
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2015 

A forensics software toolkit for DNA steganalysis. A forensics software toolkit for DNA steganalysis. 

Marc Bjoern Beck 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Beck, Marc Bjoern, "A forensics software toolkit for DNA steganalysis." (2015). Electronic Theses and 
Dissertations. Paper 2073. 
https://doi.org/10.18297/etd/2073 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F2073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2073
mailto:thinkir@louisville.edu


 
 

 

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS 
 
  
 
 
 

By 
 

Marc Bjoern Beck 
B.S., Computer Science, Brescia University, 2007 

M.S., Industrial Technology, Morehead State University, 2009 
 
 
 
 

A Dissertation 
Submitted to the Faculty of the  

J. B. Speed School of Engineering of the University of Louisville 
 in Partial Fulfillment of the Requirements  

for the Degree of 
 

 

 
Doctor of Philosophy 

       in Computer Science and Engineering 
 
 
 

Department of Computer Engineering and Computer Science 
 

University of Louisville 
 

Louisville, Kentucky 
 
 
 

May 2015



 
 

 
 

  



ii 
 

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS 

 
By 

 
Marc Bjoern Beck 

B.S., Computer Science, Brescia University, 2007 
M.S., Industrial Technology, Morehead State University, 2009 

 
 

A Dissertation Approved On 
 

April 20, 2015 
 

By the following Dissertation Committee: 
 
 
 

___________________________________________ 
Roman V. Yampolskiy, Ph.D., Dissertation Director 

 
 
 

___________________________________________ 
Ahmed H. Desoky, Ph.D., Co-Advisor 

 
 
 

___________________________________________ 
Eric C. Rouchka, Ph.D. 

 
 
 

___________________________________________ 
Ibrahim N. Imam, Ph.D. 

 
 

___________________________________________ 

John F. Naber, Ph.D.  



 

iii 
 

ACKNOWLEDGEMENTS 

 

I would like to express my special appreciation and thanks to my advisors Dr. 

Yampolskiy and Dr. Desoky and the other members of my committee Dr. Rouchka, Dr. 

Ouyang, and Dr. Naber for their extreme patience in the face of numerous obstacles. I 

also would like to thank Dr. Imam, who kindly agreed to serve as fifth committee 

member after Dr. Ouyang left the department. 

I am using this opportunity to express my gratitude to everyone who supported me 

throughout the course of this dissertation project. I am thankful for their aspiring 

guidance, invaluably constructive criticism and friendly advice during the project work. I 

am sincerely grateful to them for sharing their truthful and illuminating views on a 

number of issues related to the project.  

I would also like to mention Chris Card and Sam Hasinoff from the online community 

who answered questions regarding cryptography software they developed as well as 

Patrick McClure, whose project provided some of the building blocks for some of my 

algorithms, my friend and colleague Ana Stanescu at Kansas State University, and also 

all my friends who helped me with the debugging of source code. I am also thankful to 

Dr. Monica Rodriguez, who provided me with data that helped determine the frequency 

of occurrence of letters, words, and letter combinations in the English language. 

Last but not least I want to thank Faezeh Taffazoli for helping me format this 

document.



iv 
 

ABSTRACT 

 

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS 

 

Marc B. Beck 

 

April 20, 2015 

 

Recent advances in genetic engineering have allowed the insertion of artificial DNA 

strands into the living cells of organisms. Several methods have been developed to insert 

information into a DNA sequence for the purpose of data storage, watermarking, or 

communication of secret messages. The ability to detect, extract, and decode messages 

from DNA is important for forensic data collection and for data security. We have 

developed a software toolkit that is able to detect the presence of a hidden message 

within a DNA sequence, extract that message, and then decode it. The toolkit is able to 

detect, extract, and decode messages that have been encoded with a variety of different 

coding schemes. The goal of this project is to enable our software toolkit to determine 

with which coding scheme a message has been encoded in DNA and then to decode it. 

The software package is able to decode messages that have been encoded with every 

variation of most of the coding schemes described in this document. The software toolkit 

has two different options for decoding that can be selected by the user. The first is a 

frequency analysis approach that is very commonly used in cryptanalysis. This approach 



 

v 
 

is very fast, but is unable to decode messages shorter than 200 words accurately. The 

second option is using a Genetic Algorithm (GA) in combination with a Wisdom of 

Artificial Crowds (WoAC) technique. This approach is very time consuming, but can 

decode shorter messages with much higher accuracy. 
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CHAPTER 1 
 

INTRODUCTION 
 

 
This project is part of an emerging new area of study called DNA Steganography and 

combines elements from various different areas such as forensics, cryptography, 

bioinformatics, language processing, and artificial intelligence. Progress in 

bioinformatics and molecular biology in combination with already established methods 

and algorithms from the field of cryptography has led to the development of DNA 

Steganography with a number of papers having been published in the last two decades 

[1-13]. 

Bioinformatics in itself is already an interdisciplinary field of science, combining 

computer science, statistics, mathematics, and engineering to study and process 

biological data.  The goal of bioinformatics is to develop methods and software tools for 

understanding biological data, especially the study of DNA sequences. Over the past few 

decades rapid developments in genomic and other molecular research technologies and 

developments in information technologies have combined to produce a tremendous 

amount of information related to molecular biology. 

DNA sequences that are processed by our software are downloaded from online 

databases such as GenBank in the form of FASTA files. The FASTA file format is a 
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common file standard in bioinformatics and originates from the FASTA software 

package. The name stands for Fast-All, because it works with all alphabets, while 

previous formats were limited to protein (FAST-P) or nucleotide (FAST-N) alignment. 

This format is text-based and is used to represent nucleotide sequences or peptide 

sequences in single-letter codes. These sequences are usually preceded by a header 

containing sequence names and comments. The header usually starts with a ">" (greater-

than) symbol and comprises the first line of the file.  Each subsequent line has usually a 

maximum of 70 to 80 characters. Our software has been designed to accommodate these 

properties of FASTA files, but is also able to process *.txt files as well.  

Deoxyribose Nucleic Acid (DNA) is the carrier of hereditary information for every 

living organism. DNA is a double helix with two anti-parallel strands containing four 

different nucleotides, which are distinguished by one of the four bases adenine (A), 

cytosine (C), guanine (G), and thiamine (T) [14]. The two strands form base pairs of 

interacting complementary bases (A-T and C-G) held together by hydrogen bonds. DNA 

has the potential to store vast amounts of data using combinations of those four 

nucleotides within genomes that can range to several billion bases in length [15]. 

Contained within genomic sequences are regions that code for genes that produce 

proteins which are collections of amino acids.  In the process of translation, an mRNA 

sequence that has been transcribed, or copied, from the gene coding region is used as a 

template to transform from the four base code of DNA to the 20 base code of amino 

acids.  The process by which this occurs, known as the genetic code, was first uncovered 

by Marshall Nirenberg [16].  In gene coding regions, a codon refers to a sequence of 

three nucleotides that determines which amino acid will be added next during protein 
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synthesis. With four nucleotides, this allows 43=64 possible combinations. A codon refers 

to a sequence in a gene coding region of three nucleotides that determines which amino acid will 

be produced next during protein synthesis. Each codon encodes for one of 20 amino acids, 

with exception of the three STOP codons TAA, TAG, and TGA [17], thus allowing for 

degeneracy where multiple codon sequences code for the same amino acid. In DNA 

steganography, characters of messages may be encoded by variable lengths of DNA 

sequences that may or may not be three bases in length. For the purpose of this 

manuscript, we will refer to encoding patterns that encode alphanumeric characters of 

messages as codeons in order to distinguish them from codons and avoid confusion.  

The ability to manipulate DNA and to create artificial DNA sequences allows the 

insertion of artificial messages into those sequences. In the past, messages that have been 

inserted into DNA could only be retrieved if the coding scheme with which the message 

has been encoded was known. In this dissertation we describe the development of a 

software package that is capable of detecting the presence of a message within a DNA 

sequence, determining how the message has been encoded based on statistical analysis, 

and then decoding that message. 

With DNA sequencers becoming faster, more efficient, more compact, and more 

affordable [18], and with recent advances in creating artificial DNA, there is an 

increasing possibility that this kind of technology can be abused for espionage or criminal 

purposes in the near future. Therefore it is necessary to develop methods to counter 

attempts to hide information in the DNA of living organisms. 
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Figure 1.1: Cost for sequencing a genome (modified from[19]) 

 

Figure 1.2: Speed of sequencing a genome [20] 

 

It is difficult to generate a graph that shows how the amount of data that can be 

encoded in DNA has increased over the past 15 years, since the information is not 

consistent. Some researchers did not provide the length of the encoded message, others 

provided the number of words instead the number of bytes or characters. Also, some 

researchers did not try to encode as many characters as it was possible to encode at the 

time.
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CHAPTER 2 

RELATED WORK 
 

 

 

 

 

2.1. DNA Computing 

 
DNA computing is an emerging new research field that uses DNA molecules instead of 

traditional silicon-based microchips. The first researcher to demonstrate the computing 

capability of DNA was Leonard Adelman of the University of Southern California, who 

in 1994 developed a method of using DNA for solving an instance of the directed 

Hamiltonian path problem [21].  

In 1997, Ogihara and Ray demonstrated that DNA computers can simulate Boolean 

AND and OR gates [22]. The advantage of DNA computers is that they are smaller and 

faster than traditional silicon computers, and that they can be easily used for parallel 

processing. DNA has also been used as a tool for cryptography and cryptanalysis, using 

molecular techniques for its manipulation [17].  

In 2004, Benenson et.al [23] developed an autonomous, molecular scale computer, 

which uses biological molecules as input data and biologically active molecules as 

outputs. This computer logically analyzes the levels of messenger RNA species, and in 

response produces a molecule capable of affecting levels of gene expression [23]. 
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Bogard and Rouchka describe how multiple sequence alignment can be used for error 

reduction in DNA computing [24]. 

As described by Amir et al. [25], the nanoscale folding of DNA, which is called DNA 

origami, can be utilized for the fabrication of nanoscale architectures that behaved as 

logical gates (AND, OR, XOR, NAND, NOT, CNOT, and a half adder).  

 

DNA as Storage Medium 

In 2013, the total amount of digital information worldwide was 4.4 zettabytes and is 

predicted to reach 44 zettabytes by 2020 [26]. Shrivasti et al. [27] describe the 

shortcomings of silicon and other materials used to manufacture data storage media. 

These shortcomings include limited, non-renewable resources, relatively low storage 

density and relatively low access rates. 

DNA is being investigated by a number of independent researchers as an ultra-

compact, long-term data storage medium and a stegomedium for hiding messages. Just 

like binary code, DNA is a coding medium. DNA strands contain information that can be 

interpreted and copied, just like the sequences of ones and zeros on a hard drive or in 

RAM [2]. 

Instead of expressing a message as a series of ones and zeros, it is expressed in DNA 

code as a series of As, Cs, Gs, and Ts, representing the four nucleotides. These 

nucleotides can easily be used for the encoding of binary information. The easiest way to 

hide a secret message in a binary sequence is to add the message and increase the overall 

size of the sequence. This however would make the message easier to detect and may 

change the functionality of the sequence. That means in order to embed a message, one 
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should not arbitrarily append or intersperse information. A complete understanding of the 

original message and the machinery that processes it is necessary in order to be able to 

modify some portion in an intelligent manner such that the data is not functionally or 

perceptibly altered. In the same manner, a sequence of nucleotides should not be changed 

blindly just to insert a secret message [2]. 

A number of algorithms have been developed to encode a message in DNA characters 

and either disguise these messages as novel DNA sequences or encapsulate them within 

existing ones. It has been proven that it is possible to insert artificial DNA components 

that contain encoded information into the genomes of living organisms [5-7, 9, 17, 28-

32].  

Craig Venter, who led the private effort to sequence the human genome, managed to 

create the first cell with a synthetic genome in 2010. The J. Craig Venter Institute (JCVI) 

took a computer file containing the DNA sequence of the bacterium Mycoplasma 

mycoides, modified it, produced physical DNA from this sequence, and inserted this 

DNA into a cell, which then reproduced under control of the new DNA to create a new 

bacterium. This project encoded 7920 bits [9].  

Using DNA as storage medium has many advantages, such as long life, redundancy, 

and high density. According to Bancroft et al. [33] about 200 novels or other data each 

equivalent in size to “A Tale of Two Cities” could be stored in a DNA microchip with the 

area of a postage stamp. 

 
Yachie et al. [5] demonstrated the possibility to use DNA of living organisms as a data 

storage  medium by inserting the message “E=mc^2 1905!” into the genome of B. 
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subtilis. Multiple copies were created and over 99% of the encoded data was later 

recovered using sequence alignment methods. 

Living organisms are a great storage medium when it comes to preserving data over 

timespans ranging in millions of years. When an organism reproduces, it automatically 

creates a copy of the data contained in its DNA. In addition, selective pressure and DNA 

error correction reduce the risk of the data being destroyed by random mutations. It has 

been suggested to use cockroaches, which are known for their resilience and high 

reproduction rate, as living time capsules for storing every issue of The New York Times 

Magazine for a certain year in their DNA which could theoretically be retrieved 1000 

years later [34]. 

 
 

Type Life Expectancy Capacity 

DNA Millions of years 

(over generations) 

521 years (dead 
organism) 

455 Exabytes per 

gram[27] 

Hard disk ~10 years Up to 20TB (2015) 

SSD ~10 years Up to 4 TB (2015) 

CD 10 to 100 years [35] 800 MB 

DVD 20 to 100 years [35] Up to 17GB 

Blue Ray 30 to 100 years 25GB (single layer) 
128 GB (BDXL) 

USB flash drive ~10 years, depending 

on usage 

Up to 1TB (2015) 

Tape ~30 years Up to 35 TB 

   

 

Table 2.1: Life expectancy and storage capacity of various data storage media compared to DNA. 
 

