (bond, angle, torsion, van der Waals, and electrostatic) and 

the solvation energy (calculated using a numerical solution of the Poisson-Boltzmann 

equation) (Kollman et al., 2000). The free energy values did not include an estimate of 

solute entropy, which is the least reliable component of MMPBSA calculations (Štefl et 

al., 2003, Fadrná et al., 2004, Cang et al., 2011). The results of the cluster analysis 

demonstrated that G-quadruplex structures remained highly polymorphic even with the 

limited sampling of MD simulations. In general, it was observed that the more populated 

substates were more energetically favorable (i.e. lower ΔG). The G-quadruplex structures 

in these substates were more spherical (i.e. lower f/f0) and compact (i.e. higher s20,W), and 

were characterized by favorable interactions between the loops and flanking bases with 

the G-tetrad stems (Figures 33-42). For example, in the case of the 2HY9 sequence, 

which contained a 3-residue long 5’ flanking sequence and a 2-residue long 3’ flanking 

sequence, the more compact structures featured stacking interactions between the 

flanking bases and the G-tetrads while the less compact structures did not. Previous 

studies have reported that the folding of a single-stranded DNA structure into the G-

quadruplex form was associated with the release of water molecules from the DNA into 

the surrounding environment (Olsen et al., 2006, Miyoshi et al., 2007). It was observed 

that the more compact structures were also associated with a reduced number of bound 

water. As hydration plays an important role in ligand binding and recognition (Poornima 

and Dean, 1995a, Poornima and Dean, 1995b, Poornima and Dean, 1995c, García-Sosa, 
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2013), for instance, the binding of groove-binding small molecules to duplex DNA is 

driven by water being displaced from the minor grooves (Chaires, 2006). Therefore, 

clustering by s20,W values can be used in the process of drug design to identify substates 

that could interact more favorably with small-molecule inhibitors.  
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Table 9. Results of s20,W Cluster Analysis on MD Trajectories  



180 

Structure Cluster # N s20,W
1 f/f0 ΔG1 # Water 

143D 

1 6170 1.98 1.12 -4421.89 165.26 

2 3802 1.95 1.14 -4421.62 166.92 

3 28 1.91 1.16 -4416.97 169.89 

1KF1 

1 5244 1.82 1.22 -4360.05 174.63 

2 3503 1.84 1.20 -4363.84 173.62 

3 768 1.87 1.19 -4368.20 173.43 

4 485 1.78 1.24 -4357.99 176.97 

2GKU 

1 4694 2.07 1.14 -4664.48 174.66 

2 2482 2.04 1.15 -4664.43 176.61 

3 1413 2.01 1.17 -4664.29 178.65 

4 1167 2.09 1.13 -4663.50 172.86 

5 244 1.98 1.19 -4664.01 181.28 

2HY9 

1 6374 2.15 1.16 -5094.00 190.93 

2 3626 2.08 1.19 -5091.86 197.55 

2JSM 

1 6852 1.98 1.15 -4536.80 175.92 

2 3115 1.95 1.17 -4533.68 177.01 

3 32 1.90 1.19 -4525.48 178.38 

4 1 2.04 1.13 -4545.97 172.00 

2JPZ 

1 6009 2.16 1.14 -4933.18 188.59 

2 3991 2.23 1.12 -4930.52 180.50 

2JSL 

1 6681 2.07 1.16 -4811.53 186.55 

2 3319 2.12 1.14 -4817.04 184.74 
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2KF8 

1 5471 1.96 1.14 -4241.88 166.86 

2 3892 1.93 1.15 -4239.20 168.79 

3 411 1.90 1.16 -4224.43 170.41 

4 186 1.98 1.13 -4247.06 164.19 

5 36 1.87 1.18 -4215.53 172.75 

6 4 1.84 1.20 -4205.31 171.50 

2KKA-G 

1 7863 2.03 1.13 -4434.13 171.78 

2 2135 1.98 1.15 -4427.76 175.58 

3 2 2.09 1.11 -4409.13 179.00 

2KKA-I 

1 4673 2.01 1.14 -4347.30 172.24 

2 4146 2.04 1.12 -4347.99 170.08 

3 1068 1.98 1.15 -4343.95 173.96 

4 111 1.94 1.17 -4340.41 176.68 

5 2 2.08 1.11 -4331.61 162.00 

1s20,W is expressed in units of 10-13s; ΔG is expressed in units of kcal/mol  
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Principal Component Analysis of Molecular Dynamics Trajectories 

PCA was employed to identify the major patterns of motions in the MD models 

and investigate the underlying mechanism for the formation of the different substates 

identified by clustering analysis. Motions from MD can appear random and chaotic, 

however, most of the fluctuations associated with the MD models can usually be reduced 

to several low-frequency eigenvectors with large eigenvalues (Teeter and Case, 1990). 

The first, second, and third eigenvectors are depicted using “porcupine” plots (Tai et al., 

2001, Tai et al., 2002) with the arrows representing the magnitude and direction for the 

eigenvector for each atom (Figures 43-45). In general, it was observed that the overall 

dynamics of the G-quadruplex structures were composed of only one to five major 

movements as indicated by the large eigenvalues associated with the first several 

eigenvectors compared to subsequent eigenvectors (Figure 46). In fact, the first three 

eigenvectors accounted for 30-80 % of the variance in the models (Figures 47). The 

porcupine plots indicated that motions related to the more rigid green colored stems 

(Figures 43-45) tend to be small and localize while the motions related to the more 

flexible red loops (Figures 43-45) and blue flanking bases (Figure 43-45) were more 

prominent. Each structural component was defined by characteristic movements. Most of 

the movements associated with the stem structures were the twisting motions of the 

phosphate backbone around the quadruple helix stack. The major movements associated 

with the loop structures were rotation of the phosphate backbone which moved the bases 

either toward the G-tetrad stem or away from it. In agreement with previous atomic 

positional fluctuations results, higher magnitude movement was seen with the chain-

reversal loops compared to the lateral and diagonal loops. Lastly, the transition between 
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flanking bases stacking on the G-tetrad bases to the unstacking of the flanking bases was 

observed as the major movement associated with the flanking bases. The movements 

associated with structures containing longer flanking sequences (i.e. 2HY9 and 2JPZ) 

were much higher in magnitude. The movements identified by PCA correlated with the 

structural differences between the different substates previously identified by cluster 

analysis.  
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Figure 43. Porcupine plots of the first eigenvectors for 143D (A), 1KF1 (B), 2GKU (C), 

2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I(J). 

Principal component analysis was carried out on MD trajectories in order to determine 

the major patterns of motions. Motions associated with stem residues are colored green, 

loop residues are red, flanking residues are blue, and central ions are yellow.  
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Figure 44. Porcupine plots of the second eigenvectors for 143D (A), 1KF1 (B), 2GKU 

(C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I(J). 

Principal component analysis was carried out on MD trajectories in order to determine 

the major patterns of motions. Motions associated with stem residues are colored green, 

loop residues are red, flanking residues are blue, and central ions are yellow.  
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Figure 45. Porcupine plots of the third eigenvectors for 143D (A), 1KF1 (B), 2GKU (C), 

2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I(J). 

Principal component analysis was carried out on MD trajectories in order to determine 

the major patterns of motions. Motions associated with stem residues are colored green, 

loop residues are red, flanking residues are blue, and central ions are yellow.  
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Figure 46. The first ten eigenvalues for 143D (A), 1KF1 (B), 2GKU (C), 2HY9 (D), 

2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I(J).  
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Figure 47. The percent of total variance explained by principal component analysis for 

143D (A), 1KF1 (B), 2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 

2KKA-G (I), and 2KKA-I(J).  
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The first ten eigenvalues are reported (Figure 46) as calculated for the G-

quadruplex structures as a whole and for various structural components (i.e. stem, loops, 

flanking bases). The eigenvalues were slightly reduced when the more mobile hydrogen 

atoms were removed from the analysis. Because PCA is sensitive to the scaling of the 

original data, the eigenvectors and eigenvalues of similar motions should be similar to 

one another. An overlap of the eigenvalues of loop and flanking bases with the 

eigenvalues of the overall G-quadruplex structures indicated that overall dynamic 

motions of G-quadruplex structures are mainly due to motions of loop and flanking bases. 

To demonstrate this correlation between the dynamics motions of individual structural 

components and the overall dynamic motions of the G-quadruplex structures, the first 

principal components were plotted as a function of the second principal components for 

all ten MD models for overall G-quadruplex structure and the individual stem, loop, and 

flanking structures (Figures 48-57). From the PCA results, each model can be classified 

as having loop-dominated dynamics (i.e. 143D, 1KF1, 2GKU, 2JSM), flanking bases-

dominated dynamics (i.e. 2HY9 and 2JPZ), and mixed dynamics with contributions from 

both loop and flanking bases (i.e. 2JSL, 2KF8, 2KKA-G, and 2KKA-I). Overall, the PCA 

findings help explain the differences in hydrodynamic values for individual substates 

identified by previous cluster analysis. In addition, the differences observed between the 

dynamic motions of different loop and flanking bases could have significant implications 

in drug interaction and the choices of sequence chosen for in vitro drug binding studies.  
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Figure 48. The second principal component as a function of the first principal component 

for 143D MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 143D MD trajectory, dynamic motions of 

loop atoms have a dominant effect on the overall dynamic motions of the G-quadruplex 

structures.  
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Figure 49. The second principal component as a function of the first principal component 

for 1KF1 MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 1KF1 MD trajectory, dynamic motions of 

loop atoms have a dominant effect on the overall dynamic motions of the G-quadruplex 

structures.  
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Figure 50. The second principal component as a function of the first principal component 

for 2GKU MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2GKU MD trajectory, dynamic motions of 

loop atoms have a dominant effect on the overall dynamic motions of the G-quadruplex 

structures.  



200 

  



201 

Figure 51. The second principal component as a function of the first principal component 

for 2HY9 MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2HY9 MD trajectory, dynamic motions of 

flanking atoms have a dominant effect on the overall dynamic motions of the G-

quadruplex structures with only small contributions from loop atoms.  
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Figure 52. The second principal component as a function of the first principal component 

for 2JSM MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2JSM MD trajectory, dynamic motions of 

loop atoms have a dominant effect on the overall dynamic motions of the G-quadruplex 

structures.  
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Figure 53. The second principal component as a function of the first principal component 

for 2JPZ MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2JPZ MD trajectory, dynamic motions of 

flanking atoms have a dominant effect on the overall dynamic motions of the G-

quadruplex structures.  
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Figure 54. The second principal component as a function of the first principal component 

for 2JSL MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2JSL MD trajectory, dynamic motions of 

both loop and flanking atoms were observed to influence the overall dynamic motions of 

the G-quadruplex structures.  
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Figure 55. The second principal component as a function of the first principal component 

for 2KF8 MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2KF8 MD trajectory, dynamic motions of 

both loop and flanking atoms were observed to influence the overall dynamic motions of 

the G-quadruplex structures.  
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Figure 56. The second principal component as a function of the first principal component 

for 2KKA-G MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2KKA-G MD trajectory, dynamic motions of 

both loop and flanking atoms were observed to influence the overall dynamic motions of 

the G-quadruplex structures.  
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Figure 57. The second principal component as a function of the first principal component 

for 2KKA-I MD trajectory. Principal components are plotted for all non-hydrogen atoms 

(A), non-hydrogen G-tetrad stem atoms (B), non-hydrogen loop atoms (C), and non-

hydrogen flanking bases atoms (D). For the 2KKA-I MD trajectory, dynamic motions of 

both loop and flanking atoms were observed to influence the overall dynamic motions of 

the G-quadruplex structures.  
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Investigation of Water and Cation Distribution around G-quadruplex Structures 

