
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2012 

Predictive relationships of teacher efficacy, geometry knowledge Predictive relationships of teacher efficacy, geometry knowledge 

for teaching, and the cognitive levels of teacher practice on for teaching, and the cognitive levels of teacher practice on 

student achievement. student achievement. 

Paul Klein 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

Recommended Citation Recommended Citation 
Klein, Paul, "Predictive relationships of teacher efficacy, geometry knowledge for teaching, and the 
cognitive levels of teacher practice on student achievement." (2012). Electronic Theses and Dissertations. 
Paper 763. 
https://doi.org/10.18297/etd/763 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/763
mailto:thinkir@louisville.edu


PREDICTIVE RELATIONSHIPS OF TEACHER EFFICACY, 
GEOMETRY KNOWLEDGE FOR TEACHING, 

AND THE COGNITIVE LEVELS OF TEACHER PRACTICE 
ON 

STUDENT ACHIEVEMENT 

By 

Paul Klein 
University of Louisville 

A Dissertation 
Submitted to the Faculty of the 

College of Education and Human Development 
of the University of Louisville 

in Partial Fulfillment of the Requirements 
for the Degree of 

Doctor of Philosophy 

College of Education and Human Development 
University of Louisville 

Louisville, Kentucky 

December 2012 



Copyright 2012 by Paul Joseph Klein 

All rights reserved 



ii 
 

 
 
 

PREDICTIVE RELATIONSHIPS OF TEACHER EFFICACY, 
GEOMETRY KNOWLEDGE FOR TEACHING, 

AND THE COGNITIVE LEVELS OF TEACHER PRACTICE 
ON 

STUDENT ACHIEVEMENT 
 

By 
 

Paul Joseph Klein 
M.Ed., Xavier University, 2002 

M. Eng., University of Louisville, 1990 
 

A Dissertation Approved on 
 
 
 

November 26, 2012 
 
 
 

By the following Dissertation Committee: 
 
 

       
William Bush, Dissertation Chair 

 
 

       
Robert Ronau 

 
 

       
Susan Peters 

 
 

       
Chad Buckendahl 

 
 

       
Molly Sullivan 



ACKNOWLEDGEMENTS 

This journey was only made possible through the help of others. From the 

beginning of my time as a research assistant, I have felt lucky to have Dr. William Bush 

as my chair and mentor. He is not only a respected and talented professional in the 

mathematics education arena, but is a man of great generosity, personal integrity, and 

kindness. I was so lucky to have somehow landed under his guidance and I am grateful. 

Dr. Robert Ronau has also been an invaluable source of wisdom and encouragement 

during this journey. His expertise in research design and attention to detail continues to 

show me what it means to be a high quality researcher, and his friendship has been a nice 

support along the way. Dr. Susan Peters is a real powerhouse. Her analytical ability in 

finding the heart of an argument or the true meaning of a sentence or phrase never ceases 

to impress me. Yet she still remains so human and approachable. I don't mind repeating 

what I have said many times before, that she is a true asset to this university, and I have 

learned much from her during these last months of writing. Between his frequent flights 

to and from Las Vegas, Dr. Chad Buckendahl of Alpine Testing Solutions added his 

psychometric expertise always in a constructive and professional way. Thanks Chad for 

giving me your time, professional advice, and friendship. Finally, Dr. Molly Sullivan 

entered the scene when I needed an extra help. It was nice to have comments coming 

from the real-world, administration side of things, especially for me, as I tend to live in 

the clouds sometimes. Thanks Molly for stepping in when needed and giving me support 

throughout. To close, I want to thank my two friends Dr. Jane Jones and Patty Grimes. It 

111 



was to them that I would take my personal doubts, fears, and worries and always found 

words of encouragement and kindness, making it somehow easier to take that next step. 

Many thanks to all of you for getting me to the end. 

IV 



ABSTRACT 

PREDICTIVE RELATIONSHIPS OF TEACHER EFFICACY, 
GEOMETRY KNOWLEDGE FOR TEACHING, 

AND THE COGNITIVE LEVELS OF TEACHER PRACTICE 
ON 

STUDENT ACHIEVEMENT 

Paul Joseph Klein 

November 26,2012 

This study explored the predictive relationships of teacher efficacy, teacher 

knowledge, and teacher practices with student achievement. More specifically, 

secondary mathematics teachers' efficacy beliefs, geometry knowledge for teaching, and 

the cognitive complexity of the teachers' classroom practices were examined for 72 

teachers in both urban and rural districts across Kentucky, along with the student 

achievement data of their students. Teacher and student data were obtained from the 

NSF-funded Geometry Assessment for Secondary Teachers (GAST) project, which 

administered geometry teacher knowledge assessments at the beginning and end of the 

school year, and collected cognitive complexity data from lessons through three 

classroom observations. Student achievement was measured using a modified geometry 

end-of-course assessment with a geometry readiness test as a covariate. Teacher efficacy 

data was obtained from the same teachers through an online survey at the end ofthe 

GAST project. Correlation, multiple regression, and hierarchical linear modeling 

techniques were used to analyze the data. Results revealed that the cognitive level of 
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teacher practices significantly predicted student achievement. This finding provides 

support for increasing teacher awareness of the importance of high cognitive instruction 

by helping them recognize the essential features of classroom activities that provide this 

instruction and assisting them to plan and implement high cognitive tasks in their 

classrooms. 
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CHAPTERl 

STUDY RATIONALE AND RESEARCH QUESTIONS 

Current Trends in Mathematics Education 

For several years students in the United States have consistently scored lower on 

mathematics achievement tests when compared to students from other industrialized 

countries. The latest assessment, PISA 2009 (program for International Student 

Assessment), further confirms this poor showing. Of the sixty-five countries 

participating in the assessment, the US ranked thirty-second, and fewer than a third of US 

students scored at the proficient level in mathematics. The results of the 2007 TIMSS 

study (Trends in Mathematics and Science Study) also showed poor results when 

compared to Asian countries (very few European countries participated in the TIMSS 

study). Fourth-grade students from Hong Kong, Singapore, China, Japan, Russia, and 

England far surpassed US fourth graders in mathematics, and similar results were true for 

eighth-grade students. 

Consequences of this trend could be tragic, both for the students and for the 

nation. More states require four years of mathematics or particular mathematics courses 

as required subjects, and universities are setting higher and stricter admission standards 

for mathematics. Because of this, many college hopefuls will lose opportunities to attend 

a postsecondary institution simply because they lack the mathematical skills and 

knowledge necessary to advance to the next level of education. The effects on the 

financial future of the US are also potentially devastating. A recent report predicted that 
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the US could lose $75 trillion over the next 80 years if the current trend in mathematics 

proficiency continues (Peterson, Woessmann, Hanushek, & Lastra-Anadon, 2011). 

These findings further suggest that what most Americans have realized since the 

publication of A Nation at Risk (Gardner, 1983) is true-American education is in dire 

need of reform, particularly in mathematics. Clearly a problem exists; the multi-million 

dollar question is "What is the solution?" 

Student Achievement and Teacher Effectiveness 

With the publication of Equality of Educational Opportunity, Coleman and 

colleagues (1966) found that student achievement was determined more by 

socioeconomic background than by school characteristics. Much subsequent research 

substantiated these findings (Sirin, 2005; White, 1982). Coleman's study led the way to 

the development of busing and student assignment plans designed to help integrate 

schools and reduce the achievement gap for low-income and minority students. 

However, the Coleman Report also revealed that, among various school resources (which 

districts and policy makers can control more directly), teacher quality, as measured by 

teacher's educational background, verbal abilities, level of parent education, and other 

teacher variables had significant correlations to student achievement. Except for peer 

effects determined by the composition of the student body, teacher quality explained 

more student achievement variance than any other school characteristic. Sanders (2004) 

also found that teacher effects explained substantial amounts of student achievement 

variance. In a longitudinal analysis spanning twenty-two years, Sanders partitioned 

variability in student achievement into three categories: among districts, among schools 

within districts, and among teachers within schools within districts. His findings revealed 

2 



that districts accounted for 5% of the variance; schools within districts accounted for 

about 30% of the variance; and teachers within schools within districts accounted for 

about 65% of the variance. Sanders concluded, "Differences in teacher effectiveness is 

the dominant factor affecting student academic progress. This is true in all subjects but is 

pronounced in Math" (p. 2). Repeatedly, the competence of the teacher has been found to 

be a major factor in boosting student achievement. Darling-Hammond (2007) noted: 

A long line of studies has established that the single most important school 

influence on student learning is the quality of the teacher. Students lucky 

enough to have teachers who know their content and how to teach it well 

achieve substantially more. And the effects of a very good (or very poor) 

teacher last beyond a single year, influencing their students' learning for 

years to come. Indeed, expert teachers are the most fundamental resource 

for improving education. (p. 67) 

Nevertheless, throughout the history of academic research the important characteristics 

that define exactly what makes a good teacher remain hard to measure (Goldhaber, 2002; 

Goldhaber, Brewer, & Anderson, 1999). Researchers found that easily measured teacher 

variables such as education level, experience, and certification status explained only 3% 

of the variance in student achievement, if the effect was detectable at all (Boyd, 

Goldhaber, Lankford, & Wyckoff, 2007; Goldhaber, 2002). Especially today, when 

federal and state budgets are affected by a slumping economy, administrators need to 

effectively and accurately identify quality teachers from those who are not. Following 

the demands of high stakes accountability, exceptional teachers should be rewarded 

appropriately for teaching excellence and helping others improve their teaching. 
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Researchers must strive to further understand how to measure the salient qualities of 

effective instruction and identify those aspects of teacher education programs that are 

essential for developing competent teachers. 

Teacher Efficacy 

In the late seventies, the application of Julian Rotter's locus of control theory 

(1966) and Albert Bandura's self-efficacy theory (1977) to educational research led to the 

identification of teacher efficacy, an important teacher attribute that appeared to have a 

positive relationship to student achievement. The first major studies on teacher efficacy 

were conducted by the RAND Corporation (Berman, McLaughlin, Bass, Pauly, & 

Zellman, 1977). The results of the extensive study showed a strong positive relationship 

between teacher efficacy and all dependent variables in the analysis, and in fact, the 

effects of teacher efficacy on outcomes were "among the strongest relationships 

identified in the analysis," making it "the most powerful teacher attribute" (McLaughlin 

& Marsh, 1978, p. 85). Dependent variables included student performance, percentage of 

goals achieved, amount of teacher change, and continued use of project methods and 

materials after the project ended. Other teacher-level variables such as years of 

experience and verbal ability also showed positive effects, although their association with 

the dependent variables was not as large. With such positive results, the RAND studies 

stimulated further research on the relationship between teacher efficacy and student 

achievement (Allinder, 1995; Ashton & Webb, 1986; Maguire, 2011; Moore & 

Esselman, 1992; Ross, 1992, 1994; S. Watson, 1991). Not only were the RAND 

conclusions supported, but teacher efficacy also was found to be correlated with many 

other areas such as: student motivation (Midgley, Feldlaufer, & Eccles, 1989); the effort 
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teachers expend in a teaching situation (Gibson & Dembo, 1984); teachers' willingness to 

place low SES students in regular classrooms (Meijer & Foster, 1988; Podell & Soodak, 

1993; Soodak & Podell, 1993); teachers' level of professional commitment (Coladarci, 

1992); teacher career retention (Glickman & Tamashiro, 1982) teacher willingness to try 

innovation (Allinder, 1994; Guskey & Passaro, 1994; Smylie, 1988) teacher valuing 

innovations (Cousins & Walker, 2000); classroom management skills (Ashton, Webb, & 

Doda, 1982; Woolfolk & Hoy, 1990); and low teacher stress (Greenwood, 1990; Parkay, 

Greenwood, Olejnik, & Proller, 1988). Clearly, teacher efficacy has been found to be an 

important teacher characteristic that is highly associated with successful student 

performance and improved classroom environments. 

Unfortunately, recent studies directly relating teacher efficacy to student 

achievement have been scarce. In a review of teacher efficacy research from 1998 to 

2009, Klassen and colleagues (2011) suggested, "Establishing a stronger research base 

that provides evidence for links between teachers' self-efficacy and student outcomes are 

needed, especially at the classroom level where the influence of teacher characteristics 

plays a critical role in influencing student achievement" (pAO). Palardy and Rumberg 

(2008) also agreed, "as a class of teacher effects, teacher attitudes and beliefs about their 

ability to teach and students' ability to learn have been under-examined in the literature" 

(p. 114). The current study proposes to answer this call for additional research by 

analyzing teacher efficacy and student achievement relationships. 

Mathematical Knowledge for Teaching 

Though teacher efficacy appears to have a strong association with teacher 

effectiveness, it cannot fully account for a teacher's influence on student achievement on 
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its own. Raudenbush, Rowan, and Cheong (1992) suggested that teacher efficacy is only 

part of the solution. They wrote, 

" ... positive feelings of [teacher] self-efficacy are necessary (but not 

sufficient) for effective teaching. Following Bandura we argue that 

positive feelings of self-efficacy produce a "generative capability" that 

enables teachers to construct new teaching strategies and increase their 

levels of effort in the face of difficult and uncertain teaching 

circumstances. From this perspective, feelings of positive self-efficacy 

cannot guarantee effective teaching, since teachers with high levels of 

perceived self-efficacy may lack the requisite knowledge or skills to be 

effective." (p. 151) 

Here Raudenbush and colleagues implied that requisite knowledge is also needed for 

effective teaching. The question then follows: "What knowledge is requisite?" This 

question has received much attention in mathematics education research. For centuries, 

mathematics knowledge has been categorized into distinct disciplines and content areas, 

but the notion of mathematical knowledge for teaching has only recently been proposed 

(Ball, Lubienski, & Mewborn, 2001). The applied mathematics that engineers use differs 

from the more theoretical and abstract mathematics studied by pure mathematicians. But 

what mathematics content should a mathematics teacher know? Mathematical 

knowledge for teaching reaches beyond what has been traditionally taught in 

mathematics and education programs, though the scope of that specific knowledge is 

difficult to define. Shulman's work (1986) on pedagogical content knowledge introduced 

a major advancement in classifying teacher knowledge, but the most significant advances 
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regarding a teacher's knowledge of mathematics has come from a team of researchers at 

the University of Michigan. Deborah Ball and her colleagues applied Shulman's ideas of 

teacher knowledge to mathematical knowledge for teaching (Ball et aI., 2001; Ball et al., 

2008; Hill, Rowan, & Ball, 2005). The framework they introduced has become 

fundamental in classifying characteristics of mathematical knowledge for teaching and 

has provided mathematics education programs guidelines for exploring subsequent 

curriculum changes. Though research measuring mathematical knowledge for teaching 

and its effects on student achievement is just beginning (see Hill et aI., 2005), studies 

have shown that mathematical teacher knowledge contributes to student success 

(Baumert et aI., 2010; Hill et aI., 2005). More research that measures teacher knowledge 

directly is warranted to further explore these relationships. 

In addition, following Raudenbush's idea that teacher efficacy is a necessary but 

not sufficient condition for effective teaching, exploring the relationship between a 

teacher's mathematical knowledge for teaching and teacher efficacy as they relate to 

student achievement is a logical next step. Previous researchers have explored the extent 

to which teacher knowledge is related to efficacy (Benz, Bradley, Alderman, & Flowers, 

1992; Campbell, 1996; Hoy & Woolfolk, 1993), but these investigations were embedded 

in larger questions and did not focus on the efficacy-knowledge-achievement 

relationship. Moreover, none ofthem looked specifically at mathematical knowledge for 

teaching when analyzing teacher knowledge. 
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Teacher Practice 

Though teacher efficacy and teacher knowledge seem necessary prerequisites for 

good teaching, neither of them would likely have much of an impact on student 

achievement if students were not exposed to high-cognitive learning possibilities. The 

QUASAR project (Silver & Stein, 1996) revealed that the cognitive demand of classroom 

tasks was a key element of a teacher's instruction related to student learning. Students 

who were in classrooms where tasks with high-cognitive demand were set up and 

implemented showed the highest achievement on the mathematics assessment (Stein & 

Lane, 1996; Stein, Lane, & Silver, 1996). However, although a teacher may plan high

cognitive lessons, what unfolds during actual instructional time does not always reflect a 

high-cognitive level (Stein, Grover, & Henningsen, 1996). This research revealed that 

teachers' actions in the classroom can trump their pedagogical and content knowledge. 

Teacher practices, consisting of high-cognitive instruction, demonstrations, and tasks 

give students opportunities to learn to think at higher levels and are key aspects of 

effective teaching. 

Conceptual Framework 

This study added to existing research by exploring the extent to which teacher 

efficacy, teacher knowledge, and the cognitive level of a teacher's instruction (labeled 

teacher practice) predicted student mathematics achievement. The conceptual framework 

for the study is exemplified by Figure 1 below. 
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"Figure t. Conceptual Framework 

Teacher Knowledge 

Teacher Efficacy 
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Secondary geometry teachers and their classes from both urban and rural 

Kentucky high schools participated in the study during the two academic years 2010-

2012. The researcher measured the constructs of teacher efficacy, geometry knowledge 

for teaching (GKT), and the cognitive complexity of teacher practice for each teacher in 

the study using instruments that will be described below. Then using correlation 

analysis, ordinary least squares regression, multiple regression, and Hierarchical Linear 

Modeling the researcher explored the predictive nature of these constructs on the student 

achievement scores. The relationships between the teacher-level variables were also 

analyzed. The researcher hypothesized that the three variables would predict student 

performance and be positively correlated with each other. 

Data for much of the study was obtained from the National Science Foundation 

funded Geometry Assessment for Secondary Teachers (GAST) project (grant no. 

GB080891). For the GAST study, both public and private high school mathematics 

teachers participated during a one-year high school geometry course. The teacher 

knowledge construct was measured using the Geometry Assessment for Secondary 

Teachers (GAST), administered to teachers at the beginning and end of the school year. 

GAST is a teacher assessment that was specifically designed to capture the geometry 

knowledge necessary for effective teaching. Although this instrument was not strictly 
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designed using Ball and colleagues' mathematical knowledge for teaching framework, 

many of the items were representative of this framework, and both content knowledge 

and pedagogical content knowledge categories were assessed. To measure student 

geometry achievement, the researcher used an adapted version of a Kentucky End-of

Course Geometry Assessment (EOCA). The test was designed to assess secondary 

geometry knowledge at a deeper level than simple recall and procedure repetition, and 

was reduced in content to match the specific content areas of the GAST test. To compare 

students across classes, an Entering Geometry Test (EGT) was administered at the 

beginning of the year and used as a covariate of student achievement. This assessment 

was product of researchers at the University of Chicago and was designed to measure 

geometry knowledge of incoming geometry students (Usiskin, 1982). Teacher efficacy, 

the only variable not obtained from GAST project data, was measured using the Teacher 

Sense of Efficacy Scale (TSES) developed by Tschannen-Moran and Hoy (2001). This 

instrument was administered on-line to participating GAST teachers. 

The final conceptual framework including measurement variables is shown 

below. 

Figure 2. Conceptual Framework with Variables 

OKT 

( 
Teacher Efficacy 
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Applying correlation analysis, regression analyses, and Hierarchical Linear 

Modeling with these data, the study sought to answer the following questions: 

1. Are teacher efficacy, geometry knowledge for teaching, and the 

cognitive levels of teacher practice correlated? 

2. Does teacher efficacy or geometry knowledge for teaching predict the 

cognitive levels of teacher practice? 

3. Does teacher efficacy, geometry knowledge for teaching, or the 

cognitive levels of teacher practice predict student achievement? 
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CHAPTER 2 

RESEARCH ON TEACHER EFFICACY, 
MATHEMATICAL KNOWLEDGE FOR TEACHING, 

AND COGNITIVE LEVELS OF TEACHER PRACTICES 

Introduction 

This chapter describes the concepts teacher efficacy, mathematical knowledge for 

teaching, teacher practices and student achievement along with the research exploring 

these constructs. The first part of the chapter focuses on teacher efficacy, which has roots 

in two theories of motivation grounded in Social Cognitive Psychology: Julian Rotter's 

locus of control (1954, 1966) and Albert Bandura's self-efficacy (1977, 1986, 1997). 

Rotter's theory centered on an individual's belief that desired outcomes were either due 

to his or her own actions or to external factors. Bandura's self-efficacy focused on an 

individual's beliefs about his or her own capabilities as a major influence in human 

action. Both of these belief systems proposed that the person was the author of his or her 

own actions, rather than a by-product of the environment. The concept of teacher 

efficacy will be presented as an outgrowth of these two advances in modern psychology, 

followed by a brief exposition of the development of teacher efficacy measurements. The 

chapter then traces the development of mathematical knowledge for teaching, beginning 

first with the knowledge frameworks developed by Bloom, followed by Shulman's focus 

on the knowledge specific to teaching, and concluding with Ball and her colleagues' 

mathematical knowledge for teaching (MKT) framework. Finally, the teacher practice 

construct is presented from the perspective of teacher moves and tasks, and using Webb's 

12 



depth of knowledge framework as a basis to measure the cognitive complexity of 

classroom instruction. The chapter concludes with a brief exposition of the historical 

roots of student achievement research. 

The Theoretical Development of Teacher-Efficacy 

The primary basis for the theory of teacher efficacy is self-efficacy. 

Self-Efficacy 

The development of the self-efficacy construct is closely tied to the progression of 

human behavior and motivation theories of the 20th century (Pajares, 2002). At the core 

of self-efficacy theory is the assumption that the beliefs people hold to be true about 

themselves form the basis of their actions and vitally influence success or failure. This 

theory is based on the study of the self, which was a central point in William James' "The 

Principles of Psychology" (1890). However, from 1920 through 1940, the focus of 

psychology was behaviorist oriented (following the work of Watson, Pavlov, and 

Skinner). No longer was the internal self a principle of action; rather, actions were 

studied as observable responses to external stimuli. Watson (1930) wrote: 

"Give me a dozen healthy infants, well-formed, and my own specified 

world to bring them up in and I'll guarantee to take anyone at random and 

train him to become any type of specialist I might select -- doctor, lawyer, 

artist, merchant-chief and, yes, even beggar-man and thief, regardless of 

his talents, penchants, tendencies, abilities, vocations, and race of his 

ancestors" (p. 82). 

Early studies on the inner life of an individual were criticized as "unscientific." 

Educational research followed this trend until Maslow (1954) introduced his theories of 
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motivation based on the human desire to fulfill certain needs, and a resurgence ofthe 

interest in the self occurred. Constructs such as self-esteem and self-concept became 

popular, and research on these constructs flourished during the 1960s and 1970s. 

However, some efforts were misguided and the push to promote "high self-esteem" led to 

poor results in education. In 1982 Hansford and Hattie published a meta-analysis of 128 

studies and found that correlations between self-concept and academic achievement did 

not yield consistent results. Still, the shift to cognitive processes of the individual led to 

the development of self-efficacy research. Though the theoretical framework of teacher 

efficacy is based heavily on Bandura's self-efficacy theory, teacher efficacy research 

found its theoretical and historical roots in Julian Rotter's theory oflocus of control 

(1966). 

Rotter's Theory of Reinforcement and Locus of Control 

During the 1950s, Julian Rotter challenged behaviorists' theories by claiming that 

human behavior depended not so much upon external forces, but on judgments made 

about the outcomes of behavior. Reinforcement, reward, or gratification was generally 

accepted as a key element in the acquisition and performance of skills and knowledge. 

Thus, reinforcement served to strengthen the expectancy that a certain behavior would be 

followed by that reinforcement if the behavior was repeated. Rotter hypothesized that if 

the subject believed the reinforcement was due to, or contingent upon, hislher own 

actions or skills, the expectation that the reinforcement would follow the same behavior 

in the future would be stronger (1966). Rotter labeled this a belief in internal control. If 

on the other hand, the subject believed that the reinforcement was brought about by 

external forces (fate, luck, chance, or powerful others), the expectation that the 
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reinforcement would reoccur in the future was not as strong, representing a belief in 

external control. The subject's perception of locus of control then had a direct effect on 

motivation for future behavior. Rotter wrote: 

"It is hypothesized that this variable [locus of control] is of major 

significance in understanding the nature of learning processes in different 

kinds of learning situations and also that consistent individual differences 

exist among individuals in the degree to which they are likely to attribute 

personal control to reward in the same situation" ( p.l). 

Rotter's research validated his theory and educational researchers began to take notice. 

This construct seemed to fit the K-12 academic environment, where a multitude of 

variables contributes to student learning, in particular the teacher. How much do teachers 

believe they have more influence on student outcomes than other factors, and does this 

belief affect how well students perform? Research has shown that teachers make a 

difference. Is this characteristic consistent and can it help explain effective teaching? 

