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ABSTRACT 

ARSENIC-INDUCED DEVELOPMENTAL CHANGES IN THE LIVER AND 
ADULT CARDIOVASCULAR DISEASE 

Ntube Nini Olive Ngalame 

July 28, 2011 

Chronic arsenic exposure is associated with increased cardiovascular disease 

(CVD). Prenatal arsenic exposure at 49 ppm arsenic accelerates atherosclerosis 

underlying CVD in ApoF/- mice, but the mechanism is unknown. This dissertation 

examines the mechanisms by which prenatal arsenic exposure accelerates 

atherosclerosis. Arsenic is a hepatotoxicant, and liver disease increases 

atherosclerosis risk. I hypothesized that prenatal arsenic exposure alters liver 

development and primes the liver for susceptibility to other environmental insults, 

predisposing to liver disease and accelerated atherosclerosis in ApoF/-mice. 

I showed that prenatal arsenic exposure caused subtle but significant liver 

damage in 10 and 24 week old ApoE-1
- mice, thus increasing the risk of 

atherosclerosis. This arsenic-induced liver injury was characterized by increased 

basal levels of plasma ALT and AST (circulating markers of liver damage), and 

IL-6 (pro-inflammatory cytokine). 

Determination of the effects of prenatal arsenic exposure on Hsp70 and Hsc70 

expression during pre- and postnatal development (GD18, and 3, 10 and 24 

weeks) showed that Hsp70 was induced at age 3 and 10 weeks, but returned to 
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unexposed levels by 24 weeks, thus indicating a temporal state of stress. 

However Hsc70 expression was not altered at any of these ages. Determination 

of Hsp70 and Hsc70 expression in isolated liver cell types showed that Hsp70 is 

expressed only in the liver hepatocytes, while Hsc70 is expressed in all liver cell 

types. It is likely that stressed hepatocytes can release excess Hsp70 into the 

circulation, thus contributing to increased atherosclerosis as reported in the 

literature. Hsp70 induction was also associated with increased CpG site 

methylation at +503 to +856 bp, thus indicating epigenetic change. 

Lastly, I showed that prenatal and "whole-life" arsenic exposures at lower 

exposures (4.9 and 1 ppm arsenic) increased atherosclerotic lesion formation in 

aortic aches, which was associated with altered plasma triglyceride and 

cholesterol. However, there was no difference in lesion formation between 

prenatal and "whole-life" exposures. Both exposure types also increased plasma 

cytokine/chemokine expression, thus indicating inflammation which is pro­

atherogenic. Thus, infants are at high risk of developing atherosclerosis even at 

very low exposure levels. 
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CHAPTER I 

GENERAL INTRODUCTION 

Arsenic in drinking water 

Inorganic arsenic is a naturally occurring element and contaminated drinking 

water is a major route of exposure. Contamination of drinking water by arsenic is 

a major worldwide public health problem. Both the world health organization 

(WHO) and the United States Environmental Protection Agency (USEPA) 

decreased the maximum contaminant level (MCl) for arsenic in drinking water 

from 50 IJg/l to 10 IJg/l to more sufficiently protect public health. However, there 

are many areas around the world (United States inclusive) with drinking water 

arsenic levels exceeding 10 1J9/l, and very high levels (sometimes> 300 IJg/l) 

occur in Bangladesh, Taiwan, India, Chile and Argentina (Ahmed et aI., 2006; 

Nordstrom, 2002). In this dissertation, drinking water arsenic was used as a route 

of arsenic exposure. 

Arsenic and atherosclerosis 

Chronic ingestion of arsenic contaminated drinking water is associated with a 

variety of human diseases. Inorganic arsenic is an established human 

carcinogen causing cancer of the skin, lung and bladder. However, arsenic is 

also atherogenic, although the atherogenic effect of arsenic is less well 
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established. Accumulating evidence from both epidemiological and experimental 

animal studies show that arsenic exposure causes cardiovascular disease 

(CVD). Epidemiological studies in the endemic area of Taiwan show a dose­

response effect of arsenic exposure and atherosclerosis (Chen et aI., 1996; 

Tseng, 2008; Wang et aI., 2007). Furthermore, epidemiologic studies in 

populations with high arsenic exposures show increased incidence of CVD which 

include carotid atherosclerosis (Wang et aI., 2002), hypertension (Chen et aI., 

1995) and ischemic heart disease (Hsueh et aI., 1998). Even in areas where 

arsenic levels are much lower, for example the United States, arsenic exposure 

is associated with mortality from arterial disease (Engel and Smith, 1994). 

Atherosclerosis underlies most CVD which is the leading cause of death in the 

world. There is a strong correlation between arsenic exposure and 

atherosclerosis as demonstrated by epidemiological studies in adults (Tseng, 

2008;Wang et aI., 2007) and experimental animal models (Srivastava et aI., 

2007;Srivastava et aI., 2009). The induction of atherosclerosis by drinking water 

arsenic is dose-dependent with exposures as low as 1 ppm and 250 ppb arsenic 

reported to induce the disease in mice (Lemaire et aI., 2011 ; Srivastava et aI., 

2009). However, the exact mechanism by which arsenic causes atherosclerosis 

is not clearly understood. In this dissertation, the possible mechanisms of 

arsenic-induced atherosclerosis were determined. 

Accumulating data suggest that early life exposures may playa significant role in 

the onset of environmental adult diseases (Barker, 2007). A role for prenatal 

arsenic exposure in the development of arterial disease is suggested by reports 
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of myocardial infarction in infants from mothers who consumed water with high 

levels of arsenic in Chile (Rosenberg, 1974; Rosenberg, 1973). Indeed, prenatal 

exposure to arsenic accelerated atherosclerosis in ApoF'- mice, even without 

high fat diet (Srivastava et aI., 2007), which is usually requisite for early 

atherosclerosis in this strain. Mice exposed to arsenic (49 ppm arsenic) prenatal 

developed >2-fold lesions at 10 and 16 weeks of age, compared to mice exposed 

to tap water while prenatal. These lesions were located in the aortic roots, as well 

as the aortic arch. Thus, these results suggest that prenatal arsenic exposure 

may cause irreversible changes that predispose to development of 

atherosclerosis in adult life. However, it is not determined if the induction of 

atherosclerosis by prenatal arsenic exposure is dose-dependent. In this 

dissertation, the dose-response effects of prenatal arsenic exposure in the 

induction of atherosclerosis was determined. 

Liver disease and atherosclerosis 

Although atherosclerosis is a disease of the vasculature, disease modifying risk 

may be derived from distal sites such as the liver. Indeed, underlying non­

alcoholic fatty liver disease (NAFLO) has been shown to be a risk factor for 

developing atherosclerosis in humans (Brea et aI., 2005; Targher et aI., 2004) 

and is independent of other risks associated with chronic liver disease (e.g. 

metabolic syndrome) (Targher et aI., 2006). Several epidemiology studies show 

that nonalcoholic fatty liver disease (NAFLO) is associated with increased risk of 

carotid atherosclerosis (Brea et aI., 2005; Targher et aI., 2004; Targher et aI., 

2006). Furthermore, some studies (Bellentani et aI., 2008) indicate that elevated 
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liver enzymes in the plasma (e.g. AL T, AST) are risk factors for coronary events, 

including atherosclerosis, and appear independent of traditional risk factors. 

Although the mechanism by which liver disease modulates atherosclerosis is not 

fully understood, inflammation (Kugelmas et aI., 2003; Schindhelm et aI., 2007) 

and abnormal lipid metabolism (Adiels et aI., 2006) that occur in liver disease 

have been proposed to contribute to atherogenesis. 

The liver is a known target organ of arsenic toxicity. In humans, chronic arsenic 

exposure causes hepatic abnormalities, such as hepatomegaly, non-cirrhotic 

fibrosis, and portal hypertension (Santra et aI., 1999; Mazumder, 2005). Chronic 

arsenic exposure has also been shown to cause liver diseases in animal models 

(Santra et aI., 2000). Exposure to arsenic was also reported to induce liver 

cancer and other cancers as well in mice after prenatal exposures (Waalkes et 

aI., 2003;Waalkes et aI., 2004; Waalkes et aI., 2006). In this dissertation, the 

hypothesis that prenatal arsenic exposure causes basal- or worsens liver 

damage was tested. in the ApoF/- mouse model. 

Atherosclerosis and inflammation 

Atherosclerosis is a multifactorial and complex disease. Atherosclerosis results 

from the process of a combination of hyperlipidemia and inflammation. ApoE-1
-

mice are constitutively hyperlipidemic, but the source of inflammation is not 

known. Accumulating evidence from many studies shows that inflammation plays 

a central role in the formation of atherosclerotic plaque. During atherogenesis, 

there is sub-endothelial retention of cholesterol-rich lipoproteins which lead to 

endothelial activation. Lipoprotein in the sub-endothelial space is susceptible to 
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various modifications including oxidation, enzymatic cleavage, and aggregation, 

which render these particles pro-inflammatory. Monocytes are rapidly recruited to 

regions of lipoprotein retention in the intima and transform into macrophages. 

The macrophages take up oxidized lipids and transform into foam cells. These 

cholesterol-rich macrophages secrete pro-inflammatory cytokines and enhance 

lesion formation and atherogenesis. As the atherosclerotic plaque evolves, 

macrophages are joined by other inflammatory cells (T cells, dendritic cells, 

neutrophils, mast cells) and local smooth muscle cells that contribute to the 

cellular environment of the plaque. Genetic deletion of chemokines and cytokines 

such as MCP-1 and IL-6 in mice decreases atherosclerotic lesion formation (Gu 

et aI., 1998; Schieffer et aI., 2004). Increased expression of cytokines and 

chemokines is reported to be a pro-atherogenic effect of arsenic exposure in vitro 

(Lee et aI., 2005), in vivo (Srivastava et aI., 2009) and in humans (Wu et aI., 

2003). In this dissertation, the role of cytokine and chemokine expression as a 

pro-atherogenic effect of prenatal arsenic exposure was determined. In addition 

to cytokines and chemokines mediating inflammatory response during 

atherogenesis, heat shock protein 70 (Hsp70) is also implicated in atherogenesis 

as will be discussed below. 

Arsenic and Heat shock protein 70 

Heat shock proteins (HSPs) are stress proteins which function as molecular 

chaperones under physiological conditions, and prevent protein aggregation 

under stress conditions (Gething and Sam brook, 1992). Hsc70 and Hsp70 are 
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members of the HSPA family of HSPs. Hsp70 is the inducible form of heat shock 

protein 70 which is expressed at low levels under physiological conditions, but 

induced when cells are stressed (e.g. heat shock, oxidative stress, toxic metals) 

in order to provide cell survival. Hsc70 is constitutively expressed and functions 

as a molecular chaperone assisting in protein folding. Arsenic exposure induces 

the expression of Hsp70 in vitro and in vivo. In addition to the expression of 

Hsp70 in cells and tissues during stress, stressed cells can also release Hsp70 

into the circulation in membrane-bound subcellular particles called exosomes 

(Asea, 2007). Exosomal Hsp70 expression can activate immune cells such as 

macrophages to secrete TNF-a and thus provide an inflammatory stimulus for 

atherogenesis (Vega et aI., 2008). Accumulating evidence implicates the role of 

Hsp70 in atherosclerosis, with Hsp70 expression increased in atherosclerotic 

lesion sites (Lu and Kakkar, 2010) and also in plasmas of patients with 

atherosclerosis (Wright et aI., 2000; Zhu et aI., 2003). However, it is not clearly 

understood if circulating Hsp70 has a cytoprotective or cytotoxic role in 

atherogenesis (Bielecka-Dabrowa et aI., 2009). In this dissertation, the effects of 

arsenic exposure on circulating exosomal Hsp70 expression were determined. 

Arsenic and DNA methylation 

It is well established that arsenic has epigenetic potential affecting DNA 

methylation and histone modifications, thus regulating gene expression. Arsenic 

can alter genome-wide DNA methylation or gene-specific methylation (Reichard 

and Puga, 2010). Arsenic-induced global DNA hypomethylation and promoter 
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region hypermethylation have been implicated in arsenic carcinogenesis 

(Reichard and Puga, 2010). In addition to DNA methylation, histone modifications 

are also epigenetic marks that modulate gene expression. Arsenic has been 

shown to alter histone methylation and acetylation (Ramirez et aI., 2008; Zhou et 

aI., 2008). Thus, in this dissertation, the epigenetic effects leading to altered gene 

expression by arsenic exposure in the ApoE-1
- mouse model was determined. 
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CHAPTER II 

PRENATAL ARSENIC EXPOSURE INDUCES SUBTLE POSTNATAL 

HEPATIC DAMAGE AND SYSTEMIC INFLAMMATION ASSOCIATED WITH 

ACCELERATED ATHEROSCLEROSIS IN APOE-1- MICE 

Introduction 

Atherosclerosis is a complex process of a combination of hyperlipidemia and 

inflammation. ApoF'- mice are constitutively hyperlipidemic, but the source of 

inflammation in the arsenic-exposed mice is not known. We hypothesize that 

prenatal arsenic exposure primes the liver to a pro-inflammatory state which 

worsens liver disease upon stimulation, and provides an inflammatory stimulus 

for atherosclerosis. Microarray analyses of both mRNA and microRNA of livers of 

10 week old mice showed that prenatal arsenic exposure increased the 

expression of the pro-inflammatory cytokine TNF-a postnatally (States et aI., 

2009), thus suggesting a state of pro-inflammation. 

The risk of developing liver disease from environmental exposure (e.g. arsenic) 

can be modified by other conditions such as other environmental or genetic 

factors. An environmental exposure can result in physiological/biochemical 

changes in the liver that are pathologically inert, but that can sensitize the liver to 

hepatotoxicity caused by a second agent. An example of this "2-hit" hypothesis 
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was shown by enhanced lipolysaccharide (LPS)-induced liver injury in mice 

chronically exposed to arsenic postnatally However, whether prenatal arsenic 

exposure modifies the risk of developing liver damage owing to other insults has 

not been determined. 

The purpose of the current study was to test the hypothesis that prenatal arsenic 

exposure may also sensitize the liver to damage caused by a second hit, and 

thus provide the stimuli for accelerated atherosclerosis. To test this hypothesis, 

the LPS challenge assay was used to determine the effect of prenatal arsenic 

exposure on LPS-induced liver damage. 
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Materials and Methods 

Animals and treatment 

ApoE-1
- C57BLl6J mice (B6.129P2-ApoEtm1 Unc/J, Jax Labs, Bar Harbor, ME) 

were housed in a pathogen-free barrier facility accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care, and procedures were 

approved by the local Institutional Animal Care and Use Committee. Pregnant 

mice were given tap water (for controls) or water containing 85 mg/L NaAs02 (49 

ppm arsenic) on gestation day (GO) 8 - GD18. Their male offspring were kept 

until 10 and 24 weeks old. In some of the mice, experimental liver damage was 

induced by challenging them with LPS. LPS is a Gram-negative bacterial wall 

product that is often elevated in systemic blood during liver disease, (Li and 

Diehl, 2003) and is employed in basic research as a model toxicant to the liver. 

Mice were given a bolus injection of LPS (10 mg/Kg) intraperitoneally (IP). This 

dose of LPS (serotype 055:B5, batch 075K4038; Sigma St. Louis, MO) has been 

determined to cause moderate liver damage with no signs of toxicity to other 

target organs (Arteel et aI., 2008). Twenty-four hours after LPS injection, mice 

were anesthetized with pentobarbital (150 mg/Kg). Blood was withdrawn by 

cardiac puncture and citrated plasma was stored at -80°C for further analysis. 