Given the importance of hydration and cations in influencing G-quadruplex 

formation, as well as the role of water and ions in determining hydrodynamic properties 

of a macromolecule, density mapping and radial distribution functions (RDF) were used 

to visualize the distribution of these molecules around the G-quadruplex structures and 

provide a general overview of hydration and cation binding. RDF of the distance between 

oxygen atoms of the water molecules and non-hydrogen atoms on the surface of the G-

quadruplex structures indicated the formation of a well-defined first hydration shell 

between 2.4 to 3.2 Å around the G-quadruplex structures (Figure 58). The second and 

third hydration shells can also be observed, although these peaks were not as sharp as the 

peaks for the first hydration shell. To visualize these hydration shells, density mapping of 

the water molecules over the duration of the trajectory was performed. Water density is 

shown contoured at equivalent levels (about two times the expected bulk water density) 

around the average structures from the MD trajectories (Figure 59). The condensation of 

the water around the G-quadruplex structure was evident. While the water appeared to be 

evenly distributed around the G-quadruplex structures, higher density of water was 

observed around the rigid stem structures and lower density around the more mobile 

loops and flanking structures. This observation agreed with a previous study, which 

reported that rigid structures are associated with more well-defined water positions and 

higher apparent density (Cheatham and Kollman, 1997). When contoured at a higher 

level (about three times the expected bulk water density), preferential binding of water to 

the grooves of the G-quadruplex structures became more apparent. At this higher contour 

level, a “spine of hydration” which traverses the grooves of the G-quadruplex structures 
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was observed (Figure 60). These findings demonstrated the interaction between water 

molecules DNA and suggested a role for hydration in maintaining the G-quadruplex 

structures.  
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Figure 58. Radial distribution functions (RDF) between G-quadruplex surface heavy 

atoms (no hydrogen) and water oxygen atoms. RDFs were calculated for distances from 

1.5-6.5 Å (A) and for distances from G-quadruplex surface to edge of the periodic box.  
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Figure 59. Pseudo-density grid maps of water oxygen atoms for 143D (A), 1KF1 (B), 

2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 

2KKA-I (J). Water density (blue) was contoured at 2X the density (55.5 M) of bulk 

water. The average structure of each G-quadruplex over the trajectory is shown.  
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Figure 60. Pseudo-density grid maps of water oxygen atoms for 143D (A), 1KF1 (B), 

2GKU (C), 2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 

2KKA-I (J). Water density (blue) was contoured at 3X the density (55.5 M) of bulk 

water. The average structure of each G-quadruplex over the trajectory is shown.  
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The RDF plots of the distance between cations and G-quadruplex structures 

indicated cations interacted with G-quadruplex structures differently from water (Figure 

61). The RDF plots showed a clear attraction of positively charged cations to the 

negatively charged nucleic acids with a high density of cations closer to the DNA and 

decreased density further out. The interaction shells for the sodium ions were closer to 

the DNA than those for the potassium ions. This observation is expected given that 

within the force field the sodium ions are smaller (radius = 1.369 Å vs. 1.705 Å) (Joung 

and Cheatham, 2008) and thus can move closer to the G-quadruplex structures. Four 

cation interaction shells were observed for each structure. The first two interaction shells 

were well-defined while the second two interaction shells were more diffused. Density 

mapping analyses were performed to visualize these cation shells. The density was 

contoured at the reference density (Figure 62). At this contour level, two different modes 

of interaction were observed. The first mode was the coordination of cations within the 

central G-tetrads. It was observed that the cations remained positioned between the 

stacked G-tetrads throughout the simulation with no exchange between the G-quadruplex 

stem and the bulk solvent as observed in other simulations (Reshetnikov et al., 2011, 

Akhshi et al., 2012, Pagano et al., 2008). The 143D model of the hTel22 sequence in 

sodium containing solution is noteworthy, as the starting structure contained three sodium 

ions placed within the plane of the G-tetrads. However, when the system was 

equilibrated, one of the sodium ions were ejected from the G-quadruplex stem into the 

surrounding solvent and the remaining two sodiums assumed positions between the G-

tetrads and remained so for the course of the MD trajectory. In addition to the central 

coordination, diffused interaction of the cations along the grooves of the G-quadruplex 
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structures was also observed. These “spines of cations” were not deep within the grooves 

as were the “spines of hydration”. Instead, they were closer to the backbones and 

interacted with the backbone phosphate groups. When the cations were contoured at a 

higher level, these electrostatic interactions began to disappear and a third mode of 

interaction, external coordination with loops and flanking bases, was observed (Figure 

63). These externally coordinated cations were critical in maintaining loop and flanking 

base positions. For instance, potassium binding was responsible for stabilizing the 

capping structures in the 2KF8 model. The binding site at the top of the G-quadruplex 

structure remained 100 % occupied with the potassium ion either coordinated within the 

plane of the triple-base cap or stacked between the planes of the inner triple-base cap and 

the outer double-base cap. Cation stabilization of loop structures has also been observed 

in previous simulations (Gray et al., 2009b) as well as experimentally in the crystal 

structure of the human c-Kit DNA promoter sequence (Wei et al., 2012). In that study, 

one Mg2+ and two K+ ions were observed in the G-quadruplex loops and grooves in 

addition to the K+ ions within the canonical central ion channel. In the crystal structure, 

all three external cations are believed to play a role in maintaining the c-Kit G-

quadruplex structure. It should be noted that one of the K+ ions appeared to be transient 

and capable of adopting one of several distinct positions while the other K+ ion appeared 

to be more static suggesting the existence of a high affinity binding site. While the K+ 

ions are believed to have a primary role in stabilizing the G-quadruplex structure by 

direct electrostatic interaction with the DNA, the Mg2+ ion is thought to assume a 

secondary role of shielding the anionic charge of the phosphate groups. In fact, it is well-

known that polyanions, like DNA, can attract a shell of cations to help partially 
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neutralizes the negatively-charged backbone phosphates (Manning, 1978, Record et al., 

1978). Together, these findings suggest that in addition to stabilizing the G-tetrads within 

the G-quadruplex core, cations can also play other roles in promoting G-quadruplex 

formation and stability.  
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Figure 61. Radial distribution functions (RDF) between G-quadruplex surface heavy 

atoms (no hydrogen) and cations. RDFs were calculated for distances from 1.5-6.5 Å (A) 

and for distances from G-quadruplex surface to edge of the periodic box.  
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Figure 62. Pseudo-density grid maps of cations for 143D (A), 1KF1 (B), 2GKU (C), 

2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I (J). 

Cations density (purple) was contoured at the solubility density of sodium (6 M) for 

143D and at the solubility density of potassium (4 M) for the other G-quadruplex 

structures. The average structure of each G-quadruplex over the trajectory is shown.  



229 

  



230 

Figure 63. Pseudo-density grid maps of cations for 143D (A), 1KF1 (B), 2GKU (C), 

2HY9 (D), 2JSM (E), 2JPZ (F), 2JSL (G), 2KF8 (H), 2KKA-G (I), and 2KKA-I (J). 

Cations density (purple) was contoured at 3X the density of sodium (6 M) for 143D and 

at 3X the density of potassium (4 M) for the other G-quadruplex structures. The average 

structure of each G-quadruplex over the trajectory is shown.  
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Effects of Cations Binding on Hydrodynamic Calculations 

HBM was used to provide information about the number cations bound to the G-

quadruplex structures. This use of HBM is based on the premise that the hydrodynamic 

properties are dictated by the size (volume and mass) and shape of a macromolecule in 

solution. When accurate experimental information is known about the volume and shape 

of the G-quadruplex structure, HBM can be used to estimate the mass of the G-

quadruplex and by extension, the number of cations bound to it. To illustrate this, a series 

of HYDROPRO calculations were performed. The additions of potassium or sodium to 

the G-quadruplex structure were accounted for by making the appropriate increase in the 

molecular weight value in the HYDROPRO parameter file. The calculations were done 

using all three modes of HYDROPRO calculation with the default AER instead of the 

calibrated AER. In order to display the data for the sequences on the same scale, the 

number of ions bound was normalized using Equation 5: 

% charge saturation= 
# potassium bound

sequence length (# bases)-1
 Equation 5 

The results of the HYDROPRO calculations are shown in Figure 64. For the atomic-level 

hydrodynamic bead models, the lowest errors were observed at about 50 % charge 

neutralization (i.e. about 10 to 13 cations); while for the coarser residue-level models the 

lowest errors were observed at about 60 % charge saturation (i.e. about 12 to 15 cations). 

The findings agreed well with previous studies which reported 10 to 11 potassium ions 

bound to the hTel22 sequence in 30 mM KCl buffer (Gray and Chaires, 2011). This 

demonstrates that HBM may have application beyond structural prediction. 
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Figure 64. s20,W values as a function of the number of bound cations. The values for 100Δ 

as a function of percent charge saturation for the primary hydrodynamic model calculated 

using the seven G-quadruplex structures formed from the human telomere sequence. 

Hydrodynamic properties of G-quadruplexes were calculated using atomic-level shell-

model calculation (A), residue-level shell-model calculation (B), and residue-level bead-

model calculation (C).  
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Conclusion 

 

HBM was demonstrated to be a powerful tool for studying G-quadruplex 

structures when atomic-level structural representations are unavailable, ambiguous, or 

can’t be determined experimentally. In such cases, the use of low-resolution techniques 

such as hydrodynamics, combined with readily accessible biophysical measurements (e.g. 

CD spectroscopy, fluorescent spectroscopy), can be used to obtain general information 

regarding the G-quadruplex structure, size, and shape. HBM can bridge low-resolution 

hydrodynamic measurements and high-resolution molecular modeling to provide further 

information regarding these structures. For example, HBM can be used to estimate the 

number of cations bound to the G-quadruplex structure. When applied to the study of 

novel G-quadruplex-forming sequences, HBM can be used to rule out structures that are 

not representative of the ensemble as was the case with 1KF1 whose calculated values 

differed greatly from the experimental values. However, hydrodynamics remains a low-

resolution technique and molecular models for which calculated hydrodynamic values 

agreed (or differed only slightly) with experimental values will need to be confirmed with 

additional hydrodynamic and biophysical measurements, as was the case with the 2KKA-

G and 2KKA-I models. 

Another limitation of hydrodynamics and HBM is that the calculation is typically 

performed on one structure giving a static look at an otherwise dynamic system. 

HYDROPRO can only calculate hydrodynamic values for a single structure at any given 

time. However, as demonstrated, HBM can be used in tandem with MD simulations to 

provide a more dynamic representation of the macromolecule. In addition, the high-



236 

resolution nature of molecular dynamics can help complement the low-resolution nature 

of hydrodynamic measurements. As was observed with the 2KKA-G and 2KKA-I 

models, hydrodynamic was not able to distinguish between the two sequences as both 

gave rise to identical sedimentation and diffusion values. However, cluster analysis of the 

MD trajectories revealed that 2KKA-G model was more heterogeneous than the 2KKA-I 

model and demonstrated the effect of inosine substitution on selecting for a particular G-

quadruplex topology. The findings demonstrated that molecular dynamics can 

supplement HBM in the study of G-quadruplex structures. 

For G-quadruplexes it is recommended to use either the atomic-level model with 

shell-model calculation mode (AER = 2.19 Å) or the residue-level model with bead-

model calculation mode (AER = 5.04 Å) for HYDROPRO calculations, as both modes 

can predict the hydrodynamic properties accurately with a reasonable estimate of the size 

of the macromolecule. The atomic-level model with shell-model calculation is considered 

the gold standard and should be used whenever the most rigorous calculation is required. 