As shown in table 2.1, 1 gram of DNA has a storage potential of 455 exabytes of 

information. Conventional media would require roughly 2 million times that volume for 

the same amount of information. Researchers at the Swiss Federal Institute of 

Technology in Zurich encoded the Swiss federal charter from 1291 and the Archimedes 

Palimpset totaling 83 kb of data in DNA and kept the DNA versions at temperatures 
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between 60 and 70 degrees Celsius (140-158 degrees Fahrenheit) to simulate ageing. 

Both documents remained readable without error [36]. The same group of researchers 

also encapsulated DNA in microscopic spheres of glass in order to mimic the way fossils 

keep DNA intact. They did not mention any research regarding the effect of the exposure 

to ultraviolet light over time. 

In 2014 Dr. Ido Bachelet [13]  mentioned at the  Geektime 2014 conference that he was 

working on a project to insert Wikipedia into the DNA of an apple, but was not specific if 

he was just inserting the text of the articles, or if he was including revisions, images, and 

other data. The rate of compression, if any, was not mentioned, either. The amount of 

data could range anywhere between 8.8 GB and 5TB. Bachelet also mentioned a project 

inserting data encoding the famous painting of the Mona Lisa into Mouse DNA [13]. 

Both projects are ongoing as of April 2015 and there are no publications yet. 

 

2.2. Error Correcting Approaches 
 
Even though mutations are rare, occurring at a rate between 10-11 and 10-7 per base per 

replication in bacteria and higher eukaryotes [37], it is necessary to consider some form 

of error detection and error correction since a mutation can destroy the encrypted 

message in the DNA sequence. According to Yachie et al. [5], inserting the data 

redundantly into multiple loci of the genome is sufficient to allow the retrieval of stable 

and compact data without the need for  template  DNA,  parity  checks,  or  error-

correcting algorithms. 

The comma code and the alternating code provide a form of error detection capability 

by encoding the message in a distinguishable pattern [38]. Arita [29] developed a 
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comma-free code that has error correction capabilities. The message is translated into 

binary as an intermediary step. A parity bit is used in the binary code to keep the 

respective number of ones and zeroes odd. 

The DNA-Crypt software developed by Heider and Barnekow [6] also translates 

messages into binary before encoding it in DNA code. It uses a very thorough approach 

to error detection by employing two error correction codes: the 8/4 Hamming-code and 

the WDH-code. The Hamming code is an error detection and correction code invented by 

Richard Hamming in 1950 [39] and the WDH code was developed by Andrew S. 

Tanenbaum and is used in computer networks [40]. The 8/4 Hamming code is more 

compact, but it can correct fewer errors than the WDH code. DNA-Crypt has an 

integrated fuzzy controller using Singleton-fuzzyfication. The fuzzy controller decides 

which of the two error detecting codes should be used, or none at all. This decision is 

based on the individual mutation rate of the DNA sequence that contains the secret 

message, the length of the sequence, and its stability over time. An answer is determined 

from those three factors by a set of rules based on heuristics [6].  

A team at the Swiss Federal Institute of Technology in Zurich that is researching DNA 

as a data storage medium uses a Reed-Solomon code [36] for error correction. Reed-

Salomon codes are very commonly used in data storage and data transmission 

applications. This includes the use for correcting burst errors in CDs, DVD’s and Blu-ray 

discs caused by media defects, and the use in satellite and deep space applications. 
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2.3. DNA Cryptography 

 
DNA cryptography is a relatively new area of research. Soni, Soni, and Mathariya [41] 

describe approaches that use DNA sequences from public databases as key for one-time 

pad (OTP) algorithms, as well as a method based on the DNA splicing technique. 

When working with one-time pad algorithms, the plaintext is combined with a secret 

random key or pad which is used only once. This is done by using an XOR operation, a 

typical modular addition or a similar technique.  

Also, Soni et al. [41] describe an algorithm which avoids the usage of both purely 

mathematical symmetric and asymmetric algorithms by making use of asymmetric 

cryptographic principles and an advanced asymmetric algorithm based on DNA. 

 

2.4. Hiding Data in DNA 

 
 

Steganography is the science of hiding information by transmitting secret messages 

through unsuspicious cover carriers in a way that makes the presence of any embedded 

messages undetectable to a third party. The term steganography originates in the Greek 

language and means, "covered writing". While the goal of cryptography is to make a 

message unreadable, steganography aims at avoiding suspicion to the existence of a 

hidden message [3].  Due to its properties as a data storage medium, DNA can be used 

for steganography (stegomedium). 

Since DNA encoded information can be copied just like digital information, there is a 

high possibility of theft of intellectual property. Therefore, it would be wise to follow the 
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fundamental requirements and principles of hiding information in digital data, which are 

the following [42] : 

• be reasonably easy to be placed and detected by the legitimate party 

• be difficult for attackers to detect and erase 

• be credible in case of a dispute 

• be robust against compression, filtering, or truncation 

• avoid unnecessary overhead 

• not significantly change the meaning or function of the original data 

• have error detection/correction and/or redundancy for the data being hidden 

It is not easy to filter DNA for the purpose of defeating a watermark, unlike other cover 

media such as audio or video. It is possible to modify audio and video information in 

such a way that significant degradation of the signal is not qualitatively noticeable. One 

important fact is that it is difficult to modify DNA without a sufficient understanding of 

the sequence, especially if it codes for specific biological functions. This would force an 

attacker to do a substantial amount of original work. That means the requirement for 

robustness against compression, filtering, or truncation does not apply here. A DNA and 

RNA data hiding technique should however adhere to the other basic criteria [2]. 

Recent developments make the use of DNA as a stegomedium for concealing, storing, 

and transmitting messages more feasible. This means that there will be an increasing need 

for forensic methods to extract and decode such messages in the near future. Not very 

many such methods are in existence so far. 

It is possible to insert not only text, but also images and many other forms of 

digitizable data into a DNA sequence. DNA could also be used by criminal organizations 
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to hide illegal information. For those reasons, it is becoming important to develop 

forensic tools that can detect, extract, and decode information that has been hidden in 

DNA. 

Table 2.2: Genetic code for protein translation (codons that code for the same amino acid 
regardless the third position are highlighted) [17, 43]. 

 

 
           Second Position of codon  

T C A G 

F
i
r
s
t 
 
P
o
s
i
t
i
o
n
  

T TTT [F] 
TTC [F] 
TTA [L] 
TTG [L] 

TCT [S] 
TCC [S] 
TCA [S] 
TCG [S] 

TAT Tyr [Y] 
TAC Tyr [Y] 
TAA [end] 
TAG [end] 

TGT [C] 
TGC [C] 
TGA [end] 
TGG [W] 

T 
C 
A 
G 

T
h
i
r
d
 
P
o
s
i
t
i
o
n 

C CTT [L] 
CTC [L] 
CTA [L] 
CTG [L] 

CCT [P] 
CCC [P] 
CCA [P] 
CCG [P] 

CAT His [H] 
CAC His [H] 
CAA Gln [Q] 
CAG Gln [Q] 

CGT [R] 
CGC [R] 
CGA [R] 
CGG [R] 

T 
C 
A 
G 

A ATT [I] 
ATC [I] 
ATA [I] 
ATG [M] 

ACT [T] 
ACC [T] 
ACA [T] 
ACG [T] 

AAT Asn [N] 
AAC Asn [N] 
AAA Lys [K] 
AAG Lys [K] 

AGT [S] 
AGC [S] 
AGA [R] 
AGG [R] 

T 
C 
A 
G 

G GTT [V] 
GTC [V] 
GTA [V] 
GTG [V] 

GCT [A] 
GCC [A] 
GCA [A] 
GCG [A] 

GAT Asp [D] 
GAC Asp [D] 
GAA Glu [E] 
GAG Glu [E] 

GGT [G] 
GGC [G] 
GGA [G] 
GGG [G] 

T 
C 
A 
G 

 
 

 
 

An obvious choice of a location for inserting a message into a genome would be a 

noncoding genomic region. However, those regions might be involved in different 

regulations which are as of yet unknown [28]. Inserting data there might possibly kill the 

organism. Therefore Arita et al. [28] suggested that it may be a more reliable solution  to 

encode the message in the protein coding regions of genes. There are 20 amino acids and 

one stop symbol using a total of 64 possible codons [28]. Two or more codons often code 

for the same amino acid. This means that many codons are redundant and it is possible to 

use this redundancy to encode additional information. Many of these redundant, or 

synonymous, codons typically differ in their third position, also known as the wobble 
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base [3]. In Table 2.2, codons that encode for the same amino acid regardless which base 

occupies their third position are highlighted. These are the codons that are used to embed 

messages. 

 
 

Table 2.3: Research on data hiding in DNA 
 

 
Researcher Year Coding Message Location Organism 

Clelland et 
al.[1] 

1999 Substituti
on 

June 6 invasion: 
Normandy 

Artificial Human 
 

Brenner et 
al.[31] 

1999 Comma 
code 

Not reported Bsp120I E.coli 

Shimanovsk
y et al.[2] 

2002 BinaryTo
RNA 

0100100010010
0010101100100
1101001101110

1 

theoretical Theoretical 

Wong et al. 
[3] 

2003 Substituti
on 

Not reported Not 
reported 

Deinococcus 
radiodurans 

Arita and 
Ohashi [28] 

2004 Arita “AO2KEIO1-
F” 

ftsZ gene B. subtilis 
RIK8 

Tanaka et 
al.[4] 

2005 Substituti
on 

“MESSAGE” Artificial 
sequence 

Artificial 
DNA strand 

Yachie et al. 
[5] 

2007 Keyboar
d scan 

“E=mc^2 
1905!” 

metB and 
proB 

B.subtilis 
BEST2136 

Heider and 
Barnekow 

[6] 

2007 DNA-
Crypt 

“TB” Vam7 
sequence 

Saccharomy
ces 

cerevisiae 
CG783 

Jiao and 
Gouette [7] 

2009 ASCII 
8 bit 

binary 

“CODING” tatAD 
gene 

B. subtilis 

Ailenberg 
and 

Rotstein[8] 

2009 Improved 
Huffman 

Text:Lyrics 
“Mary had a 
little lamb” 

SacI/KpnI PBluescript 
based 

plasmid 
Ailenberg 

and 
Rotstein[8] 

2009 Improved 
Huffman 

Music: Tune 
“Mary had a 
little lamb” 

SacI/KpnI PBluescript 
based 

Plasmid 
Ailenberg 

and 
Rotstein[8] 

2009 Improved 
Huffman 

Image: lamb SacI/KpnI PBluescript 
based 

plasmid 
Venter et 2010 Substituti Multiple Not Artificial 
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al.[9] on messages reported bacterium 
Mousa et 

al.[10] 
2011 Contrast 

mapping 
random 
numbers 

RSNn2567
28 

Random 
sequence of 
nucleotides 

Church et al. 
[11] 

2012 Binary to 
DNA 

“Regenesis” 
(book with 

53,000 words) 

Artificial Theoretical 

Goldman et 
al. [12] 

2013 Substituti
on 

Misc. data 
757,051 bytes 

total 

Artificial Theoretical 

Bachelet 
[13] 

2014 Binary Mona Lisa Not 
reported 

Mouse 

Bachelet 
[13] 

2014 Binary Entire content 
of Wikipedia 

Not 
reported 

Apple 

 
 

2.5. Coding Schemes for Hiding Data in DNA 
 

A code is an algorithm which uniquely represents symbols from some source alphabet, by 

symbols or strings of symbols in a target alphabet. In our case, the source alphabet is the 

English alphabet plus digits and punctuation characters, and the target alphabet consists 

of the four nucleotides. A coding scheme is a set of rules that determines which symbol 

of the source alphabet is represented by which symbol in the target alphabet. A variety of 

different coding schemes has been developed to encode alphanumeric characters in DNA 

sequences. 

 

2.5.1. Types of Coding Schemes 

The coding schemes for inserting messages into DNA that have been developed can be 

grouped into three categories: schemes using direct translation, schemes that use 

intermediate steps for error detection, and schemes that have been optimized for 

detectability or efficiency.  
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The first category uses a straightforward approach by substituting a sequence of 

nucleotides of length n for each alphanumeric symbol [10,12]. Since the codeon in this 

case is of length n, up to 4n distinct characters can be encoded. Given the codeon length 

of n, there are 4n! possible coding schemes. The coding schemes developed by Clelland 

[30] and Wong [3]  fall into this category. 

The second category of coding schemes consists of more complex schemes that use 

several intermediate steps, such as translating a message into binary before using a 

coding table to translate it into nucleotides. This is often done for error detection, since 

there are many proven error detection algorithms for binary messages. 

The third category of coding schemes consists of schemes that were designed to meet 

certain criteria, such as providing error detection capability, being economical, or being 

easy to detect. The comma code, the alternating code, and a coding scheme based on the 

Huffman code [18] fall into this category. 

 

2.5.2. Clelland’s Coding Scheme and Wong’s Coding Scheme 

The coding scheme developed by Clelland et al. [30] is very similar to the one developed 

by Wong et al. [3]. They are both extensions of the 3-base codon encoding used by the 

genetic code.  Since there are 43=64 possible distinct characters that can be encoded, this 

scheme allows for all 26 characters of the English alphabet, the digits 0-9, and special 

characters. Both coding schemes do not use all possible codons. 
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Table 2.4: Coding table for Clelland’s coding scheme. 
 

Character DNA  Letter DNA 

A CGA V CCT 
B CCA W CCG 
C GTT X CTA 
D TTG Y AAA 
E GGT Z AAT 
F ACT 0 TTA 
G TTT 1 ACC 
H CGC 2 TAG 
I ATG 3 GCA 
J AGT 4 GAG 
K AAG 5 AGA 
L TGC 6 GGG 
M TCC 7 ACA 
N TCT 8 AGG 
O GGC 9 GCG 
P GGA SPACE ATA 
Q AAC , TCG 
R TCA . GAT 
S ACG : GCT 
T TTC ; ATT 
U CTG - ATC 
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Table 2.5: Coding table for Wong’s coding scheme. 

