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ABSTRACT 

EARLY DETECTION AND CONTROL OF POTENTIAL PANDEMICS 

SHENGPENG JIN 

OCT 20th
, 2011 

Early information is crucial for policy makers and public health officials responsible for 

protecting the public from the virulent spread of contagious diseases. Current indicators 

of the spread of contagious outbreaks lag behind the actual spread of the epidemic, 

leaving no time for a planned response. The studies of Christakis et al. in 2010 have 

shown that social networks can provide more timely information for prediction. Our 

focus, however, is on the effective control of the spread of contagious outbreaks in their 

early stages. We do this by defining a more effective way to chart the spread of 

contagious outbreaks, in a spatio-temporal sense, so that effective control actions can be 

taken. In this paper, we use information from "sensors", such as, First Watch and EARS 

(Early Aberration Response Systems) and "central" individuals in social networks for 

early "spatio- temporal" prediction of virulent contagious outbreaks as a means to 

allocate resources to "nip a potential pandemic in the bud." Specifically we combine 

the research of Christakis et. al on social networks and that of Hongbo Yu on 

"spatio-temporal" prediction of human activities to chart the spread ofa virulent disease. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

In 2009, the HINt influenza emerged out of Mexico and rapidly spread around the 

globe. Similarly in 2003 the respiratory illness SARS (Severe Acute Respiratory 

Syndrome) occurred in Guangdong province of China and lead to the death of many 

people all over the world. Therefore, public health agencies scrambled to understand and 

to control the spread of disease and prevent pandemics (Dimitrov et al. INFORMS 

Tutorial 2010). As we know, many infectious diseases are spread through populations via 

physical contacts among individuals. The patterns of these contacts tend to be highly 

heterogeneous. The traditional mathematical model used to understand the dynamics of 

epidemics is the compartmental SIR model, which assumes that the population groups 

are fully mixed and every individual has an equal chance of spreading the disease to 

another individual. However this is not the case in the real world (Meyers et al. 2005). 

Our objective is to utilize the methods of social network epidemiology to predict the 

spatio-temporal spread of virulent contagious outbreaks as a means to allocate resources 

and "nip a potential pandemic in the bud". The careful collection of information from a 

sample of central individuals within a human social network could be used to detect 

contagious outbreaks before they spread among the population. 



1.2 Problem Statement 

It is well established that random immunization requires immunizing a very large 

fraction of the population in order to arrest diseases that spread through contacts between 

infected and susceptible individuals (Cohen et al. 2003). Mathematical modeling has 

long been an important tool for understanding and controlling the spread of infectious 

diseases. However, the current models espoused in the literature do not properly address 

some important aspects of disease spread even though it has proven to be quite useful in 

understanding epidemic dynamics. 

In recent years, the study of social networks and in particular the spread of disease 

through these networks has attracted considerable attention in the academic community 

(Newman, 2002). Therefore, we will use the social network epidemiology to predict the 

effect of various control policies for a mildly contagious disease. It is well known that 

individuals near the center of a social network are likely to get infected sooner during the 

course of an outbreak than those at the periphery on average (Christakis et al. 2010). Our 

intent is to use social network epidemiology to define effective control policies to arrest 

the spread of a contagious disease. Unfortunately, it is typically very difficult to map a 

whole network to identify central individuals who might be monitored for infection 

(Christley et al. 2005). Therefore, an alternative strategy which does not require 

ascertainment of the global social network structure has been proposed by Christakis et 

aI, namely, i.e. to simply monitor the friends of randomly selected individuals. 
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The current social network methods used to monitor disease spread seldom takes both the space and time 

factors and the travel pattern of individuals into account. Therefore. we will embellish the social network 

models with spatio-temporal information for more effective control of disease. 

Finally. in order to make our approach more effective. we will utilize information from sources such as .. 

First watch" and EARS" to identify individuals that are symptomatic and are diagnosed to have infections 

that could result in pandemics. We could also identify central individuals in the community who have been 

shown to have many connections and monitor them. for early signs of infections. We refer to these 

individuals as sensors. These sensor methods would be introduced in order to provide significant 

additional time to react to the epidemics especially at its early stages. The output of the disease spread 

prediction model introduced in this thesis could provide relatively important information to a decision 

support system that activates mitigatory actions for pandemic control. such as resource allocation. patient 

allocation. ambulance distribution and so forth. 

1.3 Thesis Organization 

Chapter 2 provides a literature review associated with the research of Christakis et al on social network and 

Hongbo Yu's research on spatio-temporal representation of travel patterns and interactions of individuals in 

GIS. Chapter 3 describes current approaches to disease prediction and proposed methods as well as some 

extension on the pandemic control. Chapter 4 discusses more advanced ways to predict the disease spread. 

such as risk analysis of infection. sensors to the disease prediction and their relationships with the other 

parts of a decision support system. Chapter 5 draws a conclusion of the thesis. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Spatio-temporal GIS Design 

Human activities are performed within a spatial and temporal context. GIS has been used 

for representing human activity data, such as that obtained from travel and diary records 

for the exploration of their spatio-temporal characteristics (Shaw and Wang, 2000). The 

individual travel activities with their spatial, temporal and event attributes could be 

organized by using a path-based representation of trips in a relational GIS environment. 

A person's daily activities include physical and virtual activities. Four types of 

communication modes have been suggested in the literature according to their spatial and 

temporal requirements (Janelle, 2004). See Table 1. 

(1) Conventional face-to-face meetings require participants to be at the same location 

during the same time period. This communication mode requiring coincidence in both 

space and time is classified as Synchronous Presence (SP). 

(2) Post-it notes or bulletin boards must have people visit the same location, but these 

visits can be at different times, to complete the information exchange. This type of 

communications requires coincidence in space, but not in time, is called Asynchronous 

Presence (AP). 
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(3) With the use of infonnation and communication technologies (ICT)s, people are no 

longer required to be present at the same physical location for communications. 