The residue-level model with bead-model calculation mode has the advantage of being 

significantly faster (by several orders of magnitude) but with a slightly higher error in 

predicting hydrodynamic properties. For molecular weight, the recommended value is the 

molecular weight of the DNA and internal coordinating cations. For Na+, because these 

ions are smaller and can fit within the G-quartet plane, the number of internal 

coordinating ions is equal to the number of G-quartets. For K+, which is bigger and thus 

can only fit in between the planes of the G-quartets, the number of internal coordinating 

ions is one less than the number of G-quartets. The parameters for HYDROPRO 

presented can be used for hydrodynamic calculation of G-quadruplexes or can be further 
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optimized by fitting with additional hydrodynamic values (i.e. rotational diffusion 

coefficients, NMR relaxation time, intrinsic viscosity, etc.). Although this work was 

conducted on the human telomere sequence, the experimental approach outlined can be 

easily adapted for other G-quadruplex-forming sequences to propose relevant G-

quadruplex structures that can be used as a basis for drug design. 
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CHAPTER IV 

 

There is current interest in biomedical research to identify small molecules that 

can bind to and stabilize G-quadruplex structures as this represents a new strategy in anti-

cancer therapeutics. We report a screening platform with the combined approach of 

virtual screening and biophysical measurements that was successful identifying a new G-

quadruplex-interacting small molecule. Compound 1 was initially identified through 

molecular docking screening of the ZINC Drug-Like Databse against an in silico 

generated model of the human telomeric G-quadruplex structure. The binding of 

Compound 1 to G-quadruplex DNA was confirmed and characterized using fluorescent 

and circular dichroism spectroscopy. The screening platform was successful in 

identifying a new G-quadruplex-interacting small molecule and can be used to identify 

other G-quadruplex-interacting agents. 
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FROM CYBERSPACE TO CANCER DRUG: BIOPHYSICAL 

CHARACTERIZATION OF A G-QUADRUPLEX-INTERACTING SMALL 

MOLECULE IDENTIFIED BY VIRTUAL SCREENING 

 

Introduction 

 

G-quadruplexes, associated with guanine-rich nucleic acids, are non-canonical 

four-stranded tertiary structures comprised of stacked G-quartets (four guanine bases 

associating by Hoogsteen hydrogen bonding in a square planar arrangement) (Burge et 

al., 2006, Chaires, 2010, Lane et al., 2008, Lane, 2012). The most predominant type of 

G-quadruplex structures in human cells is thought to be unimolecular G-quadruplexes, 

formed from the intramolecular folding of a nucleic acid sequence containing four runs of 

two or more guanines each. The guanine runs make up the stacked G-quartets stem and 

the bases, in between and surrounding the guanine runs, form the loop and flanking 

structures, both of which can play critical roles in G-quadruplex stability. Within human 

cells, one of the major sites where G-quadruplex formation occurs at the distal 3’ end of 

the telomere, which contains a 100-200 bases long guanine-rich single-stranded overhang 

consisting of the hexanucleotide repeat d[TTAGGG] (Wright et al., 1997). The 

stabilization of these G-quadruplex structures has been proposed as a novel strategy for 

inhibiting telomerase (Balasubramanian and Neidle, 2009, De Cian et al., 2008, Han and 

Hurley, 2000, Neidle and Read, 2000, Ou et al., 2008, White et al., 2001), the main 

enzyme responsible for maintaining the length of the telomere and is also activated in 

over 90% of cancers allowing cancer cells to achieve immortality (Shay and Bacchetti, 
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1997). Small molecules that stabilize telomeric G-quadruplexes in vitro have also been 

shown to inhibit telomerase activity leading to senescence and cell death in cell-based 

experiments (Riou et al., 2002, Cuesta et al., 2003) suggesting that such therapeutics 

might be effective in the treatment of cancer (Cuesta et al., 2003, Shay and Wright, 2006, 

Saretzki, 2003). 

In addition to the telomere, G-quadruplex formation also occurs in other areas of 

the human genome. In fact, over 370,000 putative G-quadruplex-forming sequences 

(PQSs) have been identified through bioinformatics surveys (Huppert and 

Balasubramanian, 2005, Huppert and Balasubramanian, 2007). Many of these sequences 

are conserved between human, mouse, and rat, suggesting a critical role for G-quadruplex 

structures in cellular functions (Verma et al., 2008). PQSs are not evenly distributed 

throughout the genomes but, instead, are found to localize to functionally important 

areas, such as the promoters of several important proto-oncogenes including c-Myc 

(Ambrus et al., 2005), c-Kit (Hsu et al., 2009, Phan et al., 2007a), Bcl-2 (Dai et al., 

2006), VEGF (Sun et al., 2005), and HIF-1α (De Armond et al., 2005). In contrast, the 

occurrences of PQSs in association with tumor suppressor genes tend to be much lower 

(Eddy and Maizels, 2006). G-quadruplex formation appears to play a critical role in the 

regulation of oncogene transcription (Balasubramanian et al., 2011), for example c-Myc, 

an oncogene whose overexpression is strongly associated with the development of 

several types of cancer including but not limited to breast, lung, prostate and 

hematological cancers (Nesbit et al., 1999, Nilsson and Cleveland, 2003). Stabilization of 

the G-quadruplex structures in the nuclease hypersensitivity element III1 (NHE-III1) 

region of the c-Myc promoter by the small molecule TMPyP4 inhibited transcription in a 
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luciferase assay (Siddiqui-Jain et al., 2002). As the NHE-III region is the primary control 

of c-Myc transcription (Patel et al., 2007), G-quadruplex formation wass proposed as a 

mechanism of regulating c-Myc expression (Siddiqui-Jain et al., 2002). In addition to 

controlling transcription, G-quadruplex formation can also affect gene expression at the 

translation level. For example, the stabilization of G-quadruplex structures located in the 

5’-untranslated region of the NRAS mRNA by small molecule inhibitors was 

accompanied by decreased translational efficiency (Bugaut et al., 2010). Taken together, 

these findings suggest that G-quadruplex-based small-molecule inhibitors might be 

effective as anti-cancer therapies. 

The potential of G-quadruplex-based anti-cancer therapies has led to studies 

aimed at discovering small molecules that selectively bind these structures. Small 

molecules can interact with G-quadruplexes by one of three possible binding modes: 1) 

groove binding, 2) intercalation between adjacent G-quartets, and 3) end-pasting, where 

the ligand is bounded on one side by a G-quartet and on the other side by the loop 

structures (Pan and Zhang, 2009). There is interest in the discovery of small molecules 

that bind G-quadruplexes by end-pasting as this binding mode is believed to confer 

selectivity for G-quadruplexes over other nucleic acid structures (e.g. G-quadruplex vs. 

duplex), as well as discriminates between G-quadruplex structures formed from different 

sequences (e.g. telomeric G-quadruplex vs. promoter G-quadruplex) by taking into 

account both G-quartet and loop interactions. Virtual screening using molecular docking 

methods has been proposed as an approach to identify such small molecules (Dailey et 

al., 2009). Originally developed, parameterized, and optimized for protein targets, 

molecular docking software are also suitable for probing the interaction of small 



242 

molecules with nucleic acids (Dailey et al., 2009, Holt et al., 2008, Holt et al., 2009, Holt 

et al., 2011). Two docking programs, Surflex (Tripos International, St. Louis, MO) and 

Autodock (The Scripps Research Institute, La Jolla, CA), were able to rationalize known 

small molecules/DNA interaction by accurately reproducing the crystallographic poses of 

intercalating and groove binding drugs bound to duplex DNA (Holt et al., 2008). More 

recently, Surflex was utilized in a virtual screening approach to discover new triple-

helical DNA intercalating agents (Holt et al., 2009). In that study, the in silico library of 

chemicals was prescreened using molecular similarity search and Surflex was employed 

to dock the most similar compounds into the DNA target and identify the compound with 

the highest binding affinity. Prescreening using molecular similarity search or other 

pharmarcophore-based methods is a valid strategy to identify new lead compounds for 

drug development and such methodologies have been used previously with G-

quadruplex-interacting small molecules (Castillo-Gonzalez et al., 2013, Cosconati et al., 

2012). A limitation to this strategy is that a potential hit could be improperly eliminated 

from consideration if its structure is highly dissimilar from the known agent. Therefore, it 

remains unknown if molecular docking software can be used without prescreening to 

identify new G-quadruplex-interacting small molecules with novel chemical scaffolds. 

Accordingly, the success of such receptor-based drug discovery approaches 

depends on a critical understanding and appreciation of the structural complexity 

associated with the molecular target of interest. The folding of a PQS from its single-

stranded structures into the unimolecular G-quadruplex form can be highly polymorphic 

with hundreds of possible G-quadruplex topologies varying in the number of G-quartets, 

strand directions (i.e. parallel, antiparallel, mixed), loop combinations (i.e. lateral, 
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diagonal, double chain-reversal), and glycosidic bond angles (i.e. syn or anti) (Lane et al., 

2008). Often, a PQS exists in solution as a mixture of multiple G-quadruplex species and 

the equilibrium between species in solution can be influenced by experimental conditions 

(e.g. choice of annealing protocol) (Le et al., 2012), by the choice of cation and its 

concentration in buffer (Gray et al., 2009a, Gray et al., 2009b, Le et al., 2012), by the 

presence of biological molecules (e.g. sugar, proteins) (Sannohe and Sugiyama, 2001) or 

co-solvents (e.g. acetonitrile, PEG) (Xue et al., 2007, Miller et al., 2010, Buscaglia et al., 

2013), or by the use of divalent versus monovalent cations (Blume et al., 1997, Miyoshi 

et al., 2001). An example highlighting the structural polymorphism associated with G-

quadruplex structures is the hTel22 sequence, AGGGTTAGGGTTAGGGTTAGGG, 

which is often used as an in vitro model to examine small molecules/G-quadruplex 

interaction (Wang and Patel, 1993, Parkinson et al., 2002). In the presence of sodium, the 

hTel22 G-quadruplex structures exist predominantly as a single species, an antiparallel 

“basket” topology (Wang and Patel, 1993) consisting of three stacked G-quartets and a 

lateral-diagonal-lateral loop combination. Whereas, in the presence of potassium (the 

more relevant intracellular cation), hTel22 exists as a mixture of G-quadruplex species. 

The first high-resolution structure of hTel22 in potassium was a crystal structure, which 

revealed a parallel “propeller” topology consisting of three stacked G-quartets and three 

double chain-reversal loops (Parkinson et al., 2002). Subsequent studies determined that 

the parallel topology is not the major species in solution (Li et al., 2005, Buscaglia et al., 

2013, Hänsel et al., 2011) and accounts for only about 14% of the total ensemble 

(Buscaglia et al., 2013). However, under the effect of dehydration (Miller et al., 2010) or 

in the presence of polyethylene glycol (PEG) (Buscaglia et al., 2013) (both factors 
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contributing to crystallizing environment), the parallel topology can be enriched to 

become the major species. In addition to changing the experimental conditions, sequence 

modification is another commonly accepted approach to influence the equilibrium of G-

quadruplex species in solution with the goal of enrichment of a single species for NMR 

structure elucidation (Dai et al., 2008, Yang and Okamoto, 2010). In sequence 

modification, a PQS can be truncated or elongated by adding flanking bases, and non-

canonical bases (Sagi, 2013) can be incorporated to select for a particular topology. In the 

case of hTel22, addition of flanking bases have resulted in sequences that are 

predominantly of the mixed “hybrid-1” topology (three stacked G-quartets with a double 

chain-reversal loop followed by two lateral loops) (Luu et al., 2006, Dai et al., 2007b, 

Phan et al., 2007b), sequences that are predominantly of the mixed “hybrid-2” topology 

(three stacked G-quartets with two lateral loops followed by a double chain-reversal loop) 

(Dai et al., 2007a, Phan et al., 2007b), and sequences that are predominantly of an 

antiparallel “basket” topology (similar to the sodium form but with two stacked G-

quartets) (Lim et al., 2009, Zhang et al., 2010b).  