Portions of liver tissue were frozen immediately in liquid nitrogen while others 

were fixed in 10% neutral buffered formalin or frozen-fixed. 
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Histopathological analysis 

Liver tissues from 10 week old arsenic-exposed and unexposed mice and from 

mice that were dissected 24 h after LPS challenge were fixed in 10% neutral 

buffered formalin and embedded in paraffin. The paraffin-embedded liver 

sections were cut at 5 IJm and mounted on glass slides. Sections were 

deparaffinized and stained with hematoxylin and eosin (HIE) for histological 

assessment. Neutrophil accumulation in the livers was assessed by staining 

tissue sections for chloroacetate esterase (CAE), using a napthol AS-D 

chloroacetate esterase kit (Sigma, St. Louis MO). Results were analyzed by 

counting the number of CAE positive-stained cells per 1000 hepatocytes. 

Determination of plasma AL T and AST 

Blood obtained from 10 and 24 week old arsenic-exposed and unexposed mice 

and from mice that were dissected 24 h after LPS challenge was centrifuged at 

4,600 rpm to collect plasma. Plasma levels of alanine aminotransferase (AL T) 

and aspartate aminotransferase (AST) were determined enzymatically using the 

commercial kit purchased from Infinity Liquid Reagents (Thermo Electron 

Corporation, Pittsburg). 

Determination of plasma IL-6 and TNF-a 

Blood obtained from cardiac puncture of 10 week old arsenic-exposed and 

unexposed mice and from mice that were dissected 24 h after LPS challenge 

was centrifuged at 4,600 rpm to collect plasma. Plasma expression of the pro-
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inflammatory cytokines TNF-a and IL-6 was measured by ELISA (R & 0 

Systems, Minneapolis, MN). 

Western blot analysis 

Frozen livers from 10 week old arsenic-exposed and unexposed mice and from 

mice that were dissected 24 h after LPS challenge challenge were homogenized 

in SDS lysis buffer (10 mM Tris-HCL pH 7.4,1 mM EDTA, 0.1 % SDS, 1 mM 

PMSF, 1 I-Ig/mL aprotinin, 1 I-Ig/mL leupeptin, and 1 I-Ig/mL pepsatin). Liver 

homogenates were centrifuged and the supernatant obtained. Protein 

concentrations were determined by bicinchoninic acid protein assay (Thermo 

Scientific, Rockford, IL). 

Proteins (20 I-Ig) were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). Proteins were transferred to nitrocellulose 

membrane and blots were probed with rabbit monoclonal TNF-a antibody 

(1:1000) overnight at 4°C (Cell Signaling Technology Inc., Danvers, MA). 

Membranes were incubated with corresponding rabbit secondary antibodies 

bound to horse radish peroxidase (HRP). Bound antibodies were visualized using 

enhanced chemiluminescence plus substrate (GE Healthcare Bio-Sciences 

Corp., Piscataway, NJ), and visualized directly on a Storm Phosphoimager in 

blue flourescence mode (Molecular Dynamics, Sunnyvale, CA). Bands were 

quantitated using Image Quant software. 
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Statistical analysis 

Data are expressed as mean ± SEM. Comparisons among groups were 

performed using one-way ANOVA and student's t-test. 
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Results 

Effects of arsenic exposure on liver damage 

The effects of arsenic on basal and LPS-induced liver damage was analyzed by 

histologic assessment for necroinflammation and neutrophil infiltration. HIE 

staining of livers of 10 week old mice showed that arsenic exposure did not 

cause major macroscopic changes in liver histology in the absence or presence 

of LPS (Fig. 2.1 A). LPS injection also did not produce any major macroscopic 

changes in hepatic histology. 

Chloroacetate esterase staining for neutrophil infiltration showed that arsenic 

alone did not significantly increase hepatic neutrophil infiltration (Fig. 2.1 Band 

C). LPS alone caused a robust infiltration of neutrophils in the liver. Arsenic pre­

exposure did not enhance LPS-stimulated neutrophil infiltration. 

Response of plasma AL T and AST to arsenic and LPS 

The effect of arsenic exposure and LPS on circulating enzyme markers of liver 

injury was also determined. Prenatal arsenic exposure alone significantly 

increased plasma AL T and AST by a factor of - 2 in livers of 10 week old mice 

(Fig. 2.2 A), and of -1.5 in livers of 24 week old mice (Fig. 2.2 B), thus indicating 

modest liver damage. As expected, LPS alone caused liver injury, as indicated 

by a significant increase in plasma AL T and AST by a factor of - 2 and 3 

respectively in livers of both 10 and 24 week old mice. Arsenic alone did not 

significantly enhance LPS-stimulated liver damage at either age. 
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Figure 2.1. Effects of prenatal arsenic exposure and LPS on liver histology 

of 10 week old mice. Ten week old prenatal arsenic-exposed and unexposed 

mice were injected with LPS as described in Materials and Methods. Mice were 

killed 24 h after LPS injection. Formalin-fixed liver sections were stained with HIE 

for necroinflammation, and CAE for neutrophil infiltration. Data are mean ± SEM. 

a=p<0.05 Panel A: Representative photographs of HIE stains; 200x. Panel B: 

Representative photographs of CAE stains; 200 x. Panel C: Quantitation of CAE 

positive cells 
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Figure 2.2. Effects of prenatal arsenic exposure and LPS on circulating 

plasma markers of liver damage in 10 and 24 week old mice. Ten (A) and 24 

(8) week old prenatal arsenic-exposed and unexposed mice were injected with 

LPS as described in Methods. Twenty-four hours after LPS injection , the mice 

were harvested and the plasma ALT and AST levels were analyzed . a=p<O.03 

compared to the absence of arsenic. b=p<O.06 compared to the absence of 

arsenic. c=p<O.05 compared to the absence of LPS. Data are mean ± SE. n=6-8 
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Response of plasma IL-6 and TNF-a to arsenic and LPS 

Basal levels of plasma IL-6 were higher in mice with prenatal arsenic exposure 

(Fig. 2.3 A). In contrast, basal level of plasma TNF-a was not changed by arsenic 

exposure (Fig. 2.3 B). LPS injection produced a robust inflammatory state as 

indicated by the increased levels of plasma TNF-a and IL-6. Arsenic pre­

exposure appeared to enhance TNF-a and IL-6 expression owing to LPS 

injection, but data failed to achieve statistical significance. However, arsenic pre­

exposure produced quite robust TNF-a response in 3 out of 6 mice, and IL-6 

response in 2 out of 6 mice, indicating animal to animal variability. 

Response of hepatic TNF-a to arsenic and LPS 

Prior work on microarray analysis of mRNA and miRNAs of livers of 10 week old 

mice showed that prenatal arsenic exposure increased the TNF-a pro­

inflammatory pathway (States et aI., 2009a). Thus, I determined the effect of 

arsenic exposure and LPS challenge on hepatic TNF-a expression by western 

blot analysis. The data in figure 1.4 show that whereas hepatic TNF-a expression 

was significantly increased by LPS injection, arsenic exposure did not alter the 

basal or LPS-stimulated induction of TNF-a expression. 
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Figure 2.3. Effects of prenatal arsenic exposure and LPS on inflammatory 

cytokine induction in 10 week old mice. Ten week old prenatal arsenic-

exposed and unexposed mice were injected with LPS as described in Methods. 

Twenty-four hours after LPS injection, the mice were harvested and plasma IL-6 

(A) and TNF-a (8) levels were measured by ELISA. a=p<O.05 compared to the 

absence of arsenic. b=p<O.05 compared to the absence of LPS. Data are mean 

± SE. n=6-9. 
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Figure 2.4. Effects of prenatal arsenic exposure and LPS on hepatic TNF-a 

expression of 10 week old mice. Livers from 10 weeks old arsenic-exposed 

and unexposed mice dissected 24 h post LPS challenge were homogenized in 

SDS lysis buffer for total protein isolation . Western blot analysis was performed 

to probe for TNF-alpha. Data are mean ± SEM, n=6-10. *=p<0.05. Panel A: 

Representative western blot images. Panel B: Densitometric quantitation of TNF-

alpha. 
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Discussion 

In this study, the "2-hit" hypothesis was tested to determine whether prenatal 

arsenic exposure enhances liver damage owing to a secondary insult. This 

hypothesis was tested by challenging prenatally arsenic exposed or unexposed 

mice with a bolus dose of LPS and sacrificing the mice 24 h later. Liver damage 

can be assessed histopathologically for necroinflammation and neutrophil 

infiltration. Several studies show that liver damage caused by arsenic exposure is 

characterized by abnormal histological changes. Epidemiology studies 

(Mazumder, 2005) report the manifestation of hepatic histological abnormalities 

by arsenic exposure. In animal studies, arsenic-induced liver damage (3.2 and 

200 ppm arsenic) is characterized by abnormal histological changes in the livers 

of C3H and 8alb/c mice after several months of exposures (Santra et aI., 2000; 

Santra et aI., 2000; Wu et aI., 2008). In fact, Santra et al. 2000 reported that 

chronic arsenic exposure for up to 9 months did not cause changes in liver 

histology, but the appearance of histological changes occurred only after 12 

months of exposure. Exposure to 49 ppm arsenic in drinking water for 7 months 

enhanced LPS-induced hepatic histological changes by increasing 

necroinflammatory foci (Arteel et aI., 2008). 

There is also a strong correlation between liver disease and atherosclerosis. 

Epidemiological studies show that the severity of histological features of NAFLD 

is strongly correlated with carotid atherosclerosis (8rea et aI., 2005;Targher et 

aI., 2006). In the present study, prenatal arsenic exposure alone, or in the 

presence of LPS did not cause any detectable macroscopic changes in the liver 
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as assessed by HIE and CAE staining. These results are different from those 

reported in the literature probably because the arsenic exposure was very brief 

(only 10 days prenatal) as compared to the chronic (7 or 12 months) postnatal 

exposures used in the reported studies. Furthermore, I used ApoF'- mouse in 

C57BLl6 background strain which is genetically different form the C57BLl6 

mouse strain used in the Arteel et aL study. In addition, there are differences in 

atherosclerosis induction between prenatal- and postnatal arsenic exposures, 

with chronic postnatal exposure inducing more lesion formation (3-5 fold) than 

prenatal exposures (2 fold) (Srivastava et aI., 2007;Srivastava et aI., 2009). 

Circulating concentrations of the liver transaminases, AL T and AST have been 

used as markers of NAFLD. Several epidemiologic and animal studies show that 

arsenic-induced liver damage is characterized by elevated plasma liver enzymes. 

Elevated plasma AL T and AST are seen with liver damage after chronic arsenic 

exposure in both humans (Mazumder, 2005) and in experimental animals (Santra 

et aI., 2000; Wu et aI., 2008). Chronic arsenic exposure for 7 months did not 

alter plasma liver enzymes, but enhanced elevated plasma liver enzymes 

induced by LPS (Arteel et aI., 2008). There is also a strong correlation between 

NAFLD and plasma liver enzymes and increased risk of atherosclerosis. 

Elevated plasma AL T predicts coronary heart disease events in humans, 

independent of traditional CVD risk factors (Adibi et aI., 2007; Schindhelm et aI., 

2007). Other epidemiological studies (Brea et aI., 2005;Targher et aI., 2006) 

show that elevated AL T and AST increase the risk of developing atherosclerosis. 

Consistent with what is reported in the literature, I have shown that prenatal 
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arsenic exposure caused slight but significant elevated plasma AL T and AST 

postnatally (10 and 24 weeks) thus suggesting liver damage. This is the first 

animal study to report arsenic-induced plasma AL T and AST in an 

atherosclerosis animal model. These data indicate a correlation between liver 

disease (as indicated by elevated plasma liver enzymes) and increased 

incidence of atherosclerosis, consistent with human epidemiology. Whereas it is 

not quite clear why the effects of prenatal arsenic exposure on plasma liver 

enzymes were attenuated by LPS challenge instead of the anticipitated 

enhancement, there exists a possible explanation. It is possible that the dose of 

LPS used for the study is high such that it masks the mild effects of prenatal 

arsenic exposure. This LPS dose was used for the Arteel et al. 2008 study with 

chronic arsenic exposure. 

Liver injury can also be characterized by hepatic and/or systemic inflammation. 

LPS is known to induce inflammatory cytokine expression. Chronic arsenic 

exposure is reported to increase hepatic TNF-alpha and IL-6 expression 

associated with liver damage (Oas et aI., 2005; Wu et aI., 2008). In addition, 

epidemiological studies show that cord blood TNF-a is associated with arsenic 

exposure (Ahmed et aI., 2011). In the present study, I determined the effect of 

prenatal arsenic exposure on the basal and LPS-stimulated expression of pro­

inflammatory cytokine IL-6 and TNF-a. The data show that whereas LPS injection 

increased systemic TNF-a and IL-6 expression, prenatal arsenic exposure alone 

increased systemic IL-6 but not TNF-a expression. Arsenic exposure did not 

significantly enhance LPS-induced expression of these cytokines. However, 
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there appeared to be an interaction effect between arsenic exposure and LPS, as 

indicated by the apparent increase in cytokine expression in the arsenic/LPS 

group when compared to LPS alone. Although arsenic did not significantly 

increase the LPS-stimulated levels of, IL-6 and TNF-a, there was animal 

variability in response, with about half of the mice showing very elevated 

response. Prior work showed that prenatal arsenic exposure increased the TNF­

a pro-inflammatory pathway as analyzed by microarray analysis of mRNA and 

miRNA of livers of 10 week old mice (States et aI., 2009). However, western blot 

analysis showed that prenatal arsenic exposure did not increase hepatic TNF-a 

expression. These data are inconsistent with previous reports probably due to 

the short-term exposure I did, compared to chronic exposure. The absence of a 

significant arsenic effect upon LPS injection might be because the cytokines 

have passed their peak levels in the plasma at the 24 h time point. 

In summary, this study demonstrates that exposure to arsenic prenatally causes 

subtle but significant liver damage observed postnatally at 10 weeks that 

continues at least until 24 weeks. This liver damage is characterized by 

increased plasma AL T and AST levels, with no macroscopic histologic changes. 

Arsenic exposure increased systemic- but not hepatic inflammation. We don't yet 

know if the damage is permanent or temporal. Thus, further studies are required 

for later time points. 

In conclusion, these results suggest that prenatal arsenic exposure induces 

subtle but significant liver damage, characterized by only elevated plasma liver 
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enzymes and systemic inflammation. The observed liver damage is associated 

with increased atherosclerosis observed in the ApoF'- mouse model. 
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CHAPTER III 

DELAYED TEMPORAL INCREASE OF HEPATIC HSP70 IN APOE 

KNOCKOUT MICE AFTER PRENATAL ARSENIC EXPOSURE 

Introduction 

Epidemiological studies indicate chronic arsenic exposure is associated with high 

risk of CVD (States et aI., 2009). Atherosclerosis underlies most CVD, which is 

the leading cause of mortality worldwide. Arsenic exposure in drinking water 

accelerates atherogenesis in experimental animal models, (Simeonova et aI., 

2003) and the induction is dose-dependent (Srivastava et aI., 2009). However, 

the mechanism of arsenic-induced atherogenesis is unknown. 

Gestation is a critical period of development. Arsenic readily crosses the placenta 

in humans and rodents (Concha et aI., 1998; Lindgren et aI., 1984). Thus, 

developmental arsenic exposures can predispose to adult diseases as indicated 

by induction of liver cancers in adult male mice (Waalkes et aI., 2003). Reports of 

myocardial infarction in infants whose mothers consumed water with high levels 

of arsenic in Chile (Rosenberg, 1973; Rosenberg, 1974) suggest a role for 

prenatal arsenic exposure in the development of CVD. Indeed, prenatal arsenic 

exposure accelerated atherosclerosis in ApoE-1
- mice without high fat 
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diet, which is usually requisite for early atherosclerosis in this strain (Srivastava 

et aL, 2007). 

Although atherosclerosis is a vascular disease, the atherogenic stimulus can 

come from distant sites, including the liver. Epidemiology studies show that liver 

disease is an independent risk factor for carotid atherosclerosis (Brea et aL, 

2005; Targher et aL, 2006), and that elevated liver enzymes in the plasma (e.g. 