Synchronous Telepresence (ST) only requires coincidence in time (e.g., two friends at 

different locations doing instant messages over the Internet). 

(4) Finally, Asynchronous Telepresence (AT) is free from coincidence requirements in 

either space or time. E-mail between people belongs to this type of communications. 

This classification system can be used to describe different types of human interactions 

based on their spatial and temporal requirements. The SP and AP types of human 

interactions are carried out in physical space and they are also what we are interested in 

because only physical activities could lead to the disease spread in real world. Therefore, 

in this thesis only SP and AP would be taken into consideration. 

~l Temporal Phnicalprest'nct' T elepl'esence 
Synchronous SP ST 

Face to face (F2F) Telephone 
Chat rOO111S 

T eieconferencing 
Asynchronous AP AT 

Post-it® notes Ivlail 
Traditional hospital charts E-mail 

Web pa2:es 

Table 1. Communication modes based on spatial and temporal constraints 
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2.2 Space-time Path 

Hagerstrand(l970) proposed a theoretical framework to study the constraints that affect 

an individual's presence in space and time and to portray individual activities in a 

space-time context, which is known as Time Geography. One fundamental concept is 

suggested under the time geographic framework to depict the capability of an individual 

to conduct activities in space and time which is space-time path. 

A space-time path is the container of all activities performed by a person, since all 

activities take place at certain locations and time periods and each of them occupies a 

portion of the space-time path (Hagerstrand, 1970). It depicts the sequence of an 

individual's activities at various locations over a time period. 

A space-time path offers a proper continuous representation of such a trajectory. Both 

physical activities and virtual activities performed by individuals leave traces in the 

physical space and time, which become contents of space-time paths. An individual's 

trajectory may pass through a location in the 2D space multiple times. When a 

space-time path is used to store the trajectory, every point on the space-time path 

possesses unique coordinates of (x, y, t) since a person only can be at a single physical 

location at any given time (Hongbo, 2008). 
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Figure 1. Spatio-temporal features in a 3D GIS framework 

Figure 2 (Hongbo, 2008) shows an example of typical activities of one individual. 

time r 
I 

I 
I 
~ 

space-time path 

f 

Physical actiyities: 
a: driying to \york 
c: haying lunch 
d: driying home 
f: grocery shopping 
g: going home 

Virtual actiyities: 
b: instant llles<,aging 
e: receiying call from 

<'pouse to do grocery 
shopping 

Figure 2. Locate individual activities on a space-time path 

There exist three basic relationships of space-time paths between different individuals. 

(Hongbo, 2008) See Figure 3. 
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(1) Co-location in time represents activities in different space-time paths that interact 

with each other within a common time window. 

(2) Co-location in space occurs when activities in different space-time paths occupy the 

same location in different time windows. 

(3) Co-existence describes the cases when activities take place at the same location and 

within a common time window. 

co-location in tim\.! co-location in space co-existt:nct: 

Figure 3. Space-time path relationships 

2.3 Social Network 

The careful collection of information from a sample of central individuals within human 

social networks could be used to mitigate the spread of contagious outbreaks before they 

happen in the population-at-large (Christakis et al. 2009). The social network itself will 

be an important conduit for the spread of an outbreak. However, mapping a whole 

network to identify particular individuals from whom to collect information is 

impractical, especially for large networks. 
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However, some other ways might be used to deal with this situation. Intuitively, it could 

enhance the population-level efficacy of a prophylactic intervention to vaccinate the 

central individuals in networks (Manhart and Holmes, 2005). Dr. Christakis et al 

monitored the spread of flu at Harvard College from September I to December 31, 2009 

to evaluate the effectiveness of using nominated friends of randomly selected students as 

the central individuals in the social network. 

They enrolled a total number of 744 undergraduate students from Harvard College as the 

randomly selected group and tracked whether they had the flu during that period of time. 

Another "nominated" group consisted of those who were named as a friend by at least 

once by a member of the random group. And the demographic information, such as, 

whether they were infected and vaccination status were collected by a completed brief 

questionnaire for each subject. The hypothesis is that the set of the nominated friends get 

infected earlier than the set of randomly chosen individuals (Christakis, 20 I 0). 

c 
o 
'0, 
til 
C 
o 

<.) 

'0 
(]) 
l> 
C 
(]) 
"0 
'0 
C 

~ 
~ 
"S 
E 
;;;) 

<.) 

- Central IndiVIdualS 
.• Popwation 

, Curve for 
, Central Individuals 

Shifted Forward 

Time 

- Central Individ 
- - PupuiCition 

Peak for 
~ Central Individuals 

Shifted Forward 

Time 

Figure 4. Theoretical differences in contagion between two groups 

9 



As hypothesized, the cumulative incidence curves for the friend group and the random 

group diverge and then converge and the friends curve for flu diagnosed by medical staff 

is shifted 13.9 days forward in time (95% c.1. 9.9-16.6), thus providing early detection. 

The friend group showed a significant lead time prior to the estimated peak which could 

be an effective technique for detecting outbreaks at early stages of an epidemic. See 

Figure 5 (Christakis, 2010). 
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Figure 5. Empirical differences in contagion between two groups 

For many contagious diseases, early knowledge of when - or whether - an epidemic is 

unfolding is crucial to policy makers and public health officials responsible for defined 

populations, whether small or large. In fact, with respect to flu, models assessing the 

impact of prophylactic vaccination in a metropolis such as New York City suggest that 

vaccinating even one third of the population would save lives and shorten the course of 

the epidemic, but only if implemented a month earlier than usual (Khazen et aI, 2009). 
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Also in case of influenza it takes time to develop the vaccine. In addition, resource 

planning requires early knowledge of the pandemic spread, and when it is expected to 

peak, etc. 