These strategies for reducing G-quadruplex structural polymorphism are utilized 

with the assumption that these means enrich for a member of the ensemble of species 

originally formed by the parent sequence. The unintended consequence, however, might 

be an unpredictable perturbation of the system and the selection of a topology that may 

not be representative of the original ensemble of topologies and can have significant 

implications on which structures are suitable for drug discovery and can be claimed as 

“biologically relevant” (Lane et al., 2008). The crystal structure of hTel22 is often used 

to rationalize G-quadruplex/small molecules interaction (Luedtke, 2009, Neidle, 2009) 
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but it is the “hybrid” forms, rather than the “propeller” form, that are thought to be 

predominant in solution and are hypothesized to be the more “relevant” structures in vivo 

(Dai et al., 2007a, Dai et al., 2007b, Phan, 2010, Dai et al., 2008, Hänsel et al., 2011, 

Hansel et al., 2013a, Hansel et al., 2013b). In a recently published NMR structure of the 

G-quadruplex structure in the “hybrid-1” form bound to the small-molecule telomerase 

inhibitor telomestatin (Chung et al., 2013), it was revealed that the end-pasting site for 

the “hybrid” form differs significantly from the end-pasting sites of the “propeller” form. 

In the “hybrid” form, the binding of small molecule to the G-quadruplex structure was 

characterized by π-π interaction between the G-quartet, the aromatic core of the 

compound, and the loop structure, whereas in the “propeller” form π-π interaction was 

observed only between the compound and the G-quartet not the loops. Furthermore, in 

the “propeller” form, the side chain of the compound was observed to interact with the 

grooves formed by adjacent strand of the G-quartet stem, whereas in the “hybrid” form, 

the side chain interacted more with the loop structures. As a result, the choice of 

representative structure of the PQS is critical in virtual screening studies using receptor-

based approaches such as molecular docking. 

In the current work, the successful development of a high throughput in silico 

molecular docking platform that identified a small molecule with anti-cancer properties 

and binds to G-quadruplex structures is reported. This compound possesses a novel DNA 

binding chemical scaffold, naptholphenoxazine (Figure 65), that have not been examined 

in the literature. As the representative structure for the G-quadruplex, a “hybrid-1” 

structure which contains the hTel22 sequence (PDB: 2HY9) was utilized. An end-pasting 

binding site was introduced between the terminal G-quartet and the loop and flanking 
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structures at the 5’ end of the G-quadruplex structure. Compound 1 was identified from 

the virtual screening as a potential G-quadruplex-interacting small molecule. Using 

spectroscopic methods, the binding affinity, binding stoichiometry, and binding mode 

were determined for Compound 1 interaction with G-quadruplex structures. In addition, 

in silico molecular models of all possible end-pasting sites of the “hybrid-1” and “hybrid-

2” forms of hTel22 PQS were generated and the newly discovered Compound 1 was 

docked into the sites to assess interaction between nucleic acids and small molecule. 

Finally, Compound 1 was subjected to the NCI-60 DTP Human Tumor Cell Line Screen 

and discovered to possess good inhibitory properties against cancer cells. Overall, the 

virtual screening platform reported was successful and computationally plausible for 

screening millions of small molecules against a nucleic acid target and can be used to 

identify new small molecules which interact with G-quadruplex structures in a predicted 

mechanism. 

 

Materials and Methods 

 

Preparation of Nucleic Acids Target and in Silico Libraries for Molecular Docking 

For virtual screening, the G-quadruplex structure (PDB ID: 2HY9) was 

downloaded from the Protein Data Bank in PDB file format. The end-pasting site was 

introduced between terminal G-quartet and the loop structures near the 5’ end of the 

oligonucleotide as previously described (Read et al., 2001). Briefly, the phosphate 

backbones were broken and the loop and flanking structures were separated from the 

terminal G-quartet structure. To expose the end-pasting site, a virtual ligand consisted of 
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a planar, aromatic, small molecule was constructed that would stack well upon the 

terminal G-quartet (Figure 66). Using Macromodel (Schrödinger, Portland, OR), the 

virtual ligand was initially positioned between the terminal G-quartet and loop region. 

After the phosphate backbones were reconnected, the G-quadruplex/ligand complex was 

minimized using a Steepest Descent algorithm for 1000 iterations while holding the 

ligand fixed. A second round of minimization was performed using the Polak Ribier 

Conjugate Gradient algorithm for 500 steps with the nucleotides comprising the end-

pasting site including the terminal G-quartet and loop nucleotides designated as flexible 

and the remaining nucleic acid bases designated fixed. For the hTel22 molecular docking 

experiments, the representative hybrid-1 and hybrid-2 G-quadruplex structures (PDB ID: 

2HY9 and 2JPZ, respectively) were downloaded from the Protein Data Bank in PDB file 

format. For each structure, the first two residues and the last two residues were removed 

from the PDB files to create models of the hTel22 sequence, respectively. Each of the 

four possible end-pasting binding sites was created using the procedure previously 

described in this paragraph. In silico small molecules were downloaded from the ZINC 

(Irwin and Shoichet, 2005) database 2008 “Drug-Like” dataset, “Reference” subset, 

which has been classified based on adherence to adherence to Lipinski’s “rule of fives” 

for increased oral bioavailability (Lipinski et al., 2001). For the 2008 version of the ZINC 

database, 6.6 million compounds fell under this classification. The small molecules were 

downloaded and used without any further modification.  
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Figure 65. (A) A G-quadruplex structure (PDB ID: 2HY9) that contains the hTel22 

sequence with a representative end-pasting site that was initially used for virtual 

screening with Surflex and (B) the newly discovered small molecule, Compound 1, from 

the in silico virtual screening experiments.  
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Figure 66. The structure of the quaterpurine used for in silico construction of G-

quadruplex end-pasting sites.  
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Molecular Docking Experiments 

All molecular docking experiments were performed on the Brown Cancer Center 

Modeling Facility 440 core server consisting of 2.66 GHz Intel(R) Xeon(R) E5430 

processors using Surflex and Autodock docking parameters previously described (Holt et 

al., 2008). For molecular docking with Surflex, the end-pasting cavity was specified with 

a ligand-based approach by using the bound virtual ligand (Figure 66) to generate a 

Surflex “protomol” which guides the molecular docking of the in silico ligands to the 

end-pasting site. The “protomol” was constructed by altering the “proto_bloat” and 

“proto_thresh” functions and visualized in Sybyl (Tripos International, St. Louis, MO) to 

ensure reasonable interactions in the end-pasting site. The significance of the protomol 

and the Surflex docking and scoring functions have been described in detail previously 

(Jain, 2003). Briefly, the “protomol” consists of a series of small chemical fragments that 

model important forces in the nucleic acid pocket: steric effects and hydrogen bond 

acceptors and donors. For each ligand being docked, the molecule is fragmented, aligned 

against the protomol, and subsequently scored based on the interactions in the binding 

site. For molecular docking with Autodock, the ligand and G-quadruplex structures were 

converted from the MOL2 format to PDBQT format using the Python scripts included 

with Autodock. For each G-quadruplex structure, a grid map with a grid spacing of 0.375 

Å was generated centered on the end-pasting site. The parameter for grid generation is 

shown (Table 10). A genetic algorithm, the Lamarkian Genetic Algorithm, is used to 

assess the interactions of the ligand with the pre-calculated energy grids until typically 

the specified number of energy evaluation was reached. The final top “pose” returned by 

Autodock is the computed lowest energy docked structure of the ligand.  
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Table 10. Autodock Parameters for Hybrid-1 and Hybrid-2 Docking 
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Autodock Target 
Dimensions of Grid 

(X, Y, Z) 
Grid Center 

Hybrid-1 End-Paste Site 1 66 × 64 × 40 -1.644 × 6.950 × -0.460 

Hybrid-1 End-Paste Site 2 66 × 64 × 40 -0.491 × 5.057 × -0.484 

Hybrid-2 End-Paste Site 1 66 × 64 × 40 -0.642 × 7.237 × -0.239 

Hybrid-2 End-Paste Site 2 66 × 64 × 40 -0.298 × 4.392 ×  0.048 
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Preparation of Oligonucleotides and Reagents 

The DNA sequences used in this study are listed in Table 11. Unlabeled 

oligonucleotides were purchased from Integrated DNA Technologies (Coralsville, IA). 

FRET-labeled oligonucleotides containing fluorescein (FRET donor) at the 5’ end and 

tetramethylrhodamine (FRET acceptor) at the 3’ end were purchased from Sigma-Aldrich 

(St. Louis, MO). Lyophilized DNA was rehydrated in ddH2O at a stock concentration of 

1 mM for the unlabeled oligonucleotides and 250 µM for the FRET-labeled 

oligonucleotides. The DNA was quantified using a Nanodrop 2000 instrument (Thermo 

Scientific, Wilmington, DE) using molar extinction coefficients (ε) calculated via the 

nearest-neighbor method (Table 11). Prior to experiments, the stock oligonucleotides 

were diluted to the desired concentration using the appropriate buffer. The diluted 

oligonucleotides were annealed by heating in a boiling water bath for 10 minutes and 

slowly cooled overnight to room temperature. Compound 1 with ZINC ID 20263704 

were purchased from Vitas-M Laboratory (Stock #: STK554084, Moscow, Russia).  

Thiazole orange (TO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT) were purchased from Sigma-Alrich. Stock solutions were made in DMSO to 

concentrations of 1 mM (Compound 1) and 10 mM (TO). MTT stock solution was made 

at 5 mg/mL in ddH2O, syringe filtered through 0.2 µm filters, and stored at 4°C away from 

light. 
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Table 11. Oligonucleotide Sequences Used in this Study and Their Molar Extinction 

Coefficients  
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Name Sequence 
 

(M-1·cm-1) 

AT duplex 5'-ATA TAT ATC CCC ATA TAT AT-3' 205,700 

GC duplex 5'-GCG CGC GCT TTT GCG CGC GC-3' 166,300 

ALT duplex 5'-AAA AAA AAC CCC TTT TTT TT-3' 191,300 

hTel duplex 5'-GGG TTA GGG TTT TCC CTA ACC C-3' 202,200 

AT triplex 
5'-AAA AAA AAC CCC TTT TTT 

TTC CCC TTT TTT TT-3' 
284,900 

GC triplex 
5'-CCC CCC CCT TTT GGG GGG 

GGT TTT CCC CCC CC-3' 
261,600 

hTel22 

G-quadruplex 5'-AGG GTT AGG GTT AGG GTT AGG G-3' 228,500 

cMyc22 

G-quadruplex 
5'-TGA GGG TGG GTA GGG TGG GTA A-3' 228,700 

2GKU 

G-quadruplex 5'-TTG GGT TAG GGT TAG GGT TAG GGA-3' 244,300 

2HY9 

G-quadruplex 5'-AAA GGG TTA GGG TTA GGG TTA GGG AA-3' 278,200 

2JSM 

G-quadruplex 
5'-TAG GGT TAG GGT TAG GGT TAG GG-3' 236,500 

2JPZ 

G-quadruplex 
5'-TTA GGG TTA GGG TTA GGG TTA GGG TT-3' 261,200 

2JSL 

G-quadruplex 
5'-TAG GGT TAG GGT TAG GGT TAG GGT T-3' 253,100 

2KF8 

G-quadruplex 
5'-GGG TTA GGG TTA GGG TTA GGG T-3' 223,500 

2KKA 

G-quadruplex 
5'-AGG GTT AGG GTT AGG GTT AGG GT-3' 237,000 

hTel-dimer 5'-TTA GGG TAA GGG TTA GGG TTA GGG 
509,500 
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G-quadruplex TTA GGG TTA GGG TTA GGG TTA GGG TT-3' 
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Differential Scanning Fluorometry (DSF) 