 

Character DNA  Character DNA 
A AGG 0 AAA 
B AGT 1 AAC 
C ATA 2 AAG 
D ATC 3 AAT 
E ATG 4 ACA 
F ATT 5 ACC 
G CAA 6 ACG 
H CAC 7 ACT 
I CAG 8 AGA 
J CAT 9 AGC 
K CCA SPACE GCA 
L CCC , GCG 
M CCG . GGA 
N CCT : GCC 
O CGA ; TAC 
P CGC - GCT 
Q CGG ! GGC 
R CGT ( GGG 
S CTA ) GGT 
T CTC ` GTA 
U CTG ‘ GTC 
V CTT “ GCC 
W GAA ? TAA 
X GAC / TAG 
Y GAG [ TAT 
Z GAT ] TCA 

 
 

2.5.3. DNA-Crypt  

The DNA-Crypt coding scheme developed by Heider and Barnekow [10] translates a 

message into a five bit sequence, where one bit serves as parity bit to keep the respective 

number of ones and zeros odd. The other four bits are translated into nucleotides, with 
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two bits per nucleotide. As mentioned earlier, it employs two error correction codes, the 

8/4 Hamming-code and the WDH-code. 

Table 2.6: Coding table for the DNA-Crypt coding scheme, with 00=T; 01=G; 10=C; 11=A and 
the last bit being used as a parity bit. 

 
Letter Binary  Letter Binary 

A 00000  N 01101 
B 00001  O 01110 
C 00010  P 01111 
D 00011  Q 10000 
E 00100  R 10001 
F 00101  S 10010 
G 00110  T 10011 
H 00111  U 10100 
I 01000  V 10101 
J 01001  W 10110 
K 01010  X 10111 
L 01011  Y 11000 
M 01100  Z 11001 

 
 
2.5.4. ASCII Coding Scheme  

Another coding scheme implements the algorithm described by Jiao and Gouette [17] 

which inserts a message into the noncoding region of  an existing DNA sequence. This 

method consists of several steps:  

1)  Convert each character in the message into its ASCII representation. 

2)  Convert the ASCII code from decimal into binary. 

3)  Converting binary to DNA by replacing 00 with A, 01 with C, 10 with G, and 11 

with T. 

4)  Insert message into a carrier DNA sequence. 
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Steps 1-3 are referred to as the ASCII coding scheme throughout the remainder of this 

dissertation. The fourth step can be applied to other coding schemes if the message is to 

be inserted into a coding DNA region. This is done by replacing the last bits of redundant 

codons in the carrier sequence with characters from the message sequence. The ASCII 

coding scheme makes it possible to encode uppercase letters, lowercase letters, numbers, 

and special characters. Each character is represented by a sequence of four bases. 

2.5.5. Yachie’s Coding Scheme 

Yachie et al. [5] developed a coding scheme that is very similar to ASCII encoding. 

Instead of ASCII it uses the keyboard scan code for each character. The keyboard scan 

code, which is hexadecimal, is converted into binary, and then translated into DNA using 

the coding table below. 

Table 2.7: Coding scheme used by Yachie et al. 
 

Message E=mc^_1905  Encryption Key 

Keyboard 
Scan Code 

%12%24%12%4E%3A 
%21%55%1E%29%16 
%46%45%2E%12%16 

 AA 0000 AG 1000 
CA 0001 CG 1001 
GA 0010 GG 1010 

Hexadecimal 
Code 

1 2  2 4 1 2 4 E 3 A 2 1 5 5 1 
E 2 9 1 6 4 6 4 5 2 E 1 2 1 6 

 TA 0011 TG 1011 
AC 0100 AT 1100 

Binary Code 0001 0010 0010 0100 0001 
0010 0100 1110 0011 1010 
0010 0001 0101 0101 0001 
1110 0010 1001 0001 0110 
0100 0110 0100 0101 0010 
1110 0001 0010 0001 0110 

 CC 0101 CT 1101 
GC 0110 GT 1110 
TC 0111 TT 1111 
  
  

 
 

2.5.6. Arita’s Coding Scheme 

Arita and Ohashi [28] translated each letter of the English alphabet as well as an empty 

space and the characters ‘‘’, ‘.’, ‘&’ into a 6-bit binary sequence.  One of the bits serves 
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as parity bit by keeping both the number of 0s as well as the number of 1s odd for error 

detection. When a message encoded with this coding scheme is inserted into a coding 

region of a DNA sequence, a 0 indicates to leave the 3rd base of a codon unchanged, 

while a 1 indicates that it needs to be changed. In order to extract the encoded message, 

one needs to compare the sequence that contains the message with the original, 

unchanged sequence to determine if a base was changed or not [6]. 

Table 2.8: Coding scheme used by Arita et al. 
 

Letter Binary  Letter Binary 

A 001000 Q 111000 
B 100110 R 010011 
C 100101 S 100000 
D 001101 T 000100 
E 000010 U 101001 
F 001110 V 101010 
G 010110 W 110100 
H 100011 X 110010 
I 001011 Y 011100 
J 110100 Z 011111 
K 101100 Space 000001 
L 010101 ‘ 101111 
N 000111 . 110111 
O 010000 & 111011 
P 110001   

 
 

2.5.7. Coding Scheme Based on the Huffman Code 

Another coding scheme is based on the Huffman code developed by David A. Huffman 

[44] and the frequency of letters in the English language from “The Code Book” by 

Simon Singh [45]. The Huffman code is an entropy encoding algorithm used for lossless 

data compression. The coding scheme developed by Smith et al. [38] based on this code 

only encodes letters, but not numbers or special characters. The average codon length in 
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this case is 2.2 bases. There are 4! possible ways to generate a  Huffman code for 

encoding the 26 letters of the English alphabet, but it is also possible to create a Huffman 

code-based scheme that includes more characters, such as numbers, punctuation 

characters, and others. 

Table 2.9: Letter frequency in English language and DNA coding scheme using Huffman code 
[38]. 

 

Letter Freq(%) DNA  Letter Freq(%) DNA 

e 12.7 T w 2.4 AAT 
t 9.1 AG m 2.4 ACA 
a 8.2 AT f 2.2 ACG 
o 7.5 GA y 2.0 ACC 
i 7.0 GG g 2.0 ACT 
n 6.7 GC p 1.9 CCA 
s 6.3 GT b 1.5 CCG 
h 6.1 CA v 1.0 CCT 
r 6.0 CG k 0.8 CCCA 
d 4.3 CT j 0.2 CCCG 
l 4.0 AAA x 0.2 CCCC 
c 2.8 AAG q 0.1 CCCTA 
u 2.8 AAC z 0.1 CCCTG 

 
 

Ailenberg and Rotstein [8] improved this coding scheme, increasing the number of 

encoded characters from 26 (the letters of the English alphabet) to 69 (the characters on a 

computer keyboard). They accomplished this by replacing Cs with As, Gs with Ts and 

moving CG-rich codons down the frequency table. Furthermore, they divided symbols 

into three groups using low–base number DNA codons (G, TT, and TA) as group 

prefixes.  

Ailenberg and Rotstein [8] also managed to create Huffman code based coding tables 

for storing music and for storing images in DNA. By assigning note values and pitches, 

as well as meters and repeats to DNA codons based on their frequency of occurrence it 
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was possible to encode the tune of the nursery rhyme “Mary Had a Little Lamb” in DNA. 

An image was encoded in DNA symbols using a coding table that assigns DNA symbols 

to shapes and coordinates. 

 
2.5.8. Comma Code  

The comma code uses 4-base codons consisting of combinations of A, C, G and T, where 

G serves as a separator between the different characters. The term comma code may be 

misleading. It does not mean that G is the encoding for the comma character, but that it 

separates the encodings for each character. Smith et al. [38] suggest using 5-base codons 

with a separator every sixth base, but the original paper by Brenner et al. [31] is more 

descriptive and recommends the use of four bases per codon and a vocabulary made up of 

eight four-base ‘‘words’’ for biochemical reasons. The gaps between the Gs are filled 

with either TTAC, AATC, TACT, ATCA, ACAT, TCTA, CTTT, or CAAA. Since this 

would only allow the encoding of eight characters, combinations of two such words 

separated by a G are used for each character. This results in a total of 64 possible 

characters consisting of ten nucleotides each. The comma code encodes lowercase letters, 

numbers from 0-9, and special characters. The mapping of codons to characters was 

arbitrarily constructed. A sequence in comma code can easily be identified as containing 

a message, due to the occurrence of G every five bases, including the beginning and the 

end of the sequence. The comma code is the least efficient coding algorithm. 
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Table 2.10: Coding table for the comma code 
 

Character DNA  Character DNA 

A GTTACGTTAC  6 GACATGTTAC 
B GTTACGAATC  7 GACATGAATC 
C GTTACGTACT  8 GACATGTACT 
D GTTACGATCA  9 GACATGATCA 
E GTTACGACAT  ! GACATGACAT 
F GTTACGTCTA  ? GACATGTCTA 
G GTTACGCTTT   GACATGCTTT 
H GTTACGCAAA  + GACATGCAAA 
I GAATCGTTAC  - GTCTAGTTAC 
J GAATCGAATC  / GTCTAGAATC 
K GAATCGTACT  * GTCTAGTACT 
L GAATCGATCA  _ GTCTAGATCA 
M GAATCGTCTA  @ GTCTAGACAT 
N GAATCGACAT  # GTCTAGTCTA 
O GAATCGCTTT  $ GTCTAGCTTT 
P GAATCGCAAA  % GTCTAGCAAA 
Q GTACTGTTAC  ^ GCTTTGTTAC 
R GTACTGAATC  & GCTTTGAATC 
S GTACTGTACT  ( GCTTTGTACT 
T GTACTGATCA  ) GCTTTGATCA 
U GTACTGACAT  ~ GCTTTGACAT 
V GTACTGTCTA  [ GCTTTGTCTA 
W GTACTGCTTT  ] GCTTTGCTTT 
X GTACTGCAAA  { GCTTTGCAAA 
Y GATCAGTTAC  } GCAAAGTTAC 
Z GATCAGAATC  | GCAAAGAATC 
0 GATCAGTACT  < GCAAAGTACT 
1 GATCAGATCA  > GCAAAGATCA 
2 GATCAGACAT  : GCAAAGACAT 
3 GATCAGTCTA  ; GCAAAGTCTA 
4 GATCAGCTTT  . GCAAAGCTTT 
5 GATCAGCAAA  , GCAAAGCAAA 

 
 

2.5.9. Alternating Code 

The alternating code uses 64 codons with six bases per codon, alternating between 

purines (A or G) at odd positions and pyrimidines (C or T) at even positions. This forms a 
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pattern that does not occur naturally and can easily be recognized. For the same reason, 

the bases could be arranged for example in a pattern that has three purines followed by 

three pyrimidines or vice versa. The alternating code encodes the same characters as the 

comma code. The decision which codon codes for which character was made arbitrarily 

[38]. 

Table 2.11: Coding table for the alternating code. 

Character DNA  Character DNA 

A ACACAC  6 GTGTGT 
B ACACAT  7 GTGTGC 
C ACATAT  8 GTGCGC 
D ACACGT  9 GTGTAC 
E ACATGT  ! GTGCAC 
F ACATGC  ? GTGCAT 
G ACACGC   GTGTAT 
H ACATAC  + GTGCGT 
I ACGTAC  - GTACGT 
J ACGTGT  / GTACAC 
K ACGTGC  * GTATGT 
L ACGTAT  _ GTATAC 
M ACGCAC  @ GTACAT 
N ACGCGT  # GTATAT 
O ACGCGC  $ GTACGT 
P ACGCAT  % GTACGC 
Q ATGCGT  ^ GCGCGC 
R ATGCGC  & GCGCGT 
S ATGCAC  ( GCGTGT 
T ATGCAT  ) GCGTGC 
U ATGTAT  ~ GCGCAT 
V ATGTGT  [ GCGTAT 
W ATGTAC  ] GCGTAC 
X ATGTGC  { GCGCAC 
Y ATATAT  } GCACAC 
Z ATATAC  | GCACAT 
0 ATACAC  < GCATAT 
1 ATACAT  > GCACGT 
2 ATATGT  : GCATGT 
3 ATATGC  ; GCATGC 
4 ATACGT  . GCACGC 
5 ATACGC  , GCATAC 
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2.5.10. Contrast Mapping  

Mousa et al. [10] describe a method that formats the DNA sequence that is used to 

conceal the message by first translating it into binary, and then converting every 6 bits 

into decimal. Mousa then uses Reversible Contrast Mapping (RCM) to transform a pair 

of values that represent two consecutive words into another pair of values, with x and y 

being the first pair of values, and x’ and y’ being the resulting pair. 

x’=2x-y; y’=2y-x   (2.1) 

The transformation is restricted to a subdomain in order to prevent overflow and 

underflow. This subdomain is defined by the equation 

0 ≤ 2𝑥 − 𝑦 ≤ 𝐿; 0 ≤ 2𝑦 − 𝑥 ≤ 𝐿   (2.2) 

The values are transformed back by the following formula: 

𝑥 = [
2

3
𝑥′ +

1

3
𝑦′] ;   𝑦 = [

1

3
𝑥′ +

2

3
𝑦′]  (2.3) 

The message is inserted according to the flow chart below: 
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Figure 2.1: Flow chart of the coding algorithm used by Mousa et al. [10]. 

Mousa’s coding scheme can not only be used to conceal messages in DNA sequences, 

but also for hiding messages in images [10]. 

 

2.5.11. Shimanovsky’s Coding Scheme  

Shimanovsky et al. [2] developed a method to insert a binary message into an mRNA 

sequence by converting it into a decimal number between one and zero and mapping it to 

a  series of codons using  arithmetic encoding and a coding table they devised for that 
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purpose. Unfortunately we were unable to implement their algorithm and duplicate their 

results. 