Researchers began to study the relationships between teacher's intemallextemallocus of 

control and student motivation and achievement. Thus Rotter's social learning theory 

was used as a framework to study teacher belief systems and provided the foundation for 

the first studies of teacher efficacy. 

Bandura's Self Efficacy 

The other major theory underpinning teacher efficacy was Albert Bandura's 

concept of self-efficacy. During the second half of the century, Bandura developed and 

refined a social learning theory centered on cognitive processes which eventually 

included aspects of self-beliefs. His theory not only focused on the self, but more 
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specifically on beliefs of capabilities (1977). Central to his theory was the proposition 

that human behavior can often be better predicted by the beliefs people held about their 

own capabilities than by what they were actually capable of accomplishing. 

Self-efficacy can be defined as "the belief in one's capabilities to organize and 

execute the courses of action required to manage prospective situations" (1995, p. 2). 

Individuals possess self-beliefs that enable them to exercise some control over their 

thoughts, feelings, and actions. In this sense, individuals are not simply passive objects 

upon which the environment acts and shapes; but through reflection, they are also authors 

of their own behavior and outcomes. Self-efficacy provides the foundation for human 

motivation, well-being, and personal accomplishment. 

What specific effects does self-efficacy have on behavior? According to Bandura, 

self-efficacy influences the choices a person makes and the amount of effort one exerts to 

complete a task. It shapes how long one perseveres when obstacles present themselves, 

how one feels about the process, and how much resistance one puts forth against the fear 

of failure. Bandura's theory states that self-efficacy is based, not on what is objectively 

true about capabilities, but on what is believed to be true. As such, the theory explains 

why some people behave confidently, though in reality they have very little experience to 

support this disposition, and at the same time, why very talented people are sometimes 

hindered by self-doubt (Pajares, 2002). 

Bandura further developed his theory with a framework for human agency he 

called triadic reciprocal causation (see Figure 3). Within this framework, behavior, 

personal factors (cognitive, affective, and biological events), and environmental factors 

all interact bidirectionally, though not necessarily at the same strength. For example, 
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people's thoughts and feelings are affected by the environment in which they find 

themselves, but this environment is at the same time influenced by the characteristics of 

each person. (A classroom environment, for example, can be affected by the personal 

characteristics of a boisterous and aggressive child.) Also the structures and norms of a 

society influence human behavior, while at the same time human actions create and 

modify these same social structures. Finally, a person's thoughts, beliefs and 

expectations help determine behavior, yet the nature and external effects of this behavior 

influence the person's thoughts and emotions. This exchange of influence is not 

instantaneous, but involves a time lag between events. Self-efficacy resides in the 

personal factors that help determine future behavior. 

Figure 3. Triadic Reciprocal Causation 

C BEHAVIOR =:> 

/ " PERSONAL 
FACTORS 

Sources of Self-Efficacy 

Four distinct sources contribute to a person's self-efficacy beliefs: mastery 

experience, vicarious experience, verbal persuasion, and physiological states (Bandura, 

1997). Mastery experience represents the most influential source. Nothing builds a 

person's beliefs about hislher own capabilities more than successfully completing the 

task at hand. While successes build a firm belief in personal efficacy, failures are 
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extremely detrimental, especially if they occur before high self-efficacy has been 

established. This is why, for example, the first experiences of pre-service teachers are 

particularly important. An early experience of failure can be devastating. 

Vicarious experience also enhances or diminishes self-efficacy beliefs. Observing 

others succeed after sustained effort can be especially influential if persons identify 

similarities between themselves and the acting subject. Once this connection is 

established, the observer forms the conviction "I can do it too." If, however, the persons 

cannot identify with the acting subject, self-efficacy beliefs can remain generally 

unaffected. 

A third source of efficacy beliefs is verbal persuasion. People who are verbally 

persuaded that they have the capabilities to perform a task exert a more sustained effort 

than those who have self doubt. But verbal persuasion alone is often not sufficient to 

build efficacy beliefs. Unrealistic expectancies can quickly be negated by the results of a 

poorly performed task, and placing persons prematurely in a role for which they are not 

prepared for can also have adverse effects. Positive verbal persuasion must be followed 

by structured opportunities for persons to succeed and reinforce their beliefs. 

Finally, physiological states such as stress, anxiety, and mood swings can 

strengthen or weaken efficacy beliefs. The physiological state itself does not affect the 

change in beliefs; rather, the persons' interpretations ofthat state as being supportive or 

detrimental cause the change. One person might use high energy and nervousness as 

positive facilitators of action, while another may see them as debilitating. In Bandura's 

self-efficacy theory, the role of cognition and interpretation of these four sources is 

central in determining behavior. 
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Several characteristics help distinguish self-efficacy from self-concept/esteem 

(Gist & Mitchell, 1992). Self-efficacy is context specific; it is an assessment of 

competence to perform a specific task in a particular domain. In contrast, self-

concept/esteem is an integrated view of the self, stemming from judgments of the self 

across various dimensions. Gist and Mitchell give the example of a rocket scientist who 

has a very low self-efficacy pertaining to dancing. Upon reflection, the scientist decides 

that this is acceptable, and considering other personal characteristics, he does not 

diminish his self-evaluation. Self-efficacy is also action oriented. It answers the question 

"Can I do this?" Self-concept/esteem constructs, on the other hand, are more 

being/feeling-oriented and answer the questions "Who am I?" or "How do I feel?" These 

two distinctions are central to any self-efficacy analysis. Contrasting elements of self-

concept and self-efficacy are included in Appendix A. 

Teacher Efficacy Framework 

The following section describes the development ofthe self-efficacy construct as 

applied to educational contexts, specifically with regard to how these ideas appear in 

research on teachers. Teacher efficacy was first conceptualized and tested in Rotter's 

locus of control framework. Bandura's self-efficacy theories were then applied to further 

develop the theoretical framework. This progression will be described below, followed 

by an investigation of the prominent teacher efficacy instruments. 

Development of Teacher Efficacy Research 

The construct of teacher efficacy was first introduced, analyzed, and advanced in 

educational research within Rotter's socialleaming theory framework. Berman, 

McLaughlin, Bass, Pauly, and Zelman (1977) defined the construct as "a belief that the 
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teacher can help even the most difficult or unmotivated students" and also "the extent to 

which the teacher believes he or she has the capacity to affect student performance" (pp. 

136-137). In their study, student motivation and achievement were reinforcements for 

teacher instruction and behavior. As members of the RAND research team, the 

researchers measured the extent to which teachers believed they could influence these 

outcomes. Teachers who were confident their behavior would positively affect student 

motivation and achievement exhibited an internal locus of control (high "sense of 

efficacy") whereas teachers who believed that environmental factors such as school and 

district characteristics, student family structures, or socio-economic status overpowered 

their own efforts exhibited external locus of control (low "sense of efficacy"). 

Essentially, researchers asked "How does a teacher's locus of control belief structure 

affect student outcomes?" To answer this question, the RAND team used the responses 

of over 1000 teachers to two items on a self-report survey: 

1. When it comes right down to it, a teacher really can't do much 
[because] most ofa student's motivation and performance depends on his 
or her home environment. 

2. If I really try hard, I can get through to even the most difficult or 
unmotivated students. 

Responses to these two items were combined to form a single measure labeled "teacher 

sense of efficacy." The results of the study showed a strong positive relationship among 

teacher efficacy and all of the outcome variables in the analysis. Berman and colleagues 

wrote, "teacher sense of efficacy is positively related to the percent of project goals 

achieved, the amount of teacher change, improved student performance, and continuation 

of both project methods and materials. Teacher's attitudes about their own professional 

competence, in short, appeared to have major effects on what happens to projects and 
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how effective they are" (p. 137). Thus teacher efficacy was found to be strongly 

associated with improved student achievement and other important teacher-level 

variables. 

The findings ofthe RAND study led to additional studies of teacher efficacy. 

Ashton, Doda, and Webb (1982) incorporated Bandura's self-efficacy concept to give 

theoretical support to the construct. These researchers further specified the distinction 

between the two RAND items. The first RAND item referred to the general relationship 

between student learning and environmental factors. A teacher may be convinced of his 

or her own capabilities, but because of external influences such as the skills ofthe 

particular student, the school where the teacher works, SES, race, gender, special needs 

of the class, etc., the teacher's sense of efficacy is lessened. For example, if a teacher 

believes that high student achievement is due solely to student ability, the teacher will 

have a low sense of teaching efficacy. If, on the other hand, the teacher is convinced of 

Bloom's theory (1978) that all students have the same learning ability when given the 

appropriate learning conditions, the teacher will have a high sense of teaching efficacy. 

Teacher efficacy as interpreted from this perspective has become known as general 

teaching efficacy (GTE) (Tschannen-Moran, Hoy, & Hoy, 1998, p. 204). 

The second RAND item "If I really try hard, I can get through to even the most 

difficult or unmotivated students" related directly to a teacher's personal teaching 

efficacy (PTE), or "the teacher's general sense of effectiveness as a teacher" (Ashton et 

aI., 1982, p. 92). Teachers with high PTE generally had confidence in their abilities as 

teachers and were satisfied with their training and knowledge of the subject. This helped 

them overcome obstacles to effective teaching and learning. The distinction between 
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GTE and PTE and the incorporation of Bandura's framework to teacher efficacy led to 

further studies with efforts to discover meaningful relationships of both dimensions ofthe 

construct to many different school related variables. 

Teacher Efficacy, Student Achievement, and other With-in Teacher Effects 

Subsequent research continued to support teacher efficacy as a significant 

contributor to many aspects of teaching and learning. After the RAND study, teacher 

efficacy was linked to improved student achievement (Anderson, Greene, & Loewen, 

1988; Ashton & Webb, 1986; Moore & Esselman, 1992; Ross, 1992; S. Watson, 1991) 

and increased student motivation and sense of efficacy (Anderson et aI., 1988; Henson, 

2002; Midgley et aI., 1989). Teacher efficacy was also shown to have positive 

correlations with teacher-level variables. Teachers with high efficacy were more willing 

to implement instructional change (Ashton & Webb, 1986; Guskey, 1988; Haney, Wang, 

Keil, & Zoffel, 2007), work longer with struggling students (Gibson & Dembo, 1984), 

and were less inclined to refer difficult students to special education (Meijer & Foster, 

1988; Podell & Soodak, 1993; Soodak & Podell, 1993). Teachers were also more likely 

to stay longer in the teaching profession (Burley, Hall, Villeme, & Brockmeier, 1991; 

Glickman & Tamashiro, 1982) and use classroom management techniques that stimulate 

student autonomy (Woolfolk, Rosoff, & Hoy, 1990). Furthermore, Muijs and Reynolds 

(2002) showed that teacher efficacy affected specific teacher behaviors which in turn led 

to increased student achievement. Thus teacher efficacy ultimately was linked to student 

achievement measured directly or through within-teacher variables, all of which enhance 

student performance. This finding was true especially during the first 20 years of teacher 

efficacy research, 1978-1998. 
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However, relatively few studies in the last several years have attempted to 

reinforce the research findings between teacher efficacy and student achievement. In a 

review of218 studies from the twelve year period 1998-2009, Klassen, Tze, Betts, and 

Gordon (2011) reported that only two studies (0.09%) examined links between teacher 

efficacy and student outcomes, and only four studies concentrated on teachers' collective 

efficacy and student outcomes. In the first of the two, Ross, Hogaboam-Gray, and 

Hannay (2001) found that teacher efficacy variables explained 7% - 9% of the variance of 

student outcomes (in this case, a student's computer skills and computer self-efficacy), 

though correlations were relatively small. In the second study, Caprara, Barbranelli, 

Steca, and Malone (2006) investigated over 2000 Italian teachers and found a significant 

but small effect ofteacher efficacy on student outcomes one year later. A reciprocal 

effect was also discovered: student achievement tended to boost teacher efficacy beliefs. 

More recently Bruce, Esmonde, Ross, Dookie, and Beatty (2010) examined the 

link between teacher efficacy and professionalleaming and development experiences. 

They found that teacher efficacy had little effect on student outcomes unless connected to 

teacher professionalleaming opportunities, which together led to improved student 

achievement. However, if teachers had inflated teacher efficacy beliefs (that did not 

reflect actual skills), they would not seek additional strategies to improve student 

performance, and no higher scores resulted. Another recent study by Dale, Phillips, and 

Sianjina (2011) sought to show the mediating effects of teacher efficacy on instructional 

and transformational leadership when analyzed with mathematics achievement. The 

sample included 177 elementary teachers from six Maryland counties. Although teacher 

23 



efficacy did not have a mediating effect on the two variables, the study suggested a 

significant direct impact on student mathematics achievement. 

School Context Effects and Teacher-Efficacy 

According to Bandura, personal factors such as self-efficacy can be influenced by 

environmental factors. For a teacher, these environmental factors include the school 

organizational structure and climate, principal leadership, and even student subjects. 

Moore and Esselman (1992) found that teachers who perceived a positive school 

atmosphere and a strong academic press in the school staff scored higher on Gibson and 

Dembo's Teacher Efficacy Scale (1984). Principal leadership has also been linked to 

strong teacher efficacy. Schools with a high academic emphasis and a principal who has 

strong influence and supports the teaching staff were found to be significantly related to 

teacher efficacy, though effect sizes were relatively small (Hoy & Woolfolk, 1993). The 

sense of community in the school also had influence. Using High School and Beyond 

data, Lee, Dedrick and Smith (1991) found that the school's sense of community was a 

significant predictor of teacher efficacy. (Sense of community was measured by a 

composite of items that capture how much teachers can count on the staff for help, felt 

like they were in a big family, and shared the beliefs, values, and mission of the school). 

Though these results may not be surprising, many teachers still do not receive adequate 

support, nor do they feel closely connected to the school's community life. 

In addition to these contextual factors, students and classes also may affect 

teacher efficacy levels. Raudenbush and colleagues (1992) used a single efficacy item, 

similar to the RAND 2 item, to study teacher efficacy variations across classes during a 

single day. Results showed that efficacy can vary within teachers depending on the 
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classes they were teaching and the particular group of students with whom they were 

working. Teachers tended to feel most efficacious when teaching high-track classes. 

Teacher Efficacy Measures 

After the discovery of strong associations between teacher efficacy and student 

achievement, as demonstrated by the two items on the RAND survey, researchers 

designed more comprehensive measures of teacher efficacy (Tschannen-Moran et aI., 

1998). Initially, researchers used Rotter's Internal-External Locus of Control (I-E) Scale 

to measure teacher locus of control relationships with student achievement (Murray & 

Staebler, 1974). Rose and Medway, however, argued that the I-E scale was never 

intended to measure the specific dynamics of classroom teaching or student-teacher 

interactions, and may lead to lower correlations. In response, they developed the 28-item 

Teacher Locus of Control (TLC) instrument (1981) specifically designed to measure 

elementary school teachers' perceptions of control in the classroom. Half of the items 

described positive or successful situations, and half described negative or failure 

situations. Teachers were asked to attribute the result to an explanation representing 

either an internal or external locus of control. 

Results of the TLC scale were more predictive than the Rotter I -E scale of 

teachers' willingness to implement new instructional techniques and was overall a better 

predictor of behavior (Rose & Medway, 1981). For example, teachers with an internal 

locus of control in low SES schools gave fewer disciplinary commands to students (r = -

.68, p < .02). However, TLC scores were weakly correlated to the RAND items 

individually as well as the cumulative RAND TE score (Coladarci, 1992). In addition, 

Greenwood, Olejnick, and Parkay (1990) studied the relationship between locus of 
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control as measured by the TLC and RAND items. The four possible combinations for 

the two RAND items were grouped into four categories (for example, one category 

represented a positive response pattern to both questions "I can ... ; teachers can ... "). 

Teachers who responded with Pattern 3 (I can; teachers can) were significantly more 

internally-oriented in their beliefs about student success and failure than teachers of 

Pattern 1 (I can't; teachers can't). Pattern 3 teachers also displayed less stress than 

Pattern 1 teachers. Thus, when teachers had more confidence in their abilities, as well as 

in the abilities of other teachers, they tended to show less stress carrying out their 

classroom responsibilities. 

As Rose and Medway developed the TLC scale, Guskey (1981) and Ashton, 

Doda, and Webb (1982) developed other instruments measuring teacher efficacy. The 

first was Guskey's Responsibility for Student Achievement (RSA) scale. This 30-item 

survey presented a prompt describing a positive or negative student achievement 

experience, followed by two choices for the teacher. One of the choices represented an 

event caused by the teacher, the other an event caused by something outside the teacher's 

control. However, because teachers often viewed classroom events as stemming from 

more than a single cause, the "either-or" choice format was found lacking (p. 44-45). 

Instead, Guskey asked teachers to assign a weight to each choice, with the total weight 

between them totaling 100 points or 100 percent. 

The RSA was designed to measure how much teachers assumed responsibility for 

student outcomes. Two subscales represented assumed responsibility for student success 

(R+) and for student failure (R-). After administering the survey to 215 elementary and 

secondary school teachers and performing factor analyses, Guskey found the factors R+ 
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and R- explained 60.9% of the variance in item responses. He then compared scores 

from the RSA to the RAND items (1988, pp. 8-9) and found significant, positive 

correlations between R+ and R- and the RAND items (r = 0.42, and r = 0.43) and no 

significant correlations between the factors themselves. These findings indicated that 

teachers' beliefs about affecting positive results were not on the same continuum as their 

beliefs about preventing negative ones. This result was also found by Guskey in a 

previous study which investigated contextual influences on teacher efficacy (1987, p. 45). 

The other teacher efficacy instrument developed during this time was the Webb 

Efficacy Scale. Ashton, Doda, and Webb (1982) sought to build upon the RAND 

instrument by enhancing theoretical support and adding more items to increase reliability. 

They also wanted to reduce social desirability bias caused by the natural tendency for an 

"ego-defensive" response to survey questions. In other words, teachers may rate 

themselves according to how their response supports their image as a teacher instead of 

honestly answering the question. To avoid this problem, the researchers designed a 

forced-choice format with items matched for social desirability. An example item is 

shown below in Figure 4. 

Figu re 4. Webb Efficacy Scale Item 

A. A teacher should not be expected to reach every child; some students 
are not going to make academic progress. 

B. Every child is reachable. It is a teacher's obligation to see to it that every 
child makes academic progress. 

Circle one: 
1. I agree most strongly with A 
2. I agree most strongly with B 
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Results revealed that two of the Webb items representing Personal Teaching Efficacy 

significantly correlated with the second RAND item, but no large correlations with 

RAND item 1 were found. Also, few inter-correlations among the items themselves were 

found, revealing weak: reliability. The authors admitted they failed to find an internally 

consistent measure of teacher efficacy (p. 96). 

Using another approach, a group of researchers (Ashton, Buhr, & Crocker, 1984; 

1982) introduced a series of situational vignettes to capture teacher efficacy. After 

reading a scenario of a typical classroom situation, teachers were asked to rate their own 

effectiveness in dealing with the situation. In this way, the researchers attempted to add 

specific contexts to the teachers' beliefs about their capabilities. Teachers in the 1982 

study ranked themselves on a self-effectiveness scale from 1 (extremely ineffective) to 7 

(extremely effective). The 1984 study included a "norm-referenced" scale by adding a 

comparison to other teachers, e.g. "much less effective than other teachers." Responses 

to the norm-referenced items yielded significant correlations to the RAND items, but 

responses to the self-effectiveness items did not. Both sets of data produced high internal 

consistencies (a = .95 for the self-effectiveness scale and a = .94 for the norm-referenced 

scale). Benze, Bradley, Alderman and Flowers (1992) used the Ashton vignettes and 

found that preservice teachers and college faculty were more optimistic about their 

effectiveness in dealing with student socialization and motivation than were in-service K 

- 12 teachers. 

A few years after the Aston vignettes were developed, Gibson and Dembo (1984) 

created a more extensive instrument, the Teacher Efficacy Scale (TES), which eventually 

became the primary tool in teacher efficacy research. In a recent review of teacher 

28 



efficacy studies, Klassen, Tze, Betts, and Gordon (2011, p. 36) noted that almost one 

third of the 218 empirical studies examined in their review used the TES or a variation of 

the instrument. In developing the TES, Gibson and Dembo began with the RAND items 

and applied Bandura's social cognitive ideas as a theoretical foundation. The first item 

aligned with outcome expectancy, which reflected "the degree to which teachers believed 

that the environment could be controlled, that is, the extent to which students can be 

taught, given such factors as family background, IQ, and school conditions" (Gibson & 

Dembo, 1984, p. 570). The second item corresponded to Bandura's self-efficacy 

construct. The authors stated, "One would predict that teachers who believe student 

learning can be influenced by effective teaching, and who also have confidence in their 

own teaching abilities, should persist longer, provide a greater academic focus in the 

classroom, and exhibit different types of feedback than teachers who have lower 

expectations concerning their ability to influence student learning" (p.570). 

To develop the TES, Gibson and Dembo reviewed relevant studies and 

interviewed classroom teachers to construct a preliminary pool of 53 sample items. 

These items were then administered to 90 classroom teachers as a pilot. Based on the 

results of a principal factor analysis, the item count was reduced to 30, forming the 

Teacher Efficacy Scale. To further pilot the instrument, Gibson and Dembo gave the 

TES to 208 elementary school teachers, along with 55 teachers enrolled in graduate 

education courses. Factor analysis revealed two substantial factors. Factor 1 (accounting 

for 18.2 % of the variance) represented a teacher's sense of Personal Teaching Efficacy 

and aligned with RAND item 2 (Cronbach's a = . 78). Factor 2, the General Teaching 

Efficacy factor (accounting for 10.6% of the variance, a =.75), represented the belief that 
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any teacher's ability to bring about change is significantly limited by factors external to 

the teacher. Gibson and Dembo claimed this factor clearly aligned with Bandura's 

outcome expectancy dimension, and corresponded to RAND item 1. Because only 16 of 

the items loaded heavily on these two factors, Gibson and Dembo recommended further 

research on the scale, limiting the items to these 16. Soodak and Powell (1993) and Hoy 

and Woolfolk (1990, 1993) followed up on this suggestion and found that one of the GTE 

items loaded unexpectedly on the PTE factor and another item seemed not to belong to 

either factor. Hoy and Woolfolk (1993) further reduced the scale to 10 items, which was 

found just as reliable as the original version in their study, although these findings have 

not always been consistent. Continuing research using the TES has confirmed the 

existence of the two factors found by Gibson and Dembo, which in general have had 

weak inter-correlations and appear not to be related (Anderson et aI., 1988; Burley et aI., 

1991; Hoy & Woolfolk, 1993; Moore & Esselman, 1992; Soodak & Podell, 1993). 

Eclectic Measures 

Other researchers used items across different instruments to produce measures of 

teacher efficacy. Midgley, Feldlaufer, and Eccles (1989) created a personal teaching 

efficacy instrument that revealed large significant differences in personal efficacy 

between middle school and high school mathematics teachers. This instrument was built 

using the RAND personal efficacy item, two items from the academic futility 

measurement (Brookover et aI., 1978), one item from the Webb Scale, and one original 

item (Cronbach's alpha, a = .65). Also, two groups of researchers (Lee et aI., 1991; 

Newmann, Rutter, & Smith, 1989) selected two items from the High School and Beyond 

data to measure teacher efficacy: "To what extent do you feel successful in providing the 
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kind of education you would like to provide for most of your students?" and "I sometimes 

feel it is a waste of time to try to do my best as a teacher." These items were combined 

with two satisfaction items: "I usually look forward to each working day at this school" 

and "How much of the time do you feel satisfied with your job in this school?" to 

measure teacher efficacy. Tschannen-Moran et al. (1998, p. 218) criticized this 

combination. Though the measurements were highly correlated, the constructs were 

clearly different conceptually and should not have been confounded by combining the 

items representing them. Finally, Raudenbush and colleagues (1992) used a single item 

measured on a 4-point Likert scale to represent teacher efficacy, "To what extent do you 

feel successful in providing the kind of education you would like to provide for this 

class?" The researchers found that high school teachers showed higher self-efficacy 

when they taught high-track, honors classes. 