DSF experiments were performed on a StepOnePlus Real-Time PCR System 

(Applied Biosystems, Carlsbad, CA) adapted for use in thermal melting experiments. In 

the first melting experiment to assess Compound 1 binding to FRET-labeled DNA, the 

final concentration of FRET-labeled oligonucleotides was fixed at 0.25 µM. Compound 1 

was added to the FRET-labeled DNA at different final concentrations ([Compound 1] = 

0.25, 0.50, 1, 2.5, 5, and 12.5 µM). In the second melting experiment to measure the 

ability of unlabeled DNA to compete with FRET-labeled DNA for Compound 1 binding, 

the final concentrations of FRET-labeled DNA and Compound 1 were held fixed at 0.1 

and at 10µM, respectively. Unlabeled oligonucleotides were added to the FRET-labeled 

DNA and Compound 1 mixture at different final concentrations ([oligonucleotide] = 5, 

10, 25, 50, 100 µM). All DSF experiments were performed in buffer (10 mM 

tetrabutylammonium phosphate, 1 mM EDTA acid form, 30 mM KCl, 10% DMSO, pH 

7.0). The temperature range for melting was 20-98C with 0.2C steps. Fluorescence was 

monitored using a fluorescence filter that quantifies emission at 520 nm. Data were 

exported and analyzed using Origin software (OriginLab, Northampton, MA). The 

melting temperature (TM) was determined by the location of the peak in first derivative 

plot of the melting curve. 

 

Fluorescent Emission Spectroscopy (FE) 

FE experiments were performed in quadruplicate on a Safire2 96-well microplate 

reader (Tecan US, Morrisville, NC) using the following instrument parameters: excitation 

wavelength 650 nm, emission scanning range 670-850 nm, emission step size 1 nm, 
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excitation bandwidth 9 nm, emission bandwidth 9 nm, integration time 200 µs, gain 200, 

and number of scans 16. For the Job plot experiments, Compound 1 and DNA samples 

were diluted from stock concentration to 20 µM in low salt buffer (10 mM 

tetrabutylammonium phosphate, 1 mM EDTA acid form, 30 mM KCl, 10% DMSO, pH 

7.0). After the DNA has been annealed, Compound 1 and DNA were mixed together in 

different ratios to obtain 24 samples with varying molar fractions of Compound 1 (molar 

fraction = 0.04 to 0.96).  For titration experiments, the final concentration of Compound 

1 was held fixed at 1 µM and DNA were added at different concentrations (log[DNA] = -

9 to -3.5 with 0.25 difference). Titration experiments were conducted either in same low 

salt buffer as the Job plot experiments or in high salt buffer (10 mM tetrabutylammonium 

phosphate, 1 mM EDTA acid form, 200 mM KCl, 10% DMSO, pH 7.0). Data were 

exported and analyzed using Origin. The affinity constant was determined by plotting 

fluorescent reading versus DNA concentration at the max wavelength of the fluorescent 

binding differential spectra. The data were fitted using non-linear regression to the 

following set of equations: 

B=x+LT+(1/KA); 

C=(B-sqrt(B^2-4*x*LT))/2; 

y=(1/LT)*((FI*(LT-C))+(FF*C)); 

where x is the DNA concentration, y is fluorescent reading, LT is total ligand 

concentration, KA is the affinity constant of ligand to the DNA sequence, FI is fluorescent 

reading of Compound 1 in the unbound form, and FF is the fluorescent reading of 

Compound 1 in the bound form. 
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Induced Circular Dichroism Spectroscopy (ICD) 

ICD experiments were performed on a J-810 spectropolarimeter (Jasco, Easton, 

MD) using the following instrument parameters: scanning range 450-725 nm, data pitch 1 

nm, bandwidth 1 nm, Digital Integration Time 8 seconds, scanning speed of 50 nm/min, and 

number of scans 4. ICD experiments were carried out for Compound 1 (50 µM) alone, 

Compound 1 (50 µM) with hTel22 (444 µM), and Compound 1 (50 µM) with cMyc22 

(452 µM). All experiments were carried out in buffer (10 mM tetrabutylammonium 

phosphate, 1 mM EDTA acid form, 30 mM KCl, 10% DMSO, pH 7.0). Data were 

exported and analyzed using Origin. 

 

Thiazole Orange Fluorescent Intercalator Displacement Assay (TO-FID) 

TO-FID experiments were performed in duplicate on a Safire2 96-well microplate 

reader using the following instrument parameters: excitation wavelength 500 nm, 

emission scanning range 510-750 nm, emission step size 1 nm, excitation bandwidth 5 

nm, emission bandwidth 5 nm, integration time 200 µs, gain 125, and number of scans 

16. FID experiments were carried out at the following concentrations: TO (1 µM), DNA 

(2 µM), and Compound 1 (5 µM). The percentage of TO displacement (%FID) was 

calculated from the fluorescent emission intensity at 527 nm using Equation 6: 

%𝐹𝐼𝐷 = (1 −
𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐹0𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
) × 100 Equation 6 

where Fcorrrected is the corrected fluorescence of TO bound to the oligonucleotide in the 

presence of compound and F0corrected is the corrected fluorescence of TO bound to the 

oligonucleotide in the absence of compound. To determine Fcorrrected, the fluorescent 

readings of the well containing TO alone and the well containing Compound 1 with DNA 
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only were subtracted from the fluorescent reading of the well containing TO, DNA, and 

Compound 1. To determine F0corrected, the fluorescent reading of the well contain TO 

alone was subtracted from the sample containing TO and DNA. TO-FID experiments 

involving AT triplex DNA were performed in Buffer A (6 mM K2HPO4, 4 mM KH2PO4, 

15 mM KCl, 1 mM MgCl2, 1% DMSO, pH 7.2). TO-FID experiments involving GC 

triplex DNA were performed in Buffer B (1 mM K2HPO4, 9 mM KH2PO4, 15 mM KCl, 

1% DMSO, pH 6.2). All other TO-FID experiments were performed in Buffer C (6 mM 

K2HPO4, 4 mM KH2PO4, 15 mM KCl, pH 7.2). Data were exported and analyzed using 

Origin. 

 

Cell Culture and MTT Assay 

Cancer cell cultures were grown in Dulbecco’s modified Eagle’s media (DMEM) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, 15 minutes at 65°C) 

and 1% penicillin/streptomycin (10,000 units/ml). Upon passage, cells were plated in 

media in 96-well plates (6,000 cells per well) and incubated overnight before treatment 

with Compound 1. After 72 hours, or when untreated cells reach confluence, MTT was 

added to each well and incubated at 37°C for 4 hours. The cells were lysed with lysis 

buffer (10% sodium lauryl sulfate, 0.01 N HCl) and MTT was solubilized overnight. 

Absorbance at 570 nm (A570) was determined using a Safire2 96-well microplate reader. 

Data were exported and analyzed using Origin. The percentage of cell growth (%Growth) 

was calculated using Equation 7: 

%𝐺𝑟𝑜𝑤𝑡ℎ = (
𝐴𝐶−𝐴0

𝐴𝑈−𝐴0
) × 100 Equation 7 

for positive growth and Equation 8: 
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%𝐺𝑟𝑜𝑤𝑡ℎ = (
𝐴𝐶−𝐴0

𝐴0
) × 100 Equation 8 

for negative growth. A0 is the A570 value obtained from a separate experiment where the 

cells are treated with MTT and lysed after the initial overnight incubation. AC is the A570 

values of wells containing cells treated with Compound 1. AU is the A570 value of wells 

containing untreated cells. 

 

Results and Discussion 

 

Creation of a Representative Binding Site for Virtual Screening of G-Quadruplex-

Interacting Small Molecules 

The identification of new G-quadruplex-interacting small molecules is of great 

interest as these molecules may serve as lead compounds in the development of novel 

anti-cancer drugs (Cuesta et al., 2003, Shay and Wright, 2006, Saretzki, 2003). In 

addition to the traditional binding modes of intercalation and groove binding, small 

molecules can also interact with G-quadruplex structures by end-pasting. In end-pasting, 

the small molecule stacks onto the surface of the terminal G-quartet and interact with 

both the terminal G-quartet and the G-quadruplex loops and flanking structures. Because 

different PQS can adopt different folding topologies and therefore different loops and 

flanking structures, small molecules binding by end-pasting can potentially be sequence 

selective and can discern between G-quadruplex structures from different areas of the 

genome. With few published NMR solution structures of G-quadruplexes with small 

molecule bound by the end-pasting mechanism, the alternate approach utilized in the 

current work involved an in silco end-pasting site introduced between the terminal G-
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quartet and the loop and flanking structures near the 5’ end of a human telomeric PQS 

(Figure 65). While this approach has been used previously to rationalize binding of 

known small molecules to G-quadruplex structures (Read et al., 2001), this is the first 

instance where such of such approach is for the identification of new G-quadruplex 

interacting small molecules. After the completion of all works presented in this study, an 

NMR structure of a human telomeric PQS with telomestatin bound by end-pasting was 

published by Chung et al. (2013). The binding pocket of the published NMR structure 

agreed with the in silico generated structure (Figure 67). The findings suggested that the 

in silico model was suitable for the purpose of screening millions of compound to 

identify new structures. Importantly, the utilized approach demonstrated a strategy for 

circumventing receptor-based virtual screening problems when the target site is not 

entirely available from the known X-ray crystal or NMR solution structures.  
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Figure 67. Overlay of in silico generated end-pasting site (green) with end-pasting site 

reported by NMR (yellow)  
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Identification of Compound 1 as a G-Quadruplex-Interacting Small Molecule 

A high-throughput virtual screening effort using Surflex to dock the “Drug-Like” 

subset of the 2008 ZINC Database into the representative G-quadruplex structure 

identified Compound 1 as a potential G-quadruplex-interacting small molecule (Figure 

65). For an initial assessment of whether Compound 1 interact with G-quadruplexes, 

melting experiments were performed with nine different FRET-labeled PQS from the 

human telomere to determine whether Compound 1 can thermally stabilize known G-

quadruplex structures. Melting experiments were carried out for two PQS from the c-Myc 

promoter region (cMyc22 and Pu27), however, the melting temperatures (TM) for these 

sequences were greater than 90°C, too close to the experimental limit of 100°C to be 

analyzed. The TM of the DNA were observed to increase upon the addition of Compound 

1 (Figure 68). The changes in melting temperature (ΔTM) were calculated by subtracting 

the TM of DNA alone from the TM of the DNA in the presence of Compound 1. At low 

relative concentrations of Compound 1 compared to FRET-labeled DNA (1× to 5×), all 

nine sequences had similar ΔTM. There was a dose-dependent increase in the ΔTM, which 

reached a maximum of 5 to 20°C at a relative concentration of 50× Compound 1. The 

dimer sequence (5°C), which contains 8 runs of guanines and is thought to form two 

contiguous G-quadruplex structures, had a much lower max ΔTM compared to the other 

eight sequences (10-20°C), which only contain 4 runs of guanines each and form 

monomer G-quadruplex structures. The results suggested that the linking of G-

quadruplex structures together in series resulted in a loss of binding sites and could have 

implications for targeting these structures in the telomere which contains a 100-200 bases 

single-stranded segment where multiple contiguous G-quadruplex structures are thought 
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to form. In addition, it should be noted that the salt concentration used in the melting 

experiments (30 mM KCl) is much lower than the physiological salt concentration inside 

the cells (about 140-200 mM). The salt concentration was chosen for practical purpose as 

at higher salt concentrations the TM of the G-quadruplex structures (about 80-85°C) 

would be too close to the experimental limit of 100°C for any meaningful analysis. 

