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ABSTRACT

PATIENT RULE INDUCTION METHOD FOR SUBGROUP IDENTIFICATION
GIVEN CENSORED DATA

Patrick J. Trainor

April 10, 2014

The identification of subgroups in clinical studies is an important aspect of per-

sonalized medicine. In order to develop tailored therapeutics, the factors that char-

acterize subgroups with differential prognosis, response to treatment, and incidence

of adverse events or toxicities must be elucidated. We present a generalization of a

statistical learning algorithm, Patient Rule Induction Method (PRIM), that is well

suited for this task given a right-censored time-to-event outcome measure. This

algorithm works to recursively partition a covariate space into mutually exclusive

boxes that can be utilized to define subgroups. Conceptually the algorithm is similar

to classification and regression trees but rather than satisfying the goal of minimizing

overall prediction error, PRIM works to find the extrema of the response surface. The

algorithm’s performance in prognostic subgroup identification is demonstrated with

simulation studies and a case study using data from the Framingham Heart Study.

We find that the algorithm has much utility as it provides a set of easy to interpret

rules that define subgroups with maximal (minimal) survival or differential response

to an intervention as measured by a survival outcome.

iii



TABLE OF CONTENTS

PAGE

ABSTRACT iii

LIST OF TABLES v

LIST OF FIGURES vi

INTRODUCTION 1

PATIENT RULE INDUCTION METHOD 6

GENERALIZATION OF PRIM TO RIGHT-CENSORED DATA 10

SIMULATION STUDIES 14

FRAMINGHAM CASE STUDY 21

DISCUSSION 25

REFERENCES 27

CURRICULUM VITA 29

iv



LIST OF TABLES

TABLE PAGE

1. Prognostic identification simulation study results 16

2. Framingham box induction steps 21

3. Framingham box 1 22

4. Framingham box 2 23

4. Framingham box 3 23

6. Comparison of boxes 1-5 24

7. Comparison of boxes 1-3 24

8. Comparison of boxes 1 and 2 24

v



LIST OF FIGURES

FIGURE PAGE

1. Example candidate sub-boxes 6

2. Example peeling solution 7

3. Example pasting solution 8

4. Theoretical PRIM solution 17

5. View of projected data onto PRIM solution 18

vi



1 INTRODUCTION

The identification of subgroups in clinical studies is a task of critical importance to

field of personalized medicine. Tezak et al. (2010) define personalized medicine as

“providing the right intervention or therapy, at the right dose, for the right person,

at the right time, by understanding the individual’s biology.” In order to develop

tailored therapeutics, an understanding of factors influencing an individual’s disease

course and response to a treatment must be developed. We define predictive factors

as factors that can be used to predict whether an individual will respond to treatment

and prognostic factors as those that can be used to estimate an individual’s chance

of disease recovery or recurrence (NCI, 2014). The study of prognostic factors is

a common goal in epidemiology, while the study of predictive factors is mostly con-

ducted in a pharmacological setting. Epidemiological studies, such as the Framingham

Heart Study discussed in this paper, furnish many examples in which prognostic

factors have been used to identify subgroups with better or worse prognosis than

the overall population. However, while it has been well established that there are

many factors that cause significant variability in the response to clinical therapeutics

and interventions, clinical studies in pharmacology and in a pharmaceutical setting

are rarely designed to elucidate such predictive factors. Clinical efficacy and safety

studies are typically designed to demonstrate an overall response to a therapeutic

or intervention and not to identify subgroups of responders or non-responders. Such

variability in responsiveness may lead to sub-par clinical and dosing guidelines, or may

lead to the “failure” of a clinical study to demonstrate an overall treatment effect,

when subpopulations of responders do exist. Cardiovascular medicine furnishes many
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such examples. Activation of the drug clopidogrel has been shown to be dependent

on the presence of certain genetic polymorphisms which results in differential respon-

siveness as measured by the inhibition of platelet reactivity (Luchessi et al., 2013;

Frelinger et al., 2013). This phenomenon of differential responsiveness and variability

in rates of adverse events has been documented with other cardiovascular drugs such

as warfarin, amiodarone, β-blockers, and statins (Johnson, 2013; Janse et al.,1998).

