
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2015

A forensics software toolkit for DNA steganalysis. A forensics software toolkit for DNA steganalysis.

Marc Bjoern Beck
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Beck, Marc Bjoern, "A forensics software toolkit for DNA steganalysis." (2015). Electronic Theses and
Dissertations. Paper 2073.
https://doi.org/10.18297/etd/2073

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.library.louisville.edu%2Fetd%2F2073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2073
mailto:thinkir@louisville.edu

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS

By

Marc Bjoern Beck
B.S., Computer Science, Brescia University, 2007

M.S., Industrial Technology, Morehead State University, 2009

A Dissertation
Submitted to the Faculty of the

J. B. Speed School of Engineering of the University of Louisville
 in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

 in Computer Science and Engineering

Department of Computer Engineering and Computer Science

University of Louisville

Louisville, Kentucky

May 2015

ii

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS

By

Marc Bjoern Beck

B.S., Computer Science, Brescia University, 2007
M.S., Industrial Technology, Morehead State University, 2009

A Dissertation Approved On

April 20, 2015

By the following Dissertation Committee:

Roman V. Yampolskiy, Ph.D., Dissertation Director

Ahmed H. Desoky, Ph.D., Co-Advisor

Eric C. Rouchka, Ph.D.

Ibrahim N. Imam, Ph.D.

John F. Naber, Ph.D.

iii

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisors Dr.

Yampolskiy and Dr. Desoky and the other members of my committee Dr. Rouchka, Dr.

Ouyang, and Dr. Naber for their extreme patience in the face of numerous obstacles. I

also would like to thank Dr. Imam, who kindly agreed to serve as fifth committee

member after Dr. Ouyang left the department.

I am using this opportunity to express my gratitude to everyone who supported me

throughout the course of this dissertation project. I am thankful for their aspiring

guidance, invaluably constructive criticism and friendly advice during the project work. I

am sincerely grateful to them for sharing their truthful and illuminating views on a

number of issues related to the project.

I would also like to mention Chris Card and Sam Hasinoff from the online community

who answered questions regarding cryptography software they developed as well as

Patrick McClure, whose project provided some of the building blocks for some of my

algorithms, my friend and colleague Ana Stanescu at Kansas State University, and also

all my friends who helped me with the debugging of source code. I am also thankful to

Dr. Monica Rodriguez, who provided me with data that helped determine the frequency

of occurrence of letters, words, and letter combinations in the English language.

Last but not least I want to thank Faezeh Taffazoli for helping me format this

document.

iv

ABSTRACT

A FORENSICS SOFTWARE TOOLKIT FOR DNA STEGANALYSIS

Marc B. Beck

April 20, 2015

Recent advances in genetic engineering have allowed the insertion of artificial DNA

strands into the living cells of organisms. Several methods have been developed to insert

information into a DNA sequence for the purpose of data storage, watermarking, or

communication of secret messages. The ability to detect, extract, and decode messages

from DNA is important for forensic data collection and for data security. We have

developed a software toolkit that is able to detect the presence of a hidden message

within a DNA sequence, extract that message, and then decode it. The toolkit is able to

detect, extract, and decode messages that have been encoded with a variety of different

coding schemes. The goal of this project is to enable our software toolkit to determine

with which coding scheme a message has been encoded in DNA and then to decode it.

The software package is able to decode messages that have been encoded with every

variation of most of the coding schemes described in this document. The software toolkit

has two different options for decoding that can be selected by the user. The first is a

frequency analysis approach that is very commonly used in cryptanalysis. This approach

v

is very fast, but is unable to decode messages shorter than 200 words accurately. The

second option is using a Genetic Algorithm (GA) in combination with a Wisdom of

Artificial Crowds (WoAC) technique. This approach is very time consuming, but can

decode shorter messages with much higher accuracy.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii
ABSTRACT .. iii
LIST OF TABLES .. viii
LIST OF FIGURES .. x
CHAPTER 1... 1
Introduction .. 1
CHAPTER 2 Related Work.. 5

2.1. DNA Computing ... 5

2.2. Error Correcting Approaches .. 9

2.3. DNA Cryptography ... 11

2.4. Hiding Data in DNA .. 11

2.5. Coding Schemes for Hiding Data in DNA .. 15

2.5.1. Types of Coding Schemes .. 15
2.5.2. Clelland’s Coding Scheme and Wong’s Coding Scheme .. 16
2.5.3. DNA-Crypt... 18
2.5.4. ASCII Coding Scheme ... 19
2.5.5. Yachie’s Coding Scheme ... 20
2.5.6. Arita’s Coding Scheme .. 20
2.5.7. Coding Scheme Based on the Huffman Code .. 21
2.5.8. Comma Code.. 23
2.5.9. Alternating Code .. 24
2.5.10. Contrast Mapping ... 26
2.5.11. Shimanovsky’s Coding Scheme ... 27
2.5.12. Summary of Coding Schemes .. 28

2.6. Encryption and Watermarking of DNA Messages .. 29

2.7. Finding Data in DNA .. 32

2.8. Experiments Performed in Silico ... 33

2.9. DNA as Communication Medium ... 33

2.10. Digital Forensics .. 34

2.10.1. Computer Forensics ... 35

vii

2.10.2. Database Forensics ... 36
2.10.3. Network Forensics ... 36
2.10.4. Mobile Device Forensics .. 37
2.10.5. Anti-Forensics Tools .. 38

2.11. DNA as a Stegomedium .. 38

2.12. Statistics and Artificiality Detection .. 39

2.13. Solving Substitution Ciphers ... 39

CHAPTER 3... 46
Early Design of Software ... 46

3.1. Encoding and Inserting Messages ... 46

3.2. Approaches to Detecting Messages in DNA ... 48

3.3. Extracting Messages from DNA ... 50

3.4. Results ... 55

3.5. Limitations... 57

3.6. Insertion of Media other than Text .. 57

CHAPTER 4... 63
Final Design of Software .. 63

4.1. Overview ... 63

4.2. Genetic Algorithm and Wisdom of Artificial Crowds .. 65

4.3. Determining Coding Schemes ... 69

4.4. Message Extraction ... 72

4.5. Integration of Components .. 73

CHAPTER 5... 74
Conclusion and Future Work ... 74

5.1. Conclusion ... 74

5.2. Future Work .. 75

REFERENCES... 80
APPENDIX A ... 85
APPENDIX B ... 86
APPENDIX C ... 87
APPENDIX D ... 88
APPENDIX E.. 90
APPENDIX F ... 92
APPENDIX G... 93
CURRICULUM VITAE .. 94

viii

 LIST OF TABLES

TABLE 2.1: LIFE EXPECTANCY AND STORAGE CAPACITY OF VARIOUS DATA STORAGE MEDIA COMPARED TO

DNA. .. 8

TABLE 2.2: GENETIC CODE FOR PROTEIN TRANSLATION.. 13

TABLE 2.3: RESEARCH ON DATA HIDING IN DNA .. 14

TABLE 2.4: CODING TABLE FOR CLELLAND’S CODING SCHEME. ... 17

TABLE 2.5: CODING TABLE FOR WONG’S CODING SCHEME. ERROR! BOOKMARK NOT DEFINED.

TABLE 2.6: CODING TABLE FOR THE DNA-CRYPT CODING SCHEME, WITH 00=T; 01=G; 10=C; 11=A AND THE

LAST BIT BEING USED AS A PARITY BIT. ... 19

TABLE 2.7: CODING SCHEME USED BY YACHIE ET AL. .. 20

TABLE 2.8: CODING SCHEME USED BY ARITA ET AL. ... 21

TABLE 2.9: LETTER FREQUENCY IN ENGLISH LANGUAGE AND DNA CODING SCHEME USING HUFFMAN CODE

[6]. .. 22

TABLE 2.10: CODING TABLE FOR THE COMMA CODE. .. 24

TABLE 2.11: CODING TABLE FOR THE ALTERNATING CODE. .. 25

TABLE 2.12: COMPARISON OF DIFFERENT CODING SCHEMES THAT USE SUBSTITUTION CIPHERS. 29

TABLE 2.13: LIST OF MOST COMMON COMPUTER FORENSICS TOOLS . ERROR! BOOKMARK NOT DEFINED.

TABLE 2.14: LIST OF MOST COMMON NETWORK FORENSICS TOOLS ... 37

TABLE 3.1: NUMBER OF OCCURRENCE OF CERTAIN PATTERNS OF BASES IN CIPHERTEXT. 55

TABLE 3.2: CODING SCHEME USED BY DAVIS [93] .. 59

TABLE 3.3: TRANSLATION OF DNA BASES TO RGB VALUES .. 60

TABLE 3.4: TRANSLATION OF RGB VALUES INTO DNA BASES ... 60

TABLE 4.1: CHANGES COMPARED TO MCCLURE ... 67

TABLE 4.2: RESULTS OF DECODING MESSAGES WITH THE DICTIONARY APPROACH. 67

ix

TABLE 4.3: RESULTS OF DECODING MESSAGES WITH THE GA/WOAC APPROACH. 68

TABLE 4.4: COMPARING THE SEPERATE GA RUNS TO THE WOAC RESULTS. ... 69

x

LIST OF FIGURES

FIGURE 1.1: COST FOR SEQUENCING A GENOME (MODIFIED FROM [15]) .. 4

FIGURE 1.2: SPEED OF SEQUENCING A GENOME [16] ... 4

FIGURE 2.2: EXAMPLE OF A SUBSTITUTION CIPHER ... 40

FIGURE 2.3: CROSSOVER ... 42

FIGURE 2.4: MUTATION .. 43

FIGURE 3.1: MESSAGE INSERTION INTO CODING REGION ... 47

FIGURE 3.3: SCREENSHOT OF DECRYPTION SOFTWARE .. 56

FIGURE 3.4: RESULTING IMAGE (ENLARGED BY FACTOR 16) ... 61

FIGURE 4.1: ORGANIZATIONAL CHART OF DNA STEGANALYSIS SOFTWARE .. 64

FIGURE 4.2: FLOW CHART OF GA WITH WOAC .. 65

1

CHAPTER 1

INTRODUCTION

This project is part of an emerging new area of study called DNA Steganography and

combines elements from various different areas such as forensics, cryptography,

bioinformatics, language processing, and artificial intelligence. Progress in

bioinformatics and molecular biology in combination with already established methods

and algorithms from the field of cryptography has led to the development of DNA

Steganography with a number of papers having been published in the last two decades

[1-13].

Bioinformatics in itself is already an interdisciplinary field of science, combining

computer science, statistics, mathematics, and engineering to study and process

biological data. The goal of bioinformatics is to develop methods and software tools for

understanding biological data, especially the study of DNA sequences. Over the past few

decades rapid developments in genomic and other molecular research technologies and

developments in information technologies have combined to produce a tremendous

amount of information related to molecular biology.

DNA sequences that are processed by our software are downloaded from online

databases such as GenBank in the form of FASTA files. The FASTA file format is a

2

common file standard in bioinformatics and originates from the FASTA software

package. The name stands for Fast-All, because it works with all alphabets, while

previous formats were limited to protein (FAST-P) or nucleotide (FAST-N) alignment.

This format is text-based and is used to represent nucleotide sequences or peptide

sequences in single-letter codes. These sequences are usually preceded by a header

containing sequence names and comments. The header usually starts with a ">" (greater-

than) symbol and comprises the first line of the file. Each subsequent line has usually a

maximum of 70 to 80 characters. Our software has been designed to accommodate these

properties of FASTA files, but is also able to process *.txt files as well.

Deoxyribose Nucleic Acid (DNA) is the carrier of hereditary information for every

living organism. DNA is a double helix with two anti-parallel strands containing four

different nucleotides, which are distinguished by one of the four bases adenine (A),

cytosine (C), guanine (G), and thiamine (T) [14]. The two strands form base pairs of

interacting complementary bases (A-T and C-G) held together by hydrogen bonds. DNA

has the potential to store vast amounts of data using combinations of those four

nucleotides within genomes that can range to several billion bases in length [15].

Contained within genomic sequences are regions that code for genes that produce

proteins which are collections of amino acids. In the process of translation, an mRNA

sequence that has been transcribed, or copied, from the gene coding region is used as a

template to transform from the four base code of DNA to the 20 base code of amino

acids. The process by which this occurs, known as the genetic code, was first uncovered

by Marshall Nirenberg [16]. In gene coding regions, a codon refers to a sequence of

three nucleotides that determines which amino acid will be added next during protein

3

synthesis. With four nucleotides, this allows 43=64 possible combinations. A codon refers

to a sequence in a gene coding region of three nucleotides that determines which amino acid will

be produced next during protein synthesis. Each codon encodes for one of 20 amino acids,

with exception of the three STOP codons TAA, TAG, and TGA [17], thus allowing for

degeneracy where multiple codon sequences code for the same amino acid. In DNA

steganography, characters of messages may be encoded by variable lengths of DNA

sequences that may or may not be three bases in length. For the purpose of this

manuscript, we will refer to encoding patterns that encode alphanumeric characters of

messages as codeons in order to distinguish them from codons and avoid confusion.

The ability to manipulate DNA and to create artificial DNA sequences allows the

insertion of artificial messages into those sequences. In the past, messages that have been

inserted into DNA could only be retrieved if the coding scheme with which the message

has been encoded was known. In this dissertation we describe the development of a

software package that is capable of detecting the presence of a message within a DNA

sequence, determining how the message has been encoded based on statistical analysis,

and then decoding that message.

With DNA sequencers becoming faster, more efficient, more compact, and more

affordable [18], and with recent advances in creating artificial DNA, there is an

increasing possibility that this kind of technology can be abused for espionage or criminal

purposes in the near future. Therefore it is necessary to develop methods to counter

attempts to hide information in the DNA of living organisms.

4

Figure 1.1: Cost for sequencing a genome (modified from[19])

Figure 1.2: Speed of sequencing a genome [20]

It is difficult to generate a graph that shows how the amount of data that can be

encoded in DNA has increased over the past 15 years, since the information is not

consistent. Some researchers did not provide the length of the encoded message, others

provided the number of words instead the number of bytes or characters. Also, some

researchers did not try to encode as many characters as it was possible to encode at the

time.

5

CHAPTER 2

RELATED WORK

2.1. DNA Computing

DNA computing is an emerging new research field that uses DNA molecules instead of

traditional silicon-based microchips. The first researcher to demonstrate the computing

capability of DNA was Leonard Adelman of the University of Southern California, who

in 1994 developed a method of using DNA for solving an instance of the directed

Hamiltonian path problem [21].

In 1997, Ogihara and Ray demonstrated that DNA computers can simulate Boolean

AND and OR gates [22]. The advantage of DNA computers is that they are smaller and

faster than traditional silicon computers, and that they can be easily used for parallel

processing. DNA has also been used as a tool for cryptography and cryptanalysis, using

molecular techniques for its manipulation [17].

In 2004, Benenson et.al [23] developed an autonomous, molecular scale computer,

which uses biological molecules as input data and biologically active molecules as

outputs. This computer logically analyzes the levels of messenger RNA species, and in

response produces a molecule capable of affecting levels of gene expression [23].

6

Bogard and Rouchka describe how multiple sequence alignment can be used for error

reduction in DNA computing [24].

As described by Amir et al. [25], the nanoscale folding of DNA, which is called DNA

origami, can be utilized for the fabrication of nanoscale architectures that behaved as

logical gates (AND, OR, XOR, NAND, NOT, CNOT, and a half adder).

DNA as Storage Medium

In 2013, the total amount of digital information worldwide was 4.4 zettabytes and is

predicted to reach 44 zettabytes by 2020 [26]. Shrivasti et al. [27] describe the

shortcomings of silicon and other materials used to manufacture data storage media.

These shortcomings include limited, non-renewable resources, relatively low storage

density and relatively low access rates.

DNA is being investigated by a number of independent researchers as an ultra-

compact, long-term data storage medium and a stegomedium for hiding messages. Just

like binary code, DNA is a coding medium. DNA strands contain information that can be

interpreted and copied, just like the sequences of ones and zeros on a hard drive or in

RAM [2].

Instead of expressing a message as a series of ones and zeros, it is expressed in DNA

code as a series of As, Cs, Gs, and Ts, representing the four nucleotides. These

nucleotides can easily be used for the encoding of binary information. The easiest way to

hide a secret message in a binary sequence is to add the message and increase the overall

size of the sequence. This however would make the message easier to detect and may

change the functionality of the sequence. That means in order to embed a message, one

7

should not arbitrarily append or intersperse information. A complete understanding of the

original message and the machinery that processes it is necessary in order to be able to

modify some portion in an intelligent manner such that the data is not functionally or

perceptibly altered. In the same manner, a sequence of nucleotides should not be changed

blindly just to insert a secret message [2].