In fact, this method could be used to monitor targeted populations of any size, in real 

time. For example, a health service at a university (or other institution) could empanel a 

sample of subjects who are nominated as friends and who agree to be passively 

monitored for their health care use. 

There are mainly two steps by taking the social network epidemiology as an analytical 

framework to capture the disease transmission. The first step in this modeling approach 

is to build a realistic network model of contact pattern at an appropriate temporal and 

spatial scale. The second step is to predict the disease spread through the social network, 

based on the feature of both the disease and the network structure. 

2.4 Travel Pattern 

As we know, travelers are a rich source of information for infectious disease specialists. 

On returning from their journey, travelers can provide a representative sample of the 

diseases that abound in the places they have visited (Ross, 2006). There are a wide 

variety of travelers ranging from tourists and business people to immigrants, refugees 
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and foreign-born citizens who have visited friends and relatives in their home countries. 

Moreover, a traveller who returns home with an unusual disease could be the first clue to 

a new outbreak (Ross, 2006). 

Therefore, a disease tracking system could be built for sharing information among their 

networks of travel medicine clinics or hospitals such that doctors could record travel 

histories and symptoms of their patients and their diagnoses in standardized electronic 

forms and submit these to the system which in fact, is also a central database. Then the 

system regularly examines the data to detect the symptoms which might indicate a new 

outbreak and warrants a warning to the clinics or hospitals. 

2.5 Individual Centrality in Contact Network 

The centrality in a social network is a parameter used to measure how central an 

individual is in a social network (Freeman, 1979). The concept of centrality was formally 

defined by Freeman. Specifically, Freeman identified three primary centrality measures: 

degree, closeness and betweenness. 

(1) Degree centrality measures an individual's direct connectedness with other 

individuals; 
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(2) Closeness centrality provides a more global network prospective than degree 

centrality. Specifically, closeness centrality is a measure that indicates the degree to 

which an individual is near all the other individuals in the network not just those adjacent 

to them; 

(3) Betweenness centrality is a measure of the strategic location of an individual along a 

potential communication path. 

The study of the centrality in a social network could determine the most central 

individuals who playa critical role in the disease spread. Obviously, the rate of spread of 

a potential pandemic could be mitigated to some extent by monitoring and immunizing 

those with higher centrality values. 

2.6 Compartmental SIR Model 

The compartmental SIR model, which is relatively simple and widely used, is a 

traditional approach to model infectious disease dynamics. 

Consider a population of N individuals and the following simple discrete-time, 

discrete-state epidemic model. Each individual begins in one of the three possible states: 

13 



(1) susceptible, meaning that the individual has never had the disease and is susceptible 

to being infected; 

(2) infected, meaning that the individual currently has the disease and can infect other 

people; and 

(3) resistant, meaning that the individual does not have the disease, cannot infect others, 

and cannot be infected. 

The model simulates the progression of the disease through the three states. Individuals 

are first susceptible, then infected, and then become resistant by acquiring immunity to 

the disease (Anderson et ai, 1979; Bernoulli and Blower, 2004 ). 

The model then evolves in discrete time steps, with all individuals simultaneously acting 

as follows in each time step: 

(1) Each susceptible individual draws a uniformly random person from the population. If 

the person drawn is infected, then the susceptible individual changes his state to infected 

with probability p. 

(2) Each infected individual changes his state to resistant with probability y. 

(3) Each resistant individual remains resistant. 

14 



The parameter P captures the ability of the disease to be transmitted from one person to 

another; the parameter y is related to length of the period for which an individual can 

transmit the disease, called the infectious period. The population in this model is a 

homogeneously mixed population which interacts in such a uniformly random and 

independent way between time steps. In this model, there is a very important parameter 

Ro, called the basic reproduction number, which is the expected number of new 

infections created by an infected individual under the most favorable conditions for 

transmission. For the compartmental SIR model, Ro =p!y and generally the disease can 

become an epidemic only if Ro > 1. 

Here is a mass-action SIR compartmental model, where X(t), Y (t),and Z(t) denote the 

number of susceptible, infected, and resistant individuals in the population at time t. and 

X(t) + Y (t) + Z(t) = N. 

rlX(t) =-1. \"(t). HI) 
ilt . S . (1) 

il1' ( i) . l' (t ) " 
-,-=.1,}~(t),-\, -~,1 (f), 

(I . 
(2) 

dZ(I) '") 
-'- =', 'I (I , 

rli ' 

The model can also be extended to a more complex disease spread model with a more 

complex population structures. For example, a natural birth/death rate or a latent period 

of disease could be included in the model. For more information on the SIR model and 

its extension, see Dimitrov and Meyers, INFORMS Tutorial 2010. 
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Figure 6 provides an example of typical epidemic curves defined by the SIR model 

(Dimitrov and Meyers, INFORMS Tutorial 2010). 
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Figure 6. A typical curve of the compartmental SIR model 

2.7 The Comparison of three Disease Spread Models 

Although the compartmental SlR models have proven to be quite useful in modeling 

epidemics, they do not properly model some important aspects of disease. Moreover, the 

compartmental SIR models assume a fully mixed, homogeneous population in which 

each individual has the same amount of contacts as every other individual. Thus, simple 

SIR models do not accurately model the increased rate of contact in the hospitals and the 

decreased rate of contact of quarantined individuals. If the population at large had as 

many contacts as the population within a hospital, possibly the estimates of Ro would 

have been more accurate, and SARS (Severe acute respiratory syndrome, see 

http://en.wikipedia.org/wiki/SARS ) would have infected many more people. 
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Incorporating realistic contact patterns of the population is just one possible way to 

increase the fidelity of epidemic models. Diseases often spread at different rates based on 

age and the type of contact; they also have varying incubation periods in different age 

groups. For example, contacts at home tend to be more intimate than contacts at work. 