The concept of personalized medicine hopes to characterize such differences as a

function of genetics, patient factors, family history, concomitant medications, and

concomitant diseases.

The prevailing methodology for identifying subgroups using predictive or prog-

nostic factors in clinical studies has been a regression approach. In order to identify

factors that influence prognosis, researchers typically build multivariable regression

models and then use a significance based approach to identify the covariates that

influence a patient’s prognosis. Likewise, to identify predictive factors, researchers

typically build multivariable models that incorporate treatment by covariate interac-

tions. If a treatment by covariate interaction term is deemed significant, then it is

concluded that the covariate is a predictive factor. There are significant flaws with

using a regression based approach such as this for subgroup identification. The most

fundamental is that the goal of regression modeling is to develop models that fit the

data well globally. Yet often a subgroup with better prognosis or enhanced response

to treatment is a “bump” in the response surface which may be smoothed out by

regression models. Consequently, we desire a methodology for finding bumps in a

response surface for prognostic or predictive subgroup identification. In this paper

we present a generalization of a statistical learning algorithm, Patient Rule Induction

Method (Friedman and Fisher, 1999), that is well suited for such a task. Our modified

algorithm has been tailored for finding subgroups given a right censored time-to-event

response variable, since this is a common outcome measure in clinical studies.
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The layout of this paper is as follows: In section 2 we discuss the original formula-

tion of the PRIM algorithm and why it is ideal for subgroup identification. We then

introduce our generalization of the algorithm for prognostic subgroup identification

given a right censored time-to-event response variable in section 3. We then present

a further generalization so that the algorithm can be used for predictive subgroup

identification. Section 4 details a simulation study that demonstrates the suitability

of the algorithm for prognostic subgroup identification. In section 5 we demonstrate

prognostic subgroup identification using the Framingham Heart Study data. Finally

we discuss our results and the algorithms suitability for subgroup identification in

section 6.
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2 PATIENT RULE INDUCTION METHOD

While prognostic and predictive subgroup identification serve different purposes, the

goals of both analyses are equivalent. In prognostic subgroup identification, we want

to find the region of the covariate space (the set of all possible covariate values) in

which a response variable takes its maximum or minimum values. For example, if

the response variable is a time-to-event outcome measure, then prognostic subgroup

identification means finding the subgroup which has greatest (or worst) survival.

With predictive subgroup identification, we want to find the region of the covariate

space in which the difference in response is maximal between study arms. In the

context of a time-to-event outcome measure, we are trying to identify the subgroup

in which the difference in survival between intervention and control is greatest. In

either case, the object of subgroup identification is the identification of the region of

the covariate space in which the maxima of a response variable is found. The PRIM

algorithm was developed for such a task. The algorithm is similar to regression trees

(Segal, 1988) in that the covariate space is recursively partitioned using a binary

split criteria. However, while regression trees split nodes using the minimization of

the sum of squares between fitted and observed values of the response variable, the

PRIM algorithm uses a spit criteria designed to maximize the response variable in

one of the child nodes. The final solution given by the PRIM algorithm is a sequential

partitioning of the covariate space into disjoint regions with the goal that the response

variable takes its maximum in the first partition and then decreases monotonically

thereafter. The rules that define the individual partitions then can be used to define

subgroups.
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In this section, Patient Rule Identification Method for a numerical response vari-

able is presented as was originally detailed by Friedman and Fisher (1999). While

they developed PRIM methodology for categorical and continuous response variables,

a generalization to right-censored response variables is needed and is presented in

this paper. The covariate space can be written as an external direct product of input

variables: S = S1×S2× . . .×Sp. With such a formulation, xi,j ∈ Sj is the realization

of the jth covariate for the ith study subject. Thus, for a clinical study, data will be

of the form {xi, yi} where xi will be a length p vector of covariates for the ith subject

and yi will be a clinical response variable. In general the PRIM algorithm proceeds

by two subroutines (top-down peeling and bottom-up pasting). A single iteration

of both routines generates a partition of the covariate space with the object of the

partitioning being maximization of the response variable.