A number of algorithms have been developed to encode a message in DNA characters

and either disguise these messages as novel DNA sequences or encapsulate them within

existing ones. It has been proven that it is possible to insert artificial DNA components

that contain encoded information into the genomes of living organisms [5-7, 9, 17, 28-

32].

Craig Venter, who led the private effort to sequence the human genome, managed to

create the first cell with a synthetic genome in 2010. The J. Craig Venter Institute (JCVI)

took a computer file containing the DNA sequence of the bacterium Mycoplasma

mycoides, modified it, produced physical DNA from this sequence, and inserted this

DNA into a cell, which then reproduced under control of the new DNA to create a new

bacterium. This project encoded 7920 bits [9].

Using DNA as storage medium has many advantages, such as long life, redundancy,

and high density. According to Bancroft et al. [33] about 200 novels or other data each

equivalent in size to “A Tale of Two Cities” could be stored in a DNA microchip with the

area of a postage stamp.

Yachie et al. [5] demonstrated the possibility to use DNA of living organisms as a data

storage medium by inserting the message “E=mc^2 1905!” into the genome of B.

8

subtilis. Multiple copies were created and over 99% of the encoded data was later

recovered using sequence alignment methods.

Living organisms are a great storage medium when it comes to preserving data over

timespans ranging in millions of years. When an organism reproduces, it automatically

creates a copy of the data contained in its DNA. In addition, selective pressure and DNA

error correction reduce the risk of the data being destroyed by random mutations. It has

been suggested to use cockroaches, which are known for their resilience and high

reproduction rate, as living time capsules for storing every issue of The New York Times

Magazine for a certain year in their DNA which could theoretically be retrieved 1000

years later [34].

Type Life Expectancy Capacity

DNA Millions of years

(over generations)

521 years (dead
organism)

455 Exabytes per

gram[27]

Hard disk ~10 years Up to 20TB (2015)

SSD ~10 years Up to 4 TB (2015)

CD 10 to 100 years [35] 800 MB

DVD 20 to 100 years [35] Up to 17GB

Blue Ray 30 to 100 years 25GB (single layer)
128 GB (BDXL)

USB flash drive ~10 years, depending

on usage

Up to 1TB (2015)

Tape ~30 years Up to 35 TB

Table 2.1: Life expectancy and storage capacity of various data storage media compared to DNA.

As shown in table 2.1, 1 gram of DNA has a storage potential of 455 exabytes of

information. Conventional media would require roughly 2 million times that volume for

the same amount of information. Researchers at the Swiss Federal Institute of

Technology in Zurich encoded the Swiss federal charter from 1291 and the Archimedes

Palimpset totaling 83 kb of data in DNA and kept the DNA versions at temperatures

9

between 60 and 70 degrees Celsius (140-158 degrees Fahrenheit) to simulate ageing.

Both documents remained readable without error [36]. The same group of researchers

also encapsulated DNA in microscopic spheres of glass in order to mimic the way fossils

keep DNA intact. They did not mention any research regarding the effect of the exposure

to ultraviolet light over time.

In 2014 Dr. Ido Bachelet [13] mentioned at the Geektime 2014 conference that he was

working on a project to insert Wikipedia into the DNA of an apple, but was not specific if

he was just inserting the text of the articles, or if he was including revisions, images, and

other data. The rate of compression, if any, was not mentioned, either. The amount of

data could range anywhere between 8.8 GB and 5TB. Bachelet also mentioned a project

inserting data encoding the famous painting of the Mona Lisa into Mouse DNA [13].

Both projects are ongoing as of April 2015 and there are no publications yet.

2.2. Error Correcting Approaches

Even though mutations are rare, occurring at a rate between 10-11 and 10-7 per base per

replication in bacteria and higher eukaryotes [37], it is necessary to consider some form

of error detection and error correction since a mutation can destroy the encrypted

message in the DNA sequence. According to Yachie et al. [5], inserting the data

redundantly into multiple loci of the genome is sufficient to allow the retrieval of stable

and compact data without the need for template DNA, parity checks, or error-

correcting algorithms.

The comma code and the alternating code provide a form of error detection capability

by encoding the message in a distinguishable pattern [38]. Arita [29] developed a

10

comma-free code that has error correction capabilities. The message is translated into

binary as an intermediary step. A parity bit is used in the binary code to keep the

respective number of ones and zeroes odd.

The DNA-Crypt software developed by Heider and Barnekow [6] also translates

messages into binary before encoding it in DNA code. It uses a very thorough approach

to error detection by employing two error correction codes: the 8/4 Hamming-code and

the WDH-code. The Hamming code is an error detection and correction code invented by

Richard Hamming in 1950 [39] and the WDH code was developed by Andrew S.

Tanenbaum and is used in computer networks [40]. The 8/4 Hamming code is more

compact, but it can correct fewer errors than the WDH code. DNA-Crypt has an

integrated fuzzy controller using Singleton-fuzzyfication. The fuzzy controller decides

which of the two error detecting codes should be used, or none at all. This decision is

based on the individual mutation rate of the DNA sequence that contains the secret

message, the length of the sequence, and its stability over time. An answer is determined

from those three factors by a set of rules based on heuristics [6].

A team at the Swiss Federal Institute of Technology in Zurich that is researching DNA

as a data storage medium uses a Reed-Solomon code [36] for error correction. Reed-

Salomon codes are very commonly used in data storage and data transmission

applications. This includes the use for correcting burst errors in CDs, DVD’s and Blu-ray

discs caused by media defects, and the use in satellite and deep space applications.

11

2.3. DNA Cryptography

DNA cryptography is a relatively new area of research. Soni, Soni, and Mathariya [41]

describe approaches that use DNA sequences from public databases as key for one-time

pad (OTP) algorithms, as well as a method based on the DNA splicing technique.

When working with one-time pad algorithms, the plaintext is combined with a secret

random key or pad which is used only once. This is done by using an XOR operation, a

typical modular addition or a similar technique.

Also, Soni et al. [41] describe an algorithm which avoids the usage of both purely

mathematical symmetric and asymmetric algorithms by making use of asymmetric

cryptographic principles and an advanced asymmetric algorithm based on DNA.

2.4. Hiding Data in DNA

Steganography is the science of hiding information by transmitting secret messages

through unsuspicious cover carriers in a way that makes the presence of any embedded

messages undetectable to a third party. The term steganography originates in the Greek

language and means, "covered writing". While the goal of cryptography is to make a

message unreadable, steganography aims at avoiding suspicion to the existence of a

hidden message [3]. Due to its properties as a data storage medium, DNA can be used

for steganography (stegomedium).

Since DNA encoded information can be copied just like digital information, there is a

high possibility of theft of intellectual property. Therefore, it would be wise to follow the

12

fundamental requirements and principles of hiding information in digital data, which are

the following [42] :

• be reasonably easy to be placed and detected by the legitimate party

• be difficult for attackers to detect and erase

• be credible in case of a dispute

• be robust against compression, filtering, or truncation

• avoid unnecessary overhead

• not significantly change the meaning or function of the original data

• have error detection/correction and/or redundancy for the data being hidden

It is not easy to filter DNA for the purpose of defeating a watermark, unlike other cover

media such as audio or video. It is possible to modify audio and video information in

such a way that significant degradation of the signal is not qualitatively noticeable. One

important fact is that it is difficult to modify DNA without a sufficient understanding of

the sequence, especially if it codes for specific biological functions. This would force an

attacker to do a substantial amount of original work. That means the requirement for

robustness against compression, filtering, or truncation does not apply here. A DNA and

RNA data hiding technique should however adhere to the other basic criteria [2].

Recent developments make the use of DNA as a stegomedium for concealing, storing,

and transmitting messages more feasible. This means that there will be an increasing need

for forensic methods to extract and decode such messages in the near future. Not very

many such methods are in existence so far.

It is possible to insert not only text, but also images and many other forms of

digitizable data into a DNA sequence. DNA could also be used by criminal organizations

13

to hide illegal information. For those reasons, it is becoming important to develop

forensic tools that can detect, extract, and decode information that has been hidden in

DNA.

Table 2.2: Genetic code for protein translation (codons that code for the same amino acid
regardless the third position are highlighted) [17, 43].

 Second Position of codon

T C A G

F
i
r
s
t

P
o
s
i
t
i
o
n

T TTT [F]
TTC [F]
TTA [L]
TTG [L]

TCT [S]
TCC [S]
TCA [S]
TCG [S]

TAT Tyr [Y]
TAC Tyr [Y]
TAA [end]
TAG [end]

TGT [C]
TGC [C]
TGA [end]
TGG [W]

T
C
A
G

T
h
i
r
d

P
o
s
i
t
i
o
n

C CTT [L]
CTC [L]
CTA [L]
CTG [L]

CCT [P]
CCC [P]
CCA [P]
CCG [P]

CAT His [H]
CAC His [H]
CAA Gln [Q]
CAG Gln [Q]

CGT [R]
CGC [R]
CGA [R]
CGG [R]

T
C
A
G

A ATT [I]
ATC [I]
ATA [I]
ATG [M]

ACT [T]
ACC [T]
ACA [T]
ACG [T]

AAT Asn [N]
AAC Asn [N]
AAA Lys [K]
AAG Lys [K]

AGT [S]
AGC [S]
AGA [R]
AGG [R]

T
C
A
G

G GTT [V]
GTC [V]
GTA [V]
GTG [V]

GCT [A]
GCC [A]
GCA [A]
GCG [A]

GAT Asp [D]
GAC Asp [D]
GAA Glu [E]
GAG Glu [E]

GGT [G]
GGC [G]
GGA [G]
GGG [G]

T
C
A
G

An obvious choice of a location for inserting a message into a genome would be a

noncoding genomic region. However, those regions might be involved in different

regulations which are as of yet unknown [28]. Inserting data there might possibly kill the

organism. Therefore Arita et al. [28] suggested that it may be a more reliable solution to

encode the message in the protein coding regions of genes. There are 20 amino acids and

one stop symbol using a total of 64 possible codons [28]. Two or more codons often code

for the same amino acid. This means that many codons are redundant and it is possible to

use this redundancy to encode additional information. Many of these redundant, or

synonymous, codons typically differ in their third position, also known as the wobble

14

base [3]. In Table 2.2, codons that encode for the same amino acid regardless which base

occupies their third position are highlighted. These are the codons that are used to embed

messages.

Table 2.3: Research on data hiding in DNA

Researcher Year Coding Message Location Organism

Clelland et
al.[1]

1999 Substituti
on

June 6 invasion:
Normandy

Artificial Human

Brenner et
al.[31]

1999 Comma
code

Not reported Bsp120I E.coli

Shimanovsk
y et al.[2]

2002 BinaryTo
RNA

0100100010010
0010101100100
1101001101110

1

theoretical Theoretical

Wong et al.
[3]

2003 Substituti
on

Not reported Not
reported

Deinococcus
radiodurans

Arita and
Ohashi [28]

2004 Arita “AO2KEIO1-
F”

ftsZ gene B. subtilis
RIK8

Tanaka et
al.[4]

2005 Substituti
on

“MESSAGE” Artificial
sequence

Artificial
DNA strand

Yachie et al.
[5]

2007 Keyboar
d scan

“E=mc^2
1905!”

metB and
proB

B.subtilis
BEST2136

Heider and
Barnekow

[6]

2007 DNA-
Crypt

“TB” Vam7
sequence

Saccharomy
ces

cerevisiae
CG783

Jiao and
Gouette [7]

2009 ASCII
8 bit

binary

“CODING” tatAD
gene

B. subtilis

Ailenberg
and

Rotstein[8]

2009 Improved
Huffman

Text:Lyrics
“Mary had a
little lamb”

SacI/KpnI PBluescript
based

plasmid
Ailenberg

and
Rotstein[8]

2009 Improved
Huffman

Music: Tune
“Mary had a
little lamb”

SacI/KpnI PBluescript
based

Plasmid
Ailenberg

and
Rotstein[8]

2009 Improved
Huffman

Image: lamb SacI/KpnI PBluescript
based

plasmid
Venter et 2010 Substituti Multiple Not Artificial

15

al.[9] on messages reported bacterium
Mousa et

al.[10]
2011 Contrast

mapping
random
numbers

RSNn2567
28

Random
sequence of
nucleotides

Church et al.
[11]

2012 Binary to
DNA

“Regenesis”
(book with

53,000 words)

Artificial Theoretical

Goldman et
al. [12]

2013 Substituti
on

Misc. data
757,051 bytes

total

Artificial Theoretical

Bachelet
[13]

2014 Binary Mona Lisa Not
reported

Mouse

Bachelet
[13]

2014 Binary Entire content
of Wikipedia

Not
reported

Apple

2.5. Coding Schemes for Hiding Data in DNA

A code is an algorithm which uniquely represents symbols from some source alphabet, by

symbols or strings of symbols in a target alphabet. In our case, the source alphabet is the

English alphabet plus digits and punctuation characters, and the target alphabet consists

of the four nucleotides. A coding scheme is a set of rules that determines which symbol

of the source alphabet is represented by which symbol in the target alphabet. A variety of

different coding schemes has been developed to encode alphanumeric characters in DNA

sequences.

2.5.1. Types of Coding Schemes

The coding schemes for inserting messages into DNA that have been developed can be

grouped into three categories: schemes using direct translation, schemes that use

intermediate steps for error detection, and schemes that have been optimized for

detectability or efficiency.

16

The first category uses a straightforward approach by substituting a sequence of

nucleotides of length n for each alphanumeric symbol [10,12]. Since the codeon in this

case is of length n, up to 4n distinct characters can be encoded. Given the codeon length

of n, there are 4n! possible coding schemes. The coding schemes developed by Clelland

[30] and Wong [3] fall into this category.

The second category of coding schemes consists of more complex schemes that use

several intermediate steps, such as translating a message into binary before using a

coding table to translate it into nucleotides. This is often done for error detection, since

there are many proven error detection algorithms for binary messages.

The third category of coding schemes consists of schemes that were designed to meet

certain criteria, such as providing error detection capability, being economical, or being

easy to detect. The comma code, the alternating code, and a coding scheme based on the

Huffman code [18] fall into this category.

2.5.2. Clelland’s Coding Scheme and Wong’s Coding Scheme

The coding scheme developed by Clelland et al. [30] is very similar to the one developed

by Wong et al. [3]. They are both extensions of the 3-base codon encoding used by the

genetic code. Since there are 43=64 possible distinct characters that can be encoded, this

scheme allows for all 26 characters of the English alphabet, the digits 0-9, and special

characters. Both coding schemes do not use all possible codons.

17

Table 2.4: Coding table for Clelland’s coding scheme.

Character DNA Letter DNA

A CGA V CCT
B CCA W CCG
C GTT X CTA
D TTG Y AAA
E GGT Z AAT
F ACT 0 TTA
G TTT 1 ACC
H CGC 2 TAG
I ATG 3 GCA
J AGT 4 GAG
K AAG 5 AGA
L TGC 6 GGG
M TCC 7 ACA
N TCT 8 AGG
O GGC 9 GCG
P GGA SPACE ATA
Q AAC , TCG
R TCA . GAT
S ACG : GCT
T TTC ; ATT
U CTG - ATC

18

Table 2.5: Coding table for Wong’s coding scheme.

Character DNA Character DNA
A AGG 0 AAA
B AGT 1 AAC
C ATA 2 AAG
D ATC 3 AAT
E ATG 4 ACA
F ATT 5 ACC
G CAA 6 ACG
H CAC 7 ACT
I CAG 8 AGA
J CAT 9 AGC
K CCA SPACE GCA
L CCC , GCG
M CCG . GGA
N CCT : GCC
O CGA ; TAC
P CGC - GCT
Q CGG ! GGC
R CGT (GGG
S CTA) GGT
T CTC ` GTA
U CTG ‘ GTC
V CTT “ GCC
W GAA ? TAA
X GAC / TAG
Y GAG [TAT
Z GAT] TCA

2.5.3. DNA-Crypt

The DNA-Crypt coding scheme developed by Heider and Barnekow [10] translates a

message into a five bit sequence, where one bit serves as parity bit to keep the respective

number of ones and zeros odd. The other four bits are translated into nucleotides, with

19

two bits per nucleotide. As mentioned earlier, it employs two error correction codes, the

8/4 Hamming-code and the WDH-code.