Critiques of Teacher Efficacy Measures 

Development of valid and reliable instruments to measure the teacher efficacy 

since the RAND items has not been without challenges. According to Henson (2002), 

two major issues have emerged. The first issue is embedded in the theoretical nature of 

the construct as defined by Bandura and is a perennial one. Since the nature of self

efficacy belief is necessarily linked to the specific context in which an action is 

performed, a true measure ofthe construct should also be tied to the specific context and 

task. This creates a problem when generalizing the results. If the measurement is too 

context specific, the conclusions drawn from the study will be severely limited to the 

specific task or context incorporated in the research. Pajares wrote, "specificity and 

precision are often purchased at the expense of external validity and practical 
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relevance"(1996, p. 561). On the other hand, if the measurement instrument is created to 

apply to a broader range of circumstances, the validity of the instrument in measuring the 

teacher's self-efficacy beliefs might be weakened. Again Pajares noted: 

... self-efficacy beliefs should be assessed at the optimal level of 

specificity that corresponds to the criterial task being assessed and the 

domain of functioning being analyzed. This caution [made by Bandura 

(1986)] has often gone unheeded in educational research, which has 

resulted in self-efficacy assessments that reflect global or generalized 

attitudes about capabilities bearing slight or no resemblance to the criteria 

task with which they are compared ... Omnibus tests that aim to assess 

general self-efficacy provide global scores that decontextualize the self

efficacy-behavior correspondence and transform self-efficacy beliefs into 

a generalized personality trait rather than the context-specific judgments 

Bandura suggests they are (p. 547). 

The results of these measurements, according to Bandura, lack predictive 

relevance because it is difficult to judge what exactly is being assessed. The agent 

(which is the teacher in this case) must make ajudgment about an imagined task or set of 

tasks not specifically referenced by the instrument. 

Riggs and Enochs (1989) attempted to create a more domain specific instrument, 

the Science Teaching Efficacy Belief Instrument (STEBI) based on the TES (Riggs & 

Enochs, 1990). For this instrument, all items from the TES were modified to reflect an 

elementary science classroom setting. The STEBI incorporated two subscales: the 

Personal Science Teaching Efficacy Belief Scale and the Science Teaching Outcome 
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Expectancy Scale. Additional items were also added to control for acquiescence 

responding, which occurs when survey respondents simply answer agreeably to the 

statement, regardless of the question content (Mueller, 1986). Enochs, Huinker, and 

Smith (2000) further modified the STEBI to measure mathematics specific teacher 

efficacy. Items in the Mathematics Teaching Efficacy Belief Instrument (MTEBI) 

followed the phrasing of the STEBI except questions were oriented toward mathematics. 

"Even if I try very hard, I will not teach mathematics as well as I will most subjects 

(emphasis added)." Here the word science was simply replaced by mathematics. The 

MTBEI also had subscales for personal teaching efficacy (thirteen items) and outcome 

expectancy (eight items). These instruments were designed for elementary teachers only. 

It would make no sense to have this type of domain specific instrument for secondary 

teachers, as all of their teaching is domain specific, and rewording would not add 

specificity. 

Henson's second measurement concern involved the construct validity of the 

primary instruments developed during the first phase of teacher efficacy research. As 

stated previously, the roots of teacher efficacy studies stem from the two RAND items, 

which have theoretical underpinnings in Rotter's locus of control theory. But Bandura's 

self-efficacy theories published just before teacher efficacy research blossomed, became 

the primary basis for teacher efficacy constructs, especially with its adoption by Gibson 

and Dembo in the development of the TES (1984). Both theories then are intermingled in 

the development of the teacher efficacy construct. Upon closer examination of the TES 

items, Guskey and Pasaro found an "interesting anomaly" (1994, p. 630). The PTE items 

in the instrument were all positively worded ("I can"), and reflected an internal locus of 
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control, whereas the GTE items were all negatively worded ("Teachers can't") and 

reflected an external locus of control. Was the instrument measuring PTE and GTE or 

internal/external locus of control? Guskey and Pasaro reworded the items by making 

half of the items positive and the other half negative for each construct. Interestingly, 

results did not reflect the dimensions of PTE and GTE but instead showed signs of a 

dichotomous internallexternallocus of control construct. Principal component factor 

analysis results showed two factors; yet, the loading of the PTE and GTE items on each 

factor appeared random. By revising the positive/negative structure of the items, the 

loading on the factors was essentially changed even though the content of the items 

remained the same. Reworded items revealed factors corresponding to the 

internallexternallocus of control. 

"The teachers we surveyed, both prospective and experienced, did not 

distinguish between their personal ability to affect students and the 

potential influence ofteachers in general. Rather, the distinctions they 

drew related to beliefs about the influence they and all teachers have, or do 

not have, on the learning of students, even those who may be considered 

difficult or unmotivated. Whether the item referent was "my influence" or 

"teachers' influence" made no difference" (page. 637). 

However, the internallexternallocus of control construct is typically thought of as 

bipolar, with each dimension on opposite sides of the continuum. Guskey and Pasaro did 

not find this to be the case because the data revealed two independent and distinct factors. 

The authors believed the strength associated with each factor depended on the teachers' 
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beliefs of the strength of their personal influence on the internal factor versus the strength 

of external influences that lie outside the classroom. 

At this point, all survey measurements on this topic have flaws with regard to 

measuring teacher efficacy. However a relatively recent instrument has been well 

received. After an extensive review of teacher efficacy research, Klassen and others 

(2011, p. 40) recommended the Teacher Sense of Efficacy Scale (TSES) created by 

Tschannen-Moran in collaboration with Barr and Woolfolk Hoy (Tschannen-Moran & 

Barr, 2004; Tschannen-Moran & Hoy, 2001) which "shows considerably more 

congruence with self-efficacy theories than many of the other measures" among the 

hundreds of studies they reviewed. The development team of the TSES had extensive 

teaching experience and methodically created items to reflect essential aspects of 

teaching that surface in a teacher's daily life. Items such as "How much can you do to 

adjust your lessons to the proper level for individual student?" and "How well can you 

keep a few problem students from ruining an entire lesson?" exemplify the specific focus 

of the instrument toward important teacher capabilities. The instrument has three 

subscales: Efficacy in Student Engagement, Efficacy in Instructional Practices, and 

Efficacy in Classroom Management. Two forms of the scale are available, a full 24-item 

form and a 12-item short form. The 24-item long form tends to have a slightly stronger 

factor structure with varying populations and will be incorporated in this study. TSES 

items are listed in Appendix E. 

Teacher Knowledge Framework 

Most university programs are designed to equip graduates with the knowledge 

necessary for their future career. How ironic is it that, only in the last 25 years, scholars 
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have begun to analyze the specific knowledge that is needed for teachers? This section 

describes the landscape of current mathematical knowledge for teaching structures 

proposed by leading researchers in the field. A brief introduction to content knowledge 

frameworks by Bloom will first be discussed, followed by a more detailed explanation of 

knowledge specific to teaching as proposed by Lee S. Shulman. Finally the structures of 

mathematical knowledge for teaching by Deborah Ball and her colleagues will be shared. 

These frameworks provide the context for using the Geometry Assessment for Secondary 

Teachers (GAST) scores as meaningful measures of mathematics teacher knowledge. 

Classifying knowledge is not a new enterprise. Ancient and medieval 

philosophers such as Aristotle and Roger Bacon wrote monumental works on the 

classification of knowledge. But without question, the classification of knowledge 

related to educational research builds upon the fundamental work by Benjamin S. Bloom 

entitled, "Taxonomy of Educational Objectives; the Classification of Educational Goals 

(1956). In the 1950s, Bloom organized a team of researchers to define learning 

objectives for students to help educators design and develop assessments and curricula. 

The team identified three domains of educational activities: cognitive, affective, and 

psychomotor. Under the cognitive domain, six levels of knowledge were delineated 

according to the difficulty that students would encounter either answering questions 

orally or on written assessments. These levels, listed from least difficult to most difficult, 

include: 1. Knowledge -recall previously learned information; 2. Comprehension

understand the meaning of material; 3. Application - use a concept in a new situation, 4. 

Analysis - separate concepts into component parts; 5. Synthesis - build a structure or 

pattern from diverse elements; 6. Evaluation - make judgments about the value of ideas. 
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Using this framework, the level of difficulty of a task or item can be classified and 

tests/curricula can be developed according to the needs of the student and intent of the 

educator. Since its inception, Bloom's taxonomy has undergone revisions, albeit only 

minor ones (the fifth and sixth levels were switched, for example), but the work has been 

foundational. Subsequently, mathematics educators have developed mathematical 

content knowledge frameworks, finding levels of difficulty and understanding in 

mathematics much like Bloom did with knowledge in general (Hiebert, 1989; Hiebert & 

Carpenter, 1992; Krauss et aI., 2008; Skemp, 1976, 1987). For example, Skemp (1976) 

classified the understanding of mathematics into relational understanding and 

instrumental understanding. Relational understanding is a deep, conceptual 

understanding of mathematics: "knowing both what to do and why" (p. 89), whereas 

instrumental understanding is hardly to be considered understanding at all. Skemp 

describes instrumental understanding as "rules without reasons" and gives examples such 

as "borrowing" and "take it over to the other side and change the sign." He argues that a 

"mathematical mismatch" occurs when students aim to understand mathematics 

instrumentally while the teacher's goal is for them to have relational understanding (or 

vice-versa). The difference between these two types of understanding is so great that 

Skemp claimed, "there are two effectively different subjects being taught under the same 

name 'mathematics' " (p. 91). Similarly, Hiebert and Carpenter divided mathematics into 

conceptual knowledge (understanding concepts and relationships of principles) and 

procedural knowledge (knowledge of rules, algorithms, and procedures) (Hiebert, 1986; 

Hiebert & Carpenter, 1992). These two categories are not entirely unrelated; both must 

be mastered by the student in order to obtain a thorough understanding of mathematics. 
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In this way knowledge classification was continued by content area experts to develop 

classifications systems in their own field. 

Shulman's Pedagogical Content Knowledge 

A second major contribution regarding teacher knowledge classification was 

introduced in 1985 by Lee Shulman during his Presidential Address at the AERA 

meeting in Chicago. In his talk, Shulman specifically addressed teacher knowledge as a 

content area in its own right. He defined pedagogical content knowledge (PCK) as "the 

ways of representing and formulating the subject that makes it comprehensible to others" 

(1986, p. 9). Note that PCK focuses on applying pedagogical principles to a specific 

subject domain. Teachers should not only master content knowledge but also know a 

variety of representations and alternate teaching methods accumulated either from 

research or from their own experience. This knowledge includes a deep understanding of 

the complexities that make the learning of specific lessons easy or difficult. Teachers 

should understand what learners bring to a lesson that facilitate or hinder the 

understanding of a concept, along with what strategies assist or deter student learning of 

specific content. In addition to pedagogical knowledge, Shulman's analysis included 

content knowledge (the concepts, facts and structures of the subject matter), as well as 

curricular knowledge, which encompasses all extraordinary methods and tools to teach 

the subject at hand. Curricular knowledge also includes a broader knowledge of content 

outside the teacher's subject area, the other subjects that students learn at the same time 

(lateral curriculum knowledge), and how this subject matter fits in the bigger picture of 

the complete education (1986, p. 10). 
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Mathematical Knowledge for Teaching 

Since Shulman's insights were published, research on pedagogical content 

knowledge and teacher knowledge in general has been popular in educational research. 

In mathematics education, efforts concentrated on defining specific categories of 

mathematics teacher knowledge to revise curriculum and expectations for effective pre

service and inservice teacher programs. Researchers classified mathematical knowledge 

for teaching as the mathematics that teachers need to know that is different from what is 

required for other professions (Ball & Bass, 2000; Cuoco, 2001; Hill et aI., 2005; Ma, 

1999; Usiskin, 2001). Specifically, it is "the mathematical knowledge needed to carry 

out the work of teaching mathematics" (Ball et al., 2008, p. 395). Building on Shulman's 

content knowledge and PCK categories, Ball, Hill, and colleagues created a mathematical 

knowledge for teaching framework shown in Figure 5. This framework divides teacher 

knowledge into two major categories, Subject Matter Knowledge and Pedagogical 

Content Knowledge. Each of these categories is further divided into three distinct 

knowledge types described below: 

39 



Figure 5. Domains of Mathematical Knowledge for Teaching 

Subject Matter Knowledp Pedaco&ical Content Knowledp 

Knowledge 

Common 
of Content 

Content 
& Students 

Knowledge (KCS) 
Spedalized 

(CCK) 
Content 

Knowledge 
Knowledge of 

Horizon (SCK) 
Content & 

Content Knowledge Currlwlum 

Knowledge of Content 
& Teaching 

(KCT) 

(8all, Thames, & Phelps, 2008, p. 403) 

Subject Matter Knowledge - corresponds to Shulmans's content knowledge; the 

knowledge of the subject and its organizing structures. This knowledge is classified into: 

a. Common content knowledge (CCK) - mathematical knowledge 

and skill used in settings other than teaching. Teachers must know this 

content as they must set-up and solve the problems they are assigning. 

b. Horizon content knowledge - knowledge of the mathematics 

beyond the mathematics that one teaches, as well as the knowledge of the 

connection of these levels as contained in the mathematics curriculum. 

For example, first-grade teachers should understand how first-grade 

mathematics content relates to third-grade mathematics topics. 

c. Specialized Content Knowledge (SCK) - mathematical 

knowledge and skill unique to teaching (and not typically useful in other 
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ways). This knowledge includes looking for patterns in student errors and 

evaluating whether a non-standard approach to a problem works. 

Pedagogical Content Knowledge - the representations of specific content ideas, 

as well as an understanding of what makes the learning of a specific topic difficult or 

easy for students. 

a. Knowledge of content and students (KCS) - the conceptions and 

misconceptions that students of different ages and backgrounds bring with 

them when learning the most frequently taught topics and lessons; 

combines knowledge about students and knowledge about mathematics. 

b. Knowledge of content and teaching - the ways of representing 

and formulating the subject that make it comprehensible to others; 

combines knowledge about teaching and knowledge about mathematics. 

c. Knowledge of content and curriculum - includes knowledge 

outside the teacher's subject area and the connections with this 

knowledge. 

Two sub-domains of Pedagogical Content Knowledge, Knowledge of Content and 

Students (KCS) and Knowledge of Content and Teaching (KCT), were empirically 

identified in the 2008 study. Furthermore, the addition ofthe specialized content 

knowledge is a particularly interesting category. Notice that this category is on the 

content side of the diagrarn--which indicates it does not relate to student background, 

learning, cognition, or motivation. In addition, although this knowledge is content 

related, it is specific to the teaching field, with little purpose or worth outside of teaching. 

This combination is particularly intriguing. Ball writes, 
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Perhaps most interesting to us has been evidence that teaching may require 

a specialized form of pure subject matter knowledge-"pure" because it is 

not mixed with knowledge of students or pedagogy and is thus distinct 

from the pedagogical content knowledge identified by Shulman and his 

colleagues and "specialized" because it is not needed or used in settings 

other than mathematics teaching. This uniqueness is what makes this 

content knowledge special (2008, p. 396). 

Ball gave an example of this type of knowledge with the subtraction problem below: 

307 
-168 
261 

Here a person with minimal mathematics knowledge can detect the answer is incorrect. 

However, to help the student learn from the error, a teacher must recognize that the 

student has simply subtracted the smaller number from the larger, no matter the order. 

Using this knowledge, the teacher can give appropriate feedback. This type of 

knowledge reflects mathematical content, and yet, it would never be needed (or desirable) 

outside the realm of teaching. Figure 6. includes Ball's list of teaching tasks which often 

demand SCK. Ball used empirical evidence obtained from analyzing an extensive set of 

classroom videotapes to show that this category of mathematics knowledge surfaces in 

the classroom and is an essential part of teacher knowledge. 
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Figure 6. 

Mathematical Tasks of Teaching 

Presenting mathematical ideas 

Responding to students' "why" questions 

Finding an example to make a specific mathematical point 

Recognizing what is involved in using a particular representation 

Linking representations to underlying ideas and to 

other representations 

Connecting a topic being taught to topics from prior or future years 

Explaining mathematical goals and purposes to parents 

Appraising and adapting the mathematical content of textbooks 

Modifying tasks to be either easier or harder 

Evaluating the plausibility of students' claims (often quickly) 

Giving or evaluating mathematical explanations 
Choosing and developing useable definitions 

Using mathematical notation and language and critiquing its use 

Asking productive mathematical questions 

Selecting representations for particular purposes 

Inspecting equivalences 

Ball et aI., 2008, p. 400 

Teacher Practice and Cognitive Complexity 

From the above analysis, teacher knowledge and teacher beliefs appear to be key 

teacher qualities that promote student learning. Ultimately, however, what actually 

happens in the classroom determines how much learning takes place. Teachers might 

have a deep understanding of mathematics and mathematics knowledge for teaching and 

believe they have the knowledge to teach effectively, but if they do not give students 

relevant and frequent opportunities to learn in the classroom, these constructs will have 
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little influence on student achievement. Repeating what is proposed in NCTM's 

Professional Standards for Teaching Mathematics (NCTM 1991) Stein, Smith, 

Henningsen, and Silver (2000) wrote "opportunities for student learning are not created 

simply by putting students into groups, by placing manipulatives in front of them, or by 

handing them a calculator. Rather, it is the level and kind of thinking in which students 

engage that determines what they will learn" (p. 11). If a teacher uses strategies to 

encourage higher mathematical thinking in the classroom, it seems reasonable that 

students will later exhibit this type of thinking on their own when solving problems or 

when completing a challenging project or assessment. On the other hand, ifhigher 

cognitive mathematical thinking is not encouraged and demanded during a lesson, it is 

not realistic to expect students to develop high levels of thinking, either in the classroom 

or later in the workplace. This relationship is precisely the one studied in the GAST 

project. 

During a typical lesson, a teacher's presentation of mathematics is only part of the 

picture. On a practical level, mathematical tasks influence what students learn because 

students spend most of their time in the classroom doing these tasks in the classroom 

(Boston & Smith, 2009). Here again, not all mathematical tasks promote learning. The 

cognitive complexity of tasks affects student achievement. The QUASAR project (Silver 

& Stein, 1996) showed that students in classrooms in which tasks with high cognitive 

demand were set up and implemented showed the highest achievement on the 

mathematics assessment (Stein & Lane, 1996; Stein, Lane, et aI., 1996). Hiebert and 

Wearne (1993) found that both instructional tasks and the nature of classroom discourse 

likely "influence learning by affecting the kinds of cognitive processes students engage 
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(PA22)" Students who were given opportunities to engage in reflective thought and self

expression perfonned better, and these thought processes were linked to the nature of 

instructional tasks and classroom discourse presented in the classroom. 

The connection between high-level cognitive tasks and learning has been widely 

supported in educational research. Referring to recent reviews and meta-analyses 

summarizing research on learning and instruction, Baumert and colleagues (2010) wrote 

"although tenninology differs, three components of instruction have emerged consistently 

as being crucial for initiating and sustaining insightful learning processes in mathematics 

lessons. These three components are as follows: cognitively challenging and well

structured learning opportunities; learning support through monitoring of the learning 

process, individual feedback, and adaptive instruction; and efficient classroom and time 

management" (p.146). Clearly, the cognitive levels of the activities presented to students 

in the classroom either support or decrease the effectiveness of the learning opportunities 

in which students engage. 

Stein and colleagues (2000) developed a systematic way to differentiate the levels 

of cognitive demand for mathematical tasks in written fonn. Their guide can be used by 

teachers to select tasks based on the kinds of thinking that the tasks demand of the 

students rather than the superficial features often associated with cognitive complexity 

(such as the fonnat of the task - e.g. "a word problem", or that the problem was presented 

in a real-life context). The guide distinguishes between low level tasks, e.g. those 

focusing on memorization, and procedures without connections, and higher level tasks, 

e.g., those focusing on procedures with connections and doing mathematics. 

Memorization tasks involve reproducing fonnulas, rules, or definitions, while making no 
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reference to the meaning of the connections or concepts that underlie the fact being 

memorized. Procedures without connections are similar in that the underlying reasoning 

for the procedure is not explored; rather, the procedure is simply algorithmic. Students 

are taught how to perform the procedure without any mathematical understanding of why 

the procedure is appropriate or how or why it produces the correct result. For example, a 

student may be asked to convert the fraction % to a decimal by performing the long 

division algorithm, with no reference to the concepts of a fraction or its decimal 

equivalent. On the other hand, asking a student to use a lOx 10 grid to explain why % = 

0.60 and allowing them to make connections to the procedure and give meaning to their 

work is an example of using procedures with connections. Finally, tasks classified as 

doing mathematics require complex and non-algorithmic thinking. Students explore 

mathematical problems and discover relationships without having a clear path to the 

solution. In the previous example, students would be given the task of exploring 

fractional and decimal representations of % using a grids of different sizes; however, they 

would not be given the conversion procedure (at least not initially). Through their own 

reasoning, students would represent the shaded region as a percent, decimal, and a 

fraction. They must draw upon their knowledge of these concepts in ways they have not 

been previously exposed. However, the guide developed by Stein and her colleagues 

(1996) only classifies the complexity of written tasks, not tasks as they are delivered by 

the teacher. In fact, they found that only about one-third of the tasks that started out at a 

high level remained on this level as the lesson unfolded in the classroom. My proposed 

study, while differentiating cognitive complexity levels in ways similar to Stein, attempts 

to capture the cognitive complexity oflessons using Webb's Depth of Knowledge levels. 
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Cognitive Complexity and Webb's Depth of Knowledge Levels 

In the 1990s, Nonnan Webb was charged with detennining the extent to which 

different states' standards and assessments aligned, an essential attribute for an effective 

standards-based system (Webb, 1997, 1999,2002). Webb developed a systematic 

process and the analytical tools for judging the alignment among standards and 

assessments. To do this, he chose four criteria for analysis: categorical concurrence, 

depth-of-knowledge consistency, range of knowledge correspondence, and balance of 

representation. Webb wrote, "Standards and assessments can be aligned not only on the 

category of content covered by each, but also on the basis of the complexity of 

knowledge required by each. Depth-ol-knowledge consistency between standards and 

assessment indicates alignment ifwhat is elicitedfrom students on the assessment is as 

demanding cognitively as what students are expected to know and do as stated in the 

standards [emphasis added]" (Webb, 2002, p. 4). To interpret and assign depth-of

knowledge measures, Webb devised the following levels, briefly summarized below: 

Levell. Recall. Includes recall of a fact, infonnation, or procedure. 

Level2. Skill/Concept. Includes use of concepts and mental processing 

beyond habitual response. 

Level 3. Strategic Thinking. Requires abstraction, reasoning, and 

developing a strategic plan involving some complexity. Often times there 

may be more than one answer. 

Level 4. Extended Thinking. Requires investigation and extended 

thinking to process multiple conditions of the problem and solution. 
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Using these levels, educators can determine the depth of knowledge involved in 

teaching, classroom and homework assignments, student tasks, textbook problems, and 

tests. For example, a test which includes mostly DOK 3 tasks has higher cognitive 

complexity than a test which includes mostly DOK 1 tasks. Applying Webb's Depth of 

Knowledge framework to the moves and tasks used during classroom instruction can give 

a quantitative value of the cognitive complexity of the lesson as a whole, and ultimately 

of the level of teaching that the teacher plans or executes. 

Student Achievement 

Effective methods to improve student achievement have long been sought after, 

yet, after decades of research and experimentation, questions and controversies remain 

about the factors that actually lead to achievement gains. The main impetus of this 

student achievement research began in 1966 with the pUblication of "Equality of 

Educational Opportunity," better known as the "Coleman Report." Commissioned by 

the US Department of Education, Coleman and his team reported to the President and 

Congress the reasons for the "lack of availability of equal educational opportunities for 

individuals by reason of race, color, religion, or national origin in public educational 

institutions" (Section 402 of the Civil Rights Act of 1964). Coleman measured 

educational opportunity using student scores on achievement tests. He wrote, "One way 

of assessing the educational opportunity offered by schools is to measure how well they 

perform this task [teaching reading, writing, calculating, and problem solving]. Standard 

achievement tests are available to measure these skills ... what they measure are the skills 

which are among the most important in our society for getting a good job and moving up 

to a better one, and for full participation in an increasingly technical world" (p. 20). 
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Coleman found that student background and socioeconomic status related more strongly 

to student achievement than did school resources. The report also indicated that 

achievement of minority students was partiCUlarly affected by differences in school 

characteristics, such as school resources, libraries, characteristics of teachers, or 

composition of the student body. One of the most significant contributions of Coleman's 

work was a new focus on student achievement rather than years spent in school, as had 

been commonly used. Since this report was released, educational researchers have 

increased their focus on understanding the analysis of the report and giving further 

evidence for the various factors that improve student achievement. 

What has the research found about resources that improve student achievement? 