2.1 TOP-DOWN PEELING

The top down peeling process begins with a p-dimensional hypercube B1 = S that

covers all of the data. The top-down peeling algorithm then proceeds as follows:

Generate sub-boxes bj− = {x : xj < xjθ} and bj+ = {x : xj > xj(1−θ)} for each

continuous covariate j ∈ {1, 2, . . . , p}.

Generate sub-boxes bj,m = {x : xj 6= sm} for each m level of categorical

covariate j ∈ {1, 2, . . . , p}.

Generate set of sub-boxes C1(b) = {bj−, bj+, bj,m : j ∈ {1, 2, . . . , p}}.

Define C2(b) = {b : b ∈ C1(b) and ω(B1 − b) > ω0} where ω(b) = 1
n

∑n
i=1 1(xi ∈

b).

If C2(b) 6= ∅:

Choose b∗ = arg maxb∈C2(b) ave{yi : xi ∈ B1 \ b}.
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Update B1 ← B1 \ b∗.

Else Stop.

In Figure 1 we illustrate how candidate sub-boxes are generated given two contin-

uous covariates and a binary response variable. For covariates X1 and X2 we generate

two sub-boxes, one with the upper θ quantile of the data removed (bj+) and one with

the lower θ quantile of the data removed (bj−). Since the response variable is binary

in this case, we select b∗ to be removed from B1 according to the criteria that we

want to maximize the proportion of responders in B1 \ b∗.

Figure 1: Example candidate sub-boxes for classification problem with two covariates

given θ = .1.

After selecting b∗, B1 is updated, B1 ← B1\b∗, and then the peeling routine begins

a new iteration using the updated hypercube. The peeling routine continues until no

subsequent peeling steps can be taken without the empirical support of B1 falling

below a pre-specified level ω0. This iterative procedure is illustrated in Figure 2.
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Figure 2: Example peeling for classification problem with two covariates given θ = .1.

2.2 BOTTOM-UP PASTING

In order to improve upon the performance of the top-down peeling algorithm Friedman

and Fisher (1999) propose a second algorithm known as bottom-up pasting. This

algorithm proceeds as follows:

Generate sub-boxes bj− from the left boundary of B1 for variable j, to the φ

quantile to the left, and bj+ from the right boundary of B1 for variable j, to the

φ quantile to the right for continuous variables j ∈ {1, 2, . . . , p}.

Generate sub-boxes bj,m = {x : xj = sm} for each previously deleted m level

of categorical covariate j ∈ {1, 2, . . . , p}.

Generate set of sub-boxes C1(b) = {bj−, bj+, bj,m : j ∈ {1, 2, . . . , p}}.

Choose b∗ = arg maxb∈C2(b) ave{yi : xi ∈ B1 ∪ b}.

If ave{yi : xi ∈ B1 ∪ b∗} >> ave{yi : xi ∈ B1}:
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Update B1 ← B1 ∪ b∗

Else Stop.

An example pasting routine is depicted in Figure 3.

Figure 3: Example pasting for classification problem with two covariates.

2.3 COVERING

After the first iteration of the peeling and pasting procedures, the result is a hypercube

B ( S that was constructed with the goal of optimizing the mean of the response

variable y. The peeling and pasting routine is then repeated on the remaining data

belonging to S\B1, yielding a new hypercubeB2. In this way a sequence of hypercubes

{B1, B2, . . . , BK} is generated that partitions the covariate space and ideally has the

property that ave{yi|xi ∈ B1} > ave{yi|xi ∈ B2} > . . . > ave{yi|xi ∈ BK}.

