
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

6-2007

A modified greedy algorithm for the task assignment problem. A modified greedy algorithm for the task assignment problem.

Allison M. Douglas
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Douglas, Allison M., "A modified greedy algorithm for the task assignment problem." (2007). Electronic
Theses and Dissertations. Paper 369.
https://doi.org/10.18297/etd/369

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143830848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/369
mailto:thinkir@louisville.edu

A MODIFIED GREEDY ALGORITHM FOR THE TASK ASSIGNMENT PROBLEM

By

Allison M. Douglas

B.S., University of Louisville, 2006

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

in Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Industrial Engineering

June 2007

 ii

A MODIFIED GREEDY ALGORITHM FOR THE TASK ASSIGNMENT PROBLEM

Submitted by: __________________________________

Allison M. Douglas

(Date)

By the Following Reading and Examination Committee:

Dr. Gail W. Depuy, Thesis Director

Dr. John S. Usher

Dr. Eric C Rouchka

 iii

ACKNOWLEDGEMENTS

 Thank you to Marla Fredrick, Barbara Strahley and Randy Walker at Crane Division,

Naval Surface Warfare Center (NSWC) for their assistance providing real-world information

regarding the task allocation problem and the sample data sets used for analysis in this study.

 I would also like to acknowledge the members of my thesis committee, Dr. J. S.

Usher and Dr. E. C. Rouchka for their contribution. A special thank you to my thesis

advisor, Dr. G. W. Depuy for her guidance.

 iv

ABSTRACT

 Assigning workers to tasks in an efficient and cost effective manner is a problem that

nearly every company faces. This task assignment problem can be very time consuming to

solve optimally. This difficulty increases as problem size increases. Most companies are

large enough that it isn’t feasible to find an optimal assignment; therefore a good heuristic

method is needed. This project involved creating a new heuristic to solve this problem by

combining the Greedy Algorithm with the Meta-RaPS method. The Greedy Algorithm is a

near-sighted assignment procedure that chooses the best assignment at each step until a full

solution is found. Although the Greedy Algorithm finds a good solution for small to medium

sized problems, introducing randomness using the meta-heuristic Meta-RaPS results in a

better solution. The new heuristic runs 5000 iterations and reports the best solution. The

final Excel® VBA program solves a small sized problem in less than one minute, and is

within 10% of the optimal solution, making it a good alternative to time consuming manual

assignments. Although larger, more realistic problems will take longer to solve, good

solutions will be available in a fraction of the time compared to solving them optimally.

 v

TABLE OF CONTENTS

APPROVAL PAGE.. ii

ACKNOWLEDGEMENTS... iii

TABLE OF CONTENTS ..v

LIST OF TABLES... vi

LIST OF FIGURES .. vii

I. INTRODUCTION.. 8

II. PROBLEM DESCRIPTION .. 10

III. BACKGROUND.. 15

IV. WORKERSKILLS ASSIGNMENT PROCEDURE.. 17

V. RESULTS... 24

VI. CONCLUSIONS AND RECOMMENDATIONS... 32

REFERENCES ..35

APPENDIX A – TEST DATASET 1..36

APPENDIX B – TEST DATASET 2 ..39

APPENDIX C – TEST DATASET 3 ..42

APPENDIX D – CODE FOR CREATING INPUT SHEET...45

APPENDIX E – SCREENSHOTS OF INPUT SHEET..48

APPENDIX F – CODE FOR MODIFIED GREEDY ALGORITHM....................................51

APPENDIX G – SCREENSHOTS OF RESULTS AND OUTPUT SHEETS63

VITA..65

 vi

LIST OF TABLES

TABLE 1... 25

TABLE 2... 32

TABLE 3... 33

 vii

LIST OF FIGURES

FIGURE 1 - Example of the Task Assignment Problem.. 11

FIGURE 2 - Pseudocode for the General Greedy Algorithm... 17

FIGURE 3 - Problem Specific Pseudocode for Greedy Algorithm.. 18

FIGURE 4 - Pseudocode for one iteration of basic Meta-RaPS procedure............................ 21

FIGURE 5 - Problem Specific Flowchart for Greedy Algorithm... 22

FIGURE 6 - Pseudocode for Modified Greedy Algorithm with Meta-RaPS 23

FIGURE 7 - Effect of Percent Priority and Percent Restriction on Best Total Cost 28

FIGURE 8 - Effect of Percent Priority and Percent Restriction on Average Total Cost........ 29

FIGURE 9- Effect of Percent Priority and Percent Restriction on Standard Deviation 29

FIGURE 10 - 2D Representations of Figures 7, 8 and 9 .. 30

8

I. INTRODUCTION

 The problem of assigning workers to tasks based on worker skill competencies

and task skill requirements is one that nearly every company faces. Whether the

company wants to efficiently assign workers to tasks for ongoing production or for a

series of smaller projects, having a good method for making these assignments in a

manner that minimizes cost is extremely important.

 It is likely that if management is not using a consistent method to determine

worker to task assignments, it will not be able to develop a low-cost assignment or even a

feasible assignment at all. The assignment chosen by management may create a situation

where the work cannot be completed by the deadline if careful attention is not paid to the

time required to train each worker as well as worker capacities. Additionally, if the

project is on a tight budget, a bad assignment can put the cost-effectiveness of the entire

project into jeopardy. As the problem size grows larger, these negative effects are

exacerbated. It is therefore obvious that a consistent method for worker to task

allocations is needed.

 Software tools are currently available to help companies make better worker to

task assignments. These tools, however, do not incorporate means to deal with situations

where further training of employees is necessary in order to complete a task. For cases

like this, it must be determined which workers to train in which tasks in order to develop

the lowest total training cost for the assignment. Both time to train and cost to train must

be incorporated. To accomplish this, Depuy et al. 2006 developed a math model that

includes these two variables when determining optimum worker to task assignments.

That model is discussed in detail in Section II, Problem Description.

9

 It is typically more cost effective for companies to train their current employees

to meet task competency requirements as opposed to firing workers with inadequate skill

competencies and hiring those with more skills. Therefore, the motivation for this project

is to change the current workforce to meet the project requirements. This will allow

companies to begin planning for the future instead of simply making assignments for the

present.

 In addition, the results show management which skills to hold training sessions

for, and how many employees need that training. Anticipating future training needs and

developing employees to meet their personal career goals will be easier. Management

can fit employees into training sessions that are already in place to meet employee career

development interests.

10

II. PROBLEM DESCRIPTION

 The following terms and definitions are necessary in order to best understand this

problem.

• Project – a combination of a few or many tasks that results in the final product or

service (for example assembling the frame of an automobile or producing the

automobile in its entirety)

• Task – one specific job to be completed by an employee (such as welding two pieces

of metal together)

• Skill – a competency requirement in order to complete the job (for instance welding)

• Skill Level – the level of competency of a certain skill held by a worker or required

by a task (such as novice, proficient, or expert in welding)

 When there is a gap between a worker’s current skill level and the required skill

level, additional training is necessary. Figure 1 illustrates those skills gaps for an

example task assignment problem. As mentioned earlier, Depuy et al. 2006 developed a

math model that finds the optimal assignment for the Crane Division, Naval Surface

Warfare Center (NSWC). This model assumes that once trained in a specific skill, the

worker does not need to be retrained in order to complete a different task requiring that

skill. The objective function is to minimize the total training cost.

11

• Employee 1

– Skill 27: skill level = 5

– Skill 43: skill level = 4

– Skill 90: skill level = 4

– Skill 187: skill level = 5

• Employee 2

– Skill 8: skill level = 2

– Skill 27: skill level = 1

– Skill 145: skill level = 2

•

• Employee N

• Task 1

– Skill 43: skill level = 4

– Skill 90: skill level = 3

– Skill 187: skill level = 4

• Task 2

– Skill 27: skill level = 3

– Skill 90: skill level = 5

• Task 3

– Skill 27: skill level = 3

– Skill 145: skill level = 3

•

• Task M

Skills G
ap =1

Skills Gap=3

Skills Gap=0

FIGURE 1 - Example of the Task Assignment Problem

 The Depuy et al. 2006 model is as follows:

Parameters:

{j} = set of skills needed to perform task j

Sik = worker i’s skill level for skill k

Rjk = required skill level for task j’s skill k

Tj = length (# hrs) of task j

Ai = capacity (# hrs) of worker i

Cklm = cost associated with raising a worker’s skill level on skill k from level l to level m

Eklm = time required (# hrs) to raise a worker’s skill level on skill k from level l to level m

Decision Variables:

Xij =

12

mikS ik
Z =

Nik =

Objective Function:

Minimize Training Cost Minimize ∑∑∑
i k m

mikSmkS ikik
ZC (1)

Constraints:

Determine Needed Training ijjk

Sm

mikSikik XRmZNS
ik

ik
≥+ ∑

>

5

 }{,, jkji ∈∀ (2)

 1
5

=+ ∑
> ik

ik

Sm

mikSik ZN ki,∀ (3)

All tasks assigned ∑ =

i

ij
X 1 j∀ (4)

Worker Capacity ∑ ∑∑ ≤+

j

i

k m

mikSmkSijj AZEXT
ikik

 i∀ (5)

Binary Variables }1,0{},1,0{},1,0{ ∈∈∈ ikmikSij NZX
ik

 mkji ,,,∀ (6)

 Equation 1 is the objective function minimizing the total training cost. Additional

training required in order for a worker to be competent enough to complete a particular

task is calculated in constraints 2 and 3. All of skills of the task are included when

calculating the training needs for the worker. The variable Nik represents when a worker

has met the skill level requirement that the task requires and therefore does not need

additional training. Next, the model ensures that every task is assigned, but only to one

worker (constraints 4). Finally, the total workload for a worker, including training time

and task time, must be within the capacity of the worker. This is ensured through

constraints 5.

13

 Although this model can solve small problems in an acceptable amount of time,

as the problem size increases, run-time also increases to an unsatisfactory level. For

example, solving a 9 worker, 13 task and 11 skill problem optimally required 18 hours

(see dataset in Appendix A). By utilizing a heuristic, a solution can be found in a

reasonable timeframe, but the benefit of an optimal solution must be sacrificed. As an

extension of the work completed by Depuy et al., this project focuses on developing a

heuristic that will produce a good solution, although likely to be suboptimal, in a

reasonable amount of time. The Greedy Algorithm meets the needs of this problem by

finding a good solution quickly. For the 9 worker, 13 task and 11 skill problem

mentioned above, the Greedy Algorithm finds a solution in under 1 minute.

 The downside of the Greedy Algorithm is that it is deterministic. In theory,

heuristics such as the Greedy Algorithm have the potential to find the optimal answer, but

it is likely that they will be trapped in a local minimum. Modifying the algorithm to

produce more than one assignment would allow for the best assignment from a group of

possibilities to be chosen, thereby increasing the likelihood that the global optimum will

be found. Multiple techniques are available to force the Greedy Algorithm to produce

more than one result. These include Genetic Algorithms, Simulated Annealing, Tabu

Search and Neural Networks. Each of are discussed in Section III, Background.

 This method also forces the assignment of at least one task to each employee,

even if that means paying a worker to receive additional training when a more skilled

worker has the capacity to complete that task; ensuring that even those employees with

the least training and experience will have an opportunity to receive additional training

and gain more work experience. In addition, more skilled workers are typically those

14

who are older and have been with the company longer, and are therefore closer to

retirement. If companies only assign tasks to highly skilled workers, they will eventually

run into problems when those employees retire. To prepare for the future, companies

must have a plan to train newer employees so they will be prepared when skilled workers

retire.

15

III. BACKGROUND

 The task assignment problem has been approached from various perspectives.

Several researchers have investigated academic exam and proctor scheduling , while

others have explored the task assignment problem as it relates to the non-academic work-

world, such as telephone operators and construction work.

A. Academic Applications

 Scheduling final examinations is a problem that universities face each term.

Carter, LaPorte and Chinneck (1994) developed EXAMINE, a PC based scheduling

system for exams which allows all examinations to take place in a limited time period,

without conflicts, while satisfying room availability constraints. The aim of the authors

was to develop a heuristic algorithm that was robust, flexible, quick and user-friendly.

The algorithm progressively assigns examinations to periods while optimizing the

objective function. Once a feasible schedule is created, the algorithm runs a post

optimization phase.

 Assigning proctors to the final examinations was approached by Awad and

Chinneck (2000). Due to proctor training, preferences, and other constraints, finding a

good feasible solution can be problematic. To replace time consuming manual

assignments, a computer based system was developed. Assignments are based on a

combination of problem-specific heuristics and a genetic-algorithm structure. The

authors used Microsoft Access® and Visual Basic® to create an interface and database

system for making the assignments.

16

B. Non-academic Applications

 In 1997, Thompson developed a process for assigning telephone operators to

shifts at New Brunswick Telephone Company. The specialized shift assignment heuristic

(SSAH) assigns shifts to employees based on seniority until a full feasible schedule is

created. Then an improvement procedure tests all two-way shift swaps between

employee pairs, and makes changes when a more cost effective schedule is found. The

author utilized spreadsheet macros incorporated with a stand-alone procedure to create an

easy to use PC based technique.

 The problem of assigning managers to construction projects at Heery

International was approached using a spreadsheet optimization technique (LeBlanc et al.,

2000). This method is effective for problems up to 114 projects. This method is easy to

modify as new projects come and new managers are hired, and as projects are completed

and managers resign. Although this research was specific to assigning managers to

construction projects, it is applicable for assigning managers to projects in any

organization.

17

IV. WORKERSKILLS ASSIGNMENT PROCEDURE

A. Greedy Algorithm

 A Greedy Algorithm essentially makes the best, near-sighted decision at each

stage of the problem in hopes of finding a good solution. In this case, the algorithm will

choose the lowest cost worker to task allocation as the first assignment, then choose the

next lowest cost worker to task assignment, and so on until all tasks have been assigned.

After each assignment, the worker skill set is updated based on any training that he or she

may have received (See Figure 2). It is possible that choosing these local minimums will

result in the global minimum training cost, but it is more likely that this method alone

will not be optimal.

Find training cost for each worker to complete each task

Do Until all tasks assigned

 Find worker to task assignment with lowest training cost

 Assign task to worker

 Update worker skill set based on assignment

Loop

Calculate and print total training cost

FIGURE 2 - Pseudocode for the General Greedy Algorithm

 The Greedy Algorithm shown in Figure 2 does not include the requirement that at

least one task is assigned to each worker and that management is changing the current

workforce to meet project needs instead of hiring new workers with more skill

competencies. This is accomplished through two loops in the program. The first loop is

a slight modification of the Greedy Algorithm that will eliminate a worker from the list of

available workers once he or she has been assigned a task. After updating all of the

18

worker skill sets based on their first task assignment, the second loop will assign the rest

of the tasks to the workers based solely on minimum cost. See Figure 3 for these

modifications.

Find training cost for each worker to complete each task

Do Until each worker is assigned one task

 Calculate the sum training cost if worker completes all tasks

 Find worker with maximum sum training cost

 Find lowest cost task for this worker

 Assign task to worker

 Remove worker from available worker list

Loop

Update worker skill sets based on assignments

Do Until all tasks assigned

 Calculate the task sum cost for each task if all workers complete the task

 Find task with maximum sum cost

 Find lowest cost worker for this task

 Assign worker to task

 Remove task from available worker list

Loop

Update worker skill levels based on training received

Calculate and print total training cost

FIGURE 3 - Problem Specific Pseudocode for Greedy Algorithm

 The theory behind finding the sum training cost in Figure 3 is that a worker who

has a higher sum training cost is likely to require more training on average than a worker

with a lower sum training cost. Likewise, the worker with the lowest sum training cost is

likely to have more tasks where he or she requires little or no training. That person is

therefore likely to be more flexible regarding which task should be assigned to them

while still maintaining a very low cost. The worker with the highest sum training cost is

likely to have very few or no tasks with low training costs. Therefore, that worker is

assigned his or her lowest cost task in order to minimize the training cost for that worker.

Other workers with lower sum training costs (i.e. more flexibility with assignments) can

19

then be assigned the tasks that remain. Based on this theory, the algorithm finds the

worker with the maximum sum training cost, and then finds the task with the lowest

training cost for that worker. Then the skill levels for that worker are updated based on

any training he or she may have received. The algorithm repeats this procedure until all

workers have at least one task. The second loop in the program operates with the same

theory as just described. The task with the maximum sum cost is selected, and then the

worker with the lowest training cost for that task is chosen.

B. Modified Greedy Algorithm

 As stated earlier, heuristics have the chance to find the optimal answer, but can

get trapped in a local optimal solution. Introducing randomness is a common method of

dealing with this problem. The Greedy Algorithm alone will find a good answer, but

randomizing parts of the algorithm will ensure that multiple answers are possible.

Modifying the algorithm such that it sometimes accepts an assignment that temporarily

worsens the objective function will succeed in leaving the local optimum and possibly

find the global optimal solution. Other modern heuristics, called meta-heuristics, like

Genetic Algorithms, Simulated Annealing, Tabu Search and Neural Networks do just

that. Another meta-heuristic, Meta-RaPS, developed by Depuy and Whitehouse (2000) is

the chosen method for this problem because it is easy to understand and implement while

realizing good results.

 Meta-RaPS, Meta-heuristic for Randomized Priority Search, was developed as a

part of research on applying a modified COMSOAL (Computer Method of Sequencing

Operations for Assembly Lines) approach to several combinatorial problems. Originally

an approach to the assembly line balancing problem (Arcus, 1966), the theory behind

20

COMSOAL can also be applied to other problems. Through modifications, COMSOAL

has evolved into Meta-RaPS. With Meta-RaPS, Depuy and Whitehouse were able to

preserve the underlying idea of COMSOAL, but their modification is noticeably different

in practice. Therefore, their approach was presented as Meta-RaPS in 2000.

 Other meta-heuristics utilize some device to avoid local minima, and Meta-RaPS

is no different. By incorporating an element of randomness, Meta-RaPS is able to modify

construction heuristics, and avoid local minima. Using priority rules in a randomized

fashion, Meta-RaPS creates a different solution at each iteration and after a number of

iterations, Meta-RaPS reports the best solution.

 Construction heuristics develop solutions by building up elements with the best

priority values to form the final solution. Meta-RaPS modifies this method by sometimes

forcing the construction heuristic to choose an element that does not have the best priority

value. Three user-defined parameters are used by Meta-RaPS to introduce randomness:

percent priority, percent restriction, and percent improvement. Choosing parameters for

this model is described in Section V, Results.

 The percent priority parameter chooses how often the best priority element is

chosen and added to the solution. The rest of the time, the percent restriction parameter

is used to choose the next element added to the solution. Percent restriction decides how

close to the best priority value the next element needs to be. All values within the percent

restriction of the best priority value will be included in the group of available elements.

The next element is randomly chosen from the group of available elements. This

technique of using percent priority and percent restriction to choose the next element is

performed for all elements until a final solution is found (Figure 4). The percent

21

improvement parameter is used to determine when to run an improvement heuristic. If

the solution for an iteration is within the percent improvement of the best unimproved

solution so far, an improvement heuristic (neighborhood search) is run.

Do Until feasible solution generated

 Find training cost for each feasible worker to task assignment

 Find lowest training cost

 P = RND(1,100)

 If P<= %priority Then

 Add assignment with lowest training cost to solution

 Else

 Form ‘available list’ of all assignments whose priority values are within

 %restriction of lowest cost assignment

 Randomly choose assignment from available list and add to solution

 End If

End Until

Calculate and Print solution value

FIGURE 4 - Pseudocode for one iteration of basic Meta-RaPS procedure

 There are four locations where the Meta-RaPS procedure can be inserted into the

general Greedy Algorithm. Two of those locations are in the first loop that assigns each

worker one task, and the other two locations are in the final loop assigning all of the

remaining tasks. The flowchart in Figure 5 is a representation of the pseudocode from

Figure 2. The emphasized boxes are the four locations where Meta-RaPS can be

implemented.

22

FIGURE 5 - Problem Specific Flowchart for Greedy Algorithm

 Meta-RaPS has been implemented in all four of the above locations for this

problem in order to maximize the ability of the heuristic to find the best answer possible.

The pseudocode for this implementation is given in Figure 6. Instead of including all

three parameters in this problem, only percent priority and percent restriction were used.

Coding an improvement algorithm for this problem can be a future project.

Do Until each worker is assigned one task

 Find feasible worker with max sum training cost across all tasks

23

 P = RND(1,100)

 If P<= %priority Then

 Choose worker with lowest sum training cost

 Else

 Form ‘available list’ of workers whose sum training cost is within

 %restriction of lowest sum training cost

 Randomly choose worker from ‘available list’

 End If

 Find feasible task with lowest training cost

 P = RND(1,100)

 If P<= %priority Then

 Choose worker to task assignment with max sum cost

 Else

 Form ‘available list’ of tasks whose training cost is within

 %restriction of lowest training cost

 Randomly choose worker to task assignment from ‘available list’

 End If

 Add assignment to solution

 Remove worker from available worker list

Loop

Do Until all tasks assigned

 Find lowest cost feasible worker to task assignment for each worker

 Find overall lowest cost assignment

 P = RND(1,100)

 If P<= %priority Then

 Add assignment with overall lowest cost to solution

 Else

 Form ‘available list’ of all feasible assignments whose cost are within

 %restriction of lowest cost assignment

 Randomly choose assignment from ‘available list’ and add to solution

 End If

End Until

Calculate and Print solution value

FIGURE 6 - Pseudocode for Modified Greedy Algorithm with Meta-RaPS

24

V. RESULTS

 Microsoft Excel® VBA 2007 was used to program this modified Greedy

Algorithm (see Appendix B). Other programming languages could be more efficient

solving this problem, but Excel® VBA is more useful in the corporate world. One

benefit is that no new programs such as Lingo® or another stand-alone program have to

be purchased and installed in order to run the analysis. Excel® VBA is also very useful

for developing functional outputs specific to a company’s precise needs, and is easily

compatible with other Office® programs such as Project® and Access®.

 As stated earlier, the parameters used by Meta-RaPS are user-defined, and must

be determined. If desired, this heuristic can mimic both the math model and traditional

Greedy Algorithm by making the parameters specific values. A percent priority values of

0 and percent restriction values of 100 for each Meta-RaPS instance will find the optimal

assignment. Percent priority values of 100 will mimic the traditional Greedy Algorithm.

 At each use of Meta-RaPS, the percent priority and percent restriction values can

be different. For simplicity and ease of use, however, each parameter is held constant for

each application. The traditional method for choosing the values of these parameters has

been trial and error, and therefore is the method used for choosing the parameters for this

problem.

 A sample dataset with 9 workers, 13 tasks and 11 skills was used to test this

heuristic (see Appendix B). Other sample datasets (see Appendices A and C) are used to

confirm the results from this sample dataset, and will be discussed in Section VI,

Conclusions and Recommendations. In order to ensure that the solution values for the

test dataset were accurate, 5000 iterations were run and the best solution was chosen.

25

This best total cost as well as the average total cost and standard deviation over all

iterations are given in the Table 1 for each percent priority, percent restriction pair. It is

important to ensure that these values are optimized when choosing the percent priority

and percent restriction to be used for future tests.

TABLE 1

SUMMARY OF PERCENT PRIORITY AND PERCENT RESTRICTION ANALYSIS

Percent

Priority

Percent

Restriction

Best Total

Cost

Average

Total Cost

Standard

Deviation

10 10 394 440 23

10 20 386 438 24

10 30 386 449 28

10 40 386 467 33

10 50 386 485 35

10 60 395 502 38

10 70 394 515 43

10 80 383 515 44

10 90 395 523 44

20 10 394 442 23

20 20 386 439 24

20 30 386 447 28

20 40 386 464 33

20 50 386 479 35

20 60 387 493 39

20 70 390 501 44

20 80 380 504 44

20 90 390 512 45

30 10 394 444 22

30 20 386 439 24

30 30 386 446 28

30 40 386 461 33

30 50 386 475 35

30 60 389 486 37

30 70 390 495 42

26

30 80 380 494 43

30 90 380 501 44

40 10 394 445 22

40 20 386 440 24

40 30 386 444 27

40 40 386 457 31

40 50 386 468 35

40 60 386 477 37

40 70 386 482 41

40 80 380 484 42

40 90 380 490 42

50 10 394 449 21

50 20 386 443 23

50 30 386 443 26

50 40 386 454 30

50 50 386 463 32

50 60 388 469 35

50 70 387 471 38

50 80 387 474 39

50 90 388 479 40

60 10 394 452 19

60 20 386 446 23

60 30 386 444 25

60 40 386 453 29

60 50 388 460 31

60 60 388 466 32

60 70 388 464 35

60 80 387 467 37

60 90 388 471 37

70 10 394 454 17

70 20 386 450 21

70 30 386 446 24

70 40 386 453 26

70 50 386 457 29

70 60 388 461 29

70 70 388 458 31

70 80 388 462 33

27

70 90 388 465 34

80 10 394 457 14

80 20 388 453 19

80 30 386 449 22

80 40 394 455 24

80 50 394 455 25

80 60 394 458 26

80 70 387 453 29

80 80 390 457 30

80 90 390 459 29

90 10 394 460 11

90 20 388 458 14

90 30 388 455 17

90 40 388 457 18

90 50 388 458 20

90 60 394 459 20

90 70 390 455 23

90 80 388 457 23

90 90 390 458 24

 The charts in Figures 7 through 10 were created in Matlab® 7.4 to illustrate the

effect of percent priority and percent restriction on the response variables above. Figures

7 through 9 are 3D maps, and Figure 10 shows a 2D illustration of Figures 7 through 9.

It is difficult to determine what the best parameter values are from the Best Total Cost

graphs, but percent priority values of 20, 40 and 40 look good as do percent restriction

values of 80 and 90. The Average Total Cost graphs are more interesting. There is a

trend in the percent priority that indicates that as the percent priority increases, percent

restriction has a lower effect on the response. This is evident in the fact that the range

decreases on the percent priority graph for that response in Figure 10. Also, there is an

remarkable trend in the percent restriction graph for the Average Total Cost in Figure 10.

It appears that the graph flip-flops at a percent restriction value of 30. Finally, the

28

Standard Deviation graphs indicate that higher values of percent priority and lower values

of percent restriction create solutions with less deviation.

FIGURE 7 - Effect of Percent Priority and Percent Restriction on Best Total Cost

29

FIGURE 8 - Effect of Percent Priority and Percent Restriction on Average Total Cost

FIGURE 9- Effect of Percent Priority and Percent Restriction on Standard Deviation

30

FIGURE 10 - 2D Representations of Figures 7, 8 and 9

31

 All of this information aids in the understanding of the problem, but it still isn’t

clear which values are the best. Since best total cost is the value that is of most interest, it

is expected that a percent priority value of 30 and a percent restriction value of 80 will

create the best results. This can be confirmed using the other 3 sample datasets in

Appendices A and C. These results are presented in Section VI, Conclusions and

Recommendations.

 The Excel® VBA program runs using two macros. The first macro is used to

create the input sheet (Appendix D). The user inputs the number of workers, skills and

tasks into three message boxes, and the macro creates space for the user to input all of the

relevant information. Please refer to Appendix E for screenshots of the input sheet. The

second macro runs the heuristic and reports the solution in the Results and Output sheets

(Appendices F and G). The user can then use the solution information to plan training

sessions for the employees.

32

VI. CONCLUSIONS AND RECOMMENDATIONS

 The modified Greedy Algorithm works well for this problem. The test results for

the sample data are shown in Table 2. For the parameter values chosen, the best solution

is the same as the optimal solution. The average solution is 30% greater than optimal.

This can be combated by ensuring that there are enough iterations to get the lowest value

possible. For this dataset, 5000 iterations appears to be adequate.

TABLE 2

OPTIMAL AND HEURISTIC RESULTS FOR TEST DATASET

Optimal Solution 380

Best

Solution
380

Average

Solution
494

Modified

Greedy

Algorithm
Standard

Deviation
43

 Table 3 below shows the results for two other datasets (see Appendices A and C).

The best solution for the first dataset is within 2% of optimal, and the second dataset is

within 4% of optimal. The average solution for the datasets are within 30% and 48%,

respectively. Although this isn’t ideal, with 5000 iterations a very good solution is found.

These results confirm that the selected parameter values from the previous test dataset

work for other datasets as well, and prove it to be a fitting substitute for solving this

problem optimally.

33

TABLE 3

RESULTS FOR OTHER DATASETS

Optimal Solution 393

Best Heuristic

Solution
 400

Average Heuristic

Solution
 511

Appendix A

Heuristic Standard

Deviation
 38

Optimal Solution 297

Best Heuristic

Solution
 309

Average Heuristic

Solution
 440

Appendix C

Heuristic Standard

Deviation
 53

 Although these sample datasets prove that the heuristic works well, real-world

data can be used to further analyze the effect of different parameter settings. In addition

to incorporating actual data, running multiple replications and running a factorial analysis

using Minitab® or another statistical software package will aid in choosing proper

parameter values. A factorial analysis can optimize the percent priority and percent

restriction based on all three responses (best solution, average solution, and standard

deviation). To do this, multiple replicates of the heuristic can be run using real-world

data to create a full factorial experimental design. This analysis is essential for making

this heuristic more marketable to companies. As more data is collected for the future

analysis, the interesting trends shown in Figures 7 through 10 should be revisited to

determine their cause.

34

 As mentioned earlier, it is typical to include an improvement algorithm as a part

of the Meta-RaPS procedure, but it was not included at this time. Coding an

improvement algorithm is a possible future endeavor, but would require future research

into the best way to do this. In addition, it is not guaranteed that it will improve the

solution much more than the current solution without increasing the amount of time.

 Finally, the basic heuristic in Excel® VBA has been shown to be good for

developing the solution, but does not present that solution in a format that is extremely

functional for specific company use. The next step is to create company-specific user-

friendly reports. This way it will be more appealing and easy to integrate into current

employee training systems.

 This new heuristic has many benefits, but also some limitations. Being able to

solve problems in a fraction of the time as the optimal algorithm makes this heuristic a

good option for companies needing quick solutions. Also, since the heuristic is able to

find a solution within 5% of optimal (with 5000 iterations), it is a good alternative for

companies who are concerned about being as close to optimal as possible without while

sacrificing hours finding a solution. The major limitation lies in the lack of testing.

Since no real-world data was available, proving the effectiveness of the algorithm in the

corporate world is difficult. Once more testing is completed using actual data and more

user-friendly reports are available, this heuristic will be extremely useful for companies

wishing to find a quick and reliable method for assigning workers to tasks.

35

REFERENCES

Arcus, A. 1966. COMSOAL: A Computer method of sequencing operations for assembly

lines. International Journal of Production Research 4:259-277.

Awad, R. and Chinneck, J. 2000. Proctor assignment at Carlton University. Interfaces

28:2:58-71.

Carter, M., Laporte, G., Chinneck, J. 1994. A general examination scheduling system.

Interfaces 24:3:109-120.

DePuy, G., Whitehouse, G., 2000. Applying the COMSOAL computer heuristic to the

constrained resource allocation problem, Computers and Industrial Engineering, 38,

413-422.

DePuy, G., Whitehouse, G., 2001. A simple and effective heuristic for the multiple

resource allocation problem, International Journal of Production Research, 39 (14),

3275-3287.

Depuy, G., Moraga, R., Whitehouse, G. 2003. Meta-RaPS: A simple and effective

approach for solving the traveling salesman problem. Transportation Research Part

E. 212.

Depuy, G., Usher, J., and Arterburn, B. 2006. Workforce training schedule for logistics

skills. CD-ROM Proceedings of the 2006 Industrial Engineerng Research

Conference, May 20-24, Orlando, Florida.

LeBlanc, L., Randels, K., and Swan, T. K. 2000. Heery International’s spreadsheet

optimization model for assigning managers to construction projects. Interfaces

30:6:95-106.

Thompson, G. M. 1997. Assigning telephone operators to shifts at New Brunswick

Telephone Company. Interfaces 27:4:1-11.

36

APPENDIX A

TEST DATASET 1

Number of workers 9

Number of skills 11

Number of tasks 13

Worker Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Worker 1 1 2 5 1 2 4 5 3 5 2 3

Worker 2 2 5 5 1 4 2 4 4 4 5 1

Worker 3 2 2 1 2 2 2 3 5 4 2 1

Worker 4 3 4 4 3 5 3 1 4 1 2 3

Worker 5 5 2 2 5 5 4 2 5 3 5 3

Worker 6 4 1 4 1 5 3 4 2 3 4 4

Worker 7 3 4 4 3 4 1 2 3 5 5 1

Worker 8 4 2 1 2 1 2 4 5 1 2 4

Worker 9 3 3 5 1 3 4 3 5 4 3 2

The above matrix shows the current skill levels of each worker for each skill type.

Task Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Task 1 4 5 3 5 3 2 5 4 3 4 5

Task 2 2 2 2 5 4 3 1 3 1 3 1

Task 3 3 4 3 4 2 5 2 3 5 4 3

Task 4 2 4 2 2 5 3 5 2 4 5 2

Task 5 5 2 5 4 5 3 1 4 5 5 4

Task 6 5 2 3 3 4 3 2 4 3 2 2

Task 7 2 1 5 5 1 5 4 4 2 1 5

Task 8 2 4 5 3 1 2 5 3 3 2 4

Task 9 2 2 3 4 1 1 3 5 1 4 4

Task 10 3 2 4 2 1 3 4 4 4 4 2

Task 11 1 2 1 5 1 5 2 1 1 3 1

Task 12 5 4 4 2 2 1 1 5 1 2 3

Task 13 1 5 2 3 1 2 5 5 2 1 1

The above matrix shows the required skill levels for each task and skill type.

37

Task
Time

Task 1 4

Task 2 4

Task 3 4

Task 4 4

Task 5 4

Task 6 4

Task 7 4

Task 8 4

Task 9 4

Task 10 4

Task 11 4

Task 12 4

Task 13 4

Worker

Capacity

Worker 1 25

Worker 2 25

Worker 3 25

Worker 4 25

Worker 5 25

Worker 6 25

Worker 7 25

Worker 8 25

Worker 9 25

Cost to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 3 7 15

Skill 2 0 1 3 7 15

Skill 3 0 1 3 7 15

Skill 4 0 1 3 7 15

Skill 5 0 1 3 7 15

Skill 6 0 1 3 7 15

Skill 7 0 1 3 7 15

Skill 8 0 1 3 7 15

Skill 9 0 1 3 7 15

Skill 10 0 1 3 7 15

Skill 11 0 1 3 7 15

38

The above matrix shows the cost to train a worker up to a skill level from the level

immediately preceding it for each skill type. This sample model assumes that the cost to

train up to the higher skill levels is not liner. In other words, it costs more to train a

worker from a skill level of 4 to 5 than from a skill level of 1 to 2.

Time to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 1 1 1

Skill 2 0 1 1 1 1

Skill 3 0 1 1 1 1

Skill 4 0 1 1 1 1

Skill 5 0 1 1 1 1

Skill 6 0 1 1 1 1

Skill 7 0 1 1 1 1

Skill 8 0 1 1 1 1

Skill 9 0 1 1 1 1

Skill 10 0 1 1 1 1

Skill 11 0 1 1 1 1

The above matrix shows the time to train a worker up to a skill level from the level

immediately preceding it for each skill type.

39

APPENDIX B

TEST DATASET 2

Number of workers 9

Number of skills 11

Number of tasks 13

Worker Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Worker 1 2 2 3 4 4 1 5 3 4 2 1

Worker 2 5 2 1 3 2 5 1 4 2 5 2

Worker 3 4 2 3 2 4 2 2 1 3 4 4

Worker 4 1 2 5 5 1 2 5 2 3 3 2

Worker 5 2 2 2 2 1 3 2 3 4 4 2

Worker 6 1 2 1 2 5 2 2 2 3 3 3

Worker 7 4 1 3 2 4 4 2 2 1 2 2

Worker 8 2 5 2 5 3 4 4 5 2 2 3

Worker 9 2 2 2 4 4 1 1 5 2 3 3

The above matrix shows the current skill levels of each worker for each skill type.

Task Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Task 1 2 3 5 2 2 2 3 5 3 1 3

Task 2 1 4 2 4 4 1 3 2 5 3 1

Task 3 2 4 3 5 4 2 5 4 2 3 2

Task 4 1 1 3 4 5 5 1 1 2 1 4

Task 5 3 4 3 4 1 5 3 3 1 1 1

Task 6 5 1 3 1 4 5 1 4 2 1 1

Task 7 1 2 2 5 3 1 2 2 2 1 2

Task 8 5 2 5 5 4 5 5 5 3 2 3

Task 9 4 2 4 2 3 1 1 3 1 4 5

Task 10 4 5 5 4 5 2 5 3 1 1 2

Task 11 1 4 5 4 3 4 2 3 1 4 1

Task 12 1 3 1 1 4 3 2 1 1 5 2

Task 13 1 2 2 5 4 1 3 1 2 2 5

The above matrix shows the required skill levels for each task and skill type.

40

Task
Time

Task 1 4

Task 2 4

Task 3 4

Task 4 4

Task 5 4

Task 6 4

Task 7 4

Task 8 4

Task 9 4

Task 10 4

Task 11 4

Task 12 4

Task 13 4

Worker

Capacity

Worker 1 25

Worker 2 25

Worker 3 25

Worker 4 25

Worker 5 25

Worker 6 25

Worker 7 25

Worker 8 25

Worker 9 25

Cost to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 3 7 15

Skill 2 0 1 3 7 15

Skill 3 0 1 3 7 15

Skill 4 0 1 3 7 15

Skill 5 0 1 3 7 15

Skill 6 0 1 3 7 15

Skill 7 0 1 3 7 15

Skill 8 0 1 3 7 15

Skill 9 0 1 3 7 15

Skill 10 0 1 3 7 15

Skill 11 0 1 3 7 15

41

The above matrix shows the cost to train a worker up to a skill level from the level

immediately preceding it for each skill type. This sample model assumes that the cost to

train up to the higher skill levels is not liner. In other words, it costs more to train a

worker from a skill level of 4 to 5 than from a skill level of 1 to 2.

Time to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 1 1 1

Skill 2 0 1 1 1 1

Skill 3 0 1 1 1 1

Skill 4 0 1 1 1 1

Skill 5 0 1 1 1 1

Skill 6 0 1 1 1 1

Skill 7 0 1 1 1 1

Skill 8 0 1 1 1 1

Skill 9 0 1 1 1 1

Skill 10 0 1 1 1 1

Skill 11 0 1 1 1 1

The above matrix shows the time to train a worker up to a skill level from the level

immediately preceding it for each skill type.

42

APPENDIX C

TEST DATASET 3

Number of workers 9

Number of skills 11

Number of tasks 13

Worker Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Worker 1 5 3 3 4 1 5 5 2 4 4 4

Worker 2 2 5 3 3 1 3 1 1 5 5 2

Worker 3 1 5 5 4 5 5 4 4 5 1 5

Worker 4 2 3 1 1 2 4 4 3 4 1 3

Worker 5 3 3 2 1 1 4 5 2 3 2 3

Worker 6 2 1 5 5 4 2 4 5 4 1 1

Worker 7 5 4 1 3 4 3 3 3 4 4 1

Worker 8 2 2 5 4 2 2 5 5 3 4 4

Worker 9 3 2 5 5 1 3 1 3 2 1 5

The above matrix shows the current skill levels of each worker for each skill type.

Task Skill
Matrix

Skill

1
Skill

2
Skill

3
Skill

4
Skill

5
Skill

6
Skill

7
Skill

8
Skill

9
Skill
10

Skill
11

Task 1 5 2 3 3 4 4 5 5 2 3 5

Task 2 2 2 4 3 5 5 3 2 4 5 2

Task 3 1 4 3 4 3 3 5 3 2 3 2

Task 4 1 1 5 2 1 3 1 5 1 1 3

Task 5 3 3 4 5 1 4 2 5 4 3 3

Task 6 1 3 5 1 3 3 5 1 4 1 3

Task 7 5 1 1 1 5 5 2 4 4 3 4

Task 8 3 2 1 1 2 2 2 1 2 4 5

Task 9 2 5 5 1 2 2 1 4 4 3 5

Task 10 5 5 2 5 4 5 3 5 4 3 5

Task 11 4 1 1 1 2 2 3 3 5 2 5

Task 12 1 3 1 4 5 5 1 2 5 5 5

Task 13 3 1 1 4 4 3 1 2 4 4 1

The above matrix shows the required skill levels for each task and skill type.

43

Task
Time

Task 1 4

Task 2 4

Task 3 4

Task 4 4

Task 5 4

Task 6 4

Task 7 4

Task 8 4

Task 9 4

Task 10 4

Task 11 4

Task 12 4

Task 13 4

Worker

Capacity

Worker 1 25

Worker 2 25

Worker 3 25

Worker 4 25

Worker 5 25

Worker 6 25

Worker 7 25

Worker 8 25

Worker 9 25

Cost to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 3 7 15

Skill 2 0 1 3 7 15

Skill 3 0 1 3 7 15

Skill 4 0 1 3 7 15

Skill 5 0 1 3 7 15

Skill 6 0 1 3 7 15

Skill 7 0 1 3 7 15

Skill 8 0 1 3 7 15

Skill 9 0 1 3 7 15

Skill 10 0 1 3 7 15

Skill 11 0 1 3 7 15

44

The above matrix shows the cost to train a worker up to a skill level from the level

immediately preceding it for each skill type. This sample model assumes that the cost to

train up to the higher skill levels is not liner. In other words, it costs more to train a

worker from a skill level of 4 to 5 than from a skill level of 1 to 2.

Time to
Train Matrix

Train to
Skill

Level 1

Train to
Skill

Level 2

Train to
Skill

Level 3

Train to
Skill

Level 4

Train to
Skill

Level 5

Skill 1 0 1 1 1 1

Skill 2 0 1 1 1 1

Skill 3 0 1 1 1 1

Skill 4 0 1 1 1 1

Skill 5 0 1 1 1 1

Skill 6 0 1 1 1 1

Skill 7 0 1 1 1 1

Skill 8 0 1 1 1 1

Skill 9 0 1 1 1 1

Skill 10 0 1 1 1 1

Skill 11 0 1 1 1 1

The above matrix shows the time to train a worker up to a skill level from the level

immediately preceding it for each skill type.

45

APPENDIX D

CODE FOR CREATING INPUT SHEET

Sub inputs()

Dim numworkers As Single

Dim numskills As Single

Dim numtasks As Single

Sheets("Input").Select

numworkers = Application.InputBox("Input number of workers", "")

numskills = Application.InputBox("Input number of skills", "")

numtasks = Application.InputBox("Input number of tasks", "")

'Insert values

ActiveSheet.Cells(1, 1).Value = "Number of workers"

ActiveSheet.Cells(2, 1).Value = "Number of skills"

ActiveSheet.Cells(3, 1).Value = "Number of tasks"

ActiveSheet.Cells(1, 2).Value = numworkers

ActiveSheet.Cells(2, 2).Value = numskills

ActiveSheet.Cells(3, 2).Value = numtasks

'Create Worker Skill Matrix

For i = 1 To numworkers

 For k = 1 To numskills

 ActiveSheet.Cells(5, 1).Value = "Worker Skill Matrix"

 ActiveSheet.Cells(i + 6, 1).Value = "Worker " & i

 ActiveSheet.Cells(6, k + 1).Value = "Skill " & k

 Next k

Next i

'Create Task Skill Matrix

For j = 1 To numtasks

 For k = 1 To numskills

 ActiveSheet.Cells(8 + numworkers, 1).Value = "Task Skill Matrix"

 ActiveSheet.Cells(9 + numworkers + j, 1).Value = "Task " & j

 ActiveSheet.Cells(9 + numworkers, k + 1).Value = "Skill " & k

 Next k

Next j

'Create Task Time Matrix

For j = 1 To numtasks

 ActiveSheet.Cells(11 + numtasks + numworkers, 2).Value = "Task Time"

 ActiveSheet.Cells(11 + numtasks + numworkers + j, 1).Value = "Task " & j

46

Next j

'Create Worker Capacity Matrix

For i = 1 To numworkers

 ActiveSheet.Cells(13 + 2 * numtasks + numworkers, 2).Value = "Worker Capacity"

 ActiveSheet.Cells(13 + 2 * numtasks + numworkers + i, 1).Value = "Worker " & i

Next i

'Create Training Cost Matrix

For i = 1 To numskills

 For j = 1 To 5

 ActiveSheet.Cells(15 + 2 * numtasks + 2 * numworkers, 1).Value = "Cost to Train

Matrix"

 ActiveSheet.Cells(16 + 2 * numtasks + 2 * numworkers + i, 1).Value = "Skill " & i

 ActiveSheet.Cells(16 + 2 * numtasks + 2 * numworkers, 1 + j).Value = "Train to

Skill Level " & j

 Next j

Next i

'Create Training Time Matrix

For i = 1 To numskills

 For j = 1 To 5

 ActiveSheet.Cells(18 + 2 * numtasks + 2 * numworkers + numskills, 1).Value =

"Time to Train Matrix"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + i, 1).Value =

"Skill " & i

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills, 1 + j).Value =

"Train to Skill Level " & j

 Next j

Next i

'Create Skill Name Matrix

For i = 1 To numskills

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2,

1) = "Skill"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2,

2) = "Skill Name"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

i, 1) = i

Next i

'Create Worker Name Matrix

For i = 1 To numworkers

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2, 1) = "Worker "

47

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2, 2) = "Worker Name"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2 + i, 1) = i

Next i

'Create Task Name Matrix

For i = 1 To numtasks

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2 + numworkers + 2, 1) = "Task"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2 + numworkers + 2, 2) = "Task Name"

 ActiveSheet.Cells(19 + 2 * numtasks + 2 * numworkers + numskills + numskills + 2 +

numskills + 2 + numworkers + 2 + i, 1) = i

Next i

End Sub

48

APPENDIX E

SCREENSHOTS OF INPUT SHEET

49

50

51

APPENDIX F

CODE FOR MODIFIED GREEDY ALGORITHM

Public Sub heuristic()

Dim workerskill() As Single, oworkerskill() As Single

Dim taskskill() As Single, otaskskill() As Single

Dim tasktime() As Single, otasktime() As Single

Dim workercapacity() As Single, oworkercapacity() As Single

Dim traincost() As Single, otraincost() As Single

Dim traintime() As Single, otraintime() As Single

Dim workerassign() As Single

Dim workertaskcost() As Single, oworkertaskcost() As Single

Dim workertasktime() As Single, oworkertasktime() As Single

Dim taskassigned() As Single

Dim tcost() As Single

Dim ttime() As Single

Dim available() As Single

Dim bestworkerassign() As Single

Dim numworkers As Single, numskills As Single, numtasks As Single

Dim totaltaskcost() As Single

Dim totalworkercost() As Single

Dim workerphase1() As Single

Dim cellrow As Single

perprior = 20

perrestrict = 50

numiter = 5000

phase1_on = 1 'this can be used as a switch to turn phase 1 on or off

Sheets("Input").Select

numworkers = ActiveSheet.Cells(1, 2).Value

numskills = ActiveSheet.Cells(2, 2).Value

numtasks = ActiveSheet.Cells(3, 2).Value

'initialize arrays

ReDim workerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim oworkerskill(0 To numworkers + 1, 0 To numskills + 1) As Single

ReDim taskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim otaskskill(0 To numtasks + 1, 0 To numskills + 1) As Single

ReDim tasktime(0 To numtasks + 1) As Single

ReDim otasktime(0 To numtasks + 1) As Single

52

ReDim workercapacity(0 To numworkers + 1) As Single

ReDim oworkercapacity(0 To numworkers + 1) As Single

ReDim traincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraincost(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim traintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim otraintime(0 To numskills + 1, 0 To 5, 0 To 5) As Single

ReDim workerassign(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim bestworkerassign(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertaskcost(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim workertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim oworkertasktime(0 To numworkers + 1, 0 To numtasks + 1) As Single

ReDim taskassigned(0 To numtasks + 1) As Single

ReDim tcost(0 To numskills + 1, 0 To 5) As Single

ReDim ttime(0 To numskills + 1, 0 To 5) As Single

ReDim available(0 To numworkers * numtasks + 1, 0 To 3) As Single

ReDim totaltaskcost(0 To numtasks + 1) As Single

ReDim totalworkercost(0 To numworkers + 1) As Single

ReDim workerphase1(0 To numworkers + 1) As Single

For b = 0 To numworkers + 1

 workercapacity(b) = 0

 oworkercapacity(b) = 0

 For k = 0 To numskills + 1

 workerskill(b, k) = 0

 oworkerskill(b, k) = 0

 Next k

Next b

For b = 0 To numworkers * numtasks + 1

 For k = 0 To 3

 available(b, k) = 0

 Next k

Next b

For b = 0 To numtasks + 1

 tasktime(b) = 0

 otasktime(b) = 0

 taskassigned(b) = 0

 totaltaskcost(b) = 0

 For k = 0 To numskills + 1

 taskskill(b, k) = 0

 otaskskill(b, k) = 0

53

 Next k

Next b

For i = 0 To numskills + 1

 For j = 0 To 5

 tcost(i, j) = 0

 ttime(i, j) = 0

 For k = 0 To 5

 traincost(i, j, k) = 0

 traintime(i, j, k) = 0

 otraincost(i, j, k) = 0

 otraintime(i, j, k) = 0

 Next k

 Next j

Next i

For b = 1 To numworkers

 totalworkercost(b) = 0

 For k = 1 To numtasks

 workerassign(b, k) = 0

 workertaskcost(b, k) = 0

 oworkertaskcost(b, k) = 0

 Next k

Next b

'read in data from file

For b = 1 To numworkers

 For k = 1 To numskills

 oworkerskill(b, k) = ActiveSheet.Cells(6 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 For k = 1 To numskills

 otaskskill(b, k) = ActiveSheet.Cells(6 + numworkers + 3 + b, 1 + k)

 Next k

Next b

For b = 1 To numtasks

 otasktime(b) = ActiveSheet.Cells(6 + numworkers + 3 + numtasks + 2 + b, 2)

Next b

For b = 1 To numworkers

 oworkercapacity(b) = ActiveSheet.Cells(6 + numworkers + 3 + numtasks + 2 +

numtasks + 2 + b, 2)

54

Next b

For i = 1 To numskills

 For j = 1 To 5

 tcost(i, j) = ActiveSheet.Cells(6 + numworkers + 3 + numtasks + 2 + numtasks + 2 +

 numworkers + 3 + i, 1 + j)

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 ttime(i, j) = ActiveSheet.Cells(6 + numworkers + 3 + numtasks + 2 + numtasks + 2

 + numworkers + 3 + numskills + 3 + i, 1 + j)

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraincost(i, j, k) = otraincost(i, j, k - 1) + tcost(i, k)

 End If

 Next k

 Next j

Next i

For i = 1 To numskills

 For j = 1 To 5

 For k = 1 To 5

 If j < k And k > 1 Then

 otraintime(i, j, k) = otraintime(i, j, k - 1) + ttime(i, k)

 End If

 Next k

 Next j

Next i

'find task cost and training time for each worker for each task

For i = 1 To numworkers

 For j = 1 To numtasks

 oworkertasktime(i, j) = otasktime(j)

 For k = 1 To numskills

 If oworkerskill(i, k) < otaskskill(j, k) And otaskskill(j, k) > 1 Then

 oworkertaskcost(i, j) = oworkertaskcost(i, j) + otraincost(k, oworkerskill(i, k),

 otaskskill(j, k))

55

 oworkertasktime(i, j) = oworkertasktime(i, j) + otraintime(k, oworkerskill(i, k),

 otaskskill(j, k))

 End If

 Next k

 Next j

Next i

For j = 1 To numtasks

 For i = 1 To numworkers

 totaltaskcost(j) = totaltaskcost(j) + oworkertaskcost(i, j)

 Next i

Next j

For i = 1 To numworkers

 For j = 1 To numtasks

 totalworkercost(i) = totalworkercost(i) + oworkertaskcost(i, j)

 Next j

Next i

''

Sheets("Output").Select

bestsolution = 999999999

For r = 1 To numiter

 'copy original data into matrices

 For b = 1 To numworkers

 workercapacity(b) = oworkercapacity(b)

 For k = 1 To numskills

 workerskill(b, k) = oworkerskill(b, k)

 Next k

 Next b

 For b = 1 To numtasks

 tasktime(b) = otasktime(b)

 taskassigned(b) = 0

 For k = 1 To numskills

 taskskill(b, k) = otaskskill(b, k)

 Next k

 Next b

 For i = 1 To numskills

56

 For j = 1 To 5

 For k = 1 To 5

 traincost(i, j, k) = otraincost(i, j, k)

 traintime(i, j, k) = otraintime(i, j, k)

 Next k

 Next j

 Next i

 For b = 1 To numworkers

 For k = 1 To numtasks

 workerassign(b, k) = 0

 workertaskcost(b, k) = oworkertaskcost(b, k)

 workertasktime(b, k) = oworkertasktime(b, k)

 Next k

 Next b

 For b = 1 To numworkers

 workerphase1(b) = 0

 Next b

 totalcost = 0

 numtaskassigned = 0

 If phase1_on = 1 Then 'this can be used as a switch to turn phase 1 on or off

 'start phase 1 - each worker assigned 1 task

 Do While numtaskassigned < numworkers

 'find lowest skilled worker - worker with the highest totalcost

 'make sure they are not already assigned

 maxcost = 0

 For i = 1 To numworkers

 If workerphase1(i) = 0 And totalworkercost(i) > maxcost Then

 maxcost = totalworkercost(i)

 maxcostworker = i

 End If

 Next i

 'find lowest cost task for maxcost worker - make sure task not already assigned

 'make sure worker has enough capacity

 mincost = 99999999

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertasktime(maxcostworker, j) <=

 workercapacity(maxcostworker) And workertaskcost(maxcostworker, j) <

 mincost Then

 mincost = workertaskcost(maxcostworker, j)

57

 mincosttask = j

 End If

 Next j

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 If priorrnd <= perprior Then

 'assign maxcostworker to mincost task

 totalcost = totalcost + workertaskcost(maxcostworker, mincosttask)

 numtaskassigned = numtaskassigned + 1

 workerassign(maxcostworker, mincosttask) = 1

 taskassigned(mincosttask) = 1

 workerphase1(maxcostworker) = 1

 workercapacity(maxcostworker) = workercapacity(maxcostworker) -

 workertasktime(maxcostworker, mincosttask)

 assignedworker = maxcostworker

 assignedtask = mincosttask

 End If

 If priorrnd > perprior Then

 'form available list and choose assigned task from available list

 numonlist = 0

 For j = 1 To numtasks

 If taskassigned(j) = 0 And workertasktime(maxcostworker, j) <=

 workercapacity(maxcostworker) And

 workertaskcost(maxcostworker, j) < mincost * (1 + (perrestrict /

 100)) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = maxcostworker

 available(numonlist, 2) = j

 End If

 Next j

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workerphase1(assignedworker) = 1

58

 workercapacity(assignedworker) = workercapacity(assignedworker) -

 workertasktime(assignedworker, assignedtask)

 End If

 'update workerskills for assignedworker based on training received for

 assignedtask

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 'update workertaskcost and workertasktime for assignedworker

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1

 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker,

 j) + traincost(k, workerskill(assignedworker, k), taskskill(j, k))

 workertasktime(assignedworker, j) =

 workertasktime(assignedworker, j) + traintime(k,

 workerskill(assignedworker, k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 Loop

 End If 'If phase1_on = 1

'end of phase 1 switch

'''

'''

 'start phase 2 - assign remaining tasks

 Do While numtaskassigned < numtasks 'repeat until all tasks assigned

 'find highest cost task - make sure it is not already assigned

 maxcost = -55

 For j = 1 To numtasks

 If taskassigned(j) = 0 And totaltaskcost(j) > maxcost Then

59

 maxcost = totaltaskcost(j)

 maxcosttask = j

 End If

 Next j

 'find lowest cost worker for highest cost task - make sure worker has enough

 capacity

 mincost = 9999999

 mincostworker = 0

 For i = 1 To numworkers

 If workertasktime(i, maxcosttask) <= workercapacity(i) And workertaskcost(i,

 maxcosttask) < mincost Then

 mincost = workertaskcost(i, maxcosttask)

 mincostworker = i

 End If

 Next i

 Randomize

 priorrnd = Round(((100 - 1) * Rnd) + 1)

 If mincostworker > 0 Then

 If priorrnd <= perprior Then

 'assign mincostworker to maxcost task

 totalcost = totalcost + workertaskcost(mincostworker, maxcosttask)

 numtaskassigned = numtaskassigned + 1

 workerassign(mincostworker, maxcosttask) = 1

 taskassigned(maxcosttask) = 1

 workercapacity(mincostworker) = workercapacity(mincostworker) -

 workertasktime(mincostworker, maxcosttask)

 assignedworker = mincostworker

 assignedtask = maxcosttask

 End If

 If priorrnd > perprior Then

 'form available list and choose assigned worker from available list

 numonlist = 0

 For j = 1 To numtasks

 If totaltaskcost(j) >= maxcost * (1 - (perrestrict / 100)) And taskassigned(j) =

 0 Then

 For i = 1 To numworkers

 If workertaskcost(i, j) <= mincost * (1 + (perrestrict / 100)) And

 workertasktime(i, j) <= workercapacity(i) Then

 numonlist = numonlist + 1

 available(numonlist, 1) = i

 available(numonlist, 2) = j

60

 End If

 Next i

 End If

 Next j

 Randomize

 restrictrnd = Round(((numonlist - 1) * Rnd) + 1)

 assignedworker = available(restrictrnd, 1)

 assignedtask = available(restrictrnd, 2)

 totalcost = totalcost + workertaskcost(assignedworker, assignedtask)

 numtaskassigned = numtaskassigned + 1

 workerassign(assignedworker, assignedtask) = 1

 taskassigned(assignedtask) = 1

 workercapacity(assignedworker) = workercapacity(assignedworker) -

 workertasktime(assignedworker, assignedtask)

 End If

 'update workerskills for assignedworker based on training received for

 assignedtask

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(assignedtask, k) Then

 workerskill(assignedworker, k) = taskskill(assignedtask, k)

 End If

 Next k

 'update workertaskcost and workertasktime for assignedworker

 For j = 1 To numtasks

 If taskassigned(j) = 0 Then

 workertaskcost(assignedworker, j) = 0

 workertasktime(assignedworker, j) = otasktime(j)

 For k = 1 To numskills

 If workerskill(assignedworker, k) < taskskill(j, k) And taskskill(j, k) > 1

 Then

 workertaskcost(assignedworker, j) = workertaskcost(assignedworker, j)

 + traincost(k, workerskill(assignedworker, k), taskskill(j, k))

 workertasktime(assignedworker, j) = workertasktime(assignedworker, j)

 + traintime(k, workerskill(assignedworker, k), taskskill(j, k))

 End If

 Next k

 End If

 Next j

 End If

61

 If mincostworker = 0 Then

 MsgBox ("No feasible solution. Not enough worker capacity")

 totalcost = 99999999

 numtaskassigned = numtasks + 1

 End If

 Loop

 'print assignment of tasks to workers

 If totalcost < bestsolution Then

 bestsolution = totalcost

 For i = 1 To numworkers

 For j = 1 To numtasks

 bestworkerassign(i, j) = workerassign(i, j)

 Next j

 Next i

 End If

Next r

 ActiveSheet.Cells(1, 1) = "%Priority"

 ActiveSheet.Cells(1, 2) = perprior

 ActiveSheet.Cells(2, 1) = "%Restriction"

 ActiveSheet.Cells(2, 2) = perrestrict

 ActiveSheet.Cells(3, 1) = "Number of Iterations"

 ActiveSheet.Cells(3, 2) = numiter

 ActiveSheet.Cells(4, 1) = "Best Solution Cost"

 ActiveSheet.Cells(4, 2) = bestsolution

 ActiveSheet.Cells(6, 1) = "Worker to Task Assignments"

 ActiveSheet.Cells(7, 1) = "Worker"

 ActiveSheet.Cells(7, 2) = "Task"

 cellrow = 8

 For i = 1 To numworkers

 For j = 1 To numtasks

 If bestworkerassign(i, j) = 1 Then

 ActiveSheet.Cells(cellrow, 1) = i

 ActiveSheet.Cells(cellrow, 2) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 Sheets("Results").Select

62

 ActiveSheet.Cells(1, 1) = "Assignments"

 ActiveSheet.Cells(2, 1) = "Worker"

 ActiveSheet.Cells(2, 2) = "Task"

 cellrow = 3

 For i = 1 To numworkers

 For j = 1 To numtasks

 If bestworkerassign(i, j) = 1 Then

 ActiveSheet.Cells(cellrow, 1) = i

 ActiveSheet.Cells(cellrow, 2) = j

 cellrow = cellrow + 1

 End If

 Next j

 Next i

 ActiveSheet.Cells(1, 4) = "Training Needs"

 ActiveSheet.Cells(2, 4) = "Worker"

 ActiveSheet.Cells(2, 5) = "Skill Number"

 ActiveSheet.Cells(2, 6) = "Skill Name"

 ActiveSheet.Cells(2, 7) = "From Level"

 ActiveSheet.Cells(2, 8) = "To Level"

 cellrow = 3

 For i = 1 To numworkers

 For k = 1 To numskills

 If oworkerskill(i, k) < workerskill(i, k) Then

 ActiveSheet.Cells(cellrow, 4) = i

 ActiveSheet.Cells(cellrow, 5) = k

 ActiveSheet.Cells(cellrow, 6) = Sheets("Input").Cells(19 + 2 * numtasks + 2 *

 numworkers + numskills + numskills + 2 + k, 2)

 ActiveSheet.Cells(cellrow, 7) = oworkerskill(i, k)

 ActiveSheet.Cells(cellrow, 8) = workerskill(i, k)

 cellrow = cellrow + 1

 End If

 Next k

 Next i

End Sub

63

APPENDIX G

SCREENSHOTS OF RESULTS AND OUTPUT SHEETS

 The Results sheet reports the assignments and training needs associated with the

best solution. Each worker to task assignment is listed. The training for each skill is also

listed for each worker. This sheet aids the company in determining which skills require

training sessions.

64

 The Output sheet includes the percent priority and percent restriction values as

well as the number of iterations. It also reports the best solution cost and assignments for

the best solution.

65

 VITA

Allison Michelle Douglas

amdoug01@louisville.edu

EDUCATION

M.Eng. Industrial Engineering August 2007

University of Louisville, Louisville, KY

B.S. Industrial Engineering August 2006

University of Louisville, Louisville, KY With High Honors

HONORS AND AWARDS

Provost-Hallmark Scholarship, University of Louisville 2002 to present

W.S. Speed Award, University of Louisville Spring 2007

EXTRACURRICULAR ACTIVITIES

Speed School Student Council Fall 2002 to present

Student Government Association Summer 2003 to present

Institute of Industrial Engineers Fall 2006 to present

Society of Women Engineers Fall 2006

Tau Beta Sigma Honorary Music Sorority Fall 2002 to Fall 2005

Society of Physics Students Fall 2002 to Fall 2003

PERSONAL ACTIVITIES

Big Brothers Big Sisters, Louisville, KY 2004 to present

U of L Marching Band, Pep Band and Community Band 2002-2005

	A modified greedy algorithm for the task assignment problem.
	Recommended Citation

	Microsoft Word - Thesis - Final.doc