Overall, the data from the melting experiments demonstrated that Compound 1 interacts 

with G-quadruplex structures and the sequence-dependent max ΔTM indicated that 

Compound 1 might have different preferences for different G-quadruplex topologies and 

might be able to distinguish between G-quadruplex structures formed from different PQS.  
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Figure 68. Effect of Compound 1 on the melting temperature of the FRET-labeled human 

telomeric G-quadruplex structures. FRET-labeled DNA sequences used were hTel22 

d[AG3(T2AG3)3], 2GKU d[T2G3(T2AG3)3A], 2HY9 d[A3G3(T2AG3)3A2], 2JSM 

d[TAG3(T2AG3)3], 2JPZ d[(T2AG3)4T2], 2JSL d[TAG3(T2AG3)3T2], 2KF8 

d[G3(T2AG3)3T], 2KKA d[AG3(T2AG3)3T], and hTel-dimer d[(T2AG3)8T2]. Data plotted 

are the average of experiments performed in triplicate. Error bars represent plus/minus 

one standard deviation.  
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Compound 1 Selectively Binds G-quadruplex Structures over Duplex Structures 

To determine if Compound 1 prefers G-quadruplex structures over other DNA 

tertiary structures, melting experiments were performed to assess whether unlabeled 

DNA can compete with the FRET-labeled DNA for binding with Compound 1. The 

addition of unlabeled hTel22 to mixture of FRET-labeled hTel22 and Compound 1 

showed a concentration dependent decrease in ΔTM (Figure 69). At high excess of 

unlabeled DNA compared to Compound 1 (5× and 10×), the unlabeled DNA was able to 

bind all Compound 1 in solution and the TM for the FRET-labeled DNA was similar to 

TM of FRET-labeled DNA in the absence of Compound 1. The findings demonstrated that 

the increase in TM observed with the FRET-labeled PQS in the previous melting 

experiments were from Compound 1 stabilization of the G-quadruplex structure and not 

from Compound 1 stabilization of the FRET-pair formation. Compared with the 

unlabeled hTel22, the addition of unlabeled AT-rich duplex DNA did not affect the TM 

while the addition of unlabeled GC-rich duplex DNA showed only a moderate decrease 

in TM. This observation indicated that Compound 1 preferred G-quadruplex structures 

over duplex structures. In addition, it appears that Compound 1 slightly preferred GC-rich 

DNA over AT-rich DNA, providing a clue that Compound 1 might bind to G-quadruplex 

structures by either intercalating or end-pasting as previous investigations of known 

intercalating agents have demonstrated similar preferences (Müller and Crothers, 1975, 

Müller et al., 1975, Müller and Gautier, 1975). 

  



272 

Figure 69. Effect of unlabeled competitor DNA on the ability of Compound 1 to 

thermally stabilize the FRET-labeled hTel22 G-quadruplex structures. Unlabeled DNA 

sequences used were hTel22 d[AG3(T2AG3)3], AT duplex d[(AT)5C4(AT)5], and GC 

duplex d[(GC)5T4(GC)5]. Data plotted are the average of experiments performed in 

triplicate. Error bars represent plus/minus one standard deviation  
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Determination of Binding Stoichiometry by Job Plot 

The melting experiments with FRET-labeled PQS answered the question “Does 

Compound 1 interact with G-quadruplex structures?” and confirmed that the proposed 

virtual screening approach was successful in identifying a G-quadruplex-interacting small 

molecule. The questions that remained unanswered are “How does Compound 1 interact 

with G-quadruplex structures? How many? How tightly? How so?”  The construction of 

a Job plot using the continuous variation method is a way to answer the question of “How 

many?” For Compound 1 interaction with hTel22 and cMyc22 G-quadruplex structures, 

both Job plots showed a single inflection point indicating that Compound 1 binds to these 

G-quadruplex structures with a single binding mode (Figure 70). For the interaction with 

hTel22 G-quadruplex structures, the inflection point was at 0.53 mol fraction Compound 

1 indicating a binding stoichiometry of approximately one molecule of Compound 1 per 

one G-quadruplex structure. For the interaction with cMyc22 G-quadruplex structures, 

the inflection point was at 0.65 mol fraction Compound 1 indicated a binding 

stoichiometry approximately two molecules of Compound 1 per one G-quadruplex 

structure. The differences observed in stoichiometry for Compound 1 binding to the two 

PQS are related to the specific G-quadruplex topology adopted: “hybrid” form for hTel22 

and “propeller” form for cMyc22. In a recently published NMR solution structure of one 

telomestatin molecule bound by end-pasting to a telomeric G-quadruplex, which contains 

the hTel22 sequence and adopts the “hybrid-1” topology, it was noted that one end of the 

G-quadruplex structure was more open than the other to molecule binding. In the case of 

cMyc22 G-quadruplex, an NMR solution structure with two quinacrine molecules bound 

by end-pasting showed two identical binding sites on either ends of the two terminal G-
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quartets. For this reason, cMyc22 might be able to bind two small molecules compared to 

hTel22, which can only bind one small molecule. Overall, the results of the Job plots 

agreed with previously published high-resolution structures of G-quadruplex bound 

ligands suggesting that Compound 1 might interact with G-quadruplex structures with 

similar mechanism. 
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Figure 70. Job plots of fluorescent emission spectroscopy at different molar fractions of 

Compound 1 showing the interaction of Compound 1 with (A) hTel22 d[AG3(T2AG3)3] 

and (B) cMyc22 d[TGA(G3TG3TA)2A] G-quadruplex structures.  
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Determination of Binding Affinity by Fluorescent Emission Spectroscopy 

With the Job Plot provided the answer to “How many,” titration experiments 

using fluorescent emission spectroscopy were carried out to answer the question “How 

tightly?” One advantage of fluorescent method is the ability to work at lower sample 

concentrations, useful as Compound 1 has low solubility in water. However, a limitation 

is that the compound itself must be fluorescent (Figure 71). From titration experiments, 

whereby DNA is added to a fixed concentration of Compound 1 and the changes in 

fluorescent is measured, the binding affinity, KA, and free energy of binding (by the 

Gibb’s equation, ΔG = -RTlnKA) can be determined. Examination of the salt dependency 

on the observed KA allows for the decomposition of the binding free energy into the 

nonelectrostatic (ΔGnonelectrostatic) and the electrostatic (ΔGelectrostatic) components. The 

titration experiments in low salt (30 mM KCL) showed that fluorescent emission of 

Compound 1 was enhanced in the presence of increasing amounts of DNA (Figure 72, 

left column). The fluorescent differential spectra of Compound 1 (Figure 72, middle 

column), calculated by finding the difference between the fluorescent spectra of 

Compound 1 in the presence of maximum concentration of DNA and the fluorescent 

spectra of Compound 1 in the absence of DNA indicated a maximum increase of 

fluorescent emission at about 690 nm upon binding with DNA. Interaction of Compound 

1 with the hTel22 and the cMyc22 G-quadruplex structures also resulted in a second 

plateau in the 730-760 nm range for the fluorescent differential spectra. The existence of 

the second plateau was more subtle for interaction with the G-rich duplex structures and 

was not present for the interaction with the AT-rich duplex structures. The binding 

affinities of Compound 1 for different nucleic acids structures (Table 12) were 
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determined by non-linear regression fitting of fluorescent emission data of Compound 1 

at 690 nm at increasing amounts of DNA (Figures 72, right column). For the cMyc22 G-

quadruplex structure, which was previously shown to bind two molecules of Compound 

1, the existence of only one transition on the binding isotherms suggested that Compound 

1 has similar affinities for both binding sites. The relative affinities of Compound 1 for 

different nucleic acid structures were, in decreasing affinity: cMyc22 G-quadruplex >> 

AT-rich duplex > hTel22 G-quadruplex >> GC-rich duplex. While the measured 

affinities of Compound 1 appeared to contradict the observation made by melting 

experiments that AT-rich duplex do not bind Compound 1, one possible explanation for 

the inconsistency between the methods is that that since AT-rich duplex melts at very low 

temperature (40°C) compared to hTel22 (65°C), this could have resulted in re-

equilibration of Compound 1 with the FRET-label hTel22 G-quadruplex structures after 

the AT-rich duplex structures have already denatured. Of the four DNA sequences 

examined, the experimental error associated with the cMyc22 sequence was dramatically 

higher compared to the other three sequences. This sequence is known to aggregate at 

higher concentrations (Le et al., 2012), which may affect the binding and fluorescence of 

Compound 1. This resulted in a disagreement between the measured data and the line of 

best fit at higher DNA concentrations and the higher observed experimental error for the 

sequence (Figure 72, bottom right).  
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Figure 71. (A) Absorption spectrum and (B) fluorescent emission and excitation of 

Compound 1 in DMSO.  
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Figure 72. Fluorescent emission titrations at increasing DNA:Compound 1 ratios 

demonstrating the interaction of Compound 1 with DNA structures in low salt (30mM 

KCl) buffer. Left panels are fluorescent emission spectra of Compound 1, middle panels 

are fluorescent emission differential spectra, and right panels are titration curve with best 

fit lines by non-linear regression (red). DNA sequences used were (A) AT duplex 

d[(AT)5C4(AT)5], (B) GC duplex d[(GC)5T4(GC)5], (C) hTel22 d[AG3(T2AG3)3], and (D) 

cMyc22 d[TGA(G3TG3TA)2A].  
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Table 12. Association Constants (KA) Determined from Fluorescent Titration 

Experiments 
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Sequence 

Low Salt Buffer 

(25 mM KCl) 

High Salt Buffer 

(200mM KCl) 

-Zφ 

Kobs 

(M-1) 

ΔGbind 

(kJ) 

ΔGelec 

(kJ) 

Kobs 

(M-1) 

ΔGbind 

(kJ) 

ΔGelec 

(kJ) 

AT duplex 

d[(AT)5C4(AT)5] 

258481 

± 

303450 

-32.97 -13.82 

15294 

± 

1810 

-25.49 -6.34 -1.49 

GC duplex 

d[(GC)5T4(GC)5] 

58537 

± 

6078 

-29.04 -0.86 

49107 

± 

5819 

-28.57 -0.39 -0.09 

hTel22 

d[AG3(T2AG3)3] 

125471 

± 

117750 

-31.05 -3.17 

65650 

± 

5860 

-29.34 -1.45 -0.34 

cMyc22 

d[TGA(G3TG3TA)2A] 

2242692 

± 

726385 

-38.68 N/A N/A N/A N/A N/A 
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The results for titration experiments in high salt buffer (200 mM KCl) also showed an 

enhancement of Compound 1 fluorescent emission in the presence of increasing amounts 

of DNA (Figure 73). Titration experiments were not performed with the cMyc22 

sequence because of significant DNA aggregation at higher salt. For Compound 1 

interaction with the hTel22 G-quadruplex structures, a second plateau was observed in 

the 730-760 nm similar to the low salt experiments. Similarly, the second plateau was 

more subtle for the interaction with G-rich duplex structures and was not seen for 

interaction with AT-rich duplex structures. Compared to the results at lower salt, the 

relative affinities of Compound 1 at high salt were different and displayed a clear 

preference for G-quadruplex over duplex structures: hTel22 G-quadruplex > G-rich 

duplex >> AT-rich duplex. Overall, the measured affinities supported the conclusion that 

Compound 1 is G-quadruplex selective. While the results at low salt indicated some 

preference for AT-rich duplex, the results at higher salt (which is closer to the 

physiological salt concentration of 140 mM KCl) are more relevant.  
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Figure 73. Fluorescent emission titrations at increasing DNA:Compound 1 ratios 

demonstrating the interaction of Compound 1 with DNA structures in high salt (200mM 

KCl) buffer. Left panels are fluorescent emission spectra of Compound 1, middle panels 

are fluorescent emission differential spectra, and right panels are titration curve with best 

fit lines by non-linear regression (red). DNA sequences used were (A) polyAT duplex 

d[(AT)5C4(AT)5], (B) polyGC duplex d[(GC)5T4(GC)5], and (C) hTel22 d[AG3(T2AG3)3]. 