Table 2.6: Coding table for the DNA-Crypt coding scheme, with 00=T; 01=G; 10=C; 11=A and
the last bit being used as a parity bit.

Letter Binary Letter Binary

A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

2.5.4. ASCII Coding Scheme

Another coding scheme implements the algorithm described by Jiao and Gouette [17]

which inserts a message into the noncoding region of an existing DNA sequence. This

method consists of several steps:

1) Convert each character in the message into its ASCII representation.

2) Convert the ASCII code from decimal into binary.

3) Converting binary to DNA by replacing 00 with A, 01 with C, 10 with G, and 11

with T.

4) Insert message into a carrier DNA sequence.

20

Steps 1-3 are referred to as the ASCII coding scheme throughout the remainder of this

dissertation. The fourth step can be applied to other coding schemes if the message is to

be inserted into a coding DNA region. This is done by replacing the last bits of redundant

codons in the carrier sequence with characters from the message sequence. The ASCII

coding scheme makes it possible to encode uppercase letters, lowercase letters, numbers,

and special characters. Each character is represented by a sequence of four bases.

2.5.5. Yachie’s Coding Scheme

Yachie et al. [5] developed a coding scheme that is very similar to ASCII encoding.

Instead of ASCII it uses the keyboard scan code for each character. The keyboard scan

code, which is hexadecimal, is converted into binary, and then translated into DNA using

the coding table below.

Table 2.7: Coding scheme used by Yachie et al.

Message E=mc^_1905 Encryption Key

Keyboard
Scan Code

%12%24%12%4E%3A
%21%55%1E%29%16
%46%45%2E%12%16

 AA 0000 AG 1000
CA 0001 CG 1001
GA 0010 GG 1010

Hexadecimal
Code

1 2 2 4 1 2 4 E 3 A 2 1 5 5 1
E 2 9 1 6 4 6 4 5 2 E 1 2 1 6

 TA 0011 TG 1011
AC 0100 AT 1100

Binary Code 0001 0010 0010 0100 0001
0010 0100 1110 0011 1010
0010 0001 0101 0101 0001
1110 0010 1001 0001 0110
0100 0110 0100 0101 0010
1110 0001 0010 0001 0110

 CC 0101 CT 1101
GC 0110 GT 1110
TC 0111 TT 1111

2.5.6. Arita’s Coding Scheme

Arita and Ohashi [28] translated each letter of the English alphabet as well as an empty

space and the characters ‘‘’, ‘.’, ‘&’ into a 6-bit binary sequence. One of the bits serves

21

as parity bit by keeping both the number of 0s as well as the number of 1s odd for error

detection. When a message encoded with this coding scheme is inserted into a coding

region of a DNA sequence, a 0 indicates to leave the 3rd base of a codon unchanged,

while a 1 indicates that it needs to be changed. In order to extract the encoded message,

one needs to compare the sequence that contains the message with the original,

unchanged sequence to determine if a base was changed or not [6].

Table 2.8: Coding scheme used by Arita et al.

Letter Binary Letter Binary

A 001000 Q 111000
B 100110 R 010011
C 100101 S 100000
D 001101 T 000100
E 000010 U 101001
F 001110 V 101010
G 010110 W 110100
H 100011 X 110010
I 001011 Y 011100
J 110100 Z 011111
K 101100 Space 000001
L 010101 ‘ 101111
N 000111 . 110111
O 010000 & 111011
P 110001

2.5.7. Coding Scheme Based on the Huffman Code

Another coding scheme is based on the Huffman code developed by David A. Huffman

[44] and the frequency of letters in the English language from “The Code Book” by

Simon Singh [45]. The Huffman code is an entropy encoding algorithm used for lossless

data compression. The coding scheme developed by Smith et al. [38] based on this code

only encodes letters, but not numbers or special characters. The average codon length in

22

this case is 2.2 bases. There are 4! possible ways to generate a Huffman code for

encoding the 26 letters of the English alphabet, but it is also possible to create a Huffman

code-based scheme that includes more characters, such as numbers, punctuation

characters, and others.

Table 2.9: Letter frequency in English language and DNA coding scheme using Huffman code
[38].

Letter Freq(%) DNA Letter Freq(%) DNA

e 12.7 T w 2.4 AAT
t 9.1 AG m 2.4 ACA
a 8.2 AT f 2.2 ACG
o 7.5 GA y 2.0 ACC
i 7.0 GG g 2.0 ACT
n 6.7 GC p 1.9 CCA
s 6.3 GT b 1.5 CCG
h 6.1 CA v 1.0 CCT
r 6.0 CG k 0.8 CCCA
d 4.3 CT j 0.2 CCCG
l 4.0 AAA x 0.2 CCCC
c 2.8 AAG q 0.1 CCCTA
u 2.8 AAC z 0.1 CCCTG

Ailenberg and Rotstein [8] improved this coding scheme, increasing the number of

encoded characters from 26 (the letters of the English alphabet) to 69 (the characters on a

computer keyboard). They accomplished this by replacing Cs with As, Gs with Ts and

moving CG-rich codons down the frequency table. Furthermore, they divided symbols

into three groups using low–base number DNA codons (G, TT, and TA) as group

prefixes.

Ailenberg and Rotstein [8] also managed to create Huffman code based coding tables

for storing music and for storing images in DNA. By assigning note values and pitches,

as well as meters and repeats to DNA codons based on their frequency of occurrence it

23

was possible to encode the tune of the nursery rhyme “Mary Had a Little Lamb” in DNA.

An image was encoded in DNA symbols using a coding table that assigns DNA symbols

to shapes and coordinates.

2.5.8. Comma Code

The comma code uses 4-base codons consisting of combinations of A, C, G and T, where

G serves as a separator between the different characters. The term comma code may be

misleading. It does not mean that G is the encoding for the comma character, but that it

separates the encodings for each character. Smith et al. [38] suggest using 5-base codons

with a separator every sixth base, but the original paper by Brenner et al. [31] is more

descriptive and recommends the use of four bases per codon and a vocabulary made up of

eight four-base ‘‘words’’ for biochemical reasons. The gaps between the Gs are filled

with either TTAC, AATC, TACT, ATCA, ACAT, TCTA, CTTT, or CAAA. Since this

would only allow the encoding of eight characters, combinations of two such words

separated by a G are used for each character. This results in a total of 64 possible

characters consisting of ten nucleotides each. The comma code encodes lowercase letters,

numbers from 0-9, and special characters. The mapping of codons to characters was

arbitrarily constructed. A sequence in comma code can easily be identified as containing

a message, due to the occurrence of G every five bases, including the beginning and the

end of the sequence. The comma code is the least efficient coding algorithm.

24

Table 2.10: Coding table for the comma code

Character DNA Character DNA

A GTTACGTTAC 6 GACATGTTAC
B GTTACGAATC 7 GACATGAATC
C GTTACGTACT 8 GACATGTACT
D GTTACGATCA 9 GACATGATCA
E GTTACGACAT ! GACATGACAT
F GTTACGTCTA ? GACATGTCTA
G GTTACGCTTT GACATGCTTT
H GTTACGCAAA + GACATGCAAA
I GAATCGTTAC - GTCTAGTTAC
J GAATCGAATC / GTCTAGAATC
K GAATCGTACT * GTCTAGTACT
L GAATCGATCA _ GTCTAGATCA
M GAATCGTCTA @ GTCTAGACAT
N GAATCGACAT # GTCTAGTCTA
O GAATCGCTTT $ GTCTAGCTTT
P GAATCGCAAA % GTCTAGCAAA
Q GTACTGTTAC ^ GCTTTGTTAC
R GTACTGAATC & GCTTTGAATC
S GTACTGTACT (GCTTTGTACT
T GTACTGATCA) GCTTTGATCA
U GTACTGACAT ~ GCTTTGACAT
V GTACTGTCTA [GCTTTGTCTA
W GTACTGCTTT] GCTTTGCTTT
X GTACTGCAAA { GCTTTGCAAA
Y GATCAGTTAC } GCAAAGTTAC
Z GATCAGAATC | GCAAAGAATC
0 GATCAGTACT < GCAAAGTACT
1 GATCAGATCA > GCAAAGATCA
2 GATCAGACAT : GCAAAGACAT
3 GATCAGTCTA ; GCAAAGTCTA
4 GATCAGCTTT . GCAAAGCTTT
5 GATCAGCAAA , GCAAAGCAAA

2.5.9. Alternating Code

The alternating code uses 64 codons with six bases per codon, alternating between

purines (A or G) at odd positions and pyrimidines (C or T) at even positions. This forms a

25

pattern that does not occur naturally and can easily be recognized. For the same reason,

the bases could be arranged for example in a pattern that has three purines followed by

three pyrimidines or vice versa. The alternating code encodes the same characters as the

comma code. The decision which codon codes for which character was made arbitrarily

[38].

Table 2.11: Coding table for the alternating code.

Character DNA Character DNA

A ACACAC 6 GTGTGT
B ACACAT 7 GTGTGC
C ACATAT 8 GTGCGC
D ACACGT 9 GTGTAC
E ACATGT ! GTGCAC
F ACATGC ? GTGCAT
G ACACGC GTGTAT
H ACATAC + GTGCGT
I ACGTAC - GTACGT
J ACGTGT / GTACAC
K ACGTGC * GTATGT
L ACGTAT _ GTATAC
M ACGCAC @ GTACAT
N ACGCGT # GTATAT
O ACGCGC $ GTACGT
P ACGCAT % GTACGC
Q ATGCGT ^ GCGCGC
R ATGCGC & GCGCGT
S ATGCAC (GCGTGT
T ATGCAT) GCGTGC
U ATGTAT ~ GCGCAT
V ATGTGT [GCGTAT
W ATGTAC] GCGTAC
X ATGTGC { GCGCAC
Y ATATAT } GCACAC
Z ATATAC | GCACAT
0 ATACAC < GCATAT
1 ATACAT > GCACGT
2 ATATGT : GCATGT
3 ATATGC ; GCATGC
4 ATACGT . GCACGC
5 ATACGC , GCATAC

26

2.5.10. Contrast Mapping

Mousa et al. [10] describe a method that formats the DNA sequence that is used to

conceal the message by first translating it into binary, and then converting every 6 bits

into decimal. Mousa then uses Reversible Contrast Mapping (RCM) to transform a pair

of values that represent two consecutive words into another pair of values, with x and y

being the first pair of values, and x’ and y’ being the resulting pair.

x’=2x-y; y’=2y-x (2.1)

The transformation is restricted to a subdomain in order to prevent overflow and

underflow. This subdomain is defined by the equation

0 ≤ 2𝑥 − 𝑦 ≤ 𝐿; 0 ≤ 2𝑦 − 𝑥 ≤ 𝐿 (2.2)

The values are transformed back by the following formula:

𝑥 = [
2

3
𝑥′ +

1

3
𝑦′] ; 𝑦 = [

1

3
𝑥′ +

2

3
𝑦′] (2.3)

The message is inserted according to the flow chart below:

27

Figure 2.1: Flow chart of the coding algorithm used by Mousa et al. [10].

Mousa’s coding scheme can not only be used to conceal messages in DNA sequences,

but also for hiding messages in images [10].

2.5.11. Shimanovsky’s Coding Scheme

Shimanovsky et al. [2] developed a method to insert a binary message into an mRNA

sequence by converting it into a decimal number between one and zero and mapping it to

a series of codons using arithmetic encoding and a coding table they devised for that

28

purpose. Unfortunately we were unable to implement their algorithm and duplicate their

results.

2.5.12. Summary of Coding Schemes

The coding schemes differ in codon length, detectability, number of characters that can

be encoded, and the number of steps involved in encoding a message. The coding scheme

based on the Huffman code is the most economical in terms of codon length, while the

comma code is the least economical. The Clelland coding scheme and the Wong coding

scheme are the easiest to implement. The comma code, alternating code and DNA-Crypt

are the easiest to detect, and DNA-Crypt offers the best error correction.

Inserting a message into a coding region only replaces bases, but does not add new

ones. Therefore the size of the genome is only affected if the message is inserted into a

non-coding region. The length of the encoded message is the length of the unencoded

message multiplied by the codon length of the coding scheme. For example, the message

“UNIVERSITY OF LOUISVILLE” is 24 characters long, including spaces. It would be

“CTGCCTCAGCTTATGCGTCTACAGCTCGAGCGAATTCCCCGACTGCAGCTAC

TTCAGCCCCCCATG”, which is 72 characters in Wong’s coding scheme and

“GTACTGACATGAATCGACATGAATCGTTACGTACTGTCTAGTTACGACATGT

ACTGAATCGTACTGTACTGAATCGTTACGTACTGATCAGATCAGTTACGAATC

GCTTTGTTACGTCTAGAATCGATCAGAATCGCTTTGTACTGACATGAATCGTT

ACGTACTGTACTGTACTGTCTAGAATCGTTACGAATCGATCAGAATCGATCAG

TTACGACATG”, which is 240 characters in Comma Code.

For inserting pictures, audio, and video files into a DNA sequence it appears to be

29

efficient to translate the binary representation of the file into DNA code, with each base

encoding two bits, for example A=00, C=01, G=10, and T=11.

Table 2.12: Comparison of different coding schemes that use substitution ciphers.

Type # of chars

encoded

of

bases

Developed by

Clelland (basic
substitution)

42 3 Clelland et al [46]

Wong(basic
substitution)

52 3 Wong et al [3]

Comma 62 10 Smith et al.[38]
Alternating 64 6 Smith et al.[38]
Huffman 26 2-5 Smith et al.[38]

Arita 30 3 Arita and Ohashi[29]
DNA-Crypt 26 5 Heider and Barnekow[6]

ASCII 128 4 Jiao and Gouette [47]

2.6. Encryption and Watermarking of DNA Messages

To make detection even more difficult, it is possible to encrypt a message using modern

encryption algorithms such as Data Encryption Standard (DES), RSA, and Number

Theory Research Unit (NTRU) before encoding it into DNA.

One application for inserting messages into DNA is watermarking. Three different

types of watermarks exist. These are fragile watermarks, semi-fragile watermarks, and

robust watermarks. Fragile watermarks are widely used for tamper detection because they

fail to be detectable. Semi-fragile watermarks are designed in a way that they can resist

benign transformations in order to be able to detect malignant transformations. Robust

watermarks are used for copy protection because they can tolerate a designated

transformation [48].

30

Watermarking can help establish brand names for engineered bacteria strains in order

to resolve legal disputes regarding gene-related patents [28]. In this application, a

researcher creating an artificial DNA sequence can embed a hidden message in this

sequence so that ownership of the intellectual property can later be asserted and/or to

ensure the integrity of the content. The JCVI, for example, could upload a FASTA file of

an artificially created bacteria strain on an online database. If someone else steals the file

and claims the work as his or her own, the researchers at JCVI can later prove ownership

because only they can recover the watermark.

 Watermarking infectious agents can be useful for tracking them back to their source

after an accidental release [49]. The usefulness of watermarking for control of agents

emerges when this technology is applied by a trusted authorizing entity, which would be

in charge of overseeing the distribution of organisms containing unique and confidential

watermark sequences to individual research laboratories. These watermarks would

distinguish their organisms from those of others in the research community. Laboratories

would then only be allowed, or required to use strains that contain their approved

watermark. If released, the pathogen in question would be investigated for the presence

of an approved watermark. In case such a watermark is found, then information about the

possible source could easily be retrieved.

The coding scheme created by Arita and Ohashi [28] and the DNA-Crypt algorithm

developed by Heider and Barnekow [6] were both designed for watermarking short

trademarks or signatures into genomic DNA.

Researchers at the JCVI inserted four watermarks using a coding scheme with a

substitution cipher similar to Clelland’s and Wong’s into their artificial genome. The first

31

watermark consists of a copyright-like statement, the coding table for Ventner’s coding

scheme, and a hidden HTML page. The second, third, and fourth watermarks consist of a

list of the authors and three quotations.

Shimanovsky et al [2] suggest different approaches to DNA watermarking, based on

the application. They differentiate between chemical DNA, which can be arbitrarily

altered without concern and live DNA, which is actually part of a living organism and

needs to keep its structural and regulating functions. As an example for chemical DNA,

Shimanovsky et al describe a DNA how a computing solution for a traveling salesman

problem could be watermarked. In this example, placing the watermark would be

accomplished through the selection of an almost-optimal solution instead of an optimal

one and hiding it as the watermark inside the destinations path. Here, the watermark is in

the solution to a problem and only by knowing an answer that is at least as good someone

would be able to remove it. The robustness of this kind of watermark comes from the

difficulty of solving the problem.