 

2.5.12. Summary of Coding Schemes 

The coding schemes differ in codon length, detectability, number of characters that can 

be encoded, and the number of steps involved in encoding a message. The coding scheme 

based on the Huffman code is the most economical in terms of codon length, while the 

comma code is the least economical. The Clelland coding scheme and the Wong coding 

scheme are the easiest to implement. The comma code, alternating code and DNA-Crypt 

are the easiest to detect, and DNA-Crypt offers the best error correction.  

Inserting a message into a coding region only replaces bases, but does not add new 

ones. Therefore the size of the genome is only affected if the message is inserted into a 

non-coding region.  The length of the encoded message is the length of the unencoded 

message multiplied by the codon length of the coding scheme. For example, the message 

“UNIVERSITY OF LOUISVILLE” is 24 characters long, including spaces. It would be 

“CTGCCTCAGCTTATGCGTCTACAGCTCGAGCGAATTCCCCGACTGCAGCTAC

TTCAGCCCCCCATG”, which is 72 characters in Wong’s coding scheme and 

“GTACTGACATGAATCGACATGAATCGTTACGTACTGTCTAGTTACGACATGT

ACTGAATCGTACTGTACTGAATCGTTACGTACTGATCAGATCAGTTACGAATC

GCTTTGTTACGTCTAGAATCGATCAGAATCGCTTTGTACTGACATGAATCGTT

ACGTACTGTACTGTACTGTCTAGAATCGTTACGAATCGATCAGAATCGATCAG

TTACGACATG”, which is 240 characters in Comma Code.  

For inserting pictures, audio, and video files into a DNA sequence it appears to be 
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efficient to translate the binary representation of the file into DNA code, with each base 

encoding two bits, for example A=00, C=01, G=10, and T=11. 

 

Table 2.12: Comparison of different coding schemes that use substitution ciphers. 
 

Type # of chars 

encoded 

# of 

bases 

Developed by 

Clelland (basic 
substitution) 

42 3 Clelland et al [46] 

Wong(basic 
substitution) 

52 3 Wong et al [3] 

Comma 62 10 Smith et al.[38] 
Alternating 64 6 Smith et al.[38] 
Huffman 26 2-5 Smith et al.[38] 

Arita 30 3 Arita and Ohashi[29] 
DNA-Crypt 26 5 Heider and Barnekow[6] 

ASCII 128 4 Jiao and Gouette [47] 
 

 

2.6. Encryption and Watermarking of DNA Messages 
 

To make detection even more difficult, it is possible to encrypt a message using modern 

encryption algorithms such as Data Encryption Standard (DES), RSA, and Number 

Theory Research Unit (NTRU) before encoding it into DNA.  

One application for inserting messages into DNA is watermarking. Three different 

types of watermarks exist. These are fragile watermarks, semi-fragile watermarks, and 

robust watermarks. Fragile watermarks are widely used for tamper detection because they 

fail to be detectable. Semi-fragile watermarks are designed in a way that they can resist 

benign transformations in order to be able to detect malignant transformations. Robust 

watermarks are used for copy protection because they can tolerate a designated 

transformation [48]. 
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Watermarking can help establish brand names for engineered bacteria strains in order 

to resolve legal disputes regarding gene-related patents [28].  In this application, a 

researcher creating an artificial DNA sequence can embed a hidden message in this 

sequence so that ownership of the intellectual property can later be asserted and/or to 

ensure the integrity of the content. The JCVI, for example, could upload a FASTA file of 

an artificially created bacteria strain on an online database. If someone else steals the file 

and claims the work as his or her own, the researchers at JCVI can later prove ownership 

because only they can recover the watermark. 

 Watermarking infectious agents can be useful for tracking them back to their source 

after an accidental release [49]. The usefulness of watermarking for control of agents 

emerges when this technology is applied by a trusted authorizing entity, which would be 

in charge of overseeing the distribution of organisms containing unique and confidential 

watermark sequences to individual research laboratories. These watermarks would 

distinguish their organisms from those of others in the research community. Laboratories 

would then only be allowed, or required to use strains that contain their approved 

watermark. If released, the pathogen in question would be investigated for the presence 

of an approved watermark. In case such a watermark is found, then information about the 

possible source could easily be retrieved.  

The coding scheme created by Arita and Ohashi [28] and the DNA-Crypt algorithm 

developed by Heider and Barnekow [6] were both designed for watermarking short 

trademarks or signatures into genomic DNA. 

Researchers at the JCVI inserted four watermarks using a coding scheme with a 

substitution cipher similar to Clelland’s and Wong’s into their artificial genome. The first 
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watermark consists of a copyright-like statement, the coding table for Ventner’s coding 

scheme, and a hidden HTML page. The second, third, and fourth watermarks consist of a 

list of the authors and three quotations. 

Shimanovsky et al [2] suggest different approaches to DNA watermarking, based on 

the application. They differentiate between chemical DNA, which can be arbitrarily 

altered without concern and live DNA, which is actually part of a living organism and 

needs to keep its structural and regulating functions. As an example for chemical DNA, 

Shimanovsky et al describe a DNA how a computing solution for a traveling salesman 

problem could be watermarked. In this example, placing the watermark would be 

accomplished through the selection of an almost-optimal solution instead of an optimal 

one and hiding it as the watermark inside the destinations path. Here, the watermark is in 

the solution to a problem and only by knowing an answer that is at least as good someone 

would be able to remove it. The robustness of this kind of watermark comes from the 

difficulty of solving the problem.  

On the other hand, this kind of technique would not be the best solution for the 

watermarking of live DNA, where the purpose of a watermark is to protect intellectual 

property. Genetic coding regions have notable characteristics such as START and STOP 

codons surrounding them, which would be easily recognizable as a demarcation by an 

attacker. This information enables an attacker to easily isolate the important sections 

from a small DNA sequence and start searching for the watermark. What would be even 

easier than that is replacing the active segment with a neutral sequence that would be 

identical to the original otherwise. This would effectively remove the watermark [2]. 
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2.7. Finding Data in DNA 
 

Steganalysis is the process of discovering hidden messages [50]. There are two main 

categories of steganalytic methods: blind steganalysis and specific steganalysis. Blind 

steganalysis can be used to detect a variety of different steganographic algorithms, even 

previously unknown ones. The goal of  specific steganalysis is to detect a specific known 

steganographic algorithm by exploring how this particular algorithm works and how it 

changes the statistics of the cover media [51].  

The research on steganalysis is important for several reasons: First, detecting the 

presence of secret messages can help intercept communication between members of 

terrorist organizations or other illegal groups. Second, improvements in steganalysis also 

help to develop better methods for information hiding. Third, better statistical methods 

for multimedia contents can emerge as a byproduct of steganalysis research. These can 

then be applied in other related research fields, such as digital forensics [51], or 

bioinformatics. 

Most existing steganalysis approaches focus on images as a stegomedium, especially 

JPEG images. Audio and video files are also used fairly often. Text documents are not 

used as often as a stegomedium because they can only hold a smaller amount of 

information than a graphic document with same amount of carrier data. However, text 

files are still used because they are easily edited, stored, and transferred [52]. 
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2.8. Experiments Performed in Silico 
 

Wang and Zhang [53] have developed a software called WordSpy to detect certain 

biological features within a genome. This software regards these biological features of a 

genome as a message hidden in a cover-text of genomic sequences. A Hidden Markov 

Model is used to decipher the message and to extract over-represented motifs. WordSpy 

combines word counting and statistical modeling to detect frequently occurring sub-

sequences [53]. 

Since many different coding schemes for inserting messages into DNA have been 

developed, we decided to develop a software toolkit that would enable us to insert and 

extract messages from DNA sequences, allow us to compare different coding schemes, 

and serve as basis for research into developing methods to find and extract messages 

encoded with unknown coding schemes.  

 
 

2.9. DNA as Communication Medium 
 

Several papers have been published that discuss the possibility that DNA can be used 

to communicate with extraterrestrial aliens, or that extraterrestrials have used DNA to 

communicate with us. Shcerbak and Makukov [54] suggest to use the genetic code itself 

as an alternative to radio for sending messages to contact extraterrestrial life. Even 

though the genetic code itself is smaller in capacity than genomic DNA, it is more 

suitable due to its stronger noise immunity. The flexibility of mapping between codons 

and amino acids allows modifying the code artificially. The genetic code is the most 

durable construct known and once fixed, it might stay unchanged over cosmological 
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timescales. This means that it is exceptionally reliable and therefore a well suited storage 

medium for an intelligent message, if the biological and thermodynamical conditions are 

suitable. The answer to the question how life on Earth originated is still not completely 

certain. The concept of panspermia as hypothesized by Shklovskii and Sagan in 1966 

[55] and by Crick and Orgel in 1973 [56] suggests the possibility of life having been 

seeded on Earth intentionally by extraterrestrial beings. A “signal” in the genetic code 

with strong statistical characteristics of being artificial in origin would then possibly be 

the result of such a scenario. 

In 1978 Yokoo and Oshima [57] suggested that a civilization more advanced than ours 

could modify or create a bacterial DNA which could proliferate under favorable 

circumstances and carry an intelligent message encoded in its base sequence. 

Davis [58] developed a method to encode a simple black and white image into a 

sequence of DNA base pairs, after it had already been converted into binary by Carl 

Sagan and Frank Drake in 1974 in an attempt to send it as a radio signal from Arecibo, 

Puerto Rico, to outer space. 

 

2.10. Digital Forensics 
 

Digital Forensics is a relatively new subfield of forensic science. With the beginning of 

the widespread availability and use of personal computers in the 1980’s, the use of 

computers to perform, hide, or otherwise aid unlawful activity started becoming a serious 

problem [59]. During the 1980s, digital media was examined directly using non-

specialized tools. Forensic tools, hardware as well as software, were first developed in the 

1990s. One of the primary goals of digital forensics is to preserve the original data while 
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collecting evidence. Digital Forensics has the following branches: Computer forensics, 

database forensics, network forensics, and mobile device forensics. 

 

2.10.1. Computer Forensics 

Computer forensics deals with legal evidence found in computers, embedded systems, 

and digital storage media. Most existing toolkits are proprietary, some are operating 

system specific. Examples of software toolkits are COFEE, developed by Microsoft, 

which includes a tool for password decryption, internet history recovery, and other data 

extraction. It is also able to recover data stored in volatile memory which would be lost if 

the computer were shut down. 

Table 2.13: List of most common computer forensics tools 

Name Platform License Description 

EnCase [60] Windows proprietary Multi-purpose forensic tool 
Sift [61] Ubuntu free Multi-purpose forensic operating 

system 
COFEE [62] Windows Only 

available to 
law 

enforcement 

A suite of tools for Windows 
developed by Microsoft 

The Sleuth 
Kit [63] 

Unix/Windows GPL Large toolkit 

Registry 
Recon[64] 

Windows proprietary allows users to see how Registries 
from both current and former 

installations of Microsoft 
Windows have changed over time. 

The 
Coroner's 

Toolkit [65] 

Unix free Predecessor of The Sleuth Kit 
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2.10.2. Database Forensics 

The least developed branch of digital forensics, Database forensics applies 

investigative techniques to database content and database related metadata with the goal 

to identify transactions that indicate evidence of wrongdoing, such as fraud. Investigators 

examine redo logs, data files and webserver logs to follow the patch of a hacker. 

By examining metadata and statistics, investigators could find evidence of database 

row deletions or the creation of foreign database objects. This may lead to hidden clues 

that can reveal the path a hacker took. The investigator can then use this information to 

build a case. 

Database forensics tools include LogMiner, which is part of the Oracle database 

software, and Quisix. 

 

2.10.3. Network Forensics 

The goal of network forensics is to capture, record, and analyze network traffic. Tools 

for Network Forensics include Wireshark, an open source packet analyzer, and SBC, a 

program that inspects remote access protocols such as SSH, RDP, Telnet, or VNC 

protocols. 
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Table 2.14: List of most common network forensics tools 
 

Name Platform License Description 

Wireshark [66] Cross-platform GPL Open source packet 
capture/analyzer 

CapAnalysis [67]   performs indexing of data 
set of PCAP files list of 
TCP, UDP or ESP 
streams/flows, passing to 
the geo-graphical 
representation of the 
connections. 

OmniPeek [68] Windows  Packet analyzer 
Xplico [69] Linux GPL  
Snort[70] Windows/Linux GPL detect probes or attacks, 

including, but not limited 
to, operating system 
fingerprinting attempts, 
common gateway 
interface, buffer 
overflows, server message 
block probes, and stealth 
port scans. 

NetworkMiner[71] Windows proprietary can be used as a passive 
network sniffer/packet 
capturing tool in order to 
detect operating systems, 
sessions, hostnames, open 
ports etc. without putting 
any traffic on the network. 
NetworkMiner can also 
parse PCAP files for off-
line analysis and to 
regenerate/reassemble 
transmitted files and 
certificates from PCAP 
files. 

 
 

2.10.4. Mobile Device Forensics  

Mobile device forensics aims at the recovery of digital evidence from mobile devices 

with communication ability and internal memory. This includes mobile phones, PDA 
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devices, GPS devices, and tablet computers. The data targeted by investigators include 

contact information and photos that are stored on mobile devices. The largest challenge 

for investigators regarding hardware is the abundance of different connector types. 

 

2.10.5. Anti-Forensics Tools 

Just as the developers of digital forensics tools are trying to keep up with the rapidly 

evolving technology, criminals are developing their own tools as countermeasure to 

defeat forensics software. [59] It is an “arms race” that is comparable to the cycle of 

antivirus software versus computer viruses. Two examples of anti-forensics software are 

Evidence Eliminator, which claims to delete files securely and DECAF, a tool which 

automatically executes a set of user defined actions on detecting COFEE. 