  



288 

  



289 

The number of counterions released upon drug binding can be determined from 

the salt-dependency of the binding constant using Equation 9: 

−𝑍𝜑 =
𝛿𝑙𝑛𝐾

𝛿𝑙𝑛⌊𝐾+⌋
 Equation 9 

where δlnK is the change in the observed binding constant, δln[K+] is the change in the 

salt concentration, Z is the charge of compound 1 (+2), and φ is the fraction of K+ 

associated with each DNA phosphate group. From the number of counterions released, 

the electrostatic component of the binding free energy can be calculated using Equation 

10: 

ΔG𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑍𝜓𝑅𝑇𝑙𝑛⌊𝐾+⌋ Equation 10 

where R is the gas constant and T is the absolute temperature. With the AT-duplex 

structures, electrostatic interaction contributed significantly to Compound 1 binding 

(Table 12), accounted for 41% (-13.82/-32.97)
 of the free energy of binding (ΔG) at low salt 

and 25% (-6.34/-25.49) of ΔG at high salt. With the hTel22 G-quadruplex structures, 

electrostatic interaction played a lesser role in Compound 1 binding, 10% (-3.17/-31.05) at 

low salt and 5% (-1.45/-29.34) at high salt. With the GC-duplex structures, electrostatic 

interaction was not a major factor in Compound 1 binding, 3% (-0.86/-29.04) at low salt and 

1% (-0.39/-28.57) at high salt. The different levels of contribution of electrostatic interaction 

to the overall binding free energy suggested that Compound 1 might bind to different 

DNA structures with different binding modes. For example, Compound 1 might bind to 

AT-duplex structures by groove binding where electrostatic interaction might be more 

predominant (i.e. between the negatively charged DNA phosphate backbone and the 

positively charged piperazine side chain). For binding with the GC-duplex structures, 

Compound 1 might be binding by intercalation where nonelectrostatic interaction is more 
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of a factor (i.e. π-π stacking interaction between the GC base pair and the aromatic 

naphthophenoxazine core). For binding with hTel22 G-quadruplex structures, 

electrostatic interaction played a bigger role than with GC-duplex structures but not as 

much of a factor as the AT-duplex structures. The binding mode of end-pasting is 

consistent with the observed free energy decomposition as it is the binding mode that 

allows for Compound 1 to interact with the G-quadruplex structures with both 

nonelectrostatic (π-π stacking between the aromatic core and the terminal G-tetrad) and 

electrostatic interaction (between the positively charged side chain and the negatively 

charged phosphate groups of the loop structures). 

 

Determination of Binding Mechanism by Induced CD Spectroscopy 

Titration experiments began to answer the question “How so? By what binding 

mode does Compound 1 interact with nucleic acids?” Circular dichroism (CD) 

spectroscopy experiments were carried out to provide further evidence that Compound 1 

interact with G-quadruplex structures by the end-pasting mechanism. For small 

molecules, which typically lack a CD signal, binding to nucleic acids can result in an 

induced CD (ICD) effect whose magnitude and sign would allow for the classification of 

the binding mode as either groove binding (a positive signal) or intercalation/end-pasting 

(a negative signal) (Garbett et al., 2007). Two negative ICD peaks were observed at 625 

nm and 675 nm for Compound 1 interaction with hTel22 and cMyc22 G-quadruplex 

structures (Figure 74). The locations of the ICD peaks were consistent with the two 

absorbance peaks of Compound 1 in the area (Figure 71). Combined with previous 
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observations, the induced CD from Compound 1 interaction with hTel22 and cMyc22 G-

quadruplex structures showed that Compound 1 binds by the end-pasting mechanism. 
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Figure 74. Induced CD spectroscopy at increasing DNA:Compound 1 ratios showing the 

interaction of Compound 1 with hTel22 d[AG3(T2AG3)3] and cMyc22 

d[TGA(G3TG3TA)2A] G-quadruplex structures.  
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Displacement of Thiazole Orange Binding to Nucleic Acids by Compound 1 

TO-FID experiments were performed to provide additional evidence that 

Compound 1 interacts with G-quadruplex structures by the end-pasting mechanism. 

Thiazole orange (TO) is believed to bind to the hTel22 by the end-pasting mechanism 

(Monchaud et al., 2008). When bound to DNA, the quantum yield of TO increases 

significantly resulting in an observed increase in fluorescence at 570 nm. A quenching of 

TO fluorescence upon addition of Compound 1 indicates the successful displacement of 

TO binding by Compound 1 and confirms both the binding of Compound 1 to the G-

quadruplex structures and the probable binding site. Compound 1 was able to 

successfully displace TO binding from the hTel22 G-quadruplex structures as well as 

other nucleic acids structures examined (Figure 75). The maximum displacement was 

observed for Compound 1 interaction with cMyc22 G-quadruplex structures (60%) while 

the minimum displacement was observed for Compound 1 interaction with the GC-

duplex structures (20%). The relative activities of Compound 1 by TO-FID were in 

agreement with previous titration experiments performed in low salt buffer: cMyc22 G-

quadruplex > AT-triplex > GC triplex > AT-duplex > hTel22 G-quadruplex > hTel 

duplex > ALT duplex > GC Duplex. For the hTel22 G-quadruplex structures, previous 

studies have suggested that TO bind by the end-pasting mechanism (Monchaud et al., 

2006, Monchaud et al., 2008). The displacement of TO by Compound 1 suggested that 

Compound 1 also binds by the same end-pasting mechanism. For the other nucleic acid 

structures, the binding mechanism of TO is unknown, however, the displacement of TO 

binding to these structures by Compound 1 indicated that Compound 1 interacts with 

nucleic acid structures at the same binding site as TO. Overall, the TO-FID data were 
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consistent with previous observations and supported the hypothesis that Compound 1 

likely interacted with G-quadruplex structures by end-pasting. In addition, it is important 

to note the high activity observed with AT-triplex and GC-triplex structures, which 

suggest another possible application for Compound 1 as small molecules that stabilize 

triplex DNA structures might have therapeutic values (Holt et al., 2009).  
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Figure 75. TO-FID results showing the displacement of thiazole orange (TO) from 

different DNA structures by Compound 1. DNA sequences used were (A) AT duplex 

d[(AT)4C4(AT)4], (B) GC duplex d[(GC)4T4(GC)4], (C) ALT duplex d[A8C4T8], (D) H-

Tel duplex d[G3T2AG3T4C3TA2C3], (E) AT triplex d[A8C4T8C4T8], (F) GC triplex 

d[C8T4G8T4C8], (G) hTel22 d[AG3(T2AG3)3], and (H) cMyc22 d[TGA(G3TG3TA)2A]. 

Data plotted are the average of experiments in duplicate. Error bars represent the spread 

of the data.  
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Molecular Docking of Compound 1 to Hybrid-1 and Hybrid-2 Structures 

The biophysical findings demonstrated that Compound 1 interacts with G-

quadruplex structures by the end-pasting mechanism. As such, several models of 

Compound 1 bound to the end-pasting sites of the hTel22 G-quadruplex structures were 

generated to visualize the interaction. In solution, there are two predominant topologies 

for the hTel22 G-quadruplex structures, the “hybrid-1” and the “hybrid-2 forms (Dai et 

al., 2007a, Dai et al., 2007b). These two topologies each have two external G-quartet 

end-pasting sites for a total of four possible sites. The top poses of Compound 1 as 

determined by two docking software, Autodock and Surflex, are shown (Figure 76) with 

the resulting scores shown in Table 13. The Autodock and Surflex scores observed for 

Compound 1 were comparable. A closer view of the top poses without the nucleic acid 

present (Figure 77) revealed that the top ranked poses for Surflex and Autodock appear to 

have a higher amount of overlap for the two Hybrid 1 end-pasting sites compared to 

Surflex and Autodock top ranked poses for the end-pasting sites of Hybrid-2. In all four 

models, there were general agreement between the two docking software with regard to 

the stacking of the aromatic core of Compound 1 onto the terminal G-quartets. In 

contrast, with regard to the interaction of the side chain with the loops and groove 

structures, the two docking software did not agree. The models suggested that Compound 

1 can interact with the various loops and grooves to different extents. It is important to 

note, however, that while the two software disagree on the specific loops and grooves 

interaction, the models generated from both software indicated that loops, grooves, and 

terminal G-quartets interactions are necessary to stabilize Compound 1 binding to G-

quadruplex structures. These findings are supported by previous biophysical 
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measurements which demonstrated both the contribution of electrostatic and 

nonelectrostatic interactions to Compound 1 binding. 
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Figure 76. The top ranked poses for Compound 1 docked using Surflex (Red) and 

Autodock (Blue) to the following G-quadruplex nucleic acid structures: (A) hybrid-1 

end-paste site 1, (B) hybrid-1 end-paste site 2, (C) hybrid-2 end-paste site 1, and (D) 

hybrid-2 end-paste site 2. The nucleic acid structures are shown in dark grey except for 

the small molecule interacting terminal G-quartets, which are shown in green. 
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Table 13. The Scores for the Top-Ranked Poses from Autodock or Surflex  
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G-Quadruplex Structure 

Surflex Score 

(-log(Kd)) 

Autodock Score 

(kcal/mol) 

Hybrid-1 End-Paste Site 1 11.36 -13.39 

Hybrid-1 End-Paste Site 2 12.93 -14.67 

Hybrid-2 End Paste Site 1 14.12 -14.29 

Hybrid-2 End Paste Site 2 15.13 -14.98 
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Figure 77. The top ranked poses for Compound 1 docked using Surflex (Red) and 

Autodock (Blue) to the following G-quadruplex nucleic acid structures: (A) hybrid-1 

end-paste site 1, (B) hybrid-1 end-paste site 2, (C) hybrid-2 end-paste site 1, and (D) 

hybrid-2 end-paste site 2.  
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Inhibition of Cancer Cells Growth by Compound 1 Treatment 

With the initial discovery of Compound 1 and subsequent biophysical testing 

which demonstrated that Compound 1 binds to G-quadruplex structures by the end-

pasting mechanism, the discussion on Compound 1 is concluded with an investigation of 

the effect of Compound 1 on cancer cells. The results of MTT assays showed that 

Compound 1 is cytotoxic to cancer cells (Figure 78). The MTT results were in agreement 

with the results of the NCI-60 DTP Human Tumor Cell Line Screen (Figures 79 and 80). 