On the other hand, this kind of technique would not be the best solution for the

watermarking of live DNA, where the purpose of a watermark is to protect intellectual

property. Genetic coding regions have notable characteristics such as START and STOP

codons surrounding them, which would be easily recognizable as a demarcation by an

attacker. This information enables an attacker to easily isolate the important sections

from a small DNA sequence and start searching for the watermark. What would be even

easier than that is replacing the active segment with a neutral sequence that would be

identical to the original otherwise. This would effectively remove the watermark [2].

32

2.7. Finding Data in DNA

Steganalysis is the process of discovering hidden messages [50]. There are two main

categories of steganalytic methods: blind steganalysis and specific steganalysis. Blind

steganalysis can be used to detect a variety of different steganographic algorithms, even

previously unknown ones. The goal of specific steganalysis is to detect a specific known

steganographic algorithm by exploring how this particular algorithm works and how it

changes the statistics of the cover media [51].

The research on steganalysis is important for several reasons: First, detecting the

presence of secret messages can help intercept communication between members of

terrorist organizations or other illegal groups. Second, improvements in steganalysis also

help to develop better methods for information hiding. Third, better statistical methods

for multimedia contents can emerge as a byproduct of steganalysis research. These can

then be applied in other related research fields, such as digital forensics [51], or

bioinformatics.

Most existing steganalysis approaches focus on images as a stegomedium, especially

JPEG images. Audio and video files are also used fairly often. Text documents are not

used as often as a stegomedium because they can only hold a smaller amount of

information than a graphic document with same amount of carrier data. However, text

files are still used because they are easily edited, stored, and transferred [52].

33

2.8. Experiments Performed in Silico

Wang and Zhang [53] have developed a software called WordSpy to detect certain

biological features within a genome. This software regards these biological features of a

genome as a message hidden in a cover-text of genomic sequences. A Hidden Markov

Model is used to decipher the message and to extract over-represented motifs. WordSpy

combines word counting and statistical modeling to detect frequently occurring sub-

sequences [53].

Since many different coding schemes for inserting messages into DNA have been

developed, we decided to develop a software toolkit that would enable us to insert and

extract messages from DNA sequences, allow us to compare different coding schemes,

and serve as basis for research into developing methods to find and extract messages

encoded with unknown coding schemes.

2.9. DNA as Communication Medium

Several papers have been published that discuss the possibility that DNA can be used

to communicate with extraterrestrial aliens, or that extraterrestrials have used DNA to

communicate with us. Shcerbak and Makukov [54] suggest to use the genetic code itself

as an alternative to radio for sending messages to contact extraterrestrial life. Even

though the genetic code itself is smaller in capacity than genomic DNA, it is more

suitable due to its stronger noise immunity. The flexibility of mapping between codons

and amino acids allows modifying the code artificially. The genetic code is the most

durable construct known and once fixed, it might stay unchanged over cosmological

34

timescales. This means that it is exceptionally reliable and therefore a well suited storage

medium for an intelligent message, if the biological and thermodynamical conditions are

suitable. The answer to the question how life on Earth originated is still not completely

certain. The concept of panspermia as hypothesized by Shklovskii and Sagan in 1966

[55] and by Crick and Orgel in 1973 [56] suggests the possibility of life having been

seeded on Earth intentionally by extraterrestrial beings. A “signal” in the genetic code

with strong statistical characteristics of being artificial in origin would then possibly be

the result of such a scenario.

In 1978 Yokoo and Oshima [57] suggested that a civilization more advanced than ours

could modify or create a bacterial DNA which could proliferate under favorable

circumstances and carry an intelligent message encoded in its base sequence.

Davis [58] developed a method to encode a simple black and white image into a

sequence of DNA base pairs, after it had already been converted into binary by Carl

Sagan and Frank Drake in 1974 in an attempt to send it as a radio signal from Arecibo,

Puerto Rico, to outer space.

2.10. Digital Forensics

Digital Forensics is a relatively new subfield of forensic science. With the beginning of

the widespread availability and use of personal computers in the 1980’s, the use of

computers to perform, hide, or otherwise aid unlawful activity started becoming a serious

problem [59]. During the 1980s, digital media was examined directly using non-

specialized tools. Forensic tools, hardware as well as software, were first developed in the

1990s. One of the primary goals of digital forensics is to preserve the original data while

35

collecting evidence. Digital Forensics has the following branches: Computer forensics,

database forensics, network forensics, and mobile device forensics.

2.10.1. Computer Forensics

Computer forensics deals with legal evidence found in computers, embedded systems,

and digital storage media. Most existing toolkits are proprietary, some are operating

system specific. Examples of software toolkits are COFEE, developed by Microsoft,

which includes a tool for password decryption, internet history recovery, and other data

extraction. It is also able to recover data stored in volatile memory which would be lost if

the computer were shut down.

Table 2.13: List of most common computer forensics tools

Name Platform License Description

EnCase [60] Windows proprietary Multi-purpose forensic tool
Sift [61] Ubuntu free Multi-purpose forensic operating

system
COFEE [62] Windows Only

available to
law

enforcement

A suite of tools for Windows
developed by Microsoft

The Sleuth
Kit [63]

Unix/Windows GPL Large toolkit

Registry
Recon[64]

Windows proprietary allows users to see how Registries
from both current and former

installations of Microsoft
Windows have changed over time.

The
Coroner's

Toolkit [65]

Unix free Predecessor of The Sleuth Kit

36

2.10.2. Database Forensics

The least developed branch of digital forensics, Database forensics applies

investigative techniques to database content and database related metadata with the goal

to identify transactions that indicate evidence of wrongdoing, such as fraud. Investigators

examine redo logs, data files and webserver logs to follow the patch of a hacker.

By examining metadata and statistics, investigators could find evidence of database

row deletions or the creation of foreign database objects. This may lead to hidden clues

that can reveal the path a hacker took. The investigator can then use this information to

build a case.

Database forensics tools include LogMiner, which is part of the Oracle database

software, and Quisix.

2.10.3. Network Forensics

The goal of network forensics is to capture, record, and analyze network traffic. Tools

for Network Forensics include Wireshark, an open source packet analyzer, and SBC, a

program that inspects remote access protocols such as SSH, RDP, Telnet, or VNC

protocols.

37

Table 2.14: List of most common network forensics tools

Name Platform License Description

Wireshark [66] Cross-platform GPL Open source packet
capture/analyzer

CapAnalysis [67] performs indexing of data
set of PCAP files list of
TCP, UDP or ESP
streams/flows, passing to
the geo-graphical
representation of the
connections.

OmniPeek [68] Windows Packet analyzer
Xplico [69] Linux GPL
Snort[70] Windows/Linux GPL detect probes or attacks,

including, but not limited
to, operating system
fingerprinting attempts,
common gateway
interface, buffer
overflows, server message
block probes, and stealth
port scans.

NetworkMiner[71] Windows proprietary can be used as a passive
network sniffer/packet
capturing tool in order to
detect operating systems,
sessions, hostnames, open
ports etc. without putting
any traffic on the network.
NetworkMiner can also
parse PCAP files for off-
line analysis and to
regenerate/reassemble
transmitted files and
certificates from PCAP
files.

2.10.4. Mobile Device Forensics

Mobile device forensics aims at the recovery of digital evidence from mobile devices

with communication ability and internal memory. This includes mobile phones, PDA

38

devices, GPS devices, and tablet computers. The data targeted by investigators include

contact information and photos that are stored on mobile devices. The largest challenge

for investigators regarding hardware is the abundance of different connector types.

2.10.5. Anti-Forensics Tools

Just as the developers of digital forensics tools are trying to keep up with the rapidly

evolving technology, criminals are developing their own tools as countermeasure to

defeat forensics software. [59] It is an “arms race” that is comparable to the cycle of

antivirus software versus computer viruses. Two examples of anti-forensics software are

Evidence Eliminator, which claims to delete files securely and DECAF, a tool which

automatically executes a set of user defined actions on detecting COFEE.

2.11. DNA as a Stegomedium

Criminal organizations are constantly searching for new ways to hide and transmit

illegal information, such as child pornography, industrial espionage, and records of other

illegal activity. With DNA sequencing and the ability to create artificial DNA sequences

becoming increasingly more affordable and more practicable, it could be possible in the

near future to store a database containing child pornography or other illegal data inside a

DNA database.

When computer forensics examiners investigate evidence in a criminal case, they may

not have any reason to modify any evidence files. It is possible to attack hidden content

such as stenography and digital watermarks and there are several methods to remove or

alter such content with software specifically designed for this purpose.

39

2.12. Statistics and Artificiality Detection

Benford's Law, which was named after the physicist Frank Benford, refers to the

frequency distribution of leading digits in real-life data [72]. It states that 1 occurs as the

leading digit approximately 30% of the time, while increasingly larger digits occur in the

leading position in decreasing frequency. Benford’s law has been found to apply to a

wide variety of data sets. It does not only cover the distribution for the first digit, but also

for digits beyond that, which approach a uniform distribution. That means it can be

generalized from the one leading digit to the n leading digits. There is also a

generalization of Benford’s law that covers bases other than base 10. It has also been

found that Benford’s law tends to be most accurate when values are distributed across

multiple orders of magnitude.

Benford’s law has been used successfully to test an observation that the number of

open reading frames and their relationship to genome size differs between eukaryotes and

prokaryotes. The main difference is that the former showing a log-linear relationship and

the latter a linear relationship [73]. It might be possible to develop an algorithm based on

Benford’s law to help determine if a DNA sequence contains a hidden message.

2.13. Solving Substitution Ciphers

A substitution cipher is a method of encoding by which units of plaintext are replaced

with ciphertext. In simple substitution ciphers, one letter is replaced at a time.

http://en.wikipedia.org/wiki/Order_of_magnitude

40

Figure 2.2: Example of a substitution cipher

The methods by which messages are usually encoded in DNA are basically substitution

ciphers, e.g. the letter ‘a’ is substituted by the sequence ‘AAA’, the letter ‘b’ by ‘AAC’,

and so on. Several different methods have been developed for breaking substitution

ciphers. One of our goals is to adapt an algorithm for breaking substitution ciphers to

decode a message written in DNA symbols. Almost all approaches use n-grams of letters.

A very promising software called Quipster has been developed by Hasinoff [74]. The

software decodes a median of 94% of the cipher letters correctly. The source code is

available for download.

A Particle Swarm Optimization (PSO) algorithm has been developed by Uddin and

Youssef [29]. Their results show that PSO provides a very powerful tool for the

cryptanalysis of simple substitution ciphers using a ciphertext only attack.

Uddin and Youssef [75] also investigated the use of Ant Colony Optimization (ACO)

for automated cryptanalysis of classical simple substitution ciphers and found them to be

very effective on various sets of encoding keys.

Lucks [76] developed an algorithm which employs an exhaustive search in a dictionary

for words that satisfy constraints on word length, letter position and letter multiplicity.

His method is not restricted to English and can be used for any language.

It is especially difficult to decode short ciphers, because they have different distribution

statistics than larger texts. Hart [77] developed a method that addresses these problems by

41

using whole words instead of n-grams and by employing a maximum-likelihood

estimator.

Jakobsen [56] developed a fast algorithm that is based on a process where an initial key

guess is refined through a number of iterations. Each step of this algorithm evaluates the

plaintext corresponding to the current key and the result is used as a measure of how

close the algorithm is to discovering the correct key. The author claims that only

knowledge of the bigram distribution in the ciphertext and the expected bigram

distribution in the plaintext is necessary in order to decipher the message. The algorithm

currently only uses bigrams, but the author suggests the use of trigrams or whole words

for future research.

Forsyth and Safavi-Naini [78] approached the solving of substitution ciphers as a

combinatorial optimization problem and developed an algorithm that uses simulated

annealing. This algorithm appears very complicated and difficult to implement, but it is

very successful at decrypting ciphertexts, especially ones with over 5000 letters.

Peleg and Rosenfeld [79] address this problem as a probabilistic labeling problem and

assigned probabilities of representing plaintext letters to every code letter. This was done

by using joint letter probabilities. These probabilities were updated in parallel for all code

letters, and using this scheme iteratively, they were able to break the cipher.

A genetic algorithm (GA) is a heuristic that is commonly used in artificial intelligence to

find useful solutions to search and optimization problems. GAs are a subcategory of

evolutionary algorithms which mimic natural evolution using concepts such as

inheritance, mutation, selection, and crossover. The genetic algorithm contains a

population of strings, referred to as chromosomes, which represent candidate solutions.

42

Over several generations (iterations of the algorithm), these evolve from a usually

randomly generated population to better solutions. The fitness of every individual in the

population is evaluated in each generation. Then multiple individuals are selected based

on their fitness and recombined and occasionally randomly mutated to form a new

population, which is then used in the next iteration of the GA. The GA usually terminates

when either a satisfactory fitness level has been reached, or after a maximum number of

generations has been created.

 Spillman et al. [80] developed a GA for solving substitution ciphers and although they

report good results for their algorithm. Delman [81] found GAs to be unreliable for

solving substitution ciphers and was unable to reproduce their results.

McClure [82] describes a GA to solve a substitution cipher for 26 characters, which is

used in combination with the Wisdom of Artificial Crowds technique. The population

size in this approach is 20, with 18 members of the starting population being initialized

by creating a random permutation of the English alphabet. The remaining two members

were initialized by frequency analysis of the encoded string. In each iteration, the best

four members are determined with a fitness score using a dictionary approach and are

selected as parents. 75% of the time the first and third members are used as parents of the

first child and the second and fourth members become parents of the second child. The

remaining 25% of the time, the best population member is copied to create a child.

Figure 2.3: Crossover

43

The crossover is performed by choosing a crossover point between 1 and 26 (the

number of characters) at random. All elements before the crossover point were copied

from one parent, and all elements after the crossover point, if they did not already exist,

were copied from the other parent. Elements that have not been filled in so far are copied

from the first parent in the same order as they occur there. The mutation rate is 10% and

the number of generations is 10,000.

Figure 2.4: Mutation

To determine the fitness of each population member, McClure uses a fitness function

that uses the number of incorrectly spelled words. Furthermore, the misspelling is

weighted by the number of letters in the word, and also there is a reward for mapping the

letters “a”, ”t”, and “e” to the most common characters in the string, since they are the

most commonly used letters in the English language. In the equation below, E is the

error, S stands for the encoded string, w is the number of words in S, i is a word in S, ni is

the number of letters in word i, a is a n by n dimensional binary row vector where the ith

location is 0 if word i cannot be found in the dictionary and 1 if it can.

E(S) =∑ 𝑎𝑖
𝑤
𝑖=1 𝑛𝑖-[0.12𝑏𝑒 ∑ 𝑛𝑖

𝑤
𝑖=1]-[0.09𝑏𝑡 ∑ 𝑛𝑖

𝑤
𝑖=1]-[0.08𝑏𝑎 ∑ 𝑛𝑖

𝑤
𝑖=1] (2.4)

𝑏𝑒 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 12%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (2.5)

𝑏𝑡 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 9%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (2.6)

𝑏𝑎 = {
1 𝑖𝑓 𝐹(𝑘20) ≥ 8%

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (2.7)

44

Equation 2 states that be is 1 if the letter “e” comprises 12% or more of the decoded

text. Equation 3 and 4 are equivalent for the letters “t” and “a” and their respective

percentages.

Yampolskiy et al. [83-88] developed Wisdom of Artificial Crowds (WoAC) as a

postprocessing algorithm for GA’s and Swarm optimization algorithms. It is derived from

the Wisdom of Crowds (WoC) algorithm, which is based on the observation that groups

are often smarter than the smartest individual in them [89]. For the WoAC algorithm, an

nxn occurrence matrix is constructed. This matrix is used to accumulate the number of

times each solution appears. Each row number corresponds to a character while each

column number corresponds to the symbol it maps to, in this case letters to letters. The

best solution is calculated using the function below:

𝑐𝑖𝑗 = 1 − 𝐼𝑎𝑖𝑗

−1(𝑏1, 𝑏2) (2.8)

Where

𝐼𝑎𝑖𝑗

−1(𝑏1, 𝑏2) (2.9)

is the inverse regularized beta function with parameters b1 and b2 both taking a value of

at least 1.

McClure [82] achieved a significant increase in the percentage of correctly identified

words in the GA approach over a purely frequency based approach, and a further increase

using WoAC.