AL T, AST) are risk factors for coronary events (Bellentani et aL, 2008). Arsenic is 

toxic to the liver, causing liver diseases in humans and animal models (Guha 

Mazumder, 2001; Santra et aL, 2000). It is likely that prenatal arsenic exposure 

affects liver development predisposing to adult chronic disease. The hypothesis 

that prenatal arsenic exposure altered developmental programming of the liver of 

ApoE-1
- mice with accelerated atherosclerosis was tested by microarray analyses 

of both mRNA and microRNA in newborn and 10 week old mice (States et aL, 

2009). The data showed several differentially expressed genes including 

constitutive (Hsc70) and inducible (Hsp70) heat shock protein 70; age being the 

major influence on gene expression thus reflecting developmental changes 

(States et aL, 2009). 

HSPs are stress proteins which are constitutively expressed at low levels, but up­

regulated under stress conditions (e.g. heat shock, toxic metals, oxidative stress) 

in order to confer protection against such stressors. HSPs function as molecular 

chaperones under physiological conditions, and prevent protein aggregation 

under stressed conditions (Gething and Sambrook, 1992). Hsc70 and Hsp70 are 

members of the HSPA family of HSPs. In spite of numerous in vitro data showing 
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Hsp70 induction by arsenic, there are very few in vivo data. Therefore, it is still 

unclear how Hsp70 expression is regulated postnatally after prenatal arsenic 

exposure. 

One of the mechanisms by which the expression of a gene can be altered is by 

epigenetic regulation, particularly DNA methylation. Arsenic interferes with 

genome-wide and site-specific DNA methylation (Reichard and Puga, 2010). 

Thus, exposure to arsenic prenatal is likely to cause epigenetic alterations, 

particularly DNA methylation which can lead to altered gene expression. 

In this study, the hepatic expression of Hsp70 and Hsc70 during prenatal and 

postnatal development was determined in mice prenatally exposed to arsenic. In 

addition, the epigenetic effects of arsenic were determined. This is the first study 

to determine how the expression of Hsp70 changes during early postnatal 

development following prenatal arsenic exposure. 
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Material and Methods 

Chemicals 

Sodium arsenite (NaAs02) was obtained from Sigma Chemical Co. (St. Louis, 

MO). Adenosyl-L-methionine, S-[methyl-3H]; (SAM [3HD, (specific activity 81.9 

Ci/mmol) was purchased from Perkin-Elmer, Inc. (Boston, MA). Protease 

inhibitors were purchased from Sigma Chemical Co. (St. Louis, MO) and Fisher 

Scientific (Rockford, IL). 

Animal treatment and sample collection 

ApoF'- mice were housed and bred under pathogen-free conditions in controlled 

temperature and 12 h lightl12 h dark cycle. Animal care was provided following 

the guidelines of the Association for the Accreditation of Laboratory Animal Care. 

Prior to treatment, all mice were maintained on standard chow diet and tap water 

as previously described (Srivastava et aI., 2007). Briefly, mice were bred by 

housing 2-4 females with each male. Females were checked daily for the 

presence of a vaginal plug. The presence of a plug was designated gestational 

day 0 (GDO), and the female was assumed pregnant. Pregnant mice were 

housed separately, and were given drinking water containing 85 mg/L NaAs02 

(49 ppm arsenic) or tap water (for controls) ad libitum from GD 8 through GD18. 

During prenatal arsenic exposures, arsenic containing water was changed twice 

weekly. Dams were allowed to give birth (GD18-GD21) and male offspring were 

maintained on tap water and normal chow ad libitum until sacrificed at 3, 10 and 
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24 weeks of age. Liver samples were frozen at -80 cc until analysis. GD18 dams 

were also sacrificed and maternal and fetal livers were obtained and stored 

frozen at -80 cC. All mice were anesthetized with pentobarbital (150 mg/Kg) 

before sacrifice. Studies were performed under protocols approved by the 

University of Louisville Institutional Animal Care and Use Committee. 

Measurement of hepatic arsenic levels by inductively coupled plasma­

mass spectrometry (ICP-MS) 

Total arsenic which would include inorganic and organic forms was determined 

by ICP-MS. Access to the ICP-MS instrument is available through the Center for 

Regulatory, Environmental and Analytical Metabolomics at University of 

Louisville on a fee per service basis. We have used this instrument to measure 

arsenic in cell cultures (McNeely et aI., 2008). A portion of the frozen maternal 

and GD18 fetal liver (300-600mg) was transferred to 2 mL acid washed (0.1 M 

HN03 acid) centrifuge tubes and digested in 350 IJL concentrated nitric acid 

overnight. One hundred IJL of digested sample was transferred to 10 mL acid 

washed microwavable digestion tubes in triplicates, and every 3rd sample from 

each group was spiked with 5 ng arsenic standards (SPEX CertiPrep, Metuchen, 

NJ). The samples were microwave digested at 150cC for 10 min using 

Automated Microwave Synthesis Workstation. Residues were removed by 

centrifugation, and 1.9 mL of 18 Mohm water containing 10 ppb internal standard 

solution was added in to every sample to give 5% HN03 acid. Each sample (1.5 

mL) was transferred to acid washed polypropylene deep-well 96 well plates for 
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ICP-MS analysis using Thermo Electron ICP-MS, X-Series. Blank was 

concentrated nitric acid. Results are expressed in ng arsenic/g wet weight. 

Isolation of proteins from total liver homogenates 

Frozen livers from G018 fetuses, and 3, 10 and 24 week old mice were 

homogenized in ice-cold radioimmunoprecipitation assay (RIPA) buffer (50 mM 

Tris-HCL pH7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCI, 1 m M 

EOTA, 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 I-Ig/mL aprotinin, 1 I-Ig/mL 

leupeptin, 1 I-Ig/mL pepsatin, 1 mM Na3V04 and 1 mM NaF) or SOS lysis buffer 

(10 mM Tris-HCL pH7.4, 1 mM EOTA, 0.1 % SOS, 1 mM PMSF, 1 I-Ig/mL 

aprotinin, 1 I-Ig/mL leupeptin, and 1 I-Ig/mL pepsatin). Liver homogenates were 

centrifuged and the supernatants obtained as protein extracts. Protein 

concentrations were determined by bicinchoninic acid protein assay (Thermo 

Scientific, Rockford, IL). 

Extraction of cytosolic and nuclear fractions 

Livers of 3 and 10 week old arsenic-exposed and unexposed mice were 

subjected to cytosolic and nuclear extractions. Frozen livers (0.1 g) were ground 

in liquid nitrogen and transferred to a dounce homogenizer. Using pestle B, 

tissues were homogenized in 700 I-IL of ice-cold Polyamine A buffer (0.34 M 

sucrose, 13.3 mM Tris-HCI pH 7.5, 13.3 mM NaCI, 0.1 % ~-mercaptoethanol, 53 

mM KCI, 2 mM EOTA, 0.5 mM EGTA, 0.5 mM Spermidine, 0.5 mM Spermine, 1 

mM PMSF, 1 I-Ig/mL aprotinin, 1 I-Ig/mL leupeptin, 1 I-Ig/mL pepsatin, and 
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phosphatase inhibitor) about 15 strokes. Oounce homogenizer was rinsed with 

300 ~L of polyamine A buffer. The suspension was transferred to 1.5 mL 

centrifuge tubes and centrifuged at 4500 g for 15 min, at 4°C. The supernatant, 

which is the cytosolic fraction, was removed and transferred to a new tube and 

stored at -80°C 

The nuclear pellet was resuspended in 300 ~L of Polyamine A buffer + 2.1 M 

sucrose solution (mixed in equal ratios), and the suspension was layered on top 

of 200 ~L of Polyamine A buffer + 2.1 M sucrose solution (mixed in equal ratios) 

in centrifuge tubes. Tubes were centrifuged in a Beckman TLA 120.2 rotor at 

95,000 x g, for 1 h, at 4°C. The supernatant was removed and nuclear pellet 

was lysed in 200 ~L of Buffer B (20 mM Hepes, 1 M NaCI, 5 mM MgCI2 , 12 % 

glycerol, 5 mM on, 2 M Urea, 1 mM PMSF, 1 ~g/mL aprotinin, 1 ~g/mL 

leupeptin, 1 ~g/mL pepsatin, and phosphatase inhibitor) and incubated shaking 

for 30 min at 4°C. Nuclear lysate was centrifuged at 14,000 x g, for 15 min at 

4°C and supernatant was collected and stored at -80°C as nuclear extract. 

Protein concentrations in cytoplasmic and nuclear extracts were measured using 

Bio-Rad protein assay. 

Western blot analysis 

Proteins (20 - 25 ~g) were separated by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SOS-PAGE) and transferred unto 

nitrocellulose membranes. Membranes were incubated with primary antibodies 

including mouse monoclonal, and rabbit monoclonal Hsp70 antibodies (1: 1 000, 
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overnight at 4°C; Enzo Life Sciences International, Inc., Plymouth Meeting, PA, 

and Epitomics Inc., Burlingame, CA); rat monoclonal Hsc70 antibody (1:1000,1 h 

at 4°C; Enzo Life Sciences International, Inc., Plymouth Meeting, PA); rabbit 

polyclonal Hsf1 antibody (1 :500, 24 h at 4°C; Cell Signaling Technology Inc., 

Danvers, MA); and rabbit ployclonal Nrf2 antibody (1: 1000 overnight at 4°C; Cell 

Signaling Technology Inc., Danvers, MA). Membranes were incubated with 

corresponding mouse, rabbit, and rat secondary antibodies bound to HRP. The 

membranes were incubated with ECl or ECl plus substrate (GE Healthcare Bio­

Sciences Corp., Piscataway, NJ). ECl membranes were exposed to Kodak XAR 

x-ray film. Signals on ECl plus membranes were visualized directly on a Storm 

Phosphoimager in blue flourescence mode (Molecular Dynamics, Sunnyvale, 

CA). Bands were quantitated using Image Quant software. 

Global DNA methylation assay 

Genomic DNA was isolated from frozen liver tissues of GD18 fetuses and 3, 10 

and 24 week old mice by the salting out method. Global DNA methylation was 

determined by the methyl acceptance assay as described (Xie et aI., 2007) with 

some modifications. Briefly, 2 IJg DNA was incubated for 2 h at 37°C in a 30 IJl 

reaction mixture containing 1.25 IJM (3 IJCi) [3H]-SAM, 4 units of CpG Methylase 

(M. ss I) (New England Biolabs, Inc., Beverly, MA), 10 mM OTT, Tris-EDTA 

buffer (100 mM Tris, 10mM EDTA, pH 8.0) and 100 mM NaCI. The reaction was 

stopped on ice and split in two aliquots of 15 ~L. Each aliquot was transferred 

onto a Whatman DE81 filter to bind DNA. Bound DNA was washed on a filtration 
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funnel connected to a vacuum source three times with 5 mL of 0.5 M phosphate 

buffer (pH 7.0) , once with 5 mL of 70% ethanol and twice with 5 ml of absolute 

ethanol. The filter was dried and 5 mL of liquid scintillation cocktail (Beckman 

Coulter, Fullerton, CA) was added . Bound radioactivity was measured by 

scintillation counting on a Tri-Carb 291 OTR liquid scintillation analyzer (pelkin 

Elmer, Boston , MA) 

Promoter region and CpG island methylation of Hsp 70 

Genomic DNA was isolated from livers of 10 week old arsenic-exposed and 

unexposed mice and 400 ng DNA was subjected to bisulfite treatment using EZ 

DNA Methylation Direct Kit (Zymo Research Corp. , Irvive CA) according to 

manufacturer's protocol. PCR primers were designed using the MethPrimer 

software (http://www.urogene.org/methprimer/index1 .html) which designs 

oligonucleotide primers for methylation PCR. Primers were designed to amplify 5 

regions of Hsp70 CpG island , which spans the promoter region and 66 % of the 

body of the gene. Primers were also designed to amplify untreated (original) 

DNA. Bisulfite-treated DNA (50 ng) and untreated DNA (100 ng) was amplified by 

PCR using High Fidelity Platinum Taq DNA Polymerase (Invitrogen Corp. , 

Carlsbad , CA) according to manufacturer's protocol (see Table 2.1 for PCR 

primer sequences) . PCR products were visualized on a 1.5 - 2 % agarose gel 

(based on PCR product size) and single distinct bands were observed. PCR 

products were purified using Multiwell PCR Purification Kit (Qiagen Inc. , 

Valencia, CA) and sequenced using nested oligonucleotides. In this method, 
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sodium bisulfite converts all unmethylated cytosines to uracil residues, while 5-

methyl cytosine is resistant to conversion. PCR amplification then converts the 

uracils to thymidines. After sequencing, unmethylated cytosines are detected as 

thymidines, thus making it possible for determination of site-specific methylation. 

Statistical analysis 

Data are expressed as mean ± SEM. Comparisons among groups were 

performed using one way ANOVA and student's t-test. 
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Table 2.1. Oligonucleotides used in amplifying and sequencing Hsp70 in 

bisulfite treated DNA. 

Region Oligonucleotide Type Oligonucleotide Sequence 
PCR Fw: 5'·TAGTATTTTTAGGAGTTGATTTTTAATAGT·3' 

(Tm = 50 DC) Rv: 5'·TTATCTCTAAATAAAACCAAATTTAATTCT·3' 
1 Fw: 5'·TTAGGAGTTGATTTTTAATAGT·3' 

Sequencing Fw: 5'·TTTGGAGAGTTTTGGATAAG·3' 
Rv: 5'·CCAAATTTAATTCTAAATAACTATC·3' 

PCR Fw: 5'·ATTTAGAATTAAATTTGGTTTTATTTAGAG·3' 
(Tm = 58 DC) Rv: 5'·TATAATTCACCTACACCTTAAACTTATC·3' 

2 Fw: 5'·TTAAATTTGGTTTTATTTAGAG·3' 
Sequencing Fw: 5'·GTAATTTTTTTAGGAGTATTTTTG·3' 

Fw: 5'·GATTTGGGTATTATTTATT·3' 
Rv: 5'·CACCACCTAAAAAAACCAATAC·3' 

PCR Fw: 5'·ATGAAGTA TTGGTTTTTTT AGGTGGT ·3' 
(Tm = 58 DC) Rv: 5'·ATCCTTCTT ATACTTCCTCTT AAACTCCT ·3' 

3 Fw: 5'·TATTGGTTTTTTTAGGTGGT·3' 
Sequencing Fw: 5'·GAAGATGAAGGAGAT·3' 

Fw: 5'·GGTAGGTTATTAAGGA·3' 
Rv: 5'·CTTATACTTCCTCTTAAACTC·3' 

PCR Fw: 5'·GAAGTATAAGAAGGATATTAGTTAGAATAA·3' 
(Tm = 55 DC) Rv: 5'·AAAAAAATCCTACAACAACTTCTACAC·3' 

4 Fw: 5'·AGAAGGATATTAGTTAGAATAA·3' 
Sequencing Fw: 5'·TAGTATTTAGGTTAGTTTGGAG·3' 

Rv: 5'·TCCTACAACAACTTCTACAC·3' 
PCR Fw: 5'· TGTAGAAGTTGTTGTAGGATTTTTTT AA·3' 

(Tm = 60 DC) Rv: 5'·AA TAACCTCCT AACACTTATCCAACAC·3' 
5 Fw: 5'·AAGTTGTTGTAGGATTTTTT·3' 

Fw: 5'·GGTTATTTTGATGGGGGATAA·3' 
Sequencing Fw: 5'·GTAATTTTATTATTTTTATTAAGTAG·3' 

Fw: 5'·GATAATAATTTGTTGGGG·3' 
Fw: 5'·GGTAAGGTTAATAAGATTATTAT·3' 
Rv: 5'·CCTCCTAACACTTATCCAAC·3' 
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Figure 3.1. Schematic representation of Hsp70 showing regions analyzed 

for methylation studies. Red arrows indicate peR primers. Black arrows 

indicate position of nested sequencing oligonucleotides. 
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Results 

GD18 fetal and maternal hepatic arsenic content 

To determine whether maternal arsenic exposure actually reaches the fetus, I 

measured the maternal and GD18 fetal total arsenic content by ICP-MS. Very 

little arsenic was detected in unexposed maternal and fetal livers (Fig. 3.2), the 

source of arsenic being the mouse diet. In contrast, inorganic arsenic exposure 

increased liver arsenic levels -55 fold (1165 ± 179 ng/g wet weight) and - 26-fold 

in feta livers (350 ± 20 ng/g wet weight). The concentration of arsenic detected in 

the maternal livers was similar to the -1.5 mg/kg reported in liver biopsies of 

humans with chronic arsenic exposure in West Bengal (Mazumder et aI., 1998). 