Hence, an infected person's family members are more susceptible to the disease. Also, 

disease spread is affected by both geographic location and seasonality. 

Therefore, researchers have attempted using high-fidelity agent-based simulation models, 

where each individual is tracked as they move from home to work and back. Such 

models involve complex parameterization and often require extensive computation that 

deems the models intractable and of limited usefulness. The social network modeling 

approach utilized in this research provides acceptable fidelity and tractable formulations. 

This is illustrated in the figure below (Dimitrov and Meyers, INFORMS Tutorial 2010). 

E 
.!:!l 
co 
(lJ 

a: 

Pencil and paper 

Complexity 

~ ,...., 

Supercomputers 

Figure 7. Complexity of epidemiological models 
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The Compartmental SIR models are easy to analyze but miss important, realistic details, 

such as heterogeneous patterns and types of contacts. Agent-based simulations are able to 

model reality with a great amount of detail, but are difficult to parameterize and analyze, 

and require large amounts of computation. Social network models capture disease 

transmission with a higher fidelity than compartmental models yet remain analytically 

tractable. 
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CHAPTER 3 BASIC METHODS OF DISEASE SPREAD 

3.1 Basic Concepts of A Social Network 

A social network is a social structure made up of individuals (or organizations) 

represented as "nodes", that are tied (connected) by one or more specific types 

of interdependency, such as friendship, kinship, common interest, financial exchange, 

dislike, sexual relationships, or relationships of beliefs, knowledge or prestige (Horton, 

2006). 

Social network analysis views social relationships in terms of network theory consisting 

of nodes and ties (also called edges, links, arcs or connections). Nodes are the individuals 

within the networks, and ties are the relationships between the individuals. The 

resulting graph-based structures are often very complex (Social network, wikipedia). 

There can be many kinds of ties between the nodes. Research in a number of academic 

fields has shown that social networks operate on many levels, from families up to the 

level of nations, and playa critical role in determining the way problems are solved, 

organizations are run, and the degree to which individuals succeed in achieving their 

goals (see http://en.wikipedia.org/wiki/Social network). 
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Moreover, social network analysis has also been used in epidemiology to help understand 

how patterns of human contact aid or inhibit the spread of diseases such as HIV in a 

population (Parker, 2002). The evolution of social networks can sometimes be modeled 

by the use of agent based models, providing insight into the interplay between 

communication rules, rumor spreading and social structure. 

3.2 The Traditional Method of the Centrality 

Consider a social network modeled as a direct graph, G(V, E). Let V = (vI, v2, ... , vn) 

denote the set of nodes in the network, and let E = (el, e2, ... , em) denote the number of 

edges between the nodes (Hamill et a1. 2006). Specifically, consider the modified 

network from Hamill with n = 11 nodes with the social relationships (or paths of 

communication) depicted in the figure below (Schneider et al 2011). 

/' 

Figure 8. Sample network 
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One of the most important metrics in the social network analysis (SNA) is the centrality 

of an individual (each node in the network). There are three main centrality measures: 

degree, closeness and betweenness (Freeman, 1979). The traditional way to calculate 

these three centrality measures is introduced below: 

Degree centrality CD(v): measures an individual's direct connectedness with other 

individuals. The degree of a node (or vertex) is the number of edges connected to it. Let 

deg(v) denote the degree of an individual v in the network which have n individuals, and 

then the degree centrality is given by 

C ( ) - deg(v) 
DV --

n-l 
(4) 

Closeness centrality Cc(v): a measure that indicates the degree to which an individual is 

close to all the other individuals in the network not just those adjacent to them. It 

provides a more global network prospective than degree centrality. Let dG(v, c) denote 

the length of shortest path connecting individual v with individual c, so that the closeness 

centrality of an individual v is given by 

1 
Cc(v) = ,..-----

LCEVdG(v,c) 
(5) 

Betweenness centrality CB(v): a measure of the strategic location of an individual along a 

potential communication path. Let O"bc denote the number of shortest paths from 

individual b to individual c, and let O"bc(V) denote the number of shortest paths from 

individual b to individual c that contain individual v. The betweenness centrality of an 

individual v is given by 

21 



(6) 

The centrality measures for the network in Figure 8 are shown in the Table 2 (Schneider 

et al 2011). From Table 2, we can see that individual 4 has the largest centrality values 

for each measure. Individuals 6 and 7 exhibit the second highest degree centrality and 

meanwhile individual 7 exhibits the second highest closeness and betweenness centrality 

as well. All these results could indicate which individuals are the most "central" people 

in a social network to some extent. However, these metrics treat each individual in the 

network identically and assume a perfect contact chain. In reality, certain individuals 

within the network may be more persuasive and the contact between individuals in the 

network may not be that perfect since their centrality values are so close such that we 

could not tell the differences among individuals based on their centralities. In these 

instances, the centrality metrics may not adequately quantify the criticality of individuals 

within the network (Schneider et al 2011). 

Individual Degree Closeness Betweenness Betweenness * 
1 0.20 0.0500 0 0 

2 0.10 0.0435 0 0 

3 0.10 0.0435 0 0 

4 0.60 0.0714 43 1 

5 0.30 0.0588 2 0.0465 

6 0.50 0.0588 17 0.3953 

7 0.50 0.0667 36 0.8372 

8 0.20 0.0435 0 0 

9 0.20 0.0435 0 0 

10 0.20 0.0455 0 0 

11 0.30 0.0526 8 0.7273 

Table 2. Traditional Centrality Measures of the Sample Network 
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3.3 A Proposed Centrality Measure 

Consider a social network with n nodes with the connection probabilities between every 

two nodes given. The connection probability is the likelihood of contact between two 

individuals and it could be obtained by recent frequency of physical contact between the 

two individuals. The connection probability could reflect the possibility for one 

individual to get an infection from another individual to some extent, although the chance 

of getting infected also depends on other factors, such as the feature of the disease, the 

feature of the population and the social network structure. 