2.4 USING PRIM FOR SUBGROUP IDENTIFICATION

Provided that the sequence of hypercubes has the property that the mean of the

response variable is decreasing, then B1 is an estimate of the region of the covariate
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space where the response variable takes its maximum values. As a concrete example,

if the response variable was level of low-density lipoprotein (LDL) then we can use

the rules that define the hypercube B1 in order to estimate the subgroup with the

highest levels of LDL. Since the rules were generated by an algorithm that iteratively

shaves off and possibly adjoins quantiles for the covariates, the rules that define B1

are cleanly specified. Using the LDL example, the rules defining membership in B1

might be: {i : sexi = male, 55 < agei < 65,BMIi > 27.8, SBPi > 150}.
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3 GENERALIZATION OF PRIM

TO RIGHT-CENSORED DATA

The original formulation of the PRIM algorithm is well suited for either numerical

or categorical data. Given numerical data, the binary spit criteria utilized is the

maximization of the response variable estimated by calculating means in the child

nodes. For categorical data the binary split criteria is the maximization of the

probability of class membership estimated by calculating proportions in the child

nodes. Given instead a right-censored time-to-event response variable the study data

for the ith subject consists of {X i, (ti, δi)} where δi is a censoring indicator. To

generalize the PRIM algorithm to this type of data a suitable split criteria must be

selected. We propose using the Tarone-Ware class of test statistics (Tarone and Ware,

1977; Kalbfleisch and Prentice, 2002) as such a split criteria.

3.1 TARONE-WARE STATISTICS

In this section we present a brief discussion of the Tarone-Ware class of statistics. To

test for the equality of r failure distributions, F1(t), F2(t), . . . , Fr(t), the failure times

for the sample pooled over the r strata are ordered: t1 < t2 < . . . < tk. At time tj, dj

denotes the number of failures for the pooled sample and nj denotes the total number

of subjects from the pooled sample at risk at immediately prior to tj. Further, di,j

and ni,j denote the number of failures and number at risk priort to tj in the ith strata

where i ∈ {1, 2, . . . , r}. Then for each failure time in the pooled sample the data can

be arranged into 2× r contingency tables:
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strata 1 strata 2 . . . strata r

failures d1,j d2,j . . . dr,j dj

survivors n1,j − d1,j n2,j − d2,j . . . nr,j − dr,j nj − dj

at risk n1,j n2,j . . . nr,j nj

With this formulation, the rank statistics form a r length vector, v = (v1, v2, . . . vr)
T ,

with entries given by:

vi =
k∑
j=1

W (tj)

(
di,j −

ni,jdj
nj

)

where W (ti) is a non-negative weight function described in the preceding paragraph.

The estimated covariance matrix of the rank statistics has the following entries:

Vi,i =
k∑
j=1

{
W 2(tj)

ni,j(nj − ni,j)dj(nj − dj)
n2
j(nj − 1)

}

Vi,l =
k∑
j=1

{
W 2(tj)

−ni,jnl,jdj(nj − dj)
n2
j(nj − 1)

}
.

To use a statistic from the Tarone-Ware class of statistics test to compare the

survival of the jth group with the lth group, j 6= l, the following test statistic can be

constructed (Klein and Moeschberger, 1997):

Zj,l =
(vj − vl)√

Vjj + Vll − 2Vjl
.

This test statistic follows a N(0, 1) distribution.

3.2 TARONE-WARE STATISTICS AS PRIM BINARY SPLIT

CRITERIA

In our simulation studies we used the weight function W (ti) = 1, which reduces the

test statistic to the well known log-rank test statistic. To use PRIM with such a split
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criteria, we propose the following top-down peeling algorithm:

Generate sub-boxes bj− = {x : xj < xjθ} and bj+ = {x : xj > xj(1−θ)} for each

continuous covariate j ∈ {1, 2, . . . , p}.