 

2.11. DNA as a Stegomedium 
 
 

Criminal organizations are constantly searching for new ways to hide and transmit 

illegal information, such as child pornography, industrial espionage, and records of other 

illegal activity. With DNA sequencing and the ability to create artificial DNA sequences 

becoming increasingly more affordable and more practicable, it could be possible in the 

near future to store a database containing child pornography or other illegal data inside a 

DNA database.  

When computer forensics examiners investigate evidence in a criminal case, they may 

not have any reason to modify any evidence files. It is possible to attack hidden content 

such as stenography and digital watermarks and there are several methods to remove or 

alter such content with software specifically designed for this purpose.  



 

39 
 

 

2.12. Statistics and Artificiality Detection 
 

Benford's Law, which was named after the physicist Frank Benford, refers to the 

frequency distribution of leading digits in real-life data [72]. It states that 1 occurs as the 

leading digit approximately 30% of the time, while increasingly larger digits occur in the 

leading position in decreasing frequency. Benford’s law has been found to apply to a 

wide variety of data sets. It does not only cover the distribution for the first digit, but also 

for digits beyond that, which approach a uniform distribution. That means it can be 

generalized from the one leading digit to the n leading digits. There is also a 

generalization of Benford’s law that covers bases other than base 10. It has also been 

found that Benford’s law tends to be most accurate when values are distributed across 

multiple orders of magnitude. 

Benford’s law has been used successfully to test an observation that the number of 

open reading frames and their relationship to genome size differs between eukaryotes and 

prokaryotes. The main difference is that the former showing a log-linear relationship and 

the latter a linear relationship [73]. It might be possible to develop an algorithm based on 

Benford’s law to help determine if a DNA sequence contains a hidden message. 

 

2.13. Solving Substitution Ciphers 
 

A substitution cipher is a method of encoding by which units of plaintext are replaced 

with ciphertext. In simple substitution ciphers, one letter is replaced at a time. 

http://en.wikipedia.org/wiki/Order_of_magnitude
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Figure 2.2: Example of a substitution cipher 

The methods by which messages are usually encoded in DNA are basically substitution 

ciphers, e.g. the letter ‘a’ is substituted by the sequence ‘AAA’, the letter ‘b’ by ‘AAC’, 

and so on. Several different methods have been developed for breaking substitution 

ciphers. One of our goals is to adapt an algorithm for breaking substitution ciphers to 

decode a message written in DNA symbols. Almost all approaches use n-grams of letters. 

A very promising software called Quipster has been developed by Hasinoff [74]. The 

software decodes a median of 94% of the cipher letters correctly. The source code is 

available for download.  

A Particle Swarm Optimization (PSO) algorithm has been developed by Uddin and 

Youssef [29]. Their results show that PSO provides a very powerful tool for the 

cryptanalysis of simple substitution ciphers using a ciphertext only attack. 

Uddin and Youssef [75] also investigated the use of Ant Colony Optimization (ACO) 

for automated cryptanalysis of classical simple substitution ciphers and found them to be 

very effective on various sets of encoding keys. 

Lucks [76] developed an algorithm which employs an exhaustive search in a dictionary 

for words that satisfy constraints on word length, letter position and letter multiplicity. 

His method is not restricted to English and can be used for any language. 

It is especially difficult to decode short ciphers, because they have different distribution 

statistics than larger texts. Hart [77] developed a method that addresses these problems by 



 

41 
 

using whole words instead of n-grams and by employing a maximum-likelihood 

estimator.  

Jakobsen [56] developed a fast algorithm that is based on a process where an initial key 

guess is refined through a number of iterations. Each step of this algorithm evaluates the 

plaintext corresponding to the current key and the result is used as a measure of how 

close the algorithm is to discovering the correct key. The author claims that only 

knowledge of the bigram distribution in the ciphertext and the expected bigram 

distribution in the plaintext is necessary in order to decipher the message. The algorithm 

currently only uses bigrams, but the author suggests the use of trigrams or whole words 

for future research. 

Forsyth and Safavi-Naini [78] approached the solving of substitution ciphers  as a 

combinatorial optimization problem and developed an algorithm that uses simulated 

annealing. This algorithm appears very complicated and difficult to implement, but it is 

very successful at decrypting ciphertexts, especially ones with over 5000 letters. 

Peleg and Rosenfeld [79] address this problem as a probabilistic labeling problem and 

assigned probabilities of representing plaintext letters to every code letter. This was done 

by using joint letter probabilities. These probabilities were updated in parallel for all code 

letters, and using this scheme iteratively, they were able to break the cipher.  

A genetic algorithm (GA) is a heuristic that is commonly used in artificial intelligence to 

find useful solutions to search and optimization problems. GAs are a subcategory of 

evolutionary algorithms which mimic natural evolution using concepts such as 

inheritance, mutation, selection, and crossover.  The genetic algorithm contains a 

population of strings, referred to as chromosomes, which represent candidate solutions. 
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Over several generations (iterations of the algorithm), these evolve from a usually 

randomly generated population to better solutions. The fitness of every individual in the 

population is evaluated in each generation. Then multiple individuals are selected based 

on their fitness and recombined and occasionally randomly mutated to form a new 

population, which is then used in the next iteration of the GA. The GA usually terminates 

when either a satisfactory fitness level has been reached, or after a maximum number of 

generations has been created. 

 Spillman et al. [80] developed a GA for solving substitution ciphers and although they 

report good results for their algorithm. Delman [81] found GAs to be unreliable for 

solving substitution ciphers and was unable to reproduce their results. 

McClure [82] describes a GA to solve a substitution cipher for 26 characters, which is 

used in combination with the Wisdom of Artificial Crowds technique. The population 

size in this approach is 20, with 18 members of the starting population being initialized 

by creating a random permutation of the English alphabet. The remaining two members 

were initialized by frequency analysis of the encoded string.  In each iteration, the best 

four members are determined with a fitness score using a dictionary approach and are 

selected as parents. 75% of the time the first and third members are used as parents of the 

first child and the second and fourth members become parents of the second child. The 

remaining 25% of the time, the best population member is copied to create a child. 

 

Figure 2.3: Crossover 
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The crossover is performed by choosing a crossover point between 1 and 26 (the 

number of characters) at random. All elements before the crossover point were copied 

from one parent, and all elements after the crossover point, if they did not already exist, 

were copied from the other parent.  Elements that have not been filled in so far are copied 

from the first parent in the same order as they occur there. The mutation rate is 10% and 

the number of generations is 10,000. 

 

Figure 2.4: Mutation 

To determine the fitness of each population member, McClure uses a fitness function 

that uses the number of incorrectly spelled words. Furthermore, the misspelling is 

weighted by the number of letters in the word, and also there is a reward for mapping the 

letters “a”, ”t”, and “e” to the most common characters in the string, since they are the 

most commonly used letters in the English language. In the equation below, E is the 

error, S stands for the encoded string, w is the number of words in S, i is a word in S, ni is 

the number of letters in word i, a is a n by n dimensional binary row vector where the ith 

location is 0 if word i cannot be found in the dictionary and 1 if it can. 

E(S) =∑ 𝑎𝑖
𝑤
𝑖=1 𝑛𝑖-[0.12𝑏𝑒 ∑ 𝑛𝑖

𝑤
𝑖=1 ]-[0.09𝑏𝑡 ∑ 𝑛𝑖

𝑤
𝑖=1 ]-[0.08𝑏𝑎 ∑ 𝑛𝑖

𝑤
𝑖=1 ]  (2.4) 

𝑏𝑒 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 12%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
} (2.5) 

𝑏𝑡 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 9%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}  (2.6) 

𝑏𝑎 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 8%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}  (2.7) 
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Equation 2 states that be is 1 if the letter “e” comprises 12% or more of the decoded 

text.  Equation 3 and 4 are equivalent for the letters “t” and “a” and their respective 

percentages. 

Yampolskiy et al. [83-88] developed Wisdom of Artificial Crowds (WoAC) as a 

postprocessing algorithm for GA’s and Swarm optimization algorithms. It is derived from 

the Wisdom of Crowds (WoC) algorithm, which is based on the observation that groups 

are often smarter than the smartest individual in them [89]. For the WoAC algorithm, an 

nxn occurrence matrix is constructed.  This matrix is used to accumulate the number of 

times each solution appears. Each row number corresponds to a character while each 

column number corresponds to the symbol it maps to, in this case letters to letters. The 

best solution is calculated using the function below: 

𝑐𝑖𝑗 = 1 − 𝐼𝑎𝑖𝑗

−1(𝑏1, 𝑏2) (2.8) 

Where 

𝐼𝑎𝑖𝑗

−1(𝑏1, 𝑏2)     (2.9) 

is the inverse regularized beta function with parameters b1 and b2 both taking a value of 

at least 1. 

McClure [82] achieved a significant increase in the percentage of correctly identified 

words in the GA approach over a purely frequency based approach, and a further increase 

using WoAC. 

MCClure [82] performed 8 GA runs for each string and put the best three keys from 

each run into the voting population for the WoC technique. Four non-repeating 
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combinations of 12 keys from this population were used to run four WoC tests for each 

string. 
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CHAPTER 3 
 

EARLY DESIGN OF SOFTWARE 
 

 
 

3.1. Encoding and Inserting Messages 
  

The DNA steganography and steganalysis toolkit we developed has the capability to 

encode messages in one of several coding schemes and insert them into a DNA sequence 

(steganography) and for detecting, extracting, and decoding a hidden message from a 

DNA sequence (steganalysis). Messages can be texts or bitmap images. 

This software offers a choice of several different coding schemes. It reads in the coding 

table for the selected coding scheme from a file and then prompts the user to either type 

the message to be encoded on the keyboard or to select a file from which the message 

will be read. Since the ASCII coding scheme is the only one that distinguishes between 

uppercase and lowercase characters, the program converts all characters in the message 

into uppercase characters for all coding schemes other than the ASCII coding scheme. 

The steganography program then encodes the message using the appropriate coding table.  

The toolkit implements the following coding schemes: 

- Huffman code based coding scheme [19] 

- Alternating code [19] 
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- Comma code [12, 19] 

- Wong’s coding scheme [20] 

- Clelland’s coding scheme [11] 

- DNA-Crypt [10] 

- ASCII coding scheme [3] 

Coding tables for comma code and alternating code were created arbitrarily, since the 

original researchers did not provide any. 

The message can either be directly written to a file by itself if it is to be stored in a 

noncoding region, or be inserted into the coding region of an existing DNA sequence file. 

For inserting a message in a coding region, the algorithm described by Jiao and Gouette 

[3] is used. DNA sequences can be chosen from a folder where they are stored in FASTA 

format [24], which is widely used in bioinformatics. The program displays the maximum 

number of characters a message can have, depending on the coding scheme and the 

sequence it is to be inserted into. 

 

Figure 3.1: Message insertion into coding region 
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3.2. Approaches to Detecting Messages in DNA 
 

Finding a message that has been inserted into the coding region of a DNA sequence is 

relatively simple if the original sequence is known.  We have developed a program which 

compares a modified DNA sequence with its original. Since the message is assumed to 

have been inserted into wobble bases, the first step is to identify wobble base codons in 

both sequences and to compare them to each other. The first codon where the wobble 

base is different from the one in the original is identified as the beginning of the message. 

The last codon where it differs is marked as the end of the message.  

The limitation in this approach is that there are codons where the wobble base does not 

change because it is being replaced by itself. This is not a problem if it happens in the 

middle of the message. The program therefore assumes it contains one long message 

instead of several smaller ones. Problems can arise if this happens at the beginning or end 

of the message, but if the message can be decoded and it is seen that pieces are missing, 

the program can expanded to go back and fix it. 

In order to test the program, the message “THIS IS A TEST” was inserted into the  ftsZ 

DNA sequence using the Wong coding scheme. The program then compared the 

modified sequence with the original one. It correctly identifies the beginning codon and 

the end codon of the message and extracts the modified wobble bases. 
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Figure 3.2: Screenshot of message detection software 

Finding a message in a noncoding DNA region is much more difficult. But there are 

ways to determine if a DNA sequence is artificial by statistical analysis. For example, if a 

certain base is significantly overrepresented, underrepresented, or not present at all, it can 

be assumed that the sequence is artificial and should be further analyzed to determine if it 

may contain a message. 

Messages that have been encoded using a variation of the alternating code or the 

comma code are more likely to be detected than messages that were encoded with a 

different coding scheme. The reason for that is that they have a repeating pattern, which 

can be detected by a human or a computer program. If every n-th base is the same, this 

hints at the possibility that comma code or a variation thereof has been used to create this 

sequence. 

One coding scheme that is easy to identify is the DNA-Crypt coding scheme because 

the low occurrence of As in a message encoded with this scheme.  
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However, as a countermeasure against attempts to detect messages by counting the 

occurrence of nucleotides, a coding scheme such as the one developed by Modegi [90] 

can be used. Modegi’s coding scheme uses two codons to encode each letter. Which 

codon is used is determined by the GC content of the carrier sequence. For example, if a 

message was to be inserted into a sequence with a high  GC content, the letter L would be 

encoded as CTG, but in a sequence with low GC content it would be TTA [90]. The 

obvious tradeoff is the number of characters that can be encoded is cut in half. 

In order to detect the alternating code, the program stores all odd position characters in 

one list and all even position characters in another and then compares both of them. If 

none of the even characters appears in the list with the odd ones and vice versa, the 

program has detected a message in alternating code with the pattern XYXYXY, where  X 

is either an A or a G and Y a C or a T, or vice versa. The program can easily be extended 

to detect alternating codes with pattern XXYYXXYY or XXXYYY. 

3.3. Extracting Messages from DNA 
 
Since there are four nucleotides, a substitution cipher based coding scheme with a codon 

length of three, which can encode 64 characters, can be generated in 64! possible ways. 

And that is only if the same 64 characters are being used. For example, one coding 

scheme can start with A=AAA, B=AAC, C=AAG,... while another one could be A=AGT, 

B=CCG, C=CTG,... Brute force guessing which variant has been used to encode the 

message would take an enormous amount of time and would therefore not be feasible. 