There are several steps to calculate this centrality value of a specific node i: 

AU, k) 

Figure 9. Sample arc in a network 

1. For each node, find the first-nearest-Iayer (FNL) nodes which have direct 

connection with the original node i. In this case, node j is the only FNL nodes and the 

impact ofFNL nodes (FNL values) could be obtained by the formula below. 

FNL value Ii A(i,J) 

Where A(i , j) is the degree of connectedness between node i and j . 
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2. For each FNL node, generate a second loop to their FNL nodes, which would be 

the second-nearest-Iayer (SNL) nodes of the initial node i. In this illustrative example, 

node k is the SNL node and their impact (SNL value) towards the initial node i could be 

obtained by the formula below: 

SNL value = I~{A(i,j) x AU, k)} (8) 

Where A(i, j) is the degree of connectedness between node i and j; A(j, k) is the degree of 

connectedness between node j and k. 

3. Similarly, for each SNL node, generate a loop to their FNL nodes, which are the 

third-nearest-Iayer (TNL) nodes of the initial node i and their indirect impact values 

(TNL value) towards the initial node i could be calculated by the formula below: 

TNL value = IrfA(i,j) x AU, k) x A(k, l)} (9) 

Where A(i,j) is the degree of connectedness between node i andj; A(j, k) is the degree of 

connectedness between node j and k; A(k, I) is the degree of connectedness between 

node k and I. 

4. Finally, the centrality of node i would be the summation of all the impacts of FNL, 

SNL and TNL. 
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3.4 Utilizing the Proposed Measure to Identify Central 

Nodes in a Sample Social Network 

Consider a sample non-dynamic social network model which contains 30 individuals 

represented in Figure 10. The number beside each arc indicates the connection 

probability between two adjacent nodes. Using this sample we illustrate the utilization of 

the proposed centrality measure to identify "central" nodes in the network. 

D·70 

0.25 22 

28 

Figure 10. A 30-size sample population network 
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The centrality values of all nodes based on the proposed measure are shown in Table 3. 

-------7.3490 4.9158 17.7090 9.0615 ----10.3566 12.0382 --
4.0230 --2.4004 2.5375 

Table 3. The centrality values of a 30-size population network 

From the result table, we can see that nodes 5, 7, 8, 12, 13, 14, 15 and 19 seem more 

central than other individuals. The Matlab program developed to automate the calculation 

is shown in the Appendix. 

Figure 11. The more central individuals in the sample network 
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Visually examining, the identified central nodes (red nodes) and their probabilities in the 

network provide face validity to the suggested measure of centrality. 

3.5 Extension of Network Analysis 

In fact, each node in the network could be colored according to their centrality values in 

order to classify different importance of the nodes like the social network below 

(Christakis, 2010). 

Figure 12. The different-colored network 

The social network visualization can support such intervention in numerous ways. 

First of all, they can be used to identify clusters of connected individuals with similar 

disease susceptibility and health-relevant attributes. The clusters could be targeted for 

collective interventions. Secondly, they can be used to identify and target individuals for 
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public heath interventions. Thirdly, the knowledge of the overall network structure may 

be crucial to the design of public health intervention strategies. 

28 



CHAPTER 4 ASSESSMENT OF DISEASE SPREAD BASED ON 

SPTIO-TEMPORAL INFORMATION 

Although there are a variety of different tools to predict and detect the disease spread 

including the SIR model, contact network models and mathematical model, we suggest 

that it would be more effective and beneficial to predict the disease spread considering 

the intensity of exposure to the disease of susceptible individuals. This would involve the 

consideration of both space and time factors. Since diseases caused by either viruses or 

bacteria involve some type of contact, either direct (shaking hands) or through the 

atmosphere (e.g. coughing or sneezing) between the susceptible and infected individuals. 

In this thesis we use the concept of space-time paths to embellish the prediction of 

disease spread. As we know, the space-time path records the main activities and tracks 

during a certain period of time for an individual. Suppose there are two individuals and 

one is susceptible and the other is infected. By considering the space-time paths of the 

individuals, we could estimate exposure intensity and assess the likelihood for the 

susceptible individual to get infected. 
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In this case, both space and time would be taken into account which is unique in this 

thesis as well as other parameters, such as the characteristics of the disease. The length of 

time for overlapping parts of the two-individual space-time paths could be a descriptive 

method to evaluate the chance for one individual to get infected from the other. More 

detail is on the procedure is provided in the next section. 

4.1 Risk Analysis of Infection 

Consider two individuals A & B. A is infected and B is susceptible. The locations of A & 

B at any point in time t, specified by geographic coordinates (Xa(t), Ya(t)) and (Xb(t), 

Yb(t)) respectively. 

Therefore, their relatively proximity at any time t, can be represented by the Euclidean 

distance Dab(t) as indicated below: 

(10) 

Consider the start and end times that A & B are in the "infection range" at location i (i = 

1,2, ... , n) as TSj and Tej. 

In fact, for each location i, Dab could be regarded as a constant. 
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Then such a metric parameter could be obtained, which to some extent can describe how 

likely it is for B to get infected from A (from the start time Ts to the ending time Te) 

(II) 

Where p is the time parameter and q is the distance parameter. p should be between 0 and 

1; q should be greater than 1. In fact, both p and q could be fixed by a large amount of 

experimental data and this would be the future research. 

Additionally, E is a very small positive number which prevents the denominator from 

being zero. 