Generate sub-boxes bj,m = {x : xj 6= sm} for each m level of categorical

covariate j ∈ {1, 2, . . . , p}.

Generate set of sub-boxes C1(b) = {bj−, bj+, bj,m : j ∈ {1, 2, . . . , p}}.

Define C2(b) = {b : b ∈ C1(b) and ω(B1 − b) > ω0} where ω(b) = 1
n

∑n
i=1 1(xi ∈

b).

If C2(b) 6= ∅:

Compute ZB1\b,B1 for all sub-boxes b.

Choose b∗ = arg maxb∈C2(b) ZB1\b,B1 .

Update B1 ← B1 \ b∗.

Else Stop.

For the bottom-up pasting routine, we proceed similarly–the distinction between

a continuous response variable and a right-censored time-to-event variable being

computing ZB1∪b,B1 for all sub-boxes b and then pasting on the sub-box b∗ to B1

if it results in greater survival.

3.3 PROGNOSTIC VS. PREDICTIVE SUBGROUP IDEN-

TIFICATION

As detailed thus far, using a Tarone-Ware statistic for a split criteria adapts PRIM

for finding subgroups with maximal survival in a clinical study. This is the goal of

prognostic subgroup identification. However, to adapt PRIM for predictive subgroup
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identification with right-censored time-to-event variables, we need to modify the split

criteria even further. In this case we are searching for the region of the covariate

space in which the difference in survival between a treatment group and a control

group is maximal.

Generate sub-boxes bj− = {x : xj < xjθ} and bj+ = {x : xj > xj(1−θ)} for each

continuous covariate j ∈ {1, 2, . . . , p}.

Generate sub-boxes bj,m = {x : xj 6= sm} for each m level of categorical

covariate j ∈ {1, 2, . . . , p}.

Generate set of sub-boxes C1(b) = {bj−, bj+, bj,m : j ∈ {1, 2, . . . , p}}.

Define C2(b) = {b : b ∈ C1(b) and ω(B1 − b) > ω0} where ω(b) = 1
n

∑n
i=1 1(xi ∈

b).

If C2(b) 6= ∅:

Compute Ztreatment,control for all sub-boxes b.

Choose b∗ = arg maxb∈C2(b) Ztreatment,control.

Update B1 ← B1 \ b∗.

Else Stop.
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4 SIMULATION STUDIES

In order to evaluate the PRIM algorithm’s ability to find subgroups with best prog-

nosis in a clinical study, we conducted simulation studies. For each of the simulated

study subjects we assumed both failure time and censoring time followed an expo-

nential distribution, i.e. T ∼ exp(λ) and C ∼ exp(ξ). Then log(T ) ≡ − log(λ) + W ,

where W has an extreme value distribution with pdf f(w) = exp(w − ew). So we

assume that each subject’s failure time has the same error distribution W . To create

proportional hazards we define λ(X) = λ0 exp(Xβ), where Xi = (X1,i, X2,i, . . . , Xi,p),

a vector of covariate realizations for the ith subject and β = (β1, β2, . . . , βp) denotes

pre-specified effects. We set out to evaluate weather the rules defining the hypercube

after one iteration of the PRIM algorithm behave in a predictable fashion. We

hypothesized that algorithm’s sensitivity and specificity in identifying subgroups with

best prognosis would increase with sample size, and decrease with increasing scale of

the error distribution. For n = 50, 100, 200 and 1000 and σ = 0.1, 0.5, 1.0 and 2.0 we

generated study data using the following procedure:

1. Generate random wi such that W follows an extreme value distribution with

scale parameter σ.

2. Generate random X1,i and X2,i so that each X follows a standard normal

distribution.