Unfortunately research on the effects of school resources on student achievement, though 

extensive, is conflicting. For example, Greenwald, Hedges, and Laine (1996) performed 

a meta-analysis of 60 primary research studies on the effects of school resources on 

student achievement and found that resources such as per-pupil expenditure, school size, 

teacher education and salary, and teacher/pupil ratio were positively related to student 

outcomes. The researchers added, "while many would have hoped that increasing 

resources would be positively related to achievement, we did not expect that the synthesis 

of data from a wide variety of studies over a three-decade period would yield conclusions 

so uniform in direction and comparable in magnitude" (p. 385). At the same time, 

Hanushek (1997) performed a meta-analysis on close to 400 studies exploring the effects 

of school resources on student achievement, and his conclusions were decidedly 

different. His findings "have a simple interpretation: There is no strong or consistent 

relationship between school resources and student performance" (p. 148). Hanushek did 
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not argue that schools do not make a difference, only that the measurable resources 

commonly used in studies (as those referred to in Greenwald, Hedges, and Laine) are not 

related to student outcomes. 

The Coleman report indicated that among school-related influences, teacher 

quality was significantly correlated to student achievement, supporting Hanushek's 

finding that teachers have a great influence on student success. One of Hanushek' s 

studies found that teachers account for at least 7.5 percent of the total variation in student 

achievement, with strong support that the true contribution is even higher (Rivkin, 

Hanushek, & Kain, 2005). He also found that one year with a good teacher can move an 

average student (based on student achievement) from the 50th percentile to the 58th 

percentile, which in economic terms can add more than $20,000 to the student's lifetime 

earnings (Hanushek, 2011). Other researchers agree that teachers matter. William 

Sanders, a leading expert in statistical analysis, also found evidence regarding the impact 

of teacher effects on student achievement. His 2004 study revealed that teachers 

accounted for 65% of the variance in student achievement, and teacher effects were the 

dominant factor influencing student academic progress. Darling-Hammond (2007), 

summing up many decades of research, stated "the single most important school 

influence on student learning is the quality of the teacher" (p. 67). Though controversy 

exists among researchers as to whether or not typical, measureable school resources 

matter, most believe that the quality and effectiveness of the teacher is a major factor 

influencing student academic achievement. The problem lies with identifying which 

teacher characteristics make a difference. 
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MKT and Student Achievement 

Only recently have mathematical knowledge for teaching frameworks been 

clearly defined, and the work showing the effects of teacher knowledge on student 

achievement is just beginning. Since the early 1960s, two approaches of exploring 

teacher relationships to student achievement emerged (Hill et aI., 2005). The first, 

labeled "process-product" studies, analyzed the effects of teaching practices on student 

achievement. These studies found positive relationships among certain teaching practices 

and student achievement gains, and the results have been well documented (see reviews 

by Brophy & Good (1986), and Gage (1978)). The research showed, for example, that 

student achievement improved when teachers emphasized educational objectives in 

establishing expectations and allocating time. Achievement also improved when teachers 

led students quickly through the curriculum while using small steps that allowed for high 

success rates, or adapted instructional materials based on their knowledge of the 

students' characteristics (Brophy, 1986). But many studies relied excessively on 

correlation and little attention was given to the subject matter taught (Hill et aI., 2005). 

The teaching practices that worked well for reading did not necessarily work well for 

mathematics. 

The second approach, labeled "educational production function" research, linked 

student achievement gains to the resources possessed by students, teachers, and schools. 

Teacher preparation and experience, such as education level, certification status, and 

years of classroom experience, were used as predictors of student achievement. 

Analyses of these production function results have shown positive relationships between 

teacher education and student achievement. In the study mentioned above, Greenwald, 
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Hedges, and Laine (1996) concluded "resource variables that attempt to describe the 

quality of teachers (teacher ability, teacher education, and teacher experience) show very 

strong relations with student achievement" (p.384). However, these claims have been 

disputed on methodological grounds with regard to sampling procedures and meta

analysis techniques (Hanushek, 1996). Other studies that measured teacher knowledge 

more directly through certification examinations or subject matter tests have also shown 

higher student achievement correlations (Boardman, Davis, & Sanday, 1977; Strauss & 

Sawyer, 1986; Tatto, Nielsen, Cummings, Kularatna, & Dharmadasa, 1993), but this 

research did not compare specific teacher subject matter knowledge with student gains in 

that specific subject matter. Finally, teacher preparation in science and mathematics has 

been shown to have a positive effect on student gains in these specific areas (Monk, 

1994). This study used variables such as the number of undergraduate and graduate 

mathematics and mathematics education courses, earned mathematics major, and earned 

Master's degree as measurements of mathematics and science preparation. 

Studies that analyzed the relationship of teachers' mathematics knowledge on 

students' mathematical achievement gains have been few, and for the most part, are not 

generalizable. Mullens, Murnane, and Willet (1996) found positive effects of subject 

matter knowledge and teacher effectiveness, but the study was done in Belize where the 

teacher preparation and ability is assumed extremely variable. The same is true for the 

Harbison and Hanushek study (1992), which analyzed teachers in Brazil. In addition, the 

teacher assessments for these two studies, did not measure mathematical knowledge for 

teaching as described previously. The Mullens (1992) study used scores on a primary

school-leaving examination (given to all students) as the teacher knowledge measure, and 
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Harbison and others (1996) used the same fourth-grade mathematics assessment used to 

measure the students as the teacher measure. 

Based more heavily on Shulman's conceptual framework, a study by Rowan, 

Chiang and Miller (1997) used teachers' scores on the mathematics quiz included in 

NELS:88 as a measure of teacher content knowledge. This measurement was essentially 

a multiple-choice response on only one item. Without further studies on the validity of 

this measurement, generalization of the results should be made with caution. Metzler and 

Woessmann (2010) found teachers' subject matter knowledge had a significant positive 

effect on student outcomes in mathematics and reading, but the study was also conducted 

in a third world country (Peru), again limiting generalizability. 

A study by Hill, Rowan, and Ball (2005) used a measure specifically focused on 

the specialized mathematical knowledge and skills used in teaching mathematics. To 

capture the teacher knowledge construct, researchers designed items on a teacher 

questionnaire that was administered several times during the course of the three-year 

study. The variable was labeled CKT-M for content knowledge for teaching 

mathematics. Reading content items were also developed. Sample items are listed in 

Appendix B. The cumulative score on all questionnaire administrations were used to 

form a teacher's CKT-M score for the 115 first-grade and third-grade teachers 

participating in the study. Student achievement data were obtained from eight students in 

each classroom. Participating schools, however, did not constitute a nationally 

representative sample in two deliberate ways. First, selected schools were engaged in 

instructional improvement, and second, high-poverty and non-rural schools were overly 

represented, with a large percentage (68%) located in large and small cities. A control 
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group with similar characteristics was also included. Results of the study supported the 

importance of mathematical knowledge for teaching, as student achievement rose 

significantly by two points for every standard deviation in teachers' content knowledge 

-this translated to about one half to two thirds of a month of student growth in 

mathematics achievement (p. 396). When considering factors that affect student 

achievement in mathematics, mathematical knowledge for teaching seems to matter. 

Another prominent study extending Shulman's work, is pertinent to the present 

discussion. Krauss and others (2008) identified three dimensions of PCK for 

mathematics: (1) knowledge of mathematical tasks as instructional tools; (2) knowledge 

of students' thinking and assessment of understanding; and (3) knowledge of multiple 

representations and explanations of mathematical problems. Applying these knowledge 

types, the researchers developed both a content knowledge assessment and a pedagogical 

content knowledge assessment. To measure the task dimension ofPCK, teachers were 

asked to identify multiple solution paths for a problem. For the student dimension, 

teachers were assessed on their ability to recognize student misconceptions and 

difficulties. For the instructional dimension, teachers were given 10 vignettes of 

classroom situations and asked to provide possible learning solutions. Baumert and 

others (2010) used these data and student mathematics achievement data obtained from 

PISA 2009 for grade 9, and a separate mathematics test for grade 10, to analyze the 

effects of a teachers' content knowledge and PCK on student achievement. Results again 

were clear; the teacher PCK accounted for 39% ofthe variance in student achievement 

between classes in an HLM regression model. The study also found that PCK influenced 

the learning support dimensions of instructional quality (such as monitoring the learning 
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process, individual feedback, and adaptive instruction), but was independent of classroom 

management measures. 

Teacher knowledge and student achievement relationships have also been 

analyzed according to cognitive type, which refers to "the kind of teacher content 

knowledge and thinking processes required to accomplish a task successfully" 

(Tchoshanov, 2011, p. 141). In this research, a teacher's mathematical knowledge 

(content knowledge only) was divided into three categories: Type 1 - knowledge of facts 

and procedures; Type 2 knowledge of concepts and connections; and Type 3 knowledge 

of models and generalizations. Correlation analysis showed a significant relationship 

between student achievement and the Type 2 teacher knowledge, though Types 1 and 3 

were not found to be correlated with student outcomes. 

To close this section, a final caution about the process-product research 

mentioned above can help explain the limitations in solely analyzing teacher knowledge 

and student achievement. Brophy (1986) noted, 

Even trained and experienced teachers vary widely in how well they 

organize the classroom, articulate achievement expectations and objectives, 

select and design academic tasks, and instruct their students. Those who do 

these things successfully produce significantly more achievement than 

those who do not, but doing them successfully demands a blend of energy, 

motivation, subject matter knowledge, and pedagogical skills that many 

teachers, let alone ordinary adults, do not possess. Thus, if we as a nation 

are serious about wanting good teaching in our schools, we will need not 

only to improve pay and working conditions so as to recruit and retain 
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talented people but also to arm them with the knowledge and skills they 

need to do their jobs effectively. Contemporary research on teaching is 

contributing by identifying the knowledge and skills that are needed. 

(p. 1076) 

The accumulated body of process-product literature shows that teacher knowledge 

is not the complete picture. What a teacher does with that knowledge is perhaps 

the deciding factor. Brophy added that if we are serious about wanting good 

teachers, we must "arm them with the knowledge and skills they need to do their 

jobs effectively." This support includes arming them with the mathematical 

knowledge for teaching which has been proven to have a positive relationship with 

student achievement. 

Teacher Efficacy, Teacher Knowledge, and Student Achievement 

Research showing the combined effects of teacher efficacy and teacher 

knowledge on student outcomes is scarce. The few studies that involve both constructs 

offer only correlations between the two without study level analysis. In a comprehensive 

review, Fives (2003) found only nine studies that examined the relationship between 

teacher efficacy and teacher knowledge. Fives divided these studies into categories 

according to how the construct of teacher knowledge was measured. The first group used 

educational level as a proxy for teacher knowledge. In a study focusing on the 

organizational health of schools, Hoy and Woolfolk (1993) found a significant positive 

relationship between educational level and Personal Teacher Efficacy (PTE) (r = 0.21,p 

< .01). This construct was the only personal variable that had a positive relationship to 

PTE in a regression analysis. In 1996, Campbell (as sited in Fives, 2003, p. 83) also 
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found that educational level affected differences in PTE scores using three education 

categories: pre-Bachelor, Bachelor, and post-graduate levels. Results showed higher 

efficacy scores for teachers with post-graduate work than for the other two categories. 

The final study compared teacher efficacy across six groups: students, student teachers, 

students in advanced education courses, student teachers, practicing teachers, teacher 

education faculty, and non-faculty student teaching supervisors (Benz et aI., 1992). The 

authors found that postsecondary teachers tended to show higher personal teaching 

efficacy than the other groups. The authors admit, however, that the generalizability of 

the result is minimal due to lack of rigorous controls (p. 284). Moreover, though college 

faculty may possess more mathematics content knowledge than K-12 teachers, 

postsecondary teaching situations are vastly different from K - 12 classrooms. 

Therefore, comparing efficacy scores across groups may not be an accurate method to 

compare knowledge and efficacy constructs. The results of the three studies above 

demonstrated a correlation between higher levels of education and higher levels of 

teacher efficacy. 

Fives also reviewed studies that used completed coursework as a knowledge 

measure. Enochs, Scharmann, and Riggs (1995) used the number of high school and 

college science courses taken by elementary teachers to compare efficacy levels 

measured by the STEBI-B. Both high school and college courses were significantly 

correlated with teacher efficacy (r = 0.22,p < .05, and r = -0.21,p < .05, respectively). 

Negative correlations, as explained by Enoch and colleagues, were caused by poor 

science instruction models given by high school and post-secondary school teachers. 

Again, comparing teacher knowledge and teacher efficacy was only a tangential analysis 
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in this study and the studies mentioned above. None of these studies measured teacher 

knowledge directly, especially in ways that view teacher knowledge as defined and 

categorized in current educational research. 

However, a few studies have incorporated more direct measures of teacher 

knowledge. In analyzing the effect of a mathematics methods course on teacher 

knowledge, Evans (2011) acquired teacher efficacy, attitudes towards mathematics, and 

mathematics content knowledge scores before and after the methods course. Evans 

claimed the mathematics content test measured "the combination of knowledge, skills, 

and understanding of mathematical concepts held by teachers" (p.228). This definition 

aligned with the types of knowledge outlined by Ball, on whose theoretical framework 

Evans grounded his research. Results showed that although the teachers' content 

knowledge increased after the methods course, their self-efficacy beliefs did not. The 

somewhat high efficacy scores produced at the beginning of the course may have limited 

the possibility of the growth in efficacy. 

Additional research measuring teacher knowledge more directly yielded more 

positive knowledge-efficacy correlations. Preservice science teachers who showed 

higher knowledge of alternative science conceptual knowledge scored higher on the 

Science Teaching Efficacy BeliefInstrument (STEBI-B) (Schoon & Boone, 1998). Also, 

elementary teachers who demonstrated deeper knowledge of ADHD reported higher 

teacher efficacy beliefs (Sciutto, Terjesen, & Bender Frank, 2000). To measure teacher 

efficacy, participants rated the extent to which they felt they could effectively teach an 

ADHD student (on a 7-point scale). In both of these studies, specific content knowledge 
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was matched with efficacy measurements within the same content area. These studies 

give evidence of a positive correlation between the two constructs. 

The research mentioned above shows that teacher knowledge, measured either 

indirectly using proxies such as education level and coursework, or more directly by 

content specific tests, tended to be positively correlated with teacher efficacy, though 

results are not always consistent. Post-secondary educators also showed higher efficacy 

beliefs than K-12 teachers. However, these studies did not incorporate data at the student 

level, which is necessary to show the influence of these variables on effective teaching. 
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CHAPTER 3 

This chapter describes the research design, participants, variables, and measuring 

instruments used in this study. Instrument development, psychometrics, and reliability 

and validity issues are also presented. Finally, the limitations regarding research design 

and threats to validity are discussed. 

Research Design 

This study explored the possible predictive relationships of teacher efficacy (TE), 

geometry knowledge for teaching (GKT), and the cognitive complexity of teacher 

practices (TP) on student achievement. The relationships among the teacher-level 

variables were also analyzed. Table 1 below describes the basic research design of the 

study including variables, measures, and data analysis techniques. As reported by 

Klassen and colleagues (2011), 76% of research on teacher efficacy has used quantitative 

approaches. This study continued in that tradition. The teacher efficacy construct was 

measured with a 24-item self-report teacher efficacy survey-the Teacher Sense of 

Efficacy Scale (TSES). Geometry knowledge for teaching (GTK) was measured with the 

Geometry Assessment for Secondary Teachers (GAST), specifically designed to measure 

geometry teacher knowledge. Also incorporated from the GAST project was the GAST 

Classroom Observation Instrument (GCOI), used to capture the DOK level of teacher 

practices. 

Given that the data had a two-level structure with students clustered in 

classrooms, Hierarchical Linear Modeling (HLM) was chosen as the principle method of 
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analysis. To give support and direction to the HLM analysis, correlation and regression 

analyses were performed to investigate relationships among variables, and the possible 

predictive relationships of teacher efficacy and geometry knowledge for teaching on 

teacher practices. For the HLM analysis, first-level student variables included a 

modified End-of-Course Assessment (EOCA) with an Entering Geometry Test (EGT) 

used as a covariate. As a later addition, the teacher's experience (number of years) was 

also added to the three principle teacher-level variables as a possible predictor of student 

achievement. 

Table 1 

Study Design and Research Questions 

OKT 

( 
Teacher Efficacy 

Dependent Variables 
Student Achievement 

Independent Variables 
Teacher Efficacy (TE) 
Teacher Practice (TP) 
Geometry Knowledge for Teaching (GKT) 
EOCA Median Score (Teacher Level) 
EGT Median Score (Teacher Level) 
Ex erience 
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GeOI 

Measures 

EOT! 
EOCA 

Student End of Course Assessment (EOCA) 
Entering Geometry Test (EGT, Covariate) 

TSES Score 
GAST Classroom Observation Instrument 
GAST Score 
Calculated from student EOCA scores 
Calculated from student EGT scores 
Years teach in ex erience (Self-re ort 



Research Question 1. 
Are teacher efficacy, geometry knowledge for teaching, and the cognitive levels of teacher 
practice correlated? 

Data Analysis. Bivariate Correlation. 
Research Question 2. 
Does teacher efficacy or geometry knowledge for teaching predict the cognitive levels of teacher 
practice? 

Data Analysis: OLS Regression 
cl(GKT) + Co = TP 
c2(TE) + Co = TP 

Research Question 3. 
Does teacher efficacy, geometry knowledge for teaching, or the cognitive levels of teacher 
practice predict student achievement? 

a. Correlation Analysis 
i. TE-EOCA (Median) 
ii. GKT-EOCA (Median) 
iii. TP-EOCA (Median) 

b. Multiple Regression (Teacher Level) 

EOCA = Bo+ B) (TE) + B2 (GKT) + B3 (TP) 

EOCA = Bo + B) (TE) + B2 (GKT) + B3 (TP) 

+ B4 (Med. EGT) + Bs (YRS _ EXP) 

c. HLM Model 

First Level 
EOCAij = PO} + PI/(EGT ij) + rij 

Second Level 
PO} = Yoo + YOI*(TE}) + Y02*(GKT) + Y03*(TP}) + Y04*(YRS_EXP}) + UO} 
PI} = YIO 

Population and Sample 

The intended population for this study was high school geometry teachers, 

employed in either public or private high schools in Kentucky. The sample representing 
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this population was a convenience sample: the 72 teachers that participated in the NSF-

funded Geometry Assessment for Secondary Teachers project. These teachers were 

employed in either urban or rural school districts across the state of Kentucky with a 

concentration in the Lexington and Louisville areas. The teachers' years of experience 

ranged from 1 to 33 years, with an average of 14.6 years and a standard deviation of9.3 

years. Fifty-four of the teachers had earned a masters degree, nine achieved Rank 1 (60 

hours of graduate credit including a master's degree), and four had earned bachelor's 

degrees as their highest degree obtained. One teacher earned a Ph.D. in a field outside 

mathematics or secondary education. The distribution of teacher experience is shown in 

Figure 7. 

Figure 7. Teacher Experience Distribution 
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Sampling Procedures 
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Participating teachers were solicited personally by GAST personnel at district 

professional development workshops or by telephone. Additional solicitations were 
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made through emails sent by district administrators, university faculty, and mathematics 

listservs. Eligible teachers must have taught high school geometry for at least one full 

year, have been scheduled to teach at least one high school geometry class of twenty or 

more students during the school year, and their students must have remained in the same 

teacher's classroom for the entire year. Forty-four teachers were accepted to participate 

in the 2010-2011 cohorts, and twenty-eight participated the following year, 2011-2012. 

Instrumentation 

Reliability and Validity of the Teacher Sense of Efficacy Scale 

The Teacher Sense of Efficacy Scale (originally called the Ohio State Teacher 

Efficacy Scale, (Tschannen-Moran & Hoy, 2001)) was developed by a team of Ohio 

State teacher educators and practicing teacher doctoral students, all of whom had 

teaching experience ranging from 5 to 28 years. Drawing from their experience in the 

classroom, the members of the team designed the scale specifically to capture important 

and frequent tasks and capabilities integral to a teacher's work life. After several pilot 

tests and revisions, a 24-item survey emerged. Factor analysis revealed three subscales: 

efficacy for instructional strategies, efficacy for classroom management, and efficacy for 

student engagement. Internal consistency reliabilities for the subscales were high: a = 

.91 for instruction, a = .90 for management, and a = .87 for engagement. Inter-

correlations between these subscales were 0.60, 0.70, and 0.58 respectively (p < .001). 

When subjected to further factor analysis using only inservice teacher responses (N = 

255), the three factors accounted for 54% of the variance of the efficacy score. In a 

confirmatory factor analysis, a principal axis factoring on a sample of 183 inservice 

teachers revealed one strong factor accounting for 75% of the variance. These results, 
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along with the moderate positive correlations of the three subscales, provided evidence 

that the instrument can be used to measure the underlying efficacy construct along with 

the three subscale scores. Loadings for each item on the efficacy factor ranged from .49 

to .76, and from .50 to .78 on the subscale factors. Survey items, factor loadings, and 

subscale factor correlations can be found in Appendix E. 

A shortened version of the TSES was also developed. An earlier 18-item version 

of the TSES produced a weak classroom management factor, so much so that Roberts and 

Henson (2001) recommended dropping this factor entirely. But convinced that classroom 

management constituted an essential element of teaching, the Ohio State team chose 

instead to introduce more items to further capture this important construct yielding the 

current 24-item survey. Because of the strong reliabilities of the three subscales, the four 

items with the highest loadings on each scale were selected to form a 12-item scale which 

showed nearly identical psychometric properties as the 24-item scale. However, the 

shortened survey did not show strong subscale factors when given to preservice teachers. 

Heneman, Kimball, and Milanowski (2006) attempted to further verify the psychometric 

properties of the TSES 12-item scale (and by extension the 24- item scale) by 

administering the short form to 1075 elementary, middle, and high school teachers. The 

factor analysis supported the three factor structure of the TSES and provided "strong 

replication of the Tschannen-Moran and Hoy results and extend those results to all three 

levels of teachers" (p.10). The high reliability was substantiated for the elementary, 

middle, and high school teacher data, and the psychometric properties reported by 

Tschannen-Moran were repeated, including the results of confirmatory and factor 

analyses, scale reliabilities, inter-correlations, means, and standard deviations. 
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To evaluate construct validity, the correlations between TSES measures and 

existing measures of teacher efficacy were analyzed by Tschannen-Moran and Hoy 

(2001). Survey respondents not only completed the long (and short) version of the TSES, 

but also the Rand Items and the Hoy and Woolfolk (1993) adaptation of the Gibson and 

Dembo Teacher Efficacy Scale (1984). Results are shown in Appendix E. Positive 

correlations were found between the TSES and Rand Item 2 and the Personal Teaching 

Efficacy (PTE) construct (r =.53, p < .01 and r = 0.64,p < .01) and also between Rand 

Item 1 and General Teaching Efficacy (GTE) (r = .18,p < .01 and r = .l6,p < .01). The 

lower correlations with the GTE measure is not surprising, as other instruments have also 

shown lower correlations with this measurement, suggesting that the Gibson and Dembo 

GTE scale is "the least efficient in capturing the essence of teacher efficacy" (Tschannen

Moran & Hoy, 2001, p. 801). The authors also add, 

Positive correlations with other measures of personal teaching efficacy 

provide evidence for construct validity. But the OSTES [now called 

TSES] moves beyond previous measures to capture a wider range of 

teaching tasks. Both the Rand and Gibson and Dembo instruments 

focused on coping with student difficulties and disruptions as well as 

overcoming the impediments posed by an unsupportive environment. 

Lacking were assessments of teaching in support of student thinking, 

effectiveness with capable students, creativity in teaching, and the flexible 

application of alternative assessment and teaching strategies (p. 801). 

The TSES includes items that assess a broader range of teaching tasks in hopes of 

capturing the true essence of teacher efficacy. Klassen and others (2011) also supported 
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the use of the TSES due to its strong theoretical underpinnings regarding construct 

validity. These researchers claimed the TSES measure "shows considerably more 

congruence with self-efficacy theories than many of the other measures" among the 

hundreds of studies they reviewed (p. 40). 

Reliability and Construct Validity of the Geometry Assessment for Secondary 

Teachers (GAST) 

The development of the Geometry Assessment for Secondary Teachers (GAST) 

began in October of 2008 as part of an NSF grant designed to study high school geometry 

teacher's geometry knowledge, teaching practices, and their relationship to student 

achievement. The test was designed to be predictive in nature- a high score on the 

GAST assessment was meant to signify the likelihood of student success in the high 

school classroom. As requested by the NSF, geometry content of the GAST assessment 

was restricted to four main areas: similarity, congruence, area, and volume. The intent of 

the request was to make the scope of the project less overwhelming by concentrating on 

these specific areas, which are so fundamental to geometry that results may still be 

generalized to represent high school geometry content in general. To enhance construct 

validity of the assessment, GAST team members first analyzed secondary and college 

geometry textbooks, state standards, and national assessments (e.g., NAEP, ACT) to 

better understand the current geometry used for teaching. Following this analysis, a team 

of mathematics educators, mathematicians, high school mathematics teachers, and 

doctoral students developed a blueprint for the assessment, incorporating ideas from 

Webb's depth of knowledge framework. The blueprint of the assessment included three 

principal content areas: Teacher Knowledge of Mathematics (30%), Teacher Knowledge 
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of Geometric Reasoning and Problem Solving (25%), and Teacher Knowledge of Student 

Learning (45%). The test did not specifically measure all of the mathematical 

knowledge for teaching domains as categorized by Ball and colleagues, but the three 

major sub-domains-Common Content Knowledge, Knowledge of Content and Students, 

and Knowledge of Content and Teaching were well represented. Example items can be 

found in Appendix D. After item production, regional reviewers were assembled to 

validate items for section, domain, topic, item type, and DOK level. To further insure 

construct validity for the test, both the blueprint and test items were reviewed by a panel 

of national experts in geometry and mathematics teaching. 

After pilot testing, two versions of the assessment were produced (Form A and 

Form B) which contained the same blueprint content and score points. Each version 

consisted of 11 open-response items (four 4-point items, and seven 2-point items), and 24 

multiple choice items. Form A was administered to 44 teacher participants in Fall of 

2010 and 28 in the Fall of2011, and Form B was administered to the same participants in 

Spring ofthe same school years. The 2010-11 data from the administration of Form A 

produced an acceptable internal consistency reliability, with Cronbach's coefficient alpha 

of a = 0.74, whereas Form B data produced questionable reliability, a = .63. The lower 

reliability produced by the second set of data could be attributed to the urgencies of the 

end of the school year and its influences on teacher concentration and effort. Other than 

being used as a predictor of teacher effectiveness, the test may eventually be promoted as 

pre-post Professional Development assessment, or as a measurement to predict the 

possible success of preservice teachers. At this time, the predictive nature of the test is 

still under analysis and further test development and refinement is ongoing. 
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The GAST Classroom Observation Instrument 

To evaluate the teaching practices used in the classroom, the GAST team 

incorporated a comprehensive mathematics teaching framework developed by Cooney, 

Davis, and Henderson (1975). This framework centers on teaching moves, which are "the 

kinds of logical things teachers do in teaching mathematics" (Davis, 1978, p. 13). These 

moves include defining concepts, giving examples and counterexamples, justifying 

formulas, demonstrating procedures-the typical building blocks of mathematics 

teaching. Teachers use moves to present or clarify mathematical concepts, 

generalizations, and skills. A complete glossary of moves for each of these three 

categories is listed in Appendix F, along with the DOK level assigned to each move. 

Using this framework, GAST observers coded teacher practices by categorizing each 

move on the GAST Classroom Observation Instrument (GCOI, See Appendix G). 

Classroom observations were scheduled to capture teacher practices when new content 

was introduced. For example, using the GCOI observers coded whether the teacher 

simply stated a definition, or whether the concept was further developed using such 

moves as counterexamples and comparisons with other concepts. As the classroom 

activity unfolded, observers recorded the teacher's exposition of concepts, 

generalizations, and skills. Student and teacher tasks were also coded and categorized 

according to cognitive complexity. From this information, a single DOK level was 

calculated as a weighted average ofDOK levels of both the moves and tasks (the total 

number ofDOK 3 moves or tasks was multiplied by 3, DOK 2 by 2, etc.). This strategy 

was adopted so that the final teacher practice measurement was not deliberately or 

inadvertently biased by a teacher's particular style of teaching. In other words, if a 
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teacher chose to use only tasks to teach a lesson, as long as the tasks required high levels 

of cognitive thinking, the teacher was not penalized for not using moves. By using a 

weighted average of moves and tasks, the resulting value reflected not so much the 

methods used as the overall DOK level of classroom activity. This methodology also 

eliminated the temptation to label activity as an end in itself. One well thought out DOK 

3 level task can be more effective than numerous moves and tasks which do not reach 

beyond DOK level 1. 

To help ensure inter-rater reliability of the coding, GAST observers underwent a 

two-day training session. During this time, two videotaped classroom sessions were 

coded and reviewed by the group together to establish uniform interpretations of teacher 

actions and coding methods. Two additional classroom videos were then coded 

independently by each observer. Results were tabulated and showed that all observers 

had produced scores that were within 50% of a benchmark score determined by the mean 

and median of observer scores. This training was repeated once more before the second 

year of data collection. 

Student End-of-Course Post-Test 

To measure student achievement, a reduced version of a Kentucky Geometry 

End-of-Course Assessment was given to the students of all GAST teacher participants at 

the end of the school year. The original assessment was designed by a team of educators 

led by Dr. William Bush at the University of Louisville (U ofL) in collaboration with the 

Kentucky Department of Education (KDE). To develop the assessment, KDE and U ofL 

staff selected a team of 13 professionals: mathematics educators (2), mathematicians (2), 

secondary school teachers (7) and secondary mathematics resource administrators (2). 
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The team created blueprints based on national and state standards documents (e.g., 

Achieve, NCTM, NAEP, TIMSS, Kentucky Program of Studies, and Kentucky Core 

Content). Team members wrote test items focusing on specific content areas and depths 

of knowledge according to the blueprint and Webb's DOK scale. The resulting 

assessment was pilot tested with approximately 3,200 Geometry students across 

Kentucky. After psychometric analysis and item revision, two versions of the assessment 

were developed and field tested with approximately 2,600 students. Psychometric results 

of these tests found high reliabilities for both sets of data (a = .92 for Form 1 and a = .88 

for Form 2). 

The reduced version of the End-of-Course assessment used for the GAST project 

consisted of items from the original version, but content areas were restricted to four 

major areas of geometry: similarity, congruence, area, and volume. Concentration in 

these areas was requested by NSF in accepting the proposal to develop GAST, and the 

student assessment was revised accordingly. The resulting test consisted of thirty items: 

24 multiple-choice and six open response (three 4-point items and three 2-point items). 

At the end of the 2010-2011 school year, the test was administered to 952 high school 

geometry students. Psychometric analysis of the data produced a moderately high 

internal consistency reliability (a = .84). 

Student Entering Geometry Test 

To control for student differences, a geometry "readiness" test was administered 

to the students of GAST teacher participants at the beginning of the school year. This 

test was used by the Cognitive Development and Achievement in Secondary School 

Geometry Project (CDASSG) conceived by Zal Usiskin and Sharon Senk of the 
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University of Chicago to study van Hiele level theories in geometry understanding 

(Usiskin,1982). The assessment, originally named the "Entering Geometry Test", was 

designed to measure the incoming geometry knowledge of students enrolled to take high 

school geometry. Usiskin's data produced a K - R20 internal consistency reliability of 

0.77. Because of the original purpose for which the test was created, the assessment 

aligns well in the present research design as a covariate with student achievement. Of the 

twenty items in the assessment, six focus on concepts of similarity, five focus on 

congruence, and three focus on area/volume. The other items were typically DOK level 

1, definition items, which were necessary to develop the concepts of these four main 

content areas. 

IRB Process 

The procedures for communicating with the teachers, securing informed consent, 

collecting and using both pre-existing and new data were submitted to the University of 

Louisville Institutional Review Board (lRB) for approval. The data collection procedures 

described below were approved by the IRB committee on the condition that the preamble 

for consent be presented on the first page of the survey, instead of being included on the 

invitation letter or in prior notification emails or future email reminders. This guaranteed 

that subjects filling out the survey must have been exposed to the conditions of consent 

along with the purposes of the study. 

Data Collection Procedures 

Data for the GAST teacher assessment, teacher practice score, Student Entering 

Geometry Test, and Student End-of-Course Assessment were obtained from pre-existing 

GAST data. For teacher efficacy data, participants were invited to take an online version 
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of the TSES in the Spring of2012 (which was one year after the first cohort participated 

in the GAST study). As an incentive to take the survey, participants were given $5 in 

compensation. The administration of the survey followed the four-step procedure 

outlined below, which is a modified version of the method used by Dillman, Smyth, 

Christian, and Dillman (2009). Dillman's method was modified due to the specific 

population of GAST teachers, who had already collaborated with the GAST research 

project and personnel. 

1. Prenotice email. Each teacher was contacted through a short email introducing 

the study and advising them that a follow-up email and letter would be sent explaining 

the study more fully. Teachers were given the option of taking the survey at this point if 

desired. 

2. Invitation. A follow-up email was sent to each teacher, in addition to a letter 

containing an explanation about why a response was important, instructions on how to fill 

out the survey, and a $5 token incentive. Consent was obtained through the teacher's 

willingness to participate in the survey, with consent details fully explained on the first 

page of the survey. 

3. Thank you. A thank you email expressing appreciation for participation in the 

survey was sent out one week later. Teachers who had not yet responded also received 

this email and were again invited to take the survey. 

4. Phone contact. Teachers who had not responded one week after the invitation 

were contacted by phone and politely invited to take the survey. 

At the end of this process, 73 teachers had taken the survey. Responses from one 

teacher were removed because the teacher had not fully completed participation in the 
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GAST project. This return resulted in a 100% response rate from teachers who had 

completely fulfilled the requirements of the GAST project. 

Limitations 

Several pertinent limitations of the study must be noted. This section presents 

possible threats to validity using the structure outlined by Shadish, Cook, and Campbell 

(2002), including construct validity, internal and external validity, and statistical validity. 

These limitations will also be discussed in the context of the results ofthe study. 

Construct Validity Threats 

Each of the three latent variables teacher efficacy, geometry knowledge for 

teaching, and teacher practice, are strongly supported by research to be major 

contributors to student achievement gains. Measurement concerns, nevertheless, may 

threaten the validity of results found in the present study. Of the three, teacher efficacy 

is perhaps the most inherently difficult construct to measure, and no easy remedies to this 

problem seem to exist. As has been stated, the measurement of efficacy should be as 

task specific as possible, which in tum will limit the generalizability of the study. Beliefs 

in capabilities must be understood and measured as capabilities of this task. The task at 

hand can then be so specifically defined as to make results useless. For example, one 

might measure "the task of teaching of high school geometry, chapter 6 section 1 of 

textbook A, at a rural school with a 55% free and reduced lunch percentage, in a class 

with 27% English Language Learners during period 5 after the school pep-rally." 

Though measuring the beliefs of the teacher at this time might be possible, generalizing 

the result certainly is not. Still, the procedures outlined in this study follow what 

previous research has predominantly used (Klassen et aI., 2011). Efficacy was measured 
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with a self-report instrument which attempts, as much as possible, to define teaching 

tasks without limiting external validity. In its development process, the TSES was 

specifically created to address the most important tasks present in everyday teaching. For 

example, instead of eliminating the classroom management subscale when factor analysis 

showed poor results, more items were written to capture this factor, as researchers felt 

classroom management simply could not be left out. Nevertheless, the inherent difficulty 

of measuring efficacy can never be completely overcome (Pajares, 1996) and must be 

considered a threat to the construct validity of the TSES measurement. 

The GAST instrument for measuring geometry knowledge for teaching also 

presented difficulties. Since this instrument was in its infancy, no additional research 

was available to support the reliability and validity of the measure. Though mathematical 

knowledge for teaching has been a major focus in mathematics educational research, 

much of this research has been carried out at the primary or middle school levels, and the 

concept of what mathematical knowledge for teaching is, continues to develop. 

Preliminary results validating the GAST instrument are currently being analyzed. 

The last measurement, teacher practice, attempted to capture what is theoretically 

an extremely interesting and important aspect of teaching, the cognitive level of 

complexity of a teacher's daily practice. As might be expected, this construct presented a 

difficult playing field for any observation instrument. The different approaches to 

teaching can vary greatly across teachers as each teacher has hislher own background, 

preferences, personality, and experiences that all influence the choices of methods and 

pedagogical strategies. Even with the same teacher and students, classroom activities 

and teaching content vary from one day to the next. To increase measurement reliability, 
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the researcher conducted three observations for each teacher, with content area focused 

specifically on similarity, congruence, area, and volume. Still, producing an instrument 

that accurately measures the cognitive levels for such an enormous amount of teaching 

strategies and situations is no easy task. Construct validity must be considered when 

analyzing data from this type of study. 

Internal Validity Threats 

As has been discussed, a person's self-efficacy beliefs are intimately tied to the 

nature of the specific teaching task, making measurement and generalization difficult to 

reconcile. Raudenbush and colleagues (1992) using HLM techniques suggested that 

teachers report higher teacher efficacy scores when teaching high-track classes. This 

suggestion supports the idea that teacher efficacy fluctuates from year to year, and 

collecting data one year later for the first cohort would not be valid. But Raudenbush and 

his colleagues also found that this effect nearly disappeared when the teachers' 

perceptions of student engagement were considered. In addition, they used only one item 

to measure teacher efficacy, a possible threat to construct validity of their study. To build 

upon their findings, the current study incorporated a teacher efficacy instrument created 

by teachers to specifically address the essential aspects of the teaching profession. 

Student engagement ranks highly among these, so much so that 8 of the 24 items directly 

focus on student engagement issues, creating its own subscale. If high-track class effects 

are negated by a teacher's perceptions of student engagement, these effects will be 

accounted for by the TSES. 

Still, the timing of the TSES administration was not optimal. In this study, the 

first cohort of teachers may have taught different classes with different students and 
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perhaps different courses when they completed the TSES survey, and some may have 

switched schools or were not teaching at all. The different setting might have changed 

their self-efficacy beliefs and rendered measurement inaccurate, thus compromising the 

internal validity of the study. To address this issue, the findings of Tschannen-Moran and 

Hoy (2007) are particularly relevant. They explored the sources of teacher efficacy 

beliefs, including key school resources and supports in the teaching context, and 

compared differences between novice and experienced teachers (experienced teachers 

had more than three years of experience). Results showed that the contextual variable of 

school setting was unrelated to the self-efficacy beliefs of both novice and career 

teachers, though the availability of resources did affect novice teachers. Neither group 

seemed to base their self-efficacy beliefs on the support of administrators. As can be 

expected, mastery experience made the biggest impact, especially for novice teachers. 

The authors wrote: 

This variable [mastery experiences], assessed as satisfaction with teaching 

performance "this year," was especially strong for novice teachers. 

Career teachers, with an abundance of mastery experiences, may have a 

fairly stable sense of efficacy whether they are happy with how the current 

school year is going or not. (p. 954) 

The findings of this study confirm what Bandura (1997) had suggested-that efficacy 

beliefs are more likely to change early in learning, and that once established, become 

resistant to change. 

This finding supported the validity of the efficacy data to be collected one year 

after the GAST data were collected. Of the 44 teachers in the first cohort, only four 
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teachers had three years or less teaching experience. The range of experience for the 

remaining teachers in the first cohort spanned from 4 to 31 years, with a mean of 14.7 

years of experience. Both current self-efficacy theory and empirical evidence support for 

stability of teacher efficacy beliefs for the vast majority of the study sample, thus 

measuring teacher efficacy beliefs one year later seemed a valid procedure. Still, efforts 

were made to collect additional data to account for any drastic changes to a teacher's 

professional life. Additional data collection items are listed in Appendix E. 

Attrition of student participants may also be a factor leading to reduced internal 

validity. Of the original 1673 students who took the Entering Geometry Test, only 80.8% 

of them also took the End of Course Assessment. Likewise, of the 1576 students who 

took the EOCA, 14.8% did not take the EGT. It was not possible for the researchers to 

track these student absences or account for confounding teacher effects caused by student 

migration. 

To help recuperate some of the lost data, EGT scores were imputed for students 

who produced valid EOCA results. The possible threat to internal validity resulting from 

this procedure is twofold. First, the EGT scores that each of these students would have 

produced are replaced by the class median. Though it seems reasonable that an 

individual would not score far outside the scores of his or her peers, this was not 

necessarily the case, and in the end there is no substitute for the true value. Secondly, 

the fact that the student did not have an EGT score led to the question of how long the 

student was exposed to the teacher's instruction and for what content areas. It was 

precisely this effect that the study attempted to measure. A significant loss of exposure to 
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the teacher's classroom instruction would definitely lessen the impact of this effect, 

threatening the internal validity of the study. 

Finally, the multitude of sources that influence student performance was complex. 

School and district level effects, along with other classroom and student level variables 

such as curriculum, socio-economic status of both student and classroom averages, 

available resources, can have confounding effects on the variables of the current study. 

Although research supports the stronger influence of the teacher, other factors 

nevertheless could diminish the size of the effects, making relationships among variables 

harder to detect. 

Statistical Validity Threats 

Perhaps the greatest threat to the statistical validity of this study was the possible 

loss of power due to the sample size of the second-level variable. McCoach (2010) states 

that a minimum of 10 second-level clusters are required for a multi-level analysis, but 

adverse consequences arise ifhigher sample sizes are not achieved. For sample sizes 

with less than 30 second-level clusters, level 2 variance components can be overestimated 

while standard errors for all parameter estimates can be underestimated. For samples 

over 30, but less than 100, standard errors for the level 1 components can be reasonable, 

but level 2 variance components still might be underestimated. So although this study 

had the required 30 second-level clusters, it may be the case that the standard errors for 

the second-level variables were underestimated due to the small number of second level 

clusters (p. 129). 

Another statistical validity threat stems from the restricted range of the efficacy 

measure. The TSES measured the teacher efficacy variable on a scale from 0 to 9, but 
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the range of teacher scores only spanned the top half of the scale, 5.29 - 8.67, with a 

standard deviation of only 0.73. This might be attributed to the fact that the teacher 

sample consisted of volunteer teachers. Teachers willing to allow observers to enter their 

classroom and collect data about their teaching would likely have positive beliefs about 

their teaching abilities. Although this did not alter the design of the study, the restricted 

range of the teacher efficacy construct made the relationship between teacher efficacy 

and student achievement harder to detect. 

Finally the unreliability of measures may have contributed to a final statistical 

validity threat. As has been stated, both the GAST assessment and the GAST Classroom 

Observation Instrument (GCOI) were in their developing stages and no prior research 

existed to support the reliability of these measures. Possible measurement reliability 

issues, especially with the GCOI, again made teacher level influences on student 

achievement harder to detect within the context of the study design. 

External Validity Threats 

The projected population of this study was high school mathematics teachers 

employed in public and private schools. The study sample, however, consisted of 

volunteer teachers from both public and private schools in Kentucky. The fact that the 

sample contained only volunteers not only led to the restricted range problem mentioned 

above, but also added an external validity threat. Perhaps the relationships between 

teacher and student-level variables were only present in the type ofteacher willing to 

participate in this kind of research, but would not be present in others. The schools were 

adequately mixed between public and private and urban and rural school districts, so 

theoretically threats to external validity for the student population were minimal. 
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CHAPTER 4 

This chapter presents a description of the findings of the study. The descriptive 

statistics of the major teacher-level and student-level variables are presented first, 

followed by the results of the statistical analysis of the data including correlation analysis, 

ordinary least squares regression, mUltiple regression, and hierarchical linear modeling. 

Descriptive Statistics 

The descriptive statistics for the major teacher variables including geometry 

knowledge for teaching, teacher efficacy, and teacher practices are listed in Table 2. 

Table 2 
Descriptive Statistics o/Teacher Variable Measurements 

Teacher Teacher 

GKT GKT Efficacy Practice 

(43 total pts) (43 total pts) (1 - 9) (DOK 1 - 3) 

Observation 
Measurement GASTA GASTB TSES Score 

Instrument 

n 72 72 72 72 

Mean 23.74 24.82 7.10 1.66 

Median 23.25 24.75 7.21 1.68 

Std. Deviation 6.6 5.93 0.73 0.19 

Range 29.0 31.0 3.38 0.93 

Minimum 10.0 10.0 5.29 1.17 

Maximum 39.0 41.0 8.67 2.10 

GAST Form A assessments were administered at the beginning of the year, Form B 

assessments were administered within one month of the end of the geometry class 

teaching session. Score averages between the two forms were within 1 score point, with 

Form B slightly higher than Form A, and for both Form A and Form B, the means and 
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medians were almost identical for the same version of the test. The distributions of the 

two versions were close to normal, as shown in Figure 8. 

Figure 8. GAST Assessment Distributions for Form A and Form B 
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Teacher Efficacy 

The data from the Teacher Sense of Efficacy Scale survey produced a somewhat 

normal distribution (see Figure 9), although the center of the distribution is located at the 

higher end of the scale (the mean was m =7.1 out of9, with a standard deviation of s = 

0.73). This shift towards the high end of the scale showed that the teachers in the study 

possessed high levels ofteacher efficacy. An exploratory factor analysis of the data 

using a varimax rotation procedure produced a five factor structure, instead of the three 

factors designed by the authors of the instrument. Confirmatory factor analysis did not 

fully support the three-factor structure, although the statistics approached a reasonable fit. 

The full description of both analyses, including factor loadings of the five factors 

compared with the original specification, is described in Appendix H. The data collected 

with the TSES showed high reliability, yielding a Cronbach' s alpha of a =.93. 

Figure 9. Teacher Efticacy Distribution 
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The last item on the survey included questions regarding any life changes that 

may have influenced teacher efficacy scores of the first cohort. A large proportion of 

first cohort teachers (30 of 44) reported that they felt their beliefs in their teaching 

abilities were about the same as they were last year. Nine teachers experienced a change 

of administration, but only one of those nine felt that this change affected their beliefs 

about teaching capabilities. One teacher no longer taught. 

Differences between cohorts were also analyzed. Results showed no significant 

difference between the teacher efficacy means F(1,70) = .000,p = .992. Both cohorts 

produced nearly identical averages, and distributions were similar. When correlations 

with the other variables of the study were analyzed for both cohorts separately, results 

showed the same findings as the entire group overall; namely, no significant correlations 

with either the EGT or EOCA scores or the teacher level GKT and TP variables were 

found. Descriptive statistics and distributions for the two cohorts can be found in 

Appendix 1. 

Teacher Practice 

Teacher practice data, measured by the GAST Observation Instrument, produced 

the distribution shown in Figure 10 with a mean of m =1.66 and standard deviation of s = 

0.19. Given that possible values ranged from 1 to 3, much of the teachers' classroom 

activity was on the lower end of cognitive complexity at levels 1 and 2. In fact, only 

three of the 72 teachers taught at an average cognitive c~mplexity at or above DOK level 

2 across three class periods. With-in teacher statistics were also calculated. The average 
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standard deviation across the three observations for each teacher was 0.15 and the 

average difference between the highest DOK class to the lowest DOK class was 0.35. 

Figure 10. 'Distribution of Teacher Practice Scores 

Overall OaK of Classroom Observations 

Student Level Variables 

In the 72 classrooms, 1895 students participated in the study with an average class 

size of26 students. Of these students, 1673 took the Entering Geometry Test (EGT), 

1576 took the End-of-Course Assessment (EOCA), and 1352 students took both tests. A 

student test was considered valid if there was at least one valid response (either correct or 

incorrect) on the test. This resulted in 71.3 % the total student sample that took both the 

EGT and the EOCA. The descriptive statistics for both assessments are shown in Table 3. 
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Table 3 

Descriptive Statistics o/the EGT and EOCA Variables 

EGT EOCA 

N Valid 1673 1576 

N Missing 222 319 

Mean 14.05 15.77 

Median 15.00 15.00 

Std. Deviation 4.056 7.435 

Minimum 1 1 

Maximum 20 37 

Total Possible 20 40 

The distributions of the Entering Geometry Test and the End of Course Assessment are 

shown in Figure lland Figure 12 respectively. Note that these two distributions are 

visually skewed from the normal distribution-the EGT is negatively skewed and the 

EOCA is positively skewed. 

Figure 11. Distribution of the Entering Geometry Test 
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Figure 12. Distribution of Student End of Course Assessment Scores 
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Correlation Analysis 

Before regression analyses were initiated, the researcher ftrst explored 

correlations between each teacher variable (GKT, TE, and TP) and aggregated student 

level variables. Student level variables were aggregated using median class values for 

both the End-of-Course Assessment and Entering Geometry Test. Results are shown in 

Table 4. None of the teacher level variables were signiftcantly correlated with each 

other, and neither GKT nor TE had any sizable or signiftcant correlation to the student 

outcome variable EOCA. Teacher practice, however, showed positive signiftcant 

correlations to student achievement, although the correlations were small. When teacher 
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practice was further disaggregated, the number ofDOK 3 moves showed a positive 

correlation to student achievement, as did the total number ofDOK 3 moves and tasks 

performed by each teacher. The years of experience of the teacher (YRS_EXP) showed 

the highest correlation with student achievement among teacher level variables. 

Table 4 

Teacher Level Bivariate Correlations 

Total 
No. of No. of 

Median Median DOK3 DOK3 
EOCA EGT GAST GAST Teacher Moves YRS 
Score Score A B TE TP Moves &Tasks EXP 

Median EOCA 1 .832 .122 .071 .093 .262 
, 

.298' .287' .493" .. 
Median EGT .010 -.029 .089 .174 .184 . 213 .339 .. , 

GASTA .733 .191 .078 .124 .064 .267 

GASTB .076 -.033 .096 -.007 .226 
, 

TE -.125 -.194 -.275 .081 .. .. 
TP .581 .608 -.017 

No. of DOK3 .. 
Teacher . 898 .096 
Moves 

Total No. of 
DOK3 Moves .149 

&Tasks 
Years 

Experience 
** P <0.01 *p<0.05 

Student-level correlations were also performed. Student EGT readiness test 

scores were highly correlated with the EOCA scores r(1354) = .68, p < .01, and 

aggregated class median EOCA scores were highly correlated to the aggregated median 

EGT scores r(71) = .85, P < 0.01). These statistics support the use of the EGT student 

readiness test as a covariate with student achievement. 

Regression Analysis 

Correlation analyses revealed that the teacher practice variable showed promise of 

having a predictive relationship to student achievement. To investigate this relationship 
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further, ordinary least square regression analysis was performed for the teacher practice 

variable as a first step in looking at coefficient sizes and significance. (The lack of 

correlation between teacher efficacy and geometry knowledge for teaching with student 

achievement ruled out the possibility of a significant OLS regression equation for these 

two variables). Also, to guard against possible skewness of the EOCA student scores, the 

class median scores, and not the mean scores of the EOCA, were used as the dependent 

variable representing student achievement (at the class level). 

As displayed in Table 5, teacher practice showed a significant predictive 

relationship to student outcomes, accounting for 5.5% of the variance in student 

achievement. The small Adjusted R was not surprising, given the small correlations 

between dependent and independent variables at the outset. The teacher practice 

coefficient was calculated to be relatively large at 8.03. Though the 3.53 standard error 

for this estimate is also large, the teacher practice relationship with student achievement 

was still positive. 

Table 5 

Ordinary Least Squares Regression Results 

Median EOCA = Bo + B1(TP) 

Coefficients B Std. 
Error 

Intercept, Bo 1.464 5.917 

Teacher Practice 8.026 3.538 

Model Summary 

R Std Error 
.262 .068 .055 5.70100 

Beta 

.262 

R2 

Change 
.068 

.247 

2.268 

F Change 
5.145 

Sig. 

.805 

.026 

dfl 
1 

df2 
70 

Sig. F 
Change 

.026 

Since the teacher variables were not significantly correlated, it was not possible to 

use ordinary least squares regression to analyze the predictive nature of teacher efficacy 
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and mathematics knowledge on teacher practice. No significant relationships were 

revealed among these variables. 

Multiple Regression Models 

Two multiple regression models reinforced what was found in the correlation 

analysis and the OLS equations; namely, teacher practice was a significant predictor of 

student outcomes while teacher efficacy and geometry knowledge for teaching were not. 

The first regression model incorporated only the three principle teacher level variables: 

EOCA = Bo+ B 1 (TE) + B2 (GKT) + B3 (TP) (1) 

To run these analyses (including subsequent models), variables were entered using 

stepwise procedures because all three teacher variables theoretically have strong 

influences on student achievement, with no preference of one over the other. In this way, 

the order of entry was driven by the strength of the correlations of each independent 

variable with the dependent variable using criteria of p :s .05 to include variables and p 2: 

.10 to remove variables. When the model was analyzed in SPSS, both the TE and GKT 

variables were excluded by the stepwise procedure. Only the teacher practice variable 

remained in the model, resulting in the same regression equation of the OLS analysis 

above, with the same coefficients and p-values. Again, this result follows logically from 

the correlation analysis conducted from the outset. 

For the second regression model, the aggregated median Entering Geometry Test 

covariate was added, which is an important factor when analyzing the true relationship 

between the teacher variables and student achievement. Also included was the years of 
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experience of the teacher. This yielded the final model represented by the equation 

below: 

EOCA = Bo + BI (TE) + B2 (GKT) + B3 (TP) 

+ B4 (Med. EGT) + B5 (YRS_EXP) (2) 

The additional two variables reduced the statistical power of the model, but according to 

Stevens (2009, p. 71), the data should contain at least 15 subjects per predictor to produce 

sufficient power. With 72 subjects, the current data set provided sufficient power for use 

with a five predictor model, though ideally more subjects would have been better. The 

other assumptions required by the model were also met. Both the histogram of residuals 

and the P-P plot (Figure 13) showed evidence of satisfying the normality of errors 

requirement. 

Figure 13. 
Histogram of Standardized Residuals & PP Plot 
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The linearity and homoscedasticity between predicted dependent variable scores and 

residual errors were verified by the scatterplot presented in Figure 14, which shows a 

random distribution about the zero axis. Regarding multicollinearity, SPSS collinearity 
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statistics revealed little collinearity between the predictors in the final model (Tolerance 

levels were between 0.852 and 1.000 and VIP scores were much less than 10). This 

finding was not surprising as correlation analysis revealed no evidence of any 

relationships between the predictors. One caveat should be noted regarding the 

independence of the aggregated student scores. Though theoretically the aggregated 

student-level scores are likely independent, an influence on student scores at the school 

level where two teachers taught at the same school was possible. Still, this influence 

would seem small compared to the much stronger influence of the teacher. 

Figure 14. 

Scatterplot of Residuals vs. Predicted Errors 
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Once assumptions were verified the model was analyzed, again using stepwise 

entry for independent variables. The procedure resulted in three variables entering the 

equation in the following order: the covariate EGT, YRS_EXP, and teacher practice (see 

Model 3, Table 6). This model was statistically significant F(3 , 68) = 71.970, p < .001 
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with an Adjusted R2 of. 750 (using the Wherry formula). Coefficient statistics are listed 

in Table 7. 

Table 6 
Model Summaries 

Model R R2 Adj.R2 Std. Er. R2 Chg F Chg dfl df2 Sig. F Chg 
1 .832 .691 .687 3.281 .691 156.841 1 70 

2 .861 .742 .734 3.024 .050 13.398 1 69 

3 .872 .760 .750 2.933 .019 5.366 1 68 

Model 1: Predictors: (Constant). Median EGT 

Model 2: Predictors: (Constant). Median EGT. Yrs. Experience 

Model 3: Predictors: (Constant). Median EGT. Yrs. Experience. Teacher Practice 

Excluded Variables: GKT. TE 

Table 7 
Coefficient Statistics 

Unstandardized Standardized 

.000 

.000 

.024 

F 
156.841 

99.009 

71.970 

Coefficients Coefficients Collinearity Statistics 
Independent Std. 

Variable B Error Beta t Sig. Tolerance VIF 
(Constant) -17.203 3.332 -5.162 .000 
EGT 1.568 .140 .722 11.235 .000 .852 1.173 
Yrs. Exp. .157 .040 .250 3.952 .000 .879 1.138 
TP 4.296 1.855 .140 2.316 .024 .963 1.038 

The resulting regression equation becomes: 

EOCA = -17.203 + 4.296 (TP) + 1.57 (Med. EGT) + 0.157 (Yrs. Exp) (3) 

which accounts for about 75% of the variance of the student achievement scores. The 

Sig 
.000 

.000 

.000 

teacher practice coefficient has dropped in magnitude but still holds a positive predictive 

relationship with student achievement despite the standard error. 

HLM Analysis 

Because the GAST data was naturally clustered by students within classes, 

Hierarchical Linear Modeling (HLM) was an especially appropriate method to look for 

linear predictive relationships. Using HLM not only allowed the teacher level effects to 
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vary across classes, but also enabled the variance levels among first and second level 

components to be explored. Missing data at the student level, however, presented a 

possible threat to statistical power. In the final dataset, missing student data points made 

up a significantly large percent of the student sample (28.7%). For this reason, the 

missing EGT scores were imputed with the median EGT from the students' 

corresponding class, adding an extra 12% of the data back into the sample. This resulted 

in 83.1 % of the student sample as usable first level units. The addition of these data 

brought with it the possibility of deflating the teacher's influence, depending on how long 

the student was in the class and what content area was covered during this time. 

Nevertheless, some degree of teacher influence was necessarily present in each of these 

student scores and the extra power added by the increased sample size would help detect 

this influence if present. 

The HLM analysis incorporated a three-stage procedure to explore possible 

second-level teacher effects on student achievement. The analysis began with the 

unconditional model to determine the amount of second-level variance contained in the 

student achievement scores. Then the regression analyses results were used to inform the 

HLM methodology: first the three teacher level variables were entered individually, and 

then the teacher's years of experience variable was added which had earlier proved to be 

significant. As will be shown, much of what was found in the correlation and multiple 

regression analysis was substantiated by the HLM exploration. Finally, all teacher 

variables were entered as both intercept and slope coefficients at the second level to 

explore any possible coefficient significance that had not yet been discovered. These 

HLM models were analyzed using HLM 7 software which incorporates a restricted 

94 



maximum likelihood method of estimation. For all of the HLM models, uncentered 

variables were used since within group differences were not the focus of study and 

interpretation with raw scores was straightforward. 

As mentioned above, the unconditional model (also called the One-Way ANOVA 

with Random Effects model; see Raudenbush and Bryk, 2002, p. 23) was used to 

determine variance at the group level. This model removes all independent variables and 

covariates from the equation as shown in Table 8. HLM results showed that 49.9% of the 

variance of student scores was found at the teacher level: 

TOO 28.700 
P = 2 = = .499 

Too + a 28.700 + 28.770 

The grand mean of the dependent variable EOCA was Yoo = 15.289, with a standard error 

of 0.645. 

Table 8 

Results from One-Way ANOVA, Unconditional Model 

where 

EOCAij = POj + rij 
POj = Yoo + UOj 

l'ij = Student EOCA score 
POj = mean EOCA score for group j 

final equation 

EOCA = Yoo + UOj + rij 

Fixed Effect Coefficient 

Average EOCA score (grand mean), roo 15.289 

Random Effect Variance 

Group mean, UOj TOO = 28.700 

Level-1 effect, rtj 0 2 = 28.770 

df 

71 

Deviance = 9981 Reliability estimate, Po = 0.94 

95 

Se t-ratio PValue 

0.645 23.7 <0.001 

)(2 p Value 

1535.300 <0.001 



After the unconditional model analysis, variables were introduced to identify the 

levelland 2 sources of variance similar to the methodology of the regression analysis. 

First, each of the three principle teacher variables were entered as the only second level 

variable both with and without covariate EGT scores on level one. This method was used 

in hopes that the HLM analysis might detect teacher effects not found with the 

aggregated regression model. The HLM equation using the teacher practice variable and 

the EGT score used the form given below. The slope Pli was entered as a fixed effect 

because prior analysis revealed the variability of the random effect u Ii to be insignificant. 

This was true in every model in the analysis. 

HLM Equations with the Covariate EGT and TP as an Intercept Predictor 

Level-I 

Level-2 

POj = Yoo + YOI * (TPj) + UOj 

Plj = YIO 

Mixed Model 

After the three teacher-level predictors were entered separately, neither geometry 

knowledge for teaching nor teacher efficacy produced significant coefficients in the HLM 

calculations. The teacher practice variable, however, was found to be a significant 

predictor (p = 0.03), and produced a coefficient multiplier of 5.168 for each DOK level of 

a teacher's instruction. The standard error of the TP coefficient was a relatively large 

2.236. Despite the standard error, the TP 95% confident interval (0.785,9.551) does not 
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cross zero, supporting the claim that teacher practice is a positive predictor of student 

achievement. Model statistics are shown in Table 9 below. 

Table 9 

HLM Model Statistics with Teacher Practice as an Intercept Variable 

Fixed Effect Coefficient Se tratio dF p Value 

For Intercept, (30j 

Intercept, yoo -7.377 3.761 -1.92 70 0.054 
TP, YOI 5.168 2.236 2.25 70 0.024 

For EGT slope, (3lj 

Intercept, YIO 0.991 0.058 17.006 1503 <0.001 

Random Effect Variance df )(2 P Value 

Group mean, UOj Too= 11.565 70 838.930 <0.001 

Level-1 effect, rij (72 = 21.442 

Deviance = 9477 Reliability estimate, Po = 0.904 

The total unexplained variance of 57.470 from the unconditional model has now dropped 

to 33.007. (For a summary of variance values, see Table 12 below.) The addition of the 

Entering Geometry Test and the teacher practice variables explained 42.6% of the 

original variance and 59.7% of the original variance at the teacher level. Of the 

remaining unexplained variance, 35.0% [TOO I( ToO + (72)] remains at the teacher level. 

However, most of the drop in variance can be attributed to the EGT covariate which 

when entered without TP, reduced second level variance to 12.357 compared to 26.779 

produced when the TP variable was added alone (26.779 is a drop of3.34% from the 

original variance component). Both models are listed in Appendix I along with model 

statistics. These models again substantiate what was found earlier in the mUltiple 

regression analysis which showed that the largest amount of variance was explained by 

the EGT variable, and the TP variable only explained an additional 1.9% more in the 

final regression model. 
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Teacher practice effects were also significant when included in the slope 

coefficient for the Entering Geometry Test covariate. The equations for this model are 

given along with coefficient statistics in 

Table 10. Though the magnitude of the YJ J coefficient is a relatively small 0.427, 

the Yll * TPj * EGTij term in the mixed model equation becomes (0.427)* TP/ EGTij, which 

can be rearranged as TPj *(0.427*EGT;). If the student scores well on the Entering 

Geometry Test, the increase in student achievement resulting from the DOK level of 

classroom activity could be substantial. The average of the EGT was 14.05, so the TP 

effect for an average student would be TP*(0.427) *14. 05, or 6.00*TP. Effects on student 

achievement would vary from this according to student performance above or below the 

average EGT. Still, this equation indicates that teacher practice had substantial 

interaction effects with readiness levels on student achievement. Variance components 

remained similar to the TP intercept model discussed above. 

HLM Equations with Teacher Practice as EGT Slope Variable 

Level-l 

Level-2 

/lOj = Yoo + UOj 

/lJj = YIO + YIl*(TPj ) 
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Mixed Model 

EOCAij = Yoo + YIO*EGTij + YIl*TP/EGTij + Uoj + rij 

Table 10 

HLM Model Statistics with Teacher Practice as EGT Slope Variable 

Fixed Effect Coefficient Se t ratio dF p Value 

For Intercept, [30j 

Intercept, yoo 1.273 0.716 1.779 71 0.080 
0.024 

For EGT slope, [31j 

Intercept, yIO 0.273 0.272 1.003 1502 0.316 
TP, yu 0.427 0.158 2.701 1502 0.007 

Random Effect Variance df )(2 P Value 

Group mean, UOj 11.646 70 838.930 <0.001 

Level-1 effect, r 21.349 

Deviance = 9476 Reliability estimate, Po = 0.905 

The final models added teacher experience to the two teacher practice models 

shown above. The intercept model shown in Table 11 again produced significant 

coefficients and helped explain 4.6% more of the original unexplained variance of 

student achievement scores. On the teacher level, 68.8% of the original second level 

variance was explained by the model. The TP coefficient remained unchanged from the 

previous model, and the teacher experience coefficient, though relatively small, still 

provided evidence that teacher experience had a positive influence on student scores. 

Deviance for this model had dropped from the previous models, showing a progressively 
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better model fit. Ultimately this model verified the results of the multiple regression 

analysis, where TP and teacher experience were meaningful predictors of achievement. 

100 



Table 11 

Final Model, TP and Yrs_Exp as Intercept Variables 

Levell 

Level 2 

EOCAij = POj + PI/(EGT;j) + rij 

POj = Yoo + YOI*(TPj) + Y02*(YRS_EXPj) + UOj 
Plj = YIO 

Mixed Model 

EOCAij = YOO + YOI*TPj + Y02*YRS_EXPj + YIO*EGT;j + UOj + rij 

Standard 
Fixed Effect Coefficient t-ratio 

error 

For INTRCPTl, 80 

Intercept, Voo -10.181 3.338 -3.049 

TP,VOl 5.339 2.002 2.667 

YRS_EXP, V02 0.179 0.043 4.144 

For EGTI slope, 81 

Intercept, V10 0.984 0.059 16.817 

Random Effect Variance df )(2 

Group mean, UOj 8.957 69 658.858 

Level-l effect, rtj 21.435 

Deviance = 9465 Reliability estimate, Po = 0.88 

Approx. 

d./. 
p-value 

69 0.003 

69 0.010 

69 <0.001 

1503 <0.001 

p Value 

<0.001 

As with the earlier teacher practice model, the two teacher level variables TP and 

YRS_EXP were shifted to the EGT slope coefficient equation. While both the TP and 

YRS _ EXP coefficients were significant, the teacher experience coefficient was close to 

zero, and no additional variance reduction was fOWld at either level. The Deviance level 

was also not significantly reduced. Statistics of this model can also be found in 

Appendix 1. 
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Table 12 

HLM Model Variances 

Unconditional 
EGT+TP EGT+TP+ 

Model 
Intercept YRS EXP 
Model Model 

Teacher-level Unexplained Variance, 
28.700 11.565 8.957 

INTRCPTl, Uo 

Student-level Unexplained Variance, r 28.770 21.442 21.435 

Total Unexplained Variance 57.470 33.007 30.392 

% Variance at 2nd Level 49.9% 35.0% 29.5% 

%Total Variance Explained 42.6% 47.1% 

%Teacher Level Variance Explained 59.7% 68.8% 

% Additional Variance explained by adding 
4.6% YRS EXP to TP Model 

% Addtitional Teacher Level Variance 
9.1% 

explained by adding YRS _ EXP to TP Model 

Exploratory Models 

To fully investigate any further coefficient significance or combinations of 

variables which may collectively predict student achievement, a model with all teacher 

level variables were entered simultaneously for both the intercept and slope equations as 

shown below. 

Level-l Model 

EOCAij = /30j + /31/(EGTij) + rij 

Level-2 Model 

/3oj = Yoo + Yo/(GK1J) + Y02*(TEj) + Yo/(TPj) + Yol(YRS_EXPj) + UOj 

/31j = YIO + Yll*(GK1J) + YJ2*(T~) + Yl3*(TPj) + Yu*(YRS_EXPj) + Ulj 

The results of this model yielded no new information, but reinforced what had been 

previously found-that the teacher practice and teacher experience variables were 

significant predictors of student achievement. The full statistics of this model can be 

found in Appendix I. Numerous other models were examined, especially models which 
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involved the number of DOK3 moves and tasks, which had previously been shown to 

have significant correlations with student achievement (measured at the aggregate level). 

These models produced very small coefficient sizes (typically near 0.10) but 

nevertheless, were found to be statistically significant. Models exemplifying the DOK 

variables are listed in Appendix I. 
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CHAPTERS 

Discussion 

Improving student mathematics scores is one endeavor in the country's political, 

social, cultural, and economic life that is supported by the population across all 

boundaries. Both TIMSS 2007 and PISA 2009 verified that recent generations of 

Americans are more deficient in mathematics skills when compared to other 

industrialized nations. Improving this situation is of utmost importance. Research 

reveals that the strongest influence of student achievement besides student characteristics, 

are teachers (Coleman et aI., 1966; Darling-Hammond, 2007; Sanders, 2004). However, 

how to determine the measurable teacher qualities that contribute most to student learning 

is still unknown (Boyd et aI., 2007; Goldhaber, 2002). For example, although teacher 

efficacy has a positive relationship with student achievement (Ashton & Webb, 1986; 

Berman et aI., 1977; McLaughlin & Marsh, 1978; Moore & Esselman, 1992; Ross, 

1994), one group of researchers questioned whether improving teacher efficacy is enough 

on its own to make a difference (Raudenbush et aI., 1992). This study examined whether 

or not teachers' efficacy, along with their geometry knowledge for teaching (GKT) and 

the level of cognitive complexity of their classroom practices (TP), predict student 

performance on mathematics achievement tests. In addition, correlations among these 

variables, along with the predictive nature ofteacher efficacy and geometry knowledge 

for teaching on classroom cognitive complexity levels were investigated. The results of 
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this study will be discussed by analyzing each teacher variable, its relationship to student 

achievement, and possible factors that may have influenced these relationships. 

Teacher Efficacy and Student Achievement 

Previous research has found teacher efficacy to be positively related to student 

achievement scores (Anderson et aI., 1988; Ashton & Webb, 1986; Ross, 1992) and to 

with-in teacher variables, such as a willingness to work longer with struggling students 

(Gibson & Dembo, 1984) and a willingness to implement instructional change (Ashton & 

Webb, 1986). The results of this study did not support these findings. Teacher efficacy 

was not correlated to either student achievement or the geometry knowledge for teaching 

(GKT) or teacher practice (TP) variables. Furthermore, neither the regression analyses 

nor the HLM techniques revealed relationships between teacher efficacy and the other 

variables in the study. In fact, both correlation results and regression coefficients were 

insignificant, frequently with very large p-values. The only significant teacher efficacy 

correlation was found between the teacher efficacy variable and the teacher's total 

number ofDOK 3 moves and tasks, which produced a small negative correlation (r =

.275,p = .02). These findings do not necessarily confirm that no relationship exists 

between teacher efficacy and student achievement. It may be the case that the particular 

instruments and methods used in this study were not capable of detecting a significant 

relationship. 

Perhaps the most logical explanation of these results is the statistical validity 

threat caused by the low number of second-level clusters. The fact that only 72 teachers 

(units at the second level) participated in the study may have weakened the statistical 

power of the study so that significant relationships between the dependent and 
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independent variables were not detected. This low power was present in all of the 

findings of the study, including the relationships between GKT and TP and student 

achievement. Moreover, selection bias may also have been a validity threat due to a 

ceiling effect, with most participants scoring near the top of the range. Because 

participating teachers were not randomly selected and had volunteered to take part in the 

study, they might have had higher than expected efficacy beliefs. As a result, the TE 

scores might not have had the necessary variance to reveal linear relationships. The data 

seemed to support this conjecture. The average TE score for this group of teachers was 

7.1 on 9-point scale. This group of teachers felt strongly about their abilities to promote 

student learning, a result that was not surprising given their proactive nature to volunteer 

to participate in the study. Also, self-report measures can be biased by social desirability, 

which was a concern in earlier teacher efficacy measures (Ashton et aI., 1982). Teachers 

may possess low self-efficacy tendencies, yet might not admit this shortcoming on a self

report survey. This tendency might have added to the restricted range problem. The 

resulting variance of the TE scores was quite small, s = 0.73, thus 68% of the teachers 

had TE scores between 6.37 and 7.83. With this restricted range, detecting an accurate 

linear relationship between teacher efficacy and student achievement was likely 

diminished. 

The internal validity threat due to the delayed administration of the TSES also 

might have contributed to an inaccurate measurement of teacher efficacy. The research 

of Tschannen-Moran and colleagues (2007) supported the methodology used here 

because of the high representation of experienced teachers in the first cohort (90.9%). 

However, the optimal time to administer the instrument might have been at the end ofthe 
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same year that the GAST test was administered to each group. Moreover, the inherent 

difficulty of measuring teacher efficacy due to the task specific-versus-generalizability 

problem may have been increased by the late administration for the first cohort. 

Nevertheless, a large proportion of the first cohort (30 of 44) reported that they felt their 

beliefs in their teaching abilities were about the same as they were the year before. 

Regarding the teachers who felt their beliefs changed, one might suspect that changes in 

belief from one year to the next would be relatively small when measured by the TSES, 

given the experienced population of the sample. As with any quantitative study in the 

social sciences, latent variable measurements can be difficult, and the complications of 

the late administration and the inherent difficulties of measuring the teacher efficacy 

construct may have caused the student achievement relationships to go undetected. 

Future research might investigate adjustments to the frequency and timing of the 

administration of teacher efficacy instruments. For this study, a more accurate 

measurement of the true efficacy might have been obtained by having teachers complete 

the TSES immediately prior to the classroom observations and then averaging the three 

TE scores for each set of classes, especially considering the same procedure was used to 

collect the TP variable data. Without specifying any particular task, the beliefs and 

attitudes of the teacher regarding the particular content area might have been captured. 

This method also may be more likely to identify any further underlying linkages to the 

TP and GKT constructs while also capturing a better picture of the teacher's sense of 

efficacy in general. 
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Geometry Knowledge for Teaching and Student Achievement 

The results of the geometry knowledge for teaching analysis were also 

inconclusive. Although previous research supported the positive relationship of 

teachers' mathematical knowledge for teaching on student achievement (Hill et al., 

2005), this study did not reveal substantial relationships. No significant correlations were 

found between teachers' geometry knowledge for teaching and student achievement, nor 

were any significant correlations between teacher efficacy or the DOK level of a 

teacher's instruction and student achievement found. In addition, neither regression 

analyses nor HLM modeling produced any significant findings. 

Again, the first place to look for possible reasons why no significance was 

detected is lack of statistical power. The relatively small number of clusters may simply 

not have produced enough statistical power to detect GKT predictive relationships with 

the other variables. Upon analyzing the descriptive statistics of the GAST scores, I found 

nothing that would cause concern regarding the possible selection bias caused by 

incorporating volunteer teachers as the sample population. Average scores were near the 

middle of the 43-point test (GAST A mean = 23.74, GAST B mean = 24.82) with 

standard deviations of 6.6 and 5.93 points, respectively. The range of scores was near 30 

points for both tests, and the distributions were relatively normal and centered about the 

mean. These statistics suggest that restricted range was not an issue in the analysis-the 

data points themselves simply did not produce significant relationships with the other 

variables. 

Because this study represented the first administration of the GAST test, no 

previous research was available to support construct validity of the test outside the GAST 
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project itself. Possibly the assessment did not capture fully the underlying construct it 

was intended to measure. Still, the blueprint did not appear to contain deficiencies that 

might cause problems in capturing geometry knowledge for teaching. Although the 

blueprint design included three subscores (Teacher Knowledge of Mathematics, Teacher 

Knowledge of Geometric Reasoning and Problem Solving, and Teacher Knowledge of 

Student Learning) these factors were not weighted equally. The third factor involving 

student learning, contributed 45% of the total score, and this factor might have been the 

most likely to capture pedagogical elements ofGKT. Nevertheless, the third factor itself 

showed no significant correlations to the teacher-level or student-level variables. 

Ultimately, the blueprint was created and reviewed by experts in the field, and the design 

would not likely have glaring flaws, although individual item analysis might be used to 

refine the test further. 

Selection bias may have also caused internal threats to validity-not only because 

of the selection of teachers, but also because of the schools included in the study. 

Although a mix of rural and urban districts were represented, the sample selection was 

not random, leaving room for bias. To account for differences in student/classes, the 

study used the Entering Geometry Test as a covariate, which similar to the GAST test, 

produced reasonable descriptive data. Since this test was designed precisely to capture 

the aptitude of students beginning high school geometry, it seemed an appropriate 

measure for use in this study. The same was true of the End-of-Course Assessment 

which was designed by content experts to specifically capture students' depth of 

knowledge in geometry. However, the reduced EOCA test which included only the four 

content areas of similarity/congruence and area/volume may have in some way altered 
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the psychometric properties of the assessment. This change may have skewed student 

achievement scores in ways not anticipated. 

Another area that may have accounted for the absence of GKT relationships was 

the large amount of missing data at the student level. Of the 1,576 students who took the 

EOCA, 14.8% did not have covariate EGT scores, leading to the decision to impute the 

data with class median scores to gain statistical power. Not only did the imputed data 

threaten internal validity, but the fact that 14.8% did not have an EGT score raised 

concerns. If this missing data was caused by a significant amount of student migration, 

many students would not have received the full impact of the teacher's knowledge and 

teaching skills, perhaps resulting in a decreased effect size for the teacher level variables. 

In addition, the degree to which teacher effects were reduced would depend not only on 

the time the migration occurred, but also on which geometry content was covered during 

students' absences. These two factors were impossible to track in the study. 

Finally, the many other factors that influence student learning at the student, class, 

and school level cannot be completely determined. This study incorporated one student

level independent variable, the covariate. Perhaps if other first-level variables were 

included such as socio-economic status or parent education, along with the interaction 

effects of these variables and second-level variables such as teacher preparation, other 

variances not previously identified could be uncovered. 

Teacher Practice and Student Achievement 

Although teacher efficacy and geometry knowledge for teaching data did not 

produce significant results, the data revealed that the cognitive level of teacher practices 

was a significant predictor of student achievement. The remainder of this chapter will 
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focus on this finding, along with the effects of the additional teacher-level variable, years 

of teaching experience. 

The descriptive statistics of the TP variable did not reveal high cognitive levels of 

instruction. The top half of the range of classroom DOK levels was barely breached by 

the teacher data, which showed a maximum individual teacher score of 2.10 out of a 

range of 1 - 3 (see Figure 10 for the distribution of scores). In fact, only three teachers 

averaged DOK level 2 or higher. Fifteen teachers scored below 1.5, indicating that many 

of the teachers at least tended more towards DOK 1 level moves and tasks than DOK 2 

level moves and tasks. 

If the GAST Observation Instrument accurately measured what it was intended to 

measure, this finding alone is worth addressing. When international examinations are 

constructed to compare the mathematics achievement levels across industrialized nations, 

test designers likely did not create many DOK 1 items. Mathematics tasks at the DOK 1 

cognitive complexity focus little on mathematics comprehension and more on 

memorization and retention skills. One could argue that even a DOK level 2 of cognitive 

complexity does not capture the essence of what makes mathematics what it is. While 

students must learn more than basic skills and concepts, what really exemplifies doing 

mathematics is the understanding and creative/exploratory element that comes from 

students thinking, elicited by a teacher through high cognitive level teaching moves and 

student tasks. If teacher practice data show that the tasks that teachers give students are, 

on average, at DOK level 2 or lower, then students will not likely be capable of really 

doing mathematics at DOK level 2. In this case, students were not using higher levels of 

cognitive thinking because they were not exposed to it by their teachers. The descriptive 
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statistics of the teacher practice variable alone are perhaps the most useful finding of this 

study, and the picture painted by these data of the future of mathematics education is not 

an encouraging one. 

The conclusions above assume that the GAST Observation Tool accurately 

captured the cognitive complexity levels of the teacher's moves and tasks presented in 

the classroom. This assumption is not without concerns. Though GAST classroom 

observers participated in extensive training to insure the reliability of scores, the sheer 

number of ways a particular teaching move may be recorded may have presented 

reliability threats. For this reason, the method of interpreting observation results for this 

study adopted a "global perspective" by trying to capture only the overall DOK level of 

the teacher's instruction. In other words, by using this method, it made no difference 

whether a teacher gave a counterexample for a concept (assigned DOK level 2 by the 

rubric) or assigned a DOK 2 level task, both were quantitatively identical. Though the 

logic behind this method makes sense, whether or not this method is optimal for 

capturing the DOK level of the class requires further research, especially considering the 

widely varying approaches to teaching and personal characteristics that teachers bring to 

their classrooms. 

Additional research is also needed (l) to verify the construct validity of the 

instrument in general and (2) to investigate methods to help observers maintain high 

inter-rater reliability. The analysis of the "within teacher" scores across classroom 

observations was encouraging. The average standard deviation across the three 

observations for each teacher was a low 0.15, and the average difference from the highest 

DOK class to the lowest DOK class was 0.35. While these numbers do not necessarily 
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add reliability to the data, they do indicate that teachers' TP scores seemed to be 

consistent. 

Besides the generally low DOK level of the overall teacher practice variable, the 

other significant finding was the relationship of this variable to student outcomes. All 

four data analysis techniques-the correlation analysis, regression, multiple regression, 

and hierarchical linear modeling techniques-supported the predictive nature of the 

teacher practice variable on student achievement. Not only was the regression coefficient 

statistically significant, but the coefficient magnitude was relatively large, ranging from 

4.3 to 8.0 across the three regression results. Assuming the HLM technique was the most 

appropriate analysis for this study, one could predict that for every increase of one DOK 

level in a teacher's classroom activity, the EOCA score of a student in this classroom 

would increase by 5.34 points. Since the End-of-Course Assessment had a high score of 

40, the increase predicted by the TP variable of one additional DOK level results in a 

13.35% increase of the total scale (over 1/8th of the total possible points). This represents 

a meaningful increase in scores as predicted by the teacher-level variable. Since the 

range ofDOK values is limited to DOK 1 through DOK 3, a teacher may not be able to 

increase this score by one full point, but the findings show that the DOK 3 level adds 

much to student learning compared to DOK 1. Not only did the cognitive complexity of 

teacher practices seem to make a difference in student outcomes, this difference was a 

large one. 

Along with the teacher practice variable, the number of years of experience also 

revealed significant predictive coefficients, though the coefficient was not as large (B = 

0.18). Therefore, a student taught by a teacher with 20 years of experience would be 
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expected to score 3.6 points higher on the EOCA than a student taught by a novice 

teacher. That a professional will become more effective in hislher career with more 

experience is widely accepted. The findings of this study provide empirical evidence for 

this assumption in the case of these teachers. When the effects of both the TP variable 

and the years of experience of the teacher were combined in the HLM model, the total 

unexplained variance of student achievement scores due to second-level variables was 

reduced by 68.8%. While both the HLM and multiple regression models suggested that 

most of the variance of student achievement still remained at the student level, the 

variance analysis was stiIl informative. The teacher practice variable explained why 

some classes did better than others after controlling for student readiness. When 

searching for meaningful second-level variables to consider, the cognitive DOK levels of 

a teacher's instruction should be included as one of the contributing factors to improving 

student scores. 

Conclusion 

Finding ways to improve student achievement scores has been the focus of 

educational research for decades and has cost millions of dollars. At this point in history, 

educators are stiIl hard pressed to determine which teacher qualities wiIl lead to improved 

achievement scores and deeper comprehension levels for students of all economic levels. 

This study looked specifically at a teachers' beliefs in their own capabilities that, when 

combined with other teacher qualities such as teacher knowledge and teacher practices, 

might predict student achievement scores. Much research has been conducted on the 

individual parts of this picture, and this study attempted to add to that body of knowledge 

by analyzing these variables simultaneously. Although the teacher efficacy and teacher 
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knowledge components did not show positive results, the significant and relatively large 

coefficient of the teacher practice variable added further evidence that the DOK level of 

the teacher's activity in the classroom should be a focus of further research. 

America is searching for solutions to deficiencies in the mathematical knowledge 

of recent generations of high school students and graduates. The results of this study 

yield two main conclusions, and the combined effect of these conclusions is somewhat 

alarming. The first is that the cognitive complexity of a teacher's classroom practices 

matter. Higher cognitive complexity of classroom activities lead to higher student 

achievement scores. This conclusion is perhaps not new, but has been verified by the 

particularly unique methodology and measures of this study. The second conclusion is 

that teachers are not adequately engaging students in high DOK levels of thinking. Only 

a fraction of the teachers in the sample reached a DOK 2 level of cognitive complexity in 

their classroom activities, and most fell below this. Student achievement in mathematics 

on the national level is obviously lacking, but the precise reasons for this performance are 

not so evident. This study has empirically verified one reason scores may be low, and 

along with that, has identified one area for focused improvement. Future research is 

warranted both on how to bring awareness to teachers of the importance of high cognitive 

complexity classroom practices as well as methods to actually get them to make the 

changes necessary to their own teaching practices. 

Why is it that teachers do not teach mathematics at cognitively high levels? It is 

likely that the teachers themselves do not have a high cognitive understanding of 

mathematics or, more appropriately, mathematical knowledge for teaching (the average 

GAST score was about 55% for the teachers in the sample). Perhaps the traditional "drill 
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and kill" methods of mathematics instruction that focus predominately on skills still 

pervade the educational structures that produce future mathematics teachers. If a 

students' understanding of mathematics depends on the depth of their teacher's 

understanding, then how will students ever break out of this cycle? How will a student 

who is to become a future teacher somehow "outperform" the teacher when it comes to 

high cognitive thinking? It's possible that even the sharpest mathematics students learn 

how to solve a myriad of highly complex problems without having the faintest idea of the 

rich, theoretical concepts that underlie even the simplest of mathematical operations. 

How might this cyclic process be broken? Appropriate, cognitively challenging 

mathematics problems is one answer. At what level of mathematics instruction? At all 

levels. But teachers themselves are the first place to start. Today's teachers need to be 

made aware of the importance of engaging students in high cognitive tasks. They need to 

become aware of the current low level of mathematics learning of which they themselves 

are products, and they need to recognize how the current system is a closed one, and it 

will not change unless they themselves change and the cycle is broken. They must be 

taught what high cognitive tasks look like and how they differ from low level procedures. 

This awareness and knowledge of high cognitive instruction must be delivered through 

professional development opportunities and through mathematics and mathematics 

education courses in their preparation programs. What underlies this cultural change is 

ultimately the recognition by mathematicians and mathematics educators that, for 

teachers, a knowledge domain called "mathematical knowledge for teaching" is 

necessary for quality teaching. This knowledge domain encompasses the knowledge of 
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how to identify and implement high cognitive tasks, recognize and appreciate the beauty 

of the mathematics, and understand the learning process itself that goes along with them. 

No doubt some mathematicians or mathematics educators will neither desire nor 

have the time to incorporate these ideas alongside the typical old school way of doing 

things. And some district administrators will prefer the stand and deliver methods of 

teaching that seemed to work fine for them and their generation of learners. Parents will 

echo their sentiments. Finally, some school systems will no doubt prefer textbooks and 

curriculum materials that have become a trademark of their districts and believe that what 

produces low mathematics achievement are in fact the new curricula that deviate from 

them, "We have to hold on to the tried and true!" And in the meantime, the 

memorization cycle continues, as the other industrial nations' mathematics competency 

gets further and further ahead and out of reach. 

All of this again points to the teacher as the first spark in the catalyst of change. 

Teachers must recognize how the current system oflow-Ievel instruction actually hinders 

a learner's progress and perpetuates this endless cycle of low level thinking. Then, by 

learning to recognize, create, and implement appropriate, interesting, and high level tasks, 

teachers may begin the process of change toward improved student achievement, and 

deeper, conceptual understanding, reasoning, and problem solving. 

On a final note, refining the GAST Observation Instrument is especially important 

in the current educational climate as administrators and policy makers strive to find 

methods to evaluate teachers in a balanced way. In fact, the explosive conflict that led to 

the recent teacher strike in the Chicago public school district was principally about how 

teachers were evaluated (Tare en, 2012). The GAST Observation Instrument was never 
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intended to be used as an evaluative tool and should not be used for that purpose. 

Nevertheless, looking at a teacher's actions through the lens of the "teaching moves" 

structure proposed by Cooney, Davis, and Henderson (1975) coupled with Webb's DOK 

levels presents an interesting approach to capturing classroom activity. Perhaps this 

approach could add a richness and complexity not present in current evaluation methods, 

which rely heavily on student achievement gains rather than teachers' actions. Further 

research is especially warranted during this crucial time of economic and political unrest 

to produce an evaluation tool that truly captures effective teaching. As the beginning 

steps of that process, the design, methods, and results of this study are particularly 

apropos. 
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APPENDICES 

Appendix A 

Table AI. Relationship between Self-Efficacy and Self-Concept (pajares, 2002) 

Construct 
Self-Efficacy 

Self-Concept 

Contrasts with Self
ConceptlEsteem 

Attributes 
Definition 

Effects 

Sources 

Definition 

Self-Efficacy 
Context specific 
Assessment of competence 
About performance of a 
specific task 

130 

Definitions 
The belie/in one's capabilities 
to organize and execute the 
courses of action required to 
manage prospective situations. 

It influences choices, effort, 
persistence, and feelings. 

Mastery experience 
Vicarious experience 
Verbal persuasion 
Physiological state 

A cognitive appraisal, 
integrated across various 
dimensions that individuals 
attribute to themselves, 
typically accompanied by self
evaluative judgment of self
worth. 

Self-ConceptlEsteem 
Integrated across domains 
Cognitive appraisal 
About being/feeling 



AppendixB 

Examples of Items Measuring Content Knowledge 
for Teaching Mathematics 

1. Mr. Allen found himself a bit confused one morning as he prepared to teach. Realizing 
that 10 to the second power equals 100 (102 = 100), he puzzled about what power of 10 
equals 1. He asked Ms. Berry, next door. What should she tell him? (Mark [X] One 
answer.) 

a) 0 
b) 1 
c) Ten cannot be raised to any power such that 10 to that power equals 1 
d) -1 
e) I'm not sure 

2. Imagine that you are working with your class on multiplying large numbers. Among 
your students' papers, you notice that some have displayed their work on the following 
ways: 

Student A 
35 

x 25 
125 

+ 75 
875 

Student B 
35 

x 25 
175 

+700 
875 

Student C 
35 

x25 
25 

150 
100 

+ 600 
875 

Which of these students would you judge to be using a method that could be used to 
multiply any two whole numbers? 

Method would work Method would NOT 
for all work for all 

whole numbers numbers I'm not sure 
Method A 1 2 3 
Method B 1 2 3 
Method C 1 2 3 

(Hill et aI., 2005, p. 402) 
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Appendix C 

Final Blueprint for the Geometry Assessment for Secondary Teachers CGAST) 

% 
Section 1: Teacher knowledge of mathematics items 

per 
form 

30 
1 The teacher recognizes and describes appropriate 10 

demonstrations, interpretations, analogies, and 
justifications to introduce and develop mathematical 
skills and procedures. 

2 The teacher recognizes and describes appropriate 10 
definitions, representations, examples, distinguishing 
examples, non-examples, counter-examples, and 
necessary and sufficient conditions to introduce and 
develop mathematical concepts. 

3 The teacher recognizes and describes meaningful 5 
connections (lateral, upward, downward) within and 
among mathematics content. 

4 The teacher recognizes and constructs meaningful 5 
mathematical models of real world situations. 

% items 
Section 2: Teacher knowledge of geometric per 

reasoning and problem solving 
form 

25 
1 The teacher solves non-routine problems, including 10 

real world applications, in geometrY. 
2 The teacher analyzes and constructs synthetic, 10 

transformational, and analytical proofs; and 
recognizes valid and invalid arguments (e.g., 
reasoning by converse, proofs by contradiction, 
negating, arguing the contrapositive, non-example). 

3 The teacher analyzes and justifies geometric 5 
formulas. 
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% items 

Section 3: Teacher knowledge of student learning per form 

45 
1 The teacher recognizes and describes strategies and 10 

activities that promote student reasoning and problem 
solving (e.g., questioning, posing a problem, offering a 
conjecture, describing an application). 

2 The teacher anticipates, recognizes, describes, 10 
assesses, and addresses correct and incorrect 
elements of student responses (e.g., skills, concepts, 
reasoning). 

3 The teacher recognizes, describes, and assesses 10 
critical student prerequisite knowledge .. 

4 The teacher recognizes and constructs mathematics 5 
assessment tasks at different cognitive levels. 

5 The teacher recognizes and describes advantages 5 
and limitations of using digital technologies (e.g., 
interactive geometry software, graphing calculators, 
virtual manipulatives, other internet resources) to 
foster student learning. 

6 The teacher recognizes and describes advantages. 5 
and limitations of using physical models (e.g., solids, 
paper folding) and tools (e.g., compass, straight edge, 
protractor) to foster student learning. 
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Appendix D 

Example GAST Items with Possible MKT Classifications 

1. Identify four ways a teacher can use these images of pyramids to introduce the topics of 

surface area and volume. (Knowledge of Content and Teaching/Knowledge of Content and 

Students) 

2. In promoting reasoning about triangle congruence, a teacher might do the following classroom 

activities with students: (Knowledge of Content and Teaching) 

1. Have students draw a triangle with two sides of given length and included angle of given 

measure. Have students cut out the triangle and compare it to other students' triangles and 

describe what they notice about the triangles. 

2. Draw two congruent triangles and ask students to explore the triangles to discover the 

relationship between the triangles. 

3. Have students explore pairs of triangles to identify which three corresponding congruent 

measurements guarantee triangle congruence. 

4. Draw two congruent triangles on a coordinate grid, and ask students to measure the length 

of three sides in one triangle and the corresponding sides in the other triangle to illustrate SSS 

congruence. Ask students to describe the relationship about the corresponding angles of the 

triangles. 

How should these activities be ordered so that they represent a developmentally appropriate 

learning sequence for stUdents? 

A. 1, 2, 3, then 4 

B. 2, 4, 1, then 3 

C. 3, 2, 4, then 1 

D. 4, 1,2, then 3 
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3. Explain three prerequisite concepts and skills that students need in order to find the area of a 

sector of a circle. Describe a formative assessment task that a teacher could use to determine 

students' readiness for this skill. (Knowledge of Content and Teaching) 

4. Which topic would NOT be prerequisite knowledge for students beginning to learn triangle 

similarity? (Knowledge of Content and Teaching) 

A. Parallel lines 

B. Properties of triangles 

C. Pythagorean theorem 

D. Solving proportions 

5. Refer to the diagram below. 

(Knowledge of Content and Students! Knowledge of Content and Teaching) 

A 0 • 

The circle has a diameter of 12 inches. D is the midpoint of line segment BC, and IADI=3. A 

student reasons that the area of the segment of the circle cut off by B C must be one fourth of 

the area of the full circle. 

Describe one activity that a teacher could use to help the student understand and correct the 

error in the student's thinking. 
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6. A spherical planet has a spherical inner core with a diameter half of that of the planet. 

What fraction of the volume of the planet is the volume of its inner core? (Common Content 

Knowledge) 

1 
A. 

8 

1 
B. 

4 

1 
C. -

3 

1 
D. 

2 

7. Refer to the diagram below. (Common Content Knowledge) 

B 

A 

h. ABC has an area equal to 120 cm
2

• Each of the sides is trisected with points D, E, F, G, H, 

I. What is the area of hexagon DEFGHI? 

A. 30 cm 
2 

B. 40 cm 
2 

C. 80 cm 
2 

D. 90 cm 
2 
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Appendix E 

T h S eac er ense 0 fEffi lcacy S al c e- L ong F orm 

TEACHER BELIEFS How much can you do? 

Directions: This questionnaire is designed to help us gain a better 
<1/ 

understanding of the kinds of things that create difficulties for teachers u 
c: "iij 

in their school activities. Please indicate your opinion about each of the <1/ ... 
<1/ :::l :c <1/ 

statements below. Your answers are confidential. ~ 
l;: C 

tIO .: <0 ... 
c: -' <0 

1: <1/ <1/ ~ ... ~ E 8 I.!) 0 
~ ~ z ~ 

1. How much can you do to get through to the most difficult students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

2. How much can you do to help your students think critically? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

3. How much can you do to control disruptive behavior in the classroom? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

4. How much can you do to motivate students who show low interest in 
school work? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

5. To what extent can you make your expectations clear about student 
behavior? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

6. How much can you do to get students to believe they can do well in 
school work? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

7. How well can you respond to difficult questions from your students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 
8. How well can you establish routines to keep activities running 
smoothly? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

9. How much can you do to help your students value learning? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

10. How much can you gauge student comprehension of what you have 
taught? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

11. To what extent can you craft good questions for your students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

12. How much can you do to foster student creativity? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

13. How much can you do to get children to follow classroom rules? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

14. How much can you do to improve the understanding of a student 
who is failing? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

15. How much can you do to calm a student who is disruptive or noisy? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

16. How well can you establish a classroom management system with 
each group of students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

17. How much can you do to adjust your lessons to the proper level for 
individual student? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

18. How much can you use a variety of assessment strategies? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

19. How well can you keep a few problem students from ruining an 
entire lesson? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

20. To what extent can you provide an alternative explanation or 
example when students are confused? (1) (2) (3) (4) (5) (6) (7) (8) (9) 

21. How well can you respond to defiant students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 
22. How much can you assist families in helping their children do well in 
school? (1) (2) (3) (4) (5) (6) (7) (8) (9) 
23. How well can you implement alternative strategies in your 
classroom? (1) (2) (3) (4) (5) (6) (7) (8) (9) 
24. How well can you provide appropriate challenges for very capable 
students? (1) (2) (3) (4) (5) (6) (7) (8) (9) 
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Additional Survey Item to Account for delayed administration of the TSES. 
Please select any of the following which apply to you. 

1. I am no longer teaching. 
2. I have changed schools this year. 
3. My principal has changed this year. 
4. New administration (such as principal) has had a large effect on my teaching 

abilities this year. 
5. I am teaching the same geometry class I taught last year. 
6. The classes I am teaching this year are much more difficult or much easier to 

teach than last year. 
7. I feel my beliefs in my teaching abilities are about the same as they were last year. 

Table El. 
Validity Correlations for the TSES 

Validi~ Correlations 

TSES Instruct Manage Engage Rand I Rand 2 GTE PTE 

TSES 0.89** 0.87** 0.18** 0.53** 0.16** 0.64** 

Instructional Strategies 0.84** 0.70** 0.Q7 0.45** 0.06 0.62** 

Classroom Management 0.79** 0.46** 0.58** 0.29** 0.46** 0.30** 0.45** 

Student Engagement 0.85** 0.61 ** 0.50** 0.11 * 0.47** 0.06 0.58** 

Rand 1 0.18** 0.08* 0.26** 0.11 ** 0.23** 0.65** 0.12* 

Rand 2 0.52** 0.45** 0.39** 0.45** 0.23** 0.13* 0.65** 

General Teaching Efficacy 0.16** 0.08** 0.26** 0.06** 0.65** 0.13* 0.Q7 

Personal Teaching Efficac~ 0.61** 0.60** 0.37** 0.56** 0.12* 0.65** 0.07 

(Tschannen-Moran & Ho~, 2001, E. 802} 
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Table E2 

Factor Loadings/or the TSES Items 

Teacher Efficacy Scale (TSES) 

Factor 1: Efficacy for instructional strategies 
1. To what extent can you use a variety of assessment strategies? 
2. To what extent can you provide an alternative explanation or example when 
students are confused? 
3. To what extent can you craft good questions for your students? 
4. How well can you implement alternative strategies in your classroom? 
5. How well can you respond to difficult questions from your students? 0.66 
6. How much can you do to adjust your lessons to the proper level for 
individual students? 
7. To what extent can you gauge student comprehension of what you have 
taught? 
8. How well can you provide appropriate challenges for very capable students? 

Factor 2: Efficacy for classraom management 
9. How much can you do to control disruptive behavior in the classroom 
10. How much can you do to get children to follow classroom rules? 
11. How much can you do to calm a student who is disruptive or noisy? 
12. How well can you establish a classroom management system with each 
group of students? 
13. How well can you keep a few problem students from ruining an entire 
lesson? 
14. How well can you respond to defiant students? 
15. To what extent can you make your expectation clear about student 
behavior? 
16. How well can you establish routines to keep activities running smoothly? 

Factor 3: Efficacy for student engagement 
17. How much can you do to get students to believe they can do well in 
schoolwork? 
18. How much can you do to help your students value learning? 
19. How much can you do to motivate students who show low interest in 
schoolwork? 0.66 0.64 
20. How much can you assist families in helping their children do well in 
school? 
21. How much can you do to improve the understanding of a student who is 
failing? 
22. How much can you do to help your students think critically? 
23. How much can you do to foster student creativity? 
24. How much can you do to get through to the most difficult students? 

Permission to use the TSES. 
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0.66 0.61 

0.62 

0.61 
0.53 
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0.75 0.75 
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Appendix F 

Glossary for GAST Lesson Analysis 

Mathematics Concepts 

A kind of mathematical subject matter; the most basic learnable object. A decision rule 
which, when applied to the description of an object, specifies whether or not a name can 
be applied (Hunt, Marin, and Stone, 1966). A concept has a name that represents a set of 
objects with common attributes. Examples of mathematics concepts include: rational 
number, rectangle, theorem, micrometer, sine function, pi, assumption, similarity, 
volume. 

Moves for Teaching Concepts 

Definition: Teacher provides students a definition of the concept or leads students to 
know a definition of the concept. Precision is often a critical criterion for definitions of 
mathematical concepts. (DOK 1 if stated, DOK 2 if developed) 

Example: Teacher gives or asks for an example ofthe concept. The example is a 
member of the set denoted by the concept. (DOK 2) 

Nonexample: Teacher gives or asks for a nonexample of the concept. The nonexample 
often has some properties of the concept, but not all. (DOK 2) 

Counterexample: Teacher provides or asks a student to provide a counterexample to an 
incorrect assertion or definition. (DOK 2) 

Sufficient Condition: Teacher states or asks students to state a sufficient condition of 
the concept. Terms and phrases like if, provided that, because, since, or/or the reason 
that often signal statements of sufficient conditions. (DOK 2) 

Necessary Condition: Teacher states or asks students to state a necessary condition of 
the concept. Terms like has to or must often signal statements of necessary conditions. It 
is often used to prevent misconceptions. (DOK 2) 

Comparing or Contrasting: Teacher identifies or asks students to identify similarities or 
differences between the concept and other concepts. (DOK 2) 
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Mathematics Generalizations: Mathematics statements that hold true over a set of 
mathematical objects or concepts. Generalizations include definitions, statements of 
necessary and/or sufficient conditions, axioms, theorems, corollaries, propositions, 
formulas, or rules. The statements may use words, symbols, or combinations of both. 

Moves for Teaching Generalizations 

Assertion: Teacher asserts or asks students to assert the generalization in writing, words, 
or symbols. (nOK 1) 

Application: Teacher applies or asks to students to apply the generalization. This move 
requires deduction in that the teacher or student must analyze a situation or problem and 
decide which generalization or generalizations are relevant. The teacher, by means of 
questions, exercises, or problems seeks to get the students to apply the generalization 
either by itself or with other generalizations. (nOK 2) 

Instance: Teacher employs or asks students to employ an example ofthe generalization. 
It usually requires replacing variables or words by constants or numbers. Instances of 
generalizations are almost always sentences, whereas examples of concepts are generally 
elements of a set. (nOK 2) 

Paraphrase: Teacher states or asks students to state the meaning of the generalization in 
different words. (nOK 2) 

Counterexample: Teachers provides or asks students to provide a counterexample to a 
false generalization. (DOK 2) 

Analysis: Teacher discusses or asks students to discuss the components and logic of the 
generalization. The discussion may focus on the if-then or if-and-only-if propositions of 
the generalization. (nOK 3) 

Justification: Teacher provides or asks students to provide evidence, through instances 
or reasons, that the generalization is true. Four kinds of justification moves can be used: 
acceptance by authorities (mathematicians); deductive argument; through instances; 
search for counterexamples. (DOK 3) 

Mathematics Skills 

Mathematics knowledge that reflects how to do something. Examples include squaring 
binomials, interpolating, solving equations, bisecting line segments. Student must know 
how to perform mathematics skills with proficiency and understanding. Proficiency in 
skill requires practice. 
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Assertion: Teacher asserts or asks students to assert how to perform the skill. The steps 
in performing the skill may be in words or written. (DOK 1) 

Demonstration: Teacher demonstrates or asks students to demonstrate how to perform 
the skill. Teachers clarify the skill through demonstrations. (DOK 1) 

Interpretation: Teacher explains or asks students to explain the meaning ofthe terms in 
the procedure or how to perform each step in the skill. Students often do not understand 
key concepts or remember facts or subskills within the skill. (DOK 2) 

Analogy: Teacher compares or asks students to compare the skill to a previously learned 
skill. (DOK 2) 

Justification: Teacher provides evidence or asks students to provide evidence that the 
procedures of the skill are valid. Possible methods for justification include: (1) always 
obtaining a correct result (Does it work?) and (2) steps are predicated on acceptable 
generalizations (Can I prove it always works?). (DOK 3) 
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Appendix H 

Exploratory Factor Analysis 

Descriptive statistics for the 24-item 

TSES are given in Table HI. Though 72 

teachers responded to the survey, cases with 

missing data were deleted listwise for this 

analysis, leaving only 68. The KMO showed 

the data factorable, and Barlett' s test verified 

strong correlations among items. Principal 

Component Analysis (Table H2) produced 5 

factors which accounted for 67.4% of the 

variance. This is also supported by the Scree 

Plot. Factor loadings on these five factors are 

shown below in Table H3. 

Table Hl 

• • " ~ 
c • .. 
iii • 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Meas. of 
Sampling Adequacy. 

Bartlett's Appr. Chi-Square 

Test of df 
Sphericity 

Sig. 

Scree Plot 

0.851 

989.724 

276 

o 

1 2 3 • 5 IS 7 e SI 10 11 12 13 14 15 16 17 18 19 20 21 22 13 201 

Component Number 
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Descriptive Statistics 

Mean Std. 

Deviation 

01 6.03 1.486 

02 7.06 1.105 

03 7.37 1.233 

04 5.91 1.484 

05 8.35 .958 

06 6.94 .991 

07 8.01 .938 

08 7.90 1.248 

09 6.62 1.037 

010 7.65 .989 

011 7.71 1.008 

012 6.49 1.139 

013 7.47 1.000 

014 6.43 1.150 

015 6.96 1.139 

016 7.49 1.086 

017 7.00 1.197 

018 7.03 1.315 

019 6.96 1.202 

020 8.09 .958 

021 1'.06 1.314 

022 5.99 1.607 

023 6.88 1.240 

024 7.46 1.190 

Analysis 

N 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 

68 



Table H2 

Principle Component Analysis 

ota anance T IV· E I· d xplalne 

Initial Eigenvalues Extraction Sums of Squared Rotation Sums of Squared 

Loadinos Loadings 

Total % of Cumulativ Total %of Cumulativ Total %of Cumulativ 

Variance e% Variance e% Variance e% 

1 9.676 40.315 40.315 9.676 40.315 40.315 4.475 18.647 18.647 

2 2.462 10.259 50.574 2.462 10.259 50.574 3.529 14.704 33.351 

3 1.542 6.425 56.999 1.542 6.425 56.999 3.336 13.899 47.251 

4 1.442 6.009 63.008 1.442 6.009 63.008 2.500 10.416 57.667 

5 1.044 4.349 67.357 1.044 4.349 67.357 2.326 9.690 67.357 

6 .996 4.151 71.508 

7 .854 3.560 75.067 

8 .732 3.049 78.117 

9 .675 2.812 80.928 

10 .653 2.719 83.648 

11 .536 2.233 85.881 

12 .472 1.965 87.846 

13 .457 1.904 89.750 

14 .376 1.568 91.318 

15 .355 1.479 92.797 

16 .308 1.284 94.081 

17 .292 1.218 95.300 

18 .231 .963 96.263 

19 .222 .926 97.189 

20 .181 .753 97.941 

21 .163 .679 98.620 

22 .133 .554 99.174 

23 .113 .472 99.646 

24 .085 .354 100.000 

Extraction Method: Principal Component Analysis. 
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Table II3 
Rotated Component Matrix 

Component 

1 2 3 
01 .179 .156 .182 

02 -.026 .205 .334 

03 .706 .259 .159 

04 -.064 .111 .529 

05 .348 .318 -.031 

06 .217 .292 .717 

07 .258 .751 .160 

08 .413 .279 -.119 

09 .380 .039 .635 

010 .303 .068 .211 

011 .171 .655 .189 

012 .211 .266 .552 

013 .697 .064 .221 

014 .257 .213 .077 

015 .881 .029 .044 

016 .675 .094 .157 

017 .296 .401 .524 

018 .099 .666 .270 

019 .820 .253 .176 

020 .196 .797 .155 

021 .763 .288 .153 

022 .064 .114 .708 

023 .213 .634 .573 

024 -.023 .434 .454 

Extraction Method: Prrnclpal Component AnalysIs. 
Rotation Method: Varimax with Kaiser Normalization. 

Original Design 

4 5 
.780 .208 

.373 .635 

.039 .286 

.448 .168 

.085 .697 

-.131 .052 

.023 .201 

-.054 .575 

.235 .254 

.495 .469 

.338 .318 

.251 .086 

.042 .347 

.816 -.049 

.271 .011 

.108 .462 

.347 .105 

.224 .129 

.125 .034 

.066 .113 

.188 -.003 

.077 -.096 

.204 .051 

.140 .354 

Efficacy in Student Engagement: Items 1, 2,4, 6, 9, 12, 14, 22 

Efficacy in Instructional Strategies: Items 7, 10, 11,17,18, 20, 23, 24 

Efficacy in Classroom Management: Items 3, 5, 8, 13, 15, 16, 19, 21 

Exploratory Factor Loadings 0 >.6 

Factor 1 

Factor 2 

Factor 3 

Factor 4 

Factor 5 

Q3, Q13, Q15, Q16, Q19, Q21 

Q7, Q11, Q18, Q20, Q23 

Q6, Q9, Q22 

Q1, Q14 

Q2,Q5 

(Q4 = .529, Q12 = .552, Q17 = .524, Q24 = .454) 
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Confirmatory Factor Analysis 

The model below represents the three factor structure of the TSES. Model fit 

statistics are listed on the following page. Although opinions differ about which statistics 

are required to test for model fit, Kline (2011, pp. 209-211) recommends reporting the 

Chi-squared test, the RMSEA, the CFI, and the SRMR. This model yielded a x:(249) = 

1.605, p = .000 rejecting the fit hypothesis. The CFI = .830 « .90), and the SRMR = 

.0887 (> .80), both of which suggest a poor fit. Finally, the RMSEA = .092, with 90% 

confidence interval (.075, .109). Both the lower and upper bounds suggest poor fit (.075 

> .05, and .109> .100). 

.42 
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Model Fit Summary 

CMIN 
Model NPAR CMIN DF P CMINIDF 

Default model 

Saturated model 

51 399.691 249.000 1.605 

300 .000 0 

Independence model 24 1160.189 276 .000 

RMR, GFI 
Model 

Default model 

Saturated model 

RMR GFI AGFI PGFI 

.120 .694 .632 .576 

.000 1.000 

Independence model .493 .224 .157 .206 

Baseline Comparisons 

M d I NFl RFI IFI TLI CFI 
o e Deltal rhol Delta2 rho2 

Default model .655 .618 .835 .811 .830 

Saturated model 1.000 1.000 1.000 

Independence model .000 .000 .000 .000 .000 

Parsimony-Adjusted Measures 
Model PRA TIO PNFI PCFI 

Default model .902 .591 .748 

Saturated model .000 .000 .000 

Independence model 1.000 .000 .000 

NCP 
Model 

Default model 

NCP LO 90 HI 90 

150.691 100.040209.261 

Saturated model .000 .000 .000 

Independence model 884.189 782.741 993.170 

FMIN 
Model 

Default model 

FMIN FO LO 90 HI 90 

5.629 2.122 1.409 2.947 

Saturated model .000 .000 .000 .000 

Independence model 16.341 12.453 11.025 13.988 
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RMSEA 
Model 

Default model 

Independence model 

AlC 
Model 

Default model 

RMSEA LO 90 HI 90 PCLOSE 

.092 .075 .109 

.212 .200 .225 

.000 

.000 

AIC BCC BIC CAlC 

501.691 557.126 617.801 668.801 

Saturated model 600.000 926.087 1283.000 1583.000 

Independence model 1208.189 1234.276 1262.829 1286.829 

ECVI 
Model 

Default model 

ECVI LO 90 HI 90 MECVI 

7.066 6.353 7.891 7.847 

Saturated model 8.451 8.451 8.451 13.043 

Independence model 17.017 15.588 18.552 17.384 

HOELTER 

Model 

Default model 

Independence model 

Minimization: .016 

Miscellaneous: .359 

Bootstrap: .000 

Total: .375 

HOELTER HOELTER 
.05 .01 

51 

20 

54 

21 
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Appendix I 

Additional HLM Models 

HLM Model, Teacher Practice with No Covariate 

Level-l Model 
EOCAij = POj + rij 

Level-2 Model 
POj = }loa + }lo/(TPj) + UOj 

Mixed Model 
EOCAij = }loa + }lo/(!,P)j + UOj+ rij 

Final estimation of fixed effects 

Fixed Effect Coefficient 
Standard 

error 

For INTRCPT1, 80 

INTRCPT2, Voo 2.009724 5.334792 

TP, Val 7.985866 3.156241 

Final estimation of variance components 

Standard Variance 
Random Effect 

Deviation Component 

t-ratio 
Approx. 

d./. 

0.377 70 
2.530 70 

d./. l 

p-value 

0.708 
0.014 

p-value 

INTRCPT1, Uo 5.17484 26.77902 70 1414.19395 <0.001 
level-l, r 5.36378 28.77017 

Deviance = 9973.277780 

HLM Model, Covariate Only 

Level-l Model 
EOCAij = POj + PJj*(EGT;;) + rij 

Level-2 Model 
POj = }loa + uOj 
PJj =}l1O 

Mixed Model 
EOCAij = }loa + }l1O*EGTij + UOj+ rij 
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Final estimation of fixed effects 

Fixed Effect Coefficient 
Standard 

t-ratio 
Approx. 

p-value 
error d·t 

For INTRCPT1, 80 
INTRCPT2, Voo 1.192523 0.758084 1.573 71 0.120 
For EGT slope, 81 

INTRCPT2, V10 0.992523 0.058337 17.014 1503 <0.001 

Final estimation of variance components 

Random Effect 
Standard Variance 

d,f. X2 p-value 
Deviation Component 

INTRCPT1, Uo 3.51531 12.35737 71 910.24508 <0.001 
level-l, r 4.63053 21.44184 

Deviance = 9487.537707 

Final Model with TP and YRS_EXP as EGT Slope Predictors 

level-l Model 
EOCAij = floj + fl/(EGTij) + rij 

level-2 Model 
floj = )100 + uOj 
fllj = )110 + )llJ*(TPj) + )lJ2*(YRS_EXPj) + Ulj 

Mixed Model 
EOCAij = )100 + )lJO*EGTij + )llJ*TPj*EGTij + )lJ2* YRS_EXPj* EGTij 

+ UOj + uI/EGTij + rij 

Final estimation of fixed effects 

Fixed Effect Coefficient 
Standard 

t-ratio 
Approx. 

p-value 
error d./. 

For INTRCPT1, 80 
INTRCPT2, Voo 0.462755 0.663651 0.697 71 0.488 
For EGTI slope, 81 

INTRCPT2, V10 0.228641 0.225222 1.015 69 0.314 

TP, Vll 0.369530 0.129290 2.858 69 0.006 
YRS EXP, V12 0.011562 0.002737 4.225 69 <0.001 
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Final estimation of variance components 

Random Effect 
Standard Variance 

d·t X2 p-value 
Deviation Component 

INTRCPT1, Uo 2.68124 7.18904 71 109.04307 0.003 

EGTI slope, Ul 0.28861 0.08330 69 131.54580 <0.001 

level-l, r 4.54989 20.70154 

Deviance = 9436.392489 

Full Exploratory Model 

level-l Model 

EOCAij = POj + PI;*(EGTij) + rij 

level-2 Model 

POj = )'00 + )'o/(GKT;) + )'02*(TE;) + )'03*(TP;) + )'o/(YRS_EXP;) + uOj 

Plj =)'10 + )'1/*(GKIj) + )'n*(TE;) + )'13*(TP;) + )'14*(YRS_EXPj) + Ulj 

Final Estimation of Fixed Effects 

Fixed Effect Coefficient 
Standard 

t-ratio 
Approx. 

p-value 
error d·t 

For INTRCPTl, 80 

INTRCPT2, Voo 5.980 7.939 0.754 67 0.454 
GKT, VOl 0.003 0.104 0.034 67 0.973 
TE, V02 -0.139 0.855 -0.162 67 0.872 
TP, V03 -2.193 3.493 -0.628 67 0.532 
YRS_EXP,V04 -0.084 0.091 -0.923 67 0.359 
For EGT slope, 81 

INTRCPT2, VIO -0.318 0.663 -0.480 67 0.633 
GKT, VII -0.001 0.008 -0.098 67 0.922 
TE,V12 0.031 0.071 0.433 67 0.666 
TP,Y13 0.536 0.271 1.979 67 0.052 
YRS_EXP,Y14 0.017 0.007 2.553 67 0.013 

Final estimation of variance components 

Random Effect 
Standard Variance d.f. t p-value 
Deviation Component 

INTRCPTl, Uo 3.061 9.370 67 109.225 0.001 
EGT slope, UI 0.310 0.096 67 132.921 <0.001 

level-1, r 4.550 20.703 
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Model Incorporating the Total Number of DOK moves 

Level-l Model 

Level-2 Model 

POj = Yoo + Yo/(TE;) + Y02*(YRS_EXPj) + Yo/(TOTDOKl;) + Yol(TOTDOK2;) 
+ Y05*(TOTDOK3;) + UOj 

Plj = YIO + Yll*(TEj) + Y12*(YRS_EXpj) + YJ3*(TOTDOKl;) + Y14*(TOTDOK2j) 
+ YI5*(TOTDOK3;) 

Mixed Model 

EOCAij = Voo + VOl * TEj + V02 * YRS_EXpj + V03 * TOTDOKlj 
+ V04*TOTDOK2j + Vos*TOTDOK3j 
+ Vlo*EGTij + Vll*TEj*EGTij + V12*YRS_EXP/EG1j + Vl/TOTDOKl j*EGTij 
+ V14*TOTDOK2/EGTij + Vls*TOTDOK3j*EGTjj + UOj+ rij 

Final estimation of fixed effects 

Fixed Effect Coefficient 
Standard 

I-ratio 
Approx. 

p-value 
error df 

For INTRCPTl, Po 
INTRCPT2, Yoo -2.735918 6.667344 -0.410 66 0.683 
TE, YOI 0.479423 0.906008 0.529 66 0.598 
YRS_EXP, Y02 -0.055622 0.088251 -0.630 66 0.531 
TOTDOKl, Y03 0.010484 0.016621 0.631 66 0.530 
TOTDOK2, Y04 0.018886 0.022145 0.853 66 0.397 
TOTDOK3, Y05 -0.091929 0.098945 -0.929 66 0.356 
For EGT slope, PI 
INTRCPT2, YIO 1.008088 0.518042 1.946 1498 0.052 
TE, Yll -0.015887 0.071628 -0.222 1498 0.825 
YRS_EXP, Y12 0.016224 0.006363 2.550 1498 0.011 
TOTDOK1, )'13 -0.002582 0.001268 -2.036 1498 0.042 
TOTDOK2, Y14 -0.002123 0.001601 -1.326 1498 0.185 
TOTDOK3, )'/5 0.015483 0.006939 2.231 1498 0.026 

Final estimation of variance components 

Random Effect 
Standard Variance 

d.f X2 p-value 
Deviation Com]2onent 

INTRCPTl, Uo 2.77539 7.70281 66 545.65585 <0.001 
level-I, r 4.61205 21.27103 

Deviance = 9503.47963 
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Model Incorporating Number of DOK 3 Level Moves 

Level-l Model 
EOCAij = POj + PI/(EGTij) + rij 

Level-2 Model 
POj = Yoo + yo/(YRS_EXPj) + yo]*(MDOK3;) + uOj 
Plj = YIO 

Mixed Model 

Final estimation of fixed effects 

Fixed Effect Coefficient 
Standard 

I-ratio 
Approx. 

error df 
For INTRCPTl, Po 
INTRCPT2, Yoo -1.969494 0.892710 -2.206 69 
YRS_EXP, YOI 0.167872 0.043288 3.878 69 
MDOK3,"Io] 0.121152 0.060125 2.015 69 
For EGT slope, PI 
INTRCPT2, YIO 0.985394 0.058685 16.791 1503 

Final estimation of variance components 

Random Effect 
Standard Variance 

df i Deviation Com£onent 
INTRCPTl, Uo 3.00772 9.04636 69 660.39634 

level-I, r 4.62957 21.43294 

Deviance = 9473.921259 
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p-value 

0.031 
<0.001 

0.048 

<0.001 

p-value 

<0.001 



AppendixJ 

Distributions and Descriptive Statistics for the TSES Scores 

Table 11 
Descriptive Statistics for TSES Scores 

Cohort 2011 2012 
N 44 28 

Mean 7.098 7.097 

Median 7.229 7.104 

Std. Dev. 0.767 0.669 

Min 5.292 5.625 

Max 8.667 8.500 

Figure J 1. Distribution of TSES Scores for 2011 and 2012 Cohorts 
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One-way ANOV A results showed no significant differences between the mean TE scores 

of both 2011 and 2012 cohorts. 

AN OVA 

T ch ffi ea er E cacy 

Sum of Squares df Mean Square F Sig. 

Between Groups .000 1 .000 .000 .992 

Within Groups 37.379 70 .534 

Total 37.379 71 

Number of affirmative responses to the additional item on the TSES. 

1. I am no longer teaching. (1) 
2. I have changed schools this year. (5) 
3. My principal has changed this year. (9) 
4. New administration (such as principal) has had a large effect on my teaching 

abilities this year. (1) 
5. I am teaching the same geometry class I taught last year. (30) 
6. The classes I am teaching this year are much more difficult or much easier to 

teach than last year. (9) 
7. I feel my beliefs in my teaching abilities are about the same as they were last year. 

(30) 

Correlations analysis was performed for the 2011 and 2012 cohorts separately with 
similar results to the overall group. No significant correlations were found. 
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