'Y is the disease parameter which describes the spread rate of the disease and is related to 

multiple factors, such as temperature, seasons, and features of the disease. 

However, in the real world it is unlikely that individuals could specify the locations 

where they had been in terms of exact geometric coordinates. It is conceivable however, 

that they could identify landmarks, such as buildings, museums, libraries, restaurants, etc. 
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where they had been. Therefore, the formula above could be approximately rewritten as 

follows: 

(12) 

Where Ri represents radius of a circle that could encompass the areas of possible 

movement at common location i between two individuals. 

Fab is called infection index in this thesis and in standardized form, it would be a value 

between 0 and 1, which could represent the likelihood ofB being infected by A. 

The following example illustrates this concept: 

Suppose there are two individuals and their activity information during two days are in 

Table 4. 

Individual 1 

Start Time End Time Activity & Place 

08:40 09:00 Walked to IE Dept 

10:02 10:08 walked to UofL Book Store 

10:41 10:47 Walked to uofL Library 

1st Day 12:24 12:40 Walked to Restaurant A for Lunch 

13:12 13:30 Returned to IE Dept 

17:10 17:32 Returned Home 

09:00 09:18 Walked to Uofl Library 

2nd Day 
12:30 12:47 SAC for Lunch 

13:25 13:41 UofL Library 

16:40 17:02 Returned Home 

Common Place Time Duration 

IE Dept 9:00-10:02 62 mins 

1st Day Uofl Library 10:47-10:55 8 mins 

IE Dept 13:30-16:30 180 mins 

Radius 

2S 

35 

25 

Individual 2 

Start Time Arrival Time Activity & Place 

08:15 08:57 Drived to IE Dept 

10:05 10:12 Walked to Uofl library 

10:55 10:58 Walked to Classroom A 

1st Day 12:15 12:25 Walked to SAC for lunch 

13:10 13:22 Returned to IE Dept 

16:30 16:47 Walked to SAC for Sports 

19:08 19:35 Drove Home 

09:50 10:20 Drove to Company A for Co-op 

2nd Day 
11:25 12:10 Left Company A for Restaurant A 

12:40 12:53 Drove Back to Company A 

15:14 15:38 Drove Home 

Table 4. The Activity information of two individuals during two days 
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And by using ArcGIS software, we can generate the space-time paths of their activity 

information as shown in Figure 13 . The red line represents the first individual ' s activity 

information and the blue one for the other individual. On the space-time path, there are 

several overlapping parts, which represents synchronous activities, where they are both 

are in close proximity. This, as noted previously, would factor into risk of getting 

infected. 

,_. . '._ ~ .•. - - ..J - -. - -} ... ~~-~ 

.===-=-.~-. --.~-~-;;:"'-' -----r------3::J ~ : 
-, ~- ... ~--

Figure 13. The Space-time Paths of two individuals 

Given different parameters such as 'Y, p and q, Fab could have different values which are 

displayed in Table 5 and their data analyses are shown in Figure 14. 
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Fab 

q\p 0.3 0.6 0.9 

1.5 1.3263 4.8136 18.4013 

V = 0.2 
2 0.2649 0.0622 3.6794 

2.5 0.0529 0.1924 0.7358 

q\p 0.3 0.6 0.9 

1.5 2.6526 9.6272 36.8026 

V = 0.4 
2 0.5298 1.9244 7.3588 

2.5 0.1058 0.3848 1.4716 

q\p 0.3 0.6 0.9 

1.5 3.9789 14.4408 55.2039 

V = 0.6 
2 0.7947 0.1866 11.0382 

2.5 0.1587 0.5772 2.2074 

q\p 0.3 0.6 0.9 

1.5 5.3052 19.2544 73.6052 

V = 0.8 
2 1.0596 0.2488 14.7176 

2.5 0.2116 0.7696 2.9432 

q\p 0.3 0.6 0.9 

1.5 6.6315 24.068 92.0065 

V = 1.0 
2 1.3245 0.311 18.397 

2.5 0.2645 0.962 3.679 

Table 5. Different Fab values with different parameters 
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Figure 14. The Curve of different Fab values with different parameters (y= 0.2) 

So from both Table 5 and Figure 14, we can see that for the same value of 'Y, as P 

increases, Fab would be increased accordingly; Conversely, Fab would decrease when g 

increases. For the same p and g, the risk would increase if'Y increases. Intuitively this 

makes sense, since higher the infectivity of the disease, higher risk of getting infected. 

4.2 Possible Process of Getting information for Spatio 

Temporal Analysis 

The whole process is shown in Figure 15. 
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People with infection 
symptoms 

Susceptible People 

Go to Hospital and f ill Stored in the Decision Input their recent 
out the surveys Support System movements 

Space-time paths Comparison and Space-time paths 
displayed by ArcGIS In fection Index displayed by ArcGIS 

High or Low? ow----. Leave it alone 

High 

i 
Given priority for 

observa tion or vaccine 

Figure 15. Possible Process of Getting information for Spatio Temporal Analysis 

(1) The people who seem to have the infection symptoms go to the hospitals 

spontaneously and then they have to fill out the surveys provided by the hospital. The 

surveys contain some questions about the information of where they have been to 

recently and when. 

(2) Then the geographic information of these infected individuals could be obtained by 

space-time paths, which would be displayed in ArcGIS environment. 

(3) For those who care more about their risk of getting infected and mostly susceptible 

or not detected to be infected yet, they can input their information about their recent 
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tracks into the decision support system. Then they will get a feedback or report about 

their infection risk based on the infection index. 

(4) If the risk is high, they would be given priority for observation or vaccines. 

Otherwise, they could do the routine activities as normal but still need to keep an eye on 

the spatio-temporal trend of the disease spread. 