MCClure [82] performed 8 GA runs for each string and put the best three keys from

each run into the voting population for the WoC technique. Four non-repeating

45

combinations of 12 keys from this population were used to run four WoC tests for each

string.

46

CHAPTER 3

EARLY DESIGN OF SOFTWARE

3.1. Encoding and Inserting Messages

The DNA steganography and steganalysis toolkit we developed has the capability to

encode messages in one of several coding schemes and insert them into a DNA sequence

(steganography) and for detecting, extracting, and decoding a hidden message from a

DNA sequence (steganalysis). Messages can be texts or bitmap images.

This software offers a choice of several different coding schemes. It reads in the coding

table for the selected coding scheme from a file and then prompts the user to either type

the message to be encoded on the keyboard or to select a file from which the message

will be read. Since the ASCII coding scheme is the only one that distinguishes between

uppercase and lowercase characters, the program converts all characters in the message

into uppercase characters for all coding schemes other than the ASCII coding scheme.

The steganography program then encodes the message using the appropriate coding table.

The toolkit implements the following coding schemes:

- Huffman code based coding scheme [19]

- Alternating code [19]

47

- Comma code [12, 19]

- Wong’s coding scheme [20]

- Clelland’s coding scheme [11]

- DNA-Crypt [10]

- ASCII coding scheme [3]

Coding tables for comma code and alternating code were created arbitrarily, since the

original researchers did not provide any.

The message can either be directly written to a file by itself if it is to be stored in a

noncoding region, or be inserted into the coding region of an existing DNA sequence file.

For inserting a message in a coding region, the algorithm described by Jiao and Gouette

[3] is used. DNA sequences can be chosen from a folder where they are stored in FASTA

format [24], which is widely used in bioinformatics. The program displays the maximum

number of characters a message can have, depending on the coding scheme and the

sequence it is to be inserted into.

Figure 3.1: Message insertion into coding region

48

3.2. Approaches to Detecting Messages in DNA

Finding a message that has been inserted into the coding region of a DNA sequence is

relatively simple if the original sequence is known. We have developed a program which

compares a modified DNA sequence with its original. Since the message is assumed to

have been inserted into wobble bases, the first step is to identify wobble base codons in

both sequences and to compare them to each other. The first codon where the wobble

base is different from the one in the original is identified as the beginning of the message.

The last codon where it differs is marked as the end of the message.

The limitation in this approach is that there are codons where the wobble base does not

change because it is being replaced by itself. This is not a problem if it happens in the

middle of the message. The program therefore assumes it contains one long message

instead of several smaller ones. Problems can arise if this happens at the beginning or end

of the message, but if the message can be decoded and it is seen that pieces are missing,

the program can expanded to go back and fix it.

In order to test the program, the message “THIS IS A TEST” was inserted into the ftsZ

DNA sequence using the Wong coding scheme. The program then compared the

modified sequence with the original one. It correctly identifies the beginning codon and

the end codon of the message and extracts the modified wobble bases.

49

Figure 3.2: Screenshot of message detection software

Finding a message in a noncoding DNA region is much more difficult. But there are

ways to determine if a DNA sequence is artificial by statistical analysis. For example, if a

certain base is significantly overrepresented, underrepresented, or not present at all, it can

be assumed that the sequence is artificial and should be further analyzed to determine if it

may contain a message.

Messages that have been encoded using a variation of the alternating code or the

comma code are more likely to be detected than messages that were encoded with a

different coding scheme. The reason for that is that they have a repeating pattern, which

can be detected by a human or a computer program. If every n-th base is the same, this

hints at the possibility that comma code or a variation thereof has been used to create this

sequence.

One coding scheme that is easy to identify is the DNA-Crypt coding scheme because

the low occurrence of As in a message encoded with this scheme.

50

However, as a countermeasure against attempts to detect messages by counting the

occurrence of nucleotides, a coding scheme such as the one developed by Modegi [90]

can be used. Modegi’s coding scheme uses two codons to encode each letter. Which

codon is used is determined by the GC content of the carrier sequence. For example, if a

message was to be inserted into a sequence with a high GC content, the letter L would be

encoded as CTG, but in a sequence with low GC content it would be TTA [90]. The

obvious tradeoff is the number of characters that can be encoded is cut in half.

In order to detect the alternating code, the program stores all odd position characters in

one list and all even position characters in another and then compares both of them. If

none of the even characters appears in the list with the odd ones and vice versa, the

program has detected a message in alternating code with the pattern XYXYXY, where X

is either an A or a G and Y a C or a T, or vice versa. The program can easily be extended

to detect alternating codes with pattern XXYYXXYY or XXXYYY.

3.3. Extracting Messages from DNA

Since there are four nucleotides, a substitution cipher based coding scheme with a codon

length of three, which can encode 64 characters, can be generated in 64! possible ways.

And that is only if the same 64 characters are being used. For example, one coding

scheme can start with A=AAA, B=AAC, C=AAG,... while another one could be A=AGT,

B=CCG, C=CTG,... Brute force guessing which variant has been used to encode the

message would take an enormous amount of time and would therefore not be feasible.

We have developed a program for solving simple substitution ciphers where each letter

of the English alphabet, numbers from 0-9, and several special characters such as spaces,

commas, and periods are each substituted by a combination of three DNA bases. While

51

normal programs for attacking substitution ciphers search over the space of 26! possible

keys, our program has a search space of 64! possible keys. This program is capable of

solving all possible coding schemes based on simple substitution ciphers with a codeon

length of 3, including the ones developed by Clelland [30] and Wong [3].

The first algorithm we developed uses a list of all the characters in the English alphabet

and the frequency of their occurrence in a reference corpus. This corpus contains 801,134

words consisting of 4,899,952 characters, including spaces. The frequency of occurrence

in this corpus of the 64 most common characters was recorded. The most common

character is the space with 16.2%, followed by the letters E, T, and A with 9.7%, 7.2%,

and 6.4%, respectively. It will split the ciphertext into codeons of length 3 and determine

the frequency of occurrence of each codeon in the ciphertext. The program will then

assign the most frequent letter from our list to the most frequent codon in the ciphertext

and so generate a lookup table. Using this lookup table, the program translates the

ciphertext into the plaintext. Of course most of the plaintext is still nonsense. After that,

the program will split the plaintext into words, using an empty space as a delimiter. It will

then compare the words with a dictionary. The dictionary consists of several lists of

words, each list contains words with a certain number of letters ranging from two letter

words to twelve letter words. If the word matches a word in the dictionary, it will be left

alone. If the word differs from a word in the dictionary by a certain number of letters

depending on the length of the word, the program will suggest to replace the letters at that

particular position by their counterparts in the correct word. For words with a length of

four letters or less, the program will only suggest words that differ by one letter. Words

52

that are five or six letters long will be checked for two letter difference, words with seven

or eight letters will be checked for three, and so on.

The following printout is an example how the program suggests replacements for words

it doesn’t have in its dictionary:

GRAF is to be replaced with GRAY by switching F with Y

TLE is to be replaced with THE by switching L with H

TLE is to be replaced with TIE by switching L with I

TLASE is to be replaced with PLACE by switching T with P S with C

TLASE is to be replaced with THOSE by switching L with H A with O

TLASE is to be replaced with CLOSE by switching T with C A with O

TLASE is to be replaced with PLANE by switching T with P S with N

TLASE is to be replaced with TRADE by switching L with R S with D

TLASE is to be replaced with TRACE by switching L with R S with C

TLASE is to be replaced with FLAME by switching T with F S with M

WOS is to be replaced with WAS by switching O with A

WOS is to be replaced with WON by switching S with N

.

.

.

GECEROH is to be replaced with GENERAL by switching C with N O with A H

with L

The program will keep track of which letter is suggested to be replaced by which other

letter and how many times. It will then switch the codons of the letter pair that has been

53

suggested for replacement the most often, translate the ciphertext into the plaintext with

the updated lookup table and repeat checking the dictionary. With each iteration the

number of correct words increases. The program terminates if either no more

replacements can be found, or if at least 85% of the words have been correctly identified.

The following printout shows how letters are supposed to be replaced:

The system suggested:

replace A with O 13.0 times

replace H with L 5.0 times

replace Y with P 4.0 times

replace L with C 3.0 times

replace I with N 3.0 times

replace L with R 3.0 times

replace C with D 2.0 times

replace S with R 2.0 times

replace S with N 2.0 times

.

.

.

Rules:

- A letter cannot be replaced if it occurs at a different position in the same word.

- A letter cannot be replaced if the suggested replacement letter occurs at a

different position in the same word.

- A replacement word is to be discarded if another replacement is suggested that

requires switching fewer letters.

54

- a word that has a punctuation character at the end will be checked without the

punctuation character.

Another program was written to decode messages that have been encoded using the

coding scheme based on the Huffman code [44]. This coding scheme was developed by

Smith et al. [38] and uses only the 26 characters of the English Alphabet. There are 16

possible variations of this scheme, based on how the DNA characters are used. Six

paragraphs of text of varying length were encoded using the Huffman-based coding

scheme for 26 characters as described in Smith et al. Each encoded text was analyzed by

a program that counted the frequency of occurrence of single bases, twins, triplets,

quadruplets, and quintuplets. The analysis of frequency counts of overall occurrence, as

well as quadruplets and quintuplets yielded the most valuable results. It was found that

almost always the bases differ noticeably in number of occurrences. Also, in all six

paragraphs the least common base never occurs as a quadruplet, and the most common

base always occurs as a quintuplet.

55

Table 3.1: Number of occurrence of certain patterns of bases in ciphertext. Least common in
red, most common in green.

Pattern Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

A 299 166 131 126 344 115
C 272 164 107 118 300 110
G 305 183 120 118 343 128
T 293 168 100 122 282 98

AA 104 56 50 42 112 36

CC 82 39 32 27 66 23

GG 75 40 32 26 73 21

TT 32 26 11 18 34 17

AAA 48 18 12 13 26 13
CCC 16 10 6 2 8 6
GGG 37 20 21 19 35 9
TTT 0 1 1 0 0 0

AAAA 17 7 4 1 16 5

CCCC 3 4 0 2 5 3

GGGG 10 6 8 13 19 1

TTTT 0 0 0 0 0 0

AAAAA 2 2 3 1 4 0

This statistical information can be used to identify the coding scheme as the Huffman-

based scheme. The bases are then ordered based on frequency of occurrence, with c0

being the most frequent and c3 the least frequent one. The coding table for the Huffman

based coding scheme from Smith et al. [38] was hardcoded into the program, replacing

each DNA symbol with a variable from c0 through c3. The program then parses the

ciphertext and uses the hardcoded table to decode the message.

3.4. Results

The program has been tested using a message the length of a paragraph encoded in

Clelland’s coding scheme and then with the same message encoded in Wong’s coding

56

scheme. The paragraph has 202 words, 134 not counting repetition. 120 out of those are

decoded correctly.

Time : ~10 seconds

With Clelland’s coding scheme the program deciphers the text almost correctly, the

only errors are that comma and period are switched, and it mistakes the letter J for the

number 1. The same errors occur with Wong’s coding scheme, but here it also puts a

question mark where an apostrophe should be. These errors can easily be fixed by adding

more rules.

Figure 3.3: Screenshot of decryption software

The program for decoding messages that have been encoded using Huffman-based

coding schemes is able to decode messages with all 16 possible variations of the Huffman

coding table for 26 characters. The same message as for the previous program was used

57

for testing this program.

3.5. Limitations

One important question is if the wordlists used in the decoding software should include

names and abbreviations (names of people, geographical names, corporations). An early

version of the decoding software got into an infinite loop by trying to replace the word

‘AND’ followed by a punctuation character with the name ‘ANDY’. This was resolved

by removing ‘ANDY’ from the wordlist. However, if the name Andy actually occurs in a

message, the program might either take longer to decode it correctly, or might not decode

it correctly at all. The program also won’t know if this name has been correctly decoded.

Expanding the wordlist to include every word in the English language could lead to more

words being identified as actual words and not garbage strings, but it could also lead to

misidentification of words as the above example shows.

How well a message is decoded greatly depends on the length of the message.

Messages of a paragraph of 200 words or longer can usually be decoded very quickly and

accurately. Messages that are smaller than that, however, usually do not have a character

distribution that is close to the character frequency statistic that is being used as a

reference.

3.6. Insertion of Media other than Text

Most research in DNA steganography focuses on hiding text and only very little research

has been done so far on hiding other media in a DNA sequence. Goldman et al. [12]

describe encoding five files of various types in a DNA sequence. These files include a

58

JPEG 2000 image and a speech in MP3 format. The coding scheme they used utilizes

several intermediate steps. First, the image file and the sound file are translated into

binary. Then, the text file and the binary data from the other files is translated into a base-

3 code and finally into sequences of DNA bases.

Davis [91] describes a method of encoding the black-and-white image of a relatively

simple shape (5 by 7 bitmap) into a 35 bit binary sequence, which was then compressed.

His approach compares the molecular weights of the bases to obtain an incremental

reference. Starting with the smallest base, Cytosine, Davis assigns numbers to the bases

in ascending order. This results in C = 1, T =2, A =3, and G =4. This method compresses

the binary digits of the bit-mapped image into fewer DNA base symbols by using each

base to indicate how many times each binary value (0 or 1) is to be repeated before

changing to the respective other value. This technique is widely used in data

compression. This can be represented as shown in Table 1. Using this coding method, the

thirty-five-bit black-and-white image is translated to only eighteen DNA bases:

CCCCCCAACGCGCGCGCT

These can be decoded to yield one of the two following binary sequences:

10101011100010000100001000010000100

or

01010100011101111011110111101111011

This depends on if either a 1 or a 0 is chosen to start the decoding sequence.

Transforming either of the two sequences into the correct five-by-seven matrix will

produce the image. Since the example used by Davis is bilaterally symmetrical, more

59

than one of several possible five-by seven matrices will in this case result in producing

the correct bitmap [91].

Table 3.2: Coding scheme used by Davis [91]

Base Bit sequence

C 1 or 0
T 11 or 00
A 111 or 000
G 1111 or 0000

Ailenberg and Rotstein [8] have developed a coding scheme to encode an image that is

composed of shapes and their coordinates.

This way of encoding an image is not very efficient. A more feasible approach has been

described by Yokoo and Oshima [92]. This approach suggests to arrange the 3-base

codons of a DNA sequence in a two dimensional array and then translate one base of

each codon into either black or white, with G and C being black and A and T being white,

or vice versa. This is done for each base of all the codons, which would result in three

separate images.

Hennings and Kettelberger [93] have developed a method to generate music by

decoding and transcribing genetic information within a DNA sequence into a music

signal having melody and harmony.

We have developed a very similar coding scheme to the one described by Yokoo and

Oshima [92], with the difference that we use all three bases of each codon for encoding

color information instead of creating three separate images[94]. Our approach will

determine the width and height of the array used for creating the image using the two

closest factors of the number of codons. This will result in a picture that is as close to a

square in shape as possible.

60

The DNA sequence is arranged in a two dimensional array the same way as described

by Yokoo and Oshima [92], but in our case the first base of each codon is used to encode

the red portion, the second base for the green portion, and the third for the blue portion of

each pixel. DNA bases are translated into RGB values using the following coding table:

Table 3.3: Translation of DNA bases to RGB values

Base RGB

A 0
C 64
G 128
T 255

Table 3.4: Translation of RGB values into DNA bases

RGB Base

0-63 A
64-127 C
128-191 G
192-255 T

Each codon encodes one pixel and the coordinates of the codon in the array will be the

coordinates of the pixel in the resulting bitmap. The following example shows each step

of the encoding process:

DNA sequence:

ATA TAA TAA TAA TTA AAT AAA TTT AAA ATA AAT TTT GAG TTT ATA AAT AAA TTT AAA
ATA TAA TTA TTA TTA AAT

DNA sequence as two dimensional array:

ATA TAA TAA TAA TTA
AAT AAA TTT AAA ATA
AAT TTT GAG TTT ATA
AAT AAA TTT AAA ATA

61

TAA TTA TTA TTA AAT

The array is created by taking the square root of the number of codons in the DNA

sequence. The result is rounded up to give the width and rounded down to give the height

of the image. The two numbers are multiplied and if the result is less than the number of

codons, the smaller number is increased by 1. This will result in an array that is large

enough for all codons, in some cases slightly larger. The extra space will be filled with

white pixels in the resulting image.