3. Specify effects β = (1, 1) and baseline hazard rate λ0 = 1/10.

4. Compute failure time ti for ith subject using log(ti) = − log [λ0 exp(Xiβ)]+wi.
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5. Generate random censoring time ci for the ith subject subject such that C ∼

exp(1/20).

We then have data of the form {X i, (ti, δi)}. The peeling subroutine of the PRIM

algorithm was then conducted using algorithm parameters θ = 0.15 and ω0 = 0.1. At

the conclusion of the peeling subroutine we then should have a 2-dimensional box B1

that contains about 1/10 of the original data. Since the hazard for the ith subject is

specified by λ0 exp(Xiβ), we expect that since Xβ ∼ N(0, 2), if a subject has X1+X2

less than the 10% percentile of N(0, 2) then that subject should belong to B1.

4.1 SIMULATION STUDY RESULTS

Results of the prognostic identification simulation study are shown in Table 1. As

expected, the algorithm’s sensitivity and specificity are inversely related to the scale

of the extreme value error distribution. For error distribution scale parameters

σ = 2, 1, 0.5, it is confirmed that the algorithm’s sensitivity does increase with

increasing sample size. However, we do not observe this effect as the effect of the

error distribution on failure time becomes negligible (σ = 0.1).
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Table 1: Prognostic identification simulation study

Sensitivity Specificity

Error dist. σ N mean sd mean sd

50 0.339 0.287 0.900 0.032

2 100 0.439 0.258 0.915 0.029

200 0.522 0.212 0.930 0.024

1000 0.633 0.084 0.958 0.009

50 0.492 0.298 0.907 0.037

1 100 0.572 0.218 0.928 0.024

200 0.633 0.150 0.942 0.017

1000 0.664 0.049 0.962 0.005

50 0.636 0.284 0.903 0.046

0.5 100 0.664 0.187 0.932 0.024

200 0.682 0.118 0.947 0.014

1000 0.674 0.042 0.963 0.005

50 0.766 0.216 0.889 0.062

0.1 100 0.755 0.151 0.925 0.034

200 0.727 0.100 0.945 0.018

1000 0.680 0.040 0.963 0.004

One possible explanation warranting exploration for this effect is that it is due to

the algorithm approximating level sets of a response variable with hyper-cubes instead

of geometric shapes that conform to the response variable surface. Figures 4 and 5

illustrate this fact. For both figures 1000 observations were randomly generated such

that two covariates X and Y follow a standard normal distribution. The observations

are plotted with their sum on a third axis. A blue plane is added at the 85% of the

sum X+Y . A theoretical PRIM peel solution is shown as a salmon plane. Figure 5 is
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a rotation of Figure 4 illustrating the projection of the data above the 85% percentile

onto the theoretical PRIM solution. As can be seen, a portion of the data above

the 85th quantile fails to be captured in the PRIM solution, leading to diminished

sensitivity.

Figure 4: Theoretical PRIM solution to 85th quantile of X + Y approximation.
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Figure 5: View of X + Y projected onto the theoretical PRIM solution.
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5 FRAMINGHAM CASE STUDY

We utilized the PRIM algorithm for prognostic subgroup identification using a subset

of the Framingham Heart Study provided as a public use teaching dataset by the

National Heart, Lung, and Blood Institute. This renowned study has been carried on

for over 65 years and has contributed greatly to the understanding of cardiovascular

diseases and their risk factors (Mahmood et al., 2013). The data utilized consisted of

potential cardiovascular risk factors, disease markers, and time-to-event outcomes for

4,434 study subjects. We applied the PRIM algorithm peeling subroutine to the data

to induce 5 boxes consisting of roughly half of the data. The response variable was

the right censored time from first study examination to myocardial infarction. The

covariates we considered which all represent measurements taken at the first study

examination were:

• Sex (Male/Female)

• Total serum cholesterol (mg/dL)

• Age

• Systolic blood pressure (mmHg)

• Diastolic blood pressure (mmHg)