4.3 Sensors to the Proactive Intervention 

As we know, it is generally costly, time-consuming, and often impossible to map a whole 

social network, especially for a large population to identify central individuals to serve as 

sensors for early detection of possible virulent disease outbreaks and to track their 

spread. However, there are possibly other options for identifying suitable "sensors". 

For example, the "Louisville Connectors" could be considered as one set of sensors for 

the Louisville metropolitan area. The Louisville connectors are a diverse group of 128 

individuals ranging in age from 28 to 71, from 5,500 nominations submitted by people 

through Louisville and Southern Indiana and they could be considered as "central 

individuals" to monitor. The hypothesis is that members of this group are more likely to 

get infections early. In case of an infection in this group, their social networks and 

spatio-temporal interactions would be considered immediately, and mitigatory actions to 

stop a possible epidemic would be taken. 
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Also individuals identified by sources, such as, hospital laboratories, and "First Watch" 

with symptoms of virulent infections can answer questionnaires, which would provide 

information to construct their social networks and spatio-temporal interactions. 

Additionally, The Early Aberration Reporting System (EARS, see 

www.bt.cdc.gov/surveillance/ears/ ) of the Centers for Disease Control and Prevention 

(CDC) allows the analysis of public health surveillance data using available aberration 

detection methods. The primary purpose of EARS is to provide national, state, and local 

health departments with several alternative aberration detection methods. EARS helps 

assist local and state health officials to focus limited resources on appropriate activities 

during epidemiological investigations of important public health events. Finally, EARS 

allows end users to select validated aberration detection methods and modify sensitivity 

and specificity thresholds to values considered to be of public health importance by local 

and state health departments. 

Also, we can explore the use of readily available or extant data, such as that available 

using social network websites such as Facebook or MySpace or mobile phone networks 

or perhaps overlapping lists of memberships in some organizations or clubs or lists of 

users of public services (Christakis, 2010). Another proposal to use Google Trends to 

monitor online searches for information about the flu suggests that this approach could 
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offer a better indicator, providing evidence of an outbreak at least a week before 

published CDC reports (Carneiro and Mylonakis, 2009). 

Finally, the survey methodology or self-report could also be considered as an effective 

senor. Such sources of data would allow us to visualize potential direction of disease 

spread in large networks composed of hundreds of thousands of people and to intervene 

proactively. 

4.4 Comprehensive Application 

In a similar fashion, infection spread within a hospital or treatment facility could be 

mitigated by tracking spatio-temporal contact with infected patients with infection stay 

long in hospital. Beside, most hospitals do not track which equipment used on which 

patient. 

One way to accomplish this would be through the use of RFID tags that track the 

movement of patients, hospital staff and equipment and their spatio-temporal interactions 

with an infected person. This would enable the defining a risk level for all hospital 

residents who are susceptible to infection, which would allow efficient prophylactic 

measures to be appropriately scheduled and adopted. 

39 



4.5 Future Research 

Future research should aim to extend and validate the application of infection index and 

the likelihood of infection to large networks. The infection index itself could be 

expanded to include more detail, such as the influence gender, age, population, climate, 

etc. Finally, feedback of values of infection index and the likelihood of infection to the 

general public based on interaction with a web based tool would be a valuable 

contribution to society. 
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CHAPTER 5 CONCLUSION 

In recent year, the infectious diseases have emerged from some part of the world and 

rapidly spread around the globe. In the last decade alone disease, such as SARS in 2003 

and HINI in 2009, have spread globally, and have received needed attention from the 

public as well as the public health agencies. It is essential to understand, predict and 

control the spread of the disease. However, as discussed previously, the mathematical 

techniques used to understand, forecast and control the spread of infectious disease is not 

effective and sometimes lags the actual spread of disease, and hence is of limited value 

for proactive actions to mitigate the spread. 

The approach that has been developed and suggested in this thesis is built on existing 

methods from diverse fields such as contact network modeling, graph theory, space-time 

path development and risk analysis. Some "sensors", which in fact are the sample group 

of individuals, or web-based tools, or even survey methodology, and comprehensive 

application of the approach, are also introduced in this thesis to mitigate the disease 

spread. 
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APPENDIX 

1. Matlab codes for the individual centrality model 

function V = getCentrality 

A = [0, 0, 0.65, 0, 0, 0, 0.40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0.65, 0, 0, 0, 0.60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.50, 0.55, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0.50, 0.60, 0, 0, 0, 0, 0.85, 0, 0, 0, 0.65, 0.90, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0.70, 0, 0, 0, 0, 0, 0.70, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0.40, 0, 0, 0, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.75, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0.85, 0.70, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.40, 0, 0.45, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0.30, 0, 0.55, 0, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 0, 0.75, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o· , 

0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 0, 0, 0.70, 
0, 0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0; 

0, 0, 0.55, 0, 0.90, 0, 0.75, 0.90, 0, 0, 0, 0, 0, 0.70, 0, 0, 
0, 0.40, 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0.70, 0, 0, 0.40, 0, 0, 0, 0.70, 0, 0.90, 0, 0, 
0, 0, 0.70, 0, 0, 0, 0, 0, 0, 0, 0, 0.,15, O· , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90, 0, 0, 0, 0, 0.75, 
0, 0.65, 0, 0, 0, 0.60, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0.45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0.70, 0, 0, 0, 0.30, 0, 0, 0, 0; 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0.75, 0.70, 0.40, 0, 0, 0, 0.65, 
0, 0, 0, 0, 0, 0.35, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.75, 0, 0.75, 0, 0, 0, 0, 
0, 0, 0, 0.25, 0, 0, 0.35, 0, 0.30, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0.70, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 
0, 0.25, 0, 0, 0.40, 0, 0.65, 0, 0.25, 0.20; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.70, 0, 0, 0, 0, 
0.25, 0, 0, 0, 0, 0, 0, 0, 0, o· , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.35, 0.25, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.50, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.60, 0, 0, 0, 0, 0, 
0.40, 0, 0, 0.65, 0,. 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0, 0, 0.35, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.60; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 
0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30, 0, 
0, 0, .0, 0, 0, 0, 0, 0, 0, o· , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O. 15, 0, 0, 0, 0, 0, 0, 
0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20, 
0, 0, 0, 0, 0.60, 0, 0, 0, oJ 