After translation into RGB:

0,255,0 255,0,0 255,0,0 255,0,0 255,255,0
0,0,255 0,0,0 255,255,255 0,0,0 0,255,0
0,0,255 255,255,255 127,0,127 255,255,255 0,255,0
0,0,255 0,0,0 255,255,255 0,0,0 0,255,0
255,0,0 255,255,0 255,255,0 255,255,0 0,0,255

Figure 3.4: Resulting image (enlarged by factor 16)

This method allows the encoding of 64 colors and ensures that the encoding of all the

most common colors such as red, green, blue, yellow, magenta, orange, grey, black, and

white is possible. The use of only 64 colors obviously leads to the loss of color

information. Also, with the current algorithm the program assumes that the width and

height of an image are as similar (a square, or approximately a square) as possible. For

example, a 120x40 pixel image would be decoded as a 60x80 pixel image. A possible

solution would be to encode the dimensions of the image as well. Our method is simpler

and more storage space efficient than the one described by Goldberg [6], but as a tradeoff

62

can encode fewer colors. It is also more specialized toward images, while Goldberg’s

approach is geared toward a variety of data types. Further research could lead to the

development of algorithms to detect, extract and decode images that have been hidden in

DNA sequences [94]. These methods could be used for forensic purposes. Similar

algorithms have already been developed for text-based DNA Steganalysis [25].

63

CHAPTER 4

FINAL DESIGN OF SOFTWARE

4.1. Overview

The main menu allows the user to choose between extraction of text, insertion of text,

or insertion/extraction of images. If the user chooses to extract a message, the message

can be loaded from a txt file or a FASTA file. Header information from FASTA files is

automatically removed. The user has the choice between two encoding algorithms: the

Dictionary approach and the GA/WoAC approach. Individual settings for each algorithm

can be defined by the user. These include population size, number of iterations, and stop

condition in case of the GA. It is also possible to decode a message without extracting it

from a DNA sequence. This message can either be loaded from a file, or typed or pasted

into the appropriate text field. The basic coding scheme is determined before attempting

to decode any message in order to choose the codeon size, and in case of a Huffman code

base scheme, start the appropriate decoding algorithm.

For message insertion, the user can load a cover sequence from file, and again the

header is stripped if the file is in FASTA format. The message to be inserted can be typed

or loaded from a file. The user can choose between several coding schemes to encode the

64

message, and the program will alert the user if there are not enough wobble bases within

coding regions to accommodate a message of this particular length.

A lookup table on the side of the screen shows how the current coding scheme

translates between DNA codeons and alphanumeric characters.

The image insertion and extraction feature is fairly straightforward and does not require

any detailed explanation.

Figure 4.1: Organizational chart of DNA Steganalysis Software

Main
Menu

Text
Extraction

Detection

Extraction

Decoding

Dictionary
Approach

GA/WoAC

Text
Insertion

Encoding

Insertion

Images

Insertion

Extraction

65

4.2. Genetic Algorithm and Wisdom of Artificial Crowds

Figure 4.2: Flow chart of GA with WoAC

In order to increase the accuracy with which shorter messages can be decoded we

began to search for alternative methods to the dictionary approach. One of the proposed

alternatives is to use a Genetic Algorithm (GA). The GA developed by McClure [95]

was modified to accommodate a larger alphabet [96].

Both the dictionary approach and the GA with WoAC approach were tested with two

different sample messages of different lengths. The first has 202 words, 134 not counting

66

repetition. The second message has 51 words, of which 35 are unique. Both messages

have been encoded with the coding scheme developed by Clelland [1], with the Comma

code, and with the Alternating code.

Our software package was written in Java 7 using Eclipse v.4.4.0. The computer used

for this experiment has an Intel Core i7 processor and 10 GB RAM and runs Windows 7

Home Premium 64 bit.

The settings for the GA are as follows: 20 population members, 5000 generations, and

a mutation rate of 10%. The results of 10 runs of the GA were entered into the WoAC.

Then the results of the WoAC were used to initialize the GA for the next 10 runs, with

their results entering into the WoAC again. For the shorter text the GA was run with 1000

generations.

The keys we produced with ten runs of the GA were fed into the WoAC algorithm.

Then we use the key obtained from WoAC as seed value to initialize two out of twenty

population members in another run of the GA. The remaining 18 population members are

initialized at random.

In order to be able to work with 64 characters instead of 26 we counted the frequency

of occurrence of the 64 most common symbols and characters in our sample corpus and

adjusted the formula accordingly. Since we take spaces and punctuation into account, our

most common character is now the space with 16%, followed by the letters e, t, and a

with 9%, 7%, and 6%, respectively. Also, besides rewarding high percentage of

occurrence of the most frequent characters, we punish high percentage of occurrence of

the 14 least frequent characters. The dictionary used in both approaches contains over

28,000 words.

67

Table 4.1: Changes compared to McClure

 McClure Our Algorithm

Character Reward if Reward if Punish if
[space] ---------- >=16% ----------
e >=12% >=9% ----------
t >=9% >=7% ----------
a >=8% >=6% ----------
+ ---------- ---------- <1%
* ---------- ---------- <1%

= ---------- ---------- <1%

_ ---------- ---------- <1%

$ ---------- ---------- <1%

& ---------- ---------- <1%

---------- ---------- <1%

< ---------- ---------- <1%

> ---------- ---------- <1%

^ ---------- ---------- <1%

% ---------- ---------- <1%

@ ---------- ---------- <1%

[---------- ---------- <1%

] ---------- ---------- <1%

The GA is able to decode the first sample message with 100% accuracy independent of

the coding scheme; however each GA run takes an average of 32 minutes and the total

decoding process takes almost 6 hours. The shorter message is decoded in about 7

minutes with 89% accuracy.

Table 4.2: Results of decoding messages with the dictionary approach.

Decoded with dictionary approach

Coding

scheme

Words total

Words

correct

Characters

correct

Time

Clelland 202 89% 76% 0.7 sec
Clelland 51 51% 52% 0.06 sec
Comma 202 99% 80% 0.8 sec
Comma 51 64% 42% 0.08sec

Alternating 202 99% 80% 0.9 sec
Alternating 51 58% 50% 0.07 sec

68

Table 4.3: Results of decoding messages with the GA/WoAC approach.

Decoded with Genetic Algorithm/ Wisdom of Artificial Crowds

Coding

scheme

Words total

Words

correct

Characters

correct

Time

Clelland 202 100% 93% 5hrs 40 min
Clelland 51 89% 74% 7 min 6 sec
Comma 202 100% 96% 5 hrs 33 min
Comma 51 74% 50% 6 min 57 sec

Alternating 202 100% 96% 5hrs 48 min
Alternating 51 84% 53% 7 min 13 sec

The table below shows the accuracy for each GA run compared to each other and to the

WoAC for the long message that has been encoded with Clelland’s coding scheme. The

results for decoding the messages with the other coding schemes are similar. The table

also contains the results of the GA runs 11-20 which use the result from the WoAC as

key. The end result is obtained by using the WoAC algorithm on runs 11-20. Some of the

GA iterations actually produce worse results individually than the dictionary approach.

Words correct means words that can be actually found in the dictionary. The first 10

iterations are independent from each other, as are the last 10.

69

Table 4.4: Comparing the seperate GA runs to the WoAC results.

Iteration Words correct Characters Correct
1 99% 90%
2 98% 86%
3 84% 79%
4 10% 34%
5 10% 34%
6 43% 59%
7 73% 69%
8 9% 28%
9 9% 0%

10 96% 79%
WoAC 99% 86%

11 99% 83%
12 99% 83%
13 98% 79%
14 100% 93%
15 100% 93%
16 100% 93%
17 100% 93%
18 99% 90%
19 100% 93%
20 100% 93%

End result 100% 93%

As we can see in run 9 we can even get words that are in the dictionary when all the

characters are switched. Because of so many “correct” words, the key generated has such

a good error score that it gets stuck in a local maximum [96].

4.3. Determining Coding Schemes

At the beginning the steganalysis tool could only decode messages that have been

encoded with substitution cipher coding schemes such as the ones developed by Clelland

et al.[30], Wong et al.[3], and variations thereof, as well as messages that have been

encoded with variations of the Huffman-based coding scheme for 26 characters

70

developed by Smith et al.[38]

 The next step was to add the capability to decode messages encoded in other coding

schemes that have been described previously, such as the alternating code or comma

code. In order to do so, we added a feature to determine which coding scheme was most

likely used to decode the message. This was possible by making use of unique properties

of those coding schemes.

 An unusual property of the alternating code that can be used to determine if a message

has been encoded with the alternating code is the following: in a given piece of message

DNA, the number of G:C pairs will be the same as the number of A:T pairs [38].

Another, possibly more accurate method to determine if a message has been encoded in

the alternating code is to first turn all A’s and G’s in the ciphertext into R’s, and all C’s

and T’s into Y’s. Then to split the ciphertext into codons of length 6 and check if the first

codon matches any of the following patterns:

RYRYRY,YRYRYR,YYRRYY,RRYYRR,YYYRRR,RRRYYY. If it does, the program

would check if the remaining codons follow the same pattern.

Once the Alternating code has been detected, it will be decoded the same way as simple

substitution schemes, but with a codon length of 6. The pattern only plays a role in

detection, but not in decryption.

The DNA symbol which is the comma character fulfills all of the following three criteria:

It is the first and the last character of the sequence, it always appears by itself, never as

part of a twin, triplet, etc. and the distance between instances of the comma symbol is

always the same.

71

In order to determine if a message has been encoded in comma code, our program checks

which one of the four DNA bases fulfills all three of these criteria. If a base is found that

meets those criteria is found, this base is then assigned as the comma character, and the

distance between each occurrence of this comma character +1 is the codon length.

This software should be able to detect any variation of the comma code, no matter which

DNA base is the comma character, and no matter the codon length. It therefore can detect

both the version described by Smith et al. [38], and the one by Brenner et al. [29], as well

as other variations of the comma code. Before decoding the comma code, the comma

character at the end of the ciphertext is removed, since it adds no useful information to

the message.

When a message encoded with the coding scheme developed by Arita et al. [29] is

inserted into a coding region of a DNA sequence, a 0 indicates to leave the 3rd base of a

codon unchanged, while a 1 indicates that it needs to be changed. This means that the

ratio of changed wobble bases/unchanged wobble bases within message should be around

½, while with other coding schemes it should be around ¼. This is used to detect a

message encoded with this particular coding scheme

The decoding of the Arita coding scheme will be done in two steps: DNA to binary and

then binary to text. Since there are only 16 possibilities, the decoding from DNA to

binary is done in a brute force approach. After each decoding attempt, the resulting

binary sequence is broken into strings of length 5 and each string is checked for the parity

bit. If the number of ones is even, the parity bit is one, if it is odd the parity bit is zero. If

the parity bit computes correctly for more than 95% of the message, it is decoded from

72

binary to plaintext, otherwise the next decoding attempt is tried. The decoding from

binary to plaintext is accomplished in a similar manner as with the substitution schemes.

The ASCII and Yachie coding schemes are so similar that they can be decoded with the

same algorithms.

The algorithms that have been developed for the basic Huffman based coding scheme

can be modified to work for the improved Huffman coding scheme. The only difference

other than the number of characters and with which symbols they are encoded is the

division of characters into three subgroups and the use of a header codon to select the

subgroup.

4.4. Message Extraction

Since the length of the message is not known, the extraction algorithm currently

extracts all wobble bases within the coding regions of the cover sequence. However, the

message may only use a small part of the available space, which will result in a great

amount of garbage information at the end of the actual message. If the message uses only

a small percentage of the available coding space, the amount of garbage information will

be very large. This will prevent both decoding algorithms from working properly, since

they both depend on the frequency of occurrence of characters.

This problem is addressed by attempting to decode only a part of the message, a

percentage that can be selected by the user. Once the coding scheme is known, the entire

message can then be decoded using that coding scheme and the garbage information at

the end can be discarded. The only problem with that approach is that it only works for

messages that have been inserted at the beginning of the DNA sequence.

73

4.5. Integration of Components

All parts of the DNA steganography and steganalysis toolkit have been integrated using a

common graphical user interface (GUI) and a common file structure. Also, the software

creates a report which is automatically saved in a file once a message has been detected

and decoded. This report contains detailed information at which position in the DNA

sequence the message begins, where it ends, its length, which coding scheme was used, a

coding table, as well as frequency counts of single bases, bigrams, trigrams, and

quadrigrams of bases. The goal of this effort is to keep our software toolkit user friendly,

flexible, and expandable.

74

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

DNA steganography and DNA steganalysis are fairly new research fields and therefore

they offer many opportunities to improve upon existing approaches for steganography as

well as steganalysis. This project combines several approaches for DNA steganography

undertaken by several independent groups of researchers in the past, and builds upon the

results of their work to create software for steganalysis of the coding schemes they

developed. There has been a great amount of research done in the resent past on hiding

messages in DNA, but not much on finding hidden messages. This project aims at

covering a variety of different approaches for DNA steganography. The GA clearly takes

several orders of magnitudes more time, but is able to decode short messages at greater

accuracy than the dictionary approach. Both methods complement each other, while the

dictionary approach is faster; the GA is more accurate and also performs better at

decoding shorter messages. Shorter messages need more generations but take less time.

The WoAC algorithm used in combination with multiple runs of the GA provides clearly

improved results compared to the individual runs of the GA by themselves. The end

result is even better after using the WoAC results as seed for the next 10 GA runs. Both

75

algorithms are currently being improved further and tested with a greater variety of

messages, such as messages with a large amount of numbers and special characters and

messages that contain names and foreign words. The key is to make this software toolkit

as flexible as possible, so it can be adapted in the future to deal with new coding schemes

and new approaches to hide messages.

5.2. Future Work

5.2.1. Improvements

Both message decoding approaches still have room for improvement and it is possible

to further increase their accuracy. The GA could possibly be improved to converge faster

by experimenting with different crossover and mutation algorithms. An idea would be to

increase the mutation rate if too many population members are similar, and then decrease

it over generations.

It would be interesting to see how both algorithms perform when attempting to decode

messages that have been encrypted before being encoded.

We have written a program that creates a dictionary and calculates the frequency of

occurrence of characters from a sample corpus. This program can be easily modified to

create a dictionary and a frequency count based on a specific topic. The program for

encoding and inserting messages will have an option to encrypt a message with a shift

cipher before encoding it. There will also be a function to decrypt messages that have

been encoded in such manner. The encoding software can be improved to allow the user

to determine at which location a message should be inserted into a DNA sequence, given

a sequence long enough to allow that. Currently messages are inserted beginning with the

76

first wobble base codon of the sequence. In turn, the message detection program will also

be modified to be able to detect a message at any given location inside a DNA sequence.

The program will then also be able to analyze a DNA sequence using different reading

frames as well as backwards, and inverse. We will also expand our system by enabling it

to detect messages that have been encoded with different coding schemes in the same

DNA sequence. There is also the possibility to include an option to either use or ignore

Start- and Stop codons.

Furthermore, the program for decoding Huffman based coding schemes can be

expanded to be able to decode messages with coding schemes for more than 26

characters. It should therefore be upgraded to be able to handle the improved Huffman

code based scheme developed by Ailenberg and Rotstein [25].

Both of the decoding methods did not perform well in decoding numbers and

punctuation characters. One solution is to create rules that will assign higher fitness

scores in the GA to certain patterns such as dates. In order to decode punctuation

characters more accurately, there is the possibility to run a post processing function after

the letters and numbers have been decoded to ensure certain rules, for example that a

period or comma is usually followed by an empty space, or that there is a closing

parenthesis for every opening parenthesis. Another possibility to address this problem is

to develop an algorithm based on Benford’s law.

The WordSpy algorithm developed by Wang and Zhang [28] could also be investigated

as a way to detect new coding schemes that do not already have specialized algorithms

for detecting and decoding.

77

Once the software has detected a message, it would automatically decide based on

certain characteristics which approach to use in attempting to decode a message. A

decision tree needs to be developed to determine what the program should do next in case

an approach to decode the message fails.

There are currently two decoding algorithms, the dictionary approach and the GA.

Thanks to its modular nature the software toolkit can be improved by adding other

decoding algorithms. It would then be possible to attempt to decode a message with each

algorithm and feed the resulting keys from each algorithm into the WoAC.

A way to speed up the GA/WoAC approach could be to modify the program to run

multiple instances of the GA in parallel since they are all independent from each other.

This could be accomplished at first on a multi core computer, and if successful, later on a

larger scale on a cluster. Of course, the speedup cannot be expected to be linear, because

parts of the program, such as the initialization and the WoAC cannot be parallelized. A

more accurate method to measure the time each of the two approaches takes needs to be

implemented. This can be accomplished by counting clock cyles instead of CPU time.

The observation that samples of DNA sequences of the same genome are significantly

more similar to each other than to those of sequences from other organisms [97] can help

detect the presence of a message. Also, certain bi-,tri,- and quadrigrams of DNA bases

occur more often in certain genomes than in others. For example, Burge et al. [98] have

discovered that the bigram CG is strongly underrepresented in vertebrates and

mitochondrial genomes. The problem here is that a hidden message has to be very large

in order to significantly affect the distribution of base n-grams. Message detection can be

improved by using statistical analysis. In order to obtain a statistical baseline, 10

78

variations of the human genome could be downloaded from an online database and the

frequency of occurrence of n-grams would then be counted, ranging from n=1 to n=6.

Messages will be inserted and the statistics of the modified sequences will be compared

to the statistics of the original sequences. Depending on the results, an algorithm could

then be derived to determine with a certain percentage of accuracy if a DNA sequence

contains a message.

Other Applications

With rapid advances in genetic engineering and in DNA sequencing, many new

research applications for our software become available in the near future. Elements of

this software toolkit can be modified and used for other purposes in bioinformatics as

well as in digital forensics. It is also possible for the software to be used to detect natural

occurring patterns instead of artificial messages.

A research team at the University of Washington discovered that a certain group of

codons, which are called duons, can have two functions, the first controls protein

sequencing, and the second is partially responsible for gene control. Both functions

appear to have evolved in concert with each other. The gene control instructions seem to

aid in the stabilization of certain beneficial features of proteins and how they are made.

This fact means that many changes in the DNA that seem to change protein sequences

may actually cause disease by disrupting functions responsible for gene control or

possibly even both mechanisms at the same time [99]. This could possibly also mean that

inserting messages in the coding regions of DNA sequences may have an effect on the

carrier organism after all. Different methods for inserting messages into DNA sequences

79

would need to be developed in order to circumvent this problem. Our software is modular

and can easily be adapted to address these challenges.

80

REFERENCES

[1] C. T. Clelland, V. Risca, and C. Bancroft, "Hiding messages in DNA microdots," Nature, vol. 399, pp. 533-534, 1999.

[2] B. Shimanovsky, J. Feng, and M. Potkonjak, "Hiding Data in DNA," Lecture Notes in Computer Science, vol. 2578, pp.

373-386, 2003.

[3] P. C. Wong, K.-K. Wong, and H. Foote, "ORGANIC DATA MEMORY Using the DNA Approach," Communications of

the ACM, vol. 46, pp. 95-98, 2003.

[4] K. Tanaka, A. Okamoto, and I. Saito, "Public-key system using DNA as a one-way function for key distribution,"

Biosystems, vol. 81, pp. 25-9, Jul 2005.

[5] N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi, and M. Tomita, "Alignment-Based Approach for Durable Data Storage

into Living Organisms," Biotechnology Progress, vol. 23, p. 4, 2007.

[6] D. Heider and A. Barnekow, "DNA-based watermarks using the DNA-Crypt algorithm," BMC Bioinformatics, vol. 8, p.

176, 2007.

[7] S.-H. Jiao and R. Goutte, "Hiding data in DNA of living organisms," Natural Science, vol. 01, pp. 181-184, 2009.

[8] M. Ailenberg and O. Rotstein, "An improved Huffman coding method for archiving text, images, and music characters in

DNA," Biotechniques, vol. 47, pp. 747-54, Sep 2009.

[9] D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R. Y. Chuang, M. A. Algire, et al., "Creation of a bacterial cell

controlled by a chemically synthesized genome," Science, vol. 329, pp. 52-6, Jul 2 2010.

[10] H. Mousa, K. Moustafa, W. Abdel-Wahed, and M. Hadhoud, "Data Hiding Based on Contrast Mapping," The International

Arab Journal of Information Technology, vol. 8, pp. 147-154, 2011.

[11] G. M. Church, Y. Gao, and S. Kosuri, "Next-Generation Digital Information Storage in DNA," Sciencexpress, vol. 337, p.

1628 2012.

[12] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, et al., "Towards practical, high-capacity, low-

maintenance information storage in synthesized DNA," Nature, vol. 494, pp. 77-80, Feb 7 2013.

[13] "Dr. Ido Bachelet Talk on Bionic Technologies," in Personality Cafe vol. 2015, ed, 2015.

[14] J. D. Watson and F. H. C. Crick, "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid,"

Nature, vol. 171, pp. 737-738, 1953.

[15] B. Anam, K. Sakib, A. Hossain, and K. Dahal, "Review on the Advancements of DNA Cryptography," presented at the

International conference on Software, Knowledge, Information Management and Application, Paro, Bhutan, 2010.

[16] R. G. Martin, J. H. Matthaei, O. W. Jones, and M. W. Nirenberg, "Ribonucleotide composition of the genetic code,"

Biochemical and biophysical research communications, vol. 6, pp. 410-414, 1962.

81

[17] S.-H. Jiao and R. Goutte, "Code For Encryption Hiding Data Into Genomic DNA," in International Conference on

Software Process, 2008.

[18] E. C. Hayden, "The $1000 genome," Nature, vol. 507, pp. 294-295, 2014.

[19] K. Wetterstrand. (2014, 03/03). Data from the NHGRI Genome Sequencing Program (GSP).

[20] B. Mole. (2014, 03/07). The Gene Sequencing Future is here.

[21] L. M. Adleman, "Molecular Computation Of Solutions To Combinatorial Problems," Science, New Series, vol. 266, pp.

1021-1024, 11/11/1994 1994.

[22] M. Ogihara and A. Ray, "Simulating Boolean Circuits on a DNA Computer," in RECOMB, 1997, pp. 226-231.

[23] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, "An Autonomous Molecular Computer for logical control of

Gene Expression," Nature, vol. 429, pp. 423-429, 2004.

[24] C. M. Bogard, E. C. Rouchka, and B. Arazi, "DNA media storage," Progress in Natural Science, vol. 18, pp. 603-609,

 2007.

[25] Y. Amir, E. Ben-Ishay, D. Levner, S. Ittah, A. Abu-Horowitz, and I. Bachelet, "Universal computing by DNA origami

robots in a living animal," Nat Nanotechnol, vol. 9, pp. 353-7, May 2014.

[26] H. Weinzierl, "Digital Universe Invaded By Sensors," ed. HOPKINTON, MASS: EMC, 2014.

[27] S. Shrivastava and R. Badlani, "Data Storage in DNA," International Journal of Electrical Energy, vol. 2, pp. 119-124,

2014.

[28] M. Arita and Y. Ohashi, "Secret Signatures Inside Genomic DNA," Biotechnology Progress, vol. 20, pp. 1605-1607, 2004.

[29] M. Arita, "Comma-free design for DNA words," Communications of the ACM, vol. 47, p. 99, 2004.

[30] C. T. Clelland, V. Risca, and C. Bancroft. (1999) Hiding messages in DNA microdots. Nature. 533-534.

[31] S. Brenner, S. R. Williams, E. H. Vermaas, T. Storck, K. Moon, C. McCollum, et al., "In vitro cloning of complex

mixtures of DNA on microbeads: Physical separation of differentially expressed cDNAs," Proceedings of the National

Academy of Sciences of the United States of America, vol. 97, pp. 1665-1670, 02/15/2000 2000.

[32] D. Heider and A. Barnekow, "DNA watermarks: a proof of concept," BMC Mol Biol, vol. 9, p. 40, 2008.

[33] C. Bancroft, T. Bowler, B. Bloom, and C. T. Clelland, "Long-Term Storage of Information in DNA," Science, New Series,

vol. 293, pp. 1763-1765, 09/07/2001 2001.

[34] Anonymous, "A Y3K bug," nature biotechnology, vol. 18, 2000.

[35] T. Siebert, "CDs Are Not Forever: The Truth About CD/DVD Longevity, “Mold” & “Rot”," in makeuseof vol. 2015, ed,

07/03/2012.

[36] J. Aron, "DNA in glass-the ultimate archive," New Scientist, vol. 225, p. 15, 02/14/2015 2015.

[37] J. W. Drake, B. Charlesworth, D. Charlesworth, and J. F. Crow, "Rates of Spontaneous mutation," Genetics, vol. 148, p.

20, 1998.

[38] G. C. Smith, C. C. Fiddes, J. P. Hawkins, and J. P. L. Cox, "Some possible codes for encrypting data in DNA,"

Biotechnology Letters, vol. 25, pp. 1125-1130, 2003.

[39] R. W. Hamming, "Error detecting and error correcting codes," Bell System Technical Journal, vol. 29, pp. 147-160, 1950.

82

[40] A. S. Tanenbaum, Computer Networks, 4th edition ed. New York, NY, USA: Prentice Hall, 2002.

[41] R. Soni, V. Soni, and S. K. Mathariya, "Innovative field of cryptography: DNA cryptography," in First International

Conference on Information Technology Convergence and Services (ITCS 2012), Bangalore, India, 2012, pp. 161-179.

[42] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for Data Hiding," IBM Systems Journal, vol. 35, pp. 313-336,

1996.

[43] M. Nirenberg, "Historical review: Deciphering the genetic code – a personal account," Trends in Biochemical Sciences,

vol. 29, pp. 46-54, 2004.

[44] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes," Proceedings of the IRE, pp. 1098–

1102, 1952.

[45] S. Singh, The Code Book: The Evolution of Secrecy from Mary, Queen of Scots to Quantum Cryptography. New York:

Doubleday, 1999.

[46] C. T. Clelland, V. Risca, and C. Bancroft, "Hiding messages in DNA microdots.pdf," Nature, vol. 399, pp. 533-534, 1999.

[47] S.-H. Jiao, "Hiding data in DNA of living organisms," Natural Science, vol. 01, pp. 181-184, 2009.

[48] Q. Tang, G. Ma, W. Zhang, and N. Yu, "Reversible Data Hiding for DNA Sequences and Its Applications," Digital Crime

and Forensics, vol. 6, 2014.

[49] D. C. Jupiter, T. A. Ficht, Q.-M. Qin, and P. de Figueiredo, "DNA Watermarking of Infectious Agents Progress and

Prospects," Public Library of Science Pathogens, vol. 6, pp. 1-3, 2010.

[50] N. F. Johnson and S. Jajodia, "Steganalysis: The Investigation of Hidden Information," in IEEE Information Technology

Conference, Syracuse, NY, 1998, pp. 113 - 116

[51] B. Li, J. Huang, and Y. Q. Shi, "Steganalysis of YASS," IEE Transactions on Information Forensics and Security, vol. 4,

pp. 369 - 382 Sept. 2009 2009.

[52] S. Xin-guang, L. Hui, and Z. Zhong-liang, "A Steganalysis Method Based on the Distribution of Characters," in 8th

International Conference on Signal Processing, Beijing, China, 2006.

[53] G. Wang and W. Zhang, "A steganalysis-based approach to comprehensive identification and characterization of functional

regulatory elements," Genome Biol, vol. 7, p. R49, 2006.

[54] V. I. shCherbak and M. A. Makukov, "The “Wow! signal” of the terrestrial genetic code," Icarus, vol. 224, pp. 228-242,

2013.

[55] I. Shklovskii and C. Sagan, Intelligent life in the universe. New York: Dell, 1966.

[56] F. H. C. Crick and L. E. Orgel, "Directed Panspermia," Icarus, vol. 19, pp. 341-346, 1973.

[57] H. Yokoo and T. Oshima, "Is Bacteriophage X174 DNA a Message from Extraterrestrial Intelligence?," Icarus, vol. 38,

1978.

[58] J. Davis, "Microvenus," Art Journal, vol. 55, pp. 70-74, 1996.

[59] M. Reith, C. Carr, and G. Gunsch, "An Examination of Digital Forensic Models," International Journal of Digital

Evidence, vol. 1, 2002.

83

[60] EnCase. (04/01/2015). EnCase eDiscovery V5. Available: https://www.guidancesoftware.com/products/Pages/encase-

ediscovery/overview.aspx

[61] D. F. a. I. response. (04/01/2015). SANS Investigative Forensic Toolkit (SIFT) Workstation Version 3. Available:

http://digital-forensics.sans.org/community/downloads/

[62] Microsoft. (04/01/2015). Microsoft Cofee. Available: https://cofee.nw3c.org/

[63] (04/01/2015). The Sleuth Kit. Available: http://www.sleuthkit.org/sleuthkit/

[64] A. Recon. (04/01/2015). RegistryRecon. Available: http://www.arsenalrecon.com/apps/recon/

[65] "The Coroner's Toolkit (TCT)."

[66] Wireshark. (2015, 04/01/2015). About Wireshark. Available: https://www.wireshark.org/about.html

[67] CapAnalysis. (04/01/2015). CapAnalysis. Available: http://www.capanalysis.net/ca/#about

[68] WildPackets. (2015, 04/01/2015). OmniPeek Network Analyzer. Available:

http://www.wildpackets.com/products/omnipeek_network_analyzer

[69] Xplico. (04/01/2015). Open Source Network Forensic Analysis Tool (NFAT) Available: http://www.xplico.org/

[70] Snort. (04/01/2015). Snort. Available: https://www.snort.org/

[71] Netresec. (04/01/2015). NetworkMiner. Available: http://www.netresec.com/?page=NetworkMiner

[72] F. Benford, "The Law of Anomalous Numbers," Proceedings of the American Philosophical Society, vol. 78, pp. 551-572,

1938.

[73] J. L. Friar, T. Goldman, and J. Perez–Mercader, "Genome Sizes and the Benford Distribution," PLoS One vol. 7, 2012.

[74] S. Hasinoff, "Solving Substitution Ciphers," A Technical Report, University of Toronto, 2003.

[75] M. F. Uddin and A. M. Youssef, "An Artificial Life Technique for the Cryptanalysis of Simple Substitution Ciphers,"

presented at the CCECE+CCGEI, Ottawa, Canada, 2006.

[76] M. Lucks, "A Constraint Satisfaction Algorithm for the Automated Decryption of Simple Substitution Ciphers," in

CRYPTO '88, Santa Barbara, California, USA, 1988, pp. 132–144.

[77] G. W. Hart, "To decode short Cryptograms," Communications of the ACM, vol. 37, pp. 102-108, 1994.

[78] W. S. Forsyth and R. Safavi-Nani, "Automated Cryptanalysis of substitution ciphers," Cryptologia, vol. 17, pp. 407-424,

1993.

[79] S. Peleg and A. Rosenfeld, "Breaking Substitution Ciphers Using a Relaxation Algorithm," Communications of the ACM,

vol. 22, pp. 598–605, 1979.

[80] R. Spillman, M. Janssen, B. Nelson, and M. Kepner, "Use of a Genetic Algorithm in the Cryptanalysis of Simple

Substitution Ciphers," Cryptologia, vol. 17, pp. 31-44, 1993.

[81] B. Delman, "Genetic Algorithms in Cryptography," Master of Science in Computer Engineering, Department of Computer

Engineering, Rochester Institute of Technology, Rochester, New York, 2004.

[82] P. McClure, "Title," unpublished|.

[83] R. V. Yampolskiy and A. El-Barkouky, "Wisdom of artificial crowds algorithm for solving NP-hard problems,"

International Journal of Bio-Inspired Computation, vol. 3, pp. 358-369, 2011.

http://www.guidancesoftware.com/products/Pages/encase-ediscovery/overview.aspx
http://www.guidancesoftware.com/products/Pages/encase-ediscovery/overview.aspx
http://digital-forensics.sans.org/community/downloads/
http://www.sleuthkit.org/sleuthkit/
http://www.arsenalrecon.com/apps/recon/
http://www.wireshark.org/about.html
http://www.capanalysis.net/ca/#about
http://www.wildpackets.com/products/omnipeek_network_analyzer
http://www.xplico.org/
http://www.snort.org/
http://www.netresec.com/?page=NetworkMiner

84

[84] A. Ben Kalifa and R. V. Yampolskiy, "GA with Wisdom of Artificial Crowds for Solving Mastermind Satisfiability

Problem," presented at the Int. J. Intell. Games & Simulation, 2011.

[85] L. H. Ashby and R. V. Yampolskiy, "Genetic algorithm and Wisdom of Artificial Crowds algorithm applied to Light up,"

presented at the Computer Games (CGAMES), 2011 16th International Conference on, Louisville,KY, 2011.

[86] R. V. Yampolskiy, L. H. Ashby, and L. Hassan, "Wisdom of Artificial Crowds-A Metaheuristic Algorithm for

Optimization," Journal of Intelligent Learning Systems & Applications, vol. 4, 2012.

[87] A. C. Port and R. V. Yampolskiy, "Using a GA and Wisdom of Artificial Crowds to solve solitaire battleship puzzles,"

presented at the Computer Games (CGAMES), 2012 17th International Conference on, 2012.

[88] R. Hughes and R. V. Yampolskiy, "Solving Sudoku Puzzles with Wisdom of Artificial Crowds," International Journal of

Intelligent Games & Simulation, vol. 7, 2013.

[89] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes

Business, Economies, Societies and Nations. New York Doubleday, 2004.

[90] T. Modegi, "Watermark Embedding Techniques for DNA Sequences Using Codon Usage Bias Features," presented at the

16th International Conference on Genome Informatics, Yokohama, Japan, 2005.

[91] J. Davis, "Microvenus.pdf," Art Journal, vol. 55, pp. 70-74, 1996.

[92] H. Yokoo and T. Oshima, "Is Bacteriophage X174 DNA a Message from an Extraterrestrial Intelligence?," Icarus, vol. 38,

pp. 148-153, 1979.

[93] M. R. Hennings and D. M. Kettelberger, "Genetic Music " Unted states of America Patent, 2004.

[94] M. B. Beck and R. V. Yampolskiy, "Hiding Color Images in DNA Sequences " presented at the 26th Modern Artificial

Intelligence and Cognitive Science Conference (MAICS 2015), Greensboro, North Carolina, 2015.

[95] P. McClure, "Project 6: Genetic Algorithm with Wisdom of Artificial Crowds for Homophonic Substitution Ciphers,"

University of Louisville2012.

[96] M. B. Beck, A. H. Desoky, E. C. Rouchka, P. McClure, and R. V. Yampolskiy, "Using Genetic Algorithm and Wisdom of

Artificial Crowds to Find Hidden Data in DNA," in Embodying Intelligence in Multimedia Data Hiding, ed: Science Gate

Publishing 2015.

[97] S. Karlin and C. Burge, "Dinucleotide relative abundance extremes: a genomic signature," Trends in Genetics, vol. 11, pp.

283-290, 1995.

[98] C. Burge, A. M. Campbell, and S. Karlin, "Over- and under-representation of short oligonucleotides," Proceedings

National Academy of Science USA, vol. 89, pp. 1358-1362, 1992.

[99] A. B. Stergachis, E. Haugen, A. Shafer, W. Fu, B. Vernot, and A. Reynolds, "Exonic Transcription Factor Binding Directs

Codon Choice and Affects Protein Evolution," Science 28 September 2012, vol. 342, pp. 1367-1371, 2013.

85

APPENDIX A

 Coding table for Improved Huffman coding scheme (text)

 Group 1 Code= G Group 2 Code= TT Group 3 Code = TA

No. Character DNA Character DNA Character DNA

1 Space AT N AT . AT
2 E CT S CT u CT
3 shift TC H TC , TC
4 T TG R TG w TG
5 A AC D AC m AC
6 O AG L AG f AG
7 I CG C CG y CG
8 G AAT 3 AAT ; AAT
9 P AAC 4 AAC q AAC
10 B AAG 5 AAG z AAG
11 V CAT 6 CAT < CAT
12 - CAA 7 CAA = CAA
13 (CAC 8 CAC % CAC
14) CAG 9 CAG + CAG
15 K CCA J CCA * CCA
16 0 CCT X CCT ? CCT
17 1 CCG / CCG > CCG
18 2 CCC : CCC Tab CCC
19 Return AAAT $ AAAT { AAAT
20 ^ AAAA & AAAA } AAAA
21 _ AAAC ~ AAAC “ AAAC
22 # AAAGC [AAAGC \ AAAGC
23 @ AAAGT] AAAGT | AAAGT
24 ! GTCGCCG
25 Page break GTCTACCC

86

APPENDIX B

Coding table for improved Huffman coding scheme (images)

DNA Symbol

G ;
TT ,
TA 0
AT 1
CT 2
TC 3
TG 4
AC 5
AG 6
CG 7
AAT 8
AAC 9
AAG S (s; x1; y1; a)
CAT R (l; w; x1; y1; a)
CAA L (x1; y1; x2; y2)
CAC C (r; x1; y1)
CAG P (n; x1; y1; x2; y2; x3; y3)
CCT Tri
CCA E

Shape Letter Parameters

Square S s-side units; x1, y1-coordinates of upper right vertex; a- angle of base
Rectangle R l- length units; w- width units; a-angle of base
Line L x1; y1; x2; y2 coordinates of line ends
Circle C r –radius; x1, y1 - coordinates of center
Polynom P n-order, xn; yn- parameters of points
Triangle Tri s1- side1; an – anangle; s2- side2; x1, y1 - coordinates of vertex a- angle of base
Ellipse E x1, y1 –center coordinates, l1- major axis; l2- minor axis

87

APPENDIX C

Coding table for improved Huffman coding scheme (music)

DNA Music Note Description

G Quarter note (1/4) Note Values
TT Half note (1/2)
TA Whole note (1)
AT Eighth note (1/8)
CT Sixteenth note (1/16
TC Dot(.)
AC A Note Pitches
AG B

CG D

AAT E

AAC F

AAG G

CAT 2/4 (meter) Meter

CAA 3/4 (meter)

CAC 4/4 (meter)

CAG (Repeat

CCA)

CCT X

CCG 2

CCC 3

AAAT 4

88

APPENDIX D

Arithmetic Encoding

88989

clkerr01
Typewritten Text
89

clkerr01
Typewritten Text

clkerr01
Typewritten Text

90

APPENDIX E

Coding table for 64 color bitmap

Codo
n

R G B Color Sample

AAA 0 0 0 Black

AAC 0 0 84

AAG 0 0 127

AAT 0 0 255 Blue

ACA 0 84 0

ACC 0 84 84

ACG 0 84 127

ACT 0 84 255

AGA 0 127 0

AGC 0 127 84

AGG 0 127 127

AGT 0 127 255 Slate Blue
 ### SAMPLE ##

ATA 0 255 0 Green
 ### SAMP

ATC 0 255 84

ATG 0 255 127 Spring Green
 ### SAMP

ATT 0 255 255

CAA 84 0 0

CAC 84 0 84

CAG 84 0 127

CAT 84 0 255

CCA 84 84 0

CCC 84 84 84 Grey

SAMPLE ###

CCG 84 84 127

CCT 84 84 255

CGA 84 127 0

CGC 84 127 84

CGG 84 127 127

CGT 84 127 255

CTA 84 255 0

CTC 84 255 84

CTG 84 255 127

CTT 84 255 255

GAA 127 0 0

GAC 127 0 84

GAG 127 0 127

91

GAT 127 0 255

GCA 127 84 0

GCC 127 84 84

GCG 127 84 127

GCT 127 84 255

GGA 127 127 0

GGC 127 127 84

GGG 127 127 127

GGT 127 127 255

GTA 127 255 0 Chartreuse
 ### SAMPLE #

GTC 127 255 84

GTG 127 255 127

GTT 127 255 255

TAA 255 0 0 Red
 ### SAMPLE #

TAC 255 0 84

TAG 255 0 127

TAT 255 0 255 Magenta
 ### SAMPLE #

TCA 255 84 0

TCC 255 84 84

TCG 255 84 127

TCT 255 84 255

TGA 255 127 0 Dark Orange1
 ### SALE

TGC 255 127 84

TGG 255 127 127

TGT 255 127 255

TTA 255 255 0 Yellow
 ### SAMPLE ##

TTC 255 255 84

TTG 255 255 127

TTT 255 255 255 White ###### SAMPLE
SAMPL### SA

92

APPENDIX F

Unigrams, sorted by frequency:

[space] 16.27371% " 0.10904189%

E 9.787157% 9 0.09536828%

T 7.224867% ` 0.001183685%

A 6.470553% > 7.959262E-4%

O 6.083978% < 4.2857564E-4%

I 6.0378346% ^ 8.163345E-5%

N 5.815098% D 2.9236817%

S 5.345216% C 2.7640884%

R 5.0819883% U 2.2520833%

H 3.4739728% M 2.0308976%

L 3.3034813% P 1.8397732%

F 1.7573234% 3 0.08010283%

G 1.580138% 5 0.07524563%

Y 1.3779523% 4 0.06742923%

W 1.3059107% 8 0.06073529%

B 1.2320325% 7 0.056816883%

. 0.9403153% 6 0.056510758%

V 0.88635564% / 0.035612594%

, 0.8497226% ; 0.027673742%

K 0.5261276% ! 0.021490006%

? 0.30443156% [0.021163473%

0 0.24324727%] 0.021041023%

- 0.21561435% _ 0.01908182%

1 0.20849183% % 0.014163404%

X 0.18610387% $ 0.012326651%

2 0.14506264% * 0.009040905%

J 0.13220537% & 0.008734779%

' 0.1176134% = 0.005510258%

) 0.11216437% # 0.0018775694%

(0.11083782% + 0.0017143026%

Z 0.08887842% \ 0.0013877687%

Q 0.08361306% @ 0.0012449102%

: 0.08167427%

93

APPENDIX G

Messages used for testing

I AGREE THAT THE AREA IS VERY LARGE. IT IS ALSO VERY GREEN. I HEAR
THAT IT IS EAST OF THE TREE LINE AND SOUTH OF TOWN. MY PET LIKES
TO SLEEP IN THE FIELD. I GO THERE TO FEED A VERY LARGE DUCK. THE
TREE TOWER HAD A RED PATTERN.

SAVING INFLOWS FROM ABROAD CAN BE BENEFICIAL IF THE COUNTRY
THAT RECEIVES THOSE INFLOWS INVESTS THEM WELL. UNFORTUNATELY,
THAT WAS NOT ALWAYS THE CASE IN THE UNITED STATES AND SOME
OTHER COUNTRIES. FINANCIAL INSTITUTIONS REACTED TO THE SURPLUS
OF AVAILABLE FUNDS BY COMPETING AGGRESSIVELY FOR BORROWERS,
AND, IN THE YEARS LEADING UP TO THE CRISIS, CREDIT TO BOTH
HOUSEHOLDS AND BUSINESSES BECAME RELATIVELY CHEAP AND EASY
TO OBTAIN. ONE IMPORTANT CONSEQUENCE WAS A HOUSING BOOM IN
THE UNITED STATES, A BOOM THAT WAS FUELED IN LARGE PART BY A
RAPID EXPANSION OF MORTGAGE LENDING. UNFORTUNATELY, MUCH OF
THIS LENDING WAS POORLY DONE, INVOLVING, FOR EXAMPLE, LITTLE OR
NO DOWN PAYMENT BY THE BORROWER OR INSUFFICIENT
CONSIDERATION BY THE LENDER OF THE BORROWER'S ABILITY TO MAKE
THE MONTHLY PAYMENTS. LENDERS MAY HAVE BECOME CARELESS
BECAUSE THEY, LIKE MANY PEOPLE AT THE TIME, EXPECTED THAT
HOUSE PRICES WOULD CONTINUE TO RISE--THEREBY ALLOWING
BORROWERS TO BUILD UP EQUITY IN THEIR HOMES--AND THAT CREDIT
WOULD REMAIN EASILY AVAILABLE, SO THAT BORROWERS WOULD BE
ABLE TO REFINANCE IF NECESSARY. REGULATORS DID NOT DO ENOUGH
TO PREVENT POOR LENDING, IN PART BECAUSE MANY OF THE WORST
LOANS WERE MADE BY FIRMS SUBJECT TO LITTLE OR NO FEDERAL
REGULATION.

94

CURRICULUM VITAE

Marc B. Beck

1022 South Brook Street
Apartment 5

Louisville, KY 40203

(270)-313-2386
Marcbeck1982@yahoo.com

PROFESSIONAL INTERESTS

My current research focuses on digital forensics and bioinformatics. I am proficient in several
programming languages including HTML, C, C++, Visual Basic, Java, Python, C#, XNA and Matlab.

CITIZENSHIP

Germany

EDUCATION

PhD in Computer

Engineering and Computer Science
May 2015

Doctoral Committee:

University of Louisville, Louisville/ Kentucky

40292

Dissertation Title: A Forensics Software Toolkit
for DNA Steganalysis

Roman Yampolskiy (advisor), Ahmed Desoky
(co-advisor), Eric Rouchka, Ibrahim Imam, John
Naber

M.S. in Industrial Technology
August 2009

Thesis Committee:

Morehead State University, Morehead, Kentucky
40351
Thesis Title: Remote Control And Automation of
VHF/UHF Satellite Tracking System
Benjamin Malphrus, Ahmad Zargari, William
Grise, Jeffrey Kruth

Brescia University, Owensboro, Kentucky 42301

B.S. in Computer Science
May 2007

mailto:Marcbeck1982@yahoo.com

95

POSITIONS

January 2011-present University of Louisville, Louisville/ Kentucky
Research Assistant funded through CECS department at University of
Louisville

August 2009-June 2010 University of Louisville, Louisville/ Kentucky
Research Assistant/Kentucky Space Initiative (KySat) funded through
Kentucky Science & Technology Corporation (KSTC)

June 2008-July 2009 Morehead State University, Morehead/ Kentucky
Research Assistant/Kentucky Space Initiative (KySat) funded through
Kentucky Science & Technology Corporation (KSTC)

August 2007-May 2008 Morehead State University, Morehead/ Kentucky
 Graduate Assistant at Space Science Center
 -wrote program to create images from astronomical data
 -tested RAID array for data storage

-set up and tested KySat components, such as S-Band radio and
development board.

July 2002- August 2003 Alternate Computers, Giessen/Germany
 Service technician
 -Tested and repaired PC hardware

RESEARCH TOPICS

2007-2008 Developed software to create images from radio telescope data

2008-2010 Satellite Tracking software and groundstation networks

2010-2011 Voice Recognition software

2011-present DNA forensic software

PUBLICATIONS

Beck, Marc B., Yampolskiy, Roman V. Hiding Color Images in DNA Sequences 26th Modern Artificial
Intelligence and Cognitive Science Conference (MAICS 2015). April 25-26, 2015 Greensboro, North
Carolina, USA. (in press).

Beck, Marc B., Rouchka, Eric C., Desoky, Ahmed H., McClure, Patrick S., Yampolskiy, Roman V. Using
Genetic Algorithm and Wisdom of Artificial Crowds to Find Hidden Data in DNA. Embodying
Intelligence in Multimedia Data Hiding. Science Gate Publishing (in press).

Beck, M. B., Desoky, A. H., Rouchka, E. C., & Yampolskiy, R. V. (2014). “Decoding Methods for DNA
Steganalysis.” Paper presented at the 6th International Conference on Bioinformatics and Computational
Biology (BICoB 2014) Las Vegas, Nevada, USA.

Marc B. Beck, Eric C. Rouchka, and Roman V. Yampolskiy, "Finding Data in DNA: Computer Forensic
Investigations of Living Organisms." Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunication Engineering, vol. 114, pp. 204-219, 2013.

96

Beck, Marc B., Yampolskiy, Roman V. DNA as a Medium for Hiding Data. BMC Bioinformatics Volume
13 Issue Suppl 12 (2012)

M Boukhris, AA Mohamed, D D'Souza, M Beck, NE Ben Amara, RV Yampolskiy, “Artificial human face
recognition via Daubechies wavelet transform and SVM”,
16th International Conference on Computer Games (CGAMES), 2011, 18-25

S Krijestorac, M Beck, J Bagby, “Border Gateway Protocols”, International Journal of Modern Engineering
Spring/Summer 2011 Volume 11 Number2

AWARDS

2014 First Place at the Annual Kentucky Academy of Science meeting for Graduate Research
Competition

2013 Third Place at the Annual Kentucky Academy of Science meeting for Graduate Research
Competition

2009 Second Place at the Annual Kentucky Academy of Science meeting for Graduate
Research Competition

2008 First Place at the Annual Kentucky Academy of Science meeting for Graduate Research
Competition

2007 Second Place at the Annual Kentucky Academy of Science meeting for Graduate
Research Competition

2005 joined honors program at Brescia University
2004-2007 mentions on Dean’s List in five semesters for GPA greater than 3.5

HONOR SOCIETIES

 Alpha Chi (since 2006)
 Delta Epsilon Sigma (since 2007)

PROFESSIONAL MEMBERSHIP

Member ACM, IEEE

REFERENCES

Available upon request

	A forensics software toolkit for DNA steganalysis.
	Recommended Citation

	