Thus, my animal exposure model anchors the results to this human population 

with relatively high arsenic exposure (~1 00 ppm arsenic). These data indicate 

that maternal arsenic exposure crossed the placental barrier and reached the 

fetal liver as reported by others (Jin et aI., 2006; Lindgren et aI., 1984). 

Hepatic Hsp70 and Hsc70 expression during course of postnatal 

development 

Hsp70 is a stress response protein whose expression is induced during stress 

(e.g. heat shock or toxic metals). Thus, I determined by western blot the effect of 

prenatal arsenic exposure on Hsp70 expression at different stages of 

development, in GD18 fetuses (Day 0), and 3 (Day 21), 10 (Day 70), and 24 

week old mice (Day 168). The results show that Hsp70 expression was not 
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Figure 3.2. ICP-MS analysis of GD18 fetal and maternal hepatic arsenic 

content. A portion (300-600 mg) of the frozen maternal and GD18 fetal livers 

was digested in nitric acid. Total arsenic which would include inorganic and 

organic forms was determined by time of flight-inductively coupled plasma-mass 

spectrometry (ICP-MS) as described in Materials and Methods. Data are 

expressed as Mean ± SEM, n=3. *=p<0.02. #=p<.003 
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altered at GD18 at the end of the arsenic exposure (Fig. 3.3 A). However, 21 

days later, Hsp70 expression was increased by a factor of -2 in arsenic-exposed 

livers. The increased expression of Hsp70 remained constant at Day 70, but 

returned to unexposed levels by Day 168. These data indicate that prenatal 

arsenic exposure caused a delayed temporal induction of inducible Hsp70, thus 

suggesting a temporal state of stress in the livers of exposed mice. 

In contrast to increased expression observed with inducible Hsp70, the 

expression of constitutive Hsc70 was not altered during any stage of 

development (Fig. 3 3 C). These data are consistent with constitutive nature of 

Hsc70. 

Global DNA methylation analysis 

The effect of prenatal arsenic exposure on global DNA methylation at different 

stages of development (GD18 fetuses, and 3, 10 and 24 weeks) was determined 

by methyl acceptance assay. This assay uses a bacterial DNA methyltransferase 

that methylates all unmethylated cytosines in DNA. In this assay, SAM labeled 

with [3H] at the donated methyl group is the methyl donor. Thus, lower methyl 

incorporation corresponds to higher degree of DNA methylation (i.e. 

hypermethylation). In the DNA of both arsenic-exposed and unexposed mice, 

incorporation of methyl groups into DNA decreased with increasing age (Fig. 

3.4). Thus, liver DNA becomes hypermethylated globally as mice age. However, 

prenatal arsenic exposure did not alter the global DNA methylation status at any 

age. 
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Figure 3.3. Western blot analyses of hepatic Hsp70 and Hsc70 expression 

during course of prenatal and postnatal development. Livers of control and 

arsenic-exposed mice at four stages of development (GD18, and 3, 10 and 24 

weeks) were homogenized with either SDS lysis buffer or RIPA buffer as 

40 



described in Materials and Methods. Western blot was performed to probe for 

Hsp70 and Hsc70. 14-3-3 13 was used as the loading and normalization control 

for GD18 samples, while GAPDH was used as the loading and normalization 

control for 3, 10 and 24 week samples. *=p<0.003. Panel A: Representative 

western blot images of Hsp70 in livers of arsenic exposed and unexposed mice 

sacrificed on GD18, Day 21, Day 70 and Day 168. Panel B: Densitometric 

quantitation of Hsp70 at each stage of development. Panel C: Representative 

western blot images of Hsc70 in livers of arsenic exposed and unexposed mice 

sacrificed on GD18, Day 21, Day 70 and Day 168. Panel D: Densitometric 

quantitation of Hsc70 at each stage of development. 
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Figure 3.4. Analysis of global DNA methylation during course of prenatal 

and postnatal development, measured by methyl acceptance assay. Higher 

eH] methyl incorporation by bacterial DNA methyltransferase into unmethylated 

cytosines corresponds to lower degree of global DNA methylation. a = p< 0.05 

compared to Day 0, b = p< 0.05 compared to Day 21 and c = p < 0.05 compared 

to Day 70. Data are mean ± SEM. n=6-9 
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Methylation status of the promoter region and CpG island of Hsp70 

The Methylation of DNA in the promoter region or within the body of the gene can 

alter the expression of the gene. I determined if the increased Hsp70 expression 

observed with prenatal arsenic exposure corresponded to differential DNA 

methylation induced by arsenic exposure. The Hsp70 CpG island is 2.5 kb long 

and spans through the promoter region and 66 % of the body of the gene (Fig. 

3.1). Hsp70 methylation was determined in livers of 10 week old mice by bisulfite 

sequencing of 5 regions spanning 1.9 kb of the CpG island (Fig. 3.1) as 

described in Materials and Methods. The methylation status of analyzed regions 

of hepatic Hsp 70 CpG island which includes the promoter region is shown in 

Figure 3.5 A. The results are expressed as percentage CpG site methylation per 

region. The data reveal that the promoter region (R1) of Hsp70 is completely 

unmethylated in DNAs from both arsenic-exposed and unexposed mice. 

However, analysis of regions within the body of Hsp 70 (R2 - R5) show 

differential methylation patterns, with region-specific hypo- and hypermethylation. 

In many instances, a CpG site is completely methylated or unmethylated (Fig. 3.5 

8). Relative to controls, arsenic exposure significantly increased CpG site 

methylation of Region 3 (R3 spans +503 to +856). 
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Figure 3.5. Analysis of Hsp70 promoter region and CpG island methylation. 

Genomic DNA was isolated from livers of 10 week old arsenic-exposed and 

unexposed mice and 400 ng was subjected to bisulfite treatment for the 
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determination of Hsp70 methylation as described in Methods. Data are Mean ± 

SEM. *p<O.004 Panel A: Quantitation of percentage CpG site methylation per 

region. Panel B: A representative sequence from R3 (n=3-5) showing methylated 

and unmethylated CpG sites. Methylated cytosines are represented as dots in 

the boxes, while unmethylated cytosines appear as "t". 
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HSF1 and Nrf2 nuclear translocation and activation 

Hsf1 and Nrf2 are transcription factors which are major regulators of Hsp70 

expression. The translocation of Hsf1 and Nrf2 from cytoplasm to nucleus is 

important for their activation in gene transcription. To determine if arsenic 

exposure was also having an upstream effect on transcription factors regulating 

Hsp70 expression, western blot analysis of cytosolic and nuclear Hsf1 and Nrf2 

proteins was performed. Data revealed that a greater part of Nrf2 is located in the 

cytosol, with very limited translocation to the nucleus (Fig. 3.6). Arsenic exposure 

did not alter the cytosolic levels of Hsf1 and Nrf2, nor did it increase nuclear 

translocation. The levels of Hsf1 in both cytosolic and nuclear fractions were very 

low and almost undetectable. Absence of nuclear translocation indicates Hsf1 

and Nrf2 are not activated. These data suggest the mechanism of Hsp70 

induction by arsenic exposure is by other transcription factors. 

46 



3 weeks C 
A Unexposed Arsenic I: 

0 

C NCNCNCNCN fII 
fII 
(1) 

Hsf1 0.2 
>< 
(1) 

Nrf2 
(1) 

.2: ... 

.! 1 
(1) 

GAPDH ... 
"I"" .... 
fII 

Histone 3 
:1:0 

10 weeks 
B Unexposed Arsenic o 

Hsf1 

Nrf2 

GAPDH 

Histone 3 

CNCNCNCNCN 
I: 
.2 
fII 
fII 
(1) 
"-
Co 
>< 
(1) 

(1) 1 
~ 
10 
~ 
N 
't: ---- -"'------"-~------.... z 

Arsenic 

- (a - .... 
0 0 ct7 
fIJ JE fIJ .Sf 
~ () ~ () 

() i () i 
3 weeks 10 weeks 

o 

3 weeks 10 weeks 

Figure 3.6. Western blot analysis of Hsf1 and Nrf2 cytosolic and nuclear 

protein levels. Cytosolic and nuclear fractions were isolated from livers of 3 and 

10 week old arsen ic-exposed or unexposed mice as described in Materials and 

Methods. Western blot was performed to probe for Hsf1 and Nrf2. GAPDH was 

used as the normalization control for cytosol ic proteins and to determine nuclear 

purity, while Histone 3 was used as the normalization control for nuclear proteins 

and to determine cytosolic purity. Panel A: Representative western blot images of 
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cytosolic and nuclear Hsf1 and Nrf2 in livers of 3 week old arsenic-exposed and 

unexposed mice. Panel B: Representative western blot images of cytosolic and 

nuclear Hsf1 and Nrf2 in livers of 10 week old arsenic-exposed and unexposed 

mice. Panel C: Densitometric quantitation of cytosolic and nuclear Hsf1. Panel D: 

Densitometric quantitation of cytosolic and nuclear Nrf2 
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Table 3.2. MiRNAs decreased by prenatal arsenic exposure and predicted 

to have sites on Hsp70 mRNA as predicted by miRWalk and other 

programs. 

MiRNA Target region 

Mmu-miR-130a 3'-UTR 

Mmu-miR-218 CDS 

Mmu-miR-412 CDS 

Mmu-miR-681 CDS 
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Discussion 

Whereas Hsc70 is a constitutively expressed molecular chaperone, Hsp70 is a 

stress- inducible type which helps cells to resist stress by solubilizing denatured 

protein aggregates, facilitating the restoration of the function of renatured 

proteins, and transporting irreversibly damaged proteins to degradative 

organelles and proteasomes (Kiang and Tsokos, 1998). This study for the first 

time clearly demonstrate that prenatal exposure to inorganic arsenic results in 

delayed temporal postnatal induction of the stress inducible Hsp70 gene in livers 

of ApoF'- mice. Hsc70 expression did not change during any stage of postnatal 

development thus confirming it is not stress inducible. The Hsp70 expression 

increases several weeks after arsenic exposure is stopped and continues for 

several more weeks before returning to normal levels. The increased Hsp70 

expression at ages 3 and 10 weeks following prenatal arsenic exposure indicates 

a temporal period of stress, and thus suggests a critical window during which 

time the mice are most susceptible to other environmental insults leading to 

atherosclerosis. These data suggest a low grade injury in which there is no 

detectable damage at the time of arsenic exposure, but the tissue becomes 

sensitized or primed for a greater detectable damage upon a second hit which 

comes later in life. This hypothesis is supported by the enhanced 

lipopolysaccharide-induced liver damage caused by chronic arsenic exposure 

(Arteel et aI., 2008). Thus, the data in this current study suggest that Hsp 70 

expression is not sufficient to be used as a biomarker of arsenic exposure as 

proposed by some in vitro and vivo studies (Del Razo et aI., 2001; Han et aI., 
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2005) owing to the absence of increased expression at the time of exposure. 

Absence of G018 hepatic Hsp70 induction in our study is consistent with the 

findings of Petrick et al. (Petrick et aI., 2009) who reported that microarray 

analysis of G018 embryonic mouse lungs showed no alterations in Hsp70 

expression following prenatal arsenic exposure. Other studies have reported 

increased Hsp70 expression in vivo following arsenic exposure. Hsp70 is 

reported to be induced in mouse liver by chronic low dose postnatal arsenic 

exposures (Andrew et aI., 2007), and in lungs after acute subcutaneous 

injections of sodium arsenite and arsenate (Liu et aI., 2001). Also, microarray 

analysis of adult C3H mouse liver tumors revealed decreased Hsp70 mRNA 

expression by prenatal arsenic exposure (Liu et aI., 2004). However, the 

decreased Hsp70 expression was not confirmed by RT-PCR or western blot. 

There is also growing evidence implicating Hsp70 in atherosclerosis (Lu and 

Kakkar, 2010). Stressed cells can actively release extracellular Hsp70 (Asea, 

2007) which when present in extracellular membranes can activate macrophages 

to induce TNF-a expression (Vega et aI., 2008), leading to increased 

inflammatory stimulus promoting atherogenesis. Importantly, Hsp70 expression 

is increased in the plasmas of patients with atherosclerosis (Wright et aI., 2000; 

Zhu et aI., 2003). However, it is still unclear whether circulating Hsp70 has a 

cytoprotective or cytotoxic role in atherosclerosis (Bielecka-Oabrowa et aI., 

2009).Taken as a whole, these observations suggest that the stressed hepatic 

cells in our mouse model may release excess Hsp70 into the circulation, thus 

contributing to the observed increased atherosclerosis. 
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Arsenic exposure can alter epigenetic marks, especially causing DNA 

methylation alterations (Reichard and Puga, 2010). In the present study, prenatal 

arsenic exposure did not alter global DNA methylation postnatally during the 

course of development. This finding is consistent with the report of 

hypomethylation in GC-rich regions but not globally in hepatic DNA of newborn 

C3H mice exposed to arsenic prenatal (Xie et aI., 2007). The novelty of this study 

is that global DNA methylation during the course of pre- and postnatal 

development was determined. The findings are that global DNA methylation does 

not remain constant, but increases (DNA becomes hypermethylated) with age. 

Chronic postnatal arsenic exposure is reported to cause global DNA 

hypomethylation in livers of adult mice and is associated with arsenic-induced 

hepatocarcinogenesis (Chen et aI., 2004). The apparent difference in global DNA 

methylation between my findings and that of Chen et al. can be attributed to the 

difference in arsenic exposure; brief prenatal arsenic exposure versus chronic 

postnatal exposure. 

DNA methylation is an important epigenetic mechanism involved in altered gene 

expression. For example, prenatal arsenic exposure decreased the methylation 

of estrogen receptor-a promoter region of adult mouse liver leading to increased 

gene expression which may playa role in arsenic-induced hepatocellular 

carcinoma (Waalkes et aI., 2004). Global DNA methylation does not predict what 

happens at gene-specific level. Thus, the role of DNA methylation as a potential 

mechanism underlying increased Hsp70 expression was determined. The 

results show that prenatal arsenic exposure did not alter Hsp70 promoter region 
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methylation, but significantly increased methylation within the body of the gene, 

thus, indicating an epigenetic effect. The methylation pattern across the Hsp70 

gene was also determined. The data show that Hsp70 promoter region is 

generally unmethylated and that the methylation density increases in the body of 

the gene, with some regions having higher methylation densities than others. It is 

reported that extensive CpG methylation of a 1.2 kb region spanning the Hsp 70 

transcription start site is associated with transcriptional silencing of Hsp70 genes 

in several mouse cell lines in which Hsp70 expression is not activated by heat 

shock (Gorzowski et aI., 1995). This report suggests that the methylation status 

of Hsp70 promoter region can correlate with gene expression, with increased 

methylation associated with decreased gene expression and vice versa. 

However, this correlation between Hsp70 promoter region methylation status and 

gene expression is not seen in my animal model. This lack of methylation 

difference indicates that the underlying mechanism of Hsp70 induction is not due 

to decreased Hsp70 promoter region methylation. 

Hsf1 and Nrf2 are the major characterized players involved in Hsp 70 

transcription. During cellular stress, Hsf1 becomes activated and trans locates 

from the cytoplasm to the nucleus where it directly binds to the Hsp 70 promoter 

region and induces transcription (Kiang and Tsokos, 1998). On the other hand, 

Nrf2 is a transcription factor that transcriptionally activates expression of anti­

oxidant responsive genes. Nrf2 activation also is associated with nuclear 

translocation (Kobayashi and Yamamoto, 2005). Although Nrf2 does not directly 

target Hsp70, activation of Nrf2 is reported to be associated with Hsp70 induction 
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(Rinaldi Tosi et aI., 2011). Hsf1 is reported to be the mechanism underlying 

increased Hsp70 expression following acute arsenic treatment in vitro (Kato et 

aI., 1997; Khalil et aI., 2006). However, the mechanism underlying arsenic­

induced Hsp70 expression in vivo is not clearly understood, because the few 

reported in vivo studies did not determine the mechanism of increased Hsp70 

expression. One study (Wijeweera et aI., 2001) reports the involvement of AP-1 

transcription factor activation and DNA binding in the induction of stress proteins 

including Hsp70 in precision-cut rat lung slices exposed to arsenic. I also 

determined whether arsenic may be causing an upstream effect in inducing 

Hsp70 expression. The mechanisms underlying delayed increased Hsp70 

expression following prenatal arsenic exposure might be different from that of 

immediate gene induction following acute or chronic arsenic exposure. 

Immediate Hsp70 induction in response to stress is usually by traditional 

transcription factor activation which is a transient event. I thus propose that in 

addition to altered DNA methylation within the body of Hsp70, another potential 

mechanism of delayed Hsp70 induction in response to stress is the involvement 

of miRNA regulation. Prior microarray analyses of miRNA in 10 week old mice 

with or without prenatal arsenic exposure revealed that arsenic exposure 

decreased the expression of 15 miRNAs (States et aI., 2009). Four out of the 15 

decreased miRNAs (Table 3.2) have been predicted to have sites on Hsp70 

mRNA 3'-untranslated region (UTR) and coding sequence (CDS) regions as 

predicted by miRWalk and other programs (http://www.ma.uni­

heidelberg.de/apps/zmf/mirwalkl). MiRNAs are short RNA molecules, about 23 
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nucleotides long that are post-transcriptional regulators of gene expression. 

MiRNAs bind to complementary sequences on mRNAs, usually resulting in 

translational repression and gene silencing (Bartel, 2009). These data suggest 

that the decreased expression of miRNAs that target the Hsp70 mRNA results in 

increased Hsp70 mRNA stability, thus leading to increased protein levels in livers 

of arsenic-exposed mice. Future work will investigate regulation of the miRNAs. 

In summary, the present study demonstrated that prenatal exposure to arsenic in 

drinking water results in delayed temporal induction of inducible type Hsp70 in 

the liver. Prenatal arsenic exposure did not alter global DNA methylation during 

postnatal development. The underlying mechanism of Hsp70 induction is not by 

transcription factor activation, but likely involves altered DNA methylation within 

the body of the gene. Other potential mechanisms such as increased microRNA 

stability might also be involved. These findings indicate that prenatal arsenic 

exposure causes a low grade injury and suggest that there is a critical window 

during which the liver is most sensitized to increased susceptibility to other 

environmental insults, thus predisposing to liver disease and accelerated 

atherosclerosis. 
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CHAPTER IV 

DIFFERENTIAL HSP70, HSC70, GST -ALPHA AND TNF-A EXPRESSION IN 

HEPATOCYTES, KUPFFER CELLS, SINUSOIDAL ENDOTHELIAL CELLS 

AND STELLATE CELLS ISOLATED FROM APOE KNOCKOUT MICE 

EXPOSED TO ARSENIC PRENATAL 

Introduction 

Arsenic exposure alters expression of many genes in the liver which could 

contribute to the development of diseases. For example, the induction of 

hepatocellular cancer by prenatal arsenic exposure is associated with the altered 

expression of genes related to estrogen receptor alpha function, which could 

contribute to the development of cancer (Liu et aI., 2006). Furthermore, in the 

prenatal arsenic-induced atherosclerosis mouse model, arsenic exposure 

differentially regulates gene expression in the liver as determined by microarray 

analysis of mRNA and miRNA of newborns and 10 week old mice (States et aI., 

2009). Age was the major factor for differential gene expression, with pathways 

involving heat shock protein 70 (Hsp70), heat shock cognate 70 (Hsc70) and 

tumor necrosis factor (TNF) increased by arsenic exposure in livers of 10 week 

old mice, thus suggesting a state of stress and pro-inflammation. Western blot 

analysis showed increased Hsp70 but not Hsc70 or TNF-a expression in 10 
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week old arsenic exposed mice (see Chapter II and III). However, despite the 

many studies that report the effects of arsenic exposure on hepatic gene 

expression, it is not yet determined how arsenic affects the expression of these 

genes in the different cell types that make up the liver. That is, if the arsenic 

effect on a particular gene is the same in all liver cell types, or arsenic has a 

preferential effect on a particular cell type. 

The liver is a heterogeneous organ that is made up of different cell types which 

differ in functional characteristics. The major liver cell types are the parenchymal 

cells (PCs) (also known as hepatocytes, make up 70-80 % of the liver mass) and 

the non-parenchymal cells (NPCs) (which are resident in or along the normal 

liver sinusoid, and participate in the function of the liver). The NPCs include 3 

major cell types, the Kupffer cells, endothelial cells and stellate cells (Bouwens et 

aI., 1992). The Kupffer cells are specialized macrophages resident in the liver 

that form part of the reticuloendothelial system. Kupffer cells function in 

endocytosis, antigen processing, secretion of bioactive factors and cytotoxicity. 

The sinusoidal endothelial cells (SEC) are characterized by fenestrations (pores) 

which regulate transport and exchange of materials between the blood and 

hepatocytes. Stellate cells (SC) are vitamin A-storing cells and constitute 5-8 % 

of total liver cells. In normal liver, SC are in a quiescent state, but become 

activated during liver damage to produce extracellular matrix and collagen. In this 

study, the expression of selected genes in the different liver cell types was 

determined; i.e. which liver cell types are expressing these genes and how 

arsenic exposure alters gene expression. 
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Materials and Methods 

Materials 

Pronase E was purchased from Merck: EMD (Gibbstown, NJ), Collagenase and 

DNase were purchased from Roche Diagnostics (Indianapolis, IN), and 

Nycodenz was purchased from AXIS-SHIELD (Norton, MA) 

Animals and treatment 

ApoF'- C57BLl6J mice were housed in a pathogen-free barrier facility accredited 

by the Association for Assessment and Accreditation of Laboratory Animal Care, 

and procedures were approved by the local Institutional Animal Care and Use 

Committee. Pregnant mice were given tap water (for controls) or water containing 

85 mg/L NaAs02 (49 ppm arsenic) on gestation days (GD) 8 - GD18. Their male 

offspring were kept until 16-17 weeks old and maintained on a standard diet. 

Liver perfusion and cell type isolation 

Mice were anesthetized with ketamine/xylazine HCI solution (80/12 mg/kg i.m.). 

A cross incision was made in the abdomen of the mouse and 20G catheter was 

inserted into the inferior vena cava (IVC) and the vessel was cannulated. The 

chest cavity was opened to induce backflow of blood. The liver was perfused with 

EGTA-solution (137 mM NaCI, 5.4 mM KCI, 0.6 mM NaH2P04 , 0.8 mM Na2HP04 , 

10 mM HEPES, 4.2 mM NaHC03, 0.5 mM EGTA, and 4.5 mM glucose, pH 7.4) 

at a rate of 5 mLlmin. The portal vein was cut and cannulated immediately, and 
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the suprahepatic IVC was clamped using a vascular clamp. Liver perfusion with 

EGTA solution continued until the liver became pale in color. The liver was 

perfused with pronase E solution (40 mg/100 mL SC-2 solution (137 mM NaCI, 

5.4 mM KCI, 0.6 mM NaH2P04, 0.8 mM Na2HP04, 10 mM HEPES, 4.2 mM 

NaHC03 , 3.8 mM CaCI2.2H20, pH 7.4)) for 5 min. Perfusion with pronase E 

solution was followed by 7-8 min perfusion with collagenase D solution (50 

mg/120 mL SC-2 solution). A heat lamp was used throughout the perfusion 

process. The liver was carefully removed and placed in a 100 mm petri dish 

containing SC-2 solution on ice. The gall bladders were removed and each liver 

was separately minced well to separate cells. Cells were transferred into sterile 

Erlenmeyer flask and 25 mL warm (40°C) solution "D" (100 mL SC-2 + 55 mg 

collagenase + 50 mg pronase + 1 mL DNase I solution (2 mg/mL Grey's 

balanced salt solution B (GBSS/B)) was added per liver. Grey's balanced salt 

solution B (GBSS/B) consisted of 137 mM NaCI, 5 mM KCI, 1 mM MgCI2.6H20, 

0.3 mM MgS04.7H20, 0.4 mM Na2HP04, 0.2 mM KH2P04, 5.5 mM glucose, 2.7 

mM NaHC03, 1.5 mM CaCb.2H20, at pH 7.35. The cells were incubated at 37°C 

for 25 minutes with frequent shaking and the digested liver was filtered through a 

sterile nylon mesh sheet (120 IJm) / Cell strainer (BD Falcon, 70 IJm). Samples of 

50-100 uL were removed as total cell fraction and frozen. Cells were centrifuged 

at 50 x g for 5 min at 4°C to separate the parenchymal cells (PCs) from the non­

parenchymal cells (NPCs). The supernatant containing NPCs was removed and 

placed on ice, while the hepatocyte pellet was resuspended in GBSS/B solution 

and washed twice at 50 x g for 5 min at 4°C. Hepatocyte pellets were aliquoted 
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and stored frozen. Each NPC fraction was transferred to 50 mL Falcon tubes and 

centrifuged at 550 x g for 10 min at 4°C. The supernatant was discarded except 5 

mL. The pellet was resuspended and aliquots were taken as total NPCs fraction. 

Five mL GBSS/B containing 120 IJL DNAse I was added to each NPC 

suspension. Suspensions from 2-4 mice of the same exposure group were 

pooled in one 50 mL tube. GBSS/B was added up to 50 mL and NPCs were 

centrifuged at 550 x g for 10 min at 4°C. The supernatant was discarded except 5 

mL. An additional 5 mL of GBSS/B containing 120 uL of DNase I was added and 

pellets were resuspended. GBSS/B was added up to 30 mL. NPCs were 

subsequently separated by nycodenz gradient centrifugation. Two Nycodenz 

gradients were poured in 5 mL tubes. Thirty % Nycodenz stock was made by 

adding 11 g Nycodenz in 33 mL of GBSS/A (5 mM KCI, 1 mM MgCI2.6H20, 0.3 

mM MgS04.7H20, 0.4 mM Na2HP04 , 0.2 mM KH2P04 , 5.5 mM glucose, 2.7 mM 

NaHC03, 225 mg/L CaCI2.2H20, pH 7.35) and the solution was filtered through 

0.22 IJm filter. Nycodenz 17.5 % was made by mixing 13.5 mL 30 % nycodenz + 

10 mL GBSS/B, while 10.8 - 11 % Nycodenz was made by mixing 30 mL cell 

pellets with 13.5 mL of 30 % Nycodenz. To pour the Nycodenz gradients, the 

cells (20-22 mL) were layered first, followed by 11-12 mL of 17.5 % Nycodenz 

from the bottom. Lastly, 2.5-3 mL of GBSS/B was carefully added on top of the 

cell layers. The tubes were centrifuged at 1450 x g, for 20 min at 20°C with the 

break set off (i.e deceleration set to 1 and acceleration to about 5). Stellate cells 

(=3-5 mL I 15 mL tube) were collected from the white layer under the clear layer 

of GBSS/B solution using a 5 mL pipette and transferred to new 50 mL tube. The 
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layer (interface) beneath the white layer containing Kupffer cells (KC) and 

sinusoidal endothelial cells (SEC) was collected (20-25 mL) and transferred to 

new 50 mL tubes. The pellet at the bottom contained red blood cells. G8SS/8 

was added up to 50 mL overall volume to stellate cells (pooled cells from the two 

15 mL tubes) and centrifuged at 550 x g for 10 min at 4°C. Cells were 

resuspended in 1 mL G8SS/8, transferred into 1 mL tubes and centrifuged again 

to collect pellets. To the fraction containing KC and SEC, G8SS/8 was added to 

50 mL mark to dilute the Nycodenz. Tubes were centrifuged at 900 x g for 10 min 

at 4°C, and supernatant was removed. Cell pellets were resuspended in 2 mL of 

RPMI 1640 and plated in 35 mm petri dish to separate the KCs from SECs. 

Plates were incubated for 20 min at 3rC, 95-100 % humidity and 5 % C02 for 

Kupffer cells to adhere to plastic. After incubation, supernatant containing SEC 

was removed and pooled in a 15 mL tube. Adhered Kupffer cells were washed 

with G8SS/8 once and cells were collected in 1 mL tube and centrifuged to 

obtain pellets. SECs were centrifuged at 900 x g for 10 min at 4°C. Supernatant 

was removed and SEC pellet resuspended in 1 mL G8SS/8 and centrifuged to 

obtain pellets. Quality control was performed for hepatocytes by light microscopy, 

and stellate cells by fluorescent microscopy. All cells were stored frozen at -80°C 

for further studies 

Isolation of total proteins from isolated liver cell types 

Isolated liver cell fractions (total cell fractions, total NPCs, hepatocytes, KCs, 

SECs and SCs) were sonicated in SDS lysis buffer (10 mM Tris-HCL pH7.4, 1 
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mM EDTA, 0.1 % SDS, 1 mM PMSF, 1 IJg/ml aprotinin, 1 IJg/ml leupeptin, and 

1 IJg/ml pepstatin and phosphatase inhibitor). Cell Iysates were centrifuged at 

14,000 x 9 for 30 min at 4 DC. The supernatant was transferred into a new tube 

and protein concentrations were determined with the Bio-Rad Bradford protein 

assay (Bio-Rad, Hercules, CA) 

Western blot analysis 

Proteins (20 IJg) were separated by SDS-PAGE. Proteins were transferred to a 

nitrocellulose membrane, and blocked with 5 % non-fat dry milk to prevent non­

specific antibody binding. Membranes were incubated with primary antibodies 

including mouse monoclonal Hsp70 and rat monoclonal Hsc70 antibodies 

(1:1000, overnight at 4 DC; Enzo Life Sciences International, Inc., Plymouth 

Meeting, PA); rabbit GST-a (1 :5000, 1 h at RT; a gift from Dr. Russel Prough at 

the University of louisville); and rabbit polyclonal TNF-a antibody (1 :1000 

overnight at 4 DC; Cell Signaling Technology Inc., Danvers, MA).; and rabbit 

polyclonal TNF-a (1:1000 overnight at 4 DC; Cell Signaling Technology Inc., 

Danvers, MA). Membranes were incubated with corresponding mouse, rabbit, 

and rat secondary antibodies bound to HRP. The membranes were analyzed by 

ECl plus substrate (GE Healthcare Bio-Sciences Corp., Piscataway, NJ). 

Signals on ECl plus membranes were visualized directly on a Storm 

Phosphoimager in blue flourescence mode (Molecular Dynamics, Sunnyvale, 

CA). Protein bands were quantitated using the Image Quant software. 
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Statistical analysis 

Data are expressed as mean ± SEM. Comparisons between groups were 

performed using student's t-test. 
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Results 

Effects of prenatal arsenic exposure on heat shock protein expression in 

isolated liver cell types 

I have previously shown (in chapter III) that prenatal arsenic exposure causes a 

delayed temporal increase in hepatic inducible Hsp70 expression during the 

course of postnatal development of ApoE-1
- mice. The increased expression was 

observed at 3 and 10 weeks of age, but returned to normal control levels at 24 

weeks. Conversely, the expression of constitutive Hsc70 was not altered by 

arsenic exposure during the course of postnatal development. However, it is 

unknown which liver cell types express these heat shock proteins. Therefore, in 

this study, I determined the expression of Hsp70 and Hsc70 in liver cell types 

(PCs (hepatocytes) and NPCs (KC, SEC, and SC) isolated from 16 -17 week old 

ApoF/- mice following prenatal arsenic exposure. The results discussed here are 

those obtained from hepatocyte fractions and separated individual NPCs. I could 

not obtain data for the total cell fractions and total NPCs because these samples 

were fast degrading, and thus unreliable. The results (Fig. 4.1) show that 

whereas the inducible Hsp70 is cell type-specific and expressed only in the 

parenchymal cells, the constitutive Hsc70 is expressed in both parenchymal and 

non-parenchymal cells. However, prenatal arsenic exposure did not alter the 

expression of Hsp70 at 16-17 weeks of age. Conversely, the expression of 

Hsc70 was significantly decreased in arsenic-exposed PCs (p<O.01) at 16-17 

64 



A Parenchymal cells 

Hsp70 

Ponceau 

Ponceau 

Unexposed 

B 

c: 
.2 1 
/I) 
/I) 
Q) .... 
Q. 
>< 
Q) 

o ,.... 
Q. 
/I) 

:x: 

o 

Arsenic 

PC 

• • • !I' ~'~ • 
Ponceau j , 

~ .;.JO.~ ~~, ...... ,)~, 

KC ~ 
UnUnAsAs Un UnAs As 

Hsc70 fA 

Arsenic 

Ponceau 

c: o 
/I) 
/I) 

~ 
Q. 

~ 1 
o ,.... 
() 
/I) 

:x: 

o 

-~-

Unexp. • Arsenl 

* 

PC KC SEC 

Figure 4.1. Effects of prenatal arsenic exposure on heat shock proteins in 

isolated liver cell types. Isolated liver cell types from perfused livers of 16-17 

week old mice following prenatal arsenic exposure were lysed in SDS lysis buffer 

for total protein isolation. Western blot analysis was performed to probe for 

Hsp70 and Hsc70. Data are mean ± SEM, n=6-9. *=p<O.01 Error bars represent 

SEM of samples analyzed from the same exposure group. Note that perfused 

livers from 2-4 mice were pooled to obtain each sample of Kupffer cells (KC) , 

sinusoidal endothelial cells (SEC) and stellate cells (SC). Panel A: 

Representative western blot images. Panel B: Densitometric quantitation of 

Hsp70 and Hsc70. 
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weeks of age. Hsc70 expression was also decreased in NPCs although not 

statistically significant. 

Effects of prenatal arsenic exposure on antioxidant responsive genes in 

isolated liver cell types 

I also determined the effect of prenatal arsenic exposure on glutathione-s­

transferase (GST) alpha expression which is an antioxidant responsive gene. 

The results (Fig. 4.2) show that GST-alpha expression is also cell type-specific, 

with expression occurring only in parenchymal cells and not in non-parenchymal 

cells. However, prenatal arsenic exposure did not alter the expression of GST­

alpha at 16-17 weeks of age. 

Effects of prenatal arsenic exposure on inflammatory cytokines in isolated 

liver cell types 

TNF-alpha is a pro-inflammatory cytokine. Therefore, effect of prenatal arsenic 

exposure on TNF-alpha was determined. My first observation was that TNF­

alpha is expressed only in NPCs and not in PCs (Fig. 4.3). In addition, TNF-alpha 

expression was higher in Kupffer cells than in the sinusoidal endothelial cells, 

and much lower in stellate cells. Secondly, prenatal arsenic exposure did not 

alter the expression of TNF-alpha in any of the cell types at 16-17 weeks of age. 
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Figure 4.2. Effects of prenatal arsenic exposure on oxidative stress 

response in isolated liver cell types. Isolated liver cell types from perfused 

livers of 16-17 week old mice following prenatal arsenic exposure were lysed in 

SDS lysis buffer for total protein isolation . Western blot analysis was performed 

to probe for GST-alpha. Data are mean ± SEM, n=6-9. Error bars represent SEM 

of samples analyzed from the same exposure group. Note that perfused livers 

from 2-4 mice were pooled to obtain each sample of Kupffer cells (KC), 

sinusoidal endothelial cells (SEC) and stellate cells (SC) . Panel A: 

Representative western blot images. Panel B: Densitometric quantitation of GST-

alpha. 
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Figure 4.3. Effects of prenatal arsenic exposure on inflammation in isolated 

liver cell types. Isolated liver cell types from perfused livers of 16-17 week old 

mice following prenatal arsenic exposure were lysed in SDS lysis buffer for total 

protein isolation . Western blot analysis was performed to probe for TNF-alpha. 

Data are mean ± SEM, n=6-9. Error bars represent SEM of samples analyzed 

from the same exposure group. Note that perfused livers from 2-4 mice were 

pooled to obtain each sample of Kupffer cells (KC), sinusoidal endothelial cells 

(SEC) and stellate cells SC). Panel A: Representative western blot images. 

Panel B: Densitometric quantitation of TNF-alpha. 
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Discussion 

The liver is a heterogeneous organ consisting of different cell types, including PC 

(hepatocytes) and NPC. The major sub-cell types of NPC include KC, SEC and 

SC. The liver's primary role in detoxification takes place within the PCs, whereas 

the NPCs provide physical and biochemical structure to the liver. Although there 

are several reports of altered gene expression in the liver in response to toxic 

agents including arsenic, there is little knowledge about which liver cell types are 

expressing these genes. In addition, it is unknown how the different liver cell 

types are affected during toxicity. The effects of prenatal arsenic exposure on the 

hepatic expression of Hsp70 and Hsc70 during the course of postnatal 

development (G018, and 3 week, 10 and 24 week of age) in ApoE-1
- mice were 

shown in Chapter III. It was shown that prenatal arsenic exposure did not alter 

Hsp70 expression at G018 (when arsenic exposure is removed), but induced 

Hsp70 expression at 3 and 10 weeks of age. However, at 24 weeks of age, 

Hsp70 expression returned to control levels. Conversely, the expression of 

Hsc70 was not altered at any of the ages studied. Thus, in this study, I 

determined the expression of these heat shock proteins in liver cell types isolated 

from perfused livers of mice exposed to arsenic prenatal. My results show that 

Hsp70 is expressed only in the hepatocytes and was not altered by arsenic 

exposure at age 16 weeks. Conversely, Hsc70 is expressed in all liver cell types, 

and expression was decreased in hepatocytes by arsenic exposure at age 16 

weeks. These data are different from my previous observations of the expression 

of the proteins at different life stages. 
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The reason for these differences can be attributed to the difference in the ages 

studied. These new data indicate that the 16 weeks age fell in the descending 

part of the Hsp70 expression curve. Furthermore, the difference in Hsc70 data 

also shows that time or age is an important factor when studying toxicity. It is 

possible that the reduced expression of Hsc70 resulted secondarily from the 

hepatic injury caused by prenatal arsenic exposure. A similar observation was 

reported in an experimental endotoxic shock model where hepatic Hsc70 

expression was decreased when D-galactosamine-sensitized mice were exposed 

to lipopolysaccharide (Morikawa et aI., 1998). The expression of Hsc70 observed 

in all liver cell types is not surprising since Hsc70 is a molecular chaperone that 

is constitutively expressed in cells. Under physiological conditions, Hsc70 

functions in regulating protein folding, protein translocation across membranes 

and degradation of aged proteins (Kiang and Tsokos, 1998). Thus, Hsc70 

expression occurs in all liver cell types since all cells make proteins. Conversely, 

Hsp70 is a stress-response protein whose expression is induced when cells are 

stressed (e.g. by heat shock, toxic metals and oxidative stress). Expression of 

Hsp70 in only hepatocytes suggests that these are the cells that respond to 

stress when the liver is exposed to toxic agents. 

Arsenic exposure is also known to result in oxidative stress, leading to the 

upregulation of antioxidant responsive genes. GSTs are antioxidant responsive 

proteins which function in the detoxification of endogenous compounds and 

xenobiotics. GSTs conjugate these compounds to reduced glutathione and 

facilitate their excretion from the body. The current study shows that GST-alpha 

70 



is expressed only in the hepatocytes and not in NPCs. Furthermore, prenatal 

arsenic exposure did not alter the expression of GST-alpha at 16-17 weeks of 

age, which is different from increased GST-alpha activity in livers of mice 

chronically exposed to arsenic (Santra et aL, 2000). This difference can be 

attributed to the fact that I looked at GST -alpha protein levels long after the 

exposure rather than measured activity following a chronic exposure. The 

hepatocyte-specific expression of GST -alpha is consistent with the fact that the 

hepatocytes perform the detoxification of xenobiotics in the liver. 

Chronic arsenic exposure is reported to increase hepatic TNF-alpha and IL-6 

expression associated with liver damage (Oas et aL, 2005; Wu et aL, 2008). Prior 

work showed that prenatal arsenic exposure increased tumor necrosis factor 

pathway as determined by microarray analysis of miRNA and mRNA of livers of 

10 week old mice (States et aL, 2009), thus suggesting a state of pro­

inflammation. Confirmation of the microarray data by western blot analysis (see 

Chapter II) showed that hepatic TNF-alpha expression was not altered by 

prenatal arsenic exposure at 10 weeks of age. Thus, it was determined whether 

the expression of TNF-alpha is differentially affected in the liver cell types 

isolated from perfused livers of 16-17 week old mice with prenatal arsenic 

exposure. The data show that TNF-alpha is expressed only in the NPCs, with 

Kupffer cells showing the highest expression, and stellate cells the lowest. 

Furthermore, prenatal arsenic exposure did not significantly increase the 

expression of TNF-alpha at 16-17 weeks of age which is consistent with the data 

obtained in Chapter II. Therefore, these data suggest that the livers of prenatally 
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arsenic-exposed mice are not in a state of pro-inflammation at 10 or 16-17 

weeks. Kupffer cells are the principal cells that mediate inflammatory responses 

in the liver, and have been reported to contribute to injury. These data explain the 

lack of LPS response observed in Chapter II. Activated Kupffer cells release 

several mediators including TNF-alpha which can act directly on hepatocytes to 

cause cell death, or indirectly through activation of other cells (Roberts et aI., 

2007). Sinusoidal endothelial cells and stellate cells are also reported to secrete 

cytokines (Bouwens et aI., 1992). 

In summary, this study has shown that Hsp70 is expressed only in the 

hepatocytes and its expression is not altered by prenatal arsenic exposure at 16-

17 weeks of age. On the other hand, Hsc70 is expressed in all liver cell types, 

and its expression is decreased by prenatal arsenic exposure in the hepatocytes 

of 16-17 week old mice. GST-alpha is expressed only in the hepatocytes, and its 

expression is not affected by prenatal arsenic exposure. Lastly, TNF-alpha is 

expressed only in the non-parenchymal cells, and prenatal arsenic exposure did 

not affect its expression at 16-17 weeks of age. Collectively, based on my 

experimental data and other reported studies, it is now clear that the deleterious 

effects of arsenic exposure depends on many factors, including exposure levels, 

exposure types, and time point or age studied. Therefore, it is important to 

consider critically all the above-mentioned factors when studying arsenic toxicity 

in animal models. 
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CHAPTER V 

PRENATAL ARSENIC EXPOSURE AT LOW EXPOSURE LEVELS 

INCREASES ATHEROSCLEROTIC LESION FORMATION AND PLASMA 

INFLAMMATORY CYTOKINES/CHEMOKINES RELATED TO 

CARDIOVASCULAR DISEASE 

Introduction 

Prior studies demonstrated that prenatal arsenic exposure in drinking water at an 

exposure level of 49 ppm arsenic accelerated atherosclerosis in ApoE-1
- mice, 

even without high fat diet which is usually requisite for early atherosclerosis in 

this strain (Srivastava et aI., 2007). The 49 ppm arsenic exposure reflects 

exposures in populations with high arsenic levels. It still remains unclear if 

prenatal arsenic exposure can induce atherosclerosis in populations with low 

arsenic levels. For postnatal exposures, exposures as low as 1 ppm arsenic 

(Srivastava et aI., 2009) and 250 ppm arsenic (Lemaire et aI., 2011) have been 

reported to increase atherosclerosis. It is thus necessary to determine if there is 

a threshold dose for the induction of atherosclerosis by prenatal arsenic 

exposure. Gestation is a period of sensitivity to initiation of adult atherosclerosis. 

However, it is likely that humans would have full life exposure. Our transplacental 

protocol of exposing pregnant ApoF/- dams to inorganic arsenic (49 ppm arsenic) 
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in drinking water from gestation days 8 to 18 does not duplicate typical human 

exposure. The predictive adaptive response was a term coined by Gluckman and 

Hanson (Gluckman and Hanson, 2004) for the phenomenon in which a fetus 

responds to changes in its intrauterine environment by making adaptations to 

improve its immediate chances of survival. These adaptations are often 

reversible, but can be irreversible if the environmental changes persist. In this 

way, the fetus prepares itself for life in an extrauterine environment, e.g. low food 

availability or high levels of stress (de Boo and Harding, 2006). If the predicted 

environment is different from the actual environment into which the fetus is born, 

it may result in disease. Thus, based on the predictive adaptive response 

phenomenon, it is unknown whether exposure to arsenic prenatally will protect or 

enhance atherosclerosis promoted by arsenic exposure. 

Despite the clear epidemiologic links between arsenic and an increased risk of 

atherosclerosis, the mechanisms by which arsenic enhances atherosclerosis are 

unclear. Atherosclerosis is a multi-factorial and complex disease process. 

Accumulating evidence from many studies indicates inflammation plays a central 

role in atherosclerotic plaque formation (see Chapter I). 

Thus, in this study, the effect of lower exposure levels of arsenic on 

atherosclerosis was examined. In addition, the effects of "whole-life" arsenic 

exposures in the development of atherosclerosis was investigated by determining 

whether prenatal exposure protects against or enhances later life exposures. 

Lastly, the pro-atherogenic effects of arsenic on inflammation and circulating 

Hsp70 were also determined. 
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Materials and Methods 

Animal housing and treatment protocols 

ApoF'- mice were housed and bred under pathogen-free conditions in controlled 

temperature and 12 h lightl12 h dark cycle following the guidelines of the 

Association for the Accreditation of Laboratory Animal Care. Prior to treatment, 

all mice were maintained on standard chow diet and tap water as previously 

described (Chapter II). Studies were performed under protocols approved by the 

University of Louisville Institutional Animal Care and Use Committee. 

In one group, pregnant mice were maintained on tap water (controls) or tap water 

containing 8.5 mg/L (4.9 ppm arsenic) or 1.7 mg/L (1 ppm arsenic) NaAs02 ad 

libitum from gestation days (GO) 8-18 (prenatal only exposure), and the offspring 

were sacrificed at 10 or 16 weeks. In another group, the arsenic exposure 

continued throughout gestation (from G08), birth and postnatally until offspring 

were sacrificed at 10 or 16 weeks ("whole-life" exposure). Summary of treatment 

protocols is as follows. 

Protocol A: n = 7; Control, 0 ppm arsenic, 10 or 16 weeks 

Protocol B: n = 7-9; 4.9 ppm arsenic prenatal only, 10 or 16 weeks 

Protocol C: n =11-13; 4.9 ppm arsenic "whole life", 10 or 16 weeks 

Protocol 0: n = 7; 1 ppm arsenic prenatal only, 16 or 24 weeks 

Protocol E: n = 10; 1 ppm arsenic "whole life" 16 weeks 
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Throughout the course of study all mice were maintained on standard chow (not 

high in fat), and anesthetized with pentobarbital (150 mg/Kg) at the end of 

treatment protocol. Blood and tissues were removed for analysis. 

Atherosclerotic lesion analysis 

For morphometric analysis, the entire aorta from the heart extending to 5 mm 

after bifurcation of the iliac arteries and including the subclavian right and left 

common carotid arteries was removed for lesion analysis en face. The aorta was 

cleaned of peri-adventitial tissue under a dissecting microscope. The aorta was 

dissected longitudinally to expose the intimal surface. The aortic arch was 

stained with Sudan IV for the presence of lipids. The aortic arch was defined as 

the region from ascending arch to 3 mm distal to subclavian artery (Srivastava et 

aI., 2007). Percent lesion area was calculated using Image J software (National 

Institute of Health, USA). 

For the analysis of aortic valves, the upper section of the heart tissue was frozen 

in Tissue Tek OCT (Sakura, CA, USA) reagent and serial cryosections of 8 IJm 

thickness were taken from the origin of the aortic valve leaflets throughout the 

aortic sinus. A total of 37 serial sections from the aortic sinus from each mouse 

were collected. Sections were stained with oil red 0 and counterstained with 

hematoxylin. Mean lesion area was calculated from the analysis of digital images 

obtained from 10 serial sections from each mouse using Metamorph imaging 

software. 
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Plasma lipids and cytokinelchemokine analysis 

Blood was withdrawn by cardiac puncture. Disodium EDTA (3 mM) and sodium 

citrate were used as anti-coagulants. The blood was centrifuged at 2000 xg for 

20 min at room temperature to obtain plasma. Plasma cholesterol, phospholipids 

and triglycerides were measured using commercial kits from Wako Chemicals 

USA (Richmond, VA). For cytokine measurements, plasma was centrifuged at 

13,000 xgfor 5 min to clear plasma. Plasma cytokine levels (IL-1 ~, IL-6, IL-10, 

MCP-1, KC, VEGF, and where indicated IFNy, TNF-a, MIP1-a and GM-CSF) 

were measured using an immunoassay multiplex bead based kit (Millipore 

Corporation, Billerica, MA) on a Luminex 200 ™ IS (Luminex Corporation, Austin 

TX). 

Exosome isolation 

Circulating exosomes were isolated from plasma as described (Li et aI., 2009) 

with some slight modifications. Eight hundred IJL of RPMI-1640 medium was 

added to 200 IJL of plasma, and the sample was centrifuge at 2,000 xgfor 10 

min at 4°C. Supernatant was transferred to 15 mL tubes, avoiding pellet at the 

bottom or fat at the top if present. Supernatant was diluted to 10 mL with cold 

PBS, centrifuged at 10,000 xg for 20 min at 4°C to remove large debris. Samples 

were transferred to ultracentrifuge tubes and centrifuged at 100,000 xg for 2 h 

using Beckman Ti type 70.1 rotor to pellet exosomes. Exosomes were 

resuspended in 50 IJL phosphate buffered saline (PBS) and protein concentration 

was determined using Bradford assay (Bio-Rad Corp., Hercules, CA). 
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Western blot analysis 

Proteins (10 - 15 I-Ig) were separated by SDS-PAGE. Proteins were transferred 

to nitrocellulose membrane and blots were probed with rabbit monoclonal Hsp70 

antibody (1 :1000) overnight at 4°C (Epitomics Inc., Burlingame, CA), and with 

corresponding rabbit secondary antibody linked to HRP. The bound antibodies 

were visualized using ECl plus substrate (GE Healthcare Bio-Sciences Corp., 

Piscataway, NJ), and visualized directly on a Storm Phosphoimager in blue 

flourescence mode (Molecular Dynamics, Sunnyvale, CA). Protein bands were 

quantitated using the Image Quant software. 

Statistical analysis 

Data are expressed as mean ± SEM. Comparisons among groups were 

performed using one way ANOVA and student's t-test. However, Wilcoxon 

ranked sum test was used when the distribution was not normal. 
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Results 

Average daily arsenic water consumption and effects of arsenic exposure 

on body weight 

During the "whole-life" arsenic exposure studies, the daily arsenic drinking water 

consumption was measured during a period of one week (mice ranged from 7-10 

weeks old), in order to determine the average arsenic intake by mice. The results 

(Table 5.1) show that mice exposed to 4.9 ppm arsenic in drinking water 

consumed 30 ng As/day/mouse compared to 5.7 ng As/day/mouse consumed by 

mice exposed to 1 ppm arsenic. However, breeder mouse with 12 day old pups 

consumed up to 87 ng As/day/mouse at 4.9 ppm arsenic exposure. 

For the most part, except for the 4.9 ppm arsenic exposure prenatal, arsenic 

exposure did not alter the body weights of mice at the end of the study (Table 

5.2). However, prenatal arsenic exposure at 4.9 ppm arsenic significantly 

decreased the body weight of 10 week old mice compared to the unexposed 

age-matched controls. 

Prenatal arsenic exposure at lower exposures results in increased 

atherosclerotic lesion formation 

Prenatal arsenic exposure at 49 ppm arsenic exposure accelerates 

atherosclerosis in ApoF'- mice (Srivastava et aI., 2007). However, the dose­

response effect of prenatal arsenic exposure on the development of 
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Table 5.1. Average daily arsenic water consumption 

Arsenic dose Average daily arsenic Average daily arsenic 

water consumption for water consumption for 

post-weaning mouse (7- nursing mouse 

10 weeks old) 

4.9 ppm As 6.3 mL water/day/mouse 17.7 mL water/day/mouse 

1 ppm As 5.7 mL water/day/mouse NO 

ApoE-1
- mice were maintained on tap water (control) or exposed to drinking water 

containing sodium arsenite (4.9 or 1 ppm arsenic) prenatal or "whole-life" for the 

indicated period of time. NO is data not measured. 
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Table 5.2. Effects of arsenic exposure on body weight 

Arsenic Age (week) Unexposed Prenatal only "Whole-life" 

dose expo expo 

4.9 ppm As 10 28 ± 1 9 24 ± 1 9 * 26 ± 1 9 

16 28 ± 1 9 ND 28 ± 1 9 

1 ppm As 16 28 ± 1 9 27 ± 1 9 27 ± 0.4 9 

24 30 ± 19 28 ± 1 9 N/A 

ApoE-1
- mice were maintained on tap water (control) or exposed to drinking water 

containing sodium arsenite (4.9 or 1 ppm arsenic) prenatal or "whole-life" for the 

indicated period of time. ND is data not measured. N/A is no mice at this age in 

exposure group. Values are expressed as mean ± SEM. *p<0.05 compared to 

control 
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atherosclerosis is unknown. Thus, in this study, the effects of lower arsenic 

prenatal exposures on atherosclerosis were determined. The data (Fig. 5.1) 

show that atherosclerotic lesion formation in aortic arches appeared increased 

2.9-fold at age 10 weeks (p<0.12) and 1.9-fold at age 16 weeks (p<0.27) in mice 

exposed to 4.9 ppm arsenic. With lower exposure of 1 ppm arsenic, lesion area 

was significantly increased 2.3-fold (p<0.05) at 16 weeks. Lesions were primarily 

localized in the area of low shear stress. Interestingly, 1 ppm arsenic prenatal 

exposure apparently induced more lesion formation than 4.9 ppm arsenic. 

However, analysis of aortic tree and arch of 24 week old mice showed no 

difference in lesion formation with 1 ppm arsenic exposure. 

"Whole-life" arsenic exposure increases atherosclerotic lesion formation 

Next, I examined how prenatal arsenic exposure may interact with later life 

exposure in inducing atherosclerosis. For these experiments, arsenic exposure 

continued throughout gestation (from GD8) and birth, and continued postnatally 

until offspring were sacrificed (Protocols C and E). Lesion formation in these 

mice was compared with unexposed mice (Protocol A), or mice exposed to 

arsenic prenatally only (Protocol B and D). Data are shown in Fig. 5.2. Compared 

to unexposed mice, "whole-life" exposure to 4.9 ppm arsenic did not affect lesion 

formation at 10 weeks, but increased lesion formation 2.3-fold (p<0.01) in aortic 

arches of 16 week old mice. However, compared to mice exposed to 4.9 ppm 

arsenic prenatally, "whole-life" arsenic exposure did not enhance lesion formation 

at 10 or 16 weeks, but rather appeared to decrease prenatal arsenic-induced 
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Figure 5.1. Effects of low dose prenatal arsenic exposure on 

atherosclerotic lesion formation. Pregnant ApoE -/- mice were maintained on 

tap water (Protocol A) or water containing arsenic at a dose of 4.9 ppm As 

(Protocol 8) or 1 ppm As (Protocol D) from GD8-GD18. Offspring were sacrificed 

at 10, 16 or 24 week of age and lesion formation was examined in the aortic arch 

or aortic tree where indicated . Data are mean ± SEM. *=p<0.05 compared to 

unexposed mice 
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lesion formation at 10 weeks. Similarly to prenatal arsenic exposure, "whole-life" 

arsenic exposure at 1 ppm arsenic increased lesion formation 2.6-fold in the 

aortic arches (p<0.02) compared to unexposed 16 week old mice. However, 

"whole-life" arsenic exposure did not enhance prenatal arsenic-induced 

atherosclerosis. It should be noted that similarly to prenatal arsenic exposures, 1 

ppm arsenic "whole-life" exposure appeared to induce more lesion formation than 

the higher 4.9 ppm arsenic exposure. 

Effects of arsenic exposure on plasma lipids 

Next, I examined whether lower arsenic exposure affects plasma lipids. 

Compared to unexposed mice, mice exposed to 4.9 ppm arsenic prenatally only 

had lower plasma triglycerides (27 % decrease, p<0.05) at 10 weeks, but had 

higher plasma cholesterol (26 % increase, p< 0.05) at 16 week (Fig. 5.3 A). On 

the other hand, mice with 4.9 ppm arsenic "whole-life" exposure had 27 % lower 

plasma cholesterol (p<0.001) compared to unexposed mice, and 31 % lower 

plasma cholesterol (p<0.001) compared to prenatal arsenic-exposed mice at 10 

weeks. Similarly, compared to prenatal arsenic-exposed 16 week old mice, mice 

with 4.9 ppm arsenic "whole-life" exposure had 25 % lower plasma cholesterol 

(p<0.008). At 16 weeks of age, mice with lower arsenic exposure of 1 ppm 

arsenic prenatal only had 42 % lower plasma triglycerides (p<0.05) compared to 

unexposed mice (Fig. 5.3 B), while mice with 1 ppm arsenic "whole-life" exposure 

had 38 % higher plasma cholesterol compared to prenatal exposure (p<0.0002). 
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Figure 5.2. Effects of "whole-life" arsenic exposure on atherosclerotic 

lesion formation. Pregnant ApoE -/- mice were maintained on tap water 

(Protocol A) or water containing arsenic at a dose of 4.9 ppm As (Protocol C) or 1 

ppm As (Protocol E) continuously from GOB to birth , and pups were exposed 

postnatally until day of sacrifice at 10 or 16 weeks of age. Lesion formation was 

examined in the aortic arch. Data are mean ± SEM. *=p<O.05 compared to 

unexposed mice. 
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Figure 5.3. Effects of arsenic exposure on plasma lipids. ApoE -/- mice were 

exposed to arsenic prenatal or "whole-life" at a dose of 4.9 ppm As or 1 ppm 

arsenic as described in Methods. Mice were sacrificed at 10, 16 or 24 weeks of 

age, and plasmas were analyzed for lipid concentrations. Data are mean ± SEM. 

*p=<0.05 compared to unexposed mice, and #p<0.05 compared to prenatal 

arsenic-exposed mice. 
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Effects of arsenic exposure on plasma cytokine/chemokine expression 

Pro-inflammatory cytokines and chemokines playa role in atherogenesis. 

Therefore, I determined the effect of arsenic exposure on the expression of 

plasma cytokines and chemokines. Mice with prenatal arsenic exposure at high 

exposure of 49 ppm arsenic showed increased plasma expression of KG 

(p<0.02) and VEGF (p<0.02) at 3 week; and IL-6 (p<0.05) and KG (p<0.05) at 10 

weeks compared to unexposed controls (Fig. 5.4 A). However, mice with lower 

exposures of 4.9 and 1 ppm arsenic prenatal only did not show altered 

expression of any of the plasma cytokines/chemokines measured (Fig. 5.4 8). 

On the other hand, mice with 4.9 ppm arsenic "whole-life" exposure had 

increased plasma IL-1~ p<0.05), KG (p<0.04) and MGP-1 (p<0.03) at 10 weeks 

while only IL-6 (p<0.04) was increased at 16 weeks compared to unexposed 

mice (Fig. 5.5 A). Mice exposed "whole-life" to much lower arsenic exposure of 

1 ppm arsenic did not show altered expression of plasma cytokines/chemokines 

at age 16 weeks (Fig. 5.58). 
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Figure 5.4. Effects of prenatal arsenic exposure on plasma 

cytokine/chemokine expression. Plasmas from mice exposed to 49, 4.9 or 1 

ppm arsenic prenatal were analyzed for cytokine/chemokine expression using an 

immunoassay multiplex bead based kit (Millipore Corporation, Billerica, MA) on a 

Luminex 200TM IS (Luminex Corporation , Austin TX) . Data are mean ± SEM. 

*=p<O.05 compared to unexposed mice 
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Figure 5.5. Effects of "whole-life" arsenic exposure on plasma 

cytokine/chemokine expression. Plasmas from mice with "whole-life" arsenic 

exposure at 4.9 or 1 ppm arsenic exposure were analyzed for 

cytokine/chemokine levels using an immunoassay multiplex bead based kit 

(Millipore Corporation, Billerica, MA) on a Luminex 200 ™ IS (Luminex 

Corporation, Austin TX) . Data are mean ± SEM. *p<0.05 compared to unexposed 

mice 

89 



Discussion 

Accumulating evidence from epidemiological studies shows that arsenic 

exposure causes CVD and mortality (States et aI., 2009b). These 

epidemiological studies have been confirmed in animal models, with both 

prenatal (Srivastava et aI., 2007) and postnatal (Lemaire et aI., 2011; Srivastava 

et aI., 2009) arsenic exposures reported to increase atherosclerosis which 

underlies most CVD. In addition, CVD showed arsenic dose-response in 

humans (Chen et aI., 1996; Chen et aI., 2011). Similarly, in animal models, 

postnatal arsenic exposure at 49,4.9 and 1 ppm arsenic exposure produced a 

dose-dependent increase in atherosclerotic lesion formation in ApoF'- mice, with 

disease incidence increasing with higher arsenic exposures (Srivastava et aI., 

2009). However, a more recent study showed an inverse dose-response effect of 

arsenic-induced atherosclerosis. In this study (Lemaire et aI., 2011, mice 

postnatally exposed to much lower arsenic exposure (0.2 ppm arsenic) had more 

atherosclerotic lesion formation than mice with moderate exposures (1 ppm 

arsenic). 

Whereas there is significant knowledge on the dose-response effect of postnatal 

arsenic exposures on the induction of atherosclerosis, little is known how lower 

doses of prenatal arsenic exposure may modulate atherogenesis. Thus, in this 

study, the effects of lower arsenic prenatal exposures on atherosclerosis were 

determined. This study for the first time has shown that prenatal arsenic 

exposure appears to induce more atherosclerosis at lower exposures than at 

higher exposures. The increase in lesion formation in the aortic arch appeared 
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greater in mice with 1 ppm arsenic prenatal exposure than those with 4.9 ppm 

arsenic exposure. These data are consistent with the postnatal arsenic study 

reported by (Lemaire et aI., 2011), but are different with the (Srivastava et aI., 

2009) study. This difference may be attributed to the difference in life stage 

exposures, prenatal versus postnatal exposures. 

Whereas circulating cholesterol and triglycerides are risk factors for developing 

atherosclerosis, ischemic heart disease in humans associated with arsenic 

exposure was reported to be independent of alterations in serum lipids (Hsueh et 

aI., 1998). Similarly, in animal models, both prenatal and postnatal arsenic­

induced atherosclerosis is not associated with altered plasma cholesterol. 

However, triglyceride levels have been reported to be altered by arsenic 

exposures associated with increased atherosclerosis. Both prenatal (Srivastava 

et aI., 2007) and postnatal (Srivastava et aI., 2009) arsenic-induced 

atherosclerosis were associated with significant decrease in plasma triglyceride. 

However, another study (Lemaire et aI., 2011) reported an increase in plasma 

triglycerides associated with arsenic-induced atherosclerosis. In the current 

study, lower arsenic exposure prenatal significantly decreased plasma 

triglycerides at 10 weeks (4.9 ppm arsenic) and 16 weeks (1 ppm arsenic) which 

is consistent with earlier report with 49 ppm arsenic exposure (Srivastava et aI., 

2007). These data suggest that despite a significant decrease in plasma 

triglycerides, prenatal arsenic exposure at lower doses increases lesion 

formation. Whereas plasma triglycerides were not altered with 4.9 ppm arsenic 

exposures prenatal when mice were 16 weeks of age, plasma cholesterol was 
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significantly increased. This increased plasma cholesterol was surprising 

because it is the first reported observation with arsenic-induced atherosclerosis. 

The increase in plasma cholesterol caused by arsenic exposure might be 

contributing to the accelerated atherogenesis. 

Collectively, these experimental data along with human data reporting the 

occurrence of myocardial infarction in infants exposed to arsenic (Rosenberg, 

1973; Rosenberg, 1974), suggest that infants might be at high risk to the 

atherogenic effects of arsenic even at lower exposures. 

Prenatal exposure to arsenic induces atherosclerosis later in life. However, it is 

clear that human environmental exposure to inorganic arsenic occurs during the 

entire life span, and not limited to the prenatal period. How prenatal arsenic 

exposure may modulate exposure that occurs after gestation and during entire 

life span ("whole-life") has been unclear. According to the predictive adaptive 

response (Gluckman and Hanson, 2004), prenatal arsenic exposure will protect 

against later life exposure due to adaptations made by the fetus in preparation for 

postnatal life. For example, gestational high-fat diet results in endothelial 

dysfunction and hypertension in adult rat offspring (Khan et aI., 2004; Khan et aI., 

2003). However, if the offspring are also maintained on high-fat diet after birth, 

endothelial dysfunction although not the hypertension is prevented (Khan et aI., 

2004). Conversely, in transplacental arsenic-induced carcinogenesis mouse 

model, "whole-life" arsenic exposure resulted in higher tumor incidence than 

prenatal only exposures (Tokar et aI., 2011), thus suggesting that late life 

exposure enhanced prenatal arsenic exposure. In the current study, similar to 
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prenatal exposures, atherosclerosis appears to be increasing with decreasing 

doses of "whole-life" arsenic exposures. However, when compared to prenatal 

only exposure, "whole-life" arsenic exposure at any dose did not alter prenatal 

arsenic-induced atherosclerosis. In addition, "whole-life" arsenic exposure did not 

alter plasma triglycerides when compared to unexposed groups, but decreased 

plasma cholesterol (at 4.9 ppm arsenic, 10 weeks) similar to prenatal exposure. 

However, "whole-life" arsenic exposure altered some of the plasma effects 

induced by prenatal exposure. For example, "whole-life" arsenic exposure 

attenuated prenatal arsenic-induced plasma cholesterol (4.9 ppm arsenic, 16 

week), and elevated prenatal arsenic-decreased triglyceride (1 ppm arsenic, 16 

week) to control levels. These plasma lipid data suggest that "whole-life" arsenic 

exposures may mediate atherogenesis through mechanisms which might be 

different from prenatal exposure. Together, these compelling data suggest that 

once atherogenesis is initiated by arsenic exposure prenatal, the disease 

outcome is independent on further exposures occurring later in life. Thus, there is 

an apparent need to protect pregnant mothers from arsenic exposures even in 

populations with very low exposure levels such as the United States in order to 

prevent elevated CVD. 

Inflammation plays a key role in atherogenesis. Atherogenesis requires local 

chemokine production for the migration of leukocytes. Furthermore, vascular 

cells (endothelial cells, monocytes/macrophages, and smooth muscle cells) 

involved in atherogenesis secrete chemokines and pro-inflammatory cytokines. 

The chemokine IL-8 (human ortholog of mouse KC) is an angiogenic factor (Koch 
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et aL, 1992), and a chemotactic factor for vascular smooth muscle cells (Yue et 

aL, 1993), T-cells (Lloyd et aL, 1996), and monocytes (Gerszten et aL, 1999). 

Arsenic is reported to induce the expression of IL-8 in human aortic endothelial 

cells (Simeonova et aL, 2003). IL-6 is a pro-inflammatory cytokine and is 

recognized as a marker for vascular inflammation (Kleemann et aL, 2008). In 

addition, circulating IL-6 is an independent risk factor coronary artery disease 

(Luc et aL, 2003), and increased IL-6 expression in plaques strongly correlates 

with plaque instability and rupture (Biasucci et aL, 1996). MCP-1 is important in 

the trafficking of macrophages. Genetic deletion of MCP-1 and IL-6 in mice 

decreased atherosclerotic lesion formation (Gu et aL, 1998; Schieffer et aL, 

2004). IL-113 has pro-atherogenic properties associated with upregulation of 

endothelial adhesion molecules, and activation of macrophages and vascular 

cells (Ait-Oufella et aL, 2011). VEGF is an angiogenic factor, can function as an 

inflammatory cytokine, promoting lesion formation and plaque instability (Holm et 

aL, 2009). Therefore, I determined the effects of prenatal and "whole-life" arsenic 

exposures on plasma cytokine/chemokine expression. I observed that both 

exposure types increased specific plasma cytokines/chemokines which include 

KC (murine ortholog of IL-8), IL-6, IL-113, MCP-1 and VEGF. The 

cytokine/chemokine expression was age-, dose-, and exposure type-specific. In 

addition, whereas prenatal arsenic exposure alone altered cytokine expression 

only at high exposure (49 ppm arsenic), "whole-life" exposure altered cytokine 

expression at lower exposure levels (4.9 ppm arsenic). These data are consistent 

with epidemiologic data (Wu et aL, 2003) showing increased plasma IL-6 
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concentrations in arsenic exposed humans, and with animal studies (Srivastava 

et aI., 2009) showing arsenic-induced vascular and circulating concentrations of 

MCP-1 and IL-6. Furthermore, prenatal arsenic exposure is reported to alter the 

gene expression profile (including IL-8 and IL-1~) in newborn cord blood (Fry et 

aI., 2007). Collectively, my experimental data along with reported data suggest 

that arsenic-induced inflammation plays an important role in accelerating 

atherogenesis. 

In summary, this study indicates that the induction of atherosclerosis appears to 

be increasing with decreasing arsenic levels of prenatal exposures. 

Atherosclerosis induction by arsenic exposure is associated with alterations in 

plasma cholesterol and triglycerides. Furthermore, "whole-life" exposures also 

result in increased lesion formation similar to prenatal exposure when compared 

with controls. Interestingly, atherosclerotic lesion area was the same in both 

prenatal only and "whole-life" arsenic exposures, suggesting only the prenatal 

exposure counts. However, there appear to be an interaction- but not an additive 

effect between prenatal only and later life exposures. Circulating 

cytokine/chemokine expression showed dose-specific increase, thus indicating 

inflammation. Our observations suggest that disease may be even higher at 

lower exposures. Therefore, it will be important to examine the effect of prenatal 

arsenic exposure at much lower doses (doses<1 ppm arsenic). Future studies will 

determine lesion formation in aortic valves and also determine exosomal Hsp70 

expression. 
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CHAPTER VI 

General conclusions and future studies 

Inorganic arsenic has been considered a hazardous compound for many years 

because of its deleterious effects on human health worldwide. The most 

established toxic effect of arsenic on human health is cancer, with arsenic 

reported to cause lung, liver, skin, and bladder cancer. However, it is also now 

accepted that arsenic exposure, both prenatally and postnatally also causes 

atherosclerosis which underlies most CVD in humans and in animal models. 

Despite the strong evidence implicating arsenic exposure in the development of 

CVD, it is still unclear how arsenic mediates disease progression. The first part of 

this study focused more on the liver as the source of atherogenic stimulus, based 

on several reports of how the risk of CVD increases with liver disease. A major 

finding in this dissertation is that prenatal arsenic exposure causes liver damage 

several weeks later during postnatal life in ApoF'- mice. This liver damage was 

characterized by increased plasma ALT and AST liver enzymes, and IL-6 

expression, with no major changes in liver histology and hepatic inflammation. 

These findings are similar to earlier reports showing induction of liver damage by 

chronic postnatal arsenic exposures in humans (Mazumder, 2005) and animal 

models (Arteel et aI., 2008; Waalkes et aI., 2003; Santra et aI., 2000; Wu et aI., 

2008). However, what is different and new about the current study is that. 
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whereas liver damage was induced by chronic postnatal arsenic exposures for 

several months in earlier studies, liver damage was induced by a relatively 

shorter 10 day prenatal exposure in the current study. The liver damage was 

manifested several weeks (10 and 24 weeks) after arsenic exposure is removed. 

In addition, this is the first study showing the induction of liver damage by arsenic 

exposure in an atherosclerosis animal model as opposed to reported studies 

performed in other mice strains such as C57B1/6J, C3H and BALB/c. The 

induction of liver damage by prenatal arsenic exposure in the ApoF'-mice is a 

significant finding because these findings confirm earlier epidemiological reports 

(Brea et aI., 2005; Targher et aI., 2004; Targher et aI., 2006) showing that the risk 

of developing atherosclerosis increases with liver disease. In addition, elevated 

plasma AL T and AST are independent risk factors for atherosclerosis, 

independent of traditional risk factors such as metabolic syndrome (Adibi et aI., 

2007; Bellentani et aI., 2008; Schindhelm et aI., 2007). However, this study 

shows that prenatal arsenic exposure does not sensitize the liver to enhanced 

liver toxicity owing to LPS, which is different from earlier reports of increased 

sensitivity to liver damage owing to LPS by chronic postnatal arsenic exposures 

(Arteel et aI., 2008). The lack of sensitivity to liver damage by prenatal arsenic 

exposure can be attributed to the difference in life-stage exposure, prenatal 

versus chronic postnatal exposures. These differences suggest that additional 

postnatal arsenic exposures will be needed to sensitize the liver to enhanced 

liver damage caused by LPS. A weakness in the LPS study is that only the 24 h 

time-point was analyzed after the LPS challenge, considering that the induction 
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of cytokines (hepatic or plasma) is temporal. In the future, mice should be 

euthanized at different time points (e.g. 0, 6 12 and 24 h) post LPS injection in 

order to avoid missing the peak levels of cytokine expression as was probably 

the case with the current study. 

Another major finding in this dissertation is the delayed temporal induction of 

Hsp70 in the livers (3-10 weeks) of mice exposed to arsenic prenatally, thus 

indicating stress. This finding is similar to earlier reports showing increased 

Hsp70 expression in animal tissues following arsenic exposures (Andrew et aI., 

2007; Han et aI., 2005; Liu et aI., 2001). However, what is different and new and 

thus a strength in the current study is that whereas the expression of Hsp70 was 

determined only at one time point or age immediately following arsenic exposure 

in the earlier studies, the current study investigated Hsp70 expression during 

prenatal and postnatal development following prenatal arsenic exposure. An 

absence in the induction of Hsp70 expression immediately following arsenic 

exposure (at GD18) in the current study indicates Hsp70 expression is not 

sufficient to be used as a biomarker of arsenic exposure as proposed by earlier 

studies (Del Razo et aI., 2001; Han et aI., 2005). In addition, Hsp70 induction 

observed at 3-10 weeks of age indicates a critical window of enhanced sensitivity 

to other environmental factors. For example, if the mice are challenged with LPS 

during this window, they might show increased sensitivity to liver damage. The 

Hsp70 induction by prenatal arsenic exposure was associated with increased 

Hsp70 DNA methylation in the body of the gene (indicating an epigenetic effect), 

and underlying mechanism of induction is likely by increased mRNA stability as 
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indicated by decreased miRNA expression. However, future studies are needed 

to confirm the regulation of Hsp 70 by the decreased miRNAs. This finding also 

suggests that the stressed liver cells can release excess Hsp70 in to circulation 

which can activate macrophages and thus promote atherogenesis as have been 

earlier reported (Lu and Kakkar, 2010). However, a weakness in the Hsp70 

expression study is the lack of evidence of increased plasma exosomal Hsp70 

expression associated with the accelerated atherosclerosis. Therefore, future 

studies are required to determine exosomal Hsp70 expression. 

Taken as a whole, these data therefore indicate that the deleterious effects of 

prenatal arsenic exposure on the liver can be contributing to the increased 

atherosclerosis observed in the ApoF'- mouse model. 

The second part of this dissertation determined the effects of prenatal arsenic 

exposure on atherosclerosis and how later life arsenic exposure modifies 

exposures prenatally. A major finding in this study is that atherosclerotic lesion 

formation appears to be increasing with decreasing doses of prenatal arsenic 

exposure. This finding is different from earlier reports of decreasing lesion 

formation with decreasing doses of postnatal arsenic exposures (Srivastava et 

aI., 2009). The difference in dose-response lesion formation between postnatal 

and prenatal arsenic exposures might be attributed to the difference in life-stage 

of exposure. The prenatal exposure interacts with postnatal exposure to change 

the response. These data indicate that differences exist between prenatal arsenic 

exposure and postnatal exposures in the induction of atherosclerosis. 

Furthermore, "whole-life" arsenic exposure did not enhance lesion formation 
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induced by prenatal exposures. Absence of lesion enhancement by later life 

exposure is a significant finding and a strength in this study, and suggests that 

only the prenatal exposure counts. In the future, the aortic valves will also be 

analyzed for lesion formation, to correlate with lesion formation in the aortas. 

Both exposure types increased plasma cytokines and chemokines related to 

CVD, indicating inflammation, which is a risk factor contributing to 

atherosclerosis. These data are quite compelling and indicate that gestation is 

indeed a very sensitive period of development and toxic exposures to the 

intrauterine environment can result in deleterious effects that lead to diseases 

later in life. These data indicate that exposure to arsenic prenatally initiates 

atherogenesis, which manifest later in life whether or not there is additional late­

life exposure. A weakness in this part of the study is that only 2 arsenic doses 

(4.9 and 1 ppm arsenic) were determined, and thus not enough to conclude on 

the dose-response curve. In addition, the current study did not include postnatal 

only exposures to make direct comparisons with prenatal and "whole-life" 

exposures. Further studies are required to determine the arsenic effects at lower 

exposures «1 ppm arsenic), and also to determine if there is indeed a threshold 

exposure level. Indeed, postnatal arsenic exposure was reported to induce more 

atherosclerotic lesion formation at 0.2 ppm arsenic than at 1 ppm arsenic 

(Lemaire et aI., 2011). This report suggests that prenatal arsenic exposure at 

exposures < 1 ppm arsenic is likely to induce more atherosclerotic lesion 

formation. Further studies are also needed to determine if the prenatal arsenic 
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effects on atherosclerosis can be reversed by supplementing prenatal arsenic­

exposed mice with anti-inflammatory therapies during their postnatal life. 

In conclusion, mechanisms of prenatal arsenic exposure-induced atherosclerosis 

include subtle but significant hepatic stress and damage, and increased systemic 

inflammation. 
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