n = size(A) ; 
M = zeros(n); % an anrry which will indicate which 3-layer nodes 

are related to i specific node 
M1 = zeros(n); % an anrry which will indicate which nodes have the 

first relationship with specific node 
M2 = zeros(n); % an anrry which will indicate which nodes have the 

second relationship with specific node 
M3 = zeros(n); % an anrry which will indicate which nodes have the 

third relationship with specific node 

MV = zeros(n) ; 
MV1 = zeros(n); 
MV2 = zeros(n); 
MV3 = zeros(n) ; 
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v = zeros(l,n); % record the value of each node 

flag1 = 0; 
flag2 = 0; 
flag3 = 0; 

% for i = l:n 
% for j = l:n 

for k=l:n 

end 
% end 
% end 

for m = k:n 

end 

if A(k,m) > 0 & flag1 == 0 
flag1 = flag1 + 1; 
V(l, k) = A(k, m); 

elseif A(k, m) > 0.0 & flag1 > 0 
flag1 = flag1 + 1; 

end 

V (1, k) = (1 - V (1, k» * (1 - A (k, m»; 
V (1, k) = 1 - V (1, k); 

%--- The codes below is to find 3-layer nodes related to each node. 
for i = l:n 

for j = 1 : n 

if A (i, j) ~ =0 & i '" = j 
M1(i, j) = 1; 
MY1 (i, j) = A(i, j); 

for k = 1: n 
if A(j, k) ~=O & j "'=k & i"'= k 

M2 (i, k) = 1; 
MV2(i, k) = AU, j)* AU, k); 
for m = l:n 

if A(k, m)"'=O & k"'= m & i~= m & j"'=m 
M30, m) = 1; 
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MY3(i, m) = AU, j)* AU, k)* A(k, m); 

end 
end 

end 

end 
end 

end 
end 

MY = MY1 + MY2 + MV3; 

for i = 1: n 

end 

for j = 1: n 
V(i) = V(i) + MYU, j); 

end 

%-----------------------------------------
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2. Matlab codes for the risk analysis model 

function get Infect 

syms x; 

A = [ 540, 602, 1 
608, 641, 2 
647, 744, 3 
760, 792, 4 
810, 1030, 1J ; 

B = [ 537, 605, 1 
612, 655, 3 
658, 735, 6 
745, 790, 5 
802, 990, 1 
1007, 1148, 5]; 

R = [1, 25; 
2, 5; 
3, 35; 
4, 8; 
5, 20; 
6, 3; 
7, 100J 

s = size (A, 
t = size (B, 

1); 
1); 

% get the number of rows in Matrix A 
% get the number of rows in Matrix B 

num = 0 ; % define the number of rows in the result Matrix C 

for i = 1: s 
for j = 1: t 

if A(i, 3) == B(j, 3) 
if BU, 1) (= ACi, 1) 

if BU, 2) (= A(i, 2) & BU, 2»=A(i, 1) 

num = num + 1; 
C (num, 1) = A ( i, 1); 

C(num, 2) = BU, 2); 
C(num, 3) = ACi, 3); 
C(num, 4) = R(A(i, 3), 2); 
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elseif BU, 2) )= A(i, 2) 

end 

num = num + 1; 
C(num, 1) = A(i, 1); 

C(num, 2) = A(i, 2); 
C(num, 3) = A(i, 3); 

C(num, 4) = R(A(i, 3), 2); 

elseif BU, 1) )= A(i, 1) & BU, 1) <= A(i, 2) 
if BU, 2) )= ACi, 2) 
num = num + 1; 
C(num, 1) = BU, 1); 

C(num, 2) = A(i, 2); 
C(num, 3) = A(i, 3); 
C(num, 4) = R(A(i, 3), 2); 

elseif B(j, 2) <= A(i, 2) 

end 
end 

end 
end 

end 

m = size(C, 1); 

m1 = size(C, 1); 
m2 = size (C, 1); 

num = num + 1; 
C(num, 1) = BU, 1); 

C(num, 2) = B(j, 2); 
C(num, 3) = A(i, 3); 

C(num, 4) = R(A(i, 3), 2); 

Eps = 0.00001; % Epsilon is a very small positive number 
Gam = 0.2; % Gamma is a medical parameter about the feature 

of the disease 
f = 0.0; 
f1 = 0.0; 
f2 = 0.0; 
p = 0.30; 
q = 1. 5; 
ql = 2; 

q2 = 2.5; 

for k = 1: m 
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fx = Gam * (x - C(k, 1)) "pi (C(k, 4)"q + Eps); 
f = f + int (fx, x, C (k, 1), C (k, 2)); 

end 

g = 0.00; 
g = double (f) 

for k = 1: ml 
fxl = Gam * (x - C (k, 1))" pi (C (k, 4)" ql + Eps) ; 
fl = fl + int(fxl, x, C(k, 1), C(k, 2)); 

end 

gl = 0.00; 
gl = double (fl) 

for k = 1: m2 
fx2 = Gam * (x - C (k, 1))" pi (C (k, 4)" q2 + Eps) ; 
f2 = f2 + intCfx2, x, C (k, 1), C (k, 2)); 

end 

g2 = 0.00; 
g2 = double(f2) 
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