We have developed a program for solving simple substitution ciphers where each letter 

of the English alphabet, numbers from 0-9, and several special characters such as spaces, 

commas, and periods are each substituted by a combination of three DNA bases. While 
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normal programs for attacking substitution ciphers search over the space of 26! possible 

keys, our program has a search space of 64! possible keys. This program is capable of 

solving all possible coding schemes based on simple substitution ciphers with a codeon 

length of 3, including the ones developed by Clelland [30] and Wong [3]. 

 

The first algorithm we developed uses a list of all the characters in the English alphabet 

and the frequency of their occurrence in a reference corpus. This corpus contains 801,134 

words consisting of 4,899,952 characters, including spaces. The frequency of occurrence 

in this corpus of the 64 most common characters was recorded. The most common 

character is the space with 16.2%, followed by the letters E, T, and A with 9.7%, 7.2%, 

and 6.4%, respectively.  It will split the ciphertext into codeons of length 3 and determine 

the frequency of occurrence of each codeon in the ciphertext. The program will then 

assign the most frequent letter from our list to the most frequent codon in the ciphertext 

and so generate a lookup table. Using this lookup table, the program translates the 

ciphertext into the plaintext. Of course most of the plaintext is still nonsense. After that, 

the program will split the plaintext into words, using an empty space as a delimiter. It will 

then compare the words with a dictionary. The dictionary consists of several lists of 

words, each list contains words with a certain number of letters ranging from two letter 

words to twelve letter words. If the word matches a word in the dictionary, it will be left 

alone. If the word differs from a word in the dictionary by a certain number of letters 

depending on the length of the word, the program will suggest to replace the letters at that 

particular position by their counterparts in the correct word. For words with a length of 

four letters or less, the program will only suggest words that differ by one letter. Words 
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that are five or six letters long will be checked for two letter difference, words with seven 

or eight letters will be checked for three, and so on. 

 

The following printout is an example how the program suggests replacements for words 

it doesn’t have in its dictionary: 

 

GRAF is to be replaced with GRAY by switching F with Y  

TLE is to be replaced with THE by switching L with H  

TLE is to be replaced with TIE by switching L with I  

TLASE is to be replaced with PLACE by switching T with P S with C  

TLASE is to be replaced with THOSE by switching L with H A with O  

TLASE is to be replaced with CLOSE by switching T with C A with O  

TLASE is to be replaced with PLANE by switching T with P S with N  

TLASE is to be replaced with TRADE by switching L with R S with D  

TLASE is to be replaced with TRACE by switching L with R S with C  

TLASE is to be replaced with FLAME by switching T with F S with M  

WOS is to be replaced with WAS by switching O with A  

WOS is to be replaced with WON by switching S with N  

. 

. 

. 

GECEROH is to be replaced with GENERAL by switching C with N O with A H 

with L 

 

The program will keep track of which letter is suggested to be replaced by which other 

letter and how many times. It will then switch the codons of the letter pair that has been 
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suggested for replacement the most often, translate the ciphertext into the plaintext with 

the updated lookup table and repeat checking the dictionary. With each iteration the 

number of correct words increases. The program terminates if either no more 

replacements can be found, or if at least 85% of the words have been correctly identified. 

The following printout shows how letters are supposed to be replaced: 

 

The system suggested: 

replace A with O 13.0 times 

replace H with L 5.0 times 

replace Y with P 4.0 times 

replace L with C 3.0 times 

replace I with N 3.0 times 

replace L with R 3.0 times 

replace C with D 2.0 times 

replace S with R 2.0 times 

replace S with N 2.0 times 

. 

. 

. 

Rules: 

- A letter cannot be replaced if it occurs at a different position in the same word. 

- A letter cannot be replaced if the suggested replacement letter occurs at a 

different position in the same word. 

- A replacement word is to be discarded if another replacement is suggested that 

requires switching fewer letters. 
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- a word that has a punctuation character at the end will be checked without the 

punctuation character.  

Another program was written to decode messages that have been encoded using the 

coding scheme based on the Huffman code [44]. This coding scheme was developed by 

Smith et al. [38] and uses only the 26 characters of the English Alphabet. There are 16 

possible variations of this scheme, based on how the DNA characters are used. Six 

paragraphs of text of varying length were encoded using the Huffman-based coding 

scheme for 26 characters as described in Smith et al. Each encoded text was analyzed by 

a program that counted the frequency of occurrence of single bases, twins, triplets, 

quadruplets, and quintuplets. The analysis of frequency counts of overall occurrence, as 

well as quadruplets and quintuplets yielded the most valuable results. It was found that 

almost always the bases differ noticeably in number of occurrences. Also, in all six 

paragraphs the least common base never occurs as a quadruplet, and the most common 

base always occurs as a quintuplet.  
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Table 3.1: Number of occurrence of certain patterns of bases in ciphertext. Least common in 
red, most common in green. 

 

Pattern Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

A 299 166 131 126 344 115 
C 272 164 107 118 300 110 
G 305 183 120 118 343 128 
T 293 168 100 122 282 98 

AA 104 56 50 42 112 36 

CC 82 39 32 27 66 23 

GG 75 40 32 26 73 21 

TT 32 26 11 18 34 17 

AAA 48 18 12 13 26 13 
CCC 16 10 6 2 8 6 
GGG 37 20 21 19 35 9 
TTT 0 1 1 0 0 0 

AAAA 17 7 4 1 16 5 

CCCC 3 4 0 2 5 3 

GGGG 10 6 8 13 19 1 

TTTT 0 0 0 0 0 0 

AAAAA 2 2 3 1 4 0 

 
 

This statistical information can be used to identify the coding scheme as the Huffman-

based scheme. The bases are then ordered based on frequency of occurrence, with c0 

being the most frequent and c3 the least frequent one. The coding table for the Huffman 

based coding scheme from Smith et al. [38] was hardcoded into the program, replacing 

each DNA symbol with a variable from c0 through c3.  The program then parses the 

ciphertext and uses the hardcoded table to decode the message. 

 

3.4. Results 
 

The program has been tested using a message the length of a paragraph encoded in 

Clelland’s coding scheme and then with the same message encoded in Wong’s coding 
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scheme. The paragraph has 202 words, 134 not counting repetition. 120 out of those are 

decoded correctly. 

Time : ~10 seconds 

With Clelland’s coding scheme the program deciphers the text almost correctly, the 

only errors are that comma and period are switched, and it mistakes the letter J for the 

number 1. The same errors occur with Wong’s coding scheme, but here it also puts a 

question mark where an apostrophe should be. These errors can easily be fixed by adding 

more rules. 

 

Figure 3.3: Screenshot of decryption software 

The program for decoding messages that have been encoded using Huffman-based 

coding schemes is able to decode messages with all 16 possible variations of the Huffman 

coding table for 26 characters. The same message as for the previous program was used 
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for testing this program. 

3.5. Limitations 

 
One important question is if the wordlists used in the decoding software should include 

names and abbreviations (names of people, geographical names, corporations). An early 

version of the decoding software got into an infinite loop by trying to replace the word 

‘AND’ followed by a punctuation character with the name ‘ANDY’.  This was resolved 

by removing ‘ANDY’ from the wordlist. However, if the name Andy actually occurs in a 

message, the program might either take longer to decode it correctly, or might not decode 

it correctly at all. The program also won’t know if this name has been correctly decoded. 

Expanding the wordlist to include every word in the English language could lead to more 

words being identified as actual words and not garbage strings, but it could also lead to 

misidentification of words as the above example shows. 

How well a message is decoded greatly depends on the length of the message. 

Messages of a paragraph of 200 words or longer can usually be decoded very quickly and 

accurately. Messages that are smaller than that, however, usually do not have a character 

distribution that is close to the character frequency statistic that is being used as a 

reference. 

 

3.6. Insertion of Media other than Text 

 
Most research in DNA steganography focuses on hiding text and only very little research 

has been done so far on hiding other media in a DNA sequence.  Goldman et al. [12] 

describe encoding five files of various types in a DNA sequence. These files include a 
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JPEG 2000 image and a speech in MP3 format. The coding scheme they used utilizes 

several intermediate steps. First, the image file and the sound file are translated into 

binary. Then, the text file and the binary data from the other files is translated into a base-

3 code and finally into sequences of DNA bases. 

 

Davis [91] describes a method of encoding the black-and-white image of a relatively 

simple shape (5 by 7 bitmap) into a 35 bit binary sequence, which was then compressed. 

His approach compares the molecular weights of the bases to obtain an incremental 

reference. Starting with the smallest base, Cytosine, Davis assigns numbers to the bases 

in ascending order. This results in C = 1, T =2, A =3, and G =4. This method compresses 

the binary digits of the bit-mapped image into fewer DNA base symbols by using each 

base to indicate how many times each binary value (0 or 1) is to be repeated before 

changing to the respective other value. This technique is widely used in data 

compression. This can be represented as shown in Table 1. Using this coding method, the 

thirty-five-bit black-and-white image is translated to only eighteen DNA bases: 

CCCCCCAACGCGCGCGCT 

These can be decoded to yield one of the two following binary sequences: 

10101011100010000100001000010000100 

or 

01010100011101111011110111101111011 

This depends on if either a 1 or a 0 is chosen to start the decoding sequence. 

Transforming either of the two sequences into the correct five-by-seven matrix will 

produce the image. Since the example used by Davis is bilaterally symmetrical, more 
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than one of several possible five-by seven matrices will in this case result in producing 

the correct bitmap [91]. 

Table 3.2: Coding scheme used by Davis [91] 
 

Base Bit sequence  

C 1 or 0 
T 11 or 00 
A 111 or 000 
G 1111 or 0000 

 
 
Ailenberg and Rotstein [8] have developed a coding scheme to encode an image that is 

composed of shapes and their coordinates.   

This way of encoding an image is not very efficient. A more feasible approach has been 

described by Yokoo and Oshima [92].  This approach suggests to arrange the  3-base 

codons of a DNA sequence in a two dimensional array and then translate one base of 

each codon into either black or white, with G and C being black and A and T being white, 

or vice versa. This is done for each base of all the codons, which would result in three 

separate images.  

Hennings and Kettelberger [93] have developed a method to generate music by 

decoding and transcribing genetic information within a DNA sequence into a music 

signal having melody and harmony. 

We have developed a very similar coding scheme to the one described by Yokoo and 

Oshima [92], with the difference that we use all three bases of each codon for encoding 

color information instead of creating three separate images[94]. Our approach will 

determine the width and height of the array used for creating the image using the two 

closest factors of the number of codons. This will result in a picture that is as close to a 

square in shape as possible.  
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The DNA sequence is arranged in a two dimensional array the same way as described 

by Yokoo and Oshima [92], but in our case the first base of each codon is used to encode 

the red portion, the second base for the green portion, and the third for the blue portion of 

each pixel. DNA bases are translated into RGB values using the following coding table: 

Table 3.3: Translation of DNA bases to RGB values 
 

Base RGB  

A 0 
C 64 
G 128 
T 255 

 
 

Table 3.4: Translation of RGB values into DNA bases 
 

RGB Base 

0-63 A 
64-127 C 
128-191 G 
192-255 T 

 
 
 

Each codon encodes one pixel and the coordinates of the codon in the array will be the 

coordinates of the pixel in the resulting bitmap. The following example shows each step 

of the encoding process: 

 
DNA sequence: 
 
ATA TAA TAA TAA TTA AAT AAA TTT AAA ATA AAT TTT GAG TTT ATA AAT AAA TTT AAA 
ATA TAA TTA TTA TTA AAT  
 
DNA sequence as two dimensional array: 
 
 
ATA  TAA  TAA  TAA  TTA  
AAT  AAA  TTT   AAA  ATA 
AAT  TTT   GAG  TTT   ATA 
AAT  AAA  TTT   AAA  ATA 
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TAA  TTA   TTA   TTA   AAT 
 

The array is created by taking the square root of the number of codons in the DNA 

sequence. The result is rounded up to give the width and rounded down to give the height 

of the image. The two numbers are multiplied and if the result is less than the number of 

codons, the smaller number is increased by 1. This will result in an array that is large 

enough for all codons, in some cases slightly larger. The extra space will be filled with 

white pixels in the resulting image. 

After translation into RGB: 
 
0,255,0  255,0,0    255,0,0    255,0,0     255,255,0   
0,0,255  0,0,0     255,255,255  0,0,0      0,255,0   
0,0,255  255,255,255  127,0,127   255,255,255   0,255,0   
0,0,255  0,0,0     255,255,255  0,0,0      0,255,0   
255,0,0  255,255,0   255,255,0   255,255,0    0,0,255 
 

 
 

Figure 3.4: Resulting image (enlarged by factor 16) 

 
 

This method allows the encoding of 64 colors and ensures that the encoding of all the 

most common colors such as red, green, blue, yellow, magenta, orange, grey, black, and 

white is possible. The use of only 64 colors obviously leads to the loss of color 

information. Also, with the current algorithm the program assumes that the width and 

height of an image are as similar (a square, or approximately a square) as possible. For 

example, a 120x40 pixel image would be decoded as a 60x80 pixel image. A possible 

solution would be to encode the dimensions of the image as well. Our method is simpler 

and more storage space efficient than the one described by Goldberg [6], but as a tradeoff 
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can encode fewer colors. It is also more specialized toward images, while Goldberg’s 

approach is geared toward a variety of data types. Further research could lead to the 

development of algorithms to detect, extract and decode images that have been hidden in 

DNA sequences [94]. These methods could be used for forensic purposes. Similar 

algorithms have already been developed for text-based DNA Steganalysis [25]. 
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CHAPTER 4 
 

FINAL DESIGN OF SOFTWARE 
 
 

4.1. Overview 
 

The main menu allows the user to choose between extraction of text, insertion of text, 

or insertion/extraction of images. If the user chooses to extract a message, the message 

can be loaded from a txt file or a FASTA file. Header information from FASTA files is 

automatically removed. The user has the choice between two encoding algorithms: the 

Dictionary approach and the GA/WoAC approach. Individual settings for each algorithm 

can be defined by the user. These include population size, number of iterations, and stop 

condition in case of the GA. It is also possible to decode a message without extracting it 

from a DNA sequence. This message can either be loaded from a file, or typed or pasted 

into the appropriate text field. The basic coding scheme is determined before attempting 

to decode any message in order to choose the codeon size, and in case of a Huffman code 

base scheme, start the appropriate decoding algorithm.  

For message insertion, the user can load a cover sequence from file, and again the 

header is stripped if the file is in FASTA format. The message to be inserted can be typed 

or loaded from a file. The user can choose between several coding schemes to encode the 
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message, and the program will alert the user if there are not enough wobble bases within 

coding regions to accommodate a message of this particular length.  

A lookup table on the side of the screen shows how the current coding scheme 

translates between DNA codeons and alphanumeric characters. 

The image insertion and extraction feature is fairly straightforward and does not require 

any detailed explanation. 

 
Figure 4.1: Organizational chart of DNA Steganalysis Software 
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4.2. Genetic Algorithm and Wisdom of Artificial Crowds 

 
Figure 4.2: Flow chart of GA with WoAC 

 
In order to increase the accuracy with which shorter messages can be decoded we 

began to search for alternative methods to the dictionary approach. One of the proposed 

alternatives is to use a Genetic Algorithm (GA).  The GA developed by McClure [95] 

was modified to accommodate a larger alphabet [96]. 

Both the dictionary approach and the GA with WoAC approach were tested with two 

different sample messages of different lengths. The first has 202 words, 134 not counting 
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repetition. The second message has 51 words, of which 35 are unique. Both messages 

have been encoded with the coding scheme developed by Clelland [1], with the Comma 

code, and with the Alternating code. 

Our software package was written in Java 7 using Eclipse v.4.4.0. The computer used 

for this experiment has an Intel Core i7 processor and 10 GB RAM and runs Windows 7 

Home Premium 64 bit. 

The settings for the GA are as follows: 20 population members, 5000 generations, and 

a mutation rate of 10%. The results of 10 runs of the GA were entered into the WoAC. 

Then the results of the WoAC were used to initialize the GA for the next 10 runs, with 

their results entering into the WoAC again. For the shorter text the GA was run with 1000 

generations. 

The keys we produced with ten runs of the GA were fed into the WoAC algorithm. 

Then we use the key obtained from WoAC as seed value to initialize two out of twenty 

population members in another run of the GA. The remaining 18 population members are 

initialized at random. 

In order to be able to work with 64 characters instead of 26 we counted the frequency 

of occurrence of the 64 most common symbols and characters in our sample corpus and 

adjusted the formula accordingly. Since we take spaces and punctuation into account, our 

most common character is now the space with 16%, followed by the letters e, t, and a 

with 9%, 7%, and 6%, respectively. Also, besides rewarding high percentage of 

occurrence of the most frequent characters, we punish high percentage of occurrence of 

the 14 least frequent characters. The dictionary used in both approaches contains over 

28,000 words. 
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Table 4.1: Changes compared to McClure 
 

 McClure Our Algorithm 

Character Reward if Reward if Punish if 
[space] ---------- >=16% ---------- 
e >=12% >=9% ---------- 
t >=9% >=7% ---------- 
a >=8% >=6% ---------- 
+ ---------- ---------- <1% 
* ---------- ---------- <1% 

= ---------- ---------- <1% 

_ ---------- ---------- <1% 

$ ---------- ---------- <1% 

& ---------- ---------- <1% 

# ---------- ---------- <1% 

< ---------- ---------- <1% 

> ---------- ---------- <1% 

^ ---------- ---------- <1% 

% ---------- ---------- <1% 

@ ---------- ---------- <1% 

[ ---------- ---------- <1% 

] ---------- ---------- <1% 

 
 
 
The GA is able to decode the first sample message with 100% accuracy independent of 

the coding scheme; however each GA run takes an average of 32 minutes and the total 

decoding process takes almost 6 hours. The shorter message is decoded in about 7 

minutes with 89% accuracy. 

Table 4.2: Results of decoding messages with the dictionary approach. 
 

Decoded with dictionary approach 

Coding 

scheme 

Words total 

 

Words 

correct 

Characters 

correct 

Time 

Clelland 202 89% 76% 0.7 sec 
Clelland 51 51% 52% 0.06 sec 
Comma 202 99% 80% 0.8 sec 
Comma 51 64% 42% 0.08sec 

Alternating 202 99% 80% 0.9 sec 
Alternating 51 58% 50% 0.07 sec 
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Table 4.3: Results of decoding messages with the GA/WoAC approach. 

 
 

Decoded with Genetic Algorithm/ Wisdom of Artificial Crowds 

Coding 

scheme 

Words total 

 

Words 

correct 

Characters 

correct 

Time 

Clelland 202 100% 93% 5hrs 40 min 
Clelland 51 89% 74% 7 min 6 sec 
Comma 202 100% 96% 5 hrs 33 min 
Comma 51 74% 50% 6 min 57 sec 

Alternating 202 100% 96% 5hrs 48 min 
Alternating 51 84% 53% 7 min 13 sec 
 
 
The table below shows the accuracy for each GA run compared to each other and to the 

WoAC for the long message that has been encoded with Clelland’s coding scheme. The 

results for decoding the messages with the other coding schemes are similar. The table 

also contains the results of the GA runs 11-20 which use the result from the WoAC as 

key. The end result is obtained by using the WoAC algorithm on runs 11-20. Some of the 

GA iterations actually produce worse results individually than the dictionary approach. 

Words correct means words that can be actually found in the dictionary. The first 10 

iterations are independent from each other, as are the last 10. 
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Table 4.4: Comparing the seperate GA runs to the WoAC results. 
 

Iteration Words correct Characters Correct 
1 99% 90% 
2 98% 86% 
3 84% 79% 
4 10% 34% 
5 10% 34% 
6 43% 59% 
7 73% 69% 
8 9% 28% 
9 9% 0% 

10 96% 79% 
WoAC 99% 86% 

11 99% 83% 
12 99% 83% 
13 98% 79% 
14 100% 93% 
15 100% 93% 
16 100% 93% 
17 100% 93% 
18 99% 90% 
19 100% 93% 
20 100% 93% 

End result 100% 93% 
 

 
As we can see in run 9 we can even get words that are in the dictionary when all the 

characters are switched. Because of so many “correct” words, the key generated has such 

a good error score that it gets stuck in a local maximum [96]. 

 

4.3. Determining Coding Schemes 
 

At the beginning the steganalysis tool could only decode messages that have been 

encoded with substitution cipher coding schemes such as the ones developed by Clelland 

et al.[30], Wong et al.[3], and variations thereof, as well as messages that have been 

encoded with variations of the Huffman-based coding scheme for 26 characters 
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developed by Smith et al.[38] 

 The next step was to add the capability to decode messages encoded in other coding 

schemes that have been described previously, such as the alternating code or comma 

code. In order to do so, we added a feature to determine which coding scheme was most 

likely used to decode the message. This was possible by making use of unique properties 

of those coding schemes. 

 An unusual property of the alternating code that can be used to determine if a message 

has been encoded with the alternating code is the following: in a given piece of message 

DNA, the number of G:C pairs will be the same as the number of A:T pairs [38].   

Another, possibly more accurate method to determine if a message has been encoded in 

the alternating code is to first turn all A’s and G’s in the ciphertext into R’s, and all C’s 

and T’s into Y’s. Then to split the ciphertext into codons of length 6 and check if the first 

codon matches any of the following patterns: 

RYRYRY,YRYRYR,YYRRYY,RRYYRR,YYYRRR,RRRYYY. If it does, the program 

would check if the remaining codons follow the same pattern. 

Once the Alternating code has been detected, it will be decoded the same way as simple 

substitution schemes, but with a codon length of 6. The pattern only plays a role in 

detection, but not in decryption. 

The DNA symbol which is the comma character fulfills all of the following three criteria: 

It is the first and the last character of the sequence, it always appears by itself, never as 

part of a twin, triplet, etc. and the distance between instances of the comma symbol is 

always the same. 
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In order to determine if a message has been encoded in comma code, our program checks 

which one of the four DNA bases fulfills all three of these criteria. If a base is found that 

meets those criteria is found, this base is then assigned as the comma character, and the 

distance between each occurrence of this comma character +1 is the codon length. 

This software should be able to detect any variation of the comma code, no matter which 

DNA base is the comma character, and no matter the codon length. It therefore can detect 

both the version described by Smith et al. [38], and the one by Brenner et al. [29], as well 

as other variations of the comma code. Before decoding the comma code, the comma 

character at the end of the ciphertext is removed, since it adds no useful information to 

the message. 

When a message encoded with the coding scheme developed by Arita et al. [29] is 

inserted into a coding region of a DNA sequence, a 0 indicates to leave the 3rd base of a 

codon unchanged, while a 1 indicates that it needs to be changed. This means that the 

ratio of changed wobble bases/unchanged wobble bases within message should be around 

½, while with other coding schemes it should be around ¼. This is used to detect a 

message encoded with this particular coding scheme 

The decoding of the Arita coding scheme will be done in two steps: DNA to binary and 

then binary to text. Since there are only 16 possibilities, the decoding from DNA to 

binary is done in a brute force approach. After each decoding attempt, the resulting 

binary sequence is broken into strings of length 5 and each string is checked for the parity 

bit. If the number of ones is even, the parity bit is one, if it is odd the parity bit is zero. If 

the parity bit computes correctly for more than 95% of the message, it is decoded from 
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binary to plaintext, otherwise the next decoding attempt is tried. The decoding from 

binary to plaintext is accomplished  in a similar manner as with the substitution schemes. 

The ASCII and Yachie coding schemes are so similar that they can be decoded with the 

same algorithms. 

The algorithms that have been developed for the basic Huffman based coding scheme 

can be modified to work for the improved Huffman coding scheme. The only difference 

other than the number of characters and with which symbols they are encoded is the 

division of characters into three subgroups and the use of a header codon to select the 

subgroup. 

 

4.4. Message Extraction 
 

Since the length of the message is not known, the extraction algorithm currently 

extracts all wobble bases within the coding regions of the cover sequence. However, the 

message may only use a small part of the available space, which will result in a great 

amount of garbage information at the end of the actual message. If the message uses only 

a small percentage of the available coding space, the amount of garbage information will 

be very large. This will prevent both decoding algorithms from working properly, since 

they both depend on the frequency of occurrence of characters. 

This problem is addressed by attempting to decode only a part of the message, a 

percentage that can be selected by the user. Once the coding scheme is known, the entire 

message can then be decoded using that coding scheme and the garbage information at 

the end can be discarded. The only problem with that approach is that it only works for 

messages that have been inserted at the beginning of the DNA sequence. 



 

73 
 

 

4.5. Integration of Components 
 

All parts of the DNA steganography and steganalysis toolkit have been integrated using a 

common graphical user interface (GUI) and a common file structure. Also, the software 

creates a report which is automatically saved in a file once a message has been detected 

and decoded. This report contains detailed information at which position in the DNA 

sequence the message begins, where it ends, its length, which coding scheme was used, a 

coding table, as well as frequency counts of single bases, bigrams, trigrams, and 

quadrigrams of bases. The goal of this effort is to keep our software toolkit user friendly, 

flexible, and expandable. 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORK 
 

5.1. Conclusion 
 

DNA steganography and DNA steganalysis are fairly new research fields and therefore 

they offer many opportunities to improve upon existing approaches for steganography as 

well as steganalysis. This project combines several approaches for DNA steganography 

undertaken by several independent groups of researchers in the past, and builds upon the 

results of their work to create software for steganalysis of the coding schemes they 

developed. There has been a great amount of research done in the resent past on hiding 

messages in DNA, but not much on finding hidden messages. This project aims at 

covering a variety of different approaches for DNA steganography. The GA clearly takes 

several orders of magnitudes more time, but is able to decode short messages at greater 

accuracy than the dictionary approach. Both methods complement each other, while the 

dictionary approach is faster; the GA is more accurate and also performs better at 

decoding shorter messages. Shorter messages need more generations but take less time. 

The WoAC algorithm used in combination with multiple runs of the GA provides clearly 

improved results compared to the individual runs of the GA by themselves. The end 

result is even better after using the WoAC results as seed for the next 10 GA runs. Both 
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algorithms are currently being improved further and tested with a greater variety of 

messages, such as messages with a large amount of numbers and special characters and 

messages that contain names and foreign words. The key is to make this software toolkit 

as flexible as possible, so it can be adapted in the future to deal with new coding schemes 

and new approaches to hide messages. 

 

5.2. Future Work 
 

5.2.1. Improvements 
 

Both message decoding approaches still have room for improvement and it is possible 

to further increase their accuracy. The GA could possibly be improved to converge faster 

by experimenting with different crossover and mutation algorithms. An idea would be to 

increase the mutation rate if too many population members are similar, and then decrease 

it over generations. 

It would be interesting to see how both algorithms perform when attempting to decode 

messages that have been encrypted before being encoded.  

We have written a program that creates a dictionary and calculates the frequency of 

occurrence of characters from a sample corpus. This program can be easily modified to 

create a dictionary and a frequency count based on a specific topic. The program for 

encoding and inserting messages will have an option to encrypt a message with a shift 

cipher before encoding it. There will also be a function to decrypt messages that have 

been encoded in such manner. The encoding software can be improved to allow the user 

to determine at which location a message should be inserted into a DNA sequence, given 

a sequence long enough to allow that. Currently messages are inserted beginning with the 
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first wobble base codon of the sequence. In turn, the message detection program will also 

be modified to be able to detect a message at any given location inside a DNA sequence. 

The program will then also be able to analyze a DNA sequence using different reading 

frames as well as backwards, and inverse. We will also expand our system by enabling it 

to detect messages that have been encoded with different coding schemes in the same 

DNA sequence. There is also the possibility to include an option to either use or ignore 

Start- and Stop codons. 

Furthermore, the program for decoding Huffman based coding schemes can be 

expanded to be able to decode messages with coding schemes for more than 26 

characters. It should therefore be upgraded to be able to handle the improved Huffman 

code based scheme developed by Ailenberg and Rotstein [25].  

Both of the decoding methods did not perform well in decoding numbers and 

punctuation characters.  One solution is to create rules that will assign higher fitness 

scores in the GA to certain patterns such as dates. In order to decode punctuation 

characters more accurately, there is the possibility to run a post processing function after 

the letters and numbers have been decoded to ensure certain rules, for example that a 

period or comma is usually followed by an empty space, or that there is a closing 

parenthesis for every opening parenthesis. Another possibility to address this problem is 

to develop an algorithm based on Benford’s law. 

The WordSpy algorithm developed by Wang and Zhang [28] could also be investigated 

as a way to detect new coding schemes that do not already have specialized algorithms 

for detecting and decoding.  
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Once the software has detected a message, it would automatically decide based on 

certain characteristics which approach to use in attempting to decode a message. A 

decision tree needs to be developed to determine what the program should do next in case 

an approach to decode the message fails.  

There are currently two decoding algorithms, the dictionary approach and the GA. 

Thanks to its modular nature the software toolkit can be improved by adding other 

decoding algorithms. It would then be possible to attempt to decode a message with each 

algorithm and feed the resulting keys from each algorithm into the WoAC. 

A way to speed up the GA/WoAC approach could be to modify the program to run 

multiple instances of the GA in parallel since they are all independent from each other. 

This could be accomplished at first on a multi core computer, and if successful, later on a 

larger scale on a cluster. Of course, the speedup cannot be expected to be linear, because 

parts of the program, such as the initialization and the WoAC cannot be parallelized. A 

more accurate method to measure the time each of the two approaches takes needs to be 

implemented. This can be accomplished by counting clock cyles instead of CPU time. 

The observation that samples of DNA sequences of the same genome are significantly 

more similar to each other than to those of sequences from other organisms [97]  can help 

detect the presence of a message. Also, certain bi-,tri,- and quadrigrams of DNA bases 

occur more often in certain genomes than in others. For example, Burge et al. [98] have 

discovered that the bigram CG is strongly underrepresented in vertebrates and 

mitochondrial genomes. The problem here is that a hidden message has to be very large 

in order to significantly affect the distribution of base n-grams. Message detection can be 

improved by using statistical analysis. In order to obtain a statistical baseline, 10 
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variations of the human genome could be downloaded from an online database and the 

frequency of occurrence of n-grams would then be counted, ranging from n=1 to n=6. 

Messages will be inserted and the statistics of the modified sequences will be compared 

to the statistics of the original sequences. Depending on the results, an algorithm could 

then be derived to determine with a certain percentage of accuracy if a DNA sequence 

contains a message. 

 

Other Applications 

With rapid advances in genetic engineering and in DNA sequencing, many new 

research applications for our software become available in the near future. Elements of 

this software toolkit can be modified and used for other purposes in bioinformatics as 

well as in digital forensics. It is also possible for the software to be used to detect natural 

occurring patterns instead of artificial messages. 

A research team at the University of Washington discovered that a certain group of 

codons, which are called duons, can have two functions, the first controls protein 

sequencing, and the second is partially responsible for gene control. Both functions 

appear to have evolved in concert with each other. The gene control instructions seem to 

aid in the stabilization of certain beneficial features of proteins and how they are made. 

This fact means that many changes in the DNA that seem to change protein sequences 

may actually cause disease by disrupting functions responsible for gene control or 

possibly even both mechanisms at the same time [99]. This could possibly also mean that 

inserting messages in the coding regions of DNA sequences may have an effect on the 

carrier organism after all. Different methods for inserting messages into DNA sequences 
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would need to be developed in order to circumvent this problem. Our software is modular 

and can easily be adapted to address these challenges. 
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APPENDIX A 

 Coding table for Improved Huffman coding scheme (text) 
 
 Group 1 Code= G Group 2 Code= TT Group 3 Code = TA 

No. Character DNA Character DNA Character DNA 

1 Space AT N AT . AT 
2 E CT S CT u CT 
3 shift TC H TC , TC 
4 T TG R TG w TG 
5 A AC D AC m AC 
6 O AG L AG f AG 
7 I CG C CG y CG 
8 G AAT 3 AAT ; AAT 
9 P AAC 4 AAC q AAC 
10 B AAG 5 AAG z AAG 
11 V CAT 6 CAT < CAT 
12 - CAA 7 CAA = CAA 
13 ( CAC 8 CAC % CAC 
14 ) CAG 9 CAG + CAG 
15 K CCA J CCA * CCA 
16 0 CCT X CCT ? CCT 
17 1 CCG / CCG > CCG 
18 2 CCC : CCC Tab CCC 
19 Return AAAT $ AAAT { AAAT 
20 ^ AAAA & AAAA } AAAA 
21 _ AAAC ~ AAAC “ AAAC 
22 # AAAGC [ AAAGC \ AAAGC 
23 @ AAAGT ] AAAGT | AAAGT 
24 ! GTCGCCG     
25 Page break GTCTACCC     
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APPENDIX B 

Coding table for improved Huffman coding scheme (images) 
 
DNA Symbol 

G ; 
TT , 
TA 0 
AT 1 
CT 2 
TC 3 
TG 4 
AC 5 
AG 6 
CG 7 
AAT 8 
AAC 9 
AAG S (s; x1; y1; a) 
CAT R (l; w; x1; y1; a) 
CAA L (x1; y1; x2; y2) 
CAC C (r; x1; y1) 
CAG P (n; x1; y1; x2; y2; x3; y3) 
CCT Tri 
CCA E 
 
 
Shape    Letter  Parameters 

Square    S    s-side units; x1, y1-coordinates of upper right vertex; a- angle of base 
Rectangle   R    l- length units; w- width units; a-angle of base 
Line     L    x1; y1; x2; y2 coordinates of line ends 
Circle    C    r –radius; x1, y1 - coordinates of center  
Polynom   P    n-order, xn; yn- parameters of points 
Triangle   Tri   s1- side1; an – anangle; s2- side2; x1, y1 - coordinates of vertex a- angle of base 
Ellipse    E    x1, y1 –center coordinates, l1- major axis; l2- minor axis  
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APPENDIX C 

Coding table for improved Huffman coding scheme (music) 
 
DNA Music Note Description 

G Quarter note (1/4) Note Values 
TT Half note (1/2) 
TA Whole note (1) 
AT Eighth note (1/8) 
CT Sixteenth note (1/16 
TC Dot(.)  
AC A Note Pitches 
AG B 

CG D 

AAT E 

AAC F 

AAG G 

CAT 2/4 (meter) Meter 

CAA 3/4 (meter) 

CAC 4/4 (meter) 

CAG ( Repeat 

CCA ) 

CCT X 

CCG 2 

CCC 3 

AAAT 4 
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APPENDIX D 

 
Arithmetic Encoding

 



 

88989 
 

 

clkerr01
Typewritten Text
89

clkerr01
Typewritten Text

clkerr01
Typewritten Text
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APPENDIX E 

Coding table for 64 color bitmap 
 
Codo
n 

R G B Color Sample 

AAA 0 0 0 Black    

AAC 0 0 84   

AAG 0 0 127   

AAT 0 0 255 Blue 
   

ACA 0 84 0   

ACC 0 84 84   

ACG 0 84 127   

ACT 0 84 255   

AGA 0 127 0   

AGC 0 127 84   

AGG 0 127 127   

AGT 0 127 255 Slate Blue 
 ### SAMPLE ## 

 

ATA 0 255 0 Green 
 ### SAMP 

 

ATC 0 255 84   

ATG 0 255 127 Spring Green 
 ### SAMP 

 

ATT 0 255 255   

CAA 84 0 0   

CAC 84 0 84   

CAG 84 0 127   

CAT 84 0 255   

CCA 84 84 0   

CCC 84 84 84 Grey 
 

### SAMPLE ### 
 

CCG 84 84 127   

CCT 84 84 255   

CGA 84 127 0   

CGC 84 127 84   

CGG 84 127 127   

CGT 84 127 255   

CTA 84 255 0   

CTC 84 255 84   

CTG 84 255 127   

CTT 84 255 255   

GAA 127 0 0   

GAC 127 0 84   

GAG 127 0 127   
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GAT 127 0 255   

GCA 127 84 0   

GCC 127 84 84   

GCG 127 84 127   

GCT 127 84 255   

GGA 127 127 0   

GGC 127 127 84   

GGG 127 127 127   

GGT 127 127 255   

GTA 127 255 0 Chartreuse 
 ### SAMPLE # 

 

GTC 127 255 84   

GTG 127 255 127   

GTT 127 255 255   

TAA 255 0 0 Red 
 ### SAMPLE # 

 

TAC 255 0 84   

TAG 255 0 127   

TAT 255 0 255 Magenta 
 ### SAMPLE # 

 

TCA 255 84 0   

TCC 255 84 84   

TCG 255 84 127   

TCT 255 84 255   

TGA 255 127 0 Dark Orange1 
 ### SALE 

 

TGC 255 127 84   

TGG 255 127 127   

TGT 255 127 255   

TTA 255 255 0 Yellow 
 ### SAMPLE ## 

 

TTC 255 255 84   

TTG 255 255 127   

TTT 255 255 255 White ###### SAMPLE 
###### SAMPL### SA 
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APPENDIX F 

Unigrams, sorted by frequency: 
 

[space] 16.27371%  " 0.10904189% 

E  9.787157%  9 0.09536828% 

T 7.224867%  ` 0.001183685% 

A 6.470553%  >  7.959262E-4% 

O 6.083978%  < 4.2857564E-4% 

I 6.0378346%  ^ 8.163345E-5% 

N 5.815098%  D 2.9236817% 

S 5.345216%  C 2.7640884% 

R 5.0819883%  U 2.2520833% 

H 3.4739728%  M 2.0308976% 

L 3.3034813%  P  1.8397732% 

F 1.7573234%  3 0.08010283% 

G  1.580138%  5 0.07524563% 

Y 1.3779523%  4 0.06742923% 

W 1.3059107%  8 0.06073529% 

B  1.2320325%  7 0.056816883% 

. 0.9403153%  6 0.056510758% 

V 0.88635564%  / 0.035612594% 

, 0.8497226%  ; 0.027673742% 

K 0.5261276%  ! 0.021490006% 

? 0.30443156%  [ 0.021163473% 

0 0.24324727%  ] 0.021041023% 

- 0.21561435%  _ 0.01908182% 

1 0.20849183%  % 0.014163404% 

X 0.18610387%  $ 0.012326651% 

2 0.14506264%  * 0.009040905% 

J 0.13220537%  & 0.008734779% 

' 0.1176134%  = 0.005510258% 

) 0.11216437%  # 0.0018775694% 

( 0.11083782%  +  0.0017143026% 

Z 0.08887842%  \ 0.0013877687% 

Q 0.08361306%  @ 0.0012449102% 

: 0.08167427%    
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APPENDIX G 

Messages used for testing 
 
I AGREE THAT THE AREA IS VERY LARGE. IT IS ALSO VERY GREEN. I HEAR 
THAT IT IS EAST OF THE TREE LINE AND SOUTH OF TOWN. MY PET LIKES 
TO SLEEP IN THE FIELD. I GO THERE TO FEED A VERY LARGE DUCK.  THE 
TREE TOWER HAD A RED PATTERN. 
 
 
SAVING INFLOWS FROM ABROAD CAN BE BENEFICIAL IF THE COUNTRY 
THAT RECEIVES THOSE INFLOWS INVESTS THEM WELL. UNFORTUNATELY, 
THAT WAS NOT ALWAYS THE CASE IN THE UNITED STATES AND SOME 
OTHER COUNTRIES. FINANCIAL INSTITUTIONS REACTED TO THE SURPLUS 
OF AVAILABLE FUNDS BY COMPETING AGGRESSIVELY FOR BORROWERS, 
AND, IN THE YEARS LEADING UP TO THE CRISIS, CREDIT TO BOTH 
HOUSEHOLDS AND BUSINESSES BECAME RELATIVELY CHEAP AND EASY 
TO OBTAIN. ONE IMPORTANT CONSEQUENCE WAS A HOUSING BOOM IN 
THE UNITED STATES, A BOOM THAT WAS FUELED IN LARGE PART BY A 
RAPID EXPANSION OF MORTGAGE LENDING. UNFORTUNATELY, MUCH OF 
THIS LENDING WAS POORLY DONE, INVOLVING, FOR EXAMPLE, LITTLE OR 
NO DOWN PAYMENT BY THE BORROWER OR INSUFFICIENT 
CONSIDERATION BY THE LENDER OF THE BORROWER'S ABILITY TO MAKE 
THE MONTHLY PAYMENTS. LENDERS MAY HAVE BECOME CARELESS 
BECAUSE THEY, LIKE MANY PEOPLE AT THE TIME, EXPECTED THAT 
HOUSE PRICES WOULD CONTINUE TO RISE--THEREBY ALLOWING 
BORROWERS TO BUILD UP EQUITY IN THEIR HOMES--AND THAT CREDIT 
WOULD REMAIN EASILY AVAILABLE, SO THAT BORROWERS WOULD BE 
ABLE TO REFINANCE IF NECESSARY. REGULATORS DID NOT DO ENOUGH 
TO PREVENT POOR LENDING, IN PART BECAUSE MANY OF THE WORST 
LOANS WERE MADE BY FIRMS SUBJECT TO LITTLE OR NO FEDERAL 
REGULATION. 
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