• Current smoker (Yes/No)

• Body mass index

• Currently prescribed blood pressure medications (Yes/No)
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• Heart Rate

• Serum glucose (mg/dL)

• History of coronary heart disease (Yes/No)

We applied the algorithm with parameters θ = 0.15 and ω0 = 1
11−k , where k

indexes the sequence of boxes. In this way, each of the boxes should have roughly

1/10 of the total data. We then can use the rules defining each of the boxes to

define subgroups, for which we hypothesize that measures of survival will decrease

monotonically with the index of the boxes or equivalently the subgroups defined by

the boxes.

5.1 RESULTS OF FRAMINGHAM CASE STUDY

The results of applying the PRIM algorithm’s peeling subroutine to the Framingham

data are shown in Table 2 through Table 8. In Table 2, the covariates used in the

analysis and their contributions to the first three boxes induced by the algorithm are

presented. In the rightmost column the covariate is listed, followed by the covariate

type, (Factor=F, Numeric=Num), at which iteration during the peeling routine the

covariate was used as a split criteria, and the factor level or quantile that was deleted.

For example, from the table we see that in Box 1 “Previous CHD” is the first split

criteria utilized and that the factor level deleted is “Yes”. The next split criteria

used in the construction of Box 1 is the covariate “Sex” for which the level deleted is

“Male”. The first numeric covariate used as a split criteria (used as the fourth split)

is “Age” for which the upper quantile was removed. This covariate is again used as

a split criteria for the 8th split–again removing the upper quantile. Dashes are used

to denote that a covariate was not used as a split criteria in the construction of the

box.
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Table 2: Framingham box induction steps

Variable Type Box 1 Deleted Box 2 Deleted Box 3 Deleted

Sex F 2 Male 2 Male 2 Male

Total Cholesterol Num 6, 7 Upper 6 Upper 4 Upper

Age Num 4, 8 Upper 4 Upper - -

Systolic BP Num 5 Upper 5, 7, 8, 10, 11 Upper 5 Upper

Diastolic BP Num - - - - - -

Current Smoker F 9 Yes - - 7 Yes

BMI Num - - - - - -

BP Meds F 3 Yes 3 Yes 3 Yes

Heart Rate Num - - - - - -

Serum Glucose Num - - 9 Upper 6 Upper

Previous CHD F 1 Yes 1 Yes 1 Yes

Table 3 then illustrates the rules defining the first box induced by the algorithm.

In this table, “Old Range” corresponds to the acceptable range of covariate values

before this box is induced. “New Range” corresponds to the new range of values

after the box has been induced. Covariates never used as split criteria have their

ranges omitted for interpretablity. A study subject has membership in this box if the

following requirements are met: Female, non-smoker, no history of coronary heart

disease, not taking blood pressure medication, total serum cholesterol between 135

and 253 mg/dL, age between 32 and 52 years old at enrolment, and systolic blood

pressure between 83.5 and 149.0 mmHg. Using this information we can define a

subgroup that we hypothesize will have the “best” prognosis in terms of survival.
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Table 3: Framingham box 1

Variable Type Old Range New Range

Sex F M, F F

Total Cholesterol Num 113-696 135-253

Age Num 32-70 32-52

Systolic BP Num 83.5-295.0 83.5-149.0

Diastolic BP Num - -

Current Smoker F Y, N N

BMI Num - -

BP Meds F Y, N N

Heart Rate Num - -

Serum Glucose Num - -

Previous CHD F Y, N N

Tables 4-5 provide rules defining the next two subgroups. We hypothesize that

survival will decrease monotonically with each following box induced.
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Table 4: Framingham box 2