In general, Compound 1 was able to inhibit the growth of all 60 cancer cell lines at the 

concentrations tested. The activity of Compound 1 in inhibiting growth was less active in 

renal cancer cell lines and more in leukemia, colon, melanoma, ovarian, and prostate 

cancer cell lines. Taken together with the previous biophysical experiments, the results of 

the cell-based experiments suggest that Compound 1 might be able to serve as a lead 

compound in the development of a novel anti-cancer therapeutics. 
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Figure 78. Results of MTT assay showing the effect of Compound 1 on cancer cell 

proliferation.  
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Figure 79. Summary of dose-response experiments showing the effect of Compound 1 on 

human cancer cells. The experiments were conducted as part of the NCI-60 DTP Human 

Tumor Cell Line Screen.  
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Figure 80. Mean graphs comparing the activity of Compound 1 in various human cancer 

cells. The experiments were conducted as part of the NCI-60 DTP Human Tumor Cell 

Line Screen.  
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Conclusion 

 

This study reported a virtual screening approach that was successful in identifying 

Compound 1, a new G-quadruplex-interacting small molecule. Compared to traditional 

drug discovery methods where chemical libraries, containing only thousands of 

compounds, are screened in an expensive and labor-intensive process, in silico virtual 

screening allows for the examination of larger libraries consisted of millions of 

compounds capable of a more extensive exploration of theoretical chemical space in a 

rapid and inexpensive manner. Previous virtual screening studies with libraries 

containing only 103-105 small molecules (Ma et al., 2008, Cosconati et al., 2009, Dailey 

et al., 2009, Li et al., 2009, Wu et al., 2009, Lee et al., 2010, Chen et al., 2011, Holt et 

al., 2011, Trotta et al., 2011, Alcaro et al., 2013, Castillo-Gonzalez et al., 2013, Kar et 

al., 2012, Ma et al., 2012a, Ma et al., 2012b) have not even begin to reach the potential of 

the technique. In the current work, 6.6 million compounds were investigated. This was 

one of the largest virtual screening effort to date. The selective binding of Compound 1 to 

G-quadruplex structures was validated by extensive biophysical measurements using 

fluorescent and CD spectroscopy. Four in silico molecular models were developed that 

demonstrated the interaction of the newly discovered Compound 1 with the G-quartet and 

loop regions of the end-pasting sites present in the hTel22 G-quadruplex structures,. 

Furthermore, Compound 1 was tested in cancer cells and showed good growth inhibitory 

properties. These results supported that an integrated platform of in silico virtual 

screening and in vitro biophysical and biological validation can be used to identify new 

lead compounds that have G-quadruplex binding activity. 
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CHAPTER V 

CONCLUSION 

 

In the current dissertation work, we presented three experimental approaches for 

investigating G-quadruplex structures. Our experimental approaches differ from 

approaches commonly used by others in that our methods do not significantly perturb the 

equilibrium of G-quadruplex structures in solution. Current approaches to study G-

quadruplex structures often employ sequence modifications or changes to experimental 

conditions to select for a single conformation for structural study. Such strategies for 

resolving the polymorphism of G-quadruplex structures can result in drastic and 

unpredictable perturbation of the system. While the untested assumption is that these 

methods enrich for a member of the ensemble of species originally formed by the parent 

sequence. Such a perturbation can shift the equilibrium to favor species that might not 

actually form in vitro or in vivo and can have significant implications on what structure 

can be claimed as “biologically relevant.” 

In the first experimental approach, we employed size exclusion chromatography 

(SEC) to separate the G-quadruplex structures formed from the Pu27 c-Myc promoter 

sequence. The significance of c-Myc is its overexpression in many types of cancer 

(Nesbit et al., 1999, Nilsson and Cleveland, 2003). Modulation of c-Myc expression 

through small molecule interaction with G-quadruplex structures might be an effective 

strategy for anti-cancer therapy. Examination by SEC revealed that the Pu27 
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sequence exists as a heterogeneous mixture of monomer and higher-order G-quadruplex 

structures. We observed that the distribution of G-quadruplex species in solution is highly 

sensitive to changes in experimental conditions including variations in buffer 

composition, salt concentration, DNA concentration, annealing procedure and 

temperature, and dialysis protocol. Our findings emphasized the need for accurate and 

detailed reporting of experimental procedures in studies investigating G-quadruplex 

structures. We investigated the interaction of the porphyrin TMPyP4 with Pu27 sequence. 

TMPyP4 binding has been shown previously to repress c-Myc expression in a luciferase 

assay. The binding mechanism of TMPyP4 to c-Myc and other G-quadruplexes remains 

controversial (Anantha et al., 1998, Haq et al., 1999, Seenisamy et al., 2004, Freyer et 

al., 2007, Wei et al., 2009). We observed that in the mixture of G-quadruplex structures, 

TMPyp4 bound preferentially to the higher-order G-quadruplex species. Our findings 

emphasized that a proper analysis of small molecule binding to a G-quadruplex-forming 

oligonucleotide must also include an investigation of the effect of the G-quadruplex-

forming oligonucleotides (QFOs) structural polymorphism on its interaction with small 

molecule inhibitors. Lastly, we compared our observation of the Pu27 sequence with four 

modified sequences reported in the literature. We observed that while the parent Pu27 

sequence formed aggregates in solution, the modified sequences did not. The difference 

in behaviors between the parent and modified sequences suggested a fundamental 

difference in structures and can have implication on the relevance of the modified 

sequence and findings of such a study. Overall, our investigation added to the current 

knowledge on the c-Myc G-quadruplex structure as well as the knowledge on G-

quadruplex structural polymorphism. 
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In our second experimental approach, we employed hydrodynamic bead modeling 

(HBM) to study the structural polymorphism associated with G-quadruplex formation by 

the hTel22 human telomere sequence. G-quadruplex formation in the telomere is of 

significance as stabilization of these structures by small molecules have been shown to 

inhibit telomerase (Riou et al., 2002, Cuesta et al., 2003, De Cian et al., 2008, Lopes et 

al., 2011, Rodriguez et al., 2012). With the activation of telomerase in more than 90% of 

all cancers (Shay and Bacchetti, 1997), G-quadruplex-based anti-telomerase therapy is an 

attractive strategy for the development of anti-cancer therapeutics. To sample G-

quadruplex structures for examination by HBM, we carried out microsecond timescale 

molecular dynamics simulations for ten different telomeric G-quadruplex forming 

oligonucleotides and sampled 100,000 total G-quadruplex structures. This represents one 

of the most extensive sampling of G-quadruplex structures by MD. We reported the 

successful parameterization of HYDROPRO (a program to calculate hydrodynamic 

properties using HBM) with G-quadruplex specific parameters. Using our calibrated 

parameters, we calculated the hydrodynamic properties for ten different variants of the 

hTel22 sequence. Consistent with a previous report (Li et al., 2005), we showed that the 

hydrodynamic property of the crystal structure of hTel22 did not agree with the solution 

properties. We clustered the sample structures by calculated sedimentation coefficients 

and showed that even on the limited timescale of sampling (1 µs), the QFO still exists as 

a heterogeneous mixture of G-quadruplex structures. We noted a correlation between 

sedimentation, molecular shapes, water binding, and energetic stability. G-quadruplex 

structures that sediment at higher rates are more compact in shape, bound less water, and 

are lower in energy. As hydration plays an important role in ligand binding and 
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recognition we postulated that hydrodynamic properties can be used in the process of 

drug design to identify conformations that could interact more favorably with small-

molecule inhibitors. To conclude our discussion of the telomeric G-quadruplex, we 

carried out grid mappings of water and ions surrounding the G-quadruplex structures and 

identified sites of ordered water binding similar to the classic “spine of hydration” 

observed for some duplex structures and also sites of external ions binding that might 

play a role in supporting the G-quadruplex structures. The findings, thus, demonstrated 

that molecular dynamics and hydrodynamic bead modeling can be used to predict the 

structures for a novel putative G-quadruplex-forming sequence. Overall, our investigation 

added to the current knowledge regarding the polymorphism of telomeric G-quadruplex 

and the applications of hydrodynamic and hydrodynamic bead modeling. 

In our third experimental approach, we presented a screening platform that was 

successful in identify a new G-quadruplex-interacting small molecule. As we have 

previously discussed, there is interest in identifying new G-quadruplex-interacting small 

molecules as these might serve as lead compounds in the development of a novel class of 

anti-cancer therapeutics. The approach of using receptor-based drug design to develop 

new G-quadruplex-interacting small molecules is hindered by the lack of high-resolution 

structures of relevant QFOs with small molecules bound to it. In our approach, we 

presented an in silico generated model of an end-pasting site that was used for virtual 

screening. We identified Compound 1 as a potential G-quadruplex-interacting small 

molecule. The Compound 1 binding was initially confirmed using a thermal denaturation 

analysis of FRET-labeled G-quadruplex DNA. We employed fluorescent and circular 

dichroism spectroscopy to demonstrate that Compound 1 binds to G-quadruplex 
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structures by the same end-pasting mechanism identified in the virtual screen. 

Additionally, we submitted Compound 1 for testing with the NCI-60 DTP Human Tumor 

Cell Line Screen and reported that Compound 1 is cytotoxic to cancer cells. Overall, our 

findings suggested that Compound 1 might be suitable as a lead compound for 

development of G-quadruplex-based small molecule inhibitor. 

In conclusion, the experimental approaches highlighted in this dissertation work 

represent a new paradigm for drug design. Current approach to rational drug design 

involves firstly the determination of a G-quadruplex structure for a given putative G-

quadruplex-forming sequence using structural techniques including both low-resolution 

methods such as CD spectroscopy and high-resolution methods such as X-ray 

crystallography or NMR spectroscopy (Figure 81). From the structure, in vitro screenings 

are carried out on chemical libraries to identify possible hits, which are then validated by 

biophysical measurements such as spectroscopy and calorimetry. Preclinical testing (cell 

culture studies, animal studies, pharmacodynamics and pharmacokinetic determination) 

are carried out to characterize biological functions before clinical trials and the 

emergence of a new drug. As we demonstrated in Chapter II, the progression from a PQS 

to G-quadruplex structures can be severely hindered by the fact that the structural 

outcomes of G-quadruplex formation are highly polymorphic. In addition, this structural 

polymorphism can also affect the interpretation of biophysical studies of small molecules 

interaction with such sequences. As such, the current approach to drug discovery is not 

appropriate for G-quadruplex structures. We proposed a model-based approach to drug 

design (Figure 82) which used molecular modeling as a mean to validate pass 

experimental results and to guide future experiment designs. The experimental 
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approaches we presented are not limited in their applications either. The first and second 

approaches can be useful in investigating new QFOs. We have adapted the first approach 

to characterize a putative G-quadruplex-forming sequence from the Zeb1 promoter. In 

our findings, we were successful in separating the monomer G-quadruplex species from 

the higher-order species. Furthermore, circular dichroism spectroscopy of the monomer 

G-quadruplex showed a signal characteristic of antiparallel G-quadruplex formation 

while the higher-order sample showed a signal characteristic of parallel G-quadruplex 

formation (Le et al., unpublished data). In addition to its application in characterizing the 

structures of a QFO, the second approach can also be used to predict the structure of a 

new QFO. We have used this approach to predict structures for human telomere 

sequences forming two, three, four, and eight contiguous G-quadruplexes. Recently, we 

employed this approach to predict a structure for G-quadruplex formation in the hTERT 

promoter. In addition, we have adapted the second approach to be used with a software 

being developed to generate three dimensional G-quadruplex molecular models of 

guanine-rich DNA for hydrodynamic bead modeling. Lastly, we have adapted the 

biophysical experiments presented in the third approach into a validation platform to 

screen four large compound sets from NCI. Our screening was able to identify several 

known anti-cancer drugs as G-quadruplex-interacting agents. Overall, our findings 

showed that the approaches we presented can be used for the successful study of G-

quadruplex structures. 
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Figure 81. Current strategy for the identifications of G-quadruplex-binding drugs 
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Figure 82. A model-based approach to G-quadruplex drug discovery. 
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