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ABSTRACT 

A SPATIAL AGE-STRUCTURED MODEL OF 
PERENNIAL PLANTS WITH A SEED BANK 

Kimberly Ilene Meyer 

May 12, 2012 

We forlllulate an integro-difference model to predict the growth and spatial 

spread of a perennial plant population with an age-structured seed bank. We allow 

the seeds in the bank to be of any age, producing an infinite system of equations. 

The production of new seed can be density-dependent and so the function describ-

ing this growth is allowed to be non-monotone. The functions describing the seed 

bank are linear. We develop properties about the non-spatial model, including the 

existence of a positive steady-state and conditions under which solutions converge 

to this steady-state. 'vVe also show that when the origin is unstable, the system 

has a spreading speed and that this spreading speed is characterized as the slowest 

speed of a class of traveling wave solutions. We conduct numerical simulations of 

a truncated version of this model which show that both the perennial term and 

the seed bank can have a stabilising effect on the population. On the other hand, 

traveling wave solutions may exhibit different patterns of fluctuations including 

periodic oscillations and chaotic tails. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Dispersal of seed in plant populations can play a major role in the pop

ulation dynamics and spatial spread of a species [3J. This process is difficult 

to quantify and thus, historically, population models tend to ignore dispersal 

[28, 40, 42, 45J. In the past several decades integro-difference equations have 

emerged as a means to study spatial spread of ecological populations [1, 2, 9, 

10, 12, 14, 16, 17, 18, 31, 32, 43], among other applications. The main function of 

these types of models is to elucidate dispersal patterns by quantifying the rate of 

spread of populations and investigating traveling wave solutions. For more details 

and historical development of traveling waves see [16, 22, 23, 24, 25, 26, 27, 47J. 

In this dissertation we model the population dynamics and spatial spread 

of perennial plants with a seed bank. Perennial (and annual) plants have one 

reproductive season per year during which they allocate some of their resources to 

produce seed. This seed is then subject to passive dispersal by means of water, 

wind, or adherence to an active agent, eventually settling and burying in the soil. 

Once a seed has been dispersed and buried, it undergoes a period of dormancy, 

potentially leading to germination and ultimately developing into a mature plant. 

Many models assume seed germination occurs within 1-year of seed pro

duction [45]. However, the dormancy period for seeds can last much longer than 
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one year, effectively creating a delay in the development of generations. Seeds 

persisting in dormancy for more than one year comprise what is known as the seed 

bank. 

The longevity and viability of seeds in the seed bank are dependent upon 

the type of species, availability of resources, and natural environmental conditions. 

Seed banks may contain just a few hundred to over 100,000 seeds per square meter 

[8] and seeds may persist for hundreds or even thousands of years [11]. This type 

of delay in germination can naturally have consequences on the overall population 

dynamics of the plant as well as the spatial spread of the population. 

Seed bank models have been constructed in both a spatial [1, 31, 35, 36] 

and non-spatial context [5,8,28,38,40,42]. MacDonald & Watkinson [28] studied 

non-spatial difference equation models and showed that a seed bank can have both 

a stahilizing and destabilizing effect on an annual plant popuhtion. Allen, Allen 

& Gilliam [1] construct a similar model but apply a spatial aspect using integro

difference equations to describe the dispersal of seed. They found a formula for the 

spreading speed of populations described by this model but did not prove existence 

of traveling wave solutions. They also considered spatial spread for perennial plants 

but did not include a seed bank. 

Schmidt & Lawlor [40] consider seed bank models for annual plants in which 

all age classes of seeds could have different germination rates. These models take 

the form of structured Leslie matrix equations. They found that sensitivity of the 

growth rate to germination fractions was smaller than the sensitivity to fecundity 

and survivorship. 

Neubert & Caswell [31] study more general matrix models and apply a spa

tial aspect using integro-difference equations. They develop a recipe for calculating 

the sensitivity and elasticity of the spreading speed to changes in the demographic 

and dispersal parameters. They give a formula for the spreading speed but do not 
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consider existence of traveling waves. 

In this dissertation we construct a novel spatial model for perennial plants 

with an age structured seed-bank in the form of integro-difference equations. This 

model has the benefit of synthesizing and generalizing many of the aforementioned 

models, while providing a clear focus on perennial plants. 

In the construction of our growth equations we allow for density-dependent 

growth (a fundamental premise in plant population growth [13]). We include a 

term which describes the survivorship of adults from generation to generation 

which distinguishes this model from that of an annual plant. We also assume the 

rate of seed germination is dependent on the age of the seed. 

In this chapter we aim to give the reader a brief but sufficient background 

on difference equations and integro-difference equations so that the core content 

and results of this dissertation are accessible. Section 1.2 introduces the concept of 

a Jitference equation and the typicalmethoJology employeJ to analyze anJ study 

them. We provide an example using the Ricker function which will be used for 

numerical simulations in later chapters. Section 1.3 introduces integro-difference 

equations. We describe how they are developed and Jiscuss spreading speeds and 

traveling wave solutions. 

1.2 Difference Equations 

Difference equations are, very simply, recursive functions in which suc

cessive inputs depend on the previous output. They are used to model discrete 

processes over time wherein future states depend on the current state. We may 

represent this dependence by using nonnegative integer indices n to distinguish the 

discrete state of each solution 

(1.1 ) 
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Given an initial condition, //'0, The function J takes the n-th solution of the re

cursion as an input and produces the n + I-th solution. This iterative process 

produces a solution sequence {Ui : i = o ... oo} = {un, HI, ... ,Un, ... }. 

When the equation (1.1) is assigned meaning, one would be interested to 

know how this solution sequence can be interpreted in the real world. For the 

purposes of this dissertation, we consider growth dynamics of plant populations. 

In the case of a seasonally reproductive plant, the plant population next year 

will depend on the number of seeds produced by the population this year. The 

dependence of next years population on the current years population makes this 

situation a perfect candidate to be modeled using difference equations. 

In this context, the variable Un in function (1.1) represents the plant popu

lation at time n and the function J determines how the population will change over 

time. Thus, the solution sequence produced tells us how the population fluctuates 

over time. 

In many cases there is a tendency for the population to increase when num

bers are small however as the population becomes too large for its environment the 

population decreases. The Ricker function is a well studied difference equation 

used to model this so called 'density dependence' and we will Ilse this function 

throughout the dissertation to produce numerical simulations. 

The Ricker function takes the form 

( 1.2) 

where r is a parameter related to the growth rate of the population. 

Figure 1.1 depicts a continuous plot of the Ricker function J ( 1L) = uer
-

u 

to highlight the general humped shape of this function (we use r = 1 for this 

plot). The parameter r controls the steepness of the hump which always attains 

its maximum at 1. Notice that, initially, this function behaves like an exponential 
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FIGURE 1.1 - The Ricker function, f(u) = uer
-

u
, where r = 1 

function but once the population gets too large it maxes out and begins to decline. 

Depending on the choice of initial condition and choice of parameter r, 

equation (1. 2) can have wildly varying solution sequences including stable solu

tions, periodic oscillations, and even chaotic solutions [29, 30]. Figure 1.2 displays 

4 solution curves to the Ricker function for various values of r. We note that as r 

increases, the solutions become more complex. 

Another way to numerically visualize the wide spectrum of solutions that 

can be produced from a difference equation is to observe a bifurcation diagram. A 

bifurcation diagram is a plot of the long-term solutions of a function for various 

values of a bifurcation parameter. 

Figure 1.3 is a bifurcation diagram of the Ricker function (1.2) with r as the 

bifurcation parameter and initial condition Uo = 0.2. For values of r between 0 and 

5 incremented by 0.002, we calculate the first 100 solutions and plot solutions 91 to 

100. From this diagram we observe that the Ricker Function has stable solutions 

for 0 ::; T ::; 2, moving into cascades of period doubling and finally displaying 
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FIGURE 1.2-Solutions to the Ricker function with Uo = 0.2 and T varies 

chaotic solutions for large values of T . 

Another well received density-dependent function that is used to model 

growth in biological populations is the Beverton-Holt function [4]: 

Ru 
f(u) = l+u/M (1.3) 

where R > 1 is the per capita growth rate and K = (R - 1) M is the carrying 

capacity of the environment. This is an increasing function which approaches the 

horizontal asymptote RM as u-+oo. 
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Structured Difference Equation Models 

While difference equation (1.1) is suitable to Illodel population growth for 

a simplistic situation, it does not address the effect of demographic variances in a 

population such as size. age and developmental stage. These variances affect an 

individual's vital rates and response to the environment and thus affect population 

dynamics [31]. 

In order to incorporate demographic variances in the Illodel (l.1) we intro-

duce structure in the form of an m-dimensional system 

( l.4) 

where u~ is the i-year old population density at time nand h determines how the 

i-year old population density fluctuates over time. 

We may write this system in the more succinct vector form 

( l.5) 

Specifically, we are interested in the effect of age on population dynamics. 

A popular and well studied age-structured model is the Leslie model which only 

considers births and deaths amongst the age classes. This model takes the form of 

a matrix population model 

(l.6) 

where 
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TU r12 

t21 0 

L= o t32 

o o 

o 
o 

o 

o 

tm ,m-l 0 

is an m x m matrix containing the age-specific reproJuction and survival rates. 

The scalars Tlj represent the expected number of offspring produced per j-year 

old individual and the scalars tj +1,j represent the expected number of j-year old 

individuals that survive to the next year. 

Given an initial population Uo = (U6, u6, .. ·, uo), the solution of the Leslie 

model (1. 6) is given by 

(1.7) 

It is important to note that the Leslie model (1.6) assumes births and deaths 

are scalar rates and thus does not allow for density dependence. Density depen

dence may be incorporated by generalizing this model to allow the processes of 

birth and death to be non-linear functions instead of scalars. 

1.3 Integro-Difference Equations 

Difference equations provide an excellent means to study growth dynamics 

of populations with discrete generations however this type of model does not ac

count for migration of a population in space. In the past several decades integro

Jifferellce equations have emerged as a means to model anJ stuJy Jispersal of 

populations. 

To develop an integro-difference equation we assume there is a sedentary 

stage, in which the population grows, and a dispersal stage, in which the population 

migrates. We assume these stages occur independently with the growth occurring 
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in discrete-time intervals and the migrat.ion occurring in continuous I-dimensional 

space. 

1. Sedentary Stage The sedentary stage is modeled with a difference equation, 

1Ln+l = f(un), called the growth function. As discussed in Section 1.2, Un 

represents the density of the population at time n and the function f can be 

nonlinear to account for density-dependence. 

2. Dispersal Stage The dispersal stage is modeled using a probability density 

fUllction k(x) commonly called the dispersal kernel. The distribution k(x

y) represents the likelihood that an individual migrates fram location y to 

location x. 

Since k(x) is a probability distribution we have that k(x) must be nonnegative 

and J~X) k(x)dx = 1. 

The population density at location .1: and time n + 1 is given by the sum of 

the contributions fram all other locations y giving the integro-difference equation: 

U n+l(X) = I: k(x - y)f(un(y))dy. ( 1.8) 

The population is now a function of space and so for each discrete time step n, 

we have a distribution un(x) representing the population density as opposed to a 

scalar quantity. 

In Section 1.2 we added structure to the difference equation (1.1) to account 

for demographic variances in the population. Similarly, we may add structure to 

the integra-difference equation (1.8) to obtain the m-vector-valued system 

U n+l(X) = I: diag(k(x - y))f(un(y))dy (1.9) 

where k( x) is a diagonal matrix of dispersal kernels corresponding to stage-specific 

dispersal and f( u) describes how population densities fluctuate over time. 
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The Spreading Speed 

One of the motivating factors for studying dispersal is to understand the 

rate of spread of a population; How quickly is a population advancing or retreating 

in its environment? As a mechanism to quantify spread we consider the asymptotic 

behavior of solutions as n approaches infinity. This is called the spreading speed. 

For the scalar recursion (1.8) we define precisely what is meant by the 

spreading speed. Suppose there exists a positive steady-state (3 of the recursion 

(1.8). Then the number c* is the spreading speed in the following sense: 

1. If ltn{x) is a solution of the recursion (1.8) with 0 :S uo(x) < j3 uniformly in 

.r and uo(x) = 0 for all sufficiently large :r, then for any positive t 

lim { sup Un(X)} = 0 
n--+oo Ixl~n(c' +<) 

(1.10) 

2. For every l with 0 < l < 1 there exists a positive number TI such that if Un 

is a solution of (1.8) and if 0 :S lto(x) < fJ and uo(x) 2: lfJ on an interval of 

length TI, then for any positive E, 

lim { sup (/3-ltn (X))} =0. 
n--+oo Ixl::::n(c'-<) 

(1.11) 

The first statement says that c* is an upper bound for the spreading speed. 

If c* is, in fact, the asymptotic rate of spread then we would expect that at time 

n, the support of the solution would have grown by nc*. Thus, points outside 

the expected support of the solution (ixi 2: n(c* + E)) should have no individuals 

present. Said another way, if we always move faster than the rate of spread of the 

population, we should always be in front of the advancing population. 

Alternatively, the second statement says that c* is a lower bound for the 

spreading speed. If we always move more slowly than the population (Ixl :S n(c' -
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\ 
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FIGURE lA - Generic plot of the possible wave speeds (c) versus possible wave 
shapes (p,), The spreading speed c* has been indicated as the infimum over /-l in 
both plots, 

(; )) then we should always be behind the leading edge of the advancing population, 

In this case, over a long period of time, we should approach the steady-state {3 . 

Together , the first and second statements describe c* as the asymptotic rate 

of spread of the solutions of the recursion (1.8). 

Weinberger [46] showed that for the scalar case (1.8) , under certain condi

tions, the spreading speed c* can be calculated with a formula: 

c* = ~~t {~ln (!'(O) I: e~Yk(Y)dY) } . (1.12) 

The wave speed equation ¢(/-l) = tIn (f'(O) J~oo e~Yk(y)dy) is a convex 

function [27] and thus the infimum in Eq, (1.12) exists, Figure 1.4 depicts the 

two possible shapes that the wave speed equation can take; either the infimum is 

attained at a finite value as in Figure 1.4a or the infimum is attained at 00 as in 

Figure lAb, 

For the general case of a nonlinear multi-species system (1.9), there exists 

multiple spreading speeds; Different species can move at different speeds, Presently 

there is no known formula for the spreading speed of a nonlinear system. However, 

if the nonlinear system is dominated by a linear system in the direction of the 
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vector corresponding to the principal eigenvalue of the generating matrix then the 

spreading speed of the nonlinear system is equal to that of the linear system [/18]. 

This is known as linear determinacy. 

When the nonlinear system is linearly determinate then the spreading speed 

formula is given by: 

(l.13) 

where Al is the principal eigenvalue of the linearized moment generating matrix 

Here f'(O) is the Jacobian matrix of f(un ) (Le. the matrix whose entries are the 

partial derivatives of f(un )) and K(,t) is defined to be the moment generating 

matrix 

K(/-l) := diag (f: eJi-Z k(Z)dZ) . 

In the next section we will discuss how the spreading speed is related to 

traveling wave speeds. 
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Traveling Wave Solutions 

A nOll-constant solution of the vector-valued integro-difference system (1.9) 

of the form 

un(X) = w(.1: - nc) 

where c is a positive constant, is called a traveling wave solution with speed c. 

Note that traveling wave solutions are not explicitly dependent on time. 

Instead, they are solutions which retain their shape but are translated by a fixed 

length for each iteration of time. Thus, over time, the solutions travel in space at 

the rate of c. 

Weinberger [46] showed that for the monotone scalar model (1.8), the spread

ing speed c*, is the minimum wave speed for a class of traveling wave solutions. 

When c 2: c* there exists a traveling wave solution w(x - nc) which is non

increasing. When c < c* there is no traveling wave with speed c. 

As mentioned before, multi-species systems may have different spreading 

speeds corresponding to different species. It has been shown that for cooperative 

systems and some almost cooperative systems, the slowest of these spreading speeds 

can be characterized as the minimum wave speed for a particular class of traveling 

wave solutions [23, 48]. 

The connection between spreading speeds and traveling wave speeds is use

ful because it is often more convenient to calculate the minimum speed for traveling 

waves than it is to calculate the spreading speed. 
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CHAPTER 2 

THE MODEL 

In this chapter we introduce a spatial age-structured model for perennial 

plants with a seed bank in the form of an integro-difference equation system. The 

construction of our model can be dissected into two parts: 

1. The Growth Equations: Construction of the difference equations used to 

describe the growth processes of a perennial plant with a seed bank. 

2. The Spatial Model: Coupling the growth equations with appropriate func

tions to describe the dispersal of seeds in the form of integra-difference equa

tions. 

2.1 The Growth Equations 

We begin with a general description of the life-cycle of an adult perennial 

plant. The entire life-cycle takes place in a year and we assume the process begins 

at the end of summer. Adult plants produce seed at the end of summer, the seeds 

lay dormant in the fall and winter, they germinate in the spring and finally become 

fecund adults by the beginning of the next summer. Since perennial plants can 

live for more than one year, also assume that a portion of the adult plants survive 

dormancy and are present the next year. 

We call the fall and winter dormancy the dormant period, and the sum

mer growing period the vegetative period. Seeds that don't germinate during 
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the spring but survive dormant in the ground contribute to the seed bank. To in

vestigate the dfed of the seed bank on the overall adult population, we distinguish 

seeds in the bank by age. Thus, our plant population is divided into an infinite 

number of cohorts, one for the adult population and one for each possible age of 

seeds in the bank. 

Let An represent the density of adult plants at time n and let 8~ represent 

the density of j-year old seeds in the seed bank at time n (j, n E {0,1,2, ... }). 

The reproduction function F determines the number of seeds produced per adult 

individual and can be nonlinear to account for density-dependence. 

We assume survival over the dormant/vegetative periods and germination 

are scalar rates for all cohorts of the population. The Greek character p indicates a 

survival rate with a subscript of d signifying survival over the dormant period (Pd), 

a subscript of v signifying survival over the vegetative period (Pv), and a subscript 

of 0 signifying survival of adult plants over one year (Po). The Greek character /) 

indicates a germination probability. 

We make the following assumptions: 

1. Survivorship Assumptions: Assume survivorship over the dormant pe

riod is age-dependent. Alternatively, we assume the age of a germinating 

seed has no effect on survivorship over the vegetative period. Hence, we 

have only two survival rates associated with the vegetative period; one de

scribing survival of germinated seed PvI and the other describing survival of 

non-germinated seed Pv2. This assumption is intuitively reasonable and has 

been used in other plant population models as well [40, 44J. 

2. Germination Assumptions: Assume the seed germination rates are age

dependent seeing as how many physical, physiological and ecological pro

cesses related to germination are time dependent, . For example, over time, 
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TABLE 2.1 

Seed Bank Model - Parameter Descriptions 

Parameter Description of Parameter 

Po probability an adult plant survives a full year 

~ probability a j-year old seed survives the dormant period (fall 

and winter) 

/-ji 

Pvl 

Pv2 

probability a j-year old seed germinates 

probability a germinated seed survives the vegetative period 

(summer) 

probability a non-germinating seed survives the vegetative pe

riod (summer) 

germination inhibitors decay and the seed coat becomes tainted [37]. Thus, 

seeds of varying ages will naturally have differing rates of germination. 

Table 2.1 gives a description of each parameter mentioned above. Age

dependent parameters are identified with superscripts indicating the age of the 

cohort that the parameter relates to. 

The flow-chart in Figure 2.1 depicts the life-cycle of each cohort starting at 

the end of summer in the beginning of year n and ending at the end of summer in 

the beginning of year n + 1. 
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To follow the flow-chart in Fi~llfe 2.1 consider the adnlt population block 

An. Over the course of a year, adult plants can contribute to the next years' 

population in 2 ways: 

1. An adult plant survives an entire year. Because we consider perennial 

plants, a portion Po of the adult population in year n will survive a year and 

again be part of the adult population in year n + 1. 

2. An adult plant produces seed which can either mature into a new 

ad uIt plant or survive as a seed and become part of the seed bank. 

First, adults produce new seed, the number of which is determined by the 

function F. A portion of these new seeds will survive the dormant period with 

probability p~, a portion ;30 will germinate, and a portion PI/I will survive the 

vegetative period. These surviving plants are now mature adults and part 

of the adult cohort An +I . The portion of non-germinated seeds (1 - /3°) will 

survive the vegetative period with probability PI/2 and become part of the 

O-year old seed bank cohort S~+l' 

To observe the life-cycle of the remaining seed bank cohorts, a similar logical 

flow can be applied. 

Figure 2.1 gives rise to the following infinite-dimensional population model 

describing population growth of perennial plants with an age-structured seed bank: 
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00 

An+l =PoAn + p~j3°PvIlI(Art) + LrlctWPVlS'~-1 
j=1 

8~+l =p~(1 - /3())PV2 H (Art) 

S I 1 (1 <]1) ')0 n+l =Pd - I) Pv2 c rt (2.1) 

where lI(n) =II.F(U). We will use lJ(u) instead of uF(n) for simplicity. Letting 

aj = p~/Jj Pvl and Sj = 1~(1- !Jj)Pv2 for all i = 0, I, 2, ... the model can we written 

more succinctly as: 

or in matrix form as: 

An+l 

S~+l 

S~+1 

00 

An+l =PoAn + aoH(An) + LajS~-1 
j=1 

S m sm-l n+l =Sm n 

Po + aoF(An) al a2 

soF(An) 0 0 
= 

0 51 0 

(2.2) 

An 

SO n 
(2.3) 

SI n 

These new parameters (aj, Sj) are a product of survival and germination rates and 

may be interpreted as the age-dependent probabilities of contribution to either the 

20 



TABLE 2.2 

Seed Bank Model - Simplified Parameter Descriptions 

Parameter Description of Parameter 

aj = rlctj3j Pvl probability a j-year old seed develops into an adult plant 

5j = rlct(1- (3j)PV2 probability a j-year old seed becomes a (j + I)-year old seed 

adult population (hence the choice of parameter a) or the seed bank population 

(hence the choice of parameter s). A description of these parameters can be found 

in Table 2.2. 

Note the similar structure of our model (2.1) to the Leslie model (1.6) in 

Chapter 1. They are both age-structured models with non-negative entries in 

the first row of the projection matrix and only one possible transition between 

stages for the remaining rows. There are two major differences between these 

constructions: 

1. Our model allows for density dependent growth and so has nonlinear terms 

appearing in the growth equations. All terms in the Leslie model are linear. 

2. We allow for an infinite number of seed bank cohorts in our model whereas 

the Leslie model is finite. 

2.2 The Spatial Model 

We next consider how the plant population migrates in space, this is done 

through seed dispersal. Once an adult plant produces seed, that seed can be spread 

through a number of methods including wind, active agents or water. The seed 

eventually sets in the ground and is no longer subject to movement. 
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In the context of our model, this dispersal process only affects the new seed 

population since older seed has already been set in the ground. The reproduction 

function F(u)u = H(u) describes the production of new seed and hence, we couple 

a dispersal kernel k(x) with this function. Going back to the flow chart in Figure 

2.1, we see that the function F only affects the adult cohort An and the new 

seed cohort S~. Thus, we obtain the following integra-difference system to model 

perennial plants with an age-structured seed bank 

An+1 (x) ~PnAn(x) + P:i3° Pnl 1: k(x - y )H(A" (y) )dy + t, Pl{3j PnI8!.-I(x) 

S~+l(X) =p~(l- ;3°)Pv2 f: k(x - y)H(An(y))dy 

S~+l(X) =p~(1- i31)Pv2S~(X) 

where k(:r) is a nonnegative, symmetric, integrable function such that J~oo k(x)dx = 

1. Using the simplified parameters described in Table 2.2 we have: 

An+l(x) ~Pniln(x) + ao 1: k(x - y)H(A,,(y))dy + t, aj 8;'-I(x) 

S~+l(X) =80 f: k(x - y)H(An(y))dy 

S~+l(X) =81S~(X) 

22 
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Notice that the integral (i.e. (lispersal) only affects the nonlinear compo

nents of the model. All terms outside of the integral are linear. 
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CHAPTER 3 

DIFFERENCE EQUATION ANALYSIS 

In this chapter we consider only the difference equations which model the 

growth of a perennial plant population with an age-structured seed bank: 

00 

An+1 =PoAn + aoH(An) + L ajS~-1 
j=1 

S m sm-I n+1 =Sm n 

(3.1) 

Here An represents the density of the adult plant population at time n, S~ rep

resents the density of the j-year old seed bank population at time n and the 

parameters aj = ~;3j Pvl, Sj = ~(1 - ;3j)Pv2 are survival and germination rates as 

described in Table 2.1. This is the system (2.1) which was developed in Chapter 

2. 

We begin by introducing some notation and definitions. Let 

We work in the sequence space e1 consisting of all real-valued sequences u = 

(u(1), u(2), u(3) 1 ••• ) equipped with norm II . II such that 

00 

Ilull = L lu(i) I· 
i=1 
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We say {Un} converges to U with respect to II . II if 

lim lIun - ull = 0 
n-too 

where u, Un E £1 for all n E N. We denote this convergence as 

Define the vector-valued operator 

00 

PoA + aoH(A) + L ajSj-l 
j=l 

soH (A) 

P[u] := 

which is on the right-hand side of (3.1). Thus we have that 

We make the following assumptions about the growth function H: 

HYPOTHESES 3.1. 

t. There is a positive constant M such that 

a. H (u) is continuous for 0 ::; u ::; M, 

b. H(O) = 0, 

c. 0 < H(u) ::; M for 0 < u ::; M, and 

d. H ( u) / u is non-increasing for 0 < u ::; i'v/. 

tt. There is a positive constant D ::; M such that 
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a. /1(/1,) is non-decreasing for 0 < '1/, :s: IJ, 

b. H(u)/u = F(u) > 1 for 0 < u :s: D, and 

c. H(u) ~ H'(O)u - Du2 fo'r 0 < u < D. 

m. /3n+l :s: fin JOT all n E Nand limn-too Pd' = O. 

REMARK 3.1. Hypotheses 3.1id, and iib imply that the function H is right dif-

ferentiable at 0, that H'(O) > 1, and that H(u) :s: H'(O)u for 0 :s: u:S: AI (22]. 

The assumptions on the growth function H are common for ecological mod-

cls of this type and, specifically, are realilled by both the Ricker function (1. 2) and 

the Beverton-Holt function (1.3). Hypothesis 3.1iii says that germination rates 

decrease with age and that as seeds become very very old, their survival rates get 

very close to O. 

3.1 Existence of Eigenvalue and Eigenvectors 

The eigenvalue and eigenvectors of a linear system are related to the sta-

bility of steady-states. We begin by proving the existence of an eigenvalue and 

eigenvectors for the difference equation system (3.1) linearized about the origin. 

Calculating the Jacobian of the demographic matrix of Eq. (3.1), we find 

that the linearization about 0 is: 

Po + aoH'(O) al a2 
An+l An 

soH'(O) 0 0 
5~+1 5° n 

(3.2) 0 81 0 
5~+1 51 

n 
0 0 82 
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THEOREM 3.1. Suppose Hypotheses 3.1 hold. Then, there exists a positive eigen

value'\. of Eq. {3.2} with c017'esponding strictly positive eigenvectors e = (~(i))~1 E 

[I given by 

~(j+2) = (IT Sk) ~:~~) ~(I) 
k=O • 

for all j E {O, 1, ... } and choice of ~(I) E IR+. 

Proof. To prove the existence of a positive eigenvalue, we show there exists a 

solution to the following characteristic system corresponding to Eq. (3.2): 

soH'(O) 

o 

o 0 

SI 0 

A A 

=,\ (3.3) 

Expanding Eq. (3.3) and solving for each seed bank cohort in terms of A 

gives 

sm = .5m sm-l = rrm . (H'(O)A) 
,\ s, ,\m+l 

i=O 

Substituting into the first equation of (3.4) and dividing by A produces the follow-

ing infinite series 

0
- -1 Po aoH'(O) al~IH'(O) am~mH'(O) 
- +,\ + ,\ + ,\2 + ... + ,\m+l + ... (3.5) 
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where ~m = n:,~l 8i for all m E {1,2, ... }. 

We show that Eq. (3.5) has a positive solution. To this end, let 1 = ± and 

Applying the ratio test to the series L::l ai~di+1 and utilizing Hypothesis 3.liii 

we see that Gb) has an infinite radius of convergence. 

Observe that G(O) = -1 < 0 and G( 1-) > O. Thus by the Intermediate 
po 

Value Theorem there exists a solution 1. E [0,1-] such that Gb.) = O. Hence Eq. 
Po 

(3.5) has a positive solution, A .. (= 111.). 

The components of the eigenvectors e = (~i)~l corresponding to A .. are 

given by Eq. (3.4) upon choice of a positive ~l corresponding to A. We note that 

each ~i is positive since it is a product of positive parameters. o 

3.2 Steady-States 

For a discrete-time system, the steady-states are solutions which are time 

independent, thus the solutions remain in a steady state. The related steady-state 

equations for system (3.1) are 

A = PoA + aoH(A) + E;:l ajSj-l 

SO = soH(A) 

28 
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3.2.1 The Extinction Steady-State 

Clearly 0 = (0,0, ... ) is a steady-state. Biologically this means that if all 

cohorts of the population have zero density, then they will continue to have zero 

density for all time, i.e. an extinct population will not spontaneously come into 

existence. Thus, extinction is a steady-state. 

We are interested in the case when the plant population does not go extinct. 

This is equivalent to evaluating when the steady-state 0 = (0,0, ... ) is unstable. 

The following theorem gives conditions on the parameters so that we can determine 

the stability of the extinction equilibrium. 

THEOREM 3.2. Suppose Hypotheses 3.1 hold. Then the steady-state 0 = (0,0, ... ) 

of system {3.1} is unstable if 

1 < Po + H'(O) (aa + al~l + ... + am~m + ... ) (3.7) 

and stable if the inequality is TeveTsed. Here, ~m = Il::~l Si fOT all mEN. 

Proof. To show that the extinction steady-state is unstable, we show that, under 

condition (3.7), A* > 1 in the characteristic equation linearized about O. 

Following the procedure in the proof of Theorem 3.1 we see that the char

acteristic polynomial is 

We show there exists 0 < "(* ::; 1 such that G("(*) = O. 

Observe that G(O) = -1 < O. Also, G(l) > 0 by condition (3.7) and 

G(l) < 00 since G has an infinite radius of convergence. 

Therefore, by the Intermediate Value Theorem, there exists a solution 0 < 

"(* ::; 1 such that G("(*) = O. Hence A* > 1 (i.e 0 is unstable) when condition (3.7) 

holds. 
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Alternatively, we ~how that when condition (3.7) is reversed then A. < 1 (Le. 

o is stable). To this end, note that G(I) < ° by condition (3.7). Also, G(oo) = 00 

and since G is continuous there must exist d E (1,00) such that G( d) > O. Thus, 

by the Intermediate Value Theorem, there exists a solution 1 < ,* < d ~uch that 

G(r°) = 0. Hence there exists Ao < 1 when condition (3.7) is reversed. 0 

The following theorem states that the population will go extinct if the origin 

o is stable. 

THEOREM 3.3. Suppose Hypotheses 3.1 hold and the extinction steady-state 0 = 

(0,0, ... ) is stable {i.e. A. < I}. Then solutions to Eq. {3.1} converge to 0 if 

Uo ::; e· 

Proof. By Remark 4.1, H(u) ::; H'(O)u, and so P[u] ::; L[u] where L is the lin

earization of P at o. Thus, 

Therefore, by induction, 

Un ::; A~e· (3.8) 

Taking the limit of Eq. (3.8) as n ---+ 00 we have {un} ---+ 0 since A. < 1. 0 

3.2.2 Existence of a Positive Steady-State 

We are now turn our attention to circumstances under which the popula

tion has a survival steady-state or a positive steady-state. The following theorem 

states that there exists a positive steady-state to the recursion (3.1) whenever the 

extinction steady-state 0 = (0,0, ... ) is unstable. 

THEOREM 3.4. Suppose Hypotheses 3.1 hold. Then there exists a strictly positive. 

unique solution u. = (A., S~, S!, ... ) to the steady-state equation {3.6} if condition 

(3. 7) is satisfied. Further, u. E £1 (i.e. Ilu.11 < oo). 
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Pmof. For every Tn, solving for ,r..,'rrI in terms of Jl in system (3.6) and substituting 

those values into the adult population equation gives 

00 

=fJo A + n.oll(A) + L [(lj~jH(A)l 
j=1 

where ~j = n~::(~ 8; for all j E {l, 2, ... }. 

Dividing by A and solving for Jl~t) we have 

(3.9) 

Recall that .5i = Pd(1 - /3 i )pII2 and so for each i, ~i ha.'3 a factor of (PII2f, 

Hence, the denominator of the right-hand side of (3.9) converges because it is 

bounded above by the geometric sequence (lo + {(PII2)i} :1' Let the constant 

B = l:,po and 
ao+2:: j =l aj6. j 

G(A) = H;;) _ B. 

We will show there exists solution A. to Eq. (3.9) by applying the Inter

mediate Value Theorem to G(A). 

By Hypotheses 3.1, H(A) is bounded above by M. Hence, 

. H(A) 
G(oo) = lun -A - B 

A-.oo 

M < lim - - B 
- A-.oo A 

= -B 

< O. 

Also, by the condition (3.7), H'(O) - B > O. Thus, 

G(O) = lim H(A) - B 
A-.O A 

= H'(O) - B 

> O. 
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Therefore, by the Intermediate Value Theorem, there exists 0 < A. < 00 

such that G (11.) = 0, I-Ienee there exists a positive steady-state u. = (/1., ,)'~, 8;, ... ). 
Furthermore, G (A) is monotone since H;tl is monotone (Hypotheses 3.1) and so 

this steady-state must be unique. 

Thus, 

To show Ilu.11 < 00 observe that for i = 0, 1, ... , 

Sii) =11(A.).6i - 1 

<11 (A.)(p,d i
-

l
. 

00 

i=O 
00 

<A. + 11(A.) L(PV2r 
i=l 

<00. 

Therefore, u. E £1 and the theorem is proved, o 

REMARK 3.2. Ther'e does not exist a steady-state of system {.9.1} which has both 

positive and zern components. Thus, the only steady-states of system {3.1} aTe 0 

and u., 

The remark is easy to see for if there is one component of a steady-state 

which is zero, it will force all other components to be zero as well. 

3.2.3 Convergence to the Positive Steady-State 

We now know when a positive steady-state exists, but we do not know 

how solutions behave around the positive steady-state, What is the stability of 

the positive steady-state? Does the population eventually converge to the steady-

state? What information about the population can we extract knowing that a 

positive steady-state exists? 

32 



The following theorem says that if we have an initial population that is less 

than the positive steady-state and the growth function is non-decreasing, then the 

positive steady-state is stable. Thus populations (that are not initially too big) 

whose growth increases with density will survive and increase to a stable population 

over time. 

THEOREM 3.5. Suppose Hypotheses .'3.1 hold, the reproduction function H(A) is 

non-decr-easing and the steady state 0 is unstable. Then solutions to system (.'3.1) 

converge to the positive steady state u. = (A., S~, Sl, ... ) with respect to 11·11 when 

o < Uo S u., Uo ¢ O. 

Proof. Let e = (~(1), ~(2), ... ) be a positive eigenvector corresponding to the posi

tive eigenvalue A. of the linearized system (3.3). 

Since H(A) is non-decreasing and all other terms in system (3.1) are linear, 

then we have that P is order preserving (i.e. u ~ v==> P[ul ~ PlY]). 

We first show that the theorem holds for the simpler case when the initial 

population is bounded below by an eigenvector. 

LEMMA 3.1. Suppose the hypotheses of Theorem .'3.5 hold and there exists a suf-

ficiently small positive constant TJ such that 

(3.10) 

Then {un} -+ u •. 

Proof. First, suppose Uo = 17~. We proceed to show by induction that un+1 ~ Un. 

Since A. > 1, it is easy to show that the linear terms of Un are non

decreasing. To show that the nonlinear terms (u~l), 1/,~2)) are non-decreasing recall 

that H(u) ~ H'(O)ll - D1l2 by Hypothesis 3.1. We may choose 17 sufficiently small 

{ ~} so that DTJ max ~(1). ~(2) < A* - 1. Using this fact and the fact that A* > 1 
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we obtain the following inequalities: 

UI = P[Uol = L[uol + P[uol - L[uol 

= L[uol + 

2: L[uol-

= 17>...e -

ao (H(u~l)) - H'(O)u~I)) 

80 (H(U61
)) - H'(O)1L~I)) 

o 

aoD (u61
)) 2 

soD (/J,~l)) 2 
o 

aoD (fJ~(1))2 

soD (1]~(1))2 

o 

1]~(1) (>... - aoD'17~(l)) 

= 
. (2)( _ ~) r/~ >... - soDrl ~(2) 

1]~(3) >... 

= uo-

Since P is order preserving, we conclude by induction that 

Similarly, since Uo ::; U., by induction we have that Un ::; U._ Thus, {un} is 

increasing and bounded above by U., therefore 
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Now we use the fact that Uo = 'Ie :s; Uo < U. and conclude by induction 

that 

(3.11) 

Taking the limit as n -t 00 of Eq. (3.11), gives u. :s; Un :s; u •. Therefore, 

t he lemma is satisfied by the Squeeze Theorem. o 

We proceed to prove the theorem for the case when some of the initial 

population densities may be O. The idea is that we can choose a generation far 

enough in the future so that the first N cohorts have positive population densities 

and will therefore converge to the positive steady state by Lemma 3.1. The infinite 

number of remaining cohorts are so small that their norm can be tempered by any 

To this end, let f. > O. Since Ilu.11 < 00 we may choose N E N such that 

00 
t 

'" u(i) < _ 
~. 3' 

i=N+l . 

Using the fact that P is order preserving and Uo :s; u., we conclude by 

induction that Un :s; u. for all n E N. Thus, II Un II < lIu. II < 00. 

and 

We may now choose [l;I E N such that 

Thus, 

00 

L 
i=N+l 

00 

'" u(i) < ~ 
~ M 3 

i=N+l 

u ~ > 0 for all i E {I, ... , N}. 

00 00 

lu(i) - U(i) I < 
M .- L lu~1 + L 

i=N+l i=N+l 

2E 
<-

3 
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Now, since I/,~] > 0 for all i E {I, ... , N}, we may choose TJ slliliciputly sIllall 

such that 
~(1) 

> '] 

By a truncated version of Lemma 3.1 we conclude that 

lim 
,w-+oo 

1,(N) u(N) 
"'ft.! • 

N ow we may choose Mi E N such that for every mi > Mi 

< 

Let MM = max{Mi}. Then, 

(3.13) 

Finally, letting 1'v[. = max{ M, AIM} we have by Eq. (3.12) and (3.13) that, 

i=l 

N 00 

= L 11l~). - u~i)1 + L 11l~. - '/l~i)1 
i=1 

E 2f 
<-+-

3 3 

i=N+1 

Therefore, {un} -7 u. with respect to II . II and the theorem is proved. 0 
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3.2.4 Connection to Analogous Finite Syst.em 

Consider the m-dimensional truncated version of system (3.1), meaning that 

no seed can reach an age greater than m - 2-years old. We append an index to the 

subscript of each cohort to denote this truncation (i.e. Anlm represents the n-th 

generation of the adult plant population for the m-dimensional finite system). The 

system of equations now become: 
m-l 

A(n+!)lm =PoAnlm + aoH(A"lm) + L ajS~~T! 

S~n+l)lm =soH(Anlm) 

01 5'0 ·J(n+l)lm =81 nlm 

S m--2 s'm-a 
(n+l)lm =Sm-2 nlm' 

j=1 

(3.14) 

THEOREM 3.6. Suppose Hypotheses 3.1 hold. Let u. = (A., S?, S;, ... ) be the 

positive 8teadY-8tate a880ciated with 8y8tem (3.1) and let u'lm = (A. lm , S~lm' ... , S:!m) 

be the p08itive steady-state aS80ciated with the m-dimensional truncated system 

(.'3. 14). Then, 

lim u*lm = U •. 
m-+oo 

Pmoj. Recall that Eq. (3.9) is the steady-state characteristic equation correspond

ing to system (3.1) and so 

H(A*) 1- Po 
A. 

where b.j = n1~~ 8i for all j E {1, 2, ... }. 

Similarly, for the truncated system we have that 

1 - Po 
"m-l A' ao + ~j=1 ajUj 

Clearly H(A'I(m+l») < H(A'lm) and H(A,) < H(A'lm) for all mEN since a· ~. > 0 
A'I(rn+l) A'im A, A. lm J' J 

for all j. Hence, since H~A) is non-increasing and continuous then 
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l. /l'l(m+l) < 1\'lm for all TIl, E N, 

2. A. < A' lm for all mEN. 

Thus {A'lm}~=1 is a decreasing sequence that is bounded below by A. and so 

limrn-+oo A. lm = A •. 

Similarly we may conclude that limm -+oo S~lm = S'!, for all j E N and the 

theorem is proved. 0 

3.3 Solution Curves and Bifurcation Diagrams 

In this section we present solution curves and bifurcation diagrams of the 4-

dimensional finite difference equation model (3.14) with the Ricker growth function 

H(A) = Aer
-

A (3.15) 

with r > O. 

All figures use the following color scheme: 

• Black line - A, adult plant population 

• Blue line - So, new seed population 

• Green line - 51, I-year old seed population 

• Red line - S'2, 2-year old seed population 

Figure 3,1 displays solution curves for 4 different values of T when Po = 0.25, 

P~ = p~ = p~ = p~ = 1, Pvl = Pv2 = 0.9, 11° = 0.7, /3 1 = 0.5, /-]2 = 0.3, 11.3 = 0.1. 

Figure 3.1a shows that when r = 1 the populations are stable. As r increases, 

the populations are eventually periodic; when r = 3.5 (Figure 3.1b) solutions have 

period 2 and when r = 4.5 (Figure 3.1c) solutions have period 4. Finally, when r 

is large enough (in Figure 3.1d, r = 5.5), solutions are chaotic. 

38 



C 
::I 

,. 

o. 

o t:~ .. ·--.. ·--· .. ---···---·~--··--·------··--··-·; 
o ~ 100 

(a) 'r = 1, stable solutions 

C 
::I 

.. ... ........... .... ................... 

. ........ ............ . .... .. ... 

..... ......... ... ............. 

I ••••••••••••••••• • ••••• 
. ..... .... .... .. ....... .. . 

.................... ..... . .... . 
0'·: .. -......-..... ..... ············· .. ···· .. :· .::::::::: .. :: .... : .... :: .. '0':. :. 
o ~ 100 

(b) r = 3.5, period 2 osci llations 

!4 

• • • • • • • • • • • • • • • • • • • • • • • 12 

. .. . .. .. .. . ............ 

....... .... ... . .. ..... .. . ...... ..... ... . . ... ... . 
3 • ••••••• •••••••••• •••••• ... .. ' .. ' .......... ... . 
2 • 

1 • 

:L'~'~':..'~':..';..':...'~'~.;..'~':...'~.~';...'~';..';..'~';..'~ 
00 9J 100 

(c) r = 4.5, period 4 oscillations 

10 

c a ... to ••• •• 0 ° •• 0 ••••••••••••• 

~ : • °
0

° 0° • •••• ••••••• •••••• 

IJ •• 0° • • •• .:. • •••• : .: 

4 '~'.:. : • .::, • .' .:: .:. ::. ::'..:.: : . ::: •• /.:.::":::::':.: ::'.:- .:'~ ••• ::::.:: • 

2 :.<~: .~.:: ;::,~ ~,::.; ,: :~.: ~;:: :':.:: ... :.: / ... >~::: 
00 _V"~"''Iooc'...aa...1" .. L..z:;-.l.;''.1 .. .:t . ... .L.~'.'_S ~._ l.~~ 

n 

(d) r = 5.5, chaos 

FIGURE 3.1 - Solution curves of (3.1) with H the Ricker function. 

Figure 3.2a displays a bifurcation diagram with bifurcation parameter T, 

depicting the long term dynamics of the solution curves in Figure 3.1. All four 

population cohorts are reminiscent of the logistic bifurcation which goes through 

some period doubling then moves to chaos (as shown in the solution curves). Each 

population cohort appear to have stability changes at concurrent T values. For 

example, the first bifurcation point in each diagram appears to occur around the 

value.,. = 3.5. 

Figure 3.2b plots the adult bifurcation when there is a seed bank present 

(black) and when there is no seed bank present (magenta). The diagrams use the 

same parameters as those defined above except for the case of no seed bank we 
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FIGURE 3.2 - The bifurcation diagrams of a truncated version of (3.1) with H the 
Ricker function and T the bifurcation parameter, T E [0,15] . 

have that Si = O. We see here that the seed bank can have a stabilizing effect on 

the population dynamics in that the period doubling occurs later in the seed bank 

diagram. 

Figure 3.3 uses the new seed germination rate (30 as the bifurcation param

eter and Po = 0.5, p~ = p~ = p~ = p~ = I , Pv1 = Pv2 = 0.9, (31 = 0.1, (32 = 0.05, 

(33 = 0.025. We see from Figures 3.3a and 3.3b that when T = 1 or 3 the population 

dynamics are stable regardless of the value of (30. However, when T = 5 or 7 we 

see some interesting changes. Figures 3.3c and 3.3d show that when (30 is small 

enough, solutions are chaotic but as (30 increases, the population stabilizes, moves 

into period doubling and then gets chaotic again as (30 nears 1. This pattern of 

chaos to stability and back occurs often in this model, in fact, every set of pa-

rameter choices we used produced similar looking bifurcations. To the best of our 

knowledge, this type of switching behavior has not been observed in single species 

models before and thus opens up new areas for speculation. We have not been able 

to postulate a clear biological interpretation for this behavior. These bifurcations 

give more questions than answers but are worthy of further investigation. 
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CHAPTER 4 

SPATIAL ANALYSIS 

In this chapter we analyze the spatial system which models spread of peren-

nial plant populations with an age-structured seed bank: 

An+1(X) =PoAn(x) + ao /00 k(x - y)H(An(y))dy + f ajS~-l(x) 
-00 j=l 

S~+l(X) =50.l: k(x - y)H(An(y))dy 

S~+l(X) =.slS~(X) (4.1) 

Here An (:r) represents the density distribution of the adult plant population at time 

n, S~(x) represents the density distribution of the j-year old seed bank population 

at time n and the parameters aj = ~f3j pv1, 5j = ~(1 - f3 j )Pv2 represent survival 

and germination probabilities as described in Tables 2.1 and 2.2. This is the system 

(2.4) which was developed in Chapter 2. 
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Ddine the vcctor-valncd operator 

Q[u](:z;) := 

00 

PoA(x) + flO J~'Xl k(x - y)H(A(y))dy + L (tjSj-l(x) 
j=l 

So Loo'Xl k(x - y)H(A(y))dy 

Sl;"O(X) 

,-'m-l( ) Smu X 

which is on the right-hand side of (4.1). Thus we have that 

where u(x) = (u(l) (x), u(2) (x), ... ) = (A(x), SO(x), ... ). 

(4.2) 

We extend the sequence space e I used in Chapter 3 to an infinite-dimensional 

vector space consisting of all real-valued continuous function sequences u(x) 

(u(l)(x), U(2)(X), .. . ). 

When we discuss convergence of a sequence of infinite-dimensional vector-

valued functions {un(x)}~=l we are referring to component-wise convergence. We 

say {un(x)} converges to u(x) with respect to the supremum norm 11·11 if 

for every i = 1,2, ... where 

Ilu(x)11 = sup{lu(x)1 : x E lR}. 

We will sometimes refer to the m-dimensional finite analog of system (4.1) 
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which we distinguish by using an additional subscript next to the time sllbscript: 

'00 m-I 

An+llm(x) =PoAnlm(x) + ao leX) k(x - y)H(AnlnJy))dy + ~ aj8~~~(.r) 

8~+llm(X) =So I: k(;r - y)Jl(Anlm(y))dy 

( 4.3) 

cm-2 () _, sm-3( ) 
.In+1Im - 2 X -Sm nlm .r 

where mEN. Similarly we define the corresponding m-dimensional operator 

Qm[U] so that: 

We make the following assumptions throughout this chapter. 

HYPOTHESES 4.1. 

1. There is a positive constant /'\:0 such that 

a. H(u) is continuous for 0 ~ u ~ /'\:0, 

b. H(O) = 0, 

c. 0 < H(u) ~ /'\:0 forO < u ~ /'\:0, and 

d. H(u)/u is non-increasing for 0 < 11, ~ /'\:0. 

n. There is a positive constant d ~ /'\:0 such that 

a. H (u) is non-decreasing for 0 < u ~ d, 

b. H(u)/u = F(u) > 1 for 0 < u < d, and 

c. H(u) ~ H'(O)u - du2 for 0 < u < d. 

m. /5'n+l ~ Pn for all n E Nand limn-too Pd = o. 

44 



v. k(x) is a continuous, symmetric, non-negative function such that 

a. fIR. k(x)dx = 1, and 

b. the integral 

(4.4) 

converges for all real n'umber J.1. and K (J.1.) > 1. 

REMARK 4.1. Hypotheses 4.1 id, and iib imply that the function H is right dif

fer'entiable at 0, that H'(O) > 1, and that H(u) ~ H'(O)u for 0 ~ u ~ /'\.0 (22]. 

The assumptions on the growth function H and model parameters (Hy

potheses 4.1i, ii, iii) are identical to Hypotheses 3.1 in Chapter 3. We note again 

t hat these first two are common for ecological models of this type and, specifically, 

are realized by both the Ricker function (1.2) and the Beverton-Holt function (l.3). 

Note that Hypothesis 4.1iv is the Condition 3.7 from Chapter 3. By Theo-

rem 3.2, this condition implies that the extinction steady-state 0 of the difference 

equation system is unstable (i.e. solutions move away from the origin). 

Now define the linearized moment generating matrix B/L as 

Po + aoH'(O)K(JL) a1 a2 

soH'(O)K(J.1.) 0 0 

o 
o 

S1 0 (4.5) 

where K (J.1.) = fIR. k (x )ellX dx as defined in Hypothesis 4.1 vb. Define the Tn-dimensional 
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analog of this matrix as 

Po + aoH'(O)K(/-L) a1 am-2 rLm-1 

8 oH'(O)K(/-L) 0 0 0 

Bl'lm := 0 81 0 0 ( 4.6) 

o o o 

We present a lemma about the finite spatial system (4.3) which is taken 

as a specific case of Proposition 3.3 from Lui [27] . This result says that there 

exists a positive, strictly dominant eigenvalue with corresponding strictly positive 

eigenvector to the finite system, under certain conditions. Additionally, the system 

has a spreading speed which can be calculated by a formula involving the dominant 

eigenvalue of Bl'lm' 

We note that the rn-dimensional finite system (4.3) has the property that 

for 0 ::; p ::; 1, H(pu) ~ pH(u) since H(u)/u is non-increasing (Hypotheses 4.1). 

This implies that 

which is needed for the following lemma to hold. 

Let u*lm he the positive steady-state of the finite difference equation system 

which was described in Chapter 3 Eq. (3.14). 

LEMMA 4.1. Suppose Hypotheses 4.1i, ii, v hold and that H is non-deer·easing. 

Suppose uOlm(x) is continuous, 0 < uOlm(x) « u*lm, uOlm(x) is positive on a set 

with positive measure, and uOlm(x) = 0 for sufficiently large x. 

Then Bl'lm is irreducible and has a positive eigenvalue A*lm (/-L) that is no 

less than the moduli of all other eigenvalues of Bl'lm' 

Fur'therrnore, In A*lm(lt) is convex, A*lm(O) > 1 and 
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where (';n 'is the spreading speed of system (4. ,'l) in the following sense: 

1,. 

lim { sup lunlm(:r)l} = 0 
n .... oo Ixl ~n(c;" +,) 

n. 

Pmof. Follows from Proposition 3.3 in Lui [27]. o 

4.1 Existence of the Eigenvalue 

The following theorem states that an eigenvalue of BJl exists when the origin 

is unstable (i.e. when Hypothesis 4.liv) holds). 

THEOREM 4.1. Suppose Hypotheses 4.1 hold. Then there e.rits a strictly positive, 

simple, eigenvalue )..* (f-l) of B'L with corTesponding str'ictly positive eigenvector (.(/1,) 

given by 

C(j)(JL) = .6. '_ H'(O) K(f-l)~(1)(f-l) 
<" J 1 ()... (f-l) F- 1 

for all j E {2, 3, ' , ,} a'nd choice of ~(l) (f-l) where ~j = nt~ Si' 

Further, )...(f-l) > 1 and )...(J-L) is twice continuously differentiable on JR. 

Proof. We consider the characteristic equation BJlu = )..(f-l)u associated with Bw 

Writing out the equations and solving for each seed bank cohort in terms of A 

gives 
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11 = PoA + aoH'(O)K(I1,)A + alSO + ... + o,msm-1 + ... 
).. (IL) 

SO = soH'(O)K(IL) A 
. '\(11,) 

Sl = ~.r:iO = .'ioS1H'(0)f((IL) A 
A(/L) '\(IL)2 

(4.7) 

Substituting into the first Eq. (4.7) and dividing by A produces the following 

infinite series 

(4.8) 

To prove existence of A*(/L) > 1 we show that Eq. (4.8) has a solution 

greater than 1. This approach is very similar to that of Theorem 3.2. 

To this end, let rp(/L) = A(~) and 

G('I'(I')) = -1 + p,"'(I') + H'(O)K(I') (ao'l'(I') + ~a;t.;('I'(I'))i+I) (4.9) 

We show there exists rp*(/L) E (0,1) such that G(rp*(/L)) = O. 

Observe that G(O) = -1 < O. Also, G(l) > 0 by Hypothesis 4.1iv and the 

fact that K (/L) > 1. Recalling that Si = p~(1- f3i)pV2 we see that each ~i has the 

term (Pv2)i. Thus, G (1) < 00 since it is bounded above by a convergent geometric 

series. 

Therefore, by the Intermediate Value Theorem, there exists a solution 

:p* (It) E (0, 1) such that G( rp* (/L)) = O. Hence, there is a strictly positive eigenvalue 

of B~ such that A.(/L) E (1,00). 
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We now show that A.(IL) is simple. Observe that the derivative with respect 

to 'P of Eq. (4.9), the characteristic equation of Bill is positive when evaluated at 

r.p'(J-L). Thus, the multiplicity of the root A,(IL) is one (i.e. A.(J-L) is simple). 

Finally, note that G(J-L, r.p(p,)) is a power series with an infinite radius of 

convergence. Hence, using the Implicit Function Theorem and the fact that A,(11) 

is simple, we have that A.(J-L) is twice continuously differentiable on JR. 

o 

REMARK 4.2. Thmughout the remainder of this dissertation we will let A. (J-L) be 

the strictly positive, simple, eigenvalue of BJL with corresponding strictly positive 

eigenvector· e ({£). 

4.2 Properties of the Eigenvalue 

As mentioned in Sedion 1.3, for a scalar integro-difference equation, the 

convexity of the wave speed equation ¢(IL) = tIn (f'(O) J~oo diYk(y)dy) is impor

tant because it is related to the calculation of the spreading speed. In the following 

theorem we prove that the eigenvalue A.(J-L) associated with BJL is log convex on 

JR. 

THEOREM 4.2. Suppose Hypotheses 4.1 hold. Then A.(J-L) is log convex on IR. 

Pmoj. This proof is similar to that of Lemma 6.4 in [27]. Let J-Ll, J-L2 E JR and 

o < t < 1. We show that the following inequality holds 
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Thus, 

where bij(fJ) is the entry of the matrix BJj in the i-th row and j-th column and ~j 

(I]j) is the j- th component of the eigenvector e (7J). 

Using Holder's Inequality and simplifying, we have that for every i, 

00 

= L (bij (P'I))t (bij (fJ2))I-t Xj 
j=1 Xi 

> [B/l1 t+/ l 2(I-t)X]i 

Xi 

l et I-t 
W lere Xi = <"iTJi . 

LEMMA 4.2. [BI'Xli ~ A.(,t) for all X E £1 and It E IR+. x, 

Pmof Suppose there exists X E £1 such that BJjX < A.(fJ)X. Let qT be a left 

eigenvector of Bw Then, 

o 

Thus, by Lemma 4.2, 

(4.10) 

and we have that A. (/-l) is log convex on IR. 
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Finally, note that since ~, 11 E PI then 

00 00 00 

Ilxll = L I(~i)t(rli)l-tl ~ L(C)t L(TJd 1
-
t < 00. 

i=l i=l i=l 

o 

The study of finite nonnegative matrices is extensive and there is a plethora 

of theory surrounding this topic. We thus consider Bl1lm (see (4.6)) to gain further 

insight into the properties of A*. 

Since BJ.Llm is irreducible and primitive, then by the Perron-Frobenius The-

orem, it has a positive, simple, strictly dominant eigenvalue with corresponding 

positive right and left eigenvectors. We denote this eigenvalue as A:n (11,). 

The following theorem relates the positive eigenvalue of the infinite matrix 

BJ.L to the dominant eigenvalues of the finite matrices {BJ.Llm}~=l' 

THEOREM 4.3. Suppose Hypotheses 4.1 hold. Then A:n(JL) converyes uniformly 

to /\.(JL) on every nonnegative closed inter'Val. 

Proof. Let E > 0 and b E jR+. We show A~, (JL) =i A' (f.L) for JL E [0, b]. 

Recall Eq. (4.9), the characteristic equation of BJ.L: 

Thus, 

where 'P* = }.' Similarly, we may obtain the characteristic equation of BJ.Llm as: 

so that, 

h * 1 were 'Pm = F' 
m 
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We denote the remainder of these characteristic equations as 

00 

= Il'(O)K(/l) L ai~i<pi+l. 
i==m 

We begin by proving the following three lemmas. 

LEMMA 4.3. For every E > 0 theTe exists At s'Uch that JOT all m > M 

JOT all f.l E [0, bJ. 

Proof. Let E > 0 and B = SUP,'E[O,b] K (/1.). Since <p* (f.l) -:; 1 and ai < 1 we have 

that 

00 

Rm(f.l, <p*) =H'(O)K(f.l) L ai~i<p*(f.l)i+l 
i=m 

00 

-:;BH'(O) L ~i' 
i==m 

Recall that ~i = TI:~l Si = TI:~l p~(l- f3i)Pv2' Thus, L::m ~i is bounded above 

by the convergent geometric series L::m (Pv2) i. Therefore, we may choose MEN 

such that for every TrI. > M, E:m ~i < Elf,(o), 

Therefore, Rm(/l, <p*) < E for all/l E [0, bJ. o 

LEMMA 4.4. For all f.l E [0, bJ we have that 

( 4.11) 

Proof. The proof follows directly by differentiating Gm term by term and using 

the fact that K(f.l) > 1 for all f.l and <p E (0, 1J. o 

LEMMA 4.5. Let f.l > 0. Then A~(f.l) < A*(f.l) JOT all mEN. 
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Proof. Letm E N. Observe that, 

G(O) = -1 < 0 

and 
00 

G(ip~) = IJ'(O)K(JL) L ai~i(ip:n/+l > O. 
i=m 

Therefore, by the Intermediate Value Theorem there exists a positive root of G( ip) 

which is smaller than 'P~. Thus, ip* < 'P;n which implies that 

o 

We proceed to prove the theorem. Note that 

Let E > O. By Lemma 4.3 we may choose MEN such that for all m > iV!, 

( *) Po 
Rm J..L,ip < (.\.)2 E (4.12) 

for all J..L E [0, b]. 

Note that Gm(ip) is continuous on [ip*, ip~] and differentiable on (ip*, 'P~). 

Hence, by the YIean Va.lue Theorem, there exists rp E (0, b) such that 

8Gm(J..L, ip) I 
Dip <jJ 

I Gm(J..L, ip0) - Gm(J..L, ip~)1 
I ip* - ip;,.1 

Lemma 4.4 together with Eqs. (4.12) and (4.13) show that 

E 

< (.\0)2' 
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Since rp*(lt) = ,\.Ll then we have that 

Therefore, hy Lemma 4.5, 

for all f.L E [0, b]. 

o 

COROLLARY 4.1. ¢m(lt) converges uniformly to ¢(IL) on ever'y nonnegative closed 

interval where 

and 

rjJ(f.L) := In(A.(f.L)). 
f.L 

Proof. The result follows directly from Theorem 4.3 and the fact that the natural 

log is a continuous function. 0 

4.3 The Spreading Speed 

We are interested in finding an asymptotic rate of spread of the plant pop-

ulation described by the integro-difference system (4.1). 

Define 

c* := inf {In(,\*(f.L))}. 
1-'>0 f.L 

(4.14) 

As shown in Theorem 4.2, A*(f.L) is log convex on R. This ensures that the 

infimum in Eq. (4.14) exists however it could he 00. The following hypothesis 

avoids this situation. 

HYPOTHESES 4.2. Suppose the infimum in Eq. (4.14) is attained at a finite 

value, fl. 
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Thus, 

• In(A.(p)) 
(' = ----''----'--'-'- , 

11, 

which implies that 

(1.15) 

We proceed to show that c* is the spreading speed of system (,1.1) by showing 

it is hoth an npper and a lower hound for the asymptotic rate of spread. We first 

consider the monotone case and then the non-monotone case. 

Monotone Case 

Before we state the theorem we would like to remark that if any single com

ponent Ltg) (x) is initially positive at a point, then after i generations, the first i 

components will be positive at that point as well. More specifica.lly, if ugl(xo) > 0 

for some Xo > 0, then u~nl(xo) > 0 for all n E {I, 2, ... , i}. Thus, by assum-

ing that just one component is initially positive somewhere, we are guaranteed 

that any finite number of components will be positive after a. sufficient number of 

generations. 

THEOREM 4.4. Suppose Hypotheses 4.1 and 4.2 hold and that H is non-decr'easing. 

Then c· is the asymptotic spreading speed of the system (4.1) in the following sense: 

If uo(:r) is contmuous, 0 ~ uoer) « u., ug\r) is positive on a set with 

positive measure for some i, and Uo (x) = 0 fOT sufficiently la'f'ge x, then for' any 

f > 0 the solution Un of system (4.1) has the following proper·ties 

2. 

lim { sup IUn(X)I} = 0, 
n--+oo Ixl2:n( c· +f) 

( 4.16) 

'lZ. 

lim { sup lun(x) - U*I} = o. 
n--+oo Ixl:Sn(c' _£) 

( 4.17) 
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Proof. Let L[u] be the linearization of Q[u] about O. It is ea .. -;y to see that 

L[P -iiJ'~(p,)] = Bii:P-ii.:"~(ji,) by using the fact that k(:r;) is symmetric. 

'vVe show that Eq. (4.16) holds, i.e. that the number c' is an upper bound 

for the spreading speed of the system (4.1). Since ~(p.) » 0, we may choose a 

constant p such that Uo (x) ::; pe -I]X ~ (p.) and Uo (x) satisfies the hypotheses of the 

theorem. Observe that 

U 1 (.'E) = Q [ Uo ( x )] ::; L[ Uo ( x) ] 

::;pL[e -fiX ~(p.)] 

=pA. (p.)e -fix ~ (p.) 

=pe -fi(x-c') ~ (p.). 

By induction we have that 

Thus, for all x :2: n( c' -\- E), 

Therefore, 

sup \un(x)l::; pe-Ilm~(p.) 
x~n(c'+f) 

and so, 

lim { sup \un(x)\} = O. 
n--too x~n(c'+f) 

We may use the same procedure for the case when.'E ::; -n(c' +f) to obtain 

Eq. (4.16). 

We now show that Eq. (4.17) holds, i.e. that c' is a lower bound for the 

spreading speed. First note that Eq. (4.17) is equivalent to the following statement: 
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For every ( > 0 there exists N E N such that for all n > N 

for all I:rl S n(c* - 6). 

We will use this statement to prove the theorem. 

Choose uo(x) such that it satisfies the assumptions in the theorem. For 

given m, let 

if i E {1, ... ,m} 

ifi E {m+ 1,m+2, ... } 

Thus, for any m, 

(4.18) 

where unlm is the solution of them-dimensional recursion C1.3). 

Note that since 1lg)(x) is positive on a set with positive measure for some 

i, then there exists N such that uW(x) is positive on a set with positive measure 

for each j E {O, 1, ... ,m}. Thus, without loss of generality, we may assume that 

the initial distribution uOlm(x) is positive on a set with positive measure. 

Let r~ := inf,L>o In ,\;(,1). By Lemma 4.1, r~ is the spreading speed of the 

m-dimensional recursion (4.3) with initial distribution uOlm(x). 

Now, let E > 0 and 6 > O. Since c* is attained at a finite value p then, by 

Corollary 4.1, we have that c~ -+ c'. Thus, we may choose A-ft E N such that for 

Ic:r, - c*1 < 6. (4.19) 

By Theorem 3.6 we may choose M2 E N such that for all m > M2, 

( 4.20) 

Let M = max{Ml' Nh}. By Lemma f1.1 we may choose N E N such that for all 

n> N, 
E 

IUnIAI(x) - u*IMI <"2 for all Ixl S n(c~ - 26). 
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Thus Eq. (,1. HI) and (4.21) imply that 

(1.22) 

Equations (/1.18), (4.20), and (4.22) imply that for a11\.r\ :S n(c· - 6), 

<E. 

Therefore Eq. (4.17) holds and the theorem is proved. o 

Non-monotone Case 

We now show that c· is the spreading speed for the system (4.1) when H 

may not be monotone. We first introduce some auxiliary functions: 

Define the function 

for 0 :S lL :S K'o (denoted by G(lL, 0) in [43]). JI+(n) is a continuous and non

decreasing function, and 0 :S H(u) :S H+(u) :S KO for 0 :S lL :S K:O. Note that 

Hypothesis 4.1ii shows that H+(u) = H(u) for u :S d. 

We showed in Theorem 3.4 that u* = (A* S~ S; ... ) is the positive steady

state of the non-spatial system (3.1). We find, by a similar argument, that there 

exists a strictly positive steady-state to the system (3.1) if we replace the growth 

function H(u) by H+(u). Call this positive solution 0'+ and the first component 

of this positive solution K. 

Now define the function 

lr (71,):= min H CIi) for 0 :S u, :S K. 
U~V~I< 

(This function is denoted by G(u, a) in [43].) Clearly, H-(u) :S H(u) for O:S u :S 

K. Also, H-(u) is non-decreasing and continuous on [0, K]. Again, we can show 
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there exists a strictly positive steady-state to the non-spatial system (3.1) if we 

replace the growth function If (u) by If - (IL). Denote this positive solution as (j _ 

and the first component of this positive solution (J _. 

Let Q+ and Q- be defined by (4.2) with H replaced by H+ and H-, 

respectively. Since }{-(ll) ::; H(u) ::; H+(u) then 

for u(.l:) continuous and 0 ::; u(:[) ::; (j +. 

THEOREM 4.5. Suppose Hypotheses 4.1 and 4.2 hold. Then c· is the asymptotic 

8preading speed of the system (4.1) in the following sense: 

If 0 ::; Uo (x) < < U., Uo (x) is continuous for all x, ug) (:r) is positive on (l 

set with positive meas'ure for some i, and Uo (x) = 0 for sufficiently large x, then 

for any t > 0 the solution Un of system (4.1) has the following properties 

z. 

un(:r) ::; (j + for all x and n. 

n. 

lim { sup lun(x)l} = 0, 
n--too Ixl~n(c'+f) 

(4.23) 

nz. 

lim inf { inf. I Un (x) I} 2:: (j - . 
n--too Ixl:Sn(C'-f) 

(4.24) 

Proof. Case i: Let v~(x) and v;;-(x) be solutions of the recursions v~+l(x) = 

Q+[v~](x) and V;;-+l(X) = Q-[v;;-](x), respectively. Then the Comparison Principle 

says that 

Since v~ (x) ::; (j +, then Un (:r) ::; (j + for all x and n. 
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Case ii and iii: Note that 1/, 1/+ and 1/- have the same linearization 

at O. Thus, they each ha.ve the same linearized moment generating matrix B
"

. 

Hence, by Theorem l1. t l, v~ and v~ have the same spreading speed c· since f[+ 

and H- are non-decreasing. In particular, Eq. (4.23) is satisfied with u replaced 

by v+ and Eq. (01.24) is satisfied with u replaced by v-. o 

4.4 Traveling Wave Solutions 

In this section we prove the existence of traveling wave solutions when c 2 c· 

for the recursion (4.1). Proofs of these theorems make use of some limiting prop-

erties of the recursion when the growth function is bounded above by a constant. 

We state these limiting properties here, as a lemma: 

LEMMA 4.6. Let un(:r) be described by the T'ecursion (4.1) for given continuous 

uo(x). Suppose there e:rists function u(x) which is the limit ofurtCr) as n-+oo and 

that u(x), uo(x) aTe bO'unded above by U E £1. Further, suppose that the g1'Owth 

function H (71.( x)) is bounded above by U for all n E N and x E 1R. Then 

... l' ,",00 (1+1)() _ ,",00 (i+l)() nz. lITln-too wi=1 aiUn x - wi=1 aiu x , 

i'v liIn ,",00 a.,,(i+l)(X) - ,",00 a·71.(i+l) (-00) . x-t-oo Wi=1 t Uo - wi=1 t . 

P1'Ooj. Statements (i.) and (ii.) are true by an application of the dominated 

convergence theorem with dominating function k(x - y)U(1). 

To prove statement (iii.) let J > 0, fix x E IR and note that E:l lu(i)(x)1 < 

00, E: 1 I u~) (x) I < 00 for all n E N since both u (x) and Un (x) are bounded above 

by U which has a finite norm. 
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Thus we may choose All, /1,112 E N such that 

and 

Let M = max{Ml , M 2 }. It is easy to show (and well known) that for the finite 

sum, we may interchange the limit and summation so that limn-t<Xl L::'::l 11.~) (x) = 

L::lll(i)(x). Thus, choose N E N such that for all n > N, 

~f 8 
L !ai11.~)(x) - ai ll (i)(x)! < 3' 
t=l 

Noting that ai < 1 for all i we have that for all n > N, 

<Xl <Xl M <Xl <Xl 
L ai11.~) - L ai11.(i) ~ L !ail1~) - ai l1(i)! + L !ail1~)! + L !ai ll (i)! 
i=l i=1 i=1 i=M+1 i=M+1 

which proves statement (iiL). Statement (iv.) may be shown in a similar manner 

to statement (iii.) by noting that L::1!1J,(i)(-00)! < 00. o 

Monotone Case 

We first consider the ca.'le when Q is order preserving which is equivalent 

to assuming that the growth function H (A) is non-decreasing. 

THEOREM 4.6. Let Hypotheses 4.1 and 4.2 be satisfied and assume H(A) is non

decreasing. Then the following hold for the spatial system (4.1): 

1. For c ~ c* there exists a non-increasing traveling wave un(x) = w(x - nc) 

with w( +00) = 0 and w( -00) = U*. 

2. A non-increasing traveling wave solution w(x - nc) with w(oo) 

w( - 00) = U. does not exist if c < c· . 
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Pmoj. First note that since 11 (;1) is non-decreasing, then Q is order preserving. 

Case 2: Let r < r*. For contradiction, suppose that w(:r) is a traveling wave 

solution of system (4.1) with speed c such that w( -00) = u. and w( 00) = o. 

We choose an initial distribution below the traveling wave, uo(x) < w(.r), 

such that 0 ::; uo(x) « u., uo{x) is continuous for all x, and uo(x) = 0 for 

sufficiently large x. Using the order preserving property of operator Q, we have 

that for all n E N, 

un(x) ::; w(x - nc). (4.25) 

By Theorem 4.4, system (4.1) with initial distribution uo(:r) has a spreading 

speed c· as defined in t.he theorem. Thus, for every f > 0, 

We find a contradiction by letting f = c';c, N E Nand Xn = n( c* - f). Thus, by 

the definition of c', 

Also, 

lim un(xn) = U •. 
n--too 

lim w(xn - nc) = lim w ((n(c* - c - f)) 
n--too n--too 

= W(+oo) 

= O. 

Eqs. (4.26) and (4.27) imply that there is an N E N such that 

which contradicts Eq. (4.25). 
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Case 1: For (; > c', let Itc denote the smallest solution to (. = (p(I1.). Observe 

that the linearization of Q about 0 is given by 

L[u](x) = 

Define 

P0 1P)(X) + aol/'(O) .r~oo k(:r - Y)'ll(1) (y)dy + 2::':1 (lju(i+l)(.r) 

liol/'(O) ./~= k(x - y)u(l)(y)dy 

8!,u(2)(x) 

= A(JLc)e-l'cX e(JLc) 

= e-l'c(x-c)e(l l c) 

= w+(x - c). 

Now, Q[min{w+, u.}] :s; w+(x - c) since Q[min{w+, u.}] :s; L[w+] = w+(x - c). 

Also, Q[min{w+, u.}] :s; Q[u.] = u •. Therefore, 

( 4.28) 

Define 

where f is a small positive number and IJ.c < 8 < min{jl,211.c}. Choose ~(1)(IJ,c) > 

~(l)(8) so that v(O) > O. 

In Theorem 4.1 we showed that A. (JL) is twice continuously differentiable 

and thus by Lemma 6.5 in [27] we have that ¢(JL) strictly decreases for 0 < JL < fl. 

Hence, c> ¢(s). 
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I3y Hypotheses ,1.1 we have that 

Q[v](x) ~ L[v]- d 

ao J~Xl k(x - y) (v(l)(y))2 dy 

So .r~')C k(x - y) (v(1)(y))2 dy 

o 
( 4.29) 

Using E[e-,LcXe(/Lc)-e-.sxe(s)] :::; v(:r) :::; Ee-lJcXe(/Lc) and r:-xJ k(x-y)e-lJye1)(ll)dy = 

e-lJx~(l)(/L)K(f-l), we have that 

L[v](x) ~ L [E(e-lJcXe(/Lc) - e-SXe(s))] 

and 

where 

= f [BILcC-I!cXe(ILc) - Bse-SXe(s)] 

= I' [A(/Lc)e-lJcXe(/Lc) - A(s)e-SXe(s)] 

= f [e-Ilc(x-cle(fl,c) - e-s(x-1>(s)le(s)] 

= I' [e-ILc(x-cle(/Lc) - e-s(x-c)e(s) + e-s(x-c1e(s) (1- e- s (c-1>(s)l)] , 

f: k(x - y) (v(1)(y))2 dy :::; f: k(x - y) (Ee-lJcY~(1)(pc))2 dy 

= 1'2 (~(1)(pc))2 K(2pc)e-2IJcx. 

It follows from this and Eq. (4,29) that 

Q[v](:r) ~f [e-lJc(x-c)e(llc) - e-s(x-c)e(..,)] + fe-sIx-c) [1 _ e-s(c-1>(s)l_ 

- diag (aoB, soB, 0, ... )] e(s) 

Since x < 2pc and c > ¢( s), then for sufficiently small f, 
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for a.ll :c 2: O. 

Observe that there exists a number .Co < 0 such that v(:c) == 0 for :r ~ :ro. 

Thus, for sufficiently small E > 0, Eq. (4.30) holds for Xo ~ :r < O. Since 

Q[v](:r) 2: 0 for all x and v(x) == 0 for .r < Xo, then for all :r E lR, 

Observe that the i-th component of (e- Ilc (x-c)e(/-Lc) - e- 8 (x-c)e(s)) has a 

finite positive global maximum at a finite number determined by ltc, 8, ~(i)(/lc) 

and ~(i)(s). Thus, for sufficiently small f, 

( 4.32) 

Define operator Qc[u](x) := Q[u](x + c). Let zo(x) = min(w+(x), u*) and 

Zn+l(X) = Qc[zn](x) for n = 0, 1,2, .... 

From Eqs. (4.28), (4.31), (4.32) and the fact that Q is order preserving we 

have that 

Induction shows that 

Therefore, Zn (x) converges to some function w( x) such that 

We now show that w(x) = Qc[w](x) meaning that w(x - nc) is a traveling 

wave solution. To this end, we take limits on both sides of the recursion z~iL (x) = 
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)(i)[ (i)]( ) C ' 3 1 b ' (tc Zn :1: lOr '/, = ,I"" to 0 taln 

-I' [, (i-l)( )] - lIIl '~i-2Zn X + c 
n----+oo 

- l' (i-l)( .) -8i-2 lIn Zn X + (. 
n-+oo 

The linearity of these functions allow us to move the limit inside the operator, By 

Lemma 4.6.i and (1.6.iii (with U = u. ) we may also move the limit inside the 

operator of the nonlinear functions (when i = 1,2) which shows that w(:r - nc) is 

a traveling wave solution. 

Since zo(x) ~ w(x) ~ v(x) ~ 0 and zo(x) -1- 0 as x -1- 00, we have that 

w(oo) = 0, 

Since w( x) is non-increasing and bounded above by u., then the limit 

limx-+_ x w(x) exists, call it w( -00). 

We now show tha.t limx-+_ oo Qc[w](x) = Q[w]( -(0), It is easy to see that 

this is true for the linear components of Qc by observing that for i = 3,4, ' , " 

= Si-2 lim W(i-l)(X + c) 
X-+-:)Q 

This is true for the nonlinear components by Lemma 4.6.ii and 4.6.iv (with U = 

u.). 

Hence, w(-oo) = Q[w](-oo) and so w(-oo) is a steady-state of the dif-

ference equation system (2.1). But w( -00) cannot be the extinction steady-state 
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since 0 < ,,(1)(0) ::; 1lI(1)(0) and w(l)(.r;) is llon-increa,sing. Therefore it must he the 

positive st.eady-state of (2.1) so t.hat 

w( -'Xl) = u •. 

Finally, we show there exist.s a traveling wave solution with speed c·. Any 

traveling wave solution of the recursion (4.1) with speed c must satisfy w( x) = 

Qc[w](x) or equivalently: 

A(x - e) = poA(.r) + ao.~ k(.r - y)H (A(y)) dy + ~ aiSi-l(x) 

SO(x - e) = 80 1 k(x - y)H(A(y))dy 

S,1 (:r - c) = 81 8 °(:r) 

(,m( ) L'm-l( ) ,J .7: - r = Sm'" :1: 

where w = (A, So, SI, ... ). This implies that 

=8m 5 m -l ... SlSO(X + me) 

=5m 5 m -l··· 51 5 0 1 k ((x + (m + l)e) - y) H(A(y))dy 

(,1.33) 

=~m 1 k ((x + (m + l)e) - y) H(A(y))dy. (4.34) 

where ~m = rr::05i' Hence system (4.33) may be reduced to: 

A(x - e) =PoA(x) + 0,0 1 k(x - y)H(A(y))dy+ (4.35) 

+ ~ a/"_I !. k(" + ic - y)H(A(Y))dY. 

This shows that the traveling wave system (4.33) is equivalent to the scalar equa-

tion (4.35) with Sm(x) in (4.33) given by (4.34). 

67 



The problem now becomes establishing the existence of traveling waves for 

the scalar problem (;L~5) when r = (:*. 

To t.his end, choose a sequence of positive numbers {r"};;='=l which converge 

to c' frolll above, so that en > c' for all n E Nand li1l11Hoo Cn = c'. We have just 

shown that for each n there exists a traveling wave solution wcJ:c) to system (4.1) 

with speed en. Thlls the scalar traveling wave equation (4.35) implies that for each 

n 

Acn (x - cn ) =poAc,.(.r) -+- (Lo 1 k(x - y)H (AcJy)) fly+ 

+ f (li~i-l 1 k(x -+- iCn - y)H (AcJy)) dy 
i=1 IR 

( 4.36) 

where Acn is the first component of wen (x). It is important to note here that the 

shape of traveling waves are time independent. The subscript on Acn serves to 

associate the function with the appropriate traveling wave ami is NOT used as an 

index for time. 

We now show that the family of functions {Acn (x)} is equicontinuous. Let 

t > o. Using the fact that ~i-l ~ (Pvd and (li < 1, we see that the sum 

E~l (li~i-l is bounded above by the convergent geometric series E~1 (Pv2( 

Hence, choose M so that 

00 

( 4.37) 

where we recall that the positive steady-state of the difference equation system 

(2.1) is u* = (A.,S~,S;, ... ). 

A result in the proof of Theorem 4.1 in [22] shows that lim,5--;o.f~ Ik(x + 8)

k(x)ldx = o. So, for i E {O, 1, ... , M} choose 8i such that for all 181 < 8i , 

llk(x + 8 + iCn - y) - k(x + iCn - y)1 dy < A.(~ + 2)· 

Letting 8. = min{80,SI, ... ,8M }, we see that the inequality holds for all i E 

{O, 1, ... , kI} when 181 < 8 •. Using this, Eq. (4.37) and the fact that H(AcJy)) ~ 
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1\., we see that 

f (Lifli-l llk(X + 6 + 'icn - y) - k(.'r + iCn - y)IH(A·JIj))dy 
,=1 IR 

(
flv! f.) 

<A. A.(M + 2) + A.(lv/ + 2) 

((tv/ + 1) 
M+2 

It follows from this that 

IAcn(x - Cn + 6) - Ac,.Cr - cn)1 <PoIAcn(x + 6) - Ac,Jr) I 

+ ao 1 H(AcJy))lk(x + 6 - y) - k(x - y)ldy 

((M + 1) 
+ M+2 

<PoIAcJx + 6) - AcJx)1 + f. 

:S;posup IAcJx + 6) - AcJx)1 + t. 
xEIR 

Since this is true for all x E lR we may take the supremum on the left hand side of 

t he inequality which makes this difference independent of Cn and so we obtain 

t 
sup IAcJx + 6) - AcJx)1 < --. 
xEIR 1 - Po 

Thus we have that {Acn (x)} is an equicontinuous family of functions. 

For fixed i we choose a small positive number 'Y < A.. Since AcJr) IS 

continuous and decreases from A. to 0, there exists a number in such that Acn (x + 

Since Acn (:r + in) is an equicontinuous family of non-increasing functions 

which are uniformly bounded by A., then by the Arzelci-Ascoli Theorem there 

exists a subsequence nj such that Acn j (x + inj ) converges to a non-increasing con

tinuous function A (x) uniformly on every bounded interval. 

Taking limits in (4.36), we see that the left-hand side converges to A(x+c') 

since An)(x) -+ A(x) and enj -+ c'. Also, in view of Lemma 4.6.i and 4.6.iii, the 
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right-hand t.:;ide converges to 

poA(.r) + ao 1 k(x - y)ll (A(y)) ely + f (liD.i-1 1 k(.r - ie' - y)H (A(y)) dy. 
cit ;=1 lR. 

Further, A(O) = 'Y. It follows t.hat. A is a traveling wave solution with speed c', 

i\( 00) = 0 and A( -00) = A.. Also, A(:r) is non-increa.'iing since each AcJx) is 

monotone. o 

Non-monotone Case 

We now investigate the existence of traveling wave solutions for the more 

general case when the growth function H(u) = F(u)u may be non-monotone. In 

this case Q may not be order preserving. 

Define the operator 

Q[u] := T[u] + R[u] (4.38) 

where 

T[u](x) := Pou(x) 

and 

R[u](x) := ao 1 k(x - y)H(u(y))dy + f a i D. i - 1 1 k(x + ic - y)H(u(y))dy. 
lR. i=1 x 

~ ow, define 

Qc[u](x) := Q[u](x + c). ( 4.39) 

We let Qt and Q;; be defined by (4.38) and (4.39) with fl replaced by fl+ 

and H- respectively. For all x, let u(x) be continuous and 0 ::; u(x) ::; /'\,. Since 

THEOREM 4.7. Let Hypotheses 4.1 and 4.2 he satisfied. Then the following hold 

fo7' the spatial system (4.1),' 
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1. For CLny c ~ c* there exists n tmveling WCLve solution Un(:I:) = W(:I: - lie) with 

w(:r) ~ 0"+ for all :1:, w( 00) = 0, and lim infx4 - oo w(e) ~ 0"_. 

2. A tmveling wave solution w( x - nc) with w( 00) = 0 and lim infx4 _'X) w( x) ~ 

0" _ does not exist 'if c < c*. 

Proof. Case 1: Let c ~ c*. 

According to (4.35), any traveling wave solution of system (4.1) will satisfy 

the scalar equation 

and thus a traveling wave solution is a fixed point of the operator Qc. 

Because H± are monotone functions, Theorem 4.6 says that there exist 

non-increasing functions w;(x), such that 

Q:[1O:](x) = w:(x), w:( -00) = K, 10:(00) = 0, 

Q;;-[1O;;-](x) = w;;-(x), w;;-(-oo) = a_, w;;-(oo) = O. 

The following 2 lemmas describe properties about the functions II, II± and 

are taken from [22J so the proofs are omitted. 

LEMMA 4.7. The number 

l := sup{u : 0 < u < d and H(u) < H-(d)} 

satisfies the inequalities 0 < I ~ d, and 

Pmof. See proof in [22J. 

LEMMA 4.8. If 0 < "( < llK and if 0 < u ~ K, then H-(ru) ~ "(H+(u). 

Proof. See proof in [22J. 
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Denote the Banach space of bounded continuous functions with the supre-

mum norm as C(JR). Let 

1 {
A_,l} 

wi t 1 0 < , < min -K- . 

It is clear that Ee is a bounded nonempty closed convex subset of C(JR). 

LEMMA 4.9. The operator Qe maps Ee into Ec. 

Proof. Let U E Ee. Then, u :::; w: implies that 

Alternatively, since U 2: ,w: then by Lemma 4.8 

Therefore, Qe[u] E Ee and the lemma is proved. o 

We proceed to prove the theorem. 

Qe is of the form Qe = Te + Re where Te[u](x) = T[u](x + c) and Re[u](x) = 

R[u](x + c). We show that the family of functions {Rc[u](x) : u E Ee} is equicon-

tinuous in the topology of uniform convergence on bounded intervals. Let E > 0 

and U E Ee. The facts used in the proof of Theorem 4.6 (to show AeJx) was 

equicontinuous) apply here. Thus, we choose M so that 

(4.41) 

and for i E {O, 1, ... , M} choose 6i such that for all 161 < 6i , 

llk(x + 6 + ic - y) - k(x + ic - y)1 dy < K(A/+ 2)" 
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Letting 6. = min{Jo,61, ... ,(5M }, we see that the inequality holds for all i E 

{O, 1, ... , j'\;f} when 161 < 6 •. Using this, Eq. (4.41) and the fact that II{1l(Y)) ::; 

J-J+(u(y)) ::; K" we see that 

f {/.i~i-l r Ik(:r: + (5 + ic - y) - k(:r: + ic - y)II1(I/,(y))dy 
;=1 iR. 

<K, (K,{;t: 2) + K,{ME+ 2)) 

E(M + 1) 
= M+2 . 

It follows from this that 

IRe[u](x + J) - Re[u](x) I <an l H(u(Y))lk(x + <5 - y) - k(x - y)ldy 

((M + 1) 
+ M+2 

<to 

Thus we have that {Re[u](x) : U E Ee} is an equicontinuous family of functions 

which is uniformly bounded by K,. By the Arzehi-Ascoli Theorem, for any sequence 

h';n}n~l in He[EeL there exists a subsequence nj such that 1j;nj(x) converges to a 

continuous function 1j;(:r) uniformly on every compact subset of JR. 

This means that Re[Ee] is precompact and so Re[Ec] is contained in a com

pact set. Further, Te is a po-contraction (Le. IITeull ::; Pollull). An asymptotic fixed 

point theorem by Cain and Nashed (pg. 583, Theorem 3.1 [6]) shows that Qc has 

a fixed point wc(x) E Ec which describes a traveling wave solution to system (4.1). 

We have shown that for any c ~ c* the system (4.1) has a traveling wave 

solution described by the scalar function wc(x - nc) with "(w:; (x) ::; we(x) ::; w:;(x) 

for all X. Since w:; (x) ::; K, for all x and w:; (00) = 0, we have that w c ( x) ::; K, for 

all x and 
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To obtain the behavior of lIIe at -00, consider the recursion 

with the initial condition 

We see from Lemma 4.8 that Q;; [ILol ~ lLo. Thus by induction, /l,~+l ~ u;; for all 

nand u;;(x) is non-increasing in :£. Since Q;;[wcl :s: Qc[wcl = Wc and LLO :s: wc, 

induction shows that '/l,;~ :s: '/tic for all n. This implies that 

lim inf we (:£) ~ lL~ ( -00) for all n. 
x-+-oo 

We see hy Lemma 4.6.ii and 4.6.iv that for any fixed n, 

00 

11~+1 (-00) = Pou~ (-00) + (loH- (IL~ (-00)) + L (li~i-lH- (-lL~ (-00)). 
i=l 

By construction of"Y we have that (J _ > "YK, = 11);;( -00). Since u;; (-00) 

are non-decreasing, they must converge to the nearest solution of the equation 

Hence, 

lim inf 111 c ( x) ~ (J _ . 
x-+-oo 

Case 2: Let c < c*. For contradiction let w(x) be a traveling wave solution 

with speed c such that liminfx-+_oo w(x) ~ u _ and w(oo) = O. Choose a non

increasing function vo(x) such that vo(x) :s: w(x), vo(x) < u _, vo(x) ¢. 0 and 

vo(.r) = 0 for x ~ O. Let Vn be defined by the recursion vn+l = Q-[vnl(x) where 

Q- is as described above. By induction and the fact that Q- is order preserving 

and Q- :s: Q we have that 

Vn(x) :s: w(x - nc). 

The rest of the proof follows that of Case 2 in Theorem 4.6. o 
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CHAPTER 5 

NUMERICAL SIMULATIONS 

In this chapter we conduct numerical simulations of the spread of a perennial 

plant population with an age-structured seed bank. For the purpose of these 

simulations we consider the 4-dimensional finite model described in Chapter 4 Eq. 

( 1.3): 

A(n+l)(X) ~p"An(x) +ao I: k(x - y)H(A.(y))dy + tajS~-I(X) 

S~n+l)(X) =so I: k(x - y)H(An(y))dy (5.1) 

S(n+l)(X) =SlS~(X) 

S[n+l)(X) =S2S~(X) 

This is a truncated version of the full spatial model (4.1). Here, the oldest possible 

age of a seed in the bank is 2 years. We approximate traveling wave solutions to 

this 4-dimensional finite model (5.1) using an approximation to the convolution 

integral based on a discrete fast Fourier algorithm motivated by the methods used 

in [2, 22J. The algorithm uses the fact that a traveling wave of speed c > c* behaves 

like a multiple of e-p.xe(J.L) at infinity, where J.L is the smaller root of the equation 

¢(J.L) = c with e(J.L) the eigenvector of Bp. corresponding to the positive eigenvalue 

A(J.L). 

We use the Laplace dispersal kernel with mean 0 and variance 2/(2002) so 

that 

k(l:r - yl) = 100e-200Ix-yl 
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and the Ricker function 

with r > O. 

The positive solution of the steady-state system 

A = PoA + P~;3°Pld F(A)A + 2:J=l ajSj-l 

SO = soF(A)A 

SI = 81 S0 

S2 = 82S1 

can be calculated from the adult steady-state 

(5.2) 

(5.3) 

The figures presented here are some approximations to traveling wave so

lutions for (A, So, Sl, S2) with the x-axis representing position in 1-dimensional 

space and the y-axis representing the density of the species cohort. The viewing 

window is restricted to the right leading edge of the traveling waves so that long 

term behavior can be monitored. 

All figures use the following color scheme: 

• Black line - ;1(x), Adult plant distribution 

• Blue line - SO(x), New seed distribution 

• Green line - Sl(:r), 1-year old seed distribution 

• Red line - S2(x), 2-year old seed distribution 

The simulations are organized into groups so that we may investigate three 

main topics: (1) the effect of having an age-dependent germination rate, (2) the 

effect of having an age-dependent seed bank, and (3) the effect of having a perennial 

term. Before we dive further into these topics, we make a few general observations 

about the system which can be seen in Figures 5.1 and 5.3: 
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1. Traveling waves for each population cohort take on qualitatively similar 

shapes. This can be seen by observing that, in any single diagram, all four 

distributions look very similar. 

2. The shape of the traveling waves is related to the growth function parameter 

r. We see that as the parameter r increases, the tail of the traveling waves 

becomes increasingly unstable. 

3. The maximum density of the seed bank populations decrease with age. Recall 

that the O-year, I-year and 2-year old seed bank distributions are represented 

by the blue, green and red lines, respectively. The maximum seed bank 

density follows this order as well, with blue the highest, green middle and 

red the lowest. The adult plant distribution (black line) does not follow a 

particular pattern. Its position, relative to the seed bank distributions, is 

related to the choice of survival and germination parameters. 

Role of the Germination Rate - Figure 5.1: 

We investigate the role of the age-dependent germination rates (30, (31, (32, 

(33. We conduct simulations across a wide range of values for r and consider 

the effect of the germination rate increasing with age, decreasing with age and 

fluctuating across age groups. 

For r = 1, Figures 5.1a, 5.lb, 5.lc show that the shape of the traveling waves 

are unaffected by variations in the germination rate. More specifically, when the 

germination rate increases with age (5.1a), the traveling waves appear to be non

increasing and this is also true when the germination rate decreases with age (5.lb) 

and varies randomly with age (5.lc). For r = 3 (Figures 5.ld, 5.le, 5.1£) and r = 6 

(Figures 5.lg, 5.lh, 5.li) we see that this observation is true, i.e. for fixed r, the 

shape of the traveling waves remain qualitatively the same regardless of the values 

for the germination rates. We see that the shape of the traveling waves appear 
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to he most heavily influenced hy the growth function parameter T as is consistent 

with simulations done for I-dimensional single species models [21, 22]. 

Each diagram in Figure 5.1 shows that the maximum density of the seed 

bank cohorts (blue, green and red lines) decrease with age; this ordering is inde

pendent of the germination rates. Alternatively, the maximum density of the adult 

population relative to the seed bank cohorts depends on the pattern of the ger

mination rates. When germination rate increases with age the adult distribution 

tends to be in between the new seed distribution and the 2-year old seed distribu

tion as seen in Figures S.la, 5.ld, 5.lg. When germination rate decreases with age, 

Figures 5.lb, 5.le, 5.lh show that the maximum adult density is smaller than that 

of the seed bank cohorts. Not surprisingly, when the germination rates fluctuate 

with age (Figure 5.lc, 5.1f, S.li) there is no observable pattern for adult density 

relative to seed bank densities. 

Finally, it is interesting to note that when T = 6 (Figures 5.1g, 5.lh, 5.li), 

the traveling waves for each population cohort display damped oscillations with 

the peaks occurring in different locations for each cohort. When peaks occur in 

the other figures (T = 1,3) they tend to occur simultaneously. It is not clear why 

this phenomena occurs. 
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FIGURE 5.1- Role of Germination Rate Numerical simulations for the model 
with r = 1 (a, b, c), r = 3 (d, e, f), and r = 6 (g, h, i). Vertically the simulations 
represent: (1) Leftmost (a, d, g) - traveling waves when the germination rate 
increases with age, {30 = 0.025, {31 = 0.05, {32 = 0.1, {33 = 0.2, (2) Center (b, 
e, h) - traveling waves when the germination rate decreases with age, ;30 = 0.2, 
{31 = 0.1, ;32 = 0.05, ;33 = 0.025, (3) Rightmost (c, f, i) - traveling waves when the 
germination rate fluctuates with age, {30 = 0.05, {31 = 0,1, ;32 = 0.2, ;33 = 0.025. 
All other parameters take the following values: Po = 0.5, p~ = PJ = p~ = p~ = 1, 
PI/l = PI/2 = 0.9. 
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Role of the Seed Bank and Perennial Term - Figures 5.2 and 5.3 

The diagrams in Figure 5.2 represent traveling wave solutions when there is 

no seed bank present (i.e. Si = 0 for i = 0,1,2) and those in Figure 5.3 represent 

traveling wave solutions when an age-structured seed bank exists for seeds up to 

age 2. Both Figures 5.2 and 5.3 follow the same type of flow: Moving across a row 

from left to right the growth function parameter r is increased Cr = 1, 3, 5) and all 

other parameters are held constant. Moving down a column from top to bottom 

the perennial survival rate Po is increased (Po = 0,0.25,0 .. 5,0.75) and all other 

parameters are held constant. (Note that Po = 0 is the case of an annual plant.) 

In this way we can observe the effect of the perennial term by comparing diagrams 

down a column. We can observe the effect of the seed bank by comparing diagrams 

in Figure 5.2 to those in Figure 5.3 which have the same relative position. 

The effed of increasing t.he perennial survival term Po is clear: moving 

down a column in either Figure 5.2 or 5.3 we see t.hat the distribution increases 

in magnitude and stabilizes in shape. Thus, a perennial plant with strong sur

vivorship throughout the years will tend to have a more stable and higher density 

distribution. 

By comparing diagrams in Figure 5.2 to those in Figure 5.3 with the same 

relative position, we see that having a seed bank increases the overall adult plant 

density (the black distribution in the seed bank Figure 5.3). When r = 1 (the 

first column in Figures 5.2 and 5.3) the shape of the adult plant distribution is the 

same for both the case of having a seed bank and not having a seed bank. 

When r = 3 and the perennial survival term is small (Figures 5.2.b, e and 

5.3.b, e) the seed bank has a stabilizing effect on the adult plant density. The 

graph in Figure 5.2.b representing no seed bank appears to oscillate all the way 

to -00 while the graph in Figure 5.3.b representing a seed bank model appears to 

have oscillations which are damped for large negative x. 
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When.,. = 3 and the perennial survival term is large (Figures 5.2.h, k and 

.5.:3.h, k) the shape of the traveling waves are similar for both the ca...c;e of having 

a seed bank and not having one. Thus, when the perennial survival rate is large 

enough, the stabilizing effect of this term overpowers the effects of the seed bank 

and creates a distribution for both the seed bank and no seed bank which are 

similar in shape. The patterns just discussed for the case of .,. = 3 can be seen for 

the ca...c;e when r = 6 as well. 

In general, both the perennial term and the seed bank can have a stabilizing 

effect on the adult plant distribution and increase the maximum plant density. We 

also observe that when the perennial term is large enough, it can overpower the 

effect of the seed bank, making the distributions similar when the seed bank is 

either present or absent. 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

6.1 Conclusion 

In this dissertation we formulated a system of integro-difference equations 

which serve to model growth and spread of perennial and annual plants with an 

age-structured seed bank. This model is an extension of Li's seed bank model 

for annual plants recently published in the Journal of Mathematical Biology [21]. 

There is no age-structuring of the seed bank in that model. The advantage of 

our model over current spatial plant models is that we distinguish between ages of 

seeds in the bank and we include a perennial term which permits the survival of 

adult plants from year to year. To the best of our knowledge, this is the first model 

involving infinitely many integra-difference equations. The underlying dynamics 

are very complicated when the growth function is non-monotone however we can 

still give a complete description of the spreading speed and traveling wave solutions. 

In Chapter 3 we analyzed the non-spatial system (3.1). We proved the 

existence of an eigenvalue for this system linearized about the origin and provide 

a condition for when the origin is unstable. We showed that the system has a 

strictly positive steady-state and that a certain class of solutions converge to this 

steady-state when the origin is unstable. Bifurcation diagrams, utilizing the Ricker 

function, are included to numerically simulate the model's behavior when; (1) the 

growth function parameter is varied and (2) the new seed germination rate is varied. 
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The Ricker function has been used to study plant populations (see [19, 34]). When 

the growth function parameter is varied the bifurcations are reminiscent of the 

well studied logistic growth with stable solutions, moving to period doubling and 

then to chaos. Of particular interest, however, are the bifurcation diagrams when 

the new seed germination rate (30 is varied. Several diagrams display that when 

;3° is close to 0 the system grows in a chaotic manner. As ;3° is increased, the 

system stabilizes, experiences period doubling, becomes chaotic, stabilizes again 

and repeats this pattern until (30 gets close to 1. This type of switching behavior 

is something really new and is of interest for future studies. 

The spatial system (4.1) is analyzed in Chapter 4. We establish the existence 

and properties of a positive eigenvalue and eigenvectors for the linearized moment 

generating matrix Bw We show that this positive eigenvalue A. (/-l) is related to the 

spreading speed c· of the system under certain initial conditions in the following 

way: 

c* = inf In A.(/-l). 
JL>O /l 

Further, we proved the existence of traveling wave solutions when c ~ c· and 

showed that traveling wave solutions do no exist when c < c·. This shows that the 

spreading speed can be characterized as the slowest speed of a class of traveling 

wave solutions. 

In Chapter 5 we conduct numerical simulations of traveling wave solutions 

for a 4-dimensional truncated version of the model so that seeds in the bank can 

only survive up to 2 years. The Ricker function (1.2) is used as the growth function. 

From these simulations we observe that the tail of traveling wave solutions can 

take on many different patterns, determined in large part by the value of the 

growth function parameter r. We also see that the seed bank and the perennial 

term can have a stabilizing effect on the traveling waves. Additionally, when the 

perennial term is large enough, the stabilizing effect of this term overpowers the 

85 



effect of the seed bank (~ffectivdy making the seed bank vs. no seed hank mo(lds 

indistinguishable. 

6.2 Future Directions 

This mociel can be (~xtended in several different directions: 

1. Permit density-dependent survival and germination parameters to 

account for crowding. Crowding describes the effect that high population 

density has on the reproductive output and adaptive strategies of ecological 

populations. It is known that crowding in plant populations oftentimes has 

a negative effect on reproductive output [39]. Additionally, it has also been 

shown that crowding can cause insects to have a more detrimental effect 

on the crowded plants [15]. By permitt.ing the survival and germination 

parameters in (4.1) to be non-linear (or density-dependent) we may study 

the effects of crowding and how it relates to the spatial spread of perennial 

plant populations. 

2. Consider stochastic fluctuations in population growth. Environmen

tal variability including climate effects, effects of human interaction and ef

fects of competitors are stochastic. One year may see booming reproduction 

due to a particularly agreeable climate while the next year may bring drought 

or flooding resulting in a large number of deaths and low reproductive out

put. Presently our model assumes the environment is temporally constant, 

using a specific function H(A) = F(A)A to model growth. We may replace 

the growth function with a stochastic variable to model these random effects 

similar to the approaches used in [33, 44J. 

3. Consider an Allee effect. An Allee effect refers to the observed effect that 

"under-crowding" or low population densities correspond with low reproduc-
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han or rl~r.rcascd fitn~ss [41]. Thmc arc many reasons that a population 

might exhibit this Allee effect inclutiing an individuals inability to replace 

itself in low densities ("pollen limitation"), inbreeding depression, and more 

[20]. We may incorporate this effect into our model (4.1) by replacing the 

requirement that the growth function is bounded above by its linearization 

(H(A) ~ H'(O)A), with a weaker condition. 

4. Consider two-species model. Analyzing how species iuteract and com

pete upon invasion has been of long standing interest in ecology. This knowl

edge has the potential to aid policy concerning pest control and minimiza

tion of disease spread [7]. By coupling two systems of the form (4.1) we 

may study species interaction and examine the speed at which the invading 

species spreads into its competitors habitat. 

5. Add further structure to model woody plants and other perennial 

plants with juveniles. Many plants, including some woody plants, go 

t.hrough a juvenile stage post-germination before maturing into a fully repro

ductive adult. To model this type of situation we could add an intermediate 

cohort between t.he seed bank and the adult populations to monitor the ju

venile population. We would assume juveniles to be sterile and immobile. 

Juveniles could only contribute to either the adult population through mat

uration, or back to the juvenile population if the plant is not fully matured 

at the end of a yearly cycle. 

6. Acquire field data to test model and fit parameters. 
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