Number Variable Type Old Range New Range

1 Sex F M, F F

2 Total Cholesterol Num 113-696 135-287

3 Age Num 32-70 32-61

4 Systolic BP Num 83.5-295.0 83.5-124.0

5 Diastolic BP Num - -

6 Current Smoker F - -

7 BMI Num - -

8 BP Meds F Y, N N

9 Heart Rate Num - -

10 Serum Glucose Num 40-394 47-89

11 Previous CHD F Y, N N

Table 5: Framingham box 3

Number Variable Type Old Range New Range

1 Sex F M, F F

2 Total Cholesterol Num 113-696 143-302

3 Age Num - -

4 Systolic BP Num 83.5-295.0 85.5-164.0

5 Diastolic BP Num - -

6 Current Smoker F Y, N N

7 BMI Num - -

8 BP Meds F Y, N N

9 Heart Rate Num - -

10 Serum Glucose Num 40-394 45-97

11 Previous CHD F Y, N N
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In Table 6 the first five boxes induced by the algorithm (covering roughly half of

the data) are compared using a log-rank test. As hypothesized the observed number

of events is monotonically increasing. A three way comparison of the first three boxes

and a two way comparison of just the first two boxes is shown in Tables 7 and 8,

respectively.

Table 6: Comparison of boxes 1-5

Box N Observed Expected p-value

1 409 4 30.6 2.24 ∗ 10−17

2 412 8 29.8

3 409 27 27

4 406 44 26

5 421 59 28.5

Table 7: Comparison of boxes 1-3

Box N Observed Expected p-value

1 409 4 13.7 8.69 ∗ 10−7

2 412 8 13.3

3 409 27 12

Table 8: Comparison of boxes 1 and 2

Box N Observed Expected p-value

1 409 4 6.08 0.23

2 412 8 5.92

24



6 DISCUSSION

In this paper we present how the PRIM algorithm can be used to identify subgroups

in clinical studies given a right-censored time-to-event response variable. We have

demonstrated how to apply this algorithm for prognostic subgroup identification,

and have explained how the algorithm could be further extended for use in predictive

subgroup identification.

Some of the advantages of using the PRIM algorithm for subgroup identification

are readily apparent from the simulation studies and Framingham case study. First,

the algorithm is well suited for the task of subgroup identification because it is

designed to find regions of the covariate space in which a response variable has

its extrema. This is an important concept as this is usually the goal of subgroup

identification–to find the subpopulation with the best (worst) prognosis, best (worse)

response to treatment, highest (lowest) rates of adverse events or toxicities. A

regression approach has the flaw that regression models may fit the data well globally,

while simultaneously “smoothing” out the bumps in the response surface that PRIM

finds. The Framingham case study illustrates that the rules defining a box induced

by the algorithm readily translate into clinically meaningful subgroup definitions.

The PRIM algorithm is not free of disadvantages, however. The greatest disad-

vantage of the algorithm is that it is a greedy algorithm. Greedy algorithms make

the “best” local choice at each iteration, which may yield a final solution that is

sub-optimal–for a good discussion of this problem see Gutin et al. (2002). One

promising solution to this problem would be to build an ensemble learner using an

aggregation of bootstrapped PRIM models. However, such an ensemble model would
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obscure the interpretability of the rules defining boxes, making defining subgroups

more challenging. Additionally, the PRIM algorithm suffers from nominal covariates

dominating splits if large proportions of the data share the same factor level. For

example, in all three of the first induced Framingham boxes, “Sex” is used as the

second split criteria. In this instance, the candidate sub-boxes for removal for the

numerical covariates such as “Age” are based on removing 15% of the data (since

θ = 0.15 in our analysis), while the candidate sub-boxes for removal using the “Sex”

covariate contain roughly 50% of the data. Thus, the test statistics for comparing the

candidate sub-boxes based on factor levels of “Sex” are likely to be greater than for

those for “Age” by virtue of the choice of the algorithm parameter θ. One possible

way solution to this problem would be to build an ensemble learner that restricts the

number of covariates considered at each split. This approach would be similar to the

construction of random forests (Hastie et al., 